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The Royal Ontario Museum (ROM) in Toronto, Canada, opened in 

March 1914. The ROM has undergone several overhauls, the most 

dramatic being the addition of Daniel Libeskind’s Lee-Chin Crystal, 

finished in June of 2007. The soaring glass and metal structure leads 

a visitor from the chaos of the street to the more serene atmosphere 

of the museum. Like many modern buildings, the Crystal embodies 

application of many areas of mathematics in many ways. Readers of 

the linear programming chapter (7) of this book may find it useful to 

glance at the cover while contemplating routes, via edges, between 

the vertices of similar structures.
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ALGEBRA

Algebraic Rules for
Real numbers

a C b D b C a
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a C .b C c/ D .a C b/C c
a.bc/ D .ab/c
a.b C c/ D ab C ac
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.a C b/c D ac C bc
.a � b/c D ac � bc
a C 0 D a
a � 0 D 0
a � 1 D a
a C .�a/ D 0
�.�a/ D a
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a � b D a C .�b/
a � .�b/ D a C b
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Summation Formulas
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Exponents

a0 D 1

a�n D
1
an

.a ¤ 0/

aman D amCn

.am/n D amn

.ab/n D anbn�a
b

�n
D
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bn
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Special Products

x.y C z/ D xy C xz
.x C a/.x C b/ D x2 C .a C b/x C ab
.x C a/2 D x2 C 2ax C a2

.x � a/2 D x2 � 2ax C a2

.x C a/.x � a/ D x2 � a2

.x C a/3 D x3 C 3ax2 C 3a2x C a3

.x � a/3 D x3 � 3ax2 C 3a2x � a3

Quadratic Formula

If ax2 C bx C c D 0, where
a ¤ 0, then

x D
�b ˙

p
b2 � 4ac
2a

Inequalities

If a < b, then aC c < bC c.
If a < b and c > 0, then
ac < bc.
If a < b and c > 0, then
a.�c/ > b.�c/.

Special Sums
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Radicals
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Factoring Formulas

ab C ac D a.b C c/
a2 � b2 D .a C b/.a � b/
a2 C 2ab C b2 D .a C b/2

a2 � 2ab C b2 D .a � b/2

a3 C b3 D .a C b/.a2 � ab C b2/
a3 � b3 D .a � b/.a2 C ab C b2/

Straight Lines

m D
y2 � y1
x2 � x1

(slope formula)

y � y1 D m.x � x1/ (point-slope form)
y D mx C b (slope-intercept form)
x D constant (vertical line)
y D constant (horizontal line)

Absolute Value

jabj D jaj � jbjˇ̌̌a
b

ˇ̌̌
D

jaj
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ja � bj D jb � aj

�jaj � a � jaj
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Logarithms

logb x D y if and only if x D by

logb.mn/ D logb m C logb n
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m
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D logb m � logb n
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r D r logb m
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FINITE MATHEMATICS

Business Relations

Interest D (principal)(rate)(time)
Total cost D variable cost C fixed cost

Average cost per unit D
total cost
quantity

Total revenue D (price per unit)(number of units sold)
Profit D total revenue � total cost

Ordinary Annuity Formulas

A D R
1 � .1 C r/�n

r
D Ran r (present value)

S D R
.1 C r/n � 1

r
D Rsn r (future value)

Counting

nPr D
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nC0 C nC1 C � � � C nCn�1 C nCn D 2n

nC0 D 1 D nCn

nC1CrC1 D nCr C nCrC1

Properties of Events

For E and F events for an experiment with sample space S

E [ E D E
E \ E D E
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E [ S D S
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E \ ; D ;
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E \ .F \ G/ D .E \ F/ \ G
E \ .F [ G/ D .E \ F/ [ .E \ G/
E [ .F \ G/ D .E [ F/ \ .E [ G/

Compound Interest Formulas
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�
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Matrix Multiplication

.AB/ik D

nX
jD1

AijBjk D Ai1B1k C Ai2B2k C � � � C Ainbnk

.AB/T D BTAT

A�1A D I D AA�1
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Probability
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CALCULUS
Graphs of Elementary Functions
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Definition of Derivative of f.x/

f0.x/ D
d
dx
. f.x// D lim

h!0

f.x C h/ � f.x/
h

D lim
z!x

f.z/ � f.x/
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Differentiation Formulas
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Integration Formulas

We assume that u is a differentiable function of x.Z
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Preface

The fourteenth edition of Introductory Mathematical Analysis for Business, Econo-
mics, and the Life and Social Sciences (IMA) continues to provide a mathematical
foundation for students in a variety of fields and majors, as suggested by the title.

As begun in the thirteenth edition, the book has three parts: College Algebra, Chapters 0–4;
Finite Mathematics, Chapters 5–9; and Calculus, Chapters 10–17.

Schools that have two academic terms per year tend to give Business students a term
devoted to Finite Mathematics and a term devoted to Calculus. For these schools we rec-
ommend Chapters 0 through 9 for the first course, starting wherever the preparation of the
students allows, and Chapters 10 through 17 for the second, including as much as the stu-
dents’ background allows and their needs dictate.

For schools with three quarter or three semester courses per year there are a number
of possible uses for this book. If their program allows three quarters of Mathematics, well-
prepared Business students can start a first course on Finite Mathematics with Chapter 1
and proceed through topics of interest up to and including Chapter 9. In this scenario, a
second course on Differential Calculus could start with Chapter 10 on Limits and Continu-
ity, followed by the three “differentiation chapters”, 11 through 13 inclusive. Here, Section
12.6 on Newton’s Method can be omitted without loss of continuity, while some instructors
may prefer to review Chapter 4 on Exponential and Logarithmic Functions prior to study-
ing them as differentiable functions. Finally, a third course could comprise Chapters 14
through 17 on Integral Calculus with an introduction to Multivariable Calculus. Note that
Chapter 16 is certainly not needed for Chapter 17 and Section 15.8 on Improper Integrals
can be safely omitted if Chapter 16 is not covered.

Approach
Introductory Mathematical Analysis for Business, Economics, and the Life and Social
Sciences (IMA) takes a unique approach to problem solving. As has been the case in ear-
lier editions of this book, we establish an emphasis on algebraic calculations that sets this
text apart from other introductory, applied mathematics books. The process of calculating
with variables builds skill in mathematical modeling and paves the way for students to use
calculus. The reader will not find a “definition-theorem-proof” treatment, but there is a sus-
tained effort to impart a genuine mathematical treatment of applied problems. In particular,
our guiding philosophy leads us to include informal proofs and general calculations that
shed light on how the corresponding calculations are done in applied problems. Emphasis
on developing algebraic skills is extended to the exercises, of which many, even those of
the drill type, are given with general rather than numerical coefficients.

We have refined the organization of our book over many editions to present the content
in very manageable portions for optimal teaching and learning. Inevitably, that process
tends to put “weight” on a book, and the present edition makes a very concerted effort to
pare the book back somewhat, both with respect to design features—making for a cleaner
approach—and content—recognizing changing pedagogical needs.

Changes for the Fourteenth Edition
We continue to make the elementary notions in the early chapters pave the way for their
use in more advanced topics. For example, while discussing factoring, a topic many stu-
dents find somewhat arcane, we point out that the principle “ab D 0 implies a D 0 or
b D 0”, together with factoring, enables the splitting of some complicated equations into
several simpler equations. We point out that percentages are just rescaled numbers via the
“equation” p% D p

100 so that, in calculus, “relative rate of change” and “percentage rate
of change” are related by the “equation” r D r � 100%. We think that at this time, when
negative interest rates are often discussed, even if seldom implemented, it is wise to be
absolutely precise about simple notions that are often taken for granted. In fact, in the

ix
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Finance, Chapter 5, we explicitly discuss negative interest rates and ask, somewhat rhetor-
ically, why banks do not use continuous compounding (given that for a long time now
continuous compounding has been able to simplify calculations in practice as well as in
theory).

Whenever possible, we have tried to incorporate the extra ideas that were in the “Explore
and Extend” chapter-closers into the body of the text. For example, the functions tax rate t.i/
and tax paid T.i/ of income i, are seen for what they are: everyday examples of case-defined
functions. We think that in the process of learning about polynomials it is helpful to include
Horner’sMethod for their evaluation, since with even a simple calculator at hand this makes
the calculation much faster. While doing linear programming, it sometimes helps to think
of lines and planes, etcetera, in terms of intercepts alone, so we include an exercise to show
that if a line has (nonzero) intercepts x0 and y0 then its equation is given by

x
x0
C

y
y0
D 1

and,moreover, (for positive x0 and y0) we ask for a geometric interpretation of the equivalent
equation y0xC x0y D x0y0.

But, turning to our “paring” of the previous IMA, let us begin with Linear Program-
ming. This is surely one of the most important topics in the book for Business students. We
now feel that, while students should know about the possibility ofMultiple Optimum Solu-
tions and Degeneracy and Unbounded Solutions, they do not have enough time to devote
an entire, albeit short, section to each of these. The remaining sections of Chapter 7 are
already demanding and we now content ourselves with providing simple alerts to these
possibilities that are easily seen geometrically. (The deleted sections were always tagged
as “omittable”.)

We think further that, in Integral Calculus, it is far more important for Applied Mathe-
matics students to be adept at using tables to evaluate integrals than to know about Integra-
tion by Parts and Partial Fractions. In fact, these topics, of endless joy to some as recre-
ational problems, do not seem to fit well into the general scheme of serious problem solving.
It is a fact of life that an elementary function (in the technical sense) can easily fail to have
an elementary antiderivative, and it seems to us that Parts does not go far enough to rescue
this difficulty to warrant the considerable time it takes to master the technique. Since Par-
tial Fractions ultimately lead to elementary antiderivatives for all rational functions, they
are part of serious problem solving and a better case can be made for their inclusion in an
applied textbook. However, it is vainglorious to do so without the inverse tangent function
at hand and, by longstanding tacit agreement, applied calculus books do not venture into
trigonometry.

After deleting the sections mentioned above, we reorganized the remaining material of
the “integration chapters”, 14 and 15, to rebalance them. The first concludes with the Funda-
mental Theorem of Calculus while the second is more properly “applied”. We think that the
formerly daunting Chapter 17 has benefited from deletion of Implicit Partial Differentia-
tion, the Chain Rule for partial differentiation, and Lines of Regression. Since Multivariable
Calculus is extremely important for Applied Mathematics, we hope that this more manage-
able chapter will encourage instructors to include it in their syllabi.

Examples and Exercises
Most instructors and students will agree that the key to an effective textbook is in the
quality and quantity of the examples and exercise sets. To that end, more than 850 exam-
ples are worked out in detail. Some of these examples include a strategy box designed
to guide students through the general steps of the solution before the specific solution
is obtained. (See, for example, Section 14.3 Example 4.) In addition, an abundant num-
ber of diagrams (almost 500) and exercises (more than 5000) are included. Of the exer-
cises, approximately 20 percent have been either updated or written completely anew. In
each exercise set, grouped problems are usually given in increasing order of difficulty.
In most exercise sets the problems progress from the basic mechanical drill-type to more
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interesting thought-provoking problems. The exercises labeled with a coloured exercise
number correlate to a “Now Work Problem N” statement and example in the section.

Based on the feedback we have received from users of this text, the diversity of the
applications provided in both the exercise sets and examples is truly an asset of this book.
Many real applied problems with accurate data are included. Students do not need to look
hard to see how the mathematics they are learning is applied to everyday or work-related
situations. A great deal of effort has been put into producing a proper balance between
drill-type exercises and problems requiring the integration and application of the concepts
learned.

Pedagogy and Hallmark Features
� Applications:An abundance and variety of applications for the intended audience appear

throughout the book so that students see frequently how the mathematics they are learn-
ing can be used. These applications cover such diverse areas as business, economics,
biology, medicine, sociology, psychology, ecology, statistics, earth science, and archae-
ology. Many of these applications are drawn from literature and are documented by
references, sometimes from the Web. In some, the background and context are given
in order to stimulate interest. However, the text is self-contained, in the sense that it
assumes no prior exposure to the concepts on which the applications are based. (See, for
example, Chapter 15, Section 7, Example 2.)

� Now Work Problem N: Throughout the text we have retained the popular Now Work
Problem N feature. The idea is that after a worked example, students are directed to
an end-of-section problem (labeled with a colored exercise number) that reinforces the
ideas of the worked example. This gives students an opportunity to practice what they
have just learned. Because the majority of these keyed exercises are odd-numbered, stu-
dents can immediately check their answer in the back of the book to assess their level of
understanding. The complete solutions to the odd-numbered exercises can be found in
the Student Solutions Manual.

� Cautions: Cautionary warnings are presented in very much the same way an instructor
would warn students in class of commonly made errors. These appear in the margin,
along with other explanatory notes and emphases.

� Definitions, key concepts, and important rules and formulas: These are clearly stated
and displayed as a way to make the navigation of the book that much easier for the
student. (See, for example, the Definition of Derivative in Section 11.1.)

� Review material: Each chapter has a review section that contains a list of important
terms and symbols, a chapter summary, and numerous review problems. In addition,
key examples are referenced along with each group of important terms and symbols.

� Inequalities and slack variables: In Section 1.2, when inequalities are introduced we
point out that a � b is equivalent to “there exists a non-negative number, s, such that
aC s D b”. The idea is not deep but the pedagogical point is that slack variables, key
to implementing the simplex algorithm in Chapter 7, should be familiar and not distract
from the rather technical material in linear programming.

� Absolute value: It is common to note that ja � bj provides the distance from a to b. In
Example 4e of Section 1.4 we point out that “x is less than � units from �” translates as
jx � �j < � . In Section 1.4 this is but an exercise with the notation, as it should be, but
the point here is that later (in Chapter 9) �will be the mean and � the standard deviation
of a random variable. Again we have separated, in advance, a simple idea from a more
advanced one. Of course, Problem 12 of Problems 1.4, which asks the student to set up
jf.x/ � Lj < �, has a similar agenda to Chapter 10 on limits.

� Early treatment of summation notation: This topic is necessary for study of the defi-
nite integral in Chapter 14, but it is useful long before that. Since it is a notation that is
new to most students at this level, but no more than a notation, we get it out of the way
in Chapter 1. By using it when convenient, before coverage of the definite integral, it is
not a distraction from that challenging concept.
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� Section 1.6 on sequences: This section provides several pedagogical advantages.
The very definition is stated in a fashion that paves the way for the more important and
more basic definition of function in Chapter 2. In summing the terms of a sequence we
are able to practice the use of summation notation introduced in the preceding section.
The most obvious benefit though is that “sequences” allows us a better organization
in the annuities section of Chapter 5. Both the present and the future values of an annu-
ity are obtained by summing (finite) geometric sequences. Later in the text, sequences
arise in the definition of the number e in Chapter 4, in Markov chains in Chapter 9, and
in Newton’s method in Chapter 12, so that a helpful unifying reference is obtained.

� Sum of an infinite sequence: In the course of summing the terms of a finite sequence,
it is natural to raise the possibility of summing the terms of an infinite sequence. This is
a nonthreatening environment in which to provide a first foray into the world of limits.
We simply explain how certain infinite geometric sequences have well-defined sums and
phrase the results in a way that creates a toehold for the introduction of limits in Chapter
10. These particular infinite sums enable us to introduce the idea of a perpetuity, first
informally in the sequence section, and then again in more detail in a separate section in
Chapter 5.

� Section 2.8, Functions of Several Variables: The introduction to functions of several
variables appears in Chapter 2 because it is a topic that should appear long before Cal-
culus. Once we have done some calculus there are particular ways to use calculus in the
study of functions of several variables, but these aspects should not be confused with the
basics that we use throughout the book. For example, “a-sub-n-angle-r” and “s-sub-n-
angle-r” studied in the Mathematics of Finance, Chapter 5, are perfectly good functions
of two variables, and Linear Programming seeks to optimize linear functions of several
variables subject to linear constraints.

� Leontief’s input-output analysis in Section 6.7: In this section we have separated vari-
ous aspects of the total problem.We begin by describingwhat we call the Leontief matrix
A as an encoding of the input and output relationships between sectors of an economy.
Since this matrix can often be assumed to be constant for a substantial period of time,
we begin by assuming that A is a given. The simpler problem is then to determine the
production, X, which is required to meet an external demand, D, for an economy whose
Leontief matrix isA. We provide a careful account of this as the solution of .I�A/X D D.
Since A can be assumed to be fixed while various demands, D, are investigated, there is
some justification to compute .I� A/�1 so that we have X D .I� A/�1D. However, use
of a matrix inverse should not be considered an essential part of the solution. Finally, we
explain how the Leontief matrix can be found from a table of data that might be available
to a planner.

� Birthday probability in Section 8.4: This is a treatment of the classic problem of deter-
mining the probability that at least 2 of n people have their birthday on the same day.
While this problem is given as an example in many texts, the recursive formula that we
give for calculating the probability as a function of n is not a common feature. It is reason-
able to include it in this book because recursively defined sequences appear explicitly in
Section 1.6.

� Markov Chains:We noticed that considerable simplification of the problem of finding
steady state vectors is obtained by writing state vectors as columns rather than rows.
This does necessitate that a transition matrix T D Œtij� have tij D“probability that next
state is i given that current state is j” but avoids several artificial transpositions.

� Sign Charts for a function in Chapter 10: The sign charts that we introduced in the
12th edition now make their appearance in Chapter 10. Our point is that these charts
can be made for any real-valued function of a real variable and their help in graph-
ing a function begins prior to the introduction of derivatives. Of course we continue to
exploit their use in Chapter 13 “Curve Sketching” where, for each function f, we advo-
cate making a sign chart for each of f, f0, and f00, interpreted for f itself. When this is
possible, the graph of the function becomes almost self-evident. We freely acknowledge
that this is a blackboard technique used by many instructors, but it appears too rarely in
textbooks.
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Supplements
� MyLab Math Online Course (access code required) Built around Pearson’s best-

selling content, MyLab™ Math, is an online homework, tutorial, and assessment
program designed to work with this text to engage students and improve results. MyLab
Math can be successfully implemented in any classroom environment—lab-based,
hybrid, fully online, or traditional. By addressing instructor and student needs, MyLab
Math improves student learning. Used by more than 37 million students worldwide,
MyLab Math delivers consistent, measurable gains in student learning outcomes, reten-
tion and subsequent course success. Visit www.mymathlab.com/results to learn more.

� Student Solutions Manual includes worked solutions for all odd-numbered problems.
ISBN 0-134-77040-4 j 978-0-134-77040-6

These instructor supplements are available for download from a password-protected
section of Pearson Canada’s online catalogue (catalogue.pearsoned.ca). Navigate to your
book’s catalogue page to view a list of those supplements that are available. Speak to your
local Pearson sales representative for details and access.

� Instructor’s Solution Manual has worked solutions to all problems, including those in
the Apply It exercises. It is downloadable from a password-protected section of Pearson
Canada’s online catalogue (catalogue.pearsoned.ca).

– Computerized Test Bank. Pearson’s computerized test banks allow instructors to
filter and select questions to create quizzes, tests, or homework. Instructors can revise
questions or add their own, and may be able to choose print or online options. These
questions are also available in Microsoft Word format.

– PowerPoint® Lecture Slides. The chapter-by-chapter PowerPoint lecture slides
include key concept, equations, and worked examples from the text.

– Learning Solutions Managers. Pearson’s Learning Solutions Managers work with
faculty and campus course designers to ensure that Pearson technology products,
assessment tools, and online coursematerials are tailored tomeet your specific needs.
This highly qualified team is dedicated to helping schools take full advantage of a
wide range of educational resources, by assisting in the integration of a variety of
instructional materials and media formats. Your local Pearson Canada sales repre-
sentative can provide you with more details on this service program.

– Pearson eText. The Pearson eText gives students access to their textbook anytime,
anywhere. In addition to note taking, highlighting, and bookmarking, the Pearson
eText offers interactive and sharing features. Instructors can share their comments
or highlights, and students can add their own, creating a tight community of learners
within the class.

http://www.mymathlab.com/results
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Chapter 0 Review

L esley Griffith worked for a yacht supply company in Antibes, France. Often,
she needed to examine receipts in which only the total paid was reported and
then determine the amount of the total which was French “value-added tax”.
It is known as TVA for “Taxe à la Value Ajouté”. The French TVA rate was

19.6% (but in January of 2014 it increased to 20%). A lot of Lesley’s business came
from Italian suppliers and purchasers, so she also had to deal with the similar problem
of receipts containing Italian sales tax at 18% (now 22%).

A problem of this kind demands a formula, so that the user can just plug in a tax
rate like 19.6% or 22% to suit a particular place and time, but many people are able
to work through a particular case of the problem, using specified numbers, without
knowing the formula. Thus, if Lesley had a 200-Euro French receipt, she might have
reasoned as follows: If the item cost 100 Euros before tax, then the receipt total would
be for 119.6 Euros with tax of 19.6, so tax in a receipt total of 200 is to 200 as 19.6 is
to 119.6. Stated mathematically,

tax in 200
200

D
19:6
119:6

� 0:164 D 16:4%

If her reasoning is correct then the amount of TVA in a 200-Euro receipt is about 16.4%
of 200 Euros, which is 32.8 Euros. In fact, many people will now guess that

tax in R D R
�

p
100C p

�
gives the tax in a receipt R, when the tax rate is p%. Thus, if Lesley felt confident about
her deduction, she could have multiplied her Italian receipts by 18

118 to determine the tax
they contained.

Of course, most people do not remember formulas for very long and are uncom-
fortable basing a monetary calculation on an assumption such as the one we italicized
above. There are lots of relationships that are more complicated than simple proportion-
ality! The purpose of this chapter is to review the algebra necessary for you to construct
your own formulas, with confidence, as needed. In particular, we will derive Lesley’s
formula from principles with which everybody is familiar. This usage of algebra will
appear throughout the book, in the course of making general calculations with variable
quantities.

In this chapter we will review real numbers and algebraic expressions and the basic
operations on them. The chapter is designed to provide a brief review of some terms and
methods of symbolic calculation. Probably, you have seen most of this material before.
However, because these topics are important in handling the mathematics that comes
later, an immediate second exposure to them may be beneficial. Devote whatever time
is necessary to the sections in which you need review.

1
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Objective 0.1 Sets of Real Numbers
To become familiar with sets, in
particular sets of real numbers, and
the real-number line.

A set is a collection of objects. For example, we can speak of the set of even numbers
between 5 and 11, namely, 6, 8, and 10. An object in a set is called an element of
that set. If this sounds a little circular, don’t worry. The words set and element are like
line and point in geometry. We cannot define them in more primitive terms. It is only
with practice in using them that we come to understand their meaning. The situation is
also rather like the way in which a child learns a first language. Without knowing any
words, a child infers the meaning of a few very simple words by watching and listening
to a parent and ultimately uses these very few words to build a working vocabulary.
None of us needs to understand the mechanics of this process in order to learn how to
speak. In the same way, it is possible to learn practical mathematics without becoming
embroiled in the issue of undefined primitive terms.

One way to specify a set is by listing its elements, in any order, inside braces. For
example, the previous set is f6; 8; 10g, which we could denote by a letter such as A,
allowing us to write A D f6; 8; 10g. Note that f8; 10; 6g also denotes the same set, as
does f6; 8; 10; 10g. A set is determined by its elements, and neither rearrangements nor
repetitions in a listing affect the set. A set A is said to be a subset of a set B if and
only if every element of A is also an element of B. For example, if ADf6; 8; 10g and
BDf6; 8; 10; 12g, then A is a subset of B but B is not a subset of A. There is exactly
one set which contains no elements. It is called the empty set and is denoted by ;.

Certain sets of numbers have special names. The numbers 1, 2, 3, and so on form
the set of positive integers:

set of positive integers D f1; 2; 3; : : :g

The three dots are an informal way of saying that the listing of elements is unending
and the reader is expected to generate as many elements as needed from the pattern.

The reason for q¤ 0 is that we cannot
divide by zero.

The positive integers together with 0 and the negative integers �1;�2;�3; : : : ;
form the set of integers:

set of integers D f: : : ;�3;�2;�1; 0; 1; 2; 3; : : :g

The set of rational numbers consists of numbers, such as 1
2 and

5
3 , that can be

written as a quotient of two integers. That is, a rational number is a number that can
be written as p

q , where p and q are integers and q¤ 0. (The symbol “¤” is read “is not
equal to.”) For example, the numbers 19

20 ,
�2
7 , and

�6
�2 are rational. We remark that 24 ,

1
2 ,

3
6 ,

�4
�8 , 0:5, and 50% all represent the same rational number. The integer 2 is rational,

since 2D 2
1 . In fact, every integer is rational.Every integer is a rational number.

All rational numbers can be represented by decimal numbers that terminate, such
as 3

4 D 0:75 and 3
2 D 1:5, or by nonterminating, repeating decimal numbers (composed

of a group of digits that repeats without end), such as 2
3 D 0:666 : : : ; �4

11 D�0:3636 : : : ;
and 2

15 D 0:1333 : : : : Numbers represented by nonterminating, nonrepeating decimalsEvery rational number is a real number.
are called irrational numbers. An irrational number cannot be written as an integer
divided by an integer. The numbers � (pi) and

p
2 are examples of irrational numbers.

Together, the rational numbers and the irrational numbers form the set of real numbers.
The set of real numbers consists of all
decimal numbers.

Real numbers can be represented by points on a line. First we choose a point on the
line to represent zero. This point is called the origin. (See Figure 0.1.) Then a standard
measure of distance, called a unit distance, is chosen and is successively marked off
both to the right and to the left of the origin. With each point on the line we associate a
directed distance, which depends on the position of the point with respect to the origin.

-1.5-r r

0

Some Points and Their Coordinates

Origin

Positive
direction1 2 3-1-2-3

1

2 2

FIGURE 0.1 The real-number line.
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Positions to the right of the origin are considered positive .C/ and positions to the left
are negative .�/. For example, with the point 1

2 unit to the right of the origin there
corresponds the number 1

2 , which is called the coordinate of that point. Similarly, the
coordinate of the point 1.5 units to the left of the origin is �1:5. In Figure 0.1, the
coordinates of some points are marked. The arrowhead indicates that the direction to
the right along the line is considered the positive direction.

To each point on the line there corresponds a unique real number, and to each
real number there corresponds a unique point on the line. There is a one-to-one cor-
respondence between points on the line and real numbers. We call such a line, with
coordinates marked, a real-number line. We feel free to treat real numbers as points
on a real-number line and vice versa.

EXAMPLE 1 Identifying Kinds of Real Numbers

Is it true that 0:151515 : : : is an irrational number?

Solution: The dots in 0:151515 : : : are understood to convey repetition of the digit
string “15”. Irrational numbers were defined to be real numbers that are represented by a
nonterminating, nonrepeating decimal, so 0:151515 : : : is not irrational. It is therefore a
rational number. It is not immediately clear how to represent 0:151515 : : : as a quotient

of integers. In Chapter 1 we will learn how to show that 0:151515 : : : D
5
33
. You can

check that this is plausible by entering 5�33 on a calculator, but you should also think

about why the calculator exercise does not prove that 0:151515 : : : D
5
33
.

Now Work Problem 7 G

PROBLEMS 0.1
In Problems 1–12, determine the truth of each statement. If the
statement is false, give a reason why that is so.

1.
p
�13 is an integer.

2.
�2
7

is rational.

3. �3 is a positive integer.

4. 0 is not rational.

5.
p
3 is rational.

6.
�1
0

is a rational number.

7.
p
25 is not a positive integer.

8.
p
2 is a real number.

9.
0
0
is rational.

10. � is a positive integer.

11. 0 is to the right of �
p
2 on the real-number line.

12. Every integer is positive or negative.

13. Every terminating decimal number can be regarded as a
repeating decimal number.

14.
p
�1 is a real number.

Objective 0.2 Some Properties of Real Numbers
To name, illustrate, and relate
properties of the real numbers and
their operations.

We now state a few important properties of the real numbers. Let a, b, and c be real
numbers.

1. The Transitive Property of Equality

If a D b and b D c; then a D c.

Thus, two numbers that are both equal to a third number are equal to each other.
For example, if xD y and yD 7, then xD 7.
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2. The Closure Properties of Addition and Multiplication

For all real numbers a and b, there are unique real numbers aC b and ab.

This means that any two numbers can be added and multiplied, and the result in
each case is a real number.

3. The Commutative Properties of Addition and Multiplication

aC b D bC a and ab D ba

This means that two numbers can be added or multiplied in any order. For example,
3C 4D 4C 3 and .7/.�4/D .�4/.7/.

4. The Associative Properties of Addition and Multiplication

aC .bC c/ D .aC b/C c and a.bc/ D .ab/c

This means that, for both addition and multiplication, numbers can be grouped in
any order. For example, 2C .3C 4/D .2C 3/C 4; in both cases, the sum is 9. Simi-
larly, 2xC .xC y/D .2xC x/C y, and observe that the right side more obviously sim-
plifies to 3xC y than does the left side. Also, .6 � 13 / � 5D 6. 13 � 5/, and here the left side
obviously reduces to 10, so the right side does too.

5. The Identity Properties

There are unique real numbers denoted 0 and 1 such that, for each real number a,

0C a D a and 1a D a

6. The Inverse Properties

For each real number a, there is a unique real number denoted �a such that

aC .�a/ D 0

The number �a is called the negative of a.

For example, since 6C .�6/D 0, the negative of 6 is �6. The negative of a num-
ber is not necessarily a negative number. For example, the negative of �6 is 6, since
.�6/C .6/D 0. That is, the negative of �6 is 6, so we can write �.�6/D 6.

For each real number a, except 0, there is a unique real number denoted a�1 such
that

a � a�1
D 1

The number a�1 is called the reciprocal of a.

Zero does not have a reciprocal because
there is no number that when multiplied
by 0 gives 1. This is a consequence of
0 � a D 0 in 7. The Distributive Properties.

Thus, all numbers except 0 have a reciprocal. Recall that a�1 can be written 1
a . For

example, the reciprocal of 3 is 1
3 , since 3.

1
3 /D 1. Hence, 1

3 is the reciprocal of 3. The
reciprocal of 1

3 is 3, since .
1
3 /.3/ D 1. The reciprocal of 0 is not defined.

7. The Distributive Properties

a.bC c/ D abC ac and .bC c/a D baC ca

0 � a D 0 D a � 0
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For example, although 2.3C 4/D 2.7/D 14, we can also write

2.3C 4/ D 2.3/C 2.4/ D 6C 8 D 14

Similarly,

.2C 3/.4/ D 2.4/C 3.4/ D 8C 12 D 20

and

x.zC 4/ D x.z/C x.4/ D xzC 4x

The distributive property can be extended to the form

a.bC cC d/ D abC acC ad

In fact, it can be extended to sums involving any number of terms.
Subtraction is defined in terms of addition:

a � b means aC .�b/

where �b is the negative of b. Thus, 6� 8 means 6C .�8/.
In a similar way, we define division in terms of multiplication. If b¤ 0, then

a� b means a.b�1/

Usually, we write either
a
b
or a=b for a� b. Since b�1D

1
b
,

a
b
D a.b�1/ D a

�
1
b

�
Thus, 3

5 means 3 times
1
5 , where

1
5 is the reciprocal of 5. Sometimes we refer to

a
b
as

the ratio of a to b. We remark that since 0 does not have a reciprocal, division by 0 is
not defined.

a
b
means a times the reciprocal of b.

The following examples show some manipulations involving the preceding
properties.

EXAMPLE 1 Applying Properties of Real Numbers

a. x.y� 3zC 2w/D .y� 3zC 2w/x, by the commutative property of multiplication.

b. By the associative property of multiplication, 3.4 � 5/D .3 � 4/5. Thus, the result of
multiplying 3 by the product of 4 and 5 is the same as the result of multiplying the
product of 3 and 4 by 5. In either case, the result is 60.

c. Show that a.b � c/¤ .ab/ � .ac/

Solution: To show the negation of a general statement, it suffices to provide a
counterexample. Here, taking aD 2 and bD 1D c, we see that that a.b � c/D 2 while
.ab/ � .ac/D 4.

Now Work Problem 9 G

EXAMPLE 2 Applying Properties of Real Numbers

a. Show that 2�
p
2D�

p
2C 2.

Solution: By the definition of subtraction, 2�
p
2D 2C .�

p
2/. However, by the

commutative property of addition, 2C .�
p
2/D�

p
2C 2. Hence, by the transitive

property of equality, 2�
p
2D�

p
2C 2. Similarly, it is clear that, for any a and b,

we have

a � b D �bC a

b. Show that .8C x/�yD 8C .x� y/.
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Solution: Beginning with the left side, we have

.8C x/ � y D .8C x/C .�y/ definition of subtraction

D 8C .xC .�y// associative property

D 8C .x � y/ definition of subtraction

Hence, by the transitive property of equality,

.8C x/ � y D 8C .x � y/

Similarly, for all a, b, and c, we have

.aC b/ � c D aC .b � c/

c. Show that 3.4xC 2yC 8/D 12xC 6yC 24.

Solution: By the distributive property,

3.4xC 2yC 8/ D 3.4x/C 3.2y/C 3.8/

But by the associative property of multiplication,

3.4x/ D .3 � 4/x D 12x and similarly 3.2y/ D 6y

Thus, 3.4xC 2yC 8/D 12xC 6yC 24

Now Work Problem 25 G

EXAMPLE 3 Applying Properties of Real Numbers

a. Show that
ab
c
D a

�
b
c

�
, for c¤ 0.

Solution: The restriction is necessary. Neither side of the equation is defined if
c D 0. By the definition of division,

ab
c
D .ab/ �

1
c
for c ¤ 0

But by the associative property,

.ab/ �
1
c
D a

�
b �

1
c

�
However, by the definition of division, b �

1
c
D

b
c
. Thus,

ab
c
D a

�
b
c

�
We can also show that

ab
c
D

�a
c

�
b.

b. Show that
aC b
c
D

a
c
C

b
c
for c¤ 0.

Solution: (Again the restriction is necessary but we won’t always bother to say so.)
By the definition of division and the distributive property,

aC b
c
D .aC b/

1
c
D a �

1
c
C b �

1
c

However,

a �
1
c
C b �

1
c
D

a
c
C

b
c

Hence,
aC b
c
D

a
c
C

b
c

Now Work Problem 27 G

Finding the product of several numbers can be done by considering products of
numbers taken just two at a time. For example, to find the product of x, y, and z, we
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could first multiply x by y and then multiply that product by z; that is, we find (xy)z.
Alternatively, we could multiply x by the product of y and z; that is, we find x(yz). The
associative property of multiplication guarantees that both results are identical, regard-
less of how the numbers are grouped. Thus, it is not ambiguous to write xyz. This con-
cept can be extended to more than three numbers and applies equally well to addition.

Not only should you be able to manipulate real numbers, you should also be aware
of, and familiar with, the terminology involved. It will help you read the book, follow
your lectures, and—most importantly— allow you to frame your questions when you
have difficulties.

The following list states important properties of real numbers that you should study
thoroughly. Being able to manipulate real numbers is essential to your success in math-
ematics. A numerical example follows each property. All denominators are assumed to
be different from zero (but for emphasis we have been explicit about these restrictions).

Property Example(s)

1. a � b D aC .�b/

2. a � .�b/ D aC b

3. �a D .�1/.a/

4. a.bC c/ D abC ac

5. a.b � c/ D ab � ac

6. �.aC b/ D �a � b

7. �.a � b/ D �aC b

8. �.�a/ D a

9. a.0/ D 0

10. .�a/.b/ D �.ab/ D a.�b/

11. .�a/.�b/ D ab

12.
a
1
D a

13.
a
b
D a

�
1
b

�
for b ¤ 0

14.
a
�b
D �

a
b
D
�a
b

for b ¤ 0

15.
�a
�b
D

a
b

for b ¤ 0

16.
0
a
D 0 for a ¤ 0

17.
a
a
D 1 for a ¤ 0

18. a
�
b
a

�
D b for a ¤ 0

19. a �
1
a
D 1 for a ¤ 0

20.
a
b
�
c
d
D

ac
bd

for b; d¤ 0

21.
ab
c
D

�
a
c

�
b D a

�
b
c

�
for c¤ 0

2 � 7 D 2C .�7/ D �5

2 � .�7/ D 2C 7 D 9

�7 D .�1/.7/

6.7C 2/ D 6 � 7C 6 � 2 D 54

6.7 � 2/ D 6 � 7 � 6 � 2 D 30

�.7C 2/ D �7 � 2 D �9

�.2 � 7/ D �2C 7 D 5

�.�2/ D 2

2.0/ D 0

.�2/.7/ D �.2 � 7/ D 2.�7/ D �14

.�2/.�7/ D 2 � 7 D 14

7
1
D 7;

�2
1
D �2

2
7
D 2

�
1
7

�
2
�7
D �

2
7
D
�2
7

�2
�7
D

2
7

0
7
D 0

2
2
D 1;

�5
�5
D 1

2
�
7
2

�
D 7

2 �
1
2
D 1

2
3
�
4
5
D

2 � 4
3 � 5
D

8
15

2 � 7
3
D

2
3
� 7 D 2 �

7
3
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Property Example(s)

22.
a
bc
D

a
b
�
1
c
D

1
b
�
a
c

for b; c ¤ 0

23.
a
b
D

a
b
�
c
c
D

ac
bc

for b; c ¤ 0

24.
a

b.�c/
D

a
.�b/c

D
�a
bc
D

�a
.�b/.�c/

D�
a
bc

for b; c ¤ 0

25.
a.�b/

c
D
.�a/b

c
D

ab
�c
D

.�a/.�b/
�c

D �
ab
c

for c ¤ 0

26.
a
c
C

b
c
D

aC b
c

for c ¤ 0

27.
a
c
�

b
c
D

a � b
c

for c ¤ 0

28.
a
b
C

c
d
D

adC bc
bd

for b; d ¤ 0

29.
a
b
�

c
d
D

ad � bc
bd

for b; d ¤ 0

30.

a
b
c
d

D
a
b
�

c
d
D

a
b
�
d
c
D

ad
bc

for b; c; d ¤ 0

31.
a
b
c

D a�
b
c
D a�

c
b
D

ac
b
for b; c ¤ 0

32.

a
b
c
D

a
b
� cD

a
b
�
1
c
D

a
bc

for b; c D 0

2
3 � 7
D

2
3
�
1
7
D

1
3
�
2
7

2
7
D

�
2
7

��
5
5

�
D

2 � 5
7 � 5

2
3.�5/

D
2

.�3/.5/
D
�2
3.5/
D

�2
.�3/.�5/

D�
2

3.5/
D�

2
15

2.�3/
5
D
.�2/.3/

5
D

2.3/
�5
D

.�2/.�3/
�5

D �
2.3/
5
D �

6
5

2
9
C

3
9
D

2C 3
9
D

5
9

2
9
�
3
9
D

2 � 3
9
D
�1
9

4
5
C

2
3
D

4 � 3C 5 � 2
5 � 3

D
22
15

4
5
�
2
3
D

4 � 3 � 5 � 2
5 � 3

D
2
15

2
3
7
5

D
2
3
�

7
5
D

2
3
�
5
7
D

2 � 5
3 � 7

D
10
21

2
3
5

D 2�
3
5
D 2 �

5
3
D

2 � 5
3
D

10
3

2
3
5
D

2
3
� 5 D

2
3
�
1
5
D

2
3 � 5
D

2
15

Property 23 is particularly important and could be called the fundamental
principle of fractions. It states that multiplying or dividing both the numerator and
denominator of a fraction by the same nonzero number results in a fraction that is
equal to the original fraction. Thus,

7
1
8

D
7 � 8
1
8
� 8
D

56
1
D 56



Haeussler-50501 M01_HAEU1107_14_SE_C00 November 27, 2017 14:19

Section 0.2 Some Properties of Real Numbers 9

By Properties 28 and 23, we have

2
5
C

4
15
D

2 � 15C 5 � 4
5 � 15

D
50
75
D

2 � 25
3 � 25

D
2
3

We can also do this problem by converting 2
5 and

4
15 into fractions that have the same

denominators and then using Property 26. The fractions 2
5 and

4
15 can be written with

a common denominator of 5 � 15:

2
5
D

2 � 15
5 � 15

and
4
15
D

4 � 5
15 � 5

However, 15 is the least such common denominator and is called the least common
denominator (LCD) of 2

5 and
4
15 . Thus,

2
5
C

4
15
D

2 � 3
5 � 3
C

4
15
D

6
15
C

4
15
D

6C 4
15
D

10
15
D

2
3

Similarly,

3
8
�

5
12
D

3 � 3
8 � 3
�

5 � 2
12 � 2

LCDD 24

D
9
24
�
10
24
D

9 � 10
24

D �
1
24

PROBLEMS 0.2
In Problems 1–10, determine the truth of each statement.

1. Every real number has a reciprocal.

2. The reciprocal of 6:6 is 0:151515 : : :.

3. The negative of 7 is
�1
7
.

4. 1.x � y/ D .1 � x/.1 � y/

5. �xC y D �yC x

6. .xC 2/.4/ D 4xC 8

7.
xC 3
5
D

x
5
C 3 8. 3

� x
4

�
D

3x
4

9. 2.x � y/ D .2x/ � .2y/ 10. x.4y/ D 4xy

In Problems 11–20, state which properties of the real numbers are
being used.

11. 2.xC y/ D 2xC 2y

12. .xC 5:2/C 0:7y D xC .5:2C 0:7y/

13. 2.3y/ D .2 � 3/y

14.
a
b
D

1
b
� a

15. 5.b � a/ D .a � b/.�5/

16. yC .xC y/ D .yC x/C y

17.
5x � y
7
D 1=7.5x � y/

18. 5.4C 7/ D 5.7C 4/

19. .2C a/b D 2bC ba

20. .�1/.�3C 4/ D .�1/.�3/C .�1/.4/

In Problems 21–27, show that the statements are true by using
properties of the real numbers.

21. 2x.y � 7/ D 2xy � 14x

22.
x
y
z D x

z
y

23. .xC y/.2/ D 2xC 2y

24. a.bC .cC d// D a..dC b/C c/

25. x..2yC 1/C 3/ D 2xyC 4x

26. .1C a/.bC c/ D bC cC abC ac

27. Show that .x � yC z/w D xw � ywC zw.
[Hint: bC cC d D .bC c/C d.]

Simplify each of the following, if possible.

28. �2C .�4/ 29. �aC b 30. 6C .�4/
31. 7 � 2

32.
3
2�1

33. �5 � .�13/

34. �.�a/C .�b/ 35. .�2/.9/ 36. 7.�9/

37. .�1:6/.�0:5/ 38. 19.�1/ 39.
�1
�1
a

40. �.�6C x/ 41. �7.x/ 42. �3.a � b/

43. �.�6C .�y// 44. �3� 3a 45. �9� .�27/
46. .�a/� .�b/ 47. 3C .3�19/ 48. 3.�2.3/C 6.2//

49. .�a/.�b/.�1/ 50. .�12/.�12/ 51. X.1/

52. �71.x � 2/ 53. 4.5C x/ 54. �.x � y/

55. 0.�x/ 56. 8
�
1
11

�
57.

X
1
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58.
14x
21y

59.
2x
�2

60.
2
3
�
1
x

61.
a
c
.3b/

62. 5aC .7 � 5a/
63.
�aby
�ax

64.
a
b
�
1
c

65.
2
x
�
5
y

66.
1
2
C

1
3

67.
x
3a
C

y
a 68.

3
10
�

7
15

69.
a
b
C

c
b

70.
X
p
5
�

Y
p
5

71.
3
2
�
1
4
C

1
6

72.
3
7
�
5
9

73.
6
x
y

74.

l
w
m

75.

�x
y2
z
xy

76.
7
0

77.
0
X
; for X ¤ 0 78.

0
0

Objective 0.3 Exponents and Radicals
To review positive integral exponents,
the zero exponent, negative integral
exponents, rational exponents,
principal roots, radicals, and the
procedure of rationalizing the
denominator.

The product x � x � x of 3 x’s is abbreviated x3. In general, for n a positive integer, xn is
the abbreviation for the product of n x’s. The letter n in xn is called the exponent, and
x is called the base. More specifically, if n is a positive integer, we have

1. xn D x � x � x � : : : � x„ ƒ‚ …
n factors

2. x�n D
1
xn
D

1
x � x � x � : : : � x„ ƒ‚ …

n factors

for x ¤ 0

3.
1
x�n
D xn for x ¤ 0 4. x0 D 1

Some authors say that 00 is not defined.
However, 00 D 1 is a consistent and
often useful definition.

EXAMPLE 1 Exponents

a.
�
1
2

�4

D

�
1
2

��
1
2

��
1
2

��
1
2

�
D

1
16

b. 3�5
D

1
35
D

1
3 � 3 � 3 � 3 � 3

D
1
243

c.
1
3�5
D 35 D 243

d. 20 D 1; �0 D 1; .�5/0 D 1

e. x1 D x

Now Work Problem 5 G

If rn D x, where n is a positive integer, then r is an nth root of x. Second roots,
the case n D 2, are called square roots; and third roots, the case n D 3, are called cube
roots. For example, 32 D 9, so 3 is a square root of 9. Since .�3/2 D 9;�3 is also a
square root of 9. Similarly, �2 is a cube root of �8, since .�2/3 D �8, while 5 is a
fourth root of 625 since 54 D 625.

Some numbers do not have an nth root that is a real number. For example, since
the square of any real number is nonnegative: there is no real number that is a square
root of �4.

The principal nth root of x is the nth root of x that is positive if x is positive and is
negative if x is negative and n is odd. We denote the principal nth root of x by n

p
x. Thus,

n
p
x is

�
positive if x is positive
negative if x is negative and n is odd

For example, 2
p
9 D 3; 3

p
�8 D �2, and 3

r
1
27
D

1
3 . We define n

p
0 D 0.
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The symbol n
p
x is called a radical. With principal square roots we usually write

p
x instead of 2

p
x. Thus,

p
9 D 3.

Although both 2 and �2 are square roots
of 4, the principal square root of 4 is 2,
not �2. Hence,

p
4 D 2. For positive x,

we often write˙
p
x to indicate both

square roots of x, and “˙
p
4 D ˙2” is a

convenient short way of writing “
p
4 D 2

and �
p
4 D �2”, but the only value ofp

4 is 2.

If x is positive, the expression xp=q, where p and q are integers with no common
factors and q is positive, is defined to be q

p
xp. Hence,

x3=4
D

4
p
x3I 82=3

D
3
p
82 D 3

p
64 D 4

4�1=2
D

2
p
4�1 D

r
1
4
D

1
2

Here are the basic laws of exponents and radicals:

Law Example(s)

1. xm � xn D xmCn

2. x0 D 1

3. x�n
D

1
xn

4.
1
x�n
D xn

5.
xm

xn
D xm�n

D
1

xn�m

6.
xm

xm
D 1

7. .xm/n D xmn

8. .xy/n D xnyn

9.
�
x
y

�n

D
xn

yn

10.
�
x
y

��n

D

�
y
x

�n

11. x1=n D n
p
x

12. x�1=n
D

1

x1=n
D

1
n
p
x

13. n
p
x n
p
y D n
p
xy

14.
n
p
x

n
p
y
D n

r
x
y

15. m
q

n
p
x D mn

p
x

16. xm=n
D

n
p
xm D . n

p
x/m

17. . m
p
x/m D x

23 � 25 D 28 D 256; x2 � x3 D x5

20 D 1

2�3
D

1
23
D

1
8

1
2�3
D 23 D 8I

1
x�5
D x5

212

28
D 24 D 16I

x8

x12
D

1
x4

24

24
D 1

.23/5 D 215I .x2/3 D x6

.2 � 4/3 D 23 � 43 D 8 � 64 D 512�
2
3

�3

D
23

33
D

8
27�

3
4

��2

D

�
4
3

�2

D
16
9

31=5 D
5
p
3

4�1=2
D

1

41=2
D

1
p
4
D

1
2

3
p
9 3
p
2 D 3
p
18

3
p
90

3
p
10
D

3

r
90
10
D

3
p
9

3
p

4
p
2 D 12

p
2

82=3 D
3
p
82 D . 3

p
8/2 D 22 D 4

.
8
p
7/8 D 7

When computing xm=n, it is often easier
to first find n

p
x and then raise the result

to the mth power. Thus,
.�27/4=3 D .

3
p
�27/4 D .�3/4 D 81.

EXAMPLE 2 Exponents and Radicals

a. By Law 1,
x6x8 D x6C8 D x14

a3b2a5b D a3a5b2b1 D a8b3

x11x�5 D x11�5 D x6

z2=5z3=5 D z1 D z

xx1=2 D x1x1=2 D x3=2
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b. By Law 16, �
1
4

�3=2

D

 r
1
4

!3

D

�
1
2

�3

D
1
8

c.
�
�
8
27

�4=3

D

 
3

r
�8
27

!4

D

 
3
p
�8

3
p
27

!4

Laws 16 and 14

D

�
�2
3

�4

D
.�2/4

34
D

16
81

Law 9

d. .64a3/2=3 D 642=3.a3/2=3 Law 8

D .
3
p
64/2a2 Laws 16 and 7

D .4/2a2 D 16a2

Now Work Problem 39 G

Rationalizing the denominator of a fraction is a procedure in which a fraction hav-Rationalizing the numerator is a similar
procedure. ing a radical in its denominator is expressed as an equal fraction without a radical in

its denominator. We use the fundamental principle of fractions, as Example 3 shows.

EXAMPLE 3 Rationalizing Denominators

a.
2
p
5
D

2

51=2
D

2 � 51=2

51=2 � 51=2
D

2 � 51=2

51
D

2
p
5

5

b.
2

6
p
3x5
D

2
6
p
3 � 6
p
x5
D

2

31=6x5=6
D

2 � 35=6x1=6

31=6x5=6 � 35=6x1=6

D
2.35x/1=6

3x
D

2 6
p
35x
3x

for x ¤ 0

Now Work Problem 63 G

The following examples illustrate various applications of the laws of exponents
and radicals. All denominators are understood to be nonzero.

EXAMPLE 4 Exponents

a. Eliminate negative exponents in
x�2y3

z�2
for x ¤ 0, z ¤ 0.

Solution:
x�2y3

z�2
D x�2

� y3 �
1
z�2
D

1
x2
� y3 � z2 D

y3z2

x2

By comparing our answer with the original expression, we conclude that we can
bring a factor of the numerator down to the denominator, and vice versa, by chang-
ing the sign of the exponent.

b. Simplify
x2y7

x3y5
for x ¤ 0, y ¤ 0.

Solution:
x2y7

x3y5
D

y7�5

x3�2
D

y2

x

c. Simplify .x5y8/5.

Solution: .x5y8/5 D .x5/5.y8/5 D x25y40
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d. Simplify .x5=9y4=3/18.

Solution: .x5=9y4=3/18 D .x5=9/18.y4=3/18 D x10y24

e. Simplify

 
x1=5y6=5

z2=5

!5

for z ¤ 0.

Solution:
 
x1=5y6=5

z2=5

!5

D
.x1=5y6=5/5

.z2=5/5
D

xy6

z2

f. Simplify
x3

y2
�

x6

y5
for x ¤ 0, y ¤ 0.

Solution:
x3

y2
�

x6

y5
D

x3

y2
�
y5

x6
D

y3

x3

Now Work Problem 51 G

EXAMPLE 5 Exponents

a. For x ¤ 0 and y ¤ 0, eliminate negative exponents in x�1 C y�1 and simplify.

Solution: x�1
C y�1

D
1
x
C

1
y
D

yC x
xy

b. Simplify x3=2 � x1=2 by using the distributive law.

Solution: x3=2
� x1=2

D x1=2.x � 1/

c. For x ¤ 0, eliminate negative exponents in 7x�2 C .7x/�2.

Solution: 7x�2
C .7x/�2

D
7
x2
C

1
.7x/2

D
7
x2
C

1
49x2

D
344
49x2

d. For x ¤ 0 and y ¤ 0, eliminate negative exponents in .x�1 � y�1/�2.

Solution: .x�1
� y�1/�2

D

�
1
x
�
1
y

��2

D

�
y � x
xy

��2

D

�
xy

y � x

�2

D
x2y2

.y � x/2

e. Apply the distributive law to x2=5.y1=2 C 2x6=5/.

Solution: x2=5.y1=2
C 2x6=5/ D x2=5y1=2

C 2x8=5

Now Work Problem 41 G

EXAMPLE 6 Radicals

a. Simplify 4
p
48.

Solution: 4
p
48 D 4

p
16 � 3 D 4

p
16 4
p
3 D 2 4

p
3

b. Rewrite
p
2C 5x without using a radical sign.

Solution:
p
2C 5x D .2C 5x/1=2

c. Rationalize the denominator of
5
p
2

3
p
6
and simplify.

Solution:
5
p
2

3
p
6
D

21=5 � 62=3

61=3 � 62=3
D

23=15610=15

6
D
.23610/1=15

6
D

15
p
23610

6
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d. Simplify

p
20
p
5
.

Solution:

p
20
p
5
D

r
20
5
D
p
4 D 2

Now Work Problem 71 G

EXAMPLE 7 Radicals

a. Simplify 3
p
x6y4.

Solution: 3
p
x6y4 D 3

p
.x2/3y3y D 3

p
.x2/3 � 3

p
y3 � 3
p
y

D x2y 3
p
y

b. Simplify

r
2
7
.

Solution:

r
2
7
D

r
2 � 7
7 � 7
D

r
14
72
D

p
14
p
72
D

p
14
7

c. Simplify
p
250 �

p
50C 15

p
2.

Solution:
p
250 �

p
50C 15

p
2 D
p
25 � 10 �

p
25 � 2C 15

p
2

D 5
p
10 � 5

p
2C 15

p
2

D 5
p
10C 10

p
2

d. If x is any real number, simplify
p
x2.

Solution:
p
x2 D

�
x if x � 0
�x if x < 0

Thus,
p
22 D 2 and

p
.�3/2 D �.�3/ D 3.

Now Work Problem 75 G

PROBLEMS 0.3
In Problems 1–14, simplify and express all answers in terms of
positive exponents.

1. .23/.22/ 2. x6x9 3. 175 � 172

4. z3zz2 5.
x3x5

y9y5
6. .x12/4

7.
.a3/7

.b4/5 8.
�
1314

13

�2

9. .2x2y3/3

10.
�
w2s3

y2

�2

11.
x9

x5
12.

�
2a4

7b5

�6

13.
.y3/4

.y2/3y2
14.

.x2/3.x3/2

.x3/4

In Problems 15–28, evaluate the expressions.

15.
p
25 16. 4

p
81 17. 7

p
�128

18. 5
p
0:00243 19. 4

r
1
16

20. 3

r
�
8
27

21. .49/1=2 22. .64/1=3 23. 813=4

24. .9/�5=2 25. .32/�2=5 26. .0:09/�1=2

27.
�
1
32

�4=5

28.
�
�
243
1024

�2=5

In Problems 29–40, simplify the expressions.

29.
p
50 30. 3

p
54 31. 3

p
2x3

32.
p
4x 33.

p
49u8 34. 4

r
x
16

35. 2
p
8 � 5

p
27C 3

p
128 36.

r
3
13

37. .9z4/1=2 38. .729x6/3=2

39.
�
27t3

8

�2=3

40.
�
256
x12

��3=4

In Problems 41–52, write the expressions in terms of positive
exponents only. Avoid all radicals in the final form. For example,

y�1px D
x1=2

y

41.
a5b�3

c2
42. 5

p
x2y3z�10 43. 3a�1b�2c�3
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44. xC y�1 45. .3t/�2 46. .3 � z/�4

47. 5
p
5x2 48. .X5Y�7/�4 49.

p
x �
p
y

50.
u�2v�6w3

vw�5
51. x2 4

p
xy�2z3 52. 4

p
a�3b�2a5b�4

In Problems 53–58, rewrite the exponential forms using radicals.

53. .a � bC c/3=5 54. .ab2c3/3=4

55. x�4=5 56. 2x1=2 � .2y/1=2

57. 3w�3=5 � .3w/�3=5 58. ..y�2/1=4/1=5

In Problems 59–68, rationalize the denominators.

59.
6
p
5

60.
3
4
p
8

61.
4
p
2x

62.
y
p
2y 63.

1
5
p
3b

64.
2

3 3
p
y2

65.

p
12
p
3

66.

p
18
p
2

67.
5
p
2

4
p
a2b

68.
3
p
3
p
2

In Problems 69–86, simplify. Express all answers in terms of
positive exponents. Rationalize the denominator where necessary
to avoid fractional exponents in the denominator.

69. 2x2y�3x4 70.
3

u5=2v1=2

71.

p
243
p
3

72. ...3a3/2/�5/�2

73.
30

.3�4x2=3y�2/3
74.

p
s5

3
p
s2

75. 3
p
x2yz3 3

p
xy2 76. . 4

p
3/8

77. 32.32/�2=5 78. . 3
p
u3v2/2=3

79. .2x�1y2/2 80.
3

3
p
y 4
p
x

81.
p
x
p
x2y3

p
xy2 82.

p
75k4

83.
.a3b�4c5/6

.a�2c�3/�4
84. 3

p
7.49/

85.
.x2/3

x4
�

�
x3

.x3/2

�2

86.
p
.�6/.�6/

Objective 0.4 Operations with Algebraic Expressions
To add, subtract, multiply, and divide
algebraic expressions. To define a
polynomial, to use special products,
and to use long division to divide
polynomials.

If numbers, represented by symbols, are combined by any or all of the operations of
addition, subtraction, multiplication, division, exponentiation, and extraction of roots,
then the resulting expression is called an algebraic expression.

EXAMPLE 1 Algebraic Expressions

a. 3

r
3x3 � 5x � 2

10 � x
is an algebraic expression in the variable x.

b. 10 � 3
p
yC

5
7C y2

is an algebraic expression in the variable y.

c.
.xC y/3 � xy

y
C 2 is an algebraic expression in the variables x and y.

Now Work Problem 1 G

The algebraic expression 5ax3�2bxC3 consists of three terms:C5ax3;�2bx, and
C3. Some of the factors of the first term, 5ax3, are 5; a; x; x2; x3; 5ax, and ax2. Also,
5a is the coefficient of x3, and 5 is the numerical coefficient of ax3. If a and b represent
fixed numbers throughout a discussion, then a and b are called constants.

Algebraic expressions with exactly one term are calledmonomials. Those having
exactly two terms are binomials, and those with exactly three terms are trinomials.
Algebraic expressions with more than one term are called multinomials. Thus, the
multinomial 2x � 5 is a binomial; the multinomial 3

p
yC 2y � 4y2 is a trinomial.

The words polynomial and multinomial
should not be used interchangeably. A
polynomial is a special kind of
multinomial. For example,

p
xC 2 is

a multinomial but not a polynomial. On
the other hand, xC 2 is a polynomial and
hence a multinomial.

A polynomial in x is an algebraic expression of the form

cnxn C cn�1xn�1
C � � � C c1xC c0

where n is a nonnegative integer and the coefficients c0; c1; : : : ; cn are constants with
cn ¤ 0. Here, the three dots indicate all other terms that are understood to be included
in the sum.We call n the degree of the polynomial. So, 4x3�5x2Cx�2 is a polynomial
in x of degree 3, and y5 � 2 is a polynomial in y of degree 5. A nonzero constant is a
polynomial of degree zero; thus, 5 is a polynomial of degree zero. The constant 0 is
considered to be a polynomial; however, no degree is assigned to it.
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In the following examples, we illustrate operations with algebraic expressions.

EXAMPLE 2 Adding Algebraic Expressions

Simplify .3x2y � 2xC 1/C .4x2yC 6x � 3/.

Solution: We first remove the parentheses. Next, using the commutative property of
addition, we gather all like terms together. Like terms are terms that differ only by their
numerical coefficients. In this example, 3x2y and 4x2y are like terms, as are the pairs
�2x and 6x, and 1 and �3. Thus,

.3x2y � 2xC 1/C .4x2yC 6x � 3/ D 3x2y � 2xC 1C 4x2yC 6x � 3

D 3x2yC 4x2y � 2xC 6xC 1 � 3

By the distributive property,

3x2yC 4x2y D .3C 4/x2y D 7x2y

and

�2xC 6x D .�2C 6/x D 4x

Hence, .3x2y � 2xC 1/C .4x2yC 6x � 3/ D 7x2yC 4x � 2

Now Work Problem 3 G

EXAMPLE 3 Subtracting Algebraic Expressions

Simplify .3x2y � 2xC 1/ � .4x2yC 6x � 3/.

Solution: Here we apply the definition of subtraction and the distributive property:

.3x2y � 2xC 1/ � .4x2yC 6x � 3/

D .3x2y � 2xC 1/C .�1/.4x2yC 6x � 3/

D .3x2y � 2xC 1/C .�4x2y � 6xC 3/

D 3x2y � 2xC 1 � 4x2y � 6xC 3

D 3x2y � 4x2y � 2x � 6xC 1C 3

D .3 � 4/x2yC .�2 � 6/xC 1C 3

D �x2y � 8xC 4

Now Work Problem 13 G

EXAMPLE 4 Removing Grouping Symbols

Simplify 3f2xŒ2xC 3�C 5Œ4x2 � .3 � 4x/�g.

Solution: We first eliminate the innermost grouping symbols (the parentheses). Then
we repeat the process until all grouping symbols are removed—combining similar
terms whenever possible. We have

3f2xŒ2xC 3�C 5Œ4x2 � .3 � 4x/�g D 3f2xŒ2xC 3�C 5Œ4x2 � 3C 4x�g

D 3f4x2 C 6xC 20x2 � 15C 20xg

D 3f24x2 C 26x � 15g

D 72x2 C 78x � 45

Observe that properly paired parentheses are the only grouping symbols needed

3f2xŒ2xC 3�C 5Œ4x2 � .3 � 4x/�g D 3.2x.2xC 3/C 5.4x2 � .3 � 4x///

but the optional use of brackets and braces sometimes adds clarity.

Now Work Problem 15 G
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The distributive property is the key tool in multiplying expressions. For example,
to multiply axC c by bxC d we can consider axC c to be a single number and then
use the distributive property:

.axC c/.bxC d/ D .axC c/bxC .axC c/d

Using the distributive property again, we have

.axC c/bxC .axC c/d D abx2 C cbxC adxC cd

D abx2 C .adC cb/xC cd

Thus, .ax C c/.bx C d/ D abx2 C .ad C cb/x C cd. In particular, if a D 2; b D 1,
c D 3, and d D �2, then

.2xC 3/.x � 2/ D 2.1/x2 C Œ2.�2/C 3.1/�xC 3.�2/

D 2x2 � x � 6

We now give a list of special products that can be obtained from the distributive
property and are useful in multiplying algebraic expressions.

Special Products

1. x.yC z/ D xyC xz distributive property

2. .xC a/.xC b/ D x2 C .aC b/xC ab

3. .axC c/.bxC d/ D abx2 C .adC cb/xC cd

4. .xC a/2 D x2 C 2axC a2 square of a sum

5. .x � a/2 D x2 � 2axC a2 square of a difference

6. .xC a/.x � a/ D x2 � a2 product of sum and difference

7. .xC a/3 D x3 C 3ax2 C 3a2xC a3 cube of a sum

8. .x � a/3 D x3 � 3ax2 C 3a2x � a3 cube of a difference

EXAMPLE 5 Special Products

a. By Rule 2,

.xC 2/.x � 5/ D .xC 2/.xC .�5//

D x2 C .2 � 5/xC 2.�5/

D x2 � 3x � 10

b. By Rule 3,

.3zC 5/.7zC 4/ D 3 � 7z2 C .3 � 4C 5 � 7/zC 5 � 4

D 21z2 C 47zC 20

c. By Rule 5,

.x � 4/2 D x2 � 2.4/xC 42

D x2 � 8xC 16

d. By Rule 6,

.
p
y2 C 1C 3/.

p
y2 C 1 � 3/ D .

p
y2 C 1/2 � 32

D .y2 C 1/ � 9

D y2 � 8
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e. By Rule 7,

.3xC 2/3 D .3x/3 C 3.2/.3x/2 C 3.2/2.3x/C .2/3

D 27x3 C 54x2 C 36xC 8

Now Work Problem 19 G

EXAMPLE 6 Multiplying Multinomials

Find the product .2t � 3/.5t2 C 3t � 1/.

Solution: We treat 2t�3 as a single number and apply the distributive property twice:

.2t � 3/.5t2 C 3t � 1/ D .2t � 3/5t2 C .2t � 3/3t � .2t � 3/1

D 10t3 � 15t2 C 6t2 � 9t � 2tC 3

D 10t3 � 9t2 � 11tC 3

Now Work Problem 35 G

In Example 3(b) of Section 0.2, we showed that
aC b
c
D

a
c
C

b
c
. Similarly,

a � b
c
D

a
c
�

b
c
. Using these results, we can divide a multinomial by a monomial

by dividing each term in the multinomial by the monomial.

EXAMPLE 7 Dividing a Multinomial by a Monomial

a.
x3 C 3x

x
D

x3

x
C

3x
x
D x2 C 3

b.
4z3 � 8z2 C 3z � 6

2z
D

4z3

2z
�
8z2

2z
C

3z
2z
�

6
2z

D 2z2 � 4zC
3
2
�
3
z

Now Work Problem 47 G

Long Division
To divide a polynomial by a polynomial, we use so-called long division when the
degree of the divisor is less than or equal to the degree of the dividend, as the next
example shows.

EXAMPLE 8 Long Division

Divide 2x3 � 14x � 5 by x � 3.

Solution: Here 2x3 � 14x� 5 is the dividend and x� 3 is the divisor. To avoid errors,
it is best to write the dividend as 2x3 C 0x2 � 14x� 5. Note that the powers of x are in
decreasing order. We have

2x2 C 6xC 4 quotient
divisor! x � 3

�
2x3 C 0x2 � 14x � 5 dividend
2x3 � 6x2

6x2 � 14x
6x2 � 18x

4x � 5
4x � 12

7 remainder
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Note that we divided x (the first term of the divisor) into 2x3 and got 2x2. Then we
multiplied 2x2 by x� 3, getting 2x3 � 6x2. After subtracting 2x3 � 6x2 from 2x3C 0x2,
we obtained 6x2 and then “brought down” the term �14x. This process is continued
until we arrive at 7, the remainder. We always stop when the remainder is 0 or is a
polynomial whose degree is less than the degree of the divisor. Our answer can be
written as

2x2 C 6xC 4C
7

x � 3

That is, the answer to the question

dividend
divisor

D ‹

has the form

quotientC
remainder
divisor

A way of checking a division is to verify that

.quotient/.divisor/C remainder D dividend

By using this equation, you should be able to verify the result of the example.

Now Work Problem 51 G

PROBLEMS 0.4
Perform the indicated operations and simplify.

1. .8x � 4yC 2/C .3xC 2y � 5/

2. .4a2 � 2abC 3/C .5c � 3abC 7/

3. .8t2 � 6s2/C .4s2 � 2t2 C 6/

4. .
p
xC 2

p
x/C .3

p
xC 4

p
x/

5. .
p
aC 2

p
3b/ � .

p
c � 3

p
3b/

6. .3aC 7b � 9/ � .5aC 9bC 21/

7. .7x2 C 5xyC
p
2/ � .2z � 2xyC

p
2/

8. .
p
xC 2

p
x/ � .

p
xC 3

p
x/

9. . 2
p
2xC 3

p
3y/ � . 2

p
2xC 4

p
4z/

10. 4.2z � w/ � 3.w � 2z/

11. 3.3xC 3y � 7/ � 3.8x � 2yC 2/

12. .4s � 5t/C .�2s � 5t/C .sC 9/

13. 5.x2 � y2/C x.y � 3x/ � 4y.2xC 7y/

14. .7C 3.x � 3/ � .4 � 5x//

15. 2.3.3.x2 C 2/ � 2.x2 � 5///

16. 4.3.tC 5/ � t.1 � .tC 1///

17. �2.3u2.2uC 2/ � 2.u2 � .5 � 2u///

18. �.�3Œ2aC 2b � 2�C 5.2aC 3b/ � a.2.bC 5///

19. .2xC 5/.3x � 2/ 20. .uC 2/.uC 5/

21. .wC 2/.w � 5/ 22. .x � 4/.xC 7/

23. .2xC 3/.5xC 2/ 24. .t2 � 5t/.3t2 � 7t/

25. .XC 2Y/2 26. .2x � 1/2

27. .7 � X/2 28. .
p
x � 1/.2

p
xC 5/

29. .
p
5x � 2/2 30. .

p
y � 3/.

p
yC 3/

31. .2s � 1/.2sC 1/ 32. .a2 C 2b/.a2 � 2b/

33. .x2 � 3/.xC 4/ 34. .u � 1/.u2 C 3u � 2/

35. .x2 � 4/.3x2 C 2x � 1/ 36. .3y � 2/.4y3 C 2y2 � 3y/

37. t.3.tC 2/.t � 4/C 5.3t.t � 7///

38. ..2zC 1/.2z � 1//.4z2 C 1/

39. .s � tC 4/.3sC 2t � 1/

40. .x2 C xC 1/2 41. .2aC 3/3

42. .2a � 3/3 43. .2x � 3/3

44. .3aC b/3 45.
z2 � 18z

z

46.
2x3 � 7xC 4

x
47.

6u5 C 9u3 � 1
3u2

48.
.3y � 4/ � .9yC 5/

3y

49. .x2 C 7x � 5/� .xC 5/

50. .x2 � 5xC 4/� .x � 4/

51. .3x3 � 2x2 C x � 3/� .xC 2/

52. .x4 C 3x2 C 2/� .xC 1/

53. x3 � .xC 2/

54. .8x2 C 6xC 7/� .2xC 1/

55. .3x2 � 4xC 3/� .3xC 2/

56. .z3 C z2 C z/� .z2 � zC 1/
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Objective 0.5 Factoring
To state the basic rules for factoring
and apply them to factor expressions.

If two or more expressions are multiplied together, the expressions are called factors of
the product. Thus, if c D ab, then a and b are both factors of the product c. The process
by which an expression is written as a product of its factors is called factoring.

Listed next are rules for factoring expressions, most of which arise from the special
products discussed in Section 0.4. The right side of each identity is the factored form
of the left side.

Rules for Factoring

1. xyC xz D x.yC z/ common factor

2. x2 C .aC b/xC ab D .xC a/.xC b/

3. abx2 C .adC cb/xC cd D .axC c/.bxC d/

4. x2 C 2axC a2 D .xC a/2 perfect-square trinomial

5. x2 � 2axC a2 D .x � a/2 perfect-square trinomial

6. x2 � a2 D .xC a/.x � a/ difference of two squares

7. x3 C a3 D .xC a/.x2 � axC a2/ sum of two cubes

8. x3 � a3 D .x � a/.x2 C axC a2/ difference of two cubes

When factoring a polynomial, we usually choose factors that themselves are
polynomials. For example, x2 � 4 D .x C 2/.x � 2/. We will not write x � 4 as
.
p
xC 2/.

p
x � 2/ unless it allows us to simplify other calculations.

Always factor as completely as you can. For example,

2x2 � 8 D 2.x2 � 4/ D 2.xC 2/.x � 2/

EXAMPLE 1 Common Factors

a. Factor 3k2x2 C 9k3x completely.

Solution: Since 3k2x2 D .3k2x/.x/ and 9k3x D .3k2x/.3k/, each term of the orig-
inal expression contains the common factor 3k2x. Thus, by Rule 1,

3k2x2 C 9k3x D 3k2x.xC 3k/

Note that although 3k2x2C9k3x D 3.k2x2C3k3x/, we do not say that the expression
is completely factored, since k2x2 C 3k3x can still be factored.

b. Factor 8a5x2y3 � 6a2b3yz � 2a4b4xy2z2 completely.

Solution: 8a5x2y3 � 6a2b3yz � 2a4b4xy2z2 D 2a2y.4a3x2y2 � 3b3z � a2b4xyz2/

Now Work Problem 5 G

EXAMPLE 2 Factoring Trinomials

a. Factor 3x2 C 6xC 3 completely.

Solution: First we remove a common factor. Then we factor the resulting expres-
sion completely. Thus, we have

3x2 C 6xC 3D 3.x2 C 2xC 1/
D 3.xC 1/2 Rule 4

b. Factor x2 � x � 6 completely.
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Solution: If this trinomial factors into the form .x C a/.x C b/, which is a
product of two binomials, then we must determine the values of a and b. Since
.xC a/.xC b/ D x2 C .aC b/xC ab, it follows that

x2 C .�1/xC .�6/ D x2 C .aC b/xC ab

By equating corresponding coefficients, we wantIt is not always possible to factor a
trinomial, using real numbers, even if
the trinomial has integer coefficients.
We will comment further on this point in
Section 0.8.

aC b D �1 and ab D �6

If a D �3 and bD 2, then both conditions are met and hence

x2 � x � 6 D .x � 3/.xC 2/

As a check, it is wise to multiply the right side to see if it agrees with the left side.

c. Factor x2 � 7xC 12 completely.

Solution: x2 � 7xC 12 D .x � 3/.x � 4/

Now Work Problem 9 G

EXAMPLE 3 Factoring

The following is an assortment of expressions that are completely factored. The num-
bers in parentheses refer to the rules used.

a. x2 C 8xC 16 D .xC 4/2 .4/

b. 9x2 C 9xC 2 D .3xC 1/.3xC 2/ .3/

c. 6y3 C 3y2 � 18y D 3y.2y2 C y � 6/ .1/

D 3y.2y � 3/.yC 2/ .3/

d. x2 � 6xC 9 D .x � 3/2 .5/

e. z1=4 C z5=4 D z1=4.1C z/ .1/

f. x4 � 1 D .x2 C 1/.x2 � 1/ .6/

D .x2 C 1/.xC 1/.x � 1/ .6/

g. x2=3 � 5x1=3 C 4 D .x1=3 � 1/.x1=3 � 4/ .2/

h. ax2 � ay2 C bx2 � by2 D a.x2 � y2/C b.x2 � y2/ .1/; .1/

D .x2 � y2/.aC b/ .1/

D .xC y/.x � y/.aC b/ .6/

i. 8 � x3 D .2/3 � .x/3 D .2 � x/.4C 2xC x2/ .8/

j. x6 � y6 D .x3/2 � .y3/2 D .x3 C y3/.x3 � y3/ .6/

D .xC y/.x2 � xyC y2/.x � y/.x2 C xyC y2/ .7/; .8/

Now Work Problem 35 G

Note in Example 3(f) that x2 � 1 is factorable, but x2 C 1 is not. In Example 3(h),
note that the common factor of x2 � y2 was not immediately evident.

Students often wonder why factoring is important.Why does the prof seem to think
that the right side of x2 � 7xC 12 D .x � 3/.x � 4/ is better than the left side? Often,
the reason is that if a product of numbers is 0 then at least one of the numbers is 0. In
symbols

If ab D 0 then a D 0 or b D 0

This is a useful principle for solving equations. For example, knowing x2 � 7xC
12 D .x � 3/.x � 4/ it follows that if x2 � 7xC 12 D 0 then .x � 3/.x � 4/ D 0 and
from the principle above, x� 3 D 0 or x� 4 D 0. Now we see immediately that either
x D 3 or x D 4. We should also remark that in the displayed principle the word “or” is
use inclusively. In other words, if ab D 0 it may be that both a D 0 and b D 0.If ab D 0, at least one of a and b is 0.
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PROBLEMS 0.5
Factor the following expressions completely.

1. 5bxC 5b 2. 6y2 � 4y

3. 10xyC 5xz 4. 3x2y � 9x3y3

5. 3a3bcd2 � 4ab3c2d2 C 2a3bc4d3

6. 5r2st2 C 10r3s2t3 � 15r2t2

7. z2 � 49 8. x2 � x � 6

9. p2 C 4pC 3 10. t2 � t � 12

11. 25y2 � 4 12. x2 C 2x � 24

13. a2 C 12aC 35 14. 4t2 � 9s2

15. y2 C 8yC 15 16. t2 � 18tC 72

17. 5x2 C 25xC 30 18. 3t2 C 12t � 15

19. 3x2 � 3 20. 6x2 C 31xC 35

21. 5x2 C 16xC 3 22. 4x2 � x � 3

23. 12s3 C 10s2 � 8s 24. 9z2 C 30zC 25

25. a11=3b � 4a2=3b3 26. 4x6=5 � 1

27. 2x3 C 2x2 � 12x 28. x2y2 � 4xyC 4
29. .4xC 2/2 30. x2.2x2 � 4x3/2

31. x3y2 � 16x2yC 64x 32. .5x2 C 2x/C .10xC 4/

33. .x3 � 4x/C .8 � 2x2/ 34. .x2 � 1/C .x2 � x � 2/

35. 4ax2 � ay2 C 12bx2 � 3by2

36. t3u � 3tuC t2w2 � 3w2

37. b3 C 64 38. x3 � 1

39. x6 � 1 40. 64C 27t3

41. .xC 4/3.x � 2/C .xC 4/2.x � 2/2

42. .aC 5/3.aC 1/2 C .aC 5/2.aC 1/3

43. P.1C r/C P.1C r/r

44. .X � 3I/.3XC 5I/ � .3XC 5I/.XC 2I/

45. 16u2 � 81v2w2 46. 256y4 � z4

47. y8 � 1 48. t4 � 4

49. X 4 C 4X 2 � 5 50. 4x4 � 20x2 C 25

51. a4b � 8a2bC 16b 52. 4x3 � 6x2 � 4x

Objective 0.6 Fractions
To simplify, add, subtract, multiply, and
divide algebraic fractions. To rationalize
the denominator of a fraction.

Students should take particular care in studying fractions. In everyday life, numerical
fractions often disappear from view with the help of calculators. However, manipula-
tion of fractions of algebraic expressions is essential in calculus, and here most calcu-
lators are of no help.

Simplifying Fractions
By using the fundamental principle of fractions (Section 0.2), we may be able to sim-
plify algebraic expressions that are fractions. That principle allows us to multiply or
divide both the numerator and the denominator of a fraction by the same nonzero
quantity. The resulting fraction will be equal to the original one. The fractions that
we consider are assumed to have nonzero denominators. Thus, all the factors of the
denominators in our examples are assumed to be nonzero. This will often mean that
certain values are excluded for the variables that occur in the denominators.

EXAMPLE 1 Simplifying Fractions

a. Simplify
x2 � x � 6

x2 � 7xC 12
.

Solution: First, we completely factor both the numerator and the denominator:

x2 � x � 6
x2 � 7xC 12

D
.x � 3/.xC 2/
.x � 3/.x � 4/

Dividing both numerator and denominator by the common factor x � 3, we have

.x � 3/.xC 2/

.x � 3/.x � 4/
D

1.xC 2/
1.x � 4/

D
xC 2
x � 4

for x ¤ 3

Usually, we just write

x2 � x � 6
x2 � 7xC 12

D
.x � 3/.xC 2/
.x � 3/.x � 4/

D
xC 2
x � 4

for x ¤ 3
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The process of eliminating the common factor x � 3 is commonly referred to as
“cancellation.” We issued a blanket statement before this example that all fractions
are assumed to have nonzero denominators and that this requires excluding certain
values for the variables. Observe that, nevertheless, we explicitly wrote “for x ¤ 3”.

This is because the expression to the right of the equal sign,
xC 2
x � 4

, is defined for

x D 3. Its value is �5 but we want to make it clear that the expression to the left of
the equal sign is not defined for x D 3.

b. Simplify
2x2 C 6x � 8
8 � 4x � 4x2

.

Solution: 2x2 C 6x � 8
8 � 4x � 4x2

D
2.x2 C 3x � 4/
4.2 � x � x2/

D
2.x � 1/.xC 4/
4.1 � x/.2C x/

D
2.x � 1/.xC 4/

2.2/Œ.�1/.x � 1/�.2C x/

D
xC 4
�2.2C x/

for x ¤ 1

Now Work Problem 3 G

The simplified expression is defined for
x D 1, but since the original expression
is not defined for x D 1, we explicitly
exclude this value.

Multiplication and Division of Fractions
The rule for multiplying

a
b
by

c
d
is

a
b
�
c
d
D

ac
bd

EXAMPLE 2 Multiplying Fractions

a.
x

xC 2
�
xC 3
x � 5

D
x.xC 3/

.xC 2/.x � 5/

b.
x2 � 4xC 4
x2 C 2x � 3

�
6x2 � 6

x2 C 2x � 8
D

Œ.x � 2/2�Œ6.xC 1/.x � 1/�
Œ.xC 3/.x � 1/�Œ.xC 4/.x � 2/�

D
6.x � 2/.xC 1/
.xC 3/.xC 4/

for x ¤ 1; 2

Now Work Problem 9 G

Note that we explicitly excluded the
values that make the “cancelled
factors” 0. While the final expression is
defined for these values, the original
expression is not.

In short, to divide by a fraction we invert
the divisor and multiply.

To divide
a
b
by

c
d
, where b ¤ 0, d ¤ 0, and c ¤ 0, we have

a
b
�

c
d
D

a
b
c
d

D
a
b
�
d
c

EXAMPLE 3 Dividing Fractions

a.
x

xC 2
�

xC 3
x � 5

D
x

xC 2
�
x � 5
xC 3

D
x.x � 5/

.xC 2/.xC 3/

b.

x � 5
x � 3
2x
D

x � 5
x � 3
2x
1

D
x � 5
x � 3

�
1
2x
D

x � 5
2x.x � 3/
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c.

4x
x2 � 1
2x2 C 8x
x � 1

D
4x

x2 � 1
�

x � 1
2x2 C 8x

D
4x.x � 1/

Œ.xC 1/.x � 1/�Œ2x.xC 4/�

D
2

.xC 1/.xC 4/
for x ¤ 0; 1

Now Work Problem 11 G

Why did we write “for x ¤ 0; 1”?

Rationalizing the Denominator
Sometimes the denominator of a fraction has two terms and involves square roots, such
as 2 �

p
3 or
p
5C
p
2. The denominator may then be rationalized by multiplying by

an expression that makes the denominator a difference of two squares. For example,

4
p
5C
p
2
D

4
p
5C
p
2
�

p
5 �
p
2

p
5 �
p
2

D
4.
p
5 �
p
2/

.
p
5/2 � .

p
2/2
D

4.
p
5 �
p
2/

5 � 2

D
4.
p
5 �
p
2/

3
Rationalizing the numerator is a similar
procedure.

EXAMPLE 4 Rationalizing Denominators

a.
x

p
2 � 6

D
x

p
2 � 6

�

p
2C 6
p
2C 6

D
x.
p
2C 6/

.
p
2/2 � 62

D
x.
p
2C 6/

2 � 36
D �

x.
p
2C 6/
34

b.

p
5 �
p
2

p
5C
p
2
D

p
5 �
p
2

p
5C
p
2
�

p
5 �
p
2

p
5 �
p
2

D
.
p
5 �
p
2/2

5 � 2
D

5 � 2
p
5
p
2C 2

3
D

7 � 2
p
10

3

Now Work Problem 53 G

Addition and Subtraction of Fractions
In Example 3(b) of Section 0.2, it was shown that

a
c
C

b
c
D

aC b
c

. That is, if we add

two fractions having a common denominator, then the result is a fraction whose denom-
inator is the common denominator. The numerator is the sum of the numerators of the

original fractions. Similarly, ac �
b
c D

a � b
c .

EXAMPLE 5 Adding and Subtracting Fractions

a.
p2 � 5
p � 2

C
3pC 2
p � 2

D
.p2 � 5/C .3pC 2/

p � 2

D
p2 C 3p � 3

p � 2
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b.
x2 � 5xC 4
x2 C 2x � 3

�
x2 C 2x

x2 C 5xC 6
D
.x � 1/.x � 4/
.x � 1/.xC 3/

�
x.xC 2/

.xC 2/.xC 3/

D
x � 4
xC 3

�
x

xC 3
D
.x � 4/ � x

xC 3
D �

4
xC 3

for x ¤ �2; 1

c.
x2 C x � 5

x � 7
�

x2 � 2
x � 7

C
�4xC 8

x2 � 9xC 14
D

x2 C x � 5
x � 7

�
x2 � 2
x � 7

C
�4
x � 7

D
.x2 C x � 5/ � .x2 � 2/C .�4/

x � 7

D
x � 7
x � 7

D 1 for x ¤ 2; 7

Now Work Problem 29 G

Why did we write “for x ¤ 2; 7”?

To add (or subtract) two fractions with different denominators, use the fundamental
principle of fractions to rewrite the fractions as fractions that have the same denomi-
nator. Then proceed with the addition (or subtraction) by the method just described.

For example, to find
2

x3.x � 3/
C

3
x.x � 3/2

we can convert the first fraction to an equal fraction by multiplying the numerator and
denominator by x � 3:

2.x � 3/
x3.x � 3/2

and we can convert the second fraction by multiplying the numerator and denominator
by x2:

3x2

x3.x � 3/2

These fractions have the same denominator. Hence,
2

x3.x � 3/
C

3
x.x � 3/2

D
2.x � 3/
x3.x � 3/2

C
3x2

x3.x � 3/2

D
3x2 C 2x � 6
x3.x � 3/2

We could have converted the original fractions into equal fractions with any common
denominator. However, we chose to convert them into fractions with the denominator
x3.x�3/2. This denominator is the least common denominator (LCD) of the fractions
2=.x3.x � 3// and 3=Œx.x � 3/2�.

In general, to find the LCD of two or more fractions, first factor each denomina-
tor completely. The LCD is the product of each of the distinct factors appearing in
the denominators, each raised to the highest power to which it occurs in any single
denominator.

EXAMPLE 6 Adding and Subtracting Fractions

a. Subtract:
t

3tC 2
�

4
t � 1

.

Solution: The LCD is .3tC 2/.t � 1/. Thus, we have
t

.3tC 2/
�

4
t � 1

D
t.t � 1/

.3tC 2/.t � 1/
�

4.3tC 2/
.3tC 2/.t � 1/

D
t.t � 1/ � 4.3tC 2/
.3tC 2/.t � 1/

D
t2 � t � 12t � 8
.3tC 2/.t � 1/

D
t2 � 13t � 8
.3tC 2/.t � 1/
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b. Add:
4

q � 1
C 3.

Solution: The LCD is q � 1.

4
q � 1

C 3 D
4

q � 1
C

3.q � 1/
q � 1

D
4C 3.q � 1/

q � 1
D

3qC 1
q � 1

Now Work Problem 33 G

EXAMPLE 7 Subtracting Fractions

x � 2
x2 C 6xC 9

�
xC 2

2.x2 � 9/

D
x � 2
.xC 3/2

�
xC 2

2.xC 3/.x � 3/
ŒLCD D 2.xC 3/2.x � 3/�

D
.x � 2/.2/.x � 3/
.xC 3/2.2/.x � 3/

�
.xC 2/.xC 3/

2.xC 3/.x � 3/.xC 3/

D
.x � 2/.2/.x � 3/ � .xC 2/.xC 3/

2.xC 3/2.x � 3/

D
2.x2 � 5xC 6/ � .x2 C 5xC 6/

2.xC 3/2.x � 3/

D
2x2 � 10xC 12 � x2 � 5x � 6

2.xC 3/2.x � 3/

D
x2 � 15xC 6

2.xC 3/2.x � 3/
Now Work Problem 39 G

Example 8 is important for later work.
Note that we explicitly assume h ¤ 0.

EXAMPLE 8 Combined Operations with Fractions

Simplify

1
xC h

�
1
x

h
, where h ¤ 0.

Solution: First we combine the fractions in the numerator and obtain

1
xC h

�
1
x

h
D

x
x.xC h/

�
xC h

x.xC h/

h
D

x � .xC h/
x.xC h/

h

D

�h
x.xC h/

h
1

D
�h

x.xC h/h
D �

1
x.xC h/

Now Work Problem 47 G
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Percentages
In business applications fractions are often expressed as percentages, which are some-

times confusing. We recall that p% means
p
100

. Also p% of x simply means
p
100
� x D

px
100

. Notice that the p in p% is not required to be a number between 0 and

100. In fact, for any real number r we can write r D 100r%. Thus, there are 3100%
days in January. While this might sound absurd, it is correct and reinforces understand-
ing of the definition:

p% D
p
100

Similarly, the use of “of” when dealing with percentages really is just multiplication.
If we say “5 of 7”, it means “five sevens” — which is 35.

If a cost has increased by 200% it means that the cost has increased by
200
100
D 2.

Strictly speaking, this should mean that the increase is 2 times the old cost so that

new cost D old costC increase D old costC 2 � old cost D 3 � old cost

but people are not always clear when they speak in these terms. If you want to say that
a cost has doubled, you can say that the cost has increased by 100%.

EXAMPLE 9 Operations with Percentages

A restaurant bill comes to $73.59 to which is added Harmonized Sales Tax (HST) of
15%. A customer wishes to leave the waiter a tip of 20%, and the restaurant’s credit
card machine calculates a 20% tip by calculating 20% of the after-tax total. How much
is charged to the customer’s credit card?

Solution:

charge D .1C 20%/.after-tax total/

D
120
100

..1C 15%/.bill//

D

�
120
100

��
115
100

�
.73:59/

D
13800
10000

.73:59/

D 1:38.73:59/

D 101:5542

So, the credit card charge is $101.55.

Now Work Problem 59 G

PROBLEMS 0.6
In Problems 1–6, simplify.

1.
x3 C 27
x2 C 3x

2.
x2 � 3x � 10

x2 � 4
3.

x2 � 9xC 20
x2 C x � 20

4.
3x2 � 27xC 24
2x3 � 16x2 C 14x

5.
15x2 C x � 2
3x2 C 20x � 7

6.
6x2 � 19x � 7
15x2 C 11xC 2

In Problems 7–48, perform the operations and simplify as much as
possible.

7.
y2

y � 3
�
�1

yC 2
8.

t2 � 9
t2 C 3t

�
t2

t2 � 6tC 9

9.
ax � b
x � c

�
c � x
axC b 10.

a2 � b2

a � b
�
a2 � 2abC b2

2aC 2b

11.
3xC 3

x2 C 3xC 2
�

x2 � x
x2 C x � 2

12.
x2 C 2x

3x2 � 18xC 24
�

x2 � x � 6
x2 � 4xC 4
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13.

X 2

8
X
4

14.

3x2

7x
x
14

15.

15u
v3

3u
v4

16.

2xC y
x

2x � y
3x

17.

4x
3
2x

18.
4x
3
2x

19.
�9x3

x
3

20.

21t5

t2

�7
21.

2xC 1

2x2 � 5x � 3
x � 3

22.

x2 C 6xC 9
x

xC 3
23.

10x3

x2 � 1
5x

xC 1

24.

x2 � x � 6
x2 � 9
x2 � 4

x2 C 2x � 3

25.

x2 C 8xC 12
x2 C 9xC 18

x2 � 3x � 10
x2 � 2x � 15

26.

.xC 1/2

2x � 1
4xC 4
1 � 4x2

27.

4x2 � 9
x2 C 3x � 4
2x � 3
1 � x2

28.

6x2yC 7xy � 3y
xy � xC 5y � 5

x3yC 4x2y
xy � xC 4y � 4

29.
x2

xC 3
C

5xC 6
xC 3

30.
�1
x � 1

C
x

x � 1
31.

4
x
C

3
5x2 32.

9
X 3
�

1
X 2

33. 1 �
x3

x3 � 1
34.

4
sC 4

C s 35.
1

3x � 1
C

x
xC 1

36.
.xC 1/3 � .x � 1/3

.x � 1/.x2 C x � 1/
37.

1
x2 � 2x � 3

C
1

x2 � 9

38.
4

2x2 � 7x � 4
�

x
2x2 � 9xC 4

39.
4

x � 1
� 3C

�3x2

5 � 4x � x2

40.
xC 1

2x2 C 3x � 2
�

x � 1
3x2 C 5x � 2

C
1

3x � 1

41. .1C x�1/�1 42. .x�1 C y�1/2

43. .x�1 � y/�1 44. .aC b�1/2

45.
5C

2
x

3
46.

xC a
x

x �
a2

x

47.
3 �

1
2x

xC
x

xC 2

48.

x � 1
x2 C 5xC 6

�
1

xC 2

3C
x � 7
3

In Problems 49 and 50, perform the indicated operations, but do
not rationalize the denominators.

49.
3

3
p
xC h

�
3
3
p
x

50.
x
p
x

p
3C x

C
2
p
x

In Problems 51–60, simplify, and express your answer in a form
that is free of radicals in the denominator.

51.
1

aC
p
b

52.
1

1 �
p
2

53.

p
2

p
3 �
p
6

54.
5

p
6C
p
7

55.
2
p
3

p
3C
p
5

56.
p
a

p
b �
p
c

57.
3

tC
p
7

58.
x � 3
p
x � 1

C
4

p
x � 1

59. Pam Alnwick used to live in Rockingham, NS, where the
Harmonized Sales Tax, HST, was 15%. She recently moved
to Melbourne, FL, where sales tax is 6.5%. When shopping,
the task of comparing American prices with Canadian prices
was further complicated by the fact that, at the time of her
move the Canadian dollar was worth 0.75US$. After thinking
about it, she calculated a number K so that a pre-tax shelf
price of A US$ could be sensibly compared with a pre-tax
shelf price of C CDN$, so as to take into account the different
sales tax rates. Her K had the property that if AK D C then the
after-tax costs in Canadian dollars were the same, while if AK
is less (greater) than C then, after taxes, the American
(Canadian) price is cheaper. Find Pam’s multiplier K.

60. Repeat the calculation assuming a US tax rate of a% and a
Canadian tax rate of c%, when 1 CDN$ = R US$, so that Pam
can help her stepson Tom, who moved from Calgary AB to
Santa Barbara CA.

Objective 0.7 Equations, in Particular Linear Equations
To discuss equivalent equations and
to develop techniques for solving linear
equations, including literal equations
as well as fractional and radical
equations that lead to linear equations.

Equations
An equation is a statement that two expressions are equal. The two expressions that
make up an equation are called its sides. They are separated by the equality sign,D.

EXAMPLE 1 Examples of Equations

a. xC 2 D 3

b. x2 C 3xC 2 D 0
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c.
y

y � 4
D 6

d. w D 7 � z

Now Work Problem 1 G

In Example 1, each equation contains at least one variable. A variable is a symbol
that can be replaced by any one of a set of different numbers. The most popular symbols
for variables are letters from the latter part of the alphabet, such as x, y, z, w, and
t. Hence, Equations (a) and (c) are said to be in the variables x and y, respectively.
Equation (d) is in the variables w and z. In the equation xC 2 D 3, the numbers 2 and
3 are called constants. They are fixed numbers.

We never allow a variable in an equation to have a value for which any expression
in that equation is undefined. For example, inHere we discuss restrictions on variables.

y
y � 4

D 6

y cannot be 4, because this would make the denominator zero; while in

p
x � 3 D 9

we cannot have x�3 negative because we cannot take square roots of negative numbers.
We must have x � 3 � 0, which is equivalent to the requirement x � 3. (We will have
more to say about inequalities in Chapter 1.) In some equations, the allowable values of
a variable are restricted for physical reasons. For example, if the variable q represents
quantity sold, negative values of q may not make sense.

To solve an equation means to find all values of its variables for which the equation
is true. These values are called solutions of the equation and are said to satisfy the
equation. When only one variable is involved, a solution is also called a root. The set
of all solutions is called the solution set of the equation. Sometimes a letter representing
an unknown quantity in an equation is simply called an unknown. Example 2 illustrates
these terms.

EXAMPLE 2 Terminology for Equations

a. In the equation xC 2 D 3, the variable x is the unknown. The only value of x that
satisfies the equation is obviously 1. Hence, 1 is a root and the solution set is f1g.

b. �2 is a root of x2 C 3xC 2 D 0 because substituting �2 for x makes the equation
true: .�2/2 C 3.�2/ C 2 D 0. Hence �2 is an element of the solution set, but in
this case it is not the only one. There is one more. Can you find it?

c. w D 7� z is an equation in two unknowns. One solution is the pair of values w D 4
and z D 3. However, there are infinitely many solutions. Can you think of another?

Now Work Problem 3 G

Equivalent Equations
Two equations are said to be equivalent if they have exactly the same solutions, which
means, precisely, that the solution set of one is equal to the solution set of the other.
Solving an equation may involve performing operations on it. We prefer that any such
operation result in an equivalent equation. Here are three operations that guarantee
equivalence:

1. Adding (subtracting) the same polynomial to (from) both sides of an equation, where
the polynomial is in the same variable as that occurring in the equation.
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For example, if �5x D 5 � 6x, then adding 6x to both sides gives the equivalent
equation �5xC 6x D 5 � 6xC 6x, which in turn is equivalent to x D 5.

Equivalence is not guaranteed if both
sides are multiplied or divided by an
expression involving a variable.

2. Multiplying (dividing) both sides of an equation by the same nonzero constant.

For example, if 10x D 5, then dividing both sides by 10 gives the equivalent equa-

tion
10x
10
D

5
10
, equivalently, x D

1
2
.

3. Replacing either side of an equation by an equal expression.

For example, if the equation is x.x C 2/ D 3, then replacing the left side by the
equal expression x2 C 2x gives the equivalent equation x2 C 2x D 3.

We repeat: ApplyingOperations 1–3 guarantees that the resulting equation is equiv-
alent to the given one. However, sometimes in solving an equation we have to apply
operations other than 1–3. These operations may not necessarily result in equivalent
equations. They include the following:

Operations That May Not Produce Equivalent
Equations
4. Multiplying both sides of an equation by an expression involving the variable.

5. Dividing both sides of an equation by an expression involving the variable.
6. Raising both sides of an equation to equal powers.Operation 6 includes taking roots of both

sides.
Let us illustrate the last three operations. For example, by inspection, the only root

of x� 1 D 0 is 1. Multiplying each side by x (Operation 4) gives x2 � x D 0, which is
satisfied if x is 0 or 1. (Check this by substitution.) But 0 does not satisfy the original
equation. Thus, the equations are not equivalent.

Continuing, you can check that the equation .x � 4/.x � 3/ D 0 is satisfied when
x is 4 or when x is 3. Dividing both sides by x � 4 (Operation 5) gives x � 3 D 0,
whose only root is 3. Again, we do not have equivalence, since in this case a root has
been “lost.” Note that when x is 4, division by x � 4 implies division by 0, an invalid
operation.

Finally, squaring each side of the equation x D 2 (Operation 6) gives x2 D 4,
which is true if x D 2 or if x D �2. But �2 is not a root of the given equation.

From our discussion, it is clear that when Operations 4–6 are performed, we must
be careful about drawing conclusions concerning the roots of a given equation. Opera-
tions 4 and 6 can produce an equation with more roots. Thus, you should check whether
or not each “solution” obtained by these operations satisfies the original equation.
Operation 5 can produce an equation with fewer roots. In this case, any “lost” root
may never be determined. Thus, avoid Operation 5 whenever possible.

In summary, an equation can be thought of as a set of restrictions on any variable
in the equation. Operations 4–6 may increase or decrease the number of restrictions,
giving solutions different from those of the original equation. However, Operations 1–3
never affect the restrictions.

Linear Equations
The principles presented so far will now be demonstrated in the solution of a linear
equation.

Definition
A linear equation in the variable x is an equation that is equivalent to one that can
be written in the form

axC b D 0 (1)

where a and b are constants and a ¤ 0.
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A linear equation is also called a first-degree equation or an equation of degree
one, since the highest power of the variable that occurs in Equation (1) is the first.

To solve a linear equation, we perform operations on it until we have an equivalent
equation whose solutions are obvious. This means an equation in which the variable is
isolated on one side, as the following examples show.

EXAMPLE 3 Solving a Linear Equation

Solve 5x � 6 D 3x.

Solution: We begin by getting the terms involving x on one side and the constant on
the other. Then we solve for x by the appropriate mathematical operation. We have

5x � 6 D 3x

5x � 6C .�3x/ D 3xC .�3x/ adding �3x to both sides

2x � 6 D 0 simplifying, that is, Operation 3

2x � 6C6 D 0C 6 adding 6 to both sides

2x D 6 simplifying

2x
2
D

6
2

dividing both sides by 2

x D 3

Clearly, 3 is the only root of the last equation. Since each equation is equivalent to the
one before it, we conclude that 3 must be the only root of 5x � 6 D 3x. That is, the
solution set is f3g. We can describe the first step in the solution as moving a term from
one side of an equation to the other while changing its sign; this is commonly called
transposing. Note that since the original equation can be put in the form 2xC.�6/ D 0,
it is a linear equation.

Now Work Problem 21 G

EXAMPLE 4 Solving a Linear Equation

Solve 2.pC 4/ D 7pC 2.

Solution: First, we remove parentheses. Thenwe collect like terms and solve.We have

2.pC 4/ D 7pC 2

2pC 8 D 7pC 2 distributive property

2p D 7p � 6 subtracting 8 from both sides

�5p D �6 subtracting 7p from both sides

p D
�6
�5

dividing both sides by �5

p D
6
5

Now Work Problem 25 G

EXAMPLE 5 Solving a Linear Equation

Solve
7xC 3
2
�
9x � 8
4
D 6.

Solution: We first clear the equation of fractions by multiplying both sides by the
LCD, which is 4. Then we use various algebraic operations to obtain a solution. Thus,

4
�
7xC 3
2
�
9x � 8
4

�
D 4.6/
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4 �
7xC 3
2
� 4 �

9x � 8
4
D 24 distributive property

2.7xC 3/ � .9x � 8/ D 24 simplifying

14xC 6 � 9xC 8 D 24 distributive property

5xC 14 D 24 simplifying

5x D 10 subtracting 14 from both sides

x D 2 dividing both sides by 5

Now Work Problem 29 G

The distributive property requires that
both terms within the parentheses be
multiplied by 4.

Each equation in Examples 3–5 has one and only one root. This is true of every
linear equation in one variable.

Every linear equation has exactly
one root. The root of axC b D 0 is

x D �
b
a
.

Literal Equations
Equations in which some of the constants are not specified, but are represented by
letters, such as a, b, c, or d, are called literal equations, and the letters are called literal
constants. For example, in the literal equation xCa D 4b, we can consider a and b to be
literal constants. Formulas, such as I D Prt, that express a relationship between certain
quantities may be regarded as literal equations. If we want to express a particular letter
in a formula in terms of the others, this letter is considered the unknown.

EXAMPLE 6 Solving Literal Equations

a. The equation I D Prt is the formula for the simple interest I on a principal of P
dollars at the annual interest rate of r for a period of t years. Express r in terms of I,
P, and t.

Solution: Here we consider r to be the unknown. To isolate r, we divide both sides
by Pt. We have

I D Prt
I
Pt
D

Prt
Pt

I
Pt
D r so r D

I
Pt

When we divided both sides by Pt, we assumed that Pt ¤ 0, since we cannot divide
by 0. Notice that this assumption is equivalent to requiring both P ¤ 0 and t ¤ 0.
Similar assumptions will be made when solving other literal equations.

b. The equation S D P C Prt is the formula for the value S of an investment of a
principal of P dollars at a simple annual interest rate of r for a period of t years.
Solve for P.

Solution: S D PC Prt

S D P.1C rt/ factoring

S
1C rt

D P dividing both sides by 1C rt

Now Work Problem 79 G

EXAMPLE 7 Solving a Literal Equation

Solve .aC c/xC x2 D .xC a/2 for x.
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Solution: We first simplify the equation and then get all terms involving x on one side:

.aC c/xC x2 D .xC a/2

axC cxC x2 D x2 C 2axC a2

axC cx D 2axC a2

cx � ax D a2

x.c � a/ D a2

x D
a2

c � a
for c ¤ a

Now Work Problem 81 G

EXAMPLE 8 Solving the “Tax in a Receipt” Problem

We recall Lesley Griffith’s problem from the opening paragraphs of this chapter. We
now generalize the problem so as to illustrate further the use of literal equations. Lesley
had a receipt for an amount R. She knew that the sales tax rate was p%. She wanted to
know the amount that was paid in sales tax. Certainly,

price C tax D receipt (2)

Writing P for the price (which she did not yet know), the tax was .p=100/P so that she
knew

PC
p
100

P D R

P
�
1C

p
100

�
D R

P
�
100C p
100

�
D R

P D
100R

100C p

It follows that the tax paid was

R � P D R �
100R

100C p
D R

�
1 �

100
100C p

�
D R

�
p

100C p

�
where you should check the manipulations with fractions, supplying more details if
necessary. Recall that the French tax rate was 19.6% and the Italian tax rate was 18%.
We conclude that Lesley had only to multiply a French receipt by 19:6

119:6 � 0:16388 to
determine the tax it contained, while for an Italian receipt she should have multiplied
the amount by 18

118 . With the current tax rates (20% and 22%, respectively) her multi-

pliers would be 20
120 and

22
122 , respectively, but she doesn’t have to re-solve the problem.

It should be noted that working from the simple conceptual Equation (2) we have been
able to avoid the assumption about proportionality that we made at the beginning of
this chapter.

It is also worth noting that while problems of this kind are often given using per-
centages, the algebra may be simplified by writing p% D p

100 as a decimal. Alge-
braically, we make the substitution

r D
p
100

so that Equation (2) becomes

PC rP D R

It should be clear that P.1 C r/ D R so that P D
R

1C r
and the tax in R is just

Pr D
Rr

1C r
. The reader should now replace r in

Rr
1C r

with
p
100

and check that this

simplifies to R
�

p
100C p

�
.
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Moreover, examining this problem side by side with Example 6(b) above, we see
that solving the “Tax in a Receipt” problem is really the same as determining, from
an investment balance R, the amount of interest earned during the most recent interest
period, when the interest rate per interest period is r.

Now Work Problem 99 G

Fractional Equations
A fractional equation is an equation in which an unknown is in a denominator. We
illustrate that solving such a nonlinear equation may lead to a linear equation.

An alternative solution that avoids
multiplying both sides by the LCD is as
follows:

5
x � 4

�
6

x � 3
D 0

Assuming that x is neither 3 nor 4 and
combining fractions gives

9 � x
.x � 4/.x � 3/

D 0

A fraction can be 0 only when its
numerator is 0 and its denominator is not.
Hence, x D 9.

EXAMPLE 9 Solving a Fractional Equation

Solve
5

x � 4
D

6
x � 3

.

Solution:

Strategy We first write the equation in a form that is free of fractions. Then we
use standard algebraic techniques to solve the resulting equation.

Multiplying both sides by the LCD, .x � 4/.x � 3/, we have

.x � 4/.x � 3/
�

5
x � 4

�
D .x � 4/.x � 3/

�
6

x � 3

�
5.x � 3/ D 6.x � 4/ linear equation

5x � 15 D 6x � 24

9 D x

In the first step, we multiplied each side by an expression involving the variable x.
As we mentioned in this section, this means that we are not guaranteed that the last
equation is equivalent to the original equation. Thus, we must check whether or not 9
satisfies the original equation. Since

5
9 � 4

D
5
5
D 1 and

6
9 � 3

D
6
6
D 1

we see that 9 indeed satisfies the original equation.

Now Work Problem 47 G

Some equations that are not linear do not have any solutions. In that case, we say
that the solution set is the empty set, which we denote by ;. Example 10 will illustrate.

EXAMPLE 10 Solving Fractional Equations

a. Solve
3xC 4
xC 2

�
3x � 5
x � 4

D
12

x2 � 2x � 8
.

Solution: Observing the denominators and noting that

x2 � 2x � 8 D .xC 2/.x � 4/

we conclude that the LCD is .x C 2/.x � 4/. Multiplying both sides by the LCD,
we have

.xC 2/.x � 4/
�
3xC 4
xC 2

�
3x � 5
x � 4

�
D .xC 2/.x � 4/ �

12
.xC 2/.x � 4/

.x � 4/.3xC 4/ � .xC 2/.3x � 5/ D 12
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3x2 � 8x � 16 � .3x2 C x � 10/ D 12

3x2 � 8x � 16 � 3x2 � xC 10 D 12

�9x � 6 D 12

�9x D 18

x D �2 (3)

However, the original equation is not defined for x D �2 (we cannot divide by
zero), so there are no roots. Thus, the solution set is ;. Although �2 is a solution of
Equation (3), it is not a solution of the original equation.

b. Solve
4

x � 5
D 0.

Solution: The only way a fraction can equal zero is for the numerator to equal
zero (and the denominator to not equal zero). Since the numerator, 4, is not 0, the
solution set is ;.

Now Work Problem 43 G

EXAMPLE 11 Literal Equation

If s D
u

auC v
, express u in terms of the remaining letters; that is, solve for u.

Solution:

Strategy Since the unknown, u, occurs in the denominator, we first clear fractions
and then solve for u.

s D
u

auC v

s.auC v/ D u multiplying both sides by auC v

sauC sv D u

sau � u D �sv

u.sa � 1/ D �sv

u D
�sv

sa � 1
D

sv
1 � sa

Now Work Problem 83 G

Radical Equations
A radical equation is one in which an unknown occurs in a radicand. The next two
examples illustrate the techniques employed to solve such equations.

EXAMPLE 12 Solving a Radical Equation

Solve
p
x2 C 33 � x D 3.

Solution: To solve this radical equation, we raise both sides to the same power to
eliminate the radical. This operation does not guarantee equivalence, so we must check
any resulting “solutions.”We begin by isolating the radical on one side. Then we square
both sides and solve using standard techniques. Thus,p

x2 C 33 D xC 3

x2 C 33 D .xC 3/2 squaring both sides
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x2 C 33 D x2 C 6xC 9

24 D 6x

4 D x

You should show by substitution that 4 is indeed a root.

Now Work Problem 71 G

With some radical equations, you may have to raise both sides to the same power
more than once, as Example 13 shows.

The reason we want one radical on each
side is to avoid squaring a binomial with
two different radicals.

EXAMPLE 13 Solving a Radical Equation

Solve
p
y � 3 �

p
y D �3.

Solution: When an equation has two terms involving radicals, first write the equation
so that one radical is on each side, if possible. Then square and solve. We havep

y � 3 D
p
y � 3

y � 3 D y � 6
p
yC 9 squaring both sides

6
p
y D 12
p
y D 2

y D 4 squaring both sides

Substituting 4 into the left side of the original equation gives
p
1 �
p
4, which is �1.

Since this does not equal the right side, �3, there is no solution. That is, the solution
set is ;.

Now Work Problem 69 G

PROBLEMS 0.7
In Problems 1–6, determine by substitution which of the given
numbers, if any, satisfy the given equation.

1. 9x � x2 D 0I 1; 0

2. 10 � 7x D �x2I 2; 4

3. zC 3.z � 4/ D 5I 174 ; 4

4. x2 C x � 6 D 0I 2; 3

5. x.6C x/ � 2.xC 1/ � 5x D 4I �2; 0

6. x.xC 1/2.xC 2/ D 0I 0;�1; 2

In Problems 7–16, determine what operations were applied to the
first equation to obtain the second. State whether or not the
operations guarantee that the equations are equivalent. Do not
solve the equations.

7. 2x � 3 D 4xC 12I 2x D 4xC 15

8. 8x � 4 D 16I x � 1
2 D 2

9. x D 5I x4 D 625

10. 2x2 C 4 D 5x � 7I x2 C 2 D
5
2
x �

7
2

11. x2 � 2x D 0I x � 2 D 0

12.
a

x � b
C x D x2I aC x.x � b/ D x2.x � b/

13.
x2 � 1
x � 1

D 3I x2 � 1 D 3.x � 1/

14. .xC 2/.xC 1/ D .xC 3/.xC 1/; xC 2 D xC 3

15.
2x.3xC 1/
2x � 3

D 2x.xC 4/I 3xC 1 D .xC 4/.2x � 3/

16. 2x2 � 9 D xI x2 �
1
2
x D

9
2

In Problems 17–72, solve the equations.

17. �x D 3:14 18. 0:2x D 7

19. �8x D 12 � 20 20. 4 � 7x D 3

21. 5x � 3 D 9 22. 3
p
2xC 2 D 11

23. 7xC 7 D 2.xC 1/ 24. 4sC 3s � 1 D 41

25. 5.p � 7/ � 2.3p � 4/ D 3p

26. t D 2 � 2.2t � 3.1 � t//

27.
2x
5
D 4x � 3 28.

5y
7
�
6
7
D 2 � 4y

29. 7C
4x
9
D

x
2

30.
x
3
� 4 D

x
5

31. 3xC
x
5
� 5 D

1
5
C 5x 32. xC

x
2
C

x
3
D

x
4

33.
2y � 3
4
D

6yC 7
3

34.
t
4
C

5
3
t D

7
2
.t � 1/

35. tC
t
3
�

t
4
C

t
36
D 10 36.

7C 2.xC 1/
3

D
6x
5
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37.
7
5
.2 � x/ D

5
7
.x � 2/

38.
2x � 7
3
C

8x � 9
14

D
3x � 5
21

39.
4
3
.5x � 2/ D 7Œx � .5x � 2/�

40. .2x � 5/2 C .3x � 3/2 D 13x2 � 5xC 7

41.
5
x
D 25

42.
4

x � 1
D 2

43.
5

xC 3
D 0

44.
3x � 5
x � 3

D 0

45.
3

5 � 2x
D

7
2

46.
xC 3
x
D

2
5

47.
a

x � b
D

c
x � d

for a ¤ 0 and c ¤ 0

48.
2x � 3
4x � 5

D 6

49.
1
x
C

1
7
D

3
7

50.
2

x � 1
D

3
x � 2

51.
2tC 1
2tC 3

D
3t � 1
3tC 4

52.
x � 1
xC 2

D
x � 3
xC 4

53.
y � 6
y
�
6
y
D

yC 6
y � 6

54.
y � 2
yC 2

D
y � 2
yC 3

55.
�5

2x � 3
D

7
3 � 2x

C
11

3xC 5

56.
1

xC 1
C

2
x � 3

D
�6

3 � 2x

57.
1

x � 2
D

3
x � 4

58.
x

xC 3
�

x
x � 3

D
3x � 4
x2 � 9

59.
p
xC 5 D 4

60.
p
z � 2 D 3

61.
p
2xC 3 � 4 D 0

62. 3 �
p
2xC 1 D 0

63.
r

x
2
C 1 D

2
3

64. .xC 6/1=2 D 7

65.
p
4x � 6 D

p
x

66.
p
xC 1 D

p
2x � 3

67. .x � 7/3=4 D 8

68.
p
y2 � 9 D 9 � y

69.
p
yC
p
yC 2 D 3

70.
p
x �
p
xC 1 D 1

71.
p
a2 C 2a D 2C a

72.

r
1

w � 1
�

r
2

3w � 4
D 0

In Problems 73–84, express the indicated symbol in terms of the
remaining symbols.

73. I D PrtI r

74. P
�
1C

p
100

�
� R D 0I P

75. p D 8q � 1I q

76. p D 10 � 2qI q

77. S D P.1C rt/I t

78. r D
2mI

B.nC 1/
I I

79. A D
R.1 � .1C i/�n/

i
I R

80. S D
R..1C i/n � 1/

i
I R

81. S D P.1C r/nI r

82.
x � a
xC b

D
xC b
x � a

I x

83. r D
2mI

B.nC 1/
I n

84.
1
p
C

1
q
D

1
f
I q

85. Geometry Use the formula P D 2lC 2w to find the length l
of a rectangle whose perimeter P is 660 m and whose width w is
160 m.

86. Geometry Use the formula V D �r2h to find the radius r of
an energy drink can whose volume V is 355 ml and whose height h
is 16 cm.

r 

h = 16

87. Sales Tax A salesperson needs to calculate the cost of an
item with a sales tax of 6.5%. Write an equation that represents the
total cost c of an item costing x dollars.

88. Revenue A day care center’s total monthly revenue from
the care of x toddlers is given by r D 450x, and its total monthly
costs are given by c D 380xC 3500. How many toddlers need to
be enrolled each month to break even? In other words, when will
revenue equal costs?
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89. Straight-Line Depreciation If you purchase an item for
business use, in preparing your income tax you may be able to
spread out its expense over the life of the item. This is called
depreciation. One method of depreciation is straight-line
depreciation, in which the annual depreciation is computed by
dividing the cost of the item, less its estimated salvage value, by its
useful life. Suppose the cost is C dollars, the useful life is N years,
and there is no salvage value. Then it can be shown that the value
V.n/ (in dollars) of the item at the end of n years is given by

V.n/ D C
�
1 �

n
N

�
If new office furniture is purchased for $3200, has a useful life of
8 years, and has no salvage value, after how many years will it
have a value of $2000?

90. Radar Beam When radar is used on a highway to
determine the speed of a car, a radar beam is sent out and reflected
from the moving car. The difference F (in cycles per second) in
frequency between the original and reflected beams is given by

F D
vf

334:8
where v is the speed of the car in miles per hour and f is the
frequency of the original beam (in megacycles per second).

Suppose you are driving along a highway with a speed limit of
65 mi/h. A police officer aims a radar beam with a frequency of
2500 megacycles per second at your car, and the officer observes
the difference in frequency to be 495 cycles per second. Can the
officer claim that you were speeding?

91. Savings Theresa wants to buy a house, so she has decided
to save one quarter of her salary. Theresa earns $47.00 per hour
and receives an extra $28.00 a week because she declined
company benefits. She wants to save at least $550.00 each week.
How many hours must she work each week to achieve her goal?

92. Predator–Prey Relation Predator–prey relations from
biology also apply to competition in economics. To study a
predator–prey relationship, an experiment1 was conducted in
which a blindfolded subject, the “predator,” stood in front of a
3-ft-square table on which uniform sandpaper discs, the “prey,”
were placed. For 1 minute the “predator” searched for the discs by
tapping with a finger. Whenever a disc was found, it was removed
and searching resumed. The experiment was repeated for various
disc densities (number of discs per 9 ft2). It was estimated that if y
is the number of discs picked up in 1 minute when x discs are on
the table, then

y D a.1 � by/x

where a and b are constants. Solve this equation for y.

93. Prey Density In a certain area, the number y of moth larvae
consumed by a single predatory beetle over a given period of time
is given by

y D
1:4x

1C 0:09x

where x is the prey density (the number of larvae per
unit of area). What prey density would allow a beetle to survive
if it needs to consume 10 larvae over the given period?

94. Store Hours Suppose the ratio of the number of hours a
store is open to the number of daily customers is constant. When
the store is open 8 hours, the number of customers is 92 less than
the maximum number of customers. When the store is open
10 hours, the number of customers is 46 less than the maximum
number of customers. Write an equation describing this situation,
and find the maximum number of daily customers.

95. Travel Time The time it takes a boat to travel a given
distance upstream (against the current) can be calculated by
dividing the distance by the difference of the speed of the boat and
the speed of the current. Write an equation that calculates the time
t it takes a boat moving at a speed r against a current c to travel a
distance d. Solve your equation for c.

96. Wireless Tower A wireless tower is 100 meters tall. An
engineer determines electronically that the distance from the top
of the tower to a nearby house is 2 meters greater than the
horizontal distance from the base of the tower to the house.
Determine the distance from the base of the tower to the house.

97. Automobile Skidding Police have used the formula
s D
p
30fd to estimate the speed s (in miles per hour) of a car if it

skidded d feet when stopping. The literal number f is the
coefficient of friction, determined by the kind of road (such as
concrete, asphalt, gravel, or tar) and whether the road is wet or
dry. Some values of f are given in Table 0.1. At 85 mi/h, about
how many feet will a car skid on a wet concrete road? Give your
answer to the nearest foot.

Table 0.1

Concrete Tar

Wet 0.4 0.5

Dry 0.8 1.0

98. Interest Earned Cassandra discovers that she has $1257 in
an off-shore account that she has not used for a year. The interest
rate was 7.3% compounded annually. How much interest did she
earn from that account over the last year?

99. Tax in a Receipt In 2006, Nova Scotia consumers paid
HST, harmonized sales tax, of 15%. Tom Wood traveled from
Alberta, which has only federal GST, goods and services tax, of
7% to Nova Scotia for a chemistry conference. When he later
submitted his expense claims in Alberta, the comptroller was
puzzled to find that her usual multiplier of 7

107 to determine tax in
a receipt did not produce correct results. What percentage of
Tom’s Nova Scotia receipts were HST?

1
C. S. Holling, “Some Characteristics of Simple Types of Predation and
Parasitism,” The Canadian Entomologist, XCI, no. 7 (1959), 385–98.
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Objective 0.8 Quadratic Equations
To solve quadratic equations by
factoring or by using the quadratic
formula.

To learn how to solve certain classical problems, we turn tomethods of solving quadratic
equations.

Definition
A quadratic equation in the variable x is an equation that can be written in the form

ax2 C bxC c D 0 (1)

where a, b, and c are constants and a ¤ 0.

A quadratic equation is also called a second-degree equation or an equation of
degree two, since the highest power of the variable that occurs is the second. Whereas
a linear equation has only one root, a quadratic equation may have two different roots.

Solution by Factoring
A useful method of solving quadratic equations is based on factoring, as the following
example shows.

EXAMPLE 1 Solving a Quadratic Equation by Factoring

a. Solve x2 C x � 12 D 0.

Solution: The left side factors easily:

.x � 3/.xC 4/ D 0

Think of this as two quantities, x � 3 and xC 4, whose product is zero. Whenever
the product of two or more quantities is zero, at least one of the quantities must be
zero. (We emphasized this principle in Section 0.5 Factoring.) Here, it means that
either

x � 3 D 0 or xC 4 D 0
Solving these gives x D 3 and x D �4, respectively. Thus, the roots of the original
equation are 3 and �4, and the solution set is f�4; 3g.

b. Solve 6w2 D 5w.

We do not divide both sides by w
(a variable) since equivalence is not
guaranteed and we may “lose” a root.

Solution: We write the equation as

6w2
� 5w D 0

so that one side is 0. Factoring gives

w.6w � 5/ D 0

so we have

w D 0 or 6w � 5 D 0

w D 0 or 6w D 5

Thus, the roots are w D 0 and w D 5
6 . Note that if we had divided both sides of

6w2 D 5w by w and obtained 6w D 5, our only solution would be w D 5
6 . That is,

we would lose the root w D 0. This is in line with our discussion of Operation 5 in
Section 0.7 and sheds light on the problem with Operation 5. One way of approach-
ing the possibilities for a variable quantity, w, is to observe that either w ¤ 0 or
w D 0. In the first case we are free to divide by w. In this case, the original equation
is equivalent to 6w D 5, whose only solution is w D 5

6 . Now turning to the other
case, w D 0, we are obliged to examine whether it is also a solution of the original
equation—and in this problem it is.

Now Work Problem 3 G
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EXAMPLE 2 Solving a Quadratic Equation by Factoring

Solve .3x � 4/.xC 1/ D �2.
Approach a problem like this with
caution. If the product of two quantities is
equal to �2, it is not true that at least one
of the quantities must be �2. Why?

Solution: We first multiply the factors on the left side:

3x2 � x � 4 D �2

Rewriting this equation so that 0 appears on one side, we have

3x2 � x � 2 D 0

.3xC 2/.x � 1/ D 0

x D �
2
3
; 1

Now Work Problem 7 G

Some equations that are not quadratic may be solved by factoring, as Example 3
shows.

Do not neglect the fact that the factor x
gives rise to a root.

EXAMPLE 3 Solving a Higher-Degree Equation by Factoring

a. Solve 4x � 4x3 D 0.

Solution: This is called a third-degree equation. We proceed to solve it as follows:

4x � 4x3 D 0

4x.1 � x2/ D 0 factoring

4x.1 � x/.1C x/ D 0 factoring

Setting each factor equal to 0 gives 4 D 0 (impossible), x D 0; 1 � x D 0, or
1C x D 0. Thus,

x D 0 or x D 1 or x D �1

so that the solution set is f�1; 0; 1g.

b. Solve x.xC 2/2.xC 5/C x.xC 2/3 D 0.

Solution: Factoring x.xC 2/2 from both terms on the left side, we have

x.xC 2/2Œ.xC 5/C .xC 2/� D 0

x.xC 2/2.2xC 7/ D 0

Hence, x D 0, xC 2 D 0, or 2xC 7 D 0, from which it follows that the solution set
is f� 7

2 ;�2; 0g.

Now Work Problem 23 G

EXAMPLE 4 A Fractional Equation Leading to a Quadratic Equation

Solve
yC 1
yC 3

C
yC 5
y � 2

D
7.2yC 1/
y2 C y � 6

(2)

Solution: Multiplying both sides by the LCD, .yC 3/.y � 2/, we get

.y � 2/.yC 1/C .yC 3/.yC 5/ D 7.2yC 1/ (3)

Since Equation (2) was multiplied by an expression involving the variable y, remember
(from Section 0.7) that Equation (3) is not necessarily equivalent to Equation (2). After
simplifying Equation (3), we have

2y2 � 7yC 6 D 0 quadratic equation

.2y � 3/.y � 2/ D 0 factoring
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We have shown that if y satisfies the original equation then y D 3
2 or y D 2. Thus,

3
2 and 2 are the only possible roots of the given equation. But 2 cannot be a root of
Equation (2), since substitution leads to a denominator of 0. However, you should check
that 3

2 does indeed satisfy the original equation. Hence, its only root is
3
2 .

Now Work Problem 63 G

Do not hastily conclude that the solution
of x2 D 3 consists of x D

p
3 only.

EXAMPLE 5 Solution by Factoring

Solve x2 D 3.

Solution: x2 D 3

x2 � 3 D 0

Factoring, we obtain

.x �
p
3/.xC

p
3/ D 0

Thus x �
p
3 D 0 or xC

p
3 D 0, so x D ˙

p
3.

Now Work Problem 9 G

A more general form of the equation x2 D 3 is u2 D k, for k � 0. In the same
manner as the preceding, we can show that

If u2 D k for k � 0 then u D ˙
p
k: (4)

Quadratic Formula
Solving quadratic equations by factoring can be difficult, as is evident by trying that
method on 0:7x2 �

p
2x� 8

p
5 D 0. However, there is a formula called the quadratic

formula that gives the roots of any quadratic equation.

Quadratic Formula

The roots of the quadratic equation ax2CbxCc D 0, where a, b, and c are constants
and a ¤ 0, are given by

x D
�b˙

p
b2 � 4ac
2a

Actually, the quadratic formula is not hard to derive if we first write the quadratic
equation in the form

x2 C
b
a
xC

c
a
D 0

and then as �
xC

b
2a

�2

� K2
D 0

for a number K, as yet to be determined. This leads to�
xC

b
2a
� K

��
xC

b
2a
C K

�
D 0

which in turn leads to x D � b
2a C K or x D � b

2a � K by the methods already under

consideration. To see what K is, observe that we require
�
xC b

2a

�2
�K2 D x2C b

axC
c
a

(so that the equation we just solved is the quadratic equation we started with), which

leads to K D
p

b2�4ac
2a . Substituting this value of K in x D � b

2a ˙K gives the Quadratic
Formula.
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From the quadratic formula we see that the given quadratic equation has two real
roots if b2 � 4ac > 0, one real root if b2 � 4ac D 0, and no real roots if b2 � 4ac < 0.

We remarked in Section 0.5 Factoring that it is not always possible to factor
x2C bxC c as .x� r/.x� s/ for real numbers r and s, even if b and c are integers. This
is because, for any such pair of real numbers, r and s would be roots of the equation
x2 C bxC c D 0. When a D 1 in the quadratic formula, it is easy to see that b2 � 4c
can be negative, so that x2C bxC c D 0 can have no real roots. At first glance it might
seem that the numbers r and s can be found by simultaneously solving

rC s D �b

rs D c

for r and s, thus giving another way of finding the roots of a general quadratic. However,
rewriting the first equation as s D �b � r and substituting this value in the second
equation, we just get r2 C brC c D 0, right back where we started.

Notice too that we can now verify that x2C 1 cannot be factored. If we try to solve
x2 C 1 D 0 using the quadratic formula with a D 1, b D 0, and c D 1 we get

x D
�0˙

p
02 � 4

2
D ˙

p
�4
2
D ˙

p
4
p
�1

2
D ˙

2
p
�1
2
D ˙
p
�1

and
p
�1 is not a real number. It is common to write i D

p
�1 and refer to it as the

imaginary unit. The Complex Numbers are those of the form a C ib, where a and b
are real. The Complex Numbers extend the Real Numbers, but except for Example 8
below they will make no further appearances in this book.

EXAMPLE 6 A Quadratic Equation with Two Real Roots

Solve 4x2 � 17xC 15 D 0 by the quadratic formula.

Solution: Here a D 4; b D �17, and c D 15. Thus,

x D
�b˙

p
b2 � 4ac
2a

D
�.�17/˙

p
.�17/2 � 4.4/.15/
2.4/

D
17˙

p
49

8
D

17˙ 7
8

The roots are
17C 7

8
D

24
8
D 3 and

17 � 7
8
D

10
8
D

5
4
:

Now Work Problem 31 G

EXAMPLE 7 A Quadratic Equation with One Real Root

Solve 2C 6
p
2yC 9y2 D 0 by the quadratic formula.

Solution: Look at the arrangement of the terms. Here a D 9; b D 6
p
2, and c D 2.

Hence,

y D
�b˙

p
b2 � 4ac
2a

D
�6
p
2˙
p
0

2.9/

Thus,

y D
�6
p
2C 0
18

D �

p
2
3

or y D
�6
p
2 � 0
18

D �

p
2
3

Therefore, the only root is �

p
2
3
.

Now Work Problem 33 G
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EXAMPLE 8 A Quadratic Equation with No Real Roots

Solve z2 C zC 1 D 0 by the quadratic formula.

Solution: Here a D 1; b D 1, and c D 1. The roots are

z D
�b˙

p
b2 � 4ac
2a

D
�1˙

p
�3

2
D
�1˙

p
�1
p
3

2
D �

1
2
˙ i

p
3
2

Neither of the roots are real numbers. Both are complex numbers as described briefly
in the paragraph preceding Example 6.

Now Work Problem 37 G

Examples 6–8 illustrate the three possibilities for the roots of a quadratic equation:
either two different real roots, exactly one real root, or no real roots. In the last case
there are two different complex roots, where if one of them is aC ib with b ¤ 0 then
the other is a � ib.

This describes the nature of the roots of a
quadratic equation.

Quadratic-Form Equation
Sometimes an equation that is not quadratic can be transformed into a quadratic equa-
tion by an appropriate substitution. In this case, the given equation is said to have
quadratic form. The next example will illustrate.

Do not assume that �8 and �1 are
solutions of the original equation.

EXAMPLE 9 Solving a Quadratic-Form Equation

Solve
1
x6
C

9
x3
C 8 D 0.

Solution: This equation can be written as�
1
x3

�2

C 9
�
1
x3

�
C 8 D 0

so it is quadratic in 1=x3 and hence has quadratic form. Substituting the variable w for
1=x3 gives a quadratic equation in the variable w, which we can then solve:

w2
C 9wC 8 D 0

.wC 8/.wC 1/ D 0

w D �8 or w D �1

Returning to the variable x, we have

1
x3
D �8 or

1
x3
D �1

Thus,

x3 D �
1
8

or x3 D �1

from which it follows that

x D �
1
2

or x D �1

Checking, we find that these values of x satisfy the original equation.

Now Work Problem 49 G
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PROBLEMS 0.8
In Problems 1–30, solve by factoring.

1. x2 � 4xC 4 D 0 2. t2 C 3tC 2 D 0
3. t2 C 4t � 21 D 0 4. x2 C 3x � 10 D 0

5. x2 � 2x � 3 D 0 6. x2 � 16 D 0

7. u2 � 13u D �36 8. 5z2 C 14z � 3 D 0

9. x2 � 4 D 0 10. 3u2 � 6u D 0

11. t2 � 5t D 0 12. x2 C 9x D �14

13. 4x2 � 4x D 3 14. 2z2 C 9z D 5

15. v.3v � 5/ D �2 16. 2C x � 6x2 D 0

17. �x2 C 3xC 10 D 0 18.
2
3
u2 D

5
7
u

19. 2p2 D 3p 20. �r2 � rC 12 D 0

21. x.xC 4/.x � 1/ D 0 22. .w � 3/2.wC 1/2 D 0

23. .3t4 � 3t2/.tC 3/ D 0 24. x3 � 4x2 � 5x D 0

25. 6x3 C 5x2 � 4x D 0 26. .xC 1/2 � 5xC 1 D 0

27. .x � 3/.x2 � 4/ D 0 28. 5.z2 � 3zC 2/.z � 3/ D 0

29. p.p � 3/2 � 4.p � 3/3 D 0 30. x4 � 3x2 C 2 D 0

In Problems 31–44, find all real roots by using the quadratic
formula.

31. x2 C 2x � 24 D 0 32. x2 � 2x � 15 D 0

33. 9x2 � 42xC 49 D 0 34. q2 � 5q D 0

35. p2 � 2p � 7 D 0 36. 2 � 2xC x2 D 0

37. 4 � 2nC n2 D 0 38. 2u2 C 3u D 7

39. 4x2 C 5x � 2 D 0 40. w2 � 2wC 1 D 0

41. 0:02w2 � 0:3w D 20 42. 0:01x2 C 0:2x � 0:6 D 0

43. z2 � zC 1 D 0 44. �2x2 � 6xC 5 D 0

In Problems 45–54, solve the given quadratic-form equation.

45. x4 � 5x2 C 6 D 0 46. X 4 � 3X 2 � 10 D 0

47.
3
x2
�
7
x
C 2 D 0 48. x�2 C x�1 � 2 D 0

49. x�4 � 9x�2 C 20 D 0 50.
1
x4
�

9
x2
C 8 D 0

51. .X � 5/2 C 7.X � 5/C 10 D 0

52. .3xC 2/2 � 5.3xC 2/ D 0

53.
1

.x � 4/2
�

7
x � 4

C 10 D 0

54.
2

.xC 4/2
C

7
xC 4

C 3 D 0

In Problems 55–76, solve by any method.

55. x2 D
xC 3
2

56.
x
2
D

7
x
�
5
2

57.
3

x � 4
C

x � 3
x
D 2 58.

2
2xC 1

C
3

xC 2
D 2

59.
3xC 2
xC 1

�
2xC 1
2x

D 1 60.
6.wC 1/
2 � w

C
w

w � 1
D 3

61.
2

r � 2
�

rC 1
rC 4

D 0 62.
2x � 3
2xC 5

C
2x

3xC 1
D 1

63.
t

t � 1
C

t � 1
t � 2

D
t � 3

t2 � 3tC 2
64.

2
xC 1

C
3
x
D

4
xC 2

65.
2

x2 � 1
�

1
x.x � 1/

D
2
x2

66. 5 �
3.xC 3/
x2 C 3x

D
1 � x
x

67.
p
2x � 3 D x � 3 68.

p
xC 2 D xC 1

69. qC 2 D 2
p
4q � 7 70. xC

p
4x � 5 D 0

71.
p
zC 3 �

p
3z � 1 D 0 72.

p
x �
p
2x � 8 � 2 D 0

73.
p
xC 1 �

p
x D 1 74.

p
y � 2C 2 D

p
2yC 3

75.
p
xC 3C 1 D 3

p
x 76.

pp
tC 2 D

p
3t � 1

In Problems 77 and 78, find the roots, rounded to two decimal
places.

77. 0:04x2 � 2:7xC 8:6 D 0 78. x2 C .0:2/x � 0:3 D 0

79. Geometry The area of a rectangular picture with a width
2 inches less than its length is 48 square inches. What are the
dimensions of the picture?

80. Temperature The temperature has been rising X degrees
per day for X days. X days ago it was 15 degrees. Today it is 51
degrees. How much has the temperature been rising each day?
How many days has it been rising?

81. Economics One root of the economics equation

M D
Q.QC 10/

44

is �5C
p
25C 44M. Verify this by using the quadratic formula to

solve for Q in terms ofM. Here Q is real income andM is the level
of money supply.

82. Diet for Rats A group of biologists studied the nutritional
effects on rats that were fed a diet containing 10% protein.2 The
protein was made up of yeast and corn flour. By changing the
percentage P (expressed as a decimal) of yeast in the protein mix,
the group estimated that the average weight gain g (in grams) of a
rat over a period of time was given by

g D �200P2 C 200PC 20

What percentage of yeast gave an average weight gain of
60 grams?

83. Drug Dosage There are several rules for determining doses
of medicine for children when the adult dose has been specified.
Such rules may be based on weight, height, and so on. If A is the
age of the child, d is the adult dose, and c is the child’s dose, then
here are two rules:

Young’s rule: c D
A

AC 12
d

Cowling’s rule: c D
AC 1
24

d

2
Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in R. I. Mateles
and S. R. Tannenbaum (eds.), Single-Cell Protein (Cambridge, MA: MIT Press,
1968).
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At what age(s) are the children’s doses the same under both rules?
Round your answer to the nearest year. Presumably, the child has
become an adult when c D d. At what age does the child become
an adult according to Cowling’s rule? According to Young’s rule?

If you know how to graph functions, graph both Y.A/ D
A

AC 12

and C.A/ D
AC 1
24

as functions of A, for A � 0, in the same

plane. Using the graphs, make a more informed comparison of
Young’s rule and Cowling’s rule than is obtained by merely
finding the age(s) at which they agree.

84. Delivered Price of a Good In a discussion of the delivered
price of a good from a mill to a customer, DeCanio3 arrives at and
solves the two quadratic equations

.2n � 1/v2 � 2nvC 1 D 0

and

nv2 � .2nC 1/vC 1 D 0

where n � 1.

(a) Solve the first equation for v.
(b) Solve the second equation for v if v < 1.

85. Motion Suppose the height h of an object thrown straight
upward from the ground is given by

h D 39:2t � 4:9t2

where h is in meters and t is the elapsed time in seconds.

(a) After how many seconds does the object strike the ground?
(b) When is the object at a height of 68.2 m?

Chapter 0 Review
Important Terms and Symbols Examples
Section 0.1 Sets of Real Numbers

set integers rational numbers real numbers coordinates

Section 0.2 Some Properties of Real Numbers
commutative associative identity inverse reciprocal distributive Ex. 3, p. 6

Section 0.3 Exponents and Radicals
exponent base principal nth root radical Ex. 2, p. 11

Section 0.4 Operations with Algebraic Expressions
algebraic expression term factor polynomial Ex. 6, p. 18
long division Ex. 8, p. 18

Section 0.5 Factoring
common factoring perfect square difference of squares Ex. 3, p. 21

Section 0.6 Fractions
multiplication and division Ex. 3, p. 23
addition and subtraction Ex. 5, p. 24
rationalizing denominators Ex. 4, p. 24

Section 0.7 Equations, in Particular Linear Equations
equivalent equations linear equations Ex. 5, p. 31
fractional equations Ex. 9, p. 34
radical equations Ex. 3, p. 31

3
S. J. DeCanio, “Delivered Pricing and Multiple Basing Point Equilibria: A
Reevalution,” Quarterly Journal of Economics, XCIX, no. 2 (1984), 329–49.



Haeussler-50501 M01_HAEU1107_14_SE_C00 November 27, 2017 14:19

46 Chapter 0 Review of Algebra

Section 0.8 Quadratic Equations
solved by factoring Ex. 2, p. 40
quadratic formula Ex. 8, p. 43

Summary
There are certainly basic formulas that have to be remem-
bered when reviewing algebra. It is often a good exercise,
while attempting this memory work, to find the formulas that
are basic for you. For example, the list of properties, each fol-
lowed by an example, near the end of Section 0.2, has many
redundancies in it, but all those formulas need to be part of
your own mathematical tool kit. However, Property 2, which
says a � .�b/ D a C b, will probably jump out at you as
a� .�b/ D aC .�.�b// D aC b. The first equality here is
just the definition of subtraction, as provided by Property 1,
while the second equality is Property 8 applied to b. If this
is obvious to you, you can strike Property 2 from your list
of formulas that you personally need to memorize. Try to do
your own treatment of Property 5, perhaps using Property 1
(twice) and Properties 4 and 10. If you succeed, continue
working through the list, striking off what you don’t need to
memorize. All of this is to say that you will remember faster
what you need to know if you work to shorten your personal
list of formulas that require memory. In spite of technology,
this is a task best done with pencil and paper. Mathematics
is not a spectator sport.

The same comments apply to the list of formulas in Sec-
tion 0.3 and the special products in Section 0.4. Long division
of polynomials (Section 0.3) is a skill that comes with prac-
tice (and only with practice) as does factoring (Section 0.4).
A linear equation in the variable x is one that can be written

in the form ax C b D 0, where a and b are constants and
a ¤ 0. Be sure that you understand the derivation of its solu-

tion, which is x D �
b
a
. Even though the subject matter of

this book is Applied Mathematics, particularly as it pertains
to Business and Economics, it is essential to understand how
to solve literal equations in which the coefficients, such as a
and b in axCb D 0, are not presented as particular numbers.
In Section 0.7 there are many equations, many but not all of
which reduce to linear equations.

The general quadratic equation in the variable x is
ax2CbxCc D 0, where a, b, and c are constants with a ¤ 0,
and it forms the subject of Section 0.8. Its roots (solutions)
are given by

x D
�b˙

p
b2 � 4ac
2a

(5)

although, if the coefficients a, b, and c are simple integers,
these roots may be more easily found by factoring. We rec-
ommend simply memorizing Equation 5, which is known as
the Quadratic Formula. The radical in the Quadratic Formula
tells us, at a glance, that the nature of the roots of a quadratic
are determined by b2� 4ac. If b2� 4ac is positive, the equa-
tion has two real roots. If b2�4ac is zero, it has one real root.
If b2 � 4ac is negative, there are no real roots.

Review Problems
1. Rewrite 5

p
a�5b�3c2b4c3 without radicals and using only

positive exponents.

2. Rationalize the denominator of

p
5

7
p
13
.

3. Rationalize the numerator of

p
xC h �

p
x

h
.

4. Calculate .3x3 � 4x2 C 3xC 7/� .x � 1/.

5. Simplify

1
.xC h/2

�
1
x2

h
.

6. Solve S D P.1C r/n for P.

7. Solve S D P.1C r/n for r.

8. Solve xC 2
p
x � 15 D 0 by treating it as an equation of

quadratic-form.

9. Interest Earned Emily discovers that she has $5253.14 in a
bank account that has been untouched for two years, with
interest earned at the rate of 3.5% compounded annually. How
much of the current amount of $5253.14 was interest earned?
[Hint: If an amount P is invested for 2 years at a rate r (given
as a real number), compounded annually, then the value of the
investment after 2 years is given by S D P.1C r/2.]

10. We looked earlier at the economics equation M D
Q.QC 10/

44
,

whereM is the level of money supply and Q is real income. We

verified that one of its roots is given by

Q D �5C
p
25C 44M. What is the other root and does it

have any significance?
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1 Applications
and More Algebra

1.1 Applications of Equations

1.2 Linear Inequalities

1.3 Applications of
Inequalities

1.4 Absolute Value

1.5 Summation Notation

1.6 Sequences

Chapter 1 Review

I n this chapter, we will apply equations to various practical situations. We will
also do the same with inequalities, which are statements that one quantity is less
than (<), greater than (>), less than or equal to (�), or greater than or equal to
(�) some other quantity.
Here is an example of the use of inequalities in the regulation of sporting

equipment. Dozens of baseballs are used in a typical major league game and it would
be unrealistic to expect that every ball weigh exactly 5 18 ounces. But it is reasonable to
require that each one weigh no less than 5 ounces and no more than 5 14 ounces, which is
how 1.09 of the Official Rules of Major League Baseball reads. (See
http://mlb.mlb.com/ and look up “official rules”.) Note that no less thanmeans
the same thing as greater than or equal to while no more than means the same thing
as less than or equal to. In translating English statements into mathematics, we recom-
mend avoiding the negative wordings as a first step. Using the mathematical symbols
we have

ball weight � 5 ounces and ball weight � 5
1
4
ounces

which can be combined to give

5 ounces � ball weight � 5
1
4
ounces

and nicely displays the ball weight between 5 and 5 14 ounces (where between here
includes the extreme values).

Another inequality applies to the sailboats used in the America’s Cup race. The
America’s Cup Class (ACC) for yachts was defined until 30 January, 2009, by

LC 1:25
p
S � 9:8 3

p
DSP

0:686
� 24:000m

The “�” signifies that the expression on the left must come out as less than or
equal to the 24.000 m on the right. The L, S, and DSP were themselves specified by
complicated formulas, but roughly, L stood for length, S for sail area, and DSP for
displacement (the hull volume below the waterline).

The ACC formula gave yacht designers some latitude. Suppose a yacht had
L D 20:2m, SD 282m2, and DSPD 16:4m3. Since the formula is an inequality, the
designer could reduce the sail areawhile leaving the length and displacement unchanged.
Typically, however, values of L, S, and DSP were used that made the expression on the
left as close to 24.000 m as possible.

In addition to applications of linear equations and inequalities, this chapter will
review the concept of absolute value and introduce sequences and summation notation.

47

http://mlb.mlb.com/
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Objective 1.1 Applications of Equations
To model situations described by linear
or quadratic equations.

In most cases, the solution of practical problems requires the translation of stated rela-
tionships into mathematical symbols. This is called modeling. The following examples
illustrate basic techniques and concepts.

350 ml

Alcohol: 2n

Acid: 3n

n

n

n

n

n

FIGURE 1.1 Chemical solution
(Example 1).

Note that the solution to an equation is
not necessarily the solution to the
problem posed.

EXAMPLE 1 Mixture

A chemist needs to prepare 350 ml of a chemical solution made up of two parts alcohol
and three parts acid. How much of each should be used?

Solution: Let n be the number of milliliters in each part. Figure 1.1 shows the situa-
tion. From the diagram, we have

2nC 3n D 350

5n D 350

n D
350
5
D 70

But n D 70 is not the answer to the original problem. Each part has 70 ml. The
amount of alcohol is 2n D 2.70/ D 140, and the amount of acid is 3n D 3.70/ D 210.
Thus, the chemist should use 140ml of alcohol and 210ml of acid. This example shows
how helpful a diagram can be in setting up a word problem.

Now Work Problem 5 G

EXAMPLE 2 Vehicle Inspection Pit

A vehicle inspection pit is to be built in a commercial garage. [See Figure 1.2(a).]
The garage has dimensions 6 m by 12 m. The pit is to have area 40 m2 and to be
centered in the garage so that there is a uniform walkway around the pit. How wide
will this walkway be?

Solution: Adiagram of the pit is shown in Figure 1.2(b). Letw be the width (inmeters)
of the walkway. Then the pit has dimensions 12 � 2w by 6 � 2w. Since its area must
be 40 m2, where area D .length/.width/, we have

.12 � 2w/.6 � 2w/ D 40

72 � 36wC 4w2
D 40 multiplying

4w2
� 36wC 32 D 0

w2
� 9wC 8 D 0 dividing both sides by 4

.w � 8/.w � 1/ D 0

w D 8; 1

(b)(a)

6 – 2w 12 – 2w

w

w w

w

12

6

FIGURE 1.2 Pit walkway (Example 2).
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Although 8 is a solution of the equation, it is not a solution to our problem, because
one of the dimensions of the garage itself is only 6 m. Thus, the only possible solution
is that the walkway be 1 m wide.

Now Work Problem 7 G

The key words introduced here are fixed
cost, variable cost, total cost, total
revenue, and profit. This is the time to
gain familiarity with these terms because
they recur throughout the book.

In the next example, we refer to some business terms relative to a manufactur-
ing firm. Fixed cost is the sum of all costs that are independent of the level of pro-
duction, such as rent, insurance, and so on. This cost must be paid whether or not
output is produced. Variable cost is the sum of all costs that are dependent on the
level of output, such as labor and material. Total cost is the sum of variable cost and
fixed cost:

total cost D variable costC fixed cost

Total revenue is the money that the manufacturer receives for selling the output:

total revenue D (price per unit) (number of units sold)

Profit is total revenue minus total cost:

profit D total revenue � total cost

EXAMPLE 3 Profit

The Acme Company produces a product for which the variable cost per unit is $6 and
fixed cost is $80,000. Each unit has a selling price of $10. Determine the number of
units that must be sold for the company to earn a profit of $60,000.

Solution: Let q be the number of units that must be sold. (In many business problems,
q represents quantity.) Then the variable cost (in dollars) is 6q. The total cost for the
business is therefore 6q C 80;000. The total revenue from the sale of q units is 10q.
Since

profit D total revenue � total cost

our model for this problem is

60;000 D 10q � .6qC 80;000/

Solving gives

60;000 D 10q � 6q � 80;000

4q D 140;000

q D 35;000

Thus, 35,000 units must be sold to earn a profit of $60,000.

Now Work Problem 9 G

Note that price D cost C profit.

EXAMPLE 4 Pricing

Sportcraft manufactures denim clothing and is planning to sell its new line of jeans to
retail outlets. The cost to the retailer will be $60 per pair of jeans. As a convenience
to the retailer, Sportcraft will attach a price tag to each pair. What amount should be
marked on the price tag so that the retailer can reduce this price by 20% during a sale
and still make a profit of 15% on the cost?

Solution: Here we use the fact that

selling price D cost per pairC profit per pair
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Let p be the tag price per pair, in dollars. During the sale, the retailer actually receives
p � 0:2p. This must equal the cost, $60, plus the profit, (0.15)(60). Hence,

selling price D costC profit

p � 0:2p D 60C .0:15/.60/

0:8p D 69

p D 86:25

Sportcraft should mark the price tag at $86.25.

Now Work Problem 13 G
EXAMPLE 5 Investment

A total of $10,000 was invested in two business ventures, A and B. At the end of the first
year, A and B yielded returns of 6% and 5 34%, respectively, on the original investments.
How was the original amount allocated if the total amount earned was $588.75?

Solution: Let x be the amount (in dollars) invested at 6%. Then 10;000 � x
was invested at 5 34%. The interest earned from A was (0.06).x/ and that from B was
.0:0575/.10;000 � x/ with a total of 588.75. Hence,

.0:06/xC .0:0575/.10;000 � x/ D 588:75

0:06xC 575 � 0:0575x D 588:75

0:0025x D 13:75

x D 5500

Thus, $5500 was invested at 6%, and $10; 000�$5500 D $4500 was invested at 5 34%.

Now Work Problem 11 G
EXAMPLE 6 Bond Redemption

The board of directors of Maven Corporation agrees to redeem some of its bonds in two
years. At that time, $1,102,500 will be required. Suppose the firm presently sets aside
$1,000,000. At what annual rate of interest, compounded annually, will this money
have to be invested in order that its future value be sufficient to redeem the bonds?

Solution: Let r be the required annual rate of interest. At the end of the first year, the
accumulated amount will be $1,000,000 plus the interest, 1,000,000r, for a total of

1;000;000C 1;000;000r D 1;000;000.1C r/

Under compound interest, at the end of the second year the accumulated amount will
be 1;000;000.1 C r/ plus the interest on this, which is 1;000;000.1 C r/r. Thus, the
total value at the end of the second year will be

1;0000;000.1C r/C 1;000;000.1C r/r

This must equal $1,102,500:

1;000;000.1C r/C 1;000;000.1C r/r D 1;102;500 (1)

Since 1,000,000.1C r/ is a common factor of both terms on the left side, we have

1;000;000.1C r/.1C r/ D 1;102;500

1;000;000.1C r/2 D 1;102;500

.1C r/2 D
1;102;500
1;000;000

D
11;025
10;000

D
441
400

1C r D ˙

r
441
400
D ˙

21
20

r D �1˙
21
20
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Thus, r D �1C .21=20/ D 0:05, or r D �1 � .21=20/ D �2:05. Although 0.05 and
�2:05 are roots of Equation (1), we reject �2:05 since we require that r be positive.
Hence, r D 0:05 D 5% is the desired rate.

Now Work Problem 15 G

At times there may be more than one way to model a word problem, as Example 7
shows.

EXAMPLE 7 Apartment Rent

A real estate firm owns the Parklane Garden Apartments, which consist of 96 apart-
ments. At $550 per month, every apartment can be rented. However, for each $25 per
month increase, there will be three vacancies with no possibility of filling them. The
firm wants to receive $54,600 per month from rents. What rent should be charged for
each apartment?

Solution:
Method I. Suppose r is the rent (in dollars) to be charged per apartment. Then the

increase over the $550 level is r� 550. Thus, the number of $25 increases is
r � 550
25

.

Because each $25 increase results in three vacancies, the total number of vacancies

will be 3
�
r � 550
25

�
. Hence, the total number of apartments rented will be

96 � 3
�
r � 550
25

�
. Since

total rent D (rent per apartment)(number of apartments rented)

we have

54;600 D r
�
96 �

3.r � 550/
25

�
54;600 D r

�
2400 � 3rC 1650

25

�
54;600 D r

�
4050 � 3r

25

�
1;365;000 D r.4050 � 3r/

Thus,
3r2 � 4050rC 1;365;000 D 0

By the quadratic formula,

r D
4050˙

p
.�4050/2 � 4.3/.1;365;000/

2.3/

D
4050˙

p
22;500

6
D

4050˙ 150
6

D 675˙ 25

Hence, the rent for each apartment should be either $650 or $700.

Method II. Suppose n is the number of $25 increases. Then the increase in rent per
apartment will be 25n and there will be 3n vacancies. Since

total rent D (rent per apartment)(number of apartments rented)

we have
54;600 D .550C 25n/.96 � 3n/

54;600 D 52;800C 750n � 75n2

75n2 � 750nC 1800 D 0

n2 � 10nC 24 D 0

.n � 6/.n � 4/ D 0
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Thus, n D 6 or n D 4. The rent charged should be either 550 C 25.6/ D $700 or
550 C 25.4/ D $650. However, it is easy to see that the real estate firm can receive
$54,675 per month from rents by charging $675 for each apartment and that $54,675 is
the maximum amount from rents that it can receive, given existing market conditions.
In a sense, the firm posed the wrong question. A considerable amount of our work in
this book focuses on a better question that the firm might have asked.

Now Work Problem 29 G

PROBLEMS 1.1
1. Fencing A fence is to be placed around a rectangular plot so
that the enclosed area is 800 ft2 and the length of the plot is twice
the width. How many feet of fencing must be used?

2. Geometry The perimeter of a rectangle is 300 ft, and the
length of the rectangle is 3 ft more than twice the width. Find the
dimensions of the rectangle.

3. Tent Caterpillars One of the most damaging defoliating
insects is the tent caterpillar, which feeds on foliage of shade,
forest, and fruit trees. A homeowner lives in an area in which the
tent caterpillar has become a problem. She wishes to spray the
trees on her property before more defoliation occurs. She needs
145 oz of a solution made up of 4 parts of insecticide A and 5
parts of insecticide B. The solution is then mixed with water. How
many ounces of each insecticide should be used?

4. Concrete Mix A builder makes a certain type of concrete by
mixing together 1 part Portland cement (made from lime and
clay), 3 parts sand, and 5 parts crushed stone (by volume). If
765 ft3 of concrete are needed, how many cubic feet of each
ingredient does he need?

5. Homemade Ice Cream Online recipes claim that you can
make no-churn ice cream using 7 parts of sweetened condensed
milk and 8 parts of cold, heavy whipping cream. How many
millilitres of whipping cream will you need to make 3 litres of
ice cream?

6. Forest Management A lumber company owns a forest that
is of rectangular shape, 1 mi by 2 mi. If the company cuts a
uniform strip of trees along the outer edges of this forest, how
wide should the strip be if 3

4 sq mi of forest is to remain?

7. Garden Pavement A 10-m-square plot is to have a circular
flower bed of 60 m2 centered in the square. The other part of the
plot is to be paved so that the owners can walk around the flower
bed. What is the minimum “width” of the paved surface? In other
words, what is the smallest distance from the flower bed to the
edge of the plot?

8. Ventilating Duct The diameter of a circular ventilating duct
is 140 mm. This duct is joined to a square duct system as shown
in Figure 1.3. To ensure smooth airflow, the areas of the circle and
square sections must be equal. To the nearest millimeter, what
should the length x of a side of the square section be?

140 mm

x

FIGURE 1.3 Ventilating duct (Problem 8).

9. Profit A corn refining company produces corn gluten
cattle feed at a variable cost of $82 per ton. If fixed costs are
$120,000 per month and the feed sells for $134 per ton, how
many tons must be sold each month for the company to have a
monthly profit of $560,000?

10. Sales The Pear-shaped Corporation would like to know the
total sales units that are required for the company to earn a profit
of $1,500,000. The following data are available: unit selling price
of $550, variable cost per unit of $250, total fixed cost of
$5,000,000. From these data, determine the required sales units.

11. Investment A person wishes to invest $20,000 in two
enterprises so that the total income per year will be $1440. One
enterprise pays 6% annually; the other has more risk and pays
7 12% annually. How much must be invested in each?

12. Investment A person invested $120,000, part at an interest
rate of 4% annually and the remainder at 5% annually. The total
interest at the end of 1 year was equivalent to an annual 4 12% rate
on the entire $120,000. How much was invested at each rate?

13. Pricing The cost of a product to a retailer is $3.40. If the
retailer wishes to make a profit of 20% on the selling price, at
what price should the product be sold?

14. Bond Retirement In three years, a company will require
$1,125,800 in order to retire some bonds. If the company now
invests $1,000,000 for this purpose, what annual rate of interest,
compounded annually, must it receive on that amount in order to
retire the bonds?

15. Expansion Program The Pear-shaped Corporation has
planned an expansion program in three years. It has decided to
invest $3,000,000 now so that in three years the total value of the
investment will exceed $3,750,000, the amount required for the
expansion. What is the annual rate of interest, compounded
annually, that Pear-shaped must receive to achieve its purpose?

16. Business A company finds that if it produces and sells q
units of a product, its total sales revenue in dollars is 100

p
q. If

the variable cost per unit is $2 and the fixed cost is $1200, find the
values of q for which

total sales revenue D variable costC fixed cost

(That is, profit is zero.)

17. Overbooking A commuter airplane has 81 seats. On the
average, 90% of those who book for a flight show up for it. How
many seats should the airline book for a flight if it wants to fill the
plane?
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18. Poll A group of people were polled, and 20%, or 700, of
them favored a new product over the best-selling brand. How
many people were polled?

19. Prison Guard Salary It was reported that in a certain
women’s jail, female prison guards, called matrons, received 30%
(or $200) a month less than their male counterparts, deputy
sheriffs. Find the yearly salary of a deputy sheriff. Give your
answer to the nearest dollar.

20. Striking Nurses A few years ago, licensed practical nurses
(LPNs) were on strike for 27 days. Before the strike, these nurses
earned $21.50 per hour and worked 260 eight-hour days a year.
What percentage increase is needed in yearly income to make up
for the lost time within one year?

21. Break Even A manufacturer of video games sells each
copy for $21.95. The manufacturing cost of each copy is $14.92.
Monthly fixed costs are $8500. During the first month of sales of
a new game, how many copies must be sold in order for the
manufacturer to break even (that is, in order that total revenue
equals total cost)?

22. Investment Club An investment club bought a bond
of an oil corporation for $5000. The bond yields 4% per year.
The club now wants to buy shares of stock in a windmill
supply company. The stock sells at $20 per share and earns a
dividend of $0.50 per share per year. How many shares should
the club buy so that its total investment in stocks and bonds
yields 3% per year?

23. Vision Care As a fringe benefit for its employees, a
company established a vision-care plan. Under this plan, each
year the company will pay the first $35 of an employee’s
vision-care expenses and 80% of all additional vision-care
expenses, up to a maximum total benefit payment of $100. For
an employee, find the total annual vision-care expenses covered
by this program.

24. Quality Control Over a period of time, the manufacturer
of a caramel-center candy bar found that 3.1% of the bars were
rejected for imperfections.
(a) If c candy bars are made in a year, how many would the
manufacturer expect to be rejected?
(b) This year, annual consumption of the candy is projected to be
600 million bars. Approximately how many bars will have to be
made if rejections are taken into consideration?

25. Business Suppose that consumers will purchase q units of a
product when the price is .60 � q/=$3 each. How many units
must be sold in order that sales revenue be $300?

26. Investment How long would it take to triple an investment
at simple interest with a rate of 4.5% per year? [Hint: See
Example 6(a) of Section 0.7, and express 4.5% as 0.045.]

27. Business Alternatives The band Mongeese tried to sell
its song Kobra Klub to a small label, Epsilon Records, for a
lump-sum payment of $50,000. After estimating that future sales
possibilities of Kobra Klub beyond one year are nonexistent,
Epsilon management is reviewing an alternative proposal to give
a lump-sum payment of $5000 to Mongeese plus a royalty of
$0.50 for each disc sold. How many units must be sold the first
year to make this alternative as economically attractive to the
band as their original request? [Hint: Determine when the
incomes under both proposals are the same.]

28. Parking Lot A company parking lot is 120 ft long and
80 ft wide. Due to an increase in personnel, it is decided to double
the area of the lot by adding strips of equal width to one end and
one side. Find the width of one such strip.

29. Rentals You are the chief financial advisor to a corporation
that owns an office complex consisting of 50 units. At $400 per
month, every unit can be rented. However, for each $20 per
month increase, there will be two vacancies with no possibility of
filling them. The corporation wants to receive a total of $20,240
per month from rents in the complex. You are asked to determine
the rent that should be charged for each unit. What is your reply?

30. Investment Six months ago, an investment company had a
$9,500,000 portfolio consisting of blue-chip and glamour stocks.
Since then, the value of the blue-chip investment increased by 1

8 ,
whereas the value of the glamour stocks decreased by 1

12 . The
current value of the portfolio is $10,700,000. What is the current
value of the blue-chip investment?

31. Revenue The monthly revenue of a certain company is
given by R D 800p � 7p2, where p is the price in dollars of the
product the company manufactures. At what price will the
revenue be $10,000 if the price must be greater than $50?

32. Price-Earnings Ratio The price-earnings ratio, P=E, of
a company is the ratio of the market value of one share of the
company’s outstanding common stock to the earnings per share.
If P=E increases by 15% and the earnings per share decrease by
10%, determine the percentage change in the market value per
share of the common stock.

33. Market Equilibrium When the price of a product is p
dollars each, suppose that a manufacturer will supply 2p � 10
units of the product to the market and that consumers will demand
to buy 200 � 3p units. At the value of p for which supply equals
demand, the market is said to be in equilibrium. Find this value
of p.

34. Market Equilibrium Repeat Problem 33 for the following
conditions: At a price of p dollars each, the supply is 2p2 � 3p and
the demand is 20 � p2.
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35. Security Fence For security reasons, a company will
enclose a rectangular area of 7762:5 m2 in the rear of its plant.
One side will be bounded by the building and the other three sides
by fencing. If the bounding side of the building is 130 m long and
250 m of fencing will be used, what will be the dimensions of the
rectangular area?

36. Package Design A company is designing a package for its
product. One part of the package is to be an open box made from
a square piece of aluminum by cutting out a 2-in. square from
each corner and folding up the sides. (See Figure 1.4.) The box is
to contain 50 in3. What are the dimensions of the square piece of
aluminum that must be used?

Fold

2 2

2 2

2 2

2 2

FIGURE 1.4 Box construction (Problem 36).

37. Product Design A candy company makes the popular
Henney’s, whose main ingredient is chocolate. The
rectangular-shaped bar is 10 centimeters (cm) long, 5 cm wide,
and 2 cm thick. The spot price of chocolate has decreased by
60%, and the company has decided to reward its loyal customers
with a 50% increase in the volume of the bar! The thickness will
remain the same, but the length and width will be increased by
equal amounts. What will be the length and width of the new bar?

38. Product Design A candy company makes a washer-shaped
candy (a candy with a hole in it); see Figure 1.5. Because of
increasing costs, the company will cut the volume of candy in
each piece by 22%. To do this, the firm will keep the same

7.1

2

FIGURE 1.5 Washer-shaped candy (Problem 38).

thickness and outer radius but will make the inner radius
larger. At present the thickness is 2.1 millimeters (mm), the
inner radius is 2 mm, and the outer radius is 7.1 mm. Find the
inner radius of the new-style candy. [Hint: The volume V of a
solid disc is �r2h, where r is the radius and h is the thickness of
the disc.]

39. Compensating Balance Compensating balance refers to
that practice wherein a bank requires a borrower to maintain on
deposit a certain portion of a loan during the term of the loan. For
example, if a firm takes out a $100,000 loan that requires a
compensating balance of 20%, it would have to leave $20,000 on
deposit and would have the use of $80,000. To meet the expenses
of retooling, the Barber Die Company needs $195,000. The Third
National Bank, with whom the firm has had no prior association,
requires a compensating balance of 16%. To the nearest thousand
dollars, what amount of loan is required to obtain the needed
funds? Now solve the general problem of determining the amount
L of a loan that is needed to handle expenses E if the bank
requires a compensating balance of p%.

40. Incentive Plan A machine company has an incentive
plan for its salespeople. For each machine that a salesperson sells,
the commission is $50. The commission for every machine sold
will increase by $0.05 for each machine sold over 500. For
example, the commission on each of 502 machines sold is $50.10.
How many machines must a salesperson sell in order to earn
$33,000?

41. Real Estate A land investment company purchased a
parcel of land for $7200. After having sold all but 20 acres at a
profit of $30 per acre over the original cost per acre, the
company regained the entire cost of the parcel. How many acres
were sold?

42. Margin of Profit The margin of profit of a company is
the net income divided by the total sales. A company’s margin
of profit increased by 0.02 from last year. Last year the
company sold its product at $3.00 each and had a net income of
$4500. This year it increased the price of its product by $0.50
each, sold 2000 more, and had a net income of $7140. The
company never has had a margin of profit greater than 0.15. How
many of its product were sold last year and how many were sold
this year?

43. Business A company manufactures products A and B. The
cost of producing each unit of A is $2 more than that of B. The
costs of production of A and B are $1500 and $1000, respectively,
and 25 more units of A are produced than of B. How many of each
are produced?
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Objective 1.2 Linear Inequalities
To solve linear inequalities in one
variable and to introduce interval
notation.

Suppose a and b are two points on the real-number line. Then either a and b coincide,
or a lies to the left of b, or a lies to the right of b. (See Figure 1.6.)

If a and b coincide, then a D b. If a lies to the left of b, we say that a is less than
b and write a < b, where the inequality symbol “<” is read “is less than.” On the other
hand, if a lies to the right of b, we say that a is greater than b, written a > b. The
statements a > b and b < a are equivalent. (If you have trouble keeping these symbols
straight, it may help to notice that < looks somewhat like the letter L for left and that
we have a < b precisely when a lies to the left of b.)

a = b

b

a

a 6 b, a is less than b
b 7 a, b is greater than a

a b

b a

a 7 b, a is greater than b
b 6 a, b is less than a

FIGURE 1.6 Relative positions of
two points.

Another inequality symbol “�” is read “is less than or equal to” and is defined as
follows: a � b if and only if a < b or a D b. Similarly, the symbol “�” is defined as
follows: a � b if and only if a > b or a D b. In this case, we say that a is greater than
or equal to b.

We often use the words real numbers and points interchangeably, since there is a
one-to-one correspondence between real numbers and points on a line. Thus, we can
speak of the points �5, �2, 0, 7, and 9 and can write 7 < 9, �2 > �5, 7 � 7, and
7 � 0. (See Figure 1.7.) Clearly, if a > 0, then a is positive; if a < 0, then a is negative.

-2-5 0 7 9

FIGURE 1.7 Points on a number line.

bx

a 6 x 6 b

a

FIGURE 1.8 a < x and x < b.

Suppose that a < b and x is between a and b. (See Figure 1.8.) Then not only is
a < x, but also, x < b. We indicate this by writing a < x < b. For example, 0 < 7 < 9.
(Refer back to Figure 1.7.)

Definition
An inequality is a statement that one quantity is less than, or greater than, or less
than or equal to, or greater than or equal to, another quantity.

Of course, we represent inequalities bymeans of inequality symbols. If two inequal-
ities have their inequality symbols pointing in the same direction, then the inequalities
are said to have the same sense. If not, they are said to be opposite in sense. Hence,
a < b and c < d have the same sense, but a < b has the opposite sense of c > d.

Solving an inequality, such as 2.x�3/ < 4, means finding all values of the variable
for which the inequality is true. This involves the application of certain rules, which we
now state.

Rules for Inequalities

1. If the same number is added to or subtracted from both sides of an inequality, then
another inequality results, having the same sense as the original inequality. Symboli-
cally,

If a < b; then aC c < bC c and a � c < b � c:

For example, 7 < 10 so 7C 3 < 10C 3.

Keep in mind that the rules also apply to
�; >, and �.

2. If both sides of an inequality are multiplied or divided by the same positive num-
ber, then another inequality results, having the same sense as the original inequality.
Symbolically,

If a < b and c > 0; then ac < bc and
a
c
<

b
c
:
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For example, 3 < 7 and 2 > 0 so 3.2/ < 7.2/ and 3
2 <

7
2 .

3. If both sides of an inequality are multiplied or divided by the same negative number,
then another inequality results, having the opposite sense of the original inequality.
Symbolically,

If a < b and c < 0; then ac > bc and
a
c
>

b
c
:

For example, 4 < 7 and �2 < 0, so 4.�2/ > 7.�2/ and 4
�2 >

7
�2 .

Multiplying or dividing an inequality by
a negative number gives an inequality of
the opposite sense. 4. Any side of an inequality can be replaced by an expression equal to it. Symbolically,

If a < b and a D c; then c < b:

For example, if x < 2 and x D yC 4, then yC 4 < 2.

5. If the sides of an inequality are either both positive or both negative and reciprocals
are taken on both sides, then another inequality results, having the opposite sense of
the original inequality. Symbolically,

If 0 < a < b or a < b < 0; then
1
a
>

1
b
:

For example, 2 < 4 so 1
2 >

1
4 and �4 < �2 so

1
�4 >

1
�2 .

6. If both sides of an inequality are positive and each side is raised to the same positive
power, then another inequality results, having the same sense as the original inequality.
Symbolically,

If 0 < a < b and n > 0; then an < bn:

For n a positive integer, this rule further provides

If 0 < a < b; then n
p
a < n
p
b:

For example, 4 < 9 so 42 < 92 and
p
4 <
p
9.

A pair of inequalities will be said to be equivalent inequalities if when either is
true then the other is true. When any of Rules 1–6 are applied to an inequality, it is easy
to show that the result is an equivalent inequality.

Expanding on the terminology in Section 0.1, a number a is positive if 0 < a and
negative if a < 0. It is often useful to say that a is nonnegative if 0 � a.

Observe from Rule 1 that a � b is equivalent to “b � a is nonnegative.” Another
simple observation is that a � b is equivalent to “there exists a nonnegative number s
such that aC s D b.” The s which does the job is just b� a but the idea is useful when
one side of a � b contains an unknown.

This idea allows us to replace an inequality with an equality—at the expense of
introducing a variable. In Chapter 7, the powerful simplex method builds on replace-
ment of inequalities a � b with equations aC s D b, for nonnegative s. In this context,
s is called a slack variable because it takes up the “slack” between a and b.

We will now apply Rules 1–4 to a linear inequality.

Definition
A linear inequality in the variable x is an inequality that can be written in the form

axC b < 0

where a and b are constants and a ¤ 0.
We should expect that the inequality will be true for some values of x and false

for others. To solve an inequality involving a variable is to find all values of the
variable for which the inequality is true.

The definition also applies to �, >,
and �.
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EXAMPLE 1 Solving a Linear InequalityAPPLY IT I
1. A salesman has a monthly income
given by I D 200 C 0:8S, where S
is the number of products sold in a
month. Howmany products must he sell
to make at least $4500 a month?

Solve 2.x � 3/ < 4.

Solution:

Strategy We will replace the given inequality by equivalent inequalities until the
solution is evident.

2.x � 3/ < 4

2x � 6 < 4 Rule 4

2x � 6C 6 < 4C 6 Rule 1

2x < 10 Rule 4
2x
2
<

10
2

Rule 2

x < 5 Rule 4

All of the foregoing inequalities are equivalent. Thus, the original inequality is
true for all real numbers x such that x < 5. For example, the inequality is true for
x D �10;�0:1; 0; 12 , and 4.9. We can write our solution simply as x < 5 and present it
geometrically by the colored half-line in Figure 1.9. The parenthesis indicates that 5 is
not included in the solution.

x 6 5

FIGURE 1.9 All real numbers less
than 5.

Now Work Problem 9 G

APPLY IT I
2. A zoo veterinarian can purchase
four different animal foods with vari-
ous nutrient values for the zoo’s grazing
animals. Let x1 represent the number of
bags of food 1, x2 represent the number
of bags of food 2, and so on. The num-
ber of bags of each food needed can be
described by the following equations:

x1 D 150 � x4

x2 D 3x4 � 210

x3 D x4 C 60

Assuming that each variable must be
nonnegative, write four inequalities
involving x4 that follow from these
equations.

In Example 1 the solution consisted of a set of numbers, namely, all real numbers
less than 5. It is common to use the term interval to describe such a set. In the case
of Example 1, the set of all x such that x < 5 can be denoted by the interval notation
.�1; 5/. The symbol �1 is not a number, but is merely a convenience for indicating
that the interval includes all numbers less than 5.

There are other types of intervals. For example, the set of all real numbers x for
which a � x � b is called a closed interval and includes the numbers a and b, which
are called endpoints of the interval. This interval is denoted by Œa; b� and is shown in
Figure 1.10(a). The square brackets indicate that a and b are included in the interval.
On the other hand, the set of all x for which a < x < b is called an open interval and
is denoted by .a; b/. The endpoints are not included in this set. [See Figure 1.10(b).]
Extending these concepts and notations, we have the intervals shown in Figure 1.11.
Just as �1 is not a number, so1 is not a number but .a;1/ is a convenient notation
for the set of all real numbers x for which a < x. Similarly, Œa;1/ denotes all real x for
which a � x. It is a natural extension of this notation to write .�1;1/ for the set of
all real numbers and we will do so throughout this book.

a

Closed interval [a, b]

(a)

b a

Open interval (a, b)

(b)

b

FIGURE 1.10 Closed and open intervals.

(a, b] a 6 x … b

a b

[a, b) a … x 6 b

a b

[a, q) x Ú a

a

(-q, a] x … a

a

(-q, a) x 6 a

a

(-q, q) -q 6 x 6 q

(a, q) x 7 a

a

FIGURE 1.11 Intervals.

EXAMPLE 2 Solving a Linear Inequality

Solve 3 � 2x � 6.

Solution: 3 � 2x � 6

�2x � 3 Rule 1

x � �
3
2

Rule 3

Dividing both sides by �2 reverses the
sense of the inequality.
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The solution is x � � 3
2 , or, in interval notation, Œ� 3

2 ;1/. This is represented

geometrically in Figure 1.12.
-

3

2

3

2
x Ú -

FIGURE 1.12 The interval Œ� 3
2 ;1/.

Now Work Problem 7 G

EXAMPLE 3 Solving a Linear Inequality

Solve 3
2 .s � 2/C 1 > �2.s � 4/.

20

7

20

7
s 7

FIGURE 1.13 The interval . 207 ;1/.

Solution:
3
2
.s � 2/C 1 > �2.s � 4/

2
�
3
2
.s � 2/C 1

�
> 2.�2.s � 4// Rule 2

3.s � 2/C 2 > �4.s � 4/

3s � 4 > �4sC 16

7s > 20 Rule 1

s >
20
7

Rule 2

The solution is . 207 ;1/; see Figure 1.13.

Now Work Problem 19 G

EXAMPLE 4 Solving Linear Inequalities

a. Solve 2.x � 4/ � 3 > 2x � 1.

Solution: 2.x � 4/ � 3 > 2x � 1

2x � 8 � 3 > 2x � 1

�11 > �1

Since it is never true that �11 > �1, there is no solution, and the solution set is ;
(the set with no elements).

b. Solve 2.x � 4/ � 3 < 2x � 1.

Solution: Proceeding as in part (a), we obtain �11 < �1. This is true for all real
numbers x, so the solution is .�1;1/; see Figure 1.14.

Now Work Problem 15 G

-q 6 x 6 q

FIGURE 1.14 The interval
.�1;1/.

PROBLEMS 1.2
In Problems 1–34, solve the inequalities. Give your answer in
interval notation, and indicate the answer geometrically on the
real-number line.

1. 3x > 21 2. 4x < �2

3. 5x � 11 � 9 4. 5x � 0

5. �4x � 2 6. 2zC 5 > 0

7. 5 � 7s > 3 8. 4s � 1 < �5

9. 3 < 2yC 3 10. 4 � 3 � 2y

11. tC 4 � 3C 2t 12. �3 � 8.2 � x/

13. 3.2 � 3x/ > 4.1 � 4x/ 14. 8.xC 1/C 1 < 3.2x/C 1

15. 2.4x � 2/ > 4.2xC 1/ 16. 7 � .xC 3/ � 3.3 � x/

17. xC 2 <
p
3 � x 18.

p
2.xC 2/ >

p
8.3 � x/

19.
5
6
x < 40 20. �

2
3
x > 6

21.
3yC 1
2
� 5y � 1 22.

3y � 2
3
�

1
4

23. �3xC 1 � �3.x � 2/C 1 24. 0x � 0

25.
1 � t
2

<
3t � 7
3

26.
3.2tC 2/

2
>

t � 3
4
C

t
3

27. 2xC 13 �
1
3
x � 7 28. 3x �

1
3
�

5
2
x

29.
2
3
r <

5
6
r 30.

7
4
t > �

8
3
t

31. 2yC
y
5
<

y
2
C

y
3 32. 9 � 0:1x �

2 � 0:01x
0:2
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33. 0:1.0:03xC 4/ � 0:02xC 0:434

34.
3y � 1
�3

<
5.yC 1/
�3

35. Savings Each month last year, Brittany saved more than
$50, but less than $150. If S represents her total savings for the
year, describe S by using inequalities.

36. Labor Using inequalities, symbolize the following
statement: The number of labor hours t to produce a product is at
least 5 and at most 6.

37. Geometry In a right triangle, one of the acute angles x is
less than 3 times the other acute angle plus 10 degrees. Solve
for x.

38. Spending A student has $360 to spend on a stereo system
and some compact discs. If she buys a stereo that costs $219 and
the discs cost $18.95 each, find the greatest number of discs she
can buy.

Objective 1.3 Applications of Inequalities
To model real-life situations in terms
of inequalities.

Solving word problems may sometimes involve inequalities, as the following examples
illustrate.

EXAMPLE 1 Profit

For a company that manufactures aquarium heaters, the combined cost for labor and
material is $21 per heater. Fixed costs (costs incurred in a given period, regardless of
output) are $70,000. If the selling price of a heater is $35, how many must be sold for
the company to earn a profit?

Solution:

Strategy Recall that

profit D total revenue � total cost

We will find total revenue and total cost and then determine when their difference
is positive.

Let q be the number of heaters that must be sold. Then their cost is 21q. The total
cost for the company is therefore 21q C 70;000. The total revenue from the sale of
q heaters will be 35q. Now,

profit D total revenue � total cost

and we want profit > 0. Thus,

total revenue � total cost > 0

35q � .21qC 70;000/ > 0

14q > 70;000

q > 5000

Since the number of heaters must be a nonnegative integer, we see that at least 5001
heaters must be sold for the company to earn a profit.

Now Work Problem 1 G

EXAMPLE 2 Renting versus Purchasing

A builder must decide whether to rent or buy an excavating machine. If he were to rent
the machine, the rental fee would be $3000 per month (on a yearly basis), and the daily
cost (gas, oil, and driver) would be $180 for each day the machine is used. If he were
to buy it, his fixed annual cost would be $20,000, and daily operating and maintenance
costs would be $230 for each day the machine is used. What is the least number of days
each year that the builder would have to use the machine to justify renting it rather than
buying it?
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Solution:

Strategy We will determine expressions for the annual cost of renting and the
annual cost of purchasing. We then find when the cost of renting is less than that of
purchasing.

Let d be the number of days each year that the machine is used. If the machine is
rented, the total yearly cost consists of rental fees, which are (12)(3000), and daily
charges of 180d. If the machine is purchased, the cost per year is 20;000 C 230d.
We want

costrent < costpurchase

12.3000/C 180d < 20;000C 230d

36;000C 180d < 20;000C 230d

16;000 < 50d

320 < d

Thus, the builder must use the machine at least 321 days to justify renting it.

Now Work Problem 3 G

EXAMPLE 3 Current Ratio

The current ratio of a business is the ratio of its current assets (such as cash, merchan-
dise inventory, and accounts receivable) to its current liabilities (such as short-term
loans and taxes payable).

After consulting with the comptroller, the president of the Ace Sports Equipment
Company decides to take out a short-term loan to build up inventory. The company
has current assets of $350,000 and current liabilities of $80,000. How much can the
company borrow if the current ratio is to be no less than 2.5? (Note: The funds received
are considered as current assets and the loan as a current liability.)

Solution: Let x denote the amount the company can borrow. Then current assets will
be 350;000C x, and current liabilities will be 80;000C x. Thus,

current ratio D
current assets

current liabilities
D

350;000C x
80;000C x

We want
350;000C x
80;000C x

� 2:5

Since x is positive, so is 80;000C x. Hence, we canmultiply both sides of the inequality
by 80;000C x and the sense of the inequality will remain the same. We have

350;000C x � 2:5.80;000C x/

150;000 � 1:5x

100;000 � x

Consequently, the company may borrow as much as $100,000 and still maintain a cur-
rent ratio greater than or equal to 2.5.

Now Work Problem 8 G

Although the inequality that must be
solved is not apparently linear, it is
equivalent to a linear inequality.

EXAMPLE 4 Crime Statistics

In the television show The Wire, the detectives declared a homicide to be cleared
if the case was solved. If the number of homicides in a month was H > 0 and C
were cleared then the clearance rate was defined to be C=H. The section boss, Rawls,
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fearing a smaller clearance rate, is angered when McNulty adds 14 new homicides to
the responsibility of his section. However, the 14 cases are related to each other, so
solving one case will solve them all. If all 14 new cases are solved, will the clearance
rate change, and if so will it be for the better or worse?

Solution: The question amounts to asking about the relative size of the fractions
C
H

and
CC 14
HC 14

. For nonnegative numbers a and c and positive numbers b, and d, we have

a
b
<

c
d

if and only if ad < bc

We have 0 < H and 0 � C � H. If C D H, a perfect clearance rate, then C C 14 D
H C 14 and the clearance rate is still perfect when 14 new cases are both added and
solved.

But if C < H then 14C < 14H and CH C 14C < CH C 14H shows that
C.HC 14/ < H.CC 14/ and hence

C
H
<

CC 14
HC 14

giving a better clearance rate when 14 new cases are both added and solved.

Now Work Problem 13 G

Of course there is nothing special about the positive number 14 in the last example.
Try to formulate a general rule that will apply to Example 4.

PROBLEMS 1.3
1. Profit The Davis Company manufactures a product
that has a unit selling price of $20 and a unit cost of $15. If fixed
costs are $600,000, determine the least number of units that must
be sold for the company to have a profit.

2. Profit To produce 1 unit of a new product, a company
determines that the cost for material is $1.50 and the cost of
labor is $5. The fixed cost, regardless of sales volume, is $7000.
If the cost to a wholesaler is $8.20 per unit, determine the least
number of units that must be sold by the company to realize a
profit.

3. Leasing versus Purchasing A businesswoman wants to
determine the difference between the costs of owning and leasing
an automobile. She can lease a car for $420 per month (on an
annual basis). Under this plan, the cost per mile (gas and oil) is
$0.06. If she were to purchase the car, the fixed annual expense
would be $4700, and other costs would amount to $0.08 per
mile. What is the least number of miles she would have to
drive per year to make leasing no more expensive than
purchasing?

4. Shirt Manufacturer A T-shirt manufacturer produces N
shirts at a total labor cost (in dollars) of 1.3N and a total material
cost of 0.4N. The fixed cost for the plant is $6500. If each shirt
sells for $3.50, how many must be sold by the company to realize
a profit?

5. Publishing The cost of publication of each copy of a
magazine is $1.30. It is sold to dealers for $1.50 per copy.
The amount received for advertising is 20% of the amount

received for all magazines sold beyond 100,000. Find the
least number of magazines that can be published profitably,
if 80% of the issues published are sold.

6. Production Allocation A company produces alarm clocks.
During the regular workweek, the labor cost for producing one
clock is $2.00. However, if a clock is produced on overtime, the
labor cost is $3.00. Management has decided to spend no more
than a total of $25,000 per week for labor. The company must
produce 11,000 clocks this week. What is the minimum number
of clocks that must be produced during the regular workweek?

7. Investment A company invests a total of $70,000 of surplus
funds at two annual rates of interest: 5% and 6 14%. The company
wants an annual yield of no less than 5 12%. What is the
least amount of money that the company must invest at the
6 14% rate?

8. Current Ratio The current ratio of Precision Machine
Products is 3.8. If the firm’s current assets are $570,000, what
are its current liabilities? To raise additional funds, what is the
maximum amount the company can borrow on a short-term basis
if the current ratio is to be no less than 2.6? (See Example 3 for an
explanation of current ratio.)

9. Sales Allocation At present, a manufacturer has 2500 units
of product in stock. The product is now selling at $4 per
unit. Next month the unit price will increase by $0.50. The
manufacturer wants the total revenue received from the sale of the
2500 units to be no less than $10,750. What is the maximum
number of units that can be sold this month?

10. Revenue Suppose consumers will purchase q units of a

product at a price of 200q C 3 dollars per unit. What is the

minimum number of units that must be sold in order that sales
revenue be greater than $9000?
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11. Hourly Rate Painters are often paid either by the hour or
on a per-job basis. The rate they receive can affect their working
speed. For example, suppose they can work either for $9.00 per
hour or for $320 plus $3 for each hour less than 40 if they
complete the job in less than 40 hours. Suppose the job will take
t hours. If t � 40, clearly the hourly rate is better. If t < 40, for
what values of t is the hourly rate the better pay scale?

12. Compensation Suppose a company offers you a sales
position with your choice of two methods of determining your

yearly salary. One method pays $50,000 plus a bonus of 2% of
your yearly sales. The other method pays a straight 4%
commission on your sales. For what yearly sales amount is it
better to choose the second method?

13. Fractions If a, b, and c are positive numbers, investigate the

value of
aC c
bC c

when c is taken to be a very large number.

14. Acid Test Ratio The acid test ratio (or quick ratio)
of a business is the ratio of its liquid assets—cash and securities
plus accounts receivable—to its current liabilities. The minimum
acid test ratio for a financially healthy company is around 1.0, but
the standard varies somewhat from industry to industry. If a
company has $450,000 in cash and securities and has $398,000
in current liabilities, how much does it need to be carrying as
accounts receivable in order to keep its acid test ratio at or
above 1.3?

Objective 1.4 Absolute Value
To solve equations and inequalities
involving absolute values. Absolute-Value Equations

On the real-number line, the distance of a number x from 0 is called the absolute value
of x and is denoted by jxj. For example, j5j D 5 and j�5j D 5 because both 5 and �5
are 5 units from 0. (See Figure 1.15.) Similarly, j0j D 0. Notice that jxj can never be
negative; that is, jxj � 0.

-5 0 5

5 units 5 units

5 = = 5-5

FIGURE 1.15 Absolute value.

If x is positive or zero, then jxj is simply x itself, so we can omit the vertical bars
and write jxj D x. On the other hand, consider the absolute value of a negative number,
like x D �5.

jxj D j�5j D 5 D �.�5/ D �x

Thus, if x is negative, then jxj is the positive number �x. The minus sign indicates
that we have changed the sign of x. The geometric definition of absolute value as a
distance is equivalent to the following:

Definition
The absolute value of a real number x, written jxj, is defined by

jxj D
�

x if x � 0
�x if x < 0

Observe that j�xj D jxj follows from the definition.
Applying the definition, we have j3j D 3; j�8j D �.�8/ D 8, and j 12 j D

1
2 .

Also, �j2j D �2 and �j�2j D �2.

p
x2 is not necessarily x but

p
x2 D jxj.

For example,
p
.�2/2 D j�2j D 2, not

�2.

Also, j�xj is not necessarily x and, thus, j�x � 1j is not necessarily xC 1.
For example, if we let x D �3, then j�.�3/j ¤ �3, and

j�.�3/ � 1j ¤ �3C 1
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EXAMPLE 1 Solving Absolute-Value Equations

a. Solve jx � 3j D 2.

Solution: This equation states that x� 3 is a number 2 units from 0. Thus, either

x � 3 D 2 or x � 3 D �2

Solving these equations gives x D 5 or x D 1. See Figure 1.16.

b. Solve j7 � 3xj D 5.

Solution: The equation is true if 7 � 3x D 5 or if 7 � 3x D �5. Solving these
equations gives x D 2

3 or x D 4.

c. Solve jx � 4j D �3.

Solution: The absolute value of a number is never negative, so the solution set
is ;.

Now Work Problem 19 G

1 3 5

x x

2 units 2 units

FIGURE 1.16 The solution of
jx � 3j D 2 is 1 or 5.

We can interpret ja � bj D j�.b � a/j D jb � aj as the distance between a and b.
For example, the distance between 5 and 9 can be calculated via

either j9 � 5j D j4j D 4
or j5 � 9j D j�4j D 4

Similarly, the equation jx � 3j D 2 states that the distance between x and 3 is
2 units. Thus, x can be 1 or 5, as shown in Example 1(a) and Figure 1.17.

Absolute-Value Inequalities
Let us turn now to inequalities involving absolute values. If jxj < 3, then x is less than
3 units from 0. Hence, xmust lie between�3 and 3; that is, on the interval�3 < x < 3.
[See Figure 1.17(a).] On the other hand, if jxj > 3, then x must be greater than 3 units
from 0. Hence, there are two intervals in the solution: Either x < �3 or x > 3. [See
Figure 1.17(b).] We can extend these ideas as follows: If jxj � 3, then �3 � x � 3;
if jxj � 3, then x � �3 or x � 3. Table 1.1 gives a summary of the solutions to
absolute-value inequalities.

-3 6 x 6 3

0

x 6 -3 x 7 3

0

(b)  Solution of   x  7 3

(a)  Solution of   x  6 3

3-3

3-3

FIGURE 1.17 Solutions of jxj < 3
and jxj > 3.

Table 1.1

Inequality (d > 0) Solution

jxj < d �d < x < d

jxj � d �d � x � d

jxj > d x < �d or x > d

jxj � d x � �d or x � d

EXAMPLE 2 Solving Absolute-Value Inequalities

a. Solve jx � 2j < 4.

Solution: The number x� 2 must be less than 4 units from 0. From the preceding
discussion, this means that �4 < x � 2 < 4. We can set up the procedure for
solving this inequality as follows:

�4 < x � 2 < 4

�4C 2 < x < 4C 2 adding 2 to each member

�2 < x < 6

Thus, the solution is the open interval .�2; 6/. Thismeans that all numbers between
�2 and 6 satisfy the original inequality. (See Figure 1.18.)

-2 6 x 6 6

6-2

FIGURE 1.18 The solution of
jx � 2j < 4 is the interval .�2; 6/.
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b. Solve j3 � 2xj � 5.

Solution: �5 � 3 � 2x � 5
�5 � 3 � �2x � 5 � 3 subtracting 3 throughout
�8 � �2x � 2
4 � x � �1 dividing throughout by �2
�1 � x � 4 rewriting

Note that the sense of the original inequality was reversed when we divided by a
negative number. The solution is the closed interval Œ�1; 4�.

Now Work Problem 29 G

EXAMPLE 3 Solving Absolute-Value Inequalities

a. Solve jxC 5j � 7.

Solution: Here xC 5 must be at least 7 units from 0. Thus, either xC 5 � �7 or
xC 5 � 7. This means that either x � �12 or x � 2. Thus, the solution consists of
two intervals: .�1;�12� and Œ2;1/. We can abbreviate this collection of numbers
by writing

.�1;�12� [ Œ2;1/-12 2

x Ú 2x … -12 or

FIGURE 1.19 The union
.�1;�12� [ Œ2;1/.

where the connecting symbol [ is called the union symbol. (See Figure 1.19.)
More formally, the union of sets A and B is the set consisting of all elements that
are in either A or B (or in both A and B).

b. Solve j3x � 4j > 1.

Solution: Either 3x � 4 < �1 or 3x � 4 > 1. Thus, either 3x < 3 or 3x > 5.
Therefore, x < 1 or x > 5

3 , so the solution consists of all numbers in the set
.�1; 1/ [ . 53 ;1/.

The inequalities x � �12 or x � 2 in (a)
and x < 1 or x > 5

3 in (b) do not give
rise to a single interval as in Examples 2a
and 2b.

Now Work Problem 31 G

APPLY IT I
3. Express the following statement
using absolute-value notation: The
actual weight w of a box of cereal must
be within 0.3 oz of the weight stated on
the box, which is 22 oz.

EXAMPLE 4 Absolute-Value Notation

Using absolute-value notation, express the following statements:

a. x is less than 3 units from 5.

Solution: jx � 5j < 3

b. x differs from 6 by at least 7.

Solution: jx � 6j � 7

c. x < 3 and x > �3 simultaneously.

Solution: jxj < 3

d. x is more than 1 unit from �2.

Solution: jx � .�2/j > 1

jxC 2j > 1

e. x is less than � (a Greek letter read “sigma”) units from � (a Greek letter read
“mu”).

Solution: jx � �j < �

f. x is within � (a Greek letter read “epsilon”) units from a.

Solution: jx � aj < �

Now Work Problem 11 G
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Properties of the Absolute Value
Five basic properties of the absolute value are as follows:

1. jabj D jaj � jbj

2.
ˇ̌̌a
b

ˇ̌̌
D
jaj
jbj

3. ja � bj D jb � aj

4. �jaj � a � jaj

5. jaC bj � jaj C jbj

For example, Property 1 states that the absolute value of the product of two numbers
is equal to the product of the absolute values of the numbers. Property 5 is known as
the triangle inequality.

EXAMPLE 5 Properties of Absolute Value

a. j.�7/ � 3j D j�7j � j3j D 21

b. j4 � 2j D j2 � 4j D 2

c. j7 � xj D jx � 7j

d.

ˇ̌̌̌
�7
3

ˇ̌̌̌
D
j�7j
j3j
D

7
3
I

ˇ̌̌̌
�7
�3

ˇ̌̌̌
D
j�7j
j�3j

D
7
3

e.

ˇ̌̌̌
x � 3
�5

ˇ̌̌̌
D
jx � 3j
j�5j

D
jx � 3j
5

f. �j2j � 2 � j2j

g. j.�2/C 3j D j1j D 1 � 5 D 2C 3 D j�2j C j3j

Now Work Problem 5 G

PROBLEMS 1.4
In Problems 1–10, evaluate the absolute value expression.

1. j�13j 2. j2�1j 3. j3 � 5j

4. j.�3 � 5/=2j 5. j2.� 7
2 /j 6. j3 � 5j � j5 � 3j

7. jxj < 4 8. jxj < �1 9. j3 �
p
10j

10. j
p
5 � 2j

11. Using the absolute-value symbol, express each fact.
(a) x is less than 3 units from 7.
(b) x differs from 2 by less than 3.
(c) x is no more than 5 units from 7.
(d) The distance between 7 and x is 4.
(e) xC 4 is less than 2 units from 0.
(f) x is between �3 and 3, but is not equal to 3 or �3.
(g) x < �6 or x > 6.
(h) The number x of hours that a machine will operate efficiently
differs from 105 by less than 3.
(i) The average monthly income x (in dollars) of a family differs
from 850 by less than 100.
12. Use absolute-value notation to indicate that f.x/ and L differ
by less than �.

13. Use absolute-value notation to indicate that the prices p1 and
p2 of two products differ by at least 5 dollars.

14. Find all values of x such that jx � �j < 3� .

In Problems 15–36, solve the given equation or inequality.

15. jxj D 7 16. j�xj D 2 17.
ˇ̌̌ x
5

ˇ̌̌
D 7

18.

ˇ̌̌̌
3
x

ˇ̌̌̌
D 7 19. jx � 5j D 9 20. j4C 3xj D 6

21. j5x � 2j D 0 22. j7xC 3j D x 23. j3 � 5xj D 2

24. j5 � 3xj D 7 25. jxj < M for M > 0

26. j�xj < 3 27.
ˇ̌̌ x
4

ˇ̌̌
> 2 28.

ˇ̌̌ x
2

ˇ̌̌
>

1
3

29. jxC 7j < 3 30. j2x � 17j < �4 31.

ˇ̌̌̌
x �

1
2

ˇ̌̌̌
>

1
2

32. j1 � 3xj > 2 33. j3 � 2xj � 2 34. j3x � 2j � 0

35.

ˇ̌̌̌
3x � 8
2

ˇ̌̌̌
� 4 36.

ˇ̌̌̌
x � 7
3

ˇ̌̌̌
� 5

In Problems 37–38, express the statement using absolute-value
notation.

37. In a science experiment, the measurement of a distance d is
35.2 m, and is accurate to˙20 cm.
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38. The difference in temperature between two chemicals that are
to be mixed must be at least 5 degrees and at most 10 degrees.

39. Statistics In statistical analysis, the Chebyshev inequality
asserts that if x is a random variable, � is its mean, and � is its
standard deviation, then

.probability that jx � �j > h�/ �
1
h2

Find those values of x such that jx � �j > h� .

40. Manufacturing Tolerance In the manufacture of widgets,
the average dimension of a part is 0.01 cm. Using the
absolute-value symbol, express the fact that an individual
measurement x of a part does not differ from the average by more
than 0.005 cm.

Objective 1.5 Summation Notation
To write sums in summation notation
and evaluate such sums.

There was a time when school teachers made their students add up all the positive
integers from 1 to 105 (say), perhaps as punishment for unruly behavior while the
teacher was out of the classroom. In other words, the students were to find

1C 2C 3C 4C 5C 6C 7C � � � C 104C 105 (1)

A related exercise was to find

1C 4C 9C 16C � � � C 81C 100C 121 (2)

The three dots notation is supposed to convey the idea of continuing the task, using
the same pattern, until the last explicitly given terms have been added, too. With this
notation there are no hard and fast rules about how many terms at the beginning and
end are to be given explicitly. The custom is to provide as many as are needed to ensure
that the intended reader will find the expression unambiguous. This is too imprecise
for many mathematical applications.

Suppose that for any positive integer i we define ai D i2. Then, for example,
a6 D 36 and a8 D 64. The instruction, “Add together the numbers ai, for i taking
on the integer values 1 through 11 inclusive” is a precise statement of Equation (2).
It would be precise regardless of the formula defining the values ai, and this leads to
the following:

Definition
If, for each positive integer i there is given a unique number ai, and m and n are
positive integers with m � n, then the sum of the numbers ai; with i successively
taking on all the integer values in the interval Œm; n�, is denoted

nX
iDm

ai

Thus,
nX

iDm

ai D am C amC1 C amC2 C � � � C an (3)

The
X

is theGreek capital letter read “sigma”, fromwhichwe get the letter S. It stands

The
X

-notation on the left side of (3)
eliminates the imprecise dots on the right.

for “sum” and the expression
Xn

iDm
ai, can be read as the the sum of all numbers ai,

i ranging from m to n (through positive integers being understood). The description of
ai may be very simple. For example, in Equation (1) we have ai D i and

105X
iD1

i D 1C 2C 3C � � � C 105 (4)

while Equation (2) is
11X
iD1

i2 D 1C 4C 9C � � � C 121 (5)
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We have merely defined a notation, which is called summation notation. In Equa-
tion (3), i is the index of summation andm and n are called the bounds of summation.
It is important to understand from the outset that the name of the index of summation
can be replaced by any other so that we have

nX
iDm

ai D
nX

jDm

aj D
nX

˛Dm

a˛ D

nX
NDm

aN

for example. In each case, replacing the index of summation by the positive integers m
through n successively, and adding gives

am C amC1 C amC2 C � � � C an

We now illustrate with some concrete examples.

EXAMPLE 1 Evaluating Sums

Evaluate the given sums.

a.
7X

nD3

.5n � 2/

Solution:
7X

nD3

.5n � 2/ D Œ5.3/ � 2�C Œ5.4/ � 2�C Œ5.5/ � 2�C Œ5.6/ � 2�C Œ5.7/ � 2�

D 13C 18C 23C 28C 33

D 115

b.
6X

jD1

. j2 C 1/

Solution:
6X

jD1

. j2 C 1/ D .12 C 1/C .22 C 1/C .32 C 1/C .42 C 1/C .52 C 1/C .62 C 1/

D 2C 5C 10C 17C 26C 37

D 97

Now Work Problem 5 G

EXAMPLE 2 Writing a Sum Using Summation Notation

Write the sum 14C 16C 18C 20C 22C � � � C 100 in summation notation.

Solution: There aremanyways to express this sum in summation notation. Onemethod
is to notice that the values being added are 2n, for n D 7 to 50. The sum can thus be
written as

50X
nD7

2n

Another method is to notice that the values being added are 2kC 12, for k D 1 to 44.
The sum can thus also be written as

44X
kD1

.2kC 12/

Now Work Problem 9 G
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Since summation notation is used to express the addition of terms, we can use
the properties of addition when performing operations on sums written in summation
notation. By applying these properties, we can create a list of properties and formulas
for summation notation.

By the distributive property of addition,

ca1 C ca2 C � � � C can D c.a1 C a2 C � � � C an/

So, in summation notation,
nX

iDm

cai D c
nX

iDm

ai (6)

Note that c must be constant with respect to i for Equation (6) to be used.
By the commutative property of addition,

a1 C b1 C a2 C b2 C � � � C an C bn D a1 C a2 C � � � C an C b1 C b2 C � � � C bn

So we have
nX

iDm

.ai C bi/ D
nX

iDm

ai C
nX

iDm

bi (7)

Sometimes we want to change the bounds of summation.

nX
iDm

ai D
pCn�mX
iDp

aiCm�p (8)

A sum of 37 terms can be regarded as the sum of the first 17 terms plus the sum of the
next 20 terms. The next rule generalizes this observation.

p�1X
iDm

ai C
nX

iDp

ai D
nX

iDm

ai (9)

In addition to these four basic rules, there are some other rules worth noting.
nX

iD1

1 D n (10)

This is because
Pn

iD1 1 is a sum of n terms, each of which is 1. The next follows from
combining Equation (6) and Equation (10).

nX
iD1

c D cn (11)

Similarly, from Equations (6) and (7) we have
nX

iDm

.ai � bi/ D
nX

iDm

ai �
nX

iDm

bi (12)

Formulas (14) and (15) are best established by a proof method called mathematical
induction, which we will not demonstrate here.

nX
iD1

i D
n.nC 1/

2
(13)

nX
iD1

i2 D
n.nC 1/.2nC 1/

6
(14)

nX
iD1

i3 D
n2.nC 1/2

4
(15)
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However, there is an easy derivation of Formula (13). If we add the following equations,
“vertically,” term by term,

nX
iD1

i D 1C 2C 3C � � � C n

nX
iD1

i D nC .n � 1/C .n � 2/C � � � C 1

we get

2
nX

iD1

i D .nC 1/C .nC 1/C .nC 1/C � � � C .nC 1/

and since there are n terms on the right, we have

2
nX

iD1

i D n.nC 1/

and, finally
nX

iD1

i D
n.nC 1/

2

Observe that if a teacher assigns the task of finding

1C 2C 3C 4C 5C 6C 7C � � � C 104C 105

as a punishment and if he or she knows the formula given by Formula (13), then a
student’s work can be checked quickly by

105X
iD1

i D
105.106/

2
D 105 � 53 D 5300C 265 D 5565

EXAMPLE 3 Applying the Properties of Summation Notation

Evaluate the given sums.

a.
100X
jD30

4 b.
100X
kD1

.5kC 3/ c.
200X
kD1

9k2

Solution:

a. 100X
jD30

4 D
71X
jD1

4 by Equation (8)

D 4 � 71 by Equation (11)

D 284

b. 100X
kD1

.5kC 3/ D
100X
kD1

5kC
100X
kD1

3 by Equation (7)

D 5

 
100X
kD1

k

!
C 3

 
100X
kD1

1

!
by Equation (6)

D 5
�
100 � 101

2

�
C 3.100/ by Equations (13) and (10)

D 25;250C 300

D 25;550
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c. 200X
kD1

9k2 D 9
200X
kD1

k2 by Equation (6)

D 9
�
200 � 201 � 401

6

�
by Equation (14)

D 24;180;300

Now Work Problem 19 G

PROBLEMS 1.5
In Problems 1 and 2, give the bounds of summation and the index
of summation for each expression.

1.
17X

tD12

.8t2 � 5tC 3/ 2.
450X
mD3

.8m � 4/

In Problems 3–6, evaluate the given sums.

3.
5X

iD1

3i 4.
3X

qD0

7q

5.
9X

kD3

.10kC 16/ 6.
11X

nD7

.2n � 3/

In Problems 7–12, express the given sums in summation notation.

7. 36C 37C 38C 39C � � � C 60

8. 1C 8C 27C 64C 125

9. 32 C 33 C 34 C 35 C 36

10. 11C 15C 19C 23C � � � C 71

11. 2C 4C 8C 16C 32C 64C 128C 256

12. 10C 100C 1000C � � � C 100;000;000

In Problems 13–26, evaluate the given sums.

13.
875X
kD1

10 14.
875X
kD1

10

15.
nX

kD1

�
5 �

1
n

�
16.

200X
kD1

.k � 100/

17.
100X

kD51

10k 18.
nX

kD1

n
nC 1

k3

19.
20X
iD1

.3i2 C 2i/ 20.
100X
kD1

3k2 � 200k
101

21.
100X

kD51

k2 22.
50X

kD1

.kC 50/2

23.
9X

kD1

  
3 �

�
k
10

�2
!�

1
10

�!

24.
100X
jD1

  
3 �

�
1
100

j
�2
!�

1
50

�!

25.
nX

kD1

  
5 �

�
3
n
� k
�2
!
3
n

!

26.
nX

kD1

k2

.nC 1/.2nC 1/

Objective 1.6 Sequences
To introduce sequences, particularly
arithmetic and geometric sequences,
and their sums.

Introduction
Consider the following list of five numbers:

2; 2C
p
3; 2C 2

p
3; 2C 3

p
3; 2C 4

p
3 (1)

If it is understood that the ordering of the numbers is to be taken into account, then
such a list is called a sequence of length 5 and it is considered to be different from

2; 2C 3
p
3; 2C

p
3; 2C 4

p
3; 2C 2

p
3 (2)

which is also a sequence of length 5. Both of these sequences are different again from

2; 2; 2C
p
3; 2C 2

p
3; 2C 3

p
3; 2C 4

p
3 (3)

which is a sequence of length 6. However, each of the sequences (1), (2), and (3) takes

Both rearrangements and repetitions do
affect a sequence.

on all the numbers in the 5-element set

f2; 2C
p
3; 2C 2

p
3; 2C 3

p
3; 2C 4

p
3g
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In Section 0.1 we emphasized that “a set is determined by its elements, and neither
repetitions nor rearrangements in a listing affect the set”. Since both repetitions and
rearrangements do affect a sequence, it follows that sequences are not the same as sets.

We will also consider listings such as

2; 2C
p
3; 2C 2

p
3; 2C 3

p
3; 2C 4

p
3; � � � ; 2C k

p
3; � � � (4)

and

1; �1; 1; �1; 1; � � � ; .�1/kC1; � � � (5)

Both are examples of what is called an infinite sequence. However, note that the
infinite sequence (4) involves the infinitely many different numbers in the set

f2C k
p
3jk a nonnegative integerg

while the infinite sequence (5) involves only the numbers in the finite set

f�1; 1g

For n a positive integer, taking the first n numbers of an infinite sequence results
in a sequence of length n. For example, taking the first five numbers of the infinite
sequence (4) gives the sequence (1). The following more formal definitions are helpful
in understanding the somewhat subtle idea of a sequence.

Definition
For n a positive integer, a sequence of length n is a rule that assigns to each element
of the set f1; 2; 3; � � � ; ng exactly one real number. The set f1; 2; 3; � � � ; ng is called
the domain of the sequence of length n. A finite sequence is a sequence of length
n for some positive integer n.

Definition
An infinite sequence is a rule which assigns to each element of the set of all posi-
tive integers f1; 2; 3; � � �g exactly one real number. The set f1; 2; 3; � � �g is called the
domain of the infinite sequence.

The word rule in both definitions may appear vague but the point is that for any
sequence there must be a definite way of specifying exactly one number for each of the
elements in its domain. For a finite sequence the rule can be given by simply listing the
numbers in the sequence. There is no requirement that there be a discernible pattern
(although in practice there often is). For example,

99; ��;
3
5
; 102:7

is a perfectly good sequence of length 4. For an infinite sequence there should be some
sort of procedure for generating its numbers, one after the other. However, the proce-
dure may fail to be given by a simple formula. The infinite sequence

2; 3; 5; 7; 11; 13; 17; 19; 23; � � �

is very important in number theory, but its rule is not given by a mere formula. (What
is apparently the rule that gives rise to this sequence? In that event, what is the next
number in this sequence after those displayed?)

We often use letters like a, b, c, and so on, for the names of sequences. If the
sequence is called a, we write a1 for the number assigned to 1, a2 for the number
assigned to 2, a3 for the number assigned to 3, and so on. In general, for k in the domain
of the sequence, we write ak for the number assigned to k and call it the kth term of the
sequence. (If you have studied Section 1.5 on summation, you will already be familiar
with this notation.) In fact, rather than listing all the numbers of a sequence by

a1; a2; a3; : : : ; an
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or an indication of all the numbers such as

a1; a2; a3; : : : ; ak; : : :

a sequence is often denoted by .ak/. Sometimes .ak/nkD1 is used to indicate that the
sequence is finite, of length n, or .ak/1kD1 is used to emphasize that the sequence is
infinite. The range of a sequence .ak/ is the set

fakjk is in the domain of ag

Notice that

f.�1/kC1
jk is a positive integerg D f�1; 1g

so an infinite sequence may have a finite range. If a and b are sequences, then, by
definition, a D b if and only if a and b have the same domain and, for all k in the
common domain, ak D bk.

APPLY IT I
4. A fast-food chain had 1012 restau-
rants in 2015. Starting in 2016 it plans to
expand its number of outlets by 27 each
year for six years. Writing rk for the
number of restaurants in year k, mea-
sured from 2014, list the terms in the
sequence .rk/7kD1.

EXAMPLE 1 Listing the Terms in a Sequence

a. List the first four terms of the infinite sequence .ak/1kD1 whose kth term is given by
ak D 2k2 C 3kC 1.
Solution: We have a1 D 2.12/ C 3.1/ C 1 D 6, a2 D 2.22/ C 3.2/ C 1 D 15,
a3 D 2.32/C 3.3/C 1 D 28, and a4 D 2.42/C 3.4/C 1 D 45. So the first four
terms are

6; 15; 28; 45

b. List the first four terms of the infinite sequence .ek/, where ek D
�
kC 1
k

�k

.

Solution: We have e1 D
�
1C 1
1

�1

D

�
2
1

�1

D 2, e2 D
�
2C 1
2

�2

D

�
3
2

�2

D

9
4
, e3 D

�
3C 1
3

�3

D

�
4
3

�3

D
64
27
, e4 D

�
4C 1
4

�4

D

�
5
4

�4

D
625
256

.

c. Display the sequence
�

3
2k�1

�6

kD1
.

Solution: Noting that 20 D 1, we have

3;
3
2
;
3
4
;
3
8
;

3
16
;

3
32

Now Work Problem 3 G

APPLY IT I
5. A certain inactive bank account that
bears interest at the rate of 6% com-
pounded yearly shows year-end bal-
ances, for four consecutive years, of
$9.57, $10.14, $10.75, $11.40. Write
the sequence of amounts in the form
.ak/4kD1.

EXAMPLE 2 Giving a Formula for a Sequence

a. Write 41; 44; 47; 50; 53 in the form .ak/5kD1.

Solution: Each term of the sequence is obtained by adding three to the previous
term. Since the first term is 41, we can write the sequence as .41 C .k � 1/3/5kD1.
Observe that this formula is not unique. The sequence is also described by
.38C 3k/5kD1 and by .32C .kC 2/3/5kD1, to give just two more possibilities.

b. Write the sequence 1; 4; 9; 16; : : : in the form .ak/.

Solution: The sequence is apparently the sequence of squares of positive integers,
so .k2/ or

�
k2
�1
kD1 would be regarded as the correct answer by most people. But the

sequence described by (k4 � 10k3 C 36k2 � 50kC 24) also has its first four terms
given by 1, 4, 9, 16, and yet its fifth term is 49. The sixth and seventh terms are 156
and 409, respectively. The point we are making is that an infinite sequence cannot
be determined by finitely many values alone.

On the other hand, it is correct to write

1; 4; 9; 16; : : : ; k2; : : : D .k2/
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because the display on the left side of the equation makes it clear that the general
term is k2.

Now Work Problem 9 G

EXAMPLE 3 Demonstrating Equality of Sequences

Show that the sequences ..iC 3/2/1iD1 and . j
2 C 6jC 9/1jD1 are equal.

Solution: Both ..iC3/2/1iD1 and . j
2C6jC9/1jD1 are explicitly given to have the same

domain, namely f1; 2; 3; : : :g, the infinite set of all positive integers. The names i and j
being used to name a typical element of the domain are unimportant. The first sequence
is the same as ..kC 3/2/1kD1, and the second sequence is the same as .k

2C 6kC 9/1kD1.
The first rule assigns to any positive integer k, the number .k C 3/2, and the second
assigns to any positive integer k, the number k2C6kC9. However, for all k, .kC3/2 D
k2 C 6kC 9, so by the definition of equality of sequences the sequences are equal.

Now Work Problem 13 G

Recursively Defined Sequences
Suppose that a is a sequence with

a1 D 1 and, for each positive integer k; akC1 D .kC 1/ak (6)

Taking k D 1, we see that a2 D .2/a1 D .2/1 D 2, while with k D 2 we have
a3 D .3/a2 D .3/2 D 6. A sequence whose rule is defined in terms of itself evaluated
at smaller values, and some explicitly given small values, is said to be recursively
defined. Thus, we can say that there is a sequence a recursively defined by (6) above.

Another famous example of a recursively defined sequence is the Fibonacci
sequence:

F1 D 1 and F2 D 1 and, for each positive integer k; FkC2 D FkC1 C Fk (7)

Taking k D 1, we see that F3 D F2 C F1 D 1C 1 D 2, F4 D F3 C F2 D 2C 1 D 3,
F5 D F4 C F3 D 3C 2 D 5. In fact, the first ten terms of .Fk/ are

1; 1; 2; 3; 5; 8; 13; 21; 34; 55

EXAMPLE 4 Applying a Recursive Definition

a. Use the recursive definition (6) to determine a5 (without referring to the earlier
calculations).
Solution: We have

a5 D .5/a4

D .5/.4/a3

D .5/.4/.3/a2

D .5/.4/.3/.2/a1

D .5/.4/.3/.2/.1/

D 120

The standard notation for ak as defined by (6) is kŠ and it is read “k factorial”. We
also define 0Š D 1.

b. Use the recursive definition (7) to determine F6.
Solution: F6 D F5 C F4

D .F4 C F3/C .F3 C F2/
D F4 C 2F3 C F2
D .F3 C F2/C 2.F2 C F1/C F2
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D F3 C 4F2 C 2F1
D .F2 C F1/C 4F2 C 2F1
D 5F2 C 3F1
D 5.1/C 3.1/
D 8

Now Work Problem 17 G

In Example 4 we deliberately avoided making any numerical evaluations until all
terms had been expressed using only those terms whose values were given explicitly in
the recursive definition. This helps to illustrate the structure of the recursive definition
in each case.

While recursive definitions are very useful in applications, the computations in
Example 4(b) underscore that for large values of k, the computation of the kth term
may be time-consuming. It is desirable to have a simple formula for ak that does not
refer to al, for l < k. Sometimes it is possible to find such a closed formula. In the case
of (6) it is easy to see that ak D k � .k� 1/ � .k� 2/ � : : : � 3 � 2 � 1. On the other hand, in
the case of (7), it is not so easy to derive

Fk D
1
p
5

 
1C
p
5

2

!k

�
1
p
5

 
1 �
p
5

2

!k

Arithmetic Sequences and Geometric Sequences

Definition
An arithmetic sequence is a sequence .bk/ defined recursively by

b1 D a and, for each positive integer k; bkC1 D dC bk (8)

for fixed real numbers a and d.

In words, the definition tells us to start the sequence at a and get the next term
by adding d (no matter which term is currently under consideration). The number a
is simply the first term of the arithmetic sequence. Since the recursive definition gives
bkC1 � bk D d, for every positive integer k, we see that the number d is the difference
between any pair of successive terms. It is, accordingly, called the common difference
of the arithmetic sequence. Any pair of real numbers a and d determines an infinite
arithmetic sequence. By restricting to a finite number of terms, we can speak of finite
arithmetic sequences.

APPLY IT I
6. In 2009 the enrollment at Spring-
field High was 1237, and demographic
studies suggest that it will decline by
12 students a year for the next seven
years. List the projected enrollments of
Springfield High.

EXAMPLE 5 Listing an Arithmetic Sequence

Write explicitly the terms of an arithmetic sequence of length 6 with first term a D 1:5
and common difference d D 0:7.

Solution: Let us write .bk/ for the arithmetic sequence. Then
b1 D 1:5
b2 D 0:7C b1 D 0:7C 1:5 D 2:2
b3 D 0:7C b2 D 0:7C 2:2 D 2:9
b4 D 0:7C b3 D 0:7C 2:9 D 3:6
b5 D 0:7C b4 D 0:7C 3:6 D 4:3
b6 D 0:7C b5 D 0:7C 4:3 D 5:0

Thus the required sequence is

1:5; 2:2; 2:9; 3:6; 4:3; 5:0

Now Work Problem 21 G
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Definition
A geometric sequence is a sequence .ck/ defined recursively by

c1 D a and, for each positive integer k; ckC1 D ck � r (9)

for fixed real numbers a and r.

In words, the definition tells us to start the sequence at a and get the next term by
multiplying by r (no matter which term is currently under consideration). The number
a is simply the first term of the geometric sequence. Since the recursive definition gives
ckC1=ck D r for every positive integer k with ck ¤ 0, we see that the number r is the
ratio between any pair of successive terms, with the first of these not 0. It is, accordingly,
called the common ratio of the geometric sequence. Any pair of real numbers a and r
determines an infinite geometric sequence. By restricting to a finite number of terms,
we can speak of finite geometric sequences.

APPLY IT I
7. The population of the rural area sur-
rounding Springfield is declining as a
result of movement to the urban core. In
2009 it was 23,500, and each year, for
the next four years, it is expected to be
only 92% of the previous year’s popula-
tion. List the anticipated annual popula-
tion numbers for the rural area.

EXAMPLE 6 Listing a Geometric Sequence

Write explicitly the terms of a geometric sequence of length 5 with first term a D
p
2

and common ratio r D 1=2.

Solution: Let us write .ck/ for the geometric sequence. Then
c1 D

p
2

c2 D .c1/ � 1=2 D .
p
2/1=2 D

p
2=2

c3 D .c2/ � 1=2 D .
p
2=2/1=2 D

p
2=4

c4 D .c3/ � 1=2 D .
p
2=4/1=2 D

p
2=8

c5 D .c4/ � 1=2 D .
p
2=8/1=2 D

p
2=16

Thus, the required sequence is
p
2;
p
2=2;

p
2=4;

p
2=8;

p
2=16

Now Work Problem 25 G

We have remarked that sometimes it is possible to determine an explicit formula for
the kth term of a recursively defined sequence. This is certainly the case for arithmetic
and geometric sequences.

EXAMPLE 7 Finding the kth term of an Arithmetic Sequence

Find an explicit formula for the kth term of an arithmetic sequence .bk/ with first term
a and common difference d.

Solution: We have
b1 D a D 0dC a
b2 D dC .b1/ D dC .0dC a/ D 1dC a
b3 D dC .b2/ D dC .1dC a/ D 2dC a
b4 D dC .b3/ D dC .2dC a/ D 3dC a
b5 D dC .b4/ D dC .3dC a/ D 4dC a

It appears that, for each positive integer k, the kth term of an arithmetic sequence .bk/
with first term a and common difference d is given by

bk D .k � 1/dC a (10)

This is true and follows easily via the proof method called mathematical induction,
which we will not demonstrate here.

Now Work Problem 29 G
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EXAMPLE 8 Finding the kth term of a Geometric Sequence

Find an explicit formula for the kth term of a geometric sequence .ck/ with first term a
and common ratio r.

Solution: We have

c1 D a D ar0

c2 D .c1/ � r D ar0r D ar1

c3 D .c2/ � r D ar1r D ar2

c4 D .c3/ � r D ar2r D ar3

c5 D .c4/ � r D ar3r D ar4

It appears that, for each positive integer k, the kth term of a geometric sequence .ck/
with first term a and common difference r is given by

ck D ark�1 (11)

This is true and also follows easily via mathematical induction.

Now Work Problem 31 G

It is clear that any arithmetic sequence has a unique first term a and a unique com-
mon difference d. For a geometric sequence we have to be a little more careful. From
(11) we see that if any term ck is 0, then either a D 0 or r D 0. If a D 0, then every
term in the geometric sequence is 0. In this event, there is not a uniquely determined r
because r � 0 D 0, for any r. If a ¤ 0 but r D 0, then every term except the first is 0.

Sums of Sequences
For any sequence .ck/ we can speak of the sum of the first k terms. Let us call this sum
sk. Using the summation notation introduced in Section 1.5, we can write

sk D
kX

iD1

ci D c1 C c2 C � � � C ck (12)

We can regard the sk as terms of a new sequence .sk/, of sums, associated to the original
sequence .sk/. If a sequence .ck/ is finite, of length n, then sn can be regarded as the
sum of the sequence.

EXAMPLE 9 Finding the Sum of an Arithmetic Sequence

Find a formula for the sum sn of the first n terms of an arithmetic sequence .bk/ with
first term a and common difference d.

APPLY IT I
8. If a company has an annual revenue
of 27M$ in 2009 and revenue grows by
1.5M$ each year, find the total revenue
through 2009–2015, inclusive. Solution: Since the arithmetic sequence .bk/ in question has, by Example 7, bk D

.k � 1/dC a, the required sum is given by

sn D
nX

kD1

bk D
nX

kD1

..k � 1/dC a/ D
nX

kD1

.dk � .d � a// D
nX

kD1

dk �
nX

kD1

.d � a/

D d
nX

kD1

k � .d � a/
nX

kD1

1
?
D d

n.nC 1/
2

� .d � a/n D
n
2
..n � 1/dC 2a/

Notice that the equality labeled ? uses both (13) and (10) of Section 1.5. We remark
that the last term under consideration in the sum is bn D .n � 1/d C a so that in our
formula for sn the factor ..n�1/dC2a/ is the first term a plus the last term .n�1/dCa.
If we write z D .n � 1/dC a for the last term, then we can summarize with

sn D
n
2
..n � 1/dC 2a/ D

n
2
.aC z/ (13)
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Note that we could also have found (13) by the same technique used to find (13) of
Section 1.5. We preferred to calculate using summation notation here. Finally, we
should remark that the sum (13) in Section 1.5 is the sum of the first n terms of the
special arithmetic sequence with a D 1 and d D 1.

Now Work Problem 33 G

APPLY IT I

9. Mrs. Simpson put $1000 in a spe-
cial account for Bart on each of his
first 21 birthdays. The account earned
interest at the rate of 7% compounded
annually. We will see in Chapter 5 that
the amount deposited on Bart’s .22 �
k/th birthday is worth $1000.1:07/k�1

on Bart’s 21st birthday. Find the total
amount in the special account on Bart’s
21st birthday.

EXAMPLE 10 Finding the Sum of a Geometric Sequence

Find a formula for the sum sn of the first n terms of a geometric sequence .ck/with first
term a and common ratio r.

Solution: Since the geometric sequence .ck/ in question has, by Example 8,
ck D ark�1, the required sum is given by

sn D
nX

kD1

ck D
nX

kD1

ark�1
D aC arC ar2 C � � � C arn�1 (14)

It follows that if we multiply (14) by r we have

rsn D r
nX

kD1

ck D r
nX

kD1

ark�1
D

nX
kD1

ark D arC ar2 C � � � C arn�1
C arn (15)

If we subtract (15) from (14) we get

sn � rsn D a � arn so that .1 � r/sn D a.1 � rn/

Thus, we have

sn D
a.1 � rn/
1 � r

for r ¤ 1 (16)

(Note that if r D 1, then each term in the sum is a and, since there are n terms, the
answer in this easy case is sn D na:/

Now Work Problem 37 G

For some infinite sequences .ck/1kD1 the sequence of sums .sk/
1
kD1 D

 
kX

iD1

ci

!1

kD1
appears to approach a definite number. When this is indeed the case we write the num-

ber as
1X
iD1

ci. Here we consider only the case of a geometric sequence. As we see from

(16), if ck D ark�1 then, for r ¤ 1, sk D
a.1 � rk/
1 � r

. Observe that only the factor 1� rk

depends on k. If jrj > 1, then for large values of k, jrkjwill become large, as will j1�rkj.
In fact, for jrj > 1 we can make the values j1 � rkj as large as we like by taking k to

be sufficiently large. It follows that, for jrj > 1, the sums
a.1 � rk/
1 � r

do not approach a

definite number. If r D 1, then sk D ka and, again, the sums do not approach a definite
number.

However, for jrj < 1 (that is for �1 < r < 1), we can make the values rk as close
to 0 as we like by taking k to be sufficiently large. (Be sure to convince yourself that
this is true before reading further because the rest of the argument hinges on this point.)
Thus, for jrj < 1, we can make the values 1� rk as close to 1 as we like by taking k to

be sufficiently large. Finally, for jrj < 1, we can make the values
a.1 � rk/
1 � r

as close to
a

1 � r
as we like by taking k to be sufficiently large. In precisely this sense, an infinite

geometric sequence with jrj < 1 has a sum and we have

for jrj < 1;
1X
iD1

ari�1
D

a
1 � r

(17)
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EXAMPLE 11 Repeating Decimals

In Example 1 of Section 0.1we stated that the repeating decimal 0:151515 : : : represents

the rational number
5
33
. We pointed out that entering 5� 33 on a calculator strongly

suggests the truth of this assertion but were unable at that point to explain how the

numbers 5 and 33 were found. Is it true that 0:151515 : : : D
5
33
?

Solution: Let us write 0:151515 : : : D 0:15 C 0:0015 C 0:000015 C : : : . We can
recognize this infinite sum as the sum of the infinite geometric sequence whose first
term a D 0:15 and whose common ratio r D 0:01. Since jrj D 0:01 < 1 we have

0:151515 � � � D
0:15

1 � 0:01
D

0:15
0:99

D
15=100
99=100

D
15
99
D

5
33

G

EXAMPLE 12 Finding the Sum of an Infinite Geometric Sequence

A rich woman would like to leave $100,000 a year, starting now, to be divided equally
among all her direct descendants. She puts no time limit on this bequeathment and
is able to invest for this long-term outlay of funds at 2% compounded annually. How
much must she invest now to meet such a long-term commitment?

Solution: Let us write R D 100;000, set the clock to 0 now, and measure time in
years from now. With these conventions we are to account for payments of R at times
0; 1; 2; 3; : : : ; k; : : : bymaking a single investment now. (Such a sequence of payments
is called a perpetuity.) The payment now simply costs her R. The payment at time 1 has
a present value of R.1:02/�1. The payment at time 2 has a present value of R.1:02/�2.
The payment at time 3 has a present value of R.1:02/�3, and, generally, the payment
at time k has a present value of R.1:02/�k. Her investment now must exactly cover the
present value of all these future payments. In other words, the investment must equal
the sum

RC R.1:02/�1
C R.1:02/�2

C R.1:02/�3
C : : :C R.1:02/�k

C : : :

We recognize the infinite sum as that of a geometric series, with first term a D R D
100;000 and common ratio r D .1:02/�1. Since jrj D .1:02/�1 < 1, we can evaluate
the required investment as

a
1 � r

D
100;000

1 �
1

1:02

D
100;000
0:02
1:02

D
100;000.1:02/

0:02
D 5;100;000

In other words, an investment of amere $5,100,000 nowwill allow her to leave $100,000
per year to her descendants forever!

Now Work Problem 57 G

There is less here than meets the eye. Notice that 2% of $5,000,000 is $100,000.
Thewoman sets aside $5,100,000 at time 0 and simultaneouslymakes her first $100,000
payment. During the first year of investment, the remaining principal of $5,000,000
earns interest of exactly $100,000 in time for the payment of $100,000 at time 1.
Evidently, this process can continue indefinitely. However, there are other infinite

sequences .ck/1kD1 for which the sequence of sums .sk/
1
kD1 D

 
kX

iD1

ci

!1

kD1

approaches

a definite number that cannot be dismissed by the argument of this paragraph.
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PROBLEMS 1.6
In Problems 1–8, write the indicated term of the given sequence.

1. a D
p
2; �

3
7
; 2:3; 57; a3

2. b D 1; 13; �0:9;
5
2
; 100; 39; b6

3. .ak/7kD1 D .3
k/; a4 4. .ck/9kD1 D .3

k C k/; c4
5. .ck/ D .3C .k � 5/2/; c15 6. .bk/ D .5 � 2k�1/; b6

7. .ak/ D .k4 � 2k2 C 1/; a2

8. .ak/ D .k3 C k2 � 2kC 7/; a3

In Problems 9–12, find a general term .ak/ description that fits the
displayed terms of the given sequence.

9. �1; 2; 5; 8 10. 7; 4; 1; �2; : : :
11. 2; �4; 8; �16

12. 5;
5
3
;
5
9
;
5
27
; : : :

In Problems 13–16, determine whether the given sequences are
equal to each other.

13. ..iC 3/3/ and . j3 � 9j2 C 9j � 27/

14. .k2 � 4/ and ..kC 2/.k � 2//

15.
�
3

1
5k�1

�1

kD1
and

�
3
5k

�1

kD1

16. . j3 � 9j2 C 27j � 27/1jD1 and ..k � 3/
3/1kD1

In Problems 17–20, determine the indicated term of the given
recursively defined sequence.

17. a1 D 1, a2 D 2, akC2 D akC1 � ak; a7

18. a1 D 1, akC1 D aak ; a17

19. b1 D 1, bkC1 D
bk
k
; b6

20. c1 D 0, ckC1 D .kC 2/C ak; c8

In Problems 21–24, write the first five terms of the arithmetic
sequence with the given first term a and common difference d.

21. a D 22:5, d D 0:9 22. a D 0, d D 1

23. a D 96, d D �1:5 24. a D A, d D D

In Problems 25–28, write the first five terms of the geometric
sequence with the given first term a and common ratio r.

25. a D
1
2
, r D �

1
2

26. a D 50, r D .1:06/�1

27. a D 100, r D 1:05 28. a D 3, r D
1
3

In Problems 29–32, write the indicated term of the arithmetic
sequence with given parameters a and d or of the geometric
sequence with given parameters a and r.

29. 27th term, a D 3, d D 2

30. 8th term, a D 2:5, d D �0:5

31. 11th term, a D 1, r D 2 32. 7th term, a D 2, r D 10

In Problems 33–40, find the required sums.

33.
7X

kD1

..k � 1/3C 5/ 34.
9X

kD1

.k � 2C 9/

35.
4X

kD1

..k � 1/0:2C 1:2/ 36.
34X

kD1

..k � 1/10C 5/

37.
10X

kD1

100.1=2/k�1 38.
10X

kD1

50.1:07/k�1

39.
10X

kD1

50.1:07/1�k 40.
5X

kD1

3 � 2k

In Problems 41–46, find the infinite sums, if possible, or state why
this cannot be done.

41.
1X
kD1

3
�
1
2

�k�1

42.
1X
iD0

�
1
3

�i

43.
1X
kD1

1
2
.17/k�1 44.

1X
kD1

2
3
.1:5/k�1

45.
1X
kD1

20.1:01/�k 46.
1X
jD1

75.1:09/1�j

47. Inventory Every 30 days a grocery store stocks 90 cans of
elephant noodle soup and, rather surprisingly, sells 3 cans each
day. Describe the inventory levels of elephant noodle soup at the
end of each day, as a sequence, and determine the inventory level
19 days after restocking.

48. Inventory If a corner store has 95 previously viewed
DVD movies for sale today and manages to sell 6 each day,
write the first 7 terms of the store’s daily inventory sequence for
the DVDs. How many DVDs will the store have on hand after
10 days?

49. Checking Account A checking account, which earns no
interest, contains $125.00 and is forgotten. It is nevertheless
subject to a $5.00 per month service charge. The account is
remembered after 9 months. How much does it then contain?

50. Savings Account A savings account, which earns interest
at a rate of 5% compounded annually, contains $25.00 and is
forgotten. It is remembered 7 years later. How much does it then
contain?

51. Population Change A town with a population of 50,000 in
2009 is growing at the rate of 8% per year. In other words, at the
end of each year the population is 1.08 times the population at the
end of the preceding year. Describe the population sequence and
determine what the population will be at the end of 2020, if this
rate of growth is maintained.

52. Population Change Each year 5% of the inhabitants of a
rural area move to the city. If the current population is 24,000, and
this rate of decrease continues, give a formula for the population k
years from now.

53. Revenue Current daily revenue at a campus burger
restaurant is $12,000. Over the next 7 days revenue is expected to
increase by $1000 each day as students return for the fall
semester. What is the projected total revenue for the 8 days for
which we have projected data?
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54. Revenue A car dealership’s finance department is going to
receive payments of $300 per month for the next 60 months to pay
for Bart’s car. The kth such payment has a present value of
$300.1:01/�k. The sum of the present values of all 60 payments
must equal the selling price of the car. Write an expression for the
selling price of the car and evaluate it using your calculator.

55. Future Value Five years from now, Brittany will need a
new truck. Starting next month, she is going to put $100 in the
bank each month to save for the inevitable purchase. Five years
from now the kth bank deposit will be worth $100.1:005/60�k

(due to compounded interest). Write a formula for the
accumulated amount of money from her 60 bank deposits. Use
your calculator to determine how much Brittany will have
available towards her truck purchase.

56. Future Value Lisa has just turned 7 years old. She would
like to save some money each month, starting next month, so that
on her 21st birthday she will have $1000 in her bank account.
Marge told her that with current interest rates her kth deposit will
be worth, on her 21st birthday, .1:004/168�k times the deposited
amount. Lisa wants to deposit the same amount each month. Write
a formula for the amount Lisa needs to deposit each month to meet
her goal. Use your calculator to evaluate the required amount.

57. Perpetuity Brad’s will includes an endowment to
Dalhousie University that is to provide each year after his death,
forever, a $500 prize for the top student in the business
mathematics class, MATH 1115. Brad’s estate can make an
investment at 5% compounded annually to pay for this
endowment. Adapt the solution of Example 11 to determine how
much this endowment will cost Brad’s estate.

58. Perpetuity Rework Problem 57 under the assumption that
Brad’s estate can make an investment at 10% compounded
annually.

59. The Fibonacci sequence given in (7) is defined recursively
using addition. Is it an arithmetic sequence? Explain.

60. The sequence with a1 D 1 and akC1 D kak is defined
recursively using multiplication. Is it a geometric sequence?
Explain.

61. The recursive definition for an arithmetic sequence .bk/
called for starting with a number a and adding a fixed number d to
each term to get the next term. Similarly, the recursive definition
for a geometric sequence .ck/ called for starting with a number a
and multiplying each term by a fixed number r to get the next term.
If instead of addition or multiplication we use exponentiation, we
get two other classes of recursively defined sequences:

d1 D a and, for each positive integer k; dkC1 D .dk/p

for fixed real numbers a and p and

e1 D a and, for each positive integer k; ekC1 D bek

for fixed real numbers a and b. To get an idea of how sequences
can grow in size, take each of the parameters a, d, r, p, and b that
have appeared in these definitions to be the number 2 and write
the first five terms of each of the arithmetic sequence .bk/, the
geometric sequence .ck/, and the sequences .dk/ and .ek/ defined
above.

Chapter 1 Review
Important Terms and Symbols Examples
Section 1.1 Applications of Equations

fixed cost variable cost total cost total revenue profit Ex. 3, p. 49

Section 1.2 Linear Inequalities
a < b a � b a > b a � b a < x < b Ex. 1, p. 57
inequality sense of an inequality Ex. 2, p. 57
equivalent inequalities linear inequality Ex. 1, p. 57
interval open interval closed interval endpoint
.a; b/ Œa; b� .�1; b/ .�1; b� .a;1/ Œa;1/ .�1;1/ Ex. 3, p. 58

Section 1.3 Applications of Inequalities
renting versus purchasing Ex. 2, p. 59
current assets current liabilities current ratio Ex. 3, 60

Section 1.4 Absolute Value
distance absolute value, jxj union, [ Ex. 3, p. 64

Section 1.5 Summation NotationP
notation index bounds Ex. 1, p. 67

Section 1.6 Sequences
arithmetic sequence Ex. 5, p. 74
geometric sequence Ex. 6, p. 75
sum of an arithmetic sequence Ex. 9, p. 76
sum of a geometric sequence Ex. 10, p. 77
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Summary
With word problems, you may not be given any equations.
You may have to construct equations and inequalities (often
more than one) by translating natural language statements of
the word problem into mathematical statements. This pro-
cess is mathematical modeling. First, read the problem more
than once so that you understand what facts are given and
what you are to find. Next, choose variables to represent the
unknown quantities you need to find. Translate each relation-
ship or fact given in the problem into equations or inequal-
ities involving the variables. Finally, solve the equations
(respecting any inequalities) and check that your solution
answers what was asked. Sometimes solutions to the equa-
tions will not be answers to the problem (but they may help
in obtaining the final answers).

Some basic relationships that are used in solving busi-
ness problems are as follows:

total cost D variable costC fixed cost

total revenue D .price per unit/.number of units sold/

profit D total revenue � total cost

The inequality symbols <, �, >, and � are used to rep-
resent an inequality, which is a statement that one number is,
for example, less than another number. Three basic opera-
tions that, when applied to an inequality, guarantee an equiv-
alent inequality, are as follows:

1. Adding (or subtracting) the same number to (or from)
both sides.

2. Multiplying (or dividing) both sides by the same positive
number.

3. Multiplying (or dividing) both sides by the same negative
number and reversing the sense of the inequality.

The algebraic definition of absolute value is

jxj D x if x � 0 and jxj D �x if x < 0

We interpret ja � bj or jb � aj as the distance between
a and b. If d > 0, then the solution to the inequality jxj < d
is the interval .�d; d/. The solution to jxj > d consists of the
union of two intervals and is given by .�1;�d/ [ .d;1/.
Some basic properties of the absolute value are as follows:

1. jabj D jaj � jbj 2.
ˇ̌̌a
b

ˇ̌̌
D
jaj
jbj

3. ja � bj D jb � aj 4. �jaj � a � jaj

5. jaC bj � jaj C jbj

Summation notation provides a compact and precise way
of writing sums that have many terms. The basic equations
of summation notation are just restatements of the proper-
ties of addition. Certain particular sums, such as

Pn
kD1 k andPn

kD1 k
2, are memorable and useful.

Both arithmetic sequences and geometric sequences
arise in applications, particularly in business applica-
tions. Sums of sequences, particularly those of geometric
sequences, will be important in our study of the mathematics
of finance in Chapter 5.

Review Problems
In Problems 1–15, solve the equation or inequality.

1. 2xC 1 � x � 3 2. 2x � .7C x/ � x

3. �.5xC 2/ < �.2xC 4/ 4. �2.xC 6/ > xC 4

5. 3p.1 � p/ > 3.2C p/ � 3p2 6. 2
�
5 �

3
2
q
�
< 4

7.
xC 5
3
�
1
2
� 2 8.

x
3
�

x
4
>

x
5

9.
1
4
s � 3 �

1
8
.3C 2s/ 10.

1
3
.tC 2/ �

1
4
tC 4

11. j2 � 3xj D 7 12.

ˇ̌̌̌
5x � 6
13

ˇ̌̌̌
D 0

13. j2z � 3j < 5
14. 4 <

ˇ̌̌̌
2
3
xC 5

ˇ̌̌̌
15. j3 � 2xj � 4

16. Evaluate
7X

kD1

.kC 5/2 by first squaring the binomial and then

using equations from Section 1.5.

17. Evaluate
11X
iD4

i3 by using
11X
iD1

i3 �
3X

iD1

i3. Explain why this

works, quoting any equations from Section 1.5 that are used.
Explain why the answer is necessarily the same as that in
Problem 16.

18. Profit A profit of 40% on the selling price of a product is
equivalent to what percent profit on the cost?

19. Stock Exchange On a certain day, there were 1132
different issues traded on the New York Stock Exchange. There
were 48 more issues showing an increase than showing a decline,
and no issues remained the same. How many issues suffered a
decline?

20. Sales Tax The sales tax in a certain province is 16.5%. If a
total of $3039.29 in purchases, including tax, is made in the
course of a year, how much of it is tax?

21. Production Allocation A company will manufacture a
total of 10,000 units of its product at plants A and B. Available
data are as follows:

Plant A Plant B

Unit cost for labor and material $6 $7.50

Fixed cost $25,000 $30,000
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Between the two plants, the company has decided to allot no more
than $115,000 for total costs. What is the minimum number of
units that must be produced at plant A?

22. Propane Tanks A company is replacing two propane tanks
with one new tank. The old tanks are cylindrical, each 25 ft high.
One has a radius of 10 ft and the other a radius of 20 ft. The new
tank is essentially spherical, and it will have the same volume
as the old tanks combined. Find the radius of the new tank.
[Hint: The volume V of a cylindrical tank is V D �r2h, where
r is the radius of the circular base and h is the height of the tank.
The volume of a spherical tank isW D 4

3�R
3, where R is the

radius of the tank.]

23. Operating Ratio The operating ratio of a retail business is
the ratio, expressed as a percentage, of operating costs
(everything from advertising expenses to equipment depreciation)

to net sales (i.e., gross sales minus returns and allowances). An
operating ratio less than 100% indicates a profitable operation,
while an operating ratio in the 80–90% range is extremely good.
If a company has net sales of $236,460 in one period, write an
inequality describing the operating costs that would keep the
operating ratio below 90%.

24. Write the first five terms of the arithmetic sequence with first
term 32 and common difference 3.

25. Write the first five terms of the geometric sequence with first
term 100 and common ratio 1:02.

26. Find the sum of the first five terms of the arithmetic sequence
with first term 12 and common difference 5.

27. Find the sum of the first five terms of the geometric sequence
with first term 100 and common ratio 1:02.



Haeussler-50501 M03_HAEU1107_14_SE_C02 November 27, 2017 16:22

2 Functions
and Graphs

2.1 Functions

2.2 Special Functions

2.3 Combinations of
Functions

2.4 Inverse Functions

2.5 Graphs in Rectangular
Coordinates

2.6 Symmetry

2.7 Translations and
Reflections

2.8 Functions of Several
Variables

Chapter 2 Review

S
uppose a 180-pound man drinks four beers in quick succession. We know that
his blood alcohol concentration, or BAC, will first rise, then gradually fall
back to zero. But what is the best way to describe how quickly the BAC rises,
where it peaks, and how fast it falls again?

If we obtain measured BAC values for this particular individual, we can display
them in a table, as follows:

Time (h) 1 2 3 4 5 6

BAC(%) 0.0820 0.0668 0.0516 0.0364 0.0212 0.0060

However, a table can show only a limited number of values and so does not really give
the overall picture.

We might instead relate the BAC to time t using a combination of linear and
quadratic equations (recall Chapter 0):

BAC D �0:1025t2 C 0:1844t if t � 0:97

BAC D �0:0152tC 0:0972 if t > 0:97

As with the table, however, it is hard to look at the equations and understand quickly
what is happening with BAC over time.

Probably the best description of changes in the BAC over time is given by a graph,
like the one on the left. Here we see easily what happens. The blood alcohol concentra-
tion climbs rapidly, peaks at 0.083% after about an hour, and then tapers off gradually
over the next five-and-a-half hours. Note that for about three hours, this male’s BAC is
above 0.05%, the point at which one’s driving skills begin to decline. The curve will
vary from one individual to the next, but women are generally affected more severely
than men, not only because of weight differences but also because of the different water
contents in men’s and women’s bodies.

The relationship between time and blood alcohol content is an example of a func-
tion. This chapter deals in depth with functions and their graphs.

0.10

0.08

0.06

0.04

0.02

B
A

C
 (

%
)

0 2 4 6 81 3 5 7

Time (hours)

83
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Objective 2.1 Functions
To understand what a function is and
to determine domains and function
values.

In the 17th century, Gottfried Wilhelm Leibniz, one of the inventors of calculus, intro-
duced the term function into the mathematical vocabulary. The concept of a function
is one of the most basic in all of mathematics. In particular, it is essential to the study
of calculus.

In everyday speech we often hear educated people say things like “(Prime) interest
rates are a function of oil prices” or “Pension income is a function of years worked”
or “Blood alcohol concentration after drinking beer is a function of time.” Sometimes
such usage agrees with mathematical usage—but not always. We have to be careful
with our meaning of the word function in order to make it a good mathematical tool.
Nevertheless, everyday examples can help our understanding. We build the definition
in the next three paragraphs.

A key idea is to realize that a set, as first mentioned in Section 0.1, need not have
numbers as its elements. We can speak of a set of interest rates, a set of oil prices, a
set of incomes, and so on. If X and Y are sets, in that generality, and x is an element
of X and y is an an element of Y, then we write .x; y/ for what we call the ordered
pair consisting of x and y in the order displayed. We accept that the notation for an
ordered pair of real numbers is the same as that for an open interval, but the practice
is strongly entrenched and almost never causes any confusion. Note that .y; x/ is in
general different from .x; y/. In fact, given two ordered pairs .x; y/ and .a; b/, we have
.x; y/ D .a; b/ if and only if both x D a and y D b. We will write X�Y for the set of all
ordered pairs .x; y/, where x is an element of X and y is an element of Y. For example,
if X is the set of oil prices and Y is the set of interest rates, then an element of X � Y is
a pair .p; r/, where p is an oil price and r is an interest rate.

A relation R from a set X to a set Y is a subset of X�Y. We recall from Section 0.1
that this means any element of R is also an element of X� Y. If it happens that .x; y/ is
an element of R, then we say that x is R-related to y and write xRy. Each of <, >, �,
and � are relations from the set .�1;1/ of all real numbers to itself. For example,

Of course .�1;1/ here is an “interval”,
as in Chapter 1, Section 2, not an ordered
pair. we can define < as that subset of .�1;1/ � .�1;1/ consisting of all .a; b/ such

that a < b is true. The use of xRy for “x is R-related to y” is inspired by the notation
for inequalities. To give another example, let P and L denote, respectively, the set of all
points and the set of all lines in a given plane. For an ordered pair .p; l/ in P � L, it is
either the case that “p is on l” or “p is not on l”. If we write p ı l for “p is on l”, then
ı is a relation from P to L in the sense of this paragraph. Returning to prices and rates,
we might say that oil price p is R-related to interest rate r, and write pRr, if “there has
been a time at which both the price of oil has been p and the interest rate has been r”.

A function f from a setX to a set Y is a relation fromX to Ywith the special property
that if both xfy and xfz are true, then y D z. (In many books, it is also required that for
each x in X there exists a y in Y, such that xfy. We will not impose this further condition.)
The point is that if x is f-related to anything, then that thing is uniquely determined by x.
After all, the definition says that if two things, y and z, are both f-related to x, then they
are in fact the same thing, so that y D z. We write y D f.x/ for the unique y, if there is
one, such that x is f-related to y.

With this definition we see that the notion of function is not symmetric in x
and y. The notation fW X� Y is often used for “f is a function from X to Y” because it
underscores the directedness of the concept.

We now re-examine the examples from everyday speech of the second paragraph
of this section. The relation R defined by pRr if “there has been a time at which both
the price of oil has been p and the (prime) interest rate has been r” does not define a
function from oil prices to interest rates. Many people will be able to recall a time when
oil was $30 a barrel and the interest rate was 8% and another time when oil was $30 a
barrel and the interest rate was 1%. In other words, both .30; 8/ and .30; 1/ are ordered
pairs belonging to the R relation, and since 8 ¤ 1, R is not a function. Lest you think
that we may be trying to do it the wrong way around, let us write Rı for the relation
from the set of interest rates to the set of oil prices given by rRıp if and only if pRr.
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If you can remember a time when the interest rate was 6% with oil at $30 a barrel and
another time when the interest rate was 6% with oil at $70 a barrel, then you will have
both .6; 30/ and .6; 70/ in the relation Rı. The fact that 30 ¤ 70 shows that Rı is also
not a function.

On the other hand, suppose we bring into a testing facility a person who has just
drunk five beers, and test her blood alcohol concentration then and each hour thereafter,
for six hours. For each of the time values f0; 1; 2; 3; 4; 5; 6g, the measurement of
blood alcohol concentration will produce exactly one value. If we write T for the set
of all times beginning with that of the first test and B for the set of all blood alcohol
concentration values, then testing the woman in question will determine a function
b W T� B, where, for any time t in T, b.t/ is the blood alcohol concentration of the
woman at time t.

It is not true that “Pension income is a function of years worked.” If the value of
“years worked” is 25, then the value of “pension income” is not yet determined. In most
organizations, a CEO and a systems manager will retire with different pensions after
25 years of service. However, in this example wemight be able to say that, for each job
description in a particular organization, pension income is a function of years worked.

If $100 is invested at, say, 6% simple interest, then the interest earned I is a function
of the length of time t that the money is invested. These quantities are related by

I D 100.0:06/t (1)

Here, for each value of t, there is exactly one value of I given by Equation (1). In a
situation like this we will often write I.t/ D 100.0:06/t to reinforce the idea that the
I-value is determined by the t-value. Sometimes we write I D I.t/ to make the claim
that I is a function of t even if we do not know a formula for it. Formula (1) assigns the
output 3 to the input 12 and the output 12 to the input 2. We can think of Formula (1) as
defining a rule: Multiply t by 100(0.06). The rule assigns to each input number t exactly
one output number I, which is often symbolized by the following arrow notation:

t ‘ 100.0:06/t

A formula provides a way of describing a rule to cover, potentially, infinitely many
cases, but if there are only finitely many values of the input variable, as in the chapter-
opening paragraph, then the rule, as provided by the observations recorded in the table
there, may not be part of any recognizable formula. We use the word rule rather than
formula below to allow us to capture this useful generality. The following definition is
sometimes easier to keep in mind than our description of a function as a special kind
of relation:

Definition
A function f W X� Y is a rule that assigns to each of certain elements x of X at
most one element of Y. If an element is assigned to x in X, it is denoted by f.x/. The
subset of X consisting of all the x for which f.x/ is defined is called the domain of
f. The set of all elements in Y of the form f.x/, for some x in X, is called the range
of f.

For the interest function defined by Equation (1), the input number t cannot be
negative, because negative time makes no sense in this example. Thus, the domain
consists of all nonnegative numbers—that is, all t � 0, where the variable gives the
time elapsed from when the investment was made.

A variable that takes on values in the domain of a function f W X� Y is sometimes
called an input, or an independent variable for f. A variable that takes on values in the
range of f is sometimes called an output, or a dependent variable of f. Thus, for the
interest formula I D 100.0:06/t, the independent variable is t, the dependent variable
is I, and I is a function of t.

As another example, the equation

y D xC 2 (2)
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defines y as a function of x. The equation gives the rule, “Add 2 to x.” This rule assigns
to each input x exactly one output xC 2, which is y. If x D 1, then y D 3; if x D �4,
then y D �2. The independent variable is x, and the dependent variable is y.

In y2 D x, x and y are related, but the
relationship does not give y as a function
of x.

Not all equations in x and y define y as a function of x. For example, let y2 D x. If
x is 9, then y2 D 9, so y D ˙3. Hence, to the input 9, there are assigned not one but
two output numbers: 3 and �3. This violates the definition of a function, so y is not a
function of x.

On the other hand, some equations in two variables define either variable as a func-
tion of the other variable. For example, if y D 2x, then for each input x, there is exactly
one output, 2x. Thus, y is a function of x. However, solving the equation for x gives
x D y=2. For each input y, there is exactly one output, y=2. Consequently, x is a func-
tion of y.

Usually, the letters f, g, h, F,G, and so on are used to name functions. For example,
Equation (2), y D x C 2, defines y as a function of x, where the rule is “Add 2 to the
input.” Supposewe let f represent this rule. Thenwe say that f is the function. To indicate
that f assigns to the input 1 the output 3, we write f.1/ D 3, which is read “f of 1 equals
3.” Similarly, f.�4/ D �2. More generally, if x is any input, we have the following
notation:

f.x/, which is read “f of x,” and which means the
output, in the range of f, that results when the rule f
is applied to the input x, from the domain of f.

input
#

f.x/„ƒ‚…
"

output

Thus, the output f.x/ is the same as y. But since y D x C 2, we can also write
f.x/ D y D xC 2 or, more simply,

f.x/ D xC 2

For example, to find f.3/, which is the output corresponding to the input 3, we replace
each x in f.x/ D xC 2 by 3:

f.3/ D 3C 2 D 5

Outputs are also called function values.

f.x/ does not mean f times x. f.x/ is the
output that corresponds to the input x.

For another example, the equation g.x/ D x3Cx2 defines the function g that assigns
the output x3 C x2 to an input x:

gW x‘ x3 C x2

In other words, g adds the cube of the input to the square of the input. Some function
values are

g.2/ D 23 C 22 D 12

g.�1/ D .�1/3 C .�1/2 D �1C 1 D 0

g.t/ D t3 C t2

g.xC 1/ D .xC 1/3 C .xC 1/2

Note that g.xC 1/ was found by replacing each x in x3C x2 by the input xC 1. WhenThe idea of replacement, also known as
substitution, is very important in
determining function values.

we refer to the function g defined by g.x/ D x3 C x2, we are free to say simply “the
function g.x/ D x3 C x2” and similarly “the function y D xC 2.”

Unless otherwise stated, the domain of a function f W X� Y is the set of all x in
X for which f.x/ makes sense, as an element of Y. When X and Y are both .�1;1/,
this convention often refers to arithmetical restrictions. For example, suppose

h.x/ D
1

x � 6
Here any real number can be used for x except 6, because the denominator is 0 when x
is 6. So the domain of h is understood to be all real numbers except 6. A useful notation
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for this set is .�1;1/ � f6g. More generally, if A and B are subsets of a set X, then
we write A� B for the set of all x in X such that x is in A and x is not in B. We note too
that the range of h is the set of all real numbers except 0. Each output of h is a fraction,
and the only way that a fraction can be 0 is for its numerator to be 0. While we do have

1
x � 6

D
c

c.x � 6/
for all c ¤ 0

by the fundamental principle of fractions of Section 0.2, we see that 0 is not a function

value for h. But if y is any nonzero real number, we can solve
1

x � 6
D y for x and

get x D 6 C
1
y
as the (unique) input for which h.x/ is the given y. Thus, the range is

.�1;1/ � f0g, the set of all real numbers other than 0.

Equality of Functions

To say that two functions f; g W X� Y are equal, denoted f D g, is to say that

1. The domain of f is equal to the domain of g;
2. For every x in the domain of f and g, f.x/ D g.x/.

Requirement 1 says that an element x is in the domain of f if and only if x is in the
domain of g. Thus, if we have f.x/ D x2, with no explicit mention of domain, and
g.x/ D x2 for x � 0, then f ¤ g. For here the domain of f is the whole real line
.�1;1/ and the domain of g is Œ0;1/. On the other hand, if we have f.x/ D .xC1/2

and g.x/ D x2 C 2x C 1, then, for both f and g, the domain is understood to be
.�1;1/ and the issue for deciding if f D g is whether, for each real number x, we have
.xC1/2 D x2C2xC1. But this is true; it is a special case of item 4 in the Special Prod-
ucts of Section 0.4. In fact, older textbooks refer to statements like .xC1/2 D x2C2xC1
as “identities,” to indicate that they are true for any admissible value of the variable and
to distinguish them from statements like .xC 1/2 D 0, which are true for some values
of x.

Given functions f and g, it follows that we have f ¤ g if either the domain of f is
different from the domain of g or there is some x for which f.x/ ¤ g.x/.

EXAMPLE 1 Determining Equality of Functions

Determine which of the following functions are equal.

a. f.x/ D
.xC 2/.x � 1/

.x � 1/
b. g.x/ D xC 2

c. h.x/ D
�
xC 2 if x ¤ 1

0 if x D 1

d. k.x/ D
�
xC 2 if x ¤ 1

3 if x D 1

Solution: The domain of f is the set of all real numbers other than 1, while that of g is
the set of all real numbers. (For these we are following the convention that the domain
is the set of all real numbers for which the rule makes sense.) We will have more to
say about functions like h and k that are defined by cases in Example 4 of Section 2.2.
Here we observe that the domain of h and the domain of k are both .�1;1/, since for
both we have a rule that makes sense for each real number. The domains of g, h, and
k are equal to each other, but that of f is different. So by Requirement 1 for equality of
functions, f ¤ g, f ¤ h and f ¤ k. By definition, g.x/ D h.x/ D k.x/ for all x ¤ 1,
so the matter of equality of g, h and k depends on their values at 1. Since g.1/ D 3,
h.1/ D 0 and k.1/ D 3, we conclude that g D k and g ¤ h (and h ¤ k). While this
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example might appear to be contrived, it is typical of an issue that arises frequently in
calculus.

Now Work Problem 3 G

APPLY IT I
1. The area of a circle depends on the
length of the radius of the circle.

a.Write a function a.r/ for the area of a
circle when the length of the radius is r.
b. What is the domain of this function
out of context?
c.What is the domain of this function in
the given context?

EXAMPLE 2 Finding Domains

Find the domain of each function.

a. f.x/ D
x

x2 � x � 2

Solution: We cannot divide by zero, so we must find any values of x that make the
denominator 0. These cannot be inputs. Thus, we set the denominator equal to 0 and
solve for x:

x2 � x � 2 D 0 quadratic equation

.x � 2/.xC 1/ D 0 factoring

x D 2;� 1

Therefore, the domain of f is all real numbers except 2 and �1.

b. g.t/ D
p
2t � 1 as a function gW .�1;1/� .�1;1/

Solution:
p
2t � 1 is a real number if 2t � 1 is greater than or equal to 0. If 2t � 1 is

negative, then
p
2t � 1 is not a real number, so we must assume that

2t � 1 � 0

2t � 1 adding 1 to both sides

t �
1
2

dividing both sides by 2

Thus, the domain is the interval Œ 12 ;1/.

Now Work Problem 7 G

APPLY IT I
2. The time it takes to go a given dis-
tance depends on the speed at which one
is traveling.

a. Write a function t.r/ for the time it
takes if the distance is 300 miles and the
speed is r.
b. What is the domain of this function
out of context?
c.What is the domain of this function in
the given context?

d. Find t.x/, t
� x
2

�
, and t

� x
4

�
.

e.What happens to the time if the speed
is divided by a constant c? Describe this
situation using an equation.

EXAMPLE 3 Finding Domain and Function Values

Let g.x/ D 3x2 � xC 5. Any real number can be used for x, so the domain of g is all
real numbers.
a. Find g(z).

Solution: Replacing each x in g.x/ D 3x2 � xC 5 by z gives

g.z/ D 3z2 � zC 5

b. Find g.r2/.

Solution: Replacing each x in g.x/ D 3x2 � xC 5 by r2 gives

g.r2/ D 3.r2/2 � r2 C 5 D 3r4 � r2 C 5

c. Find g.xC h/.

Solution:

g.xC h/ D 3.xC h/2 � .xC h/C 5

D 3.x2 C 2hxC h2/ � x � hC 5

D 3x2 C 6hxC 3h2 � x � hC 5

Now Work Problem 31 G

Don’t be confused by notation. In
Example 3(c), we find g.xC h/ by
replacing each x in g.x/ D 3x2 � xC 5 by
the input xC h. g.xC h/, g.x/C h, and
g.x/C g.h/ are all different quantities.
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EXAMPLE 4 Finding a Difference Quotient

If f.x/ D x2, find
f.xC h/ � f.x/

h
.

Solution: The expression
f.xC h/ � f.x/

h
is referred to as a difference quotient. Here

The difference quotient of a function is
an important mathematical concept.

the numerator is a difference of function values. We have

f.xC h/ � f.x/
h

D
.xC h/2 � x2

h

D
x2 C 2hxC h2 � x2

h
D

2hxC h2

h

D
h.2xC h/

h
D 2xC h for h ¤ 0

If we consider the original difference quotient as a function of h, then it is different
from 2xC h because 0 is not in the domain of the original difference quotient but it is
in the default domain of 2xC h. For this reason, we had to restrict the final equality.

Now Work Problem 35 G

In some cases, the domain of a function is restricted for physical or economic
reasons. For example, the previous interest function I D 100.0:06/t has t � 0 because
t represents time elapsed since the investment was made. Example 5 will give another
illustration.

APPLY IT I
3. Suppose the weekly demand func-
tion for large pizzas at a local pizza par-

lor is p D 26 �
q
40

.

a. If the current price is $18.50 per
pizza, how many pizzas are sold each
week?
b. If 200 pizzas are sold each week,
what is the current price?
c. If the owner wants to double the num-
ber of large pizzas sold each week (to
400), what should the price be?

EXAMPLE 5 Demand Function

Suppose that the equation p D 100=q describes the relationship between the price per
unit p of a certain product and the number of units q of the product that consumers will
buy (that is, demand) per week at the stated price. This equation is called a demand
equation for the product. If q is an input, then to each value of q there is assigned at
most one output p:

q ‘
100
q
D p

For example,

20 ‘
100
20
D 5

that is, when q is 20, p is 5. Thus, price p is a function of quantity demanded, q. This
function is called a demand function. The independent variable is q, and p is the depen-
dent variable. Since q cannot be 0 (division by 0 is not defined) and cannot be negative
(q represents quantity), the domain is all q > 0.

Now Work Problem 43 G

We have seen that a function is a rule that assigns to each input in the domain
exactly one output in the range. For the rule given by f.x/ D x2, some sample assign-
ments are shown by the arrows in Figure 2.1. The next example discusses a rule given
by a finite listing rather than an an algebraic formula.

2

1

Domain

Range

1 = f(1)

4 = f(2)

x
2
 = f(x)

x

f

FIGURE 2.1 Some function values for f.x/ D x2.
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EXAMPLE 6 Supply ScheduleAPPLY IT I
4. For the supply function given by the
following table, determine the weekly
revenue function, assuming that all
units supplied are sold.

p q
Price per Quantity
Unit in Supplied
Dollars per Week

500 11

600 14

700 17

800 20

The table in Apply It 4 is a supply schedule. Such a table lists for each of certain prices
p of a certain product the quantity q that producers will supply per week at that price.
For each price, the table provides exactly one quantity so that it exhibits q as a function
of p.

But also, for each quantity, the table provides exactly one price so that it also
exhibits p as a function of q. If we write q D f.p/, then the table provides

f.500/ D 11 f.600/ D 14 f.700/ D 17 f.800/ D 20

If we write p D g.q/, then the table also provides

g.11/ D 500 g.14/ D 600 g.17/ D 700 g.20/ D 800

Observe that we have g. f.p// D p, for all p, and f.g.q// D q, for all q. We will
have more to say about pairs of functions of this kind in Section 2.4. Both functions
determined by this table are called supply functions.

Now Work Problem 53 G

PROBLEMS 2.1
In Problems 1–4, determine whether the given functions are equal.

1. f.x/ D
p
x2; g.x/ D x

2. G.x/ D .
p
xC 3/2; H.x/ D xC 3

3. h.x/ D
jxj
x
; k.x/ D

�
1 if x � 0
�1 if x < 0

4. f.x/ D

8<: x2 � 4xC 3
x � 3

if x ¤ 3

2 if x D 3
;

g.x/ D x � 1

In Problems 5–16, give the domain of each function.

5. f.x/ D
6

x � 1
6. g.x/ D

x
5

7. h.x/ D

r
x � 2
xC 1

8. K.z/ D
1

p
z � 1

9. f.z/ D 3z2 C 2z � 4 10. H.x/ D
x2

xC 3

11. f.x/ D
9x � 9
2xC 7

12. g.x/ D
p
2 � 3x

13. g.y/ D
4

y2 � 4yC 4
14. �.x/ D

xC 5
x2 C x � 6

15. h.s/ D
3 � x2

3x2 � 5x � 2
16. G.r/ D

2
r2 C 1

In Problems 17–28, find the function values for each function.

17. f.x/ D 3 � 5x; f.0/, f.2/, f.�2/

18. H.s/ D 5s2 � 3; H.4/; H.
p
2/; H

�
2
3

�
19. G.x/ D 2 � x2; G.�8/;G.u/;G.u2/

20. F.x/ D �7xC 1IF.s/, F.tC 1/;F.xC 3/

21. g.u/ D 2u2 � u; g.�2/, g.2v/, g.xC a/

22. h.v/ D
2
p
4v
; h.36/, h

�
1
4

�
, h.1 � x/

23. f.x/ D x2 C 2xC 1; f.1/; f.�1/; f.xC h/

24. H.x/ D .xC 4/2; H.0/;H.2/;H.t � 4/

25. k.x/ D
x � 5
x2 C 1

; k.5/; k.2x/; k.xC h/

26. k.x/ D
p
x � 3; k.4/, k.3/, k.xC 1/ � k.x/

27. f.x/ D x2=5; f.0/, f.243/, f
�
�1
32

�
28. g.x/ D x2=5; g.32/; g.�64/; g.t10/

In Problems 29–36, find (a) f.xC h/ and (b)
f.xC h/ � f.x/

h
;

simplify your answers.

29. f.x/ D 4x � 5 30. f.x/ D
x
3

31. f.x/ D x2 C 2x 32. f.x/ D 2x2 � 5xC 3

33. f.x/ D 3 � 2xC 4x2 34. f.x/ D x3

35. f.x/ D
1

x � 1
36. f.x/ D

xC 8
x

37. If f.x/ D 3xC 7, find
f.2C h/ � f.2/

h
.

38. If f.x/ D 2x2 � xC 1, find
f.x/ � f.2/

x � 2
.

In Problems 39–42, is y a function of x? Is x a function of y?

39. 9y � 3x � 4 D 0 40. x4 � 1C y D 0

41. y D 7x2 42. x3 C y2 D 1

43. The formula for the area of a circle of radius r is A D �r2. Is
the area a function of the radius?

44. Suppose f.b/ D a2b3 C a3b2. (a) Find f.a/. (b) Find f.ab/.

45. Value of Business A business with an original capital of
$50,000 has income and expenses each week of $7200 and $4900,
respectively. If all profits are retained in the business, express the
value V of the business at the end of t weeks as a function of t.

46. Depreciation If a $30,000 machine depreciates 2% of its
original value each year, find a function f that expresses the
machine’s value V after t years have elapsed.
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47. Profit Function If q units of a certain product are sold (q is
nonnegative), the profit P is given by the equation P D 2:57q � 127.
Is P a function of q? What is the dependent variable? the
independent variable?

48. Demand Function Suppose the yearly demand function for

a particular actor to star in a film is p D
1;200;000

q
, where q is the

number of films he stars in during the year. If the actor currently
charges $600,000 per film, how many films does he star in each
year? If he wants to star in four films per year, what should his
price be?

49. Supply Function Suppose the weekly supply function for a

pound of house-blend coffee at a local coffee shop is p D
q
48
,

where q is the number of pounds of coffee supplied per week.
How many pounds of coffee per week will be supplied if the price
is $8.39 a pound? How many pounds of coffee per week will be
supplied if the price is $19.49 a pound? How does the amount
supplied change as the price increases?

50. Hospital Discharges An insurance company examined the
records of a group of individuals hospitalized for a particular
illness. It was found that the total proportion discharged at the end
of t days of hospitalization is given by

f.t/ D 1 �
�

200
200C t

�3

Evaluate (a) f.0/, (b) f.100/, and (c) f.800/. (d) At the end of how
many days was half of the group discharged?

51. Psychology A psychophysical experiment was conducted
to analyze human response to electrical shocks.1 The subjects
received a shock of a certain intensity. They were told to assign a
magnitude of 10 to this particular shock, called the standard
stimulus. Then other shocks (stimuli) of various intensities were
given. For each one, the response R was to be a number that
indicated the perceived magnitude of the shock relative to that
of the standard stimulus. It was found that R was a function of

the intensity I of the shock (I in microamperes) and was
estimated by

R D f.I/ D
I 4=3

2500
500 � I � 3500

Evaluate (a) f(1000) and (b) f(2000). (c) Suppose that I0 and 2I0
are in the domain of f. Express f.2I0/ in terms of f.I0/. What effect
does the doubling of intensity have on response?

52. Profit For n � 3 the profit from selling n items is known to

be P.n/ D n=2C
p
n � 3. Find P.28/ and P.52/.

53. Demand Schedule The following table is called a demand
schedule. It gives a correspondence between the price p of a
product and the quantity q that consumers will demand (that is,
purchase) at that price. (a) If p D f.q/, list the numbers in the
domain of f. Find f.2900/ and f.3000/. (b) If q D g.p/, list the
numbers in the domain of g. Find g.10/ and g.17/.

Price per Unit, p Quantity Demanded per Week, q

$10 3000

12 2900

17 2300

20 2000

In Problems 54–57, use your calculator to find the indicated
values for the given function. Round answers to two decimal
places.

54. f.x/ D 2:03x3 � 5:27x2 � 13:71; (a) f.1:73/, (b) f.�5:78/,
(c) f.

p
2/

55. f.x/ D
14:7x2 � 3:95x � 15:76

24:3 � x3
; (a) f(4), (b) f.�17=4/,

(c) f.�/

56. f.x/ D .20:3 � 3:2x/.2:25x2 � 7:1x � 16/4; (a) f.0:3/,
(b) f.�0:02/, (c) f.1:9/

57. f.x/ D

s
p
5x2 C 3:23.xC 1/

7:2
; (a) f.11:7/, (b) f.�73/,

(c) f.0/

Objective 2.2 Special Functions
To introduce constant functions,
polynomial functions, rational
functions, case-defined functions, the
absolute-value function, and factorial
notation.

In this section, we look at functions having special forms and representations.We begin
with perhaps the simplest type of function there is: a constant function.

EXAMPLE 1 Constant Functions

Let h W .�1;1/� .�1;1/ be given by h.x/ D 2. The domain of h is .�1;1/,
the set of all real numbers. All function values are 2. For example,

h.10/ D 2 h.�387/ D 2 h.xC 3/ D 2

1Adapted from H. Babkoff, “Magnitude Estimation of Short Electrocutaneous Pulses,” Psychological Research,
39, no. 1 (1976), 39–49.
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We call h a constant function because all the function values are the same. More gen-
erally, a function of the form h.x/ D c, where c is a constant, is called a constant
function.

Now Work Problem 17 G

APPLY IT I
5. Suppose the monthly health insur-
ance premiums for an individual are
$125.00.

a. Write the monthly health insurance
premiums as a function of the num-
ber of visits the individual makes to the
doctor.
b. How do the health insurance premi-
ums change as the number of visits to
the doctor increases?
c.What kind of function is this?

A constant function belongs to a broader class of functions, called polynomial func-
tions. In general, a function of the form

f.x/ D cnxn C cn�1xn�1
C � � � C c1xC c0

where n is a nonnegative integer and cn; cn�1; : : : ; c0 are constants with cn ¤ 0, is called
a polynomial function (in x). The number n is called the degree of the polynomial, and
cn is the leading coefficient. Thus,

Each term in a polynomial function is
either a constant or a constant times a
positive integral power of x.

f.x/ D 3x2 � 8xC 9

is a polynomial function of degree 2 with leading coefficient 3. Likewise,
g.x/ D 4�2x has degree 1 and leading coefficient�2. Polynomial functions of degree 1
or 2 are called linear or quadratic functions, respectively. For example, g.x/ D 4�2x
is linear and f.x/ D 3x2 � 8xC 9 is quadratic. Note that a nonzero constant function,
such as f.x/ D 5 [which can be written as f.x/ D 5x0], is a polynomial function of
degree 0. The constant function f.x/ D 0, also called the zero function, is a polynomial
function but, by convention, the zero function has no degree assigned to it. The domain
of any polynomial function is the set of all real numbers.

APPLY IT I

6. The function d.t/ D 3t2, for t � 0,
represents the distance in meters a car
will go in t seconds when it has a con-
stant acceleration of 6m per second.

a.What kind of function is this?
b.What is its degree?
c.What is its leading coefficient?

EXAMPLE 2 Polynomial Functions

a. f.x/ D x3�6x2C7 is a polynomial (function) of degree 3 with leading coefficient 1.

b. g.x/ D
2x
3
is a linear function with leading coefficient

2
3
.

c. f.x/ D
2
x3

is not a polynomial function. Because f.x/ D 2x�3 and the exponent

for x is not a nonnegative integer, this function does not have the proper form for a
polynomial. Similarly, g.x/ D

p
x is not a polynomial, because g.x/ D x1=2.

Now Work Problem 3 G

A function that is a quotient of polynomial functions is called a rational function.

EXAMPLE 3 Rational Functions

a. f.x/ D
x2 � 6x
xC 5

is a rational function, since the numerator and denominator are each

polynomials. Note that this rational function is not defined for x D �5.

b. g.x/ D 2xC 3 is a rational function, since 2xC 3 D
2xC 3
1

. In fact, every polyno-
mial function is also a rational function.Every polynomial function is a rational

function. Now Work Problem 5 G

Sometimes more than one expression is needed to define a function, as Example 4
shows.

EXAMPLE 4 Case-Defined Function

Let

F.s/ D

8<: 1 if � 1 � s < 1
0 if 1 � s � 2

s � 3 if 2 < s � 8
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This is called a case-defined function because the rule for specifying it is given
by rules for each of several disjoint cases. Here s is the independent variable, and the
domain of F is all s such that �1 � s � 8. The value of s determines which expression
to use.

APPLY IT I
7. To reduce inventory, a department
store charges three rates. If you buy 0–5
pairs of socks, the price is $3.50 per
pair. If you buy 6–10 pairs of socks,
the price is $3.00 per pair. If you buy
more than 10 pairs, the price is $2.75
per pair. Write a case-defined function
to represent the cost of buying n pairs of
socks.

Find F.0/: Since �1 � 0 < 1, we have F.0/ D 1

Find F.2/: Since 1 � 2 � 2, we have F.2/ D 0

Find F.7/: Since 2 < 7 � 8, we substitute 7 for s in s � 3.

F.7/ D 7 � 3 D 4

Now Work Problem 19 G

EXAMPLE 5 Absolute-Value Function

The function j�j.x/ D jxj is called the absolute-value function. Recall that the absolute
value of a real number x is denoted jxj and is defined by

The absolute-value function is an
example of a case-defined function.

jxj D
�

x if x � 0
�x if x < 0

Thus, the domain of j�j is all real numbers. Some function values are

j16j D 16

j �
4
3 j D �

�
�

4
3

�
D

4
3

j0j D 0

Now Work Problem 21 G

In our next examples, we make use of factorial notation.

The symbol r!, with r a positive integer, is read “r factorial”. It represents the prod-
uct of the first r positive integers:

rŠ D 1 � 2 � 3 � � � r

We also define

0Š D 1

For each nonnegative integer n, .�/Š.n/ D nŠ determines a unique number, so it
follows that .�/Š is a function whose domain is the set of nonnegative integers.

APPLY IT I
8. Seven different books are to be
placed on a shelf. How many ways can
they be arranged? Represent the ques-
tion as a factorial problem and give the
solution.

EXAMPLE 6 Factorials

a. 5Š D 1 � 2 � 3 � 4 � 5 D 120

b. 3Š.6 � 5/Š D 3Š � 1Š D .3 � 2 � 1/.1/ D .6/.1/ D 6

c.
4Š
0Š
D

1 � 2 � 3 � 4
1

D
24
1
D 24

Now Work Problem 27 G

EXAMPLE 7 Genetics

Suppose two black guinea pigs are bred and produce exactly five offspring. Under cer-
tain conditions, it can be shown that the probability P that exactly r of the offspring
will be brown and the others black is a function of r, P D P.r/, whereFactorials occur frequently in probability

theory.

P.r/ D
5Š
�
1
4

�r � 3
4

�5�r

rŠ.5 � r/Š
r D 0; 1; 2; : : : ; 5
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The letter P in PDP.r/ is used in two ways. On the right side, P represents the func-
tion rule. On the left side, P represents the dependent variable. The domain of P is all
integers from 0 to 5, inclusive. Find the probability that exactly three guinea pigs will
be brown.

Solution: We want to find P(3). We have

P.3/ D
5Š
�
1
4

�3 � 3
4

�2
3Š2Š

D
120

�
1
64

��
9
16

�
6.2/

D
45
512

Now Work Problem 35 G

EXAMPLE 8 Income Tax

The Canadian Federal tax rates for 2015 were given by 15% on the first $44,701; 22%
on income over $44,701 up to $89,401; 26% on income over $89,401 up to $138,586;
and 29% on income over $138,586. (a) Express the Canadian Federal tax rate t as a
case-defined function of income i. (b) Express Canadian Federal income tax paid T as
a function of income i. (c) Express after-Federal-tax income a as a function of income
i and graph it.

Solution: (a) Translating the given information directly, in the style of Example 4, we
have

t.i/ D

8̂̂̂<̂
ˆ̂:
0:15 if 0 � i � 44;701

0:22 if 44;701 < i � 89;401

0:26 if 89;401 < i � 138;586

0:29 if 138;586 < i

(b) For 0 � i � 44;701, T.i/ D 0:15i. Note that T.44;701/ D 6705:15.

For 44;701 < i � 89;401, it follows that T.i/ D 6705:15C 0:22.i � 44;701/.

Note that T.89;401/ D 6705:15C 0:22.89;401 � 44;701/ D 16;539:15.

For 89;401 < i � 138;586, T.i/ D 16;539:15C 0:26.i � 89;401/.

Note that T.138;586/ D 16;539:15C 0:26.138;586 � 89;401/ D 29;327:25.

Finally, for 138;586 < i, we have T.i/ D 29;327:25C 0:29.i � 138;586/ and

T.i/ D

8̂̂̂<̂
ˆ̂:

0:15i if 0 � i � 44;701

6705:15C 0:22.i � 44;701/ if 44;701 < i � 89;401

16;539:15C 0:26.i � 89;401/ if 89;401 < i � 138;586

29;327:25C 0:29.i � 138;586/ if 138;586 < i

(c) The function a is given by a.i/ D i� T.i/, another case-defined function, with
the same case rules as those for T:

a.i/ D

8̂̂̂<̂
ˆ̂:

0:85i if 0 � i � 44;701

3129:07C 0:78i if 44;701 < i � 89;401

6705:11C 0:74i if 89;401 < i � 138;586

10;862:69C 0:71i if 138;586 < i

Observe from Figure 2.2 that whenever i < j for incomes i and j, a.i/ < a.j/.
There is a sort of urban myth that one can end up with a reduction in after-tax income
by getting an increase in income that puts one in a higher tax bracket. The graph in
Figure 2.2 shows that this myth is false.
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FIGURE 2.2 After-Federal-tax income as a function of income.

Now Work Problem 33 G

EXAMPLE 9 Horner’s Method

Consider the task of evaluating the polynomial f.x/ D 2x4 C 5x3 C 7x2 � 2x C 5
at 6:95182, say, on a very unsophisticated hand-held calculator. If we apply the
operations in the order suggested, we find ourselves entering 6:95182 ten times and
striking the multiplication key ten times. “Horner’s Method” begins by rewriting
f.x/ D ...2x C 5/x C 7/x � 2/x C 5. How many times does this method of evalua-
tion require us to enter 6:95182 and how many multiplications are required?

Solution: Simply counting occurrences of x we see that only four entries of 6:95182
are required. Similarly, we see that this evaluation requires only four multiplications.
(Entry of coefficients and number of additions/subtractions are unaffected by Horner’s
Method).

G

PROBLEMS 2.2
In Problems 1–4, determine whether the given function is a
polynomial function.

1. f.x/ D x2 � x4 C 4 2. f.x/ D
x3 C 7x � 3

3

3. g.x/ D
5

3xC 1
4. g.x/ D 2�3x3

In Problems 5–8, determine whether the given function is a
rational function.

5. f.x/ D
x2 C x
x3 C 4

6. f.x/ D
3

2xC 1

7. g.x/ D
�
1 if x < 5
4 if x � 5 8. g.x/ D 2x�5

In Problems 9–12, find the domain of each function.

9. k.z/ D 26 10. f.x/ D
p
�

11. f.x/ D
�
5x if x > 1
4 if x � 1 12. f.x/ D

�
4 if x D 3
x2 if 1 � x < 3

In Problems 13–16, state (a) the degree and (b) the leading
coefficient of the given polynomial function.

13. F.x/ D 2x3 � 32x2 C 5x4 14. g.x/ D 9x2 C 2xC 1

15. f.x/ D
1
�
� 3x5 C 2x6 C x7 16. f.x/ D 9

In Problems 17–22, find the function values for each function.

17. f.x/ D 8; f.2/, f.tC 8/; f.�
p
17/

18. g.x/ D j2xC 1j; g.20/, g.5/, g.�7/

19. F.t/ D

8<: 2 if t > 1
0 if t D 1
�1 if t < 1

I

F.12/, F.�
p
3/, F.1/, F

�
18
5

�
20. f.x/ D

�
4 if x � 0
3 if x < 0 I

f.3/; f.�4/; f.0/

21. G.x/ D
�

x � 1 if x � 3
3 � x2 if x < 3

I

G.8/, G.3/, G.�1/, G.1/

22. F.�/ D
�

2� � 5 if � < 2
�2 � 3� C 1 if � > 2

I

F.3/, F.�3/, F.2/
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In Problems 23–28, determine the value of each expression.

23. 9Š 24. .3 � 3/Š 25. .4 � 2/Š

26. 6Š � 2Š 27.
nŠ

.n � 1/Š
28.

9Š
4Š.9 � 4/Š

29. Subway Ride A return subway ride ticket within the city
costs $2.50. Write the cost of a return ticket as a function of a
passenger’s income. What kind of function is this?

30. Geometry A rectangular prism has length three more than
its width and height one less than twice the width. Write the
volume of the rectangular prism as a function of the width. What
kind of function is this?

31. Cost Function In manufacturing a component for a
machine, the initial cost of a die is $850 and all other additional
costs are $3 per unit produced. (a) Express the total cost C (in
dollars) as a linear function of the number q of units produced.
(b) How many units are produced if the total cost is $1600?

32. Investment If a principal of P dollars is invested at a
simple annual interest rate of r for t years, express the total
accumulated amount of the principal and interest as a function
of t. Is your result a linear function of t?

33. Capital Gains The Canadian tax rates in Example 8 refer
to personal income other than capital gains. Using the same
cut-off points as in Example 8, which define what are called tax
brackets in tax terminology, the capital gains rates for each
“bracket” are precisely half of the rates given in Example 8. Write
a case-defined function that describes capital gains tax rate c as a
function of capital gains income j.

34. Factorials The business mathematics class has elected a
grievance committee of five to complain to the faculty about the
introduction of factorial notation into the course. They decide
that they will be more effective if they label themselves as
members A, G, M, N, and S, where member A will lobby faculty
with surnames A through F, member G will lobby faculty with
surnames G through L, and so on. In how many ways can the
committee so label its members?

35. Genetics Under certain conditions, if two brown-eyed
parents have exactly three children, the probability that there
will be exactly r blue-eyed children is given by the function

P D P.r/, where

P.r/ D
3Š
�
1
4

�r� 3
4

�3�r

rŠ.3 � r/Š
; r D 0; 1; 2; 3

Find the probability that exactly two of the children will be
blue eyed.

36. Genetics In Example 7, find the probability that all five
offspring will be brown.

37. Bacteria Growth Bacteria are growing in a culture. The
time t (in hours) for the bacteria to double in number (the
generation time) is a function of the temperature T (in ıC) of the
culture. If this function is given by2

t D f.T/ D

8̂̂<̂
:̂

1
24

TC
11
4

if 30 � T � 36

4
3
T �

175
4

if 36 < T � 39

(a) determine the domain of f and (b) find f.30/, f.36/, and f.39/.

In Problems 38–41, use a calculator to find the indicated function
values for the given function. Round answers to two decimal
places.

38. f.x/ D

(
0:11x3 � 15:31 if x < 2:57

0:42x4 � 12:31 if x � 2:57

(a) f.2:14/ (b) f.3:27/ (c) f.�4/

39. f.x/ D

(
29:5x4 C 30:4 if x < 3

7:9x3 � 2:1x if x � 3

(a) f.2:5/ (b) f.�3:6/ (c) f.3:2/

40. f.x/ D

8̂<̂
:
4:07x � 2:3 if x < �8

19:12 if � 8 � x < �2

x2 � 4x�2 if x � �2

(a) f.�5:8/ (b) f.�14:9/ (c) f(7.6)

41. f.x/ D

8̂<̂
:

x=.xC 3/ if x < �5

x.x � 4/2 if � 5 � x < 0
p
2:1xC 3 if x � 0

(a) f.�
p
30/ (b) f.46/ (c) f.�2=3/

Objective 2.3 Combinations of Functions
To combine functions by means of
addition, subtraction, multiplication,
division, multiplication by a constant,
and composition.

There are several ways of combining two functions to create a new function. Suppose
f and g are the functions given by

f.x/ D x2 and g.x/ D 3x

Adding f.x/ and g.x/ gives

f.x/C g.x/ D x2 C 3x

This operation defines a new function called the sum of f and g, denoted f C g. Its
function value at x is f.x/C g.x/. That is,

. fC g/.x/ D f.x/C g.x/ D x2 C 3x

2Adapted from F. K. E. Imrie and A. J. Vlitos, “Production of Fungal Protein from Carob,” in Single-Cell Protein
II, ed. S. R. Tannenbaum and D. I. C. Wang (Cambridge, MA: MIT Press, 1975).
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For example,

. fC g/.2/ D 22 C 3.2/ D 10

In general, for any functions f; g W X � .�1;1/, we define the sum f C g, the

difference f � g, the product fg, and the quotient
f
g
as follows:

. fC g/.x/ D f.x/C g.x/

. f � g/.x/ D f.x/ � g.x/

. fg/.x/ D f.x/ � g.x/

f
g
.x/ D

f.x/
g.x/

for g.x/ ¤ 0

For each of the four new functions, the domain is the set of all x that belong to both the
domain of f and the domain of g, with the domain of the quotient further restricted to
exclude any value of x for which g.x/ D 0. In each of the four combinations, we have
a new function from X to .�1;1/. For example, we have

fC g W X� .�1;1/

A special case of fg deserves separate mention. For any real number c and any function
f, we define cf by

.cf /.x/ D c � f.x/

This restricted case of product is called the scalar product.
For f.x/ D x2, g.x/ D 3x, and c D

p
2 we have

. fC g/.x/ D f.x/C g.x/ D x2 C 3x

. f � g/.x/ D f.x/ � g.x/ D x2 � 3x

. fg/.x/ D f.x/ � g.x/ D x2.3x/ D 3x3

f
g
.x/ D

f.x/
g.x/
D

x2

3x
D

x
3

for x ¤ 0

.cf /.x/ D cf.x/ D
p
2x2

EXAMPLE 1 Combining Functions

If f.x/ D 3x � 1 and g.x/ D x2 C 3x, find

a. . fC g/.x/

b. . f � g/.x/

c. . fg/.x/

d.
f
g
.x/

e. ..1=2/f /.x/

Solution:

a. . fC g/.x/ D f.x/C g.x/ D .3x � 1/C .x2 C 3x/ D x2 C 6x � 1

b. . f � g/.x/ D f.x/ � g.x/ D .3x � 1/ � .x2 C 3x/ D �1 � x2

c. . fg/.x/ D f.x/g.x/ D .3x � 1/.x2 C 3x/ D 3x3 C 8x2 � 3x
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d.
f
g
.x/ D

f.x/
g.x/
D

3x � 1
x2 C 3x

e. ..1=2/f /.x/ D .1=2/. f.x// D .1=2/.3x � 1/

Now Work Problem 3(a)--(f) G

Composition
We can also combine two functions by first applying one function to an input and then
applying the other function to the output of the first. For example, suppose g.x/ D 3x,
f.x/ D x2, and x D 2. Then g.2/ D 3 � 2 D 6. Thus, g sends the input 2 to the output 6:

2
g
‘ 6

Next, we let the output 6 become the input for f:

f.6/ D 62 D 36

So f sends 6 to 36:

6
f
‘ 36

By first applying g and then f, we send 2 to 36:

2
g
‘ 6

f
‘ 36

To be more general, replace the 2 by x, where x is in the domain of g. (See Figure 2.3.)
Applying g to x, we get the number g.x/, which we will assume is in the domain of
f. By applying f to g.x/, we get f.g.x/), read “f of g of x,” which is in the range of f.
The operation of applying g and then applying f to the result is called composition, and
the resulting function, denoted f ı g, is called the composite of f with g. This function
assigns the output f.g.x/) to the input x. (See the bottom arrow in Figure 2.3.) Thus,
. f ı g/.x/ D f.g.x//.

Domain of f
Range of f

Domain
of g

g(x)

f(g(x))
= ( f 

5 g)(x)

f 
5 g

x

g
f

FIGURE 2.3 Composite of f with g.

Definition
For functions g W X� Y and f W Y� Z, the composite of fwith g is the function
f ı g W X� Z defined by

. f ı g/.x/ D f.g.x//

where the domain of f ı g is the set of all those x in the domain of g such that g.x/
is in the domain of f.

For f.x/ D x2 and g.x/ D 3x, we can get a simple form for f ı g:

. f ı g/.x/ D f.g.x// D f.3x/ D .3x/2 D 9x2

For example, . f ı g/.2/ D 9.2/2 D 36, as we saw before.
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When dealing with real numbers and the operation of addition, 0 is special in that
for any real number a, we have

aC 0 D a D 0C a

The number 1 has a similar property with respect to multiplication. For any real number
a, we have

a1 D a D 1a

For reference, in Section 2.4 we note that the function I defined by I.x/ D x satisfies,
for any function f,

f ı I D f D I ı f

where here we mean equality of functions as defined in Section 2.1. Indeed, for any x,

. f ı I/.x/ D f.I.x// D f.x/ D I. f.x// D .I ı f /.x/

The function I is called the identity function.
APPLY IT I
9. ACD costs x dollars wholesale. The
price the store pays is given by the func-
tion s.x/ D x C 3. The price the cus-
tomer pays is c.x/ D 2x, where x is the
price the store pays. Write a composite
function to find the customer’s price as
a function of the wholesale price.

EXAMPLE 2 Composition

Let f.x/ D
p
x and g.x/ D xC 1. Find

a. . f ı g/.x/
b. .g ı f /.x/

Solution:

a. . f ı g/.x/ is f.g.x/). Now g adds 1 to x, and f takes the square root of the result.
Thus,

. f ı g/.x/ D f.g.x// D f.xC 1/ D
p
xC 1

The domain of g is all real numbers x, and the domain of f is all nonnegative reals.
Hence, the domain of the composite is all x for which g.x/ D xC 1 is nonnegative.
That is, the domain is all x � �1, which is the interval Œ�1;1/.

b. .g ı f /.x/ is g( f.x/). Now f takes the square root of x, and g adds 1 to the result.
Thus, g adds 1 to

p
x, and we have

.g ı f /.x/ D g. f.x// D g.
p
x/ D

p
xC 1

The domain of f is all x � 0, and the domain of g is all reals. Hence, the domain of
the composite is all x � 0 for which f.x/ D

p
x is real, namely, all x � 0.

Now Work Problem 7 G

Generally, f ı g and g ı f are different. In
Example 2,

. f ı g/.x/ D
p
xC 1

but we have

.g ı f /.x/ D
p
xC 1

Observe that . f ı g/.1/ D
p
2, while

.g ı f /.1/ D 2. Also, do not confuse
f.g.x/) with . fg/.x/, which is the product
f.x/g.x/. Here

f.g.x// D
p
xC 1

but

f.x/g.x/ D
p
x.xC 1/ Composition is associative, meaning that for any three functions f, g, and h,

. f ı g/ ı h D f ı .g ı h/

EXAMPLE 3 Composition

If F.p/ D p2 C 4p � 3, G.p/ D 2pC 1, and H.p/ D jpj, find

a. F.G.p//

b. F.G.H.p///

c. G.F.1//
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Solution:
a. F.G.p// D F.2pC1/ D .2pC1/2C4.2pC1/�3 D 4p2C12pC2 D .FıG/.p/

b. F.G.H.p/// D .F ı .G ı H//.p/ D ..F ı G/ ı H/.p/ D .F ı G/.H.p// D
.F ı G/.jpj/ D 4jpj2 C 12jpj C 2 D 4p2 C 12jpj C 2

c. G.F.1// D G.12 C 4 � 1 � 3/ D G.2/ D 2 � 2C 1 D 5

Now Work Problem 9 G

In calculus, it is sometimes necessary to think of a particular function as a com-
posite of two simpler functions, as the next example shows.

EXAMPLE 4 Expressing a Function as a Composite

Express h.x/ D .2x � 1/3 as a composite.

Solution:
We note that h.x/ is obtained by finding 2x � 1 and cubing the result. Suppose we let
g.x/ D 2x � 1 and f.x/ D x3. Then

h.x/ D .2x � 1/3 D .g.x//3 D f.g.x// D . f ı g/.x/

which gives h as a composite of two functions.

Now Work Problem 13 G

PROBLEMS 2.3
1. If f.x/ D xC 3 and g.x/ D xC 5, find the following.

(a) . fC g/.x/ (b) . fC g/.0/ (c) . f � g/.x/

(d) ( fg).x/ (e) . fg/.�2/ (f)
f
g
.x/

(g) . f ı g/.x/ (h) . f ı g/.3/ (i) .g ı f /.x/

( j) .g ı f /.3/

2. If f.x/ D 2x and g.x/ D 6C x, find the following.

(a) . fC g/.x/ (b) . f � g/.x/ (c) . f � g/.4/

(d) . fg/.x/ (e)
f
g
.x/ (f)

f
g
.2/

(g) . f ı g/.x/ (h) .g ı f /.x/ (i) .g ı f /.2/

3. If f.x/ D x2 � 1 and g.x/ D x2 C x, find the following.

(a) . fC g/.x/ (b) . f � g/.x/ (c) . f � g/
�
�

1
2

�
(d) ( fg).x/ (e)

f
g
.x/ (f)

f
g

�
�
1
2

�
(g) . f ı g/.x/ (h) .g ı f /.x/ (i) .g ı f /.�3/

4. If f.x/ D 2x2 C 5 and g.x/ D 3, find the following.

(a) . fC g/.x/ (b) . fC g/
�
1
2

�
(c) . f � g/.x/

(d) . fg/.x/ (e) . fg/.2/ (f)
f
g
.x/

(g) . f ı g/.x/ (h) . f ı g/.100:003/ (i) .g ı f /.x/

5. If f.x/ D 3x2 C 6 and g.x/ D 4 � 2x, find f(g(2)) and g(f(2)).

6. If f.p/ D
4
p
and g.p/ D

p � 2
3

, find both . f ı g/.p/ and

.g ı f /.p/.

7. If F.t/ D t2 C 7tC 1 and G.t/ D
2

t � 1
, find .F ı G/.t/ and

.G ı F/.t/.

8. If F.t/ D
p
t and G.t/ D 2t2 � 2tC 1, find .F ı G/.t/ and

.G ı F/.t/.

9. If f.v/ D
2

v2 � 3
and g.v/ D

p
3vC 1, find . f ı g/.v/ and

.g ı f /.v/.

10. If f.x/ D x2 C 2x � 1, find . f ı f /.x/.

In Problems 11–16, find functions f and g such that
h.x/ D f.g.x//.

11. h.x/ D 11x � 7

12. h.x/ D
p
x2 � 2

13. h.x/ D
3

x2 C xC 1

14. h.x/ D 7.4x2 C 7x/2 � 5.4x2 C 7x/C 1

15. h.x/ D 4

s
x2 � 1
xC 3

16. h.x/ D
2 � .3x � 5/
.3x � 5/2 C 2

17. Profit A coffeehouse sells a pound of coffee for $9.75.
Expenses are $4500 each month, plus $4.25 for each pound of
coffee sold.
(a) Write a function r.x/ for the total monthly revenue as a
function of the number of pounds of coffee sold.
(b) Write a function e.x/ for the total monthly expenses as a
function of the number of pounds of coffee sold.
(c) Write a function .r � e/.x/ for the total monthly profit as a
function of the number of pounds of coffee sold.
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18. Geometry Suppose the volume of a sphere is
v.x/ D 4

3�.3x � 1/
3. Express v as a composite of two functions,

and explain what each function represents.

19. Business A manufacturer determines that the total number
of units of output per day, q, is a function of the number of
employees, m, where

q D f.m/ D
.20m � m2/

2

The total revenue r that is received for selling q units is given by
the function g, where r D g.q/ D 24q. Find .g ı f /.m/. What does
this composite function describe?

20. Sociology Studies have been conducted concerning the
statistical relations among a person’s status, education, and
income.3 Let S denote a numerical value of status based on annual
income I. For a certain population, suppose

S D f.I/ D 0:45.I � 1000/0:53

Furthermore, suppose a person’s income I is a function of the
number of years of education E, where

I D g.E/ D 7202C 0:29E3:68

Find . f ı g/.E/. What does this function describe?

In Problems 21–24, for the given functions f and g, find the
indicated function values. Round answers to two decimal places.

21. f.x/ D .4x � 13/2, g.x/ D 0:2x2 � 4xC 3
(a) . fC g/.4:5/, (b) . f ı g/.�2/

22. f.x/ D

r
x � 3
xC 1

, g.x/ D 11:2xC 5:39

(a)
f
g
.�2/, (b) .g ı f /.�10/

23. f.x/ D x4=5, g.x/ D x2 � 8

(a) . fg/.7/, (b) .g ı f /.3:75/

24. f.x/ D
2

xC 1
, g.x/ D

1
x3

(a) . f ı g/.2:17/, (b) .g ı f /.2:17/

Objective 2.4 Inverse Functions
To introduce inverse functions, their
properties, and their uses.

Just as �a is the number for which

aC .�a/ D 0 D .�a/C a

and, for a ¤ 0, a�1 is the number for which

aa�1
D 1 D a�1a

so, given a function f WX � Y, we can inquire about the existence of a function g
satisfying

f ı g D I D g ı f (1)

where I is the identity function, introduced in the subsection titled “Composition” of
Section 2.3 and given by I.x/ D x. Suppose that we have g as above and a function h
that also satisfies the equations of (1) so that

f ı h D I D h ı f

Then

h D h ı I D h ı . f ı g/ D .h ı f / ı g D I ı g D g

shows that there is at most one function satisfying the requirements of g in
(1). In mathematical jargon, g is uniquely determined by f and is therefore given a
name, g D f �1, that reflects its dependence on f. The function f �1 is read as f inverse
and called the inverse of f.

Do not confuse f �1, the inverse of f,

and
1
f
, the multiplicative reciprocal of f.

Unfortunately, the notation for inverse
functions clashes with the numerical use
of .�/�1. Usually, f �1.x/ is different

from
1
f
.x/ D

1
f.x/

. For example, I�1 D I

(since I ı I D I) so I�1.x/ D x, but
1
I
.x/ D

1
I.x/
D

1
x
.

The additive inverse �a exists for any number a; the multiplicative inverse a�1

exists precisely if a ¤ 0. The existence of f �1 places a strong requirement on a function
f. It can be shown that f �1 exists if and only if, for all a and b, whenever f.a/ D f.b/,
then a D b. It may be helpful to think that such an f can be canceled (on the left).

3R. K. Leik and B. F. Meeker,Mathematical Sociology (Englewood Cliffs, NJ:
Prentice Hall, 1975).
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A function f that satisfies

for all a and b; if f.a/ D f.b/ then a D b

is called a one-to-one function.

Thus, we can say that a function has an inverse precisely if it is one-to-one. An equiv-
alent way to express the one-to-one condition is

for all a and b; if a ¤ b then f.a/ ¤ f.b/

so that distinct inputs give rise to distinct outputs. Observe that this condition is not
met for many simple functions. For example, if

f.x/ D x2, then f.�1/ D .�1/2 D 1 D .1/2 D f.1/

and �1 ¤ 1 shows that the squaring function is not one-to-one. Similarly, f.x/ D jxj
is not one-to-one.

In general, the domain of f �1 is the range of f and the range of f �1 is the domain of f.
Let us note here that the equations of (1) are equivalent to

f �1. f.x// D x for all x in the domain of f (2)

and

f. f �1.y// D y for all y in the range of f (3)

In general, the range of f, which is equal to the domain of f �1, can be different from
the domain of f.

EXAMPLE 1 Inverses of Linear Functions

According to Section 2.2, a function of the form f.x/ D axCb, where a ¤ 0, is a linear
function. Show that a linear function is one-to-one. Find the inverse of f.x/ D axC b
and show that it is also linear.

Solution: Assume that f.u/ D f.v/; that is,

auC b D avC b (4)

To show that f is one-to-one, we must show that u D v follows from this assumption.
Subtracting b from both sides of (4) gives au D av, from which u D v follows by
dividing both sides by a. (We assumed that a ¤ 0.) Since f is given by first multiplying
by a and then adding b, we might expect that the effect of f can be undone by first

subtracting b and then dividing by a. So consider g.x/ D
x � b
a

. We have

. f ı g/.x/ D f.g.x// D a
x � b
a
C b D .x � b/C b D x

and

.g ı f /.x/ D g. f.x// D
.axC b/ � b

a
D

ax
a
D x

Since g satisfies the two requirements of (1), it follows that g is the inverse of f. That

is, f �1.x/ D
x � b
a
D

1
a
xC
�b
a

and the last equality shows that f �1 is also a linear
function.

Now Work Problem 1 G

EXAMPLE 2 Identities for Inverses

Show that

a. If f and g are one-to-one functions, the composite f ı g is also one-to-one and
. f ı g/�1 D g�1 ı f �1.

b. If f is one-to-one, then . f �1/�1 D f.
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Solution:
a. Assume . f ı g/.a/ D . f ı g/.b/; that is, f.g.a// D f.g.b//. Since f is one-to-one,

g.a/ D g.b/. Since g is one-to-one, a D b and this shows that f ı g is one-to-one.
The equations

. f ı g/ ı .g�1
ı f �1/ D f ı .g ı g�1/ ı f �1

D f ı I ı f �1
D f ı f �1

D I

and

.g�1
ı f �1/ ı . f ı g/ D g�1

ı . f �1
ı f / ı g D g�1

ı I ı g D g�1
ı g D I

show that g�1 ı f �1 is the inverse of f ı g, which, in symbols, is the statement
g�1 ı f �1 D . f ı g/�1.

b. In Equations (2) and (3), replace f by f �1. Taking g to be f shows that Equation (1)
is satisfied, and this gives . f �1/�1 D f.

G

EXAMPLE 3 Inverses Used to Solve Equations

Many equations take the form f.x/ D 0, where f is a function. If f is a one-to-one
function, then the equation has x D f �1.0/ as its unique solution.

Solution: Applying f �1 to both sides of f.x/ D 0 gives f �1. f.x// D f �1.0/,
and f �1. f.x// D x shows that x D f �1.0/ is the only possible solution. Since
f. f �1.0// D 0, f �1.0/ is indeed a solution.

G

EXAMPLE 4 Restricting the Domain of a Function

It may happen that a function f whose domain is the natural one, consisting of all ele-
ments for which the defining rule makes sense, is not one-to-one, and yet a one-to-one
function g can be obtained by restricting the domain of f.

Solution: For example, we have shown that the function f.x/ D x2 is not one-to-one
but the function g.x/ D x2 with domain explicitly given as Œ0;1/ is one-to-one. Since
.
p
x/2 D x and

p
x2 D x, for x � 0, it follows that p is the inverse of the restricted

squaring function g. Here is a more contrived example. Let f.x/ D jxj (with its natural
domain). Let g.x/ D jxjwith domain explicitly given as .�1;�1/[Œ0; 1�. The function
g is one-to-one and hence has an inverse.

G

EXAMPLE 5 Finding the Inverse of a Function

To find the inverse of a one-to-one function f, solve the equation y D f.x/ for x in terms
of y obtaining x D g.y/. Then f �1.x/ D g.x/. To illustrate, find f �1.x/ if f.x/ D .x�1/2,
for x � 1.

Solution: Let y D .x � 1/2, for x � 1. Then x � 1 D
p
y and hence x D

p
yC 1. It

follows that f �1.x/ D
p
xC 1.

Now Work Problem 5 G

PROBLEMS 2.4
In Problems 1–6, find the inverse of the given function.

1. f.x/ D 3xC 7 2. g.x/ D 5x � 3
3. F.x/ D 1

2x � 7 4. f.x/ D .4x � 5/2, for x � 5
4

5. A.r/ D 4�r2, for r � 0 6. V.r/ D 4
3�r

3

In Problems 7–10, determine whether or not the function is
one-to-one.

7. f.x/ D 5xC 12 8. g.x/ D .3xC 4/2

9. h.x/ D .5xC 12/2, for x � � 12
5

10. F.x/ D jxC 10j
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In Problems 11 and 12, solve each equation by finding an inverse
function.

11. .4x � 5/2 D 23, for x � 5
4

12. 2x3 C 1 D 129

13. Demand Function The function

p D p.q/ D
1,200,000

q
q > 0

expresses an actor’s charge per film p as a function of the number
of films, q, that she stars in. Express the number of films in which
she stars in terms of her charge per film. Show that the expression

is a function of p. Show that the resulting function is inverse to the
function giving p in terms of q.

14. Supply Function The weekly supply function for a pound
of house-blend coffee at a coffee shop is

p D p.q/ D
q
48

q > 0

where q is the number of pounds of coffee supplied per week and
p is the price per pound. Express q as a function of p and
demonstrate the relationship between the two functions.

15. Does the function f.x/ D 10x have an inverse?

Objective 2.5 Graphs in Rectangular Coordinates
To graph equations and functions
in rectangular coordinates, to
determine intercepts, to apply
the vertical-line test and the
horizontal-line test, and to
determine the domain and range
of a function from a graph.

A rectangular coordinate system allows us to specify and locate points in a plane. It
also provides a geometric way to graph equations in two variables, in particular those
arising from functions.

In a plane, two real-number lines, called coordinate axes, are constructed per-
pendicular to each other so that their origins coincide, as in Figure 2.4. Their point of
intersection is called the origin of the coordinate system. We will call the horizontal
line the x-axis and the vertical line the y-axis.

The plane on which the coordinate axes are placed is called a rectangular coordi-
nate plane or simply an x,y-plane. Every point in the x,y-plane can be labeled to indicate
its position. To label point P in Figure 2.5(a), we draw perpendiculars from P to the
x-axis and y-axis. They meet these axes at 4 and 2, respectively. Thus, P determines
two numbers, 4 and 2. We say that the rectangular coordinates of P are given by the
ordered pair .4; 2/. As we remarked in Section 2.1, the word ordered is important. In
the terminology of Section 2.1, we are labeling the points of the plane by the elements
of the set .�1;1/ � .�1;1/. In Figure 2.5(b), the point corresponding to .4; 2/ is
not the same as that corresponding to .2; 4/:

.4; 2/ ¤ .2; 4/

-4 -3 -2

-1

-2

-3

-1 1

1

2

3

2

3
x

y

4

Origin

FIGURE 2.4 Coordinate axes.

4

(a) (b)

x

y

2

42
x

y

2

4

P(4, 2)
(4, 2)

(2, 4)

(2, 4) Z (4, 2)

FIGURE 2.5 Rectangular coordinates.

In general, if P is any point, then its rectangular coordinates will be given by an
ordered pair of the form .a; b/. (See Figure 2.6.) We call a the x-coordinate of P, and b
the y-coordinate of P. We accept that the notation for an ordered pair of real numbers is
the same as that for an open interval but the practice is strongly entrenched and almost
never causes any confusion.

P(a, b)

x
a

y

b

FIGURE 2.6 Coordinates of P.

Accordingly, with each point in a given coordinate plane, we can associate exactly
one ordered pair .a; b/ of real numbers. Also, it should be clear that with each ordered
pair .a; b/ of real numbers, we can associate exactly one point in that plane. Since there
is a one-to-one correspondence between the points in the plane and all ordered pairs
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of real numbers, we refer to a point P with x-coordinate a and y-coordinate b simply
as the point .a; b/, or as P.a; b/. Moreover, we use the words point and ordered pair of
real numbers interchangeably.

In Figure 2.7, the coordinates of various points are indicated. For example,
the point .1;�4/ is located one unit to the right of the y-axis and four units below the
x-axis. The origin is .0; 0/. The x-coordinate of every point on the y-axis is 0, and
the y-coordinate of every point on the x-axis is 0.

(3, 2)

(4, 0)

(0, -2)

(1, -4)
(-2, -3)

(0, 3)

(-3, 0) (0, 0)

(-    , 3)
5

2

x

y

FIGURE 2.7 Coordinates of
points.

The coordinate axes divide the plane into four regions called quadrants
(Figure 2.8). For example, quadrant I consists of all points .x1; y1/ with x1 > 0 and
y1 > 0. The points on the axes do not lie in any quadrant.

x

y

Quadrant III Quadrant IV

Quadrant II Quadrant I

(x2, y2)

x2 6 0, y2 7 0

(x1, y1)

x1 7 0, y1 7 0

(x3, y3)

x3 6 0, y3 6 0

(x4, y4)

x4 7 0, y4 6 0

FIGURE 2.8 Quadrants.

Using a rectangular coordinate system, we can geometrically represent equations
in two variables. For example, let us consider

y D x2 C 2x � 3 (1)

A solution of this equation is a value of x and a value of y that make the equation true.
For example, if x D 1, substituting into Equation (1) gives

y D 12 C 2.1/ � 3 D 0

Thus, x D 1; y D 0 is a solution of Equation (1). Similarly,

if x D �2 then y D .�2/2 C 2.�2/ � 3 D �3

and so x D �2; y D �3 is also a solution. By choosing other values for x, we can get
more solutions. [See Figure 2.9(a).] It should be clear that there are infinitely many
solutions of Equation (1).

Each solution gives rise to a point .x; y/. For example, to x D 1 and y D 0 corre-
sponds .1; 0/. The graph of y D x2 C 2x � 3 is the geometric representation of all its
solutions. In Figure 2.9(b), we have plotted the points corresponding to the solutions
in the table.

Since the equation has infinitely many solutions, it seems impossible to determine
its graph precisely. However, we are concerned only with the graph’s general shape. For
this reason, we plot enough points so that we can intelligently guess its proper shape.
(The calculus techniques to be studied in Chapter 13 will make such “guesses” much
more intelligent.) Then, we join these points by a smooth curve wherever conditions
permit. This gives the curve in Figure 2.9(c). Of course, the more points we plot, the
better our graph is. Here we assume that the graph extends indefinitely upward, as
indicated by arrows.

The point .0;�3/ where the curve intersects the y-axis is called the y-intercept.
The points .�3; 0/ and .1; 0/ where the curve intersects the x-axis are called theOften, we simply say that the y-intercept

is �3 and the x-intercepts are �3 and 1. x-intercepts. In general, we have the following definition.

x

y

x

yy

5

0

(a) (b) (c)

-2-4 2

y = x2 + 2x - 3

-4

5

x-intercept x-intercept

y-intercept

x

-4

-3

-3-2

-4-1

-30

01

52

FIGURE 2.9 Graphing y D x2 C 2x � 3.
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Definition
An x-intercept of the graph of an equation in x and y is a point where the graph
intersects the x-axis. A y-intercept is a point where the graph intersects the y-axis.

To find the x-intercepts of the graph of an equation in x and y, we first set y D 0 and
then solve the resulting equation for x. To find the y-intercepts, we first set x D 0 and
then solve for y. For example, let us find the x-intercepts for the graph of y D x2C2x�3.
Setting y D 0 and solving for x gives

0 D x2 C 2x � 3

0 D .xC 3/.x � 1/

x D �3; 1

Thus, the x-intercepts are .�3; 0/ and .1; 0/, as we saw before. If x D 0, then

y D 02 C 2.0/ � 3 D �3

So .0;�3/ is the y-intercept. Keep in mind that an x-intercept has its y-coordinate 0, and
a y-intercept has its x-coordinate 0. Intercepts are useful because they indicate precisely
where the graph intersects the axes.

EXAMPLE 1 Intercepts of a Graph

Find the x- and y-intercepts of the graph of y D 2xC 3, and sketch the graph.
APPLY IT I

10. Rachel has saved $7250 for college
expenses. She plans to spend $600 a
month from this account.Write an equa-
tion to represent the situation, and iden-
tify the intercepts.

Solution: If y D 0, then

0 D 2xC 3 so that x D �
3
2

Thus, the x-intercept is .� 3
2 ; 0/. If x D 0, then

y D 2.0/C 3 D 3

So the y-intercept is .0; 3/. Figure 2.10 shows a table of some points on the graph and
a sketch of the graph.

x

y

y = 2x + 3

1

5 1 7 -13y 0 4 2

1

1 -1 2 -20x -

3

2

1

2
-

1

2

x-intercept
y-intercept

FIGURE 2.10 Graph of y D 2xC 3.

Now Work Problem 9 G
EXAMPLE 2 Intercepts of a Graph

Determine the intercepts, if any, of the graph of s D
100
t
, and sketch the graph.

Solution: For the graph, we will label the horizontal axis t and the vertical axis s
(Figure 2.11). Because t cannot equal 0 (division by 0 is not defined), there is no
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s-intercept. Thus, the graph has no point corresponding to t D 0. Moreover, there
is no t-intercept, because if s D 0, then the equation

0 D
100
t

APPLY IT I
11. The price of admission to an amuse-
ment park is $24.95. This fee allows
the customer to ride all the rides at the
park as often as he or she likes. Write
an equation that represents the relation-
ship between the number of rides, x, that
a customer takes and the cost per ride,
y, to that customer. Describe the graph
of this equation, and identify the inter-
cepts. Assume x > 0.

has no solution. Remember, the only way that a fraction can be 0 is by having its
numerator 0. Figure 2.11 shows the graph. In general, the graph of s D k=t, where k is
a nonzero constant, is called a rectangular hyperbola.

t

s

5

20

-10

-10

10

10

-20

-5

-5

-20

4

25

-4

-25

2

50

-2

-50

20

5

s

t

20 40

10

20

No intercepts

s =
100
t

FIGURE 2.11 Graph of s D
100
t
.

Now Work Problem 11 G

EXAMPLE 3 Intercepts of a Graph

Determine the intercepts of the graph of x D 3, and sketch the graph.

Solution: We can think of x D 3 as an equation in the variables x and y if we write it
as x D 3C0y. Here y can be any value, but xmust be 3. Because x D 3 when y D 0, the
x-intercept is .3; 0/. There is no y-intercept, because x cannot be 0. (See Figure 2.12.)
The graph is a vertical line.

Now Work Problem 13 G

x

y

0 3 -2

333

y

x

3

-2

3
x = 3

x-intercept

FIGURE 2.12 Graph of x D 3.

Each function f gives rise to an equation, namely y D f.x/, which is a special case of
the equations we have been graphing. Its graph consists of all points .x; f.x//, where x
is in the domain of f. The vertical axis can be labeled either y or f.x/, where f is the name
of the function, and is referred to as the function-value axis. In this book we always
label the horizontal axis with the independent variable but note that economists label
the vertical axis with the independent variable. Observe that in graphing a function the
“solutions” .x; y/ that make the equation y D f.x/ true are handed to us. For each x
in the domain of f, we have exactly one y obtained by evaluating f.x/. The resulting
pair .x; f.x// is a point on the graph, and these are the only points on the graph of the
equation y D f.x/.

The x-intercepts of the graph of a real-valued function f are all those real numbers
x for which f.x/ D 0. As such they are also known as roots of the equation f.x/ D 0
and still further as zeros of the function f.

A useful geometric observation is that the graph of a function has at most one point
of intersection with any vertical line in the plane. Recall that the equation of a vertical
line is necessarily of the form x D a, where a is a constant. If a is not in the domain
of the function f, then x D a will not intersect the graph of y D f.x/. If a is in the
domain of the function f, then x D a will intersect the graph of y D f.x/ at the point
.a; f.a//, and only there. Conversely, if a set of points in the plane has the property that
any vertical line intersects the set at most once, then the set of points is actually the
graph of a function. (The domain of the function is the set of all real numbers a with
the property that the line x D a does intersect the given set of points, and for such an a
the corresponding function value is the y-coordinate of the unique point of intersection
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of the line x D a and the given set of points.) This is the basis of the vertical-line test
that we will discuss after Example 7.

x

f(x)

10

0f(x) 1

4

2

9

3

x

1 4 9

1

2

3

1

2

1

4

f(x) = x

FIGURE 2.13 Graph of
f.x/ D

p
x.

EXAMPLE 4 Graph of the Square-Root Function

Graph the function fW .�1;1/� .�1;1/ given by f.x/ D
p
x.

Solution: The graph is shown in Figure 2.13. We label the vertical axis as f.x/. Recall
that
p
x denotes the principal square root of x. Thus, f.9/ D

p
9 D 3, not ˙3. Also,

the domain of f is Œ0;1/ because its values are declared to be real numbers. Let us now
consider intercepts. If f.x/ D 0, then

p
x D 0, so that x D 0. Also, if x D 0, then

f.x/ D 0. Thus, the x-intercept and the vertical-axis intercept are the same, namely,
.0; 0/.

Now Work Problem 29 G

APPLY IT I
12. Brett rented a bike from a rental
shop, rode at a constant rate of 12 mi/h
for 2.5 hours along a bike path, and then
returned along the same path. Graph the
absolute-value-like function that repre-
sents Brett’s distance from the rental
shop as a function of time over the
appropriate domain.

EXAMPLE 5 Graph of the Absolute-Value Function

Graph p D G.q/ D jqj.

Solution: We use the independent variable q to label the horizontal axis. The function-
value axis can be labeled either G.q/ or p. (See Figure 2.14.) Notice that the q- and
p-intercepts are the same point, .0; 0/.

q

p =  q

p

-10

0p 1

1

1

3

3

-3

3

q 5

5

-5

5

-5 -3 -1 1

Note: Sharp corner
at origin

3 5

3

5

FIGURE 2.14 Graph of p D jqj.

Now Work Problem 31 G

x

y

4 x

f(x) (x, f(x))

f(4) = 3

Range:
all y 9 0

Domain: all real numbers

FIGURE 2.15 Domain, range, and function values.

Figure 2.15 shows the graph of a function y D f.x/. The point .x; f.x// tells us that
corresponding to the input number x on the horizontal axis is the output number f.x/
on the vertical axis, as indicated by the arrow. For example, corresponding to the input
4 is the output 3, so f.4/ D 3.

From the shape of the graph, it seems reasonable to assume that, for any value of
x, there is an output number, so the domain of f is all real numbers. Notice that the set
of all y-coordinates of points on the graph is the set of all nonnegative numbers. Thus,
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the range of f is all y � 0. This shows that we can make an “educated” guess about
the domain and range of a function by looking at its graph. In general, the domain
consists of all x-values that are included in the graph, and the range is all y-values
that are included. For example, Figure 2.13 tells us that both the domain and range of
f.x/ D

p
x are all nonnegative numbers. From Figure 2.14, it is clear that the domain

of p D G.q/ D jqj is all real numbers and the range is all p � 0.

t

s

1 2

s = F(t)

3 4

-1

1

Range:

-1 … s … 1

Domain: t Ú 0

FIGURE 2.16 Domain, range, and
function values.

EXAMPLE 6 Domain, Range, and Function Values

Figure 2.16 shows the graph of a function F. To the right of 4, assume that the graph
repeats itself indefinitely. Then the domain of F is all t � 0. The range is �1 � s � 1.
Some function values are

F.0/ D 0 F.1/ D 1 F.2/ D 0 F.3/ D �1

Now Work Problem 5 G

EXAMPLE 7 Graph of a Case-Defined Function

Graph the case-defined function

f.x/ D

8<: x if 0 � x < 3
x � 1 if 3 � x � 5

4 if 5 < x � 7

Solution: The domain of f is 0 � x � 7. The graph is given in Figure 2.17, where the
hollow dot means that the point is not included in the graph. Notice that the range of f
is all real numbers y such that 0 � y � 4.

APPLY IT I
13. To encourage conservation, a gas
company charges two rates. You pay
$0.53 per therm for 0–70 therms and
$0.74 for each therm over 70. Graph the
case-defined function that represents the
monthly cost of t therms of gas.

f(x)

x
3 5 7

2

4

5 6 710 2 3 4

3 4 4 40f(x) 1 2 2

x

Range:
0 … y … 4

Domain: 0 … x … 7

f(x) =

x   if 0 … x 6 3

x - 1   if 3 … x … 5

4   if 5 6 x … 7

FIGURE 2.17 Graph of a case-defined
function.

Now Work Problem 35 G

There is an easy way to tell whether a curve is the graph of a function. In
Figure 2.18(a), notice that with the given x there are associated two values of yW y1
and y2. Thus, the curve is not the graph of a function of x. Looking at it another way,
we have the following general rule, called the vertical-line test. If a vertical line, L, can
be drawn that intersects a curve in at least two points, then the curve is not the graph
of a function of x. When no such vertical line can be drawn, the curve is the graph of a
function of x. Consequently, the curves in Figure 2.18 do not represent functions of x,
but those in Figure 2.19 do.
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y

x

L

x
x

yy

y1

y2

L

x

Two outputs
for one input

(a) (c)(b)

FIGURE 2.18 y is not a function of x.

y

x

y

x

y

x

FIGURE 2.19 Functions of x.

EXAMPLE 8 A Graph That Does Not Represent a Function of x

Graph x D 2y2.

Solution: Here it is easier to choose values of y and then find the corresponding values
of x. Figure 2.20 shows the graph. By the vertical-line test, the equation x D 2y2 does
not define a function of x.

10 20

1

3

y

x

x = 2y
2

18 1820 2 8 8

-2 3 -30y 1 -1 2

x

FIGURE 2.20 Graph of x D 2y2.

Now Work Problem 39 G

After we have determined whether a curve is the graph of a function, perhaps using
the vertical-line test, there is an easy way to tell whether the function in question is one-
to-one. In Figure 2.15 we see that f.4/ D 3 and, apparently, also f.�4/ D 3. Since the
distinct input values �4 and 4 produce the same output, the function is not one-to-one.
Looking at it another way, we have the following general rule, called the horizontal-
line test. If a horizontal line, L, can be drawn that intersects the graph of a function in
at least two points, then the function is not one-to-one. When no such horizontal line
can be drawn, the function is one-to-one.

PROBLEMS 2.5
In Problems 1 and 2, locate and label each of the points, and give
the quadrant, if possible, in which each point lies.

1. .�1;�3/, .4;�2/,
�
�
2
5
; 4
�
, .6; 0/

2. .�4; 5/; .3; 0/; .1; 1/; .0;�6/

3. Figure 2.21(a) shows the graph of y D f.x/.

(a) Estimate f.0/, f(2), f(4), and f.�2/.
(b) What is the domain of f ?
(c) What is the range of f ?
(d) What is an x-intercept of f ?
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4. Figure 2.21(b) shows the graph of y D f.x/.

(a) Estimate f.0/ and f(2).
(b) What is the domain of f ?
(c) What is the range of f ?
(d) What is an x-intercept of f ?

2

y

x

y

y = f(x)
y = f(x)

x
-2

(a) (b)

2 24

1

2

3

FIGURE 2.21 Diagram for Problems 3 and 4.

5. Figure 2.22(a) shows the graph of y D f.x/.

(a) Estimate f.0/, f.1/, and f.�1/.
(b) What is the domain of f ?
(c) What is the range of f ?
(d) What is an x-intercept of f ?

6. Figure 2.22(b) shows the graph of y D f.x/.

(a) Estimate f.0/, f.2/, f.3/, and f.4/.
(b) What is the domain of f ?
(c) What is the range of f ?
(d) What is an x-intercept f ?

y

y = f(x)

y = f(x)

x

y

x

(a) (b)

-1 1

1 2 3 4

1

2

3

FIGURE 2.22 Diagram for Problems 5 and 6.

In Problems 7–20, determine the intercepts of the graph of each
equation, and sketch the graph. Based on your graph, is y a
function of x, and, if so, is it one-to-one and what are the domain
and range?

7. y D 2x 8. y D xC 1
9. y D 3x � 5 10. y D 3 � 2x

11. y D x5 C x 12. y D
2
x2

13. x D 0 14. y D 4x2 � 16
15. y D x3 16. x D 17
17. x D �jyj 18. x2 D y2

19. 2xC y � 2 D 0 20. xC y D 1

In Problems 21–34, graph each function and give the domain and
range. Also, determine the intercepts.

21. u D f.v/ D v3 � 1 22. f.x/ D 5 � 2x2

23. y D h.x/ D 3 24. g.s/ D �17
25. y D h.x/ D x2 � 4xC 1 26. y D f.x/ D �2x2 � 5xC 12
27. f.t/ D �t3 28. p D h.q/ D 1C 2qC q2

29. s D f.t/ D
p
t2 � 9 30. F.r/ D �

1
r

31. f.x/ D j7x � 2j 32. v D H.u/ D ju � 3j

33. F.t/ D
16

t2
34. y D f.x/ D

2
x � 4

In Problems 35–38, graph each case-defined function and give the
domain and range.

35. c D g.p/ D
�
pC 1 if 0 � p < 7

5 if p � 7

36. g.x/ D
�

x if 0 � x < 1
x2 � 2xC 2 if x � 1

37. g.x/ D
�
xC 6 if x � 3

x2 if x < 3

38. f.x/ D

8<: xC 1 if 0 < x � 3
4 if 3 < x � 5

x � 1 if x > 5

39. Which of the graphs in Figure 2.23 represent functions of x?

y

x

(b)

y

x

(a)

y

x

(d)

y

x

(c)

FIGURE 2.23 Diagram for Problem 39.

40. Which of the graphs in Figure 2.24 represent one-to-one
functions of x?

y

x

(a)

y

x

(c)

y

x

(d)

y

x

(b)

FIGURE 2.24 Diagram for Problem 40.
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41. Debt Payments Beatrix has charged $8700 on her credit
cards. She plans to pay them off at the rate of $300, plus all
interest charges, per month. Write an equation to represent the
amount she owes, after she has made n payments, and identify the
intercepts, explaining their financial significance.

42. Pricing To encourage an even flow of customers, a
restaurant varies the price of an item throughout the day. From
6:00 p.m. to 8:00 p.m., customers pay full price. At lunch,
from 10:30 a.m. until 2:30 p.m., customers pay half price. From
2:30 p.m. until 4:30 p.m., customers get a dollar off the lunch price.
From 4:30 p.m. until 6:00 p.m., customers get $5.00 off the dinner
price. From 8:00 p.m. until closing time at 10:00 p.m., customers
get $5.00 off the dinner price. Graph the case-defined function that
represents the cost of an item throughout the day for a dinner price
of $18.

43. Supply Schedule Given the following supply schedule
(see Example 6 of Section 2.1), plot each quantity–price pair by
choosing the horizontal axis for the possible quantities.
Approximate the points in between the data by connecting the data
points with a smooth curve. The result is a supply curve. From the
graph, determine the relationship between price and supply. (That
is, as price increases, what happens to the quantity supplied?)
Is price per unit a function of quantity supplied?

Quantity Supplied per Week, q Price per Unit, p

30 $10

100 20

150 30

190 40

210 50

44. Demand Schedule The following table is called a demand
schedule. It indicates the quantities of brand X that consumers will
demand (that is, purchase) each week at certain prices per unit
(in dollars). Plot each quantity–price pair by choosing the vertical
axis for the possible prices. Connect the points with a smooth
curve. In this way, we approximate points in between the given
data. The result is called a demand curve. From the graph,
determine the relationship between the price of brand X and the
amount that will be demanded. (That is, as price decreases, what
happens to the quantity demanded?) Is price per unit a function of
quantity demanded?

Quantity Demanded, q Price per Unit, p

5 $20

10 10

20 5

25 4

45. Inventory Sketch the graph of

y D f.x/ D

8<:�100xC 1000 if 0 � x < 7
�100xC 1700 if 7 � x < 14
�100xC 2400 if 14 � x < 21

A function such as this might describe the inventory y of a
company at time x.

46. Distance Running A Dalhousie University student training
for distance running finds that, after running for x hours, her
distance traveled, in kilometers, is given by

y D f.x/ D

8<: 10x if 0 � x � 3
5xC 15 if 3 < x � 4

35 if 4 < x � 5

Plot this function and determine if she is ready to attempt the
Bluenose Marathon. A marathon is 42.2 kilometers.

In Problems 47–50, use a graphing calculator to find all real
roots, if any, of the given equation. Round answers to two decimal
places.

47. 5x3 C 7x D 3

48. x2.x � 3/ D 2x4 � 1

49. .9xC 3:1/2 D 7:4 � 4x2

50. .x � 2/3 D x2 � 3

In Problems 51–54, use a graphing calculator to find all
x-intercepts of the graph of the given function. Round answers
to two decimal places.

51. f.x/ D x3 C 3xC 57

52. f.x/ D 2x4 � 1:5x3 C 2

53. g.x/ D x4 � 1:7x2 C 2x

54. g.x/ D
p
3x5 � 4x2 C 1

In Problems 55–57, use a graphing calculator to find (a) the
maximum value of f.x/ and (b) the minimum value of f.x/ for
the indicated values of x. Round answers to two decimal places.

55. f.x/ D x4 � 4:1x3 C x2 C 10 1 � x � 4

56. f.x/ D x.2x2 C 2/2 � x3 C 1 � 1 � x � 1

57. f.x/ D
x2 � 4
2x � 5

3 � x � 5

58. From the graph of f.x/ D
p
2x3 C 1:1x2 C 4, find (a) the

range and (b) the intercepts. Round values to two decimal places.

59. From the graph of f.x/ D 1 � 4x3 � x4, find (a) the maximum
value of f.x/, (b) the range of f, and (c) the (real) zeros of f. Round
values to two decimal places.

60. From the graph of f.x/ D
x3 C 1:1

3:8C x2=3
, find (a) the range of f

and (b) the intercepts. (c) Does f have any real zeros? Round
values to two decimal places.

61. Graph f.x/ D
x3 C 64
x2 � 5

for 3 � x � 5. Determine (a) the

maximum value of f.x/, (b) the minimum value of f.x/, (c) the
range of f, and (d) all intercepts. Round values to two decimal
places.
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Objective 2.6 Symmetry
To study symmetry about the x-axis,
the y-axis, and the origin, and to apply
symmetry to curve sketching.

Examining the graphical behavior of equations is a basic part of mathematics. In this
section, we examine equations to determine whether their graphs have symmetry.

Consider the graph of y D x2 in Figure 2.25. The portion to the left of the y-axis
is the reflection (or mirror image) through the y-axis of that portion to the right of the
y-axis, and vice versa. More precisely, if .a; b/ is any point on this graph, then the point
.�a; b/must also lie on the graph. We say that this graph is symmetric about the y-axis.

Definition
A graph is symmetric about the y- axis if and only if .�a; b/ lies on the graph when
.a; b/ does.(x0, y0)(-x0, y0)

y = x
2

y0

-x0 x0

y

x

FIGURE 2.25 Symmetry
about the y-axis.

EXAMPLE 1 y-Axis Symmetry

Use the preceding definition to show that the graph of y D x2 is symmetric about the
y-axis.

Solution: Suppose .a; b/ is any point on the graph of y D x2. Then

b D a2

We must show that the coordinates of .�a; b/ satisfy y D x2. But

.�a/2 D a2 D b

shows this to be true. Thus, we have provedwith simple algebra what the picture of the
graph led us to believe: The graph of y D x2 is symmetric about the y-axis.

Now Work Problem 7 G

When one is testing for symmetry in Example 1, .a; b/ can be any point on the
graph. In the future, for convenience, we write .x; y/ for a typical point on the graph.
Thismeans that a graph is symmetric about the y-axis if replacing x by�x in its equation
results in an equivalent equation.

x = y
2

y

x

(x, y)

(x, -y)

FIGURE 2.26 Symmetry
about the x-axis.

Another type of symmetry is shown by the graph of x D y2 in Figure 2.26. Here
the portion below the x-axis is the reflection through the x-axis of that portion above
the x-axis, and vice versa. If the point .x; y/ lies on the graph, then .x;�y/ also lies on
it. This graph is said to be symmetric about the x-axis.

Definition
A graph is symmetric about the x-axis if and only if .x;�y/ lies on the graph when
.x; y/ does.

Thus, the graph of an equation in x and y has x-axis symmetry if replacing y by �y
results in an equivalent equation. For example, applying this test to the graph of x D y2,
we see that .�y/2 D x if and only if y2 D x, simply because .�y/2 D y2. Hence, the
graph of x D y2 is symmetric about the x-axis.

y = x
3

x

y

(-x, -y)

(x, y)

FIGURE 2.27 Symmetry
about the origin.

A third type of symmetry, symmetry about the origin, is illustrated by the graph
of y D x3 (Figure 2.27). Whenever the point .x; y/ lies on the graph, .�x;�y/ also lies
on it.
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Definition
A graph is symmetric about the origin if and only if .�x;�y/ lies on the graph when
.x; y/ does.

Thus, the graph of an equation in x and y has symmetry about the origin if simulta-
neously replacing x by �x and y by �y results in an equivalent equation. For example,
applying this test to the graph of y D x3 shown in Figure 2.27 gives

�y D .�x/3

�y D �x3

y D x3

where all three equations are equivalent, in particular the first and last. Accordingly,
the graph is symmetric about the origin.

Table 2.1 summarizes the tests for symmetry. When we know that a graph has
symmetry, we can sketch it by plotting fewer points than would otherwise be needed.

Table 2.1 Tests for Symmetry

Symmetry about x-axis Replace y by �y in given equation. Symmetric if equivalent
equation is obtained.

Symmetry about y-axis Replace x by �x in given equation. Symmetric if equivalent
equation is obtained.

Symmetry about origin Replace x by �x and y by �y in given equation. Symmetric if
equivalent equation is obtained.

EXAMPLE 2 Graphing with Intercepts and Symmetry

Test y D
1
x
for symmetry about the x-axis, the y-axis, and the origin. Then find the

intercepts and sketch the graph.

Solution:

Symmetry x-axis: Replacing y by �y in y D 1=x gives

�y D
1
x

equivalently y D �
1
x

which is not equivalent to the given equation. Thus, the graph is not symmetric about
the x-axis.
y-axis: Replacing x by �x in y D 1=x gives

y D
1
�x

equivalently y D �
1
x

which is not equivalent to the given equation. Hence, the graph is not symmetric about
the y-axis.
Origin: Replacing x by �x and y by �y in y D 1=x gives

�y D
1
�x

equivalently y D
1
x

which is the given equation. Consequently, the graph is symmetric about the origin.

Intercepts Since x cannot be 0, the graph has no y-intercept. If y is 0, then 0 D 1=x,
and this equation has no solution. Thus, no x-intercept exists.

Discussion Because no intercepts exist, the graph cannot intersect either axis. If
x > 0, we obtain points only in quadrant I. Figure 2.28 shows the portion of the graph
in quadrant I. By symmetry, we reflect that portion through the origin to obtain the
entire graph.

Now Work Problem 9 G

x

y

1

1

4 2 1y

2 41x

Symmetric
about origin

No intercepts

1

2

1

4

1

4

1

2

y = 1
x

FIGURE 2.28 Graph of y D
1
x
.
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EXAMPLE 3 Graphing with Intercepts and Symmetry

Test y D f.x/ D 1� x4 for symmetry about the x-axis, the y-axis, and the origin. Then
find the intercepts and sketch the graph.

Solution:

Symmetry x-axis: Replacing y by �y in y D 1 � x4 gives

�y D 1 � x4 equivalently y D �1C x4

which is not equivalent to the given equation. Thus, the graph is not symmetric about
the x-axis.

y-axis: Replacing x by �x in y D 1 � x4 gives

y D 1 � .�x/4 equivalently y D 1 � x4

which is the given equation. Hence, the graph is symmetric about the y-axis.

Origin: Replacing x by �x and y by �y in y D 1 � x4 gives

�y D 1 � .�x/4 equivalently � y D 1 � x4 equivalently y D �1C x4

which is not equivalent to the given equation. Thus, the graph is not symmetric about
the origin.

Intercepts Testing for x-intercepts, we set y D 0 in y D 1 � x4. Then,

1 � x4 D 0

.1 � x2/.1C x2/ D 0

.1 � x/.1C x/.1C x2/ D 0

x D 1 or x D �1

The x-intercepts are therefore .1; 0/ and .�1; 0/. Testing for y-intercepts, we set x D 0.
Then y D 1, so .0; 1/ is the only y-intercept.

Discussion If the intercepts and some points .x; y/ to the right of the y-axis are plot-
ted, we can sketch the entire graph by using symmetry about the y-axis (Figure 2.29).

0 1

y

01

x

x

y

y = f(x) = 1 - x4

-1 1

1
1

2

3

4

3

2

15

16

175

256

-

65

16

y-intercept

x-intercept

x-intercept

y-axis symmetry

FIGURE 2.29 Graph of y D 1 � x4.

Now Work Problem 19 G

The constant function f.x/ D 0, for all x, is easily seen to be symmetric about
the x-axis. In Example 3, we showed that the graph of y D f.x/ D 1 � x4 does not
have x-axis symmetry. For any function f, suppose that the graph of y D f.x/ has x-axis
symmetry. According to the definition, this means that we also have �y D f.x/. ThisThe only function whose graph is

symmetric about the x-axis is the
function constantly 0.

tells us that for an arbitrary x in the domain of fwe have f.x/ D y and f.x/ D �y. Since
for a function each x-value determines a unique y-value, we must have y D �y, and
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this implies y D 0. Since x was arbitrary, it follows that if the graph of a function is
symmetric about the x-axis, then the function must be the constant 0.

EXAMPLE 4 Graphing with Intercepts and Symmetry

Test the graph of 4x2 C 9y2 D 36 for intercepts and symmetry. Sketch the graph.

Solution:
Intercepts If y D 0, then 4x2 D 36, so x D ˙3. Thus, the x-intercepts are .3; 0/ and
.�3; 0/. If x D 0, then 9y2 D 36, so y D ˙2. Hence, the y-intercepts are (0, 2) and
.0;�2/.

Symmetry x-axis: Replacing y by �y in 4x2 C 9y2 D 36 gives

4x2 C 9.�y/2 D 36 equivalently 4x2 C 9y2 D 36

which is the original equation, so there is symmetry about the x-axis.

y-axis: Replacing x by �x in 4x2 C 9y2 D 36 gives

4.�x/2 C 9y2 D 36 equivalently 4x2 C 9y2 D 36

which is the original equation, so there is also symmetry about the y-axis.

Origin: Replacing x by �x and y by �y in 4x2 C 9y2 D 36 gives

4.�x/2 C 9.�y/2 D 36 equivalently 4x2 C 9y2 D 36

which is the original equation, so the graph is also symmetric about the origin.

Discussion In Figure 2.30, the intercepts and some points in the first quadrant are
plotted. The points in that quadrant are then connected by a smooth curve. By symmetry
about the x-axis, the points in the fourth quadrant are obtained. Then, by symmetry
about the y-axis, the complete graph is found. There are other ways of graphing the
equation by using symmetry. For example, after plotting the intercepts and some points
in the first quadrant, we can obtain the points in the third quadrant by symmetry about
the origin. By symmetry about the x-axis (or y-axis), we can then obtain the entire
graph.

;3 0

0 ;2

y

-2

-3 3

2

2

1

x

5

2

11

3

4x2 + 9y2 = 36

x

y

5

3

2

2

3

4

Symmetry about x-axis,
y-axis, and origin.

FIGURE 2.30 Graph of 4x2 C 9y2 D 36.

Now Work Problem 23 G

In Example 4, the graph is symmetric about the x-axis, the y-axis, and the origin. It
This fact can be a time-saving device in
checking for symmetry. can be shown that for any graph, if any two of the three types of symmetry discussed

so far exist, then the remaining type must also exist.

EXAMPLE 5 Symmetry about the Line y D x

Definition
A graph is symmetric about the line y D x if and only if .b; a/ lies on the graph
when .a; b/ does.
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Another way of stating the definition is to say that interchanging the roles of x and
y in the given equation results in an equivalent equation.

Use the preceding definition to show that x2 C y2 D 1 is symmetric about the line
y D x.

Solution: Interchanging the roles of x and y produces y2Cx2 D 1, which is equivalent
to x2 C y2 D 1. Thus, x2 C y2 D 1 is symmetric about y D x.

G

The point with coordinates .b; a/ is the mirror image in the line y D x of the point
.a; b/. If f is a one-to-one function, b D f.a/ if and only if a D f �1.b/. Thus, the graph
of f �1 is the mirror image in the line y D x of the graph of f. It is interesting to note
that for any function f we can form the mirror image of the graph of f. However, the
resulting graph need not be the graph of a function. For this mirror image to be itself
the graph of a function, it must pass the vertical-line test. However, vertical lines and
horizontal lines are mirror images in the line y D x, and we see that for the mirror
image of the graph of f to pass the vertical-line test is for the graph of f to pass the
horizontal-line test. This last happens precisely if f is one-to-one, which is the case if
and only if f has an inverse.

EXAMPLE 6 Symmetry and Inverse Functions

Sketch the graph of g.x/ D 2xC 1 and its inverse in the same plane.

Solution: As we shall study in greater detail in Chapter 3, the graph of g is the straight
line with slope 2 and y-intercept 1. This line, the line y D x, and the reflection of
y D 2xC 1 in y D x are shown in Figure 2.31.

-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

1

1

2

2

3

3

4

4

5

5

y

x

y = g(x) = 2x + 1
y = x

y = g
-1

(x) =   x - 
1

2

1

2

FIGURE 2.31 Graph of y D g.x/ and y D g�1.x/.

Now Work Problem 27 G

PROBLEMS 2.6
In Problems 1–16, find the x- and y-intercepts of the graph of the
equation. Also, test for symmetry about the x-axis, the y-axis, the
origin, and the line y D x. Do not sketch the graph.

1. y D 5x 2. y D f.x/ D x2 � 9

3. 2x2 C y2x4 D 8 � y 4. x D y3

5. 25x2 C 144y2 D 169 6. y D 57

7. x D �7 8. y D j2xj � 2

9. x D �y�4 10. y D
p
x2 � 36
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11. x � 4y � y2 C 21 D 0 12. x3 C xyC y3 D 0

13. y D f.x/ D
x3 � 2x2 C x

x2 C 1
14. x2 C xyC y2 D 0

15. y D
2

x3 C 27 16. y D
x4

xC y

In Problems 17–24, find the x- and y-intercepts of the graph of the
equation. Also, test for symmetry about the x-axis, the y-axis, the
origin, and the line y D x. Then sketch the graph.

17. 5xC 2y2 D 8 18. x � 1 D y4 C y2

19. y D f.x/ D x3 � 4x 20. 2y D 5 � x2

21. jxj � jyj D 0 22. x2 C y2 D 25

23. 9x2 C 4y2 D 25 24. x2 � y2 D 4

25. Prove that the graph of y D f.x/ D 5 � 1:96x2 � �x4 is
symmetric about the y-axis, and then graph the function. (a) Make
use of symmetry, where possible, to find all intercepts. Determine
(b) the maximum value of f.x/ and (c) the range of f. Round all
values to two decimal places.

26. Prove that the graph of y D f.x/ D 2x4 � 7x2 C 5 is
symmetric about the y-axis, and then graph the function. Find all
real zeros of f. Round your answers to two decimal places.

27. Sketch the graph of f.x/ D 2xC 3 and its inverse in the same
plane.

Objective 2.7 Translations and Reflections
To become familiar with the shapes of
the graphs of six basic functions and
to consider translation, reflection, and
vertical stretching or shrinking of the
graph of a function.

Up to now, our approach to graphing has been based on plotting points and making use
of any symmetry that exists. But this technique is usually not the preferred one. Later in
this text, we will analyze graphs by using other techniques. However, some functions
and their associated graphs occur so frequently that we find it worthwhile to memorize
them. Figure 2.32 shows six such basic functions.
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FIGURE 2.32 Six basic functions.

f(x) = x2

y = x2
 + 2

x

2

y

FIGURE 2.33 Graph of
y D x2 C 2.

At times, by altering a function through an algebraic manipulation, the graph of
the new function can be obtained from the graph of the original function by performing
a geometric manipulation. For example, we can use the graph of f.x/ D x2 to graph
y D x2C2. Note that y D f.x/C2. Thus, for each x, the corresponding ordinate for the
graph of y D x2C 2 is 2 more than the ordinate for the graph of f.x/ D x2. This means
that the graph of y D x2 C 2 is simply the graph of f.x/ D x2 shifted, or translated, 2
units upward. (See Figure 2.33.)We say that the graph of y D x2C2 is a transformation
of the graph of f.x/ D x2. Table 2.2 gives a list of basic types of transformations.
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Table 2.2 Transformations, c > 0

How to Transform Graph of yD f.x/
Equation to Obtain Graph of Equation

y D f.x/C c shift c units upward

y D f.x/ � c shift c units downward

y D f.x � c/ shift c units to right

y D f.xC c/ shift c units to left

y D �f.x/ reflect about x-axis

y D f.�x/ reflect about y-axis

y D cf.x/ c > 1 vertically stretch away from x-axis by a
factor of c

y D cf.x/ c < 1 vertically shrink toward x-axis by a
factor of c

EXAMPLE 1 Horizontal Translation

Sketch the graph of y D .x � 1/3.

Solution: We observe that .x � 1/3 is x3 with x replaced by x � 1. Thus, if f.x/ D x3,
then y D .x � 1/3 D f.x � 1/, which has the form f.x � c/, where c D 1. From
Table 2.2, the graph of y D .x� 1/3 is the graph of f.x/ D x3 shifted 1 unit to the right.
(See Figure 2.34.)

f(x) = x3

y = (x - 1)
3

x

y

-1 1

-1

1

FIGURE 2.34 Graph of y D .x � 1/3.

Now Work Problem 3 G

EXAMPLE 2 Shrinking and Reflection

Sketch the graph of y D � 1
2

p
x.

Solution: We can do this problem in two steps. First, observe that 1
2x
p
x is
p
x

multiplied by 1
2 . Thus, if f.x/ D

p
x, then 1

2

p
x D 1

2 f.x/, which has the form cf.x/,

where c D 1
2 . So the graph of y D

1
2

p
x is the graph of f shrunk vertically toward

the x-axis by a factor of 1
2 (Transformation 8, Table 2.2; see Figure 2.35). Second, the

minus sign in y D � 1
2

p
x causes a reflection in the graph of y D 1

2

p
x about the x-axis

(Transformation 5, Table 2.2; see Figure 2.35).
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f(x) = x

y = x1

2

y = - x1

2

FIGURE 2.35 To graph y D � 1
2
p
x, shrink y D

p
x and reflect

result about x-axis.

Now Work Problem 5 G

PROBLEMS 2.7
In Problems 1–12, use the graphs of the functions in Figure 2.32
and transformation techniques to plot the given functions.

1. y D x3 � 1 2. y D �x2 3. y D
3

xC 2

4. y D �
p
x � 2 5. y D

2
3x

6. y D jxj � 2

7. y D jxC 1j � 2 8. y D �
1
3

p
x � 2 9. y D 2C .xC 3/3

10. y D .x � 1/2 C 1 11. y D
p
�x 12. y D

5
2 � x

In Problems 13–16, describe what must be done to the graph of
y D f.x/ to obtain the graph of the given equation.

13. y D �1=2. f.x � 5/C 1/ 14. y D 2. f.x � 1/ � 4/
15. y D f.�x/ � 5 16. y D f.3x/

17. Graph the function y D 3
p
xC k for k D 0; 1; 2; 3;�1;�2,

and �3. Observe the vertical translations compared to the first
graph.

18. Graph the function y D
1

xC k
for k D 0; 1; 2; 3;�1;�2, and

�3. Observe the horizontal translations compared to the first
graph.

19. Graph the function y D kx3 for k D 1; 2; 12 , and 3. Observe the
vertical stretching and shrinking compared to the first graph.
Graph the function for k D �2. Observe that the graph is the same
as that obtained by stretching the reflection of y D x3 about the
x-axis by a factor of 2.

Objective 2.8 Functions of Several Variables
To discuss functions of several
variables and to compute function
values. To discuss three-dimensional
coordinates and sketch simple
surfaces.

When we defined a function f W X� Y from X to Y in Section 2.1, we did so for sets
X and Y without requiring that they be sets of numbers. We have not often used that
generality yet. Most of our examples have been functions from .�1;1/ to .�1;1/.
We also saw in Section 2.1 that for sets X and Y we can construct the new set X � Y
whose elements are ordered pairs .x; y/ with x in X and y in Y. It follows that for any
three sets X, Y, and Z the notion of a function f W X� Y� Z is already covered by the
basic definition. Such an f is simply a rule that assigns to each element .x; y/ in X � Y
at most one element of Z, denoted by f..x; y//. There is general agreement that in this
situation one should drop a layer of parentheses and write simply f.x; y/ for f..x; y//.
Do note here that even if each of X and Y are sets of numbers, say X D .�1;1/ D Y,
then X�Y is definitely not a set of numbers. In other words, an ordered pair of numbers
is not a number.

The graph of a function f W X� Y is the subset of X� Y consisting of all ordered
pairs of the form .x; f.x//, where x is in the domain of f. It follows that the graph of
a function f W X � Y � Z is the subset of .X � Y/ � Z consisting of all ordered
pairs of the form ..x; y/; f.x; y//, where .x; y/ is in the domain of f. The ordered pair
..x; y/; f.x; y// has its first coordinate given by .x; y/, itself an ordered pair, while its
second coordinate is the element f.x; y/ in Z. Most people prefer to replace .X�Y/�Z
with X � Y � Z, an element of which is an ordered triple .x; y; z/, with x in X, y in Y,
and z in Z. These elements are easier to read than the ..x; y/; z/, which are the “official”
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elements of .X�Y/�Z. In fact, we can define an ordered triple .x; y; z/ to be a shorthand
for ..x; y/; z/ if we wish.

Before going further, it is important to point out that these very general consider-
ations have been motivated by a desire to make mathematics applicable. Many people
when confronted withmathematical models built around functions, and equations relat-
ing them, express both an appreciation for the elegance of the ideas and a skepticism
about their practical value. A common complaint is that in practice there are “factors”
unaccounted for in a particular mathematical model. Translated into the context we are
developing, this complaint frequently means that the functions in amathematical model
should involve more variables than the modeler originally contemplated. Being able to
add new variables, to account for phenomena that were earlier thought to be insignifi-
cant, is an important aspect of robustness that a mathematical model should possess. If
we know how to go from one variable to two variables, where the “two variables” can
be construed as an ordered pair and hence a single variable of a new kind, then we can
iterate the procedure and deal with functions of as many variables as we like.

For sets X1, X2, : : : , Xn and Y, a function f W X1 � X2 � � � � � Xn � Y in our
general sense provides the notion of a Y-valued function of n-variables. In this case,
an element of the domain of f is an ordered n-tuple .x1; x2; � � � ; xn/, with xi in Xi for
i D 1; 2; � � � ; n, for which f.x1; x2; � � � ; xn/ is defined. The graph of f is the set of all
ordered nC1-tuples of the form .x1; x2; � � � ; xn; f.x1; x2; � � � ; xn//, where .x1; x2; � � � ; xn/
is in the domain of f.

Suppose a manufacturer produces two products, X and Y. Then the total cost
depends on the levels of production of both X and Y. Table 2.3 is a schedule that
indicates total cost at various levels. For example, when 5 units of X and 6 units of
Y are produced, the total cost c is 17. In this situation, it seems natural to associate the
number 17 with the ordered pair .5; 6/:

.5; 6/‘ 17

The first element of the ordered pair, 5, represents the number of units of X produced,
while the second element, 6, represents the number of units of Y produced. Corre-
sponding to the other production situations shown, we have

.5; 7/‘ 19

.6; 6/‘ 18

and

.6; 7/‘ 20

Table 2.3 Cost as a Function of Two Quantities

No. of Units No. of Units Total Cost
of X Produced, x of Y Produced, y of Production, c

5 6 17

5 7 19

6 6 18

6 7 20

This listing can be considered to be the definition of a function

c W X � Y� .�1;1/

where X D f5; 6g and Y D f6; 7g with

c.5; 7/ D 19 c.6; 7/ D 20

c.5; 6/ D 17 c.6; 6/ D 18

We say that the total-cost schedule can be described by c D c.x; y/, a function of the
two independent variables x and y. The letter c is used here for both the dependent



Haeussler-50501 M03_HAEU1107_14_SE_C02 November 27, 2017 16:22

122 Chapter 2 Functions and Graphs

variable and the name of the rule that defines the function. Of course, the range of c is
the subset f17; 18; 19; 20g of .�1;1/. Because negative costs are unlikely to make
sense, we might want to refine c and construe it to be a function c W X � Y� Œ0;1/.

Realize that a manufacturer might very well produce 17, say, different products, in
which case cost would be a function

c W X1 � X2 � : : : � X17� Œ0;1/

In this situation, c.x1; x2; : : : x17/ would be the cost of producing x1 units of Product 1,
x2 units of Product 2, x3 units of Product 3, …, and x17 units of Product 17. The study
of functions of two variables allows us to see general patterns like this.

Most people were acquainted with certain functions of two variables long before
they ever heard of functions, as the following example illustrates.

EXAMPLE 1 Functions of Two Variables

a. a.x; y/ D xC y is a function of two variables. Some function values are

a.1; 1/ D 1C 1 D 2

a.2; 3/ D 2C 3 D 5

We have a W .�1;1/ � .�1;1/� .�1;1/.

b. m.x; y/ D xy is a function of two variables. Some function values are

m.2; 2/ D 2 � 2 D 4

m.3; 2/ D 3 � 2 D 6

The domain of both a and m is all of .�1;1/ � .�1;1/. Observe that if we were
to define division as a function d W .�1;1/ � .�1;1/ � .�1;1/
with d.x; y/ D x � y then the domain of d is .�1;1/ � ..�1;1/ � f0g/, where
.�1;1/ � f0g is the set all real numbers except 0.

G
Turning to another function of two variables, we see that the equation

z D
2

x2 C y2

defines z as a function of x and y:

z D f.x; y/ D
2

x2 C y2

The domain of f is all ordered pairs of real numbers .x; y/ for which the equation
has meaning when the first and second elements of .x; y/ are substituted for x and
y, respectively, in the equation. This requires that x2 C y2 ¤ 0. However, the only
pair .x; y/ of real numbers for which x2 C y2 D 0 is .0:0/. Thus, the domain of f is
.�1;1/� .�1;1/�f.0; 0/g. To find f.2; 3/, for example, we substitute x D 2 and
y D 3 into the expression 2=.x2 C y2/ and obtain z D f.2; 3/ D 2=.22 C 32/ D 2=13.APPLY IT I

14. The cost per day for manufacturing
both 12-ounce and 20-ounce coffee
mugs is given by c D 160C 2xC 3y,
where x is the number of 12-ounce
mugs and y is the number of
20-ounce mugs. What is the cost
per day of manufacturing
a. 500 12-ounce and 700 20-ounce
mugs?

b. 1000 12-ounce and 750 20-ounce
mugs?

EXAMPLE 2 Functions of Two Variables

a. f.x; y/ D
xC 3
y � 2

is a function of two variables. Because the denominator is zero

when y D 2, the domain of f is all .x; y/ such that y ¤ 2. Some function values are

f.0; 3/ D
0C 3
3 � 2

D 3

f.3; 0/ D
3C 3
0 � 2

D �3

Note that f.0; 3/ ¤ f.3; 0/.
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b. h.x; y/ D 4x defines h as a function of x and y. The domain is all ordered pairs of
real numbers. Some function values are

h.2; 5/ D 4.2/ D 8

h.2; 6/ D 4.2/ D 8

Note that the function values are independent of the choice of y.
c. If z2 D x2 C y2 and x D 3 and y D 4, then z2 D 32 C 42 D 25. Consequently,

z D ˙5. Thus, with the ordered pair .3; 4/, we cannot associate exactly one output
number. Hence z2 D x2 C y2 does not define z as a function of x and y.

Now Work Problem 1 G

EXAMPLE 3 Temperature--Humidity Index

On hot and humid days, many people tend to feel uncomfortable. In the United States,
the degree of discomfort is numerically given by the temperature–humidity index, THI,
which is a function of two variables, td and tw:

THI D f.td; tw/ D 15C 0:4.td C tw/

where td is the dry-bulb temperature (in degrees Fahrenheit) and tw is the wet-bulb
temperature (in degrees Fahrenheit) of the air. Evaluate the THI when td D 90 and
tw D 80.

Solution: We want to find f.90; 80/:

f.90; 80/ D 15C 0:4.90C 80/ D 15C 68 D 83

When the THI is greater than 75, most people are uncomfortable. In fact, the THI was
once called the “discomfort index.” Many electric utilities closely follow this index
so that they can anticipate the demand that air conditioning places on their systems.
After our study of Chapter 4, we will be able to describe the similar Humidex, used in
Canada.

Now Work Problem 3 G
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FIGURE 2.36 3-dimensional
rectangular coordinate system.

From the second paragraph in this section it follows that a function f W .�1;1/�
.�1;1/� .�1;1/, where we write z D f.x; y/, will have a graph consisting of
ordered triples of real numbers. The set of all ordered triples of real numbers can be
pictured as providing a 3-dimensional rectangular coordinate system. Such a system
is formed when three mutually perpendicular real-number lines in space intersect at the
origin of each line, as in Figure 2.36. The three number lines are called the x-, y-, and
z-axes, and their point of intersection is called the origin of the system. The arrows
indicate the positive directions of the axes, and the negative portions of the axes are
shown as dashed lines.

To each point P in space, we can assign a unique ordered triple of numbers, called
the coordinates of P. To do this [see Figure 2.37(a)], from P, we construct a line per-
pendicular to the x, y-plane—that is, the plane determined by the x- and y-axes. Let Q

yy0

z0

Q

x0

P (x0, y0, z0)

3

(2, 3, 4)

4

(2, 0, 0)

(2, 3, 0)

(a) (b)

(0, 0, 0)

z

z

x x

y

FIGURE 2.37 Points in space.
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z

f(x, y) (x, y, f(x, y))

Graph of z = f(x, y)

y

x

x
y

FIGURE 2.38 Graph of a function of two variables.

be the point where the line intersects this plane. From Q, we construct perpendiculars
to the x- and y-axes. These lines intersect the x- and y-axes at x0 and y0, respectively.
From P, a perpendicular to the z-axis is constructed that intersects the axis at z0. Thus,
we assign to P the ordered triple .x0; y0; z0/. It should also be evident that with each
ordered triple of numbers we can assign a unique point in space. Due to this one-to-
one correspondence between points in space and ordered triples, an ordered triple can
be called a point. In Figure 2.37(b), points .2; 0; 0/, .2; 3; 0/, and .2; 3; 4/ are shown.
Note that the origin corresponds to .0; 0; 0/. Typically, the negative portions of the axes
are not shown unless required.

We represent a function of two variables, z D f.x; y/, geometrically as follows:
To each ordered pair .x; y/ in the domain of f, we assign the point .x; y; f.x; y//. The
set of all such points is the graph of f. Such a graph appears in Figure 2.38. We can
consider z D f.x; y/ as representing a surface in space in the same way that we have
considered y D f.x/ as representing a curve in the plane. [Not all functions y D f.x/
describe aesthetically pleasing curves—in fact most do not—and in the same way we
stretch the meaning of the word surface.]

We now give a brief discussion of sketching surfaces in space.We beginwith planes
that are parallel to a coordinate plane. By a “coordinate plane” we mean a plane con-
taining two coordinate axes. For example, the plane determined by the x- and y-axes is
the x; y-plane. Similarly, we speak of the x; z-plane and the y; z-plane. The coordinate
planes divide space into eight parts, called octants. In particular, the part containing all
points .x; y; z/ such that x, y, and z are positive is called the first octant.Names are not usually assigned to the

remaining seven octants. Suppose S is a plane that is parallel to the x; y-plane and passes through the point
.0; 0; 5/. [See Figure 2.39(a).] Then the point .x; y; z/ will lie on S if and only if z D 5;
that is, x and y can be any real numbers, but z must equal 5. For this reason, we say
that z D 5 is an equation of S. Similarly, an equation of the plane parallel to the
x; z-plane and passing through the point .0; 2; 0/ is y D 2 [Figure 2.39(b)]. The equation
x D 3 is an equation of the plane passing through .3; 0; 0/ and parallel to the y; z-plane
[Figure 2.39(c)]. Next, we look at planes in general.

(a) (b)

zz z

(c)

Plane y = 2

Plane x = 3

(3, 0, 0)
(0, 2, 0)

y

x

yy

xx

Plane z = 5

(0, 0, 5)

FIGURE 2.39 Planes parallel to coordinate planes.
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In space, the graph of an equation of the form

AxC ByC CzC D D 0

where D is a constant and A, B, and C are constants that are not all zero, is a plane.
Since three distinct points (not lying on the same line) determine a plane, a convenient
way to sketch a plane is to first determine the points, if any, where the plane intersects
the x-, y-, and z-axes. These points are called intercepts.

EXAMPLE 4 Graphing a Plane

Sketch the plane 2xC 3yC z D 6.

Solution: The plane intersects the x-axis when y D 0 and z D 0. Thus, 2x D 6,
which gives x D 3. Similarly, if x D z D 0, then y D 2; if x D y D 0, then z D 6.
Therefore, the intercepts are .3; 0; 0/, .0; 2; 0/, and .0; 0; 6/. After these points are plot-
ted, a plane is passed through them. The portion of the plane in the first octant is shown
in Figure 2.40(a); note, however, that the plane extends indefinitely into space.

(a) (b)

z

6

2

3

3y + z = 6

y, z-trace

2x + 3y = 6

x, y-trace

2x + z = 6

x, z-trace

x

y

2x + 3y + z = 6

z

6

2

3

x

y

FIGURE 2.40 The plane 2xC 3yC z D 6 and its traces.

Now Work Problem 19 G

A surface can be sketched with the aid of its traces. These are the intersections
of the surface with the coordinate planes. To illustrate, for the plane 2xC 3yC z D 6
in Example 4, the trace in the x, y-plane is obtained by setting z D 0. This
gives 2x C 3y D 6, which is an equation of a line in the x; y-plane. Similarly, set-
ting x D 0 gives the trace in the y; z-plane: the line 3yC z D 6. The x; z-trace is the line
2xC z D 6. [See Figure 2.40(b).]

EXAMPLE 5 Sketching a Surface

Sketch the surface 2xC z D 4.

Solution: This equation has the form of a plane. The x- and z-intercepts are .2; 0; 0/
and .0; 0; 4/, and there is no y-intercept, since x and z cannot both be zero. Setting y D 0
gives the x; z-trace 2xC z D 4, which is a line in the x; z-plane. In fact, the intersection
of the surface with any plane y D k is also 2xC z D 4. Hence, the plane appears as in
Figure 2.41.

k

z

4

2

2x + z = 4
x

y

FIGURE 2.41 The plane
2xC z D 4. Now Work Problem 21 G

Our final examples deal with surfaces that are not planes but whose graphs can be
easily obtained.
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EXAMPLE 6 Sketching a Surface

Sketch the surface z D x2.

Solution: The x; z-trace is the curve z D x2, which is a parabola. In fact, for any fixed
value of y, we get z D x2. Thus, the graph appears as in Figure 2.42.

Note that this equation places no
restriction on y.

z = x
2

z

x y

FIGURE 2.42 The surface
z D x2.

Now Work Problem 25 G

EXAMPLE 7 Sketching a Surface

Sketch the surface x2 C y2 C z2 D 25.

Solution: Setting z D 0 gives the x; y-trace x2Cy2 D 25, which is a circle of radius 5.
Similarly, the y; z-, x; z-traces are the circles y2Cz2 D 25 and x2Cz2 D 25, respectively.
Note also that since x2 C y2 D 25 � z2, the intersection of the surface with the plane
z D k, where �5 � k � 5, is a circle. For example, if z D 3, the intersection is the
circle x2 C y2 D 16. If z D 4, the intersection is x2 C y2 D 9. That is, cross sec-
tions of the surface that are parallel to the x, y-plane are circles. The surface appears in
Figure 2.43; it is a sphere.

x
2 

+ y
2 

+ z
2 

= 25

y

5

x

5

5

z

FIGURE 2.43 The surface
x2 C y2 C z2 D 25.

Now Work Problem 27 G

For a function f W X � Y � Z, we have seen that the graph of f, being a subset
of X � Y � Z, is three dimensional for numerical examples. Admittedly, constructing
such a graph on paper can be challenging. There is another pictorial presentation of a
function z D f.x; y/ for f W .�1;1/ � .�1;1/� .�1;1/, which is entirely
two dimensional. Let l be a number in the range of f. The equation f.x; y/ D l has a
graph in the x; y-plane that, in principle, can be constructed and labeled. If we repeat
this construction in the same plane for several other values, li say, in the range of f
then we have a set of curves, called level curves, which may provide us with a useful
visualization of f.

There are are at least two examples of this technique that are within everyday
experience for many people. For the first, consider a geographic region that is small
enough to be considered planar, and coordinatize it. (A city with a rectangular grid of
numbered avenues and streets can be considered to be coordinatized by these.) At any
given time, temperature T in degrees Fahrenheit is a function of place .x; y/. We might
write T D T.x; y/. On a map of the region we might connect all places that currently
have a temperature of 70ıF with a curve. This is the curve T.x; y/ D 70. If we put
several other curves, such as T.x; y/ D 68 and T.x; y/ D 72, on the same map, then
we have the kind of map that appears on televised weather reports. The curves in this
case are called isotherms; the prefix iso comes from the Greek isos meaning “equal”.
For the next, again referring to geography, observe that each place .x; y/ has a definite
altitude A D A.x; y/. A map of a mountainous region with points of equal altitude con-
nected by what are called contour lines is called a topographic map, and the generic
term level curves is particularly apt in this case.

In Chapter 7 we will encounter a number of linear functions of several variables.
If we have P D axC by, expressing profit P as a function of production x of a product
X and production y of a product Y, then the level curves axCby D l are called isoprofit
lines.

EXAMPLE 8 Level Curves

Sketch a family of at least four level curves for the function z D x2 C y2.

Solution: For any pair .x; y/, x2 C y2 � 0, so the range of z D x2 C y2 is contained in
Œ0;1/. On the other hand, for any l � 0 we can write l D .

p
l/2 C 02, which shows

that the range of z D x2 C y2 is all of Œ0;1/. For l � 0 we recognize the graph of
x2 C y2 D l as a circle of radius

p
l centered at the origin .0; 0/. If we take l to be

4, 9, 16, and 25, then our level curves are concentric circles of radii 2, 3, 4, and 5,
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respectively. See Figure 2.44. Note that the level “curve” x2 C y2 D 0 consists of the
point .0; 0/ and no others.

Now Work Problem 29 G

-5

-5

5

x

y

4321 5

FIGURE 2.44 Level curves for
z D x2 C y2.

An example of a function of three variables is v D v.x; y; z/ D xyz. It provides the
volume of a “brick” with side lengths x, y, and z if x, y, and z are all positive.

An ellipsoid is a surface which in “standard position” is given by an equation of

the form
x2

a2
C

y2

b2
C

z2

c2
D 1, for a, b, and c positive numbers called the radii. No one of

the variables is a function of the other two. If two of the numbers a, b, and c are equal
and the third is larger, then the special kind of ellipsoid that results is called a prolate
spheroid, examples of which are provided by both a football and a rugby ball. In any
event, the volume of space enclosed by an ellipsoid with radii a, b, and c is given by

V D V.a; b; c/ D
4
3
�abc, and this is another example of a function of three (positive)

variables.
In the context of functions of several variables, it is also interesting to consider

functions whose values are ordered pairs. For any set X, one of the simplest is the diag-
onal function� W X� X�X given by�.x/ D .x; x/. We mentioned in Example 1(b)
that ordinary multiplication is a function m W .�1;1/ � .�1;1/� .�1;1/.
If we let � denote the diagonal function for .�1;1/, then we see that the composite
m ı� of the rather simple-minded functions � and m is the more interesting function
y D x2.

PROBLEMS 2.8
In Problems 1–12, determine the indicated function values for the
given functions.

1. f.x; y/ D 4x � y2 C 3I f.1; 2/

2. f.x; y/ D 3x2y � 4yI f.2;�1/

3. g.x; y; z/ D 2x.3yC z/I g.3; 0;�1/

4. g.x; y/ D x3 C xyC y3I g.1; b/, where b is the unique
solution of t3 C tC 1 D 0

5. h.r; s; t; u/ D
rs

t2 � u2
I h.�3; 3; 5; 4/

6. h.r; s; t; u/ D ruI h.1; 5; 3; 1/

7. g.pA; pB/ D 2pA.p2A � 5/I g.4; 8/

8. g.pA; pB/ D p2A
p
pB C 9I g.4; 9/

9. F.x; y; z/ D 17I F.6; 0;�5/

10. F.x; y; z/ D
2x

.yC 1/z
I F.1; 0; 3/

11. f.x; y/ D .xC y/2I f.aC h; b/

12. f.x; y/ D x2y � 3y3I f.rC t; r/

13. Ecology A method of ecological sampling to determine
animal populations in a given area involves first marking all the
animals obtained in a sample of R animals from the area and then
releasing them so that they can mix with unmarked animals. At a
later date a second sample is taken ofM animals, and the number
of these, that are marked S, is noted. Based on R, M, and S, an
estimate of the total population of animals in the sample area is
given by

N D f.R;M; S/ D
RM
S

Find f.200; 200; 50/. This method is called the
mark-and-recapture procedure.4

14. Genetics Under certain conditions, if two brown-eyed
parents have exactly k children, the probability that there will be
exactly r blue-eyed children is given by

P.r; k/ D
kŠ

rŠ.k � r/Š

�
1
4

�r �3
4

�k�r

r D 0; 1; 2; : : : ; k

Find the probability that, out of a total of seven children, exactly
two will be blue eyed.

In Problems 15–18, find equations of the planes that satisfy the
given conditions.

15. Parallel to the x, z-plane and also passes through the point
.0; 2; 0/

16. Parallel to the y, z-plane and also passes through the point
.�2; 0; 0/

17. Parallel to the x, y-plane and also passes through the point
.2; 7; 6/

18. Parallel to the y, z-plane and also passes through the point
.96;�2; 2/

In Problems 19–28, sketch the given surfaces.

19. xC 2yC 3z D 1 20. 2xC yC 2z D 6

21. 3xC 6yC 2z D 12 22. 2xC 3yC 5z D 1

23. 3xC y D 6 24. z D 1 � y

25. z D 4 � x2 26. y D z2

27. x2 C y2 C z2 D 9 28. x2 C 4y2 D 1

In Problems 29–30, sketch at least three level curves for the given
function.

29. z D xC y 30. z D x2 � y2

4E. P. Odum, Ecology (New York: Holt, Rinehart and Winston, 1966).
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Chapter 2 Review
Important Terms and Symbols Examples
Section 2.1 Functions

ordered pair .x; y/ relation function domain range
independent variable Ex. 2, p. 88
dependent variable function value, f.x/ Ex. 3, p. 88

difference quotient,
f.xC h/ � f.x/

h
Ex. 4, p. 89

demand function supply function Ex. 5, Ex. 6, p. 89, 90

Section 2.2 Special Functions
constant function polynomial function (linear and quadratic) Ex. 1, Ex. 2, p. 91, 92
rational function case-defined function Ex. 3, Ex. 4, p. 92, 92
absolute value, jxj factorial, rŠ Ex. 5, Ex. 6, p. 93

Section 2.3 Combinations of Functions
fC g f � g fg f=g composite function, f ı g Ex. 1, Ex. 2, p. 97, 99

Section 2.4 Inverse Functions
inverse function, f �1 one-to-one function Ex. 1, p. 102

Section 2.5 Graphs in Rectangular Coordinates
rectangular coordinate system coordinate axes origin x; y-plane
coordinates of a point quadrant graph of equation
x-intercept y-intercept Ex. 1, p. 106
graph of function function-value axis zeros of function Ex. 4, p. 108
vertical-line test horizontal-line test Ex. 8, p. 110

Section 2.6 Symmetry
x-axis symmetry y-axis symmetry Ex. 1, p. 113
symmetry about origin symmetry about y D x Ex. 6, p. 117

Section 2.7 Translations and Reflections
horizontal and vertical translations Ex. 1, p. 119
stretching and reflection Ex. 2, p. 119

Section 2.8 Functions of Several Variables
z D f.x; y/ Ex. 2, p. 122
graph of z D f.x; y/ Ex. 4, p. 125
level curves Ex. 8, p. 126

Summary
A function f is a rule that assigns at most one output f.x/ to
each possible input x. A function is often specified by a for-
mula that prescribes what must be done to an input x to obtain
f.x/. To obtain a particular function value f.a/, we replace
each x in the formula by a.

The domain of a function f W X � Y consists of all
inputs x for which the rule defines f.x/ as an element of Y;
the range consists of all elements of Y of the form f.x/.

Some special types of functions are constant functions,
polynomial functions, and rational functions. A function that
is defined bymore than one expression depending on the kind
of input is called a case-defined function.

A function has an inverse if and only if it is one-to-one.
In economics, supply (demand) functions give a corre-

spondence between the price p of a product and the number
of units q of the product that producers (consumers) will sup-
ply (buy) at that price.

Two functions f and g can be combined to form a sum,
difference, product, quotient, or composite as follows:

. fC g/.x/ D f.x/C g.x/

. f � g/.x/ D f.x/ � g.x/

. fg/.x/ D f.x/g.x/�
f
g

�
.x/ D

f.x/
g.x/

. f ı g/.x/ D f.g.x//

A rectangular coordinate system allows us to represent equa-
tions in two variables (in particular, those arising from
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functions) geometrically. The graph of an equation in x and y
consists of all points .x; y/ that correspond to the solutions of
the equation. We plot a sufficient number of points and con-
nect them (where appropriate) so that the basic shape of the
graph is apparent. Points where the graph intersects the x- and
y-axes are called x-intercepts and y-intercepts, respectively.
An x-intercept is found by letting y be 0 and solving for x; a
y-intercept is found by letting x be 0 and solving for y.

The graph of a function f is the graph of the equation
y D f.x/ and consists of all points .x; f.x// such that x is in
the domain of f. From the graph of a function, it is easy to
determine the domain and the range.

The fact that a graph represents a function can be deter-
mined by using the vertical-line test. A vertical line cannot
cut the graph of a function at more than one point.

The fact that a function is one-to-one can be determined
by using the horizontal-line test on its graph. A horizontal
line cannot cut the graph of a one-to-one function at more
than one point. When a function passes the horizontal-line
test, the graph of the inverse can be obtained by reflecting
the original graph in the line y D x.

When the graph of an equation has symmetry, themirror-
image effect allows us to sketch the graph by plotting fewer
points than would otherwise be needed. The tests for sym-
metry are as follows:

Symmetry about Replace y by �y in given equation.
x-axis Symmetric if equivalent equation

is obtained.

Symmetry about Replace x by �x in given equation.
y-axis Symmetric if equivalent equation

is obtained.

Symmetry about Replace x by �x and y by �y in
origin given equation.

Symmetric if equivalent equation
is obtained.

Symmetry about Interchange x and y in given
y D x equation.

Symmetric if equivalent equation is
obtained.

Sometimes the graph of a function can be obtained from
that of a familiar function by means of a vertical shift upward
or downward, a horizontal shift to the right or left, a reflection
about the x-axis or y-axis, or a vertical stretching or shrink-
ing away from or toward the x-axis. Such transformations are
indicated in Table 2.2 in Section 2.7.

A function of two variables is a function whose domain
consists of ordered pairs. A function of n variables is a
function whose domain consists of ordered n-tuples. The
graph of a real-valued function of two variables requires a
three-dimensional coordinate system. Level curves provide
another technique to visualize functions of two variables.

Review Problems
In Problems 1–6, give the domain of each function.

1. f.x/ D
x

x2 � 6xC 5
2. g.x/ D x2 C 3jxC 2j

3. F.t/ D 7tC 4t2 4. G.x/ D 18

5. h.x/ D

p
x � 2
x � 3

6. H.s/ D

p
s � 5
4

In Problems 7–14, find the function values for the given function.

7. f.x/ D 2x2 � 3xC 5; f.0/, f.�2/, f.5/, f.�/

8. h.x/ D 7I h.4/; h
�

1
100

�
; h.�156/; h.xC 4/

9. G.x/ D 4
p
x � 3I G.3/; G.19/; G.tC 1/; G.x3/

10. F.x/ D
3xC 2
x � 5

; F.�1/, F.0/, F.4/, F.xC 2/

11. h.u/ D

p
uC 4
u
I h.5/; h.�4/; h.x/; h.u � 4/

12. H.t/ D
.t � 2/3

5
; H.�1/, H.0/, H

�
1
3

�
, H.x2/

13. f.x/ D
�
�3 if x < 1

4C x2 if x > 1
;

f.4/, f.�2/, f.0/, f.1/

14. f.q/ D

8̂<̂
:
�qC 1 if � 1 � q < 0

q2 C 1 if 0 � q < 5

q3 � 99 if 5 � q � 7

;

f
�
�
1
2

�
, f.0/, f

�
1
2

�
, f.5/, f.6/

In Problems 15–18, find and simplify (a) f.xC h/ and (b)
f.xC h/ � f.x/

h
.

15. f.x/ D 1 � 3x 16. f.x/ D 11x2 C 4

17. f.x/ D 3x2 C x � 2 18. f.x/ D
7

xC 1

19. If f.x/ D 3x � 1 and g.x/ D 2xC 3, find the following.
(a) . fC g/.x/ (b) . fC g/.4/ (c) . f � g/.x/

(d) . fg/.x/ (e) . fg/.1/ (f)
f
g
.x/

(g) . f ı g/.x/ (h) . f ı g/.5/ (i) .g ı f /.x/

20. If f.x/ D x3 and g.x/ D 2xC 1, find the following.
(a) . fC g/.x/ (b) . f � g/.x/ (c) . f � g/.�6/

(d) . fg/.x/ (e)
f
g
.x/ (f)

f
g
.1/

(g) . f ı g/.x/ (h) .g ı f /.x/ (i) .g ı f /.2/
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In Problems 21–24, find . f ı g/.x/ and .g ı f /.x/.

21. f.x/ D
1
x2
; g.x/ D xC 1

22. f.x/ D
x � 2
3

, g.x/ D
1
p
x

23. f.x/ D
p
xC 2; g.x/ D x3

24. f.x/ D 2; g.x/ D 3

In Problems 25 and 26, find the intercepts of the graph of each
equation, and test for symmetry about the x-axis, the y-axis, the
origin, and y D x. Do not sketch the graph.

25. y D 2xC x3 26.
x2y2

x2 C y2 C 1
D 4

In Problems 27 and 28, find the x- and y-intercepts of the graphs
of the equations. Also, test for symmetry about the x-axis, the
y-axis, and the origin. Then sketch the graphs.

27. y D 4C x2 28. y D 3x � 7

In Problems 29–32, graph each function and give its domain and
range. Also, determine the intercepts.

29. G.u/ D
p
uC 4 30. f.x/ D j2xj � 2

31. y D g.t/ D
2
jt � 4j

32. v D �.u/ D
p
�u

33. Graph the following case-defined function, and give its
domain and range:

y D f.x/ D
�

2 if x � 0
2 � x if x > 0

34. Use the graph of f.x/ D
p
x to sketch the graph of

y D
p
x � 2 � 1.

35. Use the graph of f.x/ D x2 to sketch the graph of

y D �
1
2
x2 C 2.

36. Trend Equation The projected annual sales (in dollars)
of a new product are given by the equation
S D 150;000C 3000t, where t is the time in years from 2005.
Such an equation is called a trend equation. Find the
projected annual sales for 2010. Is S a function of t?

37. In Figure 2.45, which graphs represent functions of x?

x

(a) (c)(b)

y

x

y

x

y

FIGURE 2.45 Diagram for Problem 37.

38. If f.x/ D .x2 � xC 7/3, find (a) f.2/ and (b) f.1:1/ rounded
to two decimal places.

39. Find all real roots of the equation

5x3 � 7x2 D 4x � 2

rounded to two decimal places.

40. Find all real roots of the equation

x3 C xC 1 D 0

rounded to two decimal places.

41. Find all real zeros of

f.x/ D x.2:1x2 � 3/2 � x3 C 1

rounded to two decimal places.

42. Determine the range of

f.x/ D
�
�2:5x � 4 if x < 0

6C 4:1x � x2 if x � 0

43. From the graph of f.x/ D �x3 C 0:04xC 7, find (a) the range
and (b) the intercepts rounded to two decimal places.

44. From the graph of f.x/ D
p
xC 5.x2 � 4/, find (a) the

minimum value of f.x/ (b) the range of f, and (c) all real zeros
of f rounded to two decimal places.

45. Graph y D f.x/ D x4 C xk for k D 0, 1, 2, 3, and 4. For which
values of k does the graph have (a) symmetry about the
y-axis? (b) symmetry about the origin?

46. Sketch the graph of xC 2yC 3z D 6.

47. Sketch the graph of 3xC yC 5z D 10.

48. Construct three level curves for P D 5xC 7y.

49. Construct three level curves for C D 2xC 10y.
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3 Lines, Parabolas,
and Systems

3.1 Lines

3.2 Applications and Linear
Functions

3.3 Quadratic Functions

3.4 Systems of Linear
Equations

3.5 Nonlinear Systems

3.6 Applications of Systems of
Equations

Chapter 3 Review

F or the problem of industrial pollution, some people advocate a market-based
solution: Let manufacturers pollute, but make them pay for the privilege. The
more pollution, the greater the fee, or levy. The idea is to give manufacturers
an incentive not to pollute more than necessary.

Does this approach work? In the figure below, curve 1 represents the cost per ton1

of cutting pollution. A company polluting indiscriminately can normally do some pol-
lution reduction at a small cost. As the amount of pollution is reduced, however, the cost
per ton of further reduction rises and ultimately increases without bound. This is illus-
trated by curve 1 rising indefinitely as the total tons of pollution produced approaches 0.
(You should try to understand why this model is reasonably accurate.)

Line 2 is a levy scheme that goes easy on clean-running operations but charges
an increasing per-ton fee as the total pollution amount goes up. Line 3, by contrast, is
a scheme in which low-pollution manufacturers pay a high per-ton levy while gross
polluters pay less per ton (but more overall). Questions of fairness aside, how well will
each scheme work as a pollution control measure?

Faced with a pollution levy, a company tends to cut pollution so long as it saves
more in levy costs than it incurs in reduction costs. The reduction efforts continue until
the reduction costs exceed the levy savings.

The latter half of this chapter deals with systems of equations. Here, curve 1 and
line 2 represent one system of equations, and curve 1 and line 3 represent another. Once
you have learned how to solve systems of equations, you can return to this page and
verify that the line 2 scheme leads to a pollution reduction from amount A to amount
B, while the line 3 scheme fails as a pollution control measure, leaving the pollution
level at A.

B A

C
o

st
 p

e
r 

to
n

 o
f

cl
e
a

n
u

p
 o

r 
le

v
y

1

Total tons of pollution

3

2

1

1Technically, this is the marginal cost per ton (see Section 11.3).
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Objective 3.1 Lines
To develop the notion of slope and
different forms of equations of lines. Slope of a Line

Many relationships between quantities can be represented conveniently by straight
lines. One feature of a straight line is its “steepness.” For example, in Figure 3.1, line
L1 rises faster as it goes from left to right than does line L2. In this sense, L1 is steeper.

To measure the steepness of a line, we use the notion of slope. In Figure 3.2, as we
move along line L from (1, 3) to (3, 7), the x-coordinate increases from 1 to 3, and the
y-coordinate increases from 3 to 7. The average rate of change of y with respect to x is
the ratio

change in y
change in x

D
vertical change
horizontal change

D
7 � 3
3 � 1

D
4
2
D 2

The ratio of 2 means that for each 1-unit increase in x, there is a 2-unit increase in y.
Due to the increase, the line rises from left to right. It can be shown that, regardless of
which two points on L are chosen to compute the ratio of the change in y to the change
in x, the result is always 2, which we call the slope of the line.

Definition
Let .x1; y1/ and .x2; y2/ be two different points on a nonvertical line. The slope of
the line is

m D
y2 � y1
x2 � x1

�
D

vertical change
horizontal change

�
(1)

A vertical line does not have a slope, because any two points on it must have
x1 D x2 [see Figure 3.3(a)], which gives a denominator of zero in Equation (1). For

Having “no slope” does not mean having
a slope of zero.

a horizontal line, any two points must have y1 D y2. [See Figure 3.3(b).] This gives a
numerator of zero in Equation (1), and hence the slope of the line is zero.

x

y
L1

L2

FIGURE 3.1 Line L1 is “steeper” than L2.

1
x

y

2

1

3

4

5

6

7

2 3

Horizontal
change = 2

Vertical change = 4

L

Slope = = 2

(3, 7)

(1,  3)
4

2

FIGURE 3.2 Slope of a line.

x

y

(x2, y2)

(x1, y1)

x1 = x2

(a) No slope

x

y

(b) Slope of zero

(x1, y1)

(x2, y2)y1 = y2

FIGURE 3.3 Vertical and horizontal lines.
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q (quantity)

p (price)

(2, 4)

(8, 1)

Increase of 1 unit

Decrease of     unit
1
2

FIGURE 3.4 Price–quantity line.

This example shows how the slope can be
interpreted.

APPLY IT I
1. A doctor purchased a new car in
2012 for $62,000. In 2015, he sold it to
a friend for $50,000. Draw a line show-
ing the relationship between the selling
price of the car and the year in which it
was sold. Find and interpret the slope.

EXAMPLE 1 Price--Quantity Relationship

The line in Figure 3.4 shows the relationship between the price p of a widget (in dollars)
and the quantity q of widgets (in thousands) that consumers will buy at that price. Find
and interpret the slope.

Solution: In the slope formula (1), we replace the x’s by q’s and the y’s by p’s.
Either point in Figure 3.4 may be chosen as .q1; p1/. Letting .2; 4/D .q1; p1/ and
.8; 1/ D .q2; p2/, we have

m D
p2 � p1
q2 � q1

D
1 � 4
8 � 2

D
�3
6
D �

1
2

The slope is negative, � 1
2 . This means that, for each 1-unit increase in quantity (one

thousand widgets), there corresponds a decrease in price of 1
2 (dollar per widget). Due

to this decrease, the line falls from left to right.

Now Work Problem 3 G

In summary, we can characterize the orientation of a line by its slope:

Zero slope: horizontal line
Undefined slope: vertical line
Positive slope: line rises from left to right
Negative slope: line falls from left to right

Lines with different slopes are shown in Figure 3.5. Notice that the closer the slope
is to 0, the more nearly horizontal is the line. The greater the absolute value of the slope,
the more nearly vertical is the line. We remark that two lines are parallel if and only if
they have the same slope or are both vertical.

m = 2

m = 0

m = 
1

2

m = -
1

2

m = -2

FIGURE 3.5 Slopes of lines.

x

y

(x1, y1)

(x, y)

Slope = m

FIGURE 3.6 Line through
.x1; y1/ with slope m.

Equations of Lines
If we know a point on a line and the slope of the line, we can find an equation whose
graph is that line. Suppose that line L has slope m and passes through the point .x1; y1/.
If (x, y) is any other point on L (see Figure 3.6), we can find an algebraic relationship
between x and y. Using the slope formula on the points .x1; y1/ and (x, y) gives

y � y1
x � x1

D m

y � y1 D m.x � x1/ (2)
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Every point on L satisfies Equation (2). It is also true that every point satisfying Equa-
tion (2) must lie on L. Thus, Equation (2) is an equation for L and is given a spe-
cial name:

y � y1 D m.x � x1/

is a point-slope form of an equation of the line through .x1; y1/ with slope m.

EXAMPLE 2 Point-Slope Form

Find an equation of the line that has slope 2 and passes through (1, �3).

Solution: Using a point-slope form with m D 2 and .x1; y1/ D .1;�3/ gives

y � y1 D m.x � x1/

y � .�3/ D 2.x � 1/

yC 3 D 2x � 2

which can be rewritten as
2x � y � 5 D 0

Now Work Problem 9 G

APPLY IT I
2. A new applied mathematics pro-
gram at a university has grown in enroll-
ment by 14 students per year for the past
5 years. If the program enrolled 50 stu-
dents in its third year, what is an equa-
tion for the number of students S in the
program as a function of the number of
years T since its inception?

An equation of the line passing through two given points can be found easily, as
Example 3 shows.

APPLY IT I
3. Find an equation of the line passing
through the given points. A temperature
of 41ıF is equivalent to 5ıC, and a tem-
perature of 77ıF is equivalent to 25ıC.

EXAMPLE 3 Determining a Line from Two Points

Find an equation of the line passing through (�3, 8) and (4, �2).

Solution:

Strategy First we find the slope of the line from the given points. Then we sub-
stitute the slope and one of the points into a point-slope form.

The line has slope

m D
�2 � 8
4 � .�3/

D �
10
7

Using a point-slope form with (�3, 8) as .x1; y1/ gives

y � 8 D �
10
7
Œx � .�3/�

y � 8 D �
10
7
.xC 3/

7y � 56 D �10x � 30

10xC 7y � 26 D 0

Now Work Problem 13 G

Choosing .4;�2/ as .x1; y1/ would give
the same result.

x

y

y-intercept

y = mx + b

Slope m
(0, b)

FIGURE 3.7 Line with slope m and
y-intercept b.

Recall that a point (0, b) where a graph intersects the y-axis is called a y-intercept
(Figure 3.7). If the slope m and y-intercept b of a line are known, an equation for the
line is [by using a point-slope form with .x1; y1/ D .0; b/]

y � b D m.x � 0/

Solving for y gives y D mx C b, called the slope-intercept form of an equation of
the line:
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y D mxC b

is the slope-intercept form of an equation of the line with slope m and y-intercept b.

EXAMPLE 4 Slope-Intercept Form

Find an equation of the line with slope 3 and y-intercept �4.

Solution: Using the slope-intercept form y D mxC b with m D 3 and b D �4 gives

y D 3xC .�4/

y D 3x � 4

Now Work Problem 17 G

EXAMPLE 5 Find the Slope and y-Intercept of a Line

Find the slope and y-intercept of the line with equation y D 5.3 � 2x/.
APPLY IT I
4. One formula for the recommended
dosage (in milligrams) of medication
for a child t years old is

y D
1
24
.tC 1/a

where a is the adult dosage. For an over-
the-counter pain reliever, a D 1000.
Find the slope and y-intercept of this
equation.

Solution:

Strategy We will rewrite the equation so it has the slope-intercept form
y D mxC b. Then the slope is the coefficient of x and the y-intercept is the constant
term.

We have

y D 5.3 � 2x/

y D 15 � 10x

y D �10xC 15

Thus, m D �10 and b D 15, so the slope is �10 and the y-intercept is 15.

Now Work Problem 25 G

x

y

(a, b)

x = a

(x, y)

a

FIGURE 3.8 Vertical line
through .a; b/.

If a vertical line passes through .a; b/ (see Figure 3.8), then any other point .x; y/
lies on the line if and only if x D a. The y-coordinate can have any value. Hence,
an equation of the line is x D a. Similarly, an equation of the horizontal line passing
through .a; b/ is y D b. (See Figure 3.9.) Here the x-coordinate can have any value.

x

y

(a, b)

(x, y)y = b

b

FIGURE 3.9 Horizontal line
through .a; b/.

EXAMPLE 6 Equations of Horizontal and Vertical Lines

a. An equation of the vertical line through .�2; 3/ is x D �2. An equation of the
horizontal line through .�2; 3/ is y D 3.

b. The x-axis and y-axis are horizontal and vertical lines, respectively. Because .0; 0/
lies on both axes, an equation of the x-axis is y D 0, and an equation of the y-axis
is x D 0.

Now Work Problems 21 and 23 G

From our discussions, we can show that every straight line is the graph of an equa-
tion of the form AxCByCC D 0, where A, B, and C are constants and A and B are not
both zero. We call this a general linear equation (or an equation of the first degree) in
the variables x and y, and x and y are said to be linearly related. For example, a general
linear equation for y D 7x � 2 is .�7/xC .1/yC .2/ D 0. Conversely, the graph of a
general linear equation is a straight line. Table 3.1 gives the various forms of equations
of straight lines.
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Table 3.1 Forms of Equations of Straight Lines

Point-slope form y � y1 D m.x � x1/

Slope-intercept form y D mxC b

General linear form AxC ByC C D 0

Vertical line x D a

Horizontal line y D b

Do not confuse the forms of equations of
horizontal and vertical lines. Remember
which one has the form x D constant
and which one has the form y D constant.

Example 3 suggests that we could add another entry to the table. For if we know that

points .x1; y1/ and .x2; y2/ are points on a line, then the slope of that line ism D
y2 � y1
x2 � x1

and we could say that y� y1 D
y2 � y1
x2 � x1

.x� x1/ is a two-point form for an equation of

a line passing through points .x1; y1/ and .x2; y2/. Whether one chooses to remember
many formulas or a few problem-solving principles is very much a matter of individual
taste.

EXAMPLE 7 Converting Forms of Equations of Lines

a. Find a general linear form of the line whose slope-intercept form is

y D �
2
3
xC 4

Solution: Getting one side to be 0, we obtain

2
3
xC y � 4 D 0

which is a general linear form with A D 2
3 , B D 1, and C D �4. An alternative general

form can be obtained by clearing fractions:
This illustrates that a general linear form
of a line is not unique.

2xC 3y � 12 D 0

b. Find the slope-intercept form of the line having a general linear form

3xC 4y � 2 D 0

Solution: Wewant the form y D mxCb, so we solve the given equation for y. We have

3xC 4y � 2 D 0

4y D �3xC 2

y D �
3
4
xC

1
2

which is the slope-intercept form. Note that the line has slope � 3
4 and y-intercept 1

2 .

Now Work Problem 37 G

APPLY IT I
5. Find a general linear form of the
Fahrenheit–Celsius conversion equa-
tion whose slope-intercept form is

F D
9
5
CC 32.

APPLY IT I
6. Sketch the graph of the Fahrenheit–
Celsius conversion equation that you
found in the preceding Apply It. How
could you use this graph to convert a
Celsius temperature to Fahrenheit?

x

y

(-3, 0)

(0, 2)

2x - 3y + 6 = 0

FIGURE 3.10 Graph of
2x � 3yC 6 D 0.

EXAMPLE 8 Graphing a General Linear Equation

Sketch the graph of 2x � 3yC 6 D 0.

Solution:

Strategy Since this is a general linear equation, its graph is a straight line. Thus,
we need only determine two different points on the graph in order to sketch it. We
will find the intercepts.

If x D 0, then �3y C 6 D 0, so the y-intercept is 2. If y D 0, then 2x C 6 D 0,
so the x-intercept is �3. We now draw the line passing through .0; 2/ and .�3; 0/. (See
Figure 3.10.)

Now Work Problem 27 G
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Parallel and Perpendicular Lines
As stated previously, there is a rule for parallel lines:

Parallel Lines Two lines are parallel if and only if they have the same slope or
are both vertical.

It follows that any line is parallel to itself.
There is also a rule for perpendicular lines. Look back to Figure 3.5 and observe

that the line with slope � 1
2 is perpendicular to the line with slope 2. The fact that the

slope of either of these lines is the negative reciprocal of the slope of the other line is
not a coincidence, as the following rule states.

Perpendicular Lines Two lines with slopes m1 and m2, respectively, are perpen-
dicular to each other if and only if

m1 D �
1
m2

Moreover, any horizontal line and any vertical line are perpendicular to each other.

Rather than simply remembering this equation for the perpendicularity condition,
observe why it makes sense. For if two lines are perpendicular, with neither vertical,
then one will necessarily rise from left to right while the other will fall from left to
right. Thus, the slopes must have different signs. Also, if one is steep, then the other is
relatively flat, which suggests a relationship such as is provided by reciprocals.

APPLY IT I
7. Show that a triangle with vertices
at A.0; 0/, B.6; 0/, and C.7; 7/ is not a
right triangle.

EXAMPLE 9 Parallel and Perpendicular Lines

Figure 3.11 shows two lines passing through .3;�2/. One is parallel to the line
y D 3xC 1, and the other is perpendicular to it. Find equations of these lines.

x

y

y = 3x + 1

(3, -2)

(b) perpendicular

(a) parallel

FIGURE 3.11 Lines parallel and perpendicular to y D 3xC 1 (Example 9).

Solution: The slope of y D 3xC 1 is 3. Thus, the line through .3;�2/ that is parallel
to y D 3xC 1 also has slope 3. Using a point-slope form, we get

y � .�2/ D 3.x � 3/

yC 2 D 3x � 9

y D 3x � 11

The slope of a line perpendicular to y D 3xC 1 must be � 1
3 (the negative reciprocal

of 3). Using a point-slope form, we get

y � .�2/ D �
1
3
.x � 3/

yC 2 D �
1
3
xC 1

y D �
1
3
x � 1

Now Work Problem 55 G
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PROBLEMS 3.1
In Problems 1–8, find the slope of the straight line that passes
through the given points.

1. .1; 3/, .4; 7/ 2. .�2; 10/, .5; 3/

3. .6;�2/, .8;�3/ 4. (2, �4), (3, �4)

5. (5, 3), (5, �8) 6. .1;�2/, .3; 5/

7. (5, �2), (4, �2) 8. (1, �7), (9, 0)

In Problems 9–24, find a general linear equation
.AxC ByC C D 0/ of the straight line that has the indicated
properties, and sketch each line.

9. Passes through .�1; 7/ and has slope �5

10. Passes through the origin and has slope 75

11. Passes through .�2; 2/ and has slope 2
3

12. Passes through .� 5
2 ; 5/ and has slope

1
3

13. Passes through (�6, 1) and (1, 4)

14. Passes through .5; 2/ and .6;�4/

15. Passes through .�3;�4/ and .�2;�8/

16. Passes through .1; 1/ and .�2;�3/

17. Has slope 2 and y-intercept 4

18. Has slope 5 and y-intercept �7

19. Has slope � 1
2 and y-intercept �3

20. Has slope 0 and y-intercept � 1
2

21. Is horizontal and passes through .3;�2/

22. Is vertical and passes through .�1;�1/

23. Passes through (2, �3) and is vertical

24. Passes through the origin and is horizontal

In Problems 25–34, find, if possible, the slope and y-intercept of
the straight line determined by the equation, and sketch the
graph.

25. y D 4x � 6 26. xC 7 D 14

27. 3xC 5y � 9 D 0 28. yC 4 D 7

29. x D �5 30. x � 9 D 5yC 3

31. y D 7x 32. y � 7 D 3.x � 4/

33. y D 3 34. 6y � 24 D 0

In Problems 35–40, find a general linear form and the
slope-intercept form of the given equation.

35. 2x D 5 � 3y 36. 3xC 7y D 13

37. 4xC 9y � 5 D 0 38. 3.x � 4/ � 7.yC 1/ D 2

39. �
x
2
C

2y
3
D �4

3
4

40. y D
1
300

xC 8

In Problems 41–50, determine whether the lines are parallel,
perpendicular, or neither.

41. y D 3x � 7, y D 3xC 3

42. y D 4xC 3; y D 5C 4x

43. y D 5xC 2; �5xC y � 3 D 0

44. y D x; y D �x

45. xC 3yC 5 D 0; y D �3x

46. xC 3y D 0, �5xC 3y � 17 D 0

47. y D 3; x D � 1
3

48. x D 3; x D �3

49. 3xC y D 4; x � 3yC 1 D 0

50. x � 2 D 3; y D 2

In Problems 51–60, find an equation of the line satisfying the given
conditions. Give the answer in slope-intercept form if possible.

51. Passing through .0; 7/ and parallel to 2y D 4xC 7

52. Passing through (2, �8) and parallel to x D �4

53. Passing through (2, 1) and parallel to y D 2

54. Passing through (3, �4) and parallel to y D 3C 2x

55. Perpendicular to y D 3x � 5 and passing through (3, 4)

56. Perpendicular to 6xC 2yC 43 D 0 and passing through .1; 5/

57. Passing through .5; 2/ and perpendicular to y D �3

58. Passing through .4;�5/ and perpendicular to the line

3y D �
2x
5
C 3

59. Passing through (�7, �5) and parallel to the line
2xC 3yC 6 D 0

60. Passing through (�4, 10) and parallel to the y-axis

61. A straight line passes through .�1;�3/ and .�1; 17/. Find
the point on it that has an x-coordinate of 5.

62. A straight line has slope 3 and y-intercept .0; 1/. Does the
point .�1;�2/ lie on the line?

63. Stock In 1996, the stock in a computer hardware company
traded for $37 per share. However, the company was in trouble
and the stock price dropped steadily, to $8 per share in 2006.
Draw a line showing the relationship between the price per share
and the year in which it traded for the time interval [1996, 2006],
with years on the x-axis and price on the y-axis. Find and interpret
the slope.

In Problems 64–65, find an equation of the line describing the
following information.

64. Home Runs In one season, a major league baseball player
has hit 14 home runs by the end of the third month and 20 home
runs by the end of the fifth month.

65. Business A delicatessen owner starts her business with
debts of $100,000. After operating for five years, she has
accumulated a profit of $40,000.

66. Due Date The length, L, of a human fetus at least 12 weeks
old can be estimated by the formula L D 1:53t� 6:7, where L is in
centimeters and t is in weeks from conception. An obstetrician
uses the length of a fetus, measured by ultrasound, to determine
the approximate age of the fetus and establish a due date for the
mother. The formula must be rewritten to result in an age, t, given
a fetal length, L. Find the slope and L-intercept of the equation. Is
there any physical significance to either of the intercepts?

67. Discus Throw A mathematical model can approximate the
winning distance for the Olympic discus throw by the
formula d D 184C t, where d is in feet and t D 0 corresponds to
the year 1948. Find a general linear form of this equation.
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68. Campus Map A coordinate map of a college campus
gives the coordinates .x; y/ of three major buildings as follows:
computer center, .3:5;�1:5/; engineering lab, .0:5; 0:5/; and
library .�1;�2:5/. Find the equations (in slope-intercept form) of
the straight-line paths connecting (a) the engineering lab with the
computer center and (b) the engineering lab with the library. Are
these two paths perpendicular to each other?

69. Geometry Show that the points A(0, 0), B(0, 4), C(2, 3),
and D(2, 7) are the vertices of a parallelogram. (Opposite sides of
a parallelogram are parallel.)

70. Approach Angle A small plane is landing at an airport
with an approach angle of 45 degrees, or slope of �1. The plane
begins its descent when it has an elevation of 3600 feet. Find the
equation that describes the relationship between the craft’s
altitude and distance traveled, assuming that at distance 0 it
starts the approach angle. Graph your equation on a graphing
calculator. What does the graph tell you about the approach
if the airport is 3800 feet from where the plane starts its
landing?

71. Cost Equation The average daily cost, C, for a room at a
city hospital has risen by $61.34 per year for the years 2006
through 2016. If the average cost in 2010 was $1128.50, what is
an equation that describes the average cost during this decade, as a
function of the number of years, T, since 2006?

72. Revenue Equation A small business predicts its revenue
growth by a straight-line method with a slope of $50,000 per year.
In its fifth year, it had revenues of $330,000. Find an equation that
describes the relationship between revenues, R, and the number of
years, T, since it opened for business.

73. Graph y D �0:9xC 7:3 and verify that the y-intercept is 7.3.

74. Graph the lines whose equations are

y D 1:5xC 1

y D 1:5x � 1

and

y D 1:5xC 2:5

What do you observe about the orientation of these lines? Why
would you expect this result from the equations of the lines
themselves?

75. Graph the line y D 7:1xC 5:4. Find the coordinates
of any two points on the line, and use them to estimate the
slope. What is the actual slope of the line?

76. Show that if a line has x-intercept x0 and y-intercept y0, both

different from 0, then x
x0
C

y
y0
D 1, equivalently y0xC x0y D x0y0,

is an equation of the line. For 0 � x � x0 and 0 � y � y0 interpret
the last equation geometrically.

Objective 3.2 Applications and Linear Functions
To develop the notion of demand and
supply curves and to introduce linear
functions.

Many situations in economics can be described by using straight lines, as evidenced by
Example 1.

EXAMPLE 1 Production LevelsAPPLY IT I
8. A sporting-goods manufacturer
allocates 1000 units of time per day to
make skis and ski boots. If it takes 8
units of time to make a ski and 14 units
of time to make a boot, find an equation
to describe all possible production
levels of the two products.

Suppose that amanufacturer uses 100 lb ofmaterial to produce products A andB, which
require 4 lb and 2 lb of material per unit, respectively. If x and y denote the number of
units produced of A and B, respectively, then all levels of production are given by the
combinations of x and y that satisfy the equation

4xC 2y D 100 where x; y � 0

Thus, the levels of production of A and B are linearly related. Solving for y gives

y D �2xC 50 slope-intercept form

x

(units of A)

y (units of B)

10

10 20

20

30

40

50 (0, 50)

(10, 30)

4x + 2y = 100

(y = -2x + 50)

FIGURE 3.12 Linearly related
production levels.

so the slope is �2. The slope reflects the rate of change of the level of production of B
with respect to the level of production of A. For example, if 1 more unit of A is to be
produced, it will require 4 more pounds of material, resulting in 4

2 D 2 fewer units of
B. Accordingly, as x increases by 1 unit, the corresponding value of y decreases by 2
units. To sketch the graph of y D �2xC 50, we can use the y-intercept .0; 50/ and the
fact that when x D 10, y D 30. (See Figure 3.12.)

Now Work Problem 21 G

Demand and Supply Curves
For each price level of a product, there is a corresponding quantity of that product
that consumers will demand (that is, purchase) during some time period. Usually, the
higher the price, the smaller is the quantity demanded; as the price falls, the quantity
demanded increases. If the price per unit of the product is given by p and the corre-
sponding quantity (in units) is given by q, then an equation relating p and q is called a
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Demand curve
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q

p

d

c

(c, d)
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n
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)

Supply curve

(Quantity per unit of time)

(b)

FIGURE 3.13 Demand and supply curves.

demand equation. Its graph is called a demand curve. Figure 3.13(a) shows a demand
curve. In keeping with the practice of most economists, the horizontal axis is the q-axis
and the vertical axis is the p-axis. We will assume that the price per unit is given in
dollars and the period is one week. Thus, the point .a; b/ in Figure 3.14(a) indicates
that, at a price of b dollars per unit, consumers will demand a units per week. Since
negative prices or quantities are not meaningful, both a and b must be nonnegative.
For most products, an increase in the quantity demanded corresponds to a decrease in
price. Thus, a demand curve typically falls from left to right, as in Figure 3.13(a).

In response to various prices, there is a corresponding quantity of product that
producers are willing to supply to the market during some time period. Usually, the
higher the price per unit, the larger is the quantity that producers are willing to supply;
as the price falls, so will the quantity supplied. If p denotes the price per unit and q
denotes the corresponding quantity, then an equation relating p and q is called a supply
equation, and its graph is called a supply curve. Figure 3.13(b) shows a supply curve.

Typically, a demand curve falls from left
to right and a supply curve rises from left
to right. However, there are exceptions.
For example, the demand for insulin
could be represented by a vertical line,
since this demand can remain constant
regardless of price. If p is in dollars and the period is one week, then the point .c; d/ indicates that, at a

price of d dollars each, producers will supply c units per week. As before, c and d are
nonnegative. A supply curve usually rises from left to right, as in Figure 3.13(b). This
indicates that a producer will supply more of a product at higher prices.

Observe that a function whose graph either falls from left to right or rises from left
to right throughout its entire domain will pass the horizontal line test of Section 2.5.
Certainly, the demand curve and the supply curve in Figure 3.14 are each cut at most
once by any horizontal line. Thus, if the demand curve is the graph of a function
p D D.q/, then D will have an inverse and we can solve for q uniquely to get
q D D�1.p/. Similarly, if the supply curve is the graph of a function p D S.q/, then S
is also one-to-one, has an inverse S�1, and we can write q D S�1.p/.

Wewill now focus on demand and supply curves that are straight lines (Figure 3.14).
They are called linear demand and linear supply curves. Such curves have equations
in which p and q are linearly related. Because a demand curve typically falls from left
to right, a linear demand curve has a negative slope. [See Figure 3.14(a).] However,
the slope of a linear supply curve is positive, because the curve rises from left to right.
[See Figure 3.14(b).]

q

p

Negative
slope

(a)

q

p

(b)

Linear demand
curve

Positive
slope

Linear supply
curve

FIGURE 3.14 Linear demand and supply curves.
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EXAMPLE 2 Finding a Demand Equation

Suppose the demand per week for a product is 100 units when the price is $58 per unit
and 200 units at $51 each. Determine the demand equation, assuming that it is linear.

APPLY IT I
9. The demand per week for 50-inch
television sets is 1200 units when the
price is $575 each and 800 units when
the price is $725 each. Find the demand
equation for the sets, assuming that it is
linear.

Solution:

Strategy Since the demand equation is linear, the demand curvemust be a straight
line. We are given that quantity q and price p are linearly related such that p D 58
when q D 100 and p D 51 when q D 200. Thus, the given data can be rep-
resented in a q; p-coordinate plane [see Figure 3.14(a)] by points .100; 58/ and
.200; 51/.With these points, we can find an equation of the line—that is, the demand
equation.

The slope of the line passing through .100; 58/ and .200; 51/ is

m D
51 � 58
200 � 100

D �
7
100

An equation of the line (point-slope form) is

p � p1 D m.q � q1/

p � 58 D �
7
100

.q � 100/

Simplifying gives the demand equation

p D �
7
100

qC 65 (1)

Customarily, a demand equation (as well as a supply equation) expresses p, in terms of
q and actually defines a function of q. For example, Equation (1) defines p as a function
of q and is called the demand function for the product. (See Figure 3.15.)

Now Work Problem 15 G

0 1000

0

80

FIGURE 3.15 Graph of demand
function p D � 7

100qC 65.

Linear Functions
A linear function was defined in Section 2.2 to be a polynomial function of degree 1.
Somewhat more explicitly,

Definition
A function f is a linear function if and only if f.x/ can be written in the form
f.x/ D axC b, where a and b are constants and a ¤ 0.

Suppose that f.x/ D axCb is a linear function, and let y D f.x/. Then y D axCb,
which is an equation of a straight line with slope a and y-intercept b. Thus, the graph
of a linear function is a straight line that is neither vertical nor horizontal.We say that
the function f.x/ D axC b has slope a.
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EXAMPLE 3 Graphing Linear FunctionsAPPLY IT I
10. A computer repair company
charges a fixed amount plus an hourly
rate for a service call. If x is the number
of hours needed for a service call,
the total cost of a call is described
by the function f.x/ D 40x C 60.
Graph the function by finding and
plotting two points. x

f(x)

-1

f(x) = 2x - 1

2

3

x f (x)

0 -1

2 3

(a)

t

g(t)

6

5

t g(t)

0 5

6 1

(b)

3

2 g(t) =
3

15 - 2t

FIGURE 3.16 Graphs of linear functions.

a. Graph f.x/ D 2x � 1.

Solution: Here f is a linear function (with slope 2), so its graph is a straight line. Since
two points determine a straight line, we need only plot two points and then draw a line
through them. [See Figure 3.16(a).] Note that one of the points plotted is the vertical-
axis intercept, �1, which occurs when x D 0.

b. Graph g.t/ D
15 � 2t

3
.

Solution: Notice that g is a linear function, because we can express it in the form
g.t/ D atC b.

g.t/ D
15 � 2t

3
D

15
3
�
2t
3
D �

2
3
tC 5

The graph of g is shown in Figure 3.16(b). Since the slope is � 2
3 , observe that as t

increases by 3 units, g.t/ decreases by 2.

Now Work Problem 3 G

APPLY IT I
11. The height of children between the
ages of 6 years and 10 years can be
modeled by a linear function of age t in
years. The height of one child changes
by 2.3 inches per year, and she is 50.6
inches tall at age 8. Find a function that
describes the height of this child at age t.

EXAMPLE 4 Determining a Linear Function

Suppose f is a linear function with slope 2 and f.4/ D 8. Find f.x/.

Solution: Since f is linear, it has the form f.x/ D ax C b. The slope is 2, so a D 2,
and we have

f.x/ D 2xC b (2)

Now we determine b. Since f.4/ D 8, we replace x by 4 in Equation (2) and solve
for b:

f.4/ D 2.4/C b

8 D 8C b

0 D b

Hence, f.x/ D 2x.

Now Work Problem 7 G

EXAMPLE 5 Determining a Linear Function

If y D f.x/ is a linear function such that f.�2/ D 6 and f.1/ D �3, find f.x/.
APPLY IT I
12. An antique necklace is expected
to be worth $360 after 3 years and
$640 after 7 years. Find a function that
describes the value of the necklace after
x years.

Solution:

Strategy The function values correspond to points on the graph of f. With these
points we can determine an equation of the line and hence the linear function.
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The condition that f.�2/ D 6 means that when x D �2, then y D 6. Thus, .�2; 6/
lies on the graph of f, which is a straight line. Similarly, f.1/ D �3 implies that .1;�3/
also lies on the line. If we set .x1; y1/ D .�2; 6/ and .x2; y2/ D .1;�3/, the slope of
the line is given by

m D
y2 � y1
x2 � x1

D
�3 � 6
1 � .�2/

D
�9
3
D �3

We can find an equation of the line by using a point-slope form:

y � y1 D m.x � x1/

y � 6 D �3Œx � .�2/�

y � 6 D �3x � 6

y D �3x

Because y D f.x/, f.x/ D �3x. Of course, the same result is obtained if we set
.x1; y1/ D .1;�3/.

Now Work Problem 9 G

In many studies, data are collected and plotted on a coordinate system. An analysis
of the results may indicate a functional relationship between the variables involved. For
example, the data points may be approximated by points on a straight line. This would
indicate a linear functional relationship, such as the one in the next example.

w(weight)

d(days)
25 50

40

675 (25, 675)

FIGURE 3.17 Linear function
describing diet for hens.

EXAMPLE 6 Diet for Hens

In testing an experimental diet for hens, it was determined that the average live weight
w (in grams) of a hen was statistically a linear function of the number of days d after
the diet began, where 0 � d � 50. Suppose the average weight of a hen beginning the
diet was 40 grams and 25 days later it was 675 grams.

a. Determine w as a linear function of d.

Solution: Since w is a linear function of d, its graph is a straight line. When d D 0
(the beginning of the diet), w D 40. Thus, .0; 40/ lies on the graph. (See Figure 3.17.)
Similarly, .25; 675/ lies on the graph. If we set .d1;w1/ D .0; 40/ and
.d2;w2/ D .25; 675/, the slope of the line is

m D
w2 � w1

d2 � d1
D

675 � 40
25 � 0

D
635
25
D

127
5

Using a point-slope form, we have

w � w1 D m.d � d1/

w � 40 D
127
5
.d � 0/

w � 40 D
127
5

d

w D
127
5

dC 40

which expresses w as a linear function of d.

b. Find the average weight of a hen when d D 10.

Solution: When d D 10, w D 127
5 .10/C 40 D 254C 40 D 294. Thus, the average

weight of a hen 10 days after the beginning of the diet is 294 grams.

Now Work Problem 19 G
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PROBLEMS 3.2
In Problems 1–6, find the slope and vertical-axis intercept of the
linear function, and sketch the graph.

1. y D f.x/ D �4x 2. y D f.x/ D 6xC 3

3. h.t/ D 5t � 7 4. f.s/ D 3.5 � s/

5. p.q/ D
5 � q
3

6. h.q/ D 0:5qC 0:25

In Problems 7–14, find f(x) if f is a linear function that has the
given properties.

7. slope D 4, f.1/ D 7 8. f.0/ D 3; f.4/ D �5

9. f.1/ D 2; f.�2/ D 8 10. slope D �5, f. 14 / D 9

11. slope D � 2
3 , f.�

2
3 / D �

2
3

12. f.2/ D 7, f.3/ D 14

13. f.�2/ D �1; f.�4/ D �3

14. slope D 0:01; f.0:1/ D 0:01

15. Demand Equation Suppose consumers will demand
60 units of a product when the price is $15.30 per unit and
35 units when the price is $19.30 each. Find the demand equation,
assuming that it is linear. Find the price per unit when 40 units are
demanded.

16. Demand Equation The demand per week for a CD is
26,000 copies when the price is $12 each, and 10,000 copies when
the price is $18 each. Find the demand equation for the CD,
assuming that it is linear.

17. Supply Equation A laptop manufacturer will produce
3,000,000 units when the price is $900, and 2,000,000 units when
the price is $700. Assume that price, p, and quantity, q, produced
are linearly related and find the supply equation.

18. Supply Equation Suppose a manufacturer of shoes will
place on the market 50 (thousand pairs) when the price is 35
(dollars per pair) and 35 when the price is 30. Find the supply
equation, assuming that price p and quantity q are linearly related.

19. Cost Equation Suppose the cost to produce 10 units of a
product is $40 and the cost of 20 units is $70. If cost, c, is linearly
related to output, q, find a linear equation relating c and q. Find
the cost to produce 35 units.

20. Cost Equation An advertiser goes to a printer and is
charged $89 for 100 copies of one flyer and $93 for 200 copies of
another flyer. This printer charges a fixed setup cost plus a charge
for every copy of single-page flyers. Find a function that describes
the cost of a printing job, if x is the number of copies made.

21. Electricity Rates An electric utility company charges
residential customers 12.5 cents per kilowatt-hour plus a base
charge each month. One customer’s monthly bill comes to $51.65
for 380 kilowatt-hours. Find a linear function that describes the
total monthly charges for electricity if x is the number of
kilowatt-hours used in a month.

22. Demand Equation If the price of a product and demand
for it are known to be linearly related, with a demand for 120 units
when the price is $0 and a demand for 0 units when the price is
$150, determine the equation. Hint: Recall the form for a linear
equation developed in Problem 76 of Section 3.1.

23. Depreciation Suppose the value of a mountain bike
decreases each year by 10% of its original value. If the original
value is $1800, find an equation that expresses the value v of the
bike t years after purchase, where 0 � t � 10. Sketch the equation,
choosing t as the horizontal axis and v as the vertical axis. What is
the slope of the resulting line? This method of considering the
value of equipment is called straight-line depreciation.

24. Depreciation A new television depreciates $120 per year,
and it is worth $340 after four years. Find a function that describes
the value of this television, if x is the age of the television in years.

25. Appreciation A new house was sold for $1,183,000 six
years after it was built and purchased. The original owners
calculated that the house appreciated $53,000 per year while they
owned it. Find a linear function that describes the appreciation of
the building, in thousands of dollars, if x is the number of years
since the original purchase.

26. Appreciation A house purchased for $245,000 is expected
to double in value in 15 years. Find a linear equation that
describes the house’s value after t years.

27. Total Cost A company’s yearly total production cost C is
typically given by C D C.n/ D FC cn, where F is fixed cost and
cn, the variable cost, is cost per item, c, times the number of items
produced, n. If, in 2010, 1000 items were produced at a total cost
of $3500 and, in 2015, 1500 items were produced at a total cost of
$5000, determine the linear function C of n. What are the
numerical values of F and c?

28. Sheep’s Wool Length For sheep maintained at high
environmental temperatures, respiratory rate, r (per minute),
increases as wool length, l (in centimeters), decreases.2 Suppose
sheep with a wool length of 2 cm have an (average) respiratory
rate of 160, and those with a wool length of 4 cm have a
respiratory rate of 125. Assume that r and l are linearly related. (a)
Find an equation that gives r in terms of l. (b) Find the respiratory
rate of sheep with a wool length of 1 cm.

29. Isocost Line In production analysis, an isocost line is a line
whose points represent all combinations of two factors of
production that can be purchased for the same amount. Suppose a
farmer has allocated $20,000 for the purchase of x tons of
fertilizer (costing $200 per ton) and y acres of land (costing $2000
per acre). Find an equation of the isocost line that describes the
various combinations that can be purchased for $20,000. Observe
that neither x nor y can be negative.

30. Isoprofit Line A manufacturer produces products X and Y
for which the profits per unit are $7 and $8, respectively. If x units
of X and y units of Y are sold, then the total profit P is given by
P D P.x; y/ D 7xC 8y, where x; y � 0. (a) Sketch the graph of
this equation for P D 260. The result is called an isoprofit line,
and its points represent all combinations of sales that produce a
profit of $260. [It is an example of a level curve for the function
P.x; y/ D 7xC 8y of two variables as introduced in Section 2.8.]
(b) Determine the slope for P D 260. (c) For P D 860, determine
the slope. (d) Are isoprofit lines always parallel?

2Adapted from G. E. Folk, Jr., Textbook of Environmental Physiology, 2nd ed.
(Philadelphia: Lea & Febiger, 1974).
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31. Grade Scaling For reasons of comparison, a professor
wants to rescale the scores on a set of test papers so that the
maximum score is still 100 but the average is 65 instead of 56.
(a) Find a linear equation that will do this. [Hint: You want 56 to
become 65 and 100 to remain 100. Consider the points (56, 65)
and (100, 100) and, more generally, (x, y), where x is the old score
and y is the new score. Find the slope and use a point-slope form.
Express y in terms of x.] (b) If 62 on the new scale is the lowest
passing score, what was the lowest passing score on the
original scale?

32. Profit Coefficients A company makes two products, X and
Y. If the company makes $a profit from selling 1 unit of X and $b
profit from selling 1 unit of Y, then it is clear that its total profit P
from selling x units of X and y units of Y is given by P D axC by.
If, moreover, it is known that a profit of P can be made by selling
40 units of X and 0 units of Y or by selling 0 units of X and 30
units of Y, determine the profit coefficients a and b in terms of P.

33. Psychology In a certain learning experiment involving
repetition and memory,3 the proportion, p, of items recalled
was estimated to be linearly related to the effective study time,
t (in seconds), where t is between 5 and 9. For an effective study
time of 5 seconds, the proportion of items recalled was 0.32.
For each 1-second increase in study time, the proportion recalled
increased by 0.059. (a) Find an equation that gives p in terms of t.
(b)What proportion of items was recalled with 9 seconds of
effective study time?

34. Diet for Pigs In testing an experimental diet for pigs, it
was determined that the (average) live weight, w (in kilograms), of
a pig was statistically a linear function of the number of days, d,

after the diet was initiated, where 0 � d � 100. If the weight of
a pig beginning the diet was 21 kg, and thereafter the pig gained
6.3 kg every 10 days, determine w as a function of d, and find the
weight of a pig 55 days after the beginning of the diet.

35. Cricket Chirps Biologists have found that the number of
chirps made per minute by crickets of a certain species is related
to the temperature. The relationship is very close to being linear.
At 68ıF, the crickets chirp about 124 times a minute. At 80ıF,
they chirp about 172 times a minute. (a) Find an equation that
gives Fahrenheit temperature, t, in terms of the number of chirps,
c, per minute. (b) If you count chirps for only 15 seconds, how
can you quickly estimate the temperature?

Objective 3.3 Quadratic Functions
To sketch parabolas arising from
quadratic functions.

In Section 3.3, a quadratic function was defined as a polynomial function of degree 2.
In other words,

Definition
A function f is a quadratic function if and only if f.x/ can be written in the form
f.x/ D ax2 C bxC c, where a, b, and c are constants and a ¤ 0.

For example, the functions f.x/ D x2 � 3x C 2 and F.t/ D �3t2 are quadratic.

However, g.x/ D
1
x2

is not quadratic, because it cannot be written in the form

g.x/ D ax2 C bxC c.
The graph of the quadratic function y D f.x/ D ax2C bxC c is called a parabola

and has a shape like the curves in Figure 3.18. If a > 0, the graph extends upward
indefinitely, and we say that the parabola opens upward [Figure 3.18(a)]. If a < 0, the
parabola opens downward [Figure 3.18(b)].

Each parabola in Figure 3.18 is symmetric about a vertical line, called the axis of
symmetry of the parabola. That is, if the page were folded on one of these lines, then
the two halves of the corresponding parabola would coincide. The axis (of symmetry)
is not part of the parabola, but is a useful aid in sketching the parabola.

Each part of Figure 3.18 shows a point labeled vertex, where the axis cuts the
parabola. If a > 0, the vertex is the “lowest” point on the parabola. This means that

3D. L. Hintzman, “Repetition and Learning,” in The Psychology of Learning,
Vol. 10, ed. G. H. Bower (New York: Academic Press, Inc., 1976), p. 77.
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x

y

x

y

Vertex

a 7 0, opens upward

(a)

Axis of
symmetry

Axis of
symmetry

Vertex

a 6 0, opens downward

(b)

Parabola: y = f(x) = ax2 + bx + c

FIGURE 3.18 Parabolas.

f.x/ has a minimum value at this point. By performing algebraic manipulations on
ax2 C bx C c (referred to as completing the square), we can determine not only this
minimum value, but also where it occurs. We have

f.x/ D ax2 C bxC c D .ax2 C bx/C c

Adding and subtracting
b2

4a
gives

f.x/ D
�
ax2 C bxC

b2

4a

�
C c �

b2

4a

D a
�
x2 C

b
a
xC

b2

4a2

�
C c �

b2

4a

so that

f.x/ D a
�
xC

b
2a

�2

C c �
b2

4a

Since
�
xC

b
2a

�2

� 0 and a > 0, it follows that f.x/ has a minimum value when

xC
b
2a
D 0; that is, when x D �

b
2a
. The y-coordinate corresponding to this value of

x is f
�
�

b
2a

�
. Thus, the vertex is given by

vertex D
�
�

b
2a
; f
�
�

b
2a

��
This is also the vertex of a parabola that opens downward .a < 0/, but in this case

f
�
�

b
2a

�
is the maximum value of f.x/. [See Figure 3.18(b).]

Observe that a function whose graph is a parabola is not one-to-one, in either
the opening upward or opening downward case, since many horizontal lines will cut
the graph twice. However, if we restrict the domain of a quadratic function to either�
�

b
2a
;1

�
or
�
�1;�

b
2a

�
, then the restricted function will pass the horizontal line

test and therefore be one-to-one. (There are many other restrictions of a quadratic func-
tion that are one-to-one; however, their domains consist of more than one interval.) It
follows that such restricted quadratic functions have inverse functions.

The point where the parabola y D ax2 C bx C c intersects the y-axis (that is, the
y-intercept) occurs when x D 0. The y-coordinate of this point is c, so the y-intercept
is c. In summary, we have the following.
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Graph of Quadratic Function

The graph of the quadratic function y D f.x/ D ax2 C bxC c is a parabola.

1. If a > 0, the parabola opens upward. If a < 0, it opens downward.

2. The vertex is
�
�

b
2a
; f
�
�

b
2a

��
.

3. The y-intercept is c.

We can quickly sketch the graph of a quadratic function by first locating the vertex,
the y-intercept, and a few other points, such as those where the parabola intersects
the x-axis. These x-intercepts are found by setting y D 0 and solving for x. Once the
intercepts and vertex are found, it is then relatively easy to pass the appropriate parabola
through these points. In the event that the x-intercepts are very close to the vertex or
that no x-intercepts exist, we find a point on each side of the vertex, so that we can give
a reasonable sketch of the parabola. Keep in mind that passing a (dashed) vertical line
through the vertex gives the axis of symmetry. By plotting points to one side of the
axis, we can use symmetry and obtain corresponding points on the other side.

APPLY IT I
13. A car dealership believes that the
daily profit from the sale of minivans is
given by P.x/ D �x2C2xC399, where
x is the number of minivans sold. Find
the function’s vertex and intercepts, and
graph the function. If their model is cor-
rect, comment on the viability of deal-
ing in minivans.

EXAMPLE 1 Graphing a Quadratic Function

Graph the quadratic function y D f.x/ D �x2 � 4xC 12.

Solution: Here a D �1, b D �4, and c D 12. Since a < 0, the parabola opens
downward and, thus, has a highest point. The x-coordinate of the vertex is

�
b
2a
D �

�4
2.�1/

D �2

The y-coordinate is f.�2/ D �.�2/2�4.�2/C12 D 16. Thus, the vertex is .�2; 16/,
so the maximum value of f.x/ is 16. Since c D 12, the y-intercept is 12. To find the
x-intercepts, we let y be 0 in y D �x2 � 4xC 12 and solve for x:

0 D �x2 � 4xC 12

0 D �.x2 C 4x � 12/

0 D �.xC 6/.x � 2/

Hence, x D �6 or x D 2, so the x-intercepts are �6 and 2. Now we plot the vertex,
axis of symmetry, and intercepts. [See Figure 3.19(a).] Since .0; 12/ is two units to the
right of the axis of symmetry, there is a corresponding point two units to the left of the
axis with the same y-coordinate. Thus, we get the point .�4; 12/. Through all points,
we draw a parabola opening downward. [See Figure 3.19(b).]

x

y

2

4

8

12

16

-4

-8

-2-4-6
x

y

2

4

8

12

16

-4

-8

-2-4

-6

y = f(x) = -x2 -4x + 12

Vertex

Axis of
symmetry

(a) (b)

FIGURE 3.19 Graph of parabola y D f.x/ D �x2 � 4xC 12.

Now Work Problem 15 G
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EXAMPLE 2 Graphing a Quadratic Function

Graph p D 2q2.

Solution: Here p is a quadratic function of q, where a D 2, b D 0, and c D 0. Since
a > 0, the parabola opens upward and, thus, has a lowest point. The q-coordinate of
the vertex is

�
b
2a
D �

0
2.2/

D 0

and the p-coordinate is 2.0/2 D 0. Consequently, the minimum value of p is 0 and the
vertex is .0; 0/. In this case, the p-axis is the axis of symmetry. A parabola opening
upward with vertex at .0; 0/ cannot have any other intercepts. Hence, to draw a reason-
able graph, we plot a point on each side of the vertex. If q D 2, then p D 8. This gives
the point .2; 8/ and, by symmetry, the point .�2; 8/. (See Figure 3.20.)

Now Work Problem 13 G

p

8

q
2-2

p = 2q
2q p

2 8

-2 8

FIGURE 3.20 Graph of parabola
p D 2q2.

APPLY IT I
14. A man standing on a pitcher’s
mound throws a ball straight up with
an initial velocity of 32 feet per sec-
ond. The height, h, of the ball in feet t
seconds after it was thrown is described
by the function h.t/ D �16t2C32tC8,
for t � 0. Find the function’s vertex and
intercepts, and graph the function.

EXAMPLE 3 Graphing a Quadratic Function

Graph g.x/ D x2 � 6xC 7.

Example 3 illustrates that finding
intercepts may require use of the
quadratic formula.

Solution: Here g is a quadratic function, where a D 1, b D �6, and c D 7. The
parabola opens upward, because a > 0. The x-coordinate of the vertex (lowest point) is

�
b
2a
D �

�6
2.1/

D 3

and g.3/ D 32� 6.3/C 7 D �2, which is the minimum value of g.x/. Thus, the vertex
is .3;�2/. Since c D 7, the vertical-axis intercept is 7. To find x-intercepts, we set
g.x/ D 0.

0 D x2 � 6xC 7

The right side does not factor easily, so we will use the quadratic formula to solve for
x:

x D
�b˙

p
b2 � 4ac
2a

D
�.�6/˙

p
.�6/2 � 4.1/.7/
2.1/

D
6˙
p
8

2
D

6˙
p
4 � 2

2
D

6˙ 2
p
2

2

D
6
2
˙

2
p
2

2
D 3˙

p
2

Therefore, the x-intercepts are 3C
p
2 and 3�

p
2. After plotting the vertex, intercepts,

and (by symmetry) the point .6; 7/, we draw a parabola opening upward in Figure 3.21.

Now Work Problem 17 G

g(x)

7

x
6

-2

3
3 +    23 -    2

g(x) = x
2
 - 6x + 7

FIGURE 3.21 Graph of parabola
g.x/ D x2 � 6xC 7.

EXAMPLE 4 Graphing a Quadratic Function

Graph y D f.x/ D 2x2 C 2xC 3 and find the range of f.

Solution: This function is quadratic with a D 2, b D 2, and c D 3. Since a > 0, the
graph is a parabola opening upward. The x-coordinate of the vertex is

�
b
2a
D �

2
2.2/

D �
1
2
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y

7

x
1

3

-2 1

2
-

5

2

y = f(x) = 2x2
 + 2x + 3

Range: y 9
5

2

x y

-2 7

1 7

FIGURE 3.22 Graph of y D f.x/ D 2x2 C 2xC 3.

and the y-coordinate is 2.� 1
2 /

2 C 2.� 1
2 /C 3 D 5

2 . Thus, the vertex is .�
1
2 ;

5
2 /. Since

c D 3, the y-intercept is 3. A parabola opening upward with its vertex above the
x-axis has no x-intercepts. In Figure 3.22 we plotted the y-intercept, the vertex, and
an additional point .�2; 7/ to the left of the vertex. By symmetry, we also get the point
.1; 7/. Passing a parabola through these points gives the desired graph. From the figure,
we see that the range of f is all y � 5

2 , that is, the interval Œ
5
2 ;1/.

Now Work Problem 21 G

EXAMPLE 5 Finding and Graphing an Inverse

For the parabola given by the function

y D f.x/ D ax2 C bxC c

determine the inverse of the restricted function given by g.x/ D ax2 C bx C c, for

x � �
b
2a
. (We know that this restricted function passes the horizontal line test, so g

does have an inverse.) Graph g and g�1 in the same plane, in the case where a D 2,
b D 2, and c D 3.

Solution: We begin by observing that, for a > 0, the range of g is Œg
�
�

b
2a

�
;1/,

while, for a < 0, the the range of g is .�1; g
�
�

b
2a

�
�. (It follows that, for

a > 0, the domain of g�1 is Œg
�
�

b
2a

�
;1/, while for a < 0, the domain of g�1 is

.�1; g
�
�

b
2a

�
�. We now follow the procedure described in Example 5 of Section 2.4.

For x � �
b
2a
, we solve y D ax2 C bx C c for x in terms of y. We apply the

quadratic formula to ax2 C bx C .c � y/ D 0, giving x D
�b˙

p
b2 � 4a.c � y/
2a

.

Now in case a > 0, g�1.x/ D
�bC

p
b2 � 4a.c � x/
2a

, while, in case a < 0, g�1.x/ D

�b �
p
b2 � 4a.c � x/
2a

. The signs are chosen to ensure that the values of g�1 lie in the

domain of g, which, for either a > 0 or a < 0 is Œ�
b
2a
;1/.

To complete the exercise, observe that in Figure 3.22 we have provided the graph
of y D 2x2 C 2x C 3. For the task at hand, we redraw that part of the curve that lies
to the right of the axis of symmetry. This provides the graph of g. Next we provide a
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61 2 3 4 5-1

-1

-2

-3

-4

-5

-6 -5 -4 -3 -2

-6

6

5

4

3

2

1

y

x

FIGURE 3.23 Graph of g and g�1.

dotted copy of the line y D x. Finally, we draw the mirror image of g in the line y D x
to obtain the graph of g�1 as in Figure 3.23.

Now Work Problem 27 G

APPLY IT I
15. The demand function for a pub-
lisher’s line of cookbooks is

p D 6 � 0:003q

where p is the price (in dollars) per unit
when q units are demanded (per day) by
consumers. Find the level of production
that will maximize the manufacturer’s
total revenue, and determine this rev-
enue.

The formula for total revenue is part of
the repertoire of relationships in business
and economics.

EXAMPLE 6 Maximum Revenue

The demand function for a manufacturer’s product is p D 1000 � 2q, where p is the
price (in dollars) per unit when q units are demanded (per week) by consumers. Find the
level of production that will maximize the manufacturer’s total revenue, and determine
this revenue.

Solution:

Strategy To maximize revenue, we determine the revenue function, r D f.q/.
Using the relation

total revenue D .price/.quantity/
we have

r D pq

Using the demand equation, we can express p in terms of q, so r will be a function
of q.

We have
r D pq

D .1000 � 2q/q

r D 1000q � 2q2

Note that r is a quadratic function of q, with a D �2, b D 1000, and c D 0. Since
a < 0 (the parabola opens downward) and r attains a maximum at the vertex .q; r/,
where

q D �
b
2a
D �

1000
2.�2/

D 250

The maximum value of r is given by

r.250/ D 1000.250/ � 2.250/2

D 250;000 � 125;000 D 125;000
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Thus, the maximum revenue that the manufacturer can receive is $125,000, which
occurs at a production level of 250 units. Figure 3.24 shows the graph of the revenue
function. Only that portion for which q � 0 and r � 0 is drawn, since quantity and
revenue cannot be negative.

Now Work Problem 29 G

r

125,000

q
250 500

r = 1000q - 2q
2

FIGURE 3.24 Graph of revenue
function.

PROBLEMS 3.3
In Problems 1–8, state whether the function is quadratic.

1. f.x/ D 5x2 2. g.x/ D
1

2x2 � 4
3. g.x2/ D �5 � 11x2 4. k.v/ D 2v2.2v2 C 2/

5. h.q/ D .3 � q/2 6. f.t/ D 2t.3 � t/C 4t

7. f.s/ D
s2 � 9
2

8. g.x/ D .x2 C 2/2

In Problems 9–12, do not include a graph.

9. (a) For the parabola y D f.x/ D 3x2 C 5xC 1, find the vertex.
(b) Does the vertex correspond to the highest point or the lowest
point on the graph?

10. Repeat Problem 9 if y D f.x/ D 8x2 C 4x � 1.

11. For the parabola y D f.x/ D x2 C x � 6, find (a) the
y-intercept, (b) the x-intercepts, and (c) the vertex.

12. Repeat Problem 11 if y D f.x/ D 5 � x � 3x2.

In Problems 13–22, graph each function. Give the vertex and
intercepts, and state the range.

13. y D f.x/ D x2 � 6x � 7 14. y D f.x/ D 9x2

15. y D g.x/ D �2x2 � 6x 16. y D f.x/ D x2 � 4

17. s D h.t/ D t2 C 6tC 9 18. s D h.t/ D 2t2 � 3t � 5

19. y D f.x/ D �5C 3x � 3x2

20. y D H.x/ D 1 � x � x2

21. t D f.s/ D s2 � 8sC 14

22. t D f.s/ D s2 C 6sC 11

In Problems 23–26, state whether f (x) has a maximum value or a
minimum value, and find that value.

23. f.x/ D 23x2 � 12xC 10 24. f.x/ D �7x2 � 2xC 6

25. f.x/ D 4x � 50 � 0:1x2 26. f.x/ D x.xC 3/ � 12

In Problems 27 and 28, restrict the quadratic function to those x
satisfying x � v, where v is the x-coordinate of the vertex of the
parabola. Determine the inverse of the restricted function. Graph
the restricted function and its inverse in the same plane.

27. f.x/ D x2 � 2xC 4 28. f.x/ D �x2 � 1

29. Revenue The demand function for a manufacturer’s
product is p D f.q/ D 100 � 10q, where p is the price (in dollars)

per unit when q units are demanded (per day). Find the level of
production that maximizes the manufacturer’s total revenue, and
determine this revenue.

30. Revenue The demand function for an office supply
company’s line of plastic rulers is p D 0:85�0:00045q, where p is
the price (in dollars) per unit when q units are demanded (per day)
by consumers. Find the level of production that will maximize the
manufacturer’s total revenue, and determine this revenue.

31. Revenue The demand function for an electronics
company’s laptop computer line is p D 2400 � 6q, where p is the
price (in dollars) per unit when q units are demanded (per week)
by consumers. Find the level of production that will maximize the
manufacturer’s total revenue, and determine this revenue.

32. Marketing A marketing firm estimates that n months after
the introduction of a client’s new product, f.n/ thousand
households will use it, where

f.n/ D
10
9
n.12 � n/; 0 � n � 12

Estimate the maximum number of households that will use the
product.

33. Profit A manufacturer’s profit P from producing and
selling q items is given by P.q/ D �2q2 C 900q � 50; 000.
Determine the quantity that maximizes profit and the maximum
profit.

34. Psychology A prediction made by early psychology
relating the magnitude of a stimulus, x, to the magnitude of a
response, y, is expressed by the equation y D kx2, where k is
a constant of the experiment. In an experiment on pattern
recognition, k D 3. Find the function’s vertex and graph the
equation. (Assume no restriction on x.)

35. Biology Biologists studied the nutritional effects on rats
that were fed a diet containing 10% protein.4 The protein
consisted of yeast and corn flour. By varying the percentage, P, of
yeast in the protein mix, the group estimated that the average
weight gain (in grams) of a rat over a period of time was

f.P/ D �
1
50

P2 C 2PC 20; 0 � P � 100

Find the maximum weight gain.

36. Height of Ball Suppose that the height, s, of a ball thrown
vertically upward is given by

s D �4:9t2 C 62:3tC 1:8

4Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in Single-Cell
Protein, ed. R. I. Mateles and S. R. Tannenbaum (Cambridge, MA: MIT Press,
1968).
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where s is in meters and t is elapsed time in seconds. (See
Figure 3.25.) After how many seconds will the ball reach its
maximum height? What is the maximum height?

Max

s = 0

FIGURE 3.25 Ball thrown upward (Problem 36).

37. Archery A boy standing on a hill shoots an arrow straight
up with an initial velocity of 85 feet per second. The height, h, of
the arrow in feet, t seconds after it was released, is described by
the function h.t/ D �16t2 C 85tC 22. What is the maximum
height reached by the arrow? How many seconds after release
does it take to reach this height?

38. Long Fall At 828 meters, the Burj Khalifa in Dubai has
been the world’s tallest building since 2008. If an object were to
fall from the top of it, then after t seconds the object would be at a
height above the ground of .828 � 4:9t2/ meters and traveling at
�9:8t meters per second. How fast would it be traveling at the
moment of impact when it hit the ground? (Ignore air resistance.)

39. Rocket Launch A toy rocket is launched straight up from
the roof of a garage with an initial velocity of 90 feet per second.
The height, h, of the rocket in feet, t seconds after it was released,
is described by the function h.t/ D �16t2 C 90tC 14. Find the
function’s vertex and intercepts, and graph the function.

40. Area Express the area of the rectangle shown in
Figure 3.26 as a quadratic function of x. For what value of x will
the area be a maximum?

11 - x

x

FIGURE 3.26 Diagram for Problem 40.

41. Enclosing Plot A building contractor wants to fence
in a rectangular plot adjacent to a straight highway, using the
highway for one side, which will be left unfenced. (See
Figure 3.27.) If the contractor has 500 feet of fence, find the
dimensions of the maximum enclosed area.

xx

FIGURE 3.27 Diagram for Problem 41.

42. Find two numbers whose sum is 78 and whose product is a
maximum.

Objective 3.4 Systems of Linear Equations
To solve systems of linear equations
in both two and three variables by
using the technique of elimination by
addition or by substitution.
(In Chapter 6, other methods
are shown.)

Two-Variable Systems
When a situation must be described mathematically, it is not unusual for a set of equa-
tions to arise. For example, suppose that the manager of a factory is setting up a pro-
duction schedule for two models of a new product. Model A requires 4 resistors and 9
transistors. Model B requires 5 resistors and 14 transistors. From its suppliers, the fac-
tory gets 335 resistors and 850 transistors each day. How many of each model should
the manager plan to make each day so that all the resistors and transistors are used?

It’s a good idea to construct a table that summarizes the important information.
Table 3.2 shows the number of resistors and transistors required for each model, as
well as the total number available.

Table 3.2

Model A Model B Total Available

Resistors 4 5 335

Transistors 9 14 850

Suppose we let x be the number of model A made each day and y be the number
of model B. Then these require a total of 4x C 5y resistors and 9x C 14y transistors.
Since 335 resistors and 850 transistors are available, we have

4xC 5y D 335 (1)
�
9xC 14y D 850 (2)
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x

y

L1

L2

One intersection
point (x0, y0)

FIGURE 3.28 Linear system
(one solution).

x

y

L2

No intersection
point

L1

FIGURE 3.29 Linear system
(no solution).

x

y

L1, L2

In!nitely many
intersection points

FIGURE 3.30 Linear system
(infinitely many solutions).

We call this set of equations a system of two linear equations in the variables x and
y. The problem is to find values of x and y for which both equations are true simulta-
neously. A pair .x; y/ of such values is called a solution of the system.

Note that a single solution is given by an
ordered pair of values. Since Equations (1) and (2) are linear, their graphs are straight lines; call these lines

L1 and L2. Now, the coordinates of any point on a line satisfy the equation of that line;
that is, they make the equation true. Thus, the coordinates of any point of intersection
of L1 and L2 will satisfy both equations. This means that a point of intersection gives a
solution of the system.

If L1 and L2 are drawn on the same plane, there are three situations that could occur:

1. L1 and L2 may intersect at exactly one point, say, .a; b/. (See Figure 3.28.) Thus,
the system has the solution x D a and y D b.

2. L1 and L2 may be parallel and have no points in common. (See Figure 3.29.) In this
case, there is no solution.

3. L1 and L2 may be the same line. (See Figure 3.30.) Here the coordinates of any
point on the line are a solution of the system. Consequently, there are infinitely
many solutions.

Our main concern in this section is algebraic methods of solving a system of linear
equations. We will successively replace the system by other systems that have the same
solutions. Generalizing the terminology of Section 0.7, in the subsection titled “Equiv-
alent Equations,” we say that two systems are equivalent if their sets of solutions are
equal. The replacement systems have progressively more desirable forms for determin-
ing the solution. More precisely, we seek an equivalent system containing an equation
in which one of the variables does not appear. (In this case we say that the variable
has been eliminated.) In dealing with systems of linear equations, our passage from a
system to an equivalent system will always be accomplished by one of the following
procedures:

1. Interchanging two equations
2. Multiplying one equation by a nonzero constant

3. Replacing an equation by itself plus a multiple of another equation

We will return to these procedures in more detail in Chapter 6. For the moment, since
we will also consider nonlinear systems in this chapter, it is convenient to express our
solutions in terms of the very general principles of Section 0.7 that guarantee equiva-
lence of equations.

Wewill illustrate the elimination procedure for the system in the problem originally
posed:

4xC 5y D 335 (3)
�
9xC 14y D 850 (4)

To begin, we will obtain an equivalent system in which x does not appear in one equa-
tion. First we find an equivalent system in which the coefficients of the x-terms in each
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equation are the same except for their sign. Multiplying Equation (3) by 9 [that is,
multiplying both sides of Equation (3) by 9] and multiplying Equation (4) by �4 gives

36xC 45y D 3015 (5)
�
�36x � 56y D �3400 (6)

The left and right sides of Equation (5) are equal, so each side can be added to the
corresponding side of Equation (6). This results in

�11y D �385

which has only one variable, as planned. Solving gives

y D 35

so we obtain the equivalent system

36xC 45y D 3015 (7)
�

y D 35 (8)

Replacing y in Equation (7) by 35, we get

36xC 45.35/ D 3015

36xC 1575 D 3015

36x D 1440

x D 40

Thus, the original system is equivalent to�
x D 40
y D 35

We can check our answer by substituting x D 40 and y D 35 into both of the original
equations. In Equation (3), we get 4.40/ C 5.35/ D 335; equivalently, 335 D 335.
In Equation (4), we get 9.40/C 14.35/ D 850; equivalently, 850 D 850. Hence, the
solution is

x D 40 and y D 35

Each day the manager should plan to make 40 of model A and 35 of model B. Our
procedure is referred to as elimination by addition. Although we chose to eliminate x
first, we could have done the same for y by a similar procedure.

APPLY IT I
16. A computer consultant has
$200,000 invested for retirement, part
at 9% and part at 8%. If the total
yearly income from the investments is
$17,200, how much is invested at each
rate?

EXAMPLE 1 Elimination-by-Addition Method

Use elimination by addition to solve the system.�
3x � 4y D 13

3yC 2x D 3

Solution: Aligning the x- and y-terms for convenience gives

3x � 4y D 13 (9)
�
2xC 3y D 3 (10)

To eliminate y, we multiply Equation (9) by 3 and Equation (10) by 4:

9x � 12y D 39 (11)
�
8xC 12y D 12 (12)

Adding Equation (11) to Equation (12) gives 17x D 51, from which x D 3. We have
the equivalent system

9x � 12y D 39 (13)
�

x D 3 (14)
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Replacing x by 3 in Equation (13) results in

9.3/ � 12y D 39

�12y D 12

y D �1

so the original system is equivalent to�
y D �1
x D 3

The solution is x D 3 and y D �1. Figure 3.31 shows a graph of the system.

Now Work Problem 1 G

x

y

2x + 3y = 3

(3, - 1)

3x - 4y = 13

FIGURE 3.31 Linear system of
Example 1: one solution.

The system in Example 1,

3x � 4y D 13 (15)
�
2xC 3y D 3 (16)

can be solved another way. We first choose one of the equations—for example, Equa-
tion (15)—and solve it for one variable in terms of the other, say x in terms of y. Hence,
Equation (15) is equivalent to 3x D 4yC 13, which is equivalent to

x D
4
3
yC

13
3

and we obtain

x D
4
3
yC

13
3

(17)
(
2xC 3y D 3 (18)

Substituting the right side of Equation (17) for x in Equation (18) gives

2
�
4
3
yC

13
3

�
C 3y D 3 (19)

Thus, x has been eliminated. Solving Equation (19), we have

8
3
yC

26
3
C 3y D 3

8yC 26C 9y D 9 clearing fractions

17y D �17

y D �1

Replacing y in Equation (17) by�1 gives x D 3, and the original system is equivalent to�
x D 3
y D �1

as before. This method is called elimination by substitution.
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APPLY IT I
17. Two species of deer, A and B, living
in a wildlife refuge are given extra food
in the winter. Each week, they receive
2 tons of food pellets and 4.75 tons of
hay. Each deer of species A requires
4 pounds of the pellets and 5 pounds
of hay. Each deer of species B requires
2 pounds of the pellets and 7 pounds of
hay. How many of each species of deer
will the food support so that all of the
food is consumed each week?

EXAMPLE 2 Method of Elimination by Substitution

Use elimination by substitution to solve the system�
xC 2y � 8 D 0

2xC 4yC 4 D 0

Solution: It is easy to solve the first equation for x. Doing so gives the equivalent
system

x D �2yC 8 (20)
�
2xC 4yC 4 D 0 (21)

Substituting �2yC 8 for x in Equation (21) yields

2.�2yC 8/C 4yC 4 D 0

�4yC 16C 4yC 4 D 0

The latter equation simplifies to 20 D 0. Thus, we have the system

x D �2yC 8 (22)
�
20 D 0 (23)

Since Equation (23) is never true, there is no solution of the original system. The
reason is clear if we observe that the original equations can be written in slope-intercept
form as

y D �
1
2
xC 4

and

y D �
1
2
x � 1

These equations represent straight lines having slopes of � 1
2 but different y-intercepts;

namely, 4 and �1. That is, they determine different parallel lines. (See Figure 3.32.)

x

y

4

Distinct parallel lines2x + 4y + 4 = 0

x + 2y - 8 = 0

-1

FIGURE 3.32 Linear system of Example 2: no solution.

Now Work Problem 9 G

APPLY IT I
18. Two species of fish, A and B, are
raised in one pond at a fish farm where
they are fed two vitamin supplements.
Each day, they receive 100 grams of the
first supplement and 200 grams of the
second supplement. Each fish of species
A requires 15mg of the first supple-
ment and 30mg of the second supple-
ment. Each fish of species B requires
20mg of the first supplement and 40mg
of the second supplement. Howmany of
each species of fish will the pond sup-
port so that all of the supplements are
consumed each day?

EXAMPLE 3 A Linear System with Infinitely Many Solutions

Solve
xC 5y D 2 (24)

8<: 1
2
xC

5
2
y D 1 (25)

Solution: We begin by eliminating x from the second equation. Multiplying Equa-
tion (25) by �2, we have

xC 5y D 2 (26)
�
�x � 5y D �2 (27)
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Adding Equation (26) to Equation (27) gives

xC 5y D 2 (28)
�

0 D 0 (29)

Because Equation (29) is always true, any solution of Equation (28) is a solution of the
system. Now let us see how we can express our answer. From Equation (28), we have
x D 2 � 5y, where y can be any real number, say, r. Thus, we can write x D 2 � 5r.
The complete solution is

x D 2 � 5r

y D r

where r is any real number. In this situation r is called a parameter, and we say that
we have a one-parameter family of solutions. Each value of r determines a particular
solution. For example, if r D 0, then x D 2 and y D 0 is a solution; if r D 5, then
x D �23 and y D 5 is another solution. Clearly, the given system has infinitely many
solutions.

y

x

L1, L2

L1: x + 5y = 2

L2:    x +   y = 1
5

2

1

2

FIGURE 3.33 Linear system of
Example 3: infinitely many solutions.

It is worthwhile to note that by writing Equations (24) and (25) in their slope-
intercept forms, we get the equivalent system8̂̂<̂

:̂
y D �

1
5
xC

2
5

y D �
1
5
xC

2
5

inwhich both equations represent the same line. Hence, the lines coincide (Figure 3.33),
and Equations (24) and (25) are equivalent. The solution of the system consists of the
coordinate pairs of all points on the line xC 5y D 2, and these points are given by our
parametric solution.

Now Work Problem 13 G

EXAMPLE 4 Mixture

A chemical manufacturer wishes to fill an order for 500 liters of a 25% acid solution.
(Twenty-five percent by volume is acid.) If solutions of 30% and 18% are available in
stock, how many liters of each must be mixed to fill the order?

Solution: Let x and y be the number of liters of the 30% and 18% solutions, respec-
tively, that should be mixed. Then,

xC y D 500

To help visualize the situation, we draw the diagram in Figure 3.34. In 500 liters of a
25% solution, there will be 0:25.500/ D 125 liters of acid. This acid comes from two
sources: 0.30x liters of it come from the 30% solution, and 0.18y liters of it come from
the 18% solution. Hence,

0:30xC 0:18y D 125

These two equations form a system of two linear equations in two unknowns. Solving
the first for x gives x D 500 � y. Substituting in the second gives

0:30.500 � y/C 0:18y D 125

Solving this equation for y, we find that y D 208 13 liters. Thus, x D 500�208 13 D 291 23
liters. (See Figure 3.35.)
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0.30x

is acid.

x Liters

+

0.18y

is acid.

y Liters

=

0.25(500)

is acid.

25% Solution18% Solution30% Solution

500 Liters

FIGURE 3.34 Mixture problem.

0 500

0

500 0.30x + 0.18y = 125

x + y = 500

FIGURE 3.35 Graph for Example 4.

Now Work Problem 25 G

Three-Variable Systems
The methods used in solving a two-variable system of linear equations can be used to
solve a three-variable system of linear equations. A general linear equation in the
three variables x, y, and z is an equation having the form

AxC ByC Cz D D

where A, B, C, and D are constants and A, B, and C are not all zero. For example,
2x � 4yC z D 2 is such an equation. Geometrically, a general linear equation in three
variables represents a plane in space, and a solution to a system of such equations is the
intersection of planes. Example 5 shows how to solve a system of three linear equations
in three variables.

APPLY IT I
19. A coffee shop specializes in blend-
ing gourmet coffees. From type A,
type B, and type C coffees, the owner
wants to prepare a blend that will sell for
$8.50 for a 1-pound bag. The cost per
pound of these coffees is $12, $9, and
$7, respectively. The amount of type B
is to be twice the amount of typeA. How
much of each type of coffee will be in
the final blend?

EXAMPLE 5 Solving a Three-Variable Linear System

Solve

2xC yC z D 3 (30)
8̂<̂
:�xC 2yC 2z D 1 (31)

x � y � 3z D �6 (32)

Solution: This system consists of three linear equations in three variables. FromEqua-
tion (32), x D yC 3z � 6. By substituting for x in Equations (30) and (31), we obtain8̂<̂

:
2.yC 3z � 6/C yC z D 3

�.yC 3z � 6/C 2yC 2z D 1

x D yC 3z � 6

Simplifying gives

3yC 7z D 15 (33)
8̂<̂
: y � z D �5 (34)

x D yC 3z � 6 (35)

Note that x does not appear in Equations (33) and (34). Since any solution of the original
system must satisfy Equations (33) and (34), we will consider their solution first:

3yC 7z D 15 (33)
�

y � z D �5 (34)

From Equation (34), y D z � 5. This means that we can replace Equation (33) by

3.z � 5/C 7z D 15 that is; z D 3
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Since z is 3, we can replace Equation (34) with y D �2. Hence, the previous system is
equivalent to �

z D 3
y D �2

The original system becomes 8<: z D 3
y D �2
x D yC 3z � 6

from which x D 1. The solution is x D 1, y D �2, and z D 3, which you should verify.

Now Work Problem 15 G

Just as a two-variable system may have a one-parameter family of solutions, a
three-variable system may have a one-parameter or a two-parameter family of solu-
tions. The next two examples illustrate.

EXAMPLE 6 One-Parameter Family of Solutions

Solve
x � 2y D 4 (35)

8̂<̂
:2x � 3yC 2z D �2 (36)

4x � 7yC 2z D 6 (37)

Solution: Note that since Equation (35) can be written x� 2yC 0z D 4, we can view
Equations (35) to (37) as a system of three linear equations in the variables x, y, and z.
From Equation (35), we have x D 2yC 4. Using this equation and substitution, we can
eliminate x from Equations (36) and (37):8̂<̂

:
x D 2yC 4

2.2yC 4/ � 3yC 2z D �2

4.2yC 4/ � 7yC 2z D 6

which simplifies to give

x D 2yC 4 (38)
8̂<̂
: yC 2z D �10 (39)

yC 2z D �10 (40)

Multiplying Equation (40) by �1 gives8̂<̂
:

xD 2yC 4

yC 2zD �10

�y � 2zD 10

Adding the second equation to the third yields8<: xD 2yC 4
yC 2zD �10

0D 0

Since the equation 0 D 0 is always true, the system is equivalent to

x D 2yC 4 (41)
�
yC 2z D �10 (42)

Solving Equation (42) for y, we have

y D �10 � 2z
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which expresses y in terms of z. We can also express x in terms of z. From
Equation (41),

x D 2yC 4

D 2.�10 � 2z/C 4

D �16 � 4z

Thus, we have �
x D �16 � 4z
y D �10 � 2z

Since no restriction is placed on z, this suggests a parametric family of solutions. Setting
z D r, we have the following family of solutions of the given system:

x D �16 � 4r

y D �10 � 2r

z D r

where r can be any real number. We see, then, that the given system has infinitelyOther parametric representations of the
solution are possible. many solutions. For example, setting r D 1 gives the particular solution x D �20,

y D �12, and z D 1. There is nothing special about the name of the parameter. In fact,
since z D r, we could consider z to be the parameter.

Now Work Problem 19 G

EXAMPLE 7 Two-Parameter Family of Solutions

Solve the system �
xC 2yC z D 4
2xC 4yC 2z D 8

Solution: This is a system of two linear equations in three variables. We will eliminate
x from the second equation by first multiplying that equation by � 1

2 :�
xC 2yC z D 4
�x � 2y � z D �4

Adding the first equation to the second gives�
xC 2yC z D 4

0 D 0

From the first equation, we obtain

x D 4 � 2y � z

Since no restriction is placed on either y or z, they can be arbitrary real numbers, giving
us a two-parameter family of solutions. Setting y D r and z D s, we find that the
solution of the given system is

x D 4 � 2r � s

y D r

z D s

where r and s can be any real numbers. Each assignment of values to r and s results
in a solution of the given system, so there are infinitely many solutions. For example,
letting r D 1 and s D 2 gives the particular solution x D 0; y D 1, and z D 2. As in the
last example, there is nothing special about the names of the parameters. In particular,
since y D r and z D s, we could consider y and z to be the two parameters.

Now Work Problem 23 G
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PROBLEMS 3.4
In Problems 1–24, solve the systems algebraically.

1.
�

xC 4y D 3
3x � 2y D �5 2.

�
4xC 2y D 9
5y � 4x D 5

3.
�
2xC 3y D 1
xC 2y D 0 4.

�
3x C y D 13
�x C 7y D 3

5.
�
uC v D 5
u � v D 7 6.

�
2pC q D 16
3pC 3q D 33

7.
�

x � 2y D �7
5xC 3y D �9 8.

�
4xC 12y D 12
2xC 4y D 12

9.
�
xC 3yC 2 D �xC 2yC 3
3xC yC 1 D xC 8

10.

(
5xC 7yC 2 D 9y � 4xC 6
21
2 x �

4
3y �

11
4 D

3
2xC

2
3yC

5
4

11.

(
2
3xC

1
2y D 2

3
8xC

5
6y D �

11
2

12.

(
1
2 z �

1
4w D

1
6

1
2 zC

1
4w D

1
6

13.
�

2pC 3q D 5
10pC 15q D 25 14.

�
3x � 2y D 5
�6x C 4y D 10

15.

8<: 2xC yC 6z D 3
x � yC 4z D 1
3xC 2y � 2z D 2

16.

8<: xC yC z D �1
3xC yC z D 1
4x � 2yC 2z D 0

17.

8<: xC 4yC 3z D 10
4xC 2y � 2z D �2
3x � yC z D 11

18.

8<: xC 2yC z D 4
2x � 4y � 5z D 26
2xC 3yC z D 10

19.
�
2xC 4z D 0

y � z D 3 20.
�
2yC 3z D 1
3x � 4z D 0

21.

8<: x � yC 2z D 0
2xC y � z D 0
xC 2y � 3z D 0

22.

8<: x � 2y � z D 0
2x � 4y � 2z D 0
�xC 2yC z D 0

23.
�

x � 3yC z D 5
�2xC 6y � 2z D �10 24.

�
7x C y C z D 5
6x C y C z D 3

25. Mixture A chemical manufacturer wishes to fill an order
for 800 gallons of a 25% acid solution. Solutions of 20% and 35%
are in stock. How many gallons of each solution must be mixed to
fill the order?

26. Mixture A gardener has two fertilizers that contain
different concentrations of nitrogen. One is 3% nitrogen and the
other is 11% nitrogen. How many pounds of each should she mix
to obtain 20 pounds of a 9% concentration?

27. Fabric A textile mill produces fabric made from different
fibers. From cotton, polyester, and nylon, the owners want to
produce a fabric blend that will cost $3.25 per pound to make.
The cost per pound of these fibers is $4.00, $3.00, and $2.00,
respectively. The amount of nylon is to be the same as the amount
of polyester. How much of each fiber will be in the final fabric?

28. Taxes A company has taxable income of $758,000. The
federal tax is 35% of that portion left after the state tax has been
paid. The state tax is 15% of that portion left after the federal tax
has been paid. Find the federal and state taxes.

29. Airplane Speed An airplane travels 1500 km in 2 h with
the aid of a tailwind. It takes 2 h, 30 min, for the return trip, flying
against the same wind. Find the speed of the airplane in still air
and the speed of the wind.

30. Speed of Raft On a trip on a raft, it took 1
2 hour to travel

10 miles downstream. The return trip took 3
4 hour. Find the speed

of the raft in still water and the speed of the current.

31. Furniture Sales A manufacturer of dining-room sets
produces two styles: early American and contemporary. From
past experience, management has determined that 20% more of
the early American styles can be sold than the contemporary
styles. A profit of $250 is made on each early American set sold,
whereas a profit of $350 is made on each contemporary set. If, in
the forthcoming year, management desires a total profit of
$130,000, how many units of each style must be sold?

32. Survey National Surveys was awarded a contract to
perform a product-rating survey for Crispy Crackers. A total of
250 people were interviewed. National Surveys reported that
62.5% more people liked Crispy Crackers than disliked them.
However, the report did not indicate that 16% of those
interviewed had no comment. How many of those surveyed liked
Crispy Crackers? How many disliked them? How many had no
comment?

33. Equalizing Cost United Products Co. manufactures
calculators and has plants in the cities of Exton and Whyton. At
the Exton plant, fixed costs are $5000 per month, and the cost of
producing each calculator is $5.50. At the Whyton plant, fixed
costs are $6000 per month, and each calculator costs $4.50 to
produce. Next month, United Products must produce 1000
calculators. How many must be made at each plant if the total cost
at each plant is to be the same?

34. Coffee Blending The Moonloon coffee chain used to retail
three types of coffee that sold for $12.00, $13.00 and $15.00 per
pound. To simplify operations they decide to make a blend that
they can sell for $14.00 per pound and that uses the same amounts
of the two cheaper coffees. How much of each type are needed to
make a 100 pound batch of the blend?

35. Commissions A company pays its salespeople on a basis
of a certain percentage of the first $100,000 in sales, plus a
certain percentage of any amount over $100,000 in sales. If
one salesperson earned $8500 on sales of $175,000 and another
salesperson earned $14,800 on sales of $280,000, find the two
percentages.
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36. Yearly Profits In news reports, profits of a company this
year .T/ are often compared with those of last year .L/, but actual
values of T and L are not always given. This year, a company had
profits of $25 million more than last year. The profits were up
30%. Determine T and L from these data.

37. Fruit Packaging The Ilovetiny.com Organic Produce
Company has 3600 lb of Donut Peaches that it is going to package
in boxes. Half of the boxes will be loose filled, each containing
20 lb of peaches, and the others will be packed with 8-lb
clamshells (flip-top plastic containers), each containing 2.2 lb of
peaches. Determine the number of boxes and the number of
clamshells that are required.

38. Investments A person made two investments, and the
percentage return per year on each was the same. Of the total
amount invested, 40% of it minus $1000 was invested in one
venture, and at the end of 1 year the person received a return of
$400 from that venture. If the total return after 1 year was $1200,
find the total amount invested.

39. Production Run The Rockywood Garden Furniture
company makes three products: chairs, side tables, and coffee
tables. A chair requires 10 units of wood, 3 units of bolts, and
3 units of washers. A side table requires 4 units of wood, 1 unit of
bolts, and 1 unit of washers. A coffee table requires 8 units of
wood, 2 units of bolts, and 3 units of washers. The company has
in stock 1840 units of wood, 510 units of bolts, and 590 units of
washers. Rockywood is going out of business and wants to
use up all its stock. To do this how many chairs, side tables,
and coffee tables should Rockywood make in its final
production run?

40. Investments A total of $35,000 was invested at three
interest rates: 7, 8, and 9%. The interest for the first year was
$2830, which was not reinvested. The second year the amount
originally invested at 9% earned 10% instead, and the other rates
remained the same. The total interest the second year was $2960.
How much was invested at each rate?

41. Hiring Workers A company pays skilled workers in its
assembly department $16 per hour. Semiskilled workers in that
department are paid $9.50 per hour. Shipping clerks are paid
$10 per hour. Because of an increase in orders, the company
needs to hire a total of 70 workers in the assembly and shipping
departments. It will pay a total of $725 per hour to these
employees. Because of a union contract, twice as many
semiskilled workers as skilled workers must be employed. How
many semiskilled workers, skilled workers, and shipping clerks
should the company hire?

42. Solvent Storage A 10,000-gallon railroad tank car is to be
filled with solvent from two storage tanks, A and B. Solvent from
A is pumped at the rate of 25 gal/min. Solvent from B is pumped
at 35 gal/min. Usually, both pumps operate at the same time.
However, because of a blown fuse, the pump on A is delayed 5
minutes. Both pumps finish operating at the same time. How
many gallons from each storage tank will be used to fill the car?

Objective 3.5 Nonlinear Systems
To use substitution to solve nonlinear
systems.

A system of equations in which at least one equation is not linear is called a nonlinear
system. We can often solve a nonlinear system by substitution, as was done with linear
systems. The following examples illustrate.

EXAMPLE 1 Solving a Nonlinear System

Solve
x2 � 2xC y � 7 D 0 (1)
�

3x � yC 1 D 0 (2)

Solution:

Strategy If a nonlinear system contains a linear equation, we usually solve the
linear equation for one variable and substitute for that variable in the other equation.

Solving Equation (2) for y gives

y D 3xC 1 (3)

Substituting into Equation (1) and simplifying, we have

x2 � 2xC .3xC 1/ � 7 D 0

x2 C x � 6 D 0

.xC 3/.x � 2/ D 0

x D �3 or x D 2
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If x D �3, then Equation (3) implies that y D �8; if x D 2, then y D 7. The logic
behind our calculations shows that if a pair .a; b/ satisfies the nonlinear system of this
example then either .a; b/ D .�3;�8/ or .a; b/ D .2; 7/. We also need to show that if
either .a; b/ D .�3;�8/ or .a; b/ D .2; 7/ then .a; b/ satisfies the nonlinear system.
This last step amounts to so-called verification that each of .�3;�8/ and .2; 7/ do
satisfy the system. It is not optional (although verification is often left to the reader).
Here is a sample. The calculations .�3/2 � 2.�3/C .�8/ � 7 D 9C 6 � 8 � 7 D 0
and 3.�3/� .�8/C 1 D �9C 8C 1 D 0 show that .�3;�8/ is a solution. Similarly,
.2/2 � 2.2/C .7/� 7 D 4� 4C 7� 7 D 0 and 3.2/� .7/C 1 D 6� 7C 1 D 0 show
that .2; 7/ is a solution.

x

y

(2, 7)

x
2
 - 2x + y - 7 = 0

(-3, -8)

3x - y + 1 = 0

FIGURE 3.36 Nonlinear system of
equations.

The solution pairs .�3;�8/ and .2; 7/ can be seen geometrically on the graph of
the system in Figure 3.36. Notice that the graph of Equation (1) is a parabola and the
graph of Equation (2) is a line. The solutions are the intersection points .�3;�8/ and
.2; 7/.

Now Work Problem 1 G

EXAMPLE 2 Solving a Nonlinear System

SolveThis example illustrates the need for
verification of all possible solutions. (

y D
p
xC 2

xC y D 4

Solution: Solving the second equation, which is linear, for y gives

y D 4 � x (4)

Substituting into the first equation yields

4 � x D
p
xC 2

16 � 8xC x2 D xC 2 squaring both sides

x2 � 9xC 14 D 0

.x � 2/.x � 7/ D 0
10

6

-2

-6

Y=2

Intersection

X=2

FIGURE 3.37 Nonlinear system of
Example 2.

Thus, x D 2 or x D 7. From Equation (4), if x D 2, then y D 2; if x D 7, then y D �3.
At this point we know that .2; 2/ and .7;�3/ are the only possible solution pairs.

The calculations
p
.2/C 2 D

p
4 D 2 D .2/ and .2/C .2/ D 2C 2 D 4 show that

the pair .2; 2/ is a solution.

The calculation
p
.7/C 2 D

p
9 D 3 ¤ .�3/ shows that the pair .7;�3/ does

not satisfy the first equation of the system and this is enough to declare that .7;�3/ is
not a solution of the system. (The fact that .7;�3/ does satisfy the second equation is
now irrelevant. A solution must satisfy all the equations of a system.

The graph of the system bears out the fact that there is only one point of intersection
of the curves defined by the equations in the system. (See Figure 3.37.)

Now Work Problem 13 G

PROBLEMS 3.5
In Problems 1–14, solve the given nonlinear system.

1.
�

yD x2 � 9
2xC yD 3

2.
�

yD x3

x � 2yD 0

3.
�
p2 D 5 � q
p D qC 1

4.
�
y2 � x2 D 28
x � y D 14

5.
�

y D x2

x � y D 1
6.
�

p2 � qC 1 D 0
5q � 3p � 2 D 0

7.
�
y D 4C 2x � x2

y D x2 C 1
8.
�

x2 C 4x � y D �4
y � x2 � 4xC 3 D 0

9.
�
p D
p
q

p D q2
10.

�
y D 1=x

x � y D �1

11.
�
x2 D y2 C 13
y D x2 � 15

12.
�
x2 C y2 C 2xyD 1

2x � yD 2
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13.
�
x D yC 1
y D 2

p
xC 2

14.

8̂̂<̂
:̂
y D

x2

x � 1
C 1

y D
1

x � 1

15. Tangents In calculus, the notion of a tangent to a curve
y D f.x/ at a point .a; f.a// on the curve is of great importance.
(Roughly speaking, such a tangent is a line incident with the point
.a; f.a// but with no other points on the curve.) Find the tangent
line to the curve y D x2 at the point .2; 4/ (which is clearly on
y D x2).

16. Awning The shape of a decorative awning over a storefront
can be described by the function y D 0:06x2 C 0:012xC 8, where
y is the height of the edge of the awning (in feet) above the
sidewalk and x is the distance (in feet) from the center of the
store’s doorway. A vandal pokes a stick through the awning,
piercing it in two places. The position of the stick can be
described by the function y D 0:912xC 5. Where are the holes in
the awning caused by the vandal?

17. Graphically determine how many solutions there are to the
system 8<: y D

1
x2

y D 2 � x2

18. Graphically solve the system(
2y D x3

y D 8 � x2

to one-decimal-place accuracy.

19. Graphically solve the system�
y D x2 � 2xC 1
y D x3 C x2 � 2xC 3

to one-decimal-place accuracy.

20. Graphically solve the system�
y D x3 C 6xC 2
y D 2xC 3

to one-decimal-place accuracy.

In Problems 21–23, graphically solve the equation by treating it
as a system. Round answers to two decimal places.

21. 0:8x2 C 2x D 6 where x � 0
22. �

p
xC 3 D 1 � x 23. x3 � 3x2 D x � 8

Objective 3.6 Applications of Systems of Equations
To solve systems describing
equilibrium and break-even points. Equilibrium

Recall fromSection 3.2 that an equation that relates price per unit and quantity demanded
(supplied) is called a demand equation (supply equation). Suppose that, for product Z,
the demand equation is

p D �
1
180

qC 12 (1)

and the supply equation is

p D
1
300

qC 8 (2)

where q, p � 0. The corresponding demand and supply curves are the lines in
Figures 3.38 and 3.39, respectively. In analyzing Figure 3.38, we see that consumers
will purchase 540 units per week when the price is $9 per unit, 1080 units when the
price is $6, and so on. Figure 3.39 shows that when the price is $9 per unit producers
will place 300 units per week on the market, at $10 they will supply 600 units, and
so on.

q

p

12

8

4

500 1000 1500

(Units/week)

Demand equation: p = -     q + 12
1

180

(D
o

ll
a

rs
)

(540, 9)

(1080, 6)

FIGURE 3.38 Demand curve.

When the demand and supply curves of a product are represented on the same
coordinate plane, the point .m; n/where the curves intersect is called the point of equi-
librium. (See Figure 3.40.) The price n, called the equilibrium price, is the price at
which consumers will purchase the same quantity of a product that producers wish to
sell at that price. In short, n is the price at which stability in the producer–consumer
relationship occurs. The quantity m is called the equilibrium quantity.

q

p

12

8

4

500 1000 1500

(Units/week)

Supply equation: p =      q+8
1

300

(D
o

ll
a

rs
)

(300, 9)

(600, 10)

FIGURE 3.39 Supply curve.

To determine precisely the equilibrium point, we solve the system formed by the
supply and demand equations. Let us do this for our previous data, namely, the system8̂̂<̂

:̂
p D �

1
180

qC 12 demand equation

p D
1
300

qC 8 supply equation
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q

p

m

n

Equilibrium quantity = m

Demand curve

Supply curve

(m, n) Equilibrium point

E
q

u
il

ib
ri

u
m

 p
ri

ce
 =

 n

FIGURE 3.40 Equilibrium.

q

p

4

8

12

450 1000

9.50 (450, 9.50) Equilibrium point

p =      q + 81

300

p = -      q + 12
1

180

Equilibrium
price

Equilibrium quantity

FIGURE 3.41 Equilibrium.

By substituting
1
300

qC 8 for p in the demand equation, we get

1
300

qC 8 D �
1
180

qC 12�
1
300
C

1
180

�
q D 4

q D 450 equilibrium quantity

Thus,

p D
1
300

.450/C 8

D 9:50 equilibrium price

and the equilibrium point is (450, 9.50). Therefore, at the price of $9.50 per unit, manu-
facturers will produce exactly the quantity (450) of units per week that consumers will
purchase at that price. (See Figure 3.41.)

EXAMPLE 1 Tax Effect on Equilibrium

Let p D
8
100

qC 50 be the supply equation for a manufacturer’s product, and suppose

the demand equation is p D �
7
100

qC 65.

a. If a tax of $1.50 per unit is to be imposed on the manufacturer, how will the original
equilibrium price be affected if the demand remains the same?

Solution: Before the tax, the equilibrium price is obtained by solving the system8̂̂<̂
:̂
p D

8
100

qC 50

p D �
7
100

qC 65

By substitution,

�
7
100

qC 65 D
8
100

qC 50

15 D
15
100

q

100 D q
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and

p D
8
100

.100/C 50 D 58

Thus, $58 is the original equilibrium price. Before the tax, the manufacturer supplies

q units at a price of p D
8
100

qC50 per unit. After the tax, he will sell the same q units

for an additional $1.50 per unit. The price per unit will be
�

8
100

qC 50
�
C 1:50, so

the new supply equation is

p D
8
100

qC 51:50

Solving the system 8̂̂<̂
:̂
p D

8
100

qC 51:50

p D �
7
100

qC 65

will give the new equilibrium price:

8
100

qC 51:50 D �
7
100

qC 65

15
100

q D 13:50

q D 90

p D
8
100

.90/C 51:50 D 58:70

The tax of $1.50 per unit increases the equilibrium price by $0.70. (See Figure 3.42.)
Note that there is also a decrease in the equilibrium quantity from q D 100 to q D 90,
because of the change in the equilibrium price. (In the problems, you are asked to find
the effect of a subsidy given to the manufacturer, which will reduce the price of the
product.)

100 200

50
51.5

60

70

(90, 58.70)

(100, 58)

Demand curve

Supply curve before tax

Supply curve after tax

q

p

FIGURE 3.42 Equilibrium before and after tax.

b. Determine the total revenue obtained by the manufacturer at the equilibrium point
both before and after the tax.

Solution: If q units of a product are sold at a price of p dollars each, then the total
revenue is given by

yTR D pq
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Before the tax, the revenue at (100,58) is (in dollars)

yTR D .58/.100/ D 5800

After the tax, it is

yTR D .58:70/.90/ D 5283

which is a decrease.

Now Work Problem 15 G

EXAMPLE 2 Equilibrium with Nonlinear Demand

Find the equilibrium point if the supply and demand equations of a product are

pD
q
40
C 10 and p D

8000
q

, respectively.

Solution: Here the demand equation is not linear. Solving the system8̂̂<̂
:̂
p D

q
40
C 10

p D
8000
q

by substitution gives

8000
q
D

q
40
C 10

320;000 D q2 C 400q multiplying both sides by 40q

q2 C 400q � 320;000 D 0

.qC 800/.q � 400/ D 0

q D �800 or q D 400

We disregard q D �800, since q represents quantity. Choosing q D 400, we have
p D .8000=400/ D 20, so the equilibrium point is (400,20). (See Figure 3.43.)

q

p

10

80 160 240 320 400

20
(400, 20)

p =
8000
q

Demand

p =      + 10

Supply
q

40

FIGURE 3.43 Equilibrium with nonlinear demand.

G

Break-Even Points
Suppose a manufacturer produces product A and sells it at $8 per unit. Then the total
revenue yTR received (in dollars) from selling q units is

yTR D 8q total revenue
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yTC =     q + 5000

q

y

500 1000

5000

(Revenue, costs
in dollars)

(m, n)

Break-even point

22
9

yTR = 8q

FIGURE 3.44 Break-even chart.

The difference between the total revenue received for q units and the total cost of
q units is the manufacturer’s profit:

profit D total revenue � total cost

(If profit is negative, then we have a loss.) Total cost, yTC, is the sum of total variable
costs yVC and total fixed costs yFC:

yTC D yVC C yFC

Fixed costs are those costs that, under normal conditions, do not depend on the level
of production; that is, over some period of time they remain constant at all levels of
output. (Examples are rent, officers’ salaries, and normal maintenance.) Variable costs
are those costs that vary with the level of production (such as the cost of materials,
labor, maintenance due to wear and tear, etc.). For q units of product A, suppose that

yFC D 5000 fixed cost

and yVC D
22
9
q variable cost

Then

yTC D
22
9
qC 5000 total cost

The graphs of total cost and total revenue appear in Figure 3.44. The horizontal
axis represents the level of production, q, and the vertical axis represents the total dollar
value, be it revenue or cost. The break-even point is the point at which total revenue
equals total cost .TR D TC/. It occurs when the levels of production and sales result
in neither a profit nor a loss to the manufacturer. In the diagram, called a break-even
chart, the break-even point is the point .m; n/ at which the graphs of yTR D 8q and
yTC D 22

9 qC5000 intersect. We call m the break-even quantity and n the break-even
revenue. When total cost and revenue are linearly related to output, as in this case, for
any production level greater than m, total revenue is greater than total cost, resulting
in a profit. However, at any level less than m units, total revenue is less than total cost,
resulting in a loss. At an output of m units, the profit is zero. In the following example,
we will examine our data in more detail.

EXAMPLE 3 Break-Even Point, Profit, and Loss

A manufacturer sells a product at $8 per unit, selling all that is produced. Fixed cost is
$5000 and variable cost per unit is 22

9 (dollars).

a. Find the total output and revenue at the break-even point.
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Solution: At an output level of q units, the variable cost is yVC D 22
9 q and the total

revenue is yTR D 8q. Hence,

yTR D 8q

yTC D yVC C yFC D
22
9
qC 5000

At the break-even point, total revenue equals total cost. Thus, we solve the system
formed by the foregoing equations. Since

yTR D yTC

we have

8q D
22
9
qC 5000

50
9
q D 5000

q D 900

Hence, the desired output is 900 units, resulting in a total revenue (in dollars) of

yTR D 8.900/ D 7200

(See Figure 3.45.)

0 1000

0

8000

Total cost

Total revenue

FIGURE 3.45 Equilibrium point
(900, 7200).

b. Find the profit when 1800 units are produced.

Solution: Since profit D total revenue � total cost, when q D 1800 we have

yTR � yTC D 8.1800/ �
�
22
9
.1800/C 5000

�
D 5000

The profit when 1800 units are produced and sold is $5000.

c. Find the loss when 450 units are produced.

Solution: When q D 450,

yTR � yTC D 8.450/ �
�
22
9
.450/C 5000

�
D �2500

A loss of $2500 occurs when the level of production is 450 units.

d. Find the output required to obtain a profit of $10,000.

Solution: In order to obtain a profit of $10,000, we have

profit D total revenue � total cost

10;000 D 8q �
�
22
9
qC 5000

�
15;000 D

50
9
q

q D 2700

Thus, 2700 units must be produced.

Now Work Problem 9 G

EXAMPLE 4 Break-Even Quantity

Determine the break-even quantity of XYZ Manufacturing Co., given the following
data: total fixed cost, $1200; variable cost per unit, $2; total revenue for selling q units,
yTR D 100

p
q.
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Solution: For q units of output,

yTR D 100
p
q

yTC D 2qC 1200

Equating total revenue to total cost gives

100
p
q D 2qC 1200

50
p
q D qC 600 dividing both sides by 2

Squaring both sides, we have

2500q D q2 C 1200qC .600/2

0 D q2 � 1300qC 360; 000

By the quadratic formula,

q D
1300˙

p
250;000

2

q D
1300˙ 500

2

q D 400 or q D 900

Although both q D 400 and q D 900 are break-even quantities, observe in Figure 3.46
that when q > 900, total cost is greater than total revenue, so there will always be
a loss. This occurs because here total revenue is not linearly related to output. Thus,
producing more than the break-even quantity does not necessarily guarantee a profit.

q

y

400 900

2000

3000

Break-even
points

yTC = 2q + 1200

yTR  = 100   q

FIGURE 3.46 Two break-even points.

Now Work Problem 21 G

PROBLEMS 3.6
In Problems 1–8, you are given a supply equation and a demand
equation for a product. If p represents price per unit in dollars
and q represents the number of units per unit of time, find the
equilibrium point. In Problems 1 and 2, sketch the system.

1. Supply: p D 3
100qC 5, Demand: p D � 5

100qC 11

2. Supply: p D 1
1500qC 4, Demand: p D � 1

2000qC 9

3. Supply: 35q � 2pC 250 D 0,
Demand: 65qC p � 537:5 D 0

4. Supply: 246p � 3:25q � 2460 D 0,
Demand: 410pC 3q � 14;452:5 D 0

5. Supply: p D 2qC 20, Demand: p D 200 � 2q2

6. Supply: p D q2 C 5qC 100,
Demand: p D 700 � 5q � q2

7. Supply: p D
p
qC 10, Demand: p D 20 � q

8. Supply: p D 1
4qC 6, Demand: p D

2240
qC 12

In Problems 9–14, yTR represents total revenue in dollars and yTC
represents total cost in dollars for a manufacturer. If q represents
both the number of units produced and the number of units sold,
find the break-even quantity. Sketch a break-even chart in
Problems 9 and 10.

9. yTR D 4q
yTC D 2qC 5000

10. yTR D 14q
yTC D 40

3 qC 1200

11. yTR D 2q
yTC D 5qC 300

12. yTR D 0:25q
yTC D 0:16qC 360

13. yTR D 90 �
900
qC 3

yTC D 1:1qC 37:3

14. yTR D 0:1q2 C 9q
yTC D 3qC 400

15. Business Supply and demand equations for a certain
product are

3q � 200pC 1800 D 0

and

3qC 100p � 1800 D 0

respectively, where p represents the price per unit in dollars and
q represents the number of units sold per time period.
(a) Find the equilibrium price algebraically, and derive it
graphically.
(b) Find the equilibrium price when a tax of 27 cents per unit is
imposed on the supplier.

16. Business A manufacturer of a product sells all that is
produced. The total revenue is given by yTR D 9:5q, and the total
cost is given by yTC D 9qC 500, where q represents the number
of units produced and sold.
(a) Find the level of production at the break-even point, and draw
the break-even chart.
(b) Find the level of production at the break-even point if the
fixed cost increases by 10%.
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17. Business A manufacturer sells a product at $8.35 per unit,
selling all produced. The fixed cost is $2116, and the variable cost
is $7.20 per unit. At what level of production will there be a profit
of $4600? At what level of production will there be a loss of
$1150? At what level of production will the break-even point
occur?

18. Business The market equilibrium point for a product
occurs when 13,500 units are produced at a price of $4.50 per
unit. The producer will supply no units at $1, and the consumers
will demand no units at $20. Find the supply and demand
equations if they are both linear.

19. Business A manufacturer of a children’s toy will break
even at a sales volume of $200,000. Fixed costs are $40,000, and
each unit of output sells for $5. Determine the variable cost
per unit.

20. Business The Bigfoot Sandal Co. manufactures sandals for
which the material cost is $0.85 per pair and the labor cost is
$0.96 per pair. Additional variable costs amount to $0.32 per pair.
Fixed costs are $70,500. If each pair sells for $2.63, how many
pairs must be sold for the company to break even?

21. Business (a) Find the break-even points for Pear-shaped
Corp, which sells all it produces, if the variable cost per unit is
1/3, fixed costs are 2/3 and yTR D

p
q, where q is the number of

thousands of units of output produced.
(b) Graph the total revenue curve and the total cost curve in the
same plane.
(c) Use your answer in (a) and examination of the curves in (b) to
report the quantity interval in which maximum profit occurs.

22. Business A company has determined that the demand
equation for its product is p D 1000=q, where p is the price per
unit for q units produced and sold in some period. Determine the
quantity demanded when the price per unit is (a) $4, (b) $2, and
(c) $0.50. For each of these prices, determine the total revenue
that the company will receive. What will be the revenue
regardless of the price? [Hint: Find the revenue when the price
is p dollars.]

23. Business Using the data in Example 1, determine how the
original equilibrium price will be affected if the company is given
a government subsidy of $1.50 per unit.

24. Business The Monroe Forging Company sells a
corrugated steel product to the Standard Manufacturing Company
and is in competition on such sales with other suppliers of the
Standard Manufacturing Co. The vice president of sales of
Monroe Forging Co. believes that by reducing the price of the
product, a 40% increase in the volume of units sold to the
Standard Manufacturing Co. could be secured. As the manager of
the cost and analysis department, you have been asked to analyze
the proposal of the vice president and submit your
recommendations as to whether it is financially beneficial to the

Monroe Forging Co. You are specifically requested to determine
the following:
(a) Net profit or loss based on the pricing proposal
(b) Unit sales volume under the proposed price that is required to
make the same $40,000 profit that is now earned at the current
price and unit sales volume
Use the following data in your analysis:

Current Proposal of Vice
Operations President of Sales

Unit price $2.50 $2.00

Unit sales volume 200,000 units 280,000 units

Variable cost

Total $350,000 $490,000

Per unit $1.75 $1.75

Fixed cost $110,000 $110,000

Profit $40,000 ?

25. Business Suppose products A and B have demand and
supply equations that are related to each other. If qA and qB are the
quantities produced and sold of A and B, respectively, and pA and
pB are their respective prices, the demand equations are

qA D 7 � pA C pB

and

qB D 24C pA � pB

and the supply equations are

qA D �3C 4pA � 2pB

and

qB D �5 � 2pA C 4pB

Eliminate qA and qB to get the equilibrium prices.

26. Business The supply equation for a product is

p D q2 � 4

and the demand equation is

p D
4

q � 2

Here p represents price per unit in dollars and q > 2 represents
number of units (in thousands) per unit time. Graph both
equations and use the graphs to determine the equilibrium
quantity to one decimal place.

27. Business For a manufacturer, the total-revenue equation is

yTR D 20:5
p
qC 4 � 41

and the total-cost equation is

yTC D 0:02q3 C 10:4;

where q represents (in thousands) both the number of units
produced and the number of units sold. Graph a break-even chart
and find the break-even quantity.
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Chapter 3 Review
Important Terms and Symbols Examples
Section 3.1 Lines

slope of a line point-slope form slope-intercept form Ex. 1, p. 133
general linear equation in x and y linearly related Ex. 7, p. 136

Section 3.2 Applications and Linear Functions
demand equation demand curve supply equation supply curve Ex. 2, p. 141

Ex. 3, p. 142

Section 3.3 Quadratic Functions
parabola axis of symmetry vertex Ex. 1, p. 147

Section 3.4 Systems of Linear Equations
system of equations equivalent systems elimination by addition Ex. 1, p. 154
elimination by substitution parameter Ex. 3, p. 156
general linear equation in x, y, and z Ex. 5, p. 158

Section 3.5 Nonlinear Systems
nonlinear system Ex. 1, p. 162

Section 3.6 Applications of Systems of Equations
point of equilibrium equilibrium price equilibrium quantity Ex. 1, p. 165
break-even point break-even quantity break-even revenue Ex. 3, p. 168

Summary
The orientation of a nonvertical line is characterized by the
slope of the line given by

m D
y2 � y1
x2 � x1

where .x1; y1/ and .x2; y2/ are two different points on the line.
The slope of a vertical line is not defined, and the slope of a
horizontal line is zero. Lines rising from left to right have
positive slopes; lines falling from left to right have nega-
tive slopes. Two lines are parallel if and only if they have
the same slope or both are vertical. Two lines with nonzero
slopes m1 and m2 are perpendicular to each other if and only

if m1 D �
1
m2

. Any horizontal line and any vertical line are

perpendicular to each other.
Basic forms of equations of lines are as follows:

y � y1 D m.x � x1/ point-slope form

y D mxC b slope-intercept form

x D a vertical line

y D b horizontal line

AxC ByC C D 0 general

The linear function

f.x/ D axC b .a ¤ 0/

has a straight line for its graph.

In economics, supply functions and demand functions
have the form p D f.q/ and play an important role. Each
gives a correspondence between the price p of a product and
the number of units q of the product that manufacturers (or
consumers) will supply (or purchase) at that price during
some time period.

A quadratic function has the form

f.x/ D ax2 C bxC c .a ¤ 0/

The graph of f is a parabola that opens upward if a > 0 and
downward if a < 0. The vertex is�

�
b
2a
; f
�
�

b
2a

��
and the y-intercept is c. The axis of symmetry and the x- and
y-intercepts, are useful in sketching the graph.

A system of linear equations can be solved with the
method of elimination by addition or elimination by substi-
tution. A solution may involve one or more parameters. Sub-
stitution is also useful in solving nonlinear systems.

Solving a system formed by the supply and demand
equations for a product gives the equilibrium point, which
indicates the price at which consumers will purchase the
same quantity of a product that producers wish to sell at that
price.

Profit is total revenue minus total cost, where total cost
is the sum of fixed costs and variable costs. The break-even
points are the points where total revenue equals total cost.
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Review Problems
1. The slope of the line through (2,5) and .3; k/ is 4. Find k.

2. The slope of the line through .4; 2/ and .7; k/ is 0. Find k.

In Problems 3–9, determine the slope-intercept form and a
general linear form of an equation of the straight line that has
the indicated properties.

3. Passes through .�2; 3/ and has y-intercept �1

4. Passes through (�1, �1) and is parallel to the line y D 3x � 4

5. Passes through .8; 3/ and has slope 3

6. Passes through (3, 5) and is vertical

7. Passes through .5; 7/ and is horizontal

8. Passes through (1, 2) and is perpendicular to the line
�3yC 5x D 7

9. Has y-intercept �3 and is perpendicular to 2yC 5x D 2

10. Determine whether the point .3; 11/ lies on the line through
.2; 7/ and .4; 13/.

In Problems 11–16, determine whether the lines are parallel,
perpendicular, or neither.

11. xC 4yC 2 D 0; 8x � 2y � 2 D 0

12. y � 5 D 3.x � 1/; 4xC 12y � 7 D 0

13. x � 3 D 2.yC 4/; y D 4xC 2

14. 2xC 7y � 4 D 0; 6xC 21y D 90

15. y D 5xC 2; 10x � 2y D 3

16. y D 7x; y D 7

In Problems 17–20, write each line in slope-intercept form, and
sketch. What is the slope of the line?

17. 5x � 3y D 7 18. x D �3yC 4

19. 4 � 3y D 0 20. 3x � 5y D 0

In Problems 21–30, graph each function. For those that are linear,
give the slope and the vertical-axis intercept. For those that are
quadratic, give all intercepts and the vertex.

21. y D f.x/ D 17 � 5x 22. s D g.t/ D 3 � 5t � 2t2

23. y D f.x/ D 9 � x2 24. y D f.x/ D 3x � 7

25. y D h.t/ D 3C 2tC t2 26. y D k.t/ D �3 � 3t

27. s D g.t/ D �5t 28. y D F.x/ D .2x � 1/2

29. y D F.x/ D �.x2 C 2xC 3/ 30. y D f.x/ D 5xC 2

In Problems 31–44, solve the given system.

31.
�
2x � y D 6
3xC 2y D 5 32.

�
12x � 4y D 7
y D 3x � 5

33.
�
7xC 5y D 5
6xC 5y D 3 34.

�
2xC 4y D 8
3xC 6y D 12

35.

8̂<̂
:
1
2
x � 1

3
y D 2

3
4
xC 1

2
y D 3

36.

8̂<̂
:
1
3
x � 1

4
y D 1

12
4
3
xC 3y D 5

3

37.

8<: x C y C z D 6
2x C y C z D 7
x C 3y � z D 4

38.

8̂<̂
:
2xC

3yC x
3
D 9

yC
5xC 2y

4
D 7

39.
�
x2 � yC 5x D 2
x2 C y D 3

40.

8<: y D
3

xC 2
xC y � 2 D 0

41.
�
xC 2z D �2
xC yC z D 5 42.

8<: x � y � z D 0
�x C y � z D 0
�x � y C z D 0

43.
�
x � y � z D 0
2x � 2yC 3z D 0 44.

�
2x � 5yC 6z D 1
4x � 10yC 12z D 2

45. Suppose a and b are linearly related so that a D 0 when
b D �3 and a D 3 when b D �5. Find a general linear form of an
equation that relates a and b. Also, find a when b D 3.

46. Temperature and Heart Rate When the temperature,
T (in degrees Celsius), of a cat is reduced, the cat’s heart rate,
r (in beats per minute), decreases. Under laboratory conditions,
a cat at a temperature of 36ıC had a heart rate of 206, and at a
temperature of 30ıC its heart rate was 122.
If r is linearly related to T, where T is between 26 and 38,
(a) determine an equation for r in terms of T, and (b) determine
the cat’s heart rate at a temperature of 27ıC.

47. Suppose f is a linear function such that f.�1/ D �3 and f.x/
decreases by three units for every two-unit increase in x. Find f.x/.

48. If f is a linear function such that f.�1/ D 8 and f.2/ D 5, find
f.x/.

49. Maximum Revenue The demand function for a
manufacturer’s product is p D f.q/ D 200 � 2q, where p is the
price (in dollars) per unit when q units are demanded. Find the
level of production that maximizes the manufacturer’s total
revenue, and determine this revenue.

50. Sales Tax The difference in price of two items before a
7% sales tax is imposed is $2.00. The difference in price after
the sales tax is imposed is allegedly $3.10. Show that this scenario
is not possible.

51. Equilibrium Price If the supply and demand equations
of a certain product are 120p � q � 240 D 0 and
100pC q � 1200 D 0, respectively, find the equilibrium price.

52. Demand A company is aware that members of its industry
invariably have linear demand functions. The company has data
showing that when 5030 units of their product were demanded
their price was $29 per unit and when 6075 units were
demanded their price was $28 per unit. Write the company’s
demand equation.

53. Break-Even Point A manufacturer of a certain product
sells all that is produced. Determine the break-even point if the
product is sold at $16 per unit, fixed cost is $10,000, and variable
cost is given by yVC D 8q, where q is the number of units
produced (yVC expressed in dollars).
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54. Temperature Conversion Celsius temperature, C, is a
linear function of Fahrenheit temperature, F. Use the facts that
32ıF is the same as 0ıC and 212ıF is the same as 100ıC to find
this function. Also, find C when F D 50.

55. Pollution In one province of a developing nation, water
pollution is analyzed using a supply-and-demand model. The

environmental supply equation L D 0:0183 �
0:0042

p
describes

the levy per ton, L (in dollars), as a function of total pollution, p
(in tonnes per square kilometer), for p � 0:2295. The

environmental demand equation, L D 0:0005C
0:0378

p
, describes

the per-tonne abatement cost as a function of total pollution for
p > 0. Find the expected equilibrium level of total pollution to
two decimal places.5

56. Graphically solve the linear system�
3xC 4y D 20
7xC 5y D 64

57. Graphically solve the linear system�
0:2x � 0:3y D 2:6
0:3x C 0:7y D 4:1

Round x and y to two decimal places.

58. Graphically solve the nonlinear system8<: y D
3
7x

where x > 0

y D x2 � 9

Round x and y to two decimal places.

59. Graphically solve the nonlinear system�
y D x3 C 1
y D 2 � x2

Round x and y to two decimal places.

60. Graphically solve the equation

x2 C 4 D x3 � 3x

by treating it as a system. Round x to two decimal places.

5See Hua Wang and David Wheeler, “Pricing Industrial Pollution in China: An
Economic Analysis of the Levy System,” World Bank Policy Research
Working Paper #1644, September 1996.
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4 Exponential
and Logarithmic
Functions

4.1 Exponential Functions

4.2 Logarithmic Functions

4.3 Properties of Logarithms

4.4 Logarithmic and
Exponential Equations

Chapter 4 Review

Just as biological viruses spread through contact between organisms, so computer
viruses spread when computers interact via the Internet. Computer scientists
study how to fight computer viruses, which cause a lot of damage in the form
of deleted and corrupted files. One thing computer scientists do is devise math-

ematical models of how quickly viruses spread. This spread can be remarkably rapid.
Within three days of an identifiable virus being reported, over 100,000 new cases have
subsequently been reported

Exponential functions, which this chapter discusses in detail, provide one plausi-
ble model. Consider a computer virus that hides in an email attachment and, once the
attachment is downloaded, automatically sends a message with a similar attachment to
every address in the host computer’s email address book. If the typical address book
contains 20 addresses, and if the typical computer user retrieves his or her email once
a day, then a virus on a single machine will have infected 20 machines after one day,
202 D 400 machines after two days, 203 D 8000 after three days, and, in general, after
t days, the number N of infected computers will be given by the exponential function
N.t/ D 20t.

This model assumes that all the computers involved are linked, via their address
book lists, into a single, well-connected group. Exponential models are most accu-
rate for small values of t; this model, in particular, ignores the slowdown that occurs
when most emails start going to computers already infected, which happens as several
days pass. For example, our model tells us that after eight days, the virus will infect
208 D 25:6 billion computers—more computers than actually exist! But despite its
limitations, the exponential model does explain why new viruses often infect many
thousands of machines before antivirus experts have had time to react.

175
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Objective 4.1 Exponential Functions
To study exponential functions and
their applications to such areas as
compound interest, population
growth, and radioactive decay.

The functions of the form f.x/ D bx, for constant b, are important in mathematics,
business, economics, science, and other areas of study. An excellent example is
f.x/ D 2x. Such functions are called exponential functions. More precisely,

It is important to note that an exponential
function such as 2x is entirely different
from a power function such as x2. The
exponential function has a variable
exponent; the power function has a
variable base.

Definition
The function f defined by

f.x/ D bx

where b > 0; b ¤ 1, and the exponent x is any real number, is called an exponential
function with base b.

The reason we require b ¤ 1 in the definition is that if f.x/ D 1x, we have
f.x/ D 1x D 1 for all x and this is a particular constant function. Constant functions are
already known to us. If we were to consider b D 0, then f.x/ D 0x would be undefined
for negative values of x. If we took b < 0, then f.x/ D bx would be undefined for such
x-values as x D 1=2. We repeat that each b in .0; 1/[ .1;1/ gives us an example of a
function fb.x/ D bx that is defined for all real x.

For the moment, consider the exponential function 3x. Since the x in bx can be any
real number, it is not at first clear what value is meant by something like 3

p
2, where

the exponent is an irrational number. Stated simply, we use approximations. Because
p
2 D 1:41421 : : :, 3

p
2 is approximately 31:4 D 37=5 D

5
p
37, which is defined. Better

approximations are 31:41 D 3141=100 D
100
p
3141, and so on. In this way, the meaning of

3
p
2 becomes clear. A calculator value of 3

p
2 is (approximately) 4:72880.

To review exponents, refer to Section 0.3.

When we work with exponential functions, it is often necessary to apply rules for
exponents. These rules are as follows, where x and y are real numbers and b and c are
positive.

Rules for Exponents

1. bxby D bxCy

2.
bx

by
D bx�y

3. .bx/y D bxy

4. .bc/x D bxcx

5.
�
b
c

�x

D
bx

cx

6. b1 D b

7. b0 D 1

8. b�x D
1
bx

Some functions that do not appear to have the exponential form bx can be put in
that form by applying the preceding rules. For example, 2�x D 1=.2x/ D . 12 /

x and
32x D .32/x D 9x.

APPLY IT I
1. The number of bacteria in a cul-
ture that doubles every hour is given by
N.t/ D A � 2t, where A is the number
originally present and t is the number of
hours the bacteria have been doubling.
Use a graphing calculator to plot this
function for various values of A > 1.
How are the graphs similar? How does
the value of A alter the graph?

EXAMPLE 1 Bacteria Growth

The number of bacteria present in a culture after t minutes is given by

N.t/ D 300
�
4
3

�t
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Note that N.t/ is a constant multiple of the exponential function
�
4
3

�t

a. How many bacteria are present initially?

Solution: Here we want to find N.t/ when t D 0. We have

N.0/ D 300
�
4
3

�0

D 300.1/ D 300

Thus, 300 bacteria are initially present.

b. Approximately how many bacteria are present after 3 minutes?

Solution:

N.3/ D 300
�
4
3

�3

D 300
�
64
27

�
D

6400
9
� 711

Hence, approximately 711 bacteria are present after 3 minutes.

Now Work Problem 31 G

APPLY IT I
2. Suppose an investment increases
by 10% every year. Make a table of
the factor by which the investment
increases from the original amount for
0 to 4 years. For each year, write an
expression for the increase as a power of
some base.What base did you use?How
does that base relate to the problem?
Use your table to graph the multiplica-
tive increase as a function of the number
of years. Use your graph to determine
when the investment will double.

Graphs of Exponential Functions
EXAMPLE 2 Graphing Exponential Functions with b > 1

Graph the exponential functions f.x/ D 2x and f.x/ D 5x.

Solution: By plotting points and connecting them, we obtain the graphs in Figure 4.1.
For the graph of f.x/ D 5x, because of the unit distance chosen on the y-axis, the points
.�2; 1

25 /, (2,25), and (3,125) are not shown.
We can make some observations about these graphs. The domain of each function

consists of all real numbers, and the range consists of all positive real numbers. Each
graph has y-intercept (0,1). Moreover, the graphs have the same general shape.
Each rises from left to right. As x increases, f.x/ also increases. In fact, f.x/ increases
without bound. However, in quadrant I, the graph of f.x/ D 5x rises more quickly than
that of f.x/ D 2x because the base in 5x is greater than the base in 2x (that is, 5 > 2).
Looking at quadrant II, we see that as x becomes very negative, the graphs of both
functions approach the x-axis. We say that the x-axis is an asymptote for each graph.
This implies that the function values get very close to 0.
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FIGURE 4.1 Graphs of f.x/ D 2x and
f.x/ D 5x.

Now Work Problem 1 G
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The observations made in Example 2 are true for all exponential functions whose
base b is greater than 1. Example 3 will examine the case for a base between 0 and 1,
that is 0 < b < 1.

EXAMPLE 3 Graphing Exponential Functions with 0 < b < 1

Graph the exponential function f.x/ D
�
1
2

�x
.

APPLY IT I
3. Suppose the value of a car depre-
ciates by 15% every year. Make a
table of the factor by which the value
decreases from the original amount for
0 to 3 years. For each year, write an
expression for the decrease as a power
of some base. What base did you use?
How does that base relate to the prob-
lem? Use your table to graph the mul-
tiplicative decrease as a function of the
number of years. Use your graph to
determine when the car will be worth
half as much as its original price.

Solution: By plotting points and connecting them, we obtain the graph in Figure 4.2.
Notice that the domain consists of all real numbers, and the range consists of all positive
real numbers. The graph has y-intercept (0,1). Compared to the graphs in Example 2,
the graph here falls from left to right. That is, as x increases, f.x/ decreases. Notice that
as x becomes very positive, f.x/ takes on values close to 0 and the graph approaches
the x-axis. However, as x becomes very negative, the function values are unbounded.

There are two basic shapes for the graphs
of exponential functions, and they depend
on the base involved: b in .0; 1/ or b in
.1;1/.

x
x

0

1

2 -1-2-3

-1

-2

-3

1

2

4

8

1

1

2

4

8

x

y

1

2

1

2

1

4

1

2

x
f(x) =

FIGURE 4.2 Graph of f.x/ D
�
1
2

�x
.

Now Work Problem 3 G

In general, the graph of an exponential function has one of two shapes, depending
on the value of the base, b. This is illustrated in Figure 4.3. It is important to observe
that in either case the graph passes the horizontal line test. Thus, all exponential func-
tions are one-to-one. The basic properties of an exponential function and its graph are
summarized in Table 4.1.

Recall from Section 2.7 that the graph of one function may be related to that of
another bymeans of a certain transformation. Our next example pertains to this concept.

1

(a)

Graph rises
from left to
right

x

f(x) = bx

b 7 1

y

1

(b)

Graph falls
from left to
right

x

y

f(x) = bx

0 6 b 6 1

FIGURE 4.3 General shapes
of f.x/ D bx.

Table 4.1 Properties of the Exponential Function f.x/ D bx

1. The domain of any exponential function is .�1;1/.

The range of any exponential function is .0;1/.

2. The graph of f.x/ D bx has y-intercept (0,1).

There is no x-intercept.

3. If b > 1, the graph rises from left to right.

If 0 < b < 1, the graph falls from left to right.

4. If b > 1, the graph approaches the x-axis as x becomes more and more negative.

If 0 < b < 1, the graph approaches the x-axis as x becomes more and more positive.
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1

-2

y = 2
x
 - 3

f(x) = 2
x

x

y

FIGURE 4.4 Graph of y D 2x�3.

x

y

4

1

f(x) =
1

2

x y = 
x-4

1

2

FIGURE 4.5 Graph of y D
�
1
2

�x�4
.

EXAMPLE 4 Transformations of Exponential Functions

a. Use the graph of y D 2x to plot y D 2x � 3.

Solution: The function has the form f.x/ � c, where f.x/ D 2x and c D 3. Thus,
its graph is obtained by shifting the graph of f.x/ D 2x three units downward. (See
Figure 4.4.)

b. Use the graph of y D
�
1
2

�x
to graph y D

�
1
2

�x�4
.

Example 4 makes use of transformations
from Table 2.2 of Section 2.7.

Solution: The function has the form f.x � c/, where f.x/ D
�
1
2

�x
and c D 4. Hence,

its graph is obtained by shifting the graph of f.x/ D
�
1
2

�x
four units to the right. (See

Figure 4.5.)
Now Work Problem 7 G

APPLY IT I
4. After watching his sister’s money
grow for three years in a plan with
an 8% yearly return, George started a
savings account with the same plan.
If y D 1:08t represents the multi-
plicative increase in his sister’s account,
write an equation that will represent
the multiplicative increase in George’s
account, using the same time reference.
If George has a graph of the multipli-
cative increase in his sister’s money at
time t years since she started saving,
how could he use the graph to project
the increase in his money?

EXAMPLE 5 Graph of a Function with a Constant Base

Graph y D 3x
2
.

Solution: Although this is not an exponential function, it does have a constant base.
We see that replacing x by�x results in the same equation. Thus, the graph is symmetric
about the y-axis. Plotting some points and using symmetry gives the graph in Figure 4.6.

-1 1

3

x

y

x

y 1 3 81

0 1 2

y = 3
x2

FIGURE 4.6 Graph of y D 3x
2
.

Now Work Problem 5 G
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Compound Interest
Exponential functions are involved in compound interest, whereby the interest earned
by an invested amount of money (or principal) is reinvested so that it, too, earns inter-
est. That is, the interest is converted (or compounded) into principal, and hence, there
is “interest on interest”.

For example, suppose that $100 is invested at the rate of 5% compounded annually.
At the end of the first year, the value of the investment is the original principal ($100),
plus the interest on the principal ($100(0.05)):

$100C $100.0:05/ D $105

This is the amount on which interest is earned for the second year. At the end of the
second year, the value of the investment is the principal at the end of the first year
($105), plus the interest on that sum ($105(0.05)):

$105C $105.0:05/ D $110:25

Thus, each year the principal increases by 5%. The $110.25 represents the original
principal, plus all accrued interest; it is called the accumulated amount or compound
amount. The difference between the compound amount and the original principal is
called the compound interest.Here the compound interest is $110:25�$100 D $10:25.

More generally, if a principal of P dollars is invested at a rate of 100r percent
compounded annually (for example, at 5%, r is 0.05), the compound amount after 1 year
is P C Pr, or, by factoring, P.1 C r/. At the end of the second year, the compound
amount is

P.1C r/C .P.1C r//r D P.1C r/.1C r/ factoring

D P.1C r/2

Actually, the calculation above using factoring is not necessary to show that the com-
pounded amount after two years isP.1Cr/2. Since any amountP is worthP.1Cr/ a year
later, it follows that the amount of P.1C r/ is worth P.1C r/.1C r/ D P.1C r/2 a year
later, and one year later still the amount ofP.1Cr/2 is worthP.1Cr/2.1Cr/DP.1Cr/3.

This pattern continues. After four years, the compound amount is P.1 C r/4. In
general, the compound amount S of the principal P at the end of n years at the rate of
r compounded annually is given by

S D P.1C r/n (1)

Notice from Equation (1) that, for a given principal and rate, S is a function of n. In fact,
S is a constant multiple of the exponential function with base 1C r.

APPLY IT I

5. Suppose $2000 is invested at 13%
compounded annually. Find the value of
the investment after five years. Find the
interest earned over the first five years.

EXAMPLE 6 Compound Amount and Compound Interest

Suppose $1000 is invested for 10 years at 6% compounded annually.
a. Find the compound amount.

Solution: We use Equation (1) with P D 1000, r D 0:06, and n D 10:

S D 1000.1C 0:06/10 D 1000.1:06/10 � $1790:85

Figure 4.7 shows the graph of S D 1000.1:06/n. Notice that as time goes on, the
compound amount grows dramatically.

5000

4000

3000

2000

1000

10 20 30

S

n

S = 1000(1.06)
n

FIGURE 4.7 Graph of
S D 1000.1:06/n.

b. Find the compound interest.

Solution: Using the results from part (a), we have

compound interest D S � P

D 1790:85 � 1000 D $790:85

Now Work Problem 19 G
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Suppose the principal of $1000 in Example 6 is invested for 10 years as before,
but this time the compounding takes place every three months (that is, quarterly) at the
rate of 1 12% per quarter. Then there are four interest periods per year, and in 10 years
there are 10.4/ D 40 interest periods. Thus, the compound amount with r D 0:015 is
now

1000.1:015/40 � $1814:02

and the compound interest is $814.02. Usually, the interest rate per interest period is
stated as an annual rate. Here we would speak of an annual rate of 6% compounded
quarterly, so that the rate per interest period, or the periodic rate, is 6%=4 D 1:5%.
This quoted annual rate of 6% is called the nominal rate or the annual percentage
rate (APR). Unless otherwise stated, all interest rates will be assumed to be annual

The abbreviation APR is a common one
and is found on credit card statements
and in advertising.

(nominal) rates. Thus, a rate of 15% compounded monthly corresponds to a periodic
rate of 15%=12 D 1:25%.

On the basis of our discussion, we can generalize Equation (1). The formula

S D P.1C r/n (2)

gives the compound amount S of a principal P at the end of n interest periods at the
A nominal rate of 6% does not
necessarily mean that an investment
increases in value by 6% in a year’s time.
The increase depends on the frequency of
compounding.

periodic rate of r.
We have seen that for a principal of $1000 at a nominal rate of 6% over a period

of 10 years, annual compounding results in a compound interest of $790.85, and with
quarterly compounding the compound interest is $814.02. It is typical that for a given
nominal rate, the more frequent the compounding, the greater is the compound interest.
However, while increasing the compounding frequency always increases the amount of
interest earned, the effect is not unbounded. For example, with weekly compounding
the compound interest is

1000
�
1C

0:06
52

�10.52/

� 1000 � $821:49

and with daily compounding it is

1000
�
1C

0:06
365

�10.365/

� 1000 � $822:03

Sometimes the phrase “money is worth” is used to express an annual interest rate.
Thus, saying that money is worth 6% compounded quarterly refers to an annual (nom-
inal) rate of 6% compounded quarterly.

Population Growth
Equation (2) can be applied not only to the growth of money, but also to other types of
growth, such as that of population. For example, suppose the population P of a town of
10,000 is increasing at the rate of 2% per year. Then P is a function of time t, in years.
It is common to indicate this functional dependence by writing

P D P.t/

Here, the letter P is used in two ways: On the right side, P represents the function; on
the left side, P represents the dependent variable. From Equation (2), we have

P.t/ D 10;000.1C 0:02/t D 10;000.1:02/t

APPLY IT I
6. A new company with five employ-
ees expects the number of employees to
grow at the rate of 120% per year. Find
the number of employees in four years.

EXAMPLE 7 Population Growth

The population of a town of 10,000 grows at the rate of 2% per year. Find the population
three years from now.

Solution: From the preceding discussion,

P.t/ D 10;000.1:02/t
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For t D 3, we have

P.3/ D 10;000.1:02/3 � 10;612

Thus, the population three years from now will be 10,612. (See Figure 4.8.)

Now Work Problem 15 G

0 50

9000

27,000

P(t) = 10,000(1.02)
t

FIGURE 4.8 Graph of population
function P.t/ D 10;000.1:02/t.

The Number e
It is useful to conduct a “thought experiment,” based on the discussion following
Example 6, to introduce an important number. Suppose that a single dollar is invested
for one year with an APR of 100% (remember, this is a thought experiment!) com-
pounded annually. Then the compound amount S at the end of the year is given by

S D 1.1C 1/1 D 21 D 2

Without changing any of the other data, we now consider the effect of increasing the
number of interest periods per year. If there are n interest periods per year, then the
compound amount is given by

S D 1
�
1C

1
n

�n

D

�
nC 1
n

�n

In Table 4.2 we give approximate values for
�
nC 1
n

�n

for some values of n.

Table 4.2 Approximations of e

n
�
nC 1
n

�n

1
�
2
1

�1
D 2:00000

2
�
3
2

�2
D 2:25000

3
�
4
3

�3
� 2:37037

4
�
5
4

�4
� 2:44141

5
�
6
5

�5
D 2:48832

10
�
11
10

�10
� 2:59374

100
�
101
100

�100
� 2:70481

1000
�
1001
1000

�1000
� 2:71692

10,000
�
10;001
10;000

�10;000
� 2:71815

100,000
�
100;001
100;000

�100;000
� 2:71827

1,000,000
�
1;000;001
1;000;000

�1;000;000
� 2:71828

Apparently, the numbers
�
nC 1
n

�n

increase as n does. However, they do not

increase without bound. For example, it is possible to show that for any positive integer

n,
�
nC 1
n

�n

< 3. In terms of our thought experiment, this means that if you start with

$1.00 invested at 100%, then, no matter how many interest periods there are per year,
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youwill always have less than $3.00 at the end of a year. There is a smallest real number

that is greater than all of the numbers
�
nC 1
n

�n

. It is denoted by the letter e, in honor

of the Swiss mathematician Leonhard Euler (1707–1783). The number e is irrational,
so its decimal expansion is nonrepeating, like those of � and

p
2 that we mentioned in

Section 0.1. However, each of the numerical values for
�
nC 1
n

�n

can be considered to

be a decimal approximation of e. The approximate value . 1;000;001
1;000;000 /

1;000;000 � 2:71828

gives an approximation of e that is correct to 5 decimal places. The approximation of

The graph of the natural exponential
function in Figure 4.9 is important.

e correct to 12 decimal places is e � 2:718281828459.

Exponential Function with Base e
The number e provides the most important base for an exponential function. In fact, the
exponential function with base e is called the natural exponential function and even
the exponential function to stress its importance. Although e may seem to be a strange
base, the natural exponential function has a remarkable property in calculus (which we
will see in a later chapter) that justifies the name. It also occurs in economic analysis and
problems involving growth or decay, such as population studies, compound interest,
and radioactive decay. Approximate values of ex can be found with a single key on
most calculators. The graph of y D ex is shown in Figure 4.9. The accompanying table
indicates y-values to two decimal places. Of course, the graph has the general shape of
an exponential function with base greater than 1.

-2 -1 1 2

1

2

3

4

5

6

7

8

9

x

y

x y

-2

-1

0

1

2

0.14

0.37

1

2.72

7.39

y = e
x

FIGURE 4.9 Graph of the natural exponential
function.

APPLY IT I
7. The multiplicative decrease in pur-
chasing powerP after t years of inflation
at 6% can be modeled by P D e�0:06t.
Graph the decrease in purchasing power
as a function of t years.

EXAMPLE 8 Graphs of Functions Involving e

a. Graph y D e�x.

Solution: Since e�x D

�
1
e

�x

and 0 <
1
e
< 1, the graph is that of an exponential

function falling from left to right. (See Figure 4.10.) Alternatively, we can consider the
graph of y D e�x as a transformation of the graph of f.x/ D ex. Because e�x D f.�x/,
the graph of y D e�x is simply the reflection of the graph of f about the y-axis. (Compare
the graphs in Figures 4.9 and 4.10.)

b. Graph y D exC2.

Solution: The graph of y D exC2 is related to that of f.x/ D ex. Since exC2 is f.xC2/,
we can obtain the graph of y D exC2 by horizontally shifting the graph of f.x/ D ex

two units to the left. (See Figure 4.11.)
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FIGURE 4.10 Graph of y D e�x.

1

-2 -1 1
x

y

y = ex +2

f(x) = ex

FIGURE 4.11 Graph of
y D exC2.

G

EXAMPLE 9 Population Growth

The projected population P of a city is given by

P D 100;000e0:05t

where t is the number of years after 2000. Predict the population for the year 2020.

Solution: The number of years from 1990 to 2010 is 20, so let t D 20. Then

P D 100;000e0:05.20/
D 100;000e1 D 100;000e � 271;828

Now Work Problem 35 G

In statistics, an important function used to model certain events occurring in nature
is the Poisson distribution function:

f.n/ D
e���n

nŠ
n D 0; 1; 2; : : :

The symbol � (read “mu”) is a Greek letter. In certain situations, f.n/ gives the proba-
bility that exactly n events will occur in an interval of time or space. The constant � is
the average, also calledmean, number of occurrences in the interval. The next example
illustrates the Poisson distribution.

EXAMPLE 10 Hemocytometer and Cells

A hemocytometer is a counting chamber divided into squares and is used in studying
the number of microscopic structures in a liquid. In a well-known experiment,1 yeast
cells were diluted and thoroughly mixed in a liquid, and the mixture was placed in a
hemocytometer. With a microscope, the yeast cells on each square were counted. The
probability that there were exactly n yeast cells on a hemocytometer square was found
to fit a Poisson distribution with � D 1:8. Find the probability that there were exactly
four cells on a particular square.

1R. R. Sokal and F. J. Rohlf, Introduction to Biostatistics (San Francisco: W. H. Freeman and Company, 1973).
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Solution: We use the Poisson distribution function with � D 1:8 and n D 4:

f.n/ D
e���n

nŠ

f.4/ D
e�1:8.1:8/4

4Š
� 0:072

For example, this means that in 400 squares we would expect 400.0:072/ � 29 squares
to contain exactly 4 cells. (In the experiment, in 400 squares the actual number observed
was 30.)

G

Radioactive Decay
Radioactive elements are such that the amount of the element decreases with respect to
time. We say that the element decays. It can be shown that, if N is the amount at time
t, then

N D N0e��t (3)

where N0 and � (a Greek letter read “lambda”) are positive constants. Notice that N
involves an exponential function of t. We say that N follows an exponential law of
decay. If t D 0, then N D N0e0 D N0 � 1 D N0. Thus, the constant N0 represents
the amount of the element present at time t D 0 and is called the initial amount. The
constant � depends on the particular element involved and is called the decay constant.

Because N decreases as time increases, suppose we let T be the length of time it
takes for the element to decrease to half of the initial amount. Then at time t D T, we
have N D N0=2. Equation (3) implies that

N0

2
D N0e��T

We will now use this fact to show that over any time interval of length T, half of the
amount of the element decays. Consider the interval from time t to t C T, which has
length T. At time t, the amount of the element is N0e��t, and at time tC T it is

N0e��.tCT/
D N0e��te��T

D .N0e��T/e��t

D
N0

2
e��t
D

1
2
.N0e��t/

which is half of the amount at time t. This means that if the initial amount present, N0,
were 1 gram, then at time T, 12 gram would remain; at time 2T, 14 gram would remain;
and so on. The value of T is called the half-life of the radioactive element. Figure 4.12
shows a graph of radioactive decay.

Half-life = T

t

N

N = N0e
-nt

N0

N0/2

N0/8

N0/4

T 3T2T

FIGURE 4.12 Radioactive decay.
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EXAMPLE 11 Radioactive Decay

A radioactive element decays such that after t days the number of milligrams present
is given by

N D 100e�0:062t

a. How many milligrams are initially present?

Solution: This equation has the form of Equation (3), N D N0e��t, where N0 D 100
and � D 0:062.N0 is the initial amount and corresponds to t D 0. Thus, 100milligrams
are initially present. (See Figure 4.13.)

0 50

N = 100e
-0.062t

0

100

FIGURE 4.13 Graph of
radioactive decay function
N D 100e�0:062t.

b. How many milligrams are present after 10 days?

Solution: When t D 10,

N D 100e�0:062.10/
D 100e�0:62

� 53:8

Therefore, approximately 53.8 milligrams are present after 10 days.

Now Work Problem 47 G

PROBLEMS 4.1
In Problems 1–12, graph each function.

1. y D f.x/ D 4x 2. y D f.x/ D 3x

3. y D f.x/ D
�
1
5

�x
4. y D f.x/ D

�
1
4

�x
5. y D f.x/ D 2.x�1/2 6. y D f.x/ D 3.2/x

7. y D f.x/ D 3xC2 8. y D f.x/ D 3xC2

9. y D f.x/ D 3x � 2 10. y D f.x/ D 3x�1 � 1
11. y D f.x/ D 3�x 12. y D f.x/ D 1

2 .2
x=2/

Problems 13 and 14 refer to Figure 4.14, which shows the graphs
of y D 0:4x, y D 2x, and y D 5x.

13. Of the curves A, B, and C, which is the graph of y D 0:4x?

14. Of the curves A, B, and C, which is the graph of y D 2x?

A B C

FIGURE 4.14

15. Population The projected population of a city is given by
P D 125; 000.1:11/t=20, where t is the number of years after 1995.
What is the projected population in 2015?

16. Population For a certain city, the population P grows at the
rate of 1.5% per year. The formula P D 1;527;000.1:015/t gives
the population t years after 1998. Find the population in (a) 1999
and (b) 2000.

17. Paired-Associate Learning In a psychological experiment
involving learning,2 subjects were asked to give particular
responses after being shown certain stimuli. Each stimulus was a
pair of letters, and each response was either the digit 1 or 2. After
each response, the subject was told the correct answer. In this
so-called paired-associate learning experiment, the theoretical

probability P that a subject makes a correct response on the nth
trial is given by

P D 1 �
1
2
.1 � c/n�1; n � 1; 0 < c < 1

where c is a constant. Take c D
1
2
and find P when n D 1, n D 2,

and n D 3.

18. Express y D 34x as an exponential function in base 81.

In Problems 19–27, find (a) the compound amount and (b) the
compound interest for the given investment and annual rate.

19. $2000 for 5 years at 3% compounded annually

20. $5000 for 20 years at 5% compounded annually

21. $700 for 15 years at 7% compounded semiannually

22. $4000 for 12 years at 7 12% compounded semiannually

23. $3000 for 22 years at 8 14% compounded monthly

24. $6000 for 2 years at 8% compounded quarterly

25. $5000 for 2 12 years at 9% compounded monthly

26. $500 for 5 years at 11% compounded semiannually

27. $8000 for 3 years at 6 14% compounded daily. (Assume that
there are 365 days in a year.)

28. Investment Suppose $1300 is placed in a savings account
that earns interest at the rate of 3.25% compounded monthly.
(a)What is the value of the account at the end of three years?
(b) If the account had earned interest at the rate of 3.5%
compounded annually, what would be the value after three years?

29. Investment A certificate of deposit is purchased for
$6500 and is held for three years. If the certificate earns 2%
compounded quarterly, what is it worth at the end of three years?

2D. Laming, Mathematical Psychology (New York: Academic Press, Inc., 1973).
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30. Population Growth The population of a town of 5000
grows at the rate of 3% per year. (a) Determine an equation that
gives the population t years from now. (b) Find the population
three years from now. Give your answer to (b) to the nearest
integer.

31. Bacteria Growth Bacteria are growing in a culture, and
their number is increasing at the rate of 5% an hour. Initially, 400
bacteria are present. (a) Determine an equation that gives the
number, N, of bacteria present after t hours. (b) How many
bacteria are present after one hour? (c) After four hours? Give
your answers to (b) and (c) to the nearest integer.

32. Bacteria Reduction A certain medicine reduces the
bacteria present in a person by 10% each hour. Currently,
100,000 bacteria are present. Make a table of values for the
number of bacteria present each hour for 0 to 4 hours. For each
hour, write an expression for the number of bacteria as a product
of 100,000 and a power of 9

10 . Use the expressions to make
an entry in your table for the number of bacteria after t hours.
Write a function N for the number of bacteria after t hours.

33. Recycling Suppose the amount of plastic being recycled
increases by 32% every year. Make a table of the factor by which
recycling increases over the original amount for 0 to 5 years.

34. Population Growth Cities A and B presently have
populations of 270,000 and 360,000, respectively. City A grows at
the rate of 6% per year, and B grows at the rate of 4% per year.
Determine the larger and by how much the populations differ at
the end of five years. Give your answer to the nearest integer.

Problems 35 and 36 involve a declining population. If a
population declines at the rate of r per time period, then
the population after t time periods is given by

P D P0.1 � r/t

where P0 is the initial population .the population when t D 0/.

35. Population Because of an economic downturn, the
population of a certain urban area declines at the rate
of 1.5% per year. Initially, the population is 350,000. To the
nearest person, what is the population after three years?

36. Enrollment After a careful demographic analysis, a
university forecasts that student enrollments will drop by 3% per
year for the the next 12 years. If the university currently has
14,000 students, how many students will it have 12 years from
now?

In Problems 37–40, use a calculator to find the value (rounded to
four decimal places) of each expression.
37. e1:5 38. e4:6 39. e�0:8 40. e�2=3

In Problems 41 and 42, graph the functions.

41. y D �e�.xC1/ 42. y D 2ex

43. Telephone Calls The probability that a telephone operator
will receive exactly x calls during a certain period is given by

P D
e�33x

xŠ
Find the probability that the operator will receive exactly four
calls. Round your answer to four decimal places.

44. Normal Distribution An important function used in
economic and business decisions is the normal distribution density
function, which, in standard form, is

f.x/ D
1
p
2�

e�. 12 /x
2

Evaluate f.0/, f.1/, and f.2/. Round your answers to three
decimal places.

45. Express ekt in the form bt. 46. Express
1
ex

in the form bx.

47. Radioactive Decay A radioactive element is such that
N grams remain after t hours, where

N D 12e�0:031t

(a) How many grams are initially present? To the nearest tenth of a
gram, how many grams remain after (b) 10 hours? (c) 44 hours?
(d) Based on your answer to part (c), what is your estimate
of the half-life of this element?

48. Radioactive Decay At a certain time, there are 100
milligrams of a radioactive substance. The substance decays so
that after t years the number of milligrams present, N, is given by

N D 100e�0:045t

How many milligrams, rounded to the nearest tenth of a
milligram, are present after 20 years?

49. Radioactive Decay If a radioactive substance has a
half-life of 9 years, how long does it take for 1 gram of the
substance to decay to 1

8 gram?

50. Marketing A mail-order company advertises in a national
magazine. The company finds that, of all small towns, the
percentage (given as a decimal) in which exactly x people respond
to an ad fits a Poisson distribution with � D 0:5. From what
percentage of small towns can the company expect exactly two
people to respond? Round your answer to four decimal places.

51. Emergency-Room Admissions Suppose the number of
patients admitted into a hospital emergency room during a certain
hour of the day has a Poisson distribution with mean 4. Find the
probability that during that hour there will be exactly two
emergency patients. Round your answer to four decimal places.

52. Graph y D 17x and y D
�
1
17

�x
on the same screen.

Determine the intersection point.

53. Let a > 0 be a constant. Graph y D 2�x and y D 2a � 2�x on
the same screen, for constant values a D 2 and a D 3. Observe
that the graph of y D 2a � 2x appears to be the graph of y D 2�x

shifted a units to the right. Prove algebraically that, in this case,
merely two observations predict what is true.

54. For y D 5x, find x if y D 3. Round your answer to two
decimal places.

55. For y D 2x, find x if y D 9. Round your answer to two
decimal places.

56. Cell Growth Cells are growing in a culture, and their
number is increasing at the rate of 7% per hour. Initially, 1000
cells are present. After how many full hours will there be at least
3000 cells?

57. Bacteria Growth Refer to Example 1. How long will it
take for 1000 bacteria to be present? Round your answer to
the nearest tenth of a minute.
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58. Demand Equation The demand equation for a new toy is

q D 100; 000.0:95012/p

Evaluate q to the nearest integer when p D 15.

59. Investment If $2000 is invested in a savings account that
earns interest at the rate of 9.9% compounded annually, after how
many full years will the amount at least double?

Objective 4.2 Logarithmic Functions
To introduce logarithmic functions and
their graphs. (Properties of logarithms
will be discussed in Section 4.3.)

Since all exponential functions pass the horizontal line test, they are all one-to-one
functions. It follows that each exponential function has an inverse. These functions,
inverse to the exponential functions, are called the logarithmic functions.

More precisely, if f.x/ D bx, the exponential function base b (where 0 < b < 1
or 1 < b), then the inverse function f�1.x/ is called the logarithm function base b
and is denoted logb x. It follows from our general remarks about inverse functions in
Section 2.4 that

To review inverse functions, refer to
Section 2.4.

y D logb x if and only if by D x

and we have the following fundamental equations:

logb b
x
D x (1)

and
blogb x D x (2)

where Equation (1) holds for all x in .�1;1/ and Equation (2) holds for all x in
.0;1/. We recall that .�1;1/ is the domain of the exponential function base b and
.0;1/ is the range of the exponential function base b. It follows that .0;1/ is the
domain of the logarithm function base b and .�1;1/ is the range of the logarithm
function base b.

Stated otherwise, given positive x, logb x is the unique number with the property
that blogb x D x. The generalities about inverse functions also enable us to see immedi-
ately what the graph of a logarithmic function looks like.

In Figure 4.15 we have shown the graph of the particular exponential function
y D f.x/ D 2x, whose general shape is typical of exponential functions y D bx for
which the base b satisfies 1 < b. We have added a (dashed) copy of the line y D x. The
graph of y D f�1.x/ D log2 x is obtained as the mirror image of y D f.x/ D 2x in the
line y D x.
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FIGURE 4.15 Graphs of y D 2x and y D log2 x.
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In Table 4.3 we have tabulated the function values that appear as y-coordinates of
the dots in Figure 4.15.

Table 4.3 Selected Function
Values

x 2x x log2 x

�2 1
4

1
4 �2

�1 1
2

1
2 �1

0 1 1 0

1 2 2 1

2 4 4 2

3 8 8 3

It is clear that the exponential function base 2 and the logarithm function base 2
undo the effects of each other. Thus, for all x in the domain of 2x (which is .�1;1/),
we have

log2 2
x
D x

and, for all x in the domain of log2 xwhich is the range of 2
x (which is .0;1/) we have

2log2 x D x

It cannot be said too often that

y D logb x means by D x

and conversely

by D x means y D logb x

In this sense, a logarithm of a number is an exponent: logb x is the power to which
we must raise b to get x. For example,

log2 8 D 3 because 23 D 8

We say that log2 8 D 3 is the logarithmic form of the exponential form 23 D 8. (See
Figure 4.16.)

Logarithmic and
exponential forms

Logarithm Exponent

log2 8 = 3

base

23 = 8

base

FIGURE 4.16 A logarithm can
be considered an exponent.

APPLY IT I
8. If bacteria have been doubling
every hour and the current amount is 16
times the amount first measured, then
the situation can be represented by 16 D
2t. Represent this equation in logarith-
mic form. What does t represent?

EXAMPLE 1 Converting from Exponential to Logarithmic Form

Exponential Form Logarithmic Form

a. Since
b. Since
c. Since

52 D 25

34 D 81

100 D 1

it follows that

it follows that

it follows that

log5 25 D 2

log3 81 D 4

log10 1 D 0

Now Work Problem 1 G
APPLY IT I
9. An earthquake measuring 8.3 on
the Richter scale can be represented
by 8:3 D log10

�
I
I0

�
, where I is the

intensity of the earthquake and I0 is
the intensity of a zero-level earthquake.
Represent this equation in exponential
form.

EXAMPLE 2 Converting from Logarithmic to Exponential Form

Logarithmic Form Exponential Form

a. log10 1000 D 3

b. log64 8 D
1
2

c. log2
1
16
D �4

means

means

means

103 D 1000

641=2 D 8

2�4 D
1
16

Now Work Problem 3 G

APPLY IT I
10. Suppose a recycling plant has found
that the amount of material being recy-
cled has increased by 50% every year
since the plant’s first year of opera-
tion. Graph each year as a function of
the multiplicative increase in recycling
since the first year. Label the graph with
the name of the function.

EXAMPLE 3 Graph of a Logarithmic Function with b > 1

Examine again the graph of y D log2 x in Figure 4.15. This graph is typical for a
logarithmic function logb x with b > 1.

Now Work Problem 9 G
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EXAMPLE 4 Graph of a Logarithmic Function with 0 < b < 1

Graph y D log1=2 x.

APPLY IT I
11. Suppose a boat depreciates 20%
every year. Graph the number of years
the boat is owned as a function of the
multiplicative decrease in its original
value. Label the graph with the name of
the function.

Solution: To plot points, we plot the inverse function y D
�
1
2

�x
and reflect the graph

in the line y D x. (See Figure 4.17.)
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FIGURE 4.17 Graph of y D
�
1
2

�x
and y D log1=2 x.

From the graph, we can see that the domain of y D log1=2 x is the set of all positive

real numbers, for that is the range of y D
�
1
2

�x
, and the range of y D log1=2 x is the set

of all real numbers, which is the domain of y D
�
1
2

�x
. The graph falls from left to right.

Numbers between 0 and 1 have positive base 1
2 logarithms, and the closer a number

is to 0, the larger is its base 1
2 logarithm. Numbers greater than 1 have negative base

1
2 logarithms. The logarithm of 1 is 0, regardless of the base b, and corresponds to the

x-intercept .1; 0/. This graph is typical for a logarithmic function with 0 < b < 1.

Now Work Problem 11 G

y

x

y

x
1

(a)

1

y = logb x,
0 6 b 6 1

y = logb x,
b 7 1

(b)

FIGURE 4.18 General shapes of y D logb x.

Summarizing the results of Examples 3 and 4, we can say that the graph of a log-
arithmic function has one of two general shapes, depending on whether b > 1 or
0 < b < 1. (See Figure 4.18.) For b > 1, the graph rises from left to right; as x
gets closer and closer to 0, the function values decrease without bound, and the graph
gets closer and closer to the y-axis. For 0 < b < 1, the graph falls from left to right; as
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x gets closer and closer to 0, the function values increase without bound, and the graph
gets closer and closer to the y-axis. In each case, note that

1. The domain of a logarithmic function is the interval .0;1/. Thus, the logarithm of
a nonpositive number does not exist.

2. The range is the interval .�1;1/.
3. The logarithm of 1 is 0, which corresponds to the x-intercept (1, 0).

The graph of the natural logarithmic
function in Figure 4.19 is important, too.

Important in calculus are logarithms to the base e, called natural logarithms. We
use the notation “ln” for such logarithms:

ln x means loge x

The symbol ln x can be read “natural log of x.”
Logarithms to the base 10 are called common logarithms. They were frequently

used for computational purposes before the calculator age. The subscript 10 is usually
omitted from the notation:

log x means log10 x

Most good calculators give approximate values for both natural and common log-
arithms. For example, verify that ln 2 � 0:69315. This means that e0:69315 � 2.
Figure 4.19 shows the graph of y D ln x. Because e > 1, the graph has the general
shape of that of a logarithmic function with b > 1 [see Figure 4.18(a)] and rises from
left to right.

While the conventions about log, with no subscript, and ln are well established in
elementary books, be careful when consulting an advanced book. In advanced texts,
log x means loge x, ln is not used at all, and logarithms base 10 are written explicitly
as log10 x.

1

1

y

x

y = ln x

e

FIGURE 4.19 Graph of natural
logarithmic function.

APPLY IT I
12. The number of years it takes for
an amount invested at an annual rate
of r and compounded continuously to
quadruple is a function of the annual

rate r given by t.r/ D
ln 4
r
. Use a calcu-

lator to find the rate needed to quadruple
an investment in 10 years.

EXAMPLE 5 Finding Logarithms

a. Find log 100.

Solution: Here the base is 10. Thus, log 100 is the power to which we must raise 10
to get 100. Since 102 D 100, log 100 D 2.

Remember the way in which a logarithm
is an exponent.

b. Find ln 1.

Solution: Here the base is e. Because e0 D 1, ln 1 D 0.

c. Find log 0:1.

Solution: Since 0:1 D 1
10 D 10�1, log 0:1 D �1.

d. Find ln e�1.

Solution: Since ln e�1 is the power to which e must be raised to obtain e�1, clearly
ln e�1 D �1.

e. Find log36 6.

Solution: Because 361=2 (D
p
36) is 6, log36 6 D

1
2 .

Now Work Problem 17 G

Many equations involving logarithmic or exponential forms can be solved for an
unknown quantity by first transforming from logarithmic form to exponential form, or
vice versa. Example 6 will illustrate.

APPLY IT I
13. The multiplicative increase m of an
amount invested at an annual rate of r
compounded continuously for a time t is
given by m D ert. What annual percent-
age rate is needed to triple the invest-
ment in 12 years?

EXAMPLE 6 Solving Logarithmic and Exponential Equations

a. Solve log2 x D 4.

Solution: We can get an explicit expression for x by writing the equation in exponen-
tial form. This gives

24 D x

so x D 16.
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b. Solve ln.xC 1/ D 7.

Solution: The exponential form yields e7 D xC 1. Thus, x D e7 � 1.

c. Solve logx 49 D 2.

Solution: In exponential form, x2 D 49, so x D 7. We reject x D �7 because a
negative number cannot be a base of a logarithmic function.

d. Solve e5x D 4.

Solution: We can get an explicit expression for x by writing the equation in logarith-
mic form. We have

ln 4 D 5x

x D
ln 4
5

Now Work Problem 49 G

Radioactive Decay and Half-Life
From our discussion of the decay of a radioactive element in Section 4.1, we know that
the amount of the element present at time t is given by

N D N0e��t (3)

where N0 is the initial amount (the amount at time t D 0) and � is the decay constant.
Let us now determine the half-life T of the element. At time T, half of the initial amount
is present. That is, when t D T;N D N0=2. Thus, from Equation (3), we have

N0

2
D N0e��T

Solving for T gives

1
2
D e��T

2 D e�T taking reciprocals of both sides

To get an explicit expression for T, we convert to logarithmic form. This results in

�T D ln 2

T D
ln 2
�

Summarizing, we have the following:

If a radioactive element has decay constant �, then the half-life of the element is
given by

T D
ln 2
�

(4)

EXAMPLE 7 Finding Half-Life

A 10-milligram sample of radioactive polonium 210 (which is denoted 210Po/ decays
according to the equation

N D 10e�0:00501t

where N is the number of milligrams present after t days. (See Figure 4.20.) Determine
the half-life of 210Po.

0 300

N = 10e
-0.00501t

0

10

FIGURE 4.20 Radioactive decay
function N D 10e�0:00501t.
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Solution: Here the decay constant� is 0.00501. ByEquation (4), the half-life is given by

T D
ln 2
�
D

ln 2
0:00501

� 138.4 days

Now Work Problem 63 G

PROBLEMS 4.2
In Problems 1–8, express each logarithmic form exponentially and
each exponential form logarithmically.

1. 104 D 10;000 2. 2 D log12 144

3. log2 1024 D 10 4. 323=5 D 3

5. e3 � 20:0855 6. e0:33647 � 1:4

7. ln 3 � 1:09861 8. log 7 � 0:84509

In Problems 9–16, graph the functions.

9. y D f.x/ D log5 x 10. y D f.x/ D log4 2x

11. y D f.x/ D log1=4 x 12. y D f.x/ D log1=5 x

13. y D f.x/ D log2.xC 4/ 14. y D f.x/ D ln.�x/

15. y D f.x/ D �2 ln x 16. y D f.x/ D ln.xC 2/

In Problems 17–28, evaluate the expression.

17. log6 36 18. log2 512 19. log5 625

20. log16 4 21. log7 7 22. log 10; 000

23. log 0:0001 24. log2
5
p
8 25. log5 1

26. log5
1
25 27. log2

1
8 28. log3

7
p
3

In Problems 29–48, find x.

29. log7 x D 3 30. log2 x D 8

31. log5 x D 3 32. log4 x D 0

33. log x D �3 34. log� x D 1

35. ln x D �3 36. logx 25 D 2

37. logx 8 D 3 38. logx 4 D
1
3

39. logx
1
4 D �1 40. logx y D 1

41. log3 x D �3 42. logx.2x � 3/ D 1

43. logx.12 � x/ D 2 44. log6 36 D x � 1

45. 2C log2 4 D 3x � 1 46. log3.xC 2/ D �2
47. logx.2xC 8/ D 2 48. logx.16 � 4x � x2/ D 2

In Problems 49–52, find x and express your answer in terms of
natural logarithms.

49. e5x D 7 50. 0:1e0:1x D 0:5
51. e2x�5 C 1 D 4 52. 6e2x � 1 D 1

2

In Problems 53–56, use your calculator to find the approximate
value of each expression, correct to five decimal places.

53. ln 11 54. ln 3:19

55. ln 7:39 56. ln 9:98

57. Appreciation Suppose an antique gains 10% in value every
year. Graph the number of years it is owned as a function of the

multiplicative increase in its original value. Label the graph with
the name of the function.

58. Cost Equation The cost for a firm producing q units of a
product is given by the cost equation

c D .5q ln q/C 15

Evaluate the cost when q D 12. (Round your answer to two
decimal places.)

59. Supply Equation A manufacturer’s supply equation is

p D log
�
15C

5q
8

�
where q is the number of units supplied at a price p per unit. At
what price will the manufacturer supply 1576 units?

60. Earthquake The magnitude, M, of an earthquake and its
energy, E, are related by the equation3

1:5M D log
�

E
2:5 � 1011

�
whereM is given in terms of Richter’s preferred scale of 1958 and
E is in ergs. Solve the equation for E.

61. Biology For a certain population of cells, the number of
cells at time t is given by N D N0.2t=k/, where N0 is the number of
cells at t D 0 and k is a positive constant. (a) Find N when t D k.
(b)What is the significance of k? (c) Show that the time it takes to
have population N1 can be written

t D k log2
N1

N0

62. Inferior Good In a discussion of an inferior good, Persky4

solves an equation of the form

u0 D A ln.x1/C
x22
2

for x1, where x1 and x2 are quantities of two products, u0 is a
measure of utility, and A is a positive constant. Determine x1.

63. Radioactive Decay A 1-gram sample of radioactive lead
211 .211Pb/ decays according to the equation N D e�0:01920t,
where N is the number of grams present after t minutes. How long
will it take until only 0.25 grams remain? Express the answer to
the nearest tenth of a minute.

64. Radioactive Decay The half-life of radioactive actinium
227 .227Ac/ is approximately 21.70514 years. If a lab currently
has a 100-milligram sample, how many milligrams will it have
one year from now?

3K. E. Bullen, An Introduction to the Theory of Seismology (Cambridge, U.K.:
Cambridge at the University Press, 1963).
4A. L. Persky, “An Inferior Good and a Novel Indifference Map,” The
American Economist, XXIX, no. 1 (Spring 1985).
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65. If logy x D 3 and logz x D 2, find a formula for z as an explicit
function of y only.

66. Solve for y as an explicit function of x if

xC 3e2y � 8 D 0

67. Suppose y D f.x/ D x ln x. (a) For what values of x is y < 0?
(Hint: Determine when the graph is below the x-axis.)
(b) Determine the range of f.

68. Find the x-intercept of y D x3 ln x.

69. Use the graph of y D ex to estimate ln 2 to two decimal places

70. Use the graph of y D ln x to estimate e2 to two decimal places.

71. Determine the x-values of points of intersection of the graphs
of y D .x � 2/2 and y D ln x. Round your answers to two decimal
places.

Objective 4.3 Properties of Logarithms
To study basic properties of
logarithmic functions.

The logarithmic function has many important properties. For example,

1. logb.mn/ D logb mC logb n

which says that the logarithm of a product of two numbers is the sum of the logarithms
of the numbers. We can prove this property by deriving the exponential form of the
equation:

blogb mClogb n D mn

Using first a familiar rule for exponents, we have

blogb mClogb n D blogb mblogb n

D mn

where the second equality uses two instances of the fundamental equation (2) of Section
4.2. We will not prove the next two properties, since their proofs are similar to that of
Property 1.

2. logb
m
n
D logb m � logb n

That is, the logarithm of a quotient is the difference of the logarithm of the numerator
and the logarithm of the denominator.

3. logb m
r D r logb m

That is, the logarithm of a power of a number is the exponent times the logarithm
of the number.

Table 4.4 gives the values of a few common logarithms. Most entries are approxi-
mate. For example, log 4 � 0:6021, which means 100:6021 � 4. To illustrate the use of
properties of logarithms, we will use this table in some of the examples that follow.

Table 4.4 Common Logarithms

x log x x log x

2 0.3010 7 0.8451

3 0.4771 8 0.9031

4 0.6021 9 0.9542

5 0.6990 10 1.0000

6 0.7782 e 0.4343

EXAMPLE 1 Finding Logarithms by Using Table 4.4

a. Find log 56.

Solution: Log 56 is not in the table. But we can write 56 as the product 8 � 7. Thus,
by Property 1,

log 56 D log.8 � 7/ D log 8C log 7 � 0:9031C 0:8451 D 1:7482
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b. Find log 9
2 .

Solution: By Property 2,

log
9
2
D log 9 � log 2 � 0:9542 � 0:3010 D 0:6532

c. Find log 64.

Although the logarithms in Example 1
can be found with a calculator, we will
make use of properties of logarithms.

Solution: Since 64 D 82, by Property 3,

log 64 D log 82 D 2 log 8 � 2.0:9031/ D 1:8062

d. Find log
p
5.

Solution: By Property 3, we have

log
p
5 D log 51=2

D
1
2
log 5 �

1
2
.0:6990/ D 0:3495

e. Find log
16
21
.

Solution: log
16
21
D log 16 � log 21 D log.42/ � log.3 � 7/

D 2 log 4 � Œlog 3C log 7�

� 2.0:6021/ � Œ0:4771C 0:8451� D �0:1180

Now Work Problem 3 G

EXAMPLE 2 Rewriting Logarithmic Expressions

a. Express log
1
x2

in terms of log x.

Solution: log
1
x2
D log x�2

D �2 log x Property 3

Here we have assumed that x > 0. Although log.1=x2/ is defined for x ¤ 0, the
expression �2 log x is defined only if x > 0. Note that we do have

log
1
x2
D log x�2

D �2 log jxj

for all x ¤ 0.

b. Express log
1
x
in terms of log x, for x > 0.

Solution: By Property 3,

log
1
x
D log x�1

D �1 log x D � log x

Now Work Problem 21 G

From Example 2(b), we see that log.1=x/ D � log x. Generalizing gives the fol-
lowing property:

4. logb
1
m
D � logb m

That is, the logarithm of the reciprocal of a number is the negative of the logarithm
of the number.

For example, log
2
3
D � log

3
2
.
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EXAMPLE 3 Writing Logarithms in Terms of Simpler Logarithms

a. Write ln
x
zw

in terms of ln x, ln z, and ln w.Manipulations such as those in
Example 3 are frequently used in
calculus.

Solution: ln
x
zw
D ln x � ln.zw/ Property 2

D ln x � .ln zC lnw/ Property 1

D ln x � ln z � lnw

b. Write ln
3

s
x5.x � 2/8

x � 3
in terms of ln x, ln.x � 2/, and ln.x � 3/.

Solution: ln
3

s
x5.x � 2/8

x � 3
D ln

�
x5.x � 2/8

x � 3

�1=3

D
1
3
ln

x5.x � 2/8

x � 3

D
1
3
flnŒx5.x � 2/8� � ln.x � 3/g

D
1
3
Œln x5 C ln.x � 2/8 � ln.x � 3/�

D
1
3
Œ5 ln xC 8 ln.x � 2/ � ln.x � 3/�

Now Work Problem 29 G

APPLY IT I
14. The Richter scale measure of an

earthquake is given by R D log
�

I
I0

�
,

where I is the intensity of the earth-
quake and I0 is the intensity of a
zero-level earthquake. How much more
on the Richter scale is an earthquake
with intensity 900,000 times the inten-
sity of a zero-level earthquake than an
earthquake with intensity 9000 times
the intensity of a zero-level earthquake?
Write the answer as an expres-
sion involving logarithms. Simplify
the expression by combining loga-
rithms, and then evaluate the resulting
expression.

EXAMPLE 4 Combining Logarithms

a. Write ln x � ln.xC 3/ as a single logarithm.

Solution: ln x � ln.xC 3/ D ln
x

xC 3
Property 2

b. Write ln 3C ln 7 � ln 2 � 2 ln 4 as a single logarithm.

Solution: ln 3C ln 7 � ln 2 � 2 ln 4

D ln 3C ln 7 � ln 2 � ln.42/ Property 3

D ln 3C ln 7 � Œln 2C ln.42/�

D ln.3 � 7/ � ln.2 � 42/ Property 1

D ln 21 � ln 32

D ln
21
32

Property 2

Now Work Problem 37 G

Since b0 D 1 and b1 D b, by converting to logarithmic formswe have the following
properties:

5. logb 1 D 0

6. logb b D 1
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APPLY IT I
15. If an earthquake is 10,000 times
as intense as a zero-level earthquake,
what is its measurement on the Richter
scale?Write the answer as a logarithmic
expression and simplify it. (See the pre-
ceding Apply It for the formula.)

EXAMPLE 5 Simplifying Logarithmic Expressions

a. Find ln e3x.

Solution: By the fundamental equation (1) of Section 4.2 with b D e, we have
ln e3x D 3x.

b. Find log 1C log 1000.

Solution: By Property 5, log 1 D 0. Thus,

log 1C log 1000 D 0C log 103

D 0C 3 Fundamental equation (1) of

D 3 Section 4.2 with b D 10

c. Find log7
9
p
78.

Solution: log7
9
p
78 D log7 7

8=9
D

8
9

d. Find log3

�
27
81

�
.

Solution: log3

�
27
81

�
D log3

�
33

34

�
D log3.3

�1/ D �1

e. Find ln eC log
1
10
.

Solution: ln eC log
1
10
D ln eC log 10�1

D 1C .�1/ D 0

Now Work Problem 15 G
Do not confuse ln x2 with .ln x/2. We have

ln x2 D ln.x � x/

but

.ln x/2 D .ln x/.ln x/

Sometimes .ln x/2 is written as ln2 x. This is not a new formula but merely a nota-
tion. More generally, some people write f 2.x/ for . f.x//2. We recommend avoiding
the notation f 2.x/.

EXAMPLE 6 Using Equation (2) of Section 4.2

a. Find eln x
2
.

Solution: By (2) with b D e, eln x
2
D x2.

b. Solve 10log x
2
D 25 for x.

Solution: 10log x
2
D 25

x2 D 25 By Equation (2) of Section 4.2

x D ˙ 5

Now Work Problem 45 G
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EXAMPLE 7 Evaluating a Logarithm Base 5

Use a calculator to find log5 2.

Solution: Calculators typically have keys for logarithms in base 10 and base e, but not
for base 5. However, we can convert logarithms in one base to logarithms in another
base. Let us convert from base 5 to base 10. First, let x D log5 2. Then 5

x D 2. Taking
the common logarithms of both sides of 5x D 2 gives

log 5x D log 2

x log 5 D log 2

x D
log 2
log 5

� 0:4307

If we had taken natural logarithms of both sides, the result would be
x D .ln 2/=.ln 5/ � 0:4307, the same as before.

G

Generalizing the method used in Example 7, we obtain the so-called change-of-
base formula:

Change-of-Base Formula

7. logb m D
loga m
loga b

Some students find the change-of-base formula more memorable when it is
expressed in the form

.loga b/.logb m/ D loga m

in which the two instances of b apparently cancel. Let us see how to prove this iden-
tity, for the ability to see the truth of such statements greatly enhances one’s ability to
use them in practical applications. Since loga m D y precisely if ay D m, our task is
equivalently to show that

a.loga b/.logb m/
D m

and we have

a.loga b/.logb m/
D
�
aloga b

�logb m
D blogb m

D m

using a rule for exponents and fundamental equation (2) twice.
The change-of-base formula allows logarithms to be converted from base a to

base b.

EXAMPLE 8 Change-of-Base Formula

Express log x in terms of natural logarithms.

Solution: Wemust transform from base 10 to base e. Thus, we use the change-of-base
formula (Property 7) with b D 10, m D x, and a D e:

log x D log10 x D
loge x
loge 10

D
ln x
ln 10

Now Work Problem 49 G



Haeussler-50501 M05_HAEU1107_14_SE_C04 November 27, 2017 14:31

Section 4.3 Properties of Logarithms 199

PROBLEMS 4.3
In Problems 1–10, let log 2 D a, log 3 D b, and log 5 D c.
Express the indicated logarithm in terms of a, b, and c.

1. log 30 2. log 1024 3. log
2
3

4. log
5
2

5. log
27
5

6. log
6
25

7. log 100

8. log 0:00003 9. log2 3 10. log2 3

In Problems 11–20, determine the value of the expression without
the use of a calculator.

11. log7 7
48 12. log11.11

3
p
11/7 13. log 0:0000001

14. 10log 3:4 15. ln e2:77 16. ln e 17. ln
1
p
e

18. log3 81 19. log 1
10 C ln e3 20. eln e

In Problems 21–32, write the expression in terms of ln x,
ln.xC 1/, and ln.xC 2/.

21. ln.x.xC 1/2/ 22. ln
5
p
x

.xC 1/3

23. ln
x2

.xC 1/3
24. ln.x.xC 1//3

25. ln
�

xC 1
x2.xC 2/

��3

26. ln
p
x.xC 1/.xC 2/

27. ln
x.xC 1/
xC 2

28. ln
x2.xC 1/
xC 2

29. ln

p
x

.xC 1/2.xC 2/3
30. ln

x5

.xC 1/2.xC 2/3

31. ln

0@ 1
xC 2

5

s
x2

xC 1

1A 32. ln 4

s
x2.xC 2/3

.xC 1/5

In Problems 33–40, express each of the given forms as a single
logarithm.

33. log 6C log 4 34. log3 10 � log3 5

35. 3 log2.2x/ � 5 log2.xC 2/ 36. 2 log x �
1
2
log.x � 2/

37. 7 log3 5C 4 log3 17 38. 5.2 log xC 3 log y � 2 log z/

39. 2C 10 log 1:05

40.
1
3
.2 log 13C 7 log 5 � 3 log 2/

In Problems 41–44, determine the values of the expressions
without using a calculator.

41. e4 ln 3�3 ln 4

42. log3.ln.
p
7C e3 C

p
7/C ln.

p
7C e3 �

p
7//

43. log6 54 � log6 9

44. log3
p
3 � log2

3
p
2 � log5

4
p
5

In Problems 45–48, find x.

45. eln.x2�5x/ D �15 46. 4log4 xClog4 2 D 3

47. 10log.x2C2x/ D 3 48. e3 ln x D 8

In Problems 49–53, write each expression in terms of natural
logarithms.

49. log2.2xC 1/ 50. log2.3x
2 C 3xC 3/

51. log3.x
2 C 1/ 52. log7.x

2 C 1/

53. If eln z D 7ey, solve for y in terms of z.

54. Statistics In statistics, the sample regression equation
y D abx is reduced to a linear form by taking logarithms of both
sides. Express log y in terms of x, log a, and log b and explain
what is meant by saying that the resulting expression is
linear.

55. Logarithm of a Sum? In a study of military enlistments,
Brown5 considers total military compensation C as the sum of
basic military compensation B (which includes the value of
allowances, tax advantages, and base pay) and educational
benefits E. Thus, C D BC E. Brown states that

lnC D ln.BC E/ D lnBC ln
�
1C

E
B

�
Verify this but explain why it is not really a “formula” for the
logarithm of a sum.

56. Earthquake According to Richter,6 the magnitude M of an
earthquake occurring 100 km from a certain type of seismometer
is given by M D log.A/C 3, where A is the recorded trace
amplitude (in millimeters) of the quake. (a) Find the magnitude
of an earthquake that records a trace amplitude of 10 mm.
(b) If a particular earthquake has amplitude A1 and magnitude
M1, determine the magnitude of a quake with amplitude 10A1 in
terms of M1.

57. Display the graph of y D log4 x.

58. Display the graph of y D log4.xC 2/.

59. Display the graphs of y D log x and y D
ln x
ln 10

on the same screen. The graphs appear to be identical. Why?

60. On the same screen, display the graphs of y D ln x and
y D ln.2x/. It appears that the graph of y D ln.2x/ is the graph of
y D ln x shifted upward. Determine algebraically the value of this
shift.

61. On the same screen, display the graphs of y D ln.2x/
and y D ln.6x/. It appears that the graph of y D ln.6x/ is the graph
of y D ln.2x/ shifted upward. Determine algebraically the value of
this shift.

5C. Brown, “Military Enlistments: What Can We Learn from Geographic
Variation?” The American Economic Review, 75, no. 1 (1985), 228–34.
6C. F. Richter, Elementary Seismology (San Francisco: W. H. Freeman and
Company, 1958).
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Objective 4.4 Logarithmic and Exponential Equations
To develop techniques for solving
logarithmic and exponential equations.

Here we solve logarithmic and exponential equations. A logarithmic equation is an
equation that involves the logarithm of an expression containing an unknown. For
example, 2 ln.xC 4/ D 5 is a logarithmic equation. On the other hand, an exponential
equation has the unknown appearing in an exponent, as in 23x D 7.

To solve some logarithmic equations, it is convenient to use the fact that, for any
base b, the function y D logb x is one-to-one. This means, of course, that

if logb m D logb n; then m D n
This follows from the fact that the function y D logb x has an inverse and is visually
apparent by inspecting the two possible shapes of y D logb x given in Figure 4.19. In
either event, the function passes the horizontal line test of Section 2.5. Also useful for
solving logarithmic and exponential equations are the fundamental equations (1) and
(2) in Section 4.2.

EXAMPLE 1 Oxygen Composition

An experiment was conducted with a particular type of small animal.7 The logarithm of
the amount of oxygen consumed per hour was determined for a number of the animals
and was plotted against the logarithms of the weights of the animals. It was found that

log y D log 5:934C 0:885 log x
where y is the number of microliters of oxygen consumed per hour and x is the weight
of the animal (in grams). Solve for y.

Solution: We first combine the terms on the right side into a single logarithm:
log y D log 5:934C 0:885 log x

D log 5:934C log x0:885 Property 3 of Section 4.3

log y D log.5:934x0:885/ Property 1 of Section. 4.3

Since log is one-to-one, we have
y D 5:934x0:885

Now Work Problem 1 G
APPLY IT I
16. Greg took a number and multiplied
it by a power of 32. Jean started with
the same number and got the same result
when she multiplied it by 4 raised to
a number that was nine less than three
times the exponent that Greg used.What
power of 32 did Greg use?

EXAMPLE 2 Solving an Exponential Equation

Find x if .25/xC2 D 53x�4.

Solution: Since 25 D 52, we can express both sides of the equation as powers of 5:

.25/xC2
D 53x�4

.52/xC2
D 53x�4

52xC4
D 53x�4

Since 5x is a one-to-one function,

2xC 4 D 3x � 4

x D 8
Now Work Problem 7 G

Some exponential equations can be solved by taking the logarithm of both sides
after the equation is put in a desirable form. The following example illustrates.

APPLY IT I
17. The sales manager at a fast-food
chain finds that breakfast sales begin to
fall after the end of a promotional cam-
paign. The sales in dollars as a function
of the number of days d after the cam-
paign’s end are given by

S D 800
�
4
3

��0:1d

:

If the manager does not want sales to

drop below 450 per day before starting
a new campaign, when should he start
such a campaign?

EXAMPLE 3 Using Logarithms to Solve an Exponential Equation

Solve 5C .3/4x�1 D 12.

7R. W. Poole, An Introduction to Quantitative Ecology (New York: McGraw-Hill, 1974).
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Solution: We first isolate the exponential expression 4x�1 on one side of the equation:

5C .3/4x�1
D 12

.3/4x�1
D 7

4x�1
D

7
3

Now we take the natural logarithm of both sides:

ln 4x�1
D ln 7 � ln 3

Simplifying gives

.x � 1/ ln 4 D ln 7 � ln 3

x � 1 D
ln 7 � ln 3

ln 4

x D
ln 7 � ln 3

ln 4
C 1 � 1:61120

Now Work Problem 13 G

In Example 3, we used natural logarithms to solve the given equation. However,
logarithms in any base can be used. If we use common logarithms, we would obtain

x D
log 7 � log 3

log 4
C 1 � 1:61120

EXAMPLE 4 Demand Equation

The demand equation for a product is p D 121�0:1q. Use common logarithms to express
q in terms of p.

4 8

6

12

p

p = 12
1-0.1q

q

FIGURE 4.21 Graph of the
demand equation p D 121�0:1q.

Solution: Figure 4.21 shows the graph of this demand equation for q � 0. As is typical
of a demand equation, the graph falls from left to right. We want to solve the equation
for q. Taking the common logarithms of both sides of p D 121�0:1q gives

log p D log.121�0:1q/

log p D .1 � 0:1q/ log 12

log p
log 12

D 1 � 0:1q

0:1q D 1 �
log p
log 12

q D 10
�
1 �

log p
log 12

�
Now Work Problem 43 G

To solve some exponential equations involving base e or base 10, such as 102x D 3,
the process of taking logarithms of both sides can be combined with the identity
logb b

r D r [fundamental equation (1) from Section 4.2] to transform the equation
into an equivalent logarithmic form. In this case, we have

102x D 3

2x D log 3 logarithmic form

x D
log 3
2
� 0:2386
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EXAMPLE 5 Predator--Prey Relation

In an article concerning predators and prey, Holling8 refers to an equation of the form

y D K.1 � e�ax/

where x is the prey density, y is the number of prey attacked, and K and a are constants.
Verify his claim that

ln
K

K � y
D ax

Solution: To find ax, we first solve the given equation for e�ax:

y D K.1 � e�ax/

y
K
D 1 � e�ax

e�ax
D 1 �

y
K

e�ax
D

K � y
K

Now we convert to logarithmic form:

ln
K � y
K
D �ax

� ln
K � y
K
D ax

ln
K

K � y
D ax Property 4 of Section 4.3

as was to be shown.

Now Work Problem 9 G

Some logarithmic equations can be solved by rewriting them in exponential forms.

APPLY IT I
18. The Richter scale measure of an

earthquake is given by R D log
�

I
I0

�
,

where I is the intensity of the earth-

quake, and I0 is the intensity of a zero-
level earthquake. An earthquake that
is 675,000 times as intense as a zero-
level earthquake has a magnitude on the
Richter scale that is 4 more than another
earthquake. What is the intensity of the
other earthquake?

EXAMPLE 6 Solving a Logarithmic Equation

Solve log2 x D 5 � log2.xC 4/.

Solution: Here we must assume that both x and xC 4 are positive, so that their log-
arithms are defined. Both conditions are satisfied if x > 0. To solve the equation, we
first place all logarithms on one side so that we can combine them:

log2 xC log2.xC 4/ D 5

log2.x.xC 4// D 5

In exponential form, we have

x.xC 4/ D 25

x2 C 4x D 32

x2 C 4x � 32 D 0 quadratic equation

.x � 4/.xC 8/ D 0

x D 4 or x D �8

Because we must have x > 0, the only solution is 4, as can be verified by substituting
into the original equation. Indeed, replacing x by 4 in log2 x gives log2 4 D log2 2

2 D 2

8C. S. Holling, “Some Characteristics of Simple Types of Predation and Parasitism,” The Canadian
Entomologist, 91, no. 7 (1959), 385–98.
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while replacing x by 4 in 5 � log2.x C 4/ gives 5 � log2.4 C 4/ D 5 � log2.8/ D
5� log2 2

3 D 5� 3 D 2. Since the results are the same, 4 is a solution of the equation.
In solving a logarithmic equation, it is a good idea to check for extraneous solu-

tions.

Now Work Problem 5 G

PROBLEMS 4.4
In Problems 1–36, find x rounded to three decimal places.

1. log.7xC 2/ D log.5xC 3/ 2. log x � log 5 D log 7

3. log 7 � log.x � 1/ D log 4 4. log2 xC 3 log2 2 D log2
2
x

5. ln.�x/ D ln.x2 � 6/ 6. ln.xC 7:5/C ln 2 D 2 ln x

7. e2x � e5x D e14 8. .e3x�2/3 D e3 9. .81/4x D 9

10. .27/2xC1 D
1
3

11. e3x D 11 12. e4x D 3
4

13. 2e5xC2 D 17 14. 5e2x�1 � 2 D 23 15. 104=x D 6

16. 7.10/0:2x

5 D 3 17.
5

102x
D 7

18. 2.10/x C .10/xC1 D 4 19. 2x D 5

20. 72xC3 D 9 21. 35xC7 D 11

22. 4x=2 D 20 23. 2�2x=3 D
4
5

24. 5.3x � 6/ D 10 25. .4/53�x � 7 D 2

26.
127
3x
D 67 27. log.x � 3/ D 3

28. log2.xC 1/ D 4 29. log4.9x � 4/ D 2

30. log4.2xC 4/ � 3 D log4 3 31. ln.xC 3/C ln.xC 5/ D 1

32. log.x � 3/C log.x � 5/ D 1

33. log2.5xC 1/ D 4 � log2.3x � 2/

34. log.xC 2/2 D 2; where x > 0

35. log2

�
2
x

�
D 3C log2 x 36. log.xC 1/ D log.xC 2/C 1

37. Rooted Plants In a study of rooted plants in a certain
geographic region,9 it was determined that on plots of size A (in
square meters), the average number of species that occurred was S.
When log S was graphed as a function of logA, the result was
a straight line given by

log S D log 12:4C 0:26 logA

Solve for S.

38. Gross National Product In an article, Taagepera and
Hayes10 refer to an equation of the form

logT D 1:7C 0:2068 logP � 0:1334.logP/2

Here T is the percentage of a country’s gross national product
(GNP) that corresponds to foreign trade (exports plus imports),
and P is the country’s population (in units of 100,000). Verify the
claim that

T D 50P.0:2068�0:1334 logP/

You may assume that log 50 D 1:7. Also verify that, for any base
b, .logb x/

2 D logb.x
logb x/.

39. Radioactivity The number of milligrams of a radioactive
substance present after t years is given by

Q D 100e�0:035t

(a) How many milligrams are present after 0 years?
(b) After how many years will there be 20 milligrams present?
Give your answer to the nearest year.

40. Blood Sample On the surface of a glass slide is a grid that
divides the surface into 225 equal squares. Suppose a blood
sample containing N red cells is spread on the slide and the cells
are randomly distributed. Then the number of squares containing
no cells is (approximately) given by 225e�N=225. If 100 of the
squares contain no cells, estimate the number of cells the blood
sample contained.

41. Population In Springfield the population P grows at
the rate of 2% per year. The equation P D 1; 500; 000.1:02/t gives
the population t years after 2015. Find the value of t for which the
population will be 1,900,000. Give your answer to the nearest
tenth of a year.

42. Market Penetration In a discussion of market penetration
by new products, Hurter and Rubenstein11 refer to the function

F.t/ D
q � pe�.tCC/.pCq/

qŒ1C e.tCC/.pCq/�

9R. W. Poole, An Introduction to Quantitative Ecology (New York:
McGraw-Hill, 1974).
10R. Taagepera and J. P. Hayes, “How Trade/GNP Ratio Decreases with
Country Size,” Social Science Research, 6 (1977), 108–32.

11A. P. Hurter, Jr., A. H. Rubenstein et al., “Market Penetration by New
Innovations: The Technological Literature,” Technological Forecasting and
Social Change, 11 (1978), 197–221.
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where p, q, and C are constants. They claim that if F.0/ D 0, then

C D �
1

pC q
ln

q
p

Show that their claim is true.

43. Demand Equation The demand equation for a consumer
product is q D 80 � 2p. Solve for p and express your answer in
terms of common logarithms, as in Example 4. Evaluate p to two
decimal places when q D 60.

44. Investment The equation A D P.1:105/t gives the value
A at the end of t years of an investment of P dollars compounded
annually at an annual interest rate of 10.5%. How many years will
it take for an investment to double? Give your answer to the
nearest year.

45. Sales After t years the number of units of a product sold
per year is given by q D 1000

�
1
2

�0:8 t
. Such an equation is called a

Gompertz equation and describes natural growth in many areas of
study. Solve this equation for t in the same manner as in
Example 4, and show that

t D

log
�
3 � log q
log 2

�
log 0:8

Also, for any A and suitable b and a, solve y D Aba
x
for x and

explain how the previous solution is a special case.

46. Learning Equation Suppose that the daily output of units
of a new product on the tth day of a production run is given by

q D q.t/ D 100.1 � e�0:1t/

Such an equation is called a learning equation and indicates that
as time increases, output per day will increase. This may be due to
a gain in a worker’s proficiency at his or her job. Determine, to the
nearest complete unit, the output (a) initially (that is when t D 0),
(b) on the first day, and (c) on the second day. (d) After how many
days, correct to the nearest whole day, will a daily production run
of 90 units be reached? (e)Will production increase indefinitely?

47. Verify that 4 is the only solution to the logarithmic equation in
Example 6 by graphing the function

y D 5 � log2.xC 4/ � log2 x

and observing when y D 0.

48. Solve 23xC0:5 D 17. Round your answer to two decimal
places.

49. Solve ln.xC 2/ D 5 � x. Round your answer to two decimal
places.

50. Graph the equation .3/2y � 4x D 5. (Hint: Solve for y as a
function of x.)

Chapter 4 Review
Important Terms and Symbols Examples
Section 4.1 Exponential Functions

exponential function, bx, for b > 1 and for 0 < b < 1 Ex. 2,3, p. 177,178
compound interest principal compound amount Ex. 6, p. 180
interest period periodic rate nominal rate
e natural exponential function, ex Ex. 8, p. 183
exponential law of decay initial amount decay constant half-life Ex. 11, p. 186

Section 4.2 Logarithmic Functions
logarithmic function, logb x common logarithm, log x Ex. 5, p. 191
natural logarithm, ln x Ex. 5, p. 191

Section 4.3 Properties of Logarithms
change-of-base formula Ex. 8, p. 198

Section 4.4 Logarithmic and Exponential Equations
logarithmic equation exponential equation Ex. 1, p. 200

Summary
An exponential function has the form f.x/ D bx. The graph
of y D bx has one of two general shapes, depending on the
value of the base b. (See Figure 4.3.) The compound interest
formula

S D P.1C r/n

expresses the compounded future amount S of a principal
P at periodic rate r, as an exponential function of the number
of interest periods n.

The irrational number e � 2:71828 provides the most
important base for an exponential function. This base occurs
in economic analysis and many situations involving growth
of populations or decay of radioactive elements. Radioactive
elements follow the exponential law of decay,

N D N0e��t

where N is the amount of an element present at time t, N0

is the initial amount, and � is the decay constant. The time
required for half of the amount of the element to decay is
called the half-life and denoted by T.
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The logarithmic function is the inverse function of the
exponential function, and vice versa. The logarithmic func-
tion with base b is denoted logb, and y D logb x if and
only if by D x. The graph of y D logb x has one of two
general shapes, depending on the value of the base b. (See
Figure 4.18.) Logarithms with base e are called natural log-
arithms and are denoted ln; those with base 10 are called
common logarithms and are denoted log. The half-life T of
a radioactive element can be given in terms of a natural
logarithm and the decay constant: T D .ln 2/=�.

Some important properties of logarithms are the
following:

logb.mn/ D logb mC logb n

logb
m
n
D logb m � logb n

logb m
r
D r logb m

logb
1
m
D � logb m

logb 1 D 0

logb b D 1

logb b
r
D r

blogb m D m

logb m D
loga m
loga b

Moreover, if logb m D logb n, then m D n. Similarly, if
bm D bn, then m D n. Many of these properties are used
in solving logarithmic and exponential equations.

Review Problems
In Problems 1–6, write each exponential form logarithmically and
each logarithmic form exponentially.

1. 35 D 243 2. log7 343 D 3 3. log81 3 D
1
4

4. 105 D 100;000 5. e7 � 1096:63 6. log9 9 D 1

In Problems 7–12, find the value of the expression without using a
calculator.

7. log5 3125 8. log4 16 9. log3
1
81

10. log1=5
1
625 11. log1=3 9 12. log81 3

In Problems 13–18, find x without using a calculator.
13. log5 625 D x 14. logx

1
81 D �4 15. log2 x D �10

16. ln 1
e D x 17. ln.5xC 7/ D 0 18. eln.xC4/ D 7

In Problems 19 and 20, let log 2 D a and log 3 D b. Express the
given logarithm in terms of a and b.

19. log 8000 20. log
1024
5
p
3

In Problems 21–26, write each expression as a single logarithm.

21. 3 log 7 � 2 log 5 22. 3 log2 xC 5 log2 yC 7 log z

23. 2 ln xC ln y � 3 ln z 24. log6 2 � log6 4 � 9 log6 3

25. 1
3 ln xC 3 ln.x2/ � 2 ln.x � 1/ � 3 ln.x � 2/

26. 4 log xC 2 log y � 3.log zC logw/

In Problems 27–32, write the expression in terms of ln x, ln y, and
ln z.

27. ln
x7y5

z�3
28. ln

p
x

.yz/2
29. ln 3

p
xyz

30. ln
�
x4y3

z2

�5

31. ln
�
1
x

r
y
z

�
32. ln

 �
x
y

�3 �y
z

�5
!

33. Write log3.xC 5/ in terms of natural logarithms.

34. Write log2.7x
3 C 5/ in terms of common logarithms.

35. We have log2 37 � 5:20945 and log2 7 � 2:80735. Find
log7 37.

36. Use natural logarithms to determine the value of log4 5.

37. If ln 2 D x and ln 3 D y, express ln

 
5
p
2

81

!
in terms of x

and y.

38. Express log
x2 3
p
xC 1

5
p
x2 C 2

in terms of log x; log.xC 1/, and

log.x2 C 2/.

39. Simplify 10log x C log 10x C log 10.

40. Simplify log
1

1000
C log 1000.

41. If ln y D x2 C 2, find y.

42. Sketch the graphs of y D .1=3/x and y D log1=3 x.

43. Sketch the graph of y D 2xC3.

44. Sketch the graph of y D �2 log2 x.

In Problems 45–52, find x.

45. log.6x�2/D log.8x�10/ 46. log 3xC log 3 D 2

47. 23x D 16xC1 48. 43�x D
1
16

49. log xC log.10x/ D 3 50. ln
�
x�5
x�1

�
D ln 6

51. ln.logx 3/ D 2 52. log3 xC log9 x D 5

In Problems 53–58, find x correct to three decimal places.

53. e3x D 14 54. 103x=2 D 5 55. 5.exC2 � 6/ D 10

56. 7e3x�1 � 2 D 1 57. 5xC1 D 11 58. 35=x D 2

59. Investment If $2600 is invested for 6 12 years at 6%
compounded quarterly, find (a) the compound amount and (b) the
compound interest.

60. Investment Find the compound amount of an investment
of $2000 for five years and four months at the rate of 12%
compounded monthly.

61. Find the nominal rate that corresponds to a periodic rate of
1 16% per month.
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62. Bacteria Growth Bacteria are growing in a culture, and
their number is increasing at the rate of 7% per hour. Initially, 500
bacteria are present. (a) Determine an equation that gives the
number, N, of bacteria present after t hours. (b) How many
bacteria are present after one hour? (c) After five hours, correct to
the nearest integer.

63. Population Growth The population of a small town grows
at the rate of �0:5% per year because the outflow of people to
nearby cities in search of jobs exceeds the birth rate. In 2006 the
population was 6000. (a) Determine an equation that gives the
population, P, t years from 2006. (b) Find what the population
will be in 2016 (be careful to express your answer as an integer).

64. Revenue Due to ineffective advertising, the Kleer-Kut
Razor Company finds that its annual revenues have been cut
sharply. Moreover, the annual revenue, R, at the end of t years of
business satisfies the equation R D 200;000e�0:2t. Find the annual
revenue at the end of two years and at the end of three years.

65. Radioactivity A radioactive substance decays according
to the formula

N D 10e�0:41t

where N is the number of milligrams present after t hours.
(a) Determine the initial amount of the substance present. (b) To
the nearest tenth of a milligram, determine the amount present
after 1 hour and (c) after 5 hours. (d) To the nearest tenth of an
hour, determine the half-life of the substance, and (e) determine
the number of hours for 0.1 milligram to remain.

66. Radioactivity If a radioactive substance has a half-life of
10 days, in how many days will 1

8 of the initial amount be present?

67. Marketing A marketing-research company needs to
determine how people adapt to the taste of a new toothpaste. In
one experiment, a person was given a pasted toothbrush and was
asked periodically to assign a number, on a scale from 0 to 10, to
the perceived taste. This number was called the response
magnitude. The number 10 was assigned to the initial taste. After
conducting the experiment several times, the company estimated
that the response magnitude is given by

R D 10e�t=50

where t is the number of seconds after the person is given the
toothpaste. (a) Find the response magnitude after 20 seconds,
correct to the nearest integer. (b) After how many seconds,
correct to the nearest second, does a person have a response
magnitude of 3?

68. Sediment in Water The water in a Midwestern lake
contains sediment, and the presence of the sediment reduces
the transmission of light through the water. Experiments
indicate that the intensity of light is reduced by 10% by
passage through 20 cm of water. Suppose that the lake is
uniform with respect to the amount of sediment contained by
the water. A measuring instrument can detect light at the
intensity of 0.17% of full sunlight. This measuring instrument
is lowered into the lake. At what depth will it first cease to
record the presence of light? Give your answer to the
nearest 10 cm.

69. Body Cooling In a discussion of the rate of cooling of
isolated portions of the body when they are exposed to low
temperatures, there occurs the equation12

Tt � Te D .Tt � Te/oe�at

where Tt is the temperature of the portion at time t;Te is the
environmental temperature, the subscript o refers to the initial
temperature difference, and a is a constant. Show that

a D
1
t
ln
.Tt � Te/o

Tt � Te

70. Depreciation An alternative to straight-line depreciation
is declining-balance depreciation. This method assumes that an
item loses value more steeply at the beginning of its life than later
on. A fixed percentage of the value is subtracted each month.
Suppose an item’s initial cost is C and its useful life is N months.
Then the value, V (in dollars), of the item at the end of n months is
given by

V D C
�
1 �

1
N

�n

so that each month brings a depreciation of 100
N percent.

(This is called single declining-balance depreciation; if the
annual depreciation were 200

N percent, then we would speak of
double-declining-balance depreciation.) A notebook computer is
purchased for $1500 and has a useful life of 36 months. It
undergoes double-declining-balance depreciation. After how
many months, to the nearest integer, does its value drop below
$500?

71. If y D f.x/ D
ln x
x
, determine the range of f. Round values to

two decimal places.

72. Determine the points of intersection of the graphs of y D ln x
and y D x � 2 with coordinates rounded to two decimal places.

73. Solve ln x D 6 � 2x. Round your answer to two decimal
places.

74. Solve 63�4x D 15. Round your answer to two decimal places.

12R. W. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill, 1955).
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75. Bases We have seen that there are two kinds of bases, b, for
exponential and logarithmic functions: those b in .0; 1/ and those
b in .1;1/. It might be supposed that there are more of the second
kind but this is not the case. Consider the function f: (0,1)� (1,
1) given by f.x/ D 1=x.
(a) Show that the domain of f can be taken to be .0; 1/.

(b) Show that with domain .0; 1/ the range of f is .1;1/.

(c) Show that f has an inverse g and determine a formula for g.x/.

The exercise shows that the numbers in .0; 1/ are in one-to-one
correspondence with the numbers in .1;1/ so that every base of

either kind corresponds to exactly one of the other kind. Who
would have thought it? “.1;1/—so many numbers; .0; 1/—so
little space.”

76. Display the graph of the equation .6/5y C x D 2. (Hint: Solve
for y as an explicit function of x.)

77. Graph y D 2x and y D
2x

8
on the same screen. It appears that

the graph of y D
2x

8
is the graph of y D 2x shifted three units to

the right. Prove algebraically that this is true.
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5 Mathematics
of Finance

5.1 Compound Interest

5.2 Present Value

5.3 Interest Compounded
Continuously

5.4 Annuities

5.5 Amortization of Loans

5.6 Perpetuities

Chapter 5 Review

F or people who like cars and can afford a good one, a trip to an auto dealership
can be a lot of fun. However, buying a car also has a side that many people
find unpleasant: the negotiating. The verbal tug-of-war with the salesperson
is especially difficult if the buyer is planning to pay on an installment plan and

does not understand the numbers being quoted.
How, for instance, does the fact that the salesperson is offering the car for $12,800

translate into a monthly payment of $281.54? The answer is amortization. The term
comes via French from the Latin root mort-, meaning “dead”, from which we also
get mortal and mortified. A debt that is gradually paid off is eventually “killed,” and
the payment plan for doing this is called an amortization schedule. The schedule is
determined by a formula we give in Section 5.4 and apply in Section 5.5.

Using the formula, we can calculate the monthly payment for the car. If the buyer
makes a $900 down payment on a $12,800 car and pays off the rest over four years
at 4.8% APR compounded monthly, the monthly payment for principal and interest
only should be $272.97. If the payment is higher than that, it may contain additional
charges such as sales tax, registration fees, or insurance premiums, which the buyer
should ask about because some of them may be optional. Understanding the mathe-
matics of finance can help consumers make more informed decisions about purchases
and investments.

208



Haeussler-50501 M06_HAEU1107_14_SE_C05 October 14, 2017 11:35

Section 5.1 Compound Interest 209

Objective 5.1 Compound Interest
To extend the notion of compound
interest to include effective rates and
to solve interest problems whose
solutions require logarithms.

In this chapter we model selected topics in finance that deal with the time value of
money, such as investments, loans, and so on. In later chapters, whenmoremathematics
is at our disposal, certain topics will be revisited and expanded.

Let us first review some facts from Section 4.1, where the notion of compound
interest was introduced. Under compound interest, at the end of each interest period,
the interest earned for that period is added to the principal (the invested amount) so that
it too earns interest over the next interest period. The basic formula for the value (or
compound amount) of an investment after n interest periods under compound interest
is as follows:

Compound Interest Formula

For an original principal of P, the formula

S D P.1C r/n (1)

gives the compound amount S at the end of n interest periods at the periodic
rate of r.

The compound amount is also called the accumulated amount, and the difference
between the compound amount and the original principal, S � P, is called the
compound interest.

Recall that an interest rate is usually quoted as an annual rate, called the nominal
rate or the annual percentage rate (APR). The periodic rate (or rate per interest period)
is obtained by dividing the nominal rate by the number of interest periods per year.

For example, let us compute the compound amount when $1000 is invested for
five years at the nominal rate of 8% compounded quarterly. The rate per period is
0:08=4, and the number of interest periods is 5 � 4.

From Equation (1), we have

A calculator is handy while reading this
chapter.

S D 1000
�
1C

0:08
4

�5�4

D 1000.1C 0:02/20 � $1485:95

EXAMPLE 1 Compound InterestAPPLY IT I
1. Suppose you leave an initial amount
of $518 in a savings account for three
years. If interest is compounded daily
(365 times per year), use a graphing cal-
culator to graph the compound amount S
as a function of the nominal rate of inter-
est. From the graph, estimate the nomi-
nal rate of interest so that there is $600
after three years.

Suppose that $500 amounted to $588.38 in a savings account after three years. If
interest was compounded semiannually, find the nominal rate of interest, compounded
semiannually, that was earned by the money.

Solution: Let r be the semiannual rate. There are 2 � 3 D 6 interest periods. From
Equation (1),

500.1C r/6 D 588:38

.1C r/6 D
588:38
500

1C r D 6

r
588:38
500

r D 6

r
588:38
500

� 1 � 0:0275

Thus, the semiannual rate was 2.75%, so the nominal rate was 5 12% compounded
semiannually.

G
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EXAMPLE 2 Doubling Money

Atwhat nominal rate of interest, compounded yearly, will money double in eight years?

Solution: Let r be the rate at which a principal of P doubles in eight years. Then the
compound amount is 2P. From Equation (1),

P.1C r/8 D 2P

.1C r/8 D 2

1C r D 8
p
2

r D 8
p
2 � 1 � 0:0905

Note that the doubling rate is
independent of the principal P. Hence, the desired rate is 9.05%.

G

We can determine how long it takes for a given principal to accumulate to a par-
ticular amount by using logarithms, as Example 3 shows.

EXAMPLE 3 Compound Interest

How long will it take for $600 to amount to $900 at an annual rate of 6% compounded
quarterly?

APPLY IT I
2. Suppose you leave an initial amount
of $520 in a savings account at an
annual rate of 5.2% compounded daily
(365 days per year). Use a graphing cal-
culator to graph the compound amount
S as a function of the interest periods.
From the graph, estimate how long it
takes for the amount to accumulate to
$750.

Solution: The periodic rate is rD 0:06=4D 0:015. Let n be the number of interest
periods it takes for a principal of PD 600 to amount to S D 900. Then, from Equa-
tion (1),

900 D 600.1:015/n (2)

.1:015/n D
900
600

.1:015/n D 1:5

To solve for n, we first take the natural logarithms of both sides:

ln.1:015/n D ln 1:5

n ln 1:015 D ln 1:5 since lnmr D r lnm

n D
ln 1:5
ln 1:015

� 27:233

The number of years that corresponds to 27.233 quarterly interest periods is
27:233/ 4 � 6:8083, which is about 6 years, 9 12 months. However, because interest is
calculated quarterly, we must wait until the next fully completed quarter, the twenty-
eighth, to realize a principal that is in excess of $900; equivalently, 7 years after the
money was invested.

Now Work Problem 20 G

Effective Rate
If P dollars are invested at a nominal rate of 10% compounded quarterly for one year,
the principal will earn more than 10% that year. In fact, the compound interest is

S � P D P
�
1C

0:10
4

�4

� P D Œ.1:025/4 � 1�P

� 0:103813P

which is about 10.38% of P. That is, 10.38% is the approximate rate of interest com-
pounded annually that is actually earned, and that rate is called the effective rate of
interest. The effective rate is independent of P. In general, the effective interest rate is
just the rate of simple interest earned over a period of one year. Thus, we have shown
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that the nominal rate of 10% compounded quarterly is equivalent to an effective rate of
10.38%. Following the preceding procedure, we can generalize our result:

Effective Rate

The effective rate re that is equivalent to a nominal rate of r compounded n times
a year is given by

re D
�
1C

r
n

�n
� 1 (3)

EXAMPLE 4 Effective Rate

What effective rate is equivalent to a nominal rate of 6% compounded (a) semiannually
and (b) quarterly?

APPLY IT I
3. An investment is compounded
monthly. Use a graphing calculator to
graph the effective rate re as a function
of the nominal rate r. Then use the
graph to find the nominal rate that is
equivalent to an effective rate of 8%.

Solution:
a. From Equation (3), the effective rate is

re D
�
1C

0:06
2

�2

� 1 D .1:03/2 � 1 D 0:0609 D 6:09%

b. The effective rate is

re D
�
1C

0:06
4

�4

� 1 D .1:015/4 � 1 � 0:061364 D 6:14%

Now Work Problem 9 G

Example 4 illustrates that, for a given nominal rate r, the effective rate increases
as the number of interest periods per year .n/ increases. However, in Section 5.3 it
is shown that, regardless of how large n is, the maximum effective rate that can be
obtained is er�1, where e is the irrational number introduced in Section 4.1. We recall
that e � 2:71828.

EXAMPLE 5 Effective Rate

To what amount will $12,000 accumulate in 15 years if it is invested at an effective rate
of 5%?

Solution: Since an effective rate is the rate that is compounded annually, we have

S D 12;000.1:05/15 � $24;947:14

Now Work Problem 15 G

EXAMPLE 6 Doubling Money

How many years will it take for money to double at the effective rate of r?

Solution: Let n be the number of years it takes for a principal of P to double. Then
the compound amount is 2P. Thus,

2P D P.1C r/n

2 D .1C r/n

ln 2 D n ln.1C r/ taking logarithms of both sides



Haeussler-50501 M06_HAEU1107_14_SE_C05 October 14, 2017 11:35

212 Chapter 5 Mathematics of Finance

Hence,

n D
ln 2

ln.1C r/

For example, if r D 0:06, the number of years it takes to double a principal is

ln 2
ln 1:06

� 11.9 years

Now Work Problem 11 G

We remark that when alternative interest rates are available to an investor, effective
rates are used to compare them—that is, to determine which of them is the “best.”
Example 7 illustrates.

EXAMPLE 7 Comparing Interest Rates

If an investor has a choice of investing money at 6% compounded daily or 6 18% com-
pounded quarterly, which is the better choice?

APPLY IT I
4. Suppose you have two investment
opportunities. You can invest $10,000 at
11% compounded monthly, or you can
invest $9700 at 11.25% compounded
quarterly. Which has the better effec-
tive rate of interest? Which is the better
investment over 20 years?

Solution:

Strategy We determine the equivalent effective rate of interest for each nominal
rate and then compare our results.

The respective effective rates of interest are

re D
�
1C

0:06
365

�365

� 1 � 6:18%

and

re D
�
1C

0:06125
4

�4

� 1 � 6:27%

Since the second choice gives the higher effective rate, it is the better choice (in
spite of the fact that daily compounding may be psychologically more appealing).

Now Work Problem 21 G

Negative Interest Rates
Usually, it is tacitly assumed that, for any interest rate r, we have r � 0. In 2016, neg-
ative interest rates, r < 0, were in the news (although the notion has been around
for a long time). First, observe that a formula such as that given by Equation (1),
S D P.1C r/n, makes perfectly good sense for r < 0. To give a concrete example, if
r D �5% D �0:05 then the base .1C r/ of the exponential expression in (1) becomes
0:95 < 1, and it follows that P.1Cr/n is a decreasing function of the number n of inter-
est periods. After 1 interest period an initial amount of $100 is worth $95, after 2 interest
periods it is worth $100.0:95/2 D $90:25, after 3 periods $100.0:95/3 D $85:7375,
and so on.

If we are applying the equation S D P.1Cr/n to a deposit of Pmade to a bank, then
the depositor is the lender and the bank is in the position of the borrower. Typically,
we expect the borrower to pay the lender, and in the case of positive interest rates this
is indeed the case. If r > 0 is the rate for one interest period, then the borrower pays the
lender $r for each dollar borrowed for one interest period. If r < 0 then we can still say
that the borrower pays the lender $r for each dollar borrowed for one period, but in the
case that $r is negative this amounts to saying that the lender pays the borrower $jrj.
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Why might an individual be willing to deposit money in a bank and pay the bank
to keep it there? Well, if the money is subject to a large enough tax bill then a bank
account charging less than the tax bill and providing confidentiality might actually
appear attractive. Of course many jurisdictions actively combat this sort of tax evasion.

The negative interest rates in the news in 2016 were those offered by central banks
(of countries) to the ordinary commercial banks with which individuals and companies
do their banking. Rates offered by central banks are usually considered to be a tool to
implement economic policy.When commercial banks lend to the central bank they have
virtually no risk. In difficult economic times very conservative banks will prefer the
lower rates offered by the risk-free central bank over the higher rates they themselves
offer to ordinary borrowers, often with considerable risk. Of course, if individuals and
companies are unable to borrow money then the economy of their country stagnates.
In 2016, central banks of several countries sought to put more money in the hands
of individuals and businesses to boost their sluggish national economies. By offering
negative interest rates to commercial banks, the central banks encouraged commercial
banks to put their money in circulation by lending to individuals and companies rather
than hoarding cash at the central bank.

PROBLEMS 5.1
In Problems 1 and 2, find (a) the compound amount and (b) the
compound interest for the given investment and rate.

1. $6000 for eight years at an effective rate of 8%

2. $750 for 12 months at an effective rate of 7%

In Problems 3–6, find the effective rate, to three decimal places
that corresponds to the given nominal rate.

3. 2.75% compounded monthly

4. 5% compounded quarterly

5. 3.5% compounded daily

6. 6% compounded daily

7. Find the effective rate of interest (rounded to three
decimal places) that is equivalent to a nominal rate of 10%
compounded
(a) yearly (b) semiannually
(c) quarterly (d) monthly
(e) daily

8. Find (i) the compound interest and (ii) the effective rate, to
four decimal places, if $1000 is invested for one year at an annual
rate of 5% compounded
(a) quarterly (b) monthly
(c) weekly (d) daily

9. Over a five-year period, an original principal of $2000
accumulated to $2950 in an account in which interest was
compounded quarterly. Determine the effective rate of interest,
rounded to two decimal places.

10. Suppose that over a six-year period, $1000 accumulated
to $1959 in an investment certificate in which interest was
compounded quarterly. Find the nominal rate of interest,
compounded quarterly, that was earned. Round your answer
to two decimal places.

In Problems 11 and 12, find how many years it would take to
double a principal at the given effective rate. Give your answer to
one decimal place.

11. 9% 12. 5%

13. A $4000 certificate of deposit is purchased for $4000 and is
held for eleven years. If the certificate earns an effective rate of
7%, what is it worth at the end of that period?

14. How many years will it take for money to triple at the
effective rate of r?

15. University Costs Suppose attending a certain university
cost $25,500 in the 2009–2010 school year. This price included
tuition, room, board, books, and other expenses. Assuming an
effective 3% inflation rate for these costs, determine what the
university costs were in the 2015–2016 school year.

16. University Costs Repeat Problem 15 for an inflation rate of
2% compounded quarterly.

17. Finance Charge A major credit-card company has a
finance charge of 1 12% per month on the outstanding
indebtedness. (a)What is the nominal rate compounded monthly?
(b)What is the effective rate?

18. How long would it take for a principal of P to double if it is
invested with an APR of 7%, compounded monthly.

19. To what sum will $2000 amount in eight years if invested
at a 6% effective rate for the first four years and at 6%
compounded semiannually thereafter?

20. How long will it take for $100 to amount to $1000 if invested
at 6% compounded monthly? Express the answer in years,
rounded to two decimal places.

21. An investor has a choice of investing a sum of money
at 8% compounded annually or at 7.8% compounded
semiannually. Which is the better of the two rates?
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22. What nominal rate of interest, compounded monthly,
corresponds to an effective rate of 4.5%?

23. Savings Account A bank advertises that it pays interest
on savings accounts at the rate of 3 14% compounded daily. Find
the effective rate if the bank assumes that a year consists of (a)
360 days or (b) 365 days in determining the daily rate. Assume
that compounding occurs 365 times a year.

24. Savings Account Suppose that $700 amounted to $801.06
in a savings account after two years. If interest was compounded
quarterly, find the nominal rate of interest, compounded quarterly,
that was earned by the money.

25. Inflation As a hedge against inflation, an investor
purchased a 1972 Gran Torino in 1990 for $90,000. It was sold in
2000 for $250,000. At what effective rate did the car appreciate
in value? Express the answer as a percentage rounded to three
decimal places.

26. Inflation If the rate of inflation for certain goods is 7 14%
compounded daily, how many years will it take for the average
price of such goods to double?

27. Zero-Coupon Bond A zero-coupon bond is a bond that is
sold for less than its face value (that is, it is discounted) and has
no periodic interest payments. Instead, the bond is redeemed for
its face value at maturity. Thus, in this sense, interest is paid at
maturity. Suppose that a zero-coupon bond sells for $420 and can
be redeemed in 14 years for its face value of $1000. The bond
earns interest at what nominal rate, compounded semiannually?

28. Misplaced Funds Suppose that $1000 is misplaced in a
non-interest-bearing checking account and forgotten. Each year,
the bank imposes a service charge of 1.5%. After 20 years, how
much remains of the $1000? [Hint: Recall the notion of negative
interest rates.]

29. General Solutions Equation (1) can be solved for each of
the variables in terms of the other three. Find each of P, r, and n in
this way. (There is no need to memorize any of the three new
formulas that result. The point here is that by showing the general
solutions exist, we gain confidence in our ability to handle any
particular cases.)

Objective 5.2 Present Value
To study present value and to solve
problems involving the time value of
money by using equations of value. To
introduce the net present value of cash
flows.

Suppose that $100 is deposited in a savings account that pays 6% compounded annu-
ally. Then at the end of two years, the account is worth

100.1:06/2 D 112:36

To describe this relationship, we say that the compound amount of $112.36 is the
future value of the $100, and $100 is the present value of the $112.36. Sometimes we
know the future value of an investment and want to find the present value. To obtain
a formula for doing this, we solve the equation S D P.1 C r/n for P. The result is
P D S=.1C r/n D S.1C r/�n.

Present Value

The principal P that must be invested at the periodic rate of r for n interest periods
so that the compound amount is S is given by

P D S.1C r/�n (1)

and is called the present value of S.

EXAMPLE 1 Present Value

Find the present value of $1000 due after three years if the interest rate is 9% com-
pounded monthly.

Solution: We use Equation (1) with S D 1000, r D 0:09=12 D 0:0075, and n D
3.12/ D 36:

P D 1000.1:0075/�36
� 764:15

This means that $764.15 must be invested at 9% compounded monthly to have $1000
in three years.

Now Work Problem 1 G
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If the interest rate in Example 1 were 10% compounded monthly, the present value
would be

P D 1000
�
1C

0:1
12

��36

� 741:74

which is less than before. It is typical that the present value for a given future value
decreases as the interest rate per interest period increases.

EXAMPLE 2 Single-Payment Trust Fund

A trust fund for a child’s education is being set up by a single payment so that at the
end of 15 years there will be $50,000. If the fund earns interest at the rate of 7% com-
pounded semiannually, how much money should be paid into the fund?

Solution: We want the present value of $50,000, due in 15 years. From Equation (1),
with S D 50;000, r D 0:07=2 D 0:035, and n D 15.2/ D 30, we have

P D 50;000.1:035/�30
� 17;813:92

Thus, $17,813.92 should be paid into the fund.

Now Work Problem 13 G

Equations of Value
Suppose that Mr. Smith owes Mr. Jones two sums of money: $1000, due in two years,
and $600, due in five years. If Mr. Smith wishes to pay off the total debt now by a
single payment, how much should the payment be? Assume an interest rate of 8%
compounded quarterly.

The single payment x due now must be such that it would grow and eventually pay
off the debts when they are due. That is, it must equal the sum of the present values of
the future payments. As shown in the timeline of Figure 5.1, we have

x D 1000.1:02/�8
C 600.1:02/�20 (2)

This equation is called an equation of value. We find that

x � 1257:27

Thus, the single payment now due is $1257.27. Let us analyze the situation in more
detail. There are two methods of payment of the debt: a single payment now or two
payments in the future. Notice that Equation (2) indicates that the value now of all
payments under one method must equal the value now of all payments under the other
method. In general, this is true not just now, but at any time. For example, if wemultiply

Figure 5.1 is a useful tool for visualizing
the time value of money. Always draw
such a timeline to set up an equation of
value.

both sides of Equation (2) by .1:02/20, we get the equation of value

x.1:02/20 D 1000.1:02/12 C 600 (3)

0 1 2

1000 (1.02)-8

6001000

600 (1.02)-20

3 4 5

x

Debt

Debt

20 periods

8 periods

Single
payment

Year

Present
value

of
debts

FIGURE 5.1 Replacing two future payments by a single
payment now.

1000 600

12 periods

1000 (1.02)12

x (1.02)20

0 1 2 3 4 5

x

20 periods

Value of
debts at
year 5

Year

Value of
single payment
at year 5

FIGURE 5.2 Diagram for equation of value.

The left side of Equation (3) gives the value five years from now of the single pay-
ment (see Figure 5.2), while the right side gives the value five years from now of all
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payments under the other method. Solving Equation (3) for x gives the same result,
x � 1257:27. In general, an equation of value illustrates that when one is considering
two methods of paying a debt (or of making some other transaction), at any time, the
value of all payments under one method must equal the value of all payments under
the other method.

In certain situations, one equation of value may be more convenient to use than
another, as Example 3 illustrates.

EXAMPLE 3 Equation of Value

A debt of $3000 due six years from now is instead to be paid off by three payments:
$500 now, $1500 in three years, and a final payment at the end of five years. What
would this payment be if an interest rate of 6% compounded annually is assumed?

Solution: Let x be the final payment due in five years. For computational convenience,
we will set up an equation of value to represent the situation at the end of that time,
for in that way the coefficient of x will be 1, as seen in Figure 5.3. Notice that at year 5
we compute the future values of $500 and $1500, and the present value of $3000. The
equation of value is

500.1:06/5 C 1500.1:06/2 C x D 3000.1:06/�1

so
x D 3000.1:06/�1

� 500.1:06/5 � 1500.1:06/2

� 475:68

Thus, the final payment should be $475.68.

500 1500

1500 (1.06)
2

500 (1.06)
5

x

Year

0 1 2 3 4 5 6

3000

3000 (1.06)
-1

FIGURE 5.3 Time values of payments for Example 3.

Now Work Problem 15 G

When one is considering a choice of two investments, a comparison should be
made of the value of each investment at a certain time, as Example 4 shows.

EXAMPLE 4 Comparing Investments

Suppose that you had the opportunity of investing $5000 in a business such that the
value of the investment after five years would be $6300. On the other hand, you could
instead put the $5000 in a savings account that pays 6% compounded semiannually.
Which investment is better?

Solution: Let us consider the value of each investment at the end of five years. At that
time the business investment would have a value of $6300, while the savings account
would have a value of $5000.1:03/10 � $6719:58. Clearly, the better choice is putting
the money in the savings account.

Now Work Problem 21 G
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Net Present Value
If an initial investment will bring in payments at future times, the payments are called
cash flows. The net present value, denoted NPV, of the cash flows is defined to be the
sum of the present values of the cash flows, minus the initial investment. If NPV > 0,
then the investment is profitable; if NPV < 0, the investment is not profitable.

EXAMPLE 5 Net Present Value

Suppose that you can invest $20,000 in a business that guarantees you cash flows at the
end of years 2, 3, and 5 as indicated in the table to the left. Assume an interest rate of
7% compounded annually, and find the net present value of the cash flows.

Year Cash Flow

2 10,000

3 8000

5 6000

Solution: Subtracting the initial investment from the sum of the present values of the
cash flows gives

NPV D 10; 000.1:07/�2
C 8000.1:07/�3

C 6000.1:07/�5
� 20; 000

� �457:31

Since NPV < 0, the business venture is not profitable if one considers the time value of
money. It would be better to invest the $20,000 in a bank paying 7%, since the venture
is equivalent to investing only $20;000 � $457:31 D $19;542:69.

Now Work Problem 19 G

PROBLEMS 5.2
In Problems 1–10, find the present value of the given future
payment at the specified interest rate.

1. $6000 due in 20 years at 5% compounded annually

2. $3500 due in eight years at 6% effective

3. $4000 due in 12 years at 7% compounded semiannually

4. $2020 due in three years at 6% compounded monthly

5. $9000 due in 5 12 years at 8% compounded quarterly

6. $6000 due in 6 12 years at 10% compounded semiannually

7. $8000 due in five years at 10% compounded monthly

8. $500 due in three years at 8 34% compounded quarterly

9. $7500 due in two years at 3 14% compounded daily

10. $1250 due in 1 12 years at 13
1
2% compounded weekly

11. A bank account pays 5.3% annual interest, compounded
monthly. How much must be deposited now so that the account
contains exactly $12,000 at the end of one year?

12. Repeat Problem 11 for the nominal rate of 7.1% compounded
semiannually.

13. Trust Fund A trust fund for a 10-year-old child is being
set up by a single payment so that at age 21 the child will receive
$27,000. Find how much the payment is if an interest rate of 6%
compounded semiannually is assumed.

14. A debt of $7500 due in five years and $2500 due in seven
years is to be repaid by a single payment now. Find how much the
payment is if the interest rate is 4% compounded quarterly.

15. A debt of $600 due in three years and $800 due in four years
is to be repaid by a single payment two years from now. If the

interest rate is 8% compounded semiannually, how much is the
payment?

16. A debt of $7000 due in five years is to be repaid by a payment
of $3000 now and a second payment at the end of five years. How
much should the second payment be if the interest rate is 8%
compounded monthly?

17. A debt of $5000 due five years from now and $5000 due ten
years from now is to be repaid by a payment of $2000 in
two years, a payment of $4000 in four years, and a final payment
at the end of six years. If the interest rate is 2.5% compounded
annually, how much is the final payment?

18. A debt of $3500 due in four years and $5000 due in six years
is to be repaid by a single payment of $1500 now and three equal
payments that are due each consecutive year from now. If the
interest rate is 7% compounded annually, how much are each of
the equal payments?

19. Cash Flows An initial investment of $100,000 in a
business guarantees the following cash flows:

Year Cash Flow

9 $25,000

10 $25,000

11 $30,000

12 $50,000

Assume an interest rate of 4% compounded quarterly.
(a) Find the net present value of the cash flows.
(b) Is the investment profitable?
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20. Cash Flows Repeat Problem 19 for the interest rate of 6%
compounded semiannually.

21. Decision Making Suppose that a person has the following
choices of investing $10,000:
(a) placing the money in a savings account paying 6%
compounded semiannually;
(b) investing in a business such that the value of the investment
after 8 years is $16,000.
Which is the better choice?

22. A owes B two sums of money: $1000 plus interest at 7%
compounded annually, which is due in five years, and $2000 plus
interest at 8% compounded semiannually, which is due in seven
years. If both debts are to be paid off by a single payment at the
end of six years, find the amount of the payment if money is worth
6% compounded quarterly.

23. Purchase Incentive A jewelry store advertises that for
every $1000 spent on diamond jewelry, the purchaser receives
a $1000 bond at absolutely no cost. In reality, the $1000 is the
full maturity value of a zero-coupon bond (see Problem 27 of
Problems 5.1), which the store purchases at a heavily reduced
price. If the bond earns interest at the rate of 7.5% compounded
quarterly and matures after 20 years, how much does the bond
cost the store?

24. Find the present value of $50,000 due in 20 years at a bank
rate of 5% compounded daily. Assume that the bank uses 360
days in determining the daily rate and that there are 365 days in a
year; that is, compounding occurs 365 times in a year.

25. Promissory Note A promissory note is a written statement
agreeing to pay a sum of money either on demand or at a definite
future time. When a note is purchased for its present value at a
given interest rate, the note is said to be discounted, and the
interest rate is called the discount rate. Suppose a $10,000 note
due eight years from now is sold to a financial institution for
$4700. What is the nominal discount rate with quarterly
compounding?

26. Promissory Note (a) Repeat Problem 25 with monthly
compounding. (b) Let r be the nominal discount rate in
Problem 25 and let s be the nominal discount rate in part (a).
Prove, without reference to the future value and to the present
value of the note, that

s D 12
�

3

r
1C

r
4
� 1

�

Objective 5.3 Interest Compounded Continuously
To extend the notion of compound
interest to the situation where interest
is compounded continuously. To
develop, in this case, formulas for
compound amount and present value.

We have seen that when money is invested, at a given annual rate, the interest earned
each year depends on how frequently interest is compounded. For example, more inter-
est is earned if it is compoundedmonthly rather than semiannually.We can successively
get still more interest by compounding it weekly, daily, per hour, and so on. However,
for a given annual rate, there is a maximum interest that can be earned by increasing
the compounding frequency, and we now examine it.

Suppose a principal of P dollars is invested for t years at an annual rate of r. If
interest is compounded k times a year, then the rate per interest period is r=k, and
there are kt periods. From Section 4.1, recalled in Section 5.1, the compound amount
is given by

S D P
�
1C

r
k

�kt
If k, the number of interest periods per year, is increased indefinitely, as we did in the
“thought experiment” of Section 4.1 to introduce the number e, then the length of each
period approaches 0 and we say that interest is compounded continuously. We can
make this precise. In fact, with a little algebra we can relate the compound amount to
the number e. Let m D k=r, so that

P
�
1C

r
k

�kt
D P

 �
1C

1
k=r

�k=r
!rt

D P
��

1C
1
m

�m�rt

D P
��

mC 1
m

�m�rt

In Section 4.1 we noted that, for n a positive integer, the numbers
�
nC 1
n

�n

increase

as n does but they are nevertheless bounded. (For example, it can be shown that all of

the numbers
�
nC 1
n

�n

are less than 3.) We defined e to be the least real number which

is greater than all the values
�
nC 1
n

�n

, where n is a positive integer. It can be shown

that it is not necessary to require that n be an integer. For any positive m, the numbers
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mC 1
m

�m

increase as m does but they remain bounded and the number e, as defined

in Section 4.1, is the least real number that is greater than all the values
�
mC 1
m

�m

.

In the case at hand, for fixed r, the numbers m D k=r increase as k (an integer)
does, but the m D k=r are not necessarily integers. However, if one accepts the truth of

the preceding paragraph, then it follows that the compound amount P
��

mC 1
m

�m�rt

approaches the value Pert as k, and hence, m is increased indefinitely and we have the
following:

Compound Amount under Continuous Interest

The formula

S D Pert (1)

gives the compound amount S of a principal of P dollars after t years at an annual
interest rate r compounded continuously.

EXAMPLE 1 Compound Amount

If $100 is invested at an annual rate of 5% compounded continuously, find the com-
pound amount at the end of

The interest of $5.13 is the maximum
amount of compound interest that can be
earned at an annual rate of 5%.

a. 1 year.
b. 5 years.

Solution:

a. Here P D 100, r D 0:05, and t D 1, so

S D Pert D 100e.0:05/.1/
� 105:13

We can compare this value with the value after one year of a $100 investment at an
annual rate of 5% compounded semiannually—namely, 100.1:025/2 � 105:06.

b. Here P D 100, r D 0:05, and t D 5, so

S D 100e.0:05/.5/
D 100e0:25

� 128:40

Now Work Problem 1 G

We can find an expression that gives the effective rate that corresponds to an
annual rate of r compounded continuously. (From Section 5.1, the effective rate is the
rate compounded annually that gives rise to the same interest in a year as does the rate
and compounding scheme under consideration.) If re is the corresponding effective rate,
then, after one year a principal P accumulates to P.1C re/. This must equal the accu-
mulated amount under continuous interest, Per. Thus, P.1C re/ D Per, from which it
follows that 1C re D er, so re D er � 1.

Effective Rate under Continuous Interest

The effective rate corresponding to an annual rate of r compounded continuously is

re D er � 1
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EXAMPLE 2 Effective Rate

Find the effective rate that corresponds to an annual rate of 5% compounded continu-
ously.

Solution: The effective rate is

er � 1 D e0:05
� 1 � 0:0513

which is 5.13%.

Now Work Problem 5 G

If we solve S D Pert for P, we get P D S=ert D Se�rt. In this formula, P is the
principal that must be invested now at an annual rate of r compounded continuously so
that at the end of t years the compound amount is S. We call P the present value of S.

Present Value under Continuous Interest

The formula

P D Se�rt

gives the present value P of S dollars due at the end of t years at an annual rate of r
compounded continuously.

EXAMPLE 3 Trust Fund

A trust fund is being set up by a single payment so that at the end of 20 years there will
be $25,000 in the fund. If interest is compounded continuously at an annual rate of 7%,
how much money (to the nearest dollar) should be paid into the fund initially?

Solution: We want the present value of $25,000 due in 20 years. Therefore,

P D Se�rt
D 25;000e�.0:07/.20/

D 25;000e�1:4
� 6165

Thus, $6165 should be paid initially.
Now Work Problem 13 G

Comments
Terminology concerning rates is confusing because there are many different conven-
tions that depend on financial jurisdictions and financial industries. In North America
what we have called the nominal rate is often called the APR, and the effective (annual)
rate is often called the APY, for annual percentage yield, or the EAR. Whenever one
enters into a financial negotiation, it is always a good idea to make sure that all termi-
nology is mutually understood.

When interest is compounded, the effective rate should be used to compare differ-
ent schemes. It should be noted, though, that if a savings account bears interest com-
pounded monthly and has the same effective rate as another which is compounded
quarterly, say, then the account with more frequent compounding is probably a better
choice because the quarterly account may literally pay interest only four times a year.
If depositors want their money three months after an official quarter’s end, they will
probably get no interest for the last three months. This argument carried to the limit
suggests that one should always opt for continuous compounding.

However, nobody seems able to name a financial institution that actually uses con-
tinuous compounding. Why is this? We know that the actual cost of an interest scheme
is determined by the effective rate and, for any effective rate re that is acceptable to a
bank, there corresponds a continuous compounding rate r with re D er � 1, namely
r D ln.reC1/. Note too that the calculation of future value via ert with continuous com-
pounding is truly easier than via .1C r=n/nt. While the second expression is (usually)
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merely a rational number raised to what is often a positive integer, it really can’t be
calculated, if the exponent is large, without a “decent” calculator. A so-called “xy” key
is needed, and any such calculator has an “Exp” key that will calculate ert as Exp.rt/.
(There is never any need to enter a decimal approximation of the irrational number e.)
On a typical “decent” calculator, .1C r=n/nt requires about twice as many key strokes
as ert. This paragraph does nothing to answer its question. We suggest that readers ask
their bank managers why their banks do not compound interest continuously. ;-)

PROBLEMS 5.3
In Problems 1 and 2, find the compound amount and compound
interest if $4000 is invested for six years and interest is
compounded continuously at the given annual rate.

1. 6 14% 2. 9%

In Problems 3 and 4, find the present value of $2500 due eight
years from now if interest is compounded continuously at the
given annual rate.

3. 1 12% 4. 8%

In Problems 5–8, find the effective rate of interest that
corresponds to the given annual rate compounded continuously.

5. 2% 6. 8% 7. 3% 8. 11%

9. Investment If $100 is deposited in a savings account that
earns interest at an annual rate of 4 12% compounded continuously,
what is the value of the account at the end of two years?

10. Investment If $1500 is invested at an annual rate of 4%
compounded continuously, find the compound amount at the end
of ten years.

11. Stock Redemption The board of directors of a corporation
agrees to redeem some of its callable preferred stock in five years.
At that time, $1,000,000 will be required. If the corporation can
invest money at an annual interest rate of 5% compounded
continuously, how much should it presently invest so that the
future value is sufficient to redeem the shares?

12. Trust Fund A trust fund is being set up by a single
payment so that at the end of 30 years there will be $50,000 in the
fund. If interest is compounded continuously at an annual rate of
6%, how much money should be paid into the fund initially?

13. Trust Fund As a gift for their newly born daughter’s 21st
birthday, the Smiths want to give her at that time a sum of money
that has the same buying power as does $21,000 on the date of her
birth. To accomplish this, they will make a single initial payment
into a trust fund set up specifically for the purpose.
(a) Assume that the annual effective rate of inflation is 3.5%. In
21 years, what sum will have the same buying power as does
$21,000 at the date of the Smiths’ daughter’s birth?
(b)What should be the amount of the single initial payment into
the fund if interest is compounded continuously at an annual rate
of 3.5%?

14. Investment Currently, the Smiths have $50,000 to invest
for 18 months. They have two options open to them:
(a) Invest the money in a certificate paying interest at the nominal
rate of 5% compounded quarterly;
(b) Invest the money in a savings account earning interest at the
annual rate of 4.5% compounded continuously.
How much money will they have in 18 months with each option?

15. What annual rate compounded continuously is equivalent to
an effective rate of 3%?

16. What annual rate r compounded continuously is equivalent to
a nominal rate of 6% compounded semiannually?

17. If interest is compounded continuously at an annual rate of
0.07, how many years would it take for a principal P to triple?
Give your answer to the nearest year.

18. If interest is compounded continuously, at what annual rate
will a principal double in 20 years? Give the answer as a
percentage correct to two decimal places.

19. Savings Options On July 1, 2001, Mr. Green had $1000 in
a savings account at the First National Bank. This account earns
interest at an annual rate of 3.5% compounded continuously. A
competing bank was attempting to attract new customers by
offering to add $20 immediately to any new account opened with
a minimum $1000 deposit, and the new account would earn
interest at the annual rate of 3.5% compounded semiannually.
Mr. Green decided to choose one of the following three options on
July 1, 2001:
(a) Leave the money at the First National Bank;
(b)Move the money to the competing bank;
(c) Leave half the money at the First National Bank and move the
other half to the competing bank.

For each of these three options, find Mr. Green’s accumulated
amount on July 1, 2003.

20. Investment (a) On April 1, 2006, Ms. Cheung invested
$75,000 in a 10-year certificate of deposit that paid interest at the
annual rate of 3.5% compounded continuously. When the
certificate matured on April 1, 2016, she reinvested the entire
accumulated amount in corporate bonds, which earn interest at the
rate of 4.5% compounded annually. What will be Ms. Cheung’s
accumulated amount on April 1, 2021?
(b) If Ms. Cheung had made a single investment of $75,000 in
2006 that matures in 2021 and has an effective rate of interest of
4%, would her accumulated amount be more or less than that in
part (a) and by how much?

21. Investment Strategy Suppose that you have $9000 to
invest.
(a) If you invest it with the First National Bank at the nominal rate
of 5% compounded quarterly, find the accumulated amount at the
end of one year.
(b) The First National Bank also offers certificates on which it
pays 5.5% compounded continuously. However, a minimum
investment of $10,000 is required. Because you have only $9000,
the bank is willing to give you a 1-year loan for the extra $1000
that you need. Interest for this loan is at an effective rate of 8%,
and both principal and interest are payable at the end of the year.
Determine whether or not this strategy of investment is preferable
to the strategy in part (a).
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22. If interest is compounded continuously at an annual rate of
3%, in how many years will a principal double? Give the answer
correct to two decimal places.

23. General Solutions In Problem 29 of Section 5.1 it was
pointed out that the discretely compounded amount formula,
S D P.1C r/n, can be solved for each of the variables in terms of

the other three. Carry out the same derivation for the continuously
compounded amount formula, S D Pert. (Again, there is no need
to memorize any of the three other formulas that result, although
we have met one of them already. By seeing that the general
solutions are easy, we are informed that all particular solutions are
easy, too.)

Objective 5.4 Annuities
To introduce the notions of ordinary
annuities and annuities due. To use
geometric series to model the present
value and the future value of an
annuity. To determine payments to be
placed in a sinking fund.

Annuities
It is best to define an annuity as any finite sequence of payments made at fixed periods
of time over a given interval. The fixed periods of time that we consider will always be
of equal length, and we refer to that length of time as the payment period. The given
interval is the term of the annuity. The payments we consider will always be of equal
value. An example of an annuity is the depositing of $100 in a savings account every
three months for a year.

The word annuity comes from the Latin word annus, which means “year,” and it is
likely that the first usage of the word was to describe a sequence of annual payments.
We emphasize that the payment period can be of any agreed-upon length. The informal
definitions of annuity provided by insurance companies in their advertising suggest
that an annuity is a sequence of payments in the nature of pension income. However, a
sequence of rent, car, or mortgage payments fits the mathematics we wish to describe,
so our definition is silent about the purpose of the payments.

When dealing with annuities, it is convenient to mark time in units of payment
periods on a line, with time now, in other words the present, taken to be 0. Our generic
annuity will consist of n payments, each in the amount R. With reference to such a
timeline (see Figure 5.4), suppose that the n payments (each of amount R) occur at
times 1; 2; 3; : : : ; n. In this case we speak of an ordinary annuity. Unless otherwise
specified, an annuity is assumed to be an ordinary annuity. Again with reference to
our timeline (see Figure 5.5), suppose now that the n equal payments occur at times
0; 1; 2; : : : ; n � 1. In this case we speak of an annuity due. Observe that in any event,
the nC 1 different times 0; 1; 2; : : : ; n � 1; n define n consecutive time intervals (each
of payment period length). We can consider that an ordinary annuity’s payments are
at the end of each payment period while those of an annuity due are at the beginning
of each payment period. A sequence of rent payments is likely to form an annuity due
because most landlords demand the first month’s rent when the tenant moves in. By
contrast, the sequence of wage payments that an employer makes to a regular full-time
employee is likely to form an ordinary annuity because usually wages are for work
done rather than for work contemplated.

We henceforth assume that interest is at the rate of r per payment period. For
either kind of annuity, a payment of amount R made at time k, for k one of the times
0; 1; 2; : : : ; n � 1; n, has a value at time 0 and a value at time n. The value at time 0
is the present value of the payment made at time k. From Section 5.2 we see that the

10 2 3

R

Time

RRR Payments

n - 1 n

R

FIGURE 5.4 Ordinary annuity.

10 2 3

R

Time

RRRR Payments

n - 1 n

FIGURE 5.5 Annuity due.
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present value of the payment made at time k is R.1C r/�k. The value at time n is the
future value of the payment made at time k. From Section 5.1 we see that the future
value of the payment made at time k is R.1C r/n�k.

Present Value of an Annuity
The present value of an annuity is the sum of the present values of all n payments. It
represents the amount that must be invested now to purchase all n of them.We consider
the case of an ordinary annuity and let A be its present value. By the previous paragraph
and Figure 5.6, we see that the present value is given by

A D R.1C r/�1
C R.1C r/�2

C � � � C R.1C r/�n

From our work in Section 1.6, we recognize this sum as that of the first n terms of the
geometric sequence with first term R.1 C r/�1 and common ratio .1 C r/�1. Hence,
from Equation (16) of Section 1.6 we obtain

A D
R.1C r/�1.1 � .1C r/�n/

1 � .1C r/�1

D
R.1 � .1C r/�n/

.1C r/.1 � .1C r/�1/

D
R.1 � .1C r/�n/

.1C r/ � 1

D R �
1 � .1C r/�n

r

where the main simplification follows by replacing the factor .1Cr/�1 in the numerator
of the first line by .1C r/ in the denominator of the second line.

Present Value of an Annuity

The formula

A D R �
1 � .1C r/�n

r
(1)

gives the present value A of an ordinary annuity of R per payment period for n
periods at the interest rate of r per period.

The expression .1 � .1 C r/�n/=r in Equation (1) is given a somewhat bizarre
notation in the mathematics of finance, namely anr, so that we have, by definition,

anr D
1 � .1C r/�n

r

0 1 2 3 n - 1

R

Period

n

R(1 + r)-n

RRRR

R(1 + r)-2

R(1 + r)-1

Present
value of
ordinary
annuity

Payments

FIGURE 5.6 Present value of ordinary annuity.
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With this notation, Equation (1) can be written as

A D Ranr (2)

If we let R D 1 in Equation (2), then we see that $anr represents the present value of
an annuity of $1 per payment period for n payment periods at the interest rate of r per
payment period. The symbol anr is sometimes read “a angle n at r”.

If we write

anr D a.n; r/ D
1 � .1C r/�n

r

then we see that anr is just a function of two variables as studied in Section 2.8. Indeed,
if we were to write

a.x; y/ D
1 � .1C y/�x

y

then we see that, for fixed y, the function in question is a constant minus a multiple of
an exponential function of x. For x, a fixed positive integer, the function in question is
a rational function of y.

Of course anr is not the first deviation from the standard f.x/ nomenclature for
functions. We have already seen that

p
x, jxj, nŠ, and log2 x are other creative notations

for particular common functions.
Selected values of anr are given, approximately, in Appendix A.

Whenever a desired value of anr is not in
Appendix A, we will use a calculator to
compute it.

APPLY IT I

5. Given a payment of $500 per month
for six years, use a graphing calcula-
tor to graph the present value A as a
function of the interest rate per month,
r. Determine the nominal rate if the
present value of the annuity is $30,000.

EXAMPLE 1 Present Value of an Annuity

Find the present value of an annuity of $100 per month for 3 12 years at an interest rate
of 6% compounded monthly.

Solution: Substituting in Equation (2), we set R D 100, r D 0:06=12 D 0:005, and
n D

�
3 12
�
.12/ D 42. Thus,

A D 100a420:005

From Appendix A, a420:005 � 37:798300. Hence,

A � 100.37:798300/ D 3779:83

Thus, the present value of the annuity is $3779.83.

Now Work Problem 5 G

APPLY IT I
6. Suppose a man purchases a house
with an initial down payment of $20,000
and then makes quarterly payments:
$2000 at the end of each quarter for six
years and $3500 at the end of each quar-
ter for eight more years. Given an inter-
est rate of 6% compounded quarterly,
find the present value of the payments
and the list price of the house.

EXAMPLE 2 Present Value of an Annuity

Given an interest rate of 5% compounded annually, find the present value of a gener-
alized annuity of $2000, due at the end of each year for three years, and $5000, due
thereafter at the end of each year for four years. (See Figure 5.7.)

Solution: The present value is obtained by summing the present values of all pay-
ments:

2000.1:05/�1
C 2000.1:05/�2

C 2000.1:05/�3
C 5000.1:05/�4

C5000.1:05/�5
C 5000.1:05/�6

C 5000.1:05/�7

Payments

Period

0 1 2 3 4 5 6 7

2000 2000 2000 5000 5000 5000 5000

FIGURE 5.7 Annuity of Example 2.
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Rather than evaluating this expression, we can simplify our work by considering the
payments to be an annuity of $5000 for seven years, minus an annuity of $3000 for
three years, so that the first three payments are $2000 each. Thus, the present value is

5000a70:05 � 3000a30:05

� 5000.5:786373/ � 3000.2:723248/

� 20;762:12

Now Work Problem 17 G

APPLY IT I
7. Given an annuity with equal pay-
ments at the end of each quarter for six
years and an interest rate of 4.8% com-
pounded quarterly, use a graphing cal-
culator to graph the present value A as
a function of the monthly payment R.
Determine the monthly payment if the
present value of the annuity is $15,000.

EXAMPLE 3 Periodic Payment of an Annuity

If $10,000 is used to purchase an annuity consisting of equal payments at the end of
each year for the next four years and the interest rate is 6% compounded annually, find
the amount of each payment.

Solution: Here A D 10;000, n D 4, r D 0:06, and we want to find R. From Equa-
tion (2),

10;000 D Ra40:06

Solving for R gives

R D
10;000
a40:06

�
10;000
3:465106

� 2885:91

In general, the formula

R D
A
anr

gives the periodic payment R of an ordinary annuity whose present value is A.

Now Work Problem 19 G

EXAMPLE 4 An Annuity Due

The premiums on an insurance policy are $50 per quarter, payable at the beginning of
each quarter. If the policyholder wishes to pay one year’s premiums in advance, how
much should be paid, provided that the interest rate is 4% compounded quarterly?

APPLY IT I
8. A man makes house payments of
$1200 at the beginning of every month.
If the man wishes to pay one year’s
worth of payments in advance, how
much should he pay, provided that
the interest rate is 6.8% compounded
monthly?

Solution: Wewant the present value of an annuity of $50 per period for four periods at
a rate of 1% per period. However, each payment is due at the beginning of the payment
period so that we have an annuity due. The given annuity can be thought of as an
initial payment of $50, followed by an ordinary annuity of $50 for three periods. (See
Figure 5.8.) Thus, the present value is

50C 50a30:01 � 50C 50.2:940985/ � 197:05

0 1 2 3

Quarter

50

50 + 50a3 0.01

50 50 50

FIGURE 5.8 Annuity due (present value).
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We remark that the general formula for the present value of an annuity due isAn example of a situation involving an
annuity due is an apartment lease for
which the first payment is made
immediately.

A D RC Ran�1r; that is,

A D R.1C an�1r/

Now Work Problem 9 G

Future Value of an Annuity
The future value of an annuity is the sum of the future values of all n payments. We
consider the case of an ordinary annuity and let S be its future value. By our earlier
considerations and Figure 5.9, we see that the future value is given by

S D RC R.1C r/C R.1C r/2 C � � � C R.1C r/n�1

0 1 2

R

Period

R(1 + r)n - 1

RRR

R(1 + r)2

R(1 + r) Future
value of
ordinary
annuity

Payments

n - 2 nn - 1

R

FIGURE 5.9 Future value of ordinary annuity.

Again from Section 1.6, we recognize this as the sum of the first n terms of a geometric
sequence with first term R and common ratio 1C r. Consequently, using Equation (16)
of Section 1.6, we obtain

S D
R.1 � .1C r/n/
1 � .1C r/

D R �
1 � .1C r/n

�r
D R �

.1C r/n � 1
r

Future Value of an Annuity

The formula

S D R �
.1C r/n � 1

r
(3)

gives the future value S of an ordinary annuity of R (dollars) per payment period
for n periods at the interest rate of r per period.

The expression ..1C r/n � 1/=r is written snr so that we have, by definition,

snr D
.1C r/n � 1

r
and some approximate values of snr are given in Appendix A. Thus,

S D Rsnr (4)

It follows that $snr is the future value of an ordinary annuity of $1 per payment
period for n periods at the interest rate of r per period. Like anr, snr is also a function
of two variables.

EXAMPLE 5 Future Value of an Annuity

Find the future value of an annuity consisting of payments of $50 at the end of every
three months for three years at the rate of 6% compounded quarterly. Also, find the
compound interest.
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Solution: To find the amount of the annuity, we use Equation (4) with R D 50,
n D 4.3/ D 12, and r D 0:06=4 D 0:015:

S D 50s120:015 � 50.13:041211/ � 652:06

APPLY IT I
9. Suppose you invest in an RRSP by
depositing $2000 at the end of every tax
year for the next 15 years. If the inter-
est rate is 5.7% compounded annually,
how much will you have at the end of
15 years?

The compound interest is the difference between the amount of the annuity and the sum
of the payments, namely,

652:06 � 12.50/ D 652:06 � 600 D 52:06

Now Work Problem 11 G

EXAMPLE 6 Future Value of an Annuity Due

At the beginning of each quarter, $50 is deposited into a savings account that pays 6%
compounded quarterly. Find the balance in the account at the end of three years.

APPLY IT I
10. Suppose you invest in an RRSP by
depositing $2000 at the beginning of
every tax year for the next 15 years. If
the interest rate is 5.7% compounded
annually, howmuch will you have at the
end of 15 years?

Solution: Since the deposits are made at the beginning of a payment period, we want
the future value of an annuity due, as considered in Example 4. (See Figure 5.10.) The
given annuity can be thought of as an ordinary annuity of $50 for 13 periods, minus
the final payment of $50. Thus, the future value is

50s130:015 � 50 � 50.14:236830/ � 50 � 661:84

0 1 2

Period

50

11 12

50 50 50 50

1 period

12 periods

50s13 0.015 - 50

FIGURE 5.10 Future value of annuity due.

The formula for the future value of an annuity due is S D RsnC1r � R, which is

S D R.snC1r � 1/

Now Work Problem 15 G

Sinking Fund
Our final examples involve the notion of a sinking fund.

EXAMPLE 7 Sinking Fund

A sinking fund is a fund into which periodic payments are made in order to satisfy
a future obligation. Suppose a machine costing $7000 is to be replaced at the end of
eight years, at which time it will have a salvage value of $700. In order to provide
money at that time for a new machine costing the same amount, a sinking fund is set
up. The amount in the fund at the end of eight years is to be the difference between the
replacement cost and the salvage value. If equal payments are placed in the fund at the
end of each quarter and the fund earns 8% compounded quarterly, what should each
payment be?

Solution: The amount needed after eight years is $.7000 � 700/ D $6300. Let R
be the quarterly payment. The payments into the sinking fund form an annuity with
n D 4.8/ D 32, r D 0:08=4 D 0:02, and S D 6300. Thus, from Equation (4), we have

6300 D Rs320:02

R D
6300
s320:02

�
6300

44:227030
� 142:45
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In general, the formula

R D
S
snr

gives the periodic payment R of an annuity that is to amount to S.

Now Work Problem 23 G

EXAMPLE 8 Sinking Fund

A rental firm estimates that, if purchased, a machine will yield an annual net return of
$1000 for six years, after which the machine would be worthless. Howmuch should the
firm pay for the machine if it wants to earn 7% annually on its investment and also set
up a sinking fund to replace the purchase price? For the fund, assume annual payments
and a rate of 5% compounded annually.

Solution: Let x be the purchase price. Each year, the return on the investment is 0.07x.
Since the machine gives a return of $1000 a year, the amount left to be placed into the
fund each year is 1000 � 0:07x. These payments must accumulate to x. Hence,

.1000 � 0:07x/s60:05 D x

1000s60:05 � 0:07xs60:05 D x

1000s60:05 D x.1C 0:07s60:05/

1000s60:05

1C 0:07s60:05
D x

x �
1000.6:801913/

1C 0:07.6:801913/

� 4607:92

Another way to look at the problem is as follows: Each year, the $1000 must

account for a return of 0.07x and also a payment of
x

s60:05
into the sinking fund. Thus,

we have 1000 D 0:07xC
x

s60:05
, which, when solved, gives the same result.

Now Work Problem 25 G

PROBLEMS 5.4
In Problems 1–4, use Appendix A and find the value of the given
expression.

1. a480:035 2. a150:07

3. s80:0075 4. s120:0125

In Problems 5–8, find the present value of the given (ordinary)
annuity.

5. $600 per year for six years at the rate of 6% compounded
annually

6. $1000 every month for three years at the monthly rate of 1%
compounded monthly

7. $2000 per quarter for 4 12 years at the rate of 8% compounded
quarterly

8. $1500 per month for 15 months at the rate of 9% compounded
monthly

In Problems 9 and 10, find the present value of the given
annuity due.

9. $900 paid at the beginning of each six-month period for seven
years at the rate of 8% compounded semiannually

10. $150 paid at the beginning of each month for five years at the
rate of 7% compounded monthly

In Problems 11–14, find the future value of the given (ordinary)
annuity.

11. $3000 per month for four years at the rate of 9% compounded
monthly

12. $600 per quarter for four years at the rate of 8% compounded
quarterly

13. $5000 per year for 20 years at the rate of 7% compounded
annually

14. $2500 every month for 4 years at the rate of 6% compounded
monthly
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In Problems 15 and 16, find the future value of the given
annuity due.

15. $1200 each year for 12 years at the rate of 8% compounded
annually

16. $500 every quarter for 12 14 years at the rate of 5%
compounded quarterly

17. For an interest rate of 4% compounded monthly, find the
present value of an annuity of $150 at the end of each month for
eight months and $175 thereafter at the end of each month for a
further two years.

18. Leasing Office Space A company wishes to lease
temporary office space for a period of six months. The rental fee is
$1500 a month, payable in advance. Suppose that the company
wants to make a lump-sum payment at the beginning of the rental
period to cover all rental fees due over the six-month period. If
money is worth 9% compounded monthly, how much should the
payment be?

19. An annuity consisting of equal payments at the end of each
quarter for three years is to be purchased for $15,000. If the
interest rate is 4% compounded quarterly, how much is each
payment?

20. Equipment Purchase A machine is purchased for $3000
down and payments of $250 at the end of every six months for six
years. If interest is at 8% compounded semiannually, find the
corresponding cash price of the machine.

21. Suppose $100 is placed in a savings account at the end of
each month for 50 months. If no further deposits are made,
(a) how much is in the account after seven years, and (b) how
much of this amount is compound interest? Assume that
the savings account pays 9% compounded monthly.

22. Insurance Settlement Options The beneficiary of an
insurance policy has the option of receiving a lump-sum payment
of $275,000 or 10 equal yearly payments, where the first payment
is due at once. If interest is at 3.5% compounded annually, find
the yearly payment.

23. Sinking Find In 10 years, a $40,000 machine will have a
salvage value of $4000. A new machine at that time is expected to
sell for $52,000. In order to provide funds for the difference
between the replacement cost and the salvage value, a sinking
fund is set up into which equal payments are placed at the end of
each year. If the fund earns 7% compounded annually, how much
should each payment be?

24. Sinking Fund A paper company is considering the
purchase of a forest that is estimated to yield an annual return of
$60,000 for 8 years, after which the forest will have no value. The
company wants to earn 6% on its investment and also set up a
sinking fund to replace the purchase price. If money is placed in
the fund at the end of each year and earns 4% compounded
annually, find the price the company should pay for the forest.
Round the answer to the nearest hundred dollars.

25. Sinking Fund In order to replace a machine in the future,
a company is placing equal payments into a sinking fund at the
end of each year so that after 10 years the amount in the fund is
$25,000. The fund earns 6% compounded annually. After 6 years,
the interest rate increases and the fund pays 7% compounded
annually. Because of the higher interest rate, the company
decreases the amount of the remaining payments. Find the
amount of the new payment. Round your answer to the nearest
dollar.

26. A owes B the sum of $10,000 and agrees to pay B the sum of
$1000 at the end of each year for ten years and a final payment at
the end of the eleventh year. How much should the final payment
be if interest is at 4% compounded annually?

In Problems 27–35, rather than using tables, use directly the
following formulas:

anr D
1 � .1C r/�n

r

snr D
.1C r/n � 1

r

R D
A
anr
D

Ar
1 � .1C r/�n

R D
S
snr
D

Sr
.1C r/n � 1

27. Find s600:017 to five decimal places.

28. Find a90:052 to five decimal places.

29. Find 250a1800:0235 to two decimal places.

30. Find 1000s1200:01 to two decimal places.

31. Equal payments are to be deposited in a savings account at
the end of each quarter for 15 years so that at the end of that time
there will be $5000. If interest is at 3% compounded quarterly,
find the quarterly payment.

32. Insurance Proceeds Suppose that insurance proceeds of
$25,000 are used to purchase an annuity of equal payments at the
end of each month for five years. If interest is at the rate of 10%
compounded monthly, find the amount of each payment.

33. Lottery Mary Jones won a state $4,000,000 lottery and
will receive a check for $200,000 now and a similar one each year
for the next 19 years. To provide these 20 payments, the State
Lottery Commission purchased an annuity due at the interest rate
of 10% compounded annually. How much did the annuity cost the
Commission?

34. Pension Plan Options Suppose an employee of a company
is retiring and has the choice of two benefit options under the
company pension plan. Option A consists of a guaranteed payment
of $2100 at the end of each month for 20 years. Alternatively,
under option B, the employee receives a lump-sum payment equal
to the present value of the payments described under option A.
(a) Find the sum of the payments under option A.
(b) Find the lump-sum payment under option B if it is determined
by using an interest rate of 6% compounded monthly. Round the
answer to the nearest dollar.

35. An Early Start to Investing An insurance agent offers
services to clients who are concerned about their personal
financial planning for retirement. To emphasize the advantages of
an early start to investing, she points out that a 25-year-old person
who saves $2000 a year for 10 years (and makes no more
contributions after age 34) will earn more than by waiting 10
years and then saving $2000 a year from age 35 until retirement at
age 65 (a total of 30 contributions). Find the net earnings
(compound amount minus total contributions) at age 65 for both
situations. Assume an effective annual rate of 7%, and suppose
that deposits are made at the beginning of each year. Round
answers to the nearest dollar.
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36. Continuous Annuity An annuity in which R dollars is
paid each year by uniform payments that are payable continuously
is called a continuous annuity. The present value of a continuous
annuity for t years is

R �
1 � e�rt

r

where r is the annual rate of interest compounded continuously.
Find the present value of a continuous annuity of $365 a year for
30 years at 3% compounded continuously.

37. Profit Suppose a business has an annual profit of $40,000
for the next five years and the profits are earned continuously
throughout each year. Then the profits can be thought of as a
continuous annuity. (See Problem 36.) If money is worth 4%
compounded continuously, find the present value of the profits.

Objective 5.5 Amortization of Loans
To learn how to amortize a loan and
set up an amortization schedule.

Suppose that a bank lends a borrower $1500 and charges interest at the nominal rate of
12% compounded monthly. The $1500 plus interest is to be repaid by equal payments
of R dollars at the end of each month for three months. One could say that by paying
the borrower $1500, the bank is purchasing an annuity of three payments of R each.
Using the formula from Example 3 of the preceding section, we find that the monthly
payment is given by

R D
A
anr
D

1500
a30:01

�
1500

2:940985
� $510:0332

We will round the payment to $510.03, which may result in a slightly higher final
payment. However, it is not unusual for a bank to round up to the nearest cent, in which
case the final payment may be less than the other payments.

The bank can consider each payment as consisting of two parts: (1) interest on the
outstanding loan and (2) repayment of part of the loan. This is called amortizing. A
loan is amortized when part of each payment is used to pay interest and the remaining
part is used to reduce the outstanding principal. Since each payment reduces the out-
standing principal, the interest portion of a payment decreases as time goes on. Let us
analyze the loan just described.

At the end of the first month, the borrower pays $510.03. The interest on the out-
standing principal is 0:01.$1500/ D $15. The balance of the payment, $510:03�$15 D
$495:03, is then applied to reduce the principal. Hence, the principal outstanding is
now $1500 � $495:03 D $1004:97. At the end of the second month, the interest is
0:01.$1004:97/ � $10:05. Thus, the amount of the loan repaid is $510:03�$10:05 D
$499:98, and the outstanding balance is $1004:97 � $499:98 D $504:99. The interest
due at the end of the third and final month is 0:01.$504:99/ � $5:05, so the amount of
the loan repaid is $510:03�$5:05 D $504:98. This would leave an outstanding balance
of 504:99� 504:98 D $0:01, so we take the final payment to be $510.04, and the debt
is paid off. As we said earlier, the final payment is adjusted to offset rounding errors.
An analysis of how each payment in the loan is handled can be given in a table called
an amortization schedule. (See Table 5.1.) The total interest paid is $30.10, which is
often called the finance charge.

Many end-of-year mortgage statements
are issued in the form of an amortization
schedule.

Table 5.1 Amortization Schedule

Principal Principal
Outstanding Payment Repaid at
at Beginning Interest at End End of

Period of Period for Period of Period Period

1 $1500 $15 $510.03 $495.03

2 1004.97 10.05 510.03 499.98

3 504.99 5.05 510.04 504.99

Total 30.10 1530.10 1500.00

In general, suppose that a loan of A dollars is to be repaid by a sequence of n equal
payments of R dollars, each made at the end of an agreed-upon period. The loan was
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made at the beginning of the first period and we assume further that the interest rate is r
per period and compounded each period. It follows that the sum of the present values of
the n payments must equal the amount of the loan and we have A D Ranr; equivalently,

R D
A
anr

.

Let k be any of the numbers 1; 2; � � � n. At the beginning of the kth period, k � 1
payments have been made. It follows that the principal outstanding is the present value
(at time k�1) of the remaining n�.k�1/ D n�kC1 payments. By a time-line drawing
of the kind in Figure 5.6, it is seen that the principal outstanding at the beginning of

the kth period is Ran�kC1r. Thus, the kth payment (at the end of the kth period) must

contain interest in the amount .Ran�kC1r/r D Rran�kC1r so the kth payment reduces

the amount owing by R�Rrn�kC1 D R.1� rn�kC1 . Of course, the total interest paid is

nR� A D R.n� anr/. We summarize these formulas, which describe the amortization
of the general loan, in Table 5.2. They allow us to make an amortization schedule as
shown in Table 5.1 for any loan.

Table 5.2 Amortization Formulas

1. Periodic payment: R D
A
anr
D A �

r
1 � .1C r/�n

2. Principal outstanding at beginning of kth period:

Ran�kC1r D R �
1 � .1C r/�nCk�1

r

3. Interest in kth payment: Rran�kC1r

4. Principal contained in kth payment: R.1 � ran�kC1r/

5. Total interest paid: R.n � anr/ D nR � A

EXAMPLE 1 Amortizing a Loan

Aperson amortizes a loan of $170,000 for a new home by obtaining a 20-year mortgage
at the rate of 7.5% compounded monthly. Find (a) the monthly payment, (b) the total
interest charges, and (c) the principal remaining after five years.

a. The number of payment periods is n D 12.20/ D 240; the interest rate per period
is r D 0:075=12 D 0:00625; and A D 170; 000. From Formula 1 in Table 5.2, the
monthly payment R is 170; 000=a2400:00625. Since a2400:00625 is not in Appendix A,
we use the following equivalent, expanded formula and a calculator:

R D 170;000
�

0:00625
1 � .1:00625/�240

�
� 1369:51

b. From Formula 5, the total interest charges are

240.1369:51/ � 170;000 D 328;682:40 � 170;000

D 158;682:40

c. After five years, we are at the beginning of the 61st period. Using Formula 2 with
n � kC 1 D 240 � 61C 1 D 180, we find that the principal remaining is

1369:51
�
1 � .1:00625/�180

0:00625

�
� 147;733:74

Now Work Problem 1 G



Haeussler-50501 M06_HAEU1107_14_SE_C05 October 14, 2017 11:35

232 Chapter 5 Mathematics of Finance

At one time, a very common type of installment loan involved the “add-onmethod”
of determining the finance charge. With that method, the finance charge is found by
applying a quoted annual interest rate under simple interest to the borrowed amount
of the loan. The charge is then added to the principal, and the total is divided by the
number of months of the loan to determine the monthly installment payment.

In loans of this type, the borrower may not immediately realize that the true annual
rate is significantly higher than the quoted rate. To give a simple numerical exam-
ple, suppose that a $1000 loan is taken for one year at 9% interest under the add-on
method, with payments made monthly. The “finance charge” for this scheme is simply
$1000.0:09/ D $90. Adding this to the loan amount gives $100C $90 D $1090 and
the monthly installment payment is $1090=12 � $90:83. We can now analyze this sit-
uation using the principles of this section. From that point of view, we simply have a
loan amount A D $1000, with n D 12 monthly payments each with payment amount
R D $1090=12. We can now use A D Ranr and attempt to solve for r, the interest rate
per period.

1 � .1C r/�12

r
D a12r D

A
R
D

1000
1090=12

� 11:009174312

We cannot hope to algebraically solve for r in

1 � .1C r/�12

r
D 11:009174312

but there are lots of approximation techniques available, one of which is simply to graph

Y1 D .1 � .1C X/ ^ .�12/=X

Y2 D 11:009174

on a graphing calculator and ask for the first coordinate of the point of intersection.
Doing so returns

r � 0:01351374

which corresponds to an annual rate of 12.0:01351374/ � 0:1622 D 16:22%! Clearly,
it is very misleading to label this loan as a 9% loan! On closer examination, we see that
the “flaw” in calculating loan payments by the “add-on method” is that it takes no
account of the amount that is paid off the principal each month. The lender is effec-
tively obliged to pay interest on the original amount each month. The “add-on method”
looks much easier than having to deal with the complexity of anr. As Albert Einstein
once said, “Everything should be made as simple as possible but not simpler”. Fortu-
nately, regulations concerning truth-in-lending laws have made add-on loans virtually
obsolete.

The annuity formula

A D R �
1 � .1C r/�n

r

cannot be solved for r in a simple closed form, which is why the previous example
required an approximation technique. On the other hand, solving the annuity formula
for n, to give the number of periods of a loan, is a straightforward matter. We have

Ar
R
D 1 � .1C r/�n

.1C r/�n
D 1 �

Ar
R
D

R � Ar
R

�n ln.1C r/ D ln.R � Ar/ � ln.R/ taking logs of both sides

n D
ln.R/ � ln.R � Ar/

ln.1C r/
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EXAMPLE 2 Periods of a Loan

Muhammar Smith recently purchased a computer for $1500 and agreed to pay it off
by making monthly payments of $75. If the store charges interest at the annual rate of
12% compounded monthly, how many months will it take to pay off the debt?

Solution: From the last equation on the previous page,

n D
ln.75/ � ln.75 � 1500.0:01//

ln.1:01/
� 22:4

Therefore, it will require 23 months to pay off the loan (with the final payment less
than $75).

Now Work Problem 11 G

PROBLEMS 5.5
1. A person borrows $9000 from a bank and agrees to pay it off
by equal payments at the end of each month for two years. If
interest is at 13.2% compounded monthly, how much is each
payment?

2. Bronwen wishes to make a two-year loan and can afford
payments of $100 at the end of each month. If annual interest is at
6% compounded monthly, how much can she afford to borrow?

3. Finance Charge Determine the finance charge on a
36-month $8000 auto loan with monthly payments if interest is at
the rate of 4% compounded monthly.

4. For a one-year loan of $500 at the rate of 15% compounded
monthly, find (a) the monthly installment payment and (b) the
finance charge.

5. Car Loan A person is amortizing a 36-month car loan of
$7500 with interest at the rate of 4% compounded monthly. Find
(a) the monthly payment, (b) the interest in the first month, and
(c) the principal repaid in the first payment.

6. Real-Estate Loan A person is amortizing a 48-month loan
of $65,000 for a house lot. If interest is at the rate of 7.2%
compounded monthly, find (a) the monthly payment, (b) the
interest in the first payment, and (c) the principal repaid in the
first payment.

In Problems 7–10, construct amortization schedules for the
indicated debts. Adjust the final payments if necessary.

7. $10,000 repaid by three equal yearly payments with interest at
5% compounded annually.

8. $9000 repaid by eight equal semiannual payments with
interest at 9.5% compounded semiannually

9. $900 repaid by five equal quarterly payments with interest at
10% compounded quarterly

10. $10,000 repaid by five equal monthly payments with interest
at 9% compounded monthly

11. A loan of $1300 is being paid off by quarterly payments of
$110. If interest is at the rate of 6% compounded quarterly, how
many full payments will be made?

12. A loan of $5000 is being amortized over 36 months at an
interest rate of 9% compounded monthly. Find

(a) the monthly payment;
(b) the principal outstanding at the beginning of the 36th month;

(c) the interest in the 24th payment;
(d) the principal in the 24th payment;
(e) the total interest paid.

13. A debt of $18,000 is being repaid by 15 equal semiannual
payments, with the first payment to be made six months from
now. Interest is at the rate of 7% compounded semiannually.
However, after two years, the interest rate increases to 8%
compounded semiannually. If the debt must be paid off on the
original date agreed upon, find the new annual payment. Give
your answer to the nearest dollar.

14. A person borrows $2000 and will pay off the loan by equal
payments at the end of each month for five years. If interest is at
the rate of 16.8% compounded monthly, how much is each
payment?

15. Mortgage A $245,000 mortgage for 25 years for a new
home is obtained at the rate of 9.2% compounded monthly. Find
(a) the monthly payment, (b) the interest in the first payment,
(c) the principal repaid in the first payment, and (d) the finance
charge.

16. Auto Loan An automobile loan of $23,500 is to be
amortized over 60 months at an interest rate of 7.2% compounded
monthly. Find (a) the monthly payment and (b) the finance
charge.

17. Furniture Loan A person purchases furniture for $5000
and agrees to pay off this amount by monthly payments of $120.
If interest is charged at the rate of 12% compounded monthly,
how many full payments will there be?

18. Find the monthly payment of a five-year loan for $9500 if
interest is at 9.24% compounded monthly.

19. Mortgage Bob and Mary Rodgers want to purchase a new
house and feel that they can afford a mortgage payment of $600 a
month. They are able to obtain a 30-year 7.6% mortgage
(compounded monthly), but must put down 25% of the cost of the
house. Assuming that they have enough savings for the down
payment, how expensive a house can they afford? Give your
answer to the nearest dollar.

20. Mortgage Suppose you have the choice of taking out a
$240,000 mortgage at 6% compounded monthly for either
15 years or 25 years. How much savings is there in the finance
charge if you were to choose the 15-year mortgage?
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21. On a $45,000 four-year loan, how much less is the monthly
payment if the loan were at the rate of 8.4% compounded monthly
rather than at 9.6% compounded monthly?

22. Home Loan The federal government has a program to aid
low-income homeowners in urban areas. This program allows
certain qualified homeowners to obtain low-interest home
improvement loans. Each loan is processed through a commercial
bank. The bank makes home improvement loans at an annual rate
of 9% compounded monthly. However, the government
subsidizes the bank so that the loan to the homeowner is at the

annual rate of 3% compounded monthly. If the monthly payment
at the 3% rate is x dollars (x dollars is the homeowner’s monthly
payment) and the monthly payment at the 9% rate is y dollars
(y dollars is the monthly payment the bank must receive), then the
government makes up the difference y� x to the bank each month.
The government does not want to bother with monthly payments.
Instead, at the beginning of the loan, the government pays the
present value of all such monthly differences, at an annual rate of
9% compounded monthly. If a qualified homeowner takes out a
loan for $10,000 for four years, determine the government’s
payment to the bank at the beginning of the loan.

Objective 5.6 Perpetuities
To introduce the notion of perpetuity
and simple limits of sequences. Perpetuities

In this section we consider briefly the possibility of an infinite sequence of payments.
As in Section 5.4, we will measure time in payment periods starting now—that is, at
time 0—and consider payments, each of amount R, at times 1; 2; : : : ; k; : : :. The last
sequence of dots is to indicate that the payments are to continue indefinitely. We can
visualize this on a timeline as in Figure 5.11. We call such an infinite sequence of
payments a perpetuity.

0 1 2 3

R

k

RRR Payments

Time

FIGURE 5.11 Perpetuity.

Since there is no last payment, it makes no sense to consider the future value of
such an infinite sequence of payments. However, if the interest rate per payment period
is r, we do know that the present value of the payment made at time k is R.1C r/�k. If
wewant to ascribe a present value to the entire perpetuity, we are led by this observation
and Figure 5.12 to define it to be

A D R.1C r/�1
C R.1C r/�2

C R.1C r/�3
C � � � C R.1C r/�k

C � � �

0 1 2 3

R(1 + r)-3

R(1 + r)-k

RRR

R(1 + r)-2

R(1 + r)-1

k

R Payments

Time

FIGURE 5.12 Present value of perpetuity.

With the benefit of Section 1.6, we recognize this sum as that of an infinite geometric
sequence with first term R.1 C r/�1 and common ratio .1 C r/�1. Equation (17) of
Section 1.6 gives

A D
1X
kD1

R.1C r/�k
D

R.1C r/�1

1 � .1C r/�1
D

R
r
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provided that j.1 C r/�1j< 1. If the rate r is positive, then 1 < 1 C r so that 0 <

.1C r/�1 D
1

1C r
< 1 and the proviso is satisfied.

In practical terms, this means that if an amount R=r is invested at time 0 in an
account that bears interest at the rate of r per payment period, then R can be withdrawn
at times 1; 2; : : : ; k; : : : indefinitely. It is easy to see that this makes sense because if
R=r is invested at time 0, then at time 1 it is worth .R=r/.1C r/ D R=rC R. If, at time
1, R is withdrawn, then R=rCR�R D R=r remains and this process can be continued
indefinitely so that at any time k, the amount after the kth withdrawal is still R=r. In
other words, thewithdrawalsR are such that they consume only the interest earned since
the last withdrawal and leave the principal intact. Well-managed endowment funds are
run this way. The amount withdrawn each year to fund a scholarship, say, should not
exceed the amount earned in interest during the previous year.

EXAMPLE 1 Present Value of a Perpetuity

Dalhousie University would like to establish a scholarship worth $15,000 to be awarded
to the first year Business student who attains the highest grade in MATH 1115, Com-
merceMathematics. The award is to bemade annually, and the Vice President, Finance,
believes that, for the foreseeable future, the university will be able to earn at least 2% a
year on investments.What principal is needed to ensure the viability of the scholarship?

Solution: The university needs to fund a perpetuity with payments R D 15;000 and
annual interest rate r D 0:02. It follows that $15;000=0:02 D $750;000 is needed.

Now Work Problem 5 G

Limits
An infinite sum, such as

P1

kD1 R.1C r/�k, which has arisen here, derives its meaning
from the associated finite partial sums. Here the nth partial sum is

Pn
kD1 R.1 C r/�k,

which we recognize as Ranr, the present value of the annuity consisting of n equal
payments of R at an interest rate of r per payment period.

Let .ck/1kD1 be an infinite sequence as in Section 1.6. We say that the sequence has
limit L and write

lim
k!1

ck D L

if we can make the values ck as close as we like to L by taking k sufficiently large. The
equation can be read as “the limit of ck as k goes to infinity is equal to L”. A sequence
can fail to have a limit, but it can have at most one limit, so we speak of “the limit”.

We have already met an important example of this concept. In Section 4.1 we
defined the number e as the smallest real number that is greater than all of the real

numbers en D
�
nC 1
n

�n

, for n any positive integer. In fact, we have also

lim
n!1

en D e

A general infinite sequence .ck/1kD1 determines a new sequence .sn/1nD1, where

sn D
nX

kD1

ck. We define

1X
kD1

ck D lim
n!1

sn D lim
n!1

nX
kD1

ck

This agrees with what we said about the sum of an infinite geometric sequence in
Section 1.6, and it is important to realize that the sums that arise for the present values
of annuities and perpetuities are but special cases of sums of geometric sequences.
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However, we wish to make a simple observation by combining some of the equal-
ities of this section:

R
r
D

1X
kD1

R.1C r/�k
D lim

n!1

nX
kD1

R.1C r/�k
D lim

n!1
Ranr

and, taking R D 1, we get

lim
n!1

anr D
1
r

We can verify this observation directly. In the defining equation

anr D
1 � .1C r/�n

r

only .1C r/�n D 1=.1C r/n depends on n. Because 1C r > 1, we can make the values
.1Cr/n as large as we like by taking n sufficiently large. It follows that we can make the
values 1=.1C r/n as close as we like to 0 by taking n sufficiently large. It follows that
in the definition of anr, we can make the numerator as close as we like to 1 by taking n
sufficiently large and hence that we can make the whole fraction as close as we like to
1=r by taking n sufficiently large. It would be reasonable to write

a1r D lim
n!1

anr D
1
r

EXAMPLE 2 Limit of a Sequence

Find lim
n!1

2n2 C 1
3n2 � 5

.

Solution: We first rewrite the fraction 2n2 C 1=3n2 � 5.

lim
n!1

2n2 C 1
3n2 � 5

D lim
n!1

2n2 C 1
n2

3n2 � 5
n2

D lim
n!1

2n2

n2
C

1
n2

3n2

n2
�

5
n2

D lim
n!1

2C
1
n2

3 �
5
n2

So far we have only carried along the “limit” notation. We now observe that because
we can make the values n2 as large as we like by taking n sufficiently large, we can
make 1=n2 and 5=n2 as close as we like to 0 by taking n sufficiently large. It follows
that we can make the numerator of the main fraction as close as we like to 2 and the
denominator of the main fraction as close as we like to 3 by taking n sufficiently large.
In symbols,

lim
n!1

2n2 C 1
3n2 � 5

D lim
n!1

2C
1
n2

3 �
5
n2

D
2
3

Now Work Problem 7 G
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PROBLEMS 5.6
In Problems 1–4, find the present value of the given perpetuity.

1. $60 per month at the rate of 1.5% monthly

2. $5000 per month at the rate of 0.5% monthly

3. $90,000 per year at the rate of 5% yearly

4. $4000 per year at the rate of 10% yearly

5. Funding a Prize The Commerce Society would like to
endow an annual prize of $120 to the student who is deemed to
have exhibited the most class spirit. The Society is confident that
it can invest indefinitely at an interest rate of at least 2.5% a year.
How much does the Society need to endow its prize?

6. Retirement Planning Starting a year from now and making
10 yearly payments, Pierre would like to put into a retirement
account enough money so that, starting 11 years from now, he can
withdraw $30,000 per year until he dies. Pierre is confident that he

can earn 8% per year on his money for the next 10 years, but he is
only assuming that he will be able to get 5% per year after that.
(a) How much does Pierre need to pay each year for the first 10
years in order to make the planned withdrawals? (b) Pierre’s will
states that, upon his death, any money left in his retirement
account is to be donated to the Princeton Mathematics
Department. If he dies immediately after receiving his 17th
payment, how much will the Princeton Mathematics Department
inherit?

In Problems 7–10, find the limit.

7. lim
n!1

n2 C 3n � 6
n2 C 4

8. lim
n!1

nC 7
5n � 3

9. lim
k!1

�
kC 1
k

�2k

10. lim
n!1

�
n

nC 1

�n

Chapter 5 Review
Important Terms and Symbols Examples
Section 5.1 Compound Interest

effective rate Ex. 4, p. 211

Section 5.2 Present Value
present value Ex. 1, p. 214
future value equation of value net present value Ex. 3, p. 216

Section 5.3 Interest Compounded Continuously
compounded continuously Ex. 1, p. 219

Section 5.4 Annuities
annuity ordinary annuity annuity due Ex. 1, p. 224
present value of annuity, anr amount of annuity, snr Ex. 2, p. 224

Section 5.5 Amortization of Loans
amortizing amortization schedules finance charge Ex. 1, p. 231

Section 5.6 Perpetuities
perpetuity Ex. 1, p. 235
limit of a sequence Ex. 2, p. 236

Summary
The concept of compound interest lies at the heart of any dis-
cussion dealing with the time value of money—that is, the
present value of money due in the future or the future value of
money currently invested. Under compound interest, interest
is converted into principal and earns interest itself. The basic
compound-interest formulas are

S D P.1C r/n future value

P D S.1C r/�n present value

where S D compound amount (future value)

P D principal (present value)

r D periodic rate

n D number of interest periods

Interest rates are usually quoted as an annual rate called
the nominal rate. The periodic rate is obtained by divid-
ing the nominal rate by the number of interest periods each
year. The effective rate is the annual simple-interest rate,
which is equivalent to the nominal rate of r compounded n
times a year and is given by

re D
�
1C

r
n

�n
� 1 effective rate

Effective rates are used to compare different interest rates.
If interest is compounded continuously, then

S D Pert future value

P D Se�rt present value
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where S D compound amount .future value/

P D principal (present value)

r D annual rate

t D number of years

and the effective rate is given by

re D er � 1 effective rate

An annuity is a sequence of payments made at fixed peri-
ods of time over some interval. The mathematical basis for
formulas dealing with annuities is the notion of the sum of a
geometric sequence—that is,

s D
n�1X
iD0

ari D
a.1 � rn/
1 � r

sum of geometric sequence

where s D sum

a D first term

r D common ratio

n D number of terms

An ordinary annuity is an annuity in which each payment
is made at the end of a payment period, whereas an annu-
ity due is an annuity in which each payment is made at the
beginning of a payment period. The basic formulas dealing
with ordinary annuities are

A D R �
1 � .1C r/�n

r
D Ranr present value

S D R �
.1C r/n � 1

r
D Rsnr future value

where A D present value of annuity

S D amount .future value/ of annuity

R D amount of each payment

n D number of payment periods

r D periodic rate

For an annuity due, the corresponding formulas are

A D R.1C an�1r/ present value

S D R.snC1r � 1/ future value

A loan, such as a mortgage, is amortized when part of
each installment payment is used to pay interest and the

remaining part is used to reduce the principal. A complete
analysis of each payment is given in an amortization sched-
ule. The following formulas deal with amortizing a loan of
A dollars, at the periodic rate of r, by n equal payments of
R dollars each and such that a payment is made at the end
of each period:

Periodic payment:

R D
A
anr
D A �

r
1 � .1C r/�n

Principal outstanding at beginning of kth period:

Ran�kC1r D R �
1 � .1C r/�nCk�1

r

Interest in kth payment:

Rran�kC1r

Principal contained in kth payment:

R.1 � ran�kC1r/

Total interest paid:

R.n � anr/ D nR � A

A perpetuity is an infinite sequence of payments made
at fixed periods of time. The mathematical basis for the for-
mula dealing with a perpetuity is the notion of the sum of an
infinite geometric sequence—that is,

s D
1X
iD0

ari D
a

1 � r
sum of infinite geometric sequence

where s D sum

a D first term

r D common ratio with jrj < 1

The basic formula dealing with perpetuities is

A D
R
r

present value

where A D present value of perpetuity

R D amount of each payment

r D periodic rate

An infinite sum is defined as the limit of the sequence of
partial sums.



Haeussler-50501 M06_HAEU1107_14_SE_C05 October 14, 2017 11:35

Chapter 5 Review 239

Review Problems
1. Find the number of interest periods that it takes for a principal
to double when the interest rate is r per period.

2. Find the effective rate that corresponds to a nominal rate of 5%
compounded monthly.

3. An investor has a choice of investing a sum of money at either
8.5% compounded annually or 8.2% compounded semiannually.
Which is the better choice?

4. Cash Flows Find the net present value of the following cash
flows, which can be purchased by an initial investment of $8,000:

Year Cash Flow

2 $3400

4 $3500

5 $3600

Assume that interest is at 5% compounded semiannually.

5. A debt of $1500 due in five years and $2000 due in seven
years is to be repaid by a payment of $2000 now and a second
payment at the end of three years. How much should the second
payment be if interest is at 3% compounded annually?

6. Find the present value of an annuity of $250 at the end of each
month for four years if interest is at 6% compounded monthly.

7. For an annuity of $200 at the end of every six months for
6 12 years, find (a) the present value and (b) the future value at an
interest rate of 8% compounded semiannually.

8. Find the amount of an annuity due that consists of 13 yearly
payments of $150, provided that the interest rate is 4%
compounded annually.

9. Suppose $500 is initially placed in a savings account and $500
is deposited at the end of every month for the next year. If interest
is at 6% compounded monthly, how much is in the account at the
end of the year?

10. A savings account pays interest at the rate of 2%
compounded semiannually. What amount must be deposited now
so that $350 can be withdrawn at the end of every six months for
the next 15 years?

11. Sinking Fund A company borrows $5000 on which it will
pay interest at the end of each year at the annual rate of 11%. In
addition, a sinking fund is set up so that the $5000 can be repaid
at the end of five years. Equal payments are placed in the fund at
the end of each year, and the fund earns interest at the effective
rate of 6%. Find the annual payment in the sinking fund.

12. Car Loan A debtor is to amortize a $7000 car loan by
making equal payments at the end of each month for 36 months. If
interest is at 4% compounded monthly, find (a) the amount of
each payment and (b) the finance charge.

13. A person has debts of $500 due in three years with interest at
5% compounded annually and $500 due in four years with interest
at 6% compounded semiannually. The debtor wants to pay off
these debts by making two payments: the first payment now, and
the second, which is double the first payment, at the end of the
third year. If money is worth 7% compounded annually, how
much is the first payment?

14. Construct an amortization schedule for a credit card bill of
$5000 repaid by three monthly payments with interest at 24%
compounded monthly.

15. Construct an amortization schedule for a loan of $15,000
repaid by five monthly payments with interest at 9% compounded
monthly.

16. Find the present value of an ordinary annuity of $460 every
month for nine years at the rate of 6% compounded monthly.

17. Auto Loan Determine the finance charge for a 48-month
auto loan of $11,000 with monthly payments at the rate of 5.5%
compounded monthly.
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6 Matrix Algebra

6.1 Matrices

6.2 Matrix Addition and
Scalar Multiplication

6.3 Matrix Multiplication

6.4 Solving Systems
by Reducing Matrices

6.5 Solving Systems
by Reducing Matrices
(Continued)

6.6 Inverses

6.7 Leontief's Input--Output
Analysis

Chapter 6 Review

M atrices, the subject of this chapter, are simply arrays of numbers. Matri-
ces and matrix algebra have potential application whenever numerical
information can be meaningfully arranged into rectangular blocks.

One area of application for matrix algebra is computer graphics. An
object in a coordinate system can be represented by a matrix that contains the coordi-
nates of each corner. For example, we might set up a connect-the-dots scheme in which
the lightning bolt shown is represented by the matrix to its right.

0

-2

0

2

-1

0

-3

0

4

4

-2

-1

-5

1

x

x

y

y

(-2, 4)

(-1, -1)

(-3, 1)

(0, 0)

(0, 4)

(2, -2)

(0, -5)

Computer graphics often show objects rotating in space. Computationally, rotation
is effected by matrix multiplication. The lightning bolt is rotated clockwise 52 degrees
about the origin bymatrixmultiplication, involving amatrixwhose entries are functions
t11, t12, t21, and t22 of the rotation angle (with t11 D t22 and t12 D �t21):

(-1.06, 2.98)

(-3.94, -3.08)

(-1.40, 0.17)

(3.15, 2.46)

(1.92, 4.04)

(-0.34, -2.81)

(0, 0)

0
-2

0
2

-1
0

-3

0
4
4

-2
-1
-5

1

t11 (52º)
t21 (52º)

t12 (52º)
t22 (52º)

=

  0     
  1.92
  3.15
-0.34
-1.40
-3.94
-1.06

  0     
  4.04
  2.46
-2.81
  0.17
-3.08
  2.98

y

x

240
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Objective 6.1 Matrices
To introduce the concept of a matrix
and to consider special types of
matrices.

Finding ways to describe many situations in mathematics and economics leads to the
study of rectangular arrays of numbers. Consider, for example, the system of linear
equations 8̂<̂

:
3xC 4yC 3z D 0

2xC y � z D 0

9x � 6yC 2z D 0

If we are organized with our notation, keeping the x’s in the first column, the y’s in
the second column, and so on, then the features that characterize this system are the
numerical coefficients in the equations, together with their relative positions. For this
reason, the system can be described by the rectangular arrays243 4 3

2 1 �1
9 �6 2

35 and

2400
0

35
one for each side of the equations, each being called a matrix (plural: matrices, pro-
nounced may0-tri-sees). We consider such rectangular arrays to be objects in them-
selves, and our custom, as just shown, will be to enclose them by brackets. ParenthesesVertical bars, j j, around a rectangular

array do not mean the same thing as
brackets or parentheses.

are also commonly used. In symbolically representing matrices, we use capital letters
such as A, B, C, and so on.

Table 6.1

Product

X Y Z

Labor 10 12 16

Material 5 9 7

In economics it is often convenient to use matrices in formulating problems and
displaying data. For example, a manufacturer who produces products X, Y, and Z could
represent the units of labor and material involved in one week’s production of these
items as in Table 6.1. More simply, the data can be represented by the matrix

A D
�
10 12 16
5 9 7

�
The horizontal rows of amatrix are numbered consecutively from top to bottom, and the
vertical columns are numbered from left to right. For the foregoing matrix A, we have

column 1 column 2 column 3

row 1
row 2

"
10 12 16

5 9 7

#
D A

Since A has two rows and three columns, we say that A has size 2 � 3 (read “2 by 3”)
or that A is 2 � 3, where the number of rows is specified first. Similarly, the matrices

B D

24 1 6 �2
5 1 �4
�3 5 0

35 and C D

2664
1 2
�3 4
5 6
7 �8

3775
have sizes 3� 3 and 4� 2, respectively.

The numbers in a matrix are called its entries. To denote the entries in a matrix
A of size 2� 3, say, we use the name of the matrix, with double subscripts to indicate
position, consistent with the conventions above:�

A11 A12 A13
A21 A22 A23

�
For the entry A12 (read “A sub one-two” or just “A one-two”), the first subscript, 1,
specifies the row and the second subscript, 2, the column in which the entry appears.

The row subscript appears to the left of
the column subscript. In general, Aij and
Aji are different.

Similarly, the entry A23 (read “A two-three”) is the entry in the second row and the
third column. Generalizing, we say that the symbol Aij denotes the entry in the ith row
and jth column. In fact, a matrix A is a function of two variables with A.i; j/ D Aij.



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

242 Chapter 6 Matrix Algebra

If A is m � n, write Nm for the set f1; 2; : : :mg. Then, the domain of A is Nm � Nn, the set
of all ordered pairs .i; j/ with i in Nm and j in Nn, while the range is a subset of the set of
real numbers, .�1;1/.

Our concern in this chapter is the manipulation and application of various types of
matrices. For completeness, we now give a formal definition of a matrix.

Definition
A rectangular array of numbers A consisting of m horizontal rows and n vertical
columns, 26666664

A11 A12 � � � A1n
A21 A22 � � � A2n
� � � � � �

� � � � � �

� � � � � �

Am1 Am2 � � � Amn

37777775
is called anm�nmatrix andm�n is the size of A. For the entry Aij, the row subscript
is i and the column subscript is j.

The number of entries in an m � n matrix is mn. For brevity, an m � n matrix can
be denoted by the symbol ŒAij�m�n or, more simply, ŒAij�, when the size is understood
from the context.

The matrix ŒAij� has Aij as its general
entry.

A matrix that has exactly one row, such as the 1 � 4 matrix

A D Œ1 7 12 3�

is called a row vector. A matrix consisting of a single column, such as the 5�1 matrix266664
1
�2
15
9
16

377775
is called a column vector. Observe that a matrix is 1 � 1 if and only if it is both a row
vector and a column vector. It is safe to treat 1� 1 matrices as mere numbers. In other
words, we can write Œ7� D 7, and, more generally, Œa� D a, for any real number a.

APPLY IT I
1. Amanufacturer who uses rawmate-
rials A and B is interested in tracking the
costs of these materials from three dif-
ferent sources. What is the size of the
matrix she would use?

EXAMPLE 1 Size of a Matrix

a. The matrix Œ1 2 0� has size 1 � 3.

b. The matrix

241 �6
5 1
9 4

35 has size 3 � 2.

c. The matrix [7] has size 1 � 1.

d. The matrix

241 3 7 �2 4
9 11 5 6 8
6 �2 �1 1 1

35 has size 3 � 5 and .3/.5/ D 15 entries.

Now Work Problem 1a G
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APPLY IT I
2. An analysis of a workplace uses a
3 � 5 matrix to describe the time spent
on each of three phases of five differ-
ent projects. Project 1 requires 1 hour
for each phase, project 2 requires twice
as much time as project 1, project 3
requires twice as much time as project
2; : : : ; and so on. Construct this time-
analysis matrix.

EXAMPLE 2 Constructing Matrices
a. Construct a three-entry column matrix A such that A21 D 6 and Ai1 D 0 otherwise.

Solution: Since A11 D A31 D 0, the matrix is

A D

2406
0

35
b. If ŒAij� is 3 � 4 and Aij D iC j, find A.

Solution: Here i D 1; 2; 3 and j D 1; 2; 3; 4, and A has .3/.4/D 12 entries. Since
Aij D iC j, the entry in row i and column j is obtained by adding the numbers i and j.
Hence, A11 D 1C 1 D 2, A12 D 1C 2 D 3, A13 D 1C 3 D 4, and so on. Thus,

A D

241C 1 1C 2 1C 3 1C 4
2C 1 2C 2 2C 3 2C 4
3C 1 3C 2 3C 3 3C 4

35 D 242 3 4 5
3 4 5 6
4 5 6 7

35
c. Construct the 3 � 3 matrix I, given that I11 D I22 D I33 D 1 and Iij D 0 otherwise.

Solution: The matrix is given by

I D

241 0 0
0 1 0
0 0 1

35
Now Work Problem 11 G

Equality of Matrices
We now define what is meant by saying that two matrices are equal.

Definition
Matrices A and B are equal if and only if they have the same size and Aij D Bij for
each i and j (that is, corresponding entries are equal).

Thus, "
1C 1 2

2

2 � 3 0

#
D

�
2 1
6 0

�
but

Œ1 1� ¤
�
1
1

�
and Œ1 1� ¤ Œ1 1 1� different sizes

A matrix equation can define a system of equations. For example, suppose that�
x yC 1
2z 5w

�
D

�
2 7
4 2

�
By equating corresponding entries, we must have8̂̂<̂

:̂
x D 2

yC 1 D 7
2z D 4
5w D 2

Solving gives x D 2; y D 6; z D 2, and w D 2
5 .



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

244 Chapter 6 Matrix Algebra

Transpose of a Matrix
If A is a matrix, the matrix formed from A by interchanging its rows with its columns
is called the transpose of A.

Definition
The transpose of an m� n matrix A, denoted AT, is the n�m matrix whose ith row
is the ith column of A.

EXAMPLE 3 Transpose of a Matrix

If A D
�
1 2 3
4 5 6

�
, find AT.

Solution: Matrix A is 2 � 3, so AT is 3 � 2. Column 1 of A becomes row 1 of AT,
column 2 becomes row 2, and column 3 becomes row 3. Thus,

AT D

241 4
2 5
3 6

35
Now Work Problem 19 G

Observe that the columns of AT are the rows of A. Also, if we take the transpose of
our answer, the original matrix A is obtained. That is, the transpose operation has the
property that

.AT/T D A

Special Matrices
Certain types of matrices play important roles in matrix theory. We now consider some
of these special types.

An m � n matrix whose entries are all 0 is called the m � n zero matrix and is
denoted by 0m�n or, more simply, by 0 if its size is understood. Thus, the 2 � 3 zero
matrix is

0 D
�
0 0 0
0 0 0

�
and, in general, we have

0 D

26666664
0 0 � � � 0
0 0 � � � 0
� � � � � �

� � � � � �

� � � � � �

0 0 � � � 0

37777775
A matrix having the same number of columns as rows—for example, n rows and

n columns—is called a square matrix of order n. That is, an m � n matrix is square if
and only if m D n. For example, matrices242 7 4

6 2 0
4 6 1

35 and Œ3�

are square with orders 3 and 1, respectively.
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In a square matrix A of order n, the entries A11, A22, A33; : : : ;Ann lie on the diagonal
extending from the upper left corner to the lower right corner of the matrix and are said
to constitute the main diagonal. Thus, in the matrix

1 2 3

4 5 6

7 8 9

the main diagonal (see the shaded region) consists of A11 D 1, A22 D 5, and A33 D 9.
A square matrix A is called a diagonal matrix if all the entries that are off the main

diagonal are zero—that is, if Aij D 0 for i ¤ j. Examples of diagonal matrices are�
1 0
0 1

�
and

243 0 0
0 6 0
0 0 9

35
A square matrix A is said to be an upper triangular matrix if all entries below

the main diagonal are zero—that is, if Aij D 0 for i > j. Similarly, a matrix A is said to
be a lower triangular matrix if all entries above the main diagonal are zero—that is,
if Aij D 0 for i < j. When a matrix is either upper triangular or lower triangular, it is
called a triangular matrix. Thus, the matrices

5 1 1

0 -3 7

0 0 4

and

7 0 0 0

3 2 0 0

6 5 -4 0

1 6 0 1

are upper and lower triangular matrices, respectively, and are therefore triangular
matrices.

It follows that a matrix is diagonal if and
only if it is both upper triangular and
lower triangular.

PROBLEMS 6.1
1. Let

A D

"
1 �6 2
�4 2 1

#
B D

241 2 3
4 5 6
7 8 9

35 C D

241 1
2 2
3 3

35

D D

"
1 0
2 3

#
E D

2664
1 2 3 4
0 1 6 0
0 0 2 0
0 0 6 1

3775 F D
h
6 2

i

G D

2456
1

35 H D

241 6 2
0 0 0
0 0 0

35 J D Œ4�

(a) State the size of each matrix.
(b) Which matrices are square?
(c) Which matrices are upper triangular? lower triangular?
(d) Which are row vectors?
(e) Which are column vectors?

In Problems 2–9, let

A D ŒAij� D

2664
7 �2 14 6
6 2 3 �2
5 4 1 0
8 0 2 0

3775
2. What is the order of A?

Find the following entries.

3. A21 4. A42
5. A24 6. A34
7. A44 8. A55

9. What are the third row entries?

10. Write the lower triangular matrix A, of order 3, for which all
entries not required to be 0 satisfy Aij D i � j.

11. (a) Construct the matrix A D ŒAij� if A is 2 � 3 and
Aij D �iC 2j.
(b) Construct the 2 � 4 matrix C D Œ.iC j/2�.

12. (a) Construct the matrix B D ŒBij� if B is 2 � 2 and
Bij D .�1/i�j.i2 � j2/.
(b) Construct the 2 � 3 matrix D D Œ.�1/i. j3/�.

13. If A D ŒAij� is 12 � 10, how many entries does A have? If
Aij D 1 for i D j and Aij D 0 for i ¤ j, find A33, A52, A10;10, and
A12;10.

14. List the main diagonal of

(a)

2664
2 4 �2 9
7 5 0 �1
�4 6 �3 1
2 5 7 1

3775 (b)

264x2 1 2y
9
p
y 3

y z 1

375
15. Write the zero matrix (a) of order 3 and (b) of size 2 � 4.

16. If A is a 7 � 9 matrix, what is the size of AT?
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In Problems 17–20, find AT.

17. A D

"
6 �3
2 4

#
18. A D

h
2 4 6 8

i
19. A D

242 5 �3 0
0 3 6 2
7 8 �2 1

35 20. A D

24�2 3 0
3 4 5
0 5 �6

35
21. Let

A D

"
7 0
0 6

#
B D

241 0 0
0 2 0
0 10 �3

35
C D

240 0 0
0 0 0
0 0 0

35 D D

242 0 �1
0 4 0
0 0 6

35
(a) Which are diagonal matrices?
(b) Which are triangular matrices?

22. A matrix is symmetric if AT D A. Is the matrix of Problem 19
symmetric?

23. If

A D

"
1 0 �1
7 0 9

#
verify the general property that .AT/T D A by finding AT and then
.AT/T.

In Problems 24–27, solve the matrix equation.

24.

"
3x 2y � 1
z 5w

#
D

"
9 6
7 15

#
25.

24 x 3
5 7
z 4

35 D 24 2 3
5 y
�5 4

35
26.

24 4 2 1
3x y 3z
0 w 7

35 D 244 2 1
6 7 9
0 9 8

35
27.

"
2x 7
7 2y

#
D

"
y 7
7 y

#
28. Inventory A grocer sold 125 cans of tomato soup, 275
cans of beans, and 400 cans of tuna. Write a row vector that gives
the number of each item sold. If the items sell for $0.95, $1.03,
and $1.25 each, respectively, write this information as a column
vector.

29. Sales Analysis The Widget Company has its monthly sales
reports given by means of matrices whose rows, in order,
represent the number of regular, deluxe, and extreme models sold,
and the columns, in order, give the number of red, white, blue, and
purple units sold. The matrices for January and February are

J D

241 4 5 0
3 5 2 7
4 1 3 2

35 F D

242 5 7 7
2 4 4 6
0 0 1 2

35

respectively. (a) How many white extreme models were sold in
January? (b) How many blue deluxe models were sold in
February? (c) In which month were more purple regular models
sold? (d)Which models and which colors sold the same number
of units in both months? (e) In which month were more deluxe
models sold? (f) In which month were more red widgets sold?
(g) How many widgets were sold in January?

30. Input–Output Matrix Input–output matrices, which were
developed by W. W. Leontief, indicate the interrelationships that
exist among the various sectors of an economy during some
period of time. A hypothetical example for a simplified economy
is given by matrix M at the end of this problem. The consuming
sectors are the same as the producing sectors and can be thought
of as manufacturers, government, steel industry, agriculture,
households, and so on. Each row shows how the output of a given
sector is consumed by the four sectors. For example, of the total
output of industry A, 50 went to industry A itself, 70 to B, 200 to
C, and 360 to all others. The sum of the entries in row 1—namely,
680—gives the total output of A for a given period. Each column
gives the output of each sector that is consumed by a given sector.
For example, in producing 680 units, industry A consumed
50 units of A, 90 of B, 120 of C, and 420 from all other producers.
For each column, find the sum of the entries. Do the same for each
row. What do we observe in comparing these totals? Suppose
sector A increases its output by 10%; namely, by 68 units.
Assuming that this results in a uniform 10% increase of all its
inputs, by how many units will sector B have to increase its
output? Answer the same question for C and for “all other
producers”.

CONSUMERS‚ …„ ƒ
Industry Industry Industry All Other

PRODUCERS A B C Consumers

M D

Industry A
Industry B
Industry C
All Other

2664
50 70 200 360
90 30 270 320
120 240 100 1050
420 370 940 4960

3775
Producers

31. Find all the values of x for which"
x2 C 2000x

p
x2

x2 ln.ex/

#
D

"
2001 �x

2001 � 2000x x

#
In Problems 32 and 33, find AT.

32. A D

"
3 �4 5
�2 1 6

#
33. A D

243 1 4 2
1 7 3 6
1 4 1 2

35

Objective 6.2 Matrix Addition and Scalar Multiplication
To define matrix addition and scalar
multiplication and to consider
properties related to these operations.

Matrix Addition
Consider a snowmobile dealer who sells two models, Deluxe and Super. Each is avail-
able in one of two colors, red and blue. Suppose that the sales for January and February
are represented by the matrices

Deluxe Super Deluxe Super

J D
red
blue

�
1 2
3 5

�
F D

red
blue

�
3 1
4 2

�
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respectively. Each row of J and F gives the number of each model sold for a given
color. Each column gives the number of each color sold for a given model. A matrix
representing total sales for each model and color over the two months can be obtained
by adding the corresponding entries in J and F:�

4 3
7 7

�
This situation provides some motivation for introducing the operation of matrix addi-
tion for two matrices of the same size.

Definition
If A and B are both m� nmatrices, then the sum ACB is the m� nmatrix obtained
by adding corresponding entries of A and B; so that .ACB/ij D AijCBij. If the size
of A is different from the size of B, then AC B is not defined.

For example, let

A D
�
3 0 �2
2 �1 4

�
and B D

�
5 �3 6
1 2 �5

�
Since A and B are the same size (2 � 3), their sum is defined. We have

AC B D
�
3C 5 0C .�3/ �2C 6
2C 1 �1C 2 4C .�5/

�
D

�
8 �3 4
3 1 �1

�

EXAMPLE 1 Matrix Addition

a.

241 2
3 4
5 6

35C 24 7 �2
�6 4
3 0

35 D 241C 7 2 � 2
3 � 6 4C 4
5C 3 6C 0

35 D 24 8 0
�3 8
8 6

35
b.
�
1 2
3 4

�
C

�
2
1

�
is not defined, since the matrices are not the same size.

Now Work Problem 7 G

APPLY IT I
3. An office furniture company manu-
factures desks and tables at two plants,
A and B. Matrix J represents the pro-
duction of the two plants in January,
and matrix F represents the production
of the two plants in February. Write a
matrix that represents the total produc-
tion at the two plants for the twomonths,
where

A B

J D
desks
tables

"
120 80
105 130

#

F D
desks
tables

"
110 140
85 125

#

If A, B, C, and O have the same size, then the following properties hold for matrix
addition:

Properties of Matrix Addition
1. AC B D BC A commutative property

2. AC .BC C/ D .AC B/C C associative property

3. AC O D A D OC A identity property

Property 1 states that matrices can be added in any order, and Property 2 allows
matrices to be grouped for the addition operation. Property 3 states that the zero matrix
plays the same role in matrix addition as does the number 0 in the addition of real
numbers. These properties are illustrated in Example 2.

These properties of matrix addition
correspond to properties of addition of
real numbers.

EXAMPLE 2 Properties of Matrix Addition

Let

A D
�

1 2 1
�2 0 1

�
B D

�
0 1 2
1 �3 1

�
C D

�
�2 1 �1
0 �2 1

�
O D

�
0 0 0
0 0 0

�
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a. Show that AC B D BC A.

Solution:

AC B D
�

1 3 3
�1 �3 2

�
BC A D

�
1 3 3
�1 �3 2

�
Thus, AC B D BC A.

b. Show that AC .BC C/ D .AC B/C C.

Solution:

AC .BC C/ D AC
�
�2 2 1
1 �5 2

�
D

�
�1 4 2
�1 �5 3

�
.AC B/C C D

�
1 3 3
�1 �3 2

�
C C D

�
�1 4 2
�1 �5 3

�
c. Show that AC O D A.

Solution:

AC O D
�

1 2 1
�2 0 1

�
C

�
0 0 0
0 0 0

�
D

�
1 2 1
�2 0 1

�
D A

Now Work Problem 1 G

EXAMPLE 3 Demand Vectors for an Economy

In Section 6.7 we will discuss a way of modelling an economy that consists of well-
defined sectors. For example, each sector might correspond to an entire industry, such
as oil, or agriculture, or manufacturing. For a large complex country like Canada, say,
there would be a huge number of such sectors, but we can illustrate the idea here by
confining ourselves to a three-sector economy. Suppose the sectors of our economy
are in fact oil (O), agriculture (A), and manufacturing (M) and that there are four “con-
sumers” 1, 2, 3, and 4. (A consumer might be a neighboring country.) The needs, for
each consumer, of each of the three sectors can be represented by 1- by 3-row matrices.
If we agree to list the industries consistently in the order O, A, M, then the needs of
Consumer 1 might be D1 D Œ3 2 5 �meaning that Consumer 1 needs, in suitable units,
3 units of oil, 2 units of agriculture, and 5 units of manufacturing. Such a matrix is
often called a demand vector. For the other consumers we might have

D2 D Œ0 1 6 � D3 D Œ1 5 3 � D4 D Œ2 1 4 �

If we write DC for total consumer demand, we have DC D D1CD2CD3CD4, so that

DC D Œ3 2 5 �C Œ0 1 6 �C Œ1 5 3 �C Œ2 1 4 � D Œ6 9 18 �

Now Work Problem 41 G

Scalar Multiplication
Returning to the snowmobile dealer, recall that February sales were given by the matrix

F D
�
3 1
4 2

�
If, in March, the dealer doubles February’s sales of each model and color of snowmo-
bile, the sales matrix for March could be obtained by multiplying each entry in F by 2,
yielding

M D
�
2.3/ 2.1/
2.4/ 2.2/

�
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It seems reasonable to write this operation as

M D 2F D 2
�
3 1
4 2

�
D

�
2 � 3 2 � 1
2 � 4 2 � 2

�
D

�
6 2
8 4

�
which is thought of as multiplying a matrix by a real number. In the context of matrices,
real numbers are often called scalars. Indeed, we have the following definition.

Definition
If A is anm�nmatrix and k is a real number, then by kAwe denote them�nmatrix
obtained by multiplying each entry in A by k so that .kA/ij D kAij. This operation is
called scalar multiplication, and kA is called a scalar multiple of A.

For example,

�3
�
1 0 �2
2 �1 4

�
D

�
�3.1/ �3.0/ �3.�2/
�3.2/ �3.�1/ �3.4/

�
D

�
�3 0 6
�6 3 �12

�

EXAMPLE 4 Scalar Multiplication

Let

A D
�
1 2
4 �2

�
B D

�
3 �4
7 1

�
O D

�
0 0
0 0

�
Compute the following.

a. 5A

Solution:

5A D 5
�
1 2
4 �2

�
D

�
5.1/ 5.2/
5.4/ 5.�2/

�
D

�
5 10
20 �10

�
b. �

2
3
B

Solution:

�
2
3
B D

"
�

2
3 .3/ �

2
3 .�4/

�
2
3 .7/ �

2
3 .1/

#
D

"
�2 8

3

�
14
3 �

2
3

#

c.
1
2
AC 3B

Solution:

1
2
AC 3B D

1
2

�
1 2
4 �2

�
C 3

�
3 �4
7 1

�

D

"
1
2 1

2 �1

#
C

�
9 �12
21 3

�
D

"
19
2 �11

23 2

#
d. 0A

Solution:

0A D 0
�
1 2
4 �2

�
D

�
0 0
0 0

�
D 0
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e. k0

Solution:

k0 D k
�
0 0
0 0

�
D

�
0 0
0 0

�
D 0

Now Work Problem 5 G

For A and B of the same size, and for any scalars k and l, we have the following
properties of scalar multiplication:

Properties of Scalar Multiplication
1. k.AC B/ D kAC kB

2. .kC l/A D kAC lA

3. k.lA/ D .kl/A

4. 0A D 0

5. k0 D 0

Properties 4 and 5 were illustrated in Examples 4(d) and (e); the others will be illus-
trated in the problems.

We also have the following properties of the transpose operation, where A and B
are of the same size and k is any scalar:

.AC B/T D AT C BT

.kA/T D kAT

The first property states that the transpose of a sum is the sum of the transposes.

Subtraction of Matrices

If A is any matrix, then the scalar multiple .�1/A is simply written as �A and is
called the negative of A:

�A D .�1/A

Thus, if

A D
�

3 1
�4 5

�
then

�A D .�1/
�

3 1
�4 5

�
D

�
�3 �1
4 �5

�
Note that �A is the matrix obtained by multiplying each i entry of A by �1.

More simply, to find A�B, we can
subtract each entry in B from the
corresponding entry in A.

Subtraction of matrices is defined in terms of matrix addition:

Definition
If A and B are the same size, then, by A � B, we mean AC .�B/.
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EXAMPLE 5 Matrix Subtraction

a.

24 2 6
�4 1
3 2

35 � 246 �2
4 1
0 3

35D 24 2 6
�4 1
3 2

35C .�1/246 �2
4 1
0 3

35
D

24 2 6
�4 1
3 2

35C 24�6 2
�4 �1
0 �3

35
D

24 2 � 6 6C 2
�4 � 4 1 � 1
3C 0 2 � 3

35 D 24�4 8
�8 0
3 �1

35
b. If A D

�
6 0
2 �1

�
and B D

�
3 �3
1 2

�
, then

AT � 2B D
�
6 2
0 �1

�
�

�
6 �6
2 4

�
D

�
0 8
�2 �5

�

Now Work Problem 17 G

APPLY IT I
4. A manufacturer of doors, win-
dows, and cabinets writes her yearly
profit (in thousands of dollars) for
each category in a column vector as

PD

264248319
532

375. Her fixed costs of pro-

duction can be described by the vector

CD

2644030
60

375. She calculates that, with

a new pricing structure that generates
an income that is 80% of her competi-
tor’s income, she can double her profit,
assuming that her fixed costs remain
the same. This calculation can be rep-
resented by

0:8

264x1x2
x3

375 �
2644030
60

375 D 2

264248319
532

375
Solve for x1; x2; and x3; which repre-
sent her competitor’s income from each
category. EXAMPLE 6 Matrix Equation

Solve the equation 2
�
x1
x2

�
�

�
3
4

�
D 5

�
5
�4

�
:

Solution:

Strategy We first write each side of the equation as a single matrix. Then, by
equality of matrices, we equate corresponding entries.

We have

2
�
x1
x2

�
�

�
3
4

�
D 5

�
5
�4

�
�
2x1
2x2

�
�

�
3
4

�
D

�
25
�20

�
�
2x1 � 3
2x2 � 4

�
D

�
25
�20

�
By equality of matrices, we must have 2x1� 3D 25, which gives x1D 14; from
2x2 � 4 D �20, we get x2 D �8.

Now Work Problem 35 G
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PROBLEMS 6.2
In Problems 1–12, perform the indicated operations.

1.

"
7 �3
�2 1

#
C

"
3 4
5 2

#

2.

"
2 �7
�6 4

#
C

"
7 �4
�2 1

#
C

"
2 7
7 2

#

3.

24 2 �3
5 �9
�4 9

35 � 24 5 1
9 0
�2 3

35 4.
1
2

244 �2 6
2 10 �12
0 0 7

35
5. 2Œ 2 �1 3 �C 4Œ�2 0 1� � 0Œ2 3 1�

6. Œ 3 5 1 �C 24 7.

"
1 2
3 4

#
C

"
7
2

#

8.

"
5 3
�2 6

#
C 7

"
0 0
0 0

#
9. �6

"
2 �6 7 1
7 1 6 �2

#

10.

26664
1 �1
2 0
3 �6
4 9

37775 � 3
26664
�6 9
2 6
1 �2
4 5

37775
11.

24 2 7 1
3 0 3
�1 0 5

35C 2

24�1 3 4
1 �2 3
1 3 �5

35
12. 3

241 0 0
0 1 0
0 0 1

35 � 3
0B@
241 2 0
0 �2 1
0 0 1

35 � 24 4 �2 2
�3 21 �9
0 1 0

35
1CA

In Problems 13–24, compute the required matrices if

A D

"
2 1
3 �3

#
B D

"
�6 �5
2 �3

#
C D

"
�2 �1
�3 3

#
0 D

"
0 0
0 0

#

13. �2C 14. �.A � B/

15. 2.0/ 16. AC B � C

17. 3.2A � 3B/ 18. 0.2AC 3B � 5C/

19. 3.A � C/C 6 20. AC .CC B/

21. A � 2BC 3C 22. 3C � 2B

23. 1
3AC 3.2BC 5C/ 24. 1

2A � 5.BC C/

In Problems 25–28, verify the equations for the preceding
matrices A, B, and C.

25. 3.AC B/ D 3AC 3B 26. .3C 4/B D 3BC 4B

27. k1.k2A/ D .k1k2/A

28. k.A � 2BC C/ D kA � 2kBC kC

In Problems 29–34, let

A D

241 2
0 �1
7 0

35 B D

"
1 3
4 �1

#
C D

"
1 0
1 2

#

D D

"
1 2 �1
1 0 2

#

Compute the indicated matrices, if possible.

29. 3AC DT 30. .B � C/T 31. 3BT C 4CT

32. 2BC BT 33. AC DT � B 34. .D � 2AT/T

35. Express the matrix equation

x

"
3
2

#
� y

"
�4
7

#
D 3

"
2
4

#
as a system of linear equations and solve.

36. In the reverse of the manner used in Problem 35, write the
system (

xC 2y D 7

3xC 4y D 14

as a matrix equation.

In Problems 37–40, solve the matrix equations.

37. 3

"
x
y

#
� 3

"
�2
4

#
D 4

"
6
�2

#

38. 5

"
x
3

#
� 6

"
2

�2y

#
D

"
�4x
3y

#
39.

2424
6

35C 2

24 x
y
4z

35 D 24�10�24
14

35
40. x

2420
2

35C 2

24�10
6

35C y

24 0
2
�5

35 D 24 10
6

2xC 12 � 5y

35
41. Production An auto parts company manufactures
distributors, sparkplugs, and magnetos at two plants, I and II.
Matrix X represents the production of the two plants for retailer X,
and matrix Y represents the production of the two plants for
retailer Y. Write a matrix that represents the total production at
the two plants for both retailers, where

X D

I II

DIS
SPG
MAG

24 35 60
850 700
35 50

35 Y D

I II

DIS
SPG
MAG

24 10 45
900 700
15 10

35
42. Sales Let matrix A represent the sales (in thousands of
dollars) of a toy company in 2007 in three cities, and let B
represent the sales in the same cities in 2009, where

A D
Action

Educational

"
400 350 150
450 280 850

#

B D
Action

Educational

"
380 330 220
460 320 750

#
If the company buys a competitor and doubles its 2009 sales in
2010, what is the change in sales between 2003 and 2010?

43. Suppose the prices of products A, B, C, and D are given, in
that order, by the price row vector

P D ŒpA pB pC pD�

If the prices are to be increased by 16%, the vector for the new
prices can be obtained by multiplying P by what scalar?

44. Prove that .A � B/T D AT � BT. (Hint: Use the definition of
subtraction and properties of the transpose operation.)
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In Problems 45–47, compute the given matrices if

A D

"
3 �4 5
�2 1 6

#
B D

"
1 4 2
4 1 2

#
C D

"
�1 1 3
2 6 �6

# 45. 4AC 3B

46. 2.3AC 4B/C 5C

47. 2.3C � A/C 2B

Objective 6.3 Matrix Multiplication
To define multiplication of matrices and
to consider associated properties. To
express a system as a single matrix
equation by using matrix multiplication.

Besides the operations of matrix addition and scalar multiplication, the product AB
of matrices A and B can be defined under a certain condition, namely, that the number
of columns of A is equal to the number of rows of B. Although the following definition of
matrix multiplicationmight not appear to be a natural one, a thorough study of matrices
shows that the definition makes sense and is extremely practical for applications.

Definition
Let A be an m� nmatrix and B be an n� pmatrix. Then the product AB is the m� p
matrix with entry .AB/ik given by

.AB/ik D
nX

jD1

AijBjk D Ai1B1k C Ai2B2k C � � � C Ainbnk

In words, .AB/ik is obtained by summing the products formed by multiplying, in
order, each entry in row i of A by the corresponding entry in column k of B. If the
number of columns of A is not equal to the number of rows of B, then the product
AB is not defined.

Observe that the definition applies when A is a row vector with n entries and B is
a column vector with n entries. In this case, A is 1� n, B is n� 1, and AB is 1� 1. (We
noted in Section 6.1 that a 1 � 1 matrix is just a number.) In fact,

if A D
h
A1 A2 � � � An

i
and B D

26664
B1
B2
:::
Bn

37775
then AB D

nX
jD1

AjBj D A1B1 C A2B2 C � � � C AnBn

Returning to our general definition, it now follows that the number .AB/ik is the product
of the ith row of A and the kth column of B. This is very helpful when real computations
are performed.

Three points must be completely understood concerning this definition ofAB. First,
the number of columns of A must be equal to the number of rows of B. Second, the
product AB has as many rows as A and as many columns as B.

size of product

A

m * n n * p m * p

B C

must be

the same

=

Third, the definition refers to the product AB, in that order: A is the left factor and B is
the right factor. For AB, we say that B is premultiplied by A or A is postmultiplied by B.
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To apply the definition, let us find the product

AB D
�
2 1 �6
1 �3 2

�24 1 0 �3
0 4 2
�2 1 1

35
Matrix A has size 2 � 3, .m � n/ and matrix B has size 3 � 3, .n � p/. The number of
columns of A is equal to the number of rows of B, .n D 3/, so the product AB is defined
and will be a 2 � 3, .m � p/ matrix; that is,

AB D
�
.AB/11 .AB/12 .AB/13
.AB/21 .AB/22 .AB/23

�
The entry .AB/11 is obtained by summing the products of each entry in row 1 of A by
the corresponding entry in column 1 of B. Thus,

c11 = (2)(1)  + (1)(0) + (-6)(-2) = 14. 

row 1 entries of A 

column 1 entries of B

At this stage, we have

AB D
�
2 1 �6
1 �3 2

�24 1 0 �3
0 4 2
�2 1 1

35 D � 14 .AB/12 .AB/13
.AB/21 .AB/22 .AB/23

�
Here we see that .AB/11 D 14 is the product of the first row of A and the first column
of B. Similarly, for .AB/12, we use the entries in row 1 of A and those in column 2 of B:

c12 = (2)(0)  + (1)(4) + (-6)(1) = -2. 

row 1 entries of A 

column 1 entries of B

We now have

AB D
�
2 1 �6
1 �3 2

�24 1 0 �3
0 4 2
�2 1 1

35 D � 14 �2 .AB/13
.AB/21 .AB/22 .AB/23

�
For the remaining entries of AB, we obtain

.AB/13 D .2/.�3/C .1/.2/C .�6/.1/ D �10

.AB/21 D .1/.1/C .�3/.0/C .2/.�2/ D �3

.AB/22 D .1/.0/C .�3/.4/C .2/.1/ D �10

.AB/23 D .1/.�3/C .�3/.2/C .2/.1/ D �7

Thus,

AB D
�
2 1 �6
1 �3 2

�24 1 0 �3
0 4 2
�2 1 1

35 D � 14 �2 �10
�3 �10 �7

�
Note that if we reverse the order of the factors, then the product

BA D

24 1 0 �3
0 4 2
�2 1 1

35�2 1 �6
1 �3 2

�
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is not defined, because the number of columns of B does not equal the number of rows
of A. This shows that matrix multiplication is not commutative. In fact, for matrices

Matrix multiplication is not commutative.

A and B, even when both products are defined, it is usually the case that AB and BA
are different. The order in which the matrices in a product are written is extremely
important.

EXAMPLE 1 Sizes of Matrices and Their Product

Let A be a 3 � 5 matrix and B be a 5 � 3 matrix. Then AB is defined and is a 3 � 3
matrix. Moreover, BA is also defined and is a 5 � 5 matrix.

If C is a 3 � 5 matrix and D is a 7 � 3 matrix, then CD is undefined, but DC is
defined and is a 7 � 5 matrix.

Now Work Problem 7 G

EXAMPLE 2 Matrix Product

Compute the matrix product

AB D
�
2 �4 2
0 1 �3

�242 1
0 4
2 2

35
Solution: Since A is 2� 3 and B is 3� 2, the product AB is defined and will have size
2 � 2. By simultaneously moving the index finger of the left hand from right to left
along the rows of A and the index finger of the right hand down the columns of B, it
should not be difficult to mentally find the entries of the product. We obtain�

2 �4 2
0 1 �3

�242 1
0 4
2 2

35 D � 8 �10
�6 �2

�
Observe that BA is also defined and has size 3 � 3.

Now Work Problem 19 G

APPLY IT I
5. A bookstore has 100 dictionaries,
70 cookbooks, and 90 thesauruses in
stock. If the value of each dictionary is
$28, each cookbook is $22, and each
thesaurus is $16, use a matrix product
to find the total value of the bookstore’s
inventory.

EXAMPLE 3 Matrix Products

a. Compute Œ1 2 3�

2445
6

35.
Solution: The product has size 1 � 1:

Œ1 2 3�

2445
6

35 D Œ32�
b. Compute

2412
3

35 Œ1 6�.

Solution: The product has size 3 � 2:2412
3

35 Œ1 6� D

241 6
2 12
3 18

35
c.

24 1 3 0
�2 2 1
1 0 �4

35241 0 2
5 �1 3
2 1 �2

35 D 24 16 �3 11
10 �1 0
�7 �4 10

35
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d.
�
a11 a12
a21 a22

� �
b11 b12
b21 b22

�
D

�
a11b11 C a12b21 a11b12 C a12b22
a21b11 C a22b21 a21b12 C a22b22

�
Now Work Problem 25 G

EXAMPLE 4 Matrix Products

Compute AB and BA if

Example 4 shows that even when the
matrix products AB and BA are both
defined and the same size, they are not
necessarily equal.

A D
�
2 �1
3 1

�
and B D

�
�2 1
1 4

�
:

Solution: We have

AB D
�
2 �1
3 1

� �
�2 1
1 4

�
D

�
�5 �2
�5 7

�
BA D

�
�2 1
1 4

� �
2 �1
3 1

�
D

�
�1 3
14 3

�
Note that although both AB and BA are defined, and the same size, AB and BA are not
equal.

Now Work Problem 37 G

EXAMPLE 5 Cost Vector

Suppose that the prices (in dollars per unit) for products A, B, and C are represented
by the price vector

Price of
A B C

P D Œ2 3 4�

APPLY IT I
6. The prices (in dollars per unit) for
three textbooks are represented by the
price vector P D Œ26:25 34:75 28:50�.
A university bookstore orders these
books in the quantities given by the

column vector Q D

264250325
175

375. Find the

total cost (in dollars) of the purchase.
If the quantities (in units) of A, B, and C that are purchased are given by the column
vector

Q D

24 7
5
11

35 units of A
units of B
units of C

then the total cost (in dollars) of the purchases is given by the entry in the cost vector

PQ D Œ2 3 4�

24 7
5
11

35 D Œ.2 � 7/C .3 � 5/C .4 � 11/� D Œ73�
Now Work Problem 27 G

EXAMPLE 6 Profit for an Economy

In Example 3 of Section 6.2, suppose that in the hypothetical economy the price of coal
is $10,000 per unit, the price of electricity is $20,000 per unit, and the price of steel is
$40,000 per unit. These prices can be represented by the (column) price vector

P D

2410;00020;000
40;000

35
Consider the steel industry. It sells a total of 30 units of steel at $40,000 per unit, and
its total income is therefore $1,200,000. Its costs for the various goods are given by the



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

Section 6.3 Matrix Multiplication 257

matrix product

DSP D Œ30 5 0�

2410;00020;000
40;000

35 D Œ400;000�
Hence, the profit for the steel industry is $1;200;000 � $400;000 D $800;000.

Now Work Problem 67 G

Matrix multiplication satisfies the following properties, provided that all sums and
products are defined:

Properties of Matrix Multiplication
1. A.BC/D .AB/C associative property

2. A.BC C/D ABC AC; distributive properties
.AC B/CD ACC BC

EXAMPLE 7 Associative Property

If

A D
�

1 �2
�3 4

�
B D

�
3 0 �1
1 1 2

�
C D

241 0
0 2
1 1

35
compute ABC in two ways.

Solution: Grouping BC gives

A.BC/ D
�

1 �2
�3 4

�0B@�3 0 �1
1 1 2

�241 0
0 2
1 1

35
1CA

D

�
1 �2
�3 4

� �
2 �1
3 4

�
D

�
�4 �9
6 19

�
Alternatively, grouping AB gives

.AB/C D

 �
1 �2
�3 4

� �
3 0 �1
1 1 2

�!241 0
0 2
1 1

35
D

�
1 �2 �5
�5 4 11

�241 0
0 2
1 1

35
D

�
�4 �9
6 19

�
Note that A.BC/ D .AB/C.

G

EXAMPLE 8 Distributive Property

Verify that A.BC C/ D ABC AC if

A D
�
1 0
2 3

�
B D

�
�2 0
1 3

�
C D

�
�2 1
0 2

�
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Solution: On the left side, we have

A.BC C/ D
�
1 0
2 3

� �
�2 0
1 3

�
C

�
�2 1
0 2

�!

D

�
1 0
2 3

� �
�4 1
1 5

�
D

�
�4 1
�5 17

�
On the right side,

ABC AC D
�
1 0
2 3

� �
�2 0
1 3

�
C

�
1 0
2 3

� �
�2 1
0 2

�
D

�
�2 0
�1 9

�
C

�
�2 1
�4 8

�
D

�
�4 1
�5 17

�
Thus, A.BC C/ D ABC AC.

Now Work Problem 69 G

EXAMPLE 9 Raw Materials and Cost

Suppose that a building contractor has accepted orders for five ranch-style houses,
seven Cape Cod–style houses, and 12 colonial-style houses. Then his orders can be
represented by the row vector

Q D Œ5 7 12�

Furthermore, suppose that the “raw materials” that go into each type of house are steel,
wood, glass, paint, and labor. The entries in the following matrix, R, give the number of
units of each raw material going into each type of house (the entries are not necessarily
realistic, but are chosen for convenience):

Steel Wood Glass Paint Labor

Ranch
Cape Cod
Colonial

245 20 16 7 17
7 18 12 9 21
6 25 8 5 13

35 D R

Each row indicates the amount of each raw material needed for a given type of house;
each column indicates the amount of a given raw material needed for each type of
house. Suppose now that the contractor wishes to compute the amount of each raw
material needed to fulfill his orders. Then such information is given by the matrix

QR D Œ5 7 12�

245 20 16 7 17
7 18 12 9 21
6 25 8 5 13

35
D Œ146 526 260 158 388�

Thus, the contractor should order 146 units of steel, 526 units of wood, 260 units of
glass, and so on.

The contractor is also interested in the costs he will have to pay for these materials.
Suppose steel costs $2500 per unit, wood costs $1200 per unit, and glass, paint, and
labor cost $800, $150, and $1500 per unit, respectively. These data can be written as
the column cost vector

C D

266664
2500
1200
800
150
1500

377775
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Then the cost of each type of house is given by the matrix

RC D

245 20 16 7 17
7 18 12 9 21
6 25 8 5 13

35
266664
2500
1200
800
150
1500

377775 D
2475;85081;550
71;650

35
Consequently, the cost of materials for the ranch-style house is $75,850, for the Cape
Cod house $81,550, and for the colonial house $71,650.

The total cost of raw materials for all the houses is given by

QRC D Q.RC/ D Œ5 7 12�

2475;85081;550
71;650

35 D Œ1;809;900�
The total cost is $1,809,900.

Now Work Problem 65 G

Another property of matrices involves scalar and matrix multiplications. If k is a
scalar and the product AB is defined, then

k.AB/ D .kA/B D A.kB/

The product k.AB/ can be written simply as kAB. Thus,

kAB D k.AB/ D .kA/B D A.kB/

For example,

3
�
2 1
0 �1

� �
1 3
2 0

�
D

 
3
�
2 1
0 �1

�!�
1 3
2 0

�
D

�
6 3
0 �3

� �
1 3
2 0

�
D

�
12 18
�6 0

�
There is an interesting property concerning the transpose of a matrix product:

.AB/T D BTAT

In words, the transpose of a product of matrices is equal to the product of their
transposes in the reverse order.

This property can be extended to the case of more than two factors. For
example,

Here, we used the fact that .AT/T D A. .ATBC/T D CTBT.AT/T D CTBTA

EXAMPLE 10 Transpose of a Product

Let

A D
�
1 0
1 2

�
and B D

�
1 2
1 0

�
Show that .AB/T D BTAT.

Solution: We have

AB D
�
1 2
3 2

�
so .AB/T D

�
1 3
2 2

�
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Now,

AT D
�
1 1
0 2

�
and BT D

�
1 1
2 0

�
Thus,

BTAT D
�
1 1
2 0

� �
1 1
0 2

�
D

�
1 3
2 2

�
D .AB/T

so .AB/T D BTAT.

G

Just as the zero matrix plays an important role as the identity in matrix addition,
there is a special matrix, called the identity matrix, that plays a corresponding role in
matrix multiplication:

The n� n identity matrix, denoted In, is the diagonal matrix whose main diagonal
entries are 1’s.

For example, the identity matrices I3 and I4 are

I3 D

241 0 0
0 1 0
0 0 1

35 and I4 D

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
When the size of an identity matrix is understood, we omit the subscript and simply
denote the matrix by I. It should be clear that

IT D I

The identity matrix plays the same role in matrix multiplication as does the number
1 in themultiplication of real numbers. That is, just as the product of a real number and 1
is the number itself, the product of a matrix and the identity matrix is the matrix itself.
For example, �

2 4
1 5

�
I D

�
2 4
1 5

� �
1 0
0 1

�
D

�
2 4
1 5

�
and

I
�
2 4
1 5

�
D

�
1 0
0 1

� �
2 4
1 5

�
D

�
2 4
1 5

�
In general, if I is n�n and A has n columns, then AI D A. If B has n rows, then IB D B.
Moreover, if A is n � n, then

AI D A D IA

EXAMPLE 11 Matrix Operations Involving I and 0

If

A D
�
3 2
1 4

�
B D

"
2
5 �

1
5

�
1
10

3
10

#
I D

�
1 0
0 1

�
0 D

�
0 0
0 0

�
compute each of the following.
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a. I � A

Solution:

I � A D
�
1 0
0 1

�
�

�
3 2
1 4

�
D

�
�2 �2
�1 �3

�
b. 3.A � 2I/

Solution:

3.A � 2I/ D 3

 �
3 2
1 4

�
� 2

�
1 0
0 1

�!

D 3

 �
3 2
1 4

�
�

�
2 0
0 2

�!
D 3

�
1 2
1 2

�
D

�
3 6
3 6

�
c. A0

Solution:

A0 D
�
3 2
1 4

� �
0 0
0 0

�
D

�
0 0
0 0

�
D 0

In general, if A0 and 0A are defined, then

A0 D 0 D 0A

d. AB

Solution:

AB D
�
3 2
1 4

�" 2
5 �

1
5

�
1
10

3
10

#
D

�
1 0
0 1

�
D I

Now Work Problem 55 G

If A is a square matrix, we can speak of a power of A:

If A is a square matrix and p is a positive integer, then the pth power of A, written
Ap, is the product of p factors of A:

Ap
D A � A � � �A„ ƒ‚ …

p factors

If A is n � n, we define A0 D In.

We remark that Ip D I.

EXAMPLE 12 Power of a Matrix

If A D
�
1 0
1 2

�
, compute A3.

Solution: Since A3 D .A2/A and

A2 D
�
1 0
1 2

� �
1 0
1 2

�
D

�
1 0
3 4

�
we have

A3 D A2A D
�
1 0
3 4

� �
1 0
1 2

�
D

�
1 0
7 8

�
Now Work Problem 45 G
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Matrix Equations
Systems of linear equations can be represented by using matrix multiplication. For
example, consider the matrix equation�

1 4 �2
2 �3 1

�24x1x2
x3

35 D � 4
�3

�
(1)

The product on the left side has order 2 � 1 and, hence, is a column matrix. Thus,�
x1 C 4x2 � 2x3
2x1 � 3x2 C x3

�
D

�
4
�3

�
By equality of matrices, corresponding entries must be equal, so we obtain the system�

x1 C 4x2 � 2x3 D 4
2x1 � 3x2 C x3 D �3

Hence, this system of linear equations can be defined by matrix Equation (1). We usu-
ally describe Equation (1) by saying that it has the form

AX D B

where A is the matrix obtained from the coefficients of the variables, X is a column
matrix obtained from the variables, and B is a column matrix obtained from the con-
stants. Matrix A is called the coefficient matrix for the system.

Notice that the variable in the matrix equation AX D B is the column vector X.
In the example at hand, X is a 3 � 1 column vector. A single solution of AX D B is a
column vector C, of the same size as X, with the property that AC D B. In the present
example, a single solution being a 3� 1 column vector is the same thing as an ordered
triple of numbers. Indeed, if C is an n� 1 column vector, then CT is a 1� n row vector,
which agrees with the notion of an n-tuple of numbers. For a system that consists ofTo review n-tuples, see Section 2.8.

m linear equations in n unknowns, its representation in the form AX D B will have A,
m � n, and B, m � 1. The variable X will then be an n � 1 column vector, and a single
solution C will be an n � 1 column vector, completely determined by an n-tuple of
numbers.

APPLY IT I
7. Write the following pair of
lines in matrix form, using matrix
multiplication.

y D �
8
5
xC

8
5
; y D �

1
3
xC

5
3

EXAMPLE 13 Matrix Form of a System Using Matrix Multiplication

Write the system �
2x1 C 5x2 D 4
8x1 C 3x2 D 7

in matrix form by using matrix multiplication.

Solution: If

A D
�
2 5
8 3

�
X D

�
x1
x2

�
B D

�
4
7

�
then the given system is equivalent to the single matrix equation

AX D B

that is, �
2 5
8 3

� �
x1
x2

�
D

�
4
7

�
Now Work Problem 59 G
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PROBLEMS 6.3

If A D

24 1 3 �2
�2 1 �1
0 4 3

35 ; B D 24 0 �2 3
�2 4 �2
3 1 �1

35 ; and
AB D C D ŒCij�, find each of the following.

1. C11 2. C22 3. C32

4. C33 5. C31 6. C12

If A is 2 � 3, B is 3 � 1, C is 2 � 5, D is 4 � 3, E is 3 � 2,
and F is 2 � 3, find the size and number of entries of each of the
following.

7. AE 8. DE 9. EC

10. DB 11. FB 12. EB

13. EETB 14. E.AE/ 15. E.FB/

16. .FC A/B

Write the identity matrix that has the following order:

17. 4 18. 6

In Problems 19–36, perform the indicated operations.

19.

"
2 �4
3 2

#"
4 0
�1 3

#
20.

24�1 1
0 4
2 1

35"1 �2
3 4

#

21.

"
2 0 3
�1 4 5

#2414
7

35 22. Œ 1 2 3 �

24 4
5
6

35

23.

24 1 4 �1
0 0 2
�2 1 1

35242 1 0
0 �1 1
1 1 2

35
24.

244 2 �2
3 10 0
1 0 2

35243 1 1 0
0 0 0 0
0 1 0 1

35
25. Œ1 �2 5�

24 1 5 �2 �1
0 0 2 1
�1 0 1 �3

35
26. Œ1 �4�

24�2 1
0 1
5 0

35 27.

"
7
8

#
Œ 9 10 �

28.

"
0 1
2 3

#0@"1 0 1
1 1 0

#
C

"
0 1 0
0 0 1

#1A
29. 3

0@"�2 0 2
3 �1 1

#
C 2

"
�1 0 2
1 1 �2

#1A241 2
3 4
5 6

35
30.

"
1 �1
0 3

#"
�1 0 �1 0 0
2 1 2 1 1

#

31.

"
1 2
3 4

#0B@"2 0 1
1 0 �2

#241 �2
2 1
3 0

35
1CA

32. 2

"
3 4
5 6

#
C 7

0@" 8 9
0 1

#"
2 3
4 5

#1A

33.

240 0 1
0 1 0
1 0 0

3524xy
z

35 34.

"
a11 a12
a21 a22

#"
x1
x2

#

35.

"
2 1 3
4 9 7

#24x1x2
x3

35 36.

242 �3
0 1
2 1

35"x1
x2

#
In Problems 37–44, compute the required matrices if

A D

"
1 �2
0 3

#
B D

"
�2 3 0
1 �4 1

#
C D

24�1 1
0 3
2 4

35

D D

241 0 0
0 1 1
1 2 1

35 E D

243 0 0
0 6 0
0 0 3

35 F D

266664
1
3 0 0

0 1
6 0

0 0 1
3

377775
I D

241 0 0
0 1 0
0 0 1

35
37. 6FC EI 38. DD 39. 3A � 2BC

40. B.DC E/ 41. 3I � 2
3FE 42. E.DC I/

43. .DC/A 44. A.BC/

In Problems 45–58, compute the required matrix, if it exists, given
that

A D

"
1 �1 0
0 1 1

#
B D

240 0 �1
2 �1 0
0 0 2

35 C D

241 0
2 �1
0 1

35
I D

241 0 0
0 1 0
0 0 1

35 0 D

240 0 0
0 0 0
0 0 0

35
45. A2 46. ATA 47. B3

48. A.BT/2C 49. .AIC/T 50. AT.2CT/

51. .BAT/T 52. .2I/T 53. .2I/2 � 2I2

54. .ATCTB/0 55. A.I � 0/ 56. IT0

57. .AB/.AB/T 58. B2 � 3BC 2I

In Problems 59–61, represent the given system by using matrix
multiplication.

59.

(
3xC y D 6
2x � 9y D 5 60.

8<:3xC yC z D 2
x � yC z D 4
5x � yC 2z D 12

61.

8<:2r � sC 3tD 9
5r � sC 2tD 5
3r � 2sC 2tD 11

62. Secret Messages Secret messages can be encoded by using
a code and an encoding matrix. Suppose we have the
following code:

a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13

n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26
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Let the encoding matrix be E D

"
1 1
2 3

#
: Then we can encode a

message by taking every two letters of the message, converting
them to their corresponding numbers, creating a 1 � 2 matrix, and
then multiplying each matrix on the right by E. Use this code and
matrix to encode the message “winter/is/coming”, leaving the
slashes to separate words.

63. Inventory A pet store has 6 kittens, 10 puppies, and
7 parrots in stock. If the value of each kitten is $55, each puppy is
$150, and each parrot is $35, find the total value of the pet store’s
inventory using matrix multiplication.

64. Stocks A stockbroker sold a customer 200 shares of
stock A, 300 shares of stock B, 500 shares of stock C, and 250
shares of stock D. The prices per share of A, B, C, and D are
$100, $150, $200, and $300, respectively. Write a row vector
representing the number of shares of each stock bought. Write a
column vector representing the price per share of each stock.
Using matrix multiplication, find the total cost of the stocks.

65. Construction Cost In Example 9, assume that the
contractor is to build five ranch-style, two Cape Cod–style, and
four colonial-style houses. Using matrix multiplication, compute
the total cost of raw materials.

66. Costs In Example 9, assume that the contractor wishes to
take into account the cost of transporting raw materials to the
building site as well as the purchasing cost. Suppose the costs are
given in the following matrix:

C D

Purchase Transport2666664
3500
1500
1000
250
3500

50
50
100
10
0

3777775
Steel
Wood
Glass
Paint
Labor

(a) By computing RC, find a matrix whose entries give the
purchase and transportation costs of the materials for each type of
house.

(b) Find the matrix QRC whose first entry gives the total purchase
price and whose second entry gives the total transportation cost.

(c) Let Z D

"
1
1

#
, and then compute QRCZ, which gives the total

cost of materials and transportation for all houses being built.

67. Perform the following calculations for Example 6.

(a) Compute the amount that each industry and each consumer
have to pay for the goods they receive.
(b) Compute the profit earned by each industry.
(c) Find the total amount of money that is paid out by all the
industries and consumers.
(d) Find the proportion of the total amount of money
found in part (c) paid out by the industries. Find the proportion of
the total amount of money found in part (c) that is paid out by the
consumers.

68. Prove that if AB D BA, then .AC B/.A � B/ D A2 � B2.

69. Show that if

A D

"
1 2
1 2

#
and B D

"
2 �3
�1 3

2

#
then AB D 0. Observe that since neither A nor B is the zero
matrix, the algebraic rule for real numbers, “If ab D 0, then either
a D 0 or b D 0”, does not hold for matrices. It can also be shown
that the cancellation law is not true for matrices; that is, if
AB D AC, then it is not necessarily true that B D C.

70. Let D1 and D2 be two arbitrary 3 � 3 diagonal matrices. By
computing D1D2 and D2D1, show that

(a) Both D1D2 and D2D1 are diagonal matrices.
(b) D1 and D2 commute, meaning that D1D2 D D2D1.

In Problems 71–74, compute the required matrices, given that

A D

"
3:2 �4:1 5:1
�2:6 1:2 6:8

#
B D

24 1:1 4:8
�2:3 3:2
4:6 �1:4

35 C D

"
�1:2 1:5
2:4 6:2

#
71. A.2B/ 72. 2:6.BC/ 73. 3CA.�B/ 74. C3

Objective 6.4 Solving Systems by Reducing Matrices
To show how to reduce a matrix and
to use matrix reduction to solve a
linear system.

In this section we illustrate a method by which matrices can be used to solve a system
of linear equations. It is important here to recall, from Section 3.4, that two systems
of equations are equivalent if they have the same set of solutions. It follows that in
attempting to solve a linear system, call it S1, we can do so by solving any system S2
that is equivalent to S1. If the solutions of S2 are more easily found than those of S1,
then replacing S1 by S2 is a useful step in solving S1. In fact, the method we illustrate
amounts to finding a sequence of equivalent systems, S1, S2, S3, � � �, Sn for which the
solutions of Sn are obvious. In our development of this method, known as the method
of reduction, we will first solve a system by the usual method of elimination. Then we
will obtain the same solution by using matrices.

Let us consider the system

3x � y D 1 (1)
�

xC 2y D 5 (2)

consisting of two linear equations in two unknowns, x and y. Although this system can
be solved by various algebraic methods, we will solve it by a method that is readily
adapted to matrices.
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For reasons that will be obvious later, we begin by replacing Equation (1) by Equa-
tion (2), and Equation (2) by Equation (1), thus obtaining the equivalent system,

xC 2y D 5 (3)
�
3x � y D 1 (4)

Multiplying both sides of Equation (3) by �3 gives �3x � 6y D �15. Adding the left
and right sides of this equation to the corresponding sides of Equation (4) produces an
equivalent system in which x is eliminated from the second equation:

xC 2y D 5 (5)
�
0x � 7y D �14 (6)

Nowwe will eliminate y from the first equation. Multiplying both sides of Equation (6)
by � 1

7 gives the equivalent system,

xC 2y D 5 (7)
�
0xC y D 2 (8)

From Equation (8), y D 2 and, hence, �2y D �4. Adding the sides of �2y D �4 to
the corresponding sides of Equation (7), we get the equivalent system,�

xC 0y D 1
0xC y D 2

This is a linear system for which the solution is indeed obvious and, because all the
systems introduced along the way are equivalent systems, the obvious solution of the
last system is also the solution of the original system: x D 1 and y D 2.

Note that in solving the original linear system, we successively replaced it by an
equivalent system that was obtained by performing one of the following three opera-
tions (called elementary operations), which leave the solution unchanged:

1. Interchanging two equations
2. Multiplying one equation by a nonzero constant

3. Adding a constant multiple of the sides of one equation to the corresponding sides
of another equation

Before showing a matrix method of solving the original system,�
3x � y D 1
x C 2y D 5

we first need to define some terms. Recall from Section 6.3 that the matrix�
3 �1
1 2

�
is the coefficient matrix of this system. The entries in the first column correspond to
the coefficients of the x’s in the equations. For example, the entry in the first row and
first column corresponds to the coefficient of x in the first equation; and the entry in the
second row and first column corresponds to the coefficient of x in the second equation.
Similarly, the entries in the second column correspond to the coefficients of the y’s.

Another matrix associated with this system is called the augmented coefficient
matrix and is given by �

3 �1 1
1 2 5

�
The first and second columns are the first and second columns, respectively, of the
coefficient matrix. The entries in the third column correspond to the constant terms
in the system: The entry in the first row of this column is the constant term of the
first equation, whereas the entry in the second row is the constant term of the second
equation. Although it is not necessary to include the vertical line in the augmented
coefficient matrix, it serves to remind us that the 1 and the 5 are the constant terms
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that appear on the right sides of the equations. The augmented coefficient matrix itself
completely describes the system of equations.

The procedure that was used to solve the original system involved a number of
equivalent systems. With each of these systems, we can associate its augmented coef-
ficient matrix. Following are the systems that were involved, together with their corre-
sponding augmented coefficient matrices, which we have labeled A, B, C, D, and E.�

3x � y D 1
x C 2y D 5

�
3 �1 1
1 2 5

�
D A�

x C 2y D 5
3x � y D 1

�
1 2 5
3 �1 1

�
D B�

x C 2y D 5
0x � 7y D �14

�
1 2 5
0 �7 �14

�
D C�

x C 2y D 5
0x C y D 2

�
1 2 5
0 1 2

�
D D�

x C 0y D 1
0x C y D 2

�
1 0 1
0 1 2

�
D E

Let us see how these matrices are related.
Matrix B can be obtained from A by interchanging the first and second rows of A.

This operation corresponds to interchanging the two equations in the original system.
Matrix C can be obtained from B by adding, to each entry in the second row of B,

�3 times the corresponding entry in the first row of B:

C D

"
1 2

3C .�3/.1/ �1C .�3/.2/

ˇ̌̌̌
5

1C .�3/.5/

#

D

"
1 2
0 �7

ˇ̌̌̌
5

�14

#
This operation is described as follows: the addition of�3 times the first row of B to the
second row of B.

Matrix D can be obtained from C by multiplying each entry in the second row of

C by � 1
7 . This operation is referred to as multiplying the second row of C by � 1

7 .

Matrix E can be obtained from D by adding �2 times the second row of D to the
first row of D.

Observe that E, which gives the solution, was obtained from A by successively
performing one of three matrix operations called elementary row operations:

Elementary Row Operations
1. Interchanging two rows of a matrix
2. Multiplying a row of a matrix by a nonzero number

3. Adding a multiple of one row of a matrix to a different row of that matrix

These elementary row operations correspond to the three elementary operations used in
the algebraic method of elimination. Whenever a matrix can be obtained from another
by one or more elementary row operations we say that the matrices are equivalent.
Thus, A and E are equivalent. (We could also obtain A from E by performing simi-
lar row operations in the reverse order, so the term equivalent is appropriate.) When
describing particular elementary row operations we will use the following notation for
convenience:
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Notation Corresponding Row Operation
Ri $ Rj Interchange rows Ri and Rj.

kRi Multiply row Ri by the nonzero constant k.

kRi C Rj Add k times row Ri to row Rj (but leave Ri unchanged).

For example, writing241 0 �2
4 �2 1
5 0 3

35 �4R1CR2
��������!

241 0 �2
0 �2 9
5 0 3

35
means that the second matrix was obtained from the first by adding �4 times row 1 to
row 2. Note that we write .�k/Ri as �kRi.

We are now ready to describe a matrix procedure for solving a system of linear
equations. First, we form the augmented coefficient matrix of the system; then, by
means of elementary row operations, we determine an equivalent matrix that clearly
indicates the solution. Let us be specific as to what we mean by a matrix that clearly
indicates the solution. This is a matrix, called a reduced matrix, which will be defined
below. It is convenient to define first a zero-row of a matrix to be a row that consists
entirely of zeros. A row that is not a zero-row, meaning that it contains at least one
nonzero entry, will be called a nonzero-row. The first nonzero entry in a nonzero-row
is called the leading entry.

Reduced Matrix
A matrix is said to be a reduced matrix provided that all of the following are true:

1. All zero-rows are at the bottom of the matrix.

2. For each nonzero-row, the leading entry is 1, and all other entries in the column
of the leading entry are 0.

3. The leading entry in each row is to the right of the leading entry in any row
above it.

It can be shown that each matrix is equivalent to exactly one reduced matrix. To solve
a system, we find the reduced matrix such that the augmented coefficient matrix is
equivalent to it. In our previous discussion of elementary row operations, the matrix

E D
�
1 0 1
0 1 2

�
is a reduced matrix.

EXAMPLE 1 Reduced Matrices

For each of the following matrices, determine whether it is reduced or not reduced.

a.
�
1 0
0 3

�
b.
�
1 0 0
0 1 0

�
c.
�
0 1
1 0

�
d.
�
0 0 0
0 0 0

�
e.

241 0 0
0 0 0
0 1 0

35 f.

240 1 0 3
0 0 1 2
0 0 0 0

35
Solution:
a. Not a reduced matrix, because the leading entry in the second row is not 1

b. Reduced matrix
c. Not a reduced matrix, because the leading entry in the second row is not to the right

of the leading entry in the first row
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d. Reduced matrix
e. Not a reduced matrix, because the second row, which is a zero-row, is not at the

bottom of the matrix

f. Reduced matrix

Now Work Problem 1 G

EXAMPLE 2 Reducing a Matrix

Reduce the matrix 240 0 1 2
3 �6 �3 0
6 �12 2 11

35
Strategy To reduce the matrix, we must get the leading entry to be a 1 in the first
row, the leading entry a 1 in the second row, and so on, until we arrive at a zero-row,
if there are any. Moreover, we must work from left to right, because the leading
entry in each row must be to the left of all other leading entries in the rows below
it.

Solution: Since there are no zero-rows to move to the bottom, we proceed to find the
first column that contains a nonzero entry; this turns out to be column 1. Accordingly,
in the reduced matrix, the leading 1 in the first row must be in column 1. To accomplish
this, we begin by interchanging the first two rows so that a nonzero entry is in row 1 of
column 1:

0 0 1 2

3 -6 -3 0

6 -12 2 11

R1   4   R2

3 -6 -3 0

0 0 1 2

6 -12 2 11

Next, we multiply row 1 by 1
3 so that the leading entry is a 1:

1

3
R1

1 -2 -1 0

0 0 1 2

6 -12 2 11

Now, because we must have zeros below (and above) each leading entry, we add �6
times row 1 to row 3:

-6R1 + R3

1 -2 -1 0

0 0 1 2

0 0 8 11

Next, we move to the right of column 1 to find the first column that has a nonzero
entry in row 2 or below; this is column 3. Consequently, in the reduced matrix, the
leading 1 in the second row must be in column 3. The foregoing matrix already does
have a leading 1 there. Thus, all we need do to get zeros below and above the leading
1 is add 1 times row 2 to row 1 and add �8 times row 2 to row 3:

(1)R2 + R1

-8R2 + R3

1 -2 0 2

0 0 1 2

0 0 0 -5



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

Section 6.4 Solving Systems by Reducing Matrices 269

Again, we move to the right to find the first column that has a nonzero entry in row

3; namely, column 4. To make the leading entry a 1, we multiply row 3 by � 1
5 :

1

5
R3

1 -2 0 2

0 0 1 2

0 0 0 1

-

Finally, to get all other entries in column 4 to be zeros, we add �2 times row 3 to both
row 1 and row 2:

The sequence of steps that is used to
reduce a matrix is not unique; however,
the reduced matrix is unique.

-2R3 + R1

-2R3 + R2

1 -2 0 0

0 0 1 0

0 0 0 1

The last matrix is in reduced form.

Now Work Problem 9 G

The method of reduction described for solving our original system can be gen-
eralized to systems consisting of m linear equations in n unknowns. To solve such a
system as 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

A11x1 C A12x2 C � � � C A1nxn D B1
A21x1 C A22x2 C � � � C A2nxn D B2
� � � �

� � � �

� � � �

Am1x1 C Am2x2 C � � � C Amnxn D Bm

involves

1. determining the augmented coefficient matrix of the system, which is26666664
A11 A12 � � � A1n B1
A21 A22 � � � A2n B2
� � � �

� � � �

� � � �

Am1 Am2 � � � Amn Bm

37777775
and

2. determining the reduced matrix to which the augmented coefficient matrix is
equivalent.

Frequently, step 2 is called reducing the augmented coefficient matrix.

APPLY IT I
8. An investment firm offers three
stock portfolios: A, B, and C. The
number of blocks of each type of
stock in each of these portfolios is
summarized in the following table:

Portfolio
A B C

High 6 1 3
Risk: Moderate 3 2 3

Low 1 5 3

A client wants 35 blocks of high-
risk stock, 22 blocks of moderate-risk
stock, and 18 blocks of low-risk stock.
How many of each portfolio should be
suggested?

EXAMPLE 3 Solving a System by Reduction

By using matrix reduction, solve the system8<:2xC 3y D �1
2xC y D 5
xC y D 1



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

270 Chapter 6 Matrix Algebra

Solution: Reducing the augmented coefficient matrix of the system, we have

2 3 -1

2 1 5

1 1 1

R1 4R3

1 1 1

2 1 5

2 3 -1

-2R1 + R2

1 1 1

0 -1 3

2 3 -1

-2R1 + R3

1 1 1

0 -1 3

0 1 -3

(-1)R2

1 1 1

0 1 -3

0 1 -3

-R2 + R1

1 0 4

0 1 -3

0 1 -3

-R2 + R3

1 0 4

0 1 -3

0 0 0

The last matrix is reduced and corresponds to the system8<: xC 0y D 4
0xC y D �3
0xC 0y D 0

Since the original system is equivalent to this system, it has a unique solution, namely,

Recall from Section 3.4 that a single
solution of a system of equations in two
unknowns is an ordered pair of values.
More generally, a single solution of a
system of equations in n unknowns is an
ordered n-tuple of values.

x D 4

y D �3

Now Work Problem 13 G

APPLY IT I
9. A health spa customizes the diet
and vitamin supplements of each of its
clients. The spa offers three different
vitamin supplements, each containing
different percentages of the recom-
mended daily allowance (RDA) of
vitamins A, C, and D. One tablet of
supplement X provides 40% of the RDA
of A, 20% of the RDA of C, and 10%
of the RDA of D. One tablet of supple-
ment Y provides 10% of the RDA of A,
10% of the RDA of C, and 30% of the
RDA of D. One tablet of supplement Z
provides 10% of the RDA of A, 50%
of the RDA of C, and 20% of the RDA
of D. The spa staff determines that one
client should take 180% of the RDA of
vitamin A, 200% of the RDA of vita-
min C, and 190% of the RDA of vitamin
D each day. How many tablets of each
supplement should she take each day?

EXAMPLE 4 Solving a System by Reduction

Using matrix reduction, solve 8<:xC 2yC 4z � 6 D 0
2zC y � 3 D 0

xC yC 2z � 1 D 0

Solution: Rewriting the system so that the variables are aligned and the constant terms
appear on the right sides of the equations, we have8<:xC 2yC 4z D 6

yC 2z D 3
xC yC 2z D 1
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Reducing the augmented coefficient matrix, we obtain

1 2 4 6

0 1 2 3

1 1 2 1

1 2 4 6

0 1 2 3

0 -1 -2 -5

1 0 0 0

0 1 2 3

0 0 0 -2

-R1 + R3

-2R2 + R1

(1)R2 + R3

1 0 0 0

0 1 2 3

0 0 0 1

1 0 0 0

0 1 2 0

0 0 0 1

1

2
R3-

-3R3 + R2

The last matrix is reduced and corresponds to8<: x D 0
yC 2z D 0

0 D 1

Since 0 ¤ 1, there are no values of x, y, and z for which all equations are satisfied
simultaneously. Thus, the original system has no solution.

Now Work Problem 15 G

Whenever we get a row with all 0’s to the
left side of the vertical rule and a nonzero
entry to the right, no solution exists.

APPLY IT I
10. A zoo veterinarian can purchase
animal food of four different types: A,
B, C, and D. Each food comes in the
same size bag, and the number of grams
of each of three nutrients in each bag
is summarized in the following table:

Food

A B C D

N1 5 5 10 5

Nutrient N2 10 5 30 10

N3 5 15 10 25

For one animal, the veterinarian deter-
mines that she needs to combine the
bags to get 10,000 g of N1, 20,000 g of
N2, and 20,000 g of N3. Howmany bags
of each type of food should she order?

EXAMPLE 5 Parametric Form of a Solution

Using matrix reduction, solve8<:2x1 C 3x2 C 2x3 C 6x4 D 10
x2 C 2x3 C x4 D 2

3x1 � 3x3 C 6x4 D 9

Solution: Reducing the augmented coefficient matrix, we have

2 3 2 6 10

0 1 2 1 2

3 0 -3 6 9

1
3

2
1 3 5

0 1 2 1 2

3 0 -3 6 9

1
3

2
1 3 5

0 1 2 1 2

0
9

2
-6 -3 -6

1 0 -2
3

2
2

0 1 2 1 2

0 0 3
3

2
3

1 0 -2
3

2
2

0 1 2 1 2

0 0 1
1

2
1

1 0 0
5

2
4

0 1 0 0 0

0 0 1
1

2
1

-

1

2
R1-

1

3
R3

3

2
R2 + R1-

9

2
R2 + R3

-3R1 + R3

2R3 + R1

-2R3 + R2
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This matrix is reduced and corresponds to the system8̂̂<̂
:̂
x1 C 5

2x4 D 4

x2 D 0

x3 C 1
2x4 D 1

Thus,

x1 D 4 � 5
2x4 (9)

x2 D 0 (10)

x3 D 1 � 1
2x4 (11)

The system imposes no restrictions on x4 so that x4 may take on any real value. If
we append

x4 D x4 (12)

to the preceding equations, then we have expressed all four of the unknowns in terms
of x4 and this is the general solution of the original system.

For each particular value of x4, Equations (9)–(12) determine a particular solution
of the original system. For example, if x4 D 0, then a particular solution is

x1 D 4 x2 D 0 x3 D 1 x4 D 0

If x4 D 2, then

x1 D �1 x2 D 0 x3 D 0 x4 D 2

is another particular solution. Since there are infinitely many possibilities for x4, there
are infinitely many solutions of the original system.

Recall (see Examples 3 and 6 of Section 3.4) that, if we like, we can write x4 D r
and refer to this new variable r as a parameter. (However, there is nothing special about
the name r, so we could consider x4 as the parameter on which all the original variables
depend. Note that we can write x2 D 0 C 0x4 and x4 D 0 C 1x4.) Writing r for the
parameter, the solution of the original system is given by

x1 D 4 � 5
2r

x2 D 0C 0r

x3 D 1 � 1
2r

x4 D 0C 1r

where r is any real number, andwe speak of having a one-parameter family of solutions.
Now, with matrix addition and scalar multiplication at hand, we can say a little more
about such families. Observe that2664

x1
x2
x3
x4

3775 D
2664
4
0
1
0

3775C r

266664
�

5
2

0
�

1
2

1

377775
Readers familiar with analytic geometry will see that the solutions form a line in

x1x2x3x4-space, passing through the point

2664
4
0
1
0

3775 and in the direction of the line

segment joining

2664
0
0
0
0

3775 and

266664
�

5
2

0
�

1
2
1

377775.
Now Work Problem 17 G
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Examples 3–5 illustrate the fact that a system of linear equations may have a unique
solution, no solution, or infinitely many solutions. It can be shown that these are the
only possibilities.

A system of linear equations has zero,
one, or infinitely many solutions.

PROBLEMS 6.4
In Problems 1–6, determine whether the matrix is reduced or not
reduced.

1.

"
1 2
7 0

#
2.

"
1 0 0 3
0 0 1 2

#
3.

241 0 0
0 1 0
0 0 0

35
4.

2664
1 1
0 1
0 0
0 0

3775 5.

2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3775 6.

2664
0 0 1
1 0 0
0 1 0
0 0 0

3775
In Problems 7–12, reduce the given matrix.

7.

"
1 3
4 0

#
8.

"
0 �2 0 1
1 2 0 4

#
9.

242 4 6
1 2 3
1 2 3

35
10.

2664
2 3
1 �6
4 8
1 7

3775 11.

2664
2 3 4 1
1 7 2 3
�1 4 2 0
0 1 1 0

3775 12.

2664
0 0 2
2 0 3
0 �1 0
0 4 1

3775
Solve the systems in Problems 13–26 by the method of reduction.

13.

(
3xC 5y D 25

x � 2y D 1
14.

(
x � 3y D �11

4xC 3y D 9

15.

(
3xC y D 4

12xC 4y D 2
16.

(
3xC 2y � z D 1

�x � 2y � 3z D 1

17.

(
xC 2yC z � 4 D 0

3x C 2z � 5 D 0
18.

(
xC y � 5z � 8 D 0

2x � y � z � 1 D 0

19.

8̂̂<̂
:̂

x1 � 3x2 D 0

2x1 C 2x2 D 3

5x1 � x2 D 1

20.

8̂̂<̂
:̂

x1 C 4x2 D 9

3x1 � x2 D 6

x1 � x2 D 2

21.

8̂̂<̂
:̂
xC 3y D 2

2xC 7y D 4

xC 5yC z D 5

22.

8̂̂<̂
:̂

xC y � z D 7

2x � 3y � 2z D 4

x � y � 5z D 23

23.

8̂̂̂̂
<̂
ˆ̂̂:
3x � y C z D 12

x C y C z D 2

x C 2y � z D �2

2x C y � 3z D 1

24.

8̂̂̂̂
<̂
ˆ̂̂:

x C 3z D �1

3xC 2yC 11z D 1

xC yC 4z D 1

2x � 3yC 3z D �8

25.

8̂̂̂̂
<̂
ˆ̂̂:
x1 � x2 � x3 � x4 � x5 D 0

x1 C x2 � x3 � x4 � x5 D 0

x1 C x2 C x3 � x4 � x5 D 0

x1 C x2 C x3 C x4 � x5 D 0

26.

8̂̂̂̂
<̂
ˆ̂̂:
x1 C x2 C x3 C x4 D 0

x1 C x2 C x3 � x4 D 0

x1 C x2 � x3 � x4 D 0

x1 � x2 � x3 C x4 D 0

Solve Problems 27–33 by using matrix reduction.

27. Taxes A company has taxable income of $312,000. The
federal tax is 25% of that portion that is left after the state tax has
been paid. The state tax is 10% of that portion that is left after the
federal tax has been paid. Find the company’s federal and state
taxes.

28. Decision Making A manufacturer produces two products,
A and B. For each unit of A sold, the profit is $10, and for each
unit of B sold, the profit is $12. From experience, it has been
found that 50% more of A can be sold than of B. Next year the
manufacturer desires a total profit of $54,000. How many units of
each product must be sold?

29. Production Scheduling A manufacturer produces three
products: A, B, and C. The profits for each unit of A, B, and C
sold are $1, $2, and $3, respectively. Fixed costs are $17,000 per
year, and the costs of producing each unit of A, B, and C are $4,
$5, and $7, respectively. Next year, a total of 11,000 units of all
three products is to be produced and sold, and a total profit of
$25,000 is to be realized. If total cost is to be $80,000, how many
units of each of the products should be produced next year?

30. Production Allocation National Desk Co. has plants for
producing desks on both the East Coast and West Coast. At the
East Coast plant, fixed costs are $20,000 per year and the cost of
producing each desk is $90. At the West Coast plant, fixed costs
are $18,000 per year and the cost of producing each desk is $95.
Next year the company wants to produce a total of 800 desks.
Determine the production order for each plant for the forthcoming
year if the total cost for each plant is to be the same.

31. Vitamins A person is ordered by a doctor to take 10 units
of vitamin A, 9 units of vitamin D, and 19 units of vitamin E each
day. The person can choose from three brands of vitamin pills.
Brand X contains 2 units of vitamin A, 3 units of vitamin D, and
5 units of vitamin E; brand Y has 1, 3, and 4 units, respectively;
and brand Z has 1 unit of vitamin A, none of vitamin D, and 1 of
vitamin E.
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(a) Find all possible combinations of pills that will provide
exactly the required amounts of vitamins.
(b) If brand X costs 1 cent a pill, brand Y 6 cents, and brand Z
3 cents, are there any combinations in part (a) costing exactly
15 cents a day?
(c)What is the least expensive combination in part (a)? the most
expensive?

32. Production A firm produces three products, A, B, and C,
that require processing by three machines, I, II, and III. The time
in hours required for processing one unit of each product by the
three machines is given by the following table:

A B C

I 3 1 2

II 1 2 1

III 2 4 1

Machine I is available for 440 hours, machine II for 310 hours,
and machine III for 560 hours. Find how many units of each
product should be produced to make use of all the available time
on the machines.

33. Investments An investment company sells three types of
pooled funds, Standard (S), Deluxe (D), and Gold Star (G).
Each unit of S contains 12 shares of stock A, 16 of stock B, and 8
of stock C.
Each unit of D contains 20 shares of stock A, 12 of stock B, and
28 of stock C.
Each unit of G contains 32 shares of stock A, 28 of stock B, and
36 of stock C.
Suppose an investor wishes to purchase exactly 220 shares of
stock A, 176 shares of stock B, and 264 shares of stock C by
buying units of the three funds.
(a) Set up equations in s, for units of S, d, for units of D, and g, for
units of G whose solution would provide the number of units of S,
D, and G that will meet the investor’s requirements exactly.
(b) Solve the system set up in (a) and show that it has infinitely
many solutions, if we naively assume that s, d, and g can take on
arbitrary real values.
(c) Pooled funds can be bought only in units that are non-negative
integers. In the solution to (b) above, it follows that we must
require each of s, d, and g to be non-negative integers. Enumerate
the solutions in (b) that remain after we impose this new
constraint.
(d) Suppose the investor pays $300 for each unit of S, $400 for
each unit of D, and $600 for each unit of G. Which of the possible
solutions from part (c) will minimize the total cost to the investor?

Objective 6.5 Solving Systems by Reducing
Matrices (Continued)To focus our attention on

nonhomogeneous systems that
involve more than one parameter in
their general solution; and to solve,
and consider the theory of,
homogeneous systems.

As we saw in Section 6.4, a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. When there are infinitely many, the general solu-
tion is expressed in terms of at least one parameter. For example, the general solution
in Example 5 was given in terms of the parameter r:

x1 D 4 � 5
2r

x2 D 0

x3 D 1 � 1
2r

x4 D r

At times, more than one parameter is necessary. In fact, we saw a very simple example
in Example 7 of Section 3.4. Example 1 illustrates further.

EXAMPLE 1 Two-Parameter Family of Solutions

Using matrix reduction, solve8<:x1 C 2x2 C 5x3 C 5x4 D �3
x1 C x2 C 3x3 C 4x4 D �1
x1 � x2 � x3 C 2x4 D 3

Solution: The augmented coefficient matrix is241 2 5 5 �3
1 1 3 4 �1
1 �1 �1 2 3

35
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whose reduced form is 241 0 1 3 1
0 1 2 1 �2
0 0 0 0 0

35
Hence, �

x1 C x3 C 3x4 D 1
x2 C 2x3 C x4 D �2

from which it follows that

x1 D 1 � x3 � 3x4
x2 D �2 � 2x3 � x4

Since no restriction is placed on either x3 or x4, they can be arbitrary real numbers,
giving us a parametric family of solutions. Setting x3 D r and x4 D s, we can give the
solution of the given system as

x1 D 1 � r � 3s

x2 D �2 � 2r � s

x3 D r

x4 D s

where the parameters r and s can be any real numbers. By assigning specific values
to r and s, we get particular solutions. For example, if r D 1 and s D 2, then the
corresponding particular solution is x1 D �6; x2 D �6; x3 D 1, and x4 D 2. As in the
one-parameter case, we can now go further and write2664

x1
x2
x3
x4

3775 D
2664

1
�2
0
0

3775C r

2664
�1
�2
1
0

3775C s

2664
�3
�1
0
1

3775

which can be shown to exhibit the family of solutions as a plane through

2664
1
�2
0
0

3775 in

x1x2x3x4-space.

Now Work Problem 1 G

It is customary to classify a system of linear equations as being either homogeneous
or nonhomogeneous, depending on whether the constant terms are all zero.

Definition
The system 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

A11x1 C A12x2 C � � � C A1nxn D B1
A21x1 C A22x2 C � � � C A2nxn D B2
� � � �

� � � �

� � � �

Am1x1 C Am2x2 C � � � C Amnxn D Bm

is called a homogeneous system if B1 D B2 D � � � D Bm D 0. The system is a
nonhomogeneous system if at least one of the Bi is not equal to 0.
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EXAMPLE 2 Nonhomogeneous and Homogeneous Systems

The system (
2xC 3y D 4

3x � 4y D 0

is nonhomogeneous because of the 4 in the first equation. The system(
2xC 3y D 0

3x � 4y D 0

is homogeneous.

G
If the homogeneous system (

2xC 3y D 0

3x � 4y D 0

were solved by the method of reduction, first the augmented coefficient matrix would
be written "

2 3
3 �4

ˇ̌̌̌
0
0

#
Observe that the last column consists entirely of zeros. This is typical of the augmented
coefficient matrix of any homogeneous system. We would then reduce this matrix by
using elementary row operations:"

2 3
3 �4

ˇ̌̌̌
0
0

#
! � � � !

"
1 0
0 1

ˇ̌̌̌
0
0

#
The last column of the reduced matrix also consists only of zeros. This does not occur
by chance. When any elementary row operation is performed on a matrix that has a col-
umn consisting entirely of zeros, the corresponding column of the resulting matrix will
also be all zeros. For convenience, it will be our custom when solving a homogeneous
system by matrix reduction to delete the last column of the matrices involved. That is,
we will reduce only the coefficient matrix of the system. For the preceding system, we
would have �

2 3
3 �4

�
! � � � !

�
1 0
0 1

�
Here the reduced matrix, called the reduced coefficient matrix, corresponds to the
system �

xC 0y D 0
0xC y D 0

so the solution is x D 0 and y D 0.
Let us now consider the number of solutions of the homogeneous system8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

A11x1 C A12x2 C � � � C A1nxn D 0
A21x1 C A22x2 C � � � C A2nxn D 0
� � � �

� � � �

� � � �

Am1x1 C Am2x2 C � � � C Amnxn D 0

One solution always occurs when x1 D 0; x2 D 0; : : : ; and xn D 0, since each equation
is satisfied for these values. This solution, called the trivial solution, is a solution of
every homogeneous system and follows from the matrix equation

A0n D 0m

where 0n is the n � 1 column vector (and 0m is the m � 1 column vector).
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There is a theorem that allows us to determine whether a homogeneous system has
a unique solution (the trivial solution only) or infinitely many solutions. The theorem
is based on the number of nonzero-rows that appear in the reduced coefficient matrix
of the system. Recall that a nonzero-row is a row that does not consist entirely of zeros.

Theorem
Let A be the reduced coefficient matrix of a homogeneous system of m linear equa-
tions in n unknowns. If A has exactly k nonzero-rows, then k � n. Moreover,

1. if k < n, the system has infinitely many solutions, and

2. if k D n, the system has a unique solution (the trivial solution).

If a homogeneous system consists of m equations in n unknowns, then the coef-
ficient matrix of the system has size m � n. Thus, if m < n and k is the number of
nonzero rows in the reduced coefficient matrix, then k � m, and, hence, k < n. By the
foregoing theorem, the system must have infinitely many solutions. Consequently, we
have the following corollary.

Corollary
A homogeneous system of linear equations with fewer equations than unknowns
has infinitely many solutions.

The preceding theorem and corollary
apply only to homogeneous systems of
linear equations. For example, consider
the system �

xC y � 2z D 3
2xC 2y � 4z D 4

which consists of two linear equations in
three unknowns. We cannot conclude
that this system has infinitely many
solutions, since it is not homogeneous.
Indeed, it is easy to verify that it has no
solution.

EXAMPLE 3 Number of Solutions of a Homogeneous System

Determine whether the system �
xC y � 2z D 0
2xC 2y � 4z D 0

has a unique solution or infinitely many solutions.

Solution: There are two equations in this homogeneous system, and this number is
less than the number of unknowns (three). Thus, by the previous corollary, the system
has infinitely many solutions.

Now Work Problem 9 G

APPLY IT I
11. A plane in three-dimensional
space can be written as
ax C by C cz D d. We can find
the possible intersections of planes in
this form by writing them as systems
of linear equations and using reduction
to solve them. If d D 0 in each
equation, then we have a homogeneous
system with either a unique solution or
infinitely many solutions. Determine
whether the intersection of the planes

5xC 3yC 4z D 0

6xC 8yC 7z D 0

3xC 1yC 2z D 0

has a unique solution or infinitely many
solutions; then solve the system.

EXAMPLE 4 Solving Homogeneous Systems

Determine whether the following homogeneous systems have a unique solution or
infinitely many solutions; then solve the systems.

a.

8<: x � 2yC z D 0
2x � yC 5z D 0
xC yC 4z D 0

Solution: Reducing the coefficient matrix, we have241 �2 1
2 �1 5
1 1 4

35! � � � ! 241 0 3
0 1 1
0 0 0

35
The number of nonzero-rows, 2, in the reduced coefficient matrix is less than the num-
ber of unknowns, 3, in the system. By the previous theorem, there are infinitely many
solutions.
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Since the reduced coefficient matrix corresponds to�
xC 3z D 0
yC z D 0

the solution may be given in parametric form by

x D �3r

y D �r

z D r

where r is any real number.

b.

8̂̂<̂
:̂
3xC 4y D 0
x � 2y D 0
2xC y D 0
2xC 3y D 0

Solution: Reducing the coefficient matrix, we have2664
3 4
1 �2
2 1
2 3

3775! � � � !
2664
1 0
0 1
0 0
0 0

3775
The number of nonzero-rows (2) in the reduced coefficient matrix equals the number
of unknowns in the system. By the theorem, the system must have a unique solution,
namely, the trivial solution x D 0; y D 0.

Now Work Problem 13 G

PROBLEMS 6.5
In Problems 1–8, solve the systems by using matrix reduction.

1.

8̂̂<̂
:̂

w C x � y � 9z D �3

2w C 3x C 2y C 15z D 12

2w C x C 2y C 5z D 8

2.

8̂̂<̂
:̂
2wC xC 10yC 15z D � 5

w � 5xC 2yC 15z D �10

wC xC 6yC 12z D 9

3.

8̂̂̂̂
<̂
ˆ̂̂:
3w � x � 3y � z D �2

2w � 2x � 6y � 6z D �4

2w � x � 3y � 2z D �2

3wC xC 3yC 7z D 2

4.

8̂̂̂<̂
ˆ̂:
3wC x � 10y � 2z D 5

2w � 6y � 2z D 2
w � x � 2y � 2z D �1
wC x � 4y D 3

5.

8̂̂̂̂
<̂
ˆ̂̂:

w � 3xC y � z D 5

w � 3x � yC 3z D 1

3w � 9xC yC z D 11

2w � 6x � yC 4z D 4

6.

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

wC xC yC 2z D 4

2wC xC 2yC 2z D 7

wC 2xC yC 4z D 5

3w � 2xC 3y � 4z D 7

4w � 3xC 4y � 6z D 9

7.

(
4x1 � 3x2 C 5x3 � 10x4 C 11x5 D �8

2x1 C x2 C 5x3 C 3x5 D 6

8.

8̂̂̂̂
<̂
ˆ̂̂:

x1 C 3x3 C x4 C 4x5 D 1

x2 C x3 � 2x4 D 0

2x1 � 2x2 C 3x3 C 10x4 C 15x5 D 10

x1 C 2x2 C 3x3 � 2x4 C 2x5 D �2

For Problems 9–14, determine whether the system has infinitely
many solutions or only the trivial solution. Do not solve the
systems.

9.

(
2:17x � 5:3yC 0:27z D 0

3:51x � 1:4yC 0:01z D 0

10.

(
5wC 7x � 2y � 5z D 0

7w � 6xC 9y � 5z D 0
11.

8̂̂<̂
:̂
3x � 4y D 0

xC 5y D 0

4x � y D 0

12.

8̂̂<̂
:̂
2xC 3yC 12z D 0

3x � 2yC 5z D 0

4xC yC 14z D 0

13.

8̂̂<̂
:̂
xC yC z D 0

x � z D 0

x � 2y � 5z D 0

14.

8̂̂<̂
:̂
3xC 2yC z D 0

2xC 2yC z D 0

4xC yC z D 0

Solve each of the following systems.

15.

(
2xC 3y D 0

5x � 7y D 0
16.

(
2x � 5y D 0

8x � 20y D 0

17.

(
xC 6y � 2z D 0

2x � 3yC 4z D 0
18.

(
4xC 7y D 0

2xC 3y D 0

19.

8̂̂<̂
:̂

xC y D 0

7x � 5y D 0

9x � 4y D 0

20.

8̂̂<̂
:̂
2x C y C z D 0

x � y C 2z D 0

x C y C z D 0
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21.

8̂̂̂̂
<̂
ˆ̂̂:
x C y C z D 0

� 7y � 14z D 0

� 2y � 4z D 0

� 5y � 10z D 0

22.

8̂̂̂̂
<̂
ˆ̂̂:

xC yC 7z D 0

x � y � z D 0

2x � 3y � 6z D 0

3xC yC 13z D 0

23.

8̂̂̂̂
<̂
ˆ̂̂:

wC xC yC 4z D 0

wC x C 5z D 0

2wC xC 3yC 4z D 0

w � 3xC 2y � 9z D 0

24.

8̂̂̂<̂
ˆ̂:

wC x � 2y � 2z D 0

w � x D 0

2wC x � 3y � 3z D 0
wC 2x � 3y � 3z D 0

Objective 6.6 Inverses
To determine the inverse of an
invertible matrix and to use inverses to
solve systems.

We have seen how useful the method of reduction is for solving systems of linear equa-
tions. But it is by no means the only method that uses matrices. In this section, we will
discuss a different method that applies to certain systems of n linear equations in n
unknowns.

In Section 6.3, we showed how a system of linear equations can bewritten inmatrix
form as the single matrix equation AX D B, where A is the coefficient matrix. For
example, the system �

x1 C 2x2 D 3
x1 � x2 D 1

can be written in the matrix form AX D B, where

A D
�
1 2
1 �1

�
X D

�
x1
x2

�
B D

�
3
1

�
Motivation for what we now have in mind is provided by looking at the procedure
for solving the algebraic equation ax D b. The latter equation is solved by simply
multiplying both sides by the multiplicative inverse of a, if it exists. (Recall that the
multiplicative inverse of a nonzero number a is denoted a�1 (which is 1/a) and has the
property that a�1a D 1.) For example, if 3x D 11, then

3�1.3x/ D 3�1.11/ so x D
11
3

If we are to apply a similar procedure to the matrix equation

AX D B (1)

then we need a multiplicative inverse of A—that is, a matrix C such that CA D I. If we
have such a C, then we can simply multiply both sides of Equation (1) by C and get

C.AX/ D CB

.CA/X D CB

IX D CB

X D CB

This shows us that if there is a solution of AX D B, then the only possible solution
is the matrix CB. Since we know that a matrix equation can have no solutions, a unique
solution, or infinitely many solutions, we see immediately that this strategy cannot
possibly work unless the matrix equation has a unique solution. For CB to actually be a
solution, we require that A.CB/ D B, which is the same as requiring that .AC/B D B.
However, since matrix multiplication is not commutative, our assumption that CA D I
does not immediately give usAC D I. Consider thematrix products below, for example:h

1 0
i �1

0

�
D Œ1� D I1 but

�
1
0

� h
1 0

i
D

�
1 0
0 0

�
¤ I2

However, if A and C are square matrices of the same order n, then it can be proved
that AC D In follows from CA D In, so in this case we can finish the argument above
and conclude that CB is a solution, necessarily the only one, of AX D B. For a square
matrix A, when a matrix C exists satisfying CA D I, necessarily C is also square of the
same size as A and we say that it is an inverse matrix (or simply an inverse) of A.
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Definition
If A is a square matrix and there exists a matrix C such that CA D I, then C is called
an inverse of A, and A is said to be invertible.

EXAMPLE 1 Inverse of a Matrix

Let A D
�
1 2
3 7

�
and C D

�
7 �2
�3 1

�
. Since

CA D
�

7 �2
�3 1

� �
1 2
3 7

�
D

�
1 0
0 1

�
D I

matrix C is an inverse of A.
GAPPLY IT I

12. Secret messages can be encoded by
using a code and an encoding matrix.
Suppose we have the following code:

a b c d e f g h i j k l m
1 2 3 4 5 6 7 8 9 10 11 12 13

n o p q r s t u v w x y z
14 15 16 17 18 19 20 21 22 23 24 25 26

Let the encoding matrix be E. Then we
can encode a message by taking every
two letters of the message, converting
them to their corresponding numbers,
creating a 2 � 1 matrix, and then mul-
tiplying each matrix by E. The mes-
sage can be unscrambled with a decod-
ing matrix that is the inverse of the
coding matrix---that is, E�1. Determine
whether the encoding matrices"

1 3
2 4

#
and

"
�2 1:5
1 �0:5

#
are inverses of each other.

It can be shown that an invertible matrix has one and only one inverse; that is, an
inverse is unique. Thus, in Example 1, matrix C is the only matrix such that CA D I.
For this reason, we can speak of the inverse of an invertible matrix A, which we denote
by the symbol A�1. Accordingly, A�1A D I. Moreover, although matrix multiplication
is not generally commutative, it is a fact that A�1 commutes with A:

A�1A D I D AA�1

Returning to the matrix equation AX D B, Equation (1), we can now state the
following:

If A is an invertible matrix, then the matrix equation AX D B has the unique solution
X D A�1B.

The idea of an inverse matrix reminds us of inverse functions, studied in Sec-
tion 2.4. Inverse functions can be used to further understand inverse matrices. Let Rn

denote the set of n � 1 column matrices (and let Rm denote the set of m � 1 column
matrices). If A is an m � n matrix, then f.X/ D AX defines a function f W Rn � Rm.
If m D n, it can be shown that the function given by f.X/ D AX has an inverse, in
the sense of Section 2.4, if and only if A has an inverse matrix, A�1, in which case
f�1.X/ D A�1X.

There is a caution to be observed here. In general, for a function f to have an inverse,
say g, then we require both g ı f D I and f ı g D I, where I is the identity function. It
is a special fact about square matrices that CA D I implies also AC D I.

For general functions, if g ı f D I, it does
not follow that f ı g D I.

If f is a function that has an inverse, then any equation of the form f.x/ D b has a
unique solution, namely x D f�1.b/.

EXAMPLE 2 Using the Inverse to Solve a System

Solve the system �
x1 C 2x2 D 5
3x1 C 7x2 D 18

APPLY IT I
13. Suppose the encoding matrix

E D

"
1 3
2 4

#
was used to encode a message. Use the

code from Apply It 12 and the inverse

E�1
D

"
�2 1:5
1 �0:5

#
to decode the message, broken into the
following pieces:

28; 46; 65; 90

61; 82

59; 88; 57; 86

60; 84; 21; 34; 76; 102

Solution: In matrix form, we have AX D B, where

A D
�
1 2
3 7

�
X D

�
x1
x2

�
B D

�
5
18

�
In Example 1, we showed that

A�1
D

�
7 �2
�3 1

�
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Therefore,

X D A�1B D
�

7 �2
�3 1

� �
5
18

�
D

�
�1
3

�
so x1 D �1 and x2 D 3.

Now Work Problem 19 G

In order that the method of Example 2 be applicable to a system, two conditions
must be met:
1. The system must have the same number of equations as there are unknowns.

2. The coefficient matrix must be invertible.

As far as condition 2 is concerned, we caution that not all nonzero square matrices
are invertible. For example, if

A D
�
0 1
0 1

�
then �

a b
c d

� �
0 1
0 1

�
D

�
0 aC b
0 cC d

�
¤

�
1 0
0 1

�
for any values of a, b, c, and d. Hence, there is no matrix that, when postmultiplied by
A, yields the identity matrix. Thus, A is not invertible.

There is an interesting mechanical procedure that allows us, simultaneously, to
determine whether or not a matrix is invertible and find its inverse if it is so. The pro-
cedure is based on an observation whose proof would take us too far afield. First, recall
that for any matrix A there is a sequence E1;E2; : : : ;Ek of elementary row operations
that, when applied to A, produce a reduced matrix. In other words, we have

A
E1
� A1

E2
� A2��� �

Ek
� Ak

where Ak is a reduced matrix. We recall, too, that Ak is unique and determined by A
alone (even though there can be many sequences, of variable lengths, of elementary
row operations that accomplish this reduction). If A is square, say n�n, then wemight

Every identity matrix is a reduced matrix,
but not every (square) reduced matrix is
an identity matrix. For example, any zero
matrix 0 is reduced. have Ak D In, the n � n identity matrix.

Theorem
For square A and Ak as previously, A is invertible if and only if Ak D I. Moreover,
if E1;E2; : : : ;Ek is a sequence of elementary row operations that takes A to I, then
the same sequence takes I to A�1.

EXAMPLE 3 Determining the Invertibility of a Matrix

Apply the theorem to determine if the matrix

A D
�
1 0
2 2

�
is invertible.

Strategy We will augment A with a copy of the (2 � 2) identity matrix (just as
we have often augmented a matrix by a column vector). The result will be 2 � 4.
We will apply elementary row operations to the entire 2 � 4 matrix until the first n
columns form a reducedmatrix. If the result is I, then, by the theorem,A is invertible,
but because we have applied the operations to the entire 2 � 4 matrix, the last n
columns will, also by the theorem, be transformed from I to A�1, if A is in fact
invertible.
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Solution: We have

ŒA j I� D
�
1 0 1 0
2 2 0 1

�
�2R1CR2
�������!

�
1 0 1 0
0 2 �2 1

�
1
2R2

�������!

"
1 0 1 0
0 1 �1 1

2

#
D ŒI j B�

Since ŒA j I� transforms with I to the left of the augmentation bar, the matrix A is
invertible and the matrix B to the right of the augmentation bar is A�1. Specifically, we
conclude that

A�1
D

"
1 0
�1 1

2

#
Now Work Problem 1 G

This procedure is indeed a general one.

Method to Find the Inverse of a Matrix

If A is an n� n matrix, form the n� .2n/ matrix ŒA j I� and perform elementary row
operations until the first n columns form a reduced matrix. Assume that the result
is ŒR j B� so that we have

ŒA j I�! � � � ! ŒR j B�

If R D I, then A is invertible and A�1 D B. If R ¤ I, then A is not invertible,
meaning that A�1 does not exist (and the matrix B is of no particular interest to our
concerns here).

For the interested reader, we remark that
the matrix B in the method described is in
any event invertible and we always have
BA D R.

APPLY IT I
14. We could extend the encoding
scheme used in Apply It 12 to a 3 � 3
matrix, encoding three letters of a mes-
sage at a time. Find the inverses of the
following 3 � 3 encoding matrices:

E D

2643 1 2
2 2 2
2 1 3

375 F D

2642 1 2
3 2 3
4 3 4

375

EXAMPLE 4 Finding the Inverse of a Matrix

Determine A�1 if A is invertible.

a. A D

241 0 �2
4 �2 1
1 2 �10

35
Solution: Following the foregoing procedure, we have

[A 0 I] =

1 0 -2 1 0 0

4 -2 1 0 1 0

1 2 -10 0 0 1

1 0 -2 1 0 0

0 -2 9 -4 1 0

0 2 -8 -1 0 1

-4R1 + R2

-1R1 + R3

1 0 -2 1 0 0

0 1
9

2
2

1

2
0

0 2 -8 -1 0 1

1 0 -2 1 0 0

0 1
9

2
2

1

2
0

0 0 1 -5 1 1

1 0 0 -9 2 2

0 1 0
41

2
4

9

2

0 0 1 -5 1 1

-

-

-

--

-2R2 + R3

2R3 + R1

1

2
R2-

9

2
R3 + R2
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The first three columns of the last matrix form I. Thus, A is invertible and

A�1
D

264 �9 2 2
�

41
2 4 9

2
�5 1 1

375
b. A D

�
3 2
6 4

�
Solution: We have

ŒA j I� D
�
3 2 1 0
6 4 0 1

�
�2R1CR2
�������!

�
3 2 1 0
0 0 �2 1

�
1
3R1

�������!

"
1 2

3
1
3 0

0 0 �2 1

#
The first two columns of the last matrix form a reduced matrix different from I. Thus,
A is not invertible.

Now Work Problem 7 G

Now we will solve a system by using the inverse.

EXAMPLE 5 Using the Inverse to Solve a System

Solve the system 8<: x1 � 2x3 D 1
4x1 � 2x2 C x3 D 2
x1 C 2x2 � 10x3 D �1

by finding the inverse of the coefficient matrix.

APPLY IT I

15. A group of investors has $500,000
to invest in the stocks of three compa-
nies. Company A sells for $50 a share
and has an expected growth of 13% per
year. Company B sells for $20 per share
and has an expected growth of 15% per
year. Company C sells for $80 a share
and has an expected growth of 10%
per year. The group plans to buy twice
as many shares of Company A as of
Company C. If the group’s goal is 12%
growth per year, how many shares of
each stock should the investors buy?

Solution: In matrix form the system is AX D B, where

A D

241 0 �2
4 �2 1
1 2 �10

35
is the coefficient matrix. From Example 4(a),

A�1
D

264 �9 2 2
�

41
2 4 9

2
�5 1 1

375
The solution is given by X D A�1B:24x1x2

x3

35 D
264 �9 2 2
�

41
2 4 9

2
�5 1 1

375
24 1

2
�1

35 D 24 �7�17
�4

35
so x1 D �7; x2 D �17, and x3 D �4.

Now Work Problem 27 G

It can be shown that a system of n linear equations in n unknowns has a unique solu-
tion if and only if the coefficient matrix is invertible. Indeed, in the previous example
the coefficient matrix is invertible, and a unique solution does in fact exist. When the
coefficient matrix is not invertible, the system will have either no solution or infinitely
many solutions.
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While the solution of a system using a matrix inverse is very elegant, we must
provide a caution. Given AX D B, the computational work required to find A�1 is
greater than that required to reduce the augmented matrix of the system, namely ŒA j
B�. If there are several equations to solve, all with the same matrix of coefficients but
variable right-hand sides, say AX D B1, AX D B2, : : : , AX D Bk, then for suitablyThe method of reduction in Sections 6.4

and 6.5 is a faster computation than that
of finding a matrix inverse.

large k itmight be faster to compute A�1 than to do k reductions, but a numerical analyst
will in most cases still advocate in favour of the reductions. For even with A�1 in hand,
one still has to compute A�1B and, if the order of A is large, this too takes considerable
time.

EXAMPLE 6 A Coefficient Matrix That Is Not Invertible

Solve the system 8<: x � 2yC z D 0
2x � yC 5z D 0
xC yC 4z D 0

Solution: The coefficient matrix is241 �2 1
2 �1 5
1 1 4

35
Since 241 �2 1 1 0 0

2 �1 5 0 1 0
1 1 4 0 0 1

35! � � � !
26641 0 3 �

1
3

2
3 0

0 1 1 �
2
3

1
3 0

0 0 0 1 �1 1

3775
the coefficient matrix is not invertible. Hence, the system cannot be solved by inverses.
Instead, another method must be used. In Example 4(a) of Section 6.5, the solution was
found to be x D �3r; y D �r, and z D r, where r is any real number (thus, providing
infinitely many solutions).

Now Work Problem 31 G

PROBLEMS 6.6
In Problems 1–18, if the given matrix is invertible, find its inverse.

1.

"
6 1
7 1

#
2.

"
2 4
3 6

#

3.

"
2 2
2 2

#
4.

"
1 a
0 1

#
a in .�1;1/

5.

241 0 0
2 �4 0
0 1 2

35 6.

24 2 0 8
�1 4 0
2 1 0

35
7.

241 2 3
0 0 4
0 0 5

35 8.

242 0 0
0 0 0
0 0 �4

35
9.

241 0
0 0
0 1

35 10.

240 0 0
0 1 0
0 0 0

35
11.

241 2 3
0 1 2
0 0 1

35 12.

241 2 �1
0 1 4
1 �1 2

35

13.

24 7 0 �2
0 1 0
�3 0 1

35 14.

242 �3 1
2 0 1
4 �6 1

35
15.

24 1 2 0
0 1 3
�1 0 1

35 16.

24�1 2 �3
2 1 0
4 �2 5

35
17.

241 2 3
1 3 5
1 5 12

35 18.

242 �1 3
0 2 0
2 1 1

35
19. Solve AX D B if

A�1
D

"
2 3
1 5

#
and B D

"
3
7

#
20. Solve AX D B if

A�1
D

242 0 1
0 3 0
1 0 4

35 and B D

24�20
4

35
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For Problems 21–34, if the coefficient matrix of the system is
invertible, solve the system by using the inverse. If not, solve the
system by the method of reduction.

21.

(
6xC 5y D 2
xC y D �3 22.

(
2x C 4y D 5
�x C 3y D �2

23.

(
3xC y D 5
3x � y D 7 24.

(
6xC y D 2
7xC y D 7

25.

(
xC 3y D 7
3x � y D 1 26.

(
2xC 6y D 8
3xC 9y D 7

27.

8<: xC 2yC z D 4
3xC z D 2
x � yC z D 1

28.

8<:xC yC z D 6
x � yC z D �1
x � y � z D 4

29.

8<:xC yC z D 3
xC y � z D 4
x � y � z D 5

30.

8<:x C y C z D 6
x C y � z D 0
x � y C z D 2

31.

8<: xC 3yC 3z D 7
2xC yC z D 4
xC yC z D 4

32.

8<: xC 3yC 3z D 7
2xC yC z D 4
xC yC z D 3

33.

8̂̂<̂
:̂

w C 2yC z D 4
w � x C 2z D 12
2wC x C z D 12
wC 2xC yC z D 12

34.

8̂̂<̂
:̂

x � 3y � z D �1
w C y C D 0
�w C 2x � 2y � z D 6

y C z D 4

For Problems 35 and 36, find .I � A/�1 for the given matrix A.

35. A D

"
�3 �1
�2 4

#
36. A D

"
�3 2
4 3

#
37. Auto Production Solve the following problems by using
the inverse of the matrix involved.

(a) An automobile factory produces two models, A and B. Model
A requires 1 labor hour to paint and 1

2 labor hour to polish;
model B requires 1 labor hour for each process. During each hour
that the assembly line is operating, there are 100 labor hours
available for painting and 80 labor hours for polishing. How many
of each model can be produced each hour if all the labor hours
available are to be utilized?

(b) Suppose each model A requires 10 widgets and 14 shims and
each model B requires 7 widgets and 10 shims. The factory can
obtain 800 widgets and 1130 shims each hour. How many cars of
each model can it produce while using all the parts available?

38. If A D

24a 0 0
0 b 0
0 0 c

35, where a, b, c ¤ 0, show that

A�1
D

241=a 0 0
0 1=b 0
0 0 1=c

35
39. (a) If A and B are invertible matrices with the same order,
show that .AB/�1 D B�1A�1. [Hint: Consider .B�1A�1/.AB/.]
(b) If

A�1
D

"
1 3
2 4

#
and B�1

D

"
1 1
1 5

#
find .AB/�1.

40. If A is invertible, it can be shown that .AT/�1 D .A�1/T.
Verify this identity for

A D

"
4 1
2 �3

#
41. A matrix P is said to be orthogonal if P�1 D PT. Is the

matrix P D
1
5

"
3 �4
4 3

#
orthogonal?

42. Secret Message A friend has sent a friend a secret message
that consists of three row matrices of numbers as follows:

R1 D Œ33 87 70� R2 D Œ57 133 20�

R3 D Œ38 90 33�

Both friends have committed the following matrix to memory (the
first friend used it to code the message):

A D

24 1 2 �1
2 5 2
�1 �2 2

35
Decipher the message by proceeding as follows:
(a) Calculate the three matrix products R1A�1, R2A�1, and R3A�1.
(b) Assume that the letters of the alphabet correspond to the
numbers 1 through 26, replace the numbers in the preceding three
matrices by letters, and determine the message.

43. Investing A group of investors decides to invest $500,000
in the stocks of three companies. Company D sells for $60 a share
and has an expected growth of 16% per year. Company E sells for
$80 per share and has an expected growth of 12% per year.
Company F sells for $30 a share and has an expected growth of
9% per year. The group plans to buy four times as many shares of
company F as of company E. If the group’s goal is 13.68% growth
per year, how many shares of each stock should the investors buy?

44. Investing The investors in Problem 43 decide to try a new
investment strategy with the same companies. They wish to buy
twice as many shares of company F as of company E, and they
have a goal of 14.52% growth per year. How many shares of each
stock should they buy?
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Objective 6.7 Leontief’s Input--Output Analysis
To use the methods of this chapter to
analyze the production of sectors of an
economy.

Input–output matrices, which were developed by Wassily W. Leontief, codify the
supply and demand interrelationships that exist among the various sectors of an econ-
omy during some time period. The phrase input–output is used because the matrices
show the values of outputs of each industry that are sold as inputs to each industry and
for final use by consumers. Leontief won the 1973 Nobel Prize in economic science
for the development of the “input–output” method and its applications to economic
problems.

The Basic Equation
Suppose that a simple economy has three interrelated sectors, which we will label 1,
2, and 3. These might, for example, be agriculture, energy, and manufacturing. For
any sector j, production of one unit of output of j will typically require inputs from all
sectors of the economy, including j itself. If we write Aij for the number of units of input
from sector i required to produce one unit of output from sector j, then the numbers Aij

determine a 3 � 3 matrix A. For example, suppose that

A D

2664
2
5

1
2

3
10

1
5

1
10

1
10

1
5

1
5

1
10

3775
Reading down the first column of A, we see that to produce one unit of output from
sector 1 requires 2

5 of a unit of input from sector 1, 1
5 of a unit of input from sector 2,

and 1
5 of a unit of input from sector 3. Similarly, the requirements for sectors 2 and 3

can be read from columns 2 and 3, respectively. There may well be external demands
on the economy, which is to say, for each sector, a demand for a certain number of units
of output that will not be used as inputs for any of the sectors 1, 2, and 3. Such external
demands might be in the form of exports or consumer needs. From the point of view of
this model, the only attribute of external demands that concerns us is that they do not
overlap with the demands described by matrix A.

It is important to avoid confusing A with
its transpose, a common mistake in this
context.

Suppose further that there is an external demand for 80 units output from sector 1,
160 units output from sector 2, and 240 units output from sector 3. We will write

D D

24 80
160
240

35
for this external demand so that, as shown, the entry in row i is the external demand for
sector i. A key question that arises now is that of determining the levels of production
for each of sectors 1, 2, and 3 so that the external demand D can be satisfied. We must
bear in mind that production must satisfy not only the external demand but also the
requirements imposed by the data that make up matrix A. For each sector, some of its
output must be directed as input for the three sectors of the economy (including itself)
and some of it must be directed toward the corresponding component of D. This leads
us to the important conceptual equation:

production D internal demandC external demand (1)

Let Xi, for i D 1; 2; 3, denote the production required of sector i to satisfy
Equation (1). Then production can be regarded as the matrix

X D

24X1
X2
X3

35
and Equation (1) becomes

X D internal demandC D (2)
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To understand internal demand we should begin by realizing that it will have three
components, say C1, C2, and C3, where Ci is the amount of production from sector
i consumed by production of X. Writing C for the 3 � 1 matrix whose ith row is Ci,
Equation (2) now becomes

X D CC D (3)

Observe that C1 will have to account for the output of sector 1 used in producing
X1 units of sector 1 output, plus X2 units of sector 2 output, plus X3 units of sector
3 output. It takes A11 units of 1 to produce one unit of 1, so production of X1 units
of 1 requires A11X1 units of 1. It takes A12 units of 1 to produce one unit of 2, so
production of X2 units of 2 requires A12X2 units of 1. It takes A13 units of 1 to produce
one unit of 3, so production of X3 units of 3 requires A13X3 units of 1. It follows that we
must have

C1 D A11X1 C A12X2 C A13X3

Making similar arguments for C2 and C3, we deduce

C2 D A21X1 C A22X2 C A23X3

C3 D A31X1 C A32X2 C A33X3

and the last three equalities are easily seen to combine to give

C D AX

Substituting C D AX in Equation (3), we obtain the following equation and its
equivalents:

X D AXC D

X � AX D D

IX � AX D D

.I � A/X D D

The last equation displayed is of the form MX D D, so to solve for production X we
need only reduce the augmented matrix ŒI � A j D�.

Although it is not entirely standard, we will refer to the matrix A in our discussion
as the Leontief matrix. The matrix I� A is the coefficient matrix of the system whose
solution provides the production X needed to satisfy the external demand D.

EXAMPLE 1 Input--Output Analysis

For the Leontief matrix A and the external demand D of this section, complete the
numerical determination of the production needed to satisfy D.

Solution: We have only to write the augmented matrix of the equation .I�A/X D D,
which is evidently 2664

3
5 �

1
2 �

3
10 80

�
1
5

9
10 �

1
10 160

�
1
5 �

1
5

9
10 240

3775
and reduce it. Using the techniques of Section 6.4, we have

�

24 6 �5 �3 800
�2 9 �1 1600
�2 �2 9 2400

35� 242 2 �9 �2400
0 11 �10 �800
0 �11 24 8000

35� 242 2 �9 �2400
0 11 �10 �80
0 0 14 7200

35
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from which we deduce X �

24719:84394:81
514:29

35. We remark that, although we have rounded

our answer, it does follow from the last displayed augmented matrix that the system
has a unique solution.

Now Work Problem 1 G

An Application of Inverses
In Example 1 the solution is unique, and this is typical of examples that involve a
realistic Leontief matrix A. In other words, it is typical that the coefficient matrix I�A
is invertible. Thus, the typically unique solution of

.I � A/X D D

is typically obtainable as

X D .I � A/�1D

Wecautioned in Section 6.6 that finding the inverse of a coefficientmatrix is usually
not a computationally efficient way of solving a system of linear equations.We also said
that if there are several systems to be solved, all with the same coefficient matrix, then
the calculation of its inversemight in this case be useful. Such a possibility is presented
by Leontief’s model.

For a given subdivision of an economy into n sectors, it is reasonable to expect
that the n� n Leontief matrix A will remain constant for a reasonable interval of time.
It follows that the coefficient matrix I � A will also remain constant during the same
interval. During this time interval, planners may want to explore a variety of demands
D1, D2, : : :, Dk and, for any one of these, Dl, determine the production Xl required to
satisfy Dl. With .I � A/�1 in hand, the planner has only to calculate

Xl D .I � A/�1Dl

(rather than to solve .I � A/Xl D Dl by reducing ŒI � A j Dl�).

Finding the Leontief Matrix
The Leontief matrix is often determined from data of the kind that we now present.
A hypothetical example for an oversimplified two-sector economy will be given. As
before, we note that the two sectors can be thought of as being from agriculture, energy,
manufacturing, steel, coal, or the like. The other production factors row consists of
costs to the respective sectors, such as labor, profits, and so on. The external demand
entry here could be consumption by exports and consumers. The matrix we first con-
sider is somewhat larger than the Leontief matrix:

Consumers (input)
Sector Sector External
1 2 Demand

Producers (output): Totals
Sector 1 240 500 460 1200
Sector 2 360 200 940 1500

Other Production Factors 600 800 —
Totals 1200 1500

2664
3775

Each sector appears in a row and in a column. The row of a sector shows the pur-
chases of the sector’s output by all the sectors and by the external demand. The entries
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represent the value of the products and might be in units of millions of dollars of prod-
uct. For example, of the total output of sector 1, 240 went as input to sector 1 itself
(for internal use), 500 went to sector 2, and 460 went directly to the external demand.
The total output of sector 1 is the sum of the sector demands and the final demand:
.240C 500C 460 D 1200/.

Each sector column gives the values of the sector’s purchases for input from each
sector (including itself) as well as what it spent for other costs. For example, in order
to produce its 1200 units, sector 1 purchased 240 units of output from itself, 360 units
of output from 2, and 600 units of other costs such as labor.

Note that for each sector the sum of the entries in its row is equal to the sum of the
entries in its column. For example, the value of the total output of sector 1 (1200) is
equal to the value of the total input to sector 1.

An important assumption of input–output analysis is that the basic structure of the
economy remains the same over reasonable intervals of time. This basic structure is
found in the relative amounts of inputs that are used to produce a unit of output. These
are found from particular tables of the kind above, as we now describe. In produc-
ing 1200 units of product, sector 1 purchases 240 units from sector 1, 360 units from
sector 2, and spends 600 units on other costs. Thus, for each unit of output, sector 1

spends 240
1200 D

1
5 on sector 1,

360
1200 D

3
10 on sector 2, and

600
1200 D

1
2 on other costs.

Combining these fixed ratios of sector 1 with those of sector 2, we can give the input
requirements per unit of output for each sector:

1 2

1

2

Other

2666664
240
1200
360
1200

600
1200

500
1500
200
1500

800
1500

3777775D
1 22666664
1
5
3
10

1
2

1
3
2
15

8
15

3777775
1

2

Other

The sum of each column is 1, and because of this we do not need the last row. Each
entry in the bottom row can be obtained by summing the entries above it and subtracting
the result from 1. If we delete the last row, then the ijth entry of the resulting matrix
is the number of units of sector i’s product needed to produce one unit of sector j’s
product. It follows that this matrix,

A D

"
1
5

1
3

3
10

2
15

#
is the Leontief matrix for the economy.

Now, suppose the external demand for sector 1 changes from 460 to 500 and the
external demand for sector 2 changes from 940 to 1200. We would like to know how
production will have to change to meet these new external demands. But we have
already seen how to determine the production levels necessary to meet a given external
demand D when we know the Leontief matrix A. Now, with

D D
�

500
1200

�
we have only to solve .I � A/X D D, which in the present case will be effected by
reducing

A D

24 4
5 �

1
3 500

�
3
10

13
15 1200

35
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or, since A is only 2 � 2, calculating X D .I � A/�1D on a graphing calculator. With a
TI-83 Plus,

X D .I � A/�1D D
�
1404:49
1870:79

�
is easily obtained. Notice too that we can also update the “Other Production Factors”
row of the data with which we started. From the row we discarded of the relativized
data, we know that 1

2 of sector 1’s output and
8
15 of sector 2’s output must be directed

to other production factors, so the unrelativized data will now be

�
1
2
.1404:49/;

8
15
.1870:79/

�
� Œ702:25; 997:75�

The issue of computational efficiency can be a serious one. While we treat this
topic of input–output analysis with examples of economies divided into two or three
sectors, a model with 20 sectors might be more realistic—in which case the Leontief
matrix would have 400 entries.

EXAMPLE 2 Input--Output Analysis

Given the input–output matrix

Sector External
1 2 3 Demand

Sector: 1
2
3

Other

266664
240
120
120

120

180
36
72

72

144
48
48

240

36
156
240

—

377775
suppose external demand changes to 77 for 1, 154 for 2, and 231 for 3. Find the pro-
duction necessary to satisfy the new external demand. (The entries are in millions of
dollars.)

Strategy By examining the data, we see that to produce 600 units of 1 required
240 units of 1, 120 units of 2, and 120 units of 3. It follows that to produce one unit
of 1 required 240

600 D
2
5 units of 1,

120
600 D

1
5 units of 2, and

120
600 D

1
5 units of 3. The

numbers 2
5 ,

1
5 , and

1
5 constitute, in that order, the first column of the Leontief matrix.

Solution: We separately add the entries in the first three rows. The total values of
output for sectors 1, 2, and 3 are 600, 360, and 480, respectively. To get the Leontief
matrix A, we divide the sector entries in each sector column by the total value of output
for that sector:

A D

26664
240
600

180
360

144
480

120
600

36
360

48
480

120
600

72
360

48
480

37775 D
26664

2
5

1
2

3
10

1
5

1
10

1
10

1
5

1
5

1
10

37775
The external demand matrix is

D D

24 77
154
231

35
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The result of evaluating .I � A/�1D on a TI-83 Plus is24692:5380
495

35
Now Work Problem 7 G

PROBLEMS 6.7
1. A very simple economy consists of two sectors: agriculture
and forestry. To produce one unit of agricultural products requires
1
4 of a unit of agricultural products and

1
12 of a unit of forestry

products. To produce one unit of forestry products requires 2
3 of a

unit of agricultural products and no units of forestry products.
Determine the production levels needed to satisfy an external
demand for 400 units of agriculture and 600 units of forestry
products.

2. An economy consists of three sectors: coal, steel, and
railroads. To produce one unit of coal requires 1

10 of a unit of coal,
1
10 of a unit of steel, and

1
10 of a unit of railroad services. To

produce one unit of steel requires 1
3 of a unit of coal,

1
10 of a unit

of steel, and 1
10 of a unit of railroad services. To produce one unit

of railroad services requires 1
4 of a unit of coal,

1
3 of a unit of steel,

and 1
10 of a unit of railroad services. Determine the production

levels needed to satisfy an external demand for 300 units of coal,
200 units of steel, and 500 units of railroad services.
3. Suppose that a simple economy consists of three sectors:
agriculture (A), manufacturing (M), and transportation (T).
Economists have determined that to produce one unit of A
requires 1

18 units of A,
1
9 units of B, and

1
9 units of C, while

production of one unit of M requires 3
16 units of A,

1
4 units of M,

and 3
16 units of T, and production of one unit of T requires 1

15 units

of A, 13 units of M, and 1
6 units of T. There is an external demand

for 40 units of A, 30 units of M, and no units of T. Determine
the production levels necessary to meet the external demand.

4. Given the input–output matrix

Industry

Steel Coal
Final

Demand

Industry: Steel
Coal

Other

2664 200
400

600

500
200

800

500
900

—

3775
find the output matrix if final demand changes to 600 for steel and
805 for coal. Find the total value of the other production costs that
this involves.

5. Given the input–output matrix

Industry

Education Government
Final

Demand
Industry: Education

Government

Other

264 40
120

40

120
90

90

40
90

—

375

find the output matrix if final demand changes to (a) 200 for
education and 300 for government; (b) 64 for education and 64
for government.

6. Given the input–output matrix

Industry

Grain Fertilizer Cattle
Final

Demand

Industry: Grain
Fertilizer

Cattle

Other

266664
15
25
50

10

30
30
40

20

45
60
60

15

10
5
30

—

377775

(a) find the Leontief matrix. (b) If external demand changes to 15
for grain, 10 for fertilizer, and 35 for cattle, write the augmented
matrix whose reduction will give the necessary production levels
needed to meet these new demands.

7. Given the input–output matrix

Industry

Electric Final
Water Power Agriculture Demand

Industry: Water
Electric Power

Agriculture

Other

266664
100
100
300

500

400
80
160

160

240
480
240

240

260
140
500

—

377775

find the output matrix if final demand changes to 500 for water,
150 for electric power, and 700 for agriculture. Round the entries
to two decimal places.

8. Given the input–output matrix

Industry

Government Agriculture Manufacturing
Final

Demand
Industry: Government

Agriculture

Manufacturing

Other

2666664
400
200
200

200

200
400
100

300

200
100
300

400

200
300
400

—

3777775

with entries in billions of dollars, find the output matrix for the
economy if the final demand changes to 300 for government, 350
for agriculture, and 450 for manufacturing. Round the entries to
the nearest billion dollars.



Haeussler-50501 M07_HAEU1107_14_SE_C06 November 27, 2017 15:14

292 Chapter 6 Matrix Algebra

9. Given the input–output matrix in Problem 8, find the output
matrix for the economy if the final demand changes to 250 for
government, 300 for agriculture, and 350 for manufacturing.
Round the entries to the nearest billion dollars.

10. Given the input–output matrix in Problem 8, find the output
matrix for the economy if the final demand changes to 300 for
government, 400 for agriculture, and 500 for manufacturing.
Round the entries to the nearest billion dollars.

Chapter 6 Review
Important Terms and Symbols Examples
Section 6.1 Matrices

matrix size entry, Aij row vector column vector Ex. 1, p. 242
equality of matrices transpose of matrix, AT zero matrix, 0 Ex. 3, p. 244

Section 6.2 Matrix Addition and Scalar Multiplication
addition and subtraction of matrices scalar multiplication Ex. 4, p. 249

Section 6.3 Matrix Multiplication
matrix multiplication identity matrix, I power of a matrix Ex. 12, p. 261
matrix equation, AX D B Ex. 13, p. 262

Section 6.4 Solving Systems by Reducing Matrices
coefficient matrix augmented coefficient matrix Ex. 3, p. 269
elementary row operation equivalent matrices reduced matrix Ex. 4, p. 270
parameter Ex. 5, p. 271

Section 6.5 Solving Systems by Reducing Matrices (Continued)
homogeneous system nonhomogeneous system trivial solution Ex. 4, p. 277

Section 6.6 Inverses
inverse matrix invertible matrix Ex. 1, p. 280

Section 6.7 Leontief’s Input–Output Analysis
input–output matrix Leontief matrix Ex. 1, p. 287

Summary
A matrix is a rectangular array of numbers enclosed within
brackets. There are a number of special types of matrices,
such as zero matrices, identity matrices, square matrices, and
diagonal matrices. Besides the operation of scalar multiplica-
tion, there are the operations of matrix addition and subtrac-
tion, which apply to matrices of the same size. The product
AB is defined when the number of columns of A is equal to
the number of rows of B. Although matrix addition is com-
mutative, matrix multiplication is not. By using matrix mul-
tiplication, we can express a system of linear equations as the
matrix equation AX D B.

A system of linear equations may have a unique solution,
no solution, or infinitely many solutions. The main method
of solving a system of linear equations using matrices is by
applying the three elementary row operations to the aug-
mented coefficient matrix of the system until an equivalent

reduced matrix is obtained. The reduced matrix makes any
solutions to the system obvious and allows the detection of
nonexistence of solutions. If there are infinitely many solu-
tions, the general solution involves at least one parameter.

Occasionally, it is useful to find the inverse of a (square)
matrix. The inverse (if it exists) of a square matrix A is found
by augmenting A with I and applying elementary row opera-
tions to ŒA j I� until A is reduced resulting in ŒR j B� (with R
reduced). IfR D I, thenA is invertible andA�1 D B. IfR ¤ I,
then A is not invertible, meaning that A�1 does not exist. If
the inverse of an n� n matrix A exists, then the unique solu-
tion to AX D B is given by X D A�1B. If A is not invertible,
the system has either no solution or infinitely many solutions.

Our final application of matrices dealt with the interrela-
tionships that exist among the various sectors of an economy
and is known as Leontief’s input–output analysis.

Review Problems
In Problems 1–8, simplify.

1. 2

"
3 4
�5 1

#
� 3

"
1 0
2 4

#

2. 2

"
�2 �3
6 8

#
� 4

"
1 0
0 2

#
3.

241 7
2 �3
1 0

35"1 0 �2
0 6 1

#

4. Œ2 3 7�

242 3
0 �1
5 2

35
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5.

"
2 3
�1 3

#0@"2 3
7 6

#
�

"
1 8
4 4

#1A
6. �

0@"2 0
7 8

#
C 2

"
0 �5
6 �4

#1A
7. 2

"
0 3
1 1

#2
Œ4 2�T

8. 1
3

"
3 0
3 6

#0@"1 0
1 3

#T1A2

In Problems 9–12, compute the required matrix if

A D

"
1 1
�1 2

#
B D

"
1 0
0 2

#
9. .2A/T � 3I2 10. A.2I/ � A0T 11. B3 C I5

12. .AB/T � BTAT

In Problems 13 and 14, solve for x and y.

13.

"
5
7

#
Œx� D

"
15
y

#
14.

"
1 x
2 y

#"
2 1
x 3

#
D

"
3 4
3 y

#
In Problems 15–18, reduce the given matrices.

15.

"
1 4
5 8

#
16.

"
0 0 7
0 5 9

#

17.

242 1 4
1 0 1
4 1 6

35 18.

240 0 0 1
0 0 0 0
1 0 0 0

35
In Problems 19–22, solve each of the systems by the method of
reduction.

19.

(
2x � 5y D 0
4xC 3y D 0 20.

(
x � yC 2z D 3
3xC yC z D 5

21.

8<: xC yC 2z D 1
3x � 2y � 4z D �7
2x � y � 2z D 2

22.

8<:xC 2yC 3z D 1
xC 4yC 6z D 2
xC 6yC 9z D 3

In Problems 23–26, find the inverses of the matrices.

23.

"
1 5
3 9

#
24.

"
0 1
1 0

#

25.

241 3 �2
4 1 0
3 �2 2

35 26.

24 5 0 0
�5 2 1
�5 1 3

35
In Problems 27 and 28, solve the given system by using the inverse
of the coefficient matrix.

27.

8<:xC y D 3
yC z D 4
xC z D 5

28.

8<: 5x D 3
�5x C 2y C z D 0
�5x C y C 3z D 2

29. Let A D

240 1 1
0 0 1
0 0 0

35. Find the matrices A2, A3, A1000, and
A�1 (if the inverse exists).

30. A D

"
2 0
0 4

#
. Show that .AT/�1 D .A�1/T.

31. A consumer wishes to supplement his vitamin intake by
exactly 13 units of vitamin A, 22 units of vitamin B, and 31 units
of vitamin C per week. There are three brands of vitamin capsules
available. Brand I contains 1 unit each of vitamins A, B, and C per
capsule; brand II contains 1 unit of vitamin A, 2 of B, and 3 of C;
and brand III contains 4 units of A, 7 of B, and 10 of C.
(a)What combinations of capsules of brands I, II, and III will
produce exactly the desired amounts?
(b) If brand I capsules cost 5 cents each, brand II 7 cents each, and
brand III 20 cents each, what combination will minimize the
consumer’s weekly cost?

32. Suppose that A is an invertible n � n matrix.
(a) Prove that Ak is invertible, for any integer k, where we employ
the convention that A0 D I.
(b) Prove that if B and C are n � n matrices such that
ABA�1 D ACA�1, then B D C.
(c) If A2 D A, find A.

33. If A D

"
10 �3
4 7

#
and B D

"
8 6
�7 �3

#
, find 3AB � 4B2.

34. Solve the system8<:7:9x � 4:3yC 2:7z D 11:1
3:4xC 5:8y � 7:6z D 10:8
4:5x � 6:2y � 7:4z D 15:9

by using the inverse of the coefficient matrix. Round the answers
to two decimal places.

35. Given the input–output matrix

Industry

A B
Final

Demand

Industry: A

B

Other

26641015
9

20

14

5

4

10

—

3775
find the output matrix if final demand changes to 10 for A and 5
for B. (Data are in tens of billions of dollars.)
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7 Linear Programming

7.1 Linear Inequalities in Two
Variables

7.2 Linear Programming

7.3 The Simplex Method

7.4 Artificial Variables

7.5 Minimization

7.6 The Dual

Chapter 7 Review

L inear programming sounds like something involving the writing of computer
code. But while linear programming is often done on computers, the
“programming” part of the name actually comes from World War II–era
military terminology, in which training, supply, and unit-deployment plans

were called programs. Each programwas a solution to a problem in resource allocation.
For example, suppose that military units in a combat theater need diesel fuel. Each

unit has a certain number of tanks, trucks, and other vehicles; each unit uses its vehi-
cles to accomplish an assigned mission; and each unit’s mission has some relation to
the overall goal of winning the campaign. What fuel distribution program will best
contribute to overall victory?

Solving this problem requires quantifying its various elements. Counting gallons
of fuel and numbers of each type of vehicle is easy, as is translating gallons of fuel into
miles a vehicle can travel. Quantifying the relation between vehicle miles and unit mis-
sion accomplishment includes identifying constraints: the maximum gallons per load
a tanker truck can carry, the minimum number of miles each unit must travel to reach
its combat objective, and so on. Additional quantitative factors include probabilities,
such as a unit’s chances of winning a key engagement if it maneuvers along one route
of travel rather than another.

Quantifying complicated real-world problems in this way is the province of a sub-
ject called operations research. Linear programming, one of the oldest and still one
of the most important tools of operations research, is used when a problem can be
described using equations and inequalities that are all linear. In practice, many phe-
nomena that are not linear can be sufficiently well approximated by linear functions,
over a restricted domain, to allow use of the techniques of this chapter.

294
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Objective 7.1 Linear Inequalities in Two Variables
To represent geometrically the solution
of a linear inequality in two variables
and to extend this representation to
a system of linear inequalities.

Suppose a consumer receives a fixed income of $60 per week and uses it all to purchase
products A and B. If A costs $2 per kilogram and B costs $3 per kilogram, then if our
consumer purchases x kilograms of A and y kilograms of B, his cost will be 2xC 3y.
Since he uses all of his $60, x and y must satisfy

2xC 3y D 60; where x; y � 0

The solutions of this equation, called a budget equation, give the possible ordered pairs
of amounts of A and B that can be purchased for $60. The graph of the equation is the
budget line in Figure 7.1. Note that .15; 10/ lies on the line. This means that if 15 kg
of A are purchased, then 10 kg of B must be bought, for a total cost of $60.

30

20

2x + 3y = 60 (x, y Ú 0)

(x, y)

(15, 10)

x

y

FIGURE 7.1 Budget line.

On the other hand, suppose the consumer does not necessarily wish to spend all of
the $60. In this case, the possible ordered pairs are described by the inequality

2xC 3y � 60; where x; y � 0 (1)

When inequalities in one variable were discussed in Chapter 1, their solutions
were represented geometrically by intervals on the real-number line. However, for an
inequality in two variables, like Inequality (1), the solution is usually represented by
a region in the coordinate plane. We will find the region corresponding to (1) after
considering such inequalities in general.

Definition
A linear inequality in the variables x and y is an inequality that can be written in
one of the forms

axC byC c < 0 axC byC c � 0 axC byC c > 0 axC byC c � 0

where a, b, and c are constants, and not both a and b are zero.

Geometrically, the solution (or graph) of a linear inequality in x and y consists of
all points (x, y) in the plane whose coordinates satisfy the inequality. For example, a
solution of xC 3y < 20 is the point .�2; 4/, because substitution gives

�2C 3.4/ < 20;

10 < 20; which is true.

Clearly, there are infinitely many solutions, which is typical of every linear inequality.

y

x

y 7 mx + b

y = mx + b

y 6 mx + b

FIGURE 7.2 A nonvertical line
determines two half-planes.

To consider linear inequalities in general, we first note that the graph of a nonver-
tical line y D mxC b separates the plane into three distinct parts (see Figure 7.2):

1. the line itself, consisting of all points .x; y/ whose coordinates satisfy the equation
y D mxC b;

2. the region above the line, consisting of all points .x; y/ whose coordinates satisfy
the inequality y > mxC b (this region is called an open half-plane);

3. the open half-plane below the line, consisting of all points .x; y/ whose coordinates
satisfy the inequality y < mxC b.

a
x

y

0

x 6 a x 7 a

x = a

FIGURE 7.3 A vertical line
determines two half-planes.

In the situation where the strict inequality “<” is replaced by “�”, the solution of y �
mxC b consists of the line y D mxC b, as well as the half-plane below it. In this case,
we say that the solution is a closed half-plane. A similar statement can be made when
“>” is replaced by “�.” For a vertical line x D a (see Figure 7.3), we speak of a half-
plane to the right .x > a/ of the line or to its left .x < a/. Since any linear inequality
(in two variables) can be put into one of the forms we have discussed, we can say that
the solution of a linear inequality must be a half-plane.
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x

y

y 6 5 - 2x
2x + y = 5

5

2

5

FIGURE 7.4 Graph of 2xC y < 5.

x

y

(x0, y0)

x0

y0

5 - 2x0

FIGURE 7.5 Analysis of point satisfying y < 5 � 2x.

x

y

y … 5 - 2x

FIGURE 7.6 Graph of y � 5 � 2x.

To apply these facts, we will solve the linear inequality

2xC y < 5

From our previous discussion, we know that the solution is a half-plane. To find it, we
begin by replacing the inequality symbol by an equality sign and then graphing the
resulting line, 2xC y D 5. This is easily done by choosing two points on the line—for
instance, the intercepts . 52 ; 0/ and .0; 5/. (See Figure 7.4.) Because points on the line do
not satisfy the “<” inequality, we used a dashed line to indicate that the line is not part
of the solution. We must now determine whether the solution is the half-plane above
the line or the one below it. This can be done by solving the inequality for y. Once y is
isolated, the appropriate half-plane will be apparent. We have

y < 5 � 2x

From the aforementioned statement 3, we conclude that the solution consists of
the half-plane below the line. Part of the region that does not satisfy this inequality is

Geometrically, the solution of a linear
inequality in one variable is an interval
on the line, but the solution of a linear
inequality in two variables is a region in
the plane.

shaded in Figure 7.4. It will be our custom, generally, when graphing inequalities to
shade the part of the whole plane that does not satisfy the condition. Thus, if .x0; y0/ is
any point in the unshaded region, then its ordinate y0 is less than the number 5 � 2x0.
(See Figure 7.5.) For example, .�2;�1/ is in the region, and

�1 < 5 � 2.�2/

�1 < 9

If, instead, the original inequality had been y � 5 � 2x, then the line y D 5 � 2x
would have been included in the solution. We would indicate its inclusion by using a
solid line rather than a dashed line. This solution, which is a closed half-plane, is shown
in Figure 7.6. Keep in mind that a solid line is included in the solution, and a dashed
line is not.

APPLY IT I
1. To earn some extra money, you
make and sell two types of refrigera-
tor magnets, type A and type B. You
have an initial start-up expense of $50.
The production cost for type A is $0.90
per magnet, and the production cost for
type B is $0.70 per magnet. The price
for type A is $2.00 per magnet, and the
price for type B is $1.50 per magnet. Let
x be the number of type A and y be the
number of type B produced and sold.
Write an inequality describing revenue
greater than cost. Solve the inequality
and describe the region. Also, describe
what this result means in terms of mag-
nets.

EXAMPLE 1 Solving a Linear Inequality

Find the region defined by the inequality y � 5.
x

y

y … 5

5

FIGURE 7.7 Graph of
y � 5.

Solution: Since x does not appear, the inequality is assumed to be true for all values
of x. The region consists of the line y D 5, together with the half-plane below it. (See
Figure 7.7, where the solution is the unshaded part together with the line itself.)

Now Work Problem 7 G
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EXAMPLE 2 Solving a Linear Inequality

Solve the inequality 2.2x � y/ < 2.xC y/ � 4.

Solution: We first solve the inequality for y, so that the appropriate half-plane is obvi-
ous. The inequality is equivalent to

4x � 2y < 2xC 2y � 4

4x � 4y < 2x � 4

�4y < �2x � 4
dividing both sides by �4 and reversing the sense of the

y >
x
2
C 1

inequality

Using a dashed line, we now sketch y D .x=2/ C 1 by noting that its intercepts are
(0, 1) and .�2; 0/. Because the inequality symbol is >, we shade the half-plane below
the line. Think of the shading as striking out the points that you do not want. (See
Figure 7.8.) Each point in the unshaded region is a solution.

Now Work Problem 1 G

x

y

y 7     + 1
x

2

-2

1

FIGURE 7.8 Graph of
y > x

2 C 1.

Systems of Inequalities
The solution of a system of inequalities consists of all points whose coordinates simul-
taneously satisfy all of the given inequalities. Geometrically, it is the region that is
common to all the regions determined by the given inequalities. For example, let us
solve the system 8̂<̂

:
2xC y > 3

x � y

2y � 1 > 0

We first rewrite each inequality so that y is isolated. This gives the equivalent system8̂<̂
:
y > �2xC 3

y � x

y > 1
2

Next, we sketch the corresponding lines y D �2xC 3, y D x, and y D 1
2 , using dashed

lines for the first and third, and a solid line for the second. We then shade the region
that is below the first line, the region that is above the second line, and the region that
is below the third line. The region that is unshaded (Figure 7.9) together with any solid
line boundaries are the points in the solution of the system of inequalities.

The point where the graphs of y D x and
y D �2xC 3 intersect is not included in
the solution. Be sure to understand why.

x

y

y =
1

2

y 7
1

2

y 7 -2x + 3

y … x

y = -2x + 3

y = x

FIGURE 7.9 Solution of a system of linear
inequalities.
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EXAMPLE 3 Solving a System of Linear InequalitiesAPPLY IT I
2. A store sells two types of cam-
eras. In order to cover overhead, it must
sell at least 50 cameras per week, and
in order to satisfy distribution require-
ments, it must sell at least twice as many
of type I as type II. Write a system
of inequalities to describe the situation.
Let x be the number of type I that the
store sells in a week and y be the number
of type II that it sells in a week. Find the
region described by the system of linear
inequalities.

Solve the system �
y � �2xC 10
y � x � 2

Solution: The solution consists of all points that are simultaneously on or above the
line y D �2x C 10 and on or above the line y D x � 2. It is the unshaded region in
Figure 7.10.

x

y

y Ú -2x + 10

y Ú x - 2

y = -2x + 10

y = x -2

FIGURE 7.10 Solution of a
system of linear inequalities.

Now Work Problem 9 G

EXAMPLE 4 Solving a System of Linear Inequalities

Find the region described by 8<:2xC 3y � 60
x � 0
y � 0

Solution: This system relates to Inequality (1) at the beginning of the section. The first

inequality is equivalent to y � � 2
3xC 20. The last two inequalities restrict the solution

to points that are both on or to the right of the y-axis and also on or above the x-axis.
The desired region is unshaded in Figure 7.11 (and includes the bounding lines).

30

20
y Ú 0

2x + 3y … 60

2x + 3y = 60

x

y

x Ú 0

FIGURE 7.11 Solution of a
system of linear inequalities.

Now Work Problem 17 G

PROBLEMS 7.1
In Problems 1–24, solve the inequalities.

1. 3xC 4y > 2 2. 3x � 2y � 12

3. 6x � 3y � 12 4. y > 6 � 2x

5. �x � 2y � 4 6. 3xC 5y � 12

7. 3xC y < 0 8. 8xC 4y < 48

9.
�
3x � 2y < 6
x � 3y > 9 10.

�
2xC 3y > �6
3x � y < 6

11.
�
2xC 3y � 6

x � 0 12.
�
2y � 3x < 6

x < 0

13.
�
3xC y � 3
xC y � 2 14.

�
x � y < 1
y � x < 1

15.
�
2x � 2 � y

2x � 3 � 2y 16.
�
2y < 4xC 2
y < 2xC 1

17.

8<:x � y > 4
x < 2
y > �5

18.

8̂<̂
:
xC 2y � 8
2xC y � 8
x � 2
y � 2

19.

8<:y < 2xC 4
x � �2
y < 1

20.

8<:2xC y � 6
x � y
y � 5xC 2

21.

8<: xC y > 1
3x � 5 � y

y < 2x
22.

8<:2x � 3y > �123xC y > �6
y > x
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23.

8̂<̂
:
5xC y � 10
xC y � 5

x � 0
y � 0

24.

8<:5y � 2x � 10
4x � 6y � 12

y � 0

If a consumer wants to spend no more than P dollars to purchase
quantities x and y of two products having prices of p1 and p2
dollars per unit, respectively, then p1xC p2y � P, where
x, y � 0. In Problems 25 and 26, find geometrically the possible
combinations of purchases by determining the solution
of this system for the given values of p1; p2, and P.

25. p1 D 6, p2 D 4, P D 20 26. p1 D 7, p2 D 3, P D 25

27. If a manufacturer wishes to purchase a total of no more than
100 lb of product Z from suppliers A and B, set up a system of
inequalities that describes the possible combinations of quantities
that can be purchased from each supplier. Sketch the solution in
the plane.

28. Manufacturing The Giant Mobile Phone Company
produces two models of cell phones: the Petit at 18 cm and the

Pocket-Size at 24 cm. Let x be the number of Petit models and y
the number of Pocket-Size models produced at the Lunenburg
factory per week. The factory can produce at most 850 Petit and
Pocket-Size models combined in a week. Moreover, each Petit has
2 cameras and each Pocket-Size has 4 cameras but Giant Mobile
can only source 1800 cameras per week. Write inequalities to
describe this situation.

29. Manufacturing A chair company produces two models of
chairs. The Sequoia model takes 3 worker-hours to assemble and
1
2 worker-hour to paint. The Saratoga model takes 2 worker-hours
to assemble and 1 worker-hour to paint. The maximum number of
worker-hours available to assemble chairs is 240 per day, and the
maximum number of worker-hours available to paint chairs is
80 per day. Write a system of linear inequalities to describe the
situation. Let x represent the number of Sequoia models produced
in a day and y represent the number of Saratoga models
produced in a day. Find the region described by this system of
linear inequalities.

Objective 7.2 Linear Programming
To state the nature of linear
programming problems, to introduce
terminology associated with them, and
to solve them geometrically.

Sometimes we want to maximize or minimize a function, subject to certain restrictions
on the natural domain of the function. We recall from Chapter 2 that the domain of a
function f W X� Y, without specific instructions to the contrary, is the set of all x in X
for which the rule f is defined. But we also saw in Chapter 2 that we frequently want to
restrict the values of x further than is mathematically required, so as to capture aspects
of a practical problem. For example, prices are required to be nonnegative numbers and
quantities should often be nonnegative integers. The problems in this chapter all deal
with further restrictions on the domain that are called constraints, and in this chapter
they will be prescribed by what are called linear inequalities as studied in the previous
section. For example, a manufacturer may want to maximize a profit function, subject
to production restrictions imposed by limitations on the use of machinery and labor,
with the latter given by linear inequalities.

We will now consider how to solve such problems when the function to be maxi-
mized or minimized is linear. A linear function in x and y has the form

P D P.x; y/ D axC by

where a and b are constants. In the first instance, it should be noted that a linear function

This is a more restrictive use of the word
linear than we have employed thus far!
Notice that we do not have a (nonzero)
constant term in P.

in x and y is a particular kind of function of two variables as introduced in Section 2.8,
and the natural domain for such a function is the set .�1;1/�.�1;1/ of all ordered
pairs .x; y/with both x and y in .�1;1/. However, because of the kind of applications
we have in mind, the domain is nearly always restricted to Œ0;1/ � Œ0;1/, which is
to say that we restrict to x � 0 and y � 0. We will soon give examples of the further
linear constraints that appear in what will be called linear programming problems.

In a linear programming problem, the function to be maximized or minimized is
called the objective function. Its domain is defined to be the set of all solutions to

A great deal of terminology is used in
discussing linear programming. It is a
good idea to master this terminology as
soon as it is introduced.

the system of linear constraints that are given in the problem. The set of all solutions
to the system of linear constraints is called the set of feasible points. Typically, there
are infinitely many feasible points (points in the domain of the objective function),
but the aim of the problem is to find a point that optimizes the value of the objective
function. To optimize is either tomaximize or tominimize depending on the nature of
the problem.

We now give an example of a linear programming problem and a geometric
approach to solve such problems, when the objective function is a linear function of two
variables, as defined above. However, as soon as we have seen a few examples of such
problems, it becomes clear that in practice we need to be able to solve similar problems
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in many variables. Our geometric approach is not really practical for even three vari-
ables. In Section 7.3, a matrix approach will be discussed that essentially encodes the
geometric approach numerically, in a way that generalizes to many variables. It is to
be noted that the main matrix tools we will use are the elementary row operations and
parametrized solutions.

We consider the following problem.A company produces two types of can openers:
manual and electric. Each requires in its manufacture the use of three machines: A, B,
and C. Table 7.1 gives data relating to the manufacture of these can openers. Each
manual can opener requires the use of machine A for 2 hours, machine B for 1 hour,
and machine C for 1 hour. An electric can opener requires 1 hour on A, 2 hours on
B, and 1 hour on C. Furthermore, suppose the maximum numbers of hours available
per month for the use of machines A, B, and C are 180, 160, and 100, respectively.
The profit on a manual can opener is $4, and on an electric can opener it is $6. If the
company can sell all the can openers it can produce, how many of each type should it
make in order to maximize the monthly profit?

Table 7.1

Manual Electric Hours Available

A 2 hr 1 hr 180

B 1 hr 2 hr 160

C 1 hr 1 hr 100

Profit/Unit $4 $6

To solve the problem, let x and y denote the number of manual and electric can
openers, respectively, that are made in a month. Since the number of can openers made
is not negative,

x � 0 and y � 0

For machine A, the time needed for working on x manual can openers is 2x hours, and
the time needed for working on y electric can openers is 1y hours. The sum of these
times cannot be greater than 180, so

2xC y � 180

Similarly, the restrictions for machines B and C give

xC 2y � 160 and xC y � 100

The profit is a function of x and y and is given by the profit function

P D 4xC 6y

Summarizing, we want to maximize the objective function

P D 4xC 6y (1)

subject to the condition that x and y must be a solution of the system of constraints:

2xC y � 180 (2)

xC 2y � 160 (3)

xC y � 100 (4)

x � 0 (5)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

y � 0 (6)

Thus, we have a linear programming problem. Constraints (5) and (6) are called
nonnegativity conditions. The region simultaneously satisfying constraints (2)–(6) is
unshaded in Figure 7.12. Each point in this region represents a feasible point, and the
set of all these points is called the feasible region. We remark that, with obvious termi-
nology, the feasible region contains corner points where the constraint lines intersect.
We have labeled these as A, B, C, D, and E. We repeat that the feasible region is just
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2x + y = 180

x + y = 100

x + 2y = 160

x  (Manual)

y

40 80 120 160

40

80

120

160

0

A

B

CD

E

Feasible
region

(Electric)

FIGURE 7.12 Feasible region.

x
0

y

40 80 120 160

40

80

100

D

E

A

B

C

P = 300

Isopro!t
lines

Maximum
pro!t line

P = 600  ( y =  -   x + 100)
2
3

FIGURE 7.13 Isoprofit lines and the feasible region.

another word for the domain of the objective function, in the context of linear program-
ming problems. Although there are infinitely many feasible points, we must find one
at which the objective function assumes a maximum value.

Since the objective function equation, P D 4xC 6y, is equivalent to

y D �
2
3
xC

P
6

it defines a family of parallel lines, one for each possible value of P, each having a slope
of �2=3 and y-intercept (0, P=6). For example, if P D 600, then we obtain the line

y D �
2
3
xC 100

shown in Figure 7.13. This line, called an isoprofit line, is an example of a level curve
as introduced in Section 2.8. It gives all possible pairs .x; y/ that yield the profit, $600.
Note that this isoprofit line has no point in common with the feasible region, whereas
the isoprofit line for P D 300 has infinitely many such points. Let us look for the
member of the family of parallel lines that contains a feasible point and whose P-value
is maximum. This will be the line whose y-intercept is farthest from the origin (giving
a maximum value of P) and that has at least one point in common with the feasible
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region. It is not difficult to observe that such a line will contain the corner point A. Any
isoprofit line with a greater profit will contain no points of the feasible region.

From Figure 7.12, we see that A lies on both the line x C y D 100 and the line
xC 2y D 160. Thus, its coordinates may be found by solving the system�

xC y D 100
xC 2y D 160

This gives x D 40 and y D 60. Substituting these values into the equation P D 4xC6y,
we find that the maximum profit subject to the constraints is $520, which is obtained
by producing 40 manual can openers and 60 electric can openers per month.

We have finished our problem! It is well to note that there are two important parts
to the conclusion: (1) the optimum value, in this case the maximum profit of $520,
and (2) the feasible point at which the optimum value is attained, in this case .40; 60/,
where the first coordinate is “manual” and the second is “electric”.

While Figures 7.12 and 7.13 are easily at hand, let us suppose that the profit func-
tion P D P.x; y/ had been such that the isoprofit lines were parallel to the line segment
joining corner points A and B in Figures 7.12 and 7.13. (The interested reader may wish
to determine values a and b in P D axC by for which the isoprofit lines do have this
property.) In that case, the isoprofit line that contains the line segment AB would be the
member of the family of parallel lines that contains a feasible point and whose P-value
is maximum. In that case, each point on ABwould provide an optimal solution. We will
have a little more to say about this possibility ofmultiple optimal solutions below.

It is of course possible that the constraints of a linear programming problem are
such that in the process of imposing them we end up “shading” the entire x; y-plane.
In this case the set of feasible points, the feasible region, is the empty set, ;, and
any linear programming problem with an empty feasible region has no solution. If
the feasible region contains at least one point, then we say that the feasible region
is nonempty. There is another extreme situation to consider. In the problem we just
completed about manufacturing can openers, the points in the feasible region could be
enclosed by a circle—for example, the one centered at the origin with radius 100 will
do. When the feasible region can be enclosed by some circle we say that the feasible
region is bounded. Sometimes the constraints of a linear programming problem give
an unbounded feasible region. This means that no circle can be drawn to enclose all
of the feasible region. In other words, an unbounded feasible region is one that contains
points arbitrarily far from the origin. A linear programming problemwith an unbounded
feasible region may fail to have an optimum solution.

However, with these possibilities in mind, it can be shown that

A linear function defined on a nonempty, bounded feasible region has both a max-
imum value and a minimum value. Moreover, each of these values can be found at
a corner point.

We hasten to add that in practical linear programming problems that arise in busi-
ness applications, one is interested in either finding a maximum value of, say, a profit
function or a minimum value of, say, a cost function. In these situations the unwanted
extreme value is often trivial. The reader should see, by inspection of Figure 7.13, that
the profit function P of the can opener problem attains a minimum value, of 0, at the
corner point D, with coordinates .0; 0/.

This statement gives us a way of finding an optimum solution without drawing iso-
profit lines, as we did previously: We simply evaluate the objective function at each of
the corner points of the feasible region and then choose the corner points at which the
function attains the desired optimum value. (We remark that if there are two adjacent
corner points at which the objective function attains an optimal value then that optimal
value is attained at all points on the line segment joining the corner points in question.
But note that this situation is still detected by our solution strategy.) Of course, evaluat-
ing the objective function at the corner points requires that we first find the coordinates
of the corner points.
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For example, in Figure 7.13 with corner pointsA,B,C,D, andE, we foundA before
to be .40; 60/. To find B, we see from Figure 7.12 that we must solve 2x C y D 180
and xC y D 100 simultaneously. This gives the point B D .80; 20/. In a similar way,
we obtain all the corner points:

A D .40; 60/ B D .80; 20/ C D .90; 0/

D D .0; 0/ E D .0; 80/

We now evaluate the objective function P D 4xC 6y at each point:

P.A/ D P.40; 60/ D 4.40/C 6.60/ D 520

P.B/ D P.80; 20/ D 4.80/C 6.20/ D 440

P.C/ D P.90; 0/ D 4.90/C 6.0/ D 360

P.D/ D P.0; 0/ D 4.0/C 6.0/ D 0

P.E/ D P.0; 80/ D 4.0/C 6.80/ D 480

Thus, P has a maximum value of 520 at A, where x D 40 and y D 60 (and a minimum
value of 0 at D, where x D 0 and y D 0).

The optimum solution to a linear programming problem is given by the optimum
value of the objective function and the point where the optimum value of the objective
function occurs.

EXAMPLE 1 Solving a Linear Programming Problem

Maximize the objective function P D 3xC y subject to the constraints

2xC y � 8

2xC 3y � 12

x � 0

y � 0

2x + y = 8

2x + 3y = 12

x 

y

4

4

8

6

A B

D

C

A = (0, 0)

B = (4, 0)

C = (3, 2)

D = (0, 4)

FIGURE 7.14 A, B, C, and D are
corner points of the feasible region.

Solution: In Figure 7.14, the feasible region is nonempty and bounded. Thus, P attains
a maximum at one of the four corner points. The coordinates of A, B, andD are obvious
on inspection. To find the coordinates of C, we solve the equations 2x C y D 8 and
2xC 3y D 12 simultaneously, which gives x D 3; y D 2. Thus,

A D .0; 0/ B D .4; 0/ C D .3; 2/ D D .0; 4/

Evaluating P at these points, we obtain

P.A/ D P.0; 0/ D 3.0/C 0 D 0

P.B/ D P.4; 0/ D 3.4/C 0 D 12

P.C/ D P.3; 2/ D 3.3/C 2 D 11

P.D/ D P.0; 4/ D 3.0/C 4 D 4

Hence, the maximum value of P, subject to the constraints, is 12, and it occurs when
x D 4 and y D 0.

Now Work Problem 1 G

We remark that, for a linear programming problem with an unbounded feasible
region, if the problem has an optimal solution then that solution does occur at a corner
point. However, we caution that, for an unbounded feasible region, there may not be
an optimal solution.
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PROBLEMS 7.2
1. Maximize

P D 5xC 7y

subject to

2xC 3y � 45

x � 3y � 2

x; y � 0

2. Maximize
P D 3xC 2y

subject to
xC y � 70

xC 3y � 240

xC 3y � 90

x; y � 0

3. Maximize

Z D 4x � 6y

subject to

y � 7

3x � y � 3

xC y � 5

x; y � 0

4. Minimize

C D 2xC y

subject to

x � y � 0

x � 4

x � 10

5. Maximize

Z D 4x � 10y

subject to

x � 4y � 4

2x � y � 2

x; y � 0

6. Minimize

Z D 20xC 30y

subject to

2xC y � 10

3xC 4y � 24

8xC 7y � 56

x; y � 0

7. Minimize

C D 5xC y

subject to

2x � y � �2

4xC 3y � 12

x � y D �1

x; y � 0

8. Maximize

Z D 0:4x � 0:2y

subject to

2x � 5y � �3

2x � y � 5

3xC y D 6

x; y � 0

9. Minimize

C D xC y

subject to

xC 2y � 4

2xC y � 4

x; y � 0

10. Minimize

C D 2xC 2y
subject to

xC 2y � 80

3xC 2y � 160

5xC 2y � 200

x; y � 0

11. Maximize
Z D 10xC 2y

subject to

xC 2y � 4

x � 2y � 0

x; y � 0

12. Minimize
Z D �2xC y

subject to
x � 2

3xC 5y � 15

x � y � �3

x; y � 0
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13. Production for Maximum Profit A toy manufacturer
preparing a production schedule for two new toys, trucks and
spinning tops, must use the information concerning its
construction times given in the following table:

Machine A Machine B Finishing

Truck 2 hr 3 hr 5 hr

Spinning Top 1 hr 1 hr 1 hr

For example, each truck requires 2 hours on machine A.
The available employee hours per week are as follows: for
operating machine A, 80 hours; for B, 50 hours; for finishing,
70 hours. If the profits on each truck and spinning top are $7 and
$2, respectively, how many of each toy should be made per week
in order to maximize profit? What is the maximum profit?

14. Production for Maximum Profit A manufacturer
produces two types of external hard drives: Mymemory and
Mystorage. During production, the devices require the services of
both the assembly and packaging departments. The numbers of
hours needed in each department are provided in the following
table:

Mymemory Mystorage

Assembly 3 hr 7 hr

Packaging 2 hr 3 hr

The assembly department runs for 21 hours per day, and the
packaging department runs for 12 hours per day. If the company
makes a profit of $9 on each Mymemory unit and $14 on each
Mystorage unit, how many of each should it make each day to
maximize its profit and what is the resulting profit?

15. Diet Formulation A diet is to contain at least 16 units of
carbohydrates and 20 units of protein. Food A contains 2 units
of carbohydrates and 4 of protein; food B contains 2 units of
carbohydrates and 1 of protein. If food A costs $1.20 per unit and
food B costs $0.80 per unit, how many units of each food should
be purchased in order to minimize cost? What is the minimum
cost?

16. Fertilizer Nutrients A produce grower is purchasing
fertilizer containing three nutrients: A, B, and C. The minimum
weekly requirements are 80 units of A, 120 of B, and 240 of C.
There are two popular blends of fertilizer on the market. Blend I,
costing $8 a bag, contains 2 units of A, 6 of B, and 4 of C.
Blend II, costing $10 a bag, contains 2 units of A, 2 of B, and
12 of C. How many bags of each blend should the grower
buy each week to minimize the cost of meeting the nutrient
requirements?

17. Mineral Extraction A company extracts minerals from
ore. The numbers of pounds of minerals A and B that can be
extracted from each ton of ores I and II are given in the following
table, together with the costs per ton of the ores:

Ore I Ore II

Mineral A 80 lb 160 lb

Mineral B 140 lb 40 lb

Cost per ton $60 $80

If the company must produce at least 4000 lb of A and 2000 lb
of B, how many tons of each ore should be processed in order to
minimize cost? What is the minimum cost?

18. Production Scheduling An oil company that has two
refineries needs at least 8000, 14,000, and 5000 barrels of low-,
medium-, and high-grade oil, respectively. Each day, Refinery I
produces 2000 barrels of low-, 3000 barrels of medium-, and
1000 barrels of high-grade oil, whereas Refinery II produces 1000
barrels each of low- and high- and 2000 barrels of medium-grade
oil. If it costs $25,000 per day to operate Refinery I and $20,000
per day to operate Refinery II, how many days should each
refinery be operated to satisfy the production requirements
at minimum cost? What is the minimum cost? (Assume that a
minimum cost exists.)

19. Construction Cost A chemical company is designing a
plant for producing two types of polymers, P1 and P2. The plant
must be capable of producing at least 520 units of P1 and 330
units of P2 each day. There are two possible designs for the basic
reaction chambers that are to be included in the plant. Each
chamber of type A costs $300,000 and is capable of producing 40
units of P1 and 20 units of P2 per day; type B is a more expensive
design, costing $400,000, and is capable of producing 40 units of
P1 and 30 units of P2 per day. Because of operating costs, it is
necessary to have at least five chambers of each type in the plant.
How many chambers of each type should be included to minimize
the cost of construction and still meet the required production
schedule?

20. Pollution Control Because of new federal regulations on
pollution, a chemical company has introduced into its plant a new,
more expensive process to supplement or replace an older process
in the production of a particular chemical. The older process
discharges 25 grams of carbon dioxide and 50 grams of
particulate matter into the atmosphere for each liter of chemical
produced. The new process discharges 15 grams of carbon dioxide
and 40 grams of particulate matter into the atmosphere for each
liter produced. The company makes a profit of 40 cents per liter
and 15 cents per liter on the old and new processes, respectively.
If the government allows the plant to discharge no more than
12,525 grams of carbon dioxide and no more than 20,000 grams
of particulate matter into the atmosphere each day, how many
liters of chemical should be produced daily, by each process, to
maximize daily profit? What is the maximum daily profit?
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21. Construction Discount The highway department has
decided to add exactly 300 km of highway and exactly 200 km
of expressway to its road system this year. The standard price for
road construction is $2 million per kilometer of highway and
$8 million per kilometer of expressway. Only two contractors,
company A and company B, can do this kind of construction, so
the entire 500 km of road must be built by these two companies.
However, company A can construct at most 400 km of roadway
(highway and expressway), and company B can construct
at most 300 km. For political reasons, each company must
be awarded a contract with a standard price of at least $300 million
(before discounts). Company A offers a discount of $2000 per
kilometer of highway and $6000 per kilometer of expressway;
company B offers a discount of $3000 for each kilometer of
highway and $5000 for each kilometer of expressway.

(a) Let x and y represent the number of kilometers of highway
and expressway, respectively, awarded to company A. Show that
the total discount received from both companies is given by

D D 1900 � xC y

where D is in thousands of dollars.
(b) The highway department wishes to maximize the total
discount D. Show that this problem is equivalent to the following
linear programming problem, by showing exactly how the first six
constraints arise:

Maximize D D 1900 � xC y

subject to

xC y � 400

xC y � 500

2xC 8y � 300

2xC 8y � 1900

x � 300

y � 200

x; y � 0

(c) Find the values of x and y that maximize D.

In Problems 22–26, round answers to two decimal places.

22. Maximize

Z D 4xC y

subject to

6xC 2y � 12

2xC 3y � 6

x; y � 0

23. Maximize

Z D 14x� 3y

subject to

y � 12:5 � 4x

y � 9:3 � x

y � 4:7C 0:8x

x; y � 0

24. Minimize

P D 3:4y � 2:7x

subject to

8:6xC 2:5y � 33

2:3xC y � 6:9

2:5x � y � 0:3

x; y � 0

25. Minimize

Z D 17:3x � 14:4y

subject to

0:73x � y � �2:4

1:22x � y � �5:1

0:45x � y � �12:4

x; y � 0

26. Minimize

C D 6xC 14y

subject to

14xC 7y � 43

3xC 7y � 21

�xC y � �5

x; y � 0

Objective 7.3 The Simplex Method
To show how the simplex method is
used to solve a standard maximum
linear programming problem. This
method enables the solution of
problems that cannot be solved
geometrically.

Until now, we have solved linear programming problems by a geometric method. This
method is not practical when the number of variables increases to three, and is not
possible for four or more variables. Now we will look at a different technique—the
simplexmethod—whose name is linked inmore advanced discussions to a geometrical
object called a simplex.

The simplex method begins with a feasible corner point and tests whether the value
of the objective function at this point is optimal. If it is not, the method leads to another
corner point, which is at least as good — and usually better. If this new point does not
produce an optimal value, we repeat the procedure until the simplex method does lead
to an optimal value, if one exists.
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Besides being efficient, the simplex method has other advantages. For one, it is
completely mechanical. It uses matrices, elementary row operations, and basic arith-
metic. Moreover, no graphs need to be drawn; this allows us to solve linear program-
ming problems having any number of constraints and any number of variables.

In this section, we consider only so-called standard maximum linear program-
ming problems. In other sections wewill consider less restrictive problems. A standard
maximum problem is one that can be put in the following form:

Standard Maximum Linear Programming Problem
Maximize the linear function Z D c1x1C c2x2C� � �C cnxn subject to the constraints

a11x1 C a12x2 C � � � C a1nxn � b1
a21x1 C a22x2 C � � � C a2nxn � b2
� � � �

� � � �

� � � �

am1x1 C am2x2 C � � � C amnxn � bm

9>>>>>=>>>>>;
(1)

where x1; x2; : : : ; xn and b1; b2; : : : ; bm are nonnegative.

It is helpful to formulate the problem in matrix notation so as to make its structure
more memorable. Let

C D
�
c1 c2 � � � cn

�
and X D

2666664
x1
x2
�

�

�

xn

3777775
Then the objective function can be written as

Z D Z.X/ D CXZ D Z.X/ just recalls that Z is a function
of X.

Now if we write

A D

2666664
a11 a12 � � � a1n
a21 a22 � � � a2n
� � �

� � �

� � �

am1 am2 � � � amn

3777775 and B D

2666664
b1
b2
�

�

�

bm

3777775
then we can say that a standard maximum linear programming problem is one that can
be put in the form

Note that B � 0 is a condition on the data
of the problem and is not a constraint
imposed on the variable X.

Maximize Z D CX

subject to
�
AX � B
X � 0

where B � 0

(Matrix inequalities are to be understood like matrix equality. The comparisons
refer to matrices of the same size and the inequality is required to hold for all corre-
sponding entries.)

Other types of linear programming problems will be discussed in Sections 7.4
and 7.5.
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Note that one feasible point for a standard maximum linear programming problem
is always x1 D 0; x2 D 0; : : : ; xn D 0 and that at this feasible point the value of the
objective function Z is 0. Said otherwise, (the n� 1 matrix) 0 is feasible for a standard
problem and Z.0/ D 0 (where the last 0 is the number (1 � 1 matrix) 0).

We now apply the simplex method to the problem in Example 1 of Section 7.2,
which can be written

The procedure that we follow here will
be outlined later in this section.

maximize Z D 3x1 C x2
subject to the constraints

2x1 C x2 � 8 (2)

and

2x1 C 3x2 � 12 (3)

and

x1 � 0; x2 � 0

This problem is of standard form. We begin by expressing Constraints (2) and (3) as
equations. In (2), 2x1Cx2 will equal 8 if we add some nonnegative number s1 to 2x1Cx2,
so that

2x1 C x2 C s1 D 8 for some s1 � 0

We call s1 a slack variable, since it makes up for the “slack” on the left side of (2)
We mentioned “slack” variables in
Section 1.2 in the process of introducing
inequalities.

to give us equality. Similarly, Inequality (3) can be written as an equation by using the
slack variable s2; we have

2x1 C 3x2 C s2 D 12 for some s2 � 0

The variables x1 and x2 are called decision variables.
Now we can restate the problem in terms of equations:

Maximize Z D 3x1 C x2 (4)

subject to

2x1 C x2 C s1 D 8 (5)

and

2x1 C 3x2 C s2 D 12 (6)

where x1; x2; s1, and s2 are nonnegative.

From Section 7.2, we know that the optimal value occurs at a corner point of the
feasible region in Figure 7.15. At each of these points, at least two of the variables
x1; x2; s1, and s2 are 0, as the following listing indicates:

x1

x2

D

C

A B

2x1 + 3x2 = 12

2x1 + x2 = 8

(0, 4)

(4, 0)(0, 0)

(3, 2)

FIGURE 7.15 Optimal value occurs at a corner point of the feasible region.
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1. At A, we have x1 D 0 and x2 D 0 (and s1 D 8 and s2 D 12).

2. At B, x1 D 4 and x2 D 0. But from Equation (5), 2.4/C 0C s1 D 8. Thus, s1 D 0.
(And from Equation (6) and x1 D 4 and x2 D 0 we get s2 D 4.)

3. At C, x1 D 3 and x2 D 2. But from Equation (5), 2.3/C2C s1 D 8. Hence, s1 D 0.
From Equation (6), 2.3/C 3.2/C s2 D 12. Therefore, s2 D 0.

4. At D, x1 D 0 and x2 D 4. From Equation (6), 2.0/C 3.4/C s2 D 12. Thus, s2 D 0.
(And from Equation (5) and x1 D 0 and x2 D 4, we get s1 D 4.)

We remarked earlier that there is a great
deal of terminology used in the
discussion of linear programing. In
particular, there are many types of
variables. It is important to understand
that the variables called decision
variables x1; x2; : : : ; xn remain decision
variables throughout the solution of a
problem, and the same remark applies to
the slack variables s1; s2; : : : ; sm. In the
process of examining the corner points
of the feasible region, we find solutions
to the system in which at least n of the
nCm variables are 0. Precisely n of these
are called nonbasic variables, and the
remaining m are called basic variables.
Which m of the nC m variables are basic
depends on the corner point under
consideration. Among other things, the
procedure that we are describing provides
a mechanical way of keeping track of
which variables, at any time, are basic.

It can also be shown that any solution to Equations (5) and (6), such that at least
two of the four variables x1; x2; s1, and s2 are zero, corresponds to a corner point. Any
such solution where at least two of these variables are zero is called a basic feasible
solution abbreviated BFS. This number, 2, is determined by the number n of decision
variables; 2 in the present example. For any particular BFS, the variables held at 0 are
called nonbasic variables, and all the others are called basic variables for that BFS.
Since there is a total of n C m variables, the number of basic variables in the general
system that arises from (1) is m, the number of constraints (other than those expressing
nonnegativity). Thus, for the BFS corresponding to item 3 in the preceding list, s1 and
s2 are the nonbasic variables and x1 and x2 are the basic variables, but for the BFS
corresponding to item 4, the nonbasic variables are x1 and s2 and the basic variables
are x2 and s1.

We will first find an initial BFS, and hence, an initial corner point, and then deter-
mine whether the corresponding value of Z can be increased by a different BFS. Since
x1 D 0 and x2 D 0 is a feasible point for this standard linear programming problem,
let us initially find the BFS such that the decision variables x1 and x2 are nonbasic and,
hence, the slack variables s1 and s2 are basic. That is, we choose x1 D 0 and x2 D 0
and find the corresponding values of s1; s2, and Z. This can be done most conveniently
by matrix techniques, based on the methods developed in Chapter 6.

If we write Equation (4) as �3x1 � x2 C Z D 0, then Equations (5), (6), and (4)
form the linear system 8<: 2x1 C x2 C s1 D 8

2x1 C 3x2 C s2 D 12
�3x1 � x2 CZD 0

in the variables x1, x2, s1, s2, and Z. Thus, in general, when we add the objective func-
tion to the system that provides the constraints, we have mC 1 equations in nCmC 1
unknowns. In terms of an augmented coefficient matrix, called the initial simplex
table, we have

24
B x1 x2 s1 s2 Z R
s1 2 1 1 0 0 8
s2 2 3 0 1 0 12
Z �3 �1 0 0 1 0

35
It is convenient to be generous with labels for matrices that are being used as simplex
tables. Thus, the columns in thematrix to the left of the vertical bar are labeled, naturally
enough, by the variables to which they correspond. We have chosen R as a label for
the column that provides the Right sides of the system of equations. We have chosen
B to label the list of row labels. The first two rows correspond to the constraints, and
the last row, called the objective row, corresponds to the objective equation—thus, the
horizontal separating line. Notice that if x1 D 0 and x2 D 0, then, from rows 1, 2, and
3, we can directly read off the values of s1; s2, and Z: s1 D 8; s2 D 12, and Z D 0.
Thus, the rows of this initial simplex table are labeled to the left by s1, s2, and Z. We
recall that, for the feasible point x1 D 0, x2 D 0, s1 and s2 are the basic variables. So
the column heading B can be understood to stand for Basic variables. Our initial basic
feasible solution is

x1 D 0 x2 D 0 s1 D 8 s2 D 12

at which Z D 0.
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Let us see if we can find a BFS that gives a larger value of Z. The variables x1 and
x2 are nonbasic in the preceding BFS. We will now look for a BFS in which one of
these variables is basic while the other remains nonbasic. Which one should we choose
as the basic variable? Let us examine the possibilities. From the Z-row of the preceding
matrix, Z D 3x1Cx2. If x1 is allowed to become basic, then x2 remains at 0 and Z D 3x1;
thus, for each one-unit increase in x1, Z increases by three units. On the other hand, if x2
is allowed to become basic, then x1 remains at 0 and Z D x2; hence, for each one-unit
increase in x2, Z increases by one unit. Consequently, we get a greater increase in the
value of Z if x1, rather than x2, enters the basic-variable list. In this case, we call x1 the
entering variable. Thus, in terms of the simplex table below (which is the same as
the matrix presented earlier, except for some additional labeling), the entering variable
can be found by looking at the “most negative” of the numbers enclosed by the brace
in the Z-row. (By most negative, we mean the negative indicator having the greatest
magnitude.) Since that number is �3 and appears in the x1-column, x1 is the entering
variable. The numbers in the brace are called indicators.

entering
variable
#24

B x1 x2 s1 s2 Z R
s1 2 1 1 0 0 8
s2 2 3 0 1 0 12
Z �3 �1 0 0 1 0

35
„ ƒ‚ …

indicators

Let us summarize the information that can be obtained from this table. It gives a
BFS where s1 and s2 are the basic variables and x1 and x2 are nonbasic. The BFS is
s1 D 8 (the right-hand side of the s1-row), s2 D 12 (the right-hand side of the s2-row),
x1 D 0, and x2 D 0. The �3 in the x1-column of the Z-row indicates that if x2 remains
0, then Z increases three units for each one-unit increase in x1. The�1 in the x2-column
of the Z-row indicates that if x1 remains 0, then Z increases one unit for each one-unit
increase in x2. The column in which the most negative indicator, �3, lies gives the
entering variable x1—that is, the variable that should become basic in the next BFS.

In our newBFS, the larger the increase in x1 (from x1 D 0), the larger is the increase
in Z. Now, by how much can we increase x1? Since x2 is still held at 0, from rows 1 and
2 of the simplex table, it follows that

s1 D 8 � 2x1

and

s2 D 12 � 2x1

Since s1 and s2 are nonnegative, we have

8 � 2x1 � 0

and

12 � 2x1 � 0

From the first inequality, x1 � 8
2 D 4; from the second, x1 � 12

2 D 6. Thus, x1 must

be less than or equal to the smaller of the quotients 8
2 and

12
2 , which is

8
2 . Hence, x1

can increase at most by 4 and since we want to maximize Z, it is desirable to increase
x1 from 0 to 4. However, in a BFS, at least two variables must be 0. We already have
x2 D 0. Since s1 D 8 � 2x1, s1 must be 0 if we make x1 D 4. Therefore, we have a
new BFS with x1 replacing s1 as a basic variable. That is, s1 will depart from the list
of basic variables in the previous BFS and will be nonbasic in the new BFS. We say
that s1 is the departing variable for the previous BFS. In summary, for our new BFS,
we want x1 and s2 as basic variables with x1 D 4 and x2 and s1 as nonbasic variables
(x2 D 0, s1 D 0). These requirements lead to s2 D 12 � 2x1 D 12 � 2.4/ D 4.
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Before proceeding, let us update our table. To the right of the following table, the
quotients 8

2 and
12
2 are indicated:

entering variable
(most negative indicator)

#

departing 
variable
(smallest
quotient)

24
B x1 x2 s1 s2 Z R
s1 2 1 1 0 0 8
s2 2 3 0 1 0 12
Z �3 �1 0 0 1 0

35
Quotients
8� 2 D 4
12� 2 D 6

„ ƒ‚ …
These quotients are obtained by dividing each entry in the first two rows of the
R-column by the entry in the corresponding row of the entering-variable column, that
is the x1-column. Notice that the departing variable is in the same row as the smaller
quotient, 8� 2.

Since x1 and s2 will be basic variables in our new BFS, it would be convenient
to change our previous table by elementary row operations into a form in which the
values of x1, s2, and Z can be read off with ease (just as we were able to do with the
solution corresponding to x1 D 0 and x2 D 0). To do this, we want to find a matrix that
is equivalent to the preceding table but that has the form

24
B x1 x2 s1 s2 Z R
x1 1 ‹ ‹ 0 0 ‹
s2 0 ‹ ‹ 1 0 ‹

Z 0 ‹ ‹ 0 1 ‹

35
where the question marks represent numbers to be determined. Notice here that if x2 D
0 and s1 D 0, then x1 equals the number in row x1 of column R, s2 equals the number
in row s2 of column R, and Z is the number in row Z of column R. Thus, we must
transform the table

entering
variable
#24

B x1 x2 s1 s2 Z R
departing s1 2 1 1 0 0 8
variable s2 2 3 0 1 0 12

Z �3 �1 0 0 1 0

35 (7)

into an eqivalent matrix that has a 1 where the shaded entry appears and 0’s elsewhere in
the x1-column. The shaded entry is called the pivot entry—it is in the column of the
entering variable (called the pivot column) and the row of the departing variable (called
the pivot row). By elementary row operations, we have

24
x1 x2 s1 s2 Z
2 1 1 0 0 8
2 3 0 1 0 12
�3 �1 0 0 1 0

35
1
2R1

��������!

24 1 1
2

1
2 0 0 4

2 3 0 1 0 12
�3 �1 0 0 1 0

35
�2R1CR2
��������!
3R1CR3

24 1 1
2

1
2 0 0 4

0 2 �1 1 0 4

0 1
2

3
2 0 1 12

35
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Thus, we have a new simplex table:

264
B x1 x2 s1 s2 Z R
x1 1 1

2
1
2 0 0 4

s2 0 2 �1 1 0 4

Z 0 1
2

3
2 0 1 12

375 (8)

„ ƒ‚ …
indicators

For x2 D 0 and s1 D 0, from the first row, we have x1 D 4; from the second, we obtain
s2 D 4. These values give us the new BFS. Note that we replaced the s1 located to the
left of the initial table (7) by x1 in our new table (8), so that s1 departed and x1 entered.
From row 3, for x2 D 0 and s1 D 0, we get Z D 12, which is a larger value than we
had before. (Before, we had Z D 0.)

In our present BFS, x2 and s1 are nonbasic variables .x2 D 0; s1 D 0/. Suppose we
look for another BFS that gives a larger value of Z and is such that one of x2 or s1 is
basic. The equation corresponding to the Z-row is given by 1

2x2C
3
2s1CZ D 12, which

can be rewritten as

Z D 12 �
1
2
x2 �

3
2
s1 (9)

If x2 becomes basic and therefore s1 remains nonbasic, then

Z D 12 �
1
2
x2 .since s1 D 0/

Here, each one-unit increase in x2 decreases Z by 1
2 unit. Thus, any increase in x2 would

make Z smaller than before. On the other hand, if s1 becomes basic and x2 remains
nonbasic, then, from Equation (9),

Z D 12 �
3
2
s1 .since x2 D 0/

Here each one-unit increase in s1 decreases Z by 3
2 units. Hence, any increase in s1

would make Z smaller than before. Consequently, we cannot move to a better BFS. In
short, no BFS gives a larger value of Z than the BFS x1 D 4, s2 D 4, x2 D 0, and
s1 D 0 (which gives Z D 12).

In fact, since x2 � 0 and s1 � 0, and since the coefficients of x2 and s1 in
Equation (9) are negative, Z is maximum when x2 D 0 and s1 D 0. That is, in (8),
having all nonnegative indicators means that we have an optimum solution.

In terms of our original problem, if

Z D 3x1 C x2

subject to

2x1 C x2 � 8 2x1 C 3x2 � 12 x1; x2 � 0

then Z is maximized when x1 D 4 and x2 D 0, and the maximum value of Z is 12. (This
confirms our result in Example 1 of Section 7.2.) Note that the values of s1 and s2 do
not have to appear here.

Let us outline the simplex method for a standard linear programming problem with
three decision variables and four constraints, not counting nonnegativity conditions.
(So here n D 3 and m D 4.) The outline suggests how the simplex method works
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for any number of decision variables (in general n) and any number of constraints (in
general m).

Simplex Method

Problem:

Maximize Z D c1x1 C c2x2 C c3x3

subject to

a11x1 C a12x2 C a13x3 � b1

a21x1 C a22x2 C a23x3 � b2

a31x1 C a32x2 C a33x3 � b3

a41x1 C a42x2 C a43x3 � b4

where x1; x2; x3 and b1; b2; b3; b4 are nonnegative.

Method:

1. Set up the initial simplex table:

26664
B x1 x2 x3 s1 s2 s3 s4 Z R
s1 a11 a12 a13 1 0 0 0 0 b1
s2 a21 a22 a23 0 1 0 0 0 b2
s3 a31 a32 a33 0 0 1 0 0 b3
s4 a41 a42 a43 0 0 0 1 0 b4

Z �c1 �c2 �c3 0 0 0 0 1 0

37775
„ ƒ‚ …

indicators
There are four slack variables: s1; s2; s3, and s4—one for each constraint.

2. If all the indicators in the last row are nonnegative, then Z has a maximum with
the current list of basic variables and the current value of Z. (In the case of the
initial simplex table, this gives x1 D 0; x2 D 0, and x3 D 0, with maximum value
of Z D 0.) If there are any negative indicators, locate and mark the column in which
the most negative indicator appears. This pivot column gives the entering variable.
(If more than one column contains the most negative indicator, the choice of pivot
column is arbitrary.)

3. Divide each positive entry above the objective row in the entering-variable col-
umn into the corresponding value of column R. (The positive restriction will be
explained after Example 1.)

4. Mark the entry in the pivot column that corresponds to the smallest quotient in
step 3. This is the pivot entry, and the row in which it is located is the pivot row.
The departing variable is the one that labels the pivot row.

5. Use elementary row operations to transform the table into a new equivalent table
that has a 1 where the pivot entry was and 0’s elsewhere in that column.

6. In the basic variables column, B, of this table, the entering variable replaces the
departing variable.

7. If the indicators of the new table are all nonnegative, we have an optimum solu-
tion. The maximum value of Z is the entry in the last row and last column. It occurs
when the basic variables as found in the basic variables column, B, are equal to the
corresponding entries in column R. All other variables are 0. If at least one of the
indicators is negative, repeat the process, beginning with step 2 applied to the new
table.
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As an aid in understanding the simplex method, we should be able to interpret
certain entries in a table. Suppose that we obtain a table in which the last row is as
shown in the following array:

264
B x1 x2 x3 s1 s2 s3 s4 Z R
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Z a b c d e f g 1 h

375
We can interpret the entry b, for example, as follows: If x2 is nonbasic and were to
become basic, then, for each one-unit increase in x2,

if b < 0; Z increases by jbj units

if b > 0; Z decreases by jbj units

if b D 0; there is no change in Z

EXAMPLE 1 The Simplex Method

Maximize Z D 5x1 C 4x2 subject to

x1 C x2 � 20

2x1 C x2 � 35

�3x1 C x2 � 12

and x1; x2 � 0.

Solution: This linear programming problem fits the standard form. The initial simplex
table is

entering
variable
#

departing  
variable

266664
B x1 x2 s1 s2 s3 Z R

s1 1 1 1 0 0 0 20

s2 2 1 0 1 0 0 35

s3 �3 1 0 0 1 0 12

Z �5 �4 0 0 0 1 0

377775
Quotient

20� 1 D 20

35� 2 D 35
2

no quotient, �3 6> 0

„ ƒ‚ …
indicators

The most negative indicator, �5, occurs in the x1-column. Thus, x1 is the entering vari-
able. The smaller quotient is 35

2 , so s2 is the departing variable. The pivot entry is 2.
Using elementary row operations to get a 1 in the pivot position and 0’s elsewhere in
its column, we have

2664
x1 x2 s1 s2 s3 Z
1 1 1 0 0 0 20
2 1 0 1 0 0 35
�3 1 0 0 1 0 12
�5 �4 0 0 0 1 0

3775
1
2R2

��������!

2664
1 1 1 0 0 0 j 20

j
1 1

2 0 1
2 0 0 j

35
2

j
�3 1 0 0 1 0 j 12

j
�5 �4 0 0 0 1 j 0

3775
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�1R2CR1
��������!
3R2CR3

5R2CR4

26664
0 1

2 1 �
1
2 0 0 j

5
2

j
1 1

2 0 1
2 0 0 j

35
2

j
0 5

2 0 3
2 1 0 j

129
2

j
0 �

3
2 0 5

2 0 1 j
175
2

37775
Our new table is

entering
variable
#

departing  
variable

26664
B x1 x2 s1 s2 s3 Z R
s1 0 1

2 1 �
1
2 0 0 j

5
2

j
x1 1 1

2 0 1
2 0 0 j

35
2

j
s3 0 5

2 0 3
2 1 0 j

129
2

j
Z 0 �

3
2 0 5

2 0 1 j
175
2

37775
Quotients

5
2 �

1
2 D 5

35
2 �

1
2 D 35

129
2 �

5
2 D 25 45

„ ƒ‚ …
indicators

Note that in column B, which keeps track of which variables are basic, x1 has replaced
s2. Since we still have a negative indicator, � 3

2 , we must continue our process. Evi-
dently, � 3

2 is the most negative indicator and the entering variable is now x2. The
smallest quotient is 5. Hence, s1 is the departing variable and 1

2 is the pivot entry. Using
elementary row operations, we have

26664
x1 x2 s1 s2 s3 Z R
0 1

2 1 �
1
2 0 0 5

2

1 1
2 0 1

2 0 0 35
2

0 5
2 0 3

2 1 0 129
2

0 �
3
2 0 5

2 0 1 175
2

37775

�1R1CR2
��������!
�5R1CR3

3R1CR4

2664
0 1

2 1 �
1
2 0 0 5

2
1 0 �1 1 0 0 15
0 0 �5 4 1 0 52
0 0 3 1 0 1 95

3775
2R1

��������!

2664
0 1 2 �1 0 0 5
1 0 �1 1 0 0 15
0 0 �5 4 1 0 52

0 0 3 1 0 1 95

3775
Our new table is

2664
B x1 x2 s1 s2 s3 Z R
x2 0 1 2 �1 0 0 5
x1 1 0 �1 1 0 0 15
s3 0 0 �5 4 1 0 52

Z 0 0 3 1 0 1 95

3775
„ ƒ‚ …

indicators

where x2 replaced s1 in column B. Since all indicators are nonnegative, the maximum
value of Z is 95 and occurs when x1 D 15, x2 D 5 and x3 D 0 (and s1 D 0, s2 D 0, and
s3 D 52).

Now Work Problem 1 G

It is interesting to see how the values of Z got progressively “better” in successive
tables in Example 1. These are the entries in the last row and last column of each
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simplex table. In the initial table, we had Z D 0. From then on, we obtained Z D 175
2 D

87 12 and then Z D 95, the maximum.
In Example 1, no quotient was considered in the third row of the initial table. This

is the positivity requirement in Part 3 of the method outlined for the general 3-variable,
4-constraint problem and we now explain it. The BFS for this table is

s1 D 20; s2 D 35; s3 D 12; x1 D 0; x2 D 0

where x1 is the entering variable. The quotients 20 and 35
2 reflect that, for the next

BFS, we have x1 � 20 and x1 � 35
2 . Since the third row represents the equation s3 D

12C 3x1 � x2, and x2 D 0, it follows that s3 D 12C 3x1. But s3 � 0, so 12C 3x1 � 0,

which implies that x1 � � 12
3 D �4. Thus, we have

x1 � 20; x1 �
35
2
; and x1 � �4

Hence, x1 can increase at most by 35
2 . The condition x1 � �4 has no influence in

determining the maximum increase in x1. That is why the quotient 12=.�3/ D �4 is
not considered in row 3. In general, no quotient is considered for a row if the entry in
the entering-variable column is negative or 0.

It is of course possible that when considering quotients for comparison there are
no quotients. For the record, we note:

If no quotients exist in a simplex table, then the standard maximum linear program-
ming problem has an unbounded solution. This means that the objective function
does not attain a maximum value because it attains arbitrarily large values. More
precisely, it means that, for every positive integer n, there is a point An in the feasible
region with Z.An/ > n.

Although the simplex procedure that has been developed in this section applies
only to linear programming problems of standard maximum form, other forms may be
adapted to fit this form. Suppose that a constraint has the form

a1x1 C a2x2 C � � � C anxn � �b

where b > 0. Here the inequality symbol is “�”, and the constant on the right side is
negative. Thus, the constraint is not in standard form. However, multiplying both sides
by �1 gives

�a1x1 � a2x2 � � � � � anxn � b

which does have the proper form. Accordingly, it may be necessary to rewrite a con-
straint before proceeding with the simplex method.

In a simplex table, several indicators may “tie” for being most negative. In this
case, we choose any one of these indicators to give the column for the entering vari-
able. Likewise, there may be several quotients that “tie” for being the smallest. We can
then choose any one of these quotients to determine the departing variable and pivot
entry. Example 2 will illustrate this situation. However, when a tie for the smallest quo-
tient exists, then the next simplex table will address a BFS with a basic variable that
is 0 (along with all the nonbasic variables that are 0 by declaration). In this case we
say that the BFS is degenerate or, better, that the linear programming problem has a
degeneracy. Degenerate linear programming problems sometimes lead to cycling diffi-
culties with the simplex method. We might, for example, arrive at a BFS, call it BFS1,
proceed to BFS2, and BFS3, and return to BFS1. There are techniques to deal with such
difficulties—which do not often arise in practice—but they are beyond the scope of this
book.

APPLY IT I

3. The Toones Company has $30,000
for the purchase of materials to make
three types of MP3 players. The com-
pany has allocated a total of 1200 hours
of assembly time and 180 hours of pack-
aging time for the players. The follow-
ing table gives the cost per player, the
number of hours per player, and the
profit per player for each type:

Type 1 Type 2 Type 3

Cost/
Player

$300 $300 $400

Assembly
Hours/
Player

15 15 10

Packaging
Hours/
Player

2 2 3

Profit $150 $250 $200

Find the number of players of each type
the company should produce to maxi-
mize profit.
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EXAMPLE 2 The Simplex Method

Maximize Z D 3x1 C 4x2 C 3
2x3 subject to

�x1 � 2x2 � �10 (10)

2x1 C 2x2 C x3 � 10

x1; x2; x3 � 0

Solution: Constraint (10) does not fit the standard form. However, multiplying both
sides of inequality (10) by �1 gives

x1 C 2x2 � 10

which does have the proper form. Thus, our initial simplex table is table I:

SIMPLEX TABLE I
entering
variable
#

departing  
variable

24
B x1 x2 x3 s1 s2 Z R
s1 1 2 0 1 0 0 10
s2 2 2 1 0 1 0 10
Z �3 �4 �

3
2 0 0 1 0

35
Quotients
10� 2 D 5
10� 2 D 5„ ƒ‚ …

indicators

The entering variable is x2. Since there is a tie for the smallest quotient, we can choose
either s1 or s2 as the departing variable. Let us choose s1. The pivot entry is shaded.
Using elementary row operations, we get table II:

SIMPLEX TABLE II
entering
variable
#

departing  
variable

264
B x1 x2 x3 s1 s2 Z R
x2 1

2 1 0 1
2 0 0 5

s2 1 0 1 �1 1 0 0

Z �1 0 �
3
2 2 0 1 20

375
Quotients

no quotient 0 6> 0
0� 1 D 0

„ ƒ‚ …
indicators

Table II corresponds to a BFS in which a basic variable, s2, is zero. Thus, the BFS
is degenerate. Since there are negative indicators, we continue. The entering variable
is now x3, the departing variable is s2, and the pivot is shaded. Using elementary row
operations, we get table III:

SIMPLEX TABLE III

264
B x1 x2 x3 s1 s2 Z R
x2 1

2 1 0 1
2 0 0 5

x3 1 0 1 �1 1 0 0

Z 1
2 0 0 1

2
3
2 1 20

375
„ ƒ‚ …

indicators

Since all indicators are nonnegative, Z is maximized when x2 D 5, x3 D 0, and x1 D
s1 D s2 D 0. The maximum value is Z D 20. Note that this value is the same as the
value of Z in table II. In degenerate problems, it is possible to arrive at the same value of
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Z at various stages of the simplex process. Problem 7 asks for a solution to this example
by using s2 as the departing variable in the initial table.

Now Work Problem 7 G

In Section 7.2, where linear programming problems in 2 variables were solved
geometrically, we drew attention to the possibility of multiple solutions by pointing out
that the family of parallel isoprofit lines may in fact be parallel to one of the bounding
edges of the feasible region. When using the simplex method one can also detect the
possibility of multiple optimum solutions but we will not pursue the idea in this book.

In a table that gives an optimum solution, a zero indicator for a nonbasic variable
suggests the possibility of multiple optimum solutions.

Because of its mechanical nature, the simplex procedure is readily adaptable to
computers to solve linear programming problems involving many variables and con-
straints.

PROBLEMS 7.3
Use the simplex method to solve the following problems.

1. Maximize

Z D x1 C 2x2

subject to

2x1 C x2 � 8

2x1 C 3x2 � 12

x1; x2 � 0

2. Maximize

Z D 2x1 C x2

subject to

�x1 C x2 � 4

x1 C x2 � 6

x1; x2 � 0

3. Maximize

Z D �x1 C 2x2

subject to

3x1 C 2x2 � 5

�x1 C 3x2 � 3

x1; x2 � 0

4. Maximize

Z D 4x1 C 7x2

subject to

2x1 C 3x2 � 9

x1 C 5x2 � 10

x1; x2 � 0

5. Maximize

P D 8x1 C 2x2

subject to

x1 � x2 � 1

x1 C 2x2 � 8

x1 C x2 � 5

x1; x2 � 0

6. Maximize

Z D 2x1 � 6x2

subject to

x1 � x2 � 4

�x1 C x2 � 4

x1 C x2 � 6

x1; x2 � 0

7. Solve the problem in Example 2 by choosing s2 as the
departing variable in table I.

8. Maximize

Z D 2x1 � x2 C x3

subject to

2x1 C x2 � x3 � 4

x1 C x2 C x3 � 2

x1; x2; x3 � 0

9. Maximize

Z D 2x1 C x2 � x3

subject to

x1 C x2 � 1

x1 � 2x2 � x3 � �2

x1; x2; x3 � 0
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10. Maximize

P D �2x1 C 3x2

subject to

x1 C x2 � 1

x1 � x2 � 2

x1 � x2 � �3

x1 � 5

x1; x2 � 0

11. Maximize

Z D x1 C x2

subject to

2x1 � x2 � 4

�x1 C 2x2 � 6

5x1 C 3x2 � 20

2x1 C x2 � 10

x1; x2 � 0

12. Maximize

W D 2x1 C x2 � 2x3

subject to

�2x1 C x2 C x3 � �2

x1 � x2 C x3 � 4

x1 C x2 C 2x3 � 6

x1; x2; x3 � 0

13. Maximize

W D x1 � 12x2 C 4x3

subject to

4x1 C 3x2 � x3 � 1

x1 C x2 � x3 � �2

�x1 C x2 C x3 � �1

x1; x2; x3 � 0

14. Maximize

W D 4x1 C 0x2 � x3

subject to

x1 C x2 C x3 � 6

x1 � x2 C x3 � 10

x1 � x2 � x3 � 4

x1; x2; x3 � 0

15. Maximize

P D 60x1 C 0x2 C 90x3 C 0x4

subject to

x1 � 2x2 � 2

x1 C x2 � 5

x3 C x4 � 4

x3 � 2x4 � 7

x1; x2; x3; x4 � 0

16. Maximize

Z D 3x1 C 2x2 � 2x3 � x4

subject to

x1 C x3 � x4 � 3

x1 � x2 C x4 � 6

x1 C x2 � x3 C x4 � 5

x1; x2; x3; x4 � 0

17. Freight Shipments A freight company handles shipments
by two corporations, A and B, that are located in the same city.
Corporation A ships boxes that weigh 3 lb each and have a volume
of 2 ft3; B ships 1-ft3 boxes that weigh 5 lbs each. Both A and B
ship to the same destination. The transportation cost for each box
from A is $0.75, and from B it is $0.50. The freight company has
a truck with 2400 ft3 of cargo space and a maximum capacity of
36,800 lb. In one haul, how many boxes from each corporation
should be transported by this truck so that the freight company
receives maximum revenue? What is the maximum revenue?

18. Production A company manufactures three products: X,
Y, and Z. Each product requires machine time and finishing time
as shown in the following table:

Machine Time Finishing Time

X 1 hr 4 hr

Y 2 hr 4 hr

Z 3 hr 8 hr

The numbers of hours of machine time and finishing time
available per month are 900 and 5000, respectively. The unit
profit on X, Y, and Z is $6, $8, and $12, respectively. What is the
maximum profit per month that can be obtained?

19. Production A company manufactures three types of patio
furniture: chairs, rockers, and chaise lounges. Each requires wood,
plastic, and aluminum as shown in the following table:

Wood Plastic Aluminum

Chair 1 unit 1 unit 2 units

Rocker 1 unit 1 unit 3 units

Chaise lounge 1 unit 2 units 5 units

The company has available 400 units of wood, 500 units of
plastic, and 1450 units of aluminum. Each chair, rocker, and
chaise lounge sells for $21, $24, and $36, respectively. Assuming
that all furniture can be sold, determine a production order so that
total revenue will be maximum. What is the maximum revenue?
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Objective 7.4 Artificial Variables
To use artificial variables to handle
maximization problems that are not of
standard maximum form.

To start using the simplex method, a basic feasible solution, BFS, is required. (We
algebraically start at a corner point using the initial simplex table, and each subse-
quent table takes us, algebraically, to another corner point until we reach the one at
which an optimum solution is obtained.) For a standard maximum linear programming
problem, we begin with the BFS in which all decision variables are zero, the origin in
x1; x2; � � � ; xn-space, where n is the number of decision variables. However, for a max-
imization problem that is not of standard maximum form, the origin .0; 0; � � � ; 0/ may
not be a BFS. In this section, we will learn how the simplex method is modified for use
in such situations.

Let us consider the following problem:

Maximize Z D x1 C 2x2

subject to

x1 C x2 � 9 (1)

x1 � x2 � 1 (2)

x1; x2 � 0

Since constraint (2) cannot be written as a1x1 C a2x2 � b, where b is nonnegative,
this problem cannot be put into standard form. Note that .0; 0/ is not a feasible point
because it does not satisfy constraint (2). (Because 0 � 0 D 0 � 1 is false!) To solve
the problem, we begin by writing Constraints (1) and (2) as equations. Constraint (1)
becomes

x1 C x2 C s1 D 9 (3)

where s1 � 0 is a slack variable. For Constraint (2), x1 � x2 will equal 1 if we subtract
a nonnegative slack variable s2 from x1 � x2. That is, by subtracting s2, we are making
up for the “surplus” on the left side of (2), so that we have equality. Thus,

x1 � x2 � s2 D 1 (4)

where s2 � 0. We can now restate the problem:

Maximize Z D x1 C 2x2 (5)

subject to

x1 C x2 C s1 D 9 (6)

x1 � x2 � s2 D 1 (7)

x1; x2; s1; s2 � 0

Since .0; 0/ is not in the feasible region, we do not have a BFS in which
x1 D x2 D 0. In fact, if x1 D 0 and x2 D 0 are substituted into Equation (7), then
0� 0� s2 D 1, which gives s2 D �1, and now the problem is that this contradicts the
condition that s2 � 0.

To get the simplex method started, we need an initial BFS. Although none is obvi-
ous, there is an ingeniousmethod to arrive at one artificially. It requires that we consider
a related linear programming problem called the artificial problem. First, a new equa-
tion is formed by adding a nonnegative variable t to the left side of the equation in which
the coefficient of the slack variable is�1. The variable t is called an artificial variable.
In our case, we replace Equation (7) by x1 � x2 � s2 C t D 1. Thus, Equations (6) and
(7) become

x1 C x2 C s1 D 9 (8)

x1 � x2 � s2 C t D 1 (9)

x1; x2; s1; s2; t � 0
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An obvious solution to Equations (8) and (9) is found by setting x1; x2, and s2 equal
to 0. This gives

x1 D x2 D s2 D 0 s1 D 9 t D 1

Note that these values do not satisfy Equation (7). However, it is clear that any solution
of Equations (8) and (9) for which t D 0 will give a solution to Equations (6) and (7),
and conversely.

We can eventually force t to be 0 if we alter the original objective function. We
define the artificial objective function to be

W D Z �Mt D x1 C 2x2 �Mt (10)

where the constantM is a very large positive number. We will not worry about the par-
ticular value ofM and will proceed to maximizeW by the simplex method. Since there
are m D 2 constraints (excluding the nonnegativity conditions) and n D 5 variables in
Equations (8) and (9), any BFS must have at least n � m D 3 variables equal to zero.
We start with the following BFS:

x1 D x2 D s2 D 0 s1 D 9 t D 1 (11)

In this initial BFS, the nonbasic variables are the decision variables and the surplus
variable s2. The corresponding value of W is W D x1 C 2x2 � Mt D �M, which
is “extremely” negative since we assume that M is a very large positive number. A
significant improvement in W will occur if we can find another BFS for which t D 0.
Since the simplex method seeks better values ofW at each stage, we will apply it until
we reach such a BFS, if possible. That solution will be an initial BFS for the original
problem.

To apply the simplexmethod to the artificial problem,we first write Equation (10) as

�x1 � 2x2 CMtCW D 0 (12)

The augmented coefficient matrix of Equations (8), (9), and (12) is

24
x1 x2 s1 s2 t W
1 1 1 0 0 0 9
1 �1 0 �1 1 0 1
�1 �2 0 0 M 1 0

35 (13)

An initial BFS is given by (11). Notice that, from row s1, when x1 D x2 D s2 D 0,
we can directly read the value of s1; namely, s1 D 9. From row 2, we get t D 1. From
row 3, MtCW D 0. Since t D 1, W D �M. But in a simplex table we want the value
of W to appear in the last row and last column. This is not so in (13); thus, we modify
that matrix.

To do this, we transform (13) into an equivalent matrix whose last row has the form

x1 x2 s1 s2 t W

‹ ‹ 0 ‹ 0 1 j ‹

That is, the M in the t-column is replaced by 0. As a result, if x1 D x2 D s2 D 0, then
W equals the last entry. Proceeding to obtain such a matrix, we have, by pivoting at
the shaded element in column t:

24
x1 x2 s1 s2 t W R
1 1 1 0 0 0 9
1 �1 0 �1 1 0 1
�1 �2 0 0 M 1 0

35

�MR2CR3
���������!

24
x1 x2 s1 s2 t W R
1 1 1 0 0 0 9
1 �1 0 �1 1 0 1

�1 �M �2CM 0 M 0 1 �M

35
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Let us now check things out. If x1 D 0; x2 D 0, and s2 D 0, then from row 1 we get
s1 D 9, from row 2, t D 1, and from row 3, W D �M. Thus, we now have initial
simplex table I:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

24
B x1 x2 s1 s2 t W R
s1 1 1 1 0 0 0 9
t 1 �1 0 �1 1 0 1
W �1 �M �2CM 0 M 0 1 �M

35
Quotients

9� 1 D 9
1� 1 D 1

„ ƒ‚ …
indicators

From this point, we can use the procedures of Section 7.3. Since M is a large positive
number, the most negative indicator is �1�M. Thus, the entering variable is x1. From
the quotients, we get t as the departing variable. The pivot entry is shaded. Using ele-
mentary row operations to get 1 in the pivot position and 0’s elsewhere in that column,
we get simplex table II:

SIMPLEX TABLE II
entering
variable
#

departing 
variable

24
B x1 x2 s1 s2 t W R
s1 0 2 1 1 �1 0 8
x1 1 �1 0 �1 1 0 1
W 0 �3 0 �1 1CM 1 1

35
Quotients

8� 2 D 4
no quotient

„ ƒ‚ …
indicators

From table II, we have the following BFS:

s1 D 8; x1 D 1; x2 D 0; s2 D 0; t D 0

Since t D 0, the values s1 D 8, x1 D 1, x2 D 0, and s2 D 0 form an initial BFS for the
original problem! The artificial variable has served its purpose. For succeeding tables,
we will delete the t-column (since we want to solve the original problem) and change
the W’s to Z’s (since W D Z for t D 0). From table II, the entering variable is x2, the
departing variable is s1, and the pivot entry is shaded. Using elementary row operations
(omitting the t-column), we get table III:

SIMPLEX TABLE III2664
B x1 x2 s1 s2 Z R
x2 0 1 1

2
1
2 0 4

x1 1 0 1
2 �

1
2 0 5

Z 0 0 3
2

1
2 1 13

3775
„ ƒ‚ …

indicators

Since all the indicators are nonnegative, the maximum value of Z is 13. It occurs
when x1 D 5 and x2 D 4.

It is worthwhile to review the steps we performed to solve our problem:Here is a summary of the procedure
involving artificial variables.

Maximize Z D x1 C 2x2

subject to

x1 C x2 � 9 (14)

x1 � x2 � 1 (15)

x1; x2 � 0
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We write Inequality (14) as

x1 C x2 C s1 D 9 (16)

Since Inequality (15) involves the symbol �, and the constant on the right side is non-
negative, we write Inequality (15) in a form having both a surplus variable and an
artificial variable:

x1 � x2 � s2 C t D 1 (17)

The artificial objective equation to consider isW D x1 C 2x2 �Mt, equivalently,

�x1 � 2x2 CMtCW D 0 (18)

The augmented coefficient matrix of the system formed by Equations (16)–(18) is

24
B x1 x2 s1 s2 t W R
s1 1 1 1 0 0 0 9
t 1 �1 0 �1 1 0 1
W �1 �2 0 0 M 1 0

35
Next, we replace the entry in the objective row and the artificial variable column, an
M, by 0 using elementary row operations. The resulting simplex table I corresponds to
the initial BFS of the artificial problem in which the decision variables, x1 and x2, and
the surplus variable s2 are each 0:

SIMPLEX TABLE I24
B x1 x2 s1 s2 t W R
s1 1 1 1 0 0 0 9
t 1 �1 0 �1 1 0 1
W �1 �M �2CM 0 M 0 1 �M

35
The basic variables s1 and t in column B of the table correspond to the nondecision
variables in Equations (16) and (17) that have positive coefficients. We now apply the
simplex method until we obtain a BFS in which the artificial variable t equals 0. Then
we can delete the artificial variable column, change the W’s to Z’s, and continue the
procedure until the maximum value of Z is obtained.

EXAMPLE 1 Artificial Variables

APPLY IT I
4. The GHI Company manufactures
two models of snowboards, standard
and deluxe, at two different manufac-
turing plants. The maximum output at
plant I is 1200 per month, while the
maximum output at plant II is 1000 per
month. Due to contractual obligations,
the number of deluxe models produced
at plant I cannot exceed the number of
standard models produced at plant I by
more than 200. The profit per standard
and deluxe snowboard manufactured at
plant I is $40 and $60, respectively,
while the profit per standard and deluxe
snowboard manufactured at plant II is
$45 and $50, respectively. This month,
GHI received an order for 1000 standard
and 800 deluxe models. Find how many
of each model should be produced at
each plant to satisfy the order and max-
imize the profit. (Hint: Let x1 represent
the number of standard models and x2
represent the number of deluxe models
manufactured at plant I.)

Use the simplex method to maximize Z D 2x1 C x2 subject to

x1 C x2 � 12 (19)

x1 C 2x2 � 20 (20)

�x1 C x2 � 2 (21)

x1; x2 � 0

Solution: The equations for (19)–(21) will involve two slack variables, s1 and s2, for
the two � constraints, and a surplus variable s3 and an artificial variable t, for the �
constraint. We thus have

x1 C x2 C s1 D 12 (22)

x1 C 2x2 C s2 D 20 (23)

�x1 C x2 � s3 C t D 2 (24)
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We considerW D Z�Mt D 2x1C x2 �Mt as the artificial objective equation; equiva-
lently,

�2x1 � x2 CMtCW D 0 (25)

whereM is a large positive number. Nowwe construct the augmented coefficient matrix
of Equations (22)–(25):

2664
x1 x2 s1 s2 s3 t W
1 1 1 0 0 0 0 12
1 2 0 1 0 0 0 20
�1 1 0 0 �1 1 0 2
�2 �1 0 0 0 M 1 0

3775
To get simplex table I, we replace theM in the objective row and the artificial variable
column by 0 by adding .�M/ times row 3 to row 4:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

2664
B x1 x2 s1 s2 s3 t W R
s1 1 1 1 0 0 0 0 12
s2 1 2 0 1 0 0 0 20
t �1 1 0 0 �1 1 0 2
W �2CM �1 �M 0 0 M 0 1 �2M

3775
Quotients

12� 1 D 12
20� 2 D 10
2� 1 D 2

„ ƒ‚ …
indicators

The variables s1, s2, and t in columnB—that is, the basic variables—are the nondecision
variables with positive coefficients in Equations (22)–(24). Since M is a large positive
number, .�1 �M/ is the most negative indicator and, thus, the entering variable is x2.
The smallest quotient is evidently 2 and, thus, the departing variable is t. The pivot
entry is shaded. Proceeding, we get simplex table II:

SIMPLEX TABLE II
entering
variable
#

departing 
variable

2664
B x1 x2 s1 s2 s3 t W R
s1 2 0 1 0 1 �1 0 10
s2 3 0 0 1 2 �2 0 16
x2 �1 1 0 0 �1 1 0 2
W �3 0 0 0 �1 1CM 1 2

3775
Quotients

10� 2 D 5
16� 3 D 5 13

„ ƒ‚ …
indicators

The BFS corresponding to table II has t D 0. Thus, we delete the t-column and change
W’s to Z’s in succeeding tables. Continuing, we obtain table III:

SIMPLEX TABLE III

266664
B x1 x2 s1 s2 s3 Z R
x1 1 0 1

2 0 1
2 0 5

s2 0 0 �
3
2 1 1

2 0 1

x2 0 1 1
2 0 �

1
2 0 7

Z 0 0 3
2 0 1

2 1 17

377775
„ ƒ‚ …

indicators
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All indicators are nonnegative. Hence, the maximum value of Z is 17. It occurs when
x1 D 5 and x2 D 7.

Now Work Problem 1 G

Equality Constraints
When an equality constraint of the form

a1x1 C a2x2 C � � � C anxn D b; where b � 0

occurs in a linear programming problem, artificial variables are used in the simplex
method. To illustrate, consider the following problem:

Maximize Z D x1 C 3x2 � 2x3

subject to

x1 C x2 � x3 D 6 (26)

x1; x2; x3 � 0

Constraint (26) is already expressed as an equation, so no slack variable is necessary.
Since x1 D x2 D x3 D 0 is not a feasible solution, we do not have an obvious starting
point for the simplex procedure. Thus, we create an artificial problem by first adding
an artificial variable t to the left side of Equation (26):

x1 C x2 � x3 C t D 6

Here an obvious BFS is x1 D x2 D x3 D 0, t D 6. The artificial objective function is

W D Z �Mt D x1 C 3x2 � 2x3 �Mt

where M is a large positive number. The simplex procedure is applied to this artificial
problem until we obtain a BFS in which t D 0. This solution will give an initial BFS for
the original problem, and we then proceed as before.

In general, the simplex method can be used to

maximize Z D c1x1 C c2x2 C � � � C cnxn

subject to

a11x1 C a12x2 C � � � C a1nxnf�; �; Dg b1
a21x1 C a22x2 C � � � C a2nxnf�; �; Dg b2
:::

:::
:::

:::
am1x1 C am2x2 C � � � C amnxnf�; �; Dg bm

9>>=>>; (27)

and x1 � 0, x2 � 0, : : : ; xn � 0. The symbolism f�; �; Dg means that one of the
relations “�”, “�”, or “D” exists for a constraint.

For each bi < 0, multiply the corresponding inequality by �1 (thus changing the
sense of the inequality). If, with all bi � 0, all constraints involve “�”, the problem is
of standard form and the simplex techniques of the previous section apply directly. If,
with all bi � 0, any constraint involves “�” or “D”, we begin with an artificial problem,
which is obtained as follows.

Each constraint that contains “�” is written as an equation involving a slack vari-
able si (with coefficientC1):

ai1x1 C ai2x2 C � � � C ainxn C si D bi

Each constraint that contains “�” is written as an equation involving a surplus variable
sj (with coefficient �1) and an artificial variable tj (with coefficientC1):

aj1x1 C aj2x2 C � � � C ajnxn � sj C tj D bj

Each constraint that contains “D” is rewritten as an equation with an artificial variable
tk inserted (with coefficientC1):

ak1x1 C ak2x2 C � � � C aknxn C tk D bk
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Should the artificial variables involved in this problem be, for example, t1, t2, and t3,
then the artificial objective function is

W D Z �Mt1 �Mt2 �Mt3

whereM is a large positive number. An initial BFS occurs when x1D x2D � � � D xnD 0
and each surplus variable equals 0.

After obtaining an initial simplex table, we apply the simplex procedure until we
arrive at a table that corresponds to a BFS in which all artificial variables are 0. We
then delete the artificial variable columns, changeW’s to Z’s, and continue by using the
procedures of the previous section.

EXAMPLE 2 An Equality Constraint

Use the simplex method to maximize Z D x1 C 3x2 � 2x3 subject to

�x1 � 2x2 � 2x3 D �6 (28)

�x1 � x2 C x3 � �2 (29)

x1; x2; x3 � 0

Solution: Constraints (28) and (29) will have the forms indicated in (27) (that is, b’s
positive) if we multiply both sides of each constraint by �1:

x1 C 2x2 C 2x3 D 6 (30)

x1 C x2 � x3 � 2 (31)

Since Constraints (30) and (31) involve “D” and “�”, two artificial variables, t1 and t2,
will occur. The equations for the artificial problem are

x1 C 2x2 C 2x3 C t1 D 6 (32)

x1 C x2 � x3 � s2 C t2 D 2 (33)

Here the subscript 2 on s2 reflects the order of the equations. The artificial objective
function isW D Z �Mt1 �Mt2, equivalently,

�x1 � 3x2 C 2x3 CMt1 CMt2 CW D 0 (34)

where M is a large positive number. The augmented coefficient matrix of Equations
(32)–(34) is

24
x1 x2 x3 s2 t1 t2 W
1 2 2 0 1 0 0 6
1 1 �1 �1 0 1 0 2
�1 �3 2 0 M M 1 0

35
We now use elementary row operations to replace theM’s in the objective row from all
the artificial variable columns, by 0. By adding �M times row 1 to row 3 and adding
�M times row 2 to row 3, we get initial simplex table I:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

24
B x1 x2 x3 s2 t1 t2 W R
t1 1 2 2 0 1 0 0 6
t2 1 1 �1 �1 0 1 0 2
W �1 � 2M �3 � 3M 2 �M M 0 0 1 �8M

35
Quotients

6� 2 D 3
2� 1 D 2

„ ƒ‚ …
indicators
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Note that the effect of the previous step was to display the value ofWwhen t1 D 6,
t2 D 2, and all other variables are 0. Proceeding, we obtain simplex tables II and III:

SIMPLEX TABLE II
entering
variable
#

departing 
variable

24
B x1 x2 x3 s2 t1 t2 W R
t1 �1 0 4 2 1 �2 0 2
x2 1 1 �1 �1 0 1 0 2
W 2CM 0 �1 � 4M �3 � 2M 0 3C 3M 1 6 � 2M

35
Quotients
2� 4 D 1

2

„ ƒ‚ …
indicators

SIMPLEX TABLE III
entering
variable
#

departing 
variable

2664
B x1 x2 x3 s2 t1 t2 W R
x3 � 1

4 0 1 1
2

1
4 �

1
2 0 1

2

x2 3
4 1 0 �

1
2

1
4

1
2 0 5

2

W 7
4 0 0 �

5
2

1
4 CM 5

2 CM 1 13
2

3775
Quotients
1
2 �

1
2 D 1

„ ƒ‚ …
indicators

For the BFS corresponding to table III, the artificial variables t1 and t2 are both 0. We
now can delete the t1- and t2-columns and change W’s to Z’s. Continuing, we obtain
simplex table IV:

SIMPLEX TABLE IV2664
B x1 x2 x3 s2 Z R
s2 � 1

2 0 2 1 0 1

x2 1
2 1 1 0 0 3

Z 1
2 0 5 0 1 9

3775
„ ƒ‚ …

indicators

Since all indicators are nonnegative, we have reached the final table. The maximum
value of Z is 9, and it occurs when x1 D 0, x2 D 3, and x3 D 0.

Now Work Problem 5 G

Empty Feasible Regions
It is possible that the simplex procedure terminates and not all artificial variables are 0.
It can be shown that in this situation the feasible region of the original problem is empty
and, hence, there is no optimum solution. The following example will illustrate.

EXAMPLE 3 An Empty Feasible Region

Use the simplex method to maximize Z D 2x1 C x2 subject to

�x1 C x2 � 2 (35)

x1 C x2 � 1 (36)

x1; x2 � 0
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Solution: Since Constraint (35) is of the form a11x1 C a12x2 � b1, where b1 � 0, an
artificial variable will occur. The equations to consider are

�x1 C x2 � s1 C t1 D 2 (37)

x1 C x2 C s2 D 1 (38)

where s1 is a surplus variable, s2 is a slack variable, and t1 is artificial. The artificial
objective function isW D Z �Mt1, equivalently,

�2x1 � x2 CMt1 CW D 0 (39)

The augmented coefficient matrix of Equations (37)–(39) is

24
x1 x2 s1 s2 t1 W
�1 1 �1 0 1 0 2
1 1 0 1 0 0 1
�2 �1 0 0 M 1 0

35
The simplex tables are as follows:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

24
B x1 x2 s1 s2 t1 W R
t1 �1 1 �1 0 1 0 2
s2 1 1 0 1 0 0 1

W �2CM �1 �M M 0 0 1 �2M

35
Quotients

2� 1 D 2
1� 1 D 1

„ ƒ‚ …
indicators

SIMPLEX TABLE II

24
B x1 x2 s1 s2 t1 W R
t1 �2 0 �1 �1 1 0 1
x2 1 1 0 1 0 0 1

W �1C 2M 0 M 1CM 0 1 1 �M

35
„ ƒ‚ …

indicators

Since M is a large positive number, the indicators in simplex table II are nonneg-x1

x2

2

1

1

x1 + x2 = 1

-x1 + x2 = 2

FIGURE 7.16 Empty feasible
region (no solution exists).

ative, so the simplex procedure terminates. The value of the artificial variable t1 is 1.
Therefore, as previously stated, the feasible region of the original problem is empty
and, hence, no solution exists. This result can be obtained geometrically. Figure 7.16
shows the graphs of �x1 C x2 D 2 and x1 C x2 D 1 for x1; x2 � 0. Since there is no
point .x1; x2/ that simultaneously lies above �x1C x2 D 2 and below x1C x2 D 1 such
that x1; x2 � 0, the feasible region is empty and, thus, no solution exists.

Now Work Problem 9 G

In the next section we will use the simplex method on minimization problems.
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PROBLEMS 7.4
Use the simplex method to solve the following problems.

1. Maximize

P D 3x1 C x2
subject to

x1 C x2 � 6

�x1 C 2x2 � 2

x1; x2 � 0

2. Maximize

Z D 3x1 C 4x2
subject to

x1 C 2x2 � 8

x1 C 6x2 � 12

x1; x2 � 0

3. Maximize

Z D x1 C 2x2 C 3x3
subject to

x1 C 2x2 C 2x3 � 6

x1 � x2 � x3 � 1

x1; x2; x3 � 0

4. Maximize

Z D x1 � x2 C 4x3
subject to

x1 C x2 C x3 � 9

x1 � 2x2 C x3 � 6

x1; x2; x3 � 0

5. Maximize

Z D 3x1 C 2x2 C x3
subject to

x1 C x2 C x3 � 10

x1 � x2 � x3 D 6

x1; x2; x3 � 0

6. Maximize

P D x1 C 2x2 C 3x3

subject to
x2 � 2x3 � 5

x1 C x2 C x3 D 8

x1; x2; x3 � 0

7. Maximize

Z D x1 � 10x2
subject to

x1 � x2 � 1

x1 C 2x2 � 8

x1 C x2 � 5

x1; x2 � 0

8. Maximize

Z D x1 C 4x2 � x3

subject to

x1 C x2 � x3 � 5

x1 C x2 C x3 � 3

x1 � x2 C x3 D 7

x1; x2; x3 � 0

9. Maximize

Z D 3x1 � 2x2 C x3

subject to

x1 C x2 C x3 � 1

x1 � x2 C x3 � 2

x1 � x2 � x3 � �6

x1; x2; x3 � 0

10. Maximize

Z D x1 C 4x2

subject to

x1 C 2x2 � 8

x1 C 6x2 � 12

x2 � 2

x1; x2 � 0

11. Maximize

P D �4x1 C 2x2

subject to

3x1 � 2x2 � 6

�3x1 C 2x2 D 4

x1 � 2

x1; x2 � 0

12. Maximize

Z D 2x1 � 8x2

subject to

x1 � 2x2 � �12

�x1 C x2 � 2

x1 C x2 � 10

x1; x2 � 0
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13. Production A company manufactures two types of desks:
standard and executive. Each type requires assembly and finishing
times as given in the following table:

Assembly Finishing Profit
Time Time per Unit

Standard 1 hr 2 hr $40

Executive 2 hr 3 hr $50

The profit on each unit is also indicated. The number of hours
available per week in the assembly department is 200, and in the
finishing department it is 500. Because of a union contract, the
finishing department is guaranteed at least 300 hours of work per
week. How many units of each type should the company produce
each week to maximize profit?

14. Production A company manufactures three products: X,
Y, and Z. Each product requires the use of time on machines A
and B as given in the following table:

Machine A Machine B

Product X 1 hr 1 hr

Product Y 2 hr 1 hr

Product Z 2 hr 2 hr

The numbers of hours per week that A and B are available for
production are 40 and 30, respectively. The profit per unit on X,
Y, and Z is $50, $60, and $75, respectively. At least five units of Z
must be produced next week. What should be the production order
for that period if maximum profit is to be achieved? What is the
maximum profit?

15. Investments The prospectus of an investment fund states
that all money is invested in bonds that are rated A, AA, and
AAA; no more than 30% of the total investment is in A and AA
bonds, and at least 50% is in AA and AAA bonds. The A, AA,
and AAA bonds yield 8%, 7%, and 6%, respectively, annually.
Determine the percentages of the total investment that should be
committed to each type of bond so that the fund maximizes its
annual yield. What is this yield?

Objective 7.5 Minimization
To show how to solve a
minimization problem by altering the
objective function so that a
maximization problem results.

So far we have used the simplex method tomaximize objective functions. In general, to
minimize a function it suffices to maximize the negative of the function. To understand
why, consider the function f.x/ D x2 � 4. In Figure 7.17(a), observe that the mini-
mum value of f is �4, and it occurs when x D 0. Figure 7.17(b) shows the graph of
g.x/ D �f.x/ D �.x2 � 4/. This graph is the reflection through the x-axis of the graph
of f. Notice that the maximum value of g is 4 and occurs when x D 0. Thus, the mini-
mum value of x2 � 4 is the negative of the maximum value of �.x2 � 4/. That is,

min f D �max.�f/

Alternatively, think of a point C on the positive half of the number line moving to the
left. As it does so, the point�Cmoves to the right. It is clear that if, for some reason, C
stops, then it stops at the minimum value thatC encounters. IfC stops, then so does�C,
at the maximum value encountered by �C. Since this value of �C is still the negative
of the value of C, we see that

minC D �max.�C/

x

y

-4

f(x) = x 2 - 4

(a)

x

y

4 g(x) = -f(x)

(b)

= -(x 2 - 4)

FIGURE 7.17 Minimum value of f.x/ is equal to the negative of the maximum value of �f.x/.
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EXAMPLE 1 Minimization

Use the simplex method to minimize Z D x1 C 2x2 subject to

The problem in Example 1 will be solved
more efficiently in Example 4 of
Section 7.6.

�2x1 C x2 � 1 (1)

�x1 C x2 � 2 (2)

x1; x2 � 0

Solution: Tominimize Z, we can maximize�Z D �x1�2x2. Note that constraints (1)
and (2) each have the form a1x1Ca2x2 � b, where b � 0. Thus, their equations involve
two surplus variables s1 and s2, each with coefficient �1, and two artificial variables t1
and t2, each with coefficientC1:

�2x1 C x2 � s1 C t1 D 1 (3)

�x1 C x2 � s2 C t2 D 2 (4)

Since there are two artificial variables, we maximize the objective function

W D .�Z/ �Mt1 �Mt2

whereM is a large positive number. Equivalently,

x1 C 2x2 CMt1 CMt2 CW D 0 (5)

The augmented coefficient matrix of Equations (3)–(5) is

24
x1 x2 s1 s2 t1 t2 W
�2 1 �1 0 1 0 0 1
�1 1 0 �1 0 1 0 2

1 2 0 0 M M 1 0

35
Proceeding, we obtain simplex tables I, II, and III:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

24
B x1 x2 s1 s2 t1 t2 W R
t1 �2 1 �1 0 1 0 0 1
t2 �1 1 0 �1 0 1 0 2

W 1C 3M 2 � 2M M M 0 0 1 �3M

35
Quotients
1� 1 D 1
2� 1 D 2

„ ƒ‚ …
indicators

SIMPLEX TABLE II
entering
variable
#

departing 
variable

24
B x1 x2 s1 s2 t1 t2 W R
x2 �2 1 �1 0 1 0 0 1
t2 1 0 1 �1 �1 1 0 1

W 5 �M 0 2 �M M �2C 2M 0 1 �2 �M

35
Quotients

1� 1 D 1

„ ƒ‚ …
indicators
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SIMPLEX TABLE III

264
B x1 x2 s1 s2 �Z R
x2 �1 1 0 �1 0 2

s1 1 0 1 �1 0 1

�Z 3 0 0 2 1 �4

375
„ ƒ‚ …

indicators

From table II, it is evident that both t1 and t2 will be absent from the B (basic vari-
ables) column in table III. Thus, they are both 0 and are no longer needed. Accordingly,
we have removed their columns from table III. Moreover, with t1 D 0 D t2, it follows
that W D �Z and the W-row and the W-column can be relabelled as shown. Even
more, all the indicators are now nonnegative so that �Z is maximized when x1 D 0
and x2 D 2. It follows that Z has a minimum value of �.�4/ D 4, when x1 D 0 and
x2 D 2.

Now Work Problem 1 G

EXAMPLE 2 Reducing Dust Emissions

A cement plant produces 2,500,000 barrels of cement per year. The kilns emit 2 kg

Here is an interesting example dealing
with environmental controls.

of dust for each barrel produced. A governmental agency dealing with environmental
protection requires that the plant reduce its dust emissions to no more than 800,000 kg
per year. There are two emission control devices available, A and B. Device A reduces
emissions to 1

2 kg per barrel, and its cost is $0.20 per barrel of cement produced. For
device B, emissions are reduced to 1

5 kg per barrel, and the cost is $0.25 per barrel
of cement produced. Determine the most economical course of action that the plant
should take so that it complies with the agency’s requirement and also maintains its
annual production of exactly 2,500,000 barrels of cement.1

Solution: Wemust minimize the annual cost of emission control. Let x1, x2, and x3 be
the annual numbers of barrels of cement produced in kilns that use device A, device B,
and no device, respectively. Then x1; x2; x3 � 0, and the annual emission control cost
(in dollars) is

C D
1
5
x1 C

1
4
x2 C 0x3 (6)

Since 2,500,000 barrels of cement are produced each year,

x1 C x2 C x3 D 2; 500; 000 (7)

1This example is adapted fromRobert E. Kohn, “AMathematicalModel for Air Pollution Control,” School Science
and Mathematics, 69 (1969), 487–94.
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The numbers of kilograms of dust emitted annually by the kilns that use device A,
device B, and no device are 1

2x1,
1
5x2, and 2x3, respectively. Since the total number of

kilograms of dust emission is to be no more than 800,000,

1
2
x1 C

1
5
x2 C 2x3 � 800; 000 (8)

TominimizeC subject to constraints (7) and (8), where x1; x2; x3 � 0, we first maximize
�C by using the simplex method. The equations to consider are

x1 C x2 C x3 C t1 D 2; 500; 000 (9)

and
1
2
x1 C

1
5
x2 C 2x3 C s2 D 800; 000 (10)

where t1 and s2 are artificial and slack variables, respectively. The artificial objective
equation is W D .�C/ �Mt1, equivalently,

1
5
x1 C

1
4
x2 C 0x3 CMt1 CW D 0 (11)

where M is a large positive number. The augmented coefficient matrix of Equations
(9)–(11) is

264
x1 x2 x3 s2 t1 W
1 1 1 0 1 0 2; 500; 000
1
2

1
5 2 1 0 0 800; 000

1
5

1
4 0 0 M 1 0

375
After determining the initial simplex table, we proceed and obtain (after three additional
simplex tables) the final table:

2664
B x1 x2 x3 s2 �C R
x2 0 1 �5 �

10
3 0 1; 500; 000

x1 1 0 6 10
3 0 1; 000; 000

�C 0 0 1
20

1
6 1 �575;000

3775
„ ƒ‚ …

indicators
Note thatWwas replaced by�Cwhen t1 was no longer a basic variable. The final table
shows that the maximum value of �C is �575; 000 and occurs when x1 D 1; 000; 000,
x2 D 1; 500; 000, and x3 D 0. Thus, the minimum annual cost of the emission con-
trol is �.�575; 000/ D $575; 000. Device A should be installed on kilns producing
1,000,000 barrels of cement annually, and device B should be installed on kilns pro-
ducing 1,500,000 barrels annually.

Now Work Problem 11 G

PROBLEMS 7.5
Use the simplex method to solve the following problems.

1. Minimize

Z D 2x1 C 5x2

subject to

x1 � x2 � 7

2x1 C x2 � 9

x1; x2 � 0

2. Minimize
C D 8x1 C 12x2

subject to
2x1 C 2x2 � 1

x1 C 3x2 � 2

x1; x2 � 0

3. Minimize
Z D 12x1 C 6x2 C 3x3

subject to
x1 � x2 � x3 � 18

x1; x2; x3 � 0
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4. Minimize

Z D x1 C x2 C 2x3

subject to

x1 C 2x2 � x3 � 4

x1; x2; x3 � 0

5. Minimize

Z D 2x1 C 3x2 C x3

subject to

x1 C x2 C x3 � 6

x1 � x3 � �4

x2 C x3 � 5

x1; x2; x3 � 0

6. Minimize

Z D 5x1 C x2 C 3x3

subject to

3x1 C x2 � x3 � 4

2x1 C 2x3 � 5

x1 C x2 C x3 � 2

x1; x2; x3 � 0

7. Minimize

C D �x1 C x2 C 3x3

subject to

x1 C 2x2 C x3 D 4

x2 C x3 D 1

x1 C x2 � 6

x1; x2; x3 � 0

8. Minimize

Z D x1 � x2

subject to

�x1 C x2 � 4

x1 C x2 D 1

x1; x2 � 0

9. Minimize

Z D x1 C 8x2 C 5x3

subject to
x1 C x2 C x3 � 8

�x1 C 2x2 C x3 � 2

x1; x2; x3 � 0

10. Minimize

Z D 4x1 C 4x2 C 6x3

subject to
x1 � x2 � x3 � 3

x1 � x2 C x3 � 3

x1; x2; x3 � 0

11. Emission Control A cement plant produces 3,300,000
barrels of cement per year. The kilns emit 2 lb of dust for each
barrel produced. The plant must reduce its dust emissions to no
more than 1,000,000 lb per year. There are two devices available,
A and B, that will control emissions. Device A will reduce
emissions to 1

2 lb per barrel, and the cost is $0.25 per barrel of
cement produced. For device B, emissions are reduced to 1

4 lb per
barrel, and the cost is $0.40 per barrel of cement produced.
Determine the most economical course of action the plant should
take so that it maintains an annual production of exactly
3,300,000 barrels of cement.

12. Building Lots A developer can buy lots for $800,000 on Park
Place and $600,000 on Virginia Avenue. On each Park Place lot
she can build a two-star condominium building and on each
Virginia Avenue lot she can build a one-star condominium
building. City Hall requires that her development have a total star
rating of at least 19. City Hall also requires that her development
earn at least 27 civic improvement points. The developer will earn
three points for each lot on Virginia Avenue and one point for
each lot on Park Place. How many lots should the developer buy
on each of Park Place and Virginia Avenue to minimize her costs,
and what is her minimum cost?

13. Transportation Costs A retailer has stores in Columbus
and Dayton and has warehouses in Akron and Springfield.
Each store requires delivery of exactly 150 DVD players.
In the Akron warehouse there are 200 DVD players, and in the
Springfield warehouse there are 150.

The transportation costs to ship DVD players from the
warehouses to the stores are given in the following table:

Columbus Dayton

Akron $5 $7

Springfield $3 $2

For example, the cost to ship a DVD player from Akron to the
Columbus store is $5. How should the retailer order the DVD
players so that the requirements of the stores are met and the
total transportation costs are minimized? What is the minimum
transportation cost?

14. Parts Purchasing An auto manufacturer purchases
alternators from two suppliers, X and Y. The manufacturer has
two plants, A and B, and requires delivery of exactly 7000
alternators to plant A and exactly 5000 to plant B. Supplier X
charges $300 and $320 per alternator (including transportation
cost) to A and B, respectively. For these prices, X requires that the
auto manufacturer order at least a total of 3000 alternators.
However, X can supply no more than 5000 alternators. Supplier Y
charges $340 and $280 per alternator to A and B, respectively,
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and requires a minimum order of 7000 alternators. Determine how
the manufacturer should order the necessary alternators so that
his total cost is a minimum. What is this minimum cost?

15. Producing Wrapping Paper A paper company stocks its
holiday wrapping paper in 48-in.-wide rolls, called stock rolls,
and cuts such rolls into smaller widths, depending on customers’
orders. Suppose that an order for 50 rolls of 15-in.-wide paper and
60 rolls of 10-in.-wide paper is received. From a stock roll, the
company can cut three 15-in.-wide rolls and one 3-in.-wide roll.
(See Figure 7.18.) Since the 3-in.-wide roll cannot be used in the
order, 3 in. is called the trim loss for this roll.

15" 15" 15" 3"

48"

FIGURE 7.18

Similarly, from a stock roll, two 15-in.-wide rolls, one 10-in.-wide
roll, and one 8-in.-wide roll could be cut. Here the trim loss would
be 8 in. The following table indicates the number of 15-in. and
10-in. rolls, together with trim loss, that can be cut from a
stock roll:

Roll width
�
15 in. 3 2 1 —
10 in. 0 1 — —

Trim loss 3 8 — —

(a) Complete the last two columns of the table. (b) Assume that
the company has a sufficient number of stock rolls to fill the order
and that at least 50 rolls of 15-in.-wide and at least 60 rolls of
10-in.-wide wrapping paper will be cut. If x1; x2; x3, and x4 are the
numbers of stock rolls that are cut in a manner described by
columns 1–4 of the table, respectively, determine the values of
the x’s so that the total trim loss is minimized. (c)What is the
minimum amount of total trim loss?

Objective 7.6 The Dual
To first motivate and then formally
define the dual of a linear
programming problem.

There is a fundamental principle, called duality, that allows us to solve a maximization
problem by solving a related minimization problem. Let us illustrate.

Table 7.2

Machine A Machine B Profit/Unit

Manual 1 hr 1 hr $10

Electric 2 hr 4 hr $24

Hours available 120 180

Suppose that a company produces two types of garden shears, manual and electric,
and each requires the use of machines A and B in its production. Table 7.2 indicates
that manual shears require the use of A for 1 hour and B for 1 hour. Electric shears
require A for 2 hours and B for 4 hours. The maximum numbers of hours available
per month for machines A and B are 120 and 180, respectively. The profit on manual
shears is $10, and on electric shears it is $24. Assuming that the company can sell all
the shears it can produce, we will determine the maximum monthly profit. If x1 and x2
are the numbers of manual and electric shears produced per month, respectively, then
we want to maximize the monthly profit function

P D 10x1 C 24x2

subject to

x1 C 2x2 � 120 (1)

x1 C 4x2 � 180 (2)

x1; x2 � 0
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Writing Constraints (1) and (2) as equations, we have

x1 C 2x2 C s1 D 120 (3)

and

x1 C 4x2 C s2 D 180 (4)

where s1 and s2 are slack variables. In Equation (3), x1 C 2x2 is the number of hours
that machine A is used. Since 120 hours on A are available, s1 is the number of avail-
able hours that are not used for production. That is, s1 represents unused capacity (in
hours) for A. Similarly, s2 represents unused capacity for B. Solving this problem by
the simplex method, we find that the final table is

264
B x1 x2 s1 s2 P R
x1 1 0 2 �1 0 60
x2 0 1 �

1
2

1
2 0 30

P 0 0 8 2 1 1320

375 (5)

„ ƒ‚ …
indicators

Thus, the maximum profit per month is $1320, which occurs when x1 D 60 and x2 D
30.

Now let us look at the situation from a different point of view. Suppose that the
company wishes to rent out machines A and B. What is the minimum monthly rental
fee they should charge? Certainly, if the charge is too high, no one would rent the
machines. On the other hand, if the charge is too low, it may not pay the company to
rent them at all. Obviously, the minimum rent should be $1320. That is, the minimum
the company should charge is the profit it could make by using the machines itself. We
can arrive at this minimum rental fee directly by solving a linear programming problem.

Let F be the total monthly rental fee. To determine F, suppose the company assigns
values or “worths” to each hour of capacity on machines A and B. Let these worths be
y1 and y2 dollars, respectively, where y1; y2 � 0. Then the monthly worth of machine
A is 120y1, and for B it is 180y2. Thus,

F D 120y1 C 180y2

The total worth of machine time to produce a set of manual shears is 1y1 C 1y2. This
should be at least equal to the $10 profit the company can earn by producing those
shears. If not, the company would make more money by using the machine time to
produce a set of manual shears. Accordingly,

1y1 C 1y2 � 10

Similarly, the total worth of machine time to produce a set of electric shears should be
at least $24:

2y1 C 4y2 � 24

Therefore, the company wants to

minimize F D 120y1 C 180y2

subject to

y1 C y2 � 10 (6)

2y1 C 4y2 � 24 (7)

y1; y2 � 0

To minimize F, we maximize �F. Since constraints (6) and (7) have the form
a1y1 C a2y2 � b, where b � 0, we consider an artificial problem. If r1 and r2 are
surplus variables and t1 and t2 are artificial variables, then we want to maximize

W D .�F/ �Mt1 �Mt2
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whereM is a large positive number, such that

y1 C y2 � r1 C t1 D 10

2y1 C 4y2 � r2 C t2 D 24

and the y’s, r’s, and t’s are nonnegative. The final simplex table for this problem (with
the artificial variable columns deleted and W changed to �F) is

2664
B y1 y2 r1 r2 �F R
y1 1 0 �2 1

2 0 8

y2 0 1 1 �
1
2 0 2

�F 0 0 60 30 1 �1320

3775
„ ƒ‚ …

indicators

Since the maximum value of �F is �1320, the minimum value of F is
�.�1320/ D $1320 (as anticipated). It occurs when y1 D 8 and y2 D 2. We have
therefore determined the optimum value of one linear programming problem (maxi-
mizing profit) by finding the optimum value of another problem (minimizing rental
fee).

The values y1 D 8 and y2 D 2 could have been anticipated from the final table of
the maximization problem. In (5), the indicator 8 in the s1-column means that at the
optimum level of production, if s1 increases by one unit, then the profit P decreases
by 8. That is, 1 unused hour of capacity on A decreases the maximum profit by $8.
Thus, 1 hour of capacity on A is worth $8. We say that the shadow price of 1 hour of
capacity on A is $8. Now, recall that y1 in the rental problem is the worth of 1 hour
of capacity on A. Therefore, y1 must equal 8 in the optimum solution for that prob-
lem. Similarly, since the indicator in the s2-column is 2, the shadow price of 1 hour
of capacity on B is $2, which is the value of y2 in the optimum solution of the rental
problem.

Let us now analyze the structure of our two linear programming problems:

Maximize

P D 10x1 C 24x2

subject to

x1 C 2x2 � 120
x1 C 4x2 � 180

�
(8)

and x1; x2 � 0.

Minimize

F D 120y1 C 180y2

subject to

y1 C y2 � 10
2y1 C 4y2 � 24

�
(9)

and y1; y2 � 0.

Note that in (8) the inequalities are all �, but in (9) they are all �. The coefficients of
the objective function in the minimization problem are the constant terms in (8). The
constant terms in (9) are the coefficients of the objective function of the maximization
problem. The coefficients of the y1’s in (9) are the coefficients of x1 and x2 in the first
constraint of (8); the coefficients of the y2’s in (9) are the coefficients of x1 and x2
in the second constraint of (8). The minimization problem is called the dual of the
maximization problem, and vice versa.

In general, with any given linear programming problem, we can associate another
linear programming problem called its dual. The given problem is called primal. If the
primal is a maximization problem, then its dual is a minimization problem. Similarly,
if the primal involves minimization, then the dual involves maximization.

Any primal maximization problem can be written in the form indicated in Table 7.3.
Note that there are no nonnegativity restrictions on the b’s (nor any other restrictions).
Thus, if we have a maximization problem with an inequality constraint that involves
�, then multiplying both sides by �1 yields an inequality involving �. (With the for-
mulation we are now considering it is immaterial that multiplication by�1 may yield a
constant term that is negative.) Moreover, if a constraint is an equality, it can be written
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in terms of two inequalities, one involving� and one involving�. This is a direct con-
sequence of the logical principle:

.L D R/ if and only if .L � R and L � R/

The corresponding dual minimization problem can be written in the form indicated
in Table 7.4. Similarly, any primal minimization problem can be put in the form of
Table 7.4, and its dual is the maximization problem in Table 7.3.

Table 7.3 Primal (Dual)

Maximize Z D c1x1 C c2x2 C � � � C cnxn
subject to

a11x1 C a12x2 C � � � C a1nxn � b1
a21x1 C a22x2 C � � � C a2nxn � b2
� � � �

� � � �

� � � �

am1x1 C am2x2 C � � � C amnxn � bm

9>>>>>>=>>>>>>;
(10)

and x1; x2; : : : ; xn � 0

Table 7.4 Dual (Primal)

Minimize W D b1y1 C b2y2 C � � � C bmym
subject to

a11y1 C a21y2 C � � � C am1ym � c1
a12y1 C a22y2 C � � � C am2ym � c2
� � � �

� � � �

� � � �

a1ny1 C a2ny2 C � � � C amnym � cn

9>>>>>>=>>>>>>;
(11)

and y1; y2; : : : ; ym � 0

Let us compare the primal and its dual in Tables 7.3 and 7.4. For convenience,
when we refer to constraints, we will mean those in (10) or (11); we will not include
the nonnegativity conditions on the variables. Observe that if all the constraints in the
primal involve � .�/, then all the constraints in its dual involve � .�/. The coeffi-
cients in the dual’s objective function are the constant terms in the primal’s constraints.
Similarly, the constant terms in the dual’s constraints are the coefficients of the primal’s
objective function. The coefficient matrix of the left sides of the dual’s constraints is the
transpose of the coefficient matrix of the left sides of the primal’s constraints. That is,2666664

a11 a21 � � � am1
a12 a22 � � � am2
� � �

� � �

� � �

a1n a2n � � � amn

3777775 D
2666664
a11 a21 � � � am1
a21 a22 � � � a2n
� � �

� � �

� � �

am1 am2 � � � amn

3777775
T

If the primal involves n decision variables and m slack variables, then the dual
involves m decision variables and n slack variables. It should be noted that the dual of
the dual is the primal.

There is an important relationship between the primal and its dual:

If the primal has an optimum solution, then so does the dual, and the optimum value
of the primal’s objective function is the same as that of its dual.
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Moreover, suppose that the primal’s objective function is

Z D c1x1 C c2x2 C � � � C cnxn

Then

If sj is the slack variable associated with the jth constraint in the dual, then the
indicator in the sj-column of the final simplex table of the dual is the value of xj in
the optimum solution of the primal.

Thus, we can solve the primal by merely solving its dual. At times this is more
convenient than solving the primal directly. The link between the primal and the dual
can be expressed very succinctly using matrix notation. Let

C D
�
c1 c2 � � � cn

�
and X D

2666664
x1
x2
�

�

�

xn

3777775
Then the objective function of the primal problem can be written as

Z D CX

Furthermore, if we write

A D

2666664
a11 a12 � � � a1n
a21 a22 � � � a2n
� � �

� � �

� � �

am1 am2 � � � amn

3777775 and B D

2666664
b1
b2
�

�

�

bm

3777775
then the system of constraints for the primal problem becomes

AX � B and X � 0

where, as usual, we understand � .�/ between matrices of the same size to mean that
the inequality holds for each pair of corresponding entries. Now let

Y D

2666664
y1
y2
�

�

�

ym

3777775
The dual problem has objective function given by

W D BTY

and its system of constraints is

ATY � CT and Y � 0

APPLY IT I
5. Find the dual of the following prob-
lem: Suppose that theWhat If Company
has $60,000 for the purchase of materi-
als to make three types of gadgets. The
company has allocated a total of 2000
hours of assembly time and 120 hours
of packaging time for the gadgets. The
following table gives the cost per gad-
get, the number of hours per gadget, and
the profit per gadget for each type:

Type 1 Type 2 Type 3

Cost/ $300 $220 $180
Gadget
Assembly 20 40 20
Hours/
Gadget
Packaging 3 1 2
Hours/
Gadget
Profit $300 $200 $200

EXAMPLE 1 Finding the Dual of a Maximization Problem

Find the dual of the following:

Maximize Z D 3x1 C 4x2 C 2x3
subject to

x1 C 2x2 C 0x3 � 10

2x1 C 2x2 C x3 � 10

and x1; x2; x3 � 0
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Solution: The primal is of the form of Table 7.3. Thus, the dual is

Minimize W D 10y1 C 10y2

subject to

y1 C 2y2 � 3

2y1 C 2y2 � 4

0y1 C y2 � 2

and y1; y2 � 0

Now Work Problem 1 G

APPLY IT I
6. Find the dual of the following prob-
lem: A person decides to take two
different dietary supplements. Each sup-
plement contains two essential ingre-
dients, A and B, for which there are
minimum daily requirements, and each
contains a third ingredient, C, that needs
to be minimized.

Supplement Supplement Daily
1 2 Requirement

A 20 mg/oz 6 mg/oz 98 mg
B 8 mg/oz 16 mg/oz 80 mg
C 6 mg/oz 2 mg/oz

EXAMPLE 2 Finding the Dual of a Minimization Problem

Find the dual of the following:

Minimize Z D 4x1 C 3x2

subject to

3x1 � x2 � 2 (12)

x1 C x2 � 1 (13)

�4x1 C x2 � 3 (14)

and x1; x2 � 0.

Solution: Since the primal is a minimization problem, we want Constraints (13) and
(14) to involve �. (See Table 7.3.) Multiplying both sides of (13) and (14) by �1, we
get �x1 � x2 � �1 and 4x1 � x2 � �3. Thus, Constraints (12)–(14) become

3x1 � x2 � 2

�x1 � x2 � �1

4x1 � x2 � �3

The dual is

MaximizeW D 2y1 � y2 � 3y3

subject to

3y1 � y2 C 4y3 � 4

�y1 � y2 � y3 � 3

and y1; y2; y3 � 0

Now Work Problem 3 G

APPLY IT I
7. A company produces three kinds
of devices requiring three different pro-
duction procedures. The company has
allocated a total of 300 hours for proce-
dure 1, 400 hours for procedure 2, and
600 hours for procedure 3. The follow-
ing table gives the number of hours per
device for each procedure:

Device Device Device
1 2 3

Procedure 1 30 15 10
Procedure 2 20 30 20
Procedure 3 40 30 25

If the profit is $30 per device 1, $20 per
device 2, and $20 per device 3, then,
using the dual and the simplex method,
find the number of devices of each kind
the company should produce to maxi-
mize profit.

EXAMPLE 3 Applying the Simplex Method to the Dual

Use the dual and the simplex method to

Maximize Z D 4x1 � x2 � x3

subject to

3x1 C x2 � x3 � 4

x1 C x2 C x3 � 2

and x1; x2; x3 � 0.
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Solution: The dual is

Minimize W D 4y1 C 2y2

subject to

3y1 C y2 � 4 (15)

y1 C y2 � �1 (16)

�y1 C y2 � �1 (17)

and y1; y2 � 0. To use the simplex method, we must get nonnegative constants in (16)
and (17). Multiplying both sides of these equations by �1 gives

�y1 � y2 � 1 (18)

y1 � y2 � 1 (19)

Since (15) involves �, an artificial variable is required. The equations corresponding
to (15), (18), and (19) are, respectively,

3y1 C y2 � s1 C t1 D 4

�y1 � y2 C s2 D 1

and

y1 � y2 C s3 D 1

where t1 is an artificial variable, s1 is a surplus variable, and s2 and s3 are slack variables.
TominimizeW, wemaximize�W. The artificial objective function isU D .�W/�Mt1,
whereM is a large positive number. After computations, we find that the final simplex
table is

266664
B y1 y2 s1 s2 s3 �W R
y2 0 1 �

1
4 0 �

3
4 0 1

4

s2 0 0 �
1
2 1 �

1
2 0 5

2

y1 1 0 �
1
4 0 1

4 0 5
4

�W 0 0 3
2 0 1

2 1 �
11
2

377775
„ ƒ‚ …

indicators

The maximum value of �W is � 11
2 , so the minimum value ofW is 11

2 . Hence, the max-
imum value of Z is also 11

2 . Note that the indicators in the s1-, s2-, and s3-columns are
3
2 , 0, and

1
2 , respectively. Thus, the maximum value of Z occurs when x1 D 3

2 , x2 D 0,
and x3 D 1

2 .

Now Work Problem 11 G

In Example 1 of Section 7.5 we used the simplex method to

Minimize Z D x1 C 2x2

subject to

�2x1 C x2 � 1

�x1 C x2 � 2

and x1; x2 � 0 The initial simplex table had 24 entries and involved two artificialThis discussion, compared with that in
Example 1 of Section 7.5, shows that the
dual problem may be easier to solve than
the primal problem.

variables. The table of the dual has only 18 entries, no artificial variables, and is easier
to handle, as Example 4 will show. Thus, there may be a distinct advantage in solving
the dual to determine the solution of the primal.
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EXAMPLE 4 Using the Dual and the Simplex Method

Use the dual and the simplex method to

Minimize Z D x1 C 2x2

subject to

�2x1 C x2 � 1

�x1 C x2 � 2

and x1; x2 � 0.

Solution: The dual is

MaximizeW D y1 C 2y2

subject to

�2y1 � y2 � 1

y1 C y2 � 2

and y1; y2 � 0. The initial simplex table is table I:

SIMPLEX TABLE I
entering
variable
#

departing 
variable

24
B y1 y2 s1 s2 W R
s1 �2 �1 1 0 0 1
s2 1 1 0 1 0 2
W �1 �2 0 0 1 0

35
Quotients

2� 1 D 2

„ ƒ‚ …
indicators

Continuing, we get table II.

SIMPLEX TABLE II24
B y1 y2 s1 s2 W R
s1 �1 0 1 1 0 3
y2 1 1 0 1 0 2
W 1 0 0 2 1 4

35
„ ƒ‚ …

indicators
Since all indicators are nonnegative in table II, the maximum value of W is 4. Hence,
the minimum value of Z is also 4. The indicators 0 and 2 in the s1- and s2-columns of
table II mean that the minimum value of Z occurs when x1 D 0 and x2 D 2.

Now Work Problem 9 G

PROBLEMS 7.6
In Problems 1–8, find the duals. Do not solve.

1. Maximize

Z D 2x1 C 3x2

subject to

3x1 � x2 � 4

2x1 C 3x2 � 5

x1; x2 � 0

2. Maximize

Z D 2x1 C x2 � x3

subject to

2x1 C 2x2 � 3

�x1 C 4x2 C 2x3 � 5

x1; x2; x3 � 0
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3. Minimize

Z D 2x1 � 3x2 C 5x3

subject to

x1 � x2 C 2x3 � 4

x1 C 4x2 � 3x3 � �3

x1; x2; x3 � 0

4. Minimize

Z D 8x1 C 12x2

subject to

2x1 C 2x2 � 1

x1 C 3x2 � 2

x1; x2 � 0

5. Maximize

Z D x1 � x2

subject to

�x1 C 2x2 � 13

�x1 C x2 � 3

x1 C x2 � 11

x1; x2 � 0

6. Maximize

Z D 2x1 C 5x2 � 2x3

subject to

2x1 � 3x2 C x3 � 7

3x1 � 4x2 � x3 � �1

x1; x2; x3 � 0

7. Minimize

Z D 4x1 C 4x2 C 6x3;

subject to

x1 � x2 � x3 � 3;

x1 � x2 C x3 � 3;

x1; x2; x3 � 0:

8. Minimize

Z D 2x1 C 3x2

subject to

�5x1 C 2x2 � �20

4x1 C 6x2 � 15

x1; x2 � 0

In Problems 9–14, solve by using duals and the simplex method.

9. Minimize

Z D 2x1 C 2x2 C 5x3

subject to

x1 � x2 C 2x3 � 2

�x1 C 2x2 C x3 � 3

x1; x2; x3 � 0

10. Minimize

Z D 2x1 C 2x2

subject to

x1 C 4x2 � 28

2x1 � x2 � 2

�3x1 C 8x2 � 16

x1; x2 � 0

11. Maximize

Z D 5x1 C 4x2

subject to

2x1 C 3x2 � 6

x1 C 4x2 � 10

x1; x2 � 0

12. Maximize

Z D 2x1 C 6x2

subject to

3x1 C x2 � 12

x1 C x2 � 8

x1; x2 � 0

13. Minimize

Z D 8x1 C 6x2

subject to

2x1 C x2 � 19

�x1 � 3x2 � �27

x1; x2 � 0

14. Minimize

Z D 2x1 C x2 C x3

subject to

2x1 � x2 � x3 � 2

�x1 � x2 C 2x3 � 4

x1; x2; x3 � 0
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15. Advertising A firm is comparing the costs of advertising
in two media—newspaper and radio. For every dollar’s worth of
advertising, the following table gives the number of people, by
income group, reached by these media:

Under Over
$40,000 $40,000

Newspaper 40 100

Radio 50 25

The firm wants to reach at least 80,000 persons earning under
$40,000 and at least 60,000 earning over $40,000. Use the dual
and the simplex method to find the amounts that the firm should
spend on newspaper and radio advertising so as to reach these
numbers of people at a minimum total advertising cost. What is
the minimum total advertising cost?

16. Delivery Truck Scheduling Because of increased
business, a catering service finds that it must rent additional

delivery trucks. The minimum needs are 12 units each of
refrigerated and nonrefrigerated space. Two standard types of
trucks are available in the rental market. Type A has 2 units of
refrigerated space and 1 unit of nonrefrigerated space. Type B has
2 units of refrigerated space and 3 units of nonrefrigerated space.
The costs per mile are $0.40 for A and $0.60 for B. Use the dual
and the simplex method to find the minimum total cost per mile
and the number of each type of truck needed to attain it.

17. Labor Costs A company pays skilled and semiskilled
workers in its assembly department $14 and $8 per hour,
respectively. In the shipping department, shipping clerks are paid
$9 per hour and shipping clerk apprentices are paid $7.25
per hour. The company requires at least 90 workers in the
assembly department and at least 60 in the shipping department.
Because of union agreements, at least twice as many semiskilled
workers must be employed as skilled workers. Also, at least twice
as many shipping clerks must be employed as shipping clerk
apprentices. Use the dual and the simplex method to find the
number of each type of worker that the company must employ so
that the total hourly wage paid to these employees is a minimum.
What is the minimum total hourly wage?

Chapter 7 Review
Important Terms and Symbols Examples
Section 7.1 Linear Inequalities in Two Variables

linear inequality open half-plane closed half-plane Ex. 2, p. 297
system of inequalities Ex. 3, p. 298

Section 7.2 Linear Programming
constraint linear function in x and y linear programming Ex. 1, p. 303
objective function feasible point nonnegativity conditions Ex. 1, p. 303
feasible region isoprofit line corner point multiple optimum solutions Ex. 1, p. 303
empty feasible region nonempty bounded unbounded feasible region Ex. 1, p. 303

Section 7.3 The Simplex Method
standard maximum linear programming problem Ex. 1, p. 314
slack variable decision variable basic feasible solution unbounded solution Ex. 1, p. 314
nonbasic variable basic variable simplex table objective row Ex. 2, p. 317
entering variable indicator departing variable pivot entry degeneracy Ex. 2, p. 317

Section 7.4 Artificial Variables
artificial problem artificial variable artificial objective function surplus variable Ex. 1, p. 323

Section 7.5 Minimization
min C D �max.�C/ Ex. 1, p. 331

Section 7.6 The Dual
shadow price dual primal Ex. 1, p. 339

Summary
The solution of a system of linear inequalities consists of all
points whose coordinates simultaneously satisfy all of the
inequalities. Geometrically, it is the intersection of all of the
regions determined by the inequalities.

Linear programming involves maximizing or minimiz-
ing a linear function (the objective function) subject to a
system of constraints, which are linear inequalities or linear
equations. One method for finding an optimum solution for

a nonempty feasible region is the corner-point method. The
objective function is evaluated at each of the corner points of
the feasible region, and we choose a corner point at which
the objective function is optimum.

For a problem involving more than two variables, the
corner-point method is either impractical or impossible.
Instead, we use a matrix method called the simplex method,
which is efficient and completely mechanical.
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Review Problems
In Problems 1–10, solve the given inequality or system of
inequalities.

1. �3xC 2y > �6 2. 5x � 2yC 10 � 0

3. 3x � �5 4. �x � �3

5.
�
y � 3x < 6
x � y > �3 6.

�
x � 2y > 4
xC y > 1

7.
�

2xC y � 2
�2x � y � 2 8.

�
x > y

xC y < 0

9.

8<: 2xC y < �3
3x � 2y > �9

y � 0
10.

8<:2x � y > 5
x < 3
y < 7

In Problems 11–18, do not use the simplex method.

11. Maximize

Z D x � 2y

subject to

y � x � 2

xC y � 4

x � 3

x; y � 0

12. Maximize

Z D 3xC y

subject to

2xC y � 8

x � 3

y � 1

x; y � 0

13. Minimize

Z D 2x � y

subject to

x � y � �2

xC y � 1

x � 2y � 2

x; y � 0

14. Maximize

Z D xC y
subject to

5xC 6y � 30

4xC 5y � 20

x � 2y � 0

x; y � 0

15. Minimize

Z D 2xC 3y

subject to

xC y � 5

2xC 5y � 10

5xC 8y � 20

x; y � 0

16. Minimize

Z D 2xC 2y

subject to

xC y � 4

�xC 3y � 18

x � 6

x; y � 0

17. Maximize

Z D 4xC 8y

subject to

xC 2y � 8

3xC 2y � 12

x; y � 0

18. Maximize

Z D 4xC y

subject to

xC 2y � 16

3xC 2y � 24

x; y � 0

In Problems 19–28, use the simplex method and possibly duals.

19. Maximize

W D 2x1 C 3x2

subject to

x1 C 6x2 � 12

x1 C 2x2 � 8

x1; x2 � 0
20. Maximize

Z D 18x1 C 20x2

subject to

2x1 C 3x2 � 18

4x1 C 3x2 � 24

x2 � 5

x1; x2 � 0
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21. Minimize

Z D 3x1 C 2x2 C x3

subject to

x1 C 2x2 C 3x3 � 5

x1; x2; x3 � 0

22. Minimize

Z D 3x1 C 5x2

subject to

2x1 C 4x2 � 2

2x1 C 5x2 � 4

x1; x2 � 0

23. Maximize

Z D x1 C 2x2

subject to

x1 C x2 � 12

x1 C x2 � 5

x1 � 10

x1; x2 � 0

24. Minimize

Z D 3x1 C x2

subject to

3x1 C 5x2 � 15

x1 C x2 � 2

x1; x2 � 0

25. Minimize

Z D x1 C 2x2 C x3

subject to

x1 � x2 � x3 � �1

6x1 C 3x2 C 2x3 D 12

x1; x2; x3 � 0

26. Maximize

Z D 2x1 C 3x2 C 5x3

subject to

x1 C x2 C 3x3 � 5

2x1 C x2 C 4x3 � 5

x1; x2; x3 � 0

27. Maximize

Z D 5x1 C 2x2 C 7x3

subject to

4x1 � x2 � 2

�8x1 C 2x2 C 5x3 � 2

x1; x2; x3 � 0

28. Minimize

Z D x1 C x2

subject to

x1 C x2 C 2x3 � 4

x3 � 1

x1; x2; x3 � 0

In Problems 29 and 30, solve by using duals and the simplex
method.

29. Minimize

Z D x1 C 2x2 C 3x3

subject to

x1 C x2 C x3 � 4

x1 C 2x2 C 3x3 � 5

x1; x2; x3 � 0

30. Maximize

Z D x1 � 2x2

subject to

x1 � x2 � 3

x1 C 2x2 � 4

4x1 C x2 � 2

x1; x2 � 0

31. Production Order A company manufactures three
products: X, Y, and Z. Each product requires the use of time on
machines A and B as given in the following table:

Machine A Machine B

Product X 1 hr 1 hr

Product Y 2 hr 1 hr

Product Z 2 hr 2 hr

The numbers of hours per week that A and B are available for
production are 40 and 34, respectively. The profit per unit on X,
Y, and Z is $10, $15, and $22, respectively. What should be the
weekly production order if maximum profit is to be obtained?
What is the maximum profit?
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32. Repeat Problem 31 assuming that the owner insists on a profit
of at least $300 per week.

33. Oil Transportation An oil company has storage facilities
for heating fuel in cities A, B, C, and D. Cities C and D are each
in need of exactly 500,000 gal of fuel. The company determines
that A and B can each sacrifice at most 600,000 gal to satisfy the
needs of C and D. The following table gives the costs per gallon to
transport fuel between the cities:

To

From C D

A $0.01 $0.02

B 0.02 0.04

How should the company distribute the fuel in order to minimize
the total transportation cost? What is the minimum transportation
cost?

34. Profit Imelda operates a home business selling two
computer games: “Space Raiders” and “Green Giants.” These
games are installed for Imelda by three friends, Nicolas, Harvey,
and Karl, each of whom must do some of the work on the
installation of each game. The time that each must spend on each
game is given in the following table:

Nicolas Harvey Karl

Space Raiders 30 min 20 min 10 min

Green Giants 10 min 10 min 50 min

Imelda’s friends have other work to do, but they each find that
each week they can spend at most 300 minutes working on
Imelda’s games. Imelda makes a profit of $10 on each sale of
Space Raiders and $15 on each sale of Green Giants. How many
of each game should Imelda try to sell each week to maximize
profit, and what is this maximum profit?

35. Diet Formulation A technician in a zoo must formulate a
diet from two commercial products, food A and food B, for
a certain group of animals. In 200 grams of food A there are
16 grams of fat, 32 grams of carbohydrate, and 4 grams of protein.
In 200 g of food B there are 8 grams of fat, 64 grams of
carbohydrate, and 10 grams of protein. The minimum daily
requirements are 176 grams of fat, 1024 grams of carbohydrate,
and 200 grams of protein. If food A costs 8 cents per 100 grams
and food B costs 22 cents per 100 grams, how many grams of each
food should be used to meet the minimum daily requirements at
the least cost? (Assume that a minimum cost exists.)

In Problems 36 and 37, do not use the simplex method. Round
your answers to two decimal places.

36. Minimize

Z D 4:2x � 2:1y

subject to

y � 3:4C 1:2x

y � �7:6C 3:5x

y � 18:7 � 0:6x

x; y � 0

37. Maximize

Z D 12:4xC 8:3y

subject to

1:4xC 1:7y � 15:9

�3:6xC 2:6y � �10:7

�1:3xC 4:3y � �5:2

x; y � 0
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8.1 Basic Counting Principle
and Permutations

8.2 Combinations and Other
Counting Principles

8.3 Sample Spaces and
Events

8.4 Probability

8.5 Conditional Probability
and Stochastic Processes

8.6 Independent Events

8.7 Bayes’ Formula

Chapter 8 Review

T he term probability is familiar to most of us. It is not uncommon to hear
such phrases as “the probability of precipitation”, “the probability of flood-
ing”, and “the probability of receiving an A in a course”. Loosely speaking,
probability refers to a number that indicates the degree of likelihood that

some future event will have a particular outcome. For example, before tossing a well-
balanced coin, one does not know with certainty whether the outcome will be a head
or a tail. However, no doubt one considers these outcomes to be be equally likely to
occur. This means that if the coin is tossed a large number of times, one expects that
approximately half of the tosses will give heads. Thus, we say that the probability of a

head occurring on any toss is 1
2 D 50%.

The study of probability forms the basis of the study of statistics. In statistics, we
are concerned about making an inference—that is, a prediction or decision—about a
population (a large set of objects under consideration) by using a sample of data drawn
from that population. For example, by drawing a sample of units from an assembly
line, we can statistically make an inference about all the units in a production run.
However, in the study of probability, we work with a known population and consider
the likelihood (or probability) of drawing a particular sample from it. For example,
if we deal five cards from a deck, we may be interested in the probability that it is a
“pair”, meaning that it contains two (but not three) cards of the same denomination.
The probability of a pair is

the number of possible pairs
the number of possible five card hands

Evidently, we need to be able to handle certain computations of the form “the number
of : : : ”. Such computations can be more subtle than one might at first imagine. They
are called counting problems, and we begin our study of probability with them.

Modern probability theory began with a very practical problem. If a game between
two gamblers is interrupted, the player who is ahead surely has a right to more than half
the pot of money being contested— but not to all of it. How should the pot be divided?
This problem was unsolved in 1654, when the Chevalier de Méré shared it with his
friend, the French mathematician and philosopher Blaise Pascal (1623–1662). Pascal,
in correspondence with Pierre de Fermat, solved this problem and we describe their
solution in Example 8 of Section 8.4.

348
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Objective 8.1 Basic Counting Principle and Permutations
To develop and apply a Basic
Counting Principle and to extend it to
permutations. Basic Counting Principle

Later on, we will find that computing a probability may require us to calculate the num-
ber of elements in a set. Because counting the elements individually may be extremely
tedious (or even prohibitive), we spend some time developing efficient counting tech-
niques. We begin by motivating the Basic Counting Principle, which is useful in solv-
ing a wide variety of problems.

Suppose a manufacturer wants to produce coffee brewers in 2-, 8-, and 10-cup
capacities, with each capacity available in colors of white, beige, red, and green. How
many types of brewers must the manufacturer produce? To answer the question, it is
not necessary that we count the capacity–color pairs one by one (such as 2-white and
8-beige). Since there are three capacities, and for each capacity there are four colors,
the number of types is the product, 3 � 4 D 12. We can systematically list the different
types by using the tree diagram of Figure 8.1. From the starting point, there are three
branches that indicate the possible capacities. From each of these branches are four
more branches that indicate the possible colors. This tree determines 12 paths, each
beginning at the starting point and ending at a tip. Each path determines a different
type of coffee brewer. We refer to the diagram as being a two-level tree: There is a level
for capacity and a level for color.

We can consider the listing of the types of coffee brewers as a two-stage procedure.
In the first stage we indicate a capacity and in the second a color. The number of types
of coffee brewers is the number of ways the first stage can occur (3), times the number
of ways the second stage can occur (4), which yields 3 � 4 D 12. Suppose further that
the manufacturer decides to make all of the models available with a timer option that
allows the consumer to awake with freshly brewed coffee. Assuming that this really is
an option, so that a coffee brewer either comes with a timer or without a timer, counting
the number of types of brewers now becomes a three-stage procedure. There are now
3 � 4 � 2 D 24 types of brewer.

White

Beige

Red

Green

White

Beige

Red

Green

White

Beige

Red

Green

2

8

10

Start

Color

2, w

2, b

2, r

2, g

Type

8, w

8, b

8, r

8, g

10, w

10, b

10, r

10, g

Capacity

Level 1 Level 2

FIGURE 8.1 Two-level tree diagram for types of coffee brewers.
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This multiplication procedure can be generalized into a Basic Counting Principle:

Basic Counting Principle
Suppose that a procedure involves a sequence of k stages. Let n1 be the number
of ways the first can occur and n2 be the number of ways the second can occur.
Continuing in this way, let nk be the number of ways the kth stage can occur. Then
the total number of different ways the procedure can occur is

n1 � n2 � : : : � nk

EXAMPLE 1 Travel Routes

Two roads connect cities A and B, four connect B and C, and five connect C and D.
(See Figure 8.2.) To drive from A, to B, to C, and then to city D, how many different
routes are possible?

Solution: Here we have a three-stage procedure. The first (A ! B) has two possi-
bilities, the second (B ! C) has four, and the third (C ! D) has five. By the Basic
Counting Principle, the total number of routes is 2 � 4 � 5 D 40.

Now Work Problem 1 G

A

B

C D

FIGURE 8.2 Roads connecting cities A, B, C, D.

EXAMPLE 2 Coin Tosses and Roll of a Die

When a coin is tossed, a head (H) or a tail (T) may show. If a die is rolled, a 1, 2, 3, 4,
5, or 6 may show. Suppose a coin is tossed twice and then a die is rolled, and the result
is noted (such as H on first toss, T on second, and 4 on roll of die). How many different
results can occur?

Solution: Tossing a coin twice and then rolling a die can be considered a three-stage
procedure. Each of the first two stages (the coin toss) has two possible outcomes. The
third stage (rolling the die) has six possible outcomes. By the Basic Counting Principle,
the number of different results for the procedure is

2 � 2 � 6 D 24

Now Work Problem 3 G

EXAMPLE 3 Answering a Quiz

In how many different ways can a quiz be answered under each of the following con-
ditions?

a. The quiz consists of three multiple-choice questions with four choices for each.

Solution: Successively answering the three questions is a three-stage procedure. The
first question can be answered in any of four ways. Likewise, each of the other two
questions can be answered in four ways. By the Basic Counting Principle, the number
of ways to answer the quiz is

4 � 4 � 4 D 43 D 64
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b. The quiz consists of three multiple-choice questions (with four choices for each)
and five true–false questions.

Solution: Answering the quiz can be considered a two-stage procedure. First we can
answer the multiple-choice questions (the first stage), and then we can answer the
true–false questions (the second stage). From part (a), the three multiple-choice ques-
tions can be answered in 4 � 4 � 4 ways. Each of the true–false questions has two
choices (“true” or “false”), so the total number of ways of answering all five of them is
2 � 2 � 2 � 2 � 2. By the Basic Counting Principle, the number of ways the entire quiz can
be answered is

.4 � 4 � 4/„ ƒ‚ …
multiple
choice

.2 � 2 � 2 � 2 � 2/„ ƒ‚ …
true–false

D 43 � 25 D 2048

Now Work Problem 5 G

EXAMPLE 4 Letter Arrangements

From the five letters A, B, C, D, and E, how many three-letter horizontal arrangements
(called “words”) are possible if no letter can be repeated? (A “word” need not make
sense.) For example, BDE and DEB are two acceptable words, but CAC is not.

Solution: To form a word, we must successively fill the positions with
different letters. Thus, we have a three-stage procedure. For the first position, we can
choose any of the five letters. After filling that position with some letter, we can fill the
second position with any of the remaining four letters. After that position is filled, the
third position can be filled with any of the three letters that have not yet been used. By
the Basic Counting Principle, the total number of three-letter words isIf repetitions are allowed, the number of

words is 5 � 5 � 5 D 125.

5 � 4 � 3 D 60

Now Work Problem 7 G

Permutations
In Example 4, we selected three different letters from five letters and arranged them in
an order. Each result is called a permutation of five letters taken three at a time. More
generally, we have the following definition.

Definition
An ordered selection of r objects, without repetition, taken from n distinct objects is
called a permutation of n objects taken r at a time.The number of such permutations
is denoted nPr.

Thus, in Example 4, we found that

5P3 D 5 � 4 � 3 D 60

By a similar analysis, we will now find a general formula for nPr. In making an ordered
arrangement of r objects from n objects, for the first position we may choose any one
of the n objects. (See Figure 8.3.) After the first position is filled, there remain n � 1
objects that may be chosen for the second position. After that position is filled, there
are n� 2 objects that may be chosen for the third position. Continuing in this way and
using the Basic Counting Principle, we arrive at the following formula:
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,

n

Choices

,

n - 1
Choices

,

n - 2
Choices

n - r + 1
Choices

,

r objects

FIGURE 8.3 An ordered arrangement of r objects selected from n objects.

The number of permutations of n objects taken r at a time is given by

nPr D n.n � 1/.n � 2/ � � � .n � rC 1/„ ƒ‚ … (1)

r factors

The formula for nPr can be expressed in terms of factorials. Multiplying the right side
See Section 2.2 for the definition of
factorial. of Equation (1) by

.n � r/.n � r � 1/ � � � .2/.1/

.n � r/.n � r � 1/ � � � .2/.1/

gives

nPr D
n.n � 1/.n � 2/ � � � .n � rC 1/ � .n � r/.n � r � 1/ � � � .2/.1/

.n � r/.n � r � 1/ � � � .2/.1/

The numerator is simply n!, and the denominator is .n�r/Š. Thus, we have the following
result:

The number of permutations of n objects taken r at a time is given by

nPr D
nŠ

.n � r/Š
(2)

For example, from Equation (2), we have

7P3 D
7Š

.7 � 3/Š
D

7Š
4Š
D

7 � 6 � 5 � 4 � 3 � 2 � 1
4 � 3 � 2 � 1

D 210

This calculation can be obtained easily with a calculator by using the factorial key.Many calculators can directly
calculate nPr. Alternatively, we can write

7Š
4Š
D

7 � 6 � 5 � 4Š
4Š

D 7 � 6 � 5 D 210

Notice how 7! was written so that the 4!’s would cancel.

EXAMPLE 5 Club Officers

A club has 20members. The offices of president, vice president, secretary, and treasurer
are to be filled, and no member may serve in more than one office. How many different
slates of candidates are possible?

Solution: We will consider a slate in the order of president, vice president, secretary,
and treasurer. Each ordering of four members constitutes a slate, so the number of
possible slates is 20P4. By Equation (1),

20P4 D 20 � 19 � 18 � 17 D 116,280



Haeussler-50501 M09_HAEU1107_14_SE_C08 October 14, 2017 17:15

Section 8.1 Basic Counting Principle and Permutations 353

Alternatively, using Equation (2) givesCalculations with factorials tend to
produce very large numbers. To avoid
overflow on a calculator, it is frequently
important to do some cancellation before
making entries.

20P4 D
20Š

.20 � 4/Š
D

20Š
16Š
D

20 � 19 � 18 � 17 � 16Š
16Š

D 20 � 19 � 18 � 17 D 116,280

Note the large number of possible slates!

Now Work Problem 11 G

EXAMPLE 6 Political Questionnaire

A politician sends a questionnaire to her constituents to determine their concerns about
six important national issues: unemployment, the environment, taxes, interest rates,
national defense, and social security. A respondent is to select four issues of personal
concern and rank them by placing the number 1, 2, 3, or 4 after each issue to indicate
the degree of concern, with 1 indicating the greatest concern and 4 the least. In how
many ways can a respondent reply to the questionnaire?

Solution: A respondent is to rank four of the six issues. Thus, we can consider a reply
as an ordered arrangement of six items taken four at a time, where the first item is the
issue with rank 1, the second is the issue with rank 2, and so on. Hence, we have a
permutation problem, and the number of possible replies is

6P4 D
6Š

.6 � 4/Š
D

6Š
2Š
D

6 � 5 � 4 � 3 � 2Š
2Š

D 6 � 5 � 4 � 3 D 360

Now Work Problem 21 G

In case you want to find the number of permutations of n objects taken all at a time,
setting r D n in Equation (2) gives

By definition, 0Š D 1.

nPn D
nŠ

.n � n/Š
D

nŠ
0Š
D

nŠ
1
D nŠ

Each of these permutations is simply called a permutation of n objects.

The number of permutations of n objects is n!.

For example, the number of permutations of the letters in the word SET is is 3Š D 6.
These permutations are

SET STE EST ETS TES TSE

EXAMPLE 7 Name of Legal Firm

Lawyers Smith, Jones, Jacobs, and Bell want to form a legal firm and will name it by
using all four of their last names. How many possible names are there?

Solution: Since order is important, we must find the number of permutations of four
names, which is

4Š D 4 � 3 � 2 � 1 D 24

Thus, there are 24 possible names for the firm.

Now Work Problem 19 G
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PROBLEMS 8.1
1. Production Process In a production process, a product goes
through one of the assembly lines A, B, or C and then goes
through one of the finishing lines D or E. Draw a tree diagram that
indicates the possible production routes for a unit of the product.
How many production routes are possible?

2. Air Conditioner Models A manufacturer produces air
conditioners having 6000-, 8000-, and 10,000-BTU capacities.
Each capacity is available with one- or two-speed fans. Draw a
tree diagram that represents all types of models. How many types
are there?

3. Dice Rolls A red die is rolled, and then a green die is rolled.
Draw a tree diagram to indicate the possible results. How many
results are possible?

4. Coin Toss A coin is tossed four times. Draw a tree diagram
to indicate the possible results. How many results are possible?

In Problems 5–10, use the Basic Counting Principle.

5. Course Selection A student must take a mathematics course,
a philosophy course, and a physics course. The available
mathematics classes are category theory, measure theory, real
analysis, and combinatorics. The philosophy possibilities are
logical positivism, epistemology, and modal logic. The available
physics courses are classical mechanics, electricity and
magnetism, quantum mechanics, general relativity, and
cosmology. How many three-course selections can the student
make?

6. Auto Routes A person lives in city A and commutes by
automobile to city B. There are five roads connecting A and B.
(a) How many routes are possible for a round trip? (b) How many
round-trip routes are possible if a different road is to be used for
the return trip?

7. Dinner Choices At a restaurant, a complete dinner consists
of an appetizer, an entree, a dessert, and a beverage. The choices
for the appetizer are soup and salad; for the entree, the choices are
chicken, fish, steak, and lamb; for the dessert, the choices are
cherries jubilee, fresh peach cobbler, chocolate truffle cake, and
blueberry roly-poly; for the beverage, the choices are coffee, tea,
and milk. How many complete dinners are possible?

8. Multiple-Choice Exam In how many ways is it possible
to answer a six-question multiple-choice examination if each
question has four choices (and one choice is selected for each
question)?

9. True–False Exam In how many ways is it possible to
answer a 10-question true–false examination?

10. Canadian Postal Codes A Canadian postal code consists
of a string of six characters, of which three are letters and three
are digits, which begins with a letter and for which each letter is
followed by a (single) digit. (For readability, the string is broken
into strings of three. For example, M5W 1E6 is a valid postal

code.) How many Canadian postal codes are possible? What
percentage of these begin with M5W? What percentage end with
1E6?

In Problems 11–16, determine the values.

11. 6P3 12. 95P1 13. 6P6

14. 9P4 15. 7P4 �4 P2 16. 99P5
99P4

17. Compute 1000!/999! without using a calculator. Now try it
with your calculator, using the factorial feature.

18. Determine nPr

nŠ
.

In Problems 19–42, use any appropriate counting method.

19. Name of Firm Flynn, Peters, and Walters are forming an
advertising firm and agree to name it by their three last names.
How many names for the firm are possible?

20. Softball If a softball league has six teams, how many
different end-of-the-season rankings are possible? Assume that
there are no ties.

21. Contest In how many ways can a judge award first, second,
and third prizes in a contest having eight contestants?

22. Matching-Type Exam On a history exam, each of six
items in one column is to be matched with exactly one of eight
items in another column. No item in the second column can be
selected more than once. In how many ways can the matching
be done?

23. Die Roll A die (with six faces) is rolled four times and the
outcome of each roll is noted. How many results are possible?

24. Coin Toss A coin is tossed eight times. How many results
are possible if the order of the tosses is considered?

25. Problem Assignment In a mathematics class with 12
students, the instructor wants homework problems 1, 3, 5, and 7
put on the board by four different students. In how many ways can
the instructor assign the problems?

26. Combination Lock A combination lock has 26 different
letters, and a sequence of three different letters must be selected
for the lock to open. How many combinations are possible?

27. Student Questionnaire A university issues a questionnaire
whereby each student must rank the four items with which he or
she is most dissatisfied. The items are

tuition fees professors
parking fees cafeteria food
dormitory rooms class sizes

The ranking is to be indicated by the numbers 1, 2, 3 and 4, where
1 indicates the item involving the greatest dissatisfaction and 4 the
least. In how many ways can a student answer the questionnaire?

28. Die Roll A die is rolled three times. How many results are
possible if the order of the rolls is considered and the second roll
produces a number less than 3?

29. Letter Arrangements How many six-letter words from the
letters in the word MEADOW are possible if no letter is repeated?

30. Letter Arrangements Using the letters in the word
BREXIT, how many four-letter words are possible if no letter is
repeated?
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31. Book Arrangements In how many ways can five of seven
books be arranged on a bookshelf? In how many ways can all
seven books be arranged on the shelf?
32. Lecture Hall A lecture hall has five doors. In how many
ways can a student enter the hall by one door and

(a) Exit by a different door?
(b) Exit by any door?

33. Poker Hand A poker hand consists of 5 cards drawn from a
deck of 52 playing cards. The hand is said to be “four of a kind” if
four of the cards have the same face value. For example, hands
with four 10’s or four jacks or four 2’s are four-of-a-kind hands.
How many such hands are possible?

34. Merchandise Choice In a merchandise catalog, a CD rack
is available in the colors of black, red, yellow, gray, and blue.
When placing an order for one CD rack, customers must indicate
their first and second color choices. In how many ways can this
be done?

35. Fast Food Order Four students go to a pizzeria and order a
margharita, a diavalo, a Greek, and a meat-lover’s — one item for
each student. When the waiter brings the food to the table, she
forgets which student ordered which item and simply places one
before each student. In how many ways can she do this?

36. Group Photograph In how many ways can three men and
two women line up for a group picture? In how many ways can
they line up if a woman is to be at each end?

37. Club Officers A club has 12 members.

(a) In how many ways can the offices of president, vice president,
secretary, and treasurer be filled if no member can serve in more
than one office?
(b) In how many ways can the four offices be filled if the
president and vice president must be different members?

38. Fraternity Names Suppose a fraternity is named by three
Greek letters. (There are 24 letters in the Greek alphabet.)

(a) How many names are possible?
(b) How many names are possible if no letter can be used more
than one time?

39. Basketball In how many ways can a basketball coach
assign positions to her five-member team if two of the members
are qualified for the center position and all five are qualified for all
the other positions?

40. Car Names A European car manufacturer has three series
of cars A, S, and R in sizes 3, 4, 5, 6, 7, and 8. Each car it makes
potentially comes in a Komfort (K), Progressiv (P), or a Technik
(T) trim package, with either an automatic (A) or a manual (M)
transmission, and a 2-, 3-, or 5-litre engine. The manufacturer
names its products with a string of letters and digits as suggested
by these attributes in the order given. For example, the
manufacturer speaks of the R4TA5. How many models can the
manufacturer name using these criteria?

41. Baseball A baseball manager determines that, of his nine
team members, three are strong hitters and six are weak. If the
manager wants the strong hitters to be the first three batters in a
batting order, how many batting orders are possible?

42. Signal Flags When at least one of four flags colored red,
green, yellow, and blue is arranged vertically on a flagpole, the
result indicates a signal (or message). Different arrangements give
different signals.

(a) How many different signals are possible if all four flags are
used?
(b) How many different signals are possible if at least one flag is
used?

Objective 8.2 Combinations and Other Counting Principles
To discuss combinations,
permutations with repeated objects,
and assignments to cells.

Combinations
We continue our discussion of counting methods by considering the following. In a
20-member club the offices of president, vice president, secretary, and treasurer are to
be filled, and no member may serve in more than one office. If these offices, in the order
given, are filled by members A, B, C, and D, respectively, then we can represent this
slate by

ABCD

A different slate is

BACD

These two slates represent different permutations of 20 members taken four at a time.
Now, as a different situation, let us consider four-person committees that can be formed
from the 20 members. In that case, the two arrangements

ABCD and BACD
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represent the same committee. Here the order of listing the members is of no concern.
These two arrangements are considered to give the same combination of A, B, C, andD.

The classical definition of combination follows:

Definition
A selection of r elements, without regard to order and without repetition, selected
from n distinct elements, is called a combination of n elements taken r at a time. The
number of such combinations is denoted nCr, which can be read “n choose r”.

The important phrase here is without
regard to order.

Another wording may be helpful. If we start with a set which has n elements and
select r elements from it, then we have an r-element subset of the original set. A com-
bination of n elements taken r at a time is precisely an r-element subset of the original
n-element set. It follows that nCr is precisely the number of r-element subsets of an
n-element set.

EXAMPLE 1 Comparing Combinations and Permutations

List all combinations and all permutations of the four letters

A; B; C; and D

when they are taken three at a time.

Solution: The combinations are

ABC ABD ACD BCD

There are four combinations, so 4C3 D 4. The permutations are

ABC ABD ACD BCD
ACB ADB ADC BDC
BAC BAD CAD CBD
BCA BDA CDA CDB
CAB DAB DAC DBC
CBA DBA DCA DCB

There are 24 permutations.

Now Work Problem 1 G

Again, we could say that the original set is fA,B,C,Dg and, as stressed in
Section 0.1, a set is determined by its elements and neither rearrangements nor repe-
titions in a listing affect the set, so fA,B,C,Dg D fB,A,D,Cg, to give just one possible
rearrangement. It is easy to see that the 3-element subsets of our 4-element set arise
by removal of one of the four elements and these are fA,B,Cg, fA,B,Dg, fA,C,Dg, and
fB,C,Dg, classically known as the combinations of the the four elements in fA,B,C,Dg
taken three at a time. By contrast, note that each of the four combinations has six per-
mutations associatedwith it. The display above shows these permutations in the column
directly below the combination in question. In fact, it is better to display the combina-
tions as

fA,B,Cg fA,B,Dg fA,C,Dg fB,C,Dg

because the parentheses tell us that rearrangements (and repetitions) are not considered.
The columnar display in Example 1 leads us to a formula for nCr. For it shows

us that listing all the permutations accounted for by nPr can be regarded as a two-step
procedure: First, list all the combinations accounted for by nCr; second, rearrange the
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elements in each combination. For each r-element combination, there are rŠ ways to
rearrange its elements. Thus, by the Basic Counting Principle of Section 8.1,

nPr Dn Cr � rŠ

Solving for nCr gives

nCr D
nPr

rŠ
D

nŠ
.n � r/Š

rŠ
D

nŠ
rŠ.n � r/Š

The number of combinations of n objects taken r at a time is given by

nCr D
nŠ

rŠ.n � r/ŠMany calculators can directly
compute nCr.

EXAMPLE 2 Committee Selection

If a club has 20 members, how many different four-member committees are possible?

Solution: Order is not important because, no matter how the members of a commit-
tee are arranged, we have the same committee. Thus, we simply have to compute the
number of combinations of 20 objects taken four at a time, 20C4:

20C4 D
20Š

4Š.20 � 4/Š
D

20Š
4Š16Š

D
20 � 19 � 18 � 17 � 16Š
4 � 3 � 2 � 1 � 16Š

D 4845

There are 4845 possible committees.

Observe how 20Š was written so that the
16Š’s would cancel.

Now Work Problem 9 G

It is important to remember that if a selection of objects is made and order is
important, then permutations should be considered. If order is not important, consider
combinations. A key aid to memory is that nPr is the number of executive slates with r
ranks that can be chosen from n people, while nCr is the number of committees with
r members that can be chosen from n people. An executive slate can be thought of as
a committee in which every individual has been ranked. There are rŠ ways to rank the
members of a committee with rmembers. Thus, if we think of of forming an executive
slate as a two-stage procedure, then, using the Basic Counting Principle of Section 8.1,
we again get

nPr D nCr � rŠ

EXAMPLE 3 Poker Hand

A poker hand consists of 5 cards dealt from an ordinary deck of 52 cards. How many
different poker hands are there?

Solution: One possible hand is

2 of hearts; 3 of diamonds; 6 of clubs;
4 of spades; king of hearts

which we can abbreviate as

2H 3D 6C 4S KH
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The order in which the cards are dealt does not matter, so this hand is the same as

KH 4S 6C 3D 2H

Thus, the number of possible hands is the number of ways that 5 objects can be selected
from 52, without regard to order. This is a combination problem. We have

52C5 D
52Š

5Š.52 � 5/Š
D

52Š
5Š47Š

D
52 � 51 � 50 � 49 � 48 � 47Š

5 � 4 � 3 � 2 � 1 � 47Š

D
52 � 51 � 50 � 49 � 48

5 � 4 � 3 � 2
D 2,598,960

Now Work Problem 11 G

EXAMPLE 4 Majority Decision and Sum of Combinations

A college promotion committee consists of five members. In how many ways can the
committee reach a majority decision in favor of a promotion?

Strategy A favorable majority decision is reached if, and only if,

exactly three members vote favorably,
or exactly four members vote favorably,
or all five members vote favorably

To determine the total number of ways to reach a favorable majority decision, we
add the number of ways that each of the preceding votes can occur.

Solution: Suppose exactly three members vote favorably. The order of the members
is of no concern, and thus we can think of these members as forming a combination.
Hence, the number of ways three of the five members can vote favorably is 5C3. Sim-
ilarly, the number of ways exactly four can vote favorably is 5C4, and the number of
ways all five can vote favorably is 5C5 (which, of course, is 1). Thus, the number of
ways to reach a majority decision in favor of a promotion is

5C3 C 5C4 C 5C5 D
5Š

3Š.5 � 3/Š
C

5Š
4Š.5 � 4/Š

C
5Š

5Š.5 � 5/Š

D
5Š
3Š2Š
C

5Š
4Š1Š
C

5Š
5Š0Š

D
5 � 4 � 3Š
3Š � 2 � 1

C
5 � 4Š
4Š � 1

C 1

D 10C 5C 1 D 16

Now Work Problem 15 G

Combinations and Sets
The previous example leads naturally to some properties of combinations that are useful
in the study of probability. For example, we will show that

5C0 C 5C1 C 5C2 C 5C3 C 5C4 C 5C5 D 25

and, for any nonnegative integer n,

nC0 C nC1 C � � � C nCn�1 C nCn D 2n (1)
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We can build on the last equation of Example 4 to verify the first of these equations:

5C0 C 5C1 C 5C2 C 5C3 C 5C4 C 5C5 D 5C0 C 5C1 C 5C2 C 16

D
5Š

0Š.5 � 0/Š
C

5Š
1Š.5 � 1/Š

C
5Š

2Š.5 � 2/Š
C 16

D
5Š
0Š5Š
C

5Š
1Š4Š
C

5Š
2Š3Š
C 16

D 1C
5 � 4Š
4Š
C

5 � 4 � 3Š
2 � 3Š

C 16

D 1C 5C 10C 16

D 32

D 25

However, this calculation is not illuminating and would be impractical if we were to
adapt it for values of n much larger than 5.

Until this chapter we have we have primarily looked at sets in the context of sets
of numbers. However, in this chapter we have already seen that a combination is just a
subset and the number n in nCr, say, is just the number of things under consideration.
In examples in the study of probability we will see a lot more of this. We often look at
things like sets of playing cards, sets of die rolls, sets of ordered pairs of dice rolls, and
“sets of ways of doing things”. Typically these sets are finite. If a set S has n elements,
we can, in principle, list its elements. For example, we might write

S D fs1; s2; : : : ; sng

We recall, from Section 0.1, but now in more detail:

A subset E of S is a set with the property that every element of E is also an element
of S. When this is the case we write E � S. Formally,

E � S if and only if, for all x; if x is an element of E then x is an element of S:

For any set S, we always have ; � S and S � S. If a set S has n elements, then any
subset of S has r elements, where 0 � r � n. The empty set, ;, is the only subset of
S that has 0 elements. The whole set, S, is the only subset of S that has n elements. A
general subset of S, containing r elements, where 0 � r � n is exactly a combination
of n objects taken r at a time and the number of such combinations denoted nCr is the
number of r-element subsets of an n-element set.

For any set S, we can form the set of all subsets of S. It is called the power set of S
and sometimes denoted 2S. We claim that if S has n elements, then 2S has 2n elements.
This is easy to see. If

S D fs1; s2; � � � ; sng

then specification of a subset E of S can be thought of as a procedure involving n stages.
The first stage is to ask, “Is s1 an element of E?”; the second stage is to ask, “Is s2 an
element of E?”. We continue to ask such questions until we come to the nth stage—
the last stage—“Is sn an element of E?”. Observe that each of these questions can be
answered in exactly two ways; namely, yes or no. According to the Basic Counting
Principle of Section 8.1, the total number of ways that specification of a subset of S can
occur is

2 � 2 � : : : � 2„ ƒ‚ …
n factors

D 2n
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It follows that there are 2n subsets of an n-element set. It is convenient to write #.S/ for
the number of elements of set S. Thus, we have

#.2S/ D 2#.S/ (2)

If #.S/ D n, then for each E in 2S, we have #.E/ D r, for some r satisfying 0 � r � n.
For each such r, let us write Sr for the subset of 2S consisting of all those elements E
with n.E/ D r. Thus, Sr is the set of all r-element subsets of the n-element set S. From
our observations in the last paragraph it follows that

#.Sr/ D nCr (3)

Now we claim that

#.S0/C #.S1/C � � � C #.Sn�1/C #.Sn/ D #.2S/ (4)

since every element E of 2S is in exactly one of the sets Sr. Substituting Equation (3),
for each 0 � r � n, and Equation (2) in Equation (4), we have Equation (1).

EXAMPLE 5 A Basic Combinatorial Identity

Establish the identity

nCr C nCrC1 D nC1CrC1

Solution 1: We can calculate using nCr D
nŠ

rŠ.n � r/Š
:

nCr C nCrC1 D
nŠ

rŠ.n � r/Š
C

nŠ
.rC 1/Š.n � r � 1/Š

D
.rC 1/nŠC .n � r/nŠ
.rC 1/Š.n � r/Š

D
..rC 1/C .n � r//nŠ
.rC 1/Š.n � r/Š

D
.nC 1/nŠ

.rC 1/Š..nC 1/ � .rC 1//Š

D
.nC 1/Š

.rC 1/Š..nC 1/ � .rC 1//Š

D nC1CrC1

Solution 2: We can reason using the idea that nCr is the number of r-element subsets
of an n-element set. Let S be an n-element set that does not contain s� as an element.
Then S [ fs�g is an .nC 1/-element set. Now the .rC 1/-element subsets of S [ fs�g

are disjointly of two kinds:

1. those that contain s� as an element;

2. those that do not contain s� as an element.

Let us write S� for the .rC 1/-element subsets of S[fs�g that contain s� and S for the
.rC 1/-element subsets of S [ fs�g which do not contain s�. Then,

nC1CrC1 D #.S�/C #.S/

because every rC 1-element subset of S [ fs�g is in exactly one of S� or S. Now the
.rC 1/-element subsets of S [ fs�g that contain s� are in one-to-one correspondence
with the r-element subsets of S, so we have

#.S�/ D nCr
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On the other hand, .r C 1/-element subsets of S [ fs�g that do not contain s� are in
one-to-one correspondence with the .rC 1/-element subsets of S, so

#.S/ D nCrC1

Assembling the last three displayed equations gives

nC1CrC1 D nCr C nCrC1

as required.

G

The first solution is good computational practice, but the second solution is illus-
trative of ideas and arguments that are often useful in the study of probability. The
identity we have just established together with

nC0 D 1 D nCn

for all n, allows us to generate Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

�

�

�

You should convince yourself that the .rC 1/th entry in the .nC 1/th row of Pascal’s
Triangle is nCr.

Permutations with Repeated Objects
In Section 8.1, we discussed permutations of objects that were all different. Now we
examine the case where some of the objects are alike (or repeated). For example, con-
sider determining the number of different permutations of the seven letters in the word

SUCCESS

Here the letters C and S are repeated. If the two C’s were interchanged, the resulting
permutation would be indistinguishable from SUCCESS. Thus, the number of distinct
permutations is not 7!, as it would be with 7 different objects. To determine the number
of distinct permutations, we use an approach that involves combinations.

US’s

,,

C’s

,,

E US’s C’s E

2, 3, 6 1 5, 7 4

(a) (b)

FIGURE 8.4 Permutations with repeated objects.

Figure 8.4(a) shows boxes representing the different letters in the word
SUCCESS. In these boxes we place the integers from 1 through 7. We place three
integers in the S’s box (because there are three S’s), one in the U box, two in the C’s
box, and one in the E box. A typical placement is indicated in Figure 8.4(b). That place-
ment can be thought of as indicating a permutation of the seven letters in SUCCESS;
namely, the permutation in which (going from left to right) the S’s are in the second,
third, and sixth positions; the U is in the first position; and so on. Thus, Figure 8.4(b)
corresponds to the permutation

USSECSC
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To count the number of distinct permutations, it suffices to determine the number
of ways the integers from 1 to 7 can be placed in the boxes. Since the order in which
they are placed into a box is not important, the S’s box can be filled in 7C3 ways. Then
the U box can be filled with one of the remaining four integers in 4C1 ways. Then the
C’s box can be filled with two of the remaining three integers in 3C2 ways. Finally, the
E box can be filled with one of the remaining one integers in 1C1 ways. Since we have
a four-stage procedure, by the Basic Counting Principle the total number of ways to fill
the boxes or, equivalently, the number of distinguishable permutations of the letters in
SUCCESS is

7C3 � 4C1 � 3C2 � 1C1 D
7Š
3Š4Š
�
4Š
1Š3Š
�
3Š
2Š1Š
�
1Š
1Š0Š

D
7Š

3Š1Š2Š1Š
D 420

In summary, the word SUCCESS has four types of letters: S, U, C, and E. There are
three S’s, one U, two C’s, and one E, and the number of distinguishable permutations
of the seven letters is

7Š
3Š1Š2Š1Š

Observing the forms of the numerator and denominator, we can make the following
generalization:

Permutations with Repeated Objects
The number of distinguishable permutations of n objects such that n1 are of
one type, n2 are of a second type, : : : , and nk are of a kth type, where
n1 C n2 C � � � C nk D n, is

nŠ
n1Šn2Š � � � nkŠ

(5)

In problems of this kind there are often a number of different solutions to the same
problem. A solution that seems straightforward to one person may seem complicated
to another. Accordingly, we present another solution to the problem of counting the
number, N, of different permutations of the letters of

SUCCESS

We will begin by tagging the letters so that they become distinguishable, thus
obtaining

S1U1C1C2E1S2S3

Giving a permutation of these seven “different” letters can be described as a multistage
procedure. We can begin by permuting as if we can’t see the subscripts, and by defini-
tion there are N ways to accomplish this task. For each of these ways, there are 3Š ways
to permute the three S’s, for each of these, 1Š way to permute the one U, for each of
these, 2Š ways to permute the two C’s, and for each of these, 1Š way to permute the one
E. According to the Basic Counting Principle of Section 8.1, there are

N � 3Š � 1Š � 2Š � 1Š

ways to permute the seven “different” letters of S1U1C1C2E1S2S3. On the other hand,
we already know that there are

7Š
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permutations of seven different letters, so we must have

N � 3Š � 1Š � 2Š � 1Š D 7Š

From this we find

N D
7Š

3Š1Š2Š1Š

in agreement with our earlier finding.

EXAMPLE 6 Letter Arrangements with and without Repetition

For each of the following words, how many distinguishable permutations of the letters
are possible?

a. APOLLO

Solution: The word APOLLO has six letters with repetition. We have one A, one P,
two O’s, and two L’s. Using Equation (5), we find that the number of permutations is

6Š
1Š1Š2Š2Š

D 180

b. GERM

Solution: None of the four letters in GERM is repeated, so the number of permuta-
tions is

4P4 D 4Š D 24

Now Work Problem 17 G

EXAMPLE 7 Name of Legal Firm

A group of four lawyers, Smith, Jones, Smith, and Bell (the Smiths are cousins), want
to form a legal firm and will name it by using all of their last names. Howmany possible
names exist?

Solution: Each different permutation of the last four names is a name for the firm.
There are two Smiths, one Jones, and one Bell. From Equation (5), the number of
distinguishable names is

4Š
2Š1Š1Š

D 12

Now Work Problem 19 G

A B

2, 3, 5 1, 4

FIGURE 8.5 Assignment of
people to rooms.

Cells
At times, we want to find the number of ways in which objects can be placed into
“compartments”, or cells. For example, suppose that from a group of five people, three
are to be assigned to room A and two to room B. In how many ways can this be done?
Figure 8.5 shows one such assignment, where the numbers 1; 2; : : : ; 5 represent the
people. Obviously, the order in which people are placed into the rooms is of no concern.
The boxes (or cells) remind us of those in Figure 8.4(b), and, by an analysis similar to
the discussion of permutations with repeated objects, the number of ways to assign the
people is

5Š
3Š2Š
D

5 � 4 � 3Š
3Š2Š

D 10
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In general, we have the following principle:

Assignment to Cells
Suppose n distinct objects are assigned to k ordered cells with ni objects in cell
i.i D 1; 2; : : : ; k/, and the order in which the objects are assigned to cell i is of no
concern. The number of all such assignment is

nŠ
n1Šn2Š � � � nkŠ

(6)

where n1 C n2 C � � � C nk D n.

We could reason: there are n1Cn2C���CnkCn1 ways to choose n1 objects to put in the
first cell, and for each of these ways there are n2Cn3C���CnkCn2 ways to choose n2 objects
to put in the second cell, and so on, giving, by the Basic Counting Principle of Section
8.1,

.n1Cn2C���CnkCn1/.n2Cn3C���CnkCn2/ : : : .nk�1CnkCnk�1/.nkCnk/

D
.n1 C n2 C � � � C nk/Š

n1Š.n2 C n3 C � � � C nk/Š
�
.n2 C n3 C � � � C nk/Š

n2Š.n3 C n4 C � � � C nk/Š
� � �
.nk�1 C nk/Š
nk�1ŠnkŠ

�
nkŠ
nkŠ0Š

D
.n1 C n2 C � � � C nk/Š

n1Šn2Š � � � nkŠ

which is the number in (6).

EXAMPLE 8 Assigning Players to Vehicles

A coach must assign 15 players to three vehicles to transport them to an out-of-town
game: 6 in a van, 5 in a station wagon, and 4 in an SUV. In how many ways can this
be done?

Solution: Here 15 people are placed into three cells (vehicles): 6 in cell 1, 5 in cell 2,
and 4 in cell 3. By Equation (2), the number of ways this can be done is

15Š
6Š5Š4Š

D 630,630

Now Work Problem 23 G

Example 9 will show three different approaches to a counting problem. As we have
said, many counting problems have alternative methods of solution.

EXAMPLE 9 Art Exhibit

An artist has created 20 original paintings, and she will exhibit some of them in three
galleries. Four paintings will be sent to gallery A, four to gallery B, and three to gallery
C. In how many ways can this be done?

Solution:

Method 1 The artist must send 4C 4C 3 D 11 paintings to the galleries, and the 8
that are not sent can be thought of as staying in her studio. Thus, we can think of this
situation as placing 20 paintings into four cells:

4 in gallery A
4 in gallery B
3 in gallery C
9 in the artist’s studio
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From Equation (6), the number of ways this can be done is
20Š

4Š4Š3Š9Š
D 1,939,938,000

Method 2 We can handle the problem in terms of a two-stage procedure and use
the Basic Counting Principle. First, 11 paintings are selected for exhibit. Then, these
are split into three groups (cells) corresponding to the three galleries. We proceed as
follows.

Selecting 11 of the 20 paintings for exhibit (order is of no concern) can be done in
20C11 ways. Once a selection is made, four of the paintings go into one cell (gallery A),
four go to a second cell (gallery B), and three go to a third cell (gallery C). By

Equation (6), this can be done in
11Š
4Š4Š3Š

ways. Applying the Basic Counting Princi-

ple gives the number of ways the artist can send the paintings to the galleries:

20C11 �
11Š
4Š4Š3Š

D
20Š
11Š9Š

�
11Š
4Š4Š3Š

D 1,939,938,000

Method 3 Another approach to this problem is in terms of a three-stage procedure.
First, 4 of the 20 paintings are selected for shipment to gallery A. This can be done
in 20C4 ways. Then, from the remaining 16 paintings, the number of ways 4 can be
selected for gallery B is 16C4. Finally, the number of ways 3 can be sent to gallery C
from the 12 paintings that have not yet been selected is 12C3. By the Basic Counting
Principle, the entire procedure can be done in

20C4 �16 C4 �12 C3 D
20Š
4Š16Š

�
16Š
4Š12Š

�
12Š
3Š9Š
D

20Š
4Š4Š3Š9Š

ways, which gives the previous answer, as expected!

Now Work Problem 27 G

PROBLEMS 8.2
In Problems 1–6, determine the values.

1. 7C4 2. 6C2 3. 100C100

4. 1;000;001C1 5. 5P3 � 4C2 6. 5P2 � 6C4

7. Verify that nCr D nCn�r. 8. Determine nCn.

9. Committee In how many ways can a five-member
committee be formed from a group of 19 people?

10. Horse Race In a horse race, a horse is said to finish in
the money if it finishes in first, second, or third place. For an
eight-horse race, in how many ways can the horses finish in the
money? Assume no ties.

11. Math Exam On a 12-question mathematics examination, a
student must answer any 8 questions. In how many ways can the
8 questions be chosen (without regard to order)?

12. Cards From a deck of 52 playing cards, how many 4-card
hands are comprised solely of red cards?

13. Quality Control A quality-control technician must select a
sample of 10 dresses from a production lot of 74 couture dresses.
How many different samples are possible? Express your answer in
terms of factorials.

14. Packaging An energy drink producer makes five types of
energy drinks. The producer packages “3-paks” containing three
drinks, no two of which are of the same type. To reflect the three

national chains through which the drinks are distributed, the
producer uses three colors of cardboard bands that hold the drinks
together. How many different 3-paks are possible?

15. Scoring on Exam In a 10-question examination, each
question is worth 10 points and is graded right or wrong.
Considering the individual questions, in how many ways can
a student score 80 or better?

16. Team Results A sports team plays 13 games. In how many
ways can the outcomes of the games result in three wins, eight
losses, and two ties?

17. Letter Arrangements How many distinguishable
arrangements of all the letters in the word MISSISSAUGA are
possible?

18. Letter Arrangements How many distinguishable
arrangements of all the letters in the word STREETSBORO are
possible?

19. Coin Toss If a coin is tossed six times and the outcome of
each toss is noted, in how many ways can two heads and four tails
occur?

20. Die Roll A die is rolled six times and the order of the rolls
is considered. In how many ways can two 2’s, three 3’s, and one 4
occur?

21. Scheduling Patients A physician’s secretary must
schedule eight office consultations. In how many ways can this be
done?
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22. Baseball A Little League baseball team has 12 members
and must play an away game. Three cars will be used for
transportation. In how many ways can the manager assign the
members to specific cars if each car can accommodate four
members?

23. Project Assignment The director of research and
development for a company has nine scientists who are equally
qualified to work on projects A, B, and C. In how many ways can
the director assign three scientists to each project?

24. Identical Siblings A set of identical quadruplets, a set of
identical triplets, and three sets of identical twins pose for a group
photograph. In how many ways can these 13 individuals line up in
ways that are distinguishable in a photograph?

25. True–False Exam A biology instructor includes several
true–false questions on quizzes. From experience, a student
believes that half of the questions are true and half are false. If
there are 10 true–false questions on the next quiz, in how many
ways can the student answer half of them “true” and the other
half “false”?

26. Food Order A waiter takes the following order from a
lunch counter with nine people: three baconburgers, two
veggieburgers, two tofuburgers, and two porkbelly delights. Upon
returning with the food, he forgets who ordered what item and
simply places an item in front of each person. In how many ways
can the waiter do this?

27. Caseworker Assignment A social services office has
15 new clients. The supervisor wants to assign 5 clients to each
of three specific caseworkers. In how many ways can this be
done?

28. Hockey There are 11 members on a hockey team, and all
but one, the goalie, are qualified for the other five positions. In
how many ways can the coach form a starting lineup?

29. Large Families Large families give rise to an enormous
number of relationships within the family that make growing up
with many siblings qualitatively different from life in smaller
families. Any two siblings within any family will have a
relationship of some sort that affects the life of the whole family.
In larger families, any three siblings or any four siblings will tend
to have a three-way or four-way relationship, respectively, that
affects the dynamics of the family, too. Janet Braunstein is third in
a family of 12 siblings: Claire, Barbie, Janet, Paul, Glenn, Mark,
Martha, Laura, Julia, Carrie, Emily, and Jim. If we define a sibling
relationship to be any subset of the set of siblings of size greater
than or equal to two, how many sibling relationships are there in
Janet’s family? How many sibling relationships are there in a
family of three siblings?

30. Hiring A company personnel director must hire six
people: four for the assembly department and two for the shipping
department. There are 10 applicants who are equally qualified to
work in each department. In how many ways can the personnel
director fill the positions?

31. Financial Portfolio A financial advisor wants to create a
portfolio consisting of nine stocks and five bonds. If ten stocks
and twelve bonds are acceptable for the portfolio, in how many
ways can the portfolio be created?

32. World Series A baseball team wins the World Series
if it is the first team in the series to win four games. Thus, a series
could range from four to seven games. For example, a team
winning the first four games would be the champion. Likewise, a
team losing the first three games and winning the last four would
be champion. In how many ways can a team win the World
Series?

33. Subcommittee A committee has seven members, three
of whom are male and four female. In how many ways can a
subcommittee be selected if it is to consist exactly of

(a) three males?
(b) four females?
(c) two males and two females?

34. Subcommittee A committee has three male and five
female members. In how many ways can a subcommittee of four
be selected if at least two females are to serve on it?

35. Poker Hand A poker hand consists of 5 cards from a deck
of 52 playing cards. The hand is a “full house” if there are 3 cards
of one denomination and 2 cards of another. For example, three
10’s and two jacks form a full house. How many full-house hands
are possible?

36. Euchre Hand In euchre, only the denominations
9, 10, J, Q, K, and A from a standard 52-card deck are used.
A euchre hand consists of 5 cards from this reduced deck.
(a) How many possible euchre hands are there? (b) How many
euchre hands contain exactly four cards of the same suit?
(c) How many euchre hands contain exactly three cards of the
same suit?

37. Tram Loading At a tourist attraction, two trams carry
sightseers up a picturesque mountain. One tram can
accommodate seven people and the other eight. A busload of 18
tourists arrives, and both trams are at the bottom of the mountain.
Obviously, only 15 tourists can initially go up the mountain. In
how many ways can the attendant load 15 tourists onto the two
trams?

38. Discussion Groups A history instructor wants to split a
class of 10 students into three discussion groups. One group will
consist of four students and discuss topic A. The second and third
groups will discuss topics B and C, respectively, and consist of
three students each.

(a) In how many ways can the instructor form the groups?
(b) If the instructor designates a group leader and a secretary
(different students) for each group, in how many ways can the
class be split?
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Objective 8.3 Sample Spaces and Events
To determine a sample space and to
consider events associated with it. To
represent a sample space and events
by means of a Venn diagram. To
introduce the notions of complement,
union, and intersection.

Sample Spaces
Inherent in any discussion of probability is the performance of an experiment (a proce-
dure) in which a particular result, or outcome, involves chance. For example, consider
the experiment of tossing a coin. There are only two ways the coin can fall, a head (H)
or a tail (T), but the actual outcome is determined by chance. (We assume that the coin
does not land on its edge.) The set of possible outcomes,

fH, Tg

is called a sample space for the experiment, and H and T are called sample points.

Definition
A sample space S for an experiment is the set of all possible outcomes of the exper-
iment. The elements of S are called sample points. If there is a finite number of
sample points, that number is denoted #.S/, and S is said to be a finite sample
space.

When determining “possible outcomes” of an experiment, we must be sure that
they reflect the situation about which we are concerned. For example, consider the
experiment of rolling a die and observing the top face. We could say that a sample

The order in which sample points are
listed in a sample space is of no concern.

space is

S1 D f1; 2; 3; 4; 5; 6g

where the possible outcomes are the number of dots on the top face. However, other
possible outcomes are

odd number of dots appear (odd)
and even number of dots appear (even)

Thus, the set

S2 D fodd, eveng

is also a sample space for the experiment, so an experiment can have more than one
sample space.

If an outcome in S1 occurred, then we know which outcome in S2 occurred, but
the reverse is not true. To describe this asymmetry, we say that S1 is a more primitive
sample space than S2. Usually, the more primitive a sample space is, the more questions
pertinent to the experiment it allows us to answer. For example, with S1, we can answer
such questions as

“Did a 3 occur?”
“Did a number greater than 2 occur?”
“Did a number less than 4 occur?”

But with S2, we cannot answer these questions. As a rule of thumb, the more primitive
a sample space is, the more elements it has and the more detail it indicates. Unless
otherwise stated, when an experiment has more than one sample space, it will be our
practice to consider only a sample space that gives sufficient detail to answer all perti-
nent questions relative to the experiment. For example, for the experiment of rolling a
die and observing the top face, it will be tacitly understood that we are observing the
number of dots. Thus, we will consider the sample space to be

S1 D f1; 2; 3; 4; 5; 6g

and will refer to it as the usual sample space for the experiment.
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FIGURE 8.6 Tree diagram for toss of two coins.
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FIGURE 8.7 Tree diagram for three tosses of a coin.

EXAMPLE 1 Sample Space: Toss of Two Coins

Two different coins are tossed, and the result (H or T) for each coin is observed. Deter-
mine a sample space.

Solution: One possible outcome is a head on the first coin and a head on the second,
which we can indicate by the ordered pair (H, H) or, more simply, HH. Similarly, we
indicate a head on the first coin and a tail on the second by HT, and so on. A sample
space is

S D fHH, HT, TH, TTg

A tree diagram is given in Figure 8.6 which illustrates further structure of this sample
space. We remark that S is also a sample space for the experiment of tossing a single
coin twice in succession. In fact, these two experiments can be considered one and the
same. Although other sample spaces can be contemplated, we take S to be the usual
sample space for these experiments.

Now Work Problem 3 G

APPLY IT I
1. In 2016, on March 26, Netflix had
1197 TV shows in its US catalogue. A
viewerwanted to select two shows. How
many random choices did she have?

EXAMPLE 2 Sample Space: Three Tosses of a Coin

A coin is tossed three times, and the result of each toss is observed. Describe a sample
space and determine the number of sample points.

Solution: Because there are three tosses, we choose a sample point to be an ordered
triple, such as HHT, where each component is either H or T. By the Basic Counting
Principle, the total number of sample points is 2 � 2 � 2 D 8. A sample space (the usual
one) is

S D fHHH, HHT, HTH, HTT, THH, THT, TTH, TTTg

and a tree diagram appears in Figure 8.7. Note that it is not necessary to list the entire
sample space to determine the number of sample points in it.

Now Work Problem 9 G

EXAMPLE 3 Sample Space: Jelly Beans in a Bag

A bag contains four jelly beans: one red, one pink, one black, and one white. (See
Figure 8.8.)

FIGURE 8.8 Four colored
jelly beans in a bag.

a. A jelly bean is withdrawn at random, its color is noted, and it is put back in the
bag. Then a jelly bean is again randomly withdrawn and its color noted. Describe a
sample space and determine the number of sample points.
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Solution: In this experiment we say that the two jelly beans are withdrawn with
replacement. Let R, P, B, and W denote withdrawing a red, pink, black, and white
jelly bean, respectively. Then, our sample space consists of the sample points RW, PB,
RB,WW, and so on, where (for example) RW represents the outcome that the first jelly
bean withdrawn is red and the second is white. There are four possibilities for the first
withdrawal and, since that jelly bean is placed back in the bag, four possibilities for the
second withdrawal. By the Basic Counting Principle, the number of sample points is
4 � 4 D 16.

b. Determine the number of sample points in the sample space if two jelly beans are
selected in succession without replacement and the colors are noted.

Solution: The first jelly bean drawn can have any of four colors. Since it is not returned
to the bag, the second jelly bean drawn can have any of the three remaining colors.
Thus, the number of sample points is 4 � 3 D 12. Alternatively, there are 4P2 D 12
sample points.

Now Work Problem 7 G

EXAMPLE 4 Sample Space: Poker Hand

From an ordinary deck of 52 playing cards, a poker hand is dealt. Describe a sample
space and determine the number of sample points.

Solution: A sample space consists of all combinations of 52 cards taken 5 at a time.
From Example 3 of Section 8.2, the number of sample points is 52C5 D 2,598,960.

Now Work Problem 13 G

EXAMPLE 5 Sample Space: Roll of Two Dice

A pair of dice is rolled once, and for each die, the number that turns up is observed.
Describe a sample space.

Solution: Think of the dice as being distinguishable, as if one were red and the other
green. Each die can turn up in six ways, so we can take a sample point to be an ordered
pair in which each component is an integer between 1 and 6, inclusive. For example,
(4, 6), (3, 2), and (2, 3) are three different sample points. By the Basic Counting Prin-
ciple, the number of sample points is 6 � 6, or 36.

Now Work Problem 11 G

Events
At times, we are concerned with the outcomes of an experiment that satisfy a particular
condition. For example, wemay be interested in whether the outcome of rolling a single
die is an even number. This condition can be considered as the set of outcomes f2; 4; 6g,
which is a subset of the sample space

S D f1; 2; 3; 4; 5; 6g

In general, any subset of a sample space is called an event for the experiment. Thus,

f2; 4; 6g

is the event that an even number turns up, which can also be described by

fx in Sjx is an even numberg

Note that although an event is a set, it may be possible to describe it verbally, as we just
did. We often denote an event by E. When several events are involved in a discussion,
they may be denoted by E, F, G, H, and so on, or by E1;E2;E3, and so on.
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Definition
An event E for an experiment is a subset of the sample space for the experiment. If
the outcome of the experiment is a sample point in E, then event E is said to occur.

In the previous experiment of rolling a die, we saw that f2; 4; 6g is an event. Thus,
if the outcome is a 2, that event occurs. Some other events are

E D f1; 3; 5g D fx in Sjx is an odd numberg

F D f3; 4; 5; 6g D fx in Sjx � 3g

G D f1g

A sample space is a subset of itself, so it, too, is an event, called the certain event;
it must occur no matter what the outcome. An event, such as f1g, that consists of a
single sample point is called a simple event. We can also consider an event such as
fx in Sjx D 7g, which can be verbalized as “7 occurs”. This event contains no sample
points, so it is the empty set ; (the set with no elements in it). In fact, ; is called the
impossible event, because it can never occur.

EXAMPLE 6 Events

A coin is tossed three times, and the result of each toss is noted. The usual sample space
(from Example 2) is

fHHH, HHT, HTH, HTT, THH, THT, TTH, TTTg

Determine the following events.

a. E D fone head and two tailsg.

Solution: E D fHTT,THT,TTHg

b. F D fat least two headsg.

Solution: F D fHHH, HHT, HTH, THHg

c. G D fall headsg.

Solution: G D fHHHg

d. I D fhead on first tossg.

Solution: I D fHHH, HHT, HTH, HTTg

Now Work Problem 15 G

E

S

FIGURE 8.9 Venn diagram for
sample space S and event E.

E

S

E ¿

E ¿ is the shaded region

FIGURE 8.10 Venn diagram for
the complement of E.

Sometimes it is convenient to represent a sample space S and an event E by a
Venn diagram, as in Figure 8.9. The region inside the rectangle represents the sample
points in S. (The sample points are not specifically shown.) The sample points in E
are represented by the points inside the circle. Because E is a subset of S, the circular
region cannot extend outside the rectangle.

E

S

E     F, union of E and F

F

(a)

E

S

E     F, intersection of E and F

F

(b)

E    F

FIGURE 8.11 Representation
of E [ F and E \ F.

With Venn diagrams, it is easy to see how events for an experiment can be used to
form other events. Figure 8.10 shows sample space S and event E. The shaded region
inside the rectangle, but outside the circle, represents the set of all sample points in S
that are not in E. This set is an event called the complement of E and is denoted by E0.
Figure 8.11(a) shows two events, E and F. The shaded region represents the set of all
sample points either inE, or inF, or in bothE andF. This set is an event called the union
of E and F and is denoted by E [ F. The shaded region in Figure 8.11(b) represents
the event consisting of all sample points that are common to both E and F. This event
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is called the intersection of E and F and is denoted by E\F. In summary, we have the
following definitions.

Definitions
Let S be a sample space for an experiment with events E and F. The complement
of E, denoted by E0, is the event consisting of all sample points in S that are not in
E. The union of E and F, denoted by E [ F, is the event consisting of all sample
points that are either in E, or in F, or in both E and F. The intersection of E and F,
denoted by E \ F, is the event consisting of all sample points that are common to
both E and F.

Note that if a sample point is in the event E[ F, then the point is in at least one of
the sets E and F. Thus, for the event E [ F to occur, at least one of the events E and
F must occur, and conversely. On the other hand, if event E \ F occurs, then both E
and F must occur, and conversely. If event E0 occurs, then E does not occur, and
conversely.

EXAMPLE 7 Complement, Union, Intersection

Given the usual sample space

S D f1; 2; 3; 4; 5; 6g

for the rolling of a die, let E, F, and G be the events

E D f1; 3; 5g F D f3; 4; 5; 6g G D f1g

Determine each of the following events.

a. E0

Solution: Event E0 consists of those sample points in S that are not in E, so

E0
D f2; 4; 6g

We note that E0 is the event that an even number appears.

b. E [ F

Solution: We want the sample points in E, or F, or both. Thus,

E [ F D f1; 3; 4; 5; 6g

c. E \ F

Solution: The sample points common to both E and F are 3 and 5, so

E \ F D f3; 5g

d. F \ G

Solution: Since F and G have no sample point in common,

F \ G D ;

e. E [ E0

Solution: Using the result of part (a), we have

E [ E0
D f1; 3; 5g [ f2; 4; 6g D f1; 2; 3; 4; 5; 6g D S
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f. E \ E0

Solution: E \ E0
D f1; 3; 5g \ f2; 4; 6g D ;

Now Work Problem 17 G

The results of Examples 7(e) and 7(f) can be generalized as follows:

If E is any event for an experiment with sample space S, then

E [ E0
D S and E \ E0

D ;

Thus, the union of an event and its complement is the sample space; the intersection
of an event and its complement is the empty set. These and other properties of events
are listed in Table 8.1.

Table 8.1 Properties of Events

If E and F are any events for an experiment with sample space S, then

1. E [ E D E

2. E \ E D E

3. .E0/0 D E (the complement of the complement
of an event is the event)

4. E [ E0 D S

5. E \ E0 D ;

6. E [ S D S

7. E \ S D E

8. E [ ; D E

9. E \ ; D ;

10. E [ F D F [ E (commutative property of union)

11. E \ F D F \ E (commutative property of intersection)

12. .E [ F/0 D E0 \ F0 (the complement of a union is the
intersection of complements)

13. .E \ F/0 D E0 [ F0 (the complement of an intersection
is the union of complements)

14. E [ .F [ G/ D .E [ F/ [ G (associative property of union)

15. E \ .F \ G/ D .E \ F/ \ G (associative property of intersection)

16. E \ .F [ G/ D .E \ F/ [ .E \ G/ (distributive property of intersection
over union)

17. E [ .F \ G/ D .E [ F/ \ .E [ G/ (distributive property of union
over intersection)

When two events E and F have no sample point in common, that is,

E \ F D ;

they are called mutually exclusive or disjoint events. For example, in the rolling of a
die, the events

E D f2; 4; 6g and F D f1g

are mutually exclusive (see Figure 8.12).

E

S

F

2

6

4

5 3

1

FIGURE 8.12 Mutually exclusive
events.
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Definition
Events E and F are said to bemutually exclusive events if and only if E \ F D ;.

When two events are mutually exclusive, the occurrence of one event means that
the other event cannot occur; that is, the two events cannot occur simultaneously. An
event and its complement are mutually exclusive, since E \ E0 D ;.

EXAMPLE 8 Mutually Exclusive Events

If E, F, and G are events for an experiment and F and G are mutually exclusive, show
that events E \ F and E \ G are also mutually exclusive.

Solution: Given that F \ G D ;, we must show that the intersection of E \ F and
E \ G is the empty set. Using the properties in Table 8.1, we have

.E \ F/ \ .E \ G/ D .E \ F \ E/ \ G property 15
D .E \ E \ F/ \ G property 11
D .E \ F/ \ G property 2
D E \ .F \ G/ property 15
D E \ ; given
D ; property 9

Now Work Problem 31 G

PROBLEMS 8.3
In Problems 1–6, determine a sample space for the given
experiment.

1. Card Selection A card is drawn from a four-card deck
consisting of the 9 of diamonds, 9 of hearts, 9 of clubs, and 9 of
spades.

2. Euchre Deck A card is drawn from a euchre deck as
described in Problem 36 of Section 8.2.

3. Die Roll and Coin Tosses A die is rolled and then a coin is
tossed twice in succession.

4. Dice Roll Two dice are rolled, and the sum of the numbers
that turns up is observed.

5. Digit Selection Two different digits are selected, in
succession, from those in the number “64901”.

6. Genders of Children The genders of the first, second, third,
and fourth children of a four-child family are noted. (Let, for
example, BGGB denote that the first, second, third, and fourth
children are boy, girl, girl, boy, respectively.)

7. Jelly Bean Selection A bag contains three colored jelly
beans: one red, one white, and one blue. Determine a sample
space if (a) three jelly beans are selected with replacement and
(b) three jelly beans are selected without replacement.

8. Manufacturing Process A company makes a product that
goes through three processes during its manufacture. The first is
an assembly line, the second is a finishing line, and the third is an
inspection line. There are four assembly lines (A, B, C, and D),
two finishing lines (E and F), and two inspection lines (G and H).
For each process, the company chooses a line at random.
Determine a sample space.

In Problems 9–14, describe the nature of a sample space for the
given experiment, and determine the number of sample points.

9. Coin Toss A coin is tossed six times in succession, and the
faces showing are observed.

10. Dice Roll Five dice are rolled, and the numbers that turn up
are observed.

11. Card and Die A card is drawn from an ordinary deck of
52 cards, and then a die is rolled.

12. Rabbit Selection From a hat containing eight
distinguishable rabbits, five rabbits are pulled successively
without replacement.

13. Card Deal A four-card hand is dealt from a deck of
52 cards.

14. Letter Selection A four-letter “word” is formed by
successively choosing any four letters from the alphabet with
replacement.

Suppose that S D f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g is the sample space
for an experiment with events

E D f1; 3; 5g F D f3; 5; 7; 9g G D f2; 4; 6; 8g

In Problems 15–22, determine the indicated events.

15. E [ F 16. G0

17. F0 \ G 18. E0 [ G0

19. F0 20. .E [ F/0

21. .F \ G/0 22. .F [ G/ \ E0
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23. Of the following events, which pairs are mutually exclusive?

E1 D f1; 2; 3g E2 D f3; 4; 5g

E3 D f1; 2g E4 D f6; 7g

24. Card Selection From a standard deck of 52 playing cards,
2 cards are drawn without replacement. Suppose EJ is the event
that both cards are jacks, EC is the event that both cards are clubs,
and E3 is the event that both cards are 3’s. Which pairs of these
events are mutually exclusive?
25. Card Selection From a standard deck of 52 playing cards,
1 card is selected. Which pairs of the following events are
mutually exclusive?

E D fdiamondg

F D fface cardg

G D fblackg

H D fredg

I D face of diamondsg

26. Dice A red and a green die are thrown, and the numbers on
each are noted. Which pairs of the following events are mutually
exclusive?

E D fboth are eveng

F D fboth are oddg

G D fsum is 2g

H D fsum is 4g

I D fsum is greater than 10g

27. Coin Toss A coin is tossed three times in succession, and
the results are observed. Determine each of the following:

(a) The usual sample space S
(b) The event E that at least two heads occur
(c) The event F that at least one tail occurs
(d) E [ F
(e) E \ F
(f) .E [ F/0

(g) .E \ F/0

28. Genders of Children A husband and wife have three
children. The outcome of the first child being a boy, the second a
girl, and the third a girl can be represented by BGG. Determine
each of the following:

(a) Sample space that describes all the orders of the possible
genders of the children
(b) The event that at least one child is a girl
(c) The event that at least one child is a boy
(d) Is the event in part (c) the complement of the event in part (b)?

29. Arrivals Persons A, B, and C enter a building at different
times. The outcome of A arriving first, B second, and C third can
be indicated by ABC. Determine each of the following:

(a) The sample space involved for the arrivals
(b) The event that A arrives first
(c) The event that A does not arrive first

30. Supplier Selection A grocery store can order fruits and
vegetables from suppliers U, V, and W; meat from suppliers U, V,
X, and Y; and dry goods from suppliers V, W, X, and Z. The
grocery store selects one supplier for each type of item. The
outcome of U being selected for fruits and vegetables, V for meat,
and W for dry goods can be represented by UVW.

(a) Determine a sample space.
(b) Determine the event E that one supplier supplies all the
grocery store’s requirements.
(c) Determine E0 and give a verbal description of this event.

31. If E and F are events for an experiment, prove that events
E \ F and E \ F0 are mutually exclusive.

32. If E and F are events for an experiment, show that

.E \ F/ [ .E \ F0/ D E

Note that from Problem 31, E \ F and E \ F0 are mutually
exclusive events. Thus, the foregoing equation expresses E as
a union of mutually exclusive events.

Objective 8.4 Probability
To define what is meant by the
probability of an event. To develop
formulas that are used in computing
probabilities. Emphasis is placed on
equiprobable spaces.

Equiprobable Spaces
We now introduce the basic concepts underlying the study of probability. Consider
tossing a well-balanced die and observing the number that turns up. The usual sample
space for the experiment is

S D f1; 2; 3; 4; 5; 6g

Before the experiment is performed, we cannot predict with certainty which of the six
possible outcomes (sample points) will occur. But it does seem reasonable that each
outcome has the same chance of occurring; that is, the outcomes are equally likely.
This does not mean that in six tosses each number must turn up once. Rather, it means
that if the experiment were performed a large number of times, each outcome would

occur about 1
6 of the time.

To be more specific, let the experiment be performed n times. Each performance of
an experiment is called a trial. Suppose that we are interested in the event of obtaining
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a 1 (that is, the simple event consisting of the sample point 1). If a 1 occurs in k of
these n trials, then the proportion of times that 1 occurs is k=n. This ratio is called the
relative frequency of the event. Because getting a 1 is just one of six possible equally
likely outcomes, we expect that in the long run a 1 will occur 1

6 of the time. That is, as

n becomes very large, we expect the relative frequency k=n to approach 1
6 . The number

1
6 is taken to be the probability of getting a 1 on the toss of a well-balanced die, which

is denoted P.1/. Thus, P.1/ D 1
6 . Similarly, P.2/ D

1
6 , P.3/ D

1
6 , and so on.

In this experiment, all of the simple events in the sample space (those consisting
of exactly one sample point) were understood to be equally likely to occur. To describe
this equal likelihood, we say that S is an equiprobable space.

Definition
A sample space S is called an equiprobable space if and only if all the simple events
are equally likely to occur.

We remark that besides the phrase equally likely, other words and phrases used in
the context of an equiprobable space are well-balanced, fair, unbiased, and at random.
For example, we may have a well-balanced die (as above), a fair coin, or unbiased
dice, or we may select a jelly bean at random from a bag.

We now generalize our discussion of the die experiment to other (finite) equiprob-
able spaces.

Definition
If S is an equiprobable sample space with N sample points (or outcomes), say S D
fs1; s2; : : : ; sNg, then the probability of each simple event fsig is given by

P.si/ D
1
N

for i D 1; 2; : : : ; N. Of course, P.si/ is an abbreviation for P.fsig/.

We remark that P.si/ can be interpreted as the relative frequency of fsig occurring in
the long run.

We can also assign probabilities to events that are not simple. For example, in the
die experiment, consider the event E of a 1 or a 2 turning up:

E D f1; 2g

Because the die is well balanced, in n trials (where n is large) we expect that a 1 should

turn up approximately 1
6 of the time and a 2 should turn up approximately

1
6 of the time.

Thus, a 1 or 2 should turn up approximately 1
6 C

1
6 of the time, or

2
6 of the time. Hence,

it is reasonable to assume that the long-run relative frequency of E is 2
6 . For this reason,

we define 2
6 to be the probability of E and denote it P.E/.

P.E/ D
1
6
C

1
6
D

2
6

Note that P.E/ is simply the sum of the probabilities of the simple events that form E.
Equivalently, P.E/ is the ratio of the number of sample points in E (two) to the number
of sample points in the sample space (six).
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Definition
If S is a finite equiprobable space for an experiment and E D fs1; s2; : : : ; sjg is an
event, then the probability of E is given by

P.E/ D P.s1/C P.s2/C � � � C P.sj/

Equivalently,

P.E/ D
#.E/
#.S/

where #.E/ is the number of outcomes in E and #.S/ is the number of outcomes in S.

Note that we can think of P as a function that assigns to each event E the probability
of E; namely, P.E/. The probability of E can be interpreted as the relative frequency of
E occurring in the long run. Thus, in n trials, we would expect E to occur approximately
n � P.E/ times, provided that n is large.

EXAMPLE 1 Coin Tossing

Two fair coins are tossed. Determine the probability that

a. two heads occur
b. at least one head occurs

Solution: The usual sample space is

S D fHH, HT, TH, TTg

Since the four outcomes are equally likely, S is equiprobable and #.S/ D 4.

a. If E D fHHg, then E is a simple event, so

P.E/ D
#.E/
#.S/

D
1
4

b. Let F D fat least one headg. Then

F D fHH, HT, THg

which has three outcomes. Thus,

P.F/ D
#.F/
#.S/

D
3
4

Alternatively,

P.F/ D P.HH/C P.HT/C P.TH/

D
1
4
C

1
4
C

1
4
D

3
4

Consequently, in 1000 trials of this experiment, we would expect F to occur approx-

imately 1000 � 34 D 750 times.

Now Work Problem 1 G
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EXAMPLE 2 Cards

From an ordinary deck of 52 playing cards, 2 cards are randomly drawnwithout replace-
ment. If E is the event that one card is a 2 and the other a 3, find P.E/.

Solution: We can disregard the order in which the 2 cards are drawn. As our sample
space S, we choose the set of all combinations of the 52 cards taken 2 at a time. Thus, S
is equiprobable and #.S/ D 52C2. To find #.E/, we note that since there are four suits,
a 2 can be drawn in four ways and a 3 in four ways. Hence, a 2 and a 3 can be drawn
in 4 � 4 ways, so

P.E/ D
#.E/
#.S/

D
4 � 4

52C2
D

16
1326

D
8
663

Now Work Problem 7 G

EXAMPLE 3 Full House Poker Hand

Find the probability of being dealt a full house in a poker game. A full house is three of
one kind and two of another, such as three queens and two 10’s. Express your answer
in terms of nCr.

Solution: The set of all combinations of 52 cards taken 5 at a time is an equiprob-
able sample space. (The order in which the cards are dealt is of no concern.) Thus,
#.S/ D 52C5. We now must find #.E/, where E is the event of being dealt a full house.
Each of the four suits has 13 kinds, so three cards of one kind can be dealt in 13 � 4C3

ways. For each of these there are 12 � 4C2 ways to be dealt two cards of another kind.
Hence, a full house can be dealt in 13 � 4C3 � 12 � 4C2 ways, and we have

P.full house/ D
#.E/
#.S/

D
13 � 4C3 � 12 � 4C2

52C5
D

13 � 12 � 6 � 4
49 � 24 � 17 � 13 � 10

D
6

49 � 17 � 5

which is about 0:144%.

Now Work Problem 13 G

EXAMPLE 4 Selecting a Subcommittee

From a committee of three males and four females, a subcommittee of four is to be
randomly selected. Find the probability that it consists of two males and two females.

Solution: Since order of selection is not important, the number of subcommittees of
four that can be selected from the seven members is 7C4. The two males can be selected
in 3C2 ways and the two females in 4C2 ways. By the Basic Counting Principle, the
number of subcommittees of two males and two females is 3C2 � 4C2. Thus,

P.two males and two females/ D 3C2 � 4C2

7C4

D

3Š
2Š1Š
�
4Š
2Š2Š

7Š
4Š3Š

D
18
35

Now Work Problem 21 G

Properties of Probability
We now develop some properties of probability. Let S be an equiprobable sample space
with N outcomes; that is, #.S/ D N. (We assume a finite sample space throughout
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this section.) If E is an event, then 0 � #.E/ � N. Dividing each member by #.S/ D N
gives

0 �
#.E/
#.S/

�
N
N

But
#.E/
#.S/

D P.E/, so we have the following property:

0 � P.E/ � 1

That is, the probability of an event is a number between 0 and 1, inclusive.

Moreover, P.;/ D
#.;/
#.S/

D
0
N
D 0. Thus,

P.;/ D 0

Also, P.S/ D
#.S/
#.S/

D
N
N
D 1, so

P.S/ D 1

Accordingly, the probability of the impossible event is 0, and the probability of the
certain event is 1.

Since P.S/ is the sum of the probabilities of the outcomes in the sample space, we
conclude that the sum of the probabilities of all the simple events for a sample space
is 1.

Now let us focus on the probability of the union of two events E and F. The event
E [ F occurs if and only if at least one of the events (E or F) occurs. Thus, P.E [ F/
is the probability that at least one of the events E and F occurs. We know that

P.E [ F/ D
#.E [ F/
#.S/

Now

#.E [ F/ D #.E/C #.F/ � #.E \ F/ (1)

because #.E/C #.F/ D #.E [ F/C #.E \ F/. To see the truth of the last statement,
look at Figure 8.13 and notice that E \ F is contained in both E and F.

E

S

F

E    F

FIGURE 8.13 E \ F is contained
in both E and F.

Dividing both sides of Equation (1) for #.E[F/ by #(S) gives the following result:

Probability of a Union of Events
If E and F are events, then

P.E [ F/ D P.E/C P.F/ � P.E \ F/ (2)

For example, let a fair die be rolled, and let E D f1; 3; 5g and F D f1; 2; 3g. ThenNote that while we derived Equation (2)
for an equiprobable sample space, the
result is in fact a general one.

E \ F D f1; 3g, so

P.E [ F/ D P.E/C P.F/ � P.E \ F/

D
3
6
C

3
6
�
2
6
D

2
3

Alternatively, E [ F D f1; 2; 3; 5g, so P.E [ F/ D 4
6 D

2
3 .
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If E and F are mutually exclusive events, then E\F D ; so P.E\F/ D P.;/ D 0.
Hence, from Equation (2), we obtain the following law:

Addition Law for Mutually Exclusive Events
If E and F are mutually exclusive events, then

P.E [ F/ D P.E/C P.F/

For example, let a fair die be rolled, and let E D f2; 3g and F D f1; 5g. Then
E \ F D ;, so

P.E [ F/ D P.E/C P.F/ D
2
6
C

2
6
D

2
3

The addition law can be extended to more than two mutually exclusive events. Two or
more events aremutually exclusive if and only if no two of them can occur at the same
time. That is, given any two of them, their intersection must be empty. For example, to
say the events E, F, and G are mutually exclusive means that

E \ F D E \ G D F \ G D ;

If events E, F, and G are mutually exclusive, then

P.E [ F [ G/ D P.E/C P.F/C P.G/

An event and its complement are mutually exclusive, so, by the addition law,

P.E [ E0/ D P.E/C P.E0/

But P.E [ E0/ D P.S/ D 1. Thus,

1 D P.E/C P.E0/

so that

P.E0/ D 1 � P.E/

equivalently,In order to find the probability of an
event, sometimes it is more convenient
first to find the probability of its
complement and then subtract the result
from 1. See, especially, Example 6.

P.E/ D 1 � P.E0/

Accordingly, if we know the probability of an event, then we can easily find the

probability of its complement, and vice versa. For example, if P.E/ D 1
4 , then

P.E0/ D 1 � 1
4 D

3
4 . P.E

0/ is the probability that E does not occur.

EXAMPLE 5 Quality Control

From a production run of 5000 light bulbs, 2% of which are defective, 1 bulb is selected
at random. What is the probability that the bulb is defective? What is the probability
that it is not defective?

Solution: In a sense, this is trick question because the statement that “2% are defec-

tive” means that “ 2
100 are defective”, which in turn means that the chance of getting a

defective light bulb is “2 in a hundred”, equivalently, that the probability of getting
a defective light bulb is 0:02. However, to reinforce the ideas we have considered so
far, let us suppose that the sample space S consists of the 5000 bulbs. Since a bulb
is selected at random, the possible outcomes are equally likely. Let E be the event of
selecting a defective bulb. The number of outcomes in E is 0:02 � 5000 D 100. Thus,

P.E/ D
#.E/
#.S/

D
100
5000

D
1
50
D 0:02
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Alternatively, since the probability of selecting a particular bulb is 1
5000 and E contains

100 sample points, by summing probabilities we have

P.E/ D 100 �
1

5000
D 0:02

The event that the bulb selected is not defective is E0. Hence,

P.E0/ D 1 � P.E/ D 1 � 0:02 D 0:98

Now Work Problem 17 G

The next example is a celebrated use of the rule P.E/ D 1 � P.E0/. It is a case in
which P.E/ is difficult to calculate directly but P.E0/ is easy to calculate. Most people
find the result rather surprising.

EXAMPLE 6 Birthday Surprise

For a random collection of n people, with n � 365, make the simplifying assumption
that all years consist of 365 days and calculate the probability that at least two of the n
people celebrate their birthday on the same day. Find the smallest value of n for which
this probability is greater than 50%. What happens if n > 365?

Solution: The sample space is the set S of all ways in which the birthdays of n people
can arise. It is convenient to assume that the people are labeled. There are 365 possibil-
ities for the birthday of person 1, and for each of these there are 365 possibilities for the
birthday of person 2. For each of these 3652 possibilities for the birthdays of persons
1 and 2, there are 365 possibilities for the birthday of person 3. By iterated use of the
Basic Counting Principle, it is easy to see that #S D 365n. Let En be the event that at
least 2 of the n people have their birthday on the same day. It is not easy to count En,
but for .En/

0, the event that all n people have their birthday on different days, we see
that there are 365 possibilities for the birthday of person 1, and for each of these there
are 364 possibilities for the birthday of person 2, and for each of these there are 363
possibilities for the birthday of person 3, and so on. Thus, #.En/

0 D 365Pn and it now
follows that

P.En/ D 1 � 365Pn

365n

We leave it as an exercise for the student to tabulate P.En/ with the aid of a
programmable calculator. To do this it is helpful to note the recursion:

P..E2/0/ D
364
365

and P..EnC1/
0/ D P..En/

0/ �
365 � n
365

from which we have

P.E2/ D
1
365

and P.EnC1/ D
nC P.En/.365 � n/

365

If a programmable calculator is supplied with this recursive formula, it can be shown
that P.E22/ � 0:475695 so that

P.E23/ D
22C P.E22/.365 � 22/

365
�

22C 0:475695.343/
365

� 0:507297 D 50:7297%

Thus, 23 is the smallest number n for which P.En/ > 50%.
We note that if n > 365, there are more people than days in the year. At least two

people must share a birthday in this case. So, for n > 365, we have P.En/ D 1.

Now Work Problem 45 G
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EXAMPLE 7 Dice

A pair of well-balanced dice is rolled, and the number on each die is noted. Determine
the probability that the sum of the numbers that turns up is (a) 7, (b) 7 or 11, and
(c) greater than 3.

Solution: Since each die can turn up in any of six ways, by the Basic Counting
Principle the number of possible outcomes is 6 � 6 D 36. Our sample space consists
of the following ordered pairs:

.1; 1/ .1; 2/ .1; 3/ .1; 4/ .1; 5/ .1; 6/

.2; 1/ .2; 2/ .2; 3/ .2; 4/ .2; 5/ .2; 6/

.3; 1/ .3; 2/ .3; 3/ .3; 4/ .3; 5/ .3; 6/

.4; 1/ .4; 2/ .4; 3/ .4; 4/ .4; 5/ .4; 6/

.5; 1/ .5; 2/ .5; 3/ .5; 4/ .5; 5/ .5; 6/

.6; 1/ .6; 2/ .6; 3/ .6; 4/ .6; 5/ .6; 6/

The outcomes are equally likely, so the probability of each outcome is 1
36 . There are a

lot of characters present in the preceding list, since each of the 36 ordered pairs involves
five (a pair of parentheses, a comma, and 2 digits) for a total of 36 �5 D 180 characters.
The same information is conveyed by the following coordinatized boxes, requiring just
12 characters and 14 lines.

1 2 3 4 5 6
1
2
3
4
5
6

a. Let E7 be the event that the sum of the numbers appearing is 7. Then

E7 D f.1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/g

which has six outcomes (and can be seen as the rising diagonal in the coordinatized
boxes). Thus,

P.E7/ D
6
36
D

1
6

b. Let E7 or 11 be the event that the sum is 7 or 11. If E11 is the event that the sum is
11, then

E11 D f.5; 6/; .6; 5/g

which has two outcomes. Since E7 or 11 D E7 [ E11 and E7 and E11 are mutually
exclusive, we have

P.E7 or 11/ D P.E7/C P.E11/ D
6
36
C

2
36
D

8
36
D

2
9

Alternatively, we can determine P.E7 or 11/ by counting the number of outcomes in
E7 or 11. We obtain

E7 or 11 D f.1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/; .5; 6/; .6; 5/g

which has eight outcomes. Thus,

P.E7 or 11/ D
8
36
D

2
9

c. Let E be the event that the sum is greater than 3. The number of outcomes in E is
relatively large. Thus, to determine P.E/, it is easier to find E0, rather than E, and
then use the formula P.E/ D 1 � P.E0/. Here E0 is the event that the sum is 2 or 3.
We have

E0
D f.1; 1/; .1; 2/; .2; 1/g
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which has three outcomes. Hence,

P.E/ D 1 � P.E0/ D 1 �
3
36
D

11
12

Now Work Problem 27 G

EXAMPLE 8 Interrupted Gambling

Obtain Pascal and Fermat’s solution to the problem of dividing the pot between two
gamblers in an interrupted game of chance, as mentioned in the introduction to this
chapter. We assume that the game consists of a sequence of “rounds” involving chance,
such as coin tosses, that each has an equal chance of winning, and that the overall
winner, who gets the pot, is the one who first wins a certain number of rounds. We
further assume that when the game was interrupted, Player 1 needed r more rounds
to win and Player 2 needed s more rounds to win. It is agreed that the pot should be
divided so that each player gets the value of the pot multiplied by the probability that
he or she would have won an uninterrupted game.

Solution: We need only compute the probability that Player 1 would have won, for if
that is p, then the probability that Player 2 would have won is 1� p. Now the game can
go at most rC s�1 more rounds. To see this, observe that each round produces exactly
one winner, and let a be the number of the rC s � 1 rounds won by Player 1 and let b
be the number of the rC s� 1 rounds won by Player 2. So rC s� 1 D aC b. If neither
Player 1 nor Player 2 has won, then a � r � 1 and b � s � 1. But in this case we have

rC s � 1 D aC b � .r � 1/C .s � 1/ D rC s � 2

which is impossible. It is clear that after r C s � 2 there might not yet be an overall
winner, so we do need to consider a further r C s � 1 possible rounds from the time
of interruption. Let n D rC s � 1. Now Player 1 will win if Player 2 wins k of the n
possible further n rounds, where 0 � k � s � 1. Let Ek be the event that Player 2 wins
exactly k of the next n rounds. Since the events Ek, for k D 0; 1; � � � s� 1, are mutually
exclusive, the probability that Player 1 will win is given by

P.E0 [ E1 [ � � � [ Es�1/ D P.E0/C P.E1/C � � � C P.Es�1/ D

s�1X
kD0

P.Ek/ (3)

It remains to determine P.Ek/. We may as well suppose that a round consists of flipping
a coin, with outcomes H and T. We further take a single-round win for Player 2 to be
an outcome of T. Thus, Player 2 will win exactly k of the next rounds if exactly k of
the next n outcomes are T’s. The number of possible outcomes for the next n rounds
is of course 2n, by the multiplication principle. The number of these outcomes which
consists of exactly k T’s is the number of ways of choosing k from among n. It follows

that P.Ek/ D
nCk

2n
, and, substituting this value in Equation (3), we obtain

1
2n

s�1X
kD0

nCk

Now Work Problem 29 G

Probability Functions in General
Many of the properties of equiprobable spaces carry over to sample spaces that are
not equiprobable. To illustrate, consider the experiment of tossing two fair coins and
observing the number of heads. The coins can fall in one of four ways, namely,

HH HT TH TT
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which correspond to two heads, one head, one head, and zero heads, respectively.
Because we are interested in the number of heads, we can choose a sample space to be

S D f0; 1; 2g

However, the simple events in S are not equally likely to occur because of the four
possible ways in which the coins can fall: Two of these ways correspond to the one-
head outcome, whereas only one corresponds to the two-head outcome, and similarly
for the zero-head outcome. In the long run, it is reasonable to expect repeated trials to

result in one head about 2
4 of the time, zero heads about

1
4 of the time, and two heads

about 14 of the time. If we were to assign probabilities to these simple events, it is natural

to have

P.0/ D
1
4

P.1/ D
2
4
D

1
2

P.2/ D
1
4

Although S is not equiprobable, these probabilities lie between 0 and 1, inclusive, and
their sum is 1. This is consistent with what was stated for an equiprobable space.

Based on our discussion, we define below a probability function for a general, finite
sample space S D fs1; s2; : : : ; sNg. Recall that Œ0; 1� denotes the set of all real numbers
x with 0 � x � 1 and 2S denotes the set of all subsets of S; equivalently, the set of all
events. We also write

k[
jD1

Ej D E1 [ E2 [ : : : [ Ek

Definition
Let S D fs1; s2; : : : ; sNg be a sample space for an experiment. A function
P W 2S� Œ0; 1� is called a probability function if

1. P.;/ D 0

2. P.S/ D 1

3. For any collection E1;E2; : : :Ek of mutually exclusive events,

P.
k[

jD1

Ej/ D

kX
jD1

P.Ej/

Note that 3. says, for mutually exclusive E1;E2; : : :Ek,

P.E1 [ E2 [ : : : [ Ek/ D P.E1/C P.E2/C : : :C P.Ek/:

Note too that fs1g; fs2g; : : : ; fsNg are mutually exclusive events with
N[

jD1

fsjg D S

It can be shown that

A probability function for a sample space S D fs1; s2; : : : ; sNg can be equiva-
lently described by giving a function P W S� Œ0; 1� with

P.s1/C P.s2/C : : :P.sN/ D 1

and “extending” it to P W 2S� Œ0; 1� by requiring that

P.;/ D 0

and

P.fsj1 ; sj2 ; : : : sjkg/ D P.sj1/C P.sj2/C : : :P.sjk/
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To illustrate the reformulated definition, consider the sample space for the previous
experiment of tossing two fair coins and observing the number of heads:

S D f0; 1; 2g

We could assign probabilities as follows:

P.0/ D 0:1 P.1/ D 0:2 P.2/ D 0:7

This would entail P.;/D 0, P.f0g/D 0:1, P.f1g/D 0:2, P.f2g/D 0:7, P.f0; 1g/D 0:3,
P.f1; 2g/ D 0:9, P.f0; 2g/ D 0:8, and P.S/ D 1. Such a P satisfies the requirements
of a probability function. However, unless the coins were not in fact fair and had some
strange weighting, the assignment does not reflect the long-run interpretation of prob-
ability and, consequently, would not be acceptable from a practical point of view.

In general, for any probability function defined on a sample space the following
properties hold:

P.E0/ D 1 � P.E/

P.S/ D 1

P.E1 [ E2/ D P.E1/C P.E2/ if E1 \ E2 D ;

Empirical Probability
We have seen how easy it is to assign probabilities to simple events when we have an
equiprobable sample space. For example, when a fair coin is tossed, we have S D fH,Tg

and P.H/ D P.T/ D 1
2 . These probabilities are determined by the intrinsic nature of

the experiment—namely, that there are two possible outcomes that should have the
same probability because the outcomes are equally likely. Such probabilities are called
theoretical probabilities. However, suppose the coin is not fair. How can probabilities
then be assigned? By tossing the coin a number of times, we can determine the rela-
tive frequencies of heads and tails occurring. For example, suppose that in 1000 tosses,
heads occurs 517 times and tails occurs 483 times. Then the relative frequencies of

heads and tails occurring are 517
1000 and

483
1000 , respectively. In this situation, the assign-

ment P.H/ D 0:517 and P.T/ D 0:483 would be reasonable. Probabilities assigned in
this way are called empirical probabilities. In general, probabilities based on sample
or historical data are empirical. Now suppose that the coin were tossed 2000 times,

and the relative frequencies of heads and tails occurring were 1023
2000 D 0:5115 and

977
2000 D 0:4885, respectively. Then in this case, the assignment P.H/ D 0:5115 and

P.T/ D 0:4885 would be acceptable. The latter probabilities may be more indicative
of the true nature of the coin than would be the probabilities associated with 1000
tosses.

In the next example, probabilities (empirical) are assigned on the basis of sam-
ple data.

EXAMPLE 9 Opinion Poll

An opinion poll of a sample of 150 adult residents of a town was conducted. Each
person was asked his or her opinion about floating a bond issue to build a community
swimming pool. The results are summarized in Table 8.2.

Table 8.2 Opinion Poll

Favor Oppose Total

Male 60 20 80

Female 40 30 70

Total 100 50 150
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Suppose an adult resident from the town is randomly selected. LetM be the event
“male selected” and F be the event “selected person favors the bond issue”. Find each
of the following:

a. P.M/

b. P.F/

c. P.M \ F/

d. P.M [ F/

Strategy We will assume that proportions that apply to the sample also apply to
the adult population of the town.

Solution:

a. Of the 150 persons in the sample, 80 are males. Thus, for the adult population of
the town (the sample space), we assume that 80

150 are male. Hence, the (empirical)
probability of selecting a male is

P.M/ D
80
150
D

8
15

b. Of the 150 persons in the sample, 100 favor the bond issue. Therefore,

P.F/ D
100
150
D

2
3

c. Table 8.2 indicates that 60 males favor the bond issue. Hence,

P.M \ F/ D
60
150
D

2
5

d. To find P.M [ F/, we use Equation (1):

P.M [ F/ D P.M/C P.F/ � P.M \ F/

D
80
150
C

100
150
�

60
150
D

120
150
D

4
5

Now Work Problem 33 G

Odds
The probability of an event is sometimes expressed in terms of odds, especially in
gaming situations.

Definition
The odds in favor of event E occurring are the ratio

P.E/
P.E0/

provided that P.E0/ ¤ 0. Odds are usually expressed as the ratio
p
q
(or p : q) of two

positive integers, which is read “p to q”.
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EXAMPLE 10 Odds for an A on an Exam

A student believes that the probability of getting an A on the next mathematics exam is
0.2. What are the odds (in favor) of this occurring?

Solution: If E D “gets an A”, then P.E/ D 0:2 and P.E0/ D 1 � 0:2 D 0:8. Hence,
the odds of getting an A are

P.E/
P.E0/

D
0:2
0:8
D

2
8
D

1
4
D 1 W 4

That is, the odds are 1 to 4. (We remark that the odds against getting an A are 4 to 1.)

G

If the odds that event E occurs are a W b, then the probability of E can be easily
determined. We are given that

P.E/
1 � P.E/

D
a
b

Solving for P.E/ gives

bP.E/ D .1 � P.E//a clearing fractions

aP.E/C bP.E/ D a

.aC b/P.E/ D a

P.E/ D
a

aC b

Finding Probability from Odds
If the odds that event E occurs are a W b, then

P.E/ D
a

aC b

Over the long run, if the odds that E occurs are a W b, then, on the average, E should
occur a times in every aC b trials of the experiment.

EXAMPLE 11 Probability of Winning a Prize

A $1000 savings bond is one of the prizes listed on a contest brochure received in the
mail. The odds in favor of winning the bond are stated to be 1 : 10,000. What is the
probability of winning this prize?

Solution: Here a D 1 and b D 10,000. From the preceding rule,

P.winning prize/ D
a

aC b

D
1

1C 10,000
D

1
10,001

Now Work Problem 35 G

PROBLEMS 8.4
1. In 4000 trials of an experiment, how many times should we
expect event E to occur if P.E/ D 0:125?

2. In 3000 trials of an experiment, how many times would you
expect event E to occur if P.E0/ D 0:45?

3. If P.E/ D 0:5, P.F/ D 0:4, and P.E\ F/ D 0:1, find (a) P.E0/
and (b) P.E [ F/.

4. If P.E/ D 1
4 ;P.F/ D

1
2 , and P.E \ F/ D 1

8 , find (a) P.E0/ and
(b) P.E [ F/.

5. If P.E \ F/ D 0:831, are E and F mutually exclusive?

6. If P.E/ D 1
4 , P.E [ F/ D 1

2 , and P.E \ F/ D 1
12 , find P.F/.
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7. Dice A pair of well-balanced dice is tossed. Find the
probability that the sum of the numbers is (a) 8; (b) 2 or 3; (c) 3,
4, or 5; (d) 12 or 13; (e) even; (f) odd; and (g) less than 10.

8. Dice A pair of fair dice is tossed. Determine the probability
that at least one die shows a 1 or a 6.

9. Card Selection A card is randomly selected from a standard
deck of 52 playing cards. Determine the probability that the card
is (a) the king of hearts, (b) a diamond, (c) a jack, (d) red, (e) a
heart or a club, (f) a club and a 4, (g) a club or a 4, (h) red and a
king, and (i) a spade and a heart.

10. Coin and Die A fair coin and a fair die are tossed. Find the
probability that (a) a head and a 5 show, (b) a head shows, (c) a 3
shows, and (d) a head and an even number show.

11. Coin, Die, and Card A fair coin and a fair die are tossed,
and a card is randomly selected from a standard deck of 52
playing cards. Determine the probability that the coin, die, and
card, respectively, show (a) a head, a 6, and the ace of spades;
(b) a head, a 3, and a queen; (c) a head, a 2 or 3, and a queen; and
(d) a head, an odd number, and a diamond.

12. Coins Three fair coins are tossed. Find the probability that
(a) three heads show, (b) exactly one tail shows, (c) no more than
two heads show, and (d) no more than one tail shows.

13. Card Selection Three cards from a standard deck of
52 playing cards are successively drawn at random without
replacement. Find the probability that (a) all three cards are
jacks and (b) all three cards are spades.

14. Card Selection Two cards from a standard deck of
52 playing cards are successively drawn at random with
replacement. Find the probability that (a) both cards are kings
and (b) one card is a king and the other is a heart.

15. Genders of Children Assuming that the gender of a
person is determined at random, determine the probability that a
family with three children has (a) three girls, (b) exactly one boy,
(c) no girls, and (d) at least one girl.

16. Jelly Bean Selection A jelly bean is randomly taken from
a bag that contains five red, nine white, and two blue jelly beans.
Find the probability that the jelly bean is (a) blue, (b) not red,
(c) red or white, (d) neither red nor blue, (e) yellow, and (f) red
or yellow.

17. Stock Selection A stock is selected at random from a list
of 60 utility stocks, 48 of which have an annual dividend yield of
6% or more. Find the probability that the stock pays an annual
dividend that yields (a) 6% or more and (b) less than 6%.

18. Inventory A clothing store maintains its inventory of
sweaters so that 51% are 100% pure wool. If a tie is selected
at random, what is the probability that it is (a) 100% pure wool
(b) not 100% pure wool?

19. Examination Grades On an examination given to 40
students, 10% received an A, 25% a B, 35% a C, 25% a D, and
5% an F. If a student is selected at random, what is the probability
that the student (a) received an A, (b) received an A or a B,
(c) received neither a D nor an F, and (d) did not receive an F?
(e) Answer questions (a)–(d) if the number of students that were
given the examination is unknown.

20. Jelly Bean Selection Two bags contain colored jelly beans.
Bag 1 contains three red and two green jelly beans, and bag 2
contains four red and five green jelly beans. A jelly bean is
selected at random from each bag. Find the probability that
(a) both jelly beans are red and (b) one jelly bean is red and the
other is green.

21. Committee Selection From a group of three women and
four men, two persons are selected at random to form a committee.
Find the probability that the committee consists of women only.

22. Committee Selection For the committee selection in
Problem 21, find the probability that the committee consists of
a man and a woman.

23. Examination Score A student answers each question on a
10-question multiple-choice examination in a random fashion. For
each of the questions there are 5 possible choices. If each question
is worth 10 points, what is the probability that the student scores
100 points?

24. Multiple-Choice Examination On an eight-question,
multiple-choice examination, there are four choices for
each question, only one of which is correct. If a student answers
each question in a random fashion, find the probability that the
student answers (a) each question correctly and (b) exactly four
questions correctly.

25. Poker Hand Find the probability of being dealt four of a
kind in a poker game. This simply means four of one kind and one
other card, such as four queens and a 10. Express your answer
using the symbol nCr.

26. Suppose P.E/ D 1
5 , P.E [ F/ D 41

105 , and P.E \ F/ D 1
7 .

(a) Find P.F/ (b) Find P.E0 [ F/

[Hint:

F D .E \ F/ [ .E0
\ F/

where E \ F and E0 \ F are mutually exclusive.]

27. Faculty Committee The classification of faculty at a
college is indicated in Table 8.3. If a committee of three faculty
members is selected at random, what is the probability that it
consists of (a) all females; (b) a professor and two associate
professors?

Table 8.3 Faculty Classification

Male Female Total

Professor 12 3 15

Associate Professor 15 9 24

Assistant Professor 18 8 26

Instructor 20 15 35

Total 65 35 100

28. Biased Die A die is biased so that P.1/ D 2
10 ,

P.2/ D P.3/ D P.4/ D P.5/ D 1
10 , and P.6/ D 4

10 . If the

die is tossed, find the probability of tossing an even number.
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29. Interrupted Game A pair of gamblers is tossing a coin
and calling so that exactly one of them wins each toss. There is a
pot of $25, which they agree will go to the first one to win 10
tosses. Their mothers arrive on the scene and call a halt to the
game when Shiloh has won 7 tosses and Caitlin has won 5. Later
Shiloh and Caitlin split the money according to the Pascal and
Fermat formula. What is Shiloh’s share of the pot?

30. Interrupted Game Repeat Problem 29 for Shiloh and
Caitlin’s next meeting, when the police break up their game of 10
tosses for $50, with Shiloh having won 5 tosses and Caitlin only 2.

31. Biased Die When a biased die is tossed, the probabilities
of 1 and 2 showing are the same. The probabilities of 3 and 4
showing are also the same, but are twice those of 1 and 2. The
probabilities of 5 and 6 showing are also the same, but are three
times those of 1 and 2. Determine P.1/.

32. For the sample space fa; b; c; d; e; f; gg, suppose that the
probabilities of a, b, c, d, and e are the same and that the
probabilities of f and g are the same. Is it possible to determine
P. f/? If it is also known that P.fa; fg/ D 1

3 , what more can be
said?

33. Tax Increase A legislative body is considering a tax
increase to support education. A survey of 100 registered voters
was conducted, and the results are indicated in Table 8.4. Assume
that the survey reflects the opinions of the voting population. If a
person from that population is selected at random, determine each
of the following (empirical) probabilities.

(a) P(favors tax increase)
(b) P(opposes tax increase)
(c) P(is a Republican with no opinion)

Table 8.4 Tax Increase Survey

Favor Oppose No Opinion Total

Democrat 30 30 5 65

Republican 10 15 5 30

Other 5 0 0 5

Total 45 45 10 100

34. Digital Camcorder Sales A department store chain has
stores in the cities of Exton and Whyton. Each store sells three
brands of camcorders, A, B, and C. Over the past year, the
average monthly unit sales of the camcorders was determined,
and the results are indicated in Table 8.5. Assume that future
sales follow the pattern indicated in the table.

(a) Determine the probability that a sale of a camcorder next
month is for brand B.
(b) Next month, if a sale occurs at the Exton store, find the
probability that it is for brand C.

Table 8.5 Unit Sales per Month

A B C

Exton 25 40 30

Whyton 20 25 30

In Problems 35–38, for the given probability, find the odds that E
will occur.

35. P.E/ D 4
5 36. P.E/ D 2

7

37. P.E/ D 0:7 38. P.E/ D 0:015

In Problems 39–42, the odds that E will occur are given. Find
P(E).

39. 7 : 5 40. 100 : 1 41. 3 : 7 42. a W a

43. Weather Forecast A television weather forecaster
reported a 78% chance of rain tomorrow. What are the odds that it
will rain tomorrow?

44. If the odds of event E not occurring are 3 W 5, what are the
odds that E does occur? Repeat the question with the odds of
event E not occurring being a W b.

45. Birthday Surprise For En as in Example 6, calculate
P.E25/ as a percentage rounded to one decimal place.

46. Birthday Surprise For En as in Example 6, calculate
P.E30/ as a percentage rounded to one decimal place.

Objective 8.5 Conditional Probability
and Stochastic ProcessesTo discuss conditional probability

by both a reduced sample space
and the original space. To analyze a
stochastic process with the aid of a
probability tree. To develop the
general multiplication law
for P.E \ F/.

Conditional Probability
The probability of an event could be affected when additional related information about
the experiment is known. For example, if you guess at the answer to a multiple-choice
question having five choices, the probability of getting the correct answer is 1

5 .
However, if you know that answers A and B are wrong and, thus, can be ignored, the
probability of guessing the correct answer increases to 1

3 . In this section, we consider
similar situations in which we want the probability of an event E when it is known
that some other event F has occurred. This is called a conditional probability and
we write P.EjF/ for “the conditional probability of E, given F”. For instance, in the
situation involving the multiple-choice question, we have

P.guessing correct answerjA and B eliminated/ D
1
3
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To investigate the notion of conditional probability, we consider the following
situation. A fair die is rolled, and we are interested in the probability of the event

E D feven number showsg

The usual equiprobable sample space for this experiment is

S D f1; 2; 3; 4; 5; 6g

so

E D f2; 4; 6g

Thus,

P.E/ D
#.E/
#.S/

D
3
6
D

1
2

Now we change the situation a bit. Suppose the die is rolled out of our sight, and
then we are told that a number greater than 3 occurred. In light of this additional infor-
mation, what now is the probability of an even number? To answer that question, we
reason as follows. The event F of a number greater than 3 is

F D f4; 5; 6g

Since F already occurred, the set of possible outcomes is no longer S; it is F. That is,
F becomes our new sample space, called a reduced sample space or a subspace of S.
The outcomes in F are equally likely, and, of these, only 4 and 6 are favorable to E;
that is,

E \ F D f4; 6g

Since two of the three outcomes in the reduced sample space are favorable to an even
number occurring, we say that 23 is the conditional probability of an even number, given
that a number greater than 3 occurred:

P.EjF/ D
#.E \ F/
#.F/

D
2
3

(1)

The Venn diagram in Figure 8.14 illustrates the situation.

E

S

E     F

F

4

6

2 5

1 3

Reduced
sample
space, F

P(E | F ) =
n(E    F )

n(F )

=

2
3

FIGURE 8.14 Venn diagram for conditional
probability.

If we compare the conditional probability P.EjF/ D 2
3 with the “unconditional”

probability P.E/ D 1
2 , we see that P.EjF/ > P.E/. This means that knowing that a

number greater than 3 occurred increases the likelihood that an even number occurred.
There are situations, however, in which conditional and unconditional probabilities are
the same. These are discussed in the next section.
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In summary, we have the following generalization of Equation (1):

Formula for a Conditional Probability
If E and F are events associated with an equiprobable sample space and
F ¤ ;, then

P.EjF/ D
#.E \ F/
#.F/

(2)

Since E \ F and E0 \ F are disjoint events whose union is F, it is easy to see that

P.EjF/C P.E0
jF/ D 1

from which we get

P.E0
jF/ D 1 � P.EjF/

EXAMPLE 1 Jelly Beans in a Bag

A bag contains two blue jelly beans (say, B1 and B2) and two white jelly beans
(W1 and W2). If two jelly beans are randomly taken from the bag, without replace-
ment, find the probability that the second jelly bean taken is white, given that the first
one is blue. (See Figure 8.15.)

Solution: For our equiprobable sample space, we take all ordered pairs, such as
.B1;W2/ and .W2;W1/, whose components indicate the jelly beans selected on the first
and on the second draw. Let B and W be the events

B D fblue on first drawg

W D fwhite on second drawg

We are interested in

P.WjB/ D
#.W \ B/
#.B/

The reduced sample space B consists of all outcomes in which a blue jelly bean is
drawn first:

B D f.B1;B2/; .B1;W1/; .B1;W2/; .B2;B1/; .B2;W1/; .B2;W2/g

EventW \ B consists of the outcomes in B for which the second jelly bean is white:

W \ B D f.B1;W1/; .B1;W2/; .B2;W1/; .B2;W2/g

Draw two jelly beans
without replacement.

FIGURE 8.15 Two white and two blue jelly beans in a bag.
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Since #.B/ D 6 and #.W \ B/ D 4, we have

P.WjB/ D
4
6
D

2
3

Now Work Problem 1 G

Example 1 showed how efficient the use of a reduced sample space can be. Note
that it was not necessary to list all the outcomes either in the original sample space or
in eventW. Although we listed the outcomes in B, we could have found #.B/ by using
counting methods.

There are two ways in which the first jelly bean can be blue, and three possibilities
for the second jelly bean, which can be either the remaining blue jelly bean or one of
the two white jelly beans. Thus, #.B/ D 2 � 3 D 6.

The number #.W \ B/ could also be found by means of counting methods.

EXAMPLE 2 Survey

In a survey of 150 people, each person was asked his or her marital status and opin-
ion about floating a bond issue to build a community swimming pool. The results are
summarized in Table 8.6. If one of these persons is randomly selected, find each of the
following conditional probabilities.

Table 8.6 Survey

Favor (F) Oppose (F0) Total

Married .M/ 60 20 80

Single .M0/ 40 30 70

Total 100 50 150

a. The probability that the person favors the bond issue, given that the person is
married.

Solution: We are interested in P.FjM/. The reduced sample space .M/ contains
80 married persons, of which 60 favor the bond issue. Thus,

P.FjM/ D
#.F \M/
#.M/

D
60
80
D

3
4

b. The probability that the person is married, given that the person favors the bond
issue.

Solution: We want to find P.MjF/. The reduced sample space .F/ contains
100 persons who favor the bond issue. Of these, 60 are married. Hence,

P.MjF/ D
#.M \ F/
#.F/

D
60
100
D

3
5

Note that here P.MjF/ ¤ P.FjM/. Equality is possible precisely if P.M/ D P.F/,
assuming that all of P.M/, P.F/, and P.M \ F/ are not equal to zero.

G
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Another method of computing a conditional probability is by means of a formula
involving probabilities with respect to the original sample space. Before stating the for-
mula, we will provide some motivation. (The discussion that follows is oversimplified
in the sense that certain assumptions are tacitly made.)

We consider P.EjF/, in terms of the events F and E\ F and their respective prob-
abilities P.F/ and P.E \ F/. We assume that P.F/ ¤ 0. Let the experiment associated
with our problem be repeated n times, where n is very large. Then the number of trials
in which F occurs is approximately n � P.F/. Of these, the number in which event E
also occurs is approximately n � P.E \ F/. For large n, we estimate P.EjF/ by the rel-
ative frequency of the number of occurrences of E \ F with respect to the number of
occurrences of F, which is approximately

n � P.E \ F/
n � P.F

D
P.E \ F
P.F/

This result strongly suggests the formula that appears in the following formal definition
of conditional probability. (The definition applies to any sample space, whether or not
it is equiprobable.)

Definition
The conditional probability of an eventE, given that eventF has occurred, is denoted
P.EjF/ and is defined by

P.EjF/ D
P.E \ F/
P.F/

if P.F/ ¤ 0 (3)

Similarly,

P.FjE/ D
P.F \ E/
P.E/

if P.E/ ¤ 0 (4)

We emphasize that the probabilities in Equations (3) and (4) are with respect to the
original sample space. Here we do not deal directly with a reduced sample space.

EXAMPLE 3 Quality Control

After the initial production run of a new style of steel desk, a quality control technician
found that 40% of the desks had an alignment problem and 10% had both a defective
paint job and an alignment problem. If a desk is randomly selected from this run and it
has an alignment problem, what is the probability that it also has a defective paint job?

Solution: Let A and D be the events

A D falignment problemg

D D fdefective paint jobg

We are interested in P.DjA/, the probability of a defective paint job, given an alignment
problem. From the given data, we have P.A/ D 0:4 and P.D \ A/ D 0:1. Substituting
into Equation (3) gives

P.DjA/ D
P.D \ A/
P.A/

D
0:1
0:4
D

1
4

It is convenient to use Equation (3) to solve this problem, because we are given
probabilities rather than information about the sample space.

Now Work Problem 7 G
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EXAMPLE 4 Genders of Offspring

If a family has two children, find the probability that both are boys, given that one of
the children is a boy. Assume that a child of either gender is equally likely and that, for
example, having a girl first and a boy second is just as likely as having a boy first and
a girl second.

Solution: Let E and F be the events

E D fboth children are boysg

F D fat least one of the children is a boyg

We are interested in P.EjF/. Letting the letter B denote “boy” and G denote “girl”, we
use the equiprobable sample space

S D fBB, BG, GG, GBg

where, in each outcome, the order of the letters indicates the order in which the children
are born. Thus,

E D fBBg F D fBB, BG, GBg and E \ F D fBBg

From Equation (3),

P.EjF/ D
P.E \ F/
P.F/

D

1
4
3
4

D
1
3

Alternatively, this problem can be solved by using the reduced sample space F:

P.EjF/ D
#.E \ F/
#.F/

D
1
3

Now Work Problem 9 G

Equations (3) and (4) can be rewritten in terms of products by clearing fractions.
This gives

P.E \ F/ D P.F/P.EjF/

and
P.F \ E/ D P.E/P.FjE/

By the commutative law, P.E \ F/ D P.F \ E/, so we can combine the preceding
equations to get an important law:

General Multiplication Law

P.E \ F/ D P.E/P.FjE/ (5)

D P.F/P.EjF/

The general multiplication law states that the probability that two events both
occur is equal to the probability that one of them occurs, times the conditional proba-
bility that the other one occurs, given that the first has occurred.

EXAMPLE 5 Advertising

A computer hardware company placed an ad for its new modem in a popular computer
magazine. The company believes that the ad will be read by 32% of the magazine’s
readers and that 2% of those who read the ad will buy the modem. Assume that this is
true, and find the probability that a reader of the magazine will read the ad and buy the
modem.
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Solution: Letting R denote the event “read ad” and B denote “buy modem”, we are
interested inP.R\B/. We are given thatP.R/ D 0:32. The fact that 2% of the readers of
the ad will buy the modem can be written P.BjR/ D 0:02. By the general multiplication
law, Equation (5),

P.R \ B/ D P.R/P.BjR/ D .0:32/.0:02/ D 0:0064

Now Work Problem 11 G

Stochastic Processes
The general multiplication law is also called the law of compound probability. The
reason is that it is extremely useful when applied to an experiment that can be expressed
as a sequence (or a compounding) of two or more other experiments, called trials or
stages. The original experiment is called a compound experiment, and the sequence
of trials is called a stochastic process. The probabilities of the events associated with
each trial (beyond the first) could depend on what events occurred in the preceding
trials, so they are conditional probabilities.

When we analyze a compound experiment, a tree diagram is extremely useful in
keeping track of the possible outcomes at each stage. A complete path from the start to
a tip of the tree gives an outcome of the experiment.

The notion of a compound experiment is discussed in detail in the next example.
Read it carefully. Although the discussion is lengthy for the sake of developing a new
idea, the actual computation takes little time.

EXAMPLE 6 Cards and Probability Tree

Two cards are drawn without replacement from a standard deck of cards. Find the
probability that the second card is red.

Solution: The experiment of drawing two cards without replacement can be thought
of as a compound experiment consisting of a sequence of two trials: The first is drawing
a card, and the second is drawing a card after the first card has been drawn. The first
trial has two possible outcomes:

R1 D fred cardg or B1 D fblack cardg

(Here the subscript “1” refers to the first trial.) In Figure 8.16, these outcomes are
represented by the two branches in the first level of the tree. Keep in mind that these
outcomes are mutually exclusive, and they are also exhaustive in the sense that there
are no other possibilities. Since there are 26 cards of each color, we have

P.R1/ D
26
52

and P.B1/ D
26
52

These unconditional probabilities are written along the corresponding branches. We
appropriately call Figure 8.16 a probability tree.

Now, if a red card is obtained in the first trial, then, of the remaining 51 cards, 25
are red and 26 are black. The card drawn in the second trial can be red .R2/ or black
.B2/. Thus, in the tree, the fork at R1 has two branches: red and black. The conditional
probabilities P.R2jR1/ D 25

51 and P.B2jR1/ D 26
51 are placed along these branches.

Similarly, if a black card is obtained in the first trial, then, of the remaining 51 cards,
26 are red and 25 are black. Hence, P.R2jB1/ D 26

51 and P.B2jB1/ D 25
51 , as indicated

alongside the two branches emanating from B1. The complete tree has two levels (one
for each trial) and four paths (one for each of the four mutually exclusive and exhaustive
events of the compound experiment).

Note that the sum of the probabilities along the branches from the vertex “Start”
to R1 and B1 is 1:

26
52
C

26
52
D 1
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R1

Start

B1

R2

B2

R2

B2

R1

R1

B1

R2

B2

R2

B1 B2

ProbabilityOutcome

Trial 2
(Second draw)

Trial 1
(First draw)

P(R1)

P(R2 |R1)

25
51

26
51

26
52

26
51

26
52

25
51

=

26
52

26
51

13
51

=

26
52

25
51

25
102

26
52

26
52

26
51

25
51

FIGURE 8.16 Probability tree for compound experiment.

In general, the sum of the probabilities along all the branches emanating from a single
vertex to an outcome of that trial must be 1. Thus, for the vertex at R1,

25
51
C

26
51
D 1

and for the vertex at B1,

26
51
C

25
51
D 1

Now, consider the topmost path. It represents the event “red on first draw and red
on second draw”. By the general multiplication law,

P.R1 \ R2/ D P.R1/P.R2jR1/ D
26
52
�
25
51
D

25
102

That is, the probability of an event is obtained by multiplying the probabilities in the
branches of the path for that event. The probabilities for the other three paths are also
indicated in the tree.

Returning to the original question, we see that two paths give a red card on the sec-
ond draw, namely, the paths for R1\R2 and B1\R2. Therefore, the event “second card
red” is the union of two mutually exclusive events. By the addition law, the probability
of the event is the sum of the probabilities for the two paths:

P.R2/ D
26
52
�
25
51
C

26
52
�
26
51
D

25
102
C

13
51
D

1
2

Note how easy it was to find P.R2/ by using a probability tree.
Here is a summary of what we have done:

R2 D .R1 \ R2/ [ .B1 \ R2/

P.R2/ D P.R1 \ R2/C P.B1 \ R2/

D P.R1/P.R2jR1/C P.B1/P.R2jB1/

D
26
52
�
25
51
C

26
52
�
26
51
D

25
102
C

13
51
D

1
2

Now Work Problem 29 G
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EXAMPLE 7 Cards

Two cards are drawn without replacement from a standard deck of cards. Find the
probability that both cards are red.

Solution: Refer back to the probability tree in Figure 8.16. Only one path gives a red
card on both draws, namely, that for R1\R2. Thus, multiplying the probabilities along
this path gives the desired probability,

P.R1 \ R2/ D P.R1/P.R2jR1/ D
26
52
�
25
51
D

25
102

Now Work Problem 33 G

EXAMPLE 8 Defective Computer Chips

A company uses one computer chip in assembling each unit of a product. The chips are
purchased from suppliers A, B, and C and are randomly picked for assembling a unit.
Twenty percent come from A, 30% come from B, and the remainder come from C. The
company believes that the probability that a chip from A will prove to be defective in
the first 24 hours of use is 0.03, and the corresponding probabilities for B and C are
0.04 and 0.01, respectively. If an assembled unit is chosen at random and tested for
24 continuous hours, what is the probability that the chip in it is defective?

Solution: In this problem, there is a sequence of two trials: selecting a chip (A, B, or
C) and then testing the selected chip [defective .D/ or nondefective .D0/]. We are given
the unconditional probabilities

P.A/ D 0:2 and P.B/ D 0:3

Since A, B, and C are mutually exclusive and exhaustive,

P.C/ D 1 � .0:2C 0:3/ D 0:5

From the statement of the problem, we also have the conditional probabilities

P.DjA/ D 0:03 P.DjB/ D 0:04 P.DjC/ D 0:01

We want to find P.D/. To begin, we construct the two-level probability tree shown in
Figure 8.17. We see that the paths that give a defective chip are those for the events

A \ D B \ D C \ D

A

Start B

C

D

D'

D

D'

D

D'

0.2

0.5

0.3

0.03

0.97

0.04

0.96

0.01

0.99

(0.2) (0.03)

Probability

(0.3) (0.04)

(0.5) (0.01)

FIGURE 8.17 Probability tree for Example 8.
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Since these events are mutually exclusive,

P.D/ D P.A \ D/C P.B \ D/C P.C \ D/

D P.A/P.DjA/C P.B/P.DjB/C P.C/P.DjC/

D .0:2/.0:03/C .0:3/.0:04/C .0:5/.0:01/ D 0:023

Now Work Problem 47 G

The general multiplication law can be extended so that it applies to more than two
events. For n events, we have

P.E1 \ E2 \ � � � \ En/

D P.E1/P.E2jE1/P.E3jE1 \ E2/ � � �P.EnjE1 \ E2 \ � � � \ En�1/

(We assume that all conditional probabilities are defined.) In words, the probability that
two or more events all occur is equal to the probability that one of them occurs, times
the conditional probability that a second one occurs given that the first occurred,
times the conditional probability that a third occurs given that the first two occurred, and
so on. For example, in the manner of Example 7, the probability of drawing three red
cards from a deck without replacement is

P.R1 \ R2 \ R3/ D P.R1/P.R2jR1/P.R3jR1 \ R2/ D
26
52
�
25
51
�
24
50

EXAMPLE 9 Jelly Beans in a Bag

Bag I contains one black and two red jelly beans, and Bag II contains one pink jelly
bean. (See Figure 8.18.) A bag is selected at random. Then a jelly bean is randomly
taken from it and placed in the other bag. A jelly bean is then randomly taken from that
bag. Find the probability that this jelly bean is pink.

Bag I

Bag IIBag I

Draw

jelly bean

Draw

jelly bean

Draw

jelly bean

Draw

jelly bean

Select
bag

Bag II

FIGURE 8.18 Jelly bean selections from bags.

Solution: This is a compound experiment with three trials:

a. Selecting a bag
b. Taking a jelly bean from the bag

c. Putting the jelly bean in the other bag and then taking a jelly bean from that bag
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I

II

Start

R

B

P

R

P

B

P

R

P

B

1/2

Trial 1
(Select bag)

Trial 2
(First draw)

Trial 3
(Second draw)

Probability

1

2

2

3

1

2

1

2

1

3

1

2

1

2

1

41

1/2

2/3

1/3

1

1/2

1/2

1/2

1/2

2/4

1/4

1/4

FIGURE 8.19 Three-level probability tree.

We want to find P(pink jelly bean on second draw). We analyze the situation by
constructing a three-level probability tree. (See Figure 8.19.) The first trial has two
equally likely possible outcomes, “Bag I” or “Bag II, ” so each has probability of 1

2 .
If Bag I was selected, the second trial has two possible outcomes, “red” .R/ or

“black” .B/, with conditional probabilities P.RjI/ D 2
3 and P.BjI/ D 1

3 . If Bag II was
selected, there is one possible outcome, “pink” .P/, so P.PjII/ D 1. Thus, the second
level of the tree has three branches.

Now we turn to the third trial. If Bag I was selected and a red jelly bean taken from
it and placed in Bag II, then Bag II contains one red and one pink jelly bean. Hence,
at the end of the second trial, the fork at vertex R has two branches, R and P, with
conditional probabilities

P.RjI \ R/ D
1
2

and P.PjI \ R/ D
1
2

Similarly, the tree shows the two possibilities if Bag I was initially selected and a black
jelly bean was placed into Bag II. Now, if Bag II was selected in the first trial, then
the pink jelly bean in it was taken and placed into Bag I, so Bag I contains two red,
one black, and one pink jelly bean. Thus, the fork at P has three branches, one with
probability 2

4 and two with probability
1
4 .

We see that three paths give a pink jelly bean on the third trial, so for each, we
multiply the probabilities along its branches. For example, the second path from the
top represents I! R! P; the probability of this event is

P.I \ R \ P/ D P.I/P.RjI/P.PjI \ R/

D
1
2
�
2
3
�
1
2

Adding the probabilities for the three paths gives

P.pink jelly bean on second draw/ D
1
2
�
2
3
�
1
2
C

1
2
�
1
3
�
1
2
C

1
2
� 1 �

1
4

D
1
6
C

1
12
C

1
8
D

3
8

Now Work Problem 43 G
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PROBLEMS 8.5
1. Given the equiprobable sample space

S D f1; 2; 3; 4; 5; 6; 7; 8; 9g

and events

E D f1; 3g

F D f1; 2; 4; 5; 6g

G D f5; 6; 7; 8; 9g

find each of the following.
(a) P.EjF/ (b) P.E0jF/ (c) P.EjF0/

(d) P.FjE/ (e) P.EjF \ G/

2. Given the equiprobable sample space

S D f1; 2; 3; 4; 5g

and events

E D f1; 2g

F D f3; 4g

G D f1; 2; 3g

find each of the following.

(a) P.E/ (b) P.EjF/ (c) P.EjG/
(d) P.GjE/ (e) P.GjF0/ (f) P.E0jF0/

3. If P.E/ > 0, find P.EjE/.

4. If P.E/ > 0, show P.;jE/ D 0.

5. If P.E0jF/ D 0:62, find P.EjF/.

6. If F and G are mutually exclusive events with positive
probabilities, find P.FjG/.

7. If P.E/ D 1
4 ;P.F/ D

1
3 , and P.E \ F/ D 1

6 , find each of the
following:

(a) P.EjF/ (b) P.FjE/

8. If P.E/ D 1
4 ;P.F/ D

1
3 , and P.EjF/ D 3

4 , find P.E [ F/.
[Hint: Use the addition law to find P.E [ F/.]

9. If P.E/ D 1
3 , P.E [ F/ D 7

12 , and P.E \ F/ D 1
12 , find each of

the following:
(a) P.FjE/ (b) P.F/ (c) P.EjF/
(d) P.EjF0/ [Hint: Find P.E \ F0/ by using the identity
P.E/ D P.E \ F/C P.E \ F0/.]

10. If P.E/ D 4
5 , P.F/ D

3
10 , and P.E [ F/ D 7

10 , find P.FjE/.

11. Gypsy Moth Because of gypsy moth infestation of three
large areas that are densely populated with trees, consideration is
being given to aerial spraying to destroy larvae. A survey was
made of the 200 residents of these areas to determine whether or
not they favor the spraying. The resulting data are shown in
Table 8.7. Suppose that a resident is randomly selected. Let I be
the event “the resident is from Area I” and so on. Find each of the
following:

(a) P.F/ (b) P.FjII/ (c) P.OjI/
(d) P(III) (e) P.IIIjO/ (f) P.IIjN0/

Table 8.7

Area I Area II Area III Total

Favor .F/ 46 35 44 125

Opposed .O/ 22 15 10 47

No opinion .N/ 10 8 10 28

Total 78 58 64 200

12. College Selection and Family Income A survey of 175
students resulted in the data shown in Table 8.8, which shows the
type of college the student attends and the income level of the
student’s family. Suppose a student in the survey is randomly
selected.

(a) Find the probability that the student attends a public college,
given that the student comes from a middle-income family.
(b) Find the probability that the student is from a high-income
family, given that the student attends a private college.
(c) If the student comes from a high-income family, find the
probability that the student attends a private college.
(d) Find the probability that the student attends a public college
or comes from a low-income family.

Table 8.8

College

Income Private Public Total

High 14 11 25

Middle 25 55 80

Low 10 60 70

Total 49 126 175

13. Cola Preference A survey was taken among cola drinkers
to see which of two popular brands people preferred. It was found
that 45% liked brand A, 40% liked brand B, and 20% liked both
brands. Suppose that a person in the survey is randomly selected.

(a) Find the probability that the person liked brand A, given that
he or she liked brand B.
(b) Find the probability that the person liked brand B, given that
he or she liked brand A.

14. Quality Control Of the smartphones produced by a
well-known firm, 17% have poor sound quality and 11% have
both poor sound quality and scratched screens. If a smartphone is
randomly selected from a shipment and it has poor sound quality
what is the probability that it has a scratched screen?

In Problems 15 and 16, assume that a child of either gender is
equally likely and that, for example, having a girl first and a boy
second is just as likely as having a boy first and a girl second.

15. Genders of Offspring If a family has two children, what is
the probability that one child is a boy, given that at least one child
is a girl?

16. Genders of Offspring If a family has three children, find
each of the following.

(a) The probability that it has two girls, given that at least one
child is a boy
(b) The probability that it has at least two girls, given that the
oldest child is a girl
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17. Coin Toss If a fair coin is tossed three times in succession,
find each of the following.

(a) The probability of getting exactly two tails, given that the
second toss is a tail
(b) The probability of getting exactly two tails, given that the
second toss is a head

18. Coin Toss If a fair coin is tossed four times in succession,
find the odds of getting four tails, given that the first toss is a tail.

19. Die Roll A fair die is rolled. Find the probability of getting
a number greater than 4, given that the number is even.

20. Cards If a card is drawn randomly from a standard deck,
find the probability of getting a spade, given that the card is black.

21. Dice Roll If two fair dice are rolled, find the probability
that two 1’s occur, given that at least one die shows a 1.

22. Dice Roll If a fair red die and a fair green die are rolled,
find the probability that the sum is greater than 9, given that a 5
shows on the red die.

23. Dice Roll If a fair red die and a fair green die are rolled,
find the probability of getting a total of 7, given that the green die
shows an even number.

24. Dice Roll A fair die is rolled two times in succession.

(a) Find the probability that the sum is 7, given that the second
roll is neither a 3 nor a 5.
(b) Find the probability that the sum is 7 and that the second roll
is neither a 3 nor a 5.

25. Die Roll If a fair die is rolled two times in succession, find
the probability of getting a total greater than 8, given that the first
roll is greater than 2.

26. Coin and Die If a fair coin and a fair die are thrown, find
the probability that the coin shows tails, given that the number on
the die is odd.

27. Cards If a card is randomly drawn from a deck of 52 cards,
find the probability that the card is a king, given that it is a heart.

28. Cards If a card is randomly drawn from a deck of 52
cards, find the probability that the card is a heart, given that it is a
face card (a jack, queen, or king).

29. Cards If two cards are randomly drawn without
replacement from a standard deck, find the probability that the
second card is not a heart, given that the first card is a heart.

In Problems 30–35, consider the experiment to be a compound
experiment.

30. Cards If two cards are randomly drawn from a standard
deck, find the probability that both cards are aces if,

(a) the cards are drawn without replacement.
(b) the cards are drawn with replacement.

31. Cards If three cards are randomly drawn without
replacement from a standard deck, find the probability of
getting a king, a queen, and a jack, in that order.

32. Cards If three cards are randomly drawn without
replacement from a standard deck, find the probability of getting
the ace of spades, the ace of hearts, and the ace of diamonds, in
that order.

33. Cards If three cards are randomly drawn without
replacement from a standard deck, find the probability that all
three cards are jacks.

34. Cards If two cards are randomly drawn without
replacement from a standard deck of cards, find the probability
that the second card is a face card.

35. Cards If two cards are randomly drawn without
replacement from a standard deck, find the probability of getting
two jacks, given that the first card is a face card.

36. Wake-Up Call Barbara Smith, a sales representative, is
staying overnight at a hotel and has a breakfast meeting with an
important client the following morning. She asked the desk to
give her a 7 a.m. wake-up call so she can be prompt for the
meeting. The probability that she will get the call is 0.9. If she
gets the call, the probability that she will be on time is 0.9.
If the call is not given, the probability that she will be
on time is 0.4. Find the probability that she will be on time
for the meeting.

37. Taxpayer Survey In a certain school district, a
questionnaire was sent to all property taxpayers concerning
whether or not a new high school should be built. Of those
that responded, 60% favored its construction, 30% opposed it,
and 10% had no opinion. Further analysis of the data concerning
the area in which the respondents lived gave the results in
Table 8.9.

Table 8.9

Urban Suburban

Favor 45% 55%

Oppose 55% 45%

No opinion 35% 65%

(a) If one of the respondents is selected at random,
what is the probability that he or she lives in an urban area?
(b) If a respondent is selected at random, use the result of part
(a) to find the probability that he or she favors the construction of
the school, given that the person lives in an urban area.

38. Marketing A travel agency has a computerized telephone
that randomly selects telephone numbers for advertising
suborbital space trips. The telephone automatically dials the
selected number and plays a prerecorded message to the recipient
of the call. Experience has shown that 2% of those called show
interest and contact the agency. However, of these, only 1.4%
actually agree to purchase a trip.

(a) Find the probability that a person called will contact the
agency and purchase a trip.
(b) If 100,000 people are called, how many can be expected to
contact the agency and purchase a trip?

39. Rabbits in a Tall Hat A tall hat contains four yellow and
three red rabbits.

(a) If two rabbits are randomly pulled from the hat without
replacement, find the probability that the second rabbit pulled is
yellow, given that the first rabbit pulled is red.
(b) Repeat part (a), but assume that the first rabbit is replaced
before the second rabbit is pulled.

40. Jelly Beans in a Bag Bag 1 contains five green and two
red jelly beans, and Bag 2 contains two green, two white, and
three red jelly beans. A jelly bean is randomly taken from Bag 1
and placed into Bag 2. If a jelly bean is then randomly taken from
Bag 2, find the probability that the jelly bean is green.
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41. Balls in a Box Box 1 contains three red and two white
balls. Box 2 contains two red and two white balls. A box is chosen
at random and then a ball is chosen at random from it. What is the
probability that the ball is white?

42. Balls in a Box Box 1 contains two red and three white
balls. Box 2 contains three red and four white balls. Box 3
contains two red, two white, and two green balls. A box is chosen
at random, and then a ball is chosen at random from it.

(a) Find the probability that the ball is white.
(b) Find the probability that the ball is red.
(c) Find the probability that the ball is green.

43. Jelly Beans in a Bag Bag 1 contains one green and one red
jelly bean, and Bag 2 contains one white and one red jelly bean.
A bag is selected at random. A jelly bean is randomly taken from
it and placed in the other bag. A jelly bean is then randomly drawn
from that bag. Find the probability that the jelly bean is white.

44. Dead Batteries Ms. Wood’s lights went out in a recent
storm and she reached in the kitchen drawer for 4 batteries for her
flashlight. There were 10 batteries in the drawer, but 5 of them
were dead. Fortunately, the flashlight worked with the ones she
randomly chose. Later, Ms Wood and Mr Wood discussed the
question of the probability of choosing 4 dead batteries. She
argued, with obvious notation P.D1 \ D2 \ D3 \ D4/ D
P.D1/P.D2jD1/P.D3jD1 \ D2/P.D4jD1 \ D2 \ D3/ D

5
10
�
4
9
�
3
8
�
2
7
D

1
42
. He said the answer is 5C4

10C4
. Who was

right?

45. Quality Control An energy drink producer requires the
use of a can filler on each of its two product lines. The Yellow
Cow line produces 36,000 cans per day, and the Half Throttle line
produces 60,000 cans per day. Over a period of time, it has been
found that the Yellow Cow filler underfills 2% of its cans, whereas
the Half Throttle filler underfills 1% of its cans. At the end of a
day, a can was selected at random from the total production. Find
the probability that the can was underfilled.

46. Game Show A TV game show host presents the following
situation to a contestant. On a table are three identical boxes. One
of them contains two identical envelopes. In one is a check for
$5000, and in the other is a check for $1. Another box contains
two envelopes with a check for $5000 in each and six envelopes

with a check for $1 in each. The remaining box contains one
envelope with a check for $5000 inside and five envelopes with a
check for $1 inside each. If the contestant must select a box at
random and then randomly draw an envelope, find the probability
that a check for $5000 is inside.

47. Quality Control A company uses one computer chip in
assembling each unit of a product. The chips are purchased from
suppliers A, B, and C and are randomly picked for assembling a
unit. Ten percent come from A, 20% come from B, and the
remainder come from C. The probability that a chip from A will
prove to be defective in the first 24 hours of use is 0.06, and the
corresponding probabilities for B and C are 0.04 and 0.05,
respectively. If an assembled unit is chosen at random and tested
for 24 continuous hours, what is the probability that the chip in it
will prove to be defective?

48. Quality Control A manufacturer of widgets has four
assembly lines: A, B, C, and D. The percentages of output
produced by the lines are 30%, 20%, 35%, and 15%, respectively,
and the percentages of defective units they produce are 6%, 3%,
2%, and 5%. If a widget is randomly selected from stock, what is
the probability that it is defective?

49. Voting In a certain town, 45% of eligible voters are
Liberals, 30% are Conservatives, and the remainder are Social
Democrats. In the last provincial election, 20% of the Liberals,
35% of the Conservatives, and 40% of the Social Democrats
voted.

(a) If an eligible voter is chosen at random, what is the
probability that he or she is a Social Democrat who voted?
(b) If an eligible voter is chosen at random, what is the
probability that he or she voted?

50. Job Applicants A restaurant has four openings for waiters.
Suppose Allison, Lesley, Alan, Tom, Alaina, Bronwen, Ellie, and
Emmy are the only applicants for these jobs, and all are equally
qualified. If four are hired at random, find the probability that
Allison, Lesley, Tom, and Bronwen were chosen, given that Ellie
and Emmy were not hired.

51. Committee Selection Suppose six female and five male
students wish to fill three openings on a campus committee on
cultural diversity. If three of the students are chosen at random for
the committee, find the probability that all three are female, given
that at least one is female.

Objective 8.6 Independent Events
To develop the notion of independent
events and apply the special
multiplication law.

In our discussion of conditional probability, we saw that the probability of an event
can be affected by the knowledge that another event has occurred. In this section, we
consider the situation where the additional information has no effect. That is, the con-
ditional probability P.EjF/ and the unconditional probability P.E/ are the same. In this
discussion we assume that P.E/ ¤ 0 ¤ P.F/.

When P.EjF/ D P.E/, we say that E is independent of F. If E is independent of
F, it follows that F is independent of E (and vice versa). To prove this, assume that
P.EjF/ D P.E/. Then

P.FjE/ D
P.E \ F/
P.E/

D
P.F/P.E j F/

P.E/
D

P.F/P.E/
P.E/

D P.F/

which means that F is independent of E. Thus, to prove independence, it suffices to
show that either P.EjF/ D P.E/ or P.FjE/ D P.F/, and when one of these is true, we
simply say that E and F are independent events.

Independence of two events is defined by
probabilities, not by a causal relationship.
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Definition
Let E and F be events with positive probabilities. Then E and F are said to be inde-
pendent events if either

P.EjF/ D P.E/ (1)

or

P.FjE/ D P.F/ (2)

If E and F are not independent, they are said to be dependent events.
Dependence does not imply causality.

Thus, with dependent events, the occurrence of one of the events does affect the prob-
ability of the other. If E and F are independent events, it can be shown that the events
in each of the following pairs are also independent:

E and F0 E0 and F E0 and F0

EXAMPLE 1 Showing That Two Events Are Independent

A fair coin is tossed twice. Let E and F be the events

E D .head on first toss/

F D .head on second toss/

Determine whether or not E and F are independent events.

Solution: We suspect that they are independent, because one coin toss should not
influence the outcome of another toss. To confirm our suspicion, we will compare
P.E/ with P.EjF/. For the equiprobable sample space S D fHH, HT, TH, TTg, we
have E D fHH, HTg and F D fHH, THg. Thus,

P.E/ D
#.E/
#.S/

D
2
4
D

1
2

P.EjF/ D
#.E \ F
#.F/

D
#.fHHg/
#.F/

D
1
2

Since P.EjF/ D P.E/, events E and F are independent.

Now Work Problem 7 G

In Example 1 we suspected the result, and certainly there are other situations where
we have an intuitive feeling as to whether or not two events are independent. For exam-
ple, if a red die and green die are tossed, we expect (and it is indeed true) that the events
“3 on red die” and “6 on green die” are independent, because the outcome on one die
should not be influenced by the outcome on the other die. Similarly, if two cards are
drawn with replacement from a deck of cards, we would assume that the events “first
card is a jack” and “second card is a jack” are independent. However, suppose the cards
are drawnwithout replacement. Because the first card drawn is not put back in the deck,
it should have an effect on the outcome of the second draw, so we expect the events
to be dependent. However, intuition can be unreliable in determining whether events
E and F are independent (or dependent). Ultimately, intuition can only be tested by
showing the truth (or falsity) of either Equation (1) or Equation (2).

EXAMPLE 2 Smoking and Sinusitis

In a study of smoking and sinusitis, 4000 people were studied, with the results as given
in Table 8.10. Suppose a person from the study is selected at random. On the basis of
the data, determine whether or not the events “having sinusitis” (L) and “smoking” (S)
are independent events.
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Table 8.10 Smoking and Sinusitis

Smoker Nonsmoker Total

Sinusitis 432 1018 1450

No sinusitis 528 2022 2550

Total 960 3040 4000

Solution: We will compare P.L/ with P.LjS/. The number P.L/ is the proportion of
the people studied that have sinusitis:

P.L/ D
1450
4000

D
29
80
D 0:3625

For P.LjS/, the sample space is reduced to 960 smokers, of which 432 have sinusitis:

P.LjS/ D
432
960
D

9
20
D 0:45

Since P.LjS/ ¤ P.L/, having sinusitis and smoking are dependent.

Now Work Problem 9 G

We emphasize that dependency does not
imply causation, nor is it implied by
causation

The general multiplication law takes on an extremely important form for indepen-
dent events. Recall that law:

P.E \ F/ D P.E/P.FjE/

D P.F/P.EjF/

If events E and F are independent, then P.FjE/ D P.F/, so substitution in the first
equation gives

P.E \ F/ D P.E/P.F/

The same result is obtained from the second equation. Thus, we have the following law:

Special Multiplication Law
If E and F are independent events then

P.E \ F/ D P.E/P.F/ (3)

Equation (3) states that if E and F are independent events, then the probability that
E and F both occur is the probability that E occurs times the probability that F occurs.
Note that Equation (3) is not valid when E and F are dependent.

EXAMPLE 3 Survival Rates

Suppose the probability of the event “Bob lives 20 more years” (B) is 0.8 and the prob-
ability of the event “Doris lives 20 more years” (D) is 0.85. Assume that B and D are
independent events.

a. Find the probability that both Bob and Doris live 20 more years.

Solution: We are interested in P.B \ D/. Since B and D are independent events, the
special multiplication law applies:

P.B \ D/ D P.B/P.D/ D .0:8/.0:85/ D 0:68

b. Find the probability that at least one of them lives 20 more years.

Solution: Here we want P.B [ D/. By the addition law,

P.B [ D/ D P.B/C P.D/ � P.B \ D/
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From part (a), P.B \ D/ D 0:68, so

P.B [ D/ D 0:8C 0:85 � 0:68 D 0:97

c. Find the probability that exactly one of them lives 20 more years.

Solution: We first express the event

E D fexactly one of them lives 20 more yearsg

in terms of the given events, B and D. Now, event E can occur in one of two mutually
exclusive ways: Bob lives 20 more years but Doris does not .B\D0/, or Doris lives 20
more years but Bob does not .B0 \ D/. Thus,

E D .B \ D0/ [ .B0
\ D/

By the addition law (for mutually exclusive events),

P.E/ D P.B \ D0/C P.B0
\ D/ (4)

To compute P.B \ D0/, we note that, since B and D are independent, so are B and D0

(from the statement preceding Example 1). Accordingly, we can use the multiplication
law and the rule for complements:

P.B \ D0/ D P.B/P.D0/

D P.B/.1 � P.D// D .0:8/.0:15/ D 0:12

Similarly,

P.B0
\ D/ D P.B0/P.D/ D .0:2/.0:85/ D 0:17

Substituting into Equation (4) gives

P.E/ D 0:12C 0:17 D 0:29

Now Work Problem 25 G

In Example 3, it was assumed that events B and D are independent. However, if
Bob and Doris are related in some way, it is possible that the survival of one of them
has a bearing on the survival of the other. In that case, the assumption of independence
is not justified, and we could not use the special multiplication law, Equation (3).

EXAMPLE 4 Cards

In a math exam, a student was given the following two-part problem. A card is drawn
rapidly from a deck of 52 cards. Let H, K, and R be the events

H D fheart drawng

K D fking drawng

R D fred card drawng

Find P.H \ K/ and P.H \ R/.
For the first part, the student wrote

P.H \ K/ D P.H/P.K/ D
13
52
�
4
52
D

1
52

and for the second part, she wrote

P.H \ R/ D P.H/P.R/ D
13
52
�
26
52
D

1
8

The answer was correct for P.H \ K/ but not for P.H \ R/. Why?
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Solution: The reason is that the student assumed independence in both parts by using
the special multiplication law to multiply unconditional probabilities when, in fact, that
assumption should not have been made. Let us examine the first part of the exam prob-
lem for independence. We will see whether P.H/ and P.HjK/ are the same. We have

P.H/ D
13
52
D

1
4

and

P.HjK/ D
1
4

one heart out of four kings

Since P.H/ D P.HjK/, events H and K are independent, so the student’s procedure is
valid. For the second part, again we have P.H/ D 1

4 , but

P.HjR/ D
13
26
D

1
2

13 hearts out of 26 red cards

Since P.HjR/ ¤ P.H/, events H and R are dependent, so the student should not have
multiplied the unconditional probabilities. However, the student would have been safe
by using the general multiplication law; that is,

P.H \ R/ D P.H/P.RjH/ D
13
52
� 1 D

1
4

equivalently,

P.H \ R/ D P.R/P.HjR/ D
26
52
�
13
26
D

1
4

More simply, observe that H \ R D H, so

P.H \ R/ D P.H/ D
13
52
D

1
4

Now Work Problem 33 G

Equation (3) is often used as an alternative means of defining independent events,
and we will consider it as such:

Events E and F are independent if and only if

P.E \ F/ D P.E/P.F/ (3)

Putting everything together, we can say that to prove that events E and F, with
nonzero probabilities, are independent, only one of the following relationships has to
be shown:

P.EjF/ D P.E/ (1)

or

P.FjE/ D P.F/ (2)

or

P.E \ F/ D P.E/P.F/ (3)

In other words, if any one of these equations is true, then all of them are true; if any is
false, then all of them are false, and E and F are dependent.
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EXAMPLE 5 Dice

Two fair dice, one red and the other green, are rolled, and the numbers on the top faces
are noted. Let E and F be the events

E D .number on red die is even/

F D .sum is 7/

Test whether P.E \ F/ D P.E/P.F/ to determine whether E and F are independent.

Solution: Our usual sample space for the roll of two dice has 6 �6 D 36 equally likely
outcomes. For event E, the red die can fall in any of three ways and the green die any
of six ways, so E consists of 3 � 6 D 18 outcomes. Thus, P.E/ D 18

36 D
1
2 . Event F has

six outcomes:

F D f.1; 6/; .2; 5/; .3; 4/; .4; 3/; .5; 2/; .6; 1/g (5)

where, for example, we take .1; 6/ to mean “1” on the red die and “6” on the green die.
Therefore, P.F/ D 6

36 D
1
6 , so

P.E/P.F/ D
1
2
�
1
6
D

1
12

Now, event E \ F consists of all outcomes in which the red die is even and the sum is
7. Using Equation (5) as an aid, we see that

E \ F D f.2; 5/; .4; 3/; .6; 1/g

Thus,

P.E \ F/ D
3
36
D

1
12

Since P.E \ F/ D P.E/P.F/, events E and F are independent. This fact may not have
been obvious before the problem was solved.

Now Work Problem 17 G

EXAMPLE 6 Sex of Offspring

For a family with at least two children, let E and F be the events

E D .at most one boy/

F D .at least one child of each sex/

Assume that a child of either sex is equally likely and that, for example, having
a girl first and a boy second is just as likely as having a boy first and a girl second.
Determine whether E and F are independent in each of the following situations:

a. The family has exactly two children.

Solution: We will use the equiprobable sample space

S D fBB, BG, GG, GBg

and test whether P.E \ F/ D P.E/P.F/. We have

E D fBG,GB,GGg F D fBG,GBg E \ F D fBG, GBg

Thus, P.E/ D 3
4 , P.F/ D

2
4 D

1
2 , and P.E \ F/ D 2

4 D
1
2 . We ask whether

P.E \ F/
‹
D P.E/P.F/

and see that
1
2
¤

3
4
�
1
2
D

3
8

so E and F are dependent events.
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b. The family has exactly three children.

Solution: Based on the result of part (a), one may have an intuitive feeling that E and
F are dependent. Nevertheless, we must test this conjecture. For three children, we use
the equiprobable sample space

S D fBBB,BBG,BGB,BGG,GBB,GBG,GGB,GGGg

Again, we test whether P.E \ F/ D P.E/P.F/. We have

E D fBGG,GBG,GGB,GGGg

F D fBBG,BGB,BGG,GBB,GBG,GGBg

E \ F D fBGG,GBG,GGBg

Hence, P.E/ D 4
8 D

1
2 , P.F/ D

6
8 D

3
4 , and P.E \ F/ D 3

8 , so

P.E/P.F/ D
1
2
�
3
4
D

3
8
D P.E \ F/

Therefore, we have the somewhat unexpected result that events E and F are indepen-
dent. Intuition cannot always be trusted.

Now Work Problem 27 G
We now generalize our discussion of independence to the case of more than two

events.

Definition
The events E1;E2; : : : ;En are said to be independent if and only if for each set of
two or more of the events, the probability of the intersection of the events in the set
is equal to the product of the probabilities of the events in that set.

For instance, let us apply the definition to the case of three events .n D 3/. We say
that E, F, andG are independent events if the special multiplication law is true for these
events, taken two at a time and three at a time. That is, each of the following equations
must be true:

P.E \ F/ D P.E/P.F/
P.E \ G/D P.E/P.G/
P.F \ G/D P.F/P.G/

9=;Two at a time

P.E \ F \ G/ D P.E/P.F/P.G/g Three at a time

As another example, if events E, F, G, and H are independent, then we can assert such
things as

P.E \ F \ G \ H/ D P.E/P.F/P.G/P.H/

P.E \ G \ H/ D P.E/P.G/P.H/

and

P.F \ H/ D P.F/P.H/

Similar conclusions can bemade if any of the events are replaced by their complements.

EXAMPLE 7 Cards

Four cards are randomly drawn, with replacement, from a deck of 52 cards. Find the
probability that the cards chosen, in order, are a king (K), a queen (Q), a jack (J), and
a heart (H).
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Solution: Since there is replacement, what happens on any draw does not affect the
outcome on any other draw, so we can assume independence and multiply the uncon-
ditional probabilities. We obtain

P.K \ Q \ J \ H/ D P.K/P.Q/P.J/P.H/

D
4
52
�
4
52
�
4
52
�
13
52
D

1
8788

Now Work Problem 35 G

EXAMPLE 8 Aptitude Test

Personnel Temps, a temporary-employment agency, requires that each job applicant
take the company’s aptitude test, which has 80% accuracy.

a. Find the probability that the test will be accurate for the next three applicants who
are tested.

Solution: Let A, B, and C be the events that the test will be accurate for applicants A,
B, and C, respectively. We are interested in

P.A \ B \ C/

Since the accuracy of the test for one applicant should not affect the accuracy for any
of the others, it seems reasonable to assume that A, B, and C are independent. Thus,
we can multiply probabilities:

P.A \ B \ C/ D P.A/P.B/P.C/

D .0:8/.0:8/.0:8/ D .0:8/3 D 0:512

b. Find the probability that the test will be accurate for at least two of the next three
applicants who are tested.

Solution: Here, at least twomeans “exactly two or exactly three”. In the first case, the
possible ways of choosing the two tests that are accurate are

A and B A and C B and C

In each of these three possibilities, the test for the remaining applicant is not accurate.
For example, choosing A and B gives the event A \ B \ C0, whose probability is

P.A/P.B/P.C0/ D .0:8/.0:8/.0:2/ D .0:8/2.0:2/

Verify that the probability for each of the other two possibilities is also .0:8/2.0:2/.
Summing the three probabilities gives

P.exactly two accurate/ D 3Œ.0:8/2.0:2/� D 0:384

Using this result and that of part (a), we obtain

P.at least two accurate/ D P.exactly two accurate/C P.three accurate/

D 0:384C 0:512 D 0:896

Alternatively, the problem could be solved by computing

1 � ŒP.none accurate/C P.exactly one accurate/�

Why?

Now Work Problem 21 G

We conclude with a note of caution:Do not confuse independent events with mutu-
ally exclusive events. The concept of independence is defined in terms of probability,
whereas mutual exclusiveness is not. When two events are independent, the occurrence
of one of them does not affect the probability of the other. However, when two events
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are mutually exclusive, they cannot occur simultaneously. Although these two concepts
are not the same, we can draw some conclusions about their relationship. If E and F
are mutually exclusive events with positive probabilities, then

P.E \ F/ D 0 ¤ P.E/P.F/ since P.E/ > 0 andP.F/ > 0

which shows that E and F are dependent. In short, mutually exclusive events with pos-
itive probabilities must be dependent. Another way of saying this is that independent
events with positive probabilities are not mutually exclusive.

PROBLEMS 8.6
1. If events E and F are independent with P.E/ D 1

3 and

P.F/ D 3
4 , find each of the following.

(a) P.E \ F/ (b) P.E [ F/ (c) P.E jF/

(d) P.E0 jF/ (e) P.E \ F0/ (f) P.E [ F0/

(g) P.E jF0/

2. If events E, F, and G are independent with
P.E/ D 0:1;P.F/ D 0:3, and P.G/ D 0:6, find each
of the following.

(a) P.E \ F/ (b) P.F \ G/

(c) P.E \ F \ G/ (d) P.E j .F \ G//

(e) P.E0 \ F \ G0/

3. If events E and F are independent with P.E/ D 2
7 and

P.E \ F/ D 1
9 , find P.F/.

4. If events E and F are independent with P.E0 j F0/ D 1
4 , find

P.E/.

In Problems 5 and 6, events E and F satisfy the given conditions.
Determine whether E and F are independent or dependent.

5. P.E/ D 2
3 , P.F/ D

6
7 , P.E \ F/ D 4

7

6. P.E/ D 0:28;P.F/ D 0:15;P.E \ F/ D 0:038

7. Stockbrokers Six hundred investors were surveyed to
determine whether a person who uses a full-service stockbroker
has better performance in his or her investment portfolio than one
who uses a discount broker. In general, discount brokers usually
offer no investment advice to their clients, whereas full-service
brokers usually offer help in selecting stocks but charge larger
fees. The data, based on the past 12 months, are given in
Table 8.11. Determine whether the event of having a full-service
broker and the event of having an increase in portfolio value are
independent or dependent.

Table 8.11 Portfolio Value

Increase Decrease Total

Full service 320 80 400

Discount 160 40 200

Total 480 120 600

8. Cinema Offenses An observation of 175 patrons in a
theater resulted in the data shown in Table 8.12. The table shows
three types of cinema offenses committed by male and female
patrons. Crunchers include noisy eaters of popcorn and other
morsels, as well as cold-drink slurpers. Determine whether the
event of being a male and the event of being a cruncher are

independent or dependent. (See page 5D of the July 21, 1991,
issue of USA TODAY for the article “Pests Now Appearing at a
Theater Near You”.)

Table 8.12 Theater Patrons

Male Female Total

Talkers 60 10 70

Crunchers 55 25 80

Seat kickers 15 10 25

Total 130 45 175

9. Dice Two fair dice are rolled, one red and one green, and
the numbers on the top faces are noted. Let event E be “number
on red die is neither 1 nor 2 nor 3” and event F be “sum is 7”.
Determine whether E and F are independent or dependent.

10. Cards A card is randomly drawn from an ordinary deck
of 52 cards. Let E and F be the events “red card drawn” and “face
card drawn” respectively. Determine whether E and F are
independent or dependent.

11. Coins If two fair coins are tossed, let E be the event “at
most one head” and F be the event “exactly one head”. Determine
whether E and F are independent or dependent.

12. Coins If three fair coins are tossed, let E be the event “at
most one head” and F be the event “at least one head and one
tail”. Determine whether E and F are independent or
dependent.

13. Chips in a Bowl A bowl contains seven chips numbered
from 1 to 7. Two chips are randomly withdrawn with replacement.
Let E, F, and G be the events

E D 3 on first withdrawal

F D 3 on second withdrawal

G D sum is odd

(a) Determine whether E and F are independent or dependent.
(b) Determine whether E and G are independent or dependent.
(c) Determine whether F and G are independent or dependent.
(d) Are E, F, and G independent?

14. Chips in a Bowl A bowl contains six chips numbered
from 1 to 6. Two chips are randomly withdrawn. Let E be the
event of withdrawing two even-numbered chips and let F be
the event of withdrawing two odd-numbered chips.

(a) Are E and F mutually exclusive?
(b) Are E and F independent?
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In Problems 15 and 16, events E and F satisfy the given
conditions. Determine whether E and F are independent or
dependent.

15. P.EjF/ D 0:6, P.E \ F/ D 0:2, P.FjE/ D 0:4

16. P.E jF/ D 2
3 ;P.E [ F/ D 17

18 ;P.E \ F/ D 5
9

In Problems 17–37, you may make use of your intuition
concerning independent events if nothing to that effect is
specified.

17. Dice Two fair dice are rolled, one red and one green. Find
the probability that the red die is a 4 and the green die is a number
greater than 4.

18. Die If a fair die is rolled three times, find the probability
that a 2 or 3 comes up each time.

19. Fitness Classes At a certain fitness center, the probability
that a member regularly attends an aerobics class is 1

4 . If two
members are randomly selected, find the probability that both
attend the class regularly. Assume independence.

20. Monopoly In the game of Monopoly, a player rolls two
fair dice. One special situation that can arise is that the numbers
on the top faces of the dice are the same (such as two 3’s). This
result is called a “double”, and when it occurs, the player
continues his or her turn and rolls the dice again. The pattern
continues, unless the player is unfortunate enough to throw
doubles three consecutive times. In that case, the player goes to
jail. Find the probability that a player goes to jail in this way given
that he has already rolled doubles twice in a row.

21. Cards Three cards are randomly drawn, with replacement,
from an ordinary deck of 52 cards. Find the probability that the
cards drawn, in order, are an ace, a face card (a jack, queen, or
king), and a spade.

22. Die If a fair die is rolled seven times, find each of the
following.

(a) The probability of getting a number greater than 4 each time
(b) The probability of getting a number less than 4 each time

23. Exam Grades In a sociology course, the probability that
Bill gets an A on the final exam is 3

4 , and for Jim and Linda, the

probabilities are 1
2 and

4
5 , respectively. Assume independence and

find each of the following.

(a) The probability that all three of them get an A on the exam
(b) The probability that none of them get an A on the exam
(c) The probability that, of the three, only Linda gets an A

24. Die If a fair die is rolled four times, find the probability of
getting at least one 1.

25. Survival Rates The probability that person A survives 15
more years is 3

4 , and the probability that person B survives 15

more years is 4
5 . Find the probability of each of the following.

Assume independence.

(a) A and B both survive 15 years.
(b) B survives 15 years, but A does not.
(c) Exactly one of A and B survives 15 years.
(d) At least one of A and B survives 15 years.
(e) Neither A nor B survives 15 years.

26. Matching In his desk, a secretary has a drawer containing
a mixture of two sizes of paper (A and B) and another drawer
containing a mixture of envelopes of two corresponding sizes. The
percentages of each size of paper and envelopes in the drawers are
given in Table 8.13. If a piece of paper and an envelope are
randomly drawn, find the probability that they are the same size.

Table 8.13 Paper and Envelopes

Drawers

Size Paper Envelopes

A 63% 57%

B 37% 43%

27. Jelly Beans in a Bag A bag contains five red, seven white,
and six green jelly beans. If two jelly beans are randomly taken
out with replacement, find each of the following.

(a) The probability that the first jelly bean is white and the
second is green.
(b) The probability that one jelly bean is red and the other one is
white

28. Dice Suppose two fair dice are rolled twice. Find the
probability of getting a total of 7 on one of the rolls and a total of
12 on the other one.

29. Jelly Beans in a Bag A bag contains three red, two white,
four blue, and two green jelly beans. If two jelly beans are
randomly withdrawn with replacement, find the probability that
they have the same color.

30. Die Find the probability of rolling three consecutive
numbers in three throws of a fair die.

31. Tickets in Hat Twenty tickets numbered from 1 to 20
are placed in a hat. If two tickets are randomly drawn with
replacement, find the probability that the sum is 35.

32. Coins and Dice Suppose two fair coins are tossed and then
two fair dice are rolled. Find each of the following.

(a) The probability that two tails and two 3’s occur
(b) The probability that two heads, one 4, and one 6 occur

33. Carnival Game In a carnival game, a well-balanced
roulette-type wheel has 12 equally spaced slots that are numbered
from 1 to 12. The wheel is spun, and a ball travels along the rim of
the wheel. When the wheel stops, the number of the slot in which
the ball finally rests is considered the result of the spin. If the
wheel is spun three times, find each of the following.

(a) The probability that the first number will be 4 and the second
and third numbers will be 5
(b) The probability that there will be one even number and two
odd numbers
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34. Cards Three cards are randomly drawn, with replacement,
from an ordinary deck of 52 cards. Find each of the following.

(a) The probability of drawing, in order, a heart, a spade, and a
red queen
(b) The probability of drawing exactly three aces
(c) The probability that one red queen, one spade and one red ace
are drawn
(d) The probability of drawing exactly one ace

35. Multiple-Choice Exam A quiz contains 10
multiple-choice problems. Each problem has five choices for the
answer, but only one of them is correct. Suppose a student
randomly guesses the answer to each problem. Find each of the
following by assuming that the guesses are independent.

(a) The probability that the student gets exactly three correct
answers
(b) The probability that the student gets at most three correct
answers
(c) The probability that the student gets four or more correct
answers

36. Shooting Gallery At a shooting gallery, suppose Bill, Jim,
and Linda each take one shot at a moving target. The probability
that Bill hits the target is 0.5, and for Jim and Linda the
probabilities are 0.4 and 0.7, respectively. Assume independence
and find each of the following.

(a) The probability that none of them hit the target
(b) The probability that Linda is the only one of them that hits
the target
(c) The probability that exactly one of them hits the target
(d) The probability that exactly two of them hit the target
(e) The probability that all of them hit the target

37. Decision Making1 The president of Zeta Construction
Company must decide which of two actions to take, namely, to
rent or to buy expensive excavating equipment. The probability
that the vice president makes a faulty analysis and, thus,
recommends the wrong decision to the president is 0.04. To be
thorough, the president hires two consultants, who study the
problem independently and make their recommendations. After
having observed them at work, the president estimates that the
first consultant is likely to recommend the wrong decision with
probability 0.05, the other with probability 0.1. He decides to
take the action recommended by a majority of the three
recommendations he receives. What is the probability that he will
make the wrong decision?

Objective 8.7 Bayes’ Formula
To solve a Bayes’ problem. To develop
Bayes’ formula.

In this section, we will be dealing with a two-stage experiment in which we know
the outcome of the second stage and are interested in the probability that a particular
outcome has occurred in the first stage.

To illustrate, suppose it is believed that of the total population (our sample space),
8% have a particular disease. Imagine also that there is a new blood test for detecting
the disease and that researchers have evaluated its effectiveness. Data from extensive
testing show that the blood test is not perfect: Not only is it positive for only 95% of
those who have the disease, but it is also positive for 3% of those who do not. Suppose
a person from the population is selected at random and given the blood test. If the result
is positive, what is the probability that the person has the disease?

To analyze this problem, we consider the following events:

D D .having the disease/

T D .testing positive/

and their complements:

D0
D .not having the disease/

T0
D .testing negative/

We are given:

P.D/ D 0:08 P.TjD/ D 0:95 P.TjD0/ D 0:03

1Samuel Goldberg, Probability, an Introduction (Prentice-Hall, Inc., 1960, Dover Publications, Inc., 1986),
p. 113. Adapted by permission of the author.
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so by complementarity we also have,

P.D0/ D 1 � 0:08 D 0:92 P.T0
jD/ D 0:05 P.T0

jD0/ D 0:97

Figure 8.20 shows a two-stage probability tree that reflects this information. The first
stage takes into account either having or not having the disease, and the second stage
shows possible test results.

D

D'

P
(D

)

0.0
8

T

T'

T

T'

P(T
 | D

')

0.03

P
(D

')
0.92

P(T' | D')
0.97

P(T
 | D

)

0.95

P(T' | D)
0.05

FIGURE 8.20 Two-stage probability tree.

We are interested in the probability that a person who tests positive has the disease.
That is, we want to find the conditional probability that D occurred in the first stage,
given that T occurred in the second stage:

P.DjT/

It is important to understand the difference between the conditional probabilities
P.DjT/ and P.TjD/. The probability P.TjD/, which is given to us, is a “typical” con-
ditional probability, in that it deals with the probability of an outcome in the second
stage after an outcome in the first stage has occurred. However, with P.DjT/, we have
a “reverse” situation. Here we must find the probability of an outcome in the first stage,
given that an outcome in the second stage occurred. This probability does not fit the
usual (and more natural) pattern of a typical conditional probability. Fortunately, we
have all the tools needed to find P.DjT/. We proceed as follows.

From the definition of conditional probability,

P.DjT/ D
P.D \ T/
P.T/

(1)

Consider the numerator. Applying the general multiplication law gives

P.D \ T/ D P.D/P.TjD/

D .0:08/.0:95/ D 0:076

which is indicated in the path through D and T in Figure 8.21. The denominator, P.T/,
is the sum of the probabilities for all paths of the tree ending in T. Thus,

P.T/ D P.D \ T/C P.D0
\ T/

D P.D/P.TjD/C P.D0/P.TjD0/

D .0:08/.0:95/C .0:92/.0:03/ D 0:1036

Hence,

P.DjT/ D
P.D \ T/
P.T/

D
probability of path through D and T
sum of probabilities of all paths to T

D
0:076
0:1036

D
760
1036

D
190
259
� 0:734
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So the probability that the person has the disease, given that the test is positive, is
approximately 0.734. In other words, about 73.4% of people who test positive actually
have the disease. This probability was relatively easy to find by using basic principles
[Equation (1)] and a probability tree (Figure 8.21).

D

D'

P
(D

)

0.0
8

T

T'

T

T'

P(T
 | D

')

0.03

P
(D

')0.92

P(T' | D')
0.97

P(T
 | D

)

0.95

P(T' | D)
0.05

P (D     T)

= P (D)P(T|D)

= (0.08) (0.95)

= 0.076

P (D'     T)

= P (D')P(T|D')

= (0.92) (0.03)

FIGURE 8.21 Probability tree to determine P.DjT/.

At this point, some terminology should be introduced. The unconditional proba-
bilities P.D/ and P.D/ are called prior probabilities, because they are given before
we have any knowledge about the outcome of a blood test. The conditional probability
P.DjT/ is called a posterior probability, because it is found after the outcome, .T/, of
the test is known.

From our answer for P.DjT/, we can easily find the posterior probability of not
having the disease given a positive test result:

P.D0
jT/ D 1 � P.DjT/ D 1 �

190
259
D

69
259
� 0:266

Of course, this can also be found by using the probability tree:

P.D0
jT/ D

probability of path through D0 and T
sum of probabilities of all paths to T

D
.0:92/.0:03/

0:1036
D

0:0276
0:1036

D
276
1036

D
69
259
� 0:266

It is not really necessary to use a probability tree to find P.DjT/. Instead, a formula can
be developed. We know that

P.DjT/ D
P.D \ T/
P.T/

D
P.D/P.TjD/

P.T/
(2)

Although we used a probability tree to express P.T/ conveniently as a sum of proba-
bilities, the sum can be found another way. Take note that events D and D0 have two
properties: They are mutually exclusive and their union is the sample space S. Such
events are collectively called a partition of S. Using this partition, we can break up
event T into mutually exclusive “pieces”:

T D T \ S D T \ .D [ D0/

Then, by the distributive and commutative laws,

T D .D \ T/ [ .D0
\ T/ (3)

Since D and D0 are mutually exclusive, so are events D \ T and D0 \ T. Thus, T has
been expressed as a union of mutually exclusive events. In this form, we can find P.T/
by adding probabilities. Applying the addition law for mutually exclusive events to
Equation (3) gives

P.T/ D P.D \ T/C P.D0
\ T

D P.D/P.TjD/C P.D0/P.TjD0/
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Substituting into Equation (2), we obtain

P.DjT/ D
P.D/P.TjD/

P.D/P.TjD/C P.D0/P.TjD0/
(4)

which is a formula for computing P.DjT/.
Equation (4) is a special case (namely, for a partition of S into two events) of the

following general formula, called Bayes’ formula, after Thomas Bayes (1702–1761),
an 18th-century English minister who discovered it:

Bayes’ Formula
Suppose F1;F2 : : : ;Fn are n events that partition a sample space S. That is, the Fi’s
are mutually exclusive and their union is S. Furthermore, suppose that E is any event
in S, where P.E/ > 0. Then the conditional probability of Fi given that event E has
occurred is expressed by

P.FijE/ D
P.Fi/P.EjFi/

P.F1/P.EjF1/C P.F2/P.EjF2/C � � � C P.Fn/P.EjFn/

for each value of i, where i D 1; 2; : : : ; n.

Bayes’ formula has had wide application in decision making.
Rather than memorize the formula, a probability tree can be used to obtain P.FijE/.

Using the tree in Figure 8.22, we have

P.FijE/ D
probability for path through Fi and E
sum of all probabilities for paths to E

F1

F2

Fi

Fn

EP(E | F1
)

EP(E | F2
)

EP(E | Fi
)

EP(E | Fn
)

P (F1)P (E | F1)

P (F2)P (E | F2)

P (Fi )P (E | Fi )

P (Fn )P (E | Fn)

P
(F

1
)

P(F2
)

P(F
i )

P
(F

n )

FIGURE 8.22 Probability tree for P.FijE/.

EXAMPLE 1 Quality Control

A digital camcorder manufacturer uses one microchip in assembling each camcorder it
produces. The microchips are purchased from suppliers A, B, and C and are randomly
picked for assembling each camcorder. Twenty percent of the microchips come from
A, 35% come from B, and the remainder come from C. Based on past experience,
the manufacturer believes that the probability that a microchip from A is defective is
0.03, and the corresponding probabilities for B and C are 0.02 and 0.01, respectively.
A camcorder is selected at random from a day’s production, and its microchip is found
to be defective. Find the probability that it was supplied (a) from A, (b) from B, and
(c) from C. (d) From what supplier was the microchip most likely purchased?
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A

B

C

P
(A

)

0.2

P(B)

0.35

P
(C

)0.45

F

F

F

(0.2) (0.03)

(0.35) (0.02)

(0.45) (0.01)
P(F | C)

P(F | B)

P(F | A)

0.01

0.02

0.03

FIGURE 8.23 Bayes’ probability tree for Example 1.

Solution: We define the following events:

A D .supplier A/

B D .supplier B/

C D .supplier C/

F D .defective microchip/

We have

P.A/ D 0:2 P.B/ D 0:35 P.C/ D 0:45

and the conditional probabilities

P.FjA/ D 0:03 P.FjB/ D 0:02 P.FjC/ D 0:01

which are reflected in the probability tree in Figure 8.23. Note that the figure shows
only the portion of the complete probability tree that relates to event F. This is all
that actually needs to be drawn, and this abbreviated form is often called a Bayes’
probability tree.

For part (a), we want to find the probability of A given that F has occurred. That is,

P.AjF/
probability of path through A and F
sum of probabilities of all paths to F

D
.0:2/.0:03/

.0:2/.0:03/C .0:35/.0:02/C .0:45/.0:01/

D
0:006

0:006C 0:007C 0:0045

D
0:006
0:0175

D
60
175
D

12
35
� 0:343

This means that approximately 34.3% of the defective microchips come from
supplier A.

For part (b), we have

P.BjF/ D
probability of path through B and F
sum of probabilities of all paths to F

D
.0:35/.0:02/

0:0175
D

0:007
0:0175

D
70
175
D

14
35
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For part (c),

P.CjF/ D
probability of path through C and F
sum of probabilities of all paths to F

D
.0:45/.0:01/

0:0175
D

0:0045
0:0175

D
45
175
D

9
35

For part (d), the greatest of P.AjF/, P.BjF/, and P.CjF/ is P.BjF/. Thus, the defec-
tive microchip was most likely supplied by B.

Now Work Problem 9 G

EXAMPLE 2 Jelly Beans in a Bag

Two identical bags, Bag I and Bag II, are on a table. Bag I contains one red and one
black jelly bean; Bag II contains two red jelly beans. (See Figure 8.24.) A bag is selected
at random, and then a jelly bean is randomly taken from it. The jelly bean is red. What
is the probability that the other jelly bean in the selected bag is red?Bag I Bag II

FIGURE 8.24 Diagram for
Example 2.

Solution: Because the other jelly bean could be red or black, we might hastily con-

clude that the answer is
1
2
. This is false. The question can be restated as follows: Find

the probability that the jelly bean came from Bag II, given that the jelly bean is red. We
define the events

B1 D .Bag I selected/

B2 D .Bag II selected/

R D .red jelly bean selected/

We want to find P.B2jR/. Since a bag is selected at random,

P.B1/ D
1
2

and P.B2/ D
1
2

From Figure 8.24, we conclude that

P.RjB1/ D
1
2

and P.RjB2/ D 1

We will show two methods of solving this problem, the first with a probability tree and
the second with Bayes’ formula.
Method 1: Probability Tree Figure 8.25 shows a Bayes’ probability tree for our
problem. Since all paths end at R,

P.B2jR/ D
probability for path through B2 and R

sum of probabilities of all paths

D

�
1
2

�
.1/�

1
2

� �
1
2

�
C
�
1
2

�
.1/
D

1
2
3
4

D
2
3

B1

B2

P(B 1
)

P(B
2 )

R

R

1

2

1

2

1

2

1

2

1

2

1

2
1

1

P(R | B2)

P(R | B1)

FIGURE 8.25 Bayes’ probability tree for Example 2.
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Note that the unconditional probability of choosing Bag II, namely, P.B2/ D
1
2
,

increases to
2
3
, given that a red jelly bean was taken. An increase is reasonable: Since

there are only red jelly beans in Bag II, choosing a red jelly bean should make it more
likely that it came from Bag II.

Method 2: Bayes’ Formula BecauseB1 andB2 partition the sample space, by Bayes’
formula we have

P.B2jR/ D
P.B2/P.RjB2/

P.B1/P.RjB1/C P.B2/P.RjB2/

D

�
1
2

�
.1/�

1
2

� �
1
2

�
C
�
1
2

�
.1/
D

1
2
3
4

D
2
3

Now Work Problem 7 G

PROBLEMS 8.7
1. Suppose events E and F partition a sample space S, where E
and F have probabilities

P.E/ D
4
7

P.F/ D
3
7

If D is an event such that

P.DjE/ D
2
9

P.DjF/ D
1
3

find the probabilities (a) P.EjD/ and (b) P.FjD0/.

2. A sample space is partitioned by events E1;E2, and E3, whose
probabilities are 1

5 ;
3
10 , and

1
2 , respectively. Suppose S is an event

such that the following conditional probabilities hold:

P.S jE1/ D
2
5

P.S jE2/ D
7
10

P.S jE3/ D
1
2

Find the probabilities P.E1 j S/ and P.E3 j S0/.

3. Voting In a certain precinct, 42% of the eligible voters are
registered Democrats, 33% are Republicans, and the remainder
are Independents. During the last primary election, 45% of the
Democrats, 37% of the Republicans, and 35% of the Independents
voted. Find the probability that a person who voted is a Democrat.
4. Imported versus Domestic Tires Out of 3000 tires in the
warehouse of a tire distributor, 2000 tires are domestic and 1000
are imported. Among the domestic tires, 40% are all-season;
of the imported tires, 10% are all-season. If a tire is selected at
random and it is an all-season, what is the probability that it is
imported?

5. Disease Testing A new test was developed for detecting
Gamma’s disease, which is believed to affect 3% of the
population. Results of extensive testing indicate that 86% of
persons who have this disease will have a positive reaction to the
test, whereas 7% of those who do not have the disease will also
have a positive reaction.
(a) What is the probability that a randomly selected person who
has a positive reaction will actually have Gamma’s disease?
(b) What is the probability that a randomly selected person who
has a negative reaction will actually have Gamma’s disease?

6. Earnings and Dividends Of the companies in a particular
sector of the economy, it is believed that 1/4 will have an increase
in quarterly earnings. Of those that do, 2/3 will declare a dividend.
Of those that do not have an increase, 1/10 will declare a
dividend. What percentage of companies that declare a dividend
will have an increase in quarterly earnings?

7. Jelly Beans in a Bag A bag contains four red and two
green jelly beans, and a second bag contains two red and
three green jelly beans. A bag is selected at random and a jelly
bean is randomly taken from it. The jelly bean is red. What is the
probability that it came from the first bag?
8. Balls in a Bowl Bowl I contains three red, two white, and
five green balls. Bowl II contains three red, six white, and nine
green balls. Bowl III contains six red, two white, and two green
balls. A bowl is chosen at random, and then a ball is chosen at
random from it. The ball is red. Find the probability that it came
from Bowl II.
9. Quality Control A manufacturing process requires the use
of a robotic welder on each of two assembly lines, A and B, which
produce 300 and 500 units of product per day, respectively. Based
on experience, it is believed that the welder on A produces 2%
defective units, whereas the welder on B produces 5% defective
units. At the end of a day, a unit was selected at random from the
total production and was found to be defective. What is the
probability that it came from line A?
10. Quality Control An automobile manufacturer has four
plants: A, B, C, and D. The percentages of total daily output that
are produced by the four plants are 35%, 20%, 30%, and 15%,
respectively. The percentages of defective units produced by the
plants are estimated to be 2%, 5%, 3%, and 4%, respectively.
Suppose that a car on a dealer’s lot is randomly selected and found
to be defective. What is the probability that it came from plant
(a) A? (b) B? (c) C? (d) D?
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11. Wake-Up Call Barbara Smith, a sales representative, is
staying overnight at a hotel and has a breakfast meeting with an
important client the following morning. She asked the front desk
to give her a 6 a.m. wake-up call so she can be prompt for the
meeting. The probability that the desk makes the call is 0.9. If the
call is made, the probability that she will be on time is 0.9, but if
the call is not made, the probability that she will be on time is 0.7.
If she is on time for the meeting, what is the probability that the
call was made?

12. Candy Snatcher On a high shelf are two identical opaque
candy jars containing 50 raisin clusters each. The clusters in one
of the jars are made with dark chocolate. In the other jar, 20 are
made with dark chocolate and 30 are made with milk chocolate.
(They are mixed well, however.) Bob Jones, who has a sudden
craving for chocolate, reaches up and randomly takes a raisin
cluster from one of the jars. If it is made with dark chocolate,
what is the probability that it was taken from the jar containing
only dark chocolate?

13. Physical Fitness Activity During the week of National
Employee Health and Fitness Day, the employees of a large
company were asked to exercise a minimum of three times that
week for at least 20 minutes per session. The purpose was to
generate “exercise miles”. All participants who completed this
requirement received a certificate acknowledging their
contribution. The activities reported were power walking, cycling,
and running. Of all who participated, 13 reported power walking,

1
2

reported cycling, and 1
6 reported running. Suppose that the

probability that a participant who power walks will complete
the requirement is 9

10 , and for cycling and running it is
2
3 and

1
3 ,

respectively. What percentage of persons who completed the
requirement do you expect reported power walking? (Assume that
each participant got his or her exercise from only one activity.)

14. Battery Reliability When the weather is extremely frigid,
a motorist must charge his car battery during the night in order to
improve the likelihood that the car will start early the following
morning. If he does not charge it, the probability that the car will
not start is 4

5 . If he does charge it, the probability that the car

will not start is 1
8 . Past experience shows that the probability that

he remembers to charge the battery is 9
10 . One morning, during a

cold spell, he cannot start his car. What is the probability that he
forgot to charge the battery?

15. Automobile Satisfaction Survey In a customer
satisfaction survey, 35 of those surveyed had a Japanese-made car,
1
10 a European-made car, and

3
10 an American-made car. Of the

first group, 85% said they would buy the same make of car again,
and for the other two groups the corresponding percentages are
50% and 40%. What is the probability that a person who said he
or she would buy the same make again had a Japanese-made car?

16. Mineral Test Borings A geologist believes that the
probability that the rare earth mineral dalhousium occurs in the
Greater Toronto region is 0.001. If dalhousium is present in that
region, the geologist’s test borings will have a positive result 90%
of the time. However, if dalhousium is not present, a negative
result will occur 80% of the time.
(a) If a test is positive on a site in the region, find the probability
that dalhousium is there.
(b) If a test is negative on such a site, find the probability that
dalhousium is there.

17. Physics Exam After a physics exam was given, it turned
out that only 75% of the class answered every question. Of those
who did, 80% passed, but of those who did not, only 50% passed.
If a student passed the exam, what is the probability that the
student answered every question? (P.S.: The instructor eventually
reached the conclusion that the test was too long and curved the
exam grades, to be fair and merciful.)
18. Giving Up Smoking In a 2004 survey of smokers, 50%
predicted that they would still be smoking five years later. Five
years later, 80% of those who predicted that they would be
smoking did not smoke, and of those who predicted that they
would not be smoking, 95% did not smoke. What percentage
of those who were not smoking after five years had predicted that
they would be smoking?
19. Alien Communication B. G. Cosmos, a scientist, believes
that the probability is 2

5 that aliens from an advanced civilization
on Planet X are trying to communicate with us by sending
high-frequency signals to Earth. By using sophisticated
equipment, Cosmos hopes to pick up these signals. The
manufacturer of the equipment, Trekee, Inc., claims that if aliens
are indeed sending signals, the probability that the equipment will
detect them is 3

5 . However, if aliens are not sending signals, the
probability that the equipment will seem to detect such signals is
1
10 . If the equipment detects signals, what is the probability that
aliens are actually sending them?
20. Calculus Grades In an honors Calculus I class, 60% of
students had an A average at midterm. Of these, 70% ended up
with a course grade of A, and of those who did not have an A
average at midterm, 60% ended up with a course grade of A.
If one of the students is selected at random and is found to have
received an A for the course, what is the probability that the
student did not have an A average at midterm?
21. Movie Critique A well-known pair of highly influential
movie critics have a popular TV show on which they review new
movie releases and recently released videos. Over the past 10
years, they gave a “Two Thumbs Up” to 60% of movies that
turned out to be box-office successes; they gave a “Two Thumbs
Down” to 90% of movies that proved to be unsuccessful. A new
movie,Math Guru, whose release is imminent, is considered
favorably by others in the industry who have previewed it; in fact,
they give it a prior probability of success of 90%. Find the
probability that it will be a success, given that the pair of TV
critics give it a “Two Thumbs Down” after seeing it. Assume that
all films are given either “Two Thumbs Up” or “Two Thumbs
Down”.

22. Balls in a Bowl Bowl 1 contains five green and four red
balls, and Bowl 2 contains three green, one white, and three red
balls. A ball is randomly taken from Bowl 1 and placed in Bowl 2.
A ball is then randomly taken from Bowl 2. If the ball is green,
find the probability that a green ball was taken from Bowl 1.

23. Risky Loan In the loan department of The Bank of
Montreal, past experience indicates that 25% of loan requests are
considered by bank examiners to fall into the “substandard” class
and should not be approved. However, the bank’s loan reviewer,
Mr. Blackwell, is lax at times and concludes that a request is not
in the substandard class when it is, and vice versa. Suppose that
15% of requests that are actually substandard are not considered
substandard by Blackwell and that 10% of requests that are not
substandard are considered by Blackwell to be substandard and,
hence, not approved.
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(a) Find the probability that Blackwell considers that a request is
substandard.
(b) Find the probability that a request is substandard, given that
Blackwell considers it to be substandard.
(c) Find the probability that Blackwell makes an error in
considering a request. (An error occurs when the request is not
substandard but is considered substandard, or when the request
is substandard but is considered to be not substandard.)

24. Coins in Chests Each of three identical chests has two
drawers. The first chest contains a gold coin in each drawer. The
second chest contains a silver coin in each drawer, and the third
contains a silver coin in one drawer and a gold coin in the other.
A chest is chosen at random and a drawer is opened. There is a
gold coin in it. What is the probability that the coin in the other
drawer of that chest is silver?

Chapter 8 Review
Important Terms and Symbols Examples
Section 8.1 Basic Counting Principle and Permutations

tree diagram Basic Counting Principle Ex. 1, p. 350
permutation, nPr Ex. 5, p. 352

Section 8.2 Combinations and Other Counting Principles
combination, nCr Ex. 2, p. 357
permutation with repeated objects cells Ex. 6, p. 363

Section 8.3 Sample Spaces and Events
sample space sample point finite sample space Ex. 1, p. 368
event certain event impossible event simple event Ex. 6, p. 370
Venn diagram complement, E0 union, [ intersection, \ Ex. 7, p. 371
mutually exclusive events Ex. 8, p. 373

Section 8.4 Probability
equally likely outcomes trial relative frequency Ex. 1, p. 376
equiprobable space probability of event, P.E/ Ex. 2, p. 377
addition law for mutually exclusive events empirical probability Ex. 5, p. 379
odds Ex. 9, p. 384

Section 8.5 Conditional Probability and Stochastic Processes
conditional probability, P.E jF/ reduced sample space Ex. 1, p. 390
general multiplication law trial compound experiment Ex. 5, p. 393
probability tree Ex. 6, p. 394

Section 8.6 Independent Events
independent events dependent events Ex. 1, p. 402
special multiplication law Ex. 3, p. 403

Section 8.7 Bayes’ Formula
partition prior probability posterior probability Ex. 1, p. 414
Bayes’ formula Bayes’ probability tree Ex. 2, p. 416

Summary
It is important to know the number of ways a procedure can
occur. Suppose a procedure involves a sequence of k stages.
Let n1 be the number of ways the first stage can occur, and
n2 the number of ways the second stage can occur, and so on,
with nk the number of ways the kth stage can occur. Then the
number of ways the procedure can occur is

n1 � n2 � � � nk

This result is called the Basic Counting Principle.
An ordered selection of r objects, without repetition,

taken from n distinct objects is called a permutation of the

n objects taken r at a time. The number of such permutations
is denoted nPr and is given by

nPr D n.n � 1/.n � 2/ � � � .n � rC 1/„ ƒ‚ …
r factors

D
nŠ

.n � r/Š

If the selection is made without regard to order, then it is
simply an r-element subset of an n-element set and is called
a combination of n objects taken r at a time. The number of
such combinations is denoted nCr and is given by

nCr D
nŠ

rŠ.n � r/Š
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When some of the objects are repeated, the number of
distinguishable permutations of n objects, such that n1 are of
one type, n2 are of a second type, and so on, and nk are of a
kth type, is

nŠ
n1Šn2Š � � � nkŠ

(5)

where n1 C n2 C � � � C nk D n.
The expression in Equation (5) can also be used to deter-

mine the number of assignments of objects to cells. If n dis-
tinct objects are placed into k ordered cells, with ni objects
in cell i, for i D 1; 2; : : : ; k, then the number of such assign-
ments is

nŠ
n1Šn2Š � � � nkŠ

where n1 C n2 C � � � C nk D n.
A sample space for an experiment is a set S of all possi-

ble outcomes of the experiment. These outcomes are called
sample points. A subset E of S is called an event. Two special
events are the sample space itself, which is a certain event,
and the empty set, which is an impossible event. An event
consisting of a single sample point is called a simple event.
Two events are said to be mutually exclusive when they have
no sample point in common.

A sample space whose outcomes are equally likely is
called an equiprobable space. If E is an event for a finite
equiprobable space S, then the probability that E occurs is
given by

P.E/ D
#.E/
#.S/

If F is also an event in S, we have

P.E [ F/ D P.E/C P.F/ � P.E \ F/

P.E [ F/ D P.E/C P.F/ for E and F mutually exclusive

P.E0/ D 1 � P.E/

P.S/ D 1

P.;/ D 0

For an event E, the ratio

P.E/
P.E0/

D
P.E/

1 � P.E/

gives the odds that E occurs. Conversely, if the odds that E
occurs are a W b, then

P.E/ D
a

aC b

The probability that an event E occurs, given that event F
has occurred, is called a conditional probability. It is denoted
by P.E jF/ and can be computed either by considering a
reduced equiprobable sample space and using the formula

P.E jF/ D
#.E \ F/
#.F/

or from the formula

P.E jF/ D
P.E \ F/
P.F/

which involves probabilities with respect to the original sam-
ple space.

To find the probability that two events both occur, we
can use the general multiplication law:

P.E \ F/ D P.E/P.F jE/ D P.F/P.E jF/

Here wemultiply the probability that one of the events occurs
by the conditional probability that the other one occurs, given
that the first has occurred. For more than two events, the cor-
responding law is

P.E1 \ E2 \ � � � \ En/

D P.E1/P.E2 jE1/P.E3 jE1 \ E2/ � � �

P.En jE1 \ E2 \ � � � \ En�1/

The general multiplication law is also called the law of
compound probability, because it is useful when applied to
a compound experiment—one that can be expressed as a
sequence of two or more other experiments, called trials or
stages.

When we analyze a compound experiment, a probability
tree is extremely useful in keeping track of the possible out-
comes for each trial of the experiment. A path is a complete
sequence of branches from the start to a tip of the tree. Each
path represents an outcome of the compound experiment, and
the probability of that path is the product of the probabilities
for the branches of the path.

Events E and F are independent when the occurrence of
one of them does not affect the probability of the other;
that is,

P.E jF/ D P.E/ or P.F jE/ D P.F/

Events that are not independent are dependent.
If E and F are independent, the general multiplication

law simplifies to the special multiplication law:

P.E \ F/ D P.E/P.F/

Here the probability that E and F both occur is the probabil-
ity of E times the probability of F. The preceding equation
forms the basis of an alternative definition of independence:
Events E and F are independent if and only if

P.E \ F/ D P.E/P.F/
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Three or more events are independent if and only if for each
set of two or more of the events, the probability of the inter-
section of the events in that set is equal to the product of the
probabilities of those events.

A partition divides a sample space into mutually exclu-
sive events. If E is an event and F1;F2; : : : ;Fn is a partition,
then, to find the conditional probability of event Fi, given E,

when prior and conditional probabilities are known, we can
use Bayes’ formula:

P.Fi j E/ D

P.Fi/P.E jFi/

P.F1/P.E jF1/C P.F2/P.E jF2/C � � � C P.Fn/P.E jFn/

A Bayes-type problem can also be solved with the aid of a
Bayes probability tree.

Review Problems
In Problems 1–4, determine the values.

1. 8P3 2. rP1 3. 9C7 4. 12C5

5. License Plate A six-character license plate consists of three
letters followed by three numbers. How many different license
plates are possible?

6. Dinner In a restaurant, a complete dinner consists of one
appetizer, one entree, and one dessert. The choices for the
appetizer are soup and salad; for the entree, chicken, steak,
lobster, and veal; and for the dessert, ice cream, pie, and pudding.
How many complete dinners are possible?

7. Garage-Door Opener The transmitter for an electric
garage-door opener transmits a coded signal to a receiver. The
code is determined by 10 switches, each of which is either in an
“on” or “off” position. Determine the number of different codes
that can be transmitted.

8. Baseball A baseball manager must determine a batting order
for his nine-member team. How many batting orders are possible?

9. Softball A softball league has seven teams. In terms of first,
second, and third place, in how many ways can the season end?
Assume that there are no ties.

10. Trophies In a trophy case, nine different trophies are to be
placed—two on the top shelf, three on the middle, and four on the
bottom. Considering the order of arrangement on each shelf, in
how many ways can the trophies be placed in the case?

11. Groups Eleven stranded wait-listed passengers surge to the
counter for boarding passes. But there are only six boarding passes
available. How many different groups of passengers can board?

12. Cards From a 52-card deck of playing cards, a five-card
hand is dealt. In how many ways can exactly two of the cards be
of one denomination and exactly two be of another denomination?
(Such a hand is called two pairs.)

13. Light Bulbs A carton contains 24 light bulbs, one of which
is defective. (a) In how many ways can three bulbs be selected?
(b) In how many ways can three bulbs be selected if one is
defective?

14. Multiple-Choice Exam Each question of a 10-question
multiple-choice examination is worth 10 points and has four
choices, only one of which is correct. By guessing, in how many
ways is it possible to receive a score of 90 or better?

15. Letter Arrangement How many distinguishable
horizontal arrangements of the letters in MISSISSIPPI are
possible?

16. Flag Signals Colored flags arranged vertically on a
flagpole indicate a signal (or message). How many different
signals are possible if two red, three green, and four white flags
are all used?

17. Personnel Agency A mathematics professor personnel
agency provides mathematics professors on a temporary basis to
universities that are short of staff. The manager has a pool of
17 professors and must send four to Dalhousie University, seven
to St. Mary’s, and three to Mount Saint Vincent. In how many
ways can the manager make assignments?

18. Tour Operator A tour operator has three vans, and
each can accommodate seven tourists. Suppose 14 people arrive
for a city sightseeing tour and the operator will use only two
vans. In how many ways can the operator assign the people to
the vans?

19. Suppose S D f1; 2; 3; 4; 5; 6; 7; 8g is the sample space and
E1 D f1; 2; 3; 4; 5; 6g and E2 D f4; 5; 6; 7g are events for an
experiment. Find (a) E1 [ E2, (b) E1 \ E2, (c) E10

[ E2,
(d) E1 \ E10, and (e) .E1 \ E20/0. (f) Are E1 and E2 mutually
exclusive?

20. Die and Coin A die is rolled and then a coin is tossed.
(a) Determine a sample space for this experiment. Determine the
events that (b) a 2 shows and (c) a head and an even number show.

21. Bags of Jelly Beans Three bags, labeled 1, 2, and 3, each
contain two jelly beans, one red and the other green. A jelly bean
is selected at random from each bag. (a) Determine a sample
space for this experiment. Determine the events that (b) exactly
two jelly beans are red and (c) the jelly beans are the same
color.

22. Suppose that E and F are events for an experiment. If
P.E/ D 0:5, P.E[F/ D 0:6, and P.E\F/ D 0:1, find P.E0\F0/.

23. Quality Control A manufacturer of computer chips
packages 10 chips to a box. For quality control, two chips
are selected at random from each box and tested. If any
one of the tested chips is defective, the entire box of chips
is rejected for sale. For a box that contains exactly one defective
chip, what is the probability that the box is rejected?
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24. Drugs Each of 100 white rats was injected with one of four
drugs, A, B, C, or D. Drug A was given to 35%, B to 25%, and C
to 15%. If a rat is chosen at random, determine the probability that
it was injected with either C or D. If the experiment is repeated on
a larger group of 300 rats but with the drugs given in the same
proportion, what is the effect on the previous probability?

25. Multiple-Choice Exam Each question on a five-question
multiple-choice examination has four choices, only one of which
is correct. If a student answers each question in a random fashion,
what is the probability that the student answers exactly two
questions incorrectly?

26. Cola Preference To determine the national preference of
cola drinkers, an advertising agency conducted a survey of 200 of
them. Two cola brands, A and B, were involved. The results of the
survey are indicated in Table 8.14. If a cola drinker is selected at
random, determine the (empirical) probability that the person
(a) Likes both A and B
(b) Likes A, but not B

Table 8.14 Cola Preference

Like A only 70

Like B only 80

Like both A and B 35

Like neither A nor B 15

Total 200

27. Jelly Beans in a Bag A bag contains six red and six green
jelly beans.

(a) If two jelly beans are randomly selected in succession with
replacement, determine the probability that both are red.
(b) If the selection is made without replacement, determine the
probability that both are red.

28. Dice A pair of fair dice is rolled. Determine the probability
that the sum of the numbers is (a) 2 or 7, (b) a multiple of 3, and
(c) no less than 7.

29. Cards Three cards from a standard deck of 52 playing
cards are randomly drawn in succession with replacement.
Determine the probability that (a) all three cards are black and
(b) two cards are black and the other is a diamond.

30. Cards Two cards from a standard deck of 52 playing cards
are randomly drawn in succession without replacement.
Determine the probability that (a) both are hearts and (b) one is an
ace and the other is a red king.

In Problems 31 and 32, for the given value of P(E), find the odds
that E will occur.

31. P.E/ D 3
8 32. P.E/ D 0:93

In Problems 33 and 34, the odds that E will occur are given. Find
P(E).

33. 6 : 1 34. 3 : 4

35. Cards If a card is randomly drawn from a fair deck of 52
cards, find the probability that it is not a face card (a jack, queen,
or king), given that it is a heart.

36. Dice If two fair dice are rolled, find the probability that the
sum is less than 7, given that a 6 shows on at least one of the dice.

37. Movie and Sequel The probability that a particular movie
will be successful is 0.55, and if it is successful, the probability
that a sequel will be made is 0.60. Find the probability that the
movie will be successful and followed by a sequel.

38. Cards Three cards are drawn from a standard deck of
cards. Find the probability that the cards are, in order, a queen, a
heart, and the ace of clubs if the cards are drawn with
replacement.

39. Dice If two dice are thrown, find each of the following.

(a) The probability of getting a total of 7, given that a 4 occurred
on at least one die
(b) The probability of getting a total of 7 and that a 4 occurred on
at least one die

40. Die A fair die is tossed two times in succession. Find the
probability that the first toss is less than 4, given that the total is
greater than 8.

41. Die If a fair die is tossed two times in succession, find
the probability that the first number is less than or equal to the
second number, given that the second number is less than 3.

42. Cards Three cards are drawn without replacement from a
standard deck of cards. Find the probability that the third card is a
club.

43. Seasoning Survey A survey of 600 adults was made to
determine whether or not they liked the taste of a new seasoning.
The results are summarized in Table 8.15.

Table 8.15 Seasoning Survey

Like Dislike Total

Male 80 40 120

Female 320 160 480

Total 400 200 600

(a) If a person in the survey is selected at random, find the
probability that the person dislikes the seasoning .L0/, given that
the person is a female .F/.
(b) Determine whether the events L D fliking the seasoningg and
M D fbeing a maleg are independent or dependent.
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44. Chips A bowl contains six chips numbered from 1 to 6.
Two chips are randomly withdrawn with replacement. Let E be
the event of getting a 4 the first time and F be the event of getting
a 4 the second time.

(a) Are E and F mutually exclusive?
(b) Are E and F independent?

45. College and Family Income A survey of 175 students
resulted in the data shown in Table 8.16. The table shows the type
of college the student attends and the income level of the student’s
family. If a student is selected at random, determine whether the
event of attending a public college and the event of coming from a
middle-class family are independent or dependent.

Table 8.16 Student Survey

College

Income Private Public Total

High 15 10 25

Middle 25 55 80

Low 10 60 70

Total 50 125 175

46. If P.E/ D 1
4 ;P.F/ D

1
3 , and P.E jF/ D 1

6 , find P.E [ F/.

47. Shrubs When a certain type of shrub is planted, the
probability that it will take root is 0.7. If four shrubs are planted,
find each of the following. Assume independence.

(a) The probability that all of them take root
(b) The probability that exactly three of them take root
(c) The probability that at least three of them take root

48. Antibiotic A certain antibiotic is effective for 75% of the
people who take it. Suppose four persons take this drug. What is
the probability that it will be effective for at least three of them?
Assume independence.

49. Bags of Jelly Beans Bag I contains three green and two
red jelly beans, and Bag II contains four red, two green, and two
white jelly beans. A jelly bean is randomly taken from Bag I and
placed in Bag II. If a jelly bean is then randomly taken from Bag
II, find the probability that the jelly bean is red.

50. Bags of Jelly Beans Bag I contains four red and two white
jelly beans. Bag II contains two red and three white jelly beans. A
bag is chosen at random, and then a jelly bean is randomly taken
from it.
(a) What is the probability that the jelly bean is white?
(b) If the jelly bean is white, what is the probability that it was
taken from Bag II?

51. Grade Distribution Last semester, the grade distribution
for a certain class taking an upper-level college course was
analyzed. It was found that the proportion of students receiving a
grade of A was 0.4 and the proportion getting an A and being a
graduate student was 0.1. If a student is randomly selected from
this class and is found to have received an A, find the probability
that the student is a graduate student.

52. Alumni Reunion At the most recent alumni day at Alpha
University, 735 persons attended. Of these, 603 lived within the
state, and 43% of them were attending for the first time. Among
the alumni who lived out of the state, 72% were attending for the
first time. That day a raffle was held, and the person who won had
also won it the year before. Find the probability that the winner
was from out of state.

53. Quality Control A music company burns CDs on two
shifts. The first shift produces 3000 discs per day, and the second
produces 5000. From past experience, it is believed that of the
output produced by the first and second shifts, 1% and 2% are
scratched, respectively. At the end of a day, a disc was selected at
random from the total production.
(a) Find the probability that the CD is scratched.
(b) If the CD is scratched, find the probability that it came from
the first shift.

54. Aptitude Test In the past, a company has hired only
experienced personnel for its word-processing department.
Because of a shortage in this field, the company has decided to
hire inexperienced persons and will provide on-the-job training. It
has supplied an employment agency with a new aptitude test that
has been designed for applicants who desire such a training
position. Of those who recently took the test, 35% passed. In
order to gauge the effectiveness of the test, everyone who took the
test was put in the training program. Of those who passed the test,
80% performed satisfactorily, whereas of those who failed, only
30% did satisfactorily. If one of the new trainees is selected at
random and is found to be satisfactory, what is the probability that
the person passed the exam?



Haeussler-50501 M10_HAEU1107_14_SE_C09 October 16, 2017 9:53

9 Additional Topics
in Probability

9.1 Discrete Random
Variables and Expected
Value

9.2 The Binomial Distribution
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Chapter 9 Review

A
s we saw in Chapter 8, probability can be used to solve the problem of
dividing up the pot of money between two gamblers when their game is
interrupted. Now we might ask a follow-up question: What are the chances
that a game will be interrupted in the first place?

Our answer depends on the details, of course. If the gamblers know in advance
that they will play a fixed number of rounds—the “interruption” being scheduled in
advance, as it were—then it might be fairly easy to calculate the probability that time
will run out before they finish. Or, if the amount of time available is unknown, wemight
calculate the expected duration of a complete game and an expected time before the next
interruption. Then, if the expected game length came out well under the expected time
to the next interruption, we could say that the probability of having to break the game
off in midplay was low. But if we wanted to give a more exact, numerical answer we
would have to do a more complicated calculation.

The kind of problem encountered here is not unique to gambling. In industry, man-
ufacturers need to know how likely they are to have to interrupt a production cycle due
to equipment breakdown. One way they keep this probability low is by logging the
usage hours on each machine and replacing it as the hours approach “mean time to
failure”—the expected value of the number of usage hours the machine provides in its
lifetime. Medical researchers face a related problem when they consider the possibil-
ity of having to break off an experiment because too many test subjects drop out. To
keep this probability low, researchers often calculate an expected number of dropouts
in advance and include this number, plus a cushion, in the number of people recruited
for a study.

The idea of the expected value for a number—the length of time until something
happens, or the number of people who drop out of a study—is one of the key concepts
of this chapter.

424
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Objective 9.1 Discrete RandomVariables and Expected Value
To develop the probability distribution
of a random variable and to represent
that distribution geometrically by a
graph or a histogram. To compute the
mean, variance, and standard
deviation of a random variable.

With some experiments, we are interested in events associatedwith numbers. For exam-
ple, if two coins are tossed, our interest may be in the number of heads that occur. Thus,
we consider the events

f0g f1g f2g

If we let X be a variable that represents the number of heads that occur, then the only
values that X can assume are 0, 1, and 2. The value of X is determined by the outcome
of the experiment, and hence, by chance. In general, a variable whose values depend
on the outcome of a random process is called a random variable. Usually, random
variables are denoted by capital letters, such as X, Y, or Z, and the values that these
variables assume are often denoted by the corresponding lowercase letters (x, y, or z).
Thus, for the number of heads .X/ that occur in the tossing of two coins, we can indicate
the possible values by writing

X D x; where x D 0; 1; 2

or, more simply,

X D 0; 1; 2

EXAMPLE 1 Random Variables

a. Suppose a die is rolled andX is the number that turns up. ThenX is a random variable
and X D 1; 2; 3; 4; 5; 6.

b. Suppose a coin is successively tossed until a head appears. If Y is the number of
such tosses, then Y is a random variable and

Y D y where y D 1; 2; 3; 4; : : :

Note that Y can assume infinitely many values.

c. A student is taking an examwith a one-hour time limit. If X is the number of minutes
it takes to complete the exam, then X is a random variable. The values that X can
assume form the interval (0, 60]. That is, 0 < X � 60.

Now Work Problem 7 G

A random variable is called a discrete random variable if it assumes only a finite
number of values or if its values can be placed in one-to-one correspondence with the
positive integers. In Examples 1(a) and 1(b), X and Y are discrete. A random variable
is called a continuous random variable if it assumes all values in some interval or
intervals, such as X does in Example 1(c). In this chapter, we will be concerned with
discrete random variables; Chapter 16 deals with continuous random variables.

If X is a random variable, the probability of the event that X assumes the value x
is denoted P.X D x/. Similarly, we can consider the probabilities of events, such as
X � x and X > x. If X is discrete, then the function f that assigns the number P.X D x/
to each possible value of X is called the probability function or the distribution of
the random variable X. Thus,

f.x/ D P.X D x/

It may be helpful to verbalize this equation as “f.x/ is the probability that X assumes
the value x”.

EXAMPLE 2 Distribution of a Random Variable

Suppose that X is the number of heads that appear on the toss of two well-balanced
coins. Determine the distribution of X.
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Solution: We must find the probabilities of the events X D 0, X D 1, and X D 2. The
usual equiprobable sample space is

S D fHH, HT, TH, TTg

Hence,
the event X D 0 is fTTg

the event X D 1 is fHT, THg

the event X D 2 is fHHg

Probability Table

x P.X D x/

0 1=4

1 2=4

2 1=4
The probability for each of these events is given in the probability table in the margin.
If f is the distribution for X, that is, f.x/ D P.X D x/, then

f.0/ D
1
4

f.1/ D
1
2

f.2/ D
1
4

G

In Example 2, the distribution f was indicated by the listing

f.0/ D
1
4

f.1/ D
1
2

f.2/ D
1
4

However, the probability table for X gives the same information and is an acceptable
way of expressing the distribution of X. Another way is by the graph of the distribution,
as shown in Figure 9.1. The vertical lines from the x-axis to the points on the graph
merely emphasize the heights of the points. Another representation of the distribution
of X is the rectangle diagram in Figure 9.2, called the probability histogram for X.
Here a rectangle is centered over each value of X. The rectangle above x has width 1
and height P.X D x/. Thus, its area is the probability 1 � P.X D x/ D P.X D x/. This
interpretation of probability as an area is important in Chapter 16.

0 1 2
x

P(X = x)

1

2

1

4

FIGURE 9.1 Graph of the
distribution of X.

0 1 2
x

P(X = x)

1

2

1

4

FIGURE 9.2 Probability histogram
for X.

Note in Example 2 that the sum of f.0/, f.1/, and f.2/ is 1:

f.0/C f.1/C f.2/ D
1
4
C

1
2
C

1
4
D 1

This must be the case, because the events X D 0, X D 1, and X D 2 are mutually exclu-
sive and the union of all three is the sample space and P.S/ D 1. We can conveniently
indicate the sum f.0/C f.1/C f.2/ by the summation notation

To review summation notation, see
Section 1.5.

X
x

f.x/

This usage differs slightly from that in Section 1.5, in that the upper and lower bounds
of summation are not given explicitly. Here

P
x f.x/means that we are to sum all terms

of the form f.x/, for all values of x under consideration (which in this case are 0, 1,
and 2). Thus, X

x

f.x/ D f.0/C f.1/C f.2/

In general, for any distribution f, we have 0 � f.x/ � 1 for all x, and the sum of all
function values is 1. Therefore, X

x

f.x/ D 1

This means that in any probability histogram, the sum of the areas of the rectangles
is 1.

The distribution for a random variable X gives the relative frequencies of the values
of X in the long run. However, it is often useful to determine the “average” value of X
in the long run. In Example 2, for instance, suppose that the two coins were tossed n
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times, which resulted in X D 0 occurring k0 times, X D 1 occurring k1 times, and
X D 2 occurring k2 times. Then the average value of X for these n tosses is

0 � k0 C 1 � k1 C 2 � k2
n

D 0 �
k0
n
C 1 �

k1
n
C 2 �

k2
n

But the fractions k0=n; k1=n and k2=n are the relative frequencies of the events X D 0,
X D 1, and X D 2, respectively, that occur in the n tosses. If n is very large, then these
relative frequencies approach the probabilities of the events X D 0;X D 1, and X D 2.
Thus, it seems reasonable that the average value of X in the long run is

0 � f.0/C 1 � f.1/C 2 � f.2/ D 0 �
1
4
C 1 �

1
2
C 2 �

1
4
D 1 (1)

This means that if we tossed the coins many times, the average number of heads appear-
ing per toss is very close to 1. We define the sum in Equation (1) to be themean of X. It
is also called the expected value of X and the expectation of X. The mean of X is often
denoted by � D �.X/ (� is the Greek letter “mu”) and also by E.X/. Note that from
Equation (1), � has the form

P
x xf.x/. In general, we have the following definition.

Definition
If X is a discrete random variable with distribution f, then themean of X is given by

� D �.X/ D E.X/ D
X
x

xf.x/

The mean of X can be interpreted as the average value of X in the long run. In fact, if
the values that X takes on are x1; x2; : : : ; xn and these are equiprobable so that we have

f.xi/ D
1
n
, for i D 1; 2; : : : ; n, then,

� D
X
x

xf.x/ D
nX

iD1

xi
1
n
D

Pn
iD1 xi
n

which is the average in the usual sense of that word of the numbers x1; x2; : : : ; xn. In
the general case, it is useful to think of the mean, �, as a weighted average where the
weights are provided by the probabilities, f.x/. We emphasize that the mean does not
necessarily have to be an outcome of the experiment. In other words,�may be different
from all the values x that the random variable X actually assumes. The next example
will illustrate.

EXAMPLE 3 Expected Gain

An insurance company offers a $180,000 catastrophic fire insurance policy to home-
owners of a certain type of house. The policy provides protection in the event that such
a house is totally destroyed by fire in a one-year period. The company has determined
that the probability of such an event is 0.002. If the annual policy premium is $379,
find the expected gain per policy for the company.

Strategy If an insured house does not suffer a catastrophic fire, the company gains
$379. However, if there is such a fire, the company loses $180;000� $379 (insured
value of houseminus premium), which is $179,621. IfX is the gain (in dollars) to the
company, thenX is a randomvariable thatmay assume the values 379 and�179,621.
(A loss is considered a negative gain.) The expected gain per policy for the company
is the expected value of X.

Solution: If f is the probability function for X, then

f.�179;621/ D P.X D �179;621/ D 0:002
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and

f.379/ D P.X D 379/ D 1 � 0:002 D 0:998

The expected value of X is given by

E.X/ D
X
x

xf.x/ D �179;621f.�179;621/C 379f.379/

D �179;621.0:002/C 379.0:998/ D 19

Thus, if the company sold many policies, it could expect to gain approximately $19 per
policy, which could be applied to such expenses as advertising, overhead, and profit.

Now Work Problem 19 G

Since E.X/ is the average value of X in the long run, it is a measure of what might
be called the central tendency of X. However, E.X/ does not indicate the dispersion or
spread of X from the mean in the long run. For example, Figure 9.3 shows the graphs
of two distributions, f and g, for the random variables X and Y. It can easily be demon-
strated that both X and Y have the same mean: E.X/ D 2 and E.Y/ D 2. (Verify this
claim.) But from Figure 9.3, X is more likely to assume the value 1 or 3 than is Y,

because f.1/ and f.3/ are 2
5 , whereas g.1/ and g.3/ are

1
5 . Thus, X has more likelihood

of assuming values away from the mean than does Y, so there is more dispersion for X
in the long run.

E(X ) = 2

(a)

1
x

f (x)

2
5

1
5

2 3

E(Y ) = 2

(b)

1
y

g(y)

3
5

1
5

2 3

FIGURE 9.3 Probability distributions.

There are various ways to measure dispersion for a random variable X. One way
is to determine the long-run average of the absolute values of the deviations from the
mean �—that is, E.jX��j/, which is the mean of the derived random variable jX��j.
In fact, if g is a suitable function and X is a random variable, then Y D g.X/ is another
random variable.Moreover, it can be shown that if Y D g.X/, thenE.Y/ D

P
x g.x/f.x/,

where f is the probability function for X. For example, if Y D jX � �j, then

E.jX � �j/ D
X
x

jx � �jf.x/

However, while E.jX � �j/ might appear to be an obvious measure of dispersion, it is
not often used.

Many other measures of dispersion can be considered, but two are most widely
accepted. One is the variance, and the other is the standard deviation. The variance
of X, denoted by Var.X/, is the long-run average of the squares of the deviations of X
from �. In other words, for the variance we consider the random variable Y D .X��/2

and we have

Variance of X

Var.X/ D E..X � �/2/ D
X
x

.x � �/2f.x/ (2)
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Since .X��/2 is involved in Var.X/, and both X and� have the same units of measure-
ment, the units for Var.X/ are those of X2. For instance, in Example 3, X is in dollars;
thus, Var.X/ has units of dollars squared. It is convenient to have a measure of disper-

sion in the same units as X. Such a measure is
p
Var.X/, which is called the standard

deviation of X and is denoted by � D �.X/ (� is the lowercase Greek letter “sigma”).

Standard Deviation of X

� D �.X/ D
p
Var.X/

Note that � has the property that

�2 D Var.X/

Both Var.X/ D �2 and � are measures of the dispersion of X. The greater the
value of Var.X/, or � , the greater is the dispersion. One result of a famous theorem,
Chebyshev’s inequality, is that the probability of X falling within two standard devia-

tions of the mean is at least 34 . This means that the probability that X lies in the interval

.�� 2�; �C 2�/ is greater than or equal to 3
4 . More generally, for k > 1, Chebyshev’s

inequality tells us that

P.X 2 .� � k�; �C k�// �
k2 � 1
k2

To illustrate further, with k D 4, this means that, for any probabilistic experiment, at

least 4
2�1
42 D

15
16 D 93:75% of the data values lie in the interval .��4�; �C4�/. To lie

in the interval .��4�; �C4�/ is to lie “within four standard deviations of the mean”.
We can write the formula for variance in Equation (2) in a different way. It is a

good exercise with summation notation.

Var.X/ D
X
x

.x � �/2f.x/

D
X
x

.x2 � 2x�C �2/f.x/

D
X
x

.x2f.x/ � 2x�f.x/C �2f.x//

D
X
x

x2f.x/ � 2�
X
x

xf.x/C �2
X
x

f.x/

D
X
x

x2f.x/ � 2�.�/C �2.1/ (since
X
x

xf.x/ D � and
X
x

f.x/ D 1/

Thus, we have

Var.X/ D �2 D .
X
x

x2f.x// � �2
D E.X2/ � E.X/2 (3)

This formula for variance is useful, since it often simplifies computations.

EXAMPLE 4 Mean, Variance, and Standard Deviation

A basket contains 10 balls, each of which shows a number. Five balls show 1; two
show 2; and three show 3. A ball is selected at random. If X is the number that shows,
determine �, Var(X), and � .
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Solution: The sample space consists of 10 equally likely outcomes (the balls). The
values that X can assume are 1, 2, and 3. The events X D 1, X D 2, and X D 3
contain 5, 2, and 3 sample points, respectively. Thus, if f is the probability function
for X,

f.1/ D P.X D 1/ D
5
10
D

1
2

f.2/ D P.X D 2/ D
2
10
D

1
5

f.3/ D P.X D 3/ D
3
10

Calculating the mean gives

� D
X
x

xf.x/ D 1 � f.1/C 2 � f.2/C 3 � f.3/

D 1 �
5
10
C 2 �

2
10
C 3 �

3
10
D

18
10
D

9
5

To find Var.X/, either Equation (2) or Equation (3) can be used. Both will be used here
so that we can compare the arithmetical computations involved. By Equation (2),

Var.X/ D
X
x

.x � �/2f.x/

D

�
1 �

9
5

�2

f.1/C
�
2 �

9
5

�2

f.2/C
�
3 �

9
5

�2

f.3/

D

�
�
4
5

�2

�
5
10
C

�
1
5

�2

�
2
10
C

�
6
5

�2

�
3
10

D
16
25
�
5
10
C

1
25
�
2
10
C

36
25
�
3
10

D
80C 2C 108

250
D

190
250
D

19
25

By Equation (3),

Var.X/ D .
X
x

x2f.x// � �2

D .12 � f.1/C 22 � f.2/C 32 � f.3// �
�
9
5

�2

D 1 �
5
10
C 4 �

2
10
C 9 �

3
10
�
81
25

D
5C 8C 27

10
�
81
25
D

40
10
�
81
25

D 4 �
81
25
D

19
25

Notice that Equation (2) involves .x � �/2, but Equation (3) involves x2. Because of
this, it is often easier to compute variances by Equation (3) than by Equation (2).

Since �2 D Var.X/ D 19
25 , the standard deviation is

� D
p
Var.X/ D

r
19
25
D

p
19
5

Now Work Problem 1 G
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PROBLEMS 9.1
In Problems 1–4, the distribution of the random variable X is
given. Determine �, Var.X/, and � . In Problem 1, construct the
probability histogram. In Problem 2, graph the distribution.

1. f.0/ D 0:2, f.1/ D 0:3, f.2/ D 0:3, f.3/ D 0:2

2. f.4/ D 0:4; f.5/ D 0:6

3. See Figure 9.4.

1 2 3
x

f(x)

5

12

1

4

1

3

FIGURE 9.4

4. See Figure 9.5.

0 1 2
x

f(x)

2

7

1

7

3 4

FIGURE 9.5

5. The random variable X has the following distribution:

x P.X D x/

3

5 0.3

6 0.2

7 0.4

(a) Find P.X D 3/; (b) Find �; (c) Find �2

6. The random variable X has the following distribution:

x P.X D x/

2 0:1

4 5a

6 4a

(a) Find P.X D 4/ and P.X D 6/; (b) Find �.

In Problems 7–10, determine E.X/, �2, and � for the random
variable X.

7. Coin Toss Three fair coins are tossed. Let X be the number
of heads that occur.

8. Balls in a Basket A basket contains eight balls, each of
which shows a number. Three balls show a 1; two show a 2; two
show a 3; and one shows a 4. A ball is randomly selected and the
number that shows, X, is observed.

9. Committee From a group of two women and three men, two
persons are selected at random to form a committee. Let X be the
number of men on the committee.

10. Jelly Beans in a Jar A jar contains two red and three
green jelly beans. Two jelly beans are randomly withdrawn in
succession with replacement, and the number of red jelly beans,
X, is observed.

11. Marbles in a Bag A bag contains five red and three white
marbles. Two marbles are randomly withdrawn in succession
without replacement. Let X be the number of red marbles
withdrawn. Find the distribution f for X.

12. Subcommittee From a state government committee
consisting of four Whigs and six Tories, a subcommittee of three
is to be randomly selected. Let X be the number of Whigs in the
subcommittee. Find a general formula, in terms of combinations,
that gives P.X D x/, where x D 0; 1; 2; 3.

13. Raffle A charitable organization is having a raffle for a
single prize of $7000. Each raffle ticket costs $3, and 9000 tickets
have been sold.

(a) Find the expected gain for the purchaser of a single ticket.
(b) Find the expected gain for the purchaser of two tickets.

14. Coin Game Consider the following game. You are to toss
three fair coins. If three heads or three tails turn up, your friend
pays you $10. If either one or two heads turn up, you must pay
your friend $6. What are your expected winnings or losses per
game?

15. Earnings A landscaper earns $200 per day when working
and loses $30 per day when not working. If the probability of
working on any day is 4

7 , find the landscaper’s expected daily
earnings.

16. Fast-Food Restaurant A fast-food chain estimates that if
it opens a restaurant in a shopping center, the probability that the
restaurant is successful is 0.72. A successful restaurant earns an
annual profit of $120,000; a restaurant that is not successful loses
$36,000. What is the expected gain to the chain if it opens a
restaurant in a shopping center?

17. Insurance An insurance company offers a hospitalization
policy to individuals in a certain group. For a one-year period, the
company will pay $100 per day, up to a maximum of five days,
for each day the policyholder is hospitalized. The company
estimates that the probability that any person in this group is
hospitalized for exactly one day is 0.001; for exactly two days,
0.002; for exactly three days, 0.003; for exactly four days, 0.004;
and for five or more days, 0.008. Find the expected gain per policy
to the company if the annual premium is $10.
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18. Demand The following table for a small car rental
company gives the probability that x cars are rented daily:

x 0 1 2 3 4 5 6 7 8

P.XD x/ 0.05 0.05 0.10 0.25 0.20 0.20 0.15 0.10 0.05

Determine the expected daily demand for their cars.

19. Insurance Premium In Example 3, if the company wants
an expected gain of $50 per policy, determine the annual
premium.

20. Roulette In the game of roulette, there is a wheel with 37
slots numbered with the integers from 0 to 36, inclusive. A player
bets $1 (for example) and chooses a number. The wheel is spun
and a ball rolls on the wheel. If the ball lands in the slot showing
the chosen number, the player receives the $1 bet plus $35.
Otherwise, the player loses the $1 bet. Assume that all numbers
are equally likely, and determine the expected gain or loss
per play.

21. Coin Game Suppose that you pay $2.50 to play a game in
which two fair coins are tossed. If n heads occur, you receive 2n
dollars. What is your expected gain (or loss) on each play? The
game is said to be fair to you when your expected gain is $0.
What should you pay to play if this is to be a fair game?

Objective 9.2 The Binomial Distribution
To develop the binomial distribution
and relate it to the binomial theorem. Binomial Theorem

Later in this section we will see that the terms in the expansion of a power of a bino-
mial are useful in describing the distributions of certain random variables. It is worth-
while, therefore, first to discuss the binomial theorem,which is a formula for expanding
.aC b/n, where n is a positive integer.

Regardless of n, there are patterns in the expansion of .a C b/n. To illustrate, we
consider the cube of the binomial aC b. By successively applying the distributive law,
we have

.aC b/3 D Œ.aC b/.aC b/�.aC b/

D Œa.aC b/C b.aC b/�.aC b/

D ŒaaC abC baC bb�.aC b/

D aa.aC b/C ab.aC b/C ba.aC b/C bb.aC b/

D aaaC aabC abaC abbC baaC babC bbaC bbb (1)

so that

.aC b/3 D a3 C 3a2bC 3ab2 C b3 (2)

Three observations can be made about the right side of Equation (2). First, notice that
the number of terms is four, which is one more than the power to which a C b is
raised (3). Second, the first and last terms are the cubes of a and b; the powers of a
decrease from left to right (from 3 to 0); and the powers of b increase (from 0 to 3).
Third, for each term, the sum of the exponents of a and b is 3, which is the power to
which aC b is raised.

Let us now focus on the coefficients of the terms in Equation (2). Consider the
coefficient of the ab2-term. It is the number of terms in Equation (1) that involve exactly
two b’s, namely, 3. But let us see why there are three terms that involve two b’s. Notice
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in Equation (1) that each term is the product of three numbers, each of which is either
a or b. Because of the distributive law, each of the three a C b factors in .a C b/3

contributes either an a or b to the term. Thus, the number of terms involving one a and
two b’s is equal to the number of ways of choosing two of the three factors to supply a

b, namely, 3C2 D
3Š
2Š1Š
D 3. Similarly,

the coefficient of the a3-term is 3C0

the coefficient of the a2b-term is 3C1

and

the coefficient of the b3-term is 3C3

Generalizing our observations, we obtain a formula for expanding .aC b/n called
the binomial theorem.

Binomial Theorem
If n is a positive integer, then

.aC b/n D nC0a
n
C nC1an�1bC nC2a

n�2b2 C � � � C nCn�1ab
n�1
C nCnb

n

D

nX
iD0

nCian�ibi

The numbers nCr are also called binomial coefficients for this reason.

EXAMPLE 1 Binomial Theorem

Use the binomial theorem to expand .qC p/4.

Solution: Here, n D 4; a D q, and b D p. Thus,

.qC p/4 D 4C0q
4
C 4C1q

3pC 4C2q
2p2 C 4C3qp

3
C 4C4p

4

D
4Š
0Š4Š

q4 C
4Š
1Š3Š

q3pC
4Š
2Š2Š

q2p2 C
4Š
3Š1Š

qp3 C
4Š
4Š0Š

p4

Recalling that 0Š D 1, we have

.qC p/4 D q4 C 4q3pC 6q2p2 C 4qp3 C p4

G

Look back now to the display of Pascal’s Triangle in Section 8.2, which provides a
memorable way to generate the binomial coefficients. For example, the numbers in the
.4C1/th row of Pascal’s Triangle, 1 4 6 4 1, are the coefficients found in Example 1.

Binomial Distribution
We now turn our attention to repeated trials of an experiment in which the outcome of
any trial does not affect the outcome of any other trial. These are referred to as inde-
pendent trials. For example, when a fair die is rolled five times, the outcome on one
roll does not affect the outcome on any other roll. Here we have five independent trials
of rolling a die. Together, these five trials can be considered as a five-stage compound
experiment involving independent events, so we can use the special multiplication law
of Section 8.6 to determine the probability of obtaining specific outcomes of the trials.

To illustrate, let us find the probability of getting exactly two 4’s in the five rolls of
the die. We will consider getting a 4 as a success (S) and getting any of the other five
numbers as a failure (F). For example, the sequence

SSFFF
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denotes getting

4, 4, followed by three other numbers

This sequence can be considered as the intersection of five independent events: success
on the first trial, success on the second, failure on the third, and so on. Since the prob-

ability of success on any trial is 1
6 and the probability of failure is 1 �

1
6 D

5
6 , by the

special multiplication law for the intersection of independent events, the probability of
the sequence SSFFF occurring is

1
6
�
1
6
�
5
6
�
5
6
�
5
6
D

�
1
6

�2 �5
6

�3

In fact, this is the probability for any particular order of the two S’s and three F’s. Let us
determine how many ways a sequence of two S’s and three F’s can be formed. Out of
five trials, the number of ways of choosing the two trials for success is 5C2. Another way
to look at this problem is that we are counting permutations with repeated objects, as in

Section 8.2, of the “word” SSFFF. There are
5Š

2Š � 3Š
D 5C2 of these. So the probability

of getting exactly two 4’s in the five rolls is

5C2

�
1
6

�2 �5
6

�3

(3)

If we denote the probability of success by p and the probability of failure by q.D1�p/,
then (3) takes the form

5C2p2q3

which is the term involving p2 in the expansion of .qC p/5.
More generally, consider the probability of getting exactly x 4’s in n rolls of the

die. Then n � x of the rolls must be some other number. For a particular order, the
probability is

pxqn�x

The number of possible orders is nCx, which again we can see as the question of finding
the number of permutations of n symbols, where x of them are S (success) and the
remaining n� x are F (failure). According to the result in Section 8.2, on permutations
with repeated objects, there are

nŠ
xŠ � .n � x/Š

D nCx

of these and, therefore,

P.X D x/ D nCxpxqn�x

which is a general expression for the terms in .q C p/n. In summary, the distribution
for X (the number of 4’s that occur in n rolls) is given by the terms in .qC p/n.

Whenever we have n independent trials of an experiment in which each trial has
only two possible outcomes (success and failure) and the probability of success in each
trial remains the same, the trials are called Bernoulli trials. Because the distribution
of the number of successes corresponds to the expansion of a power of a binomial,
the experiment is called a binomial experiment, and the distribution of the number of
successes is called a binomial distribution.
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Binomial Distribution
If X is the number of successes in n independent trials of a binomial experiment
with probability p of success and q of failure on any trial, then the distribution f for
X is given by

f.x/ D P.X D x/ D nCxpxqn�x

where x is an integer such that 0 � x � n and q D 1� p. Any random variable with
this distribution is called a binomial random variable and is said to have a bino-
mial distribution. The mean and standard deviation of X are given, respectively, by

� D np � D
p
npq

EXAMPLE 2 Binomial Distribution

Suppose X is a binomial random variable with n D 4 and p D 1
3 . Find the distribution

for X.

APPLY IT I
1. Let X be the number of persons out
of four job applicants who are hired.
If the probability of any one applicant
being hired is 0.3, find the distribution
of X.

Solution: Here q D 1 � p D 1 � 1
3 D

2
3 . So we have

P.X D x/ D nCxpxqn�x x D 0; 1; 2; 3; 4

Thus,

P.X D 0/ D 4C0

�
1
3

�0 �2
3

�4

D
4Š
0Š4Š
� 1 �

16
81
D 1 � 1 �

16
81
D

16
81

P.X D 1/ D 4C1

�
1
3

�1 �2
3

�3

D
4Š
1Š3Š
�
1
3
�
8
27
D 4 �

1
3
�
8
27
D

32
81

P.X D 2/ D 4C2

�
1
3

�2 �2
3

�2

D
4Š
2Š2Š
�
1
9
�
4
9
D 6 �

1
9
�
4
9
D

8
27

P.X D 3/ D 4C3

�
1
3

�3 �2
3

�1

D
4Š
3Š1Š
�
1
27
�
2
3
D 4 �

1
27
�
2
3
D

8
81

P.X D 4/ D 4C4

�
1
3

�4 �2
3

�0

D
4Š
4Š0Š
�
1
81
� 1 D 1 �

1
81
� 1 D

1
81

The probability histogram for X is given in Figure 9.6. Note that the mean � for X is

np D 4
�
1
3

�
D

4
3 , and the standard deviation is

� D
p
npq D

r
4 �

1
3
�
2
3
D

r
8
9
D

2
p
2

3

0 1 2
x

P(X = x)

1

81

8

81

16

81

8

27

32

81

3 4

FIGURE 9.6 Binomial distribution,

n D 4, p D 1
3 .

Now Work Problem 1 G

EXAMPLE 3 At Least Two Heads in Eight Coin Tosses

A fair coin is tossed eight times. Find the probability of getting at least two heads.

Solution: If X is the number of heads that occur, then X has a binomial distribution

with n D 8, p D 1
2 , and q D 1

2 . To simplify our work, we use the fact that

P.X � 2/ D 1 � P.X < 2/
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Now,

P.X < 2/ D P.X D 0/C P.X D 1/

D 8C0

�
1
2

�0 �1
2

�8

C 8C1

�
1
2

�1 �1
2

�7

D 1 � 1 �
1
256
C 8 �

1
2
�
1
128
D

9
256

Thus,

P.X � 2/ D 1 �
9
256
D

247
256

A probability histogram for X is given in Figure 9.7.

0 1 2
x

P(X = x)

1

256

35

128

1

32

7

64

7

32

8763 54

FIGURE 9.7 Binomial distribution, n D 8; p D 1
2 .

Now Work Problem 17 G

EXAMPLE 4 Income Tax Audit

For a particular group of individuals, 20% of their income tax returns are audited each
year. Of five randomly chosen individuals, what is the probability that exactly two will
have their returns audited?

Solution: We will consider this to be a binomial experiment with five trials (selecting
an individual). Actually, the experiment is not truly binomial, because selecting an
individual from this group affects the probability that another individual’s return will be
audited. For example, if there are 5000 individuals, then 20%, or 1000, will be audited.

The probability that the first individual selected will be audited is 1000
5000 . If that event

occurs, the probability that the second individual selected will be audited is 999
4999 . Thus,

the trials are not independent. However, we assume that the number of individuals is
large, so that for all practical purposes, the probability of auditing an individual remains
constant from trial to trial.

For each trial, the two outcomes are being audited and not being audited. Here we
define a success as being audited. Letting X be the number of returns audited, p D 0:2,
and q D 1 � 0:2 D 0:8, we have

P.X D 2/ D 5C2.0:2/2.0:8/3 D
5Š
2Š3Š

.0:04/.0:512/

D 10.0:04/.0:512/ D 0:2048

Now Work Problem 15 G
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PROBLEMS 9.2
In Problems 1–4, determine the distribution f for the binomial
random variable X if the number of trials is n and the probability
of success on any trial is p. Also, find � and � .

1. n D 2; p D 1
5 2. n D 3; p D 1

2

3. n D 3; p D 2
3 4. n D 5, p D 0:3

In Problems 5–10, determine the given probability if X is a
binomial random variable, n is the number of trials, and p is the
probability of success on any trial.

5. P.X D 3/; n D 4, p D 1
3 6. P.X D 2/I n D 5; p D 1

3

7. P.X D 2/I n D 4; p D 4
5

8. P.X D 4/I n D 7; p D 0:2

9. P.X > 3/; n D 5, p D 0:3 10. P.X � 3/; n D 4, p D 4
5

11. Coin A fair coin is tossed 11 times. What is the probability
that exactly eight heads occur?

12. Multiple-Choice Quiz Each question in a six-question
multiple-choice quiz has four choices, only one of which is
correct. If a student guesses at all six questions, find the
probability that exactly three will be correct.

13. Marbles A jar contains five red and seven green marbles.
Four marbles are randomly withdrawn in succession with
replacement. Determine the probability that exactly two of the
marbles withdrawn are green.

14. Cards From a deck of 52 playing cards, 4 cards are
randomly selected in succession with replacement. Determine
the probability that at least two cards are jacks.

15. Quality Control A manufacturer produces electrical
switches, of which 3% are defective. From a production run of
60,000 switches, five are randomly selected and each is tested.
Determine the probability that the sample contains exactly three
defective switches. Round your answer to three decimal places.
Assume that the four trials are independent and that the
number of defective switches in the sample has a binomial
distribution.

16. Coin A coin is biased so that P.H/ D 0:2 and P.T/ D 0:8.
If X is the number of heads in three tosses, determine a formula
for P.X D x/.

17. Coin A biased coin is tossed three times in succession.
The probability of heads on any toss is 1

4 . Find the probability that
(a) exactly two heads occur and (b) two or three heads occur.

18. Cards From an ordinary deck of 52 playing cards, 7 cards
are randomly drawn in succession with replacement. Find the
probability that there are (a) exactly four hearts and (b) at least
four hearts.

19. Quality Control In a large production lot of smartphones,
it is believed that 0:015 are defective. If a sample of 10 is
randomly selected, find the probability that less than 2 will be
defective.

20. High-Speed Internet For a certain large population, the
probability that a randomly selected person has access to
high-speed Internet is 0.8. If four people are selected at random,
find the probability that at least three have access to high-speed
Internet.

21. Baseball The probability that a certain baseball player gets
a hit is 0.300. Find the probability that if he goes to bat four times,
he will get at least one hit.

22. Stocks A financial advisor claims that 60% of the stocks
that he recommends for purchase increase in value. From a list of
200 recommended stocks, a client selects 4 at random. Determine
the probability, rounded to two decimal places, that at least 2
of the chosen stocks increase in value. Assume that the selections
of the stocks are independent trials and that the number of stocks
that increase in value has a binomial distribution.

23. Genders of Children If a family has five children, find the
probability that at least two are girls. (Assume that the probability
that a child is a girl is 1

2 .)

24. If X is a binomially distributed random variable with n D 100
and p D 1

3 , find Var.X/.

25. Suppose X is a binomially distributed random variable such
that � D 2 and �2 D 3

2 . Find P.X D 2/.

26. Quality Control In a production process, the probability
of a defective unit is 0.06. Suppose a sample of 15 units is
selected at random. Let X be the number of defectives.

(a) Find the expected number of defective units.
(b) Find Var.X/.
(c) Find P.X � 1/. Round your answer to two decimal places.

Objective 9.3 Markov Chains
To develop the notions of a Markov
chain and the associated transition
matrix. To find state vectors and the
steady-state vector.

We conclude this chapter with a discussion of a special type of stochastic process called
a Markov chain, after the Russian mathematician Andrei Markov (1856–1922).

Markov Chain
A Markov chain is a sequence of trials of an experiment in which the possible
outcomes of each trial remain the same from trial to trial, are finite in number, and
have probabilities that depend only upon the outcome of the previous trial.

To illustrate a Markov chain, we consider the following situation. Imagine that a small
town has only two service stations—say, stations 1 and 2—that handle the servicing
needs of the town’s automobile owners. (These customers form the population under
consideration.) Each time a customer needs car servicing, he or she must make a choice
of which station to use.
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Thus, each customer can be placed into a category according to which of the two
stations he or she most recently chose. We can view a customer and the service stations
as a system. If a customer most recently chose station 1, we will refer to this as state 1
of the system. Similarly, if a customer most recently chose station 2, we say that the
system is currently in state 2. Hence, at any given time, the system is in one of its two
states. Of course, over a period of time, the systemmaymove from one state to the other.
For example, the sequence 1, 2, 2, 1 indicates that in four successive car servicings, the
system changed from state 1 to state 2, remained at state 2, and then changed to state 1.

This situation can be thought of as a sequence of trials of an experiment (choosing a
service station) in which the possible outcomes for each trial are the two states (station
1 and station 2). Each trial involves observing the state of the system at that time.

If we know the current state of the system, we realize that we cannot be sure of its
state at the next observation. However, we may know the likelihood of its being in a
particular state. For example, suppose that if a customer most recently used station 1,
then the probability that the customer uses station 1 the next time is 0.7. (This means
that, of those customers who used station 1 most recently, 70% continued to use station
1 the next time and 30% changed to station 2.) Assume also that if a customer used
station 2 most recently, the probability is 0.8 that the customer also uses station 2 the
next time. We recognize these probabilities as being conditional probabilities. That is,

P.remaining in state 1 j currently in state 1/ D 0:7

P.changing to state 2 j currently in state 1/ D 0:3

P.remaining in state 2 j currently in state 2/ D 0:8

P.changing to state 1 j currently in state 2/ D 0:2

These four probabilities can be organized in a square matrix T D ŒTij� by taking entry
Tij to be the probability of a customer being next in state i given that they are currently
in state j. Thus,

Tij D P.being next in state i j currently in state j/

and in the specific case at hand we have

Next Current State
State State 1 State 2

T D
State 1
State 2

�
0:7 0:2
0:3 0:8

�
Matrix T is called a transition matrix because it gives the probabilities of transition

from one state to another in one step—that is, as we go from one observation period to
the next. The entries are called transition probabilities. We emphasize that the tran-For example, the sum of the entries in

column 1 of T is 0:7C 0:3 D 1. sition matrix remains the same at every stage of the sequence of observations. Note
that all entries of the matrix are in the interval Œ0; 1�, because they are probabilities.
Moreover, the sum of the entries in each column must be 1, because, for each current
state, the probabilities account for all possible transitions.

Let us summarize our service station situation up to now. We have a sequence of
trials in which the possible outcomes (or states) are the same from trial to trial and are
finite in number (two). The probability that the system is in a particular state for a given
trial depends only on the state for the preceding trial. Thus, we have a so-called two-
state Markov chain. A Markov chain determines a square matrix T, called a transition
matrix.

Transition Matrix
A transition matrix for a k-state Markov chain is a k� kmatrix T D ŒTij� in which
the entry Tij is the probability, from one trial to the next, of moving to state i from
state j. All entries are in Œ0; 1�, and the sum of the entries in each column is 1. We
can say

Tij D P.next state is i j current state is j/



Haeussler-50501 M10_HAEU1107_14_SE_C09 October 16, 2017 9:53

Section 9.3 Markov Chains 439

1
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2

2
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0.5

0.7
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(0.4) (0.8) = 0.32

FIGURE 9.8 Probability tree for two-state Markov chain.

Suppose that when observations are initially made, 60% of all customers used sta-
tion 1 most recently and 40% used station 2. This means that, before any additional
trials (car servicings) are considered, the probabilities that a customer is in state 1
or 2 are 0.6 and 0.4, respectively. These probabilities are called initial state proba-
bilities and are collectively referred to as being the initial distribution. They can be
represented by a column vector, called an initial state vector, which is denoted by X0.
In this case,A subscript of 0 is used for the initial

state vector.
X0 D

�
0:6
0:4

�
We would like to find the vector that gives the state probabilities for a customer’s

next visit to a service station. This state vector is denoted by X1. More generally, a state
vector is defined as follows:

State Vector
The state vector Xn for a k-state Markov chain is a k-entry column vector in which
the entry xj is the probability of being in state j after the nth trial.

We can find the entries for X1 from the probability tree in Figure 9.8. We see that the
probability of being in state 1 after the next visit is the sum

.0:7/.0:6/C .0:2/.0:4/ D 0:5 (1)

and the probability of being in state 2 is

.0:3/.0:6/C .0:8/.0:4/ D 0:5 (2)

Thus,

X1 D
�
0:5
0:5

�
The sums of products on the left sides of Equations (1) and (2) remind us of matrix
multiplication. In fact, they are the entries in the matrix TX0 obtained by multiplying
the initial state vector on the left by the transition matrix:

X1 D TX0 D
�
0:7 0:2
0:3 0:8

� �
0:6
0:4

�
D

�
0:5
0:5

�
This pattern of taking the product of a state vector and the transition matrix to

get the next state vector continues, allowing us to find state probabilities for future
observations. For example, to find X2, the state vector that gives the probabilities for
each state after two trials (following the initial observation), we have

X2 D TX1 D
�
0:7 0:2
0:3 0:8

� �
0:5
0:5

�
D

�
0:45
0:55

�
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Thus, the probability of being in state 1 after two car servicings is 0.45. Note that, since
X1 D TX0, we can write

X2 D T.TX0/

so that

X2 D T 2X0

In general, the nth state vector Xn can be found by multiplying the previous state vector
Xn�1 on the left by T.

If T is the transition matrix for a Markov chain, then the state vector Xn for the nth
trial is given by

Xn D TXn�1

Equivalently, we can find Xn by using only the initial state column vector X0 and the
transition matrix T:

Here, we find Xn by using powers of T. Xn D T nX0 (3)

Let us now consider the situation in which we know the initial state of the system.
For example, take the case of observing initially that a customer has most recently
chosen station 1. This means the probability that the system is in state 1 is 1, so the
initial state vector must be

X0 D
�
1
0

�
Suppose we determine X2, the state vector that gives the state probabilities after the
next two visits. This is given by

X2 D T 2X0 D
�
0:7 0:2
0:3 0:8

�2 �
1
0

�
D

�
0:55 0:30
0:45 0:70

� �
1
0

�
D

�
0:55
0:45

�
Thus, for this customer, the probabilities of using station 1 or station 2 after two steps
are 0.55 and 0.45, respectively. Observe that these probabilities form the first column
of T 2. On the other hand, if the system were initially in state 2, then the state vector
after two steps would be

T 2
�
0
1

�
D

�
0:55 0:30
0:45 0:70

� �
0
1

�
D

�
0:30
0:70

�
Hence, for this customer, the probabilities of using station 1 or station 2 after two steps
are 0.30 and 0.70, respectively. Observe that these probabilities form the second column
of T 2. Based on our observations, we now have a way of interpreting T 2: The entries in

1 2

T 2
D
1
2

�
0:55 0:30
0:45 0:70

�
give the probabilities of moving to a state from another in two steps. In general, we
have the following:

If T is a transition matrix, then for T n the entry in row i and column j gives the
probability of being in state i after n steps, starting from state j.This gives the significance of the entries

in T n.
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EXAMPLE 1 Demography

A certain county is divided into three demographic regions. Research indicates that
each year 20% of the residents in region 1 move to region 2 and 10% move to region 3.
(The others remain in region 1.) Of the residents in region 2, 10%move to region 1 and
10% move to region 3. Of the residents in region 3, 20% move to region 1 and 10%
move to region 2.

a. Find the transition matrix T for this situation.

Solution: We have

To From Region
Region 1 2 3

T D
1
2
3

240:7 0:1 0:2
0:2 0:8 0:1
0:1 0:1 0:7

35
Note that to find T11 we subtracted the sum of the other two entries in the first column
from 1. The entries T22 and T33 are found similarly.

b. Find the probability that a resident of region 1 this year is a resident of region 1 next
year; in two years.

Solution: From entry T11 in transition matrix T, the probability that a resident of
region 1 remains in region 1 after one year is 0.7. The probabilities of moving from
one region to another in two steps are given by T 2:

1 2 3

T 2
D

1
2
3

240:53 0:17 0:29
0:31 0:67 0:19
0:16 0:16 0:52

35
Thus, the probability that a resident of region 1 is in region 1 after two years is 0.53.

c. This year, suppose 40% of county residents live in region 1, 30% live in region 2,
and 30% live in region 3. Find the probability that a resident of the county lives in
region 2 after three years.

Solution: The initial state vector is

X0 D

240:400:30
0:30

35
The distribution of the population after three years is given by state vector X3. From
Equation (3) with n D 3, we have

X3 D T 3X0 D TT 2X0

D

240:7 0:1 0:2
0:2 0:8 0:1
0:1 0:1 0:7

35240:53 0:17 0:29
0:31 0:67 0:19
0:16 0:16 0:52

35240:400:30
0:30

35
D

240:33680:4024
0:2608

35
This result means that in three years, 33.68% of the county residents live in region 1,

Of course, X3 can be easily obtained with
a graphing calculator: Enter X0 and T,
and then evaluate T 3X0 directly.

40.24% live in region 2, and 26.08% live in region 3. Thus, the probability that a
resident lives in region 2 in three years is 0.4024.

G
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Steady-State Vectors
Let us now return to our service station problem. Recall that if the initial state vector is

X0 D
�
0:6
0:4

�
then

X1 D
�
0:5
0:5

�
X2 D

�
0:45
0:55

�
Some state vectors beyond the second are

X3 D TX2 D
�
0:7 0:2
0:3 0:8

� �
0:45
0:55

�
D

�
0:425
0:575

�
X4 D TX3 D

�
0:7 0:2
0:3 0:8

� �
0:425
0:575

�
D

�
0:4125
0:5875

�
X5 D TX4 D

�
0:7 0:2
0:3 0:8

� �
0:4125
0:5875

�
D

�
0:40625
0:59375

�
�

�

�

X10 D TX9 �
�
0:40020
0:59980

�
These results strongly suggest, and it is indeed the case, that as the number of trials

increases the entries in the state vectors tend to get closer and closer to the correspond-
ing entries in the vector

Q D
�
0:40
0:60

�
(Equivalently, it can be shown that the entries in each column of T n approach the corre-
sponding entries in those ofQ as n increases.) VectorQ has a special property. Observe
the result of multiplying Q on the left by the transition matrix T:

TQ D
�
0:7 0:2
0:3 0:8

� �
0:40
0:60

�
D

�
0:40
0:60

�
D Q

We, thus, have

TQ D Q

which shows that Q remains unchanged from trial to trial.
In summary, as the number of trials increases, the state vectors get closer and closer

to Q, which remains unchanged from trial to trial. The distribution of the population
between the service stations stabilizes. That is, in the long run, approximately 40% of
the population will have their cars serviced at station 1 and 60% at station 2. To describe
this, we say that Q is the steady-state vector of this process. It can be shown that theThe steady-state vector is unique and

does not depend on the initial
distribution.

steady-state vector is unique. (There is only one such vector.) Moreover, Q does not
depend on the initial state vector X0 but depends only on the transition matrix T. For
this reason, we say that Q is the steady-state vector for T.

What we need now is a procedure for finding the steady-state vector Q without
having to compute state vectors for large values of n. Fortunately, the previously stated
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property that TQ D Q can be used to find Q. If we let Q D
�
q1
q2

�
, we have

TQ D Q D IQ

TQ � IQ D 0

.T � I/Q D 00@"0:7 0:2
0:3 0:8

#
�

"
1 0
0 1

#1A�q1
q2

�
D

�
0
0

�
�
�0:3 0:2
0:3 �0:2

� �
q1
q2

�
D

�
0
0

�
which suggests that Q can be found by solving the resulting system of linear equations
arising here in matrix form. Using the techniques of Chapter 6, we see immediately
that the coefficient matrix of the last equation reduces to�

3 �2
0 0

�
which suggests that there are infinitely many possibilities for the steady-state vectorQ.
However, the entries of a state vector must add up to 1 so that the further equation
q1 C q2 D 1 must be added to the system. We arrive at�

3 �2
1 1

� �
q1
q2

�
D

�
0
1

�
which is easily seen to have the unique solution

Q D
�
q1
q2

�
D

�
0:4
0:6

�
which confirms our previous suspicion.

Wemust point out that forMarkov chains in general, the state vectors do not always
approach a steady-state vector. However, it can be shown that a steady-state vector for
T does exist, provided that T is regular:

A transition matrix T is regular if there exists a positive integer power n for which
all entries of T n are (strictly) positive.

Only regular transition matrices will be considered in this section. A Markov chain
whose transition matrix is regular is called a regular Markov chain.

In summary, we have the following:

Suppose T is the k�k transition matrix for a regular Markov chain. Then the steady-
state column vector

Q D

26664
q1
q2
:::
qk

37775
is the solution to the matrix equations

Œ1 1 � � � 1�Q D 1 (4)

.T � Ik/Q D 0 (5)

where in Equation (4) the (matrix) coefficient of Q is the row vector consisting of k
entries all of which are 1.
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Equations (4) and (5) can always be combined into a single matrix equation:

T�Q D 0�

where T� is the .kC1/�kmatrix obtained by pasting the row Œ1 1 � � � 1� to the top
of the k�kmatrix T�Ik (where Ik is the k�k identity matrix) and 0� is the kC1-column
vector obtained by pasting a 1 to the top of the zero k-column vector. We can then find
Q by reducing the augmented matrix ŒT� j 0��. The next example will illustrate.

EXAMPLE 2 Steady-State Vector

For the demography problem of Example 1, in the long run, what percentage of county
residents will live in each region?

Solution: The population distribution in the long run is given by the steady-state vector
Q, which we now proceed to find. The matrix T for this example was shown to be240:7 0:1 0:2

0:2 0:8 0:1
0:1 0:1 0:7

35
so that T � I is 24�0:3 0:1 0:2

0:2 �0:2 0:1
0:1 0:1 �0:3

35
and ŒT� j 0�� is 2664

1 1 1 1
�0:3 0:1 0:2 0
0:2 �0:2 0:1 0
0:1 0:1 �0:3 0

3775
which reduces to 2664

1 0 0 5=16
0 1 0 7=16
0 0 1 1=4
0 0 0 0

3775
showing that the steady-state vectorQ D

245=167=16
1=4

35 D 240:31250:4375
0:2500

35. Thus, in the long run,
the percentages of county residents living in regions 1, 2, and 3 are 31.25%, 43.75%,
and 25%, respectively.

Now Work Problem 37 G

PROBLEMS 9.3
In Problems 1–6, can the given matrix be a transition matrix for a
Markov chain?

1.

"
1
2

2
3

�
3
2

1
3

#
2.

"
0:1 1
0:9 0

#

3.

2664
1
2

1
8

1
3

�
1
4

5
8

1
3

3
4

1
4

1
3

3775 4.

240:2 0:6 0:5
0:7 0:2 0:1
0:1 0:2 0:2

35
5.

240:2 0:1 0:7
0:1 0:2 0
0:7 0:7 0:3

35 6.

240:5 0:1 0:3
0:4 0:3 0:3
0:6 0:6 0:4

35

In Problems 7–10, a transition matrix for a Markov chain is given.
Determine the values of the letter entries.

7.

"
2
3 b

a 1
4

#
8.

"
a b
5
12 a

#

9.

240:1 a a
a 0:2 b
0:2 b c

35 10.

2664a b c

a 1
4 b

a a a

3775
In Problems 11–14, determine whether the given vector could be a
state vector for a Markov chain.

11.

"
0:4
0:6

#
12.

"
1
0

#
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13.

240:20:7
0:5

35 14.

240:11:1
0:2

35
In Problems 15–20, a transition matrix T and an initial state
vector X0 are given. Compute the state vectors X1, X2, and X3.

15. T D

"
1
4 0
3
4 1

#

X0 D

"
0

1

#
16. T D

"
1
2

1
4

1
2

3
4

#

X0 D

"
1
2
1
2

#

17. T D

"
0:3 0:5
0:7 0:5

#

X0 D

"
0:4
0:6

# 18. T D

"
0:1 0:9
0:9 0:1

#

X0 D

"
0:2
0:8

#

19. T D

240:2 0:1 0:4
0:1 0:5 0:2
0:7 0:4 0:4

35
X0 D

240:20:1
0:7

35

20. T D

2664
0 0:1 0:2 0:7

0:1 0:2 0:7 0
0:2 0:7 0 0:1
0:7 0 0:1 0:2

3775
X0 D

2664
1
0
0
0

3775
In Problems 21–24, a transition matrix T is given.

(a) Compute T 2 and T 3.
(b)What is the probability of going to state 2 from state 1 after
two steps?
(c)What is the probability of going to state 1 from state 2 after
three steps?

21.

"
1
4

3
4

3
4

1
4

#
22.

"
1
3

1
2

2
3

1
2

#

23.

240 0:5 0:3
1 0:4 0:3
0 0:1 0:4

35 24.

240:2 0:1 0:4
0:1 0:5 0:2
0:7 0:4 0:4

35
In Problems 25–30, find the steady-state vector for the given
transition matrix.

25.

"
1
2

1
3

1
2

2
3

#
26.

"
1
2

1
4

1
2

3
4

#

27.

"
1
5

3
5

4
5

2
5

#
28.

"
1
4

1
3

3
4

2
3

#

29.

240:2 0:1 0:4
0:1 0:5 0:2
0:7 0:4 0:4

35 30.

240:1 0:2 0:1
0:4 0:3 0:5
0:5 0:5 0:4

35

31. Spread of Flu A flu has attacked a college dorm that has
200 students. Suppose the probability that a student having the flu
will still have it 4 days later is 0.1. However, for a student who
does not have the flu, the probability of having the flu 4 days later
is 0.2.
(a) Find a transition matrix for this situation.
(b) If 120 students now have the flu, how many students (to the
nearest integer) can be expected to have the flu 8 days from now?
12 days from now?

32. Physical Fitness A physical-fitness center has found that,
of those members who perform high-impact exercising on one
visit, 55% will do the same on the next visit and 45% will do
low-impact exercising. Of those who perform low-impact
exercising on one visit, 75% will do the same on the next visit
and 25% will do high-impact exercising. On the last visit,
suppose that 65% of members did high-impact exercising and
35% did low-impact exercising. After two more visits, what
percentage of members will be performing high-impact
exercising?

33. Newspapers In a certain area, two daily newspapers are
available. It has been found that if a customer buys newspaper A
on one day, then the probability is 0.3 that he or she will change to
the other newspaper the next day. If a customer buys newspaper B
on one day, then the probability is 0.6 that he or she will buy the
same newspaper the next day.

(a) Find the transition matrix for this situation.
(b) Find the probability that a person who buys A on Monday will
buy A on Wednesday.

34. Video Rentals A video rental store has three locations in a
city. A video can be rented from any of the three locations and
returned to any of them. Studies show that videos are rented from
one location and returned to a location according to the
probabilities given by the following matrix:

Returned Rented from
to 1 2 3

1
2
3

240:7 0:1 0:1
0:2 0:9 0:1
0:1 0 0:8

35

Suppose that 30% of the videos are initially rented from location
1, 30% from 2, and 40% from 3. Find the percentages of videos
that can be expected to be returned to each location:

(a) After this rental
(b) After the next rental

35. Voting In a certain city, voter preference was analyzed
according to party affiliation: Liberal, Conservative, and other. It
was found that on a year-to-year basis, the probability that a voter
switches to Conservative from Liberal is 0; to other from Liberal,
0.3; to Liberal from Conservative, 0.1; to other from Conservative,
0.2; to Liberal from other, 0.3; and to Conservative from other,
0.1.

(a) Find a transition matrix for this situation.
(b)What is the probability that a current Conservative voter will
be Liberal two years from now?
(c) If 40% of the present voters are Liberal and 30% are
Conservative, what percentage can be expected to be Conservative
one year from now?
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36. Demography The residents of a certain region are
classified as urban (U), suburban (S), or rural (R). A marketing
firm has found that over successive 5-year periods, residents shift
from one classification to another according to the probabilities
given by the following matrix:

U S R

U
S
R

240:7 0:1 0:1
0:1 0:8 0:1
0:2 0:1 0:8

35
(a) Find the probability that a suburban resident will be a rural
resident in 15 years.
(b) Suppose the initial population of the region is 50% urban, 25%
suburban, and 25% rural. Determine the expected population
distribution in 15 years.

37. Long-Distance Telephone Service A major long-distance
telephone company (company A) has studied the tendency of
telephone users to switch from one carrier to another. The
company believes that over successive six-month periods, the
probability that a customer who uses A’s service will switch to a
competing service is 0.2 and the probability that a customer of
any competing service will switch to A is 0.3.
(a) Find a transition matrix for this situation.
(b) If A presently controls 70% of the market, what percentage
can it expect to control six months from now?
(c)What percentage of the market can A expect to control in the
long run?

38. Automobile Purchases In a certain region, a study of car
ownership was made. It was determined that if a person presently
owns a Ford, then the probability that the next car the person buys
is also a Ford is 0.75. If a person does not presently own a Ford,
then the probability that the person will buy a Ford on the next car
purchase is 0.35.
(a) Find the transition matrix for this situation.
(b) In the long run, what proportion of car purchases in the region
can be expected to be Fords?

39. Laboratory Mice Suppose 100 mice are in a
two-compartment cage and are free to move between the
compartments. At regular time intervals, the number of mice in
each compartment is observed. It has been found that if a mouse is
in compartment 1 at one observation, then the probability that the
mouse will be in compartment 1 at the next observation is 3

5 . If a
mouse is in compartment 2 at one observation, then the
probability that the mouse will be in compartment 2 at the next
observation is 2

5 . Initially, suppose that 50 mice are placed into
each compartment.
(a) Find the transition matrix for this situation.
(b) After two observations, what percentage of mice (rounded to
two decimal places) can be expected to be in each compartment?
(c) In the long run, what percentage of mice can be expected in
each compartment?

40. Vending Machines If a pop machine fails to deliver,
people often warn bystanders, “Don’t put your money in that
thing; I tried it and it didn’t work!” Suppose that if a vending
machine is working properly one time, then the probability
that it will work properly the next time is 0.85. On the other
hand, suppose that if the machine is not working properly one
time, then the probability that it will not work properly the
next time is 0.95.

(a) Find a transition matrix for this situation.
(b) Suppose that four people line up at a pop machine that is
known to have worked just before they arrived. What is the
probability that the fourth person will receive a pop? (Assume
nobody makes more than one attempt.)
(c) If there are 40 such pop machines on a university campus and
they are not getting regular maintenance, how many, in the long
run, do you expect to work properly?

41. Advertising A supermarket chain sells bread from
bakeries A and B. Presently, A accounts for 50% of the chain’s
daily bread sales. To increase sales, A launches a new advertising
campaign. The bakery believes that the change in bread sales at
the chain will be based on the following transition matrix:

A B

A
B

"
3
4

1
2

1
4

1
2

#

(a) Find the steady-state vector.
(b) In the long run, by what percentage can A expect to increase
present sales at the chain? Assume that the total daily sales of
bread at the chain remain the same.

42. Bank Branches A bank with three branches, A, B, and C,
finds that customers usually return to the same branch for their
banking needs. However, at times a customer may go to a
different branch because of a changed circumstance. For example,
a person who usually goes to branch A may sometimes deviate
and go to branch B because the person has business to conduct in
the vicinity of branch B. For customers of branch A, suppose that
80% return to A on their next visit, 10% go to B, and 10% go to
C. For customers of branch B, suppose that 70% return to B on
their next visit, 20% go to A, and 10% go to C. For customers of
branch C, suppose that 70% return to C on their next visit, 20% go
to A, and 10% go to B.

(a) Find a transition matrix for this situation.
(b) If a customer most recently went to branch B, what is the
probability that the customer returns to B on the second bank visit
from now?
(c) Initially, suppose 200 customers go to A, 200 go to B, and 100
go to C. On their next visit, how many can be expected to go to A?
To B? To C?
(d) Of the initial 500 customers, in the long run how many can be
expected to go to A? To B? To C?

43. Show that the transition matrix T D

"
1
2 1
1
2 0

#
is regular.

(Hint: Examine the entries in T 2.)

44. Show that the transition matrix T D

24 0 0 1
0 1 0
1 0 0

35 is not regular.
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Chapter 9 Review
Important Terms and Symbols Examples
Section 9.1 Discrete Random Variables and Expected Value

discrete random variable probability function histogram Ex. 2, p. 425
mean, � expected value, E.X/ Ex. 3, p. 427
variance, Var.X/ standard deviation, � Ex. 4, p. 429

Section 9.2 The Binomial Distribution
binomial theorem binomial coefficients Ex. 1, p. 433
Bernoulli trials binomial experiment binomial distribution Ex. 2, p. 435

Section 9.3 Markov Chains
Markov chain transition matrix, T state vector, Xn Ex. 1, p. 441
regular transition matrix steady-state vector, Q Ex. 2, p. 444

Summary
If X is a discrete random variable and f is the function such
that f.x/ D P.X D x/, then f is called the probability func-
tion, or distribution, of X. In general,X

x

f.x/ D 1

The mean, or expected value, of X is the long-run average of
X and is denoted � or E(X):

� D E.X/ D
X
x

xf.x/

The mean can be interpreted as a measure of the central ten-
dency of X in the long run. A measure of the dispersion of X
is the variance, denoted Var.X/ and given by

Var.X/ D
X
x

.x � �/2f.x/

equivalently, by

Var.X/ D .
X
x

x2f.x// � �2

Another measure of dispersion of X is the standard deviation
� :

� D
p
Var.X/

If an experiment is repeated several times, then each per-
formance of the experiment is called a trial. The trials are
independent when the outcome of any single trial does not
affect the outcome of any other. If there are only two possi-
ble outcomes (success and failure) for each independent trial,
and the probabilities of success and failure do not change
from trial to trial, then the experiment is called a binomial
experiment. For such an experiment, if X is the number of
successes in n trials, then the distribution f of X is called a
binomial distribution, and

f.x/ D P.X D x/ D nCxpxqn�x

where p is the probability of success on any trial and q D 1�p
is the probability of failure. The mean � and standard devia-
tion � of this X are given by

� D np and � D
p
npq

A binomial distribution is intimately connected with the
binomial theorem, which is a formula for expanding the nth
power of a binomial, namely,

.aC b/n D
nX

iD0

nCian�ibi

for n a positive integer.
A Markov chain is a sequence of trials of an experiment

in which the possible outcomes of each trial, which are called
states, remain the same from trial to trial, are finite in number,
and have probabilities that depend only upon the outcome of
the previous trial. For a k-state Markov chain, if the proba-
bility of moving to state i from state j from one trial to the
next is written Tij, then the k � k matrix T D ŒTij� is called
the transition matrix for the Markov chain. The entries in the
nth power of T also represent probabilities; the entry in the
ith row and jth column of T n gives the probability of moving
to state i from state j in n steps. A k-entry column vector in
which the entry xj is the probability of being in state j after
the nth trial is called a state vector and is denoted Xn. The
initial state probabilities are represented by the initial state
vector X0. The state vector Xn can be found by multiplying
the previous state vector Xn�1 on the left by the transition
matrix T:

Xn D TXn�1

Alternatively, Xn can be found by multiplying the initial state
vector X0 by T n:

Xn D T nX0

If the transition matrix T is regular, that is, if there is a posi-
tive integer n such that all entries of T n are strictly positive,
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then, as the number of trials n increases, Xn gets closer and
closer to a vector Q, called the steady-state vector of T. If

Q D

26664
q1
q2
:::
qk

37775
then the entries of Q indicate the long-run probability distri-
bution of the states. The vector Q can be found by solving
the matrix equation

T�Q D 0�

where T� is the .kC1/�kmatrix obtained by pasting the row
Œ1 1 � � � 1� to the top of the k� kmatrix T� Ik (where Ik
is the k � k identity matrix) and 0� is the kC 1-column vec-
tor obtained by pasting a 1 to the top of the zero k-column
vector. Thus, we construct and reduce�

1 � � � 1 1
T � I 0

�
which, if T is regular, will result in�

I Q
0 0

�

Review Problems
In Problems 1 and 2, the distribution for the random variable X is
given. Construct the probability histogram and determine �,
Var(X), and � .

1. f.1/ D 0:2, f.2/ D 0:5, f.3/ D 0:3

2. f.0/ D 1
6 ; f.1/ D

1
2 ; f.2/ D

1
3

3. Coin and Die A fair coin and a fair die are tossed. Let X be
the number of dots that show plus the number of heads. Determine
(a) the distribution f for X and (b) E.X/.

4. Cards Two cards from a standard deck of 52 playing cards
are randomly drawn in succession without replacement, and the
number of aces, X, is observed. Determine (a) the distribution f for
X and (b) E.X/.

5. Card Game In a game, a player pays $0.25 to randomly
draw 2 cards, with replacement, from a standard deck of
52 playing cards. For each ten that appears, the player receives $1.
What is the player’s expected gain or loss? Give your answer to
the nearest cent.

6. Gas Station Profits An oil company determines that the
probability that a gas station located along the Trans-Canada
Highway is successful is 0.55. A successful station earns an
annual profit of $160,000; a station that is not successful loses
$15,000 annually. What is the expected gain to the company if it
locates a station along the Trans-Canada Highway

7. Mail-Order Computers A mail-order computer company
offers a 30-day money-back guarantee to any customer who is not
completely satisfied with its product. The company realizes a
profit of $200 for each computer sold, but assumes a loss of $100
for shipping and handling for each unit returned. The probability
that a unit is returned is 0.08.
(a)What is the expected gain for each unit shipped?
(b) If the distributor ships 4000 units per year, what is the
expected annual profit?

8. Lottery In a certain lottery, you pay $4.00 to choose one of
41 million number combinations. If that combination is drawn,
you win $50 million. What is your expected gain (or loss) per
play?

In Problems 9 and 10, determine the distribution f for the
binomial random variable X if the number of trials is n and the
probability of success on any trial is p. Also, find � and � .

9. n D 4, p D 0:15 10. n D 5, p D
1
3

In Problems 11 and 12, determine the given probability if X is a
binomial random variable, n is the number of trials, and p is the
probability of success on any trial.

11. P.X > 4/; n D 6, p D
2
3

12. P.X > 2/; n D 6, p D
2
3

13. Die A pair of fair dice is rolled five times. Find the
probability that exactly three of the rolls result in a face
sum of 7.

14. Planting Success The probability that a certain type of
bush survives planting is 0.9. If four bushes are planted, what is
the probability that all of them die?

15. Coin A biased coin is tossed five times. The probability
that a head occurs on any toss is 2

5 . Find the probability that at
least two heads occur.

16. Jelly Beans A bag contains three red, four green, and thee
black jelly beans. Five jelly beans are randomly withdrawn in
succession with replacement. Find the probability that at least four
of the withdrawn jelly beans are black.

In Problems 17 and 18, a transition matrix for a Markov chain is
given. Determine the values of a, b, and c.

17.

240:1 2a a
a b b
0:6 b c

35 18.

24 a a a
b b a
0:4 c b

35
In Problems 19 and 20, a transition matrix T and an initial state
vector X0 for a Markov chain are given. Compute the state vectors
X1, X2, and X3.

19. T D

240:1 0:3 0:1
0:2 0:4 0:1
0:7 0:3 0:8

35

X0 D

240:50
0:5

35
20. T D

240:4 0:1 0:1
0:2 0:6 0:5
0:4 0:3 0:4

35

X0 D

240:10:3
0:6

35
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In Problems 21 and 22, a transition matrix T for a Markov chain
is given.

(a) Compute T 2 and T 3.
(b)What is the probability of going to state 1 from state 2 after
two steps?
(c)What is the probability of going to state 2 from state 1 after
three steps?

21.

"
1
5

2
5

4
5

3
5

#

22.

240 0:4 0:3
0 0:3 0:5
1 0:3 0:2

35

In Problems 23 and 24, find the steady-state vector for the given
transition matrix for a Markov chain.

23.

"
1
4

1
3

3
4

2
3

#

24.

240:4 0:4 0:3
0:3 0:2 0:3
0:3 0:4 0:4

35

25. Automobile Market For a particular segment of the
automobile market, the results of a survey indicate that 80% of
people who own a Japanese car would buy a Japanese car the next
time and 20% would buy a non-Japanese car. Of owners of
non-Japanese cars, 40% would buy a non-Japanese car the next
time and 60% would buy a Japanese car.
(a) Of those who currently own a Japanese car, what percentage
will buy a Japanese car two cars later?
(b) If 60% of this segment currently own Japanese cars and 40%
own non-Japanese cars, what will be the distribution for this
segment of the market two cars from now?
(c) How will this segment be distributed in the long run?

26. Voting Suppose that the probabilities of voting for
particular parties in a future election depend on the voting patterns
in the previous election. For a certain province where there is a
three-party political system, assume that these probabilities are
contained in the matrix

T D ŒTij� D

240:6 0:1 0:1
0:1 0:7 0:1
0:3 0:2 0:8

35
where Tij is the probability that a voter will vote for party i in the
next election if he or she voted for party j in the last election.
(a) At the last election, 50% of the electorate voted for party 1,
30% for party 2, and 20% for party 3. What is the expected
percentage distribution of votes for the next election?
(b) In the long run, what is the percentage distribution of votes?
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10.1 Limits

10.2 Limits (Continued)

10.3 Continuity

10.4 Continuity Applied to
Inequalities

Chapter 10 Review

The philosopher Zeno of Elea was fond of paradoxes about motion. His most
famous one goes something like this: Thewarrior Achilles agrees to run a race
against a tortoise. Achilles can run 10 meters per second and the tortoise only
1 meter per second, so the tortoise gets a 10-meter head start. Since Achilles

is so much faster, he should still win. But by the time he has covered his first 10 meters
and reached the place where the tortoise started, the tortoise has advanced 1 meter and
is still ahead. And after Achilles has covered that 1 meter, the tortoise has advanced
another 0.1 meter and is still ahead. And after Achilles has covered that 0.1 meter,
the tortoise has advanced another 0.01 meter and is still ahead. And so on. Therefore,
Achilles gets closer and closer to the tortoise but can never catch up.

Zeno’s audience knew that the argument was fishy. The position of Achilles at time
t after the race has begun is .10 m/s/t. The position of the tortoise at the same time t is
.1 m/s/tC 10 m. When these are equal, Achilles and the tortoise are side by side. To
solve the resulting equation

.10 m/s/t D .1 m/s/tC 10 m

for t is to find the time at which Achilles pulls even with the tortoise. The solution is

t D 1 19 seconds, at which time Achilles will have run
�
1 19s

�
.10 m/s/ D 11 19 meters.

What puzzled Zeno and his listeners is how it could be that

10C 1C
1
10
C

1
100
C � � � D 11

1
9

where the left side represents an infinite sum and the right side is a finite result.
We have already looked briefly at exactly this situation in Section 1.5 and, actually,

put it to use in Section 5.6, in our examination of perpetuities. In 5.6 we spoke of limits
of sequences in a somewhat preliminary way and noted that the number e, named in
honour of Euler andwhich figured prominently in Chapter 4, is the limit of the sequence�
nC 1
n

�n

. Zeno’s paradox is resolved by limits and in this chapter we go considerably

further with the topic.

450
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Objective 10.1 Limits
To study limits and their basic
properties.

In a parking-lot situation, one may have to “inch up” to the car in frontwithout touching
it. This notion of getting closer and closer to something, but yet not touching it, is
also important in mathematics and is involved in the concept of limit, which lies at
the foundation of calculus. We will let a variable “inch up” to a particular value and
examine the effect this process has on the values of a function.

For example, consider the function

f.x/ D
x3 � 1
x � 1

This function is not defined at x D 1, but that is the only number at which it is not
defined. In particular, it is defined for all numbers as close as we like to 1, and we are
free to examine the functions values f.x/ as x “inches up” to 1. Table 10.1 gives some
values of x that are slightly less than 1 and some that are slightly greater than 1, along
with the corresponding function values. Notice that as x takes on values closer and
closer to 1, regardless of whether x approaches it from the left .x < 1/ or from the right
.x > 1/, the corresponding values of f.x/ get closer and closer to one and only one
number, namely, 3. This is also clear from the graph of f in Figure 10.1. Notice there
that even though the function is not defined at x D 1 (as indicated by the hollow dot),
the function values get closer and closer to 3 as x gets closer and closer to 1. To express
this, we say that the limit of f.x/ as x approaches 1 is 3 and write

lim
x!1

x3 � 1
x � 1

D 3

We can make f.x/ as close as we like to 3, and keep it that close, by taking x sufficiently
close to, but different from, 1. The limit of f at 1 exists, even though the value of f at 1
does not exist. Notice that saying “the value of f at 1 does not exist” is just a clumsy
way of saying “1 is not in the domain of f ”.

1

1

3

y

x

f(x) =
x3

 - 1

x - 1

FIGURE 10.1

lim
x!1

x3 � 1
x � 1

D 3.

Table 10.1

x< 1 x> 1

x f.x/ x f.x/

0.8 2.44 1.2 3.64

0.9 2.71 1.1 3.31

0.95 2.8525 1.05 3.1525

0.99 2.9701 1.01 3.0301

0.995 2.985025 1.005 3.015025

0.999 2.997001 1.001 3.003001

We can also consider the limit of a function as x approaches a number that is in the
domain. Let us examine the limit of f.x/ D xC 3 as x approaches 2:

lim
x!2

.xC 3/

Obviously, if x is close to 2 (but not equal to 2), then x C 3 is close to 5. This is also
apparent from the table and graph in Figure 10.2. Thus,

lim
x!2

.xC 3/ D 5

Given a function f and a number a, theremay be twoways of associating a number to the
pair . f; a/. One such number is the evaluation of f at a, namely, f.a/. It exists precisely

when a is in the domain of f. For example, if f.x/ D
x3 � 1
x � 1

, our first example, then

f.1/ does not exist. Another way of associating a number to the pair . f; a/ is the limit
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2

f(x) = x + 3

3

2.5

2.1

2.05

2.01

2.001

x

x 7 2

f(x)x

x 6 2

f(x)

5.5

5.1

5.05

5.01

5.001

5

y

x

1.5

1.9

1.95

1.99

1.999

4.5

4.9

4.95

4.99

4.999

FIGURE 10.2 lim
x!2

.xC 3/ D 5.

of f.x/ as x approaches a, which is denoted limx!a f.x/. We have given two examples.
Here is the general case.

Definition
The limit of f.x/ as x approaches a is the number L, written

lim
x!a

f.x/ D L

provided that we can make the values f.x/ as close as we like to L, and keep them
that close, by taking x sufficiently close to, but different from, a. If there is no such
number, we say that the limit of f.x/ as x approaches a does not exist.

We emphasize that, when finding a limit, we are concerned not with what happens
to f.x/ when x equals a, but only with what happens to f.x/ when x is close to a.
In fact, even if f.a/ exists, the preceding definition of limx!a f.x/ explicitly rules out
consideration of f.a/. In our second example, f.x/ D xC 3, we have f.2/ D 5 and also
limx!2.xC3/ D 5, but it is possible to have a function f and a number a for which both
f.a/ and limx!a f.x/ exist and are different. Moreover, a limit must be independent of
the way in which x approaches a; meaning the way in which x gets close to a. That
is, the limit must be the same whether x approaches a from the left or from the right
(for x < a or x > a, respectively).

EXAMPLE 1 Estimating a Limit from a Graph

a. Estimate limx!1 f.x/, where the graph of f is given in Figure 10.3(a).

y

y = f(x)

x
1

(a)

2

y

y = f(x)

x
1

(b)

2

3

FIGURE 10.3 Investigation of limx!1 f.x/.
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Solution: If we look at the graph for values of x near 1, we see that f.x/ is near 2.
Moreover, as x gets closer and closer to 1, f.x/ appears to get closer and closer to 2.
Thus, we estimate that

lim
x!1

f.x/ D 2

b. Estimate limx!1 f.x/, where the graph of f is given in Figure 10.3(b).

Solution: Although f.1/ D 3, this fact has no bearing whatsoever on the limit of f.x/
as x approaches 1. We see that as x gets closer and closer to 1, f.x/ appears to get closer
and closer to 2. Thus, we estimate that

lim
x!1

f.x/ D 2

Now Work Problem 1 G

Up to now, all of the limits that we have considered did indeed exist. Next we look
at some situations in which a limit does not exist.

APPLY IT I
1. The greatest integer function,
denoted f.x/Dbxc, is used every
day by cashiers making change for
customers. This function tells the
amount of paper money for each
amount of change owed. (For example,
if a customer is owed $5.25 in change,
he or she would get $5 in paper money;
thus, b5:25c D 5.) Formally, bxc is
defined as the greatest integer less
than or equal to x. Graph f, sometimes
called a step function, on a graphing
calculator in the standard viewing
rectangle. (It is in the numbers menu;
it’s called “integer part”.) Explore
this graph using TRACE. Determine
whether limx!a f.x/ exists.

EXAMPLE 2 Limits That Do Not Exist

a. Estimate limx!�2 f.x/ if it exists, where the graph of f is given in Figure 10.4.

Solution: As x approaches �2 from the left .x<�2/, the values of f.x/ appear to get
closer to 1. But as x approaches �2 from the right .x>�2/; f.x/ appears to get closer
to 3. Hence, as x approaches�2, the function values do not settle down to one and only
one number. We conclude that

lim
x!�2

f.x/ does not exist

Note that the limit does not exist even though the function is defined at x D �2.

b. Estimate lim
x!0

1
x2

if it exists.

Solution: Let f.x/ D 1=x2. The table in Figure 10.5 gives values of f.x/ for some
values of x near 0. As x gets closer and closer to 0, the values of f.x/ get larger and
larger without bound. This is also clear from the graph. Since the values of f.x/ do not
approach a number as x approaches 0,

lim
x!0

1
x2

does not exist

y

x

1

3

2

FIGURE 10.4 limx!�2 f.x/ does not

exist.

y

x

1

-1

;1

; 0.5

; 0.1

; 0.01

; 0.001

4

100

10,000

1,000,000

f(x)

1

x2
f(x) =

x

1

1

FIGURE 10.5 lim
x!0

1

x2
does not exist.

Now Work Problem 3 G



Haeussler-50501 M11_HAEU1107_14_SE_C10 November 27, 2017 14:52

454 Chapter 10 Limits and Continuity

With more complicated examples, computational equipment can be helpful for
determining if a limit exists and, if so, estimating its value. Consider the rational func-

Rational functions, quotients of
poynomial functions, were introduced
in Section 2.2.

tion

f.x/ D
x3 C 2:1x2 � 10:2xC 4

x2 C 2:5x � 9

and observe that f.2/ is not defined, because 22C2:5.2/�9 D 0. However, we can try
to determine if limx!2 f.x/ exists by examining values of f.x/ for x close to but different
from 2. It is tedious (but not impossible!) to calculate a table of function values f.x/,
for x close to 2. However, the screen shot from a programmable calculator given in
Figure 10.6 provides easily obtained evidence that the limit in question does exist and
suggests that the limit is approximately 1.57.

1.9

1.99

1.999

1.9999

2.01

2.001

1.4688

1.5592

1.5682

1.5691

1.5793

1.5702

1.5693

X=2.0001

X Y1

2.0001

FIGURE 10.6 limx!2 f.x/ � 1:57.

Alternatively, we can estimate the limit from the graph of f. Figure 10.7 shows the
graph of f in the standard Œ�10; 10� � Œ�10; 10� window of a graphing calculator.

10

10

-10

-10

FIGURE 10.7 Graph of f.x/ in standard window.

Zooming and tracing around x D 2 produces the screen shot of Figure 10.8, which
also suggests that the limit exists and is approximately 1.57.

X=1.9998753 . Y=1.5691055

1

FIGURE 10.8 Zooming and tracing around xD 2
gives limx!2 f.x/ � 1:57.

It is important to understand that neither calculator exercise proves that the limit
exists. Actually, it is fairly easy to prove that our limit exists and that we have, exactly,

lim
x!2

x3 C 2:1x2 � 10:2xC 4
x2 C 2:5x � 9

D 1:569230769

See Problem 42.

Properties of Limits
To determine limits, we do not always want to compute function values or sketch
a graph. Alternatively, there are several properties of limits that we may be able to
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employ. The following properties should seem reasonable, and in fact they can be
proved, using a sharpened version of our definition of limx!a f.x/ D L.

1. If f.x/ D c is a constant function, then

lim
x!a

f.x/ D lim
x!a

c D c

2. For any positive integer n,

lim
x!a

xn D an

EXAMPLE 3 Applying Limit Properties 1 and 2

a. limx!2 7 D 7I limx!�5 7 D 7

b. limx!6 x2 D 62 D 36

c. limt!�2 t4 D .�2/4 D 16

Now Work Problem 9 G

Some other properties of limits are as follows:

If limx!a f.x/ and limx!a g.x/ exist and c is a constant then

3.

lim
x!a

. f.x/ ˙
� g.x// D lim

x!a
f.x/ ˙
� lim

x!a
g.x/

That is, the limit of a sum, difference, or product is the sum, difference, or prod-
uct, respectively, of the limits.

4.

lim
x!a

.cf.x// D c � lim
x!a

f.x/

That is, the limit of a constant times a function is the constant times the limit of
the function.

APPLY IT I
2. The volume of helium in a spher-
ical balloon (in cubic centimeters), as
a function of the radius r in centime-

ters, is given by V.r/ D
4
3
�r3. Find

limr!1 V.r/.

EXAMPLE 4 Applying Limit Properties

a. lim
x!2

.x2 C x/ D lim
x!2

x2 C lim
x!2

x Property 3

D 22 C 2 D 6 Property 2
b. Property 3 can be extended to the limit of a finite number of sums, differences, and

products. For example,

lim
q!�1

.q3 � qC 1/ D lim
q!�1

q3 � lim
q!�1

qC lim
q!�1

1

D .�1/3 � .�1/C 1 D 1

c. lim
x!2

Œ.xC 1/.x � 3/� D lim
x!2

.xC 1/ � lim
x!2

.x � 3/ Property 3

D
�
lim
x!2

xC lim
x!2

1
�
�
�
lim
x!2

x � lim
x!2

3
�

D .2C 1/ � .2 � 3/ D 3.�1/ D �3

d. lim
x!�2

3x3 D 3 � lim
x!�2

x3 Property 4

D 3.�2/3 D �24

Now Work Problem 11 G
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EXAMPLE 5 Limit of a Polynomial Function

Let f.x/ D cnxn C cn�1xn�1 C � � � C c1xC c0 define a polynomial function. Then

lim
x!a

f.x/ D lim
x!a

.cnxn C cn�1xn�1
C � � � C c1xC c0/

D cn � lim
x!a

xn C cn�1 � lim
x!a

xn�1
C � � � C c1 � lim

x!a
xC lim

x!a
c0

D cnan C cn�1an�1
C � � � C c1aC c0 D f.a/

APPLY IT I
3. The revenue function for a certain
product is given by R.x/ D 500x� 6x2.
Find limx!8 R.x/.

Thus, we have the following property:

If f is a polynomial function, then

lim
x!a

f.x/ D f.a/

In other words, if f is a polynomial and a is any number, then both ways of associating
a number to the pair . f; a/, namely, formation of the limit and evaluation, exist and
are equal.

Now Work Problem 13 G

The result of Example 5 allows us to find many limits simply by evaluation. For
example, we can find

lim
x!�3

.x3 C 4x2 � 7/

by substituting �3 for x because x3 C 4x2 � 7 is a polynomial function:

lim
x!�3

.x3 C 4x2 � 7/ D .�3/3 C 4.�3/2 � 7 D 2

Similarly,

lim
h!3

.2.h � 1// D 2.3 � 1/ D 4

We want to stress that we do not find limits simply by evaluating unless there is
a rule that covers the situation. We were able to find the previous two limits by evalu-
ation because we have a rule that applies to limits of polynomial functions. However,
indiscriminate use of evaluation can lead to errors. To illustrate, in Example 1(b) we
have f.1/ D 3, which is not limx!1 f.x/; in Example 2(a), f.�2/ D 2, which is not
limx!�2 f.x/.

The next two limit properties concern quotients and roots.

If limx!a f.x/ and limx!a g.x/ exist and n is a positive integer then

5.

lim
x!a

f.x/
g.x/
D

limx!a f.x/
limx!a g.x/

if lim
x!a

g.x/ ¤ 0

That is, the limit of a quotient is the quotient of limits, provided that the denom-
inator limit is not 0.

6.

lim
x!a

n
p
f.x/ D n

q
lim
x!a

f.x/
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EXAMPLE 6 Applying Limit Properties 5 and 6

a. lim
x!1

2x2 C x � 3
x3 C 4

D
limx!1.2x2 C x � 3/
limx!1.x3 C 4/

D
2C 1 � 3
1C 4

D
0
5
D 0

b. lim
t!4

p
t2 C 1 D

q
lim
t!4
.t2 C 1/ D

p
17

Note that in Example 6(a) the numerator
and denominator of the function are
polynomials. In general, we can
determine a limit of a rational function by
evaluation, provided that evaluation of
the denominator does not give 0. c. lim

x!3

3
p
x2 C 7 D 3

q
lim
x!3

.x2 C 7/ D 3
p
16 D 3

p
8 � 2 D 2 3

p
2

Now Work Problem 15 G

Limits and Algebraic Manipulation
We now consider limits to which our limit properties do not apply and which cannot
be determined by evaluation. A fundamental result is the following:

The condition for equality of the limits
does not preclude the possibility that
f.a/ D g.a/. The condition only concerns
x ¤ a.

If f and g are two functions for which f.x/ D g.x/, for all x ¤ a, then

lim
x!a

f.x/ D lim
x!a

g.x/

(meaning that if either limit exists, then the other exists and they are equal).

The result follows directly from the definition of limit since the value of
limx!a f.x/ depends only on those values f.x/ for x that are close to a. We repeat:
The evaluation of f at a, f.a/, or lack of its existence, is irrelevant in the
determination of limx!a f.x/ unless we have a specific rule that applies, such as in
the case when f is a polynomial.

EXAMPLE 7 Finding a Limit

Find lim
x!�1

x2 � 1
xC 1

.

APPLY IT I
4. The rate of change of productivity p
(in number of units produced per hour)
increases with time on the job by the
function

p.t/ D
50.t2 C 4t/

t2 C 3tC 20

Find limt!2 p.t/.

Solution: As x ! �1, both numerator and denominator approach zero. Because the
limit of the denominator is 0, we cannot use Property 6. However, since what happens
to the quotient when x equals �1 is of no concern, we can assume that x ¤ �1 and
simplify the fraction:

x2 � 1
xC 1

D
.xC 1/.x � 1/

xC 1
D x � 1 for x ¤ �1

This algebraic manipulation (factoring and cancellation) of the original function
x2 � 1
xC 1

yields a new function x�1, which is the same as the original function for x ¤ �1. Thus,
the fundamental result displayed in the box at the beginning of this subsection applies
and we have

lim
x!�1

x2 � 1
xC 1

D lim
x!�1

.x � 1/ D �1 � 1 D �2

Notice that, although the original function is not defined at �1, it does have a limit as
x! �1.

Now Work Problem 21 G

In Example 7, the method of finding a limit by evaluation does not work. Replacing

When both f.x/ and g.x/ approach 0 as
x! a, then the limit

lim
x!a

f.x/
g.x/

is said to have the form 0=0. Similarly,
we speak of form k=0, for k ¤ 0 if f.x/
approaches k ¤ 0 as x! a but g.x/
approaches 0 as x! a.

x by �1 gives 0=0, which has no meaning. When the meaningless form 0=0 arises,
algebraic manipulation (as in Example 7) may result in a function that agrees with the
original function, except possibly at the limiting value. In Example 7 the new function,
x � 1, is a polynomial and its limit can be found by evaluation.
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In the beginning of this section, we found

lim
x!1

x3 � 1
x � 1

by examining a table of function values of f.x/ D .x3 � 1/=.x� 1/ and also by consid-
ering the graph of f. This limit has the form 0=0. Now we will determine the limit by
using the technique used in Example 7.

EXAMPLE 8 Form 0=0

Find lim
x!1

x3 � 1
x � 1

.

There is frequently confusion about
which principle is being used in this
example and in Example 7. It is this:

If f.x/ D g.x/ for x ¤ a;

then lim
x!a

f.x/ D lim
x!a

g.x/:

Solution: As x! 1, both the numerator and denominator approach 0. Thus, we will
try to express the quotient in a different form for x ¤ 1. By factoring, we have

x3 � 1
x � 1

D
.x � 1/.x2 C xC 1/

.x � 1/
D x2 C xC 1 for x ¤ 1

(Alternatively, long division would give the same result.) Therefore,

lim
x!1

x3 � 1
x � 1

D lim
x!1

.x2 C xC 1/ D 12 C 1C 1 D 3

as we showed before.

Now Work Problem 23 G

EXAMPLE 9 Form 0=0

If f.x/ D x2 C 1, find lim
h!0

f.xC h/ � f.x/
h

.

APPLY IT I
5. The length of a material increases
as it is heated up according to the equa-
tion l D 125C2x. The rate at which the
length is increasing is given by

lim
h!0

125C 2.xC h/ � .125C 2x/
h

Calculate this limit.

Solution:

lim
h!0

f.xC h/ � f.x/
h

D lim
h!0

Œ.xC h/2 C 1� � .x2 C 1/
h

Here we treat x as a constant because h, not x, is changing. As h! 0, both the numer-
ator and denominator approach 0. Therefore, we will try to express the quotient in a
different form, for h ¤ 0. We have

lim
h!0

Œ.xC h/2 C 1� � .x2 C 1/
h

D lim
h!0

Œx2 C 2xhC h2 C 1� � x2 � 1
h

D lim
h!0

2xhC h2

h

D lim
h!0

h.2xC h/
h

D lim
h!0

.2xC h/

D 2x

Note: It is the fourth equality above, lim
h!0

h.2xC h/
h

D lim
h!0

.2x C h/, that uses the

The expression

f.xC h/ � f.x/
h

is called a difference quotient. The limit
of the difference quotient lies at the heart
of differential calculus. We will encounter
many such limits in Chapter 11.

fundamental result. When
h.2xC h/

h
and 2xC h are considered as functions of h, they

are seen to be equal, for all h ¤ 0. It follows that their limits as h approaches 0 are equal.

Now Work Problem 35 G

A Special Limit
We conclude this section with a note concerning a most important limit, namely,

lim
x!0

.1C x/1=x
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Figure 10.9 shows the graph of f.x/ D .1 C x/1=x. Although f(0) does not exist, as
x ! 0 it is clear that the limit of .1 C x/1=x exists. It is approximately 2.71828 and
is denoted by the letter e. This, you may recall, is the base of the system of natural
logarithms. The limit

This limit will be used in Chapter 12. lim
x!0

.1C x/1=x
D e

can actually be considered the definition of e. It can be shown that this agrees with the
definition of e that we gave in Section 4.1.

f(x) = (1 + x)
1/x

f(x)

x

(1 + x)
1/x

x

2.25000.5

2.59370.1

2.70480.01

2.71690.001

1

1

2

3

(1 + x)
1/x

x

4.0000-0.5

2.8680-0.1

2.7320-0.01

2.7196-0.001

FIGURE 10.9 limx!0.1C x/1=x D e.

PROBLEMS 10.1
In Problems 1–4, use the graph of f to estimate each limit, if it
exists.

1. Graph of f appears in Figure 10.10.

(a) limx!0 f.x/ (b) limx!1 f.x/ (c) limx!2 f.x/

y = f(x)

y

x
1 2

1

FIGURE 10.10

2. Graph of f appears in Figure 10.11.

(a) limx!�1 f.x/ (b) limx!0 f.x/ (c) limx!1 f.x/

y

x
1-1

1

FIGURE 10.11

3. Graph of f appears in Figure 10.12.

(a) limx!�1 f.x/ (b) limx!1 f.x/ (c) limx!2 f.x/

x

y

-1 1 2

2

3

y = f(x)

FIGURE 10.12

4. Graph of f appears in Figure 10.13.

(a) limx!�1 f.x/ (b) limx!0 f.x/ (c) limx!1 f.x/

-1

1

1

-1

x

y

y = f(x)

FIGURE 10.13
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In Problems 5–8, use your calculator to complete the table, and
use your results to estimate the given limit.

5. lim
x!�1

3x2 C 2x � 1
xC 1

x �0:9 �0:99 �0:999 �1:001 �1:01 �1:1
f.x/

6. lim
x!�3

x2 � 9
xC 3

x �3:1 �3:01 �3:001 �2:999 �2:99 �2:9
f.x/

7. lim
x!0

2x � 1
x

x �0:001 �0:0001 0:0001 0.001 0.01 0.1
f.x/

8. lim
h!0

p
1C h � 1

h

h �0:1 �0:01 �0:001 0.001 0.01 0.1
f.x/

In Problems 9–34, find the limits.

9. lim
x!2

16 10. lim
x!3

2x

11. lim
t!�5

.t2 � 5/ 12. limt!1=3.2tC 7/

13. lim
x!�2

.3x3 � 4x2 C 2x � 3/ 14. lim
r!9

4r � 3
11

15. lim
t!�3

t � 2
tC 5

16. lim
x!�6

x2 C 6
x � 6

17. lim
t!0

t
t3 � tC 7

18. lim
z!0

z2 � 5z � 4
z2 C 1

19. lim
p!4

p
p2 C pC 5 20. lim

y!15

p
yC 3

21. lim
x!�2

x2 C 2x
xC 2

22. limx!1
x � 1
x � 1

23. lim
x!2

x2 � x � 2
x � 2

24. lim
t!0

t3 C 3t2

t3 � 4t2

25. lim
x!3

x2 � x � 6
x � 3

26. lim
t!2

t2 � 4
t � 2

27. lim
x!�2

xC 2
x2 � 4

28. lim
x!0

x2 � 2x
x

29. lim
x!4

x2 � 9xC 20
x2 � 3x � 4

30. lim
x!�3

x4 � 81
x2 C 8xC 15

31. lim
x!2

3x2 � x � 10
x2 C 5x � 14

32. lim
x!2

x2 � x � 2
x2 � 4

33. lim
h!0

.2C h/2 � 22

h
34. lim

x!0

.xC 2/2 � 4
x

35. Find lim
h!0

.xC h/2 � x2

h
by treating x as a constant.

36. Find lim
h!0

3.xC h/2 C 7.xC h/ � 3x2 � 7x
h

by treating x as a

constant.

In Problems 37–42, find lim
h!0

f.xC h/ � f.x/
h

.

37. f.x/ D 7C 7x 38. f.x/ D 2xC 3

39. f.x/ D x2 � 3 40. f.x/ D x2 C xC 1

41. f.x/ D x3 � 4x2 42. f.x/ D 3 � 2xC x2

43. Find lim
x!6

p
x � 2 � 2
x � 6

(Hint: First rationalize the numerator

by multiplying both the numerator and denominator by
p
x � 2C 2.)

44. Find the constant c so that lim
x!3

x2 C xC c
x2 � 5xC 6

exists. For that

value of c, determine the limit. (Hint: Find the value of c for
which x � 3 is a factor of the numerator.)

45. Power Plant The maximum theoretical efficiency of a
power plant is given by

E D
Th � Tc

Th

where Th and Tc are the absolute temperatures of the hotter and
colder reservoirs, respectively. Find (a) limTc!0 E and
(b) limTc!Th E.

46. Satellite When a 3200-lb satellite revolves about the earth
in a circular orbit of radius r ft, the total mechanical energy E of
the earth–satellite system is given by

E D �
7:0 � 1017

r
ft-lb

Find the limit of E as r! 7:5 � 107 ft.

In Problems 47–50, use a graphing calculator to graph the
functions, and then estimate the limits. Round your answers to two
decimal places.

47. lim
x!2

x3 C 2:1x2 � 10:2xC 4
x2 C 2:5x � 9

48. lim
x!0

xx

49. lim
x!9

x � 10
p
xC 21

3 �
p
x

50. lim
x!1

x3 C x2 � 5xC 3
x3 C 2x2 � 7xC 4

51. Water Purification The cost of purifying water is given by

C D
50;000

p
� 6500, where p is the percent of impurities

remaining after purification. Graph this function on your graphing
calculator, and determine limp!0 C. Discuss what this means.

52. Profit Function The profit function for a certain business
is given by P.x/ D 225x � 3:2x2 � 701. Graph this function on a
graphing calculator, and use the evaluation function to determine
limx!40:3 P.x/, using the rule about the limit of a polynomial
function.
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Objective 10.2 Limits (Continued)
To study one-sided limits, infinite limits,
and limits at infinity. One-Sided Limits

Figure 10.14 shows the graph of a function f. Notice that f.x/ is not defined when x D 0.
As x approaches 0 from the right, f.x/ approaches 1. We write this as

lim
x!0C

f.x/ D 1

On the other hand, as x approaches 0 from the left, f .x/ approaches �1, and we write

lim
x!0�

f.x/ D �1

y

x

y = f(x)

-1

1

FIGURE10.14 limx!0 f.x/ does
not exist.

Limits like these are called one-sided limits. From the preceding section, we know that
the limit of a function as x ! a is independent of the way x approaches a. Thus, the
limit will exist if and only if both one-sided limits exist and are equal. We, therefore,
conclude that

lim
x!0

f.x/ does not exist

As another example of a one-sided limit, consider f.x/ D
p
x � 3 as x approaches 3.

Since f is defined only when x � 3, we can speak of the limit of f.x/ as x approaches
3 from the right. If x is slightly greater than 3, then x � 3 is a positive number that is
close to 0, so

p
x � 3 is close to 0. We conclude that

lim
x!3C

p
x � 3 D 0

1

2

3 6

f (x)

x

f (x) = x-3

FIGURE 10.15 limx!3C

p
x � 3 D 0. This limit is also evident from Figure 10.15.

Infinite Limits
In the previous section, we considered limits of the form 0=0—that is, limits where
both the numerator and denominator approach 0. Now we will examine limits where
the denominator approaches 0, but the numerator approaches a number different from
0. For example, consider

lim
x!0

1
x2

Here, as x approaches 0, the denominator approaches 0 and the numerator approaches 1.
Let us investigate the behavior of f.x/ D 1=x2 when x is close to 0. The number x2 is
positive and also close to 0. Thus, dividing 1 by such a number results in a very large
number. In fact, the closer x is to 0, the larger the value of f.x/. For example, see the
table of values in Figure 10.16, which also shows the graph of f. Clearly, as x ! 0
both from the left and from the right, f.x/ increases without bound. Hence, no limit
exists at 0. We say that as x! 0; f.x/ becomes positively infinite, and symbolically we
express this “infinite limit” by writing

lim
x!0

1
x2
D C1 D1

1,000,000

10,000

100

4

1

;0.001

;0.01

;0.1

;0.5

;1

f (x)x

x

y

-1 1

1

x2

1
x   0y = ,

FIGURE 10.16 lim
x!0

1

x2
D1.

If limx!a f.x/ does not exist, it may be for a reason other than that the values f.x/
become arbitrarily large as x gets close to a. For example, look again at the situation in
Example 2(a) of Section 10.1. Here we have

lim
x!�2

f.x/ does not exist but lim
x!�2

f.x/ ¤1

Consider now the graph of y D f.x/ D 1=x for x ¤ 0. (See Figure 10.17.) As xThe use of the “equality” sign in this
situation does not mean that the limit
exists. On the contrary, it is a way of
saying specifically that there is no limit
and why there is no limit.

approaches 0 from the right, 1=x becomes positively infinite; as x approaches 0 from
the left, 1=x becomes negatively infinite. Symbolically, these infinite limits are written

lim
x!0C

1
x
D1 and lim

x!0�

1
x
D �1
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0

-0.001

0.0001

-0.01

0.001

0.01

-0.0001

-1000

-100

10,000

1000

100

-10,000

f (x)x

x
1

x    0

x

y =

y 

,

FIGURE 10.17 lim
x!0

1
x
does not exist.

Either one of these facts implies that

lim
x!0

1
x
does not exist

EXAMPLE 1 Infinite Limits

Find the limit (if it exists).

a. lim
x!�1C

2
xC 1

Solution: As x approaches�1 from the right (think of values of x such as�0:9;�0:99,
and so on, as shown in Figure 10.18), xC 1 approaches 0 but is always positive. Since
we are dividing 2 by positive numbers approaching 0, the results, 2=.xC1/, are positive
numbers that are becoming arbitrarily large. Thus,

lim
x!�1C

2
xC 1

D1

-0.99 -0.9

-1

FIGURE 10.18 x! �1C.

and the limit does not exist. By a similar analysis, we can show that

lim
x!�1�

2
xC 1

D �1

b. lim
x!2

xC 2
x2 � 4

Solution: As x! 2, the numerator approaches 4 and the denominator approaches 0.
Hence, we are dividing numbers near 4 by numbers near 0. The results are numbers
that become arbitrarily large in magnitude. At this stage, we can write

lim
x!2

xC 2
x2 � 4

does not exist

However, let us see if we can use the symbol1 or�1 to be more specific about “does
not exist”. Notice that

lim
x!2

xC 2
x2 � 4

D lim
x!2

xC 2
.xC 2/.x � 2/

D lim
x!2

1
x � 2

Since

lim
x!2C

1
x � 2

D1 and lim
x!2�

1
x � 2

D �1

lim
x!2

xC 2
x2 � 4

is neither1 nor �1.

Now Work Problem 31 G
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Example 1 considered limits of the form k=0, where k ¤ 0. It is important to
distinguish the form k=0 from the form 0=0, which was discussed in Section 10.1.
These two forms are handled differently.

EXAMPLE 2 Finding a Limit

Find lim
t!2

t � 2
t2 � 4

.

Solution: As t ! 2, both numerator and denominator approach 0 (form 0=0). Thus,
we first simplify the fraction, for t ¤ 2, aswe did in Section 10.1, and then take the limit:

lim
t!2

t � 2
t2 � 4

D lim
t!2

t � 2
.tC 2/.t � 2/

D lim
t!2

1
tC 2

D
1
4

Now Work Problem 37 G

Limits at Infinity
Now let us examine the function

f.x/ D
1
x

as x becomes infinite, first in a positive sense and then in a negative sense. From

We can obtain

lim
x!1

1
x

and lim
x!�1

1
x

without the benefit of a graph or a table.
Dividing 1 by a large positive number
results in a small positive number, and
as the divisors get arbitrarily large, the
quotients get arbitrarily small. A similar
argument can be made for the limit as
x! �1.

Table 10.2, we can see that as x increases without bound through positive values, the
values of f.x/ approach 0. Likewise, as x decreases without bound through negative
values, the values of f.x/ also approach 0. These observations are also apparent from
the graph in Figure 10.17. There, moving to the right along the curve through pos-
itive x-values, the corresponding y-values approach 0 through positive values. Simi-
larly, moving to the left along the curve through negative x-values, the corresponding
y-values approach 0 through negative values. Symbolically, we write

lim
x!1

1
x
D 0 and lim

x!�1

1
x
D 0

Both of these limits are called limits at infinity.

Table 10.2 Behavior of f.x/ as x!˙1

x f.x/ x f.x/

1000 0.001 �1000 �0.001

10,000 0.0001 �10,000 �0.0001

100,000 0.00001 �100,000 �0.00001

1,000,000 0.000001 �1,000,000 �0.000001

EXAMPLE 3 Limits at Infinity

Find the limit (if it exists).

APPLY IT I
6. The demand function for a certain

product is given by p.x/ D
10;000

.xC 1/2
,

where p is the price in dollars and x is
the quantity sold. Graph this function on
your graphing calculator in the window
Œ0; 10� � Œ0; 10;000�. Use the TRACE
function to find limx!1 p.x/. Deter-
mine what is happening to the graph and
what this means about the demand func-
tion.

a. lim
x!1

4
.x � 5/3

Solution: As x becomes very large, so does x� 5. Since the cube of a large number is
also large, .x � 5/3 ! 1. Dividing 4 by very large numbers results in numbers near
0. Thus,

lim
x!1

4
.x � 5/3

D 0

b. lim
x!�1

p
4 � x

Solution: As x gets negatively infinite, 4 � x becomes positively infinite. Because
square roots of large numbers are large numbers, we conclude that

lim
x!�1

p
4 � x D1

G
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In our next discussion we will need a certain limit, namely, limx!1 1=xp, where
p > 0. As x becomes very large, so does xp. Dividing 1 by very large numbers results
in numbers near 0. Thus, limx!1 1=xp D 0. In general,

lim
x!1

1
xp
D 0 and, if p is such that 1=xp is defined for x < 0, lim

x!�1

1
xp
D 0

for p > 0. For example,

lim
x!1

1
3
p
x
D lim

x!1

1

x1=3
D 0

Let us now find the limit of the rational function

f.x/ D
4x2 C 5
2x2 C 1

as x!1. (Recall from Section 2.2 that a rational function is a quotient of polynomi-
als.) As x gets larger and larger, both the numerator and denominator of any rational
function become infinite in absolute value. However, the form of the quotient can be
changed, so that we can draw a conclusion as to whether or not it has a limit. To do this,
we divide both the numerator and denominator by the greatest power of x that occurs
in the denominator. Here it is x2. This gives

lim
x!1

4x2 C 5
2x2 C 1

D lim
x!1

4x2 C 5
x2

2x2 C 1
x2

D lim
x!1

4x2

x2
C

5
x2

2x2

x2
C

1
x2

D lim
x!1

4C
5
x2

2C
1
x2

D

lim
x!1

4C 5 � lim
x!1

1
x2

lim
x!1

2C lim
x!1

1
x2

Since limx!1 1=xp D 0 for p > 0,

lim
x!1

4x2 C 5
2x2 C 1

D
4C 5.0/
2C 0

D
4
2
D 2

x

2

-1 1

5

 4x
2
 + 5

 2x
2
 + 1

f(x) =

f(x)

FIGURE 10.19 limx!1 f.x/ D 2
and limx!�1 f.x/ D 2.

Similarly, the limit as x ! �1 is 2. These limits are clear from the graph of f in
Figure 10.19.

For the preceding function, there is an easier way to find limx!1 f.x/. For large
values of x, in the numerator the term involving the greatest power of x, namely, 4x2,
dominates the sum 4x2C 5, and the dominant term in the denominator, 2x2C 1, is 2x2.
Thus, as x ! 1; f.x/ can be approximated by .4x2/=.2x2/. As a result, to determine
the limit of f.x/, it suffices to determine the limit of .4x2/=.2x2/. That is,

lim
x!1

4x2 C 5
2x2 C 1

D lim
x!1

4x2

2x2
D lim

x!1
2 D 2

as we saw before. In general, we have the following rule:

Limits at Infinity for Rational Functions
If f.x/ is a rational function and anxn and bmxm are the terms in the numerator and
denominator, respectively, with the greatest powers of x, then

lim
x!˙1

f.x/ D lim
x!˙1

anxn

bmxm

Let us apply this rule to the situation where the degree of the numerator is greater than
the degree of the denominator. For example,

lim
x!�1

x4 � 3x
5 � 2x

D lim
x!�1

x4

�2x
D lim

x!�1

�
�
1
2
x3
�
D1
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(Note that in the next-to-last step, as x becomes very negative, so does x3; moreover,

�
1
2 times a very negative number is very positive.) Similarly,

lim
x!1

x4 � 3x
5 � 2x

D lim
x!1

�
�
1
2
x3
�
D �1

From this illustration, we make the following conclusion:

If the degree of the numerator of a rational function is greater than the degree of
the denominator, then the function has no limit as x!1 and no limit as x! �1.

APPLY IT I
7. The yearly amount of sales y of
a certain company (in thousands of
dollars) is related to the amount the
company spends on advertising, x (in
thousands of dollars), according to the
equation

y.x/ D
500x
xC 20

Graph this function on your graph-
ing calculator in the window
Œ0; 1000� � Œ0; 550�. Use TRACE
to explore limx!1 y.x/, and determine
what this means to the company.

EXAMPLE 4 Limits at Infinity for Rational Functions

Find the limit (if it exists).

a. lim
x!1

x2 � 1
7 � 2xC 8x2

Solution:

lim
x!1

x2 � 1
7 � 2xC 8x2

D lim
x!1

x2

8x2
D lim

x!1

1
8
D

1
8

b. lim
x!�1

x
.3x � 1/2

Solution:

lim
x!�1

x
.3x � 1/2

D lim
x!�1

x
9x2 � 6xC 1

D lim
x!�1

x
9x2

D lim
x!�1

1
9x
D

1
9
� lim
x!�1

1
x
D

1
9
.0/ D 0

c. lim
x!1

x5 � x4

x4 � x3 C 2
Solution: Since the degree of the numerator is greater than that of the denominator,
there is no limit. More precisely,

lim
x!1

x5 � x4

x4 � x3 C 2
D lim

x!1

x5

x4
D lim

x!1
x D1

Now Work Problem 21 G

To find lim
x!0

x2 � 1
7 � 2xC 8x2

, we cannot simply determine the limit of
x2

8x2
. That simplifi-The preceding technique applies only to

limits of rational functions at infinity.

cation applies only in case x!1 or x! �1. Instead, we have

lim
x!0

x2 � 1
7 � 2xC 8x2

D
limx!0 x2 � 1

limx!0 7 � 2xC 8x2
D

0 � 1
7 � 0C 0

D �
1
7

Let us now consider the limit of the polynomial function f.x/ D 8x2 � 2x as x!1:

lim
x!1

.8x2 � 2x/

Because a polynomial is a rational function with denominator 1, we have

lim
x!1

.8x2 � 2x/ D lim
x!1

8x2 � 2x
1

D lim
x!1

8x2

1
D lim

x!1
8x2

That is, the limit of 8x2 � 2x as x ! 1 is the same as the limit of the term involving
the greatest power of x, namely, 8x2. As x becomes very large, so does 8x2. Thus,

lim
x!1

.8x2 � 2x/ D lim
x!1

8x2 D1
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In general, we have the following:

As x!1 (or x! �1), the limit of a polynomial function is the same as the limit
of its term that involves the greatest power of x.

APPLY IT I
8. The cost, C, of producing x units of
a certain product is given by C.x/ D

50;000C200xC0:3x2. Use your graph-
ing calculator to explore limx!1 C.x/
and determine what this means.

EXAMPLE 5 Limits at Infinity for Polynomial Functions

a. limx!�1.x3 � x2 C x � 2/ D limx!�1 x3. As x becomes very negative, so does
x3. Thus,

lim
x!�1

.x3 � x2 C x � 2/ D lim
x!�1

x3 D �1

b. limx!�1.�2x3 C 9x/ D limx!�1�2x3 D 1, because �2 times a very negative
number is very positive.

Now Work Problem 9 G

The technique of focusing on dominant terms to find limits as x!1 or x! �1
is valid for rational functions, but it is not necessarily valid for other types of functions.
For example, considerDo not use dominant terms when a

function is not rational.
lim
x!1

�p
x2 C x � x

�
(1)

Notice that
p
x2 C x � x is not a rational function. It is incorrect to infer that because

x2 dominates in x2 C x, the limit in (1) is the same as

lim
x!1

�p
x2 � x

�
D lim

x!1
.x � x/ D lim

x!1
0 D 0

It can be shown (see Problem 62) that the limit in (1) is not 0, but is 1
2 .

The ideas discussed in this section will now be applied to a case-defined function.

EXAMPLE 6 Limits for a Case-Defined Function

If f.x/ D
�
x2 C 1 if x � 1

3 if x < 1
, find the limit (if it exists).APPLY IT I

9. Aplumber charges $100 for the first
hour of work at your house and $75 for
every hour (or fraction thereof) after-
ward. The function for what an x-hour
visit will cost you is

f.x/ D

8̂̂<̂
:̂
$100 if 0 < x � 1
$175 if 1 < x � 2
$250 if 2 < x � 3
$325 if 3 < x � 4

Find limx!1 f.x/ and limx!2:5 f.x/.

a. limx!1C f.x/

Solution: Here x gets close to 1 from the right. For x> 1, we have f.x/D x2C 1.
Thus,

lim
x!1C

f.x/ D lim
x!1C

.x2 C 1/

If x is greater than 1, but close to 1, then x2 C 1 is close to 2. Therefore,

lim
x!1C

f.x/ D lim
x!1C

.x2 C 1/ D 2

b. limx!1� f.x/

Solution: Here x gets close to 1 from the left. For x < 1; f.x/ D 3. Hence,

lim
x!1�

f.x/ D lim
x!1�

3 D 3

c. limx!1 f.x/

Solution: We want the limit as x approaches 1. However, the rule of the function
depends on whether x � 1 or x < 1. Thus, we must consider one-sided limits. The
limit as x approaches 1 will exist if and only if both one-sided limits exist and are the
same. From parts (a) and (b),

lim
x!1C

f.x/ ¤ lim
x!1�

f.x/ since 2 ¤ 3
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Therefore,

lim
x!1

f.x/ does not exist.

d. limx!1 f.x/

Solution: For very large values of x, we have x � 1, so f.x/ D x2 C 1. Thus,

lim
x!1

f.x/ D lim
x!1

.x2 C 1/ D lim
x!1

x2 D1

e. limx!�1 f.x/

Solution: For very negative values of x, we have x < 1, so f.x/ D 3. Hence,

lim
x!�1

f.x/ D lim
x!�1

3 D 3

All the limits in parts (a) through (c) should be obvious from the graph of f in
Figure 10.20.

x

f(x) =

f(x)

x
2 + 1, if x Ú 1

3, if x 6 1

3

2

1

FIGURE 10.20 Graph of a case-defined function.

Now Work Problem 57 G

PROBLEMS 10.2
1. For the function f given in Figure 10.21, find the following
limits. If the limit does not exist, so state, or use the symbol1 or
�1 where appropriate.

f(x)

x
1-1

2

1

FIGURE 10.21

(a) limx!�1 f.x/ (b) limx!�1� f.x/ (c) limx!�1C f.x/
(d) limx!�1 f.x/ (e) limx!0� f.x/ (f) limx!0C f.x/
(g) limx!0 f.x/ (h) limx!1� f.x/ (i) limx!1C f.x/
(j) limx!1 f.x/ (k) limx!1 f.x/

2. For the function f given in Figure 10.22, find the following
limits. If the limit does not exist, so state, or use the symbol1 or
�1 where appropriate.

x

f(x)

1 2

1

2

FIGURE 10.22

(a) limx!0� f.x/ (b) limx!0C f.x/ (c) limx!0 f.x/

(d) limx!�1 f.x/ (e) limx!1 f.x/ (f) limx!1 f.x/

(g) limx!2C f.x/

In each of Problems 3–54, find the limit. If the limit does not exist,
so state, or use the symbol1 or �1 where appropriate.

3. lim
x!5C

.xC 7/ 4. lim
x!�1C

.1 � x2/ 5. lim
x!�1

5x

6. lim
x!�1

�6 7. lim
x!0�

6x
x4

8. lim
x!3

5
x � 2
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9. lim
x!�1

x2 10. lim
t!1

.t � 1/3 11. lim
h!1C

p
h � 1

12. lim
h!5�

p
5 � h 13. lim

x!�3�

�3
xC 3

14. lim
x!0�

21=2

15. lim
x!1C

.4
p
x � 1/ 16. lim

x!2�
.x
p
4 � x2/

17. lim
x!1

p
xC 10 18. lim

x!�1
�
p
5 � 3x 19. lim

x!1

3
p
x

20. lim
x!1

�6

5x 3
p
x

21. lim
x!1

x � 5
2xC 1

22. lim
x!1

2x � 4
3 � 2x

23. lim
x!�1

3x2 C 2
2x3 C 5x � 7

24. lim
r!1

r3

r2 C 1

25. lim
t!1

3t3 C 2t2 C 9t � 1
5t2 � 5

26. lim
x!1

4x2

3x3 � x2 C 2

27. lim
x!1

7
2xC 1

28. lim
x!1

2
.3xC 2/2

29. lim
x!1

3 � 4x � 2x3

5x3 � 8xC 1
30. lim

x!�1

3 � 2x � 2x3

7 � 5x3 C 2x2

31. lim
x!3C

xC 3
x2 � 9

32. lim
x!�3�

3x
9 � x2 33. lim

w!1

3w2 � 2
7w2 C 3

34. lim
x!1

4 � 3x3

x3 � 1
35. lim

x!1

6 � 4x2 C x3

4C 5x � 7x2

36. lim
x!�1

2x � x2

x2 C 19x � 64
37. lim

x!�3�

5x2 C 14x � 3
x2 C 3x

38. lim
t!1

t2 C 4t � 5
4t2 � 2t � 2

39. lim
x!1

x2 � 3xC 1
x2 C 1

40. lim
x!�1

3x3 � x2

2xC 1
41. lim

x!2�

�
2 �

1
x � 2

�
42. lim

x!�1
�
x5 C 2x3 � 1
x5 � 4x2

43. lim
x!�5�

x2 C 1
p
x2 � 25

44. lim
x!�2C

x
p
16 � x4

45. lim
x!0C

5
xC x2

46. lim
x!�1

�
x2 C

1
x

�
47. lim

x!1
x.x � 1/�1 48. lim

x!3

�3
x � 3

49. lim
x!1C

�
�5
1 � x

�
50. lim

x!3

�
�

7
x � 3

�
51. lim

x!1
jx � 1j

52. lim
x!0

ˇ̌̌̌
1
x

ˇ̌̌̌
53. lim

x!1

x2 C 2
x2

54. lim
x!1

�
3
x
�

2x2

x2 C 1

�
In Problems 55–58, find the indicated limits. If the limit does not
exist, so state, or use the symbol1 or �1 where appropriate.

55. f.x/ D
�
2 if x � 2
1 if x > 2

(a) limx!2C f.x/ (b) limx!2� f.x/ (c) limx!2 f.x/
(d) limx!1 f.x/ (e) limx!�1 f.x/

56. f.x/ D
�

2 � x if x � 3
�1C 3x � x2 if x > 3

(a) limx!3C f.x/ (b) limx!3� f.x/ (c) limx!3 f.x/
(d) limx!1 f.x/ (e) limx!�1 f.x/

57. g.x/ D
�

x if x < 0
�x if x > 0

(a) limx!0C g.x/ (b) limx!0� g.x/ (c) limx!0 g.x/
(d) limx!1 g.x/ (e) limx!�1 g.x/

58. g.x/ D
�

x2 if x < 0
�x2 if x > 0

(a) limx!0C g.x/ (b) limx!0� g.x/ (c) limx!0 g.x/

(d) limx!1 g.x/ (e) limx!�1 g.x/

59. Average Cost If c is the total cost in dollars to produce
q units of a product, then the average cost per unit for an output
of q units is given by c D c=q. Thus, if the total cost equation is
c D 5000C 6q, then

c D
5000
q
C 6

For example, the total cost of an output of 5 units is $5030, and
the average cost per unit at this level of production is $1006. By
finding limq!1 c, show that the average cost approaches a level
of stability if the producer continually increases output. What is
the limiting value of the average cost? Sketch the graph of the
average-cost function.

60. Average Cost Repeat Problem 59, given that the fixed cost
is $12,000 and the variable cost is given by the function cv D 7q.

61. Population The population of a certain small city t years
from now is predicted to be

N D 40; 000 �
5000
tC 3

Find the population in the long run; that is, find limt!1 N.

62. Show that

lim
x!1

�p
x2 C x � x

�
D

1
2

(Hint: Rationalize the numerator by multiplying the expression
p
x2 C x � x by

p
x2 C xC x
p
x2 C xC x

Then express the denominator in a form such that x is a factor.)

63. Host–Parasite Relationship For a particular host–parasite
relationship, it was determined that when the host density
(number of hosts per unit of area) is x, the number of hosts
parasitized over a period of time is

y D
900x

10C 45x

Calculate lim
x!1

y and interpret the result.

64. If f.x/ D
� p

2 � x if x < 2
x3 C k.xC 1/ if x � 2

, determine the value of

the constant k for which limx!2 f.x/ exists.

In Problems 65 and 66, use a calculator to evaluate the given
function when x D 1, 0.5, 0.2, 0.1, 0.01, 0.001, and 0.0001. From
your results, speculate about limx!0C f.x/.

65. f.x/ D x2x 66. f.x/ D e1=x



Haeussler-50501 M11_HAEU1107_14_SE_C10 November 27, 2017 14:52

Section 10.3 Continuity 469

67. Graph f.x/ D
p
4x2 � 1. Use the graph to estimate

limx!1=2C f.x/.

68. Graph f.x/ D

p
x2 � 4
xC 2

. Use the graph to estimate

limx!�3� f.x/ if it exists.

69. Graph f.x/ D
�
2x2 C 3 if x < 2
2xC 5 if x � 2

. Use the graph to estimate

each of the following limits if it exists:
(a) limx!2� f.x/ (b) limx!2C f.x/ (c) limx!2 f.x/

Objective 10.3 Continuity
To study continuity and to find points
of discontinuity for a function.

Many functions have the property that there is no “break” in their graphs. For example,
compare the functions

f.x/ D x and g.x/ D
�
x if x ¤ 1
2 if x D 1

whose graphs appear in Figures 10.23 and 10.24, respectively. The graph of f is unbro-
ken, but the graph of g has a break at x D 1. Stated another way, if you were to trace
both graphs with a pencil, you would have to lift the pencil off the graph of g when
x D 1, but you would not have to lift it off the graph of f. These situations can be
expressed by limits. As x approaches 1, compare the limit of each function with the
value of the function at x D 1:

lim
x!1

f.x/ D 1 D f.1/
x

f(x) = x

f(x)

1

1

No break
in graph

FIGURE 10.23 Continuous at 1.
whereas

lim
x!1

g.x/ D 1 ¤ 2 D g.1/

In Section 10.1 we stressed that given a function f and a number a, there are two impor-
tant ways to associate a number to the pair . f; a/. One is simple evaluation, f.a/, which
exists precisely if a is in the domain of f. The other is limx!a f.x/, whose existence and
determination can be more challenging. For the functions f and g above, the limit of f
as x ! 1 is the same as f.1/, but the limit of g as x ! 1 is not the same as g.1/. For
these reasons, we say that f is continuous at 1 and g is discontinuous at 1.

2

x

g(x) =
x, if x Z 1

2, if x = 1

g(x)

1

1

Break 
    in 
graph   

FIGURE 10.24 Discontinuous at 1.
Definition
A function f is continuous at a if and only if the following three conditions are met:

1. f.a/ exists

2. limx!a f.x/ exists

3. f.a/ D limx!a f.x/

If f is not continuous at a, then f is said to be discontinuous at a, and a is called a point
of discontinuity of f.

f(x ) = 5

 x

f(x)

7

5

FIGURE 10.25 f is continuous at 7.

EXAMPLE 1 Applying the Definition of Continuity

a. Show that f.x/ D 5 is continuous at 7.

Solution: We must verify that the preceding three conditions are met. First, f.7/ D 5,
so f is defined at x D 7. Second,

lim
x!7

f.x/ D lim
x!7

5 D 5

Thus, f has a limit as x! 7. Third,

lim
x!7

f.x/ D 5 D f.7/

Therefore, f is continuous at 7. (See Figure 10.25.)
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b. Show that g.x/ D x2 � 3 is continuous at �4.

 x

g(x)

-4

13

g(x) = x
2 

- 3

FIGURE 10.26 g is continuous at �4.

Solution: The function g is defined at x D �4 W g.�4/ D 13. Also,

lim
x!�4

g.x/ D lim
x!�4

.x2 � 3/ D 13 D g.�4/

Therefore, g is continuous at �4. (See Figure 10.26.)

Now Work Problem 1 G

We say that a function is continuous on an interval if it is continuous at each
point there. In this situation, the graph of the function is connected over the interval.
For example, f.x/ D x2 is continuous on the interval [2, 5]. In fact, in Example 5
of Section 10.1, we showed that, for any polynomial function f, for any number a,
limx!a f.x/ D f.a/. This means that

A polynomial function is continuous at every point.

It follows that such a function is continuous on every interval. We say that a function is
continuous on its domain if it is continuous at each point in its domain. If the domain
of such a function is the set of all real numbers, we may simply say that the function is
continuous.

EXAMPLE 2 Continuity of Polynomial Functions

The functions f.x/ D 7 and g.x/ D x2 � 9xC 3 are polynomial functions. Therefore,
they are continuous on their domains. For example, they are continuous at 3.

Now Work Problem 13 G

When is a function discontinuous? Suppose that a function f is defined on an open
interval containing a, except possibly at a itself. Then f is discontinuous at a if

1. f.a/ does not exist (f is not defined at a)

or

2. limx!a f.x/ does not exist (f has no limit as x! a/

or

3. f.a/ and limx!a f.x/ both exist but are different (f.a/ ¤ limx!a f.x/)

In Figure 10.27, we can find points of discontinuity by inspection.

x

y

a

De�ned at a
and limit as
x    a exists, but
limit is not f(a) 

x

y

a

Not de�ned at a
but de�ned for all
nearby values of a

f(a) 

x

y

a

De�ned at a
but no limit
as x     a

FIGURE 10.27 Discontinuities at a.
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EXAMPLE 3 Discontinuities

a. Let f.x/ D 1=x. (See Figure 10.28.) Note that f is not defined at x D 0, but it is
defined for all other x nearby. Thus, f is discontinuous at 0. Moreover,
limx!0C f.x/ D 1 and limx!0� f.x/ D �1. A function is said to have an
infinite discontinuity at a when at least one of the one-sided limits is either 1
or �1 as x! a. Hence, f has an infinite discontinuity at x D 0.

1

1

 1

xf(x) =

x

f(x) 

FIGURE 10.28 Infinite discontinuity
at 0.

b. Let f.x/ D

8<: 1 if x > 0
0 if x D 0
�1 if x < 0

.

x

f(x) 

f(x) =
1, if x 7 0

0, if x = 0

-1, if x 6 0

1

-1

FIGURE 10.29 Discontinuous
case-defined function.

(See Figure 10.29.) Although f is defined at x D 0; limx!0 f.x/ does not exist. Thus,
f is discontinuous at 0.

Now Work Problem 29 G

The following property indicates where the discontinuities of a rational function occur:

Discontinuities of a Rational Function
A rational function is discontinuous at points where the denominator is 0 and is
continuous otherwise. Thus, a rational function is continuous on its domain.

EXAMPLE 4 Locating Discontinuities in Rational Functions

For each of the following functions, find all points of discontinuity.

The rational function f.x/ D
xC 1
xC 1

is

continuous on its domain but it is not
defined at �1. It is discontinuous at �1.
The graph of f is a horizontal straight line
with a “hole” in it at �1.

a. f.x/ D
x2 � 3

x2 C 2x � 8
Solution: This rational function has denominator

x2 C 2x � 8 D .xC 4/.x � 2/

which is 0 when x D �4 or x D 2. Thus, f is discontinuous only at �4 and 2.

b. h.x/ D
xC 4
x2 C 4

Solution: For this rational function, the denominator is never 0. (It is always positive.)
Therefore, h has no discontinuity.

Now Work Problem 19 G

EXAMPLE 5 Locating Discontinuities in Case-Defined Functions

For each of the following functions, find all points of discontinuity.

a. f.x/ D
�
xC 6 if x � 3

x2 if x < 3

Solution: The cases defining the function are given by polynomials, which are con-
tinuous, so the only possible place for a discontinuity is at x D 3, where the separation
of cases occurs. We know that f.3/ D 3C 6 D 9. So because

lim
x!3C

f.x/ D lim
x!3C

.xC 6/ D 9

and

lim
x!3�

f.x/ D lim
x!3�

x2 D 9

we can conclude that limx!3 f.x/ D 9 D f.3/ and the function has no points of discon-
tinuity. We can reach the same conclusion by inspecting the graph of f in Figure 10.30.
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b. f.x/ D
�
xC 2 if x > 2

x2 if x < 2

Solution: Since f is not defined at x D 2, it is discontinuous at 2. Note, however, that

lim
x!2�

f.x/ D lim
x!2�

x2 D 4 D lim
x!2C

xC 2 D lim
x!2C

f.x/

shows that limx!2 f.x/ exists. (See Figure 10.31.)

3

9

x

f(x) 

f (x) = 
x + 6, if x Ú 3

x
2
, if x 6 3

FIGURE 10.30 Continuous case-defined function.

x

f(x) 

f(x) =
x + 2, if  x 7 2

x
2
, if  x 6 2

2

4

FIGURE 10.31 Discontinuous at 2.

Now Work Problem 31 G

EXAMPLE 6 US Post-Office Function

The post-office function

c D f.x/ D

8̂̂<̂
:̂

39 if 0 < x � 1
63 if 1 < x � 2
87 if 2 < x � 3
111 if 3 < x � 4

gives the cost c (in cents) of mailing, first class, an item of weight x (ounces), for
0 < x � 4, in July 2006. It is clear from its graph in Figure 10.32 that f has disconti-
nuities at 1, 2, and 3 and is constant for values of x between successive discontinuities.
Such a function is called a step function because of the appearance of its graph.

Now Work Problem 35 G

f(x)

x
1 2 3 4

39

63

87

111

FIGURE 10.32 US Post-Office
function.

There is another way to express continuity besides that given in the definition. If
we take the statement

lim
x!a

f.x/ D f.a/

and replace x by aC h, then as x! a, we have h! 0; and as h! 0, we have x! a.
It follows that limx!a f.x/ D limh!0 f.aCh/, provided the limits exist (Figure 10.33).
Thus, the statement

lim
h!0

f.aC h/ D f.a/

assuming both sides exist, also defines continuity at a.

This method of expressing continuity
at a is used frequently in mathematical
proofs.

y

x

f(a)

f(a + h)

y = f (x)

a + h

x

h

a

as x    a,

then h    0

FIGURE 10.33 Diagram for
continuity at a.

By observing the graph of a function, we may be able to determine where a dis-
continuity occurs. However, technological devices have their limitations. For example,
the function

f.x/ D
x � 1
x2 � 1
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is discontinuous at �1 and at 1; neither of these numbers are in the domain of f. The
discontinuity at �1 is clear, but that at 1 may not be obvious because the graph of f is

the same as the graph of
1

xC 1
except that it has a “hole” at x D 1. The screen shot

from a graphing calculator in Figure 10.34 illustrates the difficulty.

5

5

-5

-5

FIGURE 10.34 The discontinuity at 1 is not apparent

from the graph of f.x/ D
x � 1

x2 � 1
.

Often, it is helpful to describe a situation by a continuous function. For example,
the demand schedule in Table 10.3 indicates the number of units of a particular prod-
uct that consumers will demand per week at various prices. This information can be
given graphically, as in Figure 10.35(a), by plotting each quantity–price pair as a point.
Clearly, the graph does not represent a continuous function. Furthermore, it gives us
no information as to the price at which, say, 35 units would be demanded. However, if
we connect the points in Figure 10.35(a) by a smooth curve [see Figure 10.35(b)], we
get a so-called demand curve. From it, we could guess that at about $2.50 per unit, 35
units would be demanded.

Table 10.3 Demand
Schedule

Price/Unit, p Quantity/Week, q

$20 0

10 5

5 15

4 20

2 45

1 95

Frequently, it is possible and useful to describe a graph, as in Figure 10.35(b), by
means of an equation that defines a continuous function, f. Such a function not only
gives us a demand equation, p D f.q/, which allows us to anticipate corresponding
prices and quantities demanded, but also permits a convenient mathematical analysis
of the nature and basic properties of demand. Of course, some care must be used in
working with equations such as p D f.q/. Mathematically, f may be defined when
q D
p
37, but from a practical standpoint, a demand of

p
37 units could bemeaningless

to our particular situation. For example, if a unit is an egg, then a demand of
p
37 eggs

make no sense.
We remark that functions of the form f.x/ D xa, for fixed a, are continuous on

their domains. In particular, (square) root functions are continuous. Also, exponential
functions and logarithmic functions are continuous on their domains. Thus, exponential

q

p

5

(b)(a)

2.5

25 35 50 75 100

10

15

20

q

p

5

25 50 75 100

10

15

20

FIGURE 10.35 Viewing data via a continuous function.
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functions have no discontinuities, while a logarithmic function has a discontinuity only
at 0 (which is an infinite discontinuity). Many more examples of continuous functions
are provided by the observation that if f and g are continuous on their domains, then
the composite function f ı g, given by f ı g.x/ D f.g.x// is continuous on its domain.
For example, the function

f.x/ D

s
ln
�
x2 C 1
x � 1

�
is continuous on its domain. Determining the domain of such a function may, of course,
be fairly involved.

PROBLEMS 10.3
In Problems 1–6, use the definition of continuity to show that the
given function is continuous at the indicated point.

1. f.x/ D x3 � 5xI x D 2 2. f.x/ D
x � 3
5x
I x D �3

3. g.x/ D
p
2 � 3xI x D 0 4. f.x/ D

x
4
;D 3

5. h.x/ D
xC 3
x � 3

; x D �3 6. f.x/ D 3
p
xI x D �1

In Problems 7–12, determine whether the function is continuous
at the given points.

7. f.x/ D
xC 4
x � 2

I �2; 0 8. f.x/ D
x2 � 4xC 4

6
I 2;�2

9. g.x/ D
x � 5
x2 � 25

; �5; 5 10. h.x/ D
3

x2 C 9
; 3;�3

11. f.x/ D
�
xC 2 if x � 2

x2 if x < 2
I 2; 0

12. f.x/ D

8<:1
x

if x ¤ 0

0 if x D 0
I 0;�1

In Problems 13–16, give a reason why the function is continuous
on its domain.

13. f.x/ D 2x2 � 3 14. f.x/ D
5=7 � .1=4/x2

23=5
15. f.x/ D ln. 3

p
x/ 16. f.x/ D x.1 � x/

In Problems 17–34, find all points of discontinuity.

17. f.x/ D 3x2 � 3 18. h.x/ D x � 2

19. f.x/ D
17=11
x � 23

20. f.x/ D
x2 C 5x � 2

x2 � 9

21. g.x/ D
.2x2 � 3/3

15
22. f.x/ D �1

23. f.x/ D
x2 C 6xC 9
x2 C 2x � 15

24. g.x/ D
xC 2
x2 C x

25. h.x/ D
x � 3
x3 � 9x

26. f.x/ D
2x � 3
3 � 2x

27. p.x/ D
x

x2 C 1
28. f.x/ D

x4

x4 � 1

29. f.x/ D
�

3 if x � 0
�2 if x < 0 30. f.x/ D

�
3xC 5 if x � �2

2 if x < �2

31. f.x/ D
�

0 if x � 1
x � 1 if x > 1 32. f.x/ D

�
x � 3 if x > 2
3 � 2x if x < 2

33. f.x/ D
�
x2 C 1 if x > 2

8x if x < 2

34. f.x/ D

8<: 5
x.x � 2/

if x � �1

5x � 1 if x < �1

35. Telephone Rates Suppose the long-distance rate for a
telephone call from Hazleton, Pennsylvania to Los Angeles,
California, is $0.08 for the first minute or fraction thereof and
$0.04 for each additional minute or fraction thereof. If y D f.t/ is
a function that indicates the total charge y for a call of t minutes

duration, sketch the graph of f for 0 < t � 3 12 . Use your graph to

determine the values of t, where 0 < t � 3 12 , at which
discontinuities occur.

36. The greatest integer function, f.x/ D bxc, is defined to be the
greatest integer less than or equal to x, where x is any real number.

For example, b3c D 3, b1:999c D 1, b 14c D 0, and b�4:5c D �5.

Sketch the graph of this function for �3:5 � x � 3:5. Use your
sketch to determine the values of x at which discontinuities occur.

37. Inventory Sketch the graph of

y D f.x/ D

8<:�100xC 600 if 0 � x < 5
�100xC 1100 if 5 � x < 10
�100xC 1600 if 10 � x < 15

A function such as this might describe the inventory y of a
company at time x. Is f continuous at 2? At 5? At 10?

38. Graph g.x/ D e�1=x2 . Because g is not defined at x D 0, g is
discontinuous at 0. Based on the graph of g, is

f.x/ D
�
e�1=x2 if x ¤ 0

0 if x D 0

continuous at 0?

Objective 10.4 Continuity Applied to Inequalities
To develop techniques for solving
nonlinear inequalities.

In Section 1.2, we solved linear inequalities. We now turn our attention to showing
how the notion of continuity can be applied to solving a nonlinear inequality such as
x2 C 3x � 4 < 0. The ability to do this will be important in our study of calculus.
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Recall (from Section 2.5) that the x-intercepts of the graph of a function g are
precisely the roots of the equation g.x/ D 0. Hence, from the graph of y D g.x/ in
Figure 10.36, we conclude that r1; r2, and r3 are roots of g.x/ D 0 and any other roots
will give rise to x-intercepts (beyond what is actually shown of the graph). Assume that
in fact all the roots of g.x/ D 0, and hence, all the x-intercepts, are shown. Note further
from Figure 10.36 that the three roots determine four open intervals on the x-axis:

.�1; r1/ .r1; r2/ .r2; r3/ .r3;1/

y

x
(r1, 0)

(r2, 0)

(r3, 0)

y = g (x)

FIGURE 10.36 r1; r2, and r3 are
roots of g.x/ D 0.

To solve x2 C 3x � 4 > 0, we let

f.x/ D x2 C 3x � 4 D .xC 4/.x � 1/

x

f(x) = x
2
 + 3x - 4

1-4

25
-

4

f(x)

FIGURE 10.37 �4 and 1 are
roots of f.x/ D 0.

Because f is a polynomial function, it is continuous. The roots of f.x/ D 0 are�4 and 1;
hence, the graph of f has x-intercepts .�4; 0/ and .1; 0/. (See Figure 10.37.) The roots
determine three intervals on the x-axis:

.�1;�4/ .�4; 1/ .1;1/

(x0, 0)
f(x) 7 0

f(x) 6 0

 )

-4

FIGURE 10.38 Change of sign
for a continuous function.

Consider the interval .�1;�4/. Since f is continuous on this interval, we claim
that either f.x/ > 0 or f.x/ < 0 throughout the interval. If this were not the case, then
f.x/ would indeed change sign on the interval. By the continuity of f, there would be a
point where the graph intersects the x-axis—for example, at .x0; 0/. (See Figure 10.38.)
But then x0 would be a root of f.x/ D 0. However, this cannot be, because there is no
root less than�4. Hence, f.x/must be strictly positive or strictly negative on .�1;�4/.
A similar argument can be made for each of the other intervals.

To determine the sign of f.x/ on any one of the three intervals, it suffices to deter-
mine its sign at any point in the interval. For instance, �5 is in .�1;�4/ and

f.�5/ D 6 > 0 Thus, f.x/ > 0 on .�1;�4/

Similarly, 0 is in .�4; 1/, and

f.0/ D �4 < 0 Thus, f.x/ < 0 on .�4; 1/

Finally, 3 is in .1;1/, and

f.3/ D 14 > 0 Thus, f.x/ > 0 on .1;1/

(See the sign chart in Figure 10.39.) Therefore,

x2 C 3x � 4 > 0 on .�1;�4/ and .1;1/

so we have solved the inequality. These results are obvious from the graph in
Figure 10.37. The graph lies above the x-axis, meaning that f.x/ > 0, on .�1;�4/
and on .1;1/.

In more complicated examples it will be useful to exploit the multiplicative nature
of signs. We noted that f.x/ D x2 C 3x � 4 D .x C 4/.x � 1/. Each of x C 4 and
x � 1 has a sign chart that is simpler than that of x2 C 3x � 4. Consider the sign chart
in Figure 10.40. As before, we placed the roots of f.x/ D 0 in ascending order, from
left to right, so as to subdivide .�1;1/ into three open intervals. This forms the top
line of the box. Directly below the top line we determined the signs of x C 4 on the
three subintervals. We know that for the linear function xC 4 there is exactly one root
of the equation xC 4 D 0, namely, �4. We placed a 0 at �4 in the row labeled xC 4.
By the argument illustrated in Figure 10.38, it follows that the sign of the function
xC 4 is constant on .�1;�4/ and on .�4;1/ and two evaluations of xC 4 settle the
distribution of signs for x C 4. From .�5/ C 4 D �1 < 0, we have x C 4 negative
on .�1;�4/, so we entered a � sign in the .�1;�4/ space of the xC 4 row. From

f (x ) 6 0f (x ) 7 0 f (x ) 7 0

1-4

FIGURE 10.39 Simple sign chart for x2 C 3x � 4.
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-

-4q- 1

x + 4

x - 1

f(x)

q

- -

+

-

+

+

++

0

0

00

FIGURE 10.40 Sign chart for x2 C 3x � 4.

.0/C 4 D 4 > 0, we have xC 4 positive on .�4;1/. Since .�4;1/ has been further
subdivided at 1, we entered a C sign in each of the .�4; 1/ and .1;1/ spaces of the
xC 4 row. In a similar way we constructed the row labeled x � 1.

Now the bottom row is obtained by taking, for each component, the product of the
entries above. Thus, we have .xC4/.x�1/ D f.x/, .�/.�/ D C, 0.any number/ D 0,
.C/.�/ D �, .any number/0 D 0, and .C/.C/ D C. Sign charts of this kind are
useful whenever a continuous function can be expressed as a product of several simpler,
continuous functions, each of which has a simple sign chart. In Chapter 13 we will rely
heavily on such sign charts.

EXAMPLE 1 Solving a Quadratic Inequality

Solve x2 � 3x � 10 > 0.

Solution: If f.x/ D x2�3x�10, then f is a polynomial (quadratic) function and, thus,
is continuous everywhere. To find the real roots of f.x/ D 0, we have

x2 � 3x � 10 D 0

.xC 2/.x � 5/ D 0

x D �2; 5

The roots �2 and 5 determine three intervals:

.�1;�2/ .�2; 5/ .5;1/

In the manner of the last example, we construct the sign chart in Figure 10.41. We see
that x2 � 3x � 10 > 0 on .�1;�2/ [ .5;1/.

-

-2-q 5

x + 2

x - 5

f(x)

q

- -

+

-

+

+

++

0

0

00

FIGURE 10.41 Sign chart for x2 � 3x� 10.

Now Work Problem 1 G

EXAMPLE 2 Solving a Polynomial Inequality

Solve x.x � 1/.xC 4/ � 0.

APPLY IT I
10. An open box is formed by cutting
a square piece out of each corner of an
8-inch by 10-inch piece of metal. If each
side of the cut-out squares is x inches
long, the volume of the box is given by
V.x/ D x.8�2x/.10�2x/. This problem
makes sense only when this volume is
positive. Find the values of x for which
the volume is positive.

Solution: If f.x/ D x.x � 1/.xC 4/, then f is a polynomial function and, hence, con-
tinuous everywhere. The roots of f.x/ D 0 are (in ascending order) �4, 0, and 1 and
lead to the sign chart in Figure 10.42.

From the sign chart, noting the endpoints required, x.x � 1/.x C 4/ � 0 on
.�1;�4� [ Œ0; 1�.
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-

-4-q q

x

x - 1

x + 1

f(x)

0 1

- -

-

+

-

+

+-

+ --

+

+

+

+0

0

0 0

0

0

FIGURE 10.42 Sign chart for x.x � 1/.xC 4/.

Now Work Problem 11 G

The sign charts we have described are certainly not limited to solving polynomial
inequalities. The reader will have noticed that we used thicker vertical lines at the end-
points, �1 and1, of the chart. These symbols do not denote real numbers, let alone
points in the domain of a function. We extend the thick vertical line convention to sin-
gle out isolated real numbers that are not in the domain of the function in question. The
next example will illustrate.

EXAMPLE 3 Solving a Rational Function Inequality

Solve
x2 � 6xC 5

x
� 0.

Solution: Let

f.x/ D
x2 � 6xC 5

x
D
.x � 1/.x � 5/

x

For a rational function f D g=h, we solve the inequality by considering the intervals
determined by both the roots of g.x/ D 0 and the roots of h.x/ D 0. Observe that the
roots of g.x/ D 0 are the roots of f.x/ D 0 because the only way for a fraction to be
0 is for its numerator to be 0. On the other hand, the roots of h.x/ D 0 are precisely
the points at which f is not defined and these are also precisely the points at which f is
discontinuous. The sign of fmay change at a root and it may change at a discontinuity.
Here the roots of the numerator are 1 and 5 and the root of the denominator is 0. In
ascending order these give us 0, 1, and 5, which determine the open intervals

.�1; 0/ .0; 1/ .1; 5/ .5;1/

These, together with the observation that 1=x is a factor of f, lead to the sign chart in
Figure 10.43.

Here, the first two rows of the sign chart are constructed as before. In the third
row we have placed a � sign at 0 to indicate that the factor 1=x is not defined at 0.
The bottom row, as before, is constructed by taking the products of the entries above.
Observe that a product is not defined at any point at which any of its factors is not
defined. Hence, we also have a � entry at 0 in the bottom row.

From the bottom row of the sign chart we can read that the solution of .x�1/.x�5/
x �

0 is .0; 1� [ Œ5;1�. Observe that 1 and 5 are in the solution and 0 is not.

-

0-q q

x - 1

x - 5

1/x

f(x)

1 5

- -

-

+

-

+

+-

+ --

+

+

+

+*

*

0 0

0

0

FIGURE 10.43 Sign chart for
.x � 1/.x � 5/

x
.
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5

1

-10

10

f(x) Ú 0

 x
2
 - 6x + 5

 xf(x) =

f(x)

x

FIGURE 10.44 Graph of f.x/ D
x2 � 6xC 5

x
.

In Figure 10.44 we have graphed f.x/ D x2�6xC5
x , and we can confirm visually that

the solution of the inequality f.x/ � 0 is precisely the set of all real numbers at which
the graph lies on or above the x-axis.

Now Work Problem 17 G

A sign chart is not always necessary, as the following example shows.

EXAMPLE 4 Solving Nonlinear Inequalities
a. Solve x2 C 1 > 0.

Solution: The equation x2 C 1 D 0 has no real roots. Thus, the continuous function
f.x/ D x2C1 has no x-intercepts. It follows that either f.x/ is always positive or f.x/ is
always negative. But x2 is always positive or zero, so x2C 1 is always positive. Hence,
the solution of x2 C 1 > 0 is .�1;1/.

b. Solve x2 C 1 < 0.

Solution: From part (a), x2 C 1 is always positive, so x2 C 1 < 0 has no solution,
meaning that the set of solutions is ;, the empty set.

Now Work Problem 7 G

We conclude with a nonrational example. The importance of the function intro-
duced will become clear in later chapters.

EXAMPLE 5 Solving a Nonrational Function Inequality

Solve x ln x � x � 0.

Solution: Let f.x/ D x ln x � x D x.ln x � 1/, which, being a product of continuous
functions, is continuous. From the factored form for f we see that the roots of f.x/ D 0
are 0 and the roots of ln x � 1 D 0. The latter is equivalent to ln x D 1, which is
equivalent to eln x D e1, since the exponential function is one-to-one. However, the last
equality says that x D e. The domain of f is .0;1/ because ln x is defined only for
x > 0. The domain dictates the top line of our sign chart in Figure 10.45.

+

e0 q

x

ln x - 1

f(x)

- +

+

+- 0

0

FIGURE 10.45 Sign chart for
x ln x � x.

The first row of Figure 10.45 is straightforward. For the second row, we placed a 0
at e, the only root of ln x�1 D 0. By continuity of ln x�1, the sign of ln x�1 on .0; e/
and on .e;1/ can be determined by suitable evaluations. For the first we evaluate at 1 in
.0; e/ and get ln 1�1 D 0�1 D �1 < 0. For the second we evaluate at e2 in .e;1/ and
get ln e2�1 D 2�1 D 1 > 0. The bottom row is, as usual, determined by multiplying
the others. From the bottom row of Figure 10.45 the solution of x ln x � x � 0 is
evidently Œe;1/.

Now Work Problem 35 G
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PROBLEMS 10.4
In Problems 1–26, solve the inequalities by the technique
discussed in this section.

1. x2 � 3x � 4 > 0 2. x2 � 8xC 15 > 0

3. x2 � 3x � 10 � 0 4. 15 � 2x � x2 � 0

5. 3x2 � 17xC 10 < 0 6. x2 � 4 < 0

7. x2 C 4 < 0 8. 2x2 � x � 2 � 0

9. .xC 1/.x � 2/.xC 7/ � 0 10. .xC 3/.xC 1/.x � 1/ � 0

11. �x.x � 5/.xC 4/ > 0 12. .xC 2/2 > 0

13. x3 C 4x � 0 14. .xC 3/2.x2 � 4/ < 0

15. x3 � 3x2 C 2x � 0 16. x3 C 6x2 C 9x < 0

17.
x

x2 � 9
< 0 18.

x2 � 1
x

< 0

19.
3

xC 1
� 0 20.

5x
x2 � 6x � 7

> 0

21.
x2 � x � 6
x2 C 4x � 5

� 0 22.
x2 C 4x � 5
x2 C 3xC 2

� 0

23.
3

x2 C 6xC 5
� 0 24.

3xC 2
.x � 1/2

� 0

25. 2x2 C 5x � 3 26. x4 � 16 � 0

27. Revenue Suppose that consumers will purchase q units of
a product when the price of each unit is 28 � 0:2q dollars. How
many units must be sold for the sales revenue to be at least $750?

28. Forest Management A lumber company owns a forest that
is of rectangular shape, 1 mi � 2 mi. The company wants to cut a
uniform strip of trees along the outer edges of the forest. At most,

how wide can the strip be if the company wants at least 1 5
16 mi

2 of
forest to remain?

29. Container Design A container manufacturer wishes to
make an open box by cutting a 3-in. by 3-in. square from each
corner of a square sheet of aluminum and then turning up the
sides. The box is to contain at least 192 cubic inches. Find the
dimensions of the smallest square sheet of aluminum that can
be used.

30. Workshop Participation Computech is offering a
workshop on web page design to key personnel at Pear
Corporation. The price per person is $60, and Pear Corporation
guarantees that at least 20 people will attend. Suppose Computech
offers to reduce the charge for everybody by $1.00 for each person
over the 20 who attends. How should Computech limit the size of
the group so that the total revenue it receives will not be less than
that received for 20 persons?

31. Graph f.x/ D x3 C 7x2 � 5xC 4. Use the graph to determine
the solution of

x3 C 7x2 � 5xC 4 � 0

32. Graph f.x/ D
3x2 � 0:5xC 2
6:2 � 4:1x

. Use the graph to determine the
solution of

3x2 � 0:5xC 2
6:2 � 4:1x

> 0

A novel way of solving a nonlinear inequality like f.x/ > 0 is by
examining the graph of g.x/ D f.x/=jf.x/j, whose range consists
only of 1 and �1:

g.x/ D
f.x/
jf. f.x/j

D

�
1 if f.x/ > 0
�1 if f.x/ < 0

The solution of f.x/ > 0 consists of all intervals for which
g.x/ D 1. Using this technique, solve the inequalities in
Problems 33 and 34.

33. 6x2 � x � 2 > 0 34.
x2 C x � 1
x2 C x � 6

< 0

35. Graph x ln x � x. Does the function appear to be continuous?
Does the graph support the conclusions of Example 5? At what
value does the function appear to have a minimum value?
Can lim

x!0C
f.x/ be estimated?

36. Graph e�x2 . Does the function appear to be continuous? Can
the conclusion be confirmed by invoking facts about continuous
functions? At what value does the function appear to have a
maximum value?

Chapter 10 Review
Important Terms and Symbols Examples
Section 10.1 Limits

limx!a f.x/ D L Ex. 8, p. 458

Section 10.2 Limits (Continued)
limx!a� f.x/ D L limx!aC f.x/ D L limx!a f.x/ D1 limx!a f.x/ D1 Ex. 1, p. 462
limx!1 f.x/ D L limx!�1 f.x/ D L Ex. 3, p. 463

Section 10.3 Continuity
continuous at a discontinuous at a Ex. 3, p. 471
continuous on an interval continuous on its domain Ex. 4, p. 471

Section 10.4 Continuity Applied to Inequalities
sign chart Ex. 1, p. 476
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Summary
The notion of limit is fundamental for calculus. To say that
limx!a f.x/ D L means that the values of f.x/ can be made
as close to the number L as we like by taking x sufficiently
close to, but different from, a. If limx!a f.x/ and limx!a g.x/
exist and c is a constant, then

1. lim
x!a

c D c

2. lim
x!a

xn D an

3. lim
x!a

. f.x/ ˙
� g.x// D lim

x!a
f.x/ ˙
� lim

x!a
g.x/

4. lim
x!a

.cf.x// D c � lim
x!a

f.x/

5. lim
x!a

f.x/
g.x/
D

limx!a f.x/
limx!a g.x/

if lim
x!a

g.x/ ¤ 0

6. lim
x!a

n
p
f.x/ D n

q
lim
x!a

f.x/

7. If f is a polynomial function, then limx!a f.x/ D f.a/.

Property 7, saying that limits of polynomial functions can be
calculated by evaluation, must be used with care. With many
other functions f, attempting to find limx!a f.x/ by evalua-
tion at a can lead to meaningless expressions of the form 0=0.
In such cases, algebraic manipulations may be needed to find
another function g that agrees with f, for x ¤ a, and for which
the limit can be determined, perhaps by evaluation.

If f.x/ approaches L as x approaches a from the right,
then we write limx!aC f.x/ D L. If f.x/ approaches L as
x approaches a from the left, we write limx!a� f.x/ D L.
These limits are called one-sided limits.

The infinity symbol1, which does not represent a num-
ber, is used in describing limits. The statement

lim
x!1

f.x/ D L

means that as x increases without bound, the values of f.x/
approach the number L. A similar statement applies for the
situation when x ! �1, which means that x is decreasing
without bound. In general, if p > 0, then

lim
x!1

1
xp
D 0 and lim

x!�1

1
xp
D 0

If f.x/ increases without bound as x ! a, then we write
limx!a f.x/ D1. Similarly, if f.x/ decreases without bound,
we have limx!a f.x/ D �1. To say that the limit of a func-
tion is1 (or�1) does not mean that the limit exists. Rather,
it is a way of saying that the limit does not exist and why there
is no limit. Of course, “limx!a f.x/ does not exist” does not
imply “limx!a f.x/ D1”.

There is a rule for evaluating the limit of a rational func-
tion as x ! ˙1. If f.x/ is a rational function and anxn and
bmxm are the terms in the numerator and denominator, respec-
tively, with the greatest powers of x, then

lim
x!˙1

f.x/ D lim
x!˙1

anxn

bmxm

In particular, as x ! ˙1, the limit of a polynomial is the
same as the limit of the term that involves the greatest power
of x. This means that, for a nonconstant polynomial, the limit
as x!˙1 is either˙1 or�1.

A function f is continuous at a if and only if

1. f.a/ exists

2. limx!a f.x/ exists

3. f.a/ D limx!a f.x/

Geometrically this means that the graph of f has no break at
x D a. If a function is not continuous at a, then the function is
said to be discontinuous at a. Polynomial functions and ratio-
nal functions are continuous on their domains. Thus, polyno-
mial functions have no discontinuities and a rational function
is discontinuous only at points where its denominator is zero.

To solve the inequality f.x/ > 0 (or f.x/ < 0), we first
find the real roots of f.x/ D 0 and the values of x for which
f is discontinuous. These values determine intervals, and on
each interval, f.x/ is either always positive or always nega-
tive. To find the sign on any one of these intervals, it suffices
to find the sign of f.x/ at any point there. After the signs are
determined for all intervals and assembled on a sign chart, it
is easy to give the solution of f.x/ > 0

Review Problems
In Problems 1–28, find the limits if they exist. If the limit does not
exist, so state, or use the symbol1 or �1 where appropriate.

1. lim
x!1

.3x2 C 4x � 2/ 2. lim
x!0

2x2 � 3xC 1
2x2 � 2

3. lim
x!4

x2 � 16
x2 � 4x

4. lim
x!�4

2xC 3
x2 � 4

5. lim
h!0

.xC h/ 6. lim
x!1

x2 � 1
2x2 C x � 3

7. lim
x!�4

x3 C 4x2

x2 C 2x � 8
8. lim

x!2

x2 � 7xC 10
x2 C x � 6

9. lim
x!1

2
xC 1 10. lim

x!1

x2 C 1
2x2

11. lim
x!1

3xC 17
11x � 7

12. lim
x!�1

1
x4

13. lim
t!4

3t � 4
t � 4 14. lim

x!�1

x6

x5
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15. lim
x!�1

xC 3
1 � x

16. lim
x!16

4
p
81

17. lim
x!1

x2 � 1
.3xC 2/2

18. lim
x!5

x2 � 2x � 15
x � 5

19. lim
x!3�

xC 3
x2 � 9

20. lim
x!2

2 � x
x � 2

21. lim
x!1

3
p
8x 22. lim

y!5C

p
y � 5

23. lim
x!1

x100 C .1=x4/
e � x96

24. lim
x!�1

ex2 � x4

31x � 2x3

25. lim
x!1

f.x/ if f.x/ D
�
x2 if 0 � x < 1
x if x > 1

26. lim
x!2

f.x/ if f.x/ D
�
xC 5 if x < 2

8 if x � 2

27. lim
x!4C

p
x2 � 16
4 � x

(Hint: For x > 4,
p
x2 � 16 D

p
x � 4

p
xC 4.)

28. lim
x!3C

x2 C x � 12
p
x � 3

(Hint: For x > 3,
x � 3
p
x � 3

D
p
x � 3.)

29. If f.x/ D 8x � 2; find lim
h!0

f.xC h/ � f.x/
h

.

30. If f.x/ D 2x2 � 3; find lim
h!0

f.xC h/ � f.x/
h

.

31. Host–Parasite Relationship For a particular host–parasite
relationship, it was determined that when the host density
(number of hosts per unit of area) is x, then the number of hosts
parasitized over a certain period of time is

y D 21
�
1 �

2
2C 5x

�
If the host density were to increase without bound, what value
would y approach?

32. Predator–Prey Relationship For a particular predator–
prey relationship, it was determined that the number y of prey
consumed by an individual predator over a period of time was a
function of the prey density x (the number of prey per unit of
area). Suppose

y D f.x/ D
10x

1C 0:1x

If the prey density were to increase without bound, what value
would y approach?

33. Using the definition of continuity, show that the function
f.x/ D xC 3 is continuous at x D 2.

34. Using the definition of continuity, show that the function

f.x/ D
x � 5
x2 C 2

is continuous at x D 5.

35. State whether f.x/ D x2=5 is continuous at each real number.
Give a reason for your answer.

36. State whether f.x/ D �x2�e3xCln 2p
2

is continuous everywhere.
Give a reason for your answer.

In Problems 37–44, find the points of discontinuity (if any) for
each function.

37. f.x/ D
x2

xC 3
38. f.x/ D

0
x2

39. f.x/ D
x � 1
2x2 C 3

40. f.x/ D .2 � 3x/3

41. f.x/ D
8 � x3

x2 � x � 6
42. f.x/ D

2xC 6
x3 C x

43. f.x/ D
�
2xC 3 if x > 2
3xC 5 if x � 2 44. f.x/ D

�
1=x if x < 1
1 if x � 1

In Problems 45–52, solve the given inequalities.

45. x2 C 4x � 12 > 0 46. 2x2 C 10x � 12 � 0

47. x5 � 7x4 48. x3 C 9x2 C 14x < 0

49.
xC 5
x2 � 1

< 0 50.
x.xC 5/.xC 8/

3
< 0

51.
x2 � 6x

x2 � 3x � 4
� 0 52.

x2 � 9
x2 � 16

� 0

53. Graph f.x/ D
x3 C 3x2 � 19xC 18
x3 � 2x2 C x � 2

. Use the graph to

estimate limx!2 f.x/.

54. Graph f.x/ D

p
xC 3 � 2
x � 1

. From the graph, estimate

limx!1 f.x/.

55. Graph f.x/ D x ln x. From the graph, estimate the one-sided
limit limx!0C f.x/.

56. Graph f.x/ D
ex � 1
e2x � ex

. Use the graph to estimate

limx!0 f.x/.

57. Graph f.x/ D x3 � x2 C x� 6. Use the graph to determine the
solution of

x3 � x2 C x � 6 � 0

58. Graph f.x/ D
x5 � 4
x3 C 1

. Use the graph to determine the

solution of

x5 � 4
x3 C 1

� 0
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11 Differentiation

11.1 The Derivative

11.2 Rules for Differentiation

11.3 The Derivative as a Rate
of Change

11.4 The Product Rule and
the Quotient Rule

11.5 The Chain Rule

Chapter 11 Review

G
overnment regulations generally limit the number of fish taken from a given
fishing ground by commercial fishing boats in a season. This prevents
overfishing, which depletes the fish population and leaves, in the long run,
fewer fish to catch.

From a strictly commercial perspective, the ideal regulations would maximize the
number of fish available for the year-to-year fish harvest. The key to finding those ideal
regulations is a mathematical function called the reproduction curve. For a given fish
habitat, this function estimates the fish population a year from now, P.nC1/, based on
the population now, P.n/, assuming no external interventions, such as fishing or influx
of predators.

The figure to the bottom left shows a typical reproduction curve. Also graphed is
the line P.nC1/ D P.n/, the line along which the populations P.nC1/ and P.n/would
be equal. Notice the intersection of the curve and the straight line at point A . This is
where, because of habitat crowding, the population has reached its maximum sustain-
able size. A population that is this size one year will be the same size the next year.

For any point on the horizontal axis, the distance between the reproduction curve
and the line P.n C 1/ D P.n/ represents the sustainable harvest: the number of fish
that could be caught, after the spawn have grown to maturity, so that in the end the
population is back at the same size it was a year ago.

Commercially speaking, the optimal population size is the one where the dis-
tance between the reproduction curve and the line P.n C 1/ D P.n/ is the greatest.
This condition is met where the slopes of the reproduction curve and the line
P.n C 1/ D P.n/ are equal. [The slope of P.n C 1/ D P.n/ is, of course, 1.] Thus,
for a maximum fish harvest year after year, regulations should aim to keep the fish
population fairly close to P0.

A central idea here is that of the slope of a curve at a given point. That idea is the
cornerstone concept of this chapter.

Now we begin our study of calculus. The ideas involved in calculus are completely
different from those of algebra and geometry. The power and importance of these ideas
and their applications will become clear later in the book. In this chapter we introduce
the derivative of a function and the important rules for finding derivatives. We also
show how the derivative is used to analyze the rate of change of a quantity, such as the
rate at which the position of a body is changing.

P (n)

A

P (n + 1)

P0

482
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Objective 11.1 The Derivative
To develop the idea of a tangent line to
a curve, to define the slope of a curve,
and to define a derivative and give it a
geometric interpretation. To compute
derivatives by using the limit definition.

The main problem of differential calculus deals with finding the slope of the tangent
line at a point on a curve. In high school geometry a tangent line, or tangent, to a circle is
often defined as a line that meets the circle at exactly one point (Figure 11.1). However,
this idea of a tangent is not very useful for other kinds of curves. For example, in
Figure 11.2(a), the lines L1 and L2 intersect the curve at exactly one point P. Although
we would not think of L2 as the tangent at this point, it seems natural that L1 is. In
Figure 11.2(b) we intuitivelywould consider L3 to be the tangent at pointP, even though
L3 intersects the curve at other points.

Tangent lines

FIGURE 11.1 Tangent lines to
a circle.

y

x

y

P

x

L2
L1

P

L1 is a tangent line
at P, but L2 is not.

L3 is a tangent
line at P.

(a) (b)

L3

FIGURE 11.2 Tangent line at a point.

From these examples, we see that the idea of a tangent as simply a line that inter-
sects a curve at only one point is inadequate. To obtain a suitable definition of tangent
line, we use the limit concept and the geometric notion of a secant line. A secant line
is a line that intersects a curve at two or more points.

Secant line

P

Q

y

y = f(x)

x

FIGURE 11.3 Secant line PQ.

Look at the graph of the function y D f.x/ in Figure 11.3. We wish to define the
tangent line at point P. If Q is a different point on the curve, the line PQ is a secant
line. If Q moves along the curve and approaches P from the right (see Figure 11.4),
typical secant lines are PQ0, PQ00, and so on. As Q approaches P from the left, typical
secant lines are PQ1, PQ2, and so on. In both cases, the secant lines approach the same
limiting position. This common limiting position of the secant lines is defined to be the
tangent line to the curve at P. This definition seems reasonable and applies to curves
in general, not just circles.

A curve does not necessarily have a tangent line at each of its points. For example,
the curve y D jxj does not have a tangent at .0; 0/. As can be seen in Figure 11.5,
a secant line through .0; 0/ and a nearby point to its right on the curve must always

y

x

PQ

Q

P

Limiting position
(tangent at P)

PQ¿

PQ–

PQ‡

PQ1

PQ2

PQ3

FIGURE 11.4 The tangent line is a limiting position of secant lines.

y

x

y =  x

y = - x, x 6 0 y = x, x  7  0

(0,0)

FIGURE 11.5 No tangent line
to graph of y D jxj at .0; 0/.
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be the line y D x. Thus, the limiting position of such secant lines is also the line y D x.
However, a secant line through .0; 0/ and a nearby point to its left on the curve must
always be the line y D �x. Hence, the limiting position of such secant lines is also the
line y D �x. Since there is no common limiting position, there is no tangent line at
.0; 0/.

Now that we have a suitable definition of a tangent to a curve at a point, we can
define the slope of a curve at a point.

Definition
The slope of a curve at a point P is the slope, if it exists, of the tangent line at P.

Since the tangent at P is a limiting position of secant lines PQ, we consider the
slope of the tangent to be the limiting value of the slopes of the secant lines as Q
approaches P. For example, let us consider the curve f.x/ D x2 and the slopes of some
secant lines PQ, where P D .1; 1/. For the point Q D .2:5; 6:25/, the slope of PQ
(see Figure 11.6) is

mPQ D
rise
run
D

6:25 � 1
2:5 � 1

D 3:5

x

y

(2.5, 6.25)

Tangent line

mPQ = 6.25 - 1
2.5 - 1

= 3.5

(1, 1)

Q

P

y = f(x) = x2

FIGURE 11.6 Secant line to f.x/ D x2 through .1; 1/ and .2:5; 6:25/.

Table 11.1 includes other pointsQ on the curve, as well as the corresponding slopes
ofPQ. Notice that asQ approachesP, the i slopes of the secant lines seem to approach 2.
Thus, we expect the slope of the indicated tangent line at .1; 1/ to be 2. This will be
confirmed later, in Example 1. But first, we wish to generalize our procedure.

Table 11.1 Slopes of Secant Lines to the Curve
f.x/ D x2 at P D .1; 1/

Q Slope of PQ

(2.5, 6.25) .6:25 � 1/=.2:5 � 1/D 3.5

(2, 4) .4 � 1/=.2 � 1/D 3

(1.5, 2.25) .2:25 � 1/=.1:5 � 1/D 2.5

(1.25, 1.5625) .1:5625 � 1/=.1:25 � 1/D 2.25

(1.1, 1.21) .1:21 � 1/=.1:1 � 1/D 2.1

(1.01, 1.0201) .1:0201 � 1/=.1:01 � 1/D 2.01
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x

y

y = f(x)

mPQ =(a,  f(a))

f(z) - f(a)

Q

z - a = h

(z,  f(z)) 

f(z) - f(a)

z - a

a z

P

FIGURE 11.7 Secant line through P and Q.

For the curve y D f.x/ in Figure 11.7, we will find an expression for the slope at
the point P D .a; f.a//. If Q D .z; f.z//, the slope of the secant line PQ is

mPQ D
f.z/ � f.a/

z � a

If the difference z� a is called h, then we can write z as aC h. Here, we must have
h ¤ 0, for if h D 0, then z D a, and no secant line exists. Accordingly,

mPQ D
f.z/ � f.a/

z � a
D

f.aC h/ � f.a/
h

Which of these two forms for mPQ is most convenient depends on the nature of the
function f. As Q moves along the curve toward P, z approaches a. This means that h
approaches zero. The limiting value of the slopes of the secant lines—which is the slope
of the tangent line at .a; f.a//—is

mtan D lim
z!a

f.z/ � f.a/
z � a

D lim
h!0

f.aC h/ � f.a/
h

(1)

Again, which of these two forms is most convenient—which limit is easiest to
determine—depends on the nature of the function f. In Example 1, we will use this
limit to confirm our previous expectation that the slope of the tangent line to the curve
f.x/ D x2 at .1; 1/ is 2.

EXAMPLE 1 Finding the Slope of a Tangent Line

Find the slope of the tangent line to the curve y D f.x/ D x2 at the point .1; 1/.

Solution: The slope is the limit in Equation (1) with f.x/ D x2 and a D 1:

lim
h!0

f.1C h/ � f.1/
h

D lim
h!0

.1C h/2 � .1/2

h

D lim
h!0

1C 2hC h2 � 1
h

D lim
h!0

2hC h2

h

D lim
h!0

h.2C h/
h

D lim
h!0

.2C h/ D 2

Therefore, the tangent line to y D x2 at .1; 1/ has slope 2. (Refer to Figure 11.6.)

Now Work Problem 1 G
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We can generalize Equation (1) so that it applies to any point .x; f.x// on a curve.
Replacing a by x gives a function, called the derivative x of f, whose input is x and
whose output is the slope of the tangent line to the curve at .x; f.x//, provided that the
tangent line exists and has a slope. (If the tangent line exists but is vertical, then it has
no slope.) We, thus, have the following definition, which forms the basis of differential
calculus:

Definition
The derivative of a function f is the function denoted f 0 (read “f prime”) and
defined by

f 0.x/ D lim
z!x

f.z/ � f.x/
z � x

D lim
h!0

f.xC h/ � f.x/
h

(2)

provided that this limit exists. If f 0.a/ can be found (while perhaps not all f 0.x/ can
be found) f is said to be differentiable at a, and f 0.a/ is called the derivative of f at
a or the derivative of f with respect to x at a. The process of finding the derivative is
called differentiation.

In the definition of the derivative, the expression

f.z/ � f.x/
z � x

D
f.xC h/ � f.x/

h
where z D xCh, is called a difference quotient. Thus, f 0.x/ is the limit of a difference
quotient.

EXAMPLE 2 Using the Definition to Find the Derivative

If f.x/ D x2, find the derivative of f.

Solution: Applying the definition of a derivative givesCalculating a derivative via the definition
requires precision. Typically, the
difference quotient requires considerable
manipulation before the limit step is
taken. This requires that each written step
be preceded by “limh!0” to
acknowledge that the limit step is still
pending. Observe that after the limit step
is taken, limh!0 is no longer be present.

f 0.x/ D lim
h!0

f.xC h/ � f.x/
h

D lim
h!0

.xC h/2 � x2

h
D lim

h!0

x2 C 2xhC h2 � x2

h

D lim
h!0

2xhC h2

h
D lim

h!0

h.2xC h/
h

D lim
h!0

.2xC h/ D 2x

Observe that, in taking the limit, we treated x as a constant, because it was h, not x,
that was changing. Also, note that f 0.x/ D 2x defines a function of x, which we can
interpret as giving the slope of the tangent line to the graph of f at .x; f.x//. For example,
if x D 1, then the slope is f 0.1/ D 2 � 1 D 2, which confirms the result in Example 1.

Now Work Problem 3 G

Besides the notation f 0.x/, other common ways to denote the derivative of y D f.x/
at x areThe notation

dy
dx
, which is called Leibniz

notation, should not be thought of as a
fraction, although it looks like one. It is
a single symbol for a derivative. We
have not yet attached any meaning to
individual symbols, such as dy and dx.

dy
dx

pronounced “dee y; dee x” or “dee y by dee x”

d
dx
. f.x// “dee f.x/; dee x” or “dee by dee x of f.x/”

y0 “y prime”

Dxy “dee x of y”

Dx. f.x// “dee x of f.x/”

Because the derivative gives the slope of the tangent line, f 0.a/ is the slope of the
line tangent to the graph of y D f.x/ at .a; f.a//.
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Two other notations for the derivative of f at a are

dy
dx

ˇ̌̌
xDa

and y0.a/

EXAMPLE 3 Finding an Equation of a Tangent Line

If f.x/ D 2x2 C 2xC 3, find an equation of the tangent line to the graph of f at .1; 7/.

Solution:

Strategy We will first determine the slope of the tangent line by computing the
derivative and evaluating it at x D 1. Using this result and the point .1; 7/ in a
point-slope form gives an equation of the tangent line.

We have

f 0.x/ D lim
h!0

f.xC h/ � f.x/
h

D lim
h!0

.2.xC h/2 C 2.xC h/C 3/ � .2x2 C 2xC 3/
h

D lim
h!0

2x2 C 4xhC 2h2 C 2xC 2hC 3 � 2x2 � 2x � 3
h

D lim
h!0

4xhC 2h2 C 2h
h

D lim
h!0

.4xC 2hC 2/

So

f 0.x/ D 4xC 2

and

f 0.1/ D 4.1/C 2 D 6

Thus, the tangent line to the graph at .1; 7/ has slope 6. A point-slope form of this
tangent is

y � 7 D 6.x � 1/

which in slope-intercept form is

y D 6xC 1

Now Work Problem 25 G

EXAMPLE 4 Finding the Slope of a Curve at a Point

Find the slope of the curve y D 2xC 3 at the point where x D 6.

Solution: The slope of the curve is the slope of the tangent line. Letting y D f.x/ D
2xC 3, we have

dy
dx
D lim

h!0

f.xC h/ � f.x/
h

D lim
h!0

.2.xC h/C 3/ � .2xC 3/
h

D lim
h!0

2h
h
D lim

h!0
2 D 2

Since dy=dx D 2, the slope when x D 6, or in fact at any point, is 2. Note that the curve
is a straight line and thus has the same slope at each point.

Now Work Problem 19 G
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EXAMPLE 5 A Function with a Vertical Tangent Line

Find
d
dx
.
p
x/.

Solution: Letting f.x/ D
p
x, we have

d
dx
.
p
x/ D lim

h!0

f.xC h/ � f.x/
h

D lim
h!0

p
xC h �

p
x

h

As h! 0, both the numerator and denominator approach zero. This can be avoided by
rationalizing the numerator:

Rationalizing numerators or
denominators of fractions is
often helpful in calculating limits.

p
xC h �

p
x

h
D

p
xC h �

p
x

h
:

p
xC hC

p
x

p
xC hC

p
x

D
.xC h/ � x

h.
p
xC hC

p
x/
D

h

h.
p
xC hC

p
x/

Therefore,

d
dx
.
p
x/ D lim

h!0

h

h.
p
xC hC

p
x/
D lim

1
p
xC hC

p
x
D

1
p
xC
p
x
D

1

2
p
x

Note that the original function,
p
x, is defined for x � 0, but its derivative, 1=.2

p
x/,

is defined only when x > 0. The reason for this is clear from the graph of y D
p
x in

Figure 11.8. When x D 0, the tangent is a vertical line, so its slope is not defined.

y

x

Tangent
   line at
   (0, 0)  

y =    x

FIGURE 11.8 Vertical tangent
line at .0; 0/.

Now Work Problem 17 G

In Example 5 we saw that the function y D
p
x is not differentiable when x D 0,

because the tangent line is vertical at that point. It is worthwhile to mention that y D jxj
also is not differentiable when x D 0, but for a different reason: There is no tangent
line at all at that point. (Refer to Figure 11.5.) Both examples show that the domain of
f 0 may be strictly contained in the domain of f.

To indicate a derivative, Leibniz notation is often useful because it makes it con-
venient to emphasize the independent and dependent variables involved. For example,Variables other than x and y are often

more natural in applied problems. Time
denoted by t, quantity by q, and price by
p are obvious examples. Example 6
illustrates.

if the variable p is a function of the variable q, we speak of the derivative of p with
respect to q, written dp=dq.

APPLY IT I
1. If a ball is thrown upward at a speed
of 40 ft/s from a height of 6 feet, its
height H in feet after t seconds is

H D 6C 40t � 16t2

Find dH=dt.

EXAMPLE 6 Finding the Derivative of p with Respect to q

If p D f.q/ D
1
2q
, find

dp
dq
.

Solution: We will do this problem first using the h ! 0 limit (the only one we have
used so far) and then using r! q to illustrate the other variant of the limit.

dp
dq
D

d
dq

�
1
2q

�
D lim

h!0

f.qC h/ � f.q/
h

D lim
h!0

1
2.qC h/

�
1
2q

h
D lim

h!0

q � .qC h/
2q.qC h/

h

D lim
h!0

q � .qC h/
h.2q.qC h//

D lim
h!0

�h
h.2q.qC h//

D lim
h!0

�1
2q.qC h/

D �
1
2q2
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We also have

dp
dq
D lim

r!q

f.r/ � f.q/
r � q

D lim
r!q

1
2r
�

1
2q

r � q
D lim

r!q

q � r
2rq

r � q

D lim
r!q

�1
2rq
D
�1
2q2

We leave it you to decide which form leads to the simpler limit calculation in this case.
Note that when q D 0 the function is not defined, so the derivative is also not even

defined when q D 0.

Now Work Problem 15 G

Keep in mind that the derivative of y D f.x/ at x is nothing more than a limit,
namely,

lim
h!0

f.xC h/ � f.x/
h

equivalently,

lim
z!x

f.z/ � f.x/
z � x

whose use we have just illustrated. Although we can interpret the derivative as a func-
tion that gives the slope of the tangent line to the curve y D f.x/ at the point .x; f.x//,
this interpretation is simply a geometric convenience that assists our understanding.
The preceding limit may exist aside from any geometric considerations at all. As we
will see later, there are other useful interpretations of the derivative.

In Section 11.4, we will make technical use of the following relationship between
differentiability and continuity. However, it is of fundamental importance and needs to
be understood from the outset.

If f is differentiable at a, then f is continuous at a.

To establish this result, we will assume that f is differentiable at a. Then f 0.a/ exists, and

lim
h!0

f.aC h/ � f.a/
h

D f 0.a/

Consider the numerator f.aC h/ � f.a/ as h! 0. We have

lim
h!0

. f.aC h/ � f.a// D lim
h!0

�
f.aC h/ � f.a/

h
� h
�

D lim
h!0

f.aC h/ � f.a/
h

� lim
h!0

h

D f 0.a/ � 0 D 0

Thus, limh!0 f.aC h/ � f.a// D 0. This means that f.aC h/ � f.a/ approaches 0 as
h! 0. Consequently,

lim
h!0

f.aC h/ D f.a/
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As stated in Section 10.3, this condition means that f is continuous at a. The foregoing,
then, proves that f is continuous at awhen f is differentiable there. More simply, we say
that differentiability at a point implies continuity at that point.

x

y

a

y = f(x)

FIGURE 11.9 f is not continuous
at a, so f is not differentiable at a.

If a function is not continuous at a point, then it cannot have a derivative there. For
example, the function in Figure 11.9 is discontinuous at a. The curve has no tangent at
that point, so the function is not differentiable there.

EXAMPLE 7 Continuity and Differentiability

a. Let f.x/ D x2. The derivative, 2x, is defined for all values of x, so f.x/ D x2 must
be continuous for all values of x.

b. The function f.p/ D
1
2p

is not continuous at p D 0 because f is not defined there.

Thus, the derivative does not exist at p D 0.

G

The converse of the statement that differentiability implies continuity is false. That
is, continuity does not imply differentiability. In Example 8, we give a function that is
continuous at a point, but not differentiable there.

EXAMPLE 8 Continuity Does Not Imply Differentiability

The function y D f.x/ D jxj is continuous at x D 0. (See Figure 11.10.) As we
mentioned earlier, there is no tangent line at x D 0. Thus, the derivative does not exist
there. This shows that continuity does not imply differentiability.

y

x

f(x) =  x

Continuous at x = 0, but

not differentiable at x = 0

FIGURE 11.10 Continuity does not
imply differentiability.

G

Finally, we remark that while differentiability of f at a implies continuity of f at a,
the derivative function, f 0, is not necessarily continuous at a. Unfortunately, the classic
example is constructed from a function not considered in this book.

PROBLEMS 11.1
In Problems 1 and 2, a function f and a point P on its graph are
given.

(a) Find the slope of the secant line PQ for each point
Q D .x; f.x// whose x-value is given in the table. Round your
answers to four decimal places.
(b) Use your results from part (a) to estimate the slope of the
tangent line at P.

1. f.x/ D x3 C 3;P D .�2;�5/

x-value of Q �3 �2:5 �2:2 �2:1 �2:01 �2:001
mPQ

2. f.x/ D ln x, P D .1; 0/

x-value of Q 2 1.5 1.2 1.1 1.01 1.001
mPQ

In Problems 3–18, use the definition of the derivative to find each
of the following.

3. f 0.x/ if f.x/ D x 4. f 0.x/ if f.x/ D 4x � 1

5.
dy
dx

if y D 3xC 5 6.
dy
dx

if y D �5x

7.
d
dx
.5 � 7x/ 8.

d
dx

�
1 �

x
2

�
9. f 0.x/ if f.x/ D 3 10. f 0.x/ if f.x/ D 7:01

11.
d
dx
.x2 C 4x � 8/ 12. y0 if y D x2 C 5xC 7

13.
dp
dq

if p D 3q2 C 2qC 1 14.
d
dx
.x2 � x � 3/

15. y0 if y D
6
x

16.
dC
dq

if C D 7C 2q � 3q2

17. f 0.x/ if f.x/ D
p
5x 18. H0.x/ if H.x/ D

3
x � 2

19. Find the slope of the curve y D x2 C 4 at the point .�2; 8/.

20. Find the slope of the curve y D 1 � x2 at the point .1; 0/.

21. Find the slope of the curve y D 4x2 � 5 when x D 0.

22. Find the slope of the curve y D
p
5x when x D 20.
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In Problems 23–28, find an equation of the tangent line to the
curve at the given point.

23. y D xC 4; (3, 7) 24. y D 3x2 � 4I .1;�1/

25. y D x2 C 2xC 3I .1; 6/ 26. y D .x � 7/2; (6, 1)

27. y D
5

xC 3
; .2; 1) 28. y D

5
1 � 3x

I .2;�1/

29. Banking Equations may involve derivatives of functions.
In an article on interest rate deregulation, Christofi and Agapos1

solve the equation

r D
�

�

1C �

��
rL �

dC
dD

�
for � (the Greek letter “eta”). Here r is the deposit rate paid by
commercial banks, rL is the rate earned by commercial banks,
C is the administrative cost of transforming deposits into
return-earning assets, D is the savings deposits level, and � is
the deposit elasticity with respect to the deposit rate. Find �.

In Problems 30 and 31, use the numerical derivative feature of
your graphing calculator to estimate the derivatives of the
functions at the indicated values. Round your answers to three
decimal places.

30. f.x/ D
p
2x2 C 3xI x D 1; x D 2

31. f.x/ D ex.4x � 7/I x D 0; x D 1:5

In Problems 32 and 33, use the “limit of a difference quotient”
definition to estimate f 0.x/ at the indicated values of x. Round
your answers to three decimal places.

32. f.x/ D x ln x � x; x D 1, x D e

33. f.x/ D
x2 C 4xC 2

x3 � 3
I x D 2; x D �4

34. Find an equation of the tangent line to the curve f.x/ D x2C x
at the point .�2; 2/. Graph both the curve and the tangent line.
Notice that the tangent line is a good approximation to the curve
near the point of tangency.

35. The derivative of f.x/ D x3 � xC 2 is f 0.x/ D 3x2 � 1. Graph
both the function f and its derivative f 0. Observe that there are two
points on the graph of f where the tangent line is horizontal. For
the x-values of these points, what are the corresponding values
of f 0.x/? Why are these results expected? Observe the intervals
where f 0.x/ is positive. Notice that tangent lines to the graph of f
have positive slopes over these intervals. Observe the interval
where f 0.x/ is negative. Notice that tangent lines to the graph of f
have negative slopes over this interval.

In Problems 36 and 37, verify the identity .z � x/�Pn�1
iD0 x

izn�1�i
�
D zn � xn for the indicated values of n and

calculate the derivative using the z! x form of the definition of
the derivative in Equation (2).

36. n D 4, n D 3, n D 2; f 0.x/ if f.x/ D 2x4 C x3 � 3x2

37. n D 5, n D 3; f 0.x/ if f.x/ D 2x5 � 5x3

Objective 11.2 Rules for Differentiation
To develop the basic rules for
differentiating constant functions and
power functions and the combining
rules for differentiating a constant
multiple of a function and a sum
of two functions.

Differentiating a function by direct use of the definition of derivative can be tedious.
However, if a function is constructed from simpler functions, then the derivative of
the more complicated function can be constructed from the derivatives of the sim-
pler functions. Usually, we need to know only the derivatives of a few basic functions
and ways to assemble derivatives of constructed functions from the derivatives of their
components. For example, if functions f and g have derivatives f 0 and g0, respectively,
then fC g has a derivative given by . f C g/0 D f 0 C g0. However, some rules are
less intuitive. For example, if f � g denotes the function whose value at x is given by
. f � g/.x/ D f.x/ � g.x/, then . f � g/0 D f 0 � g C f � g0. In this chapter we study most
such combining rules and some basic rules for calculating derivatives of certain basic
functions.

We begin by showing that the derivative of a constant function is zero. Recall that
the graph of the constant function f.x/ D c is a horizontal line (see Figure 11.11),
which has a slope of zero at each point. This means that f 0.x/ D 0 regardless of x. As
a formal proof of this result, we apply the definition of the derivative to f.x/ D c:

f 0.x/ D lim
h!0

f.xC h/ � f.x/
h

D lim
h!0

c � c
h

D lim
h!0

0
h
D lim

h!0
0 D 0

x

Slope is zero
everywhere

f(x) = c

f(x) 

 c

FIGURE 11.11 The slope of a
constant function is 0. 1A. Christofi and A. Agapos, “Interest Rate Deregulation: An Empirical Justification,” Review of Business and

Economic Research, XX, no. 1 (1984), 39–49.
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Thus, we have our first rule:

BASIC RULE 1 Derivative of a Constant
If c is a constant, then

d
dx
.c/ D 0

That is, the derivative of a constant function is zero.

EXAMPLE 1 Derivatives of Constant Functions

a.
d
dx
.3/ D 0 because 3 is a constant function.

b. If g.x/ D
p
5, then g0.x/ D 0 because g is a constant function. For example, the

derivative of g when x D 4 is g0.4/ D 0.

c. If s.t/ D .1,938,623/807:4, then ds=dt D 0.

Now Work Problem 1 G

The next rule gives a formula for the derivative of “x raised to a constant power”—
that is, the derivative of f.x/ D xa, where a is an arbitrary real number. A function
of this form is called a power function. For example, f.x/ D x2 is a power function.
While the rule we record is valid for all real a, we will establish it only in the case where
a is a positive integer, n. The rule is so central to differential calculus that it warrants
a detailed calculation—if only in the case where a is a positive integer, n. Whether we
use the h! 0 form of the definition of derivative or the z! x form, the calculation of
dxn

dx
is instructive and provides good practice with summation notation, whose use is

more essential in later chapters. We provide a calculation for each possibility. We must
either expand .x C h/n, to use the h ! 0 form of Equation (2) from Section 11.1, or
factor zn � xn, to use the z! x form.

For the first of these we recall the binomial theorem of Section 9.2:

.xC h/n D
nX

iD0

nCixn�ihi

where the nCi are the binomial coefficients, whose precise descriptions, except for
nC0 D 1 and nC1 D n, are not necessary here (but are given in Section 8.2). For
the second we have

.z � x/

 
n�1X
iD0

xizn�1�i

!
D zn � xn

which is easily verified by carrying out the multiplication using the rules for manipu-
lating summations given in Section 1.5. In fact, we have

.z � x/

 
n�1X
iD0

xizn�1�i

!
D z

n�1X
iD0

xizn�1�i
� x

n�1X
iD0

xizn�1�i

D

n�1X
iD0

xizn�i
�

n�1X
iD0

xiC1zn�1�i

D

 
zn C

n�1X
iD1

xizn�i

!
�

 
n�2X
iD0

xiC1zn�1�i
C xn

!
D zn � xn

where the reader should check that the two summations in the second-to-last line really
do cancel as shown.
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BASIC RULE 2 Derivative of xa

If a is any real number, then

d
dx
.xa/ D axa�1

That is, the derivative of a constant power of x is the exponent times x raised to a
power one less than the given power.

There is a lot more to calculus than this
important rule.

For n, a positive integer, if f.x/ D xn, the definition of the derivative gives

f 0.x/ D lim
h!0

f.xC h/ � f.x/
h

D lim
h!0

.xC h/n � xn

h

By our previous discussion on expanding .xC h/n,

f 0.x/ D lim
h!0

nX
iD0

nCixn�ihi � xn

h

.1/
D lim

h!0

nX
iD1

nCixn�ihi

h

.2/
D lim

h!0

h
nX

iD1

nCixn�ihi�1

h

.3/
D lim

h!0

nX
iD1

nCixn�ihi�1

.4/
D lim

h!0

 
nxn�1

C

nX
iD2

nCixn�ihi�1

!
.5/
D nxn�1

where we justify the further steps as follows:

(1) The i D 0 term in the summation is nC0xnh0 D xn, so it cancels with the separate,
last, term: �xn.

(2) We are able to extract a common factor of h from each term in the sum.

(3) This is the crucial step. The expressions separated by the equal sign are limits as
h! 0 of functions of h that are equal for h ¤ 0.

(4) The i D 1 term in the summation is nC1xn�1h0 D nxn�1. It is the only one that
does not contain a factor of h, and we separated it from the other terms.

(5) Finally, in determining the limit we made use of the fact that the isolated term is
independent of h, while all the others contain h as a factor and so have limit 0 as
h! 0.

Now, using the z ! x limit for the definition of the derivative and f.x/ D xn,
we have

f 0.x/ D lim
z!x

f.z/ � f.x/
z � x

D lim
z!x

zn � xn

z � x
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By our previous discussion on factoring zn � xn, we have

f 0.x/ D lim
z!x

.z � x/

 
n�1X
iD0

xizn�1�i

!
z � x

.1/
D lim

z!x

n�1X
iD0

xizn�1�i

.2/
D

n�1X
iD0

xixn�1�i

.3/
D

n�1X
iD0

xn�1

.4/
D nxn�1

where this time we justify the further steps as follows:

(1) Here the crucial step comes first. The expressions separated by the equal sign are
limits as z! x of functions of z that are equal for z ¤ x.

(2) The limit is given by evaluation because the expression is a polynomial in the
variable z.

(3) An obvious rule for exponents is used.

(4) Each term in the sum is xn�1, independent of i, and there are n such terms.

EXAMPLE 2 Derivatives of Powers of x

a. By Basic Rule 2,
d
dx
.x2/ D 2x2�1

D 2x.

b. If F.x/ D x D x1, then F0.x/ D 1 � x1�1 D 1 � x0 D 1. Thus, the derivative of x with
respect to x is 1.

c. If f.x/ D x�10, then f 0.x/ D �10x�10�1 D �10x�11.

Now Work Problem 3 G

When we apply a differentiation rule to a function, sometimes the function must
first be rewritten so that it has the proper form for that rule. For example, to differentiate

f.x/ D
1
x10

wewould first rewrite f as f.x/ D x�10 and then proceed as in Example 2(c).

EXAMPLE 3 Rewriting Functions in the Form xa

a. To differentiate y D
p
x, we rewrite

p
x as x1=2 so that it has the form xa. Thus,

dy
dx
D

1
2
x.1=2/�1

D
1
2
x�1=2

D
1

2x1=2
D

1

2
p
x

which agrees with our limit calculation in Example 5 of Section 11.1.

b. Let h.x/ D
1

x
p
x
. To apply Basic Rule 2, we must rewrite h.x/ as h.x/ D x�3=2 so

that it has the form xa. We have

h0.x/ D
d
dx
.x�3=2/ D �

3
2
x.�3=2/�1

D �
3
2
x�5=2

Now Work Problem 39 G
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Now that we can say immediately that the derivative of x3 is 3x2, the question arises
as to what we could say about the derivative of a multiple of x3, such as 5x3. Our next
rule will handle this situation of differentiating a constant times a function.

COMBINING RULE 1 Constant Factor Rule
If f is a differentiable function and c is a constant, then cf.x/ is differentiable and

d
dx
.cf.x// D cf 0.x/

That is, the derivative of a constant times a function is the constant times the deriva-
tive of the function.

Proof. If g.x/ D cf.x/, applying the definition of the derivative of g gives

g0.x/ D lim
h!0

g.xC h/ � g.x/
h

D lim
h!0

cf.xC h/ � cf.x/
h

D lim
h!0

�
c �

f.xC h/ � f.x/
h

�
D c � lim

h!0

f.xC h/ � f.x/
h

D cf 0.x/

EXAMPLE 4 Differentiating a Constant Times a Function

Differentiate the following functions.

a. g.x/ D 5x3

Solution: Here, g is a constant (5) times a function .x3/. So

d
dx
.5x3/ D 5

d
dx
.x3/ Combining Rule 1

D 5.3x3�1/ D 15x2 Basic Rule 2

b. f.q/ D
13q
5

Solution:

Strategy We first rewrite f as a constant times a function and then apply
Basic Rule 2.

Because
13q
5
D

13
5
q, f is the constant

13
5
times the function q. Thus,

f 0.q/ D
13
5

d
dq
.q/ Combining Rule 1

D
13
5
� 1 D

13
5

Basic Rule 2

c. y D
0:25
5
p
x2

Solution: We can express y as a constant times a function:

y D 0:25 �
1

5
p
x2
D 0:25x�2=5



Haeussler-50501 M12_HAEU1107_14_SE_C11 October 16, 2017 14:13

496 Chapter 11 Differentiation

Hence,

y0
D 0:25

d
dx
.x�2=5/ Combining Rule 1

D 0:25
�
�
2
5
x�7=5

�
D �0:1x�7=5 Basic Rule 2

Now Work Problem 7 G

The next rule involves derivatives of sums and differences of functions.
In differentiating f.x/ D .4x/3, Basic
Rule 2 cannot be applied directly. It
applies to a power of the variable x, not to
a power of an expression involving x,
such as 4x. To apply our rules, write

f.x/D.4x/3D43x3D64x3. Thus,

f 0.x/D64
d
dx
.x3/D64.3x2/D192x2:

COMBINING RULE 2 Sum or Difference Rule
If f and g are differentiable functions, then fC g and f � g are differentiable and

d
dx
. f.x/C g.x// D f 0.x/C g0.x/

and
d
dx
. f.x/ � g.x// D f 0.x/ � g0.x/

That is, the derivative of the sum (difference) of two functions is the sum (difference)
of their derivatives.

Proof. For the case of a sum, if F.x/ D f.x/ C g.x/, applying the definition of the
derivative of F gives

F0.x/ D lim
h!0

F.xC h/ � F.x/
h

D lim
h!0

. f.xC h/C g.xC h// � . f.x/C g.x//
h

D lim
h!0

. f.xC h/ � f.x//C .g.xC h/ � g.x//
h

regrouping

D lim
h!0

�
f.xC h/ � f.x/

h
C

g.xC h/ � g.x/
h

�
Because the limit of a sum is the sum of the limits,

F0.x/ D lim
h!0

f.xC h/ � f.x/
h

C lim
h!0

g.xC h/ � g.x/
h

D f 0.x/C g0.x/

The proof for the derivative of a difference of two functions now follows from the sum
rule and Combining Rule 1 by writing f.x/ � g.x/ D f.x/C .�1/g.x/. We encourage
the reader to write the details.

Combining Rule 2 can be extended to the derivative of any number of sums and
differences of functions. For example,

d
dx
. f.x/ � g.x/ � h.x/C k.x// D f 0.x/ � g0.x/ � h0.x/C k0.x/

APPLY IT I
2. If the revenue function for a certain
product is r.q/ D 50q � 0:3q2, find the
derivative of this function, also known
as the marginal revenue.

EXAMPLE 5 Differentiating Sums and Differences of Functions

Differentiate the following functions.
a. F.x/ D 3x5 C

p
x

Solution: Here, F is the sum of two functions, 3x5 and
p
x. Therefore,

F0.x/ D
d
dx
.3x5/C

d
dx
.x1=2/ Combining Rule 2

D 3
d
dx
.x5/C

d
dx
.x1=2/ Combining Rule 1

D 3.5x4/C
1
2
x�1=2

D 15x4 C
1

2
p
x

Basic Rule 2
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b. f.z/ D
z4

4
�

5

z1=3

Solution: To apply our rules, we will rewrite f in the form f.z/ D 1
4z

4 � 5z�1=3.
Since f is the difference of two functions,

f 0.z/ D
d
dz

�
1
4
z4
�
�

d
dz
.5z�1=3/ Combining Rule 2

D
1
4
d
dz
.z4/ � 5

d
dz
.z�1=3/ Combining Rule 1

D
1
4
.4z3/ � 5

�
�
1
3
z�4=3

�
Basic Rule 2

D z3 C
5
3
z�4=3

c. y D 6x3 � 2x2 C 7x � 8

Solution:
dy
dx
D

d
dx
.6x3/ �

d
dx
.2x2/C

d
dx
.7x/ �

d
dx
.8/

D 6
d
dx
.x3/ � 2

d
dx
.x2/C 7

d
dx
.x/ �

d
dx
.8/

D 6.3x2/ � 2.2x/C 7.1/ � 0

D 18x2 � 4xC 7

Now Work Problem 47 G

EXAMPLE 6 Finding a Derivative

Find the derivative of f.x/ D 2x.x2 � 5xC 2/ when x D 2.

In Examples 6 and 7, we need to rewrite
the given function in a form to which our
rules apply.

Solution: We multiply and then differentiate each term:

f.x/ D 2x3 � 10x2 C 4x

f 0.x/ D 2.3x2/ � 10.2x/C 4.1/

D 6x2 � 20xC 4

f 0.2/ D 6.2/2 � 20.2/C 4 D �12

Now Work Problem 75 G

EXAMPLE 7 Finding an Equation of a Tangent Line

Find an equation of the tangent line to the curve

y D
3x2 � 2

x

when x D 1.

Solution:

Strategy First we find
dy
dx
, which gives the slope of the tangent line at any point.

Evaluating
dy
dx

when x D 1 gives the slope of the required tangent line. We then

determine the y-coordinate of the point on the curve when x D 1. Finally, with
the slope and both coordinates of the point determined, we use point-slope form to
obtain an equation of the tangent line.



Haeussler-50501 M12_HAEU1107_14_SE_C11 October 16, 2017 14:13

498 Chapter 11 Differentiation

Rewriting y as a difference of two functions, we have

y D
3x2

x
�
2
x
D 3x � 2x�1

Thus,
dy
dx
D 3.1/ � 2..�1/x�2/ D 3C

2
x2

The slope of the tangent line to the curve when x D 1 is

dy
dx

ˇ̌̌̌
xD1
D 3C

2
12
D 5

To find the y-coordinate of the point on the curvewhere x D 1, we evaluate y D
3x2 � 2

x
at x D 1. This gives

y D
3.1/2 � 2

1
D 1

Hence, the point .1; 1/ lies on both the curve and the tangent line. Therefore, an equation
of the tangent line is

y � 1 D 5.x � 1/

In slope-intercept form, we have

To obtain the y-value of the point on the
curve when x D 1, evaluate the original
function at x D 1.

y D 5x � 4

Now Work Problem 81 G

PROBLEMS 11.2
In Problems 1–74, differentiate the functions.

1. f.x/ D � 2. f.x/ D
�
6
7

�2=3

3. y D x17 4. f.x/ D x21

5. y D x80 6. y D x2:1

7. f.x/ D 9x2 8. y D 7x6

9. g.w/ D 8w7 10. v.x/ D xe

11. y D 3
5x

6 12. f.p/ D
p
3p4

13. f.s/ D
s5

30
14. y D

x7

7
15. f.x/ D xC 3 16. f.x/ D 5x � e

17. f.x/ D 4x2 � 2xC 3 18. G.x/ D 7x3 � 5x2

19. g.p/ D p4 � 3p3 � 1 20. f.t/ D �13t2 C 14tC 1

21. y D x4 � 3
p
x 22. y D �8x4 C ln 2

23. y D 11x5 C 12x3 � 5x

24. V.r/ D r8 � 7r6 C 3r2 C 1

25. f.x/ D 2.13 � x4/ 26.  .t/ D e.t7 � 53/

27. g.x/ D
13 � x4

3
28. f.x/ D

3.x3 � 2x/
4

29. h.x/ D 4x4 C x3 �
9x2

2
C 8x

30. k.x/ D �2x2 C
5
3
xC 11 31. f.x/ D

5
7
x9 C

3
5
x7

32. p.x/ D
x7

7
C

2x
3

33. f.x/ D x2=7

34. f.x/ D 2x�14=5 35. y D x3=4 C 2x5=3

36. y D 4x2 � x�3=5 37. y D 11
p
x

38. y D 5
p
x3 39. f.r/ D 6 3

p
r

40. y D 4 8
p
x2 41. f.x/ D x�6

42. f.s/ D 2s�3 43. f.x/ D x�6 C x�4 C x�2

44. f.x/ D 100x�3 C 10x1=2 45. y D
1
x

46. f.x/ D
3
x4

47. y D
8
x5

48. y D
1
2x3

49. g.x/ D
4
3x3

50. y D
1
x2

51. f.t/ D
3
5t3

52. g.x/ D
7
9x 53. f.x/ D

x2

2
C

2
x2

54. ˆ.x/ D
x3

3
�

3
x3

55. f.x/ D �9x1=3 C 5x�2=5

56. f.z/ D 5z3=4 � 62 � 8z1=4 57. q.x/ D
1

3
p
8x2
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58. f.x/ D
5

6
p
x5

59. y D
2
p
x

60. y D
1

2
p
x

61. y D x3 3
p
x 62. f.x/ D .2x3/.4x2/

63. f.x/ D 3x2.2x3 � 3x/ 64. f.x/ D x3.3x6 � 5x2 C 4/

65. f.x/ D x3.3x/2 66. s.x/ D
p
x. 5
p
xC 7xC 2/

67. v.x/ D x�2=3.xC 5/ 68. f.x/ D x2=7.x3 C 5xC 2/

69. f.q/ D
3q2 C 4q � 2

q
70. f.w/ D

w � 5
w5

71. f.x/ D .x � 1/.xC 2/ 72. f.x/ D x2.x � 2/.xC 4/

73. w.x/ D
xC x2

x
74. f.x/ D

7x3 C x

6
p
x

For each curve in Problems 75–78, find the slopes at the indicated
points.

75. y D 3x2 C 4x � 8I .0;�8/; .2; 12/; .�3; 7/

76. y D 3C 5x � 3x3; .0; 3/, . 12 ;
41
8 /, .2;�11/

77. y D 4; when x D �4; x D 7; x D 22

78. y D 2x � 2
p
x; when x D 9, x D 16, x D 25

In Problems 79–82, find an equation of the tangent line to the
curve at the indicated point.

79. y D 4x2 C 5xC 6; .1; 15/ 80. y D
1 � x2

5
; .4;�3/

81. y D
1
x2
; .2; 14 / 82. y D � 3

p
x; .8;�2/

83. Find an equation of the tangent line to the curve

y D 2C 3x � 5x2 C 7x3

when x D 1.

84. Repeat Problem 83 for the curve

y D

p
x.2 � x2/

x

when x D 4.

85. Find all points on the curve

y D
5
2
x2 � x3

where the tangent line is horizontal.

86. Repeat Problem 85 for the curve

y D
x6

6
�

x2

2
C 1

87. Find all points on the curve

y D x2 � 5xC 3

where the slope is 1.

88. Repeat Problem 87 for the curve

y D x5 � 4xC 13

89. If f.x/ D
p
xC

1
p
x
, evaluate the expression

x � 1

2x
p
x
� f 0.x/

90. Economics Eswaran and Kotwal2 consider agrarian
economies in which there are two types of workers, permanent
and casual. Permanent workers are employed on long-term
contracts and may receive benefits, such as holiday gifts and
emergency aid. Casual workers are hired on a daily basis and
perform routine and menial tasks, such as weeding, harvesting,
and threshing. The difference z in the present-value cost of hiring
a permanent worker over that of hiring a casual worker is given by

z D .1C b/wp � bwc

where wp and wc are wage rates for permanent labor and casual
labor, respectively, b is a constant, and wp is a function of wc.
Eswaran and Kotwal claim that

dz
dwc
D .1C b/

�
dwp

dwc
�

b
1C b

�
Verify this.

91. Find an equation of the tangent line to the graph of
y D x3 � 2xC 1 at the point .1; 0/. Graph both the function and
the tangent line on the same screen.

92. Find an equation of the tangent line to the graph of y D 3
p
x,

at the point .�8;�2/. Graph both the function and the tangent line
on the same screen. Notice that the line passes through .�8;�2/
and the line appears to be tangent to the curve.

Objective 11.3 The Derivative as a Rate of Change
To motivate the instantaneous rate of
change of a function by means of
velocity and to interpret the derivative
as an instantaneous rate of change.
To develop the “marginal” concept,
which is frequently used in business
and economics.

We have given a geometric interpretation of the derivative as being the slope of the
tangent line to a curve at a point. Historically, an important application of the derivative
involves the motion of an object traveling in a straight line. This gives us a convenient
way to interpret the derivative as a rate of change.

To denote the change in a variable, such as x, the symbol �x (read “delta x”)
is commonly used. For example, if x changes from 1 to 3, then the change in x is
�x D 3 � 1 D 2. The new value of x.D 3/ is the old value plus the change, which

2M. Eswaran and A. Kotwal, “A Theory of Two-Tier Labor Markets in Agrarian Economies,”
The American Economic Review, 75, no. 1 (1985), 162–77.
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is 1C�x. Similarly, if t increases by�t, the new value is tC�t. We will use�-notation
in the discussion that follows.

Suppose an object moves along the number line in Figure 11.12 according to the
equation

s D f.t/ D t2

t = 1 t = 3

s = t
2

9

s
10

FIGURE 11.12 Motion along
a number line.

where s is the position of the object at time t. This equation is called an equation of
motion, and f is called a position function. Assume that t is in seconds and s is in
meters. At t D 1 the position is s D f.1/ D 12 D 1, and at t D 3 the position is
s D f.3/ D 32 D 9. Over this two-second time interval, the object has a change in
position, or a displacement, of 9 � 1 D 8m, and the average velocity of the object
is defined as

vave D
displacement

length of time interval
(1)

D
8
2
D 4 m/s

To say that the average velocity is 4 m/s from t D 1 to t D 3 means that, on the
average, the position of the object changed by 4 m to the right each second during
that time interval. Let us denote the changes in s-values and t-values by �s and �t,
respectively. Then the average velocity is given by

vave D
�s
�t
D 4 m/s .for the interval t D 1 to t D 3/

The ratio �s=�t is also called the average rate of change of s with respect to t over
the interval from t D 1 to t D 3.

Now, let the time interval be only 1 second long (that is, �t D 1). Then, for the
shorter interval from t D 1 to t D 1C�t D 2, we have f.2/ D 22 D 4, so

vave D
�s
�t
D

f.2/ � f.1/
�t

D
4 � 1
1
D 3 m/s

More generally, over the time interval from t D 1 to t D 1C�t, the object moves
from position f(1) to position f.1C�t/. Thus, its displacement is

�s D f.1C�t/ � f.1/

Since the time interval has length �t, the object’s average velocity is given by

vave D
�s
�t
D

f.1C�t/ � f.1/
�t

If �t were to become smaller and smaller, the average velocity over the interval from
t D 1 to t D 1C �t would be close to what we might call the instantaneous velocity
at time t D 1; that is, the velocity at a point in time .t D 1/ as opposed to the velocity
over an interval of time. For some typical values of �t between 0.1 and 0.001, we get
the average velocities in Table 11.2, which the reader can verify.

Table 11.2

Length of
Time Interval Time Interval Average Velocity

�t t D 1 to t D 1C�t
�s
�t
D

f.1C�t/ � f.1/
�t

0.1 t D 1 to t D 1:1 2.1 m/s

0.07 t D 1 to t D 1:07 2.07 m/s

0.05 t D 1 to t D 1:05 2.05 m/s

0.03 t D 1 to t D 1:03 2.03 m/s

0.01 t D 1 to t D 1:01 2.01 m/s

0.001 t D 1 to t D 1:001 2.001 m/s
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The table suggests that as the length of the time interval approaches zero, the aver-
age velocity approaches the value 2 m/s. In other words, as �t approaches 0, �s=�t
approaches 2 m/s. We define the limit of the average velocity as �t ! 0 to be the
instantaneous velocity (or simply the velocity), v, at time t D 1. This limit is also
called the instantaneous rate of change of s with respect to t at t D 1:

v D lim
�t!0

vave D lim
�t!0

�s
�t
D lim

�t!0

f.1C�t/ � f.1/
�t

If we think of �t as h, then the limit on the right is simply the derivative of s with
respect to t at t D 1. Thus, the instantaneous velocity of the object at t D 1 is just ds/dt
at t D 1. Because s D t2 and

ds
dt
D 2t

the velocity at t D 1 is

v D
ds
dt

ˇ̌̌̌
tD1
D 2.1/ D 2 m/s

which confirms our previous conclusion.
In summary, if s D f.t/ is the position function of an object moving in a straight

line, then the average velocity of the object over the time interval Œt; tC�t� is given by

vave D
�s
�t
D

f.tC�t/ � f.t/
�t

and the velocity at time t is given by

v D lim
�t!0

f.tC�t/ � f.t/
�t

D
ds
dt

Selectively combining equations for v, we have
ds
dt
D lim

�t!0

�s
�t

Because � is the [uppercase] Greek letter corresponding to d, this equation provides
motivation for the otherwise bizarre Leibniz notation for derivatives.

EXAMPLE 1 Finding Average Velocity and Velocity

Suppose the position function of an object moving along a number line is given by
s D f.t/ D 3t2 C 5, where t is in seconds and s is in meters.

a. Find the average velocity over the interval [10, 10.1].
b. Find the velocity when t D 10.

Solution:

a. Here t D 10 and �t D 10:1 � 10 D 0:1. So we have

vave D
�s
�t
D

f.tC�t/ � f.t/
�t

D
f.10C 0:1/ � f.10/

0:1

D
f.10:1/ � f.10/

0:1

D
311:03 � 305

0:1
D

6:03
0:1
D 60.3 m/s

b. The velocity at time t is given by

v D
ds
dt
D 6t
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When t D 10, the velocity is

ds
dt

ˇ̌̌̌
tD10
D 6.10/ D 60 m/s

Notice that the average velocity over the interval [10, 10.1] is close to the velocity
at t D 10. This is to be expected because the length of the interval is small.

Now Work Problem 1 G

Our discussion of the rate of change of s with respect to t applies equally well to
any function y D f.x/. This means that we have the following:

If y D f.x/, then

�y
�x
D

f.xC�x/ � f.x/
�x

D

8̂<̂
:
average rate of change
of y with respect to x
over the interval from
x to xC�x

and
dy
dx
D lim

�x!0

�y
�x
D

�
instantaneous rate of change
of y with respect to x (2)

Because the instantaneous rate of change of y D f.x/ at a point is a derivative, it is also
the slope of the tangent line to the graph of y D f.x/ at that point. For convenience,
we usually refer to the instantaneous rate of change simply as the rate of change. The
interpretation of a derivative as a rate of change is extremely important.

Let us now consider the significance of the rate of change of y with respect to x.
From Equation (2), if �x (a change in x) is close to 0, then �y=�x is close to dy=dx.
That is,

�y
�x
�

dy
dx

Therefore,

�y �
dy
dx
�x (3)

That is, if x changes by�x, then the change in y,�y, is approximately dy=dx times the
change in x. In particular,

if x changes by 1, an estimate of the change in y is
dy
dx

EXAMPLE 2 Estimating �y by Using dy=dx

Suppose that y D f.x/ and
dy
dx
D 8 when x D 3. Estimate the change in y if x changes

from 3 to 3.5.

APPLY IT I
3. Suppose that the profit P made by
selling a certain product at a price of p
per unit is given by P D f.p/ and the
rate of change of that profit with respect

to change in price is
dP
dp
D 5 at p D 25.

Estimate the change in the profit P if the
price changes from 25 to 25.5.

Solution: We have dy=dx D 8 and �x D 3:5 � 3 D 0:5. The change in y is given by
�y, and, from Equation (3),

�y �
dy
dx
�x D 8.0:5/ D 4

We remark that, since�y D f.3:5/� f.3/, we have f.3:5/ D f.3/C�y. For example,
if f.3/ D 5, then f(3.5) can be estimated by 5C 4 D 9.

G
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EXAMPLE 3 Finding a Rate of Change

Find the rate of change of y D x4 with respect to x, and evaluate it when x D 2 and
when x D �1. Interpret your results.

APPLY IT I
4. The position of an object thrown
upward at a speed of 16 feet/s from
a height of 0 feet is given by y.t/ D
16t � 16t2. Find the rate of change of
y with respect to t, and evaluate it when
t D 0:5. Use your graphing calculator
to graph y.t/. Use the graph to interpret
the behavior of the object when t D 0:5.

Solution: The rate of change is

dy
dx
D 4x3

When x D 2; dy=dx D 4.2/3 D 32. This means that if x increases, from 2, by a
small amount, then y increases approximately 32 times as much. More simply, we
say that, when x D 2, y is increasing 32 times as fast as x does. When x D �1;
dy=dx D 4.�1/3 D �4. The significance of the minus sign on�4 is that, when x D �1,
y is decreasing 4 times as fast as x increases.

Now Work Problem 11 G

EXAMPLE 4 Rate of Change of Price with Respect to Quantity

Let p D 100�q2 be the demand function for a manufacturer’s product. Find the rate of
change of price, p, per unit with respect to quantity, q. How fast is the price changing
with respect to q when q D 5? Assume that p is in dollars.

Solution: The rate of change of p with respect to q is

dp
dq
D

d
dq
.100 � q2/ D �2q

Thus,

dp
dq

ˇ̌̌̌
qD5
D �2.5/ D �10

This means that when five units are demanded, an increase of one extra unit demanded
corresponds to a decrease of approximately $10 in the price per unit that consumers
are willing to pay.

G

EXAMPLE 5 Rate of Change of Volume

A spherical balloon is being filled with air. Find the rate of change of the volume of air
in the balloon with respect to its radius. Evaluate this rate of change when the radius
is 2 ft.

Solution: The formula for the volume V of a ball of radius r is V D 4
3�r

3. The rate of
change of V with respect to r is

dV
dr
D

4
3
�.3r2/ D 4�r2

When r D 2 ft, the rate of change is

dV
dr

ˇ̌̌̌
rD2
D 4�.2/2 D 16�

ft3

ft

This means that when the radius is 2 ft, changing the radius by 1 ft will change the
volume by approximately 16� ft3.

G
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EXAMPLE 6 Rate of Change of Enrollment

A sociologist is studying various suggested programs that can aid in the education of
preschool-age children in a certain city. The sociologist believes that x years after the
beginning of a particular program, f.x/ thousand preschoolers will be enrolled, where

f.x/ D
10
9
.12x � x2/ 0 � x � 12

Atwhat rate would enrollment change (a) after three years from the start of this program
and (b) after nine years?

Solution: The rate of change of f.x/ is

f 0.x/ D
10
9
.12 � 2x/

a. After three years, the rate of change is

f 0.3/ D
10
9
.12 � 2.3// D

10
9
� 6 D

20
3
D 6

2
3

Thus, enrollment would be increasing at the rate of 6 23 thousand preschoolers
per year.

b. After nine years, the rate is

f 0.9/ D
10
9
.12 � 2.9// D

10
9
.�6/ D �

20
3
D �6

2
3

Thus, enrollment would be decreasing at the rate of 6 23 thousand preschoolers
per year.

Now Work Problem 9 G

Applications of Rate of Change to Economics
A manufacturer’s total-cost function, c D f.q/, gives the total cost, c, of producing
and marketing q units of a product. The rate of change of c with respect to q is called
the marginal cost. Thus,

marginal cost D
dc
dq

For example, suppose c D f.q/ D 0:1q2 C 3 is a cost function, where c is in dollars
and q is in pounds. Then

dc
dq
D 0:2q

The marginal cost when 4 lb are produced is dc/dq, evaluated when q D 4:
dc
dq

ˇ̌̌̌
qD4
D 0:2.4/ D 0:80

This means that if production is increased by 1 lb, from 4 lb to 5 lb, then the change in
cost is approximately $0.80. That is, the additional pound costs about $0.80. In general,
we interpret marginal cost as the approximate cost of one additional unit of output.
After all, the difference f.qC 1/ � f.q/ can be seen as a difference quotient

f.qC 1/ � f.q/
1

the case where h D 1. Any difference quotient can be regarded as an approximation
of the corresponding derivative and, conversely, any derivative can be regarded as an
approximation of any of its corresponding difference quotients. Thus, for any function
f of q we can always regard f 0.q/ and f.qC 1/� f.q/ as approximations of each other.
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In economics, the latter can usually be regarded as the exact value of the cost, or profit
depending upon the function, of the (qC1)th item when q are produced. The derivative
is often easier to compute than the exact value. In the case at hand, the actual cost of
producing one more pound beyond 4 lb is f.5/ � f.4/ D 5:5 � 4:6 D $0:90.]

If c is the total cost of producing q units of a product, then the average cost per
unit, c, is

c D
c
q

(4)

For example, if the total cost of 20 units is $100, then the average cost per unit is
c D 100=20 D $5. By multiplying both sides of Equation (4) by q, we have

c D qc

That is, total cost is the product of the number of units produced and the average cost
per unit.

EXAMPLE 7 Marginal Cost

If a manufacturer’s average-cost equation is

c D 0:0001q2 � 0:02qC 5C
5000
q

find the marginal-cost function. What is the marginal cost when 50 units are produced?

Solution:

Strategy The marginal-cost function is the derivative of the total-cost function c.
Thus, we first find c by multiplying c by q. We have

c D qc

D q
�
0:0001q2 � 0:02qC 5C

5000
q

�
c D 0:0001q3 � 0:02q2 C 5qC 5000

Differentiating c, we have the marginal-cost function:

dc
dq
D 0:0001.3q2/ � 0:02.2q/C 5.1/C 0

D 0:0003q2 � 0:04qC 5

The marginal cost when 50 units are produced is

dc
dq

ˇ̌̌̌
qD50
D 0:0003.50/2 � 0:04.50/C 5 D 3:75

If c is in dollars and production is increased by one unit, from q D 50 to q D 51,
then the cost of the additional unit is approximately $3.75. If production is increased
by 1

3 unit, from q D 50, then the cost of the additional output is approximately�
1
3

�
.3:75/ D $1:25.

Now Work Problem 21 G

Suppose r D f.q/ is the total-revenue function for a manufacturer. The equation
r D f.q/ states that the total dollar value received for selling q units of a product is r.
Themarginal revenue is defined as the rate of change of the total dollar value received
with respect to the total number of units sold. Hence, marginal revenue is merely the
derivative of r with respect to q:

marginal revenue D
dr
dq
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Marginal revenue indicates the rate at which revenue changes with respect to units
sold. We interpret it as the approximate revenue received from selling one additional
unit of output.

EXAMPLE 8 Marginal Revenue

Suppose a manufacturer sells a product at $2 per unit. If q units are sold, the total
revenue is given by

r D 2q

The marginal-revenue function is

dr
dq
D

d
dq
.2q/ D 2

which is a constant function. Thus, the marginal revenue is 2 regardless of the number
of units sold. This is what we would expect, because the manufacturer receives $2 for
each unit sold.

Now Work Problem 23 G

Relative and Percentage Rates of Change
For the total-revenue function in Example 8, namely r D f.q/ D 2q, we have

dr
dq
D 2

This means that revenue is changing at the rate of $2 per unit, regardless of the number
of units sold. Although this is valuable information, it may be more significant when
compared to r itself. For example, if q D 50, then r D 2.50/ D 100. Thus, the rate
of change of revenue is 2=100 D 0:02 of r. On the other hand, if q D 5000, then
r D 2.5000/ D $10; 000, so the rate of change of r is 2=10; 000 D 0:0002 of r.
Although r changes at the same rate at each level, compared to r itself, this rate is
relatively smaller when r D 10; 000 than when r D 100. By considering the ratio

dr=dq
r

we have a means of comparing the rate of change of r with r itself. This ratio is called
the relative rate of change of r. We have shown that the relative rate of change when
q D 50 is

dr=dq
r
D

2
100
D 0:02

and when q D 5000, it is

dr=dq
r
D

2
10; 000

D 0:0002

By multiplying relative rates by 100%, we obtain the so-called percentage rates of

Percentages can be confusing!
Remember that percent means “per

hundred.” Thus 100% D 100
100 D 1,

2% D 2
100 D 0:02, and so on. change. The percentage rate of change when q D 50 is .0:02/.100%/ D 2%; when

q D 5000 it is .0:0002/.100%/ D 0:02%. For example, if an additional unit beyond
50 is sold, then revenue increases by approximately 2%.
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In general, for any function f, we have the following definition:

Definition
The relative rate of change of f.x/ is

f 0.x/
f.x/

The percentage rate of change of f.x/ is

f 0.x/
f.x/
� 100%

EXAMPLE 9 Relative and Percentage Rates of Change

Determine the relative and percentage rates of change of

y D f.x/ D 3x2 � 5xC 25

when x D 5.

APPLY IT I
5. The volume V enclosed by a
capsule-shaped container with a cylin-
drical height of 4 feet and radius r is
given by

V.r/ D
4
3
�r3 C 4�r2

Determine the relative and percentage
rates of change of volume with respect
to the radius when the radius is 2 feet.

Solution: Here,

f 0.x/ D 6x � 5

Since f 0.5/ D 6.5/ � 5 D 25 and f.5/ D 3.5/2 � 5.5/C 25 D 75, the relative rate of
change of y when x D 5 is

f 0.5/
f.5/

D
25
75
� 0:333

Multiplying 0.333 by 100%gives the percentage rate of change: .0:333/.100/D 33:3%.

Now Work Problem 35 G

PROBLEMS 11.3
1. Suppose that the position function of an object moving
along a straight line is s D f.t/ D 2t2 C 3t, where t is in
seconds and s is in meters. Find the average velocity �s=�t
over the interval Œ1; 1C�t�, where �t is given in the following
table:

�t 1 0.5 0.2 0.1 0.01 0.001
�s=�t

From your results, estimate the velocity when t D 1. Verify your
estimate by using differentiation.

2. If y D f.x/ D
p
2xC 5, find the average rate of change of y

with respect to x over the interval Œ3; 3C�x�, where �x is given
in the following table:

�x 1 0.5 0.2 0.1 0.01 0.001
�y=�x

From your result, estimate the rate of change of y with respect to x
when x D 3.

In each of Problems 3–8, a position function is given, where t is in
seconds and s is in meters.
(a) Find the position at the given t-value.
(b) Find the average velocity over the given interval.
(c) Find the velocity at the given t-value.

3. s D 2t2 � 4tI Œ7; 7:5�I t D 7

4. s D
2
3
tC 4; Œ3; 3:03�; t D 3

5. s D 5t3 C 3tC 24; Œ1; 1:01�; t D 1

6. s D �3t2 C 2tC 1I Œ1; 1:25�I t D 1

7. s D t4 � 2t3 C tI Œ2; 2:1�I t D 2

8. s D 3t4 � t7=2I Œ0; 14 �I t D 0

9. Income–Education Sociologists studied the relation
between income and number of years of education for members of
a particular urban group. They found that a person with x years
of education before seeking regular employment can expect to
receive an average yearly income of y dollars per year, where

y D 6x9=4
C 5900 for 4 � x � 16

Find the rate of change of income with respect to number of years
of education. Evaluate the function at x D 16.

10. Find the rate of change of the volume V of a ball, with respect
to its radius r, when r D 1:5m. The volume V of a ball as a
function of its radius r is given by

V D V.r/ D
4
3
�r3
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11. Skin Temperature The approximate temperature T of the
skin in terms of the temperature Te of the environment is given by

T D 32:8C 0:27.Te � 20/

where T and Te are in degrees Celsius.3 Find the rate of change of
T with respect to Te.

12. Biology The volume V of a spherical cell is given by
V D 4

3�r
3, where r is the radius. Find the rate of change of

volume with respect to the radius when r D 6:3 � 10�4 cm.

In Problems 13–18, cost functions are given, where c is the cost of
producing q units of a product. In each case, find the
marginal-cost function. What is the marginal cost at the given
value(s) of q?

13. c D 500C 10qI q D 100

14. c D 7500C 5qI q D 24

15. c D 0:2q2 C 4qC 50; q D 10

16. c D 0:1q2 C 3qC 2I q D 3

17. c D q2 C 50qC 1000I q D 15; q D 16; q D 17

18. c D 0:04q3 � 0:5q2 C 4:4qC 7500I q D 5; q D 25; q D 1000

In Problems 19–22, c represents average cost per unit, which is a
function of the number, q, of units produced. Find the
marginal-cost function and the marginal cost for the indicated
values of q.

19. c D 0:02qC 3C
600
q
; q D 40, q D 80

20. c D 5C
2000
q

; q D 25, q D 250

21. c D 0:00002q2 � 0:01qC 6C
20;000

q
I q D 100; q D 500

22. c D 0:002q2 � 0:5qC 60C
7000
q
I q D 15; q D 25

In Problems 23–26, r represents total revenue and is a function of
the number, q, of units sold. Find the marginal-revenue function
and the marginal revenue for the indicated i values of q.

23. r D 0:8qI q D 9; q D 300; q D 500

24. r D q.25 � 1
20q/; q D 10, q D 20, q D 100

25. r D 240qC 40q2 � 2q3; q D 10; q D 15; q D 20

26. r D 2q.30 � 0:1q/I q D 10; q D 20

27. Hosiery Mill The total-cost function for a hosiery mill is
estimated by Dean4 to be

c D �10;484:69C 6:750q � 0:000328q2

where q is output in dozens of pairs and c is total cost in dollars.
Find the marginal-cost function and the average cost function and
evaluate each when q D 2000.

28. Light and Power Plant The total-cost function for an
electric light and power plant is estimated by Nordin5 to be

c D 32:07 � 0:79qC 0:02142q2 � 0:0001q3 20 � q � 90

where q is the eight-hour total output (as a percentage of capacity)
and c is the total fuel cost in dollars. Find the marginal-cost
function and evaluate it when q D 70.

29. Urban Concentration Suppose the 100 largest cities in the
United States in 1920 are ranked according to area. From Lotka,6

the following relation holds, approximately:

PR0:93
D 5; 000; 000

where P is the population of the city having rank R. This relation
is called the law of urban concentration for 1920. Determine P as
a function of R and find how fast the population is changing with
respect to rank.

30. Depreciation Under the straight-line method of
depreciation, the value, v, of a certain machine after t years have
elapsed is given by

v D 120;000 � 15;500t

where 0 � t � 6. How fast is v changing with respect to t when
t D 2? t D 4? at any time?

31. Winter Moth A study of the winter moth was made in
Nova Scotia (adapted from Embree).7 The prepupae of the moth
fall onto the ground from host trees. At a distance of x ft from the
base of a host tree, the prepupal density (number of prepupae per
square foot of soil) was y, where

y D 59:3 � 1:5x � 0:5x2 1 � x � 9

(a) At what rate is the prepupal density changing with respect to
distance from the base of the tree when x D 6?
(b) For what value of x is the prepupal density decreasing at the
rate of 6 prepupae per square foot per foot?

32. Cost Function For the cost function

c D 0:4q2 C 4qC 5

find the rate of change of c with respect to q when q D 2. Also,
what is �c=�q over the interval [2, 3]?

In Problems 33–38, find (a) the rate of change of y with respect to
x and (b) the relative rate of change of y. At the given value of x,
find (c) the rate of change of y, (d) the relative rate of change of y,
and (e) the percentage rate of change of y.

33. y D f.x/ D xC 4I x D 5 34. y D f.x/ D 9 � 5x; x D 3

35. y D 2x2 C 5; x D 10 36. y D 5 � 3x3I x D 1

37. y D 8 � x3I x D 1 38. y D x2 C 3x � 4I x D �1

39. Cost Function For the cost function

c D 0:4q2 C 3:2qC 11

how fast does c change with respect to q when q D 20? Determine
the percentage rate of change of c with respect to q when q D 20.

3R. W. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill Book Company, 1955).
4J. Dean, “Statistical Cost Functions of a Hosiery Mill,” Studies in Business
Administration, XI, no. 4 (Chicago: University of Chicago Press, 1941).

5J. A. Nordin, “Note on a Light Plant’s Cost Curves,” Econometrica, 15
(1947), 231–35.
6A. J. Lotka, Elements of Mathematical Biology (New York: Dover
Publications, Inc., 1956).
7D. G. Embree, “The Population Dynamics of the Winter Moth in Nova Scotia,
1954–1962,” Memoirs of the Entomological Society of Canada, no. 46 (1965).
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40. Organic Matters/Species Diversity In a discussion of
contemporary waters of shallows seas, Odum8 claims that in such
waters the total organic matter, y (in milligrams per liter), is a
function of species diversity, x (in number of species per thousand
individuals). If y D 100=x, at what rate is the total organic matter
changing with respect to species diversity when x D 10? What is
the percentage rate of change when x D 10?

41. Revenue For a certain manufacturer, the revenue obtained
from the sale of q units of a product is given by

r D 30q � 0:3q2

(a) How fast does r change with respect to q? When q D 10,
(b) find the relative rate of change of r, and (c) to the nearest
percent, find the percentage rate of change of r.

42. Revenue Repeat Problem 41 for the revenue function
given by r D 10q � 0:2q2 and q D 25.

43. Weight of Limb The weight of a limb of a tree is given by
W D 2t0:432, where t is time. Find the relative rate of change ofW
with respect to t.

44. Response to Shock A psychological experiment9 was
conducted to analyze human responses to electrical shocks
(stimuli). The subjects received shocks of various intensities. The
response, R, to a shock of intensity, I (in microamperes), was to be
a number that indicated the perceived magnitude relative to that of
a “standard” shock. The standard shock was assigned a magnitude
of 10. Two groups of subjects were tested under slightly different
conditions. The responses R1 and R2 of the first and second groups
to a shock of intensity I were given by

R1 D
I1:3

1855:24
for 800 � I � 3500

and

R2 D
I1:3

1101:29
for 800 � I � 3500

(a) For each group, determine the relative rate of change of
response with respect to intensity.
(b) How do these changes compare with each other?
(c) In general, if f1.x/ D C1f.x/ and f2.x/ D C2f.x/, where C1 and
C2 are constants, how do the relative rates of change of f1 and f2
compare?

45. Cost A manufacturer of mountain bikes has found that
when 20 bikes are produced per day, the average cost is $200 and
the marginal cost is $150. Based on that information, approximate
the total cost of producing 21 bikes per day.

46. Marginal and Average Costs Suppose that the cost
function for a certain product is c D f.q/. If the relative

rate of change of c (with respect to q) is
1
q
, prove that the

marginal-cost function and the average-cost function are equal.

In Problems 47 and 48, use the numerical derivative feature of
your graphing calculator.

47. If the total-cost function for a manufacturer is given by

c D
5q2p
q2 C 3

C 5000

where c is in dollars, find the marginal cost when 10 units are
produced. Round your answer to the nearest cent.

48. The population of a city t years from now is given by

P D 250;000e0:04t

Find the rate of change of population with respect to time t three
years from now. Round your answer to the nearest integer.

Objective 11.4 The Product Rule and the Quotient Rule
To find derivatives by applying the
product and quotient rules, and to
develop the concepts of marginal
propensity to consume and
marginal propensity to save.

The equation F.x/ D .x2 C 3x/.4xC 5/ expresses F.x/ as a product of two functions:
x2 C 3x and 4x C 5. To find F0.x/ by using only our previous rules, we first multiply
the functions. Then we differentiate the result, term by term:

F.x/ D .x2 C 3x/.4xC 5/ D 4x3 C 17x2 C 15x

F0.x/ D 12x2 C 34xC 15 (1)

However, in many problems that involve differentiating a product of functions, the
multiplication is not as simple as it is here. At times, it is not even practical to attempt
it. Fortunately, there is a rule for differentiating a product, and the rule avoids such
multiplications. Since the derivative of a sum of functions is the sum of their derivatives,
one might expect a similar rule for products. There is a rule; however, the situation for
products is more subtle than that for sums.

8H. T. Odum, “Biological Circuits and the Marine Systems of Texas,” in Pollution and Marine Biology,
eds T. A. Olsen and F. J. Burgess (New York: Interscience Publishers, 1967).
9H. Babkoff, “Magnitude Estimation of Short Electrocutaneous Pulses,” Psychological Research, 39, no. 1
(1976), 39–49.
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COMBINING RULE 3 The Product Rule
If f and g are differentiable functions, then the product fg is differentiable, and

d
dx
. f.x/g.x// D

d
dx
. f.x//g.x/C f.x/

d
dx
.g.x//

That is, the derivative of the product of two functions is the derivative of the first
function times the second, plus the first function times the derivative of the second.

derivative of product D
�
derivative
of first

�
.second/C .first/

�
derivative
of second

�
Symbolically: . fg/0 D f 0gC fg0

Proof. Let F.x/ D f.x/g.x/. We want to show that F0.x/ D f 0.x/g.x/C f.x/g0.x/. By
the definition of the derivative of F,

F0.x/ D lim
h!0

F.xC h/ � F.x/
h

D lim
h!0

f.xC h/g.xC h/ � f.x/g.x/
h

Now we use a “trick.”Adding and subtracting f.x/g.xC h/ in the numerator, we have

F0.x/ D lim
h!0

f.xC h/g.xC h/ � f.x/g.x/C f.x/g.xC h/ � f.x/g.xC h/
h

Regrouping gives

F0.x/ D lim
h!0

. f.xC h/g.xC h/ � f.x/g.xC h//C . f.x/g.xC h/ � f.x/g.x//
h

D lim
h!0

. f.xC h/ � f.x//g.xC h/C f.x/.g.xC h/ � g.x//
h

D lim
h!0

. f.xC h/ � f.x//g.xC h/
h

C lim
h!0

f.x/.g.xC h/ � g.x//
h

D lim
h!0

f.xC h/ � f.x/
h

� lim
h!0

g.xC h/C lim
h!0

f.x/ � lim
h!0

g.xC h/ � g.x/
h

Since we assumed that f and g are differentiable,

lim
h!0

f.xC h/ � f.x/
h

D f 0.x/

and

lim
h!0

g.xC h/ � g.x/
h

D g0.x/

The differentiability of g implies that g is continuous, so, from Section 10.3,

lim
h!0

g.xC h/ D g.x/

Thus,

F0.x/ D f 0.x/g.x/C f.x/g0.x/

EXAMPLE 1 Applying the Product Rule

If F.x/ D .x2 C 3x/.4xC 5/, find F0.x/.

Solution: We will consider F as a product of two functions:

F.x/ D .x2 C 3x/.4xC 5/„ ƒ‚ …
f.x/

„ ƒ‚ …
g.x/
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Therefore, we can apply the product rule:

F0.x/ D f 0.x/g.x/C f.x/g0.x/

D
d
dx
.x2 C 3x/ .4xC 5/C .x2 C 3x/

d
dx
.4xC 5/„ ƒ‚ …

Second
„ ƒ‚ …
First

„ ƒ‚ …
Derivative
of first

„ ƒ‚ …
Derivative
of second

D .2xC 3/.4xC 5/C .x2 C 3x/.4/

D 12x2 C 34xC 15 simplifying

This agrees with our previous result. [See Equation (1).] Although there doesn’t seem to

It is worth repeating that the derivative of
the product of two functions is somewhat
subtle. Do not be tempted to make up a
“simpler” rule.

be much advantage to using the product rule here, there are times when it is impractical
to avoid it.

Now Work Problem 1 G

EXAMPLE 2 Applying the Product Rule

If y D .x2=3 C 3/.x�1=3 C 5x/, find dy=dx.

APPLY IT I
6. A taco stand usually sells 225 tacos
per day at $2 each. A business stu-
dent’s research tells him that for every
$0.15 decrease in the price, the stand
will sell 20 more tacos per day. The
revenue function for the taco stand is
R.x/ D .2 � 0:15x/.225C 20x/, where
x is the number of $0.15 reductions in

price. Find
dR
dx

.

Solution: Applying the product rule gives

dy
dx
D

d
dx
.x2=3

C 3/.x�1=3
C 5x/C .x2=3

C 3/
d
dx
.x�1=3

C 5x/

D

�
2
3
x�1=3

�
.x�1=3

C 5x/C .x2=3
C 3/

�
�1
3

x�4=3
C 5

�
D

25
3
x2=3
C

1
3
x�2=3

� x�4=3
C 15

Alternatively, we could have found the derivative without the product rule by first find-
ing the product .x2=3C3/.x�1=3C5x/ and then differentiating the result, term by term.

Now Work Problem 15 G

EXAMPLE 3 Differentiating a Product of Three Factors

If y D .xC 2/.xC 3/.xC 4/, find y0.

Solution:

Strategy Wewould like to use the product rule, but as given it applies only to two
factors. By treating the first two factors as a single factor, we can consider y to be a
product of two functions:

y D Œ.xC 2/.xC 3/�.xC 4/

The product rule gives

y0
D

d
dx
Œ.xC 2/.xC 3/�.xC 4/C Œ.xC 2/.xC 3/�

d
dx
.xC 4/

D
d
dx
Œ.xC 2/.xC 3/�.xC 4/C Œ.xC 2/.xC 3/�.1/

Applying the product rule again, we have

y0
D

�
d
dx
.xC 2/.xC 3/C .xC 2/

d
dx
.xC 3/

�
.xC 4/C .xC 2/.xC 3/

D Œ.1/.xC 3/C .xC 2/.1/�.xC 4/C .xC 2/.xC 3/
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After simplifying, we obtain

y0
D 3x2 C 18xC 26

Two other ways of finding the derivative are as follows:
1. Multiply the first two factors of y to obtain

y D .x2 C 5xC 6/.xC 4/

and then apply the product rule.

2. Multiply all three factors to obtain

y D x3 C 9x2 C 26xC 24

and then differentiate term by term.

Now Work Problem 19 G

It is sometimes helpful to remember differentiation rules in more streamlined nota-
tion. For example, as noted earlier, in the margin,

. fg/0 D f 0gC fg0

is a correct equality of functions that expresses the product rule. We can then calculate

. fgh/0 D .. fg/h/0

D . fg/0hC . fg/h0

D . f 0gC fg0/hC . fg/h0

D f 0ghC fg0hC fgh0

It is not suggested that you try to commit to memory derived rules like

. fgh/0 D f 0ghC fg0hC fgh0

Because f 0gC fg0 D gf 0C fg0, using commutativity of the product of functions, we can
express the product rule with the derivatives as second factors:

. fg/0 D gf 0
C fg0

and using commutativity of addition

. fg/0 D fg0
C gf 0

Some people prefer these forms.

EXAMPLE 4 Using the Product Rule to Find Slope

Find the slope of the graph of f.x/ D .7x3 � 5xC 2/.2x4 C 7/ when x D 1.

APPLY IT I
7. One hour after x milligrams of a
particular drug are given to a person,
the change in body temperature T.x/,
in degrees Fahrenheit, is given approx-

imately by T.x/ D x2
�
1 � x

3

�
. The

rate at which T changes with respect to
the size of the dosage x, T0.x/, is called
the sensitivity of the body to the dosage.
Find the sensitivity when the dosage is 1
milligram. Do not use the product rule.

Solution:

Strategy We find the slope by evaluating the derivative when x D 1. Because f
is a product of two functions, we can find the derivative by using the product rule.

We have

f 0.x/ D .7x3 � 5xC 2/
d
dx
.2x4 C 7/C .2x4 C 7/

d
dx
.7x3 � 5xC 2/

D .7x3 � 5xC 2/.8x3/C .2x4 C 7/.21x2 � 5/
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Since we must compute f 0.x/ when x D 1, there is no need to simplify f 0.x/ before
evaluating it. Substituting into f 0.x/, we obtain

f 0.1/ D 4.8/C 9.16/ D 176

Now Work Problem 49 G

Usually, we do not use the product rule when simpler ways are obvious. For exam-
ple, if f.x/ D 2x.x C 3/, then it is quicker to write f.x/ D 2x2 C 6x, from which
f 0.x/ D 4x C 6. Similarly, we do not usually use the product rule to differentiate
y D 4.x2 � 3/. Since the 4 is a constant factor, by the constant-factor rule we haveThe product rule (and quotient rule that

follows) should not be applied when a
more direct and efficient method is
available.

y0 D 4.2x/ D 8x.
The next rule is used for differentiating a quotient of functions.

COMBINING RULE 4 The Quotient Rule
If f and g are differentiable functions and g.x/ ¤ 0, then the quotient f=g is also
differentiable, and

d
dx

�
f.x/
g.x/

�
D

g.x/f 0.x/ � f.x/g0.x/
.g.x//2

With the understanding about the denominator not being zero, we can write�
f
g

�0

D
gf 0 � fg0

g2

That is, the derivative of the quotient of two functions is the denominator times
the derivative of the numerator, minus the numerator times the derivative of the
denominator, all divided by the square of the denominator.

derivative of quotient D

.denominator/

0BB@derivativeof
numerator

1CCA�.numerator/

0BB@ derivative
of

denominator

1CCA
(denominator)2

Proof. Let F D
f
g
. We need to show that F0 exists and is given by F0 D

gf 0 � fg0

g2
but

here we will just establish the equation for F0. Now

Fg D f

Differentiating both sides of the equation, the product rule gives

Fg0
C gF0

D f 0

Solving for F0, we have

F0
D

f 0 � Fg0

g

But F D f=g. Thus,

F0
D

f 0 �
fg0

g

g

Simplifying, we have

The derivative of the quotient of two
functions is trickier still than the product
rule. We must remember where the minus
sign goes!

F0
D

gf 0 � fg0

g2
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EXAMPLE 5 Applying the Quotient Rule

If F.x/ D
4x2 C 3
2x � 1

, find F0.x/.

Solution:

Strategy We recognize F as a quotient, so we can apply the quotient rule.

Let f.x/ D 4x2 C 3 and g.x/ D 2x � 1. Then

F0.x/ D
g.x/f 0.x/ � f.x/g0.x/

.g.x//2

D

Denominator‚ …„ ƒ
.2x � 1/

Derivative
of numerator‚ …„ ƒ
d
dx
.4x2 C 3/ �

Numerator‚ …„ ƒ
.4x2 C 3/

Derivative of
numerator‚ …„ ƒ
d
dx
.2x � 1/

.2x � 1/2„ ƒ‚ …
Square of

denominator

D
.2x � 1/.8x/ � .4x2 C 3/.2/

.2x � 1/2

D
8x2 � 8x � 6
.2x � 1/2

D
2.2xC 1/.2x � 3/

.2x � 1/2

Now Work Problem 21 G

EXAMPLE 6 Rewriting before Differentiating

Differentiate y D
1

xC
1

xC 1

.

Solution:

Strategy To simplify the differentiation, we will rewrite the function so that no
fraction appears in the denominator.

We have

y D
1

xC
1

xC 1

D
1

x.xC 1/C 1
xC 1

D
xC 1

x2 C xC 1

dy
dx
D
.x2 C xC 1/.1/ � .xC 1/.2xC 1/

.x2 C xC 1/2
quotient rule

D
.x2 C xC 1/ � .2x2 C 3xC 1/

.x2 C xC 1/2

D
�x2 � 2x

.x2 C xC 1/2
D �

x2 C 2x
.x2 C xC 1/2

Now Work Problem 45 G
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Although a function may have the form of a quotient, this does not necessarily
mean that the quotient rule must be used to find the derivative. The next example illus-
trates some typical situations in which, although the quotient rule can be used, a simpler
and more efficient method is available.

EXAMPLE 7 Differentiating Quotients without Using
the Quotient Rule

Differentiate the following functions.

a. f.x/ D
2x3

5

Solution: Rewriting, we have f.x/ D 2
5x

3. By the constant-factor rule,

f 0.x/ D
2
5
.3x2/ D

6x2

5

b. f.x/ D
4
7x3

Solution: Rewriting, we have f.x/ D 4
7 .x

�3/. Thus,

f 0.x/ D
4
7
.�3x�4/ D �

12
7x4

c. f.x/ D
5x2 � 3x

4x

Solution: Rewriting, we have f.x/ D
1
4

�
5x2 � 3x

x

�
D

1
4
.5x�3/ for x ¤ 0. Thus,

f 0.x/ D
1
4
.5/ D

5
4

for x ¤ 0

Since the function f is not defined for x D 0, f 0 is not defined for x D 0 either.

Now Work Problem 17 G

To differentiate f.x/ D
1

x2 � 2
, we might

be tempted first to rewrite the quotient as
.x2 � 2/�1. Currently, it is not helpful to
do this because we do not yet have a rule
for differentiating the result. We have no
choice now but to use the quotient rule.
However, in the next section we will
develop a rule that allows us to
differentiate .x2 � 2/�1 in a direct and
efficient way.

EXAMPLE 8 Marginal Revenue

If the demand equation for a manufacturer’s product is

p D
1000
qC 5

where p is in dollars, find the marginal-revenue function and evaluate it when q D 45.

Solution:

Strategy First we must find the revenue function. The revenue, r, received for
selling q units when the price per unit is p is given by

revenue D .price/.quantity/I that is, r D pq

Using the demand equation, we will express r in terms of q only. Then we will
differentiate to find the marginal-revenue function, dr=dq.

The revenue function is

r D
�
1000
qC 5

�
q D

1000q
qC 5
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Thus, the marginal-revenue function is given by

dr
dq
D

.qC 5/
d
dq
.1000q/ � .1000q/

d
dq
.qC 5/

.qC 5/2

D
.qC 5/.1000/ � .1000q/.1/

.qC 5/2
D

5000
.qC 5/2

and

dr
dq

ˇ̌̌̌
qD45
D

5000
.45C 5/2

D
5000
2500

D 2

This means that selling one additional unit beyond 45 results in approximately $2 more
in revenue.

Now Work Problem 59 G

Consumption Function
A function that plays an important role in economic analysis, typically, of a country,
is the consumption function. The consumption function C D f.I/ expresses total
national consumption, C, as a function of total national income, I. Usually, both I and
C are expressed in billions of dollars and I is restricted to some interval. In well-run
economies, we should see C.I/ � I, for all I, but, of course, this is not always observed.
If C.I/ > I then the country is in a deficit situation. In any event, C D f.I/ is often
called the propensity to consume The marginal propensity to consume is defined as
the rate of change of consumption with respect to income. It is the derivative of C with
respect to I:

Marginal propensity to consume D
dC
dI

If we assume that the difference between income, I, and consumption, C, is savings, S,
possibly negative, then

S D I � C

Differentiating both sides with respect to I gives

dS
dI
D

d
dI
.I/ �

d
dI
.C/ D 1 �

dC
dI

We define dS=dI as themarginal propensity to save. Thus, the marginal propensity to
save indicates how fast savings change with respect to income, and

Marginal propensity
to save D 1 �

Marginal propensity
to consume

EXAMPLE 9 Finding Marginal Propensities to Consume and to Save

If the consumption function is given by

C D
5.2
p
I3 C 3/

IC 10

determine the marginal propensity to consume and the marginal propensity to save
when I D 100.
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Solution:

dC
dI
D 5

0B@ .IC 10/
d
dI
.2I3=2

C 3/ � .2
p
I3 C 3/

d
dI
.IC 10/

.IC 10/2

1CA
D 5

 
.IC 10/.3I1=2/ � .2

p
I3 C 3/.1/

.IC 10/2

!
When I D 100, the marginal propensity to consume is

dC
dI

ˇ̌̌̌
ID100

D 5
�

1297
12; 100

�
� 0:536

The marginal propensity to save when I D 100 is 1 � 0:536 D 0:464. This means
that if a current income of $100 billion increases by $1 billion, the nation consumes
approximately 53.6% .536=1000/ and saves 46.4% .464=1000/ of that increase.

Now Work Problem 69 G

PROBLEMS 11.4
In Problems 1–48, differentiate the functions.

1. f.x/ D .4xC 1/.6xC 3/ 2. f.x/ D .3x � 1/.7xC 2/

3. s.t/ D .5 � 3t/.t3 � 2t2/ 4. Q.x/ D .x2 C 3x/.7x2 � 5/

5. f.r/ D .2r7 � 3r5/.5r2 � 2rC 7/

6. C.I/ D .2I2 � 3/.3I2 � 4IC 1/

7. f.x/ D x2.2x2 � 5/ 8. f.x/ D 3x3.x2 � 2xC 2/

9. y D .x2 C 5x � 7/.6x2 � 5xC 4/

10. �.x/ D .2C 3x � 5x2/.7C 11x � 13x2/

11. f.w/ D .w2 C 3w � 7/.2w3 � 4/

12. f.x/ D .3x � x2/.3 � x � x2/

13. y D .x2 � 1/.3x3 � 6xC 5/ � 4.4x2 C 2xC 1/

14. h.x/ D 5.x7 C 4/C 4.5x3 � 2/.4x2 C 7x/

15. F.p/ D 5
7 .2
p
p � 3/.11pC 2/

16. g.x/ D .
p
xC 5x � 2/. 3

p
x � 3

p
x/

17. y D 7 � 23 18. y D .x � 1/.x � 2/.x � 3/

19. y D .5xC 3/.2x � 5/.7xC 9/

20. y D
3x � 5
7xC 11

21. f.x/ D
5x

x � 1

22. H.x/ D
�5x
5 � x

23. f.x/ D
�13
3x5

24. f.x/ D
3.5x2 � 7/

4
25. y D

axC b
cxC d

26. h.w/ D
3w2 C 5w � 1

w � 3
27. h.z/ D

6 � 2z
z2 � 4

28. z D
2x2 C 5x � 2
3x2 C 5xC 3

29. y D
4x2 C 3xC 2
3x2 � 2xC 1

30. f.x/ D
x3 C x2 C 1

x2 C 1
31. y D

x2 � 4xC 3
2x2 � 3xC 2

32. F.z/ D
z4 C 4
3z

33. g.x/ D
1

x100 C 7

34. y D
�8
7x6 35. u.v/ D

v3 C 1
v

36. y D
x � 5

8
p
x

37. y D
3x2 � x � 1

3
p
x

38. y D
x0:3 � 2
2x2:1 C 1

39. y D 1 �
5

2xC 5
C

2x
3xC 1

40. q.x/ D x3 C
2xC 3
5xC 7

�
11
x3

41. y D
x � 5

.xC 2/.x � 4/
42. y D

.9x � 1/.3xC 2/
4 � 5x

43. s.t/ D
t2 C 3t

.t2 � 1/.t3 C 7/
44. f.s/ D

17
s.4s3 C 5s � 23/

45. y D 2x �

3
x
�

5
x � 1

x � 2
46. y D 3 � 12x3 C

1 �
5

x2 C 2
x2 C 5

47. f.x/ D
aC x
a � x

48. f.x/ D
x�1 C a�1

x�1 � a�1
, where a is a constant

49. Find the slope of the curve y D .2x2 � xC 3/.x3 C xC 1/ at
.1; 12/.

50. Find the slope of the curve y D
1

x2 C 1
at .�1; 12 /.
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In Problems 51–54, find an equation of the tangent line to the
curve at the given point.

51. y D
6

x � 1
; (3, 3) 52. y D

xC 5
x2
I .1; 6/

53. y D .2xC 3/Œ2.x4 � 5x2 C 4/�; (0, 24)

54. y D
x � 1

x.x2 C 1/
; .2; 1

10 /

In Problems 55 and 56, determine the relative rate of change of y
with respect to x for the given value of x.

55. y D
x

xC 1
; x D 1 56. y D

1 � x
1C x

I x D 5

57. Motion The position function for an object moving in a
straight line is

s D
2

t3 C 1
where t is in seconds and s is in meters. Find the position and
velocity of the object at t D 1.

58. Motion The position function for an object moving in a
straight-line path is

s D
tC 3
t2 C 7

where t is in seconds and s is in meters. Find the positive value(s)
of t for which the velocity of the object is 0.

In Problems 59–62, each equation represents a demand function
for a certain product, where p denotes the price per unit for q
units. Find the marginal-revenue function in each case. Recall that
revenue D pq.

59. p D 80 � 0:02q 60. p D 300=q

61. p D
108
qC 2

� 3 62. p D
qC 750
qC 50

63. Consumption Function For the United States
(1922–1942), the consumption function is estimated by10

C D 0:672IC 113:1

Find the marginal propensity to consume.

64. Consumption Function Repeat Problem 63 for
C D 0:836IC 127:2.

In Problems 65–68, each equation represents a consumption
function. Find the marginal propensity to consume and the
marginal propensity to save for the given value of I.

65. C D 2C 3
p
IC 5 3

p
I for 40 � I � 70; I D 64

66. C D 6C
3I
4
�

p
I
3
I I D 25

67. C D
16
p
IC 0:8

p
I3 � 0:2I

p
IC 4

I I D 36

68. C D
20
p
IC 0:5

p
I3 � 0:4I

p
IC 5

I I D 100

69. Consumption Function Suppose that a country’s
consumption function is given by

C D
9
p
IC 0:8

p
I3 � 0:3I

p
I

where C and I are expressed in billions of dollars.
(a) Find the marginal propensity to save when income is
$25 billion.
(b) Determine the relative rate of change of C with respect to I
when income is $25 billion.

70. Marginal Propensities to Consume and to Save Suppose
that the savings function of a country is

S D
IC
p
I � 6

p
IC 3

where the national income .I/ and the national savings .S/ are
measured in billions of dollars. Find the country’s marginal
propensity to consume and its marginal propensity to save when
the national income is $121 billion. (Hint: It is helpful to first
factor the numerator of S.)

71. Marginal Cost If the total-cost function for a manufacturer
is given by

c D
6q2

qC 2
C 6000

find the marginal-cost function.

72. Marginal and Average Costs Given the cost function

c D f.q/, show that if
d
dq
.c/ D 0, then the marginal-cost function

and average-cost function are equal.

73. Host–Parasite Relation For a particular host–parasite
relationship, it is determined that when the host density (number
of hosts per unit of area) is x, the number of hosts that are
parasitized is y, where

y D
900x

10C 45x

At what rate is the number of hosts parasitized changing with
respect to host density when x D 2?

74. Acoustics The persistence of sound in a room after the
source of the sound is turned off is called reverberation. The
reverberation time RT of the room is the time it takes for the
intensity level of the sound to fall 60 decibels. In the acoustical
design of an auditorium, the following formula may be used to
compute the RT of the room:11

RT D
0:05V
AC xV

Here, V is the room volume, A is the total room absorption, and
x is the air absorption coefficient. Assuming that A and x are
positive constants, show that the rate of change of RT with respect
to V is always positive. If the total room volume increases by one
unit, does the reverberation time increase or decrease?

10 T. Haavelmo, “Methods of Measuring the Marginal Propensity to
Consume,” Journal of the American Statistical Association, XLII (1947),
105–22.
11L. L. Doelle, Environmental Acoustics (New York: McGraw-Hill Book
Company, 1972).
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75. Predator–Prey In a predator-prey experiment,12 it was
statistically determined that the number of prey consumed, y,
by an individual predator was a function of the prey density, x
(the number of prey per unit of area), where

y D
0:7355x

1C 0:02744x
Determine the rate of change of prey consumed with respect to
prey density.

76. Social Security Benefits In a discussion of social security
benefits, Feldstein13 differentiates a function of the form

f.x/ D
a.1C x/ � b.2C n/x

a.2C n/.1C x/ � b.2C n/x

where a, b, and n are constants. He determines that

f 0.x/ D
�1.1C n/ab

.a.1C x/ � bx/2.2C n/

Verify this. (Hint: For convenience, let 2C n D c.) Next, observe
that Feldstein’s function f is of the form

g.x/ D
AC Bx
CC Dx

; where A, B, C, and D are constants

Show that g0.x/ is a constant divided by a nonnegative function
of x. What does this mean?

77. Business The manufacturer of a product has found that
when 20 units are produced per day, the average cost is $150 and
the marginal cost is $125. What is the relative rate of change of
average cost with respect to quantity when q D 20?

78. Use the result . fgh/0 D f 0ghC fg0hC fgh0 to find dy=dx if

y D .3xC 1/.2x � 1/.x � 4/

Objective 11.5 The Chain Rule
To introduce and apply the chain rule,
to derive a special case of the chain
rule, and to develop the concept of the
marginal-revenue product as an
application of the chain rule.

Our next rule, the chain rule, is ultimately the most important rule for finding deriva-
tives. It involves a situation in which y is a function of the variable u, but u is a function
of x, and wewant to find the derivative of ywith respect to x. For example, the equations

y D u2 and u D 2xC 1

define y as a function of u and u as a function of x. If we substitute 2xC 1 for u in the
first equation, we can consider y to be a function of x:

y D .2xC 1/2

To find dy=dx, we first expand .2xC 1/2:

y D 4x2 C 4xC 1

Then

dy
dx
D 8xC 4

From this example, we can see that finding dy=dx by first performing a substitution
could be quite involved. For instance, if originally we had been given y D u100 instead
of y D u2, we wouldn’t even want to try substituting. Fortunately, the chain rule will
allow us to handle such situations with ease.

COMBINING RULE 5 The Chain Rule
If y is a differentiable function of u and u is a differentiable function of x, then y is
a differentiable function of x and

dy
dx
D

dy
du
�
du
dx

12C. S. Holling, “Some Characteristics of Simple Types of Predation and Parasitism,” The Canadian Entomologist,
XCI, no. 7 (1959), 385–98.
13M. Feldstein, “The Optimal Level of Social Security Benefits,” The Quarterly Journal of Economics, C, no. 2
(1985), 303–20.
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We can show why the chain rule is reasonable by considering rates of change.
Suppose

y D 8uC 5 and u D 2x � 3

Let x change by one unit. How does u change? To answer this question, we differentiate
and find du=dx D 2. But for each one-unit change in u, there is a change in y of
dy=du D 8. Therefore, what is the change in y if x changes by one unit? That is, what

is dy=dx? The answer is 8 � 2, which is
dy
du
�
du
dx
. Thus,

dy
dx
D

dy
du
�
du
dx
.

We will now use the chain rule to redo the problem at the beginning of this sec-
tion. If

y D u2 and u D 2xC 1

then

dy
dx
D

dy
du
�
du
dx
D

d
du
.u2/ �

d
dx
.2xC 1/

D .2u/2 D 4u

Replacing u by 2xC 1 gives

dy
dx
D 4.2xC 1/ D 8xC 4

which agrees with our previous result.

APPLY IT I
8. If an object moves horizontally
according to x D 6t, where t is in
seconds, and vertically according to

y D 4x2, find its vertical velocity
dy
dt
.

EXAMPLE 1 Using the Chain Rule

a. If y D 2u2 � 3u � 2 and u D x2 C 4, find dy=dx.

Solution: By the chain rule,

dy
dx
D

dy
du
�
du
dx
D

d
du
.2u2 � 3u � 2/ �

d
dx
.x2 C 4/

D .4u � 3/.2x/

We can write our answer in terms of x alone by replacing u by x2 C 4.

dy
dx
D .4.x2 C 4/ � 3/.2x/ D .4x2 C 13/.2x/ D 8x3 C 26x

b. If y D
p
w and w D 7 � t3, find dy=dt.

Solution: Here, y is a function of w and w is a function of t, so we can view y as a
function of t. By the chain rule,

dy
dt
D

dy
dw
�
dw
dt
D

d
dw
.
p
w/ �

d
dt
.7 � t3/

D

�
1
2
w�1=2

�
.�3t2/ D

1

2
p
w
.�3t2/

D �
3t2

2
p
w
D �

3t2

2
p
7 � t3

Now Work Problem 1 G
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EXAMPLE 2 Using the Chain Rule

If y D 4u3 C 10u2 � 3u � 7 and u D 4=.3x � 5/, find dy=dx when x D 1.

Solution: By the chain rule,

dy
dx
D

dy
du
�
du
dx
D

d
du
.4u3 C 10u2 � 3u � 7/ �

d
dx

�
4

3x � 5

�

D .12u2 C 20u � 3/ �
.3x � 5/

d
dx
.4/ � 4

d
dx
.3x � 5/

.3x � 5/2

D .12u2 C 20u � 3/ �
�12

.3x � 5/2

Even though dy=dx is in terms of x’s and u’s, we can evaluate it when x D 1 if we
determine the corresponding value of u. When x D 1,

When x is replaced by a, u D u.x/ must
be replaced by u.a/.

u D u.1/ D
4

3.1/ � 5
D �2

Thus,

dy
dx

ˇ̌̌̌
xD1
D Œ12.�2/2 C 20.�2/ � 3� �

�12
Œ3.1/ � 5�2

D 5 � .�3/ D �15

Now Work Problem 5 G

The chain rules states that if y D f.u/ and u D g.x/, then

dy
dx
D

dy
du
�
du
dx

Actually, the chain rule applies to a composite function, because

y D f.u/ D f.g.x// D . f ı g/.x/

Thus y, as a function of x, is fıg. This means that we can use the chain rule to differen-
tiate a function when we recognize the function as a composition. However, we must
first break down the function into composite parts.

For example, to differentiate

y D .x3 � x2 C 6/100

we think of the function as a composition. Let

y D f.u/ D u100 and u D g.x/ D x3 � x2 C 6

Then y D .x3 � x2 C 6/100 D .g.x//100 D f.g.x//. Now that we have a composite, we
differentiate. Since y D u100 and u D x3 � x2 C 6, by the chain rule we have

dy
dx
D

dy
du
�
du
dx

D .100u99/.3x2 � 2x/

D 100.x3 � x2 C 6/99.3x2 � 2x/
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We have just used the chain rule to differentiate y D .x3 � x2 C 6/100, which is a
power of a function of x, not simply a power of x. The following rule, called the power
rule, generalizes our result and is a special case of the chain rule:

The Power Rule:
d
dx
.ua/ D aua�1 du

dx

where it is understood that u is a differentiable function of x and a is a real number.
Proof. Let y D ua. Since y is a differentiable function of u and u is a differentiable
function of x, the chain rule gives

dy
dx
D

dy
du
�
du
dx

But dy=du D aua�1. Thus,

dy
dx
D aua�1 du

dx

which is the power rule.

EXAMPLE 3 Using the Power Rule

If y D .x3 � 1/7, find y0.

Solution: Since y is a power of a function of x, the power rule applies. Letting
u.x/ D x3 � 1 and a D 7, we have

y0
D aŒu.x/�a�1u0.x/

D 7.x3 � 1/7�1 d
dx
.x3 � 1/

D 7.x3 � 1/6.3x2/ D 21x2.x3 � 1/6

Now Work Problem 9 G

EXAMPLE 4 Using the Power Rule

If y D 3
p
.4x2 C 3x � 2/2, find dy=dx when x D �2.

Solution: Since y D .4x2 C 3x � 2/2=3, we use the power rule with

u D 4x2 C 3x � 2

and a D 2
3 . We have

dy
dx
D

2
3
.4x2 C 3x � 2/.2=3/�1 d

dx
.4x2 C 3x � 2/

D
2
3
.4x2 C 3x � 2/�1=3.8xC 3/

D
2.8xC 3/

3 3
p
4x2 C 3x � 2

Thus,

dy
dx

ˇ̌̌̌
xD�2

D
2.�13/

3 3
p
8
D �

13
3

Now Work Problem 19 G
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EXAMPLE 5 Using the Power Rule

If y D
1

x2 � 2
, find

dy
dx
.

Solution: Although the quotient rule can be used here, a more efficient approach is to
treat the right side as the power .x2 � 2/�1 and use the power rule. Let u D x2 � 2.

The technique used in Example 5 is
frequently used when the numerator
of a quotient is a constant and the
denominator is not.

Then y D u�1, and

dy
dx
D .�1/.x2 � 2/�1�1 d

dx
.x2 � 2/

D .�1/.x2 � 2/�2.2x/

D �
2x

.x2 � 2/2

Now Work Problem 27 G

EXAMPLE 6 Differentiating a Power of a Quotient

If z D
�
2sC 5
s2 C 1

�4

, find
dz
ds
.

Solution: Since z is a power of a function, we first use the power rule:The problem here is to recognize the
form of the function to be differentiated.
In this case it is a power, not a quotient. dz

ds
D 4

�
2sC 5
s2 C 1

�4�1 d
ds

�
2sC 5
s2 C 1

�
Now we use the quotient rule:

dz
ds
D 4

�
2sC 5
s2 C 1

�3 �
.s2 C 1/.2/ � .2sC 5/.2s/

.s2 C 1/2

�
Simplifying, we have

dz
ds
D 4 �

.2sC 5/3

.s2 C 1/3

�
�2s2 � 10sC 2
.s2 C 1/2

�
D �

8.s2 C 5s � 1/.2sC 5/3

.s2 C 1/5

Now Work Problem 41 G

EXAMPLE 7 Differentiating a Product of Powers

If y D .x2 � 4/5.3xC 5/4, find y0.

Solution: Since y is a product, we first apply the product rule:

y0
D .x2 � 4/5

d
dx
..3xC 5/4/C .3xC 5/4

d
dx
..x2 � 4/5/

Now we use the power rule:

y0
D .x2 � 4/5.4.3xC 5/3.3//C .3xC 5/4.5.x2 � 4/4.2x//

D 12.x2 � 4/5.3xC 5/3 C 10x.3xC 5/4.x2 � 4/4
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To simplify, we first remove common factors:In differentiating a product in which at
least one factor is a power, simplifying
the derivative usually involves factoring. y0

D 2.x2 � 4/4.3xC 5/3Œ6.x2 � 4/C 5x.3xC 5/�

D 2.x2 � 4/4.3xC 5/3.21x2 C 25x � 24/

Now Work Problem 39 G

Usually, the power rule should be used to differentiate y D Œu.x/�n. Although a
function such as y D .x2C2/2 can be written y D x4C4x2C4 and differentiated easily,
this method is impractical for a function such as y D .x2C2/1000. Since y D .x2C2/1000

is of the form y D Œu.x/�n, we have

y0
D 1000.x2 C 2/999.2x/

Marginal-Revenue Product
Let us now use our knowledge of calculus to develop a concept relevant to economic
studies. Suppose a manufacturer hires m employees who produce a total of q units of
a product per day. We can think of q as a function of m. If r is the total revenue the
manufacturer receives for selling these units, then r can also be considered a function
of m. Thus, we can look at dr=dm, the rate of change of revenue with respect to the
number of employees. The derivative dr=dm is called themarginal-revenue product.
It approximates the change in revenue that results when a manufacturer hires an extra
employee.

EXAMPLE 8 Marginal-Revenue Product

Amanufacturer determines thatm employees will produce a total of q units of a product
per day, where

q D
10m2

p
m2 C 19

(1)

If the demand equation for the product is p D 900=.q C 9/, determine the marginal-
revenue product when m D 9.

Solution: We must find dr=dm, where r is revenue. Note that, by the chain rule,

dr
dm
D

dr
dq
�
dq
dm

Thus, we must find both dr=dq and dq=dm when m D 9. We begin with dr=dq. The
revenue function is given by

r D pq D
�

900
qC 9

�
q D

900q
qC 9

(2)

so, by the quotient rule,

dr
dq
D
.qC 9/.900/ � 900q.1/

.qC 9/2
D

8100
.qC 9/2

In order to evaluate this expression when m D 9, we first use the given equation
q D 10m2=

p
m2 C 19 to find the corresponding value of q:

q D
10.9/2
p
92 C 19

D 81
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Hence,

dr
dq

ˇ̌̌̌
mD9
D

dr
dq

ˇ̌̌̌
qD81
D

8100
.81C 9/2

D 1

Now we turn to dq=dm. From the quotient and power rules, we have

dq
dm
D

d
dm

�
10m2

p
m2 C 19

�

D

.m2 C 19/1=2 d
dm
.10m2/ � .10m2/

d
dm
Œ.m2
C 19/1=2�

Œ.m2 C 19/1=2�2

D
.m2 C 19/1=2.20m/ � .10m2/Œ 12 .m

2 C 19/�1=2.2m/�

m2 C 19

so

dq
dm

ˇ̌̌̌
mD9
D
.81C 19/1=2.20 � 9/ � .10 � 81/Œ 12 .81C 19/�1=2.2 � 9/�

81C 19

D 10:71

Therefore, from the chain rule,
A direct formula for the
marginal-revenue product is

dr
dm
D

dq
dm

�
pC q

dp
dq

� dr
dm

ˇ̌̌̌
mD9
D .1/.10:71/ D 10:71

This means that if a tenth employee is hired, revenue will increase by approximately
$10.71 per day.

Now Work Problem 80 G

PROBLEMS 11.5
In Problems 1–8, use the chain rule.

1. If y D u3 C 3u2 and u D x2 C 1, find dy=dx.

2. If y D 2u3 � 8u and u D 7x � x3, find dy=dx.

3. If y D
1
w
and w D 3x � 5, find dy=dx.

4. If y D 4
p
z and z D x5 � x4 C 3, find dy=dx.

5. If w D u3 and u D
t � 1
tC 1

, find dw=dt when t D 1.

6. If z D u3 C
p
uC 5 and u D 2s2 C 1, find dz=ds when s D 2.

7. If y D 3w2 � 8wC 4 and w D 2x2C 1, find dy=dx when x D 0.

8. If y D 2u3 C 3u2 C 5u � 1 and u D 3xC 1, find dy=dx when
x D 1.

In Problems 9–52, find y0.

9. y D .3xC 2/6 10. y D .x2 � 4/4

11. y D .2C 3x5/7 12. y D .x2 C x/4

13. y D 5.x3 � 3x2 C 2x/100 14. y D
.2x2 C 1/4

2

15. y D .x2 � 2/�3 16. y D .3x3 � 2x2/�10

17. y D 2.x2 C 5x � 2/�5=7 18. y D 3.5x � 2x3/�5=3

19. y D
p
5x2 � x 20. y D

p
3x2 � 7

21. y D 3
p
5xC 7 22. y D 3

p
8x2 � 1

23. y D 4 7
p
.x2 C 1/3 24. y D 7 3

p
.x5 � 3/5

25. y D
6

2x2 � xC 1
26. y D

2
x3 C 5

27. y D
1

.x2 � 3x/2
28. y D

1
.3C 5x/3

29. y D
4

p
9x2 C 1

30. y D
3

.3x2 � x/2=3

31. y D 5
p
5xC 5

p
5x 32. y D

p
2xC

1
p
2x

33. y D x3.2xC 3/7 34. y D x.xC 4/4

35. y D 4x2
p
5xC 1 36. y D 2x3

p
1 � x5

37. y D .x2 C 2x � 1/3.5x/ 38. y D x4.x4 � 1/5

39. y D .8x � 1/3.2xC 1/4 40. y D .3xC 2/5.4x � 5/2
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41. y D
�
axC b
cxC d

�11

42. y D
�

2x
xC 2

�4

43. y D

r
xC 1
x � 5

44. y D 3

s
8x2 � 3
x2 C 2

45. y D
2x � 5
.x2 C 4/3 46. y D

.2xC 3/5

2x4 C 8

47. y D
.8x � 1/5

.3x � 1/3
48. y D 3

p
.x � 3/3.xC 5/

49. y D 6.5x2 C 2/
p
x4 C 5 50. y D 6C 3x � 4x.7xC 1/2

51. y D 2tC
tC 1
tC 3

�

�
2tC 3
5

�7

52. y D
.2x3 C 6/.7x � 5/

.2xC 4/2

In Problems 53 and 54, use the quotient rule and power rule to
find y0. Do not simplify your answer.

53. y D
.3xC 2/3.xC 1/4

.x2 � 7/3
54. y D

p
xC 2.4x2 � 1/2

9x � 3

55. If y D .5uC 6/3 and u D .x2 C 1/4, find dy=dx when x D 0.

56. If z D 3y3 C 2y2 C y, y D 2x2 C x, and x D tC 1, find dz=dt
when t D 1.

57. Find the slope of the curve y D .x2 � 7x � 8/3 at the point
(8, 0).

58. Find the slope of the curve y D
p
xC 2 at the point .7; 3/.

In Problems 59–62, find an equation of the tangent line to the
curve at the given point.

59. y D 3
p
.x2 � 8/2I .3; 1/ 60. y D .xC 3/3I .�1; 8/

61. y D

p
5xC 5
xC 1

; .4; 1/ 62. y D
�3

.3x2 C 1/3
I .0;�3/

In Problems 63 and 64, determine the percentage rate of change
of y with respect to x for the given value of x.

63. y D .x2 C 1/4; x D 1 64. y D
1

.x2 � 1/3
I x D 2

In Problems 65–68, q is the total number of units produced per
day by m employees of a manufacturer, and p is the price per
unit at which the q units are sold. In each case, find the
marginal-revenue product for the given value of m.

65. q D 5m, p D �0:4qC 50; m D 6

66. q D .100m � m2/=10, p D �0:1qC 50; m D 10

67. q D 10m2=
p
m2 C 9, p D 525=.qC 3/; m D 4

68. q D 50m=
p
m2 C 11, p D 100=.qC 10/; m D 5

69. Demand Equation Suppose p D 100 �
p
q2 C 20 is a

demand equation for a manufacturer’s product.
(a) Find the rate of change of p with respect to q.
(b) Find the relative rate of change of p with respect to q.
(c) Find the marginal-revenue function.

70. Marginal-Revenue Product If p D k=q, where k is a
constant, is the demand equation for a manufacturer’s product and
q D f.m/ defines a function that gives the total number of units
produced per day by m employees, show that the marginal-
revenue product is always zero.

71. Cost Function The cost c of producing q units of a product
is given by

c D 5000C 10qC 0:1q2

If the price per unit p is given by the equation

q D 1000 � 2p

use the chain rule to find the rate of change of cost with respect to
price per unit when p D 100.

72. Hospital Discharges A governmental health agency
examined the records of a group of individuals who were
hospitalized with a particular illness. It was found that the total
proportion that had been discharged at the end of t days of
hospitalization was given by

f.t/ D 1 �
�

250
250C t

�3

Find f 0.100/ and interpret your answer.

73. Marginal Cost If the total-cost function for a manufacturer
is given by

c D
4q2p
q2 C 2

C 6000

find the marginal-cost function.

74. Salary/Education For a certain population, if E is the
number of years of a person’s education and S represents average
annual salary in dollars, then for E � 7,

S D 340E2 � 4360EC 42;800

(a) How fast is salary changing with respect to education when
E D 16?
(b) At what level of education does the rate of change of salary
equal $5000 per year of education?

75. Biology The volume of a spherical cell is given by
V D 4

3�r
3, where r is the radius. At time t seconds, the radius

(in centimeters) is given by

r D 10�8t2 C 10�7t

Use the chain rule to find dV=dt when t D 10.

76. Pressure in Body Tissue Under certain conditions, the
pressure, p, developed in body tissue by ultrasonic beams is given
as a function of the beam’s intensity, I, via the equation14

p D .2�VI/1=2

where � (a Greek letter read “rho”) is density of the affected tissue
and V is the velocity of propagation of the beam. Here � and V are
constants. (a) Find the rate of change of p with respect to I. (b)
Find the relative rate of change of p with respect to I.

14 R. W. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill Book Company, 1955).
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77. Demography Suppose that, for a certain group of 20,000
births, the number of people surviving to age x years is

lx D �0:000354x4 C 0:00452x3 C 0:848x2 � 34:9xC 20;000

0 � x � 95:2

(a) Find the rate of change of lx with respect to x, and evaluate
your answer for x D 65.
(b) Find the relative rate of change and the percentage rate of
change of lx when x D 65. Round your answers to three decimal
places.

78. Muscle Contraction A muscle has the ability to shorten
when a load, such as a weight, is imposed on it. The equation

.PC a/.vC b/ D k

is called the “fundamental equation of muscle contraction.”15

Here P is the load imposed on the muscle, v is the velocity of
the shortening of the muscle fibers, and a, b, and k are positive
constants. Express v as a function of P. Use your result to find
dv=dP.

79. Economics Suppose pq D 100 is the demand equation for
a manufacturer’s product. Let c be the total cost, and assume that
the marginal cost is 0.01 when q D 200. Use the chain rule to find
dc=dp when q D 200.

80. Marginal-Revenue Product A monopolist who employs
m workers finds that they produce

q D 2m.2mC 1/3=2

units of product per day. The total revenue, r (in dollars), is
given by

r D
50q

p
1000C 3q

(a)What is the price per unit (to the nearest cent) when there are
12 workers?
(b) Determine the marginal revenue when there are 12 workers.
(c) Determine the marginal-revenue product when m D 12.

81. Suppose y D f.x/, where x D g.t/. Given that g.2/ D 3,
g0.2/ D 4, f.2/ D 5, f 0.2/ D 6, g.3/ D 7, g0.3/ D 8, f.3/ D 9,

and
dy
dt

ˇ̌
tD2 D 40; determine f 0.3/.

82. Business A manufacturer has determined that, for his
product, the daily average cost (in hundreds of dollars) is given by

c D
324p
q2 C 35

C
5
q
C

19
18

(a) As daily production increases, the average cost approaches a
constant dollar amount. What is this amount?
(b) Determine the manufacturer’s marginal cost when 17 units are
produced per day.
(c) The manufacturer determines that if production (and sales)
were increased to 18 units per day, revenue would increase by
$275. Should this move be made? Why?

83. If

y D .uC 2/
p
uC 3

and

u D x.x2 C 3/3

find dy=dx when x D 0:1. Round your answer to two decimal
places.

84. If

y D
2uC 3
u3 � 2

and

u D
xC 4

.2xC 3/3

find dy=dx when x D �1. Round your answer to two decimal
places.

Chapter 11 Review
Important Terms and Symbols Examples
Section 11.1 The Derivative

secant line tangent line slope of a curve Ex. 1, p. 485

derivative lim
h!0

f.xC h/ � f.x/
h

lim
z!x

f.z/ � f.x/
z � x

Ex. 2, p. 486

difference quotient f 0.x/ y0
d
dx
. f.x//

dy
dx

Ex. 4, p. 487

Section 11.2 Rules for Differentiation
power function constant factor rule sum or difference rule Ex. 5, p. 496

Section 11.3 The Derivative as a Rate of Change
position function �x velocity rate of change Ex. 1, p. 501
total-cost function marginal cost average cost per unit Ex. 7, p. 505
total-revenue function marginal revenue Ex. 8, p. 506
relative rate of change percentage rate of change Ex. 9, p. 507

15 Ibid.
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Section 11.4 The Product Rule and the Quotient Rule
product rule quotient rule Ex. 5, p. 514
consumption function marginal propensity to consume and to save Ex. 9, p. 516

Section 11.5 The Chain Rule
chain rule power rule marginal-revenue product Ex. 8, p. 524

Summary
The tangent line (or tangent) to a curve at point P is the lim-
iting position of secant lines PQ asQ approaches P along the
curve. The slope of the tangent at P is called the slope of the
curve at P.

If y D f.x/, the derivative of f at x is f 0.x/ defined by

f 0.x/ D lim
h!0

f.xC h/ � f.x/
h

Geometrically, the derivative gives the slope of the curve
y D f.x/ at the point .x; f.x//. At a particular point .a; f.a//
the slope of the tangent line is f 0.a/, thus the point-slope form
of the tangent line at .a; f.a// is y� f.a/ D f 0.a/.x�a/. Any
function that is differentiable at a point is also continuous at
that point.

The rules for finding derivatives, discussed so far, are as
follows, where all functions are assumed to be differentiable:

d
dx
.c/ D 0; where c is any constant

d
dx
.xa/ D axa�1; where a is any real number

d
dx
.cf.x// D cf 0.x/; where c is a constant

d
dx
. f.x/C g.x// D f 0.x/C g0.x/

d
dx
. f.x/ � g.x// D f 0.x/ � g0.x/

d
dx
. f.x/g.x// D f 0.x/g.x/C f.x/g0.x/

d
dx

�
f.x/
g.x/

�
D

g.x/f 0.x/ � f.x/g0.x/
.g.x//2

dy
dx
D

dy
du
�
du
dx
; where y is a function of u and u is a

function of x

d
dx
.ua/ D aua�1 du

dx
; where u is a function of x and a
is any real number

The derivative dy=dx can also be interpreted as giving
the (instantaneous) rate of change of y with respect to x:

dy
dx
D lim

�x!0

�y
�x
D lim

�x!0

change in y
change in x

In particular, if s D f.t/ is a position function, where s is
position at time t, then

ds
dt
D velocity at time t

In economics, the term marginal is used to describe deriva-
tives of specific types of functions. If c D f.q/ is a total-cost
function (c is the total cost of q units of a product), then the
rate of change

dc
dq

is called marginal cost

We interpret marginal cost as the approximate cost of
one additional unit of output. (Average cost per unit, c, is
related to total cost c by c D c=q; equivalently, c D cq.)

A total-revenue function r D f.q/ gives amanufacturer’s
revenue r for selling q units of product. (Revenue r and price
p are related by r D pq.) The rate of change

dr
dq

is called marginal revenue

which is interpreted as the approximate revenue obtained
from selling one additional unit of output.

If r is the revenue that a manufacturer receives when the
total output of m employees is sold, then the derivative
dr=dm D dr=dq �dq=dm is called the marginal-revenue prod-
uct and gives the approximate change in revenue that results
when the manufacturer hires an extra employee.

IfC D f.I/ is a consumption function, where I is national
income and C is national consumption, then

dC
dI

is marginal propensity to consume

and

1 �
dC
dI

is marginal propensity to save

For any function, the relative rate of change of f.x/ is

f 0.x/
f.x/

which compares the rate of change of f.x/ with f.x/ itself.
The percentage rate of change is

f 0.x/
f.x/
� 100%
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Review Problems
In Problems 1–4, use the definition of the derivative to find f 0.x/.

1. f.x/ D 2 � x2 2. f.x/ D 7x4 C 5x2 C 3

3. f.x/ D
p
3x 4. f.x/ D

2
1C 4x

In Problems 5–38, differentiate.

5. y D 74 6. y D ex 7. y D ex3 C 3
p
3x2 C 7x2 C 5xC 2

8. y D 4.x2 C 5/ � 7x

9. f.s/ D s2.s2 C 2/ 10. y D
p
xC 3

11. y D
x2 C 1
5

12. y D
1
xn

13. y D .x3 C 7x2/.x3 � x2 C 5/

14. y D .x2 C 1/100.x � 6/

15. f.x/ D .2x2 C 4x/100 16. f.w/ D w
p
wC w2

17. y D
.axC b/2

.cxC d/2
18. y D

5x2 � 8x
2x

19. y D .8C 2x/.x2 C 1/4 20. g.z/ D .2z/3=5 C 5

21. f.z/ D
z2 � 1
z2 C 4

22. y D
p
a2 � x2

23. y D 3
p
4x � 1 24. f.x/ D .1C 23/12

25. y D
1

p
1 � x2

26. y D
x.xC 1/
2x2 C 3

27. y D .xC a/m.xC b/n.xC c/p

28. y D
.xC 3/5

x

29. y D
5x � 4
xC 6

30. f.x/ D 5x3
p
3C 2x4

31. y D 2x�3=8 C .2x/�3=8 32. y D
x
a
C

a
x

33. y D
x2 C 6
p
x2 C 5

34. y D 3
p
.7 � 3x2/2

35. y D .x3 C 6x2 C 9/3=5 36. z D 0:4x2.xC 1/�3 C 0:5

37. g.z/ D
.2zC 3/2

.5zC 7/�3
38. g.z/ D

�3
4.z5 C 2z � 5/4

In Problems 39–42, find an equation of the tangent line to the
curve at the point corresponding to the given value of x.

39. y D x2 � 6xC 4, x D 1 40. y D �2x3 C 6xC 1, x D 2

41. y D 3
p
x, x D 8 42. y D

x3

x2 � 3
, x D 2

43. If f.x/ D 4x2 C 2xC 8, find the relative and percentage rates
of change of f.x/ when x D 1.

44. If f.x/ D x=.xC 4/, find the relative and percentage rates of
change of f.x/ when x D 1.

45. Marginal Revenue If r D q.20 � 0:1q/ is a total-revenue
function, find the marginal-revenue function.

46. Marginal Cost If

c D 0:0001q3 � 0:02q2 C 3qC 6000

is a total-cost function, find the marginal cost when q D 100.

47. Consumption Function If

C D 5C 0:6I � 0:4
p
I

is a consumption function, find the marginal propensity to
consume and the marginal propensity to save when I D 25.

48. Demand Equation If p D
qC 12
qC 5

is a demand equation,

find the rate of change of price, p, with respect to quantity, q.

49. Demand Equation If p D �0:1qC 500 is a demand
equation, find the marginal-revenue function.

50. Average Cost If c D 0:03qC 1:2C
3
q
is an average-cost

function, find the marginal cost when q D 100.

51. Power-Plant Cost Function The total-cost function of an
electric light and power plant is estimated by16

c D 16:68C 0:125qC 0:00439q2 20 � q � 90

where q is the eight-hour total output (as a percentage of capacity)
and c is the total fuel cost in dollars. Find the marginal-cost
function and evaluate it when q D 70.

52. Marginal-Revenue Product A manufacturer has
determined that m employees will produce a total of q units of
product per day, where

q D m.50 � m/

If the demand function is given by

p D �0:05qC 10

find the marginal-revenue product when m D 2.

53. Winter Moth In a study of the winter moth in Nova
Scotia,17 it was determined that the average number of eggs, y, in
a female moth was a function of the female’s abdominal width, x
(in millimeters), where

y D f.x/ D 14x3 � 17x2 � 16xC 34

and 1:5 � x � 3:5. At what rate does the number of eggs change
with respect to abdominal width when x D 2?

54. Host–Parasite Relation For a particular host–parasite
relationship, it is found that when the host density (number of
hosts per unit of area) is x, the number of hosts that are
parasitized is

y D 12
�
1 �

1
1C 3x

�
x � 0

For what value of x does dy=dx equal 1
3?

16 J. A. Nordin, “Note on a Light Plant’s Cost Curves,” Econometrica,
15 (1947), 231–55.
17D. G. Embree, “The Population Dynamics of the Winter Moth in Nova
Scotia, 1954–1962,”Memoirs of the Entomological Society of Canada, no. 46
(1965).
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55. Bacteria Growth Bacteria are growing in a culture. The
time, t (in hours), for the number of bacteria to double in number
(the generation time) is a function of the temperature, T (in
degrees Celsius), of the culture and is given by

t D f.T/ D

(
1
24TC

11
4 if 30 � T � 36

4
3T �

175
4 if 36 < T � 39

Find dt=dT when (a) T D 38 and (b) T D 35.

56. Motion The position function of a particle moving in a
straight line is

s D
9

2t2 C 3

where t is in seconds and s is in meters. Find the velocity of the
particle at t D 1.

57. Rate of Change The volume of an inflatable ball is given
by V D 4

3�r
3, where r is the radius. Find the rate of change of V

with respect to r when r D 10 cm.

58. Motion The position function for a ball thrown vertically
upward from the ground is

s D 218t � 16t2

where s is the height in feet above the ground after t seconds. For
what value(s) of t is the velocity 64 ft/s?

59. Find the marginal-cost function if the average-cost function is

c D 2qC
10;000
q2

60. Find an equation of the tangent line to the curve

y D
.x3 C 2/

p
xC 1

x4 C 2x

at the point on the curve where x D 1.

61. A manufacturer has found that when m employees are
working, the number of units of product produced per day is

q D 10
p
m2 C 4900 � 700

The demand equation for the product is

8qC p2 � 19;300 D 0

where p is the selling price when the demand for the product is
q units per day.
(a) Determine the manufacturer’s marginal-revenue product when
m D 240.
(b) Find the relative rate of change of revenue with respect to the
number of employees when m D 240.
(c) Suppose it would cost the manufacturer $400 more per day to
hire an additional employee. Would you advise the manufacturer
to hire the 241st employee? Why or why not?

62. If f.x/ D ex, use the definition of the derivative (“limit of a
difference quotient”) to estimate f 0.0/ correct to three decimal
places.

63. If f.x/ D 3
p
x2 C 3x � 4, use the numerical derivative feature

of your graphing calculator to estimate the derivative when
x D 10. Round your answer to three decimal places.

64. The total-cost function for a manufacturer is given by

c D
5q2 C 4p
q2 C 6

C 2500

where c is in dollars. Use the numerical derivative feature of your
graphing calculator to estimate the marginal cost when 15 units
are produced. Round your answer to the nearest cent.

65. Show that Basic Rule 1 is actually a consequence of
Combining Rule 1 and the a D 0 case of Basic Rule 2.

66. Show that Basic Rule 2 for positive integers is a consequence
of Combining Rule 3 (the Product Rule) and the a D 1 case of
Basic Rule 2.
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12 Additional
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12.1 Derivatives of
Logarithmic Functions

12.2 Derivatives of
Exponential Functions

12.3 Elasticity of Demand

12.4 Implicit Differentiation

12.5 Logarithmic
Differentiation

12.6 Newton’s Method

12.7 Higher-Order
Derivatives

Chapter 12 Review

A
fter an uncomfortable trip in a vehicle, passengers sometimes describe the
ride as “jerky” although, if pressed for what they mean, they may be unable
to define “jerk” or “jerkiness”. In fact, jerk admits a precise definition that
uses ideas introduced in this chapter.

Travel in a straight line at a constant speed is called uniform motion, and there is
nothing jerky about it. But if the speed changes, the ride may become jerky. Change in
speed over time is the derivative of speed, called acceleration. Since speed is itself the
derivative of position with respect to time, acceleration is the derivative of the derivative
of position and also called, naturally enough, the second derivative of position with
respect to time.

However, nonzero acceleration is not necessarily jerky. For example, when people
jump off high diving boards, their downward speed increases as they fall, so they are
accelerating, but there is nothing jerky about their fall—until the moment of impact.
The acceleration in that case is due to gravity, and it is well known that gravitational
acceleration due to the earth is essentially constant within the earth’s atmosphere. To
say it more carefully, constantly accelerated motion is not jerky.

Recall that the derivative of a constant is zero. If acceleration is constant, the deriva-
tive of acceleration is zero. In fact, the derivative of acceleration, the third derivative
of position with respect to time, is called jerk, and when it is nonzero, motion feels, as
people say, jerky. When riding in a very powerful car with the gas pedal pressed all
the way to the floor, the passengers will feel themselves pushed back in their seats but
without any jerkiness until the driver releases and depresses the gas pedal, producing
changes in acceleration.

Second derivatives, third derivatives, and so on are all called higher-order deriva-
tives and constitute an important topic in this chapter. Jerk, for example, has impli-
cations not only for passenger comfort in vehicles but also for equipment reliability.
Engineers designing equipment for spacecraft, for example, follow guidelines about
the jerk the equipment must be able to withstand without damage to its components.

531
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Objective 12.1 Derivatives of Logarithmic Functions
To develop a differentiation formula for
y D ln u, to apply the formula, and to
use it to differentiate a logarithmic
function to a base other than e.

So far, the only derivatives we have been able to calculate are those of functions that
are constructed from power functions using multiplication by a constant, arithmetic
operations, and composition. (As pointed out in Review Problem 65 of Chapter 11, we
can calculate the derivative of a constant function, c, by writing c D cx0; then

d
dx
.c/ D

d
dx

�
cx0
�
D c

d
dx

�
x0
�
D c � 0x�1

D 0

Thus, we really have only one basic differentiation formula so far. The logarithmic
functions logb x and the exponential functions b

x cannot be constructed from power
functions using multiplication by a constant, arithmetic operations, and composition.
It follows that we will need at least another truly basic differentiation formula.

In this section, we develop formulas for differentiating logarithmic functions. We
begin with the derivative of ln x, commenting further on the numbered steps at the end
of the calculation.

d
dx
.ln x/

.1/
D lim

h!0

ln.xC h/ � ln x
h

definition of derivative

.2/
D lim

h!0

ln
�
xC h
x

�
h

since lnm � ln n D ln.m=n/

.3/
D lim

h!0

�
1
h
ln
�
1C

h
x

��
algebra

.4/
D lim

h!0

�
1
x
�
x
h
ln
�
1C

h
x

��
writing

1
h
D

1
x
�
x
h

.5/
D lim

h!0

 
1
x
ln
�
1C

h
x

�x=h
!

since r lnm D lnmr

.6/
D

1
x
� lim
h!0

 
ln
�
1C

h
x

�x=h
!

by limit Property 1 in Section 10.1

.7/
D

1
x
� ln

 
lim
h!0

�
1C

h
x

�x=h
!

ln is continuous

.8/
D

1
x
� ln

 
lim

h=x!0

�
1C

h
x

�x=h
!

for fixed x > 0

.9/
D

1
x
� ln

�
lim
k!0

.1C k/1=k
�

setting k D h=x

.10/
D

1
x
� ln.e/ as shown in Section 10.1

.11/
D

1
x

since ln e D 1

The calculation is long, but following it step by step allows for review of many impor-
tant ideas. Step (1) is the key definition introduced in Section 11.1. Steps (2), (5), and
(11) involve properties found in 4.3. In step (3), labeled simply algebra, we use proper-
ties of fractions first given in 0.2. Step (4) is admittedly a trick that requires experience
to discover. Note that, necessarily, x ¤ 0 since x is in the domain of ln, which is .0;1/.
To understand the justification for step (6), we must observe that x, and hence 1=x, is
constant with respect to the limit variable h. We have already remarked in Section 10.3
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that logarithmic functions are continuous and this is what allows us to interchange the
processes of applying the ln function and taking a limit in (7). In (8) the point is that,
for fixed x > 0, h=x goes to 0 when h goes to 0 and, conversely, h goes to 0 when h=x
goes to 0. Thus, we can regard h=x as a new limit variable, k, and this we do in step (9).

In conclusion, we have derived the following:

BASIC RULE 3 Derivative of ln x
d
dx
.ln x/ D

1
x

for x > 0

Some care is required with this rule because while the left-hand side is defined
only for x > 0, the right-hand side is defined for all x ¤ 0. For x < 0, ln.�x/ is defined
and by the chain rule we have

d
dx
.ln.�x// D

1
�x

d
dx
.�x/ D

�1
�x
D

1
x

for x < 0

We can combine the last two equations by using the absolute function to get

d
dx
.ln jxj/ D

1
x

for x ¤ 0 (1)

EXAMPLE 1 Differentiating Functions Involving ln x

a. Differentiate f.x/ D 5 ln x.

Solution: Here f is a constant (5) times a function (ln x), so by Basic Rule 3, we have

f 0.x/ D 5
d
dx
.ln x/ D 5 �

1
x
D

5
x

for x > 0

b. Differentiate y D
ln x
x2

.

Solution: By the quotient rule and Basic Rule 3,

y0
D

x2
d
dx
.ln x/ � .ln x/

d
dx
.x2/

.x2/2

D

x2
�
1
x

�
� .ln x/.2x/

x4
D

x � 2x ln x
x4

D
1 � 2 ln x

x3
for x > 0

Now Work Problem 1 G

We will now extend Equation (1) to cover a broader class of functions. Let y D ln juj,
where u is a differentiable function of x. By the chain rule,The chain rule is used to develop the

differentiation formula for ln juj.
d
dx
.ln juj/ D

dy
du
�
du
dx
D

d
du
.ln juj/ �

du
dx
D

1
u
�
du
dx

for u ¤ 0

Thus,

d
du
.ln juj/ D

1
u
�
du
dx

for u ¤ 0 (2)

Of course, Equation (2) gives us
d
du
.ln u/ D

1
u
�
du
dx

for u > 0.
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EXAMPLE 2 Differentiating Functions Involving ln u

a. Differentiate y D ln.x2 C 1/.

Solution: This function has the form ln u with u D x2 C 1, and since x2 C 1 > 0, for
all x, y D ln.x2 C 1/ is defined for all x. Using Equation (2), we have

dy
dx
D

1
x2 C 1

d
dx
.x2 C 1/ D

1
x2 C 1

.2x/ D
2x

x2 C 1

b. Differentiate y D x2 ln.4xC 2/.

Solution: Using the product rule gives

dy
dx
D x2

d
dx
.ln.4xC 2//C .ln.4xC 2//

d
dx
.x2/

By Equation (2) with u D 4xC 2,

dy
dx
D x2

�
1

4xC 2

�
.4/C .ln.4xC 2//.2x/

D
2x2

2xC 1
C 2x ln.4xC 2/ for 4xC 2 > 0

Since 4xC 2 > 0 exactly when x > �1=2, we have

d
dx
.x2 ln.4xC 2// D

2x2

2xC 1
C 2x ln.4xC 2/ for x > �1=2

c. Differentiate y D ln j ln jxjj.

Solution: This has the form y D ln juj with u D ln jxj. Using Equation (2), we obtain

y0
D

1
ln jxj

d
dx
.ln jxj/ D

1
ln jxj

�
1
x

�
D

1
x ln jxj

for x; u ¤ 0

Since ln jxj D 0 when x D �1; 1, we have

d
dx
.ln j ln jxjj/ D

1
x ln jxj

for x ¤ �1; 0; 1

Now Work Problem 9 G

APPLY IT I
1. The supply of q units of a product
at a price of p dollars per unit is given
by q.p/ D 25C 2 ln.3p2 C 4/. Find the
rate of change of supply with respect to

price,
dq
dp

.

Frequently, we can reduce the work involved in differentiating the logarithm of a
product, quotient, or power by using properties of logarithms to rewrite the logarithm
before differentiating. The next example will illustrate.

Comparing both methods, we note that
the easier one is to simplify first and then
differentiate.

EXAMPLE 3 Rewriting Logarithmic Functions before Differentiating

a. Find
dy
dx

if y D ln.2xC 5/3.

Solution: Here we have the logarithm of a power. First, we simplify the right side by
using properties of logarithms. Then we differentiate. We have

y D ln.2xC 5/3 D 3 ln.2xC 5/ for 2xC 5 > 0

dy
dx
D 3

�
1

2xC 5

�
.2/ D

6
2xC 5

for x > �5=2
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Alternatively, if the simplification were not performed first, we would write

dy
dx
D

1
.2xC 5/3

d
dx
..2xC 5/3/

D
1

.2xC 5/3
.3/.2xC 5/2.2/ D

6
2xC 5

b. Find f 0.p/ if f.p/ D ln..pC 1/2.pC 2/3.pC 3/4/.

Solution: We simplify the right side and then differentiate:

f.p/ D 2 ln.pC 1/C 3 ln.pC 2/C 4 ln.pC 3/

f 0.p/ D 2
�

1
pC 1

�
.1/C 3

�
1

pC 2

�
.1/C 4

�
1

pC 3

�
.1/

D
2

pC 1
C

3
pC 2

C
4

pC 3

Now Work Problem 5 G

EXAMPLE 4 Differentiating Functions Involving Logarithms

a. Find f 0.w/ if f.w/ D ln

r
1C w2

w2 � 1
.

Solution: We simplify by using properties of logarithms and then differentiate:

f.w/ D
1
2
.ln.1C w2/ � ln.w2

� 1//

f 0.w/ D
1
2

�
1

1C w2
.2w/ �

1
w2 � 1

.2w/
�

D
w

1C w2
�

w
w2 � 1

D �
2w

w4 � 1

b. Find f 0.x/ if f.x/ D ln3.2xC 5/.

Solution: The exponent 3 refers to the cubing of ln.2xC 5/. That is,

f.x/ D ln3.2xC 5/ D .ln.2xC 5//3

By the power rule,

Do not confuse ln3.2xC 5/ with
ln.2xC 5/3, which occurred in
Example 3(a). It is advisable to write
ln3.2xC 5/ explicitly as .ln.2xC 5//3.

f 0.x/ D 3.ln.2xC 5//2
d
dx
.ln.2xC 5//

D 3.ln.2xC 5//2
�

1
2xC 5

.2/
�

D
6

2xC 5
.ln.2xC 5//2

Now Work Problem 39 G

Derivatives of Logarithmic Functions to the Base b
To differentiate a logarithmic function to a base different from e, we can first convert the
logarithm to natural logarithms via the change-of-base formula and then differentiate
the resulting expression. For example, consider y D logb u, where u is a differentiable
function of x. By the change-of-base formula,

y D logb u D
ln u
ln b

for u > 0
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Differentiating, we have

d
dx
.logb u/ D

d
dx

�
ln u
ln b

�
D

1
ln b

d
dx
.ln u/ D

1
ln b
�
1
u
du
dx

Summarizing,

Note that ln b is just a constant!

d
dx
.logb u/ D

1
.ln b/u

�
du
dx

for u > 0

Rather than memorizing this rule, we suggest remembering the procedure used to
obtain it.

Procedure to Differentiate logb u

Convert logb u to natural logarithms to obtain
ln u
ln b

, and then differentiate.

EXAMPLE 5 Differentiating a Logarithmic Function to the Base 2

Differentiate y D log2 x.

Solution: Following the foregoing procedure, we have

d
dx
.log2 x/ D

d
dx

�
ln x
ln 2

�
D

1
ln 2

d
dx
.ln x/ D

1
.ln 2/x

It is worth mentioning that we can write our answer in terms of the original base.
Because

1
ln b
D

1
logb b
logb e

D
logb e
1
D logb e

we can express
1

.ln 2/x
as

log2 e
x

. More generally,
d
dx
.logb u/ D

logb e
u
�
du
dx
.

Now Work Problem 15 G

EXAMPLE 6 Differentiating a Logarithmic Function to the Base 10

If y D log.2xC 1/, find the rate of change of y with respect to x.

APPLY IT I
2. The intensity of an earthquake is
measured on the Richter scale. The
reading is given by R D log

I
I0
, where I

is the intensity and I0 is a standard min-

imum intensity. If I0 D 1, find
dR
dI
, the

rate of change of the Richter-scale read-
ing with respect to the intensity.

Solution: The rate of change is dy=dx, and the base involved is 10. Therefore, we have

dy
dx
D

d
dx
.log.2xC 1// D

d
dx

�
ln.2xC 1/

ln 10

�
D

1
ln 10

�
1

2xC 1
.2/ D

2
ln 10.2xC 1/

G

PROBLEMS 12.1
In Problems 1–44, differentiate the functions. If possible, first use
properties of logarithms to simplify the given function.

1. y D a ln x 2. y D
5 ln x
9

3. y D ln.axC b/

4. y D ln.5x � 6/ 5. y D ln x2

6. y D ln.5x3 C 3x2 C 2xC 1/ 7. y D ln.1 � x2/

8. y D ln.ax2 C bxC c/ 9. f.X/ D ln.4X 6 C 2X 3/

10. f.r/ D ln.2r4 � 3r2 C 2rC 1/

11. f.t/ D t ln t � t 12. y D x2 ln x

13. y D x2 ln.axC b/ 14. y D .axC b/3 ln.axC b/

15. y D log3.8x � 1/ 16. f.w/ D log.w2 C 2wC 1/

17. y D x2 C log2.x
2 C 4/ 18. y D xa logb x

19. f.z/ D
ln z
z

20. y D
x2

ln x

21. y D
x4 C 3x2 C x

ln x
22. y D ln x100
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23. y D ln.ax2 C bxC c/d 24. y D 6 ln 3
p
x

25. y D 9 ln
p
1C x2 26. f.t/ D ln

�
t4

1C 6tC t2

�
27. f.l/ D ln

�
1C l
1 � l

�
28. y D ln

�
axC b
cxC d

�
29. y D ln

4

r
1C x2

1 � x2 30. y D ln 3

s
x3 � 1
x3 C 1

31. y D lnŒ.ax2 C bxC c/p.hx2 C kxC l/q�

32. y D lnŒ.5xC 2/4.8x � 3/6� 33. y D ln. f.x/g.x//

34. y D 6 ln
x

p
2xC 1

35. y D .x2 C 1/ ln.2xC 1/

36. y D .ax2 C bxC c/ ln.hx2 C kxC l/

37. y D ln x3 C ln3 x 38. y D xlog3 5

39. y D ln4.ax/ 40. y D ln2.2xC 11/

41. y D ln
p
f.x/ 42. y D ln

�
x3 4
p
2xC 1

�
43. y D

p
f.x/C ln x 44. y D ln

�
xC
p
1C x2

�
45. Find an equation of the tangent line to the curve

y D ln.x2 � 3x � 3/

when x D 4.

46. Find an equation of the tangent line to the curve

y D x ln x � x

at the point where x D 1.

47. Find the slope of the curve y D
x
ln x

when x D 3.

48. Marginal Revenue Find the marginal-revenue function if
the demand function is p D 50= ln.qC 3/.

49. Marginal Cost A total-cost function is given by

c D 25 ln.qC 1/C 12

Find the marginal cost when q D 6.

50. Marginal Cost A manufacturer’s average-cost function, in
dollars, is given by

Nc D
500

ln.qC 20/

Find the marginal cost (rounded to two decimal places) when
q D 50.

51. Supply Change The supply of q units of a product at a
price of p dollars per unit is given by q.p/ D 27C 11 ln.2pC 1/.

Find the rate of change of supply with respect to price,
dq
dp
.

52. Sound Perception The loudness of sound, L, measured in
decibels, perceived by the human ear depends upon intensity

levels, I, according to L D 10 log
I
I0
, where I0 is the standard

threshold of audibility. If I0 D 17, find
dL
dI
, the rate of change of

the loudness with respect to the intensity.

53. Biology In a certain experiment with bacteria, it is
observed that the relative activeness of a given bacteria colony
is described by

A D 6 ln
�

T
a � T

� a
�

where a is a constant and T is the surrounding temperature. Find
the rate of change of A with respect to T.

54. Show that the relative rate of change of y D f.x/ with respect
to x is equal to the derivative of y D ln f.x/.

55. Show that
d
dx
.logb u/ D

1
u
.logb e/

du
dx
.

In Problems 56 and 57, use differentiation rules to find f 0.x/. Then
use your graphing calculator to find all roots of f 0.x/ D 0. Round
your answers to two decimal places.

56. f.x/ D x3 ln x 57. f.x/ D
ln.x2/
x2

Objective 12.2 Derivatives of Exponential Functions
To develop a differentiation formula for
y D eu, to apply the formula, and to
use it to differentiate an exponential
function with a base other than e.

As we pointed out in Section 12.1, the exponential functions cannot be constructed
from power functions using multiplication by a constant, arithmetic operations, and
composition. However, the functions bx, for b > 0 and b ¤ 1, are inverse to the
functions logb.x/, and if an invertible function f is differentiable, it is fairly easy to see
that its inverse is differentiable. The key idea is that the graph of the inverse of a function
is obtained by reflecting the graph of the original function in the line y D x. This
reflection process preserves smoothness so that if the graph of an invertible function is
smooth, then so is the graph of its inverse. Differentiating f. f �1.x// D x, we have

d
dx
. f. f �1.x/// D

d
dx
.x/

f 0. f �1.x//
d
dx
. f �1.x// D 1 Chain Rule

d
dx
. f �1.x// D

1
f 0. f �1.x//
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Thus we have

COMBINING RULE 6 Inverse Function Rule
If f is an invertible, differentiable function, then f �1 is differentiable and

d
dx
. f �1.x// D

1
f 0. f �1.x//

Aswith the chain rule, Leibniz notation is well suited for inverse functions. Indeed,

if y D f �1.x/, then
dy
dx
D

d
dx
. f �1.x// and since f.y/ D x, f 0.y/ D

dx
dy
. When we

substitute these in Combining Rule 6, we get

dy
dx
D

d
dx
. f �1.x// D

1
f 0. f �1.x//

D
1

f 0.y/
D

1
dx
dy

so that Combining Rule 6 can be rewritten as

dy
dx
D

1
dx
dy

(1)

In the immediate case of interest, with y D ex so that x D ln y and dx=dy D 1=y D
1=ex, we have

d
dx
.ex/ D

1
1
ex

D ex

which we record as
d
dx
.ex/ D ex (2)

For u a differentiable function of x, an application of the Chain Rule gives

d
dx
.eu/ D eu

du
dx

(3)

The power rule does not apply to ex and
other exponential functions, bx! The
power rule applies to power functions, xa.
Note the location of the variable.

If a quotient can be easily rewritten
as a product, then we can use the
somewhat simpler product rule rather
than the quotient rule.

EXAMPLE 1 Differentiating Functions Involving ex

a. Find
d
dx
.3ex/. Since 3 is a constant factor,

d
dx
.3ex/ D 3

d
dx
.ex/

D 3ex by Equation (2)

b. If y D
x
ex
, find

dy
dx
.

Solution: We could use first the quotient rule and then Equation (2), but it is a little
easier first to rewrite the function as y D xe�x and use the product rule and Equation (3):

dy
dx
D

d
dx
.x/e�x

C x
d
dx
.e�x/ D .1/e�x

C x.e�x/.�1/ D e�x.1 � x/ D
1 � x
ex

c. If y D e2 C ex C ln 3, find y0.

Solution: Since e2 and ln 3 are constants, y0 D 0C ex C 0 D ex.

Now Work Problem 1 G
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APPLY IT I
3. When an object is moved from
one environment to another, the change
in temperature of the object is given
by T D Cekt, where C is the tem-
perature difference between the two
environments, t is the time in the new
environment, and k is a constant. Find
the rate of change of temperature with
respect to time.

d
dx
.eu/ D eu

du
dx
. Don’t forget the

du
dx
.

EXAMPLE 2 Differentiating Functions Involving eu

a. Find
d
dx

�
ex

3C3x�.
Solution: The function has the form eu with u D x3 C 3x. From Equation (2),

d
dx

�
ex

3C3x�
D ex

3C3x d
dx
.x3 C 3x/ D ex

3C3x.3x2 C 3/

D 3.x2 C 1/ex
3C3x

b. Find
d
dx
.exC1 ln.x2 C 1//.

Solution: By the product rule,

d
dx
.exC1 ln.x2 C 1// D exC1 d

dx
.ln.x2 C 1//C .ln.x2 C 1//

d
dx
.exC1/

D exC1
�

1
x2 C 1

�
.2x/C .ln.x2 C 1//exC1.1/

D exC1
�

2x
x2 C 1

C ln.x2 C 1/
�

Now Work Problem 3 G

EXAMPLE 3 The Normal-Distribution Density Function

An important function used in the social sciences is the normal-distribution density
function

y D f.x/ D
1

�
p
2�

e�.1=2/..x��/=�/2

where � (a Greek letter read “sigma”) and � (a Greek letter read “mu”) are constants.
The graph of this function, called the normal curve, is bell shaped. (See Figure 12.1.)
Determine the rate of change of y with respect to x when x D �C � .

y

x
m

FIGURE 12.1 The normal-distribution
density function.

Solution: The rate of change of y with respect to x is dy=dx. We note that the factor
1

�
p
2�

is a constant and the second factor has the form eu, where

u D �
1
2

�x � �
�

�2
Thus,

dy
dx
D

1

�
p
2�

�
e�.1=2/..x��/=�/2

� �
�
1
2
.2/

�x � �
�

�� 1
�

��
Evaluating dy=dx when x D �C � , we obtain

dy
dx

ˇ̌̌̌
xD�C�

D
1

�
p
2�

�
e�.1=2/..�C���/=�/2

� �
�
�C � � �

�

��
1
�

�
D

1

�
p
2�

�
e�.1=2/

� �
�
1
�

�
D
�e�.1=2/

�2
p
2�
D

�1

�2
p
2�e

G
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Differentiating Exponential Functions to the Base b
Now that we are familiar with the derivative of eu, we consider the derivative of the
more general exponential function bu. Because b D eln b, we can express bu as an
exponential function with the base e, a form we can differentiate. We have

d
dx
.bu/ D

d
dx
..eln b/u/ D

d
dx
.e.ln b/u/

D e.ln b/u d
dx
..ln b/u/

D e.ln b/u.ln b/
�
du
dx

�
D bu.ln b/

du
dx

since e.ln b/u
D bu

Summarizing,

d
dx
.bu/ D bu.ln b/

du
dx

(4)

Note that if b D e, then the factor ln b in Equation (4) is 1. Thus, if exponential func-
tions to the base e are used, we have a simpler differentiation formula with which to
work. This is the reason natural exponential functions are used extensively in calcu-
lus. Rather than memorizing Equation (4), we advocate remembering the procedure
for obtaining it.

Procedure to Differentiate bu

Convert bu to a natural exponential function by using the property that b D eln b,
and then differentiate.

The next example will illustrate this procedure.

EXAMPLE 4 Differentiating an Exponential Function with Base 4

Find
d
dx
.4x/.

Solution: Using the preceding procedure, we have

d
dx
.4x/ D

d
dx
..eln 4/x/

D
d
dx

�
e.ln 4/x� form W

d
dx
.eu/

D e.ln 4/x.ln 4/ by Equation (2)

D 4x.ln 4/
Now Work Problem 15 GVerify the result by using Equation (4)

directly.

EXAMPLE 5 Differentiating Different Forms

Find
d
dx

�
e2 C xe C 2

p
x�.

Solution: Here we must differentiate three different forms; do not confuse them! The
first .e2/ is a constant base to a constant power, so it is a constant itself. Thus, its deriva-
tive is zero. The second .xe/ is a variable base to a constant power, so the power rule
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applies. The third .2
p

x/ is a constant base to a variable power, so we must differentiate
an exponential function. Taken all together, we have

d
dx

�
e2 C xe C 2

p
x�
D 0C exe�1

C
d
dx

�
e.ln 2/

p
x�

D exe�1
C
�
e.ln 2/

p
x�.ln 2/� 1

2
p
x

�
D exe�1

C
2

p
x ln 2

2
p
x

Now Work Problem 17 G

EXAMPLE 6 Differentiating Power Functions Again

We have often used the rule d=dx.xa/ D axa�1, but we have only proved it for a a
positive integer and a few other special cases. At least for x > 0, we can now improve
our understanding of power functions, using Equation (2).

For x > 0, we can write xa D ea ln x. So we have

d
dx
.xa/ D

d
dx

ea ln x D ea ln x
d
dx
.a ln x/ D xa.ax�1/ D axa�1

Now Work Problem 19 G

PROBLEMS 12.2
In Problems 1–28, differentiate the functions.

1. y D 5ex 2. y D
aex

b

3. y D e2x
2C3 4. y D e3x

3C5x2C7xC11

5. y D e9�5x 6. f.q/ D e�q3C6q�1

7. f.r/ D e4r
3C5r2C2rC6 8. y D ex

2C6x3C1

9. y D xeex 10. y D 3x4e�x

11. y D x2e�x2 12. y D xeax

13. y D
ex C e�x

3
14. y D

ex C e�x

ex � e�x

15. y D 52x
3

16. y D 2xx2

17. f.w/ D
eaw

w2 C wC 1 18. y D ex�
p

x

19. y D e1�
p

x 20. y D .e2x C 1/3

21. y D x5 � 5x 22. f.z/ D e1=z

23. y D
ex � 1
ex C 1

24. y D eax.bxC c/

25. y D ln ex 26. y D e�x ln x
27. y D xx 28. y D ln e4xC1

29. If f.x/ D ecebxeax
2
, find f 0.1/.

30. If f.x/ D 5x
2 ln x, find f 0.1/.

31. Find an equation of the tangent line to the curve y D ex when
x D �2.

32. Find an equation of the tangent line to the curve y D ex at the
point .1; e/. Show that this tangent line passes through .0; 0/ and
show that it is the only tangent line to y D ex that passes through
.0; 0/.

For each of the demand equations in Problems 33 and 34, find
the rate of change of price, p, with respect to quantity, q. What is
the rate of change for the indicated value of q?

33. p D 15e�0:001qI q D 500 34. p D 5e�q=100; q D 100

In Problems 35 and 36, Nc is the average cost of producing q units
of a product. Find the marginal-cost function and the marginal
cost for the given values of q.

35. Nc D
7000eq=700

q
I q D 350; q D 700

36. Nc D
850
q
C 4000

e.2qC6/=800

q
I q D 97; q D 197

37. If w D ex
2
and x D

tC 1
t � 1

, find
dw
dt

when t D 2.

38. If f 0.x/ D x3 and u D ex, show that

d
dx
Œf.u/� D e4x

39. If c is a positive constant and

d
dx
.cx � xc/

ˇ̌̌̌
xD1
D 0

prove that c D e.

40. Calculate the relative rate of change of

f.x/ D 10�x
C ln.8C x/C 0:01ex�2

when x D 2. Round your answer to four decimal places.
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41. Production Run For a firm, the daily output on the tth day
of a production run is given by

q D 500.1 � e�0:2t/

Find the rate of change of output q with respect to t on the
tenth day.

42. Normal-Density Function For the normal-density
function

f.x/ D
1
p
2�

e�x2=2

find f 0.�1/.

43. Population The population, in millions, of the greater
Seattle area t years from 1970 is estimated by P D 1:92e0:0176t.
Show that dP=dt D kP, where k is a constant. This means that the
rate of change of population at any time is proportional to the
population at that time.

44. Market Penetration In a discussion of diffusion of a new
process into a market, Hurter and Rubenstein1 refer to an equation
of the form

Y D k˛ˇt

where Y is the cumulative level of diffusion of the new process at
time t and k, ˛, and ˇ are positive constants. Verify their claim that

dY
dt
D k˛ˇt

.ˇt ln˛/ lnˇ

45. Finance After t years, the value S of a principal of P
dollars invested at the annual rate of r compounded continuously
is given by S D Pert. Show that the relative rate of change of S
with respect to t is r.

46. Predator–Prey Relationship In an article concerning
predators and prey, Holling2 refers to an equation of the form

y D K.1 � e�ax/

where x is the prey density, y is the number of prey attacked, and
K and a are constants. Verify his statement that

dy
dx
D a.K � y/

47. Earthquakes According to Richter,3 the number of
earthquakes of magnitudeM or greater per unit of time is given by
N D 10A10�bM, where A and b are constants. Find dN=dM.

48. Psychology Short-term retention was studied by Peterson
and Peterson.4 The two researchers analyzed a procedure in which
an experimenter verbally gave a subject a three-letter consonant
syllable, such as CHJ, followed by a three-digit number, such as
309. The subject then repeated the number and counted backward
by 3’s, such as 309, 306, 303, : : : : After a period of time, the

subject was signaled by a light to recite the three-letter consonant
syllable. The time between the experimenter’s completion of the
last consonant to the onset of the light was called the recall
interval. The time between the onset of the light and the
completion of a response was referred to as latency. After many
trials, it was determined that, for a recall interval of t seconds, the
approximate proportion of correct recalls with latency below 2.83
seconds was

p D 0:89Œ0:01C 0:99.0:85/t�

(a) Find dp=dt and interpret your result.
(b) Evaluate dp=dt when t D 2. Round your answer to two
decimal places.

49. Medicine Suppose a tracer, such as a colored dye, is
injected instantly into the heart at time t D 0 and mixes uniformly
with blood inside the heart. Let the initial concentration of the
tracer in the heart be C0, and assume that the heart has constant
volume V. Also assume that, as fresh blood flows into the heart,
the diluted mixture of blood and tracer flows out at the constant
positive rate r. Then the concentration of the tracer in the heart at
time t is given by

C.t/ D C0e�.r=V/t

Show that dC=dt D .�r=V/C.t/.
50. Medicine In Problem 49, suppose the tracer is injected at a
constant rate R. Then the concentration at time t is

C.t/ D
R
r

�
1 � e�.r=V/t�

(a) Find C(0).

(b) Show that
dC
dt
D

R
V
�

r
V
C.t/.

51. Schizophrenia Several models have been used to analyze
the length of stay in a hospital. For a particular group of
schizophrenics, one such model is5

f.t/ D 1 � e�0:008t

where f.t/ is the proportion of the group that was discharged at the
end of t days of hospitalization. Find the rate of discharge (the
proportion discharged per day) at the end of 100 days. Round your
answer to four decimal places.

52. Savings and Consumption A country’s savings S (in
billions of dollars) is related to its national income I (in billions
of dollars) by the equation

S D ln
3

2C e�I

(a) Find the marginal propensity to consume as a function of
income.
(b) To the nearest million dollars, what is the national income

when the marginal propensity to save is
1
7
?

In Problems 53 and 54, use differentiation rules to find f 0.x/. Then
use your graphing calculator to find all real zeros of f 0.x/. Round
your answers to two decimal places.

53. f.x/ D e2x
3Cx2�3x 54. f.x/ D xe�x

1A. P. Hurter, Jr., A. H. Rubenstein, et al., “Market Penetration by New
Innovations: The Technological Literature,” Technological Forecasting and
Social Change, 11 (1978), 197–221.
2 C. S. Holling, “Some Characteristics of Simple Types of Predation and
Parasitism,” The Canadian Entomologist, XCI, no. 7 (1959), 385–98.
3 C. F. Richter, Elementary Seismology (San Francisco: W. H. Freeman and
Company, Publishers, 1958).
4L. R. Peterson and M. J. Peterson, “Short-Term Retention of Individual Verbal
Items,” Journal of Experimental Psychology, 58 (1959), 193–98.

5Adapted from W. W. Eaton and G. A. Whitmore, “Length of Stay as a
Stochastic Process: A General Approach and Application to Hospitalization
for Schizophrenia,” Journal of Mathematical Sociology, 5 (1977), 273–92.
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Objective 12.3 Elasticity of Demand
To give a mathematical analysis of the
economic concept of elasticity.

Before embarking on this topic, of considerable importance in Economics, it is advis-
able to reflect on the convention of graphing equations relating prices, p, and quantities,
q, so that the vertical axis is the p-axis and the horizontal axis is the q-axis. This was
touched upon, very briefly in the sub-section “Demand and Supply Curves” of Section
3.2. In particular, a demand equation relating p and q, is typically (uniquely) solv-
able for p in terms of q and the result, p D f.q/, is called the demand function. Some
people find it hard to think about quantity, q, as the independent variable upon which
price, p, depends. Why not solve the demand equation for q in terms of p getting, say,
q D g.p/, so that price determines quantity sold? In fact, typically, this is equally possi-
ble. It should be noted that a demand curve, be it p D f.q/ or q D g.p/, “falls from left
to right”—as q increases, p decreases, and as p increases q decreases. In the terminol-
ogy of Section 2.4, the functions f and g are functions that have inverses and when they
come from the same demand equation they are inverses of each other, so that g D f �1

and f D g�1. If we need demand derivatives (and we will), the results of the previous
section inform us that g0.p/ D 1=f 0.g.p/; equivalently,

dq
dp
D

1
dp
dq

Elasticity of demand is a means by which economists measure how a change in
the price of a product will affect the quantity demanded. That is, it measures consumer
response to price changes. More precisely, it can be defined as the ratio of the resulting
percentage change in quantity demanded to a given percentage change in price:

elasticity of demand D
percentage change in quantity
percentage change in price

For example, if, for a price increase of 5%, quantity demanded were to decrease by 2%,
we would say that elasticity of demand is �2=5—the minus sign being used to signal
that the 2% decrease is a �2% increase.

Continuing, suppose p D f.q/ is the demand function for a product. Consumers
will demand q units at a price of f.q/ per unit and will demand qC h units at a price
of f.qC h/ per unit (Figure 12.2). The percentage change in quantity demanded from
q to qC h is

.qC h/ � q
q

� 100% D
h
q
� 100%

p

f (q + h)

q + h

f (q )

q
q 

p = f (q )

Demand function

FIGURE 12.2 Change in demand.
The corresponding percentage change in price per unit is

f.qC h/ � f.q/
f.q/

� 100%

The ratio of these percentage changes is

h
q
� 100%

f.qC h/ � f.q/
f.q/

� 100%

D
h
q
�

f.q/
f.qC h/ � f.q/

D
f.q/
q
�

h
f.qC h/ � f.q/

D

f.q/
q

f.qC h/ � f.q/
h

(1)
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If f is differentiable, then as h! 0, the limit of . f.qC h/� f.q//=h is f 0.q/ D dp=dq.
Thus, the limit of (1) is

f.q/
q

f 0.q/
D

p
q
dp
dq

since p D f.q/

which is called the point elasticity of demand.

Definition
If p D f.q/ is a differentiable demand function, the point elasticity of demand,
denoted by the Greek letter � (eta), at (q, p) is given by

� D �.q/ D

p
q
dp
dq

Since p is a function of q, dp=dq is
a function of q, and, thus, the ratio that
defines � is a function of q. That is why
we write � D �.q/.

To illustrate, let us find the point elasticity of demand for the demand function
p D 1200 � q2. We have

� D

p
q

dp
dq

D

1200 � q2

q

�2q
D �

1200 � q2

2q2
D �

�
600
q2
�
1
2

�
(2)

For example, if q D 10, then � D �
�
.600=102/ � 1

2

�
D �5 12 . Since

� �
% change in demand
% change in price

we have

.% change in price/.�/ � % change in demand

Thus, if price were increased by 1% when q D 10, then quantity demanded would
change by approximately

.1%/
�
�5

1
2

�
D �5

1
2
%

That is, demand would decrease 5 12%. Similarly, decreasing price by
1
2%when q D 10

results in a change in demand of approximately�
�
1
2
%
��
�5

1
2

�
D 2

3
4
%

Hence, demand increases by 2 34%.
Note that when elasticity is evaluated, no units are attached to it—it is nothing

more than a real number. In fact, the 100%’s arising from the word percentage cancel,
so that elasticity is really an approximation of the ratio

relative change in quantity
relative change in price

and each of the relative changes is no more than a real number. For usual behavior of
demand, an increase (decrease) in price corresponds to a decrease (increase) in quantity.
This means that if price is plotted as a function of quantity, then the graph will have a
negative slope at each point. Thus, dp=dq will typically be negative, and since p and
q are positive, � will typically be negative too. Some economists disregard the minus
sign; in the preceding situation, they would consider the elasticity to be 5 12 . We will
not adopt this practice.
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There are three categories of elasticity:

1. When j�j > 1, demand is elastic.
2. When j�j D 1, demand has unit elasticity.
3. When j�j < 1, demand is inelastic.

For example, in Equation (2), since j�j D 5 12 when q D 10, demand is elastic. If

q D 20, then j�j D
ˇ̌
�
�
.600=202/ � 1

2

�ˇ̌
D 1 so demand has unit elasticity. If q D 25,

then j�j D
ˇ̌
�

23
50

ˇ̌
, and demand is inelastic.

If demand is inelastic, then for a given percentage change in price there is a greater
percentage change in quantity demanded. If demand is inelastic, then for a given per-
centage change in price there is a smaller percentage change in quantity demanded.
Unit elasticity means that for a given percentage change in price there is an equal per-
centage change in quantity demanded. To better understand elasticity, it is helpful to
think of typical examples. Demand for an essential utility such as electricity tends to be
inelastic through a wide range of prices. If electricity prices are increased by 10%, con-
sumers can be expected to reduce their consumption somewhat, but a full 10% decrease
may not be possible if most of their electricity usage is for essentials of life, such as
heating and food preparation. On the other hand, demand for luxury goods tends to
be elastic. A 10% increase in the price of jewelry, for example, may result in a 50%
decrease in demand.

EXAMPLE 1 Finding Point Elasticity of Demand

Determine the point elasticity of the demand equation

p D
k
q
; where k > 0 and q > 0

Solution: From the definition, we have

� D

p
q
dp
dq

D

k
q2

�k
q2

D �1

Thus, the demand has unit elasticity for all q > 0. The graph of p D k=q is called an
equilateral hyperbola and is often found in economics texts in discussions of elasticity.
(See Figure 2.11 for a graph of such a curve.)

Now Work Problem 1 G

If we are given p D f.q/ for our demand equation, as in our discussion thus far,
then it is usually straightforward to calculate dp=dq D f 0.q/. However, if instead we
are given q as a function of p, then we will have q D f �1.p/ and, from Section 12.2,

dp
dq
D

1
dq
dp

It follows that

� D

p
q

dp
dq

D
p
q
�
dq
dp

(3)

provides another useful expression for �. Notice too that if q D g.p/, then

� D �.p/ D
p
q
�
dq
dp
D

p
g.p/
� g0.p/ D p �

g0.p/
g.p/
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and, thus,

elasticity D price � relative rate of change of quantity as a function of price (4)

EXAMPLE 2 Finding Point Elasticity of Demand

Determine the point elasticity of the demand equation

q D p2 � 40pC 400 D .p � 20/2

Solution: Here we have q given as a function of p, and it is easy to see that
dq=dp D 2p � 40. Thus,

�.p/ D
p
q
�
dq
dp
D

p
q.p/

.2p � 40/

For example, if p D 15, then q D q.15/ D 25; hence, �.15/ D .15.�10//=25 D �6,
so demand is elastic for p D 15.

Now Work Problem 13 G

Point elasticity for a linear demand equation is interesting. Suppose the equationHere we analyze elasticity for linear
demand. has the form

p D mqC b; where m < 0 and b > 0

(See Figure 12.3.) We assume that q > 0; thus, p < b. The point elasticity of demand is

� D

p
q
dp
dq

D

p
q

m
D

p
mq
D

p
p � b

p

q

     7 1, elastic 

    6 1, inelastic 

    = 1, unit elasticity 

b
2

p = mq + b

b h

h

h

FIGURE 12.3 Elasticity for linear
demand.

By considering d�=dp, we will show that � is a decreasing function of p. By the quo-
tient rule,

d�
dp
D
.p � b/ � p
.p � b/2

D �
b

.p � b/2

Since b > 0 and .p � b/2 > 0, it follows that d�=dp < 0, meaning that the graph
of � D �.p/ has a negative slope. This means that as price p increases, elasticity �
decreases. However, p ranges between 0 and b, and at the midpoint of this range, b=2,

� D �.b/ D

b
2

b
2
� b
D

b
2

�
b
2

D �1

Therefore, if p < b=2, then � > �1; if p > b=2, then � < �1. Because we typi-
cally have � < 0, we can state these facts another way: When p < b=2; j�j < 1, and
demand is inelastic; when p D b=2; j�j D 1, and demand has unit elasticity; when
p > b=2; j�j > 1 and demand is elastic. This shows that the slope of a demand curve
is not a measure of elasticity. The slope of the line in Figure 12.3 is m everywhere, but
elasticity varies with the point on the line. Of course, this is in accord with Equation (4).

Elasticity and Revenue
Turning to a different situation, we can relate how elasticity of demand affects changesHere we analyze the relationship between

elasticity and the rate of change of
revenue.

in revenue (marginal revenue). If p D f.q/ is a manufacturer’s demand function, the
total revenue is given by

r D pq
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To find the marginal revenue, dr=dq, we differentiate r by using the product rule:

dr
dq
D pC q

dp
dq
: (5)

Factoring the right side of Equation (5), we have
dr
dq
D p

�
1C

q
p
dp
dq

�
But

q
p
dp
dq
D

dp
dq
p
q

D
1
�

Thus,

dr
dq
D p

�
1C

1
�

�
(6)

If demand is elastic, then � < �1, so 1C
1
�
> 0. If demand is inelastic, then � > �1,

so 1 C
1
�
< 0. We can assume that p > 0. From Equation (6) we can conclude that

dr=dq > 0 on intervals for which demand is elastic. As we will soon see, a function is
increasing on intervals for which its derivative is positive, and a function is decreasing
on intervals for which its derivative is negative. Hence, total revenue r is increasing on
intervals for which demand is elastic, and total revenue is decreasing on intervals for
which demand is inelastic.

Thus, we conclude from the preceding argument that as more units are sold, a
manufacturer’s total revenue increases if demand is elastic but decreases if demand is
inelastic. That is, if demand is elastic, a lower price will increase revenue. This means
that a lower price will cause a large enough increase in demand to actually increase
revenue. If demand is inelastic, a lower price will decrease revenue. For unit elasticity,
a lower price leaves total revenue unchanged.

If we solve the demand equation to obtain the form q D g.p/, rather than p D f.q/,
then a similar analysis gives

dr
dp
D q.1C �/ (7)

and the conclusions of the last paragraph follow even more directly.

PROBLEMS 12.3
In Problems 1–14, find the point elasticity of the demand
equations for the indicated values of q or p, and determine
whether demand is elastic, is inelastic, or has unit elasticity.

1. p D 40 � 2q; q D 5 2. p D 10 � 0:04q; q D 100

3. p D
3000
q

; q D 300 4. p D
500
q2

; q D 52

5. p D
100
qC 1

; q D 100 6. p D
800

2qC 1
; q D 24

7. p D 150 � eq=100; q D 100 8. p D 250e�q=50; q D 50

9. q D 1200 � 150p; p D 4 10. p D 100 � q; p D 50

11. q D
p
500 � p; p D 400 12. q D

p
2500 � p2; p D 20

13. q D .p � 50/2; p D 10

14. q D p2 � 50pC 850; p D 20

15. For the linear demand equation p D 15 � q, verify that
demand is elastic when p D 10, is inelastic when p D 5, and has
unit elasticity when p D 7:5.

16. For what value (or values) of q do the following demand
equations have unit elasticity?
(a) p D 36 � 0:25q
(b) p D 300 � q2

17. The demand equation for a product is

q D 500 � 40pC p2

where p is the price per unit (in dollars) and q is the quantity of
units demanded (in thousands). Find the point elasticity of
demand when p D 15. If this price of 15 is increased by 1

2%,
what is the approximate change in demand?
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18. The demand equation for a certain product is

q D
p
3000 � p2

where p is in dollars. Find the point elasticity of demand when
p D 40, and use this value to compute the percentage change in
demand if the price of $40 is increased by 7%.

19. For the demand equation p D 500 � 2q, verify that demand is
elastic and total revenue is increasing for 0 < q < 125. Verify that
demand is inelastic and total revenue is decreasing for
125 < q < 250.

20. Show that if the demand equation can be written as q D g.p/

then
dr
dp
D q.1C �/.

21. Repeat Problem 20 for p D
1000
q2

.

22. Suppose p D mqC b is a linear demand equation, where
m ¤ 0 and b > 0.
(a) Show that limp!b� � D �1.
(b) Show that � D 0 when p D 0.

23. The demand equation for a manufacturer’s product has
the form

q D a
p
b � cp2

where a, b, and c are positive constants.
(a) Show that elasticity does not depend on a.
(b) Determine the interval of prices for which demand is elastic.
(c) For which price is there unit elasticity?

24. Given the demand equation q2.1C p/2 D p, determine the
point elasticity of demand when p D 9.

25. The demand equation for a product is

q D
60
p
C ln.65 � p3/

(a) Determine the point elasticity of demand when p D 4, and
classify the demand as elastic, inelastic, or of unit elasticity at this
price level.
(b) If the price is lowered by 2% (from $4.00 to $3.92), use the
answer to part (a) to estimate the corresponding percentage
change in quantity sold.
(c)Will the changes in part (b) result in an increase or decrease
in revenue? Explain.

26. The demand equation for a manufacturer’s product is

p D 50.151 � q/0:02
p

qC19

(a) Find the value of dp=dq when 150 units are demanded.
(b) Using the result in part (a), determine the point elasticity of
demand when 150 units are demanded. At this level, is demand
elastic, inelastic, or of unit elasticity?
(c) Use the result in part (b) to approximate the price per unit if
demand decreases from 150 to 140 units.
(d) If the current demand is 150 units, should the manufacturer
increase or decrease price in order to increase revenue? (Justify
your answer.)

27. A manufacturer of aluminum doors currently is able to sell
500 doors per week at a price of $80 each. If the price were
lowered to $75 each, an additional 50 doors per week could be
sold. Estimate the current elasticity of demand for the doors,
and also estimate the current value of the manufacturer’s
marginal-revenue function.

28. Given the demand equation

p D 2000 � q2

where 5 � q � 40, for what value of q is j�j a maximum? For
what value is it a minimum?

29. Repeat Problem 28 for

p D
200
qC 5

such that 5 � q � 95.

Objective 12.4 Implicit Differentiation
To discuss the notion of a function
defined implicitly and to determine
derivatives by means of implicit
differentiation.

Implicit differentiation is a technique for differentiating “functions” that are not given
in the form y D f.x/ nor in the form x D g.y/. To introduce this technique, we will find
the slope of a tangent line to a circle. Circles are smooth curves, and it is clear that at
any point on any circle there is a tangent line. But, for any circle with positive radius,
there will be some vertical lines that intersect the circle at more than one point. So we
know that any such circle cannot be described as the graph of a single function. For
definiteness in our discussion, let us take the circle of radius 2 whose center is at the
origin (Figure 12.4). Its equation is

x2 C y2 D 4

equivalently x2 C y2 � 4 D 0 (1)

y

x
22

-2

x
2
 + y

2 
 = 4

2    2(     ,      )

FIGURE 12.4 The circle x2 C y2 D 4.

The point .
p
2;
p
2/ lies on the circle. To find the slope at this point, we need to

find dy=dx there. Until now, we have always had y given explicitly (directly) in terms
of x before determining y0; that is, our equation was always in the form y D f.x/ or
in the form x D g.y/. In Equation (1), this is not so. We say that Equation (1) has the
form F.x; y/ D 0, where F(x, y) denotes a function of two variables as introduced in
Section 2.8. The obvious thing to do is solve Equation (1) for y in terms of x:

x2 C y2 � 4 D 0

y2 D 4 � x2

y D ˙
p
4 � x2 (2)
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y

x

y =    4 - x
2

y = -    4 - x
2

y

(a) (b)

2    2(     ,      )

x

FIGURE 12.5 x2 C y2 D 4 gives rise to two different functions.

A problem now occurs: Equation (2) may give two values of y for a value of x. It
does not define y explicitly as a function of x. We can, however, suppose that Equa-
tion (1) defines y as one of two different functions of x,

y D C
p
4 � x2 or y D �

p
4 � x2

whose graphs are given in Figure 12.5. Since the point .
p
2;
p
2/ lies on the graph of

y D
p
4 � x2, we should differentiate that function:

y D
p
4 � x2

dy
dx
D

1
2
.4 � x2/�1=2.�2x/

D �
x

p
4 � x2

So

dy
dx

ˇ̌̌̌
xD

p
2
D �

p
2

p
4 � 2

D �1

Thus, the slope of the circle x2 C y2 � 4 D 0 at the point .
p
2;
p
2/ is �1.

Let us summarize the difficulties we had. First, ywas not originally given explicitly
in terms of x. Second, after we tried to find such a description, we ended up with more
than one function of x. In fact, depending on the equation given, it may be very compli-
cated or even impossible to find an explicit expression for y. For example, it would be
difficult, perhaps impossible, to solve yexC ln.xC y/ D 0 for y. We will now consider
a method that avoids such difficulties.

An equation of the form F.x; y/ D 0, such as we had originally, is said to express y
implicitly as a function of x. The word implicitly is used because y is not given explicitly
as a function of x. However, we will assume that the equation defines y as at least one
differentiable function of x. Thus, we assume that Equation (1), x2Cy2�4 D 0, defines
some differentiable function of x, say, y D f.x/.

Observe that if y is a function of x, then y2 is also a function of x and then x2Cy2�4
is yet another function of x. Of course, 0 can be regarded as the function of x that
is constantly 0. And now the left side of Equation (1) is the differentiable function
x2C. f.x//2�4 of xwhile the right side is the differentiable function 0 of x. Equation (1)
says these functions are equal and so their derivatives must be equal. This observation
gives us

d
dx
.x2 C . f.x//2 � 4/ D

d
dx
.0/

from which we get

d
dx
.x2/C

d
dx
.. f.x//2/ �

d
dx
.4/ D

d
dx
.0/

and, using the chain rule for the second term,

2xC 2f.x/f 0.x/ � 0 D 0
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While we don’t know explicitly what f.x/ is, the equation above tells us that its deriva-
tive, f 0.x/, satisfies

2f.x/f 0.x/ D �2x

and, hence,

f 0.x/ D �
x

f.x/

Finally, noting that y D f.x/, we can write

dy
dx
D �

x
y

and

dy
dx

ˇ̌̌̌
.
p
2;

p
2/

D
dy
dx

ˇ̌̌̌24 x D p2
y D
p
2

35 D �
p
2
p
2
D �1

showing again that the slope of the circle x2 C y2 D 4 at .
p
2;
p
2/ D �1.

Notice that we didn’t have to solve Equation (1) and we didn’t end up with two
functions competing for our attention.We didn’t need to choose an equation appropriate
for the point .

p
2;
p
2/. It sufficed to know that .

p
2;
p
2/ is a point on the curve; that is,

a point whose coordinates satisfy Equation (1). Implicit differentiation, as the technique
above is called, can seem mysterious, and this is why our treatment was at first very
careful and somewhat labored. It is actually easier to carry out the calculation above
without introducing the name f.x/ for y and using Leibniz notation throughout. We start
again.

First, treat y as a differentiable function of x, and differentiate both sides of
Equation (1) with respect to x. Second, solve the resulting equation for dy=dx. Applying
this procedure, we obtain

d
dx
.x2 C y2 � 4/ D

d
dx
.0/

d
dx
.x2/C

d
dx
.y2/ �

d
dx
.4/ D

d
dx
.0/ (3)

2xC
d
dy
.y2/

dy
dx
� 0 D 0

2xC 2y
dy
dx
D 0

dy
dx
D �

x
y

for y ¤ 0 (4)

The only point above that requires special care is the treatment of
d
dx
.y2/ in

Equation (3). Differentiation is with respect to x, so we use the chain rule as shown.
Notice that the expression for dy=dx involves the variable y as well as x. This means
that to find dy=dx at a point, both coordinates of the point must be substituted into
dy=dx. Thus,

dy
dx

ˇ̌̌̌
.
p
2;

p
2/

D �

p
2
p
2
D �1

as before. We note that Equation (4) is not defined when y D 0. Geometrically, this is
clear, since the tangent line to the circle at either .2; 0/ or .�2; 0/ is vertical and the
slope is not defined.



Haeussler-50501 M13_HAEU1107_14_SE_C12 October 16, 2017 15:6

Section 12.4 Implicit Differentiation 551

Here again are the steps to follow when differentiating implicitly:

Implicit Differentiation Procedure
For an equation that we assume defines y implicitly as a differentiable function of

x, the derivative
dy
dx

can be found as follows:

1. Differentiate both sides of the equation with respect to x.

2. Solve for
dy
dx
, noting any restrictions.

EXAMPLE 1 Implicit Differentiation

Find
dy
dx

by implicit differentiation if yC y3 � x D 7.

Solution: Here y is not given as an explicit function of x. It is not at all clear if the
equation can be rewritten in the form y D f.x/. Thus, we assume that y is an implicit
differentiable function of x and apply the preceding two-step procedure:

1. Differentiating both sides with respect to x, we have

d
dx
.yC y3 � x/ D

d
dx
.7/

d
dx
.y/C

d
dx
.y3/ �

d
dx
.x/ D

d
dx
.7/

dy
dx
C 3y2

dy
dx
� 1 D 0

2. Solving for
dy
dx

side, gives

dy
dx
.1C 3y2/ D 1

dy
dx
D

1
1C 3y2

The derivative of y3 with respect to x is

3y2
dy
dx
.

In an implicit-differentiation problem,
we are able to find the derivative of a
function without knowing the function.

Because step 2 of the process often involves division by an expression involv-
ing the variables, the answer obtained must often be restricted to exclude those values
of the variables that would make the denominator zero. Here the denominator is always
greater than or equal to 1, so there is no restriction.

Now Work Problem 3 G

EXAMPLE 2 Implicit Differentiation

Find
dy
dx

if x3 C 4xy2 � 27 D y4.

APPLY IT I
4. Suppose that P, the proportion of
people affected by a certain disease,

is described by ln
�

P
1 � P

�
D 0:5t,

where t is the time in months. Find
dP
dt
,

the rate at which P grows with respect
to time.

Solution: Since y is not given explicitly in terms of x, we will use the method of
implicit differentiation:
1. Assuming that y is a function of x and differentiating both sides with respect to x,
we get

d
dx
.x3 C 4xy2 � 27/ D

d
dx
.y4/

d
dx
.x3/C 4

d
dx
.xy2/ �

d
dx
.27/ D

d
dx
.y4/
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3x2 C 4.x
d
dx
.y2/C y2

d
dx
.x// � 0 D 4y3

dy
dx

3x2 C 4.x2y
dy
dx
C y2.1/ D 4y3

dy
dx

3x2 C 8xy
dy
dx
C 4y2 D 4y3

dy
dx

2. Solving for
dy
dx
, we have

dy
dx
.8xy � 4y3/ D �3x2 � 4y2

dy
dx
D
�3x2 � 4y2

8xy � 4y3
for 8xy � 4y3 ¤ 0

dy
dx
D

3x2 C 4y2

4y3 � 8xy
for y3 � 2xy ¤ 0

Note the use of the product rule in line
three of step one.

Now Work Problem 11 G

EXAMPLE 3 Implicit Differentiation

Find the slope of the curve x3 D .y � x2/2 at .1; 2/.

APPLY IT I
5. The volume V enclosed by a spher-
ical balloon of radius r is given by

the equation VD
4
3
�r3. If the radius is

increasing at a rate of 5 inches/minute

.that is;
dr
dt
D 5/, then find

dV
dt

ˇ̌̌̌
rD12

,

the rate of increase of the volume, when

the radius is 12 inches.

Solution: The slope at .1; 2/ is the value of dy=dx at that point. Finding dy=dx by
implicit differentiation, we have

d
dx
.x3/ D

d
dx
..y � x2/2/

3x2 D 2.y � x2/
�

d
dx
.y � x2/

�
3x2 D 2.y � x2/

�
dy
dx
� 2x

�
3x2 D 2y

dy
dx
� 4xy � 2x2

dy
dx
C 4x3

2y
dy
dx
� 2x2

dy
dx
D 3x2 C 4xy � 4x3

dy
dx
2.y � x2/ D 3x2 C 4xy � 4x3

dy
dx
D

3x2 C 4xy � 4x3

2.y � x2/
for y � x2 ¤ 0

For the point .1; 2/, y � x2 D 2 � 12 D 1 ¤ 0. Thus, the slope of the curve at (1, 2) is

dy
dx

ˇ̌̌̌
.1;2/

D
3.1/2 C 4.1/.2/ � 4.1/3

2.2 � .1/2/
D

7
2

Now Work Problem 25 G



Haeussler-50501 M13_HAEU1107_14_SE_C12 October 16, 2017 15:6

Section 12.4 Implicit Differentiation 553

EXAMPLE 4 Implicit Differentiation

If q � p D ln qC ln p, find dq=dp.

APPLY IT I
6. A 10-foot ladder is placed against
a vertical wall. Suppose the bottom of
the ladder slides away from the wall at a

constant rate of 3 ft/s. (That is,
dx
dt
D 3.)

How fast is the top of the ladder sliding
down the wall when the top of the ladder
is 8 feet from the ground (that is, when

y D 8)? (That is, what is
dy
dt
?) (Use the

Pythagorean theorem for right triangles,
x2C y2 D z2, where x and y are the legs
of the triangle and z is the hypotenuse.)

Solution: We assume that q is a function of p and differentiate both sides with respect
to p:

d
dp
.q � p/ D

d
dp
.ln qC ln p/

dq
dp
�

dp
dp
D

d
dp
.ln q/C

d
dp
.ln p/

dq
dp
� 1 D

1
q
dq
dp
C

1
p

dq
dp

�
1 �

1
q

�
D

1
p
C 1

dq
dp

�
q � 1
q

�
D

1C p
p

dq
dp
D
.1C p/q
p.q � 1/

for p.q � 1/ ¤ 0

Now Work Problem 19 G

PROBLEMS 12.4
In Problems 1–24, find dy=dx by implicit differentiation.

1. x2 � y2 D 1 2. 3x2 C 6y2 D 1

3. 2y3 � 7x2 D 5 4. 5y2 � 2x2 D 10

5. 3
p
xC 3
p
y D 3 6.

p
x �
p
y D 1

7. x3=4 C y3=4 D 5 8. y3 D 4x

9. xy D 36 10. x2 C xy � 2y2 D 0

11. xC xyC y D 1 12. x3 � y3 D 3x2y � 3xy2

13. 2x3 C y3 � 12xy D 0 14. 5x3 C 6xyC 7y3 D 0

15. x D
p
yC 4
p
y 16. x2y2 D 1

17. 5x3y4 � xC y2 D 25 18. y2 C y D ln x

19. ln.xy/ D exy 20. ln.xy/C x D 4

21. xey C yex D 1 22. 4x2 C 9y2 D 16

23. .1C e3x/2 D 3C ln.xC y/ 24. ex�y D ln.x � y/

25. If xC xyC y2 D 7, find dy=dx at (1, 2).

26. If .xC 1/
p
y D .yC 1/

p
x, find dy=dx at .2; 2/.

27. Find the slope of the curve 4x2 C 9y2 D 1 at the point
�
0; 13

�
;

at the point .x0; y0/.

28. Find the slope of the curve .x2 C y2/2 D 4y2 at the point
.0; 2/.

29. Find equations of the tangent lines to the curve

x3 C xyC y3 D �1

at the points .�1;�1/, .�1; 0/, and .�1; 1/.

30. Repeat Problem 29 for the curve

y2 C xy � x2 D 5

at the point (4, 3).

For the demand equations in Problems 31– 34, find the rate of
change of q with respect to p.

31. p D 100 � q3 32. p D 400 �
p
q

33. p D
20

.qC 5/2
34. p D

3
q2 C 1

35. Radioactivity The relative activity I=I0 of a radioactive
element varies with elapsed time according to the equation

ln
�

I
I0

�
D �� t

where � (a Greek letter read “lambda”) is the disintegration
constant and I0 is the initial intensity (a constant). Find the rate of
change of the intensity, I, with respect to the elapsed time, t.

36. Earthquakes The magnitude, M, of an earthquake and its
energy, E, are related by the equation6

1:5M D log
�

E
2:5 � 1011

�
Here M is given in terms of Richter’s preferred scale of 1958 and
E is in ergs. Determine the rate of change of energy with respect
to magnitude and the rate of change of magnitude with respect to
energy.

6K. E. Bullen, An Introduction to the Theory of Seismology (Cambridge, U.K.:
Cambridge at the University Press, 1963).
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37. Physical Scale The relationship among the speed .v/,
frequency . f/, and wavelength (�) of any wave is given by

v D f�

Find df=d� by differentiating implicitly. (Treat v as a constant.)
Then show that the same result is obtained if you first solve the
equation for f and then differentiate with respect to �.

38. Biology The equation .PC a/.vC b/ D k is called the
“fundamental equation of muscle contraction.”7 Here P is the load
imposed on the muscle; v is the velocity of the shortening of the
muscle fibers; and a, b, and k are positive constants. Use implicit
differentiation to show that, in terms of P,

dv
dP
D �

k
.PC a/2

39. Marginal Propensity to Consume A country’s savings, S,
is defined implicitly in terms of its national income, I, by the
equation

S2 C
1
4
I2 D SIC I

where both S and I are in billions of dollars. Find the marginal
propensity to consume when I D 16 and S D 12.

40. Technological Substitution New products or technologies
often tend to replace old ones. For example, today most
commercial airlines use jet engines rather than prop engines. In
discussing the forecasting of technological substitution, Hurter
and Rubenstein8 refer to the equation

ln
f.t/

1 � f.t/
C �

1
1 � f.t/

D C1 C C2t

where f (t) is the market share of the substitute over time t and
C1;C2, and � (a Greek letter read “sigma”) are constants. Verify
their claim that the rate of substitution is

f 0.t/ D
C2 f.t/Œ1 � f.t/�2

� f.t/C Œ1 � f.t/�

Objective 12.5 Logarithmic Differentiation
To describe the method of logarithmic
differentiation and to show how to
differentiate a function of the form uv.

A technique called logarithmic differentiation often simplifies the differentiation
of y D f.x/ when f.x/ involves products, quotients, or powers. The procedure is as
follows:

Logarithmic Differentiation
To differentiate y D f.x/,

1. Take the natural logarithm of both sides. This results in

ln y D ln. f.x//

2. Simplify ln. f.x// by using properties of logarithms.
3. Differentiate both sides with respect to x.

4. Solve for
dy
dx
.

5. Express the answer in terms of x only. This requires substituting f(x) for y.

There are a couple of points worth noting. First, irrespective of any simplification,
the procedure produces

y0

y
D

d
dx
.ln. f.x//

so that
dy
dx
D y

d
dx
.ln. f.x//

7R. W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill Book Company,
1955).
8 A. P. Hurter, Jr., A. H. Rubenstein et al., “Market Penetration by New Innovations: The Technological Litera-
ture,” Technological Forecasting and Social Change, 11 (1978), 197–221.
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is a formula that you can memorize, if you prefer. Second, the quantity
f 0.x/
f.x/

, which

results from differentiating ln. f.x//, is what was called the relative rate of change of
f.x/ in Section 11.3.

The next example illustrates the procedure.

EXAMPLE 1 Logarithmic Differentiation

Find y0 if y D
.2x � 5/3

x2 4
p
x2 C 1

:

Solution: Differentiating this function in the usual way is messy because it involves
the quotient, power, and product rules. Logarithmic differentiation lessens the work.

1. We take the natural logarithm of both sides:

ln y D ln
.2x � 5/3

x2 4
p
x2 C 1

2. Simplifying by using properties of logarithms, we have

ln y D ln.2x � 5/3 � ln
�
x2 4
p
x2 C 1

�
D 3 ln.2x � 5/ � .ln x2 C ln.x2 C 1/1=4/

D 3 ln.2x � 5/ � 2 ln x �
1
4
ln.x2 C 1/

3. Differentiating with respect to x givesSince y is a function of x, differentiating

ln y with respect to x gives
y0

y
. y0

y
D 3

�
1

2x � 5

�
.2/ � 2

�
1
x

�
�
1
4

�
1

x2 C 1

�
.2x/

D
6

2x � 5
�
2
x
�

x
2.x2 C 1/

4. Solving for y0 yields

y0
D y

�
6

2x � 5
�
2
x
�

x
2.x2 C 1/

�
5. Substituting the original expression for y gives y0 in terms of x only:

y0
D

.2x � 5/3

x2 4
p
x2 C 1

�
6

2x � 5
�
2
x
�

x
2.x2 C 1/

�
Now Work Problem 1 G

Logarithmic differentiation can also be used to differentiate a function of the form
y D uv, where both u and v are differentiable functions of x. Because neither the base
nor the exponent is necessarily a constant, the differentiation techniques for ua and bv

do not apply here.

EXAMPLE 2 Differentiating the Form uv

Differentiate y D xx by using logarithmic differentiation.

Solution: This example is a good candidate for the formula approach to logarithmic
differentiation.

y0
D y

d
dx
.ln xx/ D xx

d
dx
.x ln x/ D xx

�
.1/.ln x/C .x/

�
1
x

��
D xx.ln xC 1/



Haeussler-50501 M13_HAEU1107_14_SE_C12 October 16, 2017 15:6

556 Chapter 12 Additional Differentiation Topics

It is worthwhile mentioning that an alternative technique for differentiating a func-
tion of the form y D uv is to convert it to an exponential function to the base e. To
illustrate, for the function in this example, we have

y D xx D .eln x/x D ex ln x

y0
D ex ln x

�
1 ln xC x

1
x

�
D xx.ln xC 1/

Now Work Problem 15 G

EXAMPLE 3 Relative Rate of Change of a Product

Show that the relative rate of change of a product is the sum of the relative rates of
change of its factors. Use this result to express the percentage rate of change in revenue
in terms of the percentage rate of change in price.

Solution: For the moment, suppose that r is a function of an unspecified variable x

and that r0 denotes
dr
dx
, differentiation with respect to x. Recall that the relative rate of

change of r with respect to x is
r0

r
. We are to show that if r D pq, where also p and q

are functions of x, then

r0

r
D

p0

p
C

q0

q

From r D pq we have

ln r D ln pC ln q

which, when both sides are differentiated with respect to x, gives

r0

r
D

p0

p
C

q0

q

as required. Multiplying both sides by 100% gives an expression for the percentage
rate of change of r in terms of those of p and q:

r0

r
100% D

p0

p
100%C

q0

q
100%

If p is price per item and q is quantity sold, then r D pq is total revenue. In this case we
take x D p so that differentiation is with respect to p, and note that now, with p0 D 1,

Equation (3) of Section 12.3 gives
q0

q
D �

p0

p
, where � is the elasticity of demand. It

follows that in this case we have

r0

r
100% D .1C �/

p0

p
100%

expressing the percentage rate of change in revenue in terms of the percentage rate
of change in price. For example, if at a given price and quantity, � D �5, then a 1%
increase in price will result in a .1� 5/% D �4% increase in revenue, which is to say
a 4% decrease in revenue, while a 3% decrease in price—that is, a �3% increase in
price—will result in a .1 � 5/.�3/% D 12% increase in revenue. It is also clear that
at points at which there is unit elasticity (� D �1), any percentage change in price
produces no percentage change in revenue.

Now Work Problem 29 G
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EXAMPLE 4 Differentiating the Form uv

Find the derivative of y D .1C ex/ln x.

Solution: This has the form y D uv, where u D 1Cex and v D ln x. Using logarithmic
differentiation, we have

ln y D ln..1C ex/ln x/

ln y D .ln x/ ln.1C ex/

y0

y
D

�
1
x

�
.ln.1C ex//C .ln x/

�
1

1C ex
� ex
�

y0

y
D

ln.1C ex/
x

C
ex ln x
1C ex

y0
D y

�
ln.1C ex/

x
C

ex ln x
1C ex

�
y0
D .1C ex/ln x

�
ln.1C ex/

x
C

ex ln x
1C ex

�
Now Work Problem 17 G

Alternatively, we can differentiate even a general function of the form y D u.x/v.x/

with u.x/ > 0 by using the equation

uv D ev ln u

Indeed, if y D u.x/v.x/ D ev.x/ ln u.x/ for u.x/ > 0, then

dy
dx
D

d
dx

�
ev.x/ ln u.x/

�
D ev.x/ ln u.x/ d

dx
.v.x/ ln u.x//

D uv
�
v0.x/ ln u.x/C v.x/

u0.x/
u.x/

�
which could be summarized as

.uv/0 D uv
�
v0 ln uC v

u0

u

�
As is often the case, there is no suggestion that the preceding formula should be mem-
orized. The point here is that we have shown that any function of the form uv can be
differentiated using the equation uv D ev ln u. The same result will be obtained from
logarithmic differentiation:

ln y D ln.uv/

ln y D v ln u

y0

y
D v0 ln uC v

u0

u

y0
D y

�
v0 ln uC v

u0

u

�
.uv/0 D uv

�
v0 ln uC v

u0

u

�
After completing this section, we understand how to differentiate each of the following
forms:

. f.x//a (a)

y D

8̂̂<̂
:̂ bg.x/ (b)

. f.x//g.x/ (c)
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For type (a), use the power rule. For type (b), use the differentiation formula for expo-
nential functions. (If b ¤ e, first convert bg.x/ to an eu function.) For type (c), use loga-
rithmic differentiation or first convert to an eu function. Do not apply a rule in a situation
where the rule does not apply. For example, the power rule does not apply to xx.

PROBLEMS 12.5
In Problems 1–12, find y0 by using logarithmic differentiation.

1. y D .xC 1/2.x � 2/.x2 C 3/

2. y D .2x � 3/.5x � 7/2.11x � 13/3

3. y D .3x3 � 1/2.2xC 5/3 4. y D .2x2 C 1/
p
8x2 � 1

5. y D
p
xC 1

p
x � 1

p
x2 C 1

6. y D .2xC 1/
p
x3 C 2 3

p
2xC 5

7. y D
3
p
1C x2

1C x
8. y D

s
x2 C 5
xC 9

9. y D
.2x2 C 2/2

.xC 1/2.3xC 2/
10. y D

x2.1C x2/
p
x2 C 4

11. y D

r
.xC 3/.x � 2/

2x � 1
12. y D

5

r
.x2 C 1/2

x2e�x

In Problems 13–20, find y0.

13. y D xx
2C1 14. y D .2x/

p
x

15. y D x
p

x 16. y D
�
3
x2

�x

17. y D .2xC 3/5x 18. y D .x2 C 1/xC1

19. y D 4exx3x 20. y D .
p
x/x

21. If y D .4x � 3/2xC1, find dy=dx when x D 1.

22. If y D .ex/.e
x/, find dy=dx when x D 0.

23. Find an equation of the tangent line to

y D .xC 1/.xC 2/2.xC 3/2

at the point where x D 0.

24. Find an equation of the tangent line to the graph of

y D xx

at the point where x D 1.

25. Find an equation of the tangent line to the graph of

y D xx

at the point where x D e.

26. If y D xx, find the relative rate of change of y with respect to x
when x D 1.

27. If y D xx, find the value of x for which the percentage rate of
change of y with respect to x is 50%.

28. Suppose f.x/ is a positive differentiable function and g is a
differentiable function and y D . f.x//g.x/. Use logarithmic
differentiation to show that

dy
dx
D . f.x//g.x/

�
f 0.x/

g.x/
f.x/
C g0.x/ ln. f.x//

�
29. The demand equation for a DVD is

q D 500 � 40pC p2

If the price of $15 is increased by 1/2%, find the corresponding
percentage change in revenue.

30. Repeat Problem 29 with the same information except for a
5% decrease in price.

Objective 12.6 Newton’s Method
To approximate real roots of an
equation by using calculus. The
method shown is suitable for
calculators.

It is easy to solve equations of the form f.x/ D 0when f is a linear or quadratic function.
For example, we can solve x2C3x�2 D 0 by the quadratic formula. However, if f.x/ has
a degree greater than 2 or is not a polynomial, it may be difficult, or even impossible, to
find solutions of f.x/ D 0, in terms of known functions, even when it is proveable that
at least one solution exists. For this reason, we may settle for approximate solutions,
which can be obtained in a variety of efficient ways. For example, a graphing calculator
can be used to estimate the real roots of f.x/ D 0. In this section, we will study how
the derivative can be so used (provided that f is differentiable). The procedure we will
develop, called Newton’s method, is well suited to a calculator or computer.

Newton’s method requires an initial estimate for a root of f.x/ D 0. One way of
obtaining this estimate is by making a rough sketch of the graph of y D f.x/. A point
on the graph where y D 0 is an x-intercept, and the x-value of this point is a solution
of f.x/ D 0. Another way of estimating a root is based on the following fact:

If f is continuous on the interval Œa; b� and f.a/ and f.b/ have opposite signs, then
the equation f.x/ D 0 has at least one real root between a and b.
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y

y = f(x)

f(a) 7 0

f(b) 6 0

root of f(x) = 0

x
b

a

FIGURE 12.6 Root of f.x/ D 0 between a
and b, where f.a/ and f.b/ have opposite signs.

y

x

Tangent 
line

f(x1)

x3 r x2 x1

y = f(x)

FIGURE 12.7 Improving approximation of root
via tangent line.

Figure 12.6 depicts this situation. The x-intercept between a and b corresponds to
a root of f.x/ D 0, and we can use either a or b to approximate this root.

Assuming that we have an estimated (but incorrect) value for a root, we turn to a
way of getting a better approximation. In Figure 12.7, we see that f.r/ D 0, so r is
a root of the equation f.x/ D 0. Suppose x1 is an initial approximation to r (and one
that is close to r). Observe that the tangent line to the curve at .x1; f.x1// intersects the
x-axis at the point .x2; 0/, and x2 is a better approximation to r than is x1.

We can find x2 from the equation of the tangent line. The slope of the tangent line
is f 0.x1/, so a point-slope form for this line is

y � f.x1/ D f 0.x1/.x � x1/ (1)

Since .x2; 0/ is on the tangent line, its coordinates must satisfy Equation (1). This gives

0 � f.x1/ D f 0.x1/.x2 � x1/

�
f.x1/
f 0.x1/

D x2 � x1 if f 0.x1/ ¤ 0

Thus,

x2 D x1 �
f.x1/
f 0.x1/

(2)

To get a better approximation to r, we again perform the procedure described, but this
time we use x2 as our starting point. This gives the approximation

x3 D x2 �
f.x2/
f 0.x2/

(3)

Repeating this computation over and over, we hope to obtain better and better approx-
imations, in the sense that the sequence of values obtained

x1; x2; x3; : : :

approaches r. In practice, we terminate the process when we have reached a desired
degree of accuracy.

Analyzing Equations (2) and (3), we see how x2 is obtained from x1 and how x3
is obtained from x2. In general, xnC1 is obtained from xn by means of the following
general formula, called Newton’s method:

Newton’s Method

xnC1 D xn �
f.xn/
f 0.xn/

n D 1; 2; 3; : : : (4)
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A formula, like Equation (4), that indicates how one number in a sequence is obtained
from the preceding one is called a recursion formula.

To review recursively defined sequences,
see Section 1.6.

EXAMPLE 1 Approximating a Root by Newton’s Method

Approximate the root of x4�4xC1 D 0 that lies between 0 and 1. Continue the approx-
imation procedure until two successive approximations differ by less than 0.0001.

APPLY IT I
7. If the total profit (in dollars) from
the sale of x televisions is P.x/ D 20x�
0:01x2 � 850 C 3 ln.x/, use Newton’s
method to approximate the break-even
quantities. (Note: There are two break-
even quantities; one is between 10 and
50, and the other is between 1900 and
2000.) Give the x-value to the nearest
integer.

Solution: Letting f.x/ D x4 � 4xC 1, we have

f.0/ D 0 � 0C 1 D 1

and

In the event that a root lies between a and
b, and f.a/ and f.b/ are equally close to
0, choose either a or b as the first
approximation.

f.1/ D 1 � 4C 1 D �2

(Note the change in sign.) Since f(0) is closer to 0 than is f(1), we choose 0 to be our
first approximation, x1. Now,

f 0.x/ D 4x3 � 4

so

f.xn/ D x4n � 4xn C 1 and f 0.xn/ D 4x3n � 4

Substituting into Equation (4) gives the recursion formula

xnC1 D xn �
f.xn/
f 0.xn/

D xn �
x4n � 4xn C 1
4x3n � 4

D
4x4n � 4xn � x4n C 4xn � 1

4x3n � 4

so

xnC1 D
3x4n � 1
4x3n � 4

Since x1 D 0, letting n D 1 above gives

x2 D
3x41 � 1

4x31 � 4
D

3.0/4 � 1
4.0/3 � 4

D 0:25

Letting n D 2 gives

x3 D
3x42 � 1

4x32 � 4
D

3.0:25/4 � 1
4.0:25/3 � 4

� 0:25099206

Letting n D 3 gives

x4 D
3x43 � 1

4x33 � 4
D

3.0:25099206/4 � 1
4.0:25099206/3 � 4

� 0:25099216

The data obtained thus far are displayed in Table 12.1. Since the values of x3 and x4 dif-
fer by less than 0.0001, we take our approximation of the root to be x4 � 0:25099216.

Table 12.1

n xn xnC1

1 0.00000 0.25000000

2 0.25000 0.25099206

3 0.25099 0.25099216

Now Work Problem 1 G

Notice that in simplifying xnC1 the appearance of the n’s on the right side is an
unnecessary distraction. It saves writing to simplify

N.x/ D x �
f.x/
f 0.x/

D
xf 0.x/ � f.x/

f 0.x/

so that the recursion formula becomes xnC1 D N.xn/. The next example will illustrate.
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EXAMPLE 2 Approximating a Root by Newton’s Method

Approximate the root of x3 D 3x�1 that lies between�1 and�2. Continue the approx-
imation procedure until two successive approximations differ by less than 0.0001.

Solution: Letting f.x/ D x3 � 3x C 1, so that the equation becomes f.x/ D 0, we
find that

f.�1/ D .�1/3 � 3.�1/C 1 D 3

and

f.�2/ D .�2/3 � 3.�2/C 1 D �1

(Note the change in sign.) Since f.�2/ is closer to 0 than is f.�1/, we choose �2 to be
our first approximation, x1. Now,

f 0.x/ D 3x2 � 3

so

N.x/ D x �
x3 � 3xC 1
3x2 � 3

D
3x3 � 3x � x3 C 3x � 1

3x2 � 3
D

2x3 � 1
3x2 � 3

and

xnC1 D
2x3n � 1
3x2n � 3

Since x1 D �2, letting n D 1 gives

x2 D
2x31 � 1

3x21 � 3
D

2.�2/3 � 1
3.�2/2 � 3

� 1:88889

Continuing in this way, we obtain Table 12.2. Because the values of x3 and x4 differ by
less than 0.0001, we take our approximation of the root to be x4 � �1:87939.

Table 12.2

n xn xnC 1

1 �2:00000 �1:88889

2 �1:88889 �1:87945

3 �1:87945 �1:87939

Now Work Problem 3 G

If our choice of x1 has f 0.x1/ D 0, then Newton’s method will fail to produce
a value for x2. When this happens, the choice of x1 must be rejected and a different
number, close to the desired root, must be chosen for x1. A graph of f can be helpful in
this situation. Finally, there are times when the sequence of approximations does not
approach the root. A discussion of such situations is beyond the scope of this book.

PROBLEMS 12.6
In Problems 1–10, use Newton’s method to approximate the
indicated root of the given equation. Continue the approximation
procedure until the difference of two successive approximations
is less than 0.0001.

1. x3 � 5xC 1 D 0; root between 0 and 1

2. x3 C 2x2 � 1 D 0; root between 0 and 1

3. x3 C xC 1 D 0; root between �1 and 2.

4. x3 � 9xC 6 D 0; root between 2 and 3

5. x3 C xC 1 D 0; root between �1 and 0

6. x3 D 2xC 6; root between 2 and 3

7. x4 D 3x � 1; root between 0 and 1

8. x4 C x3 � 1 D 0; root between 0 and 1

9. x4 � 2x3 C x2 � 3 D 0; root between 1 and 2

10. x4 � x3 C x � 2 D 0; root between 1 and 2

11. Estimate, to three-decimal-place accuracy, the cube root of
73. [Hint: Show that the problem is equivalent to finding a root of
f.x/ D x3 � 73 D 0.] Choose 4 as the initial estimate. Continue
the iteration until two successive approximations, rounded to three
decimal places, are the same.

12. Estimate 4
p
19, to two-decimal-place accuracy. Use 2 as your

initial estimate.

13. Find, to three-decimal-place accuracy, all positive real
solutions of the equation ex D xC 3. (Hint: A rough sketch of the
graphs of y D ex and y D xC 3 in the same plane makes it clear
how many such solutions there are. Use the integer values
suggested by the graph to choose the initial values.)

14. Find, to three-decimal-place accuracy, all real solutions of the
equation ln x D 5 � x.
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15. Break-Even Quantity The cost of manufacturing q tons of
a certain product is given by

c D 250C 2q � 0:1q3

and the revenue obtained by selling the q tons is given by

r D 3q

Approximate, to two-decimal-place accuracy, the break-even
quantity. (Hint: Approximate a root of r � c D 0 by choosing 13
as your initial estimate.)

16. Break-Even Quantity The total cost of manufacturing q
hundred pencils is c dollars, where

c D 50C 4qC
q2

1000
C

1
q

Pencils are sold for $8 per hundred.

(a) Show that the break-even quantity is a solution of the
equation

f.q/ D
q3

1000
� 4q2 C 50qC 1 D 0

(b) Use Newton’s method to approximate the solution of
f.q/ D 0, where f.q/ is given in part (a). Use 10 as your initial
approximation, and give your answer to two-decimal-place
accuracy.

17. Equilibrium Given the supply equation p D 2qC 5 and

the demand equation p D
100

q2 C 1
, use Newton’s method to

estimate the market equilibrium quantity. Give your answer to
three-decimal-place accuracy.

18. Equilibrium Given the supply equation

p D 0:2q3 C 0:6qC 2

and the demand equation p D 9 � q, use Newton’s method to
estimate the market equilibrium quantity, and find the
corresponding equilibrium price. Use 2 as an initial estimate for
the required value of q, and give the answer to two-decimal-place
accuracy.

19. Use Newton’s method to approximate (to two-decimal-place
accuracy) a critical value of the function

f.x/ D
x3

3
� x2 � 5xC 1

on the interval [3, 4].

Objective 12.7 Higher-Order Derivatives
To find higher-order derivatives both
directly and implicitly.

We know that the derivative of a function y D f.x/ is itself a function, f 0.x/. If we
differentiate f 0.x/, the resulting function . f 0/0.x/ is called the second derivative of f
at x. It is denoted f 00.x/, which is read “f double prime of x.” Similarly, the derivative of
the second derivative is called the third derivative, written f 000.x/. Continuing in this
way, we get higher-order derivatives. Some notations for higher-order derivatives are
given in Table 12.3. To avoid clumsy notation, primes are not used beyond the third
derivative.

Table 12.3

First derivative: y0 f 0.x/
dy
dx

d
dx
. f.x// Dxy

Second derivative: y00 f 00.x/
d2y

dx2
d2

dx2
. f.x// D2

xy

Third derivative: y000 f 000.x/
d3y

dx3
d3

dx3
. f.x// D3

xy

Fourth derivative: y.4/ f.4/.x/
d4y

dx4
d4

dx4
. f.x// D4

xy

nth derivative: y.n/ f.n/.x/
dny
dxn

dn

dxn
. f.x// Dn

xy

The symbol d2y=dx2 represents the
second derivative of y. It is not the same
as .dy=dx/2, the square of the first
derivative of y.

The Leibniz notation for higher derivatives is a little less mysterious when we note

that
dny
dxn

is a convention for
�

d
dx

�n

.y/, which is to say, differentiation with respect to x,

d
dx
, applied n times to y.
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EXAMPLE 1 Finding Higher-Order Derivatives

If f.x/ D 6x3 � 12x2 C 6x � 2, find all higher-order derivatives.

Solution: Differentiating f.x/ gives

f 0.x/ D 18x2 � 24xC 6

Differentiating f 0.x/ yields

f 00.x/ D 36x � 24

Similarly,

f 000.x/ D 36

f.4/.x/ D 0

and for n � 5, f.n/.x/ D 0

Now Work Problem 1 G

EXAMPLE 2 Finding a Second-Order Derivative

If y D ex
2
, find

d2y
dx2

.

APPLY IT I

8. The height h.t/ of a rock dropped
off of a 200-foot building is given by
h.t/ D 200 � 16t2, where t is the

time measured in seconds. Find
d2h

dt2
,

the acceleration of the rock at time t.

Solution:

dy
dx
D ex

2
.2x/ D 2xex

2

By the product rule,

d2y
dx2
D 2.x.ex

2
/.2x/C ex

2
.1// D 2ex

2
.2x2 C 1/

Now Work Problem 5 G

EXAMPLE 3 Evaluating a Second-Order Derivative

If y D f.x/ D
16

xC 4
, find

d2y
dx2

and evaluate it when x D 4.

APPLY IT I
9. If the cost to produce q units of a
product is

c.q/ D 7q2 C 11qC 19

and the marginal-cost function is c0.q/,
find the rate of change of the marginal
cost function with respect to q when
qD 3.

Solution: Since y D 16.xC 4/�1, the power rule gives

dy
dx
D �16.xC 4/�2

d2y
dx2
D 32.xC 4/�3

D
32

.xC 4/3

Evaluating when x D 4, we obtain

d2y
dx2

ˇ̌̌̌
xD4
D

32
83
D

1
16

The second derivative evaluated at x D 4 is also denoted by f 00.4/ and by y00.4/.

Now Work Problem 21 G
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EXAMPLE 4 Finding the Rate of Change of f 00.x/

If f.x/ D x ln x, find the rate of change of f 00.x/.

Solution: To find the rate of change of any function, we must find its derivative. Thus,
we want the derivative of f 00.x/, which is f 000.x/. Accordingly,The rate of change of f 00.x/ is f 000.x/.

f 0.x/ D x
�
1
x

�
C .ln x/.1/ D 1C ln x

f 00.x/ D 0C
1
x
D

1
x

f 000.x/ D
d
dx
.x�1/ D .�1/x�2

D �
1
x2

Now Work Problem 17 G

Higher-Order Implicit Differentiation
We will now find a higher-order derivative by means of implicit differentiation. Keep
in mind that we will assume y to be a function of x.

EXAMPLE 5 Higher-Order Implicit Differentiation

Find
d2y
dx2

if x2 C 4y2 D 4.

Solution: Differentiating both sides with respect to x, we obtain

2xC 8y
dy
dx
D 0

dy
dx
D
�x
4y

(1)

d2y
dx2
D

4y
d
dx
.�x/ � .�x/

d
dx
.4y/

.4y/2

D

4y.�1/ � .�x/
�
4
dy
dx

�
16y2

D

�4yC 4x
dy
dx

16y2

d2y
dx2
D

�yC x
dy
dx

4y2
(2)

Although we have found an expression for d2y=dx2, our answer involves the derivative
dy=dx. It is customary to express the answer without the derivative—that is, in terms

of x and y only. This is easy to do. From Equation (1),
dy
dx
D
�x
4y

, so by substituting

into Equation (2), we have

d2y
dx2
D

�yC x
�
�x
4y

�
4y2

D
�4y2 � x2

16y3
D �

4y2 C x2

16y3
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We can further simplify the answer. Since x2 C 4y2 D 4 (the original equation),In Example 5, the simplification of
d2y=dx2 by making use of the original
equation is not unusual. d2y

dx2
D �

4
16y3

D �
1
4y3

Now Work Problem 23 G

EXAMPLE 6 Higher-Order Implicit Differentiation

Find
d2y
dx2

if y2 D exCy.

Solution: Differentiating both sides with respect to x gives

2y
dy
dx
D exCy

�
1C

dy
dx

�
Solving for dy=dx, we obtain

2y
dy
dx
D exCy

C exCy dy
dx

2y
dy
dx
� exCy dy

dx
D exCy

.2y � exCy/
dy
dx
D exCy

dy
dx
D

exCy

2y � exCy

Since y2 D exCy (the original equation),

dy
dx
D

y2

2y � y2
D

y
2 � y

d2y
dx2
D

.2 � y/
dy
dx
� y

�
�
dy
dx

�
.2 � y/2

D

2
dy
dx

.2 � y/2

Now we express our answer without dy=dx. Since
dy
dx
D

y
2 � y

,

d2y
dx2
D

2
�

y
2 � y

�
.2 � y/2

D
2y

.2 � y/3

Now Work Problem 31 G

PROBLEMS 12.7
In Problems 1–20, find the indicated derivatives.

1. y D 4x3 � 12x2 C 6xC 2, y000

2. y D x5 C x4 C x3 C x2 C xC 1, y000

3. y D 8 � x,
d2y
dx2

4. y D ax2 C bxC c,
d3y
dx3

5. y D x3 C ex, y.4/ 6. F.q/ D ln.qC 1/,
d3F
dq3

7. f.x/ D x3 ln x, f 000.x/ 8. y D
1
x
, y000

9. f.q/ D
1
3q3

, f 000.q/ 10. f.x/ D
p
x, f 00.x/

11. f.r/ D
p
9 � r, f 00.r/ 12. y D eax

2
, y00

13. y D
1

2xC 3
,
d2y
dx2

14. y D .axC b/6, y000

15. y D
xC 1
x � 1

, y00 16. y D 2x1=2 C .2x/1=2, y00

17. y D lnŒx.xC a/�, y00 18. y D ln
.2xC 5/.5x � 2/

xC 1
, y00
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19. f.z/ D z3ez, f 000.z/ 20. y D
x
ex
,
d2y
dx2

21. If y D e2x C e3x, find
d5y
dx5

ˇ̌̌̌
xD0

.

22. If y D e2 ln.x2C1/, find y00 when x D 1.

In Problems 23–32, find y00.

23. x2 C 4y2 � 16 D 0 24. x2 C y2 D 1

25. y2 D 4x 26. 9x2 C 16y2 D 25

27. a
p
xC b

p
y D c 28. y2 � 6xy D 4

29. xC xyC y D 1 30. x2 C 2xyC y2 D 1

31. y D exCy 32. ex C ey D x2 C y2

33. If x2 C 3xC y2 D 4y, find d2y=dx2 when x D 0 and y D 0.

34. Show that the equation

f 00.x/C 2f 0.x/C f.x/ D 0

is satisfied if f.x/ D .xC 1/e�x.

35. Find the rate of change of f 0.x/ if f.x/ D .5x � 3/4.

36. Find the rate of change of f 00.x/ if

f.x/ D 6
p
xC

1

6
p
x

37. Marginal Cost If c D 0:2q2 C 2qC 500 is a cost function,
how fast is marginal cost changing when q D 97:357?

38. Marginal Revenue If p D 400 � 40q � q2 is a demand
equation, how fast is marginal revenue changing when q D 4?

39. If f.x/ D
1
12

x4 �
1
2
x3 C x2 � 4, determine the values of x for

which f 00.x/ D 0.

40. Suppose that ey D y2ex. (a) Determine dy=dx, and express
your answer in terms of y only. (b) Determine d2y=dx2, and
express your answer in terms of y only.

In Problems 41 and 42, determine f 00.x/. Then use your graphing
calculator to find all real roots of f 00.x/ D 0. Round your answers
to two decimal places.

41. f.x/ D 6ex � x3 � 15x2

42. f.x/ D
x5

20
C

x4

12
C

5x3

6
C

x2

2

Chapter 12 Review
Important Terms and Symbols Examples
Section 12.1 Derivatives of Logarithmic Functions

derivative of ln x and of logb u Ex. 5, p. 536

Section 12.2 Derivatives of Exponential Functions
derivative of ex and of bu Ex. 4, p. 540

Section 12.3 Elasticity of Demand
point elasticity of demand, � elastic unit elasticity inelastic Ex. 2, p. 546

Section 12.4 Implicit Differentiation
implicit differentiation Ex. 1, p. 551

Section 12.5 Logarithmic Differentiation
logarithmic differentiation relative rate of change of f.x/ Ex. 3, p. 556

Section 12.6 Newton’s Method

recursion formula, xnC1 D xn �
f.xn/
f 0.xn/

D
xnf 0.xn/ � f.xn/

f 0.xn/
Ex. 1, p. 560

Section 12.7 Higher-Order Derivatives

higher-order derivatives, f 00.x/,
d3y
dx3

,
d4

dx4
Œf.x/�; : : : Ex. 1, p. 563

Summary
The derivative formulas for natural logarithmic and exponen-
tial functions are

d
dx
.ln u/ D

1
u
du
dx

and

d
dx
.eu/ D eu

du
dx

To differentiate logarithmic and exponential functions in
bases other than e, first transform the function to base e and
then differentiate the result. Alternatively, differentiation for-
mulas can be applied:

d
dx
.logb u/ D

1
.ln b/u

�
du
dx

d
dx
.bu/ D bu.ln b/ �

du
dx
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Point elasticity of demand is a function that measures
how consumer demand is affected by a change in price. It is
given by

� D
p
q
dq
dp

where p is the price per unit at which q units are demanded.
The three categories of elasticity are as follows:

j�.p/j > 1 demand is elastic

j�.p/j D 1 unit elasticity

j�.p/j < 1 demand is inelastic

For a given percentage change in price, if there is a
greater (respectively, lesser) percentage change in quantity
demanded, then demand is elastic (respectively, inelastic).

Two relationships between elasticity and the rate of
change of revenue are given by

dr
dq
D p

�
1C

1
�

�
dr
dp
D q.1C �/

If an equation implicitly defines y as a function of x
(rather than defining it explicitly in the form y D f.x/),
then dy=dx can be found by implicit differentiation. With this
method, we treat y as a differentiable function of x and dif-

ferentiate both sides of the equation with respect to x. When
doing this, remember that

d
dx
.yn/ D nyn�1 dy

dx

and, more generally, that

d
dx
. f.y// D f 0.y/

dy
dx

Finally, we solve the resulting equation for dy=dx.
To differentiate y D f.x/, where f.x/ consists of prod-

ucts, quotients, or powers, the method of logarithmic differ-
entiation may be used. In that method, we take the natural
logarithm of both sides of y D f.x/ to obtain ln y D ln. f.x//.
After simplifying ln. f.x// by using properties of logarithms,
we differentiate both sides of ln y D ln. f.x// with respect to
x and then solve for y0. Logarithmic differentiation can also
be used to differentiate y D uv, where both u and v are dif-
ferentiable functions of x.

Newton’s method is the name given to the following for-
mula, which is used to approximate the roots of the equation
f.x/ D 0, provided that f is differentiable:

xnC1 D
xnf 0.xn/ � f.xn/

f 0.xn/
; n D 1; 2; 3; : : :

In many cases encountered, the approximation improves as
n increases.

Because the derivative f 0.x/ of a function y D f.x/ is
itself a function, it can be successively differentiated to obtain
the second derivative f 00.x/, the third derivative f 000.x/, and
other higher-order derivatives.

Review Problems
In Problems 1–30, differentiate.

1. y D 3ex C e2 C ex
2
C xe

2
2. f.w/ D wew C w2

3. f.r/ D ln.7r2 C 4rC 5/ 4. y D eln x

5. y D e3x
2C5xC7 6. f.t/ D log6

p
t2 C 1

7. y D ex.x2 C 2/ 8. y D 23x
2

9. y D
p
.x � 6/.xC 5/.9 � x/ 10. f.t/ D e

p
t

11. y D
ln x
ex

12. y D
ex C e�x

x2

13. f.q/ D lnŒ.qC a/m.qC b/n�

14. y D .xC 2/3.xC 1/4.x � 2/2

15. y D 35x
2C3xC2 16. y D .eC e2/0

17. y D
4e3x

xex�1
18. y D

ln x
ex

19. y D log2.8xC 5/2 20. y D ln
�

3x � 7
x2 C 5x � 2

�
21. f.l/ D ln.1C lC l2 C l3/ 22. y D .x2/x

2

23. y D .x2 C 1/xC1 24. y D
1C ex

1 � ex

25. �.t/ D ln.t2
p
5 � t3/ 26. y D .xC 3/ln x

27. y D
.x2 C 1/1=2.x2 C 2/1=3

.2x3 C 6x/2=5
28. y D .ln x/

p
x

29. y D .xx/x 30. y D x.xx/

In Problems 31–34, evaluate y0 at the given value of x.

31. y D .xC 1/ ln x2; x D 1 32. y D
ex

2C1

p
x2 C 1

; x D 1

33. y D .1=x/x, x D e

34. y D

"
25x.x2 � 3xC 5/1=3

.x2 � 3xC 7/3

#�1

; x D 0

In Problems 35 and 36, find an equation of the tangent line to the
curve at the point corresponding to the given value of x.

35. y D 2ex, x D ln 2 36. y D xC x2 ln x; x D 1
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37. Find the y-intercept of the tangent line to the graph of
y D x.22�x2/ at the point where x D 1.

38. If w D 2x C ln.1C x2/ and x D ln.1C t2/, find w and dw=dt
when t D 0.

In Problems 39–42, find the indicated derivative at the given point.

39. y D ex
2�2xC1; y00, .1; 1/ 40. y D x3ex, y000, .1; e/

41. y D ln.2x/; y000, (1, ln 2) 42. y D x ln x; y00, (1, 0)

In Problems 43–46, find dy=dx.

43. x2 C 2xyC y2 D 4 44. x3y3 D 3

45. ln.xy/ D xy 46. y2ey ln x D e2

In Problems 47 and 48, find d2y=dx2 at the given point.

47. xC xyC y D 5, (2, 1) 48. x2 C xyC y2 D 1, .0;�1/

49. If y is defined implicitly by ey D .yC 1/ex, determine both
dy=dx and d2y=dx2 as explicit functions of y only.

50. If ex C ey D 1, find
d2y
dx2

.

51. Schizophrenia Several models have been used to analyze
the length of stay in a hospital. For a particular group of
schizophrenics, one such model is9

f.t/ D 1 � .0:8e�0:01t
C 0:2e�0:0002t/

where f.t/ is the proportion of the group that was discharged at the
end of t days of hospitalization. Determine the discharge rate
(proportion discharged per day) at the end of t days.

52. Earthquakes According to Richter,10 the number N of
earthquakes of magnitudeM or greater per unit of time is given by
logN D A � bM, where A and b are constants. Richter claims that

log
�
�
dN
dM

�
D AC log

�
b
q

�
� bM

where q D log e. Verify this statement.

53. If f.x/ D ex
4�10x3C36x2�2x, find all real roots of f 0.x/ D 0.

Round your answers to two decimal places.

54. If f.x/ D
x5

10
C

x4

6
C

2x3

3
C x2 C 1, find all roots of

f 00.x/ D 0. Round your answers to two decimal places.

For the demand equations in Problems 55–57, determine whether
demand is elastic, is inelastic, or has unit elasticity for the
indicated value of q.

55. p D
100
q
; q D 100 56. p D 900 � q2; q D 10

57. p D 18 � 0:02q; q D 600

58. The demand equation for a product is

q D
�
20 � p
2

�2

for 0 � p � 20

(a) Find the point elasticity of demand when p D 8.
(b) Find all values of p for which demand is elastic.

59. The demand equation of a product is

q D
p
2500 � p2

Find the point elasticity of demand when p D 30. If the price of 30
decreases 2

3%, what is the approximate change in demand?

60. The demand equation for a product is

q D
p
144 � p; where 0 < p < 144

(a) Find all prices that correspond to elastic demand.
(b) Compute the point elasticity of demand when p D 100. Use
the answer to estimate the percentage increase or decrease in
demand when price is increased by 5% to p D 105.

61. The equation x3 � 2x� 2 D 0 has a root between 1 and 2. Use
Newton’s method to estimate the root. Continue the approximation
procedure until the difference of two successive approximations is
less than 0.0001. Round your answer to four decimal places.

62. Find, to an accuracy of three decimal places, all real solutions
of the equation ex D 3x.

9Adapted from W. W. Eaton and G. A. Whitmore, “Length of Stay as a
Stochastic Process: A General Approach and Application to Hospitalization
for Schizophrenia,” Journal of Mathematical Sociology, 5 (1977) 273–92.
10C. F. Richter, Elementary Seismology (San Francisco: W. H. Freeman and
Company, Publishers, 1958).
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13 Curve Sketching

13.1 Relative Extrema

13.2 Absolute Extrema on a
Closed Interval

13.3 Concavity

13.4 The Second-Derivative
Test

13.5 Asymptotes

13.6 Applied Maxima and
Minima

Chapter 13 Review

In the mid-1970s, economist Arthur Laffer was explaining his views on taxes to a
politician. To illustrate his argument, Laffer grabbed a paper napkin and sketched
the graph that now bears his name: the Laffer curve.

The Laffer curve describes total government tax revenue as a function of the
tax rate. Obviously, if the tax rate is zero, the government gets nothing. But if the tax
rate is 100%, revenue would again equal zero, because there is no incentive to earn
money if it will all be taken away. Since tax rates between 0% and 100% do generate
revenue, Laffer reasoned, the curve relating revenue to tax rate must look, qualitatively,
more or less as shown in the figure below.

Laffer’s argument was not meant to show that the optimal tax rate was 50%. It was
meant to show that under some circumstances, namely, when the tax rate is to the right
of the peak of the curve, it is possible to raise government revenue by lowering taxes.
This was a key argument made for the tax cuts passed by Congress during the first term
of the Reagan presidency.

Because the Laffer curve is only a qualitative picture, it does not actually give an
optimal tax rate. Revenue-based arguments for tax cuts involve the claim that the point
of peak revenue lies to the left of the current taxation scheme on the horizontal axis. By
the same token, those who urge raising taxes to raise government income are assuming
either a different relationship between rates and revenues or a different location of the
curve’s peak.

By itself, then, the Laffer curve is too abstract to be of much help in determining the
optimal tax rate. But even very simple sketched curves, like supply and demand curves
and the Laffer curve, can help economists describe the causal factors that drive an econ-
omy. In this chapter, we will discuss techniques for sketching and interpreting curves.

T
a
x

 r
e
v

e
n

u
e

Tax rate

100%0

569
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Objective 13.1 Relative Extrema
To find when a function is increasing or
decreasing, to find critical values, to
locate relative maxima and relative
minima, and to state the first-derivative
test. Also, to sketch the graph of a
function by using the information
obtained from the first derivative.

Increasing or Decreasing Nature of a Function
Examining the graphical behavior of functions is a basic part of mathematics and has
applications to many areas of study. When we sketch a curve, just plotting points may
not give enough information about its shape. For example, the points .�1; 0/; .0;�1/,
and (1, 0) satisfy the equation given by y D .xC1/3.x�1/. On the basis of these points,
we might hastily conclude that the graph should appear as in Figure 13.1(a), but in fact
the true shape is given in Figure 13.1(b). In this chapter we will explore the powerful
role that differentiation plays in analyzing a function so that we can determine the true
shape and behavior of its graph.

y

x
1

-1

-1

(a) (b)

1
x

y

-1

-1

FIGURE 13.1 Curves passing through .�1; 0/, .0;�1/, and .1; 0/.

We begin by analyzing the graph of the function y D f.x/ in Figure 13.2. Notice
that as x increases (goes from left to right) on the interval I1, between a and b, the values
of f.x/ increase and the curve is rising. Mathematically, this observation means that if
x1 and x2 are any two points in I1 such that x1 < x2, then f.x1/ < f.x2/. Here f is said
to be an increasing function on I1. On the other hand, as x increases on the interval I2
between c and d, the curve is falling. On this interval, x3 < x4 implies that f.x3/ > f.x4/,
and f is said to be a decreasing function on I2. We summarize these observations in the
following definition.

Definition
A function f is said to be increasing on an interval I when, for any two numbers
x1; x2 in I, if x1 < x2, then f.x1/ < f.x2/. A function f is decreasing on an interval I
when, for any two numbers x1; x2 in I, if x1 < x2, then f.x1/ > f.x2/.

f (x3) 7  f (x4)f (x1) 6  f (x2)

a x1 x2 b c x3 x4 d

Negative slope

f ¿ (x) 6 0

Positive slope

f ¿ (x) 7 0

y = f (x)

y

x

I1 I2

f increasing f decreasing

FIGURE 13.2 Increasing or decreasing nature of function.
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In terms of the graph of the function, f is increasing on I if the curve rises to the
right and f is decreasing on I if the curve falls to the right. Recall that a straight line
with positive slope rises to the right, while a straight line with negative slope falls to
the right.

Turning again to Figure 13.2, we note that over the interval I1, tangent lines to
the curve have positive slopes, so f 0.x/ must be positive for all x in I1. A positive
derivative implies that the curve is rising. Over the interval I2, the tangent lines have neg-
ative slopes, so f 0.x/ < 0 for all x in I2. The curve is falling where the derivative is
negative. We, thus, have the following rule, which allows us to use the derivative to
determine when a function is increasing or decreasing:

Rule 1 Criteria for Increasing or Decreasing Function
Let f be differentiable on the interval .a; b/. If f 0.x/ > 0 for all x in .a; b/, then f is
increasing on .a; b/. If f 0.x/ < 0 for all x in .a; b/, then f is decreasing on .a; b/.

To illustrate these ideas, we will use Rule 1 to find the intervals on which
y D 18x� 2

3x
3 is increasing and the intervals on which y is decreasing. Letting y D f.x/,

we must determine when f 0.x/ is positive and when f 0.x/ is negative. We have

f 0.x/ D 18 � 2x2 D 2.9 � x2/ D 2.3C x/.3 � x/

Using the technique of Section 10.4, we can find the sign of f 0.x/ by testing the intervals
determined by the roots of 2.3 C x/.3 � x/ D 0, namely, �3 and 3. These should be
arranged in increasing order on the top of a sign chart for f 0 so as to divide the domain
of f into intervals. (See Figure 13.3.) In each interval, the sign of f 0.x/ is determined by
the signs of its factors:

-

-3-q q

3 + x

3 - x

f ¿(x)

f(x)

3

+ +

+

+

-

+

-- 0

-

-

0

0

0

FIGURE 13.3 Sign chart for f 0.x/ D 18 � 9x2 and its interpretation for f.x/.

If x < �3; then sign. f 0.x// D 2.�/.C/ D �; so f is decreasing:

If �3 < x < 3; then sign. f 0.x// D 2.C/.C/ D C; so f is increasing:

If x > 3; then sign. f 0.x// D 2.C/.�/ D �; so f is decreasing:

These results are indicated in the sign chart given by Figure 13.3, where the bottom line
is a schematic version of what the signs of f 0 say about f itself. Notice that the horizontal
line segments in the bottom row indicate horizontal tangents for f at �3 and at 3. Thus,
f is decreasing on .�1;�3/ and .3;1/ and is increasing on .�3; 3/. This corresponds
to the rising and falling nature of the graph of f shown in Figure 13.4. Indeed, the point
of a well-constructed sign chart is to provide a schematic for subsequent construction
of the graph itself.

Decreasing Increasing Decreasing

-36

3-3

36

x

y
y = 18x x

3
  -

2

3

FIGURE 13.4 Increasing/decreasing for

y D 18x � 2
3x

3.

Extrema
Look now at the graph of y D f.x/ in Figure 13.5. Some observations can be
made. First, there is something special about the points P, Q, and R. Notice that P
is higher than any other “nearby” point on the curve—and likewise for R. The point
Q is lower than any other “nearby” point on the curve. Since P, Q, and R may not
necessarily be the highest or lowest points on the entire curve, we say that the graph
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f ¿(a) = 0

Q

R

x

Relative
maximum

f ¿(c)
does not exist

f ¿ (b) = 0Relative
minimum

P

Relative
maximum

sign (f ¿(x)) = +

y

a b c

sign (f ¿(x)) = - sign (f ¿(x)) = +

sign (f ¿(x)) = -

FIGURE 13.5 Relative maxima and relative minima.

of f has relative maxima at a and at c and has a relative minimum at b. The function
f has relative maximum values of f.a/ at a and f.c/ at c and has a relative minimum
value of f.b/ at b. We also say that .a; f.a// and .c; f.c// are relative maximum points,
and .b; f.b// is a relative minimum point on the graph of f.

Be sure to note the difference between
relative extreme values and where they
occur.

Turning back to the graph, we see that there is an absolute maximum (highest point
on the entire curve) at a, but there is no absolute minimum (lowest point on the entire
curve) because the curve is assumed to extend downward indefinitely. More precisely,
we define these new terms as follows:

Definition
A function f has a relative maximum at a if there is an open interval containing a
on which f.a/ � f.x/ for all x in the interval. The relative maximum value is f.a/. A
function f has a relative minimum at a if there is an open interval containing a on
which f.a/ � f.x/ for all x in the interval. The relative minimum value is f.a/.

Definition
A function f has an absolute maximum at a if f.a/ � f.x/ for all x in the domain of
f. The absolute maximum value is f.a/. A function f has an absolute minimum at a
if f.a/ � f.x/ for all x in the domain of f. The absolute minimum value is f.a/.

We refer to either a relative maximum or a relative minimum as a relative extremum
(plural: relative extrema). Similarly, we speak of absolute extrema.

If it exists, an absolute maximum value is
unique; however, it may occur at more
than one value of x. A similar statement
is true for an absolute minimum.

When dealing with relative extrema, we compare the function value at a point with
values of nearby points; however, when dealing with absolute extrema, we compare the
function value at a point with all other values determined by the domain. Thus, relative
extrema are local in nature, whereas absolute extrema are global in nature.

Referring to Figure 13.5, we notice that at a relative extremum the derivative may
not be defined (as when x D c). But whenever it is defined at a relative extremum, it is
0 (as when x D a and when x D b), and hence, the tangent line is horizontal. We can
state the following:

Rule 2 A Necessary Condition for Relative Extrema
If f has a relative extremum at a, then f 0.a/ D 0 or f 0.a/ does not exist.

The implication in Rule 2 goes in only one direction:

relative extremum
at a

�
implies

8<: f 0.a/ D 0
or

f 0.a/ does not exist
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a

(b)(a)

x

y

y = f(x)

f ¿(a) = 0

but no relative

extremum at a

a
x

y

f ¿(a) does not exist

but no relative

extremum at a

FIGURE 13.6 No relative extremum at a.

Rule 2 does not say that if f 0.a/ is 0 or f 0.a/ does not exist, then there must be a relative
extremum at a. In fact, there may not be one at all. For example, in Figure 13.6(a), f 0.a/
is 0 because the tangent line is horizontal at a, but there is no relative extremum there.
In Figure 13.6(b), f 0.a/ does not exist because the tangent line is vertical at a, but again,
there is no relative extremum there.

But if we want to find all relative extrema of a function—and this is an important
task—what Rule 2 does tell us is that we can limit our search to those values of x in the
domain of f for which either f 0.x/ D 0 or f 0.x/ does not exist. Typically, in applications,
this cuts down our search for relative extrema from the infinitely many x for which f
is defined to a small finite number of possibilities. Because these values of x are so
important for locating the relative extrema of f, they are called the critical values for f,
and if a is a critical value for f, then we also say that .a; f.a// is a critical point on the
graph of f. Thus, in Figure 13.5, the numbers a, b, and c are critical values, and P, Q,
and R are critical points.

Definition
For a in the domain of f, if either f 0.a/ D 0 or f 0.a/ does not exist, then a is called a
critical value for f. If a is a critical value, then the point .a; f.a// is called a critical
point for f.

At a critical point, theremay be a relativemaximum, a relativeminimum, or neither.
Moreover, from Figure 13.5, we observe that each relative extremum occurs at a point
around which the sign of f 0.x/ is changing. For the relative maximum at a, the sign of
f 0.x/ goes from C for x < a to � for x > a, as long as x is near a. For the relative
minimum at b, the sign of f 0.x/ goes from � to C, and for the relative maximum at
c, it again goes from C to �. Thus, around relative maxima, f is increasing and then
decreasing, and the reverse holds for relative minima. More precisely, we have the
following rule:

Rule 3 Criteria for Relative Extrema
Suppose f is continuous on an open interval I that contains the critical value a and f
is differentiable on I, except possibly at a.

1. If f 0.x/ changes from positive to negative as x increases through a, then f has a
relative maximum at a.

2. If f 0.x/ changes from negative to positive as x increases through a, then f has a
relative minimum at a.
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y

x

y = f (x) =  1

x2

f ¿ (x) 6 0f ¿(x) 7 0

f ¿(x)

f(x)

- +

-+

0-q q

x3

1

(a) (b)

FIGURE 13.7 f 0.0/ is not defined, but 0 is not a critical value because 0 is not in the domain of f.

To illustrate Rule 3 with a concrete example, refer again to Figure 13.3, the
sign chart for f 0.x/ D 18 � 2x2. The row labeled by f 0.x/ shows clearly that

f.x/ D 18x �
2
3
x2 has a relative minimum at �3 and a relative maximum at 3. The

row providing the interpretation of the chart for f, labeled f.x/, is immediately deduced
from the row above it. The significance of the f.x/ row is that it provides an interme-
diate step in actually sketching the graph of f. In this row it stands out, visually, that f
has a relative minimum at �3 and a relative maximum at 3.

We point out again that not every critical
value corresponds to a relative extremum.
For example, if y D f.x/ D x3, then
f 0.x/ D 3x2. Since f 0.0/ D 0, 0 is a
critical value. But if x < 0, then 3x2 > 0,
and if x > 0, then 3x2 > 0. Since f 0.x/
does not change sign at 0, there is no
relative extremum at 0. Indeed, since
f 0.x/ � 0 for all x, the graph of f never
falls, and f is said to be nondecreasing.
(See Figure 13.8.)

f ¿(x) 7 0

y = f (x) = x3

y

f ¿(x) 7 0

f ¿(x) = 0

x

FIGURE 13.8 Zero is a critical value,
but does not give a relative extremum.

When searching for extrema of a function f, care must be paid to those a that are
not in the domain of f but that are near values in the domain of f. Consider the following
example. If

y D f.x/ D
1
x2
; then f 0.x/ D �

2
x3

Although f 0.x/ does not exist at 0, 0 is not a critical value, because 0 is not in the
domain of f. Thus, a relative extremum cannot occur at 0. Nevertheless, the derivative
may change sign around any x-value where f 0.x/ is not defined, so such values are
important in determining intervals over which f is increasing or decreasing. In partic-
ular, such values should be included in a sign chart for f 0. See Figure 13.7(a) and the
accompanying graph in Figure 13.7(b).

Observe that the thick vertical rule at 0 on the chart serves to indicate that 0 is not
in the domain of f. Here there are no extrema of any kind.

In Rule 3 the hypotheses must be satisfied, or the conclusion need not hold. For
example, consider the case-defined function

f.x/ D

8<: 1
x2

if x ¤ 0

0 if x D 0

Here, 0 is explicitly in the domain of f but f is not continuous at 0. We recall from
Section 11.1 that if a function f is not continuous at a, then f is not differentiable at a,
meaning that f 0.a/ does not exist. Thus, f 0.0/ does not exist, and 0 is a critical value
that must be included in the sign chart for f 0 shown in Figure 13.9(a). We extend our
sign chart conventions by indicating with a� symbol those values for which f 0 does not
exist. We see in this example that f 0.x/ changes from positive to negative as x increases
through 0, but f does not have a relative maximum at 0. Here Rule 3 does not apply
because its continuity hypothesis is not met. In Figure 13.9(b), 0 is displayed in the
domain of f. It is clear that f has an absolute minimum at 0 because f.0/ D 0 and, for
all x ¤ 0, f.x/ > 0.

Summarizing the results of this section, we have the first-derivative test for the
relative extrema of y D f.x/:
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f ¿(x)

f(x)

- +

-+ *

*

0

0

-q q

x3
1

y

y = f (x) = 
1/x2  if x Z 0

x

0  if x = 0

(a) (b)

FIGURE 13.9 Zero is a critical value, but Rule 3 does not apply.

First-Derivative Test for Relative Extrema
Step 1. Find f 0.x/.

Step 2. Determine all critical values of f (those a where f 0.a/ D 0 or f 0.a/ does
not exist) and any a that are not in the domain of f but that are near values
in the domain of f, and construct a sign chart that shows for each of the
intervals determined by these values whether f is increasing (f 0.x/ > 0) or
decreasing (f 0.x/ < 0).

Step 3. For each critical value a at which f is continuous, determine whether
f 0.x/ changes sign as x increases through a. There is a relative maximum
at a if f 0.x/ changes from C to � going from left to right and a relative
minimum if f 0.x/ changes from � to C going from left to right. If f 0.x/
does not change sign, there is no relative extremum at a.

Step 4. For critical values a at which f is not continuous, analyze the situation by
using the definitions of extrema directly.

EXAMPLE 1 First-Derivative Test

If y D f.x/ D xC
4

xC 1
, for x ¤ �1 use the first-derivative test to find where relative

extrema occur.

APPLY IT I
1. The cost equation for a hot dog
stand is given by

c.q/ D 2q3 � 21q2 C 60qC 500

where q is the number of hot dogs sold,
and c.q/ is the cost in dollars. Use the
first-derivative test to findwhere relative
extrema occur.

Solution:

Step 1. f.x/ D xC 4.xC 1/�1, so

f 0.x/ D 1C 4.�1/.xC 1/�2
D 1 �

4
.xC 1/2

D
.xC 1/2 � 4
.xC 1/2

D
x2 C 2x � 3
.xC 1/2

D
.xC 3/.x � 1/
.xC 1/2

for x ¤ �1

Note that we expressed f 0.x/ as a quotient with numerator and denominator
fully factored. This enables us in Step 2 to determine easily where f 0.x/ is 0
or does not exist and the signs of f 0.

Step 2. Setting f 0.x/ D 0 gives x D �3; 1. The denominator of f 0.x/ is 0 when x is
�1. We note that �1 is not in the domain of f but all values near �1 are in the
domain of f. We construct a sign chart, headed by the values �3, �1, and 1
(which we have placed in increasing order). See Figure 13.10.
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-3-q

x + 3

(x + 1)
-2

x - 1

f ¿(x)

-1 1 q

+ +

+

-

+

+

--

f(x)

- -+

-

-

+

+

+

+

0

0

0

0

FIGURE 13.10 Sign chart for f 0.x/ D
.xC 3/.x � 1/

.xC 1/2
.

The three values lead us to test four intervals as shown in our sign chart.
On each of these intervals, f is differentiable and is not zero. We determine the
sign of f 0 on each interval by first determining the sign of each of its factors on
each interval. For example, considering first the interval .�1;�3/, it is not
easy to see immediately that f 0.x/ > 0 there; but it is easy to see that xC3 < 0
for x < �3, while .xC1/�2 > 0 for all x ¤ �1, and x�1 < 0 for x < 1. These
observations account for the signs of the factors in the .�1;�3/ column of
the chart. The sign of f 0.x/ in that column is obtained by “multiplying signs”
(downward): .�/.C/.�/ D C. We repeat these considerations for the other
three intervals. Note that the thick vertical line at �1 in the chart indicates that
�1 is not in the domain of f and, hence, cannot give rise to any extrema. In the
bottom row of the sign chart we record, graphically, the nature of tangent lines
to f.x/ in each interval and at the values where f 0 is 0.

Step 3. From the sign chart alone we conclude that at �3 there is a relative maximum
(since f 0.x/ changes fromC to� at�3). Going beyond the chart, we compute
f.�3/ D �3C .4= � 2/ D �5, and this gives the relative maximum value of
�5 at �3. We also conclude from the chart that there is a relative minimum
at 1 (because f 0.x/ changes from � to C at 1). From f.1/ D 1C 4=2 D 3 we
see that at 1 the relative minimum value is 3.

-3 -1 1

-5

3

x

y

y = x +
4

x + 1

FIGURE 13.11 Graph of

y D xC
4

xC 1
:

Step 4. There are no critical values at which f is not continuous, so our considerations
above provide the whole story about the relative extrema of f.x/, whose graph
is given in Figure 13.11. Note that the general shape of the graph was indeed
forecast by the bottom row of the sign chart (Figure 13.10).

Now Work Problem 37 G

EXAMPLE 2 A Relative Extremum where f 0.x/ Does Not Exist

Test y D f.x/ D x2=3 for relative extrema.

f ¿(x)

(x)
-1/3

f(x)

- +

+- *

*

0-q q

FIGURE 13.12 Sign chart for

f 0.x/ D
2

3 3
p
x
.

Solution: We have

f 0.x/ D
2
3
x�1=3

D
2

3 3
p
x

and the sign chart is given in Figure 13.12. Again, we use the symbol � on the vertical
line at 0 to indicate that the factor x�1=3 does not exist at 0. Hence, f 0.0/ does not exist.
Since f is continuous at 0, we conclude from Rule 3 that f has a relative minimum at 0 of
f.0/ D 0, and there are no other relative extrema. We note further, by inspection of the
sign chart, that f has an absoluteminimum at 0. The graph of f follows as Figure 13.13.
Note that we could have predicted its shape from the bottom line of the sign chart in
Figure 13.12, which shows there can be no tangent with a slope at 0. (Of course, the
tangent does exist at 0, but it is a vertical line.)

x

y

y = x
2/3

FIGURE 13.13 Derivative does not
exist at 0, and there is a minimum at 0. Now Work Problem 41 G
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EXAMPLE 3 Finding Relative Extrema

Test y D f.x/ D x2ex for relative extrema.

Solution: By the product rule,

f 0.x/ D x2ex C ex.2x/ D xex.xC 2/
APPLY IT I
2. A drug is injected into a patient’s
bloodstream. The concentration of the
drug in the bloodstream t hours after the
injection is approximated by

C.t/ D
0:14t

t2 C 4tC 4

Find the relative extrema for t > 0, and
use them to determine when the drug is
at its greatest concentration.

Noting that ex is always positive, we obtain the critical values 0 and �2. From the
sign chart of f 0.x/ given in Figure 13.14, we conclude that there is a relative maximum
when x D �2 and a relative minimum when x D 0.

-

-2-q q

x + 2

x

e
x

f ¿(x)

0

- -

+

+

+

+

++

0

f(x)

- ++ 0

-

-

0

0

FIGURE 13.14 Sign chart for f 0.x/ D x.xC 2/ex.

Now Work Problem 49 G

Curve Sketching
In the next example we show how the first-derivative test, in conjunction with the
notions of intercepts and symmetry, can be used as an aid in sketching the graph of
a function.

EXAMPLE 4 Curve Sketching

Sketch the graph of y D f.x/ D 2x2 � x4 with the aid of intercepts, symmetry, and the
first-derivative test.

Solution: Intercepts If x D 0, then f.x/ D 0 so that the y-intercept is .0; 0/. Next
note that

f.x/ D 2x2 � x4 D x2.2 � x2/ D x2.
p
2C x/.

p
2 � x/

So if y D 0, then x D 0, ˙
p
2 and the x-intercepts are .�

p
2; 0/, .0; 0/, and .

p
2; 0/.

We have the sign chart for f itself (Figure 13.15), which shows the intervals over which
the graph of y D f.x/ is above the x-axis .C/ and the intervals over which the graph of
y D f.x/ is below the x-axis .�/.

-

x
2

f(x)

0-   2

+ +

+

+

+

+

+

+

+

-+ 0

+ + -- 00 0

0

0

2

2 + x

2 - x

-q q

FIGURE 13.15 Sign chart for f.x/ D .
p
2C x/x2.

p
2 � x/.
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1 + x
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1 - x

f ¿(x)

0 1
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+

+

+

+

++

f(x)

- ++

-

- -

+

+

-

-

0

0 0 0

0

0

-q q

FIGURE 13.16 Sign chart of y0 D .1C x/4x.1� x/.

Symmetry Testing for y-axis symmetry, we have

f.�x/ D 2.�x/2 � .�x/4 D 2x2 � x4 D f.x/

So the graph is symmetric with respect to the y-axis. Because y is a function (and not the
zero function), there is no x-axis symmetry and, hence, no symmetry about the origin.

First-Derivative Test

Step 1. y0 D 4x � 4x3 D 4x.1 � x2/ D 4x.1C x/.1 � x/

Step 2. Setting y0 D 0 gives the critical values x D 0, ˙1. Since f is a polynomial, it
is defined and differentiable for all x. Thus, the only values to head the sign
chart for f 0 are �1, 0, 1 (in increasing order) and the sign chart is given in
Figure 13.16. Since we are interested in the graph, the critical points are impor-
tant to us. By substituting the critical values into the original equation,
y D 2x2 � x4, we obtain the y-coordinates of these points. We find the critical
points to be .�1; 1/, .0; 0/, and .1; 1/.

Step 3. From the sign chart and evaluations in step 2, it is clear that f has relative
maxima .�1; 1/ and .1; 1/ and relative minimum .0; 0/. (Step 4 does not apply
here.)

Discussion In Figure 13.17(a), we have indicated the horizontal tangents at the rel-
ative maximum and minimum points. We know the curve rises from the left, has a
relative maximum, then falls, has a relative minimum, then rises to a relative maxi-
mum, and falls thereafter. By symmetry, it suffices to sketch the graph on one side
of the y-axis and construct a mirror image on the other side. We also know, from the
sign chart for f, where the graph crosses and touches the x-axis, and this adds further
precision to our sketch, which is shown in Figure 13.17(b).

As a passing comment, we note that absolute maxima occur at x D ˙1. See
Figure 13.17(b). There is no absolute minimum.

Relative

maximum

Relative

maximum

Relative

minimum

x

y

(a) (b)

x

y

1

1(0, 0)

(1, 1)
(-1, 1)

y = 2x
2 
- x

4

1

-1 -11
-   2 2

FIGURE 13.17 Putting together the graph of y D 2x2 � x4.

Now Work Problem 59 G
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PROBLEMS 13.1
In Problems 1–4, the graph of a function is given
(Figures 13.18–13.21). Find the open intervals on which the
function is increasing, the open intervals on which the function is
decreasing, and the coordinates of all relative extrema.

1.

x

y

4

3

2

1

1 2 3 4 5-1

 -1

-2

y = f(x)

FIGURE 13.18
2.

1

-1

1 2-2 -1

y

x

y = f(x)

FIGURE 13.19
3.

1

4
x

y

y = f (x)

-2-4

FIGURE 13.20
4.

3

2

1

-3 -1

1 2 3

-1

-2

-3

x

y

y = f (x)

FIGURE 13.21

In Problems 5–8, the derivative of a differentiable function f is
given. Find the open intervals on which f is (a) increasing;
(b) decreasing; and (c) find the x-values of all relative extrema.

5. f 0.x/ D .xC 3/.x � 1/.x � 2/

6. f 0.x/ D x2.x � 2/3

7. f 0.x/ D .xC 1/.x � 3/2 8. f 0.x/ D
x.xC 2/
x2 C 1

In Problems 9–52, determine where the function is (a) increasing;
(b) decreasing; and (c) determine where relative extrema occur.
Do not sketch the graph.

9. y D �x3 � 1 10. y D x2 C 4xC 3

11. y D 5 � 2x � x2 12. y D x3 �
5
2
x2 � 2xC 6

13. y D �
x3

3
� 2x2 C 5x � 2 14. y D �

x4

4
� x3

15. y D x4 � 2x2 16. y D x3 �
3
2
x2 � 36x

17. y D x3 �
7
2
x2 C 2x � 5 18. y D x3 � 6x2 C 12x � 6

19. y D 2x3 �
19
2
x2 C 10xC 2 20. y D �5x3 C x2 C x � 7

21. y D 1 � 3xC 3x2 � x3 22. y D
9
5
x5 �

47
3
x3 C 10x

23. y D 3x5 � 5x3

24. y D 3x �
x6

2
(Remark: x4C x3 C x2 C xC 1 D 0 has no

real roots.)

25. y D �x5 � 5x4 C 200 26. y D
x4

4
�
5x3

3
C

7x2

2
� 3x

27. y D 8x4 � x8 28. y D
4
5
x5 �

13
3
x3 C 3xC 4

29. y D .x2 � 4/4 30. y D 3
p
x.x � 2/

31. y D
3

xC 2
32. y D

3
x

33. y D
10
p
x

34. y D
axC b
cxC d

(a) for ad � bc > 0
(b) for ad � bc < 0

35. y D
x2

2 � x
36. y D

27x2

2
C

1
x

37. y D
x2 � 3
xC 2

38. y D
2x2

4x2 � 25

39. y D
ax2 C b
cx2 C d

for d=c < 0

(a) for ad � bc > 0
(b) for ad � bc < 0

40. y D 3
p
x3 � 9x

41. y D .xC 1/2=3 42. y D x2.xC 3/4

43. y D x3.x � 6/4 44. y D .1 � x/2=3



Haeussler-50501 M14_HAEU1107_14_SE_C13 November 27, 2017 15:7

580 Chapter 13 Curve Sketching

45. y D e��x C � 46. y D x3 ln x

47. y D x2 � 9 ln x 48. y D x�1ex

49. y D ex � e�x
50. y D e�x2=2

51. y D x2 ln x 52. y D .x2 C 1/e�x

In Problems 53–64, determine intervals on which the function is
increasing; intervals on which the function is decreasing; relative
extrema; symmetry; and those intercepts that can be obtained
conveniently. Then sketch the graph.

53. y D x2 � 3x � 10 54. y D 2x2 C x � 10

55. y D 3x � x3 56. y D x4 � 81

57. y D 2x3 � 9x2 C 12x 58. y D 2x3 � x2 � 4xC 4

59. y D x4 � 2x2 60. y D x6 �
6
5
x5

61. y D .x � 1/3.x � 2/2 62. y D
p
x.x2 � x � 2/

63. y D 2
p
x � x 64. y D x5=3 � 2x2=3

65. Sketch the graph of a continuous function f such that
f.2/ D 2, f.4/ D 6, f 0.2/ D f 0.4/ D 0, f 0.x/ < 0 for x < 2,
f 0.x/ > 0 for 2 < x < 4, f has a relative maximum at 4, and
limx!1 f.x/ D 0.

66. Sketch the graph of a continuous function f such that
f.0/ D 0, f.1/ D 1, f.2/ D 2, f.3/ D 1, f 0.0/ D 0 D f 0.2/, there
is a vertical tangent line when x D 1 and when x D 3, f 0.x/ < 0
for x in .�1; 0/ and x in .2; 3/, f 0.x/ > 0 for x in .0; 1/ and x in
.1; 2/ and x in .3;1/.

67. Average Cost If cf D 25;000 is a fixed-cost function, show
that the average fixed-cost function cf D cf=q is a decreasing
function for q > 0. Thus, as output q increases, each unit’s portion
of fixed cost declines.

68. Marginal Cost If c D 3q � 3q2 C q3 is a cost function,
when is marginal cost increasing?

69. Marginal Revenue Given the demand function

p D 500 � 5q

find when marginal revenue is increasing.

70. Cost Function For the cost function c D
p
q, show that

marginal and average costs are always decreasing for q > 0.

71. Revenue For a manufacturer’s product, the revenue
function is given by r D 180qC 87q2 � 2q3. Determine the output
for maximum revenue.

72. Labor Markets Eswaran and Kotwal1 consider agrarian
economies in which there are two types of workers, permanent
and casual. Permanent workers are employed on long-term
contracts and may receive benefits such as holiday gifts and
emergency aid. Casual workers are hired on a daily basis and
perform routine and menial tasks such as weeding, harvesting,
and threshing. The difference, z, in the present-value cost of hiring
a permanent worker over that of hiring a casual worker is given by

z D .1C b/wp � bwc

where wp and wc are wage rates for permanent labor and casual
labor, respectively, b is a positive constant, and wp is a function
of wc.
(a) Show that

dz
dwc
D .1C b/

�
dwp

dwc
�

b
1C b

�
(b) If dwp=dwc < b=.1C b/, show that z is a decreasing function
of wc.

73. Thermal Pollution In Shonle’s discussion of thermal
pollution,2 the efficiency of a power plant is given by

E D 0:71
�
1 �

Tc

Th

�
where Th and Tc are the respective absolute temperatures of the
hotter and colder reservoirs. Assume that Tc is a positive constant
and that Th is positive. Using calculus, show that as Th increases,
the efficiency increases.

74. Telephone Service In a discussion of the pricing of local
telephone service, Renshaw3 determines that total revenue r is
given by

r D 2FC
�
1 �

a
b

�
p � p2 C

a2

b

where p is an indexed price per call, and a, b, and F are constants.
Determine the value of p that maximizes revenue.

75. Storage and Shipping Costs In his model for storage and
shipping costs of materials for a manufacturing process,
Lancaster4 derives the cost function

C.k/ D 100
�
100C 9kC

144
k

�
1 � k � 100

where C.k/ is the total cost (in dollars) of storage and
transportation for 100 days of operation if a load of k tons of
material is moved every k days.

(a) Find C(1).
(b) For what value of k does C.k/ have a minimum?
(c) What is the minimum value?

1M. Eswaran and A. Kotwal, “A Theory of Two-Tier Labor Markets in
Agrarian Economics,” The American Economic Review, 75, no. 1 (1985),
162–77.
2J. I. Shonle, Environmental Applications of General Physics (Reading, MA:
Addison-Wesley Publishing Company, Inc., 1975).
3E. Renshaw, “A Note on Equity and Efficiency in the Pricing of Local
Telephone Services,” The American Economic Review, 75, no. 3 (1985),
515–18.
4P. Lancaster,Mathematics: Models of the Real World (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1976).
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76. Physiology—The Bends When a deep-sea diver
undergoes decompression or a pilot climbs to a high altitude,
nitrogen may bubble out of the blood, causing what is
commonly called the bends. Suppose the percentage P of
people who suffer effects of the bends at an altitude of h thousand
feet is given by5

P D
100

1C 100;000e�0:36h

Is P an increasing function of h?

In Problems 77–80, from the graph of the function, find the
coordinates of all relative extrema. Round your answers to two
decimal places.

77. y D 0:3x2 C 2:3xC 5:1 78. y D 3x4 � 4x3 � 5xC 1

79. y D
8:2x

0:4x2 C 3
80. y D

ex.3 � x/
7x2 C 1

81. Graph the function

f.x/ D .x.x � 2/.2x � 3//2

in a calculator window with �1 � x � 3, �1 � y � 3. At first
glance, it may appear that this function has two relative minimum
points and one relative maximum point. However, in reality, it has
three relative minimum points and two relative maximum points.
Determine the x-values of all these points. Round answers to two
decimal places.

82. If f.x/ D 3x3 � 7x2 C 4xC 2, display the graphs of f and f 0

on the same screen. Notice that f 0.x/ D 0 where relative extrema
of f occur.

83. Let f.x/ D 6C 4x � 3x2 � x3. (a) Find f 0.x/. (b) Graph f 0.x/.
(c) Observe where f 0.x/ is positive and where it is negative. Give
the intervals (rounded to two decimal places) where f is increasing
and where f is decreasing. (d) Graph f and f 0 on the same screen,
and verify your results to part (c).

84. If f.x/ D x4 � x2 � .xC 2/2, find f 0.x/. Determine the critical
values of f. Round your answers to two decimal places.

Objective 13.2 Absolute Extrema on a Closed Interval
To find extreme values on a closed
interval.

If a function f is continuous on a closed interval Œa; b�, it can be shown that of all
the function values f.x/ for x in Œa; b�, there must be an absolute maximum value and
an absolute minimum value. These two values are called extreme values of f on that
interval. This important property of continuous functions is called the extreme-value
theorem.

Extreme-Value Theorem
If a function is continuous on a closed interval, then the function has both a maxi-
mum value and a minimum value on that interval.

For example, each function in Figure 13.22 is continuous on the closed interval Œ1; 3�.
Geometrically, the extreme-value theorem assures us that over this interval each graph
has a highest point and a lowest point.

y

x

1 3

y

x

1 3

Highest
point

Lowest
point

Highest
point

Lowest
point

FIGURE 13.22 Illustrating the extreme-value theorem.

In the extreme-value theorem, it is important that we are dealing with

1. a closed interval, and
2. a function continuous on that interval.

5Adapted fromG. E. Folk, Jr., Textbook of Environmental Physiology, 2nd ed. (Philadelphia: Lea& Febiger, 1974).
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1

1-1

x

y

Open interval (-1, 1)

No maximum, minimum = 0

-1 1

1

y

x

Not continuous at 0

No maximum, minimum = 1

(b)(a)

f (x) = x2

f (x) = 1

x2

FIGURE 13.23 Extreme-value theorem does not apply.

If either condition (1) or condition (2) is not met, then extreme values are not guaran-
teed. For example, Figure 13.23(a) shows the graph of the continuous function f.x/ D x2

on the open interval .�1; 1/. You can see that f has no maximum value on the inter-
val (although f has a minimum value there). Now consider the function f.x/ D 1=x2

on the closed interval Œ�1; 1�. Here f is not continuous at 0. From the graph of f in
Figure 13.23(b), it can be seen that f has no maximum value (although there is a
minimum value).

In the previous section, our emphasis was on relative extrema. Now we will focus
our attention on absolute extrema and make use of the extreme-value theorem where
possible. If the domain of a function is a closed interval, to determine absolute extrema
we must examine the function not only at critical values, but also at the endpoints. For
example, Figure 13.24 shows the graph of the continuous function y D f.x/ over Œa; b�.
The extreme-value theorem guarantees absolute extrema over the interval. Clearly, the
important points on the graph occur at x D a, b, c, and d, which correspond to endpoints
or critical values. Notice that the absolute maximum occurs at the critical value c and
the absolute minimum occurs at the endpoint a. These results suggest the following
procedure:

Procedure to Find Absolute Extrema for a Function f That Is Continuous
on Œa; b�

Step 1. Find the critical values of f.
Step 2. Evaluate f.x/ at the endpoints a and b and at the critical values in .a; b/.

Step 3. The maximum value of f is the greatest of the values found in step 2. The
minimum value of f is the least of the values found in step 2.

a c d b

Endpoint Critical values Endpoint

x

f (c)

f (a)

y

y = f (x)

Absolute minimum, f (a)

Absolute
maximum, f (c)

FIGURE 13.24 Absolute extrema.
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EXAMPLE 1 Finding Extreme Values on a Closed Interval

Find absolute extrema for f.x/ D x2 � 4xC 5 over the closed interval [1, 4].

Solution: Since f is continuous on [1, 4], the foregoing procedure applies.

Step 1. To find the critical values of f, we first find f 0:

f 0.x/ D 2x � 4 D 2.x � 2/

This gives the critical value x D 2.
5

2

1

1 2 4

Absolute
minimum, f (2)

x

Absolute
maximum, f (4)

y = x2 
- 4x + 5, 1 … x … 4

y

FIGURE 13.25 Extreme values for
Example 1.

Step 2. Evaluating f.x/ at the endpoints 1 and 4 and at the critical value 2, we have

f.1/ D 2
f.4/ D 5 values of f at endpoints

and

f.2/ D 1 value of f at critical value 2 in .1; 4/

Step 3. From the function values in Step 2, we conclude that the maximum is f.4/ D 5
and the minimum is f.2/ D 1. (See Figure 13.25.)

Now Work Problem 1 G

PROBLEMS 13.2
In Problems 1–14, find the absolute extrema of the given function
on the given interval.

1. f.x/ D x2 � 2xC 3, Œ0; 3�

2. f.x/ D �3x2 C 12xC 1, Œ1; 3�

3. f.x/ D 1
3x

3 C
1
2x

2 � 2xC 1, Œ�1; 0�

4. f.x/ D 1
4x

4 �
3
2x

2, Œ0; 1�

5. f.x/ D x3 � 5x2 � 8xC 50, Œ0; 5�

6. f.x/ D x2=3, Œ�8; 8�

7. f.x/ D .1=6/x6 � .3=4/x4 � 2x2, Œ�1; 1�

8. f.x/ D 7
3x

3 C 2x2 � 3xC 1, Œ0; 3�

9. f.x/ D 3x4 � x6, Œ�1; 2�

10. f.x/ D x4 � 8x3 C 22x2 � 24xC 2, Œ0; 4�

11. f.x/ D x4 � 9x2 C 2, Œ�1; 3�

12. f.x/ D
x

x2 � 1
, Œ2; 3�

13. f.x/ D .x � 1/2=3, Œ�26; 28�

14. f.x/ D 0:2x3 � 3:6x2 C 2xC 1, Œ�1; 2�

15. Consider the function

f.x/ D x4 C 8x3 C 21x2 C 20xC 9

over the interval Œ�4; 9�.

(a) Determine the value(s) (rounded to two decimal places) of x
at which f attains a minimum value.

(b) What is the minimum value (rounded to two decimal places)
of f?

(c) Determine the value(s) of x at which f attains a maximum
value.

(d) What is the maximum value of f?

Objective 13.3 Concavity
To test a function for concavity and
inflection points. To sketch curves with
the aid of the information obtained
from both first and second derivatives.

The first derivative provides a lot of information for sketching curves. It is used to
determine where a function is increasing, is decreasing, has relative maxima, and has
relative minima. However, to be sure we know the true shape of a curve, we may need
more information. For example, consider the curve y D f.x/ D x2. Since f 0.x/ D 2x,
x D 0 is a critical value. If x < 0, then f 0.x/ < 0, and f is decreasing; if x > 0,
then f 0.x/ > 0, and f is increasing. Thus, there is a relative minimum at x D 0. In
Figure 13.26, both curves meet the preceding conditions. But which one truly describes
the curve y D x2? This question will be settled easily by using the second derivative
and the notion of concavity.
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x

y

(a)

x

y

(b)

FIGURE 13.26 Two functions with f 0.x/ < 0 for x < 0 and f 0.x/ > 0 for x > 0.

y

x

(a)

y

x

(b)

y

x

(c)

Slope
increasing Slope

increasing

y = f (x)

y = f (x) y = f (x)

Slope
increasing

FIGURE 13.27 Each curve is concave up.

In Figure 13.27, note that each curve y D f.x/ “bends” (that is opens) upward.
This means that if tangent lines are drawn to each curve, the curves lie above them.
Moreover, the slopes of the tangent lines increase in value as x increases: In part (a),
the slopes go from small positive values to larger values; in part (b), they are negative
and approaching zero (and thus increasing); in part (c), they pass from negative values
to positive values. Since f 0.x/ gives the slope at a point, an increasing slope means that
f 0 must be an increasing function. To describe this property, each curve in Figure 13.27
is said to be concave up.

In Figure 13.28, it can be seen that each curve lies below the tangent lines and
the curves are bending downward. As x increases, the slopes of the tangent lines are
decreasing. Thus, f 0 must be a decreasing function here, and we say that f is concave
down.

x

(a)

x

(b)

y y y

x

(c)

Slope
decreasing

Slope
decreasing

Slope
decreasingy = f (x)

y = f (x) y = f (x)

FIGURE 13.28 Each curve is concave down.

Definition
Let f be differentiable on the interval .a; b/. Then f is said to be concave up
[concave down] on .a; b/ if f 0 is increasing [decreasing] on .a; b/.

Concavity relates to whether f 0, not f,
is increasing or decreasing. In
Figure 13.27(b), note that f is concave
up and decreasing; however, in
Figure 13.28(a), f is concave down
and decreasing.

Remember: If f is concave up on an interval, then geometrically its graph is bend-
ing upward there. If f is concave down, then its graph is bending downward.

Since f 0 is increasing when its derivative f 00.x/ is positive, and f 0 is decreasing
when f 00.x/ is negative, we can state the following rule:
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Rule 1 Criteria for Concavity
Let f 0 be differentiable on the interval .a; b/. If f 00.x/ > 0 for all x in .a; b/, then f
is concave up on .a; b/. If f 00.x/ < 0 for all x in .a; b/, then f is concave down on
.a; b/.

A function f is also said to be concave up at a point c if there exists an open interval
around c on which f is concave up. In fact, for the functions that we will consider, if
f 00.c/ > 0, then f is concave up at c. Similarly, f is concave down at c if f 00.c/ < 0.

EXAMPLE 1 Testing for Concavity

Determine where the given function is concave up and where it is concave down.

a. y D f.x/ D .x � 1/3 C 1.

Solution: To apply Rule 1, we must examine the signs of y00. Now, y0 D 3.x� 1/2, so

y00
D 6.x � 1/

Thus, f is concave up when 6.x � 1/ > 0; that is, when x > 1. And f is concave down
when 6.x� 1/ < 0; that is, when x < 1. We now use a sign chart for f 00 (together with
an interpretation line for f) to organize our findings. (See Figure 13.29.)

1

1

Concave
down Concave

up

x

y

y = f (x) = (x - 1)3
 + 1

f ¿(x)

x - 1

f(x)

- +

+-

1-q q

0

0

FIGURE 13.29 Sign chart for f 00 and concavity for f.x/ D .x � 1/3 C 1.

b. y D x2.

Solution: We have y0 D 2x and y00 D 2. Because y00 is always positive, the graph of
y D x2 must always be concave up, as in Figure 13.26(a). The graph cannot appear as
in Figure 13.26(b), for that curve is sometimes concave down.

Now Work Problem 1 G

A point on a graph where concavity changes from concave down to concave up,
or vice versa, such as .1; 1/ in Figure 13.29, is called an inflection point, equivalently
a point of inflection. Around such a point, the sign of f 00.x/ goes from � to C or from
C to �. More precisely, we have the following definition:

Definition
A function f has an inflection point at a if and only if f is continuous at a and f
changes concavity at a.

The definition of an inflection point
implies that a is in the domain of f.

To test a function for concavity and inflection points, first find the values of xwhere
either f 00.x/ D 0 or f 00.x/ is not defined. These values of x determine intervals. On each
interval, determine whether f 00.x/ > 0 (f is concave up) or f 00.x/ < 0 (f is concave
down). If concavity changes around one of these x-values and f is continuous there,
then f has an inflection point at this x-value. The continuity requirement implies that
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the x-value must be in the domain of the function. In brief, a candidate for an inflection
point must satisfy two conditions:

1. f 00 must be 0 or fail to exist at that point.
2. f must be continuous at that point.

f–(x) 7 0
f concave up

y

x

In!ection point

f–(x) 6 0
f concave down

f (x) = x1/3

FIGURE 13.30 Inflection point for f.x/ D x1=3.

The candidate will be an inflection point if concavity changes around it. For example,

if f.x/ D x1=3, then f 0.x/ D 1
3x

�2=3 and

f 00.x/ D �
2
9
x�5=3

D �
2

9x5=3

Because f 00 does not exist at 0, but f is continuous at 0, there is a candidate for an
inflection point at 0. If x > 0, then f 00.x/ < 0, so f is concave down for x > 0; if x < 0,
then f 00.x/ > 0, so f is concave up for x < 0. Because concavity changes at 0, there is
an inflection point there. (See Figure 13.30.)

EXAMPLE 2 Concavity and Inflection Points

Test y D 6x4 � 8x3 C 1 for concavity and inflection points.

Solution: We have

y0
D 24x3 � 24x2

y00
D 72x2 � 48x D 24x.3x � 2/

-

0-q q

x

3x - 2

y–

y

2/3

- -

+

-

+

+

++ 0

0

0

0

FIGURE 13.31 Sign chart of y00 D 24x.3x � 2/ for y D 6x4 � 8x3 C 1.

To find where y00 D 0, we set each factor in y00 equal to 0. This gives x D 0, 23 . We also

note that y00 is never undefined. Thus, there are three intervals to consider, as recorded

on the top of the sign chart in Figure 13.31. Since y is continuous at 0 and 2
3 , these

points are candidates for inflection points. Having completed the sign chart, we see

that concavity changes at 0 and at 23 . Thus, these candidates are indeed inflection points.

(See Figure 13.32.) In summary, the curve is concave up on .�1; 0/ and on . 23 ;1/

and is concave down on .0; 23 /. Inflection points occur at 0 and at
2
3 . These points are

.0; y.0// D .0; 1/ and . 23 ; y.
2
3 // D .

2
3 ;�

5
27 /.

2

1

5

In ection
points

y

x

y = 6x4 - 8x3 + 1

Concave
up

Concave
down

Concave
up

-

27

3

FIGURE 13.32 Graph of
y D 6x4 � 8x3 C 1.

Now Work Problem 13 G
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As we did in the analysis of increasing and decreasing, so we must in concavity
analysis consider also those points a that are not in the domain of f but that are near
points in the domain of f. The next example will illustrate.

f–(x)

f(x)

- +

+-

0-q q

x
3

1

FIGURE 13.33 Sign chart for f 00.x/.

Concave
up

Concave
down

y

x

y = 1
x

FIGURE 13.34 Graph of y D
1
x
.

EXAMPLE 3 A Change in Concavity with No Inflection Point

Discuss concavity and find all inflection points for f.x/ D
1
x
.

Solution: Since f.x/ D x�1 for x ¤ 0,

f 0.x/ D �x�2 for x ¤ 0

f 00.x/ D 2x�3
D

2
x3

for x ¤ 0

We see that f 00.x/ is never 0 but it is not defined when x D 0. Since f is not continuous at
0, we conclude that 0 is not a candidate for an inflection point. Thus, the given function
has no inflection point. However, 0 must be considered in an analysis of concavity. See
the sign chart in Figure 13.33; note that we have a thick vertical line at 0 to indicate
that 0 is not in the domain of f and cannot correspond to an inflection point. If x > 0,
then f 00.x/ > 0; if x < 0, then f 00.x/ < 0. Hence, f is concave up on .0;1/ and concave
down on .�1; 0/. (See Figure 13.34.) Although concavity changes around x D 0,
there is no inflection point there because f is not continuous at 0 (nor is it even defined
there).

Now Work Problem 23 G

Curve Sketching

EXAMPLE 4 Curve Sketching

Sketch the graph of y D 2x3 � 9x2 C 12x.

Solution:
Intercepts If x D 0, then y D 0. Setting y D 0 gives 0 D x.2x2 � 9xC 12/. Clearly,
x D 0 is a solution, and using the quadratic formula on 2x2 � 9x C 12 D 0 gives no
real roots. Thus, the only intercept is .0; 0/. In fact, since 2x2 � 9x C 12 is a contin-
uous function whose value at 0 is 2 � 02 � 9 � 0 C 12 D 12 > 0, we conclude that
2x2 � 9xC 12 > 0 for all x, which gives the sign chart in Figure 13.36 for y.

A candidate for an inflection point may
not necessarily be an inflection point. For
example, if f.x/ D x4, then f 00.x/ D 12x2

and f 00.0/ D 0. But f 00.x/ > 0 both when
x < 0 and when x > 0. Thus, concavity
does not change, and there are no
inflection points. (See Figure 13.35.)

x

y

y = f (x) = x4

FIGURE 13.35 Graph of
f.x/ D x4.

Note that the sign chart for y itself tells us the graph of y D 2x3 � 9x2 C 12x is
confined to the third and first quadrants of the xy-plane.

Symmetry None.

Maxima and Minima We have

y0
D 6x2 � 18xC 12 D 6.x2 � 3xC 2/ D 6.x � 1/.x � 2/

The critical values are x D 1 and x D 2, so these and the factors x � 1 and x � 2
determine the sign chart of y0 (Figure 13.37).

2x
2
 - 9x + 12

x

y

-

-

+

+

+

+

0-q q

0

0

FIGURE 13.36 Sign chart for y D 2x3 � 9x2C 12x.

-

1-q q

x - 1

x - 2

y¿

y

2

- -

+

-

+

+

++ 0

-

-

0

0

0

FIGURE 13.37 Sign chart for y0 D 6.x � 1/.x � 2/.
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y–

2x - 3

y

- +

+-

0

0

3/2-q q

FIGURE 13.38 Sign chart for y00 D 6.2x � 3/.

From the sign chart for y0 we see that there is a relative maximum at 1 and a relative
minimum at 2. Note, too, that the bottom line of Figure 13.37, together with that of
Figure 13.36, comes close to determining a precise graph of y D 2x3 � 9x2 C 12x.
Of course, it will help to know the relative maximum y.1/ D 5, which occurs at 1, and
the relative minimum y.2/ D 4, which occurs at 2, so that in addition to the intercept
.0; 0/ we will actually plot also .1; 5/ and .2; 4/.

Concavity

y00
D 12x � 18 D 6.2x � 3/

Setting y00 D 0 gives a possible inflection point at x D 3
2 , from which we construct the

simple sign chart for y00 in Figure 13.38.

Since concavity changes at x D 3
2 , at which point f is certainly continuous, there

is an inflection point at 3
2 .

Discussion We know the coordinates of three of the important points on the graph.
The only other important point from our perspective is the inflection point, and since
y.3=2/ D 2.3=2/3 � 9.3=2/2 C 12.3=2/ D 9=2 the inflection point is .3=2; 9=2/.

We plot the four points noted above and observe from all three sign charts jointly
that the curve increases through the third quadrant and passes through .0; 0/, all the
while concave down until a relative maximum is attained at .1; 5/. The curve then falls
until it reaches a relative minimum at .2; 4/. However, along the way the concavity
changes at .3=2; 9=2/ from concave down to concave up and remains so for the rest
of the curve. After .2; 4/ the curve increases through the first quadrant. The curve is
shown in Figure 13.39.

x
21

4

5

y

y = 2x
3
 - 9x

2
 + 12x

3

2

FIGURE 13.39 Graph of
y D 2x3 � 9x2 C 12x.

Now Work Problem 39 G

Suppose that we need to find the inflection points for

f.x/ D
1
20

x5 �
17
16

x4 C
273
32

x3 �
4225
128

x2 C
750
4

The second derivative of f is given by

f 00.x/ D x3 �
51
4
x2 C

819
16

x �
4225
64

8

-20

-2

20

FIGURE 13.40 Graph of f 00; roots of
f 00 D 0 are approximately 3.25 and 6.25.

10

300

-300

-5

FIGURE 13.41 Graph of f; inflection
point at x D 6:25, but not at x D 3:25.

Here the roots of f 00 D 0 are not obvious. Thus, we will graph f 00. (See Figure 13.40.)
We find that the roots of f 00 D 0 are approximately 3:25 and 6:25. Around x D 6:25,
f 00.x/ goes from negative to positive values. Therefore, at x D 6:25, there is an inflection
point. Around x D 3:25, f 00.x/ does not change sign, so no inflection point exists at
x D 3:25. Comparing our results with the graph of f in Figure 13.41, we see that
everything checks out.
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PROBLEMS 13.3
In Problems 1–6, a function and its second derivative are given.
Determine the concavity of f and find x-values where points of
inflection occur.

1. f.x/ D x4 � 3x3 � 6x2 C 6xC 1; f 00.x/ D 6.2xC 1/.x � 2/

2. f.x/ D
x5

20
C

x4

4
� 2x2; f 00.x/ D .x � 1/.xC 2/2

3. f.x/ D
x2 C 3xC 1
x2 C 2xC 1

; f 00.x/ D
2x � 4
.xC 1/4

4. f.x/ D
x2

.x � 1/2
; f 00.x/ D

2.2xC 1/
.x � 1/4

5. f.x/ D
x2 C 1
x2 � 2

; f 00.x/ D
6.3x2 C 2/
.x2 � 2/3

6. f.x/ D x
p
a2 � x2; f 00.x/ D

x.2x2 � 3a2/

.a2 � x2/3=2

In Problems 7–34, determine concavity and the x-values where
points of inflection occur. Do not sketch the graphs.

7. y D �2x2 C 4x 8. y D 4x2 � 375xC 947

9. y D 4x3 C 12x2 � 12x 10. y D x3 � 6x2 C 9xC 1

11. y D ax3 C bx2 C cxC d 12. y D x4 � 8x2 � 6

13. y D x5 � 10x4 C 110
3 x3 � 60x2

14. y D �
x4

4
C

9x2

2
C 2x

15. y D 2x1=5 16. y D
a
x3

17. y D
x4

2
C

19x3

6
�
7x2

2
C xC 5

18. y D
2
4
x4 C

11
6
x3 C

3
2
x2 C

7
5
xC

3
5

19. y D
1
20

x5 �
1
4
x4 C

1
6
x3 �

1
2
x �

2
3

20. y D
1
10

x5 � 3x3 C 17xC 43

21. y D
1
30

x6 �
7
12

x4 C 6x2 C 5x � 4

22. y D x6 � 3x4 23. y D
x � 1
xC 1

24. y D 1 �
1
x2 25. y D

x2

x2 C 1

26. y D
ax2

xC b
27. y D

21xC 40
6.xC 3/2

28. y D .x2 � 12/2 29. y D 5ex

30. y D ex � e�x 31. y D axex

32. y D xex
2

33. y D ln x 34. y D
x2 C 1
3ex

In Problems 35–62, determine intervals on which the function
is increasing, decreasing, concave up, and concave down; relative
maxima and minima; inflection points; symmetry; and those inter-
cepts that can be obtained conveniently. Then sketch the graph.

35. y D x2 � x � 6 36. y D x2 C a for a > 0

37. y D 5x � 2x2 38. y D �1 � x2 C 2x

39. y D x3 � 9x2 C 24x � 19 40. y D x3 � 25x2

41. y D
x3

3
� 5x 42. y D x3 � 6x2 C 9x

43. y D x3 C 3x2 C 3xC 1 44. y D 2x3 C
5
2
x2 C 2x

45. y D 4x3 � 3x4 46. y D �x3 C 8x2 � 5xC 3

47. y D �2C 12x � x3 48. y D �.3xC 2/3

49. y D 2x3 � 6x2 C 6x � 2 50. y D
x5

100
�

x4

20

51. y D 16x � x5 52. y D x2.x � 1/2

53. y D 6x4 � 8x3 C 3 54. y D 3x5 � 5x3

55. y D 4x2 � x4 56. y D x2ex

57. y D x1=3.x � 8/ 58. y D .xC 1/2.x � 2/2

59. y D 4x1=3 C x4=3 60. y D .xC 1/
p
xC 4

61. y D 2x2=3 � x 62. y D 5x2=3 � x5=3

63. Sketch the graph of a continuous function f such that
f.0/ D 0 D f.3/, f 0.1/ D 0 D f 0.3/, f 00.x/ < 0 for x < 2, and
f 00.x/ > 0 for x > 2.

64. Sketch the graph of a continuous function f such that
f.4/ D 4, f 0.4/ D 0, f 00.x/ < 0 for x < 4, and f 00.x/ > 0 for
x > 4.

65. Sketch the graph of a continuous function f such that
f.1/ D 1, f 0.1/ D 0, and f 00.x/ < 0 for all x.

66. Sketch the graph of a continuous function f such that
f.1/ D 1, both f 0.x/ < 0 and f 00.x/ < 0 for x < 1, and both
f.x/ > 0 and f 00.x/ < 0 for x > 1.

67. Demand Equation Show that the graph of the demand

equation p D
100
qC 2

is decreasing and concave up for q > 0.

68. Average Cost For the cost function

c D q2 C 3qC 2

show that the graph of the average-cost function c is concave up
for all q > 0.



Haeussler-50501 M14_HAEU1107_14_SE_C13 November 27, 2017 15:7

590 Chapter 13 Curve Sketching

69. Species of Plants The number of species of plants on a
plot may depend on the size of the plot. For example, in
Figure 13.42, we see that on 1-m2 plots there are three species
(A, B, and C on the left plot, A, B, and D on the right plot), and
on a 2-m2 plot there are four species (A, B, C, and D).

1 sq meter 1 sq meter

2 sq meters

A

B

C

A

B

D

FIGURE 13.42

In a study of rooted plants in a certain geographic region,6 it was
determined that the average number of species, S, occurring on
plots of size A (in square meters) is given by

S D f.A/ D 12 4
p
A 0 � A � 625

Sketch the graph of f. (Note: Your graph should be rising and
concave down. Thus, the number of species is increasing with
respect to area, but at a decreasing rate.)

70. Inferior Good In a discussion of an inferior good, Persky7

considers a function of the form

g.x/ D e.U0=A/e�x2=.2A/

where x is a quantity of a good, U0 is a constant that represents
utility, and A is a positive constant. Persky claims that the graph of
g is concave down for x <

p
A and concave up for x >

p
A.

Verify this.

71. Psychology In a psychological experiment involving
conditioned response,8 subjects listened to four tones, denoted 0,
1, 2, and 3. Initially, the subjects were conditioned to tone 0 by
receiving a shock whenever this tone was heard. Later, when each
of the four tones (stimuli) was heard without shocks, the subjects’
responses were recorded by means of a tracking device that
measures galvanic skin reaction. The average response to each
stimulus (without shock) was determined, and the results were
plotted on a coordinate plane where the x- and y-axes represent
the stimuli (0, 1, 2, 3) and the average galvanic responses,
respectively. It was determined that the points fit a curve that is
approximated by the graph of

y D 12:5C 5:8.0:42/x

Show that this function is decreasing and concave up.

72. Entomology In a study of the effects of food deprivation
on hunger,9 an insect was fed until its appetite was completely
satisfied. Then it was deprived of food for t hours (the deprivation
period). At the end of this period, the insect was re-fed until its
appetite was again completely satisfied. The weight H (in grams)
of the food that was consumed at this time was statistically found
to be a function of t, where

H D 1:00Œ1 � e�.0:0464tC0:0670/�

Here H is a measure of hunger. Show that H is increasing with
respect to t and is concave down.
73. Insect Dispersal In an experiment on the dispersal of a
particular insect,10 a large number of insects are placed at a release
point in an open field. Surrounding this point are traps that are
placed in a concentric circular arrangement at a distance of 1 m,
2 m, 3 m, and so on from the release point. Twenty-four hours
after the insects are released, the number of insects in each trap is
counted. It is determined that at a distance of r meters from the
release point, the average number of insects contained in a trap is

n D f.r/ D 0:1 ln.r/C
7
r
� 0:8 1 � r � 10

(a) Show that the graph of f is always falling and concave up.
(b) Sketch the graph of f. (c) When r D 5, at what rate is the
average number of insects in a trap decreasing with respect to
distance?

74. Graph y D �0:35x3C 4:1x2C 8:3x� 7:4, and from the graph
determine the number of (a) relative maximum points, (b) relative
minimum points, and (c) inflection points.

75. Graph y D x5.x � 2:3/, and from the graph determine the
number of inflection points. Now, prove that for any a ¤ 0, the
curve y D x5.x � a/ has two points of inflection.

76. Graph y D xe�x and determine the number of inflection
points, first using a graphing calculator and then using the
techniques of this chapter. If a demand equation has the form
q D q.p/ D Qe�Rp for constants Q and R, relate the graph of the
resulting revenue function to that of the function graphed above,
by taking Q D 1 D R.

77. Graph the curve y D x3 � 2x2 C xC 3, and also graph the
tangent line to the curve at x D 2. Around x D 2, does the curve
lie above or below the tangent line? From your observation
determine the concavity at x D 2.

78. Let f be a function for which both f 0.x/ and f 00.x/ exist.
Suppose that f 0 has a a relative minimum at a. Show that f
changes its direction of bending at a. This means that the
concavity of f changes at x D a which means that the direction
of bending of the graph of f changes at x D a.

79. If f.x/ D x6 C 3x5 � 4x4 C 2x2 C 1, find the x-values
(rounded to two decimal places) of the inflection points of f.

80. If f.x/ D
xC 1
x2 C 1

, find the x-values (rounded to two decimal

places) of the inflection points of f.

6Adapted from R. W. Poole, An Introduction to Quantitative Ecology (New
York: McGraw-Hill Book Company, 1974).
7A. L. Persky, “An Inferior Good and a Novel Indifference Map,” The American
Economist XXIX, no. 1 (1985), 67–69.
8Adapted from C. I. Hovland, “The Generalization of Conditioned Responses:
I. The Sensory Generalization of Conditioned Responses with Varying
Frequencies of Tone,” Journal of General Psychology, 17 (1937), 125–48.

9C. S. Holling, “The Functional Response of Invertebrate Predators to Prey
Density,”Memoirs of the Entomological Society of Canada, no. 48 (1966).
10Adapted from Poole, op. cit.
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Objective 13.4 The Second-Derivative Test
To locate relative extrema by applying
the second-derivative test.

The second derivative can be used to test certain critical values for relative extrema.
Observe in Figure 13.43 that at a there is a horizontal tangent; that is, f 0.a/ D 0.
Furthermore, around a the function is concave up (that is, f 00.a/ > 0). This leads us to
conclude that there is a relative minimum at a. On the other hand, around b the function
is concave down (that is, f 00.b/ < 0). Because the tangent line is horizontal at b, we
conclude that a relative maximum exists there. This technique of examining the second
derivative at points where the first derivative is 0 is called the second-derivative test
for relative extrema.

a b

y Concave up and
relative minimum Concave down and

relative maximum

x

y = f(x)

FIGURE 13.43 Relating concavity to
relative extrema.

Second-Derivative Test for Relative Extrema
Suppose f 0.a/ D 0.

If f 00.a/ < 0, then f has a relative maximum at a.

If f 00.a/ > 0, then f has a relative minimum at a.

We want to emphasize that the second-derivative test does not apply when
f 00.a/ D 0. If both f 0.a/ D 0 and f 00.a/ D 0, then there may be a relative maxi-
mum, a relative minimum, or neither at a. In such cases, the first-derivative test should
be used to analyze what is happening at a. (Also, the second-derivative test does not
apply when f 0.a/ does not exist.)

EXAMPLE 1 Second-Derivative Test

Test the following for relative maxima and minima. Use the second-derivative test,
if possible.

a. y D 18x � 2
3x

3.

Solution:

y0
D 18 � 2x2 D 2.9 � x2/ D 2.3C x/.3 � x/

y00
D �4x

Solving y0 D 0 gives the critical values x D ˙3.

If x D 3; then y00
D �4.3/ D �12 < 0:

There is a relative maximum when x D 3.

If x D �3; then y00
D �4.�3/ D 12 > 0:

There is a relative minimum when x D �3. (Refer to Figure 13.4.)
Although the second-derivative test can
be very useful, do not depend entirely on
it. Not only may the test fail to apply, but
also it may be awkward to find the
second derivative.

b. y D 6x4 � 8x3 C 1.

Solution:

y0
D 24x3 � 24x2 D 24x2.x � 1/

y00
D 72x2 � 48x

Solving y0 D 0 gives the critical values x D 0, 1. We see that

if x D 0; then y00
D 0
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and

if x D 1; then y00 > 0

By the second-derivative test, there is a relative minimum when x D 1. We cannot
apply the test when x D 0 because y00 D 0 there. To analyze what is happening at 0,
we turn to the first-derivative test:

If x < 0; then y0 < 0:

If 0 < x < 1; then y0 < 0:

Thus, no maximum or minimum exists when x D 0. (Refer to Figure 13.35.)

Now Work Problem 5 Gx

y

Relative and
absolute extremum
when x = 0

y = x2

FIGURE 13.44 Exactly one relative
extremum implies an absolute extremum.

If a continuous function has exactly one relative extremum on an interval, it can be
shown that the relative extremummust also be an absolute extremum on the interval. To
illustrate, in Figure 13.44 the function y D x2 has a relative minimum when x D 0, and
there are no other relative extrema. Since y D x2 is continuous, this relative minimum
is also an absolute minimum for the function.

EXAMPLE 2 Absolute Extrema

If y D f.x/ D x3�3x2�9xC5, determine when absolute extrema occur on the interval
.0;1/.

Solution: We have

f 0.x/ D 3x2 � 6x � 9 D 3.x2 � 2x � 3/

D 3.xC 1/.x � 3/

The only critical value on the interval .0;1/ is 3. Applying the second-derivative test
at this point gives

f 00.x/ D 6x � 6

f 00.3/ D 6.3/ � 6 D 12 > 0

Thus, there is a relative minimum at 3. Since this is the only relative extremum on
.0;1/ and f is continuous there, we conclude by our previous discussion that there is
an absolute minimum value at 3; this value is f.3/ D �22. (See Figure 13.45.)

5

-22

3
x

y

y = x
3
 - 3x

2
 - 9x + 5

FIGURE 13.45 On .0;1/, there is
an absolute minimum at 3.

Now Work Problem 3 G

PROBLEMS 13.4
In Problems 1–14, test for relative maxima and minima. Use the
second-derivative test, if possible. In Problems 1–4, state whether
the relative extrema are also absolute extrema.

1. y D x2 � 5xC 6 2. y D 3x2 C 12xC 14

3. y D �4x2 C 2x � 8 4. y D �5x2 C 11x � 7

5. y D 1
3x

3 C 2x2 � 5xC 1 6. y D x3 � 12xC 1

7. y D 2x3 � 3x2 � 36xC 17 8. y D x4 � 2x2 C 4

9. y D 3C 5x4 10. y D �2x7

11. y D 81x5 � 5x 12. y D 15x3 C x2 � 15xC 2

13. y D .x2 C 7xC 10/2 14. y D 2x3 � 9x2 � 60xC 42
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Objective 13.5 Asymptotes
To determine horizontal and vertical
asymptotes for a curve and to sketch
the graphs of functions having
asymptotes.

Vertical Asymptotes
In this section, we conclude our discussion of curve-sketching techniques by investi-
gating functions having asymptotes. An asymptote is a line that a curve approaches
arbitrarily closely. For example, in each part of Figure 13.46, the dashed line x D a
is an asymptote. But to be precise about it, we need to make use of infinite limits.
In Figure 13.46(a), notice that as x! aC, f.x/ becomes positively infinite:

lim
x!aC

f.x/ D1

In Figure 13.46(b), as x! aC, f.x/ becomes negatively infinite:

lim
x!aC

f.x/ D �1

In Figures 13.46(c) and (d), we have

lim
x!a�

f.x/ D1 and lim
x!a�

f.x/ D �1

respectively.

f(x) f(x) f(x) f(x)

(d)(c)(b)(a)

x = a

x = a x = a x = a

x x x x
aaaa

FIGURE 13.46 Vertical asymptotes x D a.

Loosely speaking, we can say that each graph in Figure 13.46 “blows up” around
the dashed vertical line x D a, in the sense that a one-sided limit of f.x/ at a is either
1 or �1. The line x D a is called a vertical asymptote for the graph. A vertical
asymptote is not part of the graph but is a useful aid in sketching it because part of
the graph approaches the asymptote. Because of the “explosion” around x D a, the
function is not continuous at a.

Definition
The line x D a is a vertical asymptote for the graph of the function f if and only if
at least one of the following is true:

lim
x!aC

f.x/ D ˙1

or

lim
x!a�

f.x/ D ˙1

To determine vertical asymptotes, we must find values of x around which f.x/
increases or decreases without bound. For a rational function (a quotient of two poly-
nomials) expressed in lowest terms, these x-values are precisely those for which the
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denominator is zero but the numerator is not zero. For example, consider the rational
function

f.x/ D
3x � 5
x � 2

When x is 2, the denominator is 0, but the numerator is not. If x is slightly larger than 2,

To see that the proviso about lowest terms
is necessary, observe that

f.x/ D
3x � 5
x � 2

D
.3x � 5/.x � 2/

.x � 2/2
so that

x D 2 is a vertical asymptote of
.3x � 5/.x � 2/

.x � 2/2
, and here 2 makes both

the denominator and the numerator 0.
then x�2 is both close to 0 and positive, and 3x�5 is close to 1. Thus, .3x�5/=.x�2/
is very large, so

lim
x!2C

3x � 5
x � 2

D1

This limit is sufficient to conclude that the line x D 2 is a vertical asymptote. Because
we are ultimately interested in the behavior of a function around a vertical asymptote,
it is worthwhile to examine what happens to this function as x approaches 2 from the
left. If x is slightly less than 2, then x � 2 is very close to 0 but negative, and 3x � 5 is
close to 1. Hence, .3x � 5/=.x � 2/ is “very negative,” so

lim
x!2�

3x � 5
x � 2

D �1

We conclude that the function increases without bound as x! 2C and decreases with-
out bound as x! 2�. The graph appears in Figure 13.47.

2

3

x

y

3x - 5
y = Vertical

asymptote x - 2

FIGURE 13.47 Graph of y D
3x � 5
x � 2

.

In summary, we have a rule for vertical asymptotes.

Vertical-Asymptote Rule for Rational Functions
Suppose that

f.x/ D
P.x/
Q.x/

where P and Q are polynomial functions and the quotient is in lowest terms. The
line x D a is a vertical asymptote for the graph of f if and only if Q.a/ D 0 and
P.a/ ¤ 0.

It might be thought here that “lowest terms” rules out the possibility of a value a
making both denominator and numerator 0, but consider the rational function
.3x � 5/.x � 2/

.x � 2/
. This rational function is in lowest terms. Herewe cannot divide numer-

ator and denominator by x � 2, to obtain the polynomial 3x � 5, because the domain

of the latter is not equal to the domain of the former. The graph of
.3x � 5/.x � 2/

.x � 2/
is

a straight line with a hole in it and it does not have a vertical asymptote.f (x)

x

1

1 3

x = 3x = 1

FIGURE 13.48 Graph of

f.x/ D
x2 � 4x

x2 � 4xC 3
.

EXAMPLE 1 Finding Vertical Asymptotes

Determine vertical asymptotes for the graph of

f.x/ D
x2 � 4x

x2 � 4xC 3
Solution: Since f is a rational function, the vertical-asymptote rule applies. Writing

f.x/ D
x.x � 4/

.x � 3/.x � 1/
factoring

makes it clear that the denominator is 0 if x is either 3 or 1. Neither of these values
makes the numerator 0. Thus, the lines x D 3 and x D 1 are vertical asymptotes. (See
Figure 13.48.)

Although the vertical-asymptote rule
guarantees that the lines x D 3 and x D 1
are vertical asymptotes, it does not
indicate the precise nature of the
“blow-up” around these lines. A precise
analysis requires the use of one-sided
limits.

Now Work Problem 1 G
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Horizontal and Oblique Asymptotes
A curve y D f.x/may have other kinds of asymptote. In Figure 13.49(a), as x increases
without bound .x!1/, the graph approaches the horizontal line y D b. That is,

lim
x!1

f.x/ D b

In Figure 13.49(b), as x becomes negatively infinite, the graph approaches the horizon-
tal line y D b. That is,

lim
x!�1

f.x/ D b

In each case, the dashed line y D b is called a horizontal asymptote for the graph. It is
a horizontal line around which the graph “settles” either as x!1 or as x! �1.

y = b

x

b

f (x)

(a)

y = b

x

b

f (x)

(b)

FIGURE 13.49 Horizontal asymptotes y D b.

In summary, we have the following definition:

Definition
Let f be a function. The line y D b is a horizontal asymptote for the graph of f if
and only if at least one of the following is true:

lim
x!1

f.x/ D b or lim
x!�1

f.x/ D b

To test for horizontal asymptotes, we must find the limits of f.x/ as x!1 and as
x! �1. To illustrate, we again consider

f.x/ D
3x � 5
x � 2

Since this is a rational function, we can use the procedures of Section 10.2 to find the
limits. Because the dominant term in the numerator is 3x and the dominant term in the
denominator is x, we have

lim
x!1

3x � 5
x � 2

D lim
x!1

3x
x
D lim

x!1
3 D 3

2
x

y

3x - 5
y = 

Horizontal
asymptote

3

x - 2

FIGURE 13.50 Graph of

f.x/ D
3x � 5
x � 2

.

Thus, the line y D 3 is a horizontal asymptote. See Figure 13.50. Also,

lim
x!�1

3x � 5
x � 2

D lim
x!�1

3x
x
D lim

x!�1
3 D 3

Hence, the graph settles down near the horizontal line y D 3 both as x ! 1 and as
x! �1.
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EXAMPLE 2 Finding Horizontal Asymptotes

Find horizontal asymptotes for the graph of

f.x/ D
x2 � 4x

x2 � 4xC 3

Solution: We have

lim
x!1

x2 � 4x
x2 � 4xC 3

D lim
x!1

x2

x2
D lim

x!1
1 D 1

Therefore, the line y D 1 is a horizontal asymptote. The same result is obtained for
x! �1. Refer to Figure 13.48.

Now Work Problem 11 G

Horizontal asymptotes arising from limits such as limt!1 f.t/ D b, where t is
thought of as time, can be important in business applications as expressions of long-
term behavior. For example, in Section 9.3 we discussed steady states that can be used
to determine long-term market shares.

If we rewrite limx!1 f.x/ D b as limx!1. f.x/� b/ D 0, then another possibility
is suggested. For it might be that the long-term behavior of f, while not constant, is
linear. This leads us to the following:

Definition
Let f be a function. The line y D mxC b is a nonvertical asymptote for the graph of
f if and only if at least one of the following is true:

lim
x!1

. f.x/ � .mxC b// D 0 or lim
x!�1

. f.x/ � .mxC b// D 0

Of course, ifm D 0, then we have just repeated the definition of horizontal asymp-
tote. But if m ¤ 0, then y D mx C b is the equation of a nonhorizontal (and non-
vertical) line with slope m that is sometimes described as oblique. Thus to say that
limx!1. f.x/ � .mx C b// D 0 is to say that for large values of x, the graph settles
down near the line y D mxC b, often called an oblique asympote for the graph.

If f.x/ D
P.x/
Q.x/

, where the degree of P is one more than the degree of Q, then long

divison allows us to write
P.x/
Q.x/

D .mxC b/C
R.x/
Q.x/

, where m ¤ 0 and where either

R.x/ is the zero polynomial or the degree of R is strictly less than the degree of Q. In
this case, y D mxC b will be an oblique asymptote for the graph of f. Example 3 will
illustrate.

EXAMPLE 3 Finding an Oblique Asymptote

Find the oblique asymptote for the graph of the rational function

y D f.x/ D
10x2 C 9xC 5

5xC 2

Solution: Since the degree of the numerator is 2, one greater than the degree of the
denominator, we use long division to express

f.x/ D
10x2 C 9xC 5

5xC 2
D 2xC 1C

3
5xC 2
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Thus

lim
x!˙1

. f.x/ � .2xC 1// D lim
x!˙1

3
5xC 2

D 0

which shows that y D 2x C 1 is an oblique asymptote, in fact the only nonvertical

asymptote, as we explain below. On the other hand, it is clear that x D �
2
5
is a vertical

asymptote—and the only one. (See Figure 13.51.)

x

y

y = 2x + 1

x =
-2

5

10x2 + 9x + 5

5x + 2
f (x) =

FIGURE 13.51 Graph of f.x/ D
10x2 C 9xC 5

5xC 2
has an oblique asymptote.

Now Work Problem 35 G

A few remarks about asymptotes are appropriate now. With vertical asymptotes,
we are examining the behavior of a graph around specific x-values. However, with non-
vertical asymptotes we are examining the graph as x becomes unbounded. Although a
graph may have numerous vertical asymptotes, it can have at most two different non-
vertical asymptotes—possibly one for x ! 1 and possibly one for x ! �1. If,
for example, the graph has two horizontal asymptotes, then there can be no oblique
asymptotes.
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From Section 10.2, when the numerator of a rational function has degree greater
than that of the denominator, no limit exists as x!1 or x! �1. From this obser-
vation, we conclude that whenever the degree of the numerator of a rational function
is greater than the degree of the denominator, the graph of the function cannot have
a horizontal asymptote. Similarly, it can be shown that if the degree of the numerator
of a rational function is more than one greater than the degree of the denominator, the
function cannot have an oblique asymptote.

EXAMPLE 4 Finding Horizontal and Vertical Asymptotes

Find vertical and horizontal asymptotes for the graph of the polynomial function

y D f.x/ D x3 C 2x

Solution: We begin with vertical asymptotes. This is a rational function with denomi-
nator 1, which is never zero. By the vertical-asymptote rule, there are no vertical asymp-
totes. Because the degree of the numerator (3) is greater than the degree of the denom-
inator (0), there are no horizontal asymptotes. However, let us examine the behavior of
the graph of f as x!1 and x! �1. We have

lim
x!1

.x3 C 2x/ D lim
x!1

x3 D1

and

lim
x!�1

.x3 C 2x/ D lim
x!�1

x3 D �1

Thus, as x ! 1, the graph must extend indefinitely upward, and as x ! �1, the
graph must extend indefinitely downward. See Figure 13.52.

Now Work Problem 9 G

3
-1

1

y

x

-3
y = f (x)

= x3
 + 2x

FIGURE 13.52 Graph of y D x3 C 2x
has neither horizontal nor vertical
asymptotes.

The results in Example 4 can be generalized to any polynomial function:

A polynomial function of degree greater than 1 has no asymptotes.

EXAMPLE 5 Finding Horizontal and Vertical Asymptotes

Find horizontal and vertical asymptotes for the graph of y D ex � 1.

Solution: Testing for horizontal asymptotes, we let x!1. Then ex increases without
bound, so

lim
x!1

.ex � 1/ D1

Thus, the graph does not settle down as x ! 1. However, as x ! �1, we have
ex ! 0, so

lim
x!�1

.ex � 1/ D lim
x!�1

ex � lim
x!�1

1 D 0 � 1 D �1

Therefore, the line y D �1 is a horizontal asymptote. The graph has no vertical asymp-
totes because ex � 1 neither increases nor decreases without bound around any fixed
value of x. See Figure 13.53.

Now Work Problem 23 G

y

x

y = -1

y = e
x
 -1

-1

FIGURE 13.53 Graph of y D ex � 1
has a horizontal asymptote.

Curve Sketching
In this section we show how to graph a function by making use of all the curve-
sketching tools that we have developed.
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EXAMPLE 6 Curve Sketching

Sketch the graph of y D
1

4 � x2
.

Solution:
Intercepts When x D 0, y D 1

4 . If y D 0, then 0 D 1=.4�x2/, which has no solution.

Thus .0; 14 / is the only intercept. However, the factorization

y D
1

4 � x2
D

1
.2C x/.2 � x/

allows us to construct the following sign chart, Figure 13.54, for y, showing where the
graph lies below the x-axis .�/ and where it lies above the the x-axis .C/.

-

-2-q q

y

2

+ +

+

+

-

+

--

1

2 + x

1

2 - x

FIGURE 13.54 Sign chart for y D
1

4 � x2
.

Symmetry There is symmetry about the y-axis:

y.�x/ D
1

4 � .�x/2
D

1
4 � x2

D y.x/

Since y is a function of x (and not the constant function 0), there can be no symmetry
about the x-axis and, hence, no symmetry about the origin. Since x is not a function of
y (and y is a function of x), there can be no symmetry about y D x either.

Asymptotes From the factorization of y above, we see that x D �2 and x D 2 are
vertical asymptotes. Testing for horizontal asymptotes, we have

lim
x!˙1

1
4 � x2

D lim
x!˙1

1
�x2
D � lim

x!˙1

1
x2
D 0

Thus, y D 0 (the x-axis) is the only nonvertical asymptote.

Maxima and Minima Since y D .4 � x2/�1,

y0
D �1.4 � x2/�2.�2x/ D

2x
.4 � x2/2

We see that y0 is 0 when x D 0 and y0 is undefined when x D ˙2. However, only 0
is a critical value, because y is not defined at ˙2. The sign chart for y0 follows. (See
Figure 13.55.)

-2x

y¿

y

0

+ +

-

-

+

+

+

+

+

+-

-

0

0

1

(4 - x
2
)

2

-2-q q2

FIGURE 13.55 Sign chart for y0 D
2x

.4 � x2/2
.

The sign chart shows clearly that the function is decreasing on .�1;�2/ and
.�2; 0/, increasing on .0; 2/ and .2;1/, and that there is a relative minimum at 0.
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Concavity

y00
D
.4 � x2/2.2/ � .2x/.2/.4 � x2/.�2x/

.4 � x2/4

D
2.4 � x2/..4 � x2/ � .2x/.�2x//

.4 � x2/4
D

2.4C 3x2/
.4 � x2/3

Setting y00 D 0, we get no real roots. However, y00 is undefined when x D ˙2. Although
concavity may change around these values of x, the values cannot correspond to inflec-
tion points because they are not in the domain of the function. There are three intervals
to test for concavity. See the sign chart in Figure 13.56.

The sign chart shows that the graph is concave up on .�2; 2/ and concave down
on .�1;�2/ and on .2;1/.

+

-2-q q

4 + 3x
2

y–

y

2

- +

+

+

-

+

--

¨ ¨´

1

(4 - x
2
)

3

FIGURE 13.56 Concavity analysis.

3
x

2

-1

1

-2

y

Concave up

decreasing

Concave up

increasing

Concave down
increasing

Concave down
decreasing

x 0 1 3

y

1

4 - x2y =

1
4

1
3

1
-

5

FIGURE 13.57 Graph of y D
1

4 � x2
.

Discussion Only one point on the curve, .0; 1=4/, has arisen as a special point that
must be plotted (both because it is an intercept and a local minimum). We might wish
to plot a few more points as in the table in Figure 13.57, but note that any such extra
points are of value only if they are on the same side of the y-axis (because of symmetry).
Taking account of all the information gathered, we obtain the graph in Figure 13.57.

Now Work Problem 31 G

EXAMPLE 7 Curve Sketching

Sketch the graph of y D
4x

x2 C 1
.

Solution:
Intercepts When x D 0, y D 0; when y D 0, x D 0. Thus, .0; 0/ is the only intercept.
Since the denominator of y is always positive, we see that the sign of y is that of x. So
here we dispense with a sign chart for y. From the observations so far it follows that
the graph proceeds from the third quadrant (negative x and negative y) through .0; 0/
to the positive quadrant (positive x and positive y).

Symmetry There is symmetry about the origin:

y.�x/ D
4.�x/

.�x/2 C 1
D
�4x
x2 C 1

D �y.x/

No other symmetry exists.
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Asymptotes The denominator of this rational function is never 0, so there are no ver-
tical asymptotes. Testing for horizontal asymptotes, we have

lim
x!˙1

4x
x2 C 1

D lim
x!˙1

4x
x2
D lim

x!˙1

4
x
D 0

Thus, y D 0 (the x-axis) is a horizontal asymptote and the only nonvertical asymptote.

Maxima and Minima We have

y0
D
.x2 C 1/.4/ � 4x.2x/

.x2 C 1/2
D

4 � 4x2

.x2 C 1/2
D

4.1C x/.1 � x/
.x2 C 1/2

The critical values are x D ˙1, so there are three intervals to consider in the sign chart
for y0. See Figure 13.58.

We see that y is decreasing on .�1;�1/ and on .1;1/, increasing on .�1; 1/,
with relative minimum at �1 and relative maximum at 1. The relative minimum is
.�1; y.�1// D .�1;�2/; the relative maximum is .1; y.1// D .1; 2/.

-

-1-q q

1 + x

1 - x

y¿

1

+

+

+

+

+

+

-

-

+

+

- 0

0

0

0

y

-

-

1

(x
2
 + 1)

2

FIGURE 13.58 Sign chart for y0.

Concavity Since y0 D
4 � 4x2

.x2 C 1/2
,

y00
D
.x2 C 1/2.�8x/ � .4 � 4x2/.2/.x2 C 1/.2x/

.x2 C 1/4

D
8x.x2 C 1/.x2 � 3/

.x2 C 1/4
D

8x.xC
p
3/.x �

p
3/

.x2 C 1/3

Setting y00 D 0, we conclude that the possible points of inflection are when x D ˙
p
3,

and x D 0. There are four intervals to consider in the sign chart. See Figure 13.59.

-x +    3

x

y–

y

0-q q-    3

- -

+

-

+

+

-

+

+

+-

+ + ++

0

+ - +- 00 0

0

0

3

x -    3

1

(x
2 
+ 1)

3

FIGURE 13.59 Concavity analysis for y D
4x

x2 C 1
.

Inflection points occur at x D 0 and at x D ˙
p
3. The inflection points are

.�
p
3; y.
p
3// D .�

p
3;�
p
3/ .0; y.0// D .0; 0/ .

p
3; y.
p
3// D .

p
3;
p
3/
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1

-2

-1

2

y

x

x

y

0 1

20

-1

-2

3

3 -   3

-   3

-   3

3

x
2
 + 1

y =
4x

FIGURE 13.60 Graph of y D
4x

x2 C 1
.

Discussion After consideration of all of the preceding information, the graph of
y D 4x=.x2 C 1/ is given in Figure 13.60, together with a table of important points.

Now Work Problem 39 G

PROBLEMS 13.5
In Problems 1–24, find the vertical asymptotes and the nonvertical
asymptotes for the graphs of the functions. Do not sketch the
graphs.

1. y D
x

x � 1
2. y D

xC 1
x

3. f.x/ D
xC 5
2xC 7

4. y D
2xC 1
2xC 1

5. y D
3
x3

6. y D 1 �
2
x2

7. y D
1

x2 � 1
8. y D

x
x2 � 9

9. y D x2 � 5xC 5 10. y D
x3

x2 � 1

11. f.x/ D
2x2

x2 C x � 6
12. f.x/ D

x3

5

13. y D
15x2 C 31xC 1

x2 � 7
14. y D

2x3 C 1
3x.2x � 1/.4x � 3/

15. y D
3

x � 5
C 7 16. f.x/ D

x2 � 1
2x2 � 9xC 4

17. f.x/ D
3 � x4

x3 C x2
18. y D

5x2 C 7x3 C 9x4

3x2

19. y D
x2 � 3x � 4
1C 4xC 4x2

20. y D
x3 C 1
1 � x3

21. y D
9x2 � 16
2.3xC 4/2

22. y D
2
5
C

2x
12x2 C 5x � 2

23. y D 5ex�3 � 2 24. f.x/ D 12e�x

In Problems 25–46, determine intervals on which the function is
increasing, decreasing, concave up, and concave down; relative
maxima and minima; inflection points; symmetry; vertical and
nonvertical asymptotes; and those intercepts that can be obtained
conveniently. Then sketch the curve.

25. y D
1
x3

26. y D
2

2x � 3

27. y D
x

x � 1 28. y D
50
p
3x

29. y D x2 C
1
x2 30. y D

x2 C xC 1
x � 2

31. y D
1

x2 � 1
32. y D

1
x2 C 1

33. y D
2C x
3 � x

34. y D
1C x
x2

35. y D
x2

x � 1
36. y D

x3 C 1
x

37. y D
9

9x2 � 6x � 8
38. y D

4x2 C 2xC 1
2x2
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39. y D
3xC 1
.3x � 2/2

40. y D
3xC 5

.7xC 11/2

41. y D
x2 � 1
x3

42. y D
3x

.x � 2/2

43. y D 2xC 1C
1

x � 1
44. y D

3x4 C 1
x3

45. y D
1 � x2

x2 � 1
46. y D 3xC 2C

1
3xC 2

47. Sketch the graph of a function f such that f.0/ D 0, there
is a horizontal asymptote y D 1 for x!˙1, there is a vertical
asymptote x D 2, both f 0.x/ < 0 and f 00.x/ < 0 for x < 2, and
both f 0.x/ < 0 and f 00.x/ > 0 for x > 2.

48. Sketch the graph of a function f such that f.0/ D �4 and
f.4/ D �2, there is a horizontal asymptote y D �3 for x!˙1,
there is a vertical asymptote x D 2, both f 0.x/ < 0 and f 00.x/ < 0
for x < 2, and both f 0.x/ < 0 and f 00.x/ > 0 for x > 2.

49. Sketch the graph of a function f such that f.0/ D 0, there
is a horizontal asymptote y D 0 for x!˙1, there are vertical
asymptotes x D �1 and x D 2; f 0.x/ < 0 for x < �1 and
�1 < x < 2, and f 00.x/ < 0 for x > 2.

50. Sketch the graph of a function f such that f.0/ D 0, there are
vertical asymptotes x D �1 and x D 1, there is a horizontal
asymptote y D 0 for x!˙1. f 0.x/ < 0 for x in .�1;�1/, in
.�1; 1/, and in .1;1/. f 00.0/ D 0; f 00.x/ < 0 for x in .�1;�1/
and in .0; 1/; f 00.x/ > 0 for x in .�1; 0/ and in .1;1/.

51. Purchasing Power In discussing the time pattern of
purchasing, Mantell and Sing11 use the curve

y D
x

aC bx
as a mathematical model. Find the asymptotes for their model.

52. Sketch the graphs of y D 6 � 3e�x and y D 6C 3e�x. Show
that they are asymptotic to the same line. What is the equation of
this line?

53. Market for Product For a new product, the yearly number
of thousand packages sold, y, t years after its introduction is
predicted to be given by

y D f.t/ D 250 � 83e�t

Show that y D 250 is a horizontal asymptote for the graph. This
reveals that after the product is established with consumers, the
market tends to be constant.

54. Graph y D
x2 � 2

x3 C 7
2x

2 C 12xC 1
. From the graph, locate any

horizontal or vertical asymptotes.

55. With a graphing utility, graph y D
2x3 � 2x2 C 6x � 1
x3 � 6x2 C 11x � 6

. From

the graph, locate any horizontal or vertical asymptotes.

56. Graph y D
ln.xC 4/

x2 � 8xC 5
in the standard window. The graph

suggests that there are two vertical asymptotes of the form x D k,
where k > 0. Also, it appears that the graph “begins” near x D �4.
As x! �4C; ln.xC 4/! �1 and x2 � 8xC 5! 53. Thus,
limx!4C y D �1. This gives the vertical asymptote x D �4. So,
in reality, there are three vertical asymptotes. Use the zoom
feature to make the asymptote x D �4 apparent from the display.

57. Graph y D
0:34e0:7x

4:2C 0:71e0:7x
, where x > 0. From the graph,

determine an equation of the horizontal asymptote by examining
the y-values as x!1. To confirm this equation algebraically,
find limx!1 y by first dividing both the numerator and
denominator by e0:7x.

Objective 13.6 Applied Maxima and Minima
To model situations involving
maximizing or minimizing a quantity.

By using techniques from this chapter, we can solve problems that involve maximizing
or minimizing a quantity. For example, we might want to maximize profit or minimize
cost. The crucial part is expressing the quantity to be maximized or minimized as a
function of some variable in the problem. Then we differentiate and test the resulting
critical values. For this, the first-derivative test or the second-derivative test can be used,
although it may be obvious from the nature of the problem whether or not a critical
value represents an appropriate answer. Because our interest is in absolutemaxima and
minima, sometimes we must examine endpoints of the domain of the function. Very
often the function used to model the situation of a problem will be the restriction to a
closed interval of a function that has a large natural domain. Such real-world limitations
tend to generate endpoints.

EXAMPLE 1 Minimizing the Cost of a Fence

For insurance purposes, a manufacturer plans to fence in a 10,800-ft2 rectangular stor-

The aim of this example is to set up a cost
function from which cost is minimized.

age area adjacent to a building by using the building as one side of the enclosed area.
The fencing parallel to the building faces a highway and will cost $3 per foot, installed,
whereas the fencing for the other two sides costs $2 per foot, installed. Find the amount

11L. H. Mantell and F. P. Sing, Economics for Business Decisions (New York: McGraw-Hill Book Company,
1972), p. 107.



Haeussler-50501 M14_HAEU1107_14_SE_C13 November 27, 2017 15:7

604 Chapter 13 Curve Sketching

of each type of fence so that the total cost of the fence will be a minimum. What is the
minimum cost?

Solution: As a first step in a problem like this, it is a good idea to draw a diagram that
reflects the situation. In Figure 13.61, we have labeled the length of the side parallel to
the building as x and the lengths of the other two sides as y, where x and y are in feet.

Highway

Building

y y

x

FIGURE 13.61 Fencing problem of
Example 1.

Since we want to minimize cost, our next step is to determine a function that gives
cost. The cost obviously depends on how much fencing is along the highway and how
much is along the other two sides. Along the highway the cost per foot is 3 (dollars),
so the total cost of that fencing is 3x. Similarly, along each of the other two sides, the
cost is 2y. Thus, the total cost of the fencing is given by the cost function

C D 3xC 2yC 2y
that is,

C D 3xC 4y (1)

We need to find the absolute minimum value of C. To do this, we use the techniques
discussed in this chapter; that is, we examine C at critical values (and any endpoints)
in the domain. But in order to differentiate, we need to first express C as a function of
one variable only. Equation (1) gives C as a function of two variables, x and y. We can
accomplish this by first finding a relationship between x and y. From the statement of
the problem, we are told that the storage area, which is xy, must be 10,800:

xy D 10;800 (2)

With this equation, we can express one variable (say, y) in terms of the other (x). Then,
substitution into Equation (1) will give C as a function of one variable only. Solving
Equation (2) for y gives

y D
10;800

x
(3)

Substituting into Equation (1), we have

C D C.x/ D 3xC 4
�
10;800

x

�
C.x/ D 3xC

43;200
x

(4)

From the physical nature of the problem, the domain of C is x > 0.
We now find dC=dx, set it equal to 0, and solve for x. We have

dC
dx
D 3 �

43;200
x2

d
dx
.43;200x�1/ D �43;200x�2

3 �
43;200
x2

D 0

3 D
43;200
x2

from which it follows that

x2 D
43;200

3
D 14;400

x D 120 since x > 0

Thus, 120 is the only critical value, and there are no endpoints to consider. To test this
value, we will use the second-derivative test.

d2C
dx2
D

86;400
x3

When x D 120, d2C=dx2 > 0, so we conclude that x D 120 gives a relative minimum.
However, since 120 is the only critical value on the open interval .0;1/ and C is con-
tinuous on that interval, this relative minimum must also be an absolute minimum.

We are not done yet. The questions posed in the problem must be answered. For
minimum cost, the number of feet of fencing along the highway is 120. When x D 120,
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we have, from Equation (3), y D 10;800=120 D 90. Therefore, the number of feet of
fencing for the other two sides is 2y D 180. It follows that 120 ft of the $3 fencing and
180 ft of the $2 fencing are needed. The minimum cost can be obtained from the cost
function, Equation (4), and is

C.120/ D 3xC
43;200

x

ˇ̌̌̌
xD120

D 3.120/C
43;200
120

D 720

Now Work Problem 3 G

Based on Example 1, the following guide may be helpful in solving an applied
maximum or minimum problem:

Guide for Solving Applied Max--Min Problems

Step 1. When appropriate, draw a diagram that reflects the information in the
problem.

Step 2. Set up an expression for the quantity that you want to maximize or
minimize.

Step 3. Write the expression in step 2 as a function of one variable, and note the
domain of this function. The domain may be implied by the nature of the
problem itself.

Step 4. Find the critical values of the function. After testing each critical value,
determine which one gives the absolute extreme value you are seeking. If
the domain of the function includes endpoints, be sure to examine function
values at the endpoints too.

Step 5. Based on the results of step 4, answer the question(s) posed in the problem.

EXAMPLE 2 Maximizing Revenue

The demand equation for a manufacturer’s product is
This example involves maximizing
revenue when a demand equation is
known. p D

80 � q
4

0 � q � 80

where q is the number of units and p is the price per unit. At what value of q will there
be maximum revenue? What is the maximum revenue?

Solution: Let r represent total revenue, which is the quantity to be maximized. Since

revenue D .price/.quantity/

we have

r D pq D
80 � q
4
� q D

80q � q2

4
D r.q/

where 0 � q � 80. Setting dr=dq D 0, we obtain

dr
dq
D

80 � 2q
4

D 0

80 � 2q D 0

q D 40

Thus, 40 is the only critical value. Now we determine whether this gives a maximum.
Examining the first derivative for 0 � q < 40, we have dr=dq > 0, so r is increasing.
If q > 40, then dr=dq < 0, so r is decreasing. Because to the left of 40 we have r
increasing, and to the right r is decreasing, we conclude that q D 40 gives the absolute
maximum revenue, namely,

r.40/ D .80.40/ � .40/2/=4 D 400

Now Work Problem 7 G
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EXAMPLE 3 Minimizing Average Cost

A manufacturer’s total-cost function is given by
This example involves minimizing
average cost when the cost function is
known. c D c.q/ D

q2

4
C 3qC 400

where c is the total cost of producing q units. At what level of output will average cost
per unit be a minimum? What is this minimum?

Solution: The quantity to be minimized is the average cost Nc. The average-cost
function is

Nc D Nc.q/ D
c
q
D

q2

4
C 3qC 400

q
D

q
4
C 3C

400
q

(5)

Here q must be positive. To minimize Nc, we differentiate:

dNc
dq
D

1
4
�
400
q2
D

q2 � 1600
4q2

To get the critical values, we solve dNc=dq D 0:

q2 � 1600 D 0

.q � 40/.qC 40/ D 0

q D 40 since q > 0

To determine whether this level of output gives a relative minimum, we will use the
second-derivative test. We have

d2 Nc
dq2
D

800
q3

which is positive for q D 40. Thus, Nc has a relativeminimumwhen q D 40.We note that
Nc is continuous for q > 0. Since q D 40 is the only relative extremum, we conclude
that this relative minimum is indeed an absolute minimum. Substituting q D 40 in

Equation (5) gives the minimum average cost Nc.40/ D
40
4
C 3C

400
40
D 23.

Now Work Problem 5 G

EXAMPLE 4 Maximization Applied to Enzymes

An enzyme is a protein that acts as a catalyst for increasing the rate of a chemicalThis example is a biological application
involving maximizing the rate at which
an enzyme is formed. The equation
involved is a literal equation.

reaction that occurs in cells. In a certain reaction, an enzyme is converted to another
enzyme called the product. The product acts as a catalyst for its own formation. The
rate R at which the product is formed (with respect to time) is given by

R D kp.l � p/

where l is the total initial amount of both enzymes, p is the amount of the product
enzyme, and k is a positive constant. For what value of p will R be a maximum?

Solution: We can write R D k.pl � p2/. Setting dR=dp D 0 and solving for p gives

dR
dp
D k.l � 2p/ D 0

p D
l
2

Now, d2R=dp2 D �2k. Since k > 0, the second derivative is always negative. Hence,
p D l=2 gives a relative maximum. Moreover, since R is a continuous function of p,
we conclude that we indeed have an absolute maximum when p D l=2.

G

Calculus can be applied to inventory decisions, as the following example shows.
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EXAMPLE 5 Economic Lot Size

A company annually produces and sells 10,000 units of a product. The 10,000 units are
This example involves determining the
number of units in a production run in
order to minimize certain costs.

produced in several production runs of equal sizes. The number of units in a produc-
tion run is called the lot size. Sales are uniformly distributed throughout the year. The
company wishes to determine the lot size that will minimize total annual setup costs
and carrying costs. This number is referred to as the economic lot size. The produc-
tion cost of each unit is $20, and carrying costs (insurance, interest, storage, etc.) are
estimated to be 10% of the value of the average inventory. Setup costs per production
run are $40. Find the economic lot size.

Solution: Let q be the lot size. Since sales are distributed at a uniform rate, we will
assume that inventory varies uniformly from q to 0 between production runs. Thus, we
take the average inventory to be q=2 units. The production costs are $20 per unit, so
the value of the average inventory is 20.q=2/. Carrying costs are 10% of this value:

0:10.20/
�q
2

�
D q

The number of production runs per year is 10;000=q. Hence, total setup costs are

40
�
10;000

q

�
D

400;000
q

Therefore, the total of the annual carrying costs and setup costs, call it C, is given by

C D qC
400;000

q
q > 0

dC
dq
D 1 �

400;000
q2

D
q2 � 400;000

q2

Setting dC=dq D 0, we get

q2 D 400;000

Since q > 0,

q D
p
400;000 D 200

p
10 � 632:5

To determine whether this value of qminimizes C, we will examine the first derivative.
If 0 < q <

p
400;000, then dC=dq < 0. If q >

p
400;000, then dC=dq > 0. We

conclude that there is an absolute minimum at q D 632:5. The number of production
runs is 10;000=632:5 � 15:8. For practical purposes, there would be 16 lots, each
having the economic lot size of 625 units.

Now Work Problem 29 G

EXAMPLE 6 Maximizing TV Cable Company Revenue

The Vista TV Cable Co. currently has 100,000 subscribers who are each paying a
The aim of this example is to set up a
revenue function from which revenue is
maximized over a closed interval.

monthly rate of $40. A survey reveals that there will be 1000 more subscribers for
each $0.25 decrease in the rate. At what rate will maximum revenue be obtained, and
how many subscribers will there be at this rate?

Solution: Let x be the number of $0.25 decreases. The monthly rate is then 40�0:25x.
We have x � 0 but, because the rate cannot be negative, we also have x � 160. With
x $0.25 decreases, the number of new subscribers is 1000x so that the total number of
subscribers is 100;000C 1000x. We want to maximize the revenue, which is given by

r D .number of subscribers/.rate per subscriber/

D .100;000C 1000x/.40 � 0:25x/

D 1000.100C x/.40 � 0:25x/

r D 1000.4000C 15x � 0:25x2/ for x in Œ0; 160�
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Setting r0 D 0 and solving for x, we have

r0
D 1000.15 � 0:5x/ D 0

x D 30

Since the domain of r is the closed interval [0, 160], the absolute maximum value of r
must occur at x D 30 or at one of the endpoints of the interval. We now compute r at
these three points:

r.0/ D 1000.4000C 15.0/ � 0:25.0/2/ D 4;000;000

r.30/ D 1000.4000C 15.30/ � 0:25.30/2/ D 4;225;000

r.160/ D 1000.4000C 15.160/ � 0:25.160/2/ D 0

Accordingly, the maximum revenue occurs when x D 30. This corresponds to thirty
$0.25 decreases, for a total decrease of $7.50; making the monthly rate $40� $7:50 D
$32:50. The number of subscribers at that rate is 100;000C 30.1000/ D 130;000.

Now Work Problem 19 G

EXAMPLE 7 Maximizing Recipients of Health-Care Benefits

An article in a sociology journal stated that if a particular health-care program for
Here we maximize a function over a
closed interval. the elderly were initiated, then t years after its start, n thousand elderly people would

receive direct benefits, where

n D
t3

3
� 6t2 C 32t 0 � t � 12

For what value of t does the maximum number receive benefits?

Solution: Setting dn=dt D 0, we have

dn
dt
D t2 � 12tC 32 D 0

.t � 4/.t � 8/ D 0

t D 4 or t D 8

Since the domain of n is the closed interval Œ0; 12�, the absolute maximum value of n
must occur at t D 0; 4; 8, or 12:

n.0/ D
03

3
� 6.02/C 32.0/ D 0

n.4/ D
43

3
� 6.42/C 32.4/ D

160
3

n.8/ D
83

3
� 6.82/C 32.8/ D

128
3

n.12/ D
123

3
� 6.122/C 32.12/ D

288
3
D 96

Thus, an absolute maximum occurs when t D 12. A graph of the function is given in
Figure 13.62.

n

t

t
3

3
n =     - 6t

2
 + 32t

96

4 8 12

FIGURE 13.62 Graph of

n D
t3

3
� 6t2 C 32t on Œ0; 12�.

Now Work Problem 15 G

This example illustrates that endpoints
must not be ignored when finding
absolute extrema on a closed interval.

In the next example, we use the word monopolist. Under a situation of monopoly,
there is only one seller of a product for which there are no similar substitutes, and
the seller—that is the monopolist—controls the market. By considering the demand
equation for the product, the monopolist may set the price (or volume of output) so that
maximum profit will be obtained.
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EXAMPLE 8 Profit Maximization for a Monopolist

Suppose that the demand equation for a monopolist’s product is p D 400� 2q and the

This example involves maximizing
profit for a monopolist when the demand
and average-cost functions are known.
In the last part, a tax is imposed on the
monopolist, and a new profit function is
analyzed.

average-cost function is Nc D 0:2qC 4C .400=q/, where q is number of units, and both
p and Nc are expressed in dollars per unit.

a. Determine the level of output at which profit is maximized.
b. Determine the price at which maximum profit occurs.
c. Determine the maximum profit.
d. If, as a regulatory device, the government imposes a tax of $22 per unit on the

monopolist, what is the new price for profit maximization?

Solution: We know that

profit D total revenue � total cost

Since total revenue, r, and total cost, c, are given by

r D pq D 400q � 2q2

and

c D qNc D 0:2q2 C 4qC 400

the profit is

P D r � c D 400q � 2q2 � .0:2q2 C 4qC 400/

so that

P.q/ D 396q � 2:2q2 � 400 for q > 0 (6)

a. To maximize profit, we set dP=dq D 0:

dP
dq
D 396 � 4:4q D 0

q D 90

Now, d2P=dq2 D �4:4 is always negative, so it is negative at the critical value
q D 90. By the second-derivative test, then, there is a relative maximum there.
Since q D 90 is the only critical value on .0;1/, we must have an absolute maxi-
mum at q D 90.

b. The price at which maximum profit occurs is obtained by setting q D 90 in the
demand equation:

p D 400 � 2.90/ D 220

c. The maximum profit is obtained by evaluating P.90/. We have

P.90/ D 396.90/ � 2:2.90/2 � 400 D 17; 420

d. The tax of $22 per unit means that for q units, the total cost increases by 22q. The
new cost function is c1 D 0:2q2 C 4qC 400C 22q, and the new profit is given by

P1 D 400q � 2q2 � .0:2q2 C 4qC 400C 22q/

D 374q � 2:2q2 � 400

Setting dP1=dq D 0 gives

dP1
dq
D 374 � 4:4q D 0

q D 85

Since d2P1=dq2 D �4:4 < 0, we conclude that, to maximize profit, the monopolist
must restrict output to 85 units at the higher price of p1 D 400 � 2.85/ D $230.
Since this price is only $10 more than before, only part of the tax has been shifted
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to the consumer, and the monopolist must bear the cost of the balance. The profit
now is $15,495, which is less than the former profit.

Now Work Problem 13 G

This discussion leads to the economic
principle that when profit is maximum,
marginal revenue is equal to
marginal cost.

We conclude this section by using calculus to develop an important principle in
economics. Suppose p D f.q/ is the demand function for a firm’s product, where p is
price per unit and q is the number of units produced and sold. Then the total revenue
is given by r D qp D qf.q/, which is a function of q. Let the total cost of producing
q units be given by the cost function c D g.q/. Thus, the total profit, which is total
revenue minus total cost, is also a function of q, namely,

P.q/ D r � c D qf.q/ � g.q/

Let us consider the most profitable output for the firm. Ignoring special cases, we know
that profit is maximized when dP=dq D 0 and d2P=dq2 < 0. We have

dP
dq
D

d
dq
.r � c/ D

dr
dq
�

dc
dq

Consequently, dP=dq D 0 when

dr
dq
D

dc
dq

That is, at the level of maximum profit, the slope of the tangent to the total-revenue
curve must equal the slope of the tangent to the total-cost curve (Figure 13.63). But
dr=dq is the marginal revenue MR, and dc=dq is the marginal cost MC. Thus, under
typical conditions, to maximize profit, it is necessary that

MR D MC

For this to indeed correspond to a maximum, it is necessary that d2P=dq2 < 0:

d2P
dq2
D

d2

dq2
.r � c/ D

d2r
dq2
�

d2c
dq2

< 0 equivalently
d2r
dq2

<
d2c
dq2

That is, whenMR D MC, in order to ensure maximum profit, the slope of the marginal-
revenue curve must be less than the slope of the marginal-cost curve.

$

Total revenue

Total cost

q
q1

FIGURE 13.63 At maximum profit,
marginal revenue equals marginal cost.

$

q
q1

MC

MR

FIGURE 13.64 At maximum profit,
the marginal-cost curve cuts the
marginal-revenue curve from below.

The condition that d2P=dq2 < 0 when dP=dq D 0 can be viewed another way.
Equivalently, to have MR D MC correspond to a maximum, dP=dq must go from
C to �; that is, it must go from dr=dq � dc=dq > 0 to dr=dq � dc=dq < 0. Hence, as
output increases, we must have MR > MC and then MR < MC. This means that at
the point q1 of maximum profit, the marginal-revenue curve must cut the marginal-cost
curve from above (Figure 13.64). For production up to q1, the revenue from additional
output would be greater than the cost of such output, and the total profit would increase.
For output beyond q1;MC > MR, and each unit of output would addmore to total costs
than to total revenue. Hence, total profits would decline.

PROBLEMS 13.6
In this set of problems, unless otherwise specified, p is price per
unit (in dollars) and q is output per unit of time. Fixed costs refer
to costs that remain constant at all levels of production during a
given time period. (An example is rent.)

1. Find two numbers whose sum is 96 and whose product is as
big as possible.

2. Find two nonnegative numbers whose sum is 20 and for which
the product of twice one number and the square of the other
number will be a maximum.

3. Fencing A company has set aside $9000 to fence in a
rectangular portion of land adjacent to a stream by using the
stream for one side of the enclosed area. The cost of the fencing
parallel to the stream is $15 per foot, installed, and the fencing for
the remaining two sides costs $9 per foot, installed. Find the
dimensions of the maximum enclosed area.
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4. Fencing The owner of the Laurel Nursery Garden Center
wants to fence in 1400 ft2 of land in a rectangular plot to be used
for different types of shrubs. The plot is to be divided into six
equal plots with five fences parallel to the same pair of sides, as
shown in Figure 13.65. What is the least number of feet of fence
needed?

FIGURE 13.65

5. Average Cost A manufacturer finds that the total cost, c, of
producing a product is given by the cost function

c D 0:05q2 C 5qC 500

At what level of output will average cost per unit be a minimum?

6. Automobile Expense The cost per hour (in dollars) of
operating an automobile is given by

C D 0:0015s2 � 0:24sC 1 0 � s � 100

where s is the speed in kilometers per hour. At what speed is the
cost per hour a minimum?

7. Revenue The demand equation for a monopolist’s product is

p D �5qC 30

At what price will revenue be maximized?

8. Revenue Suppose that the demand function for a
monopolist’s product is of the form

q D Ae�Bp

for positive constants A and B. In terms of A and B, find the value
of p for which maximum revenue is obtained. Can you explain
why your answer does not depend on A?

9. Weight Gain A group of biologists studied the nutritional
effects on rats that were fed a diet containing 10% protein.12 The
protein consisted of yeast and cottonseed flour. By varying the
percent, p, of yeast in the protein mix, the group found that the
(average) weight gain (in grams) of a rat over a period of time was

f.p/ D 170 � p �
1600
pC 15

0 � p � 100

Find (a) the maximum weight gain and (b) the minimum
weight gain.

10. Drug Dose The severity of the reaction of the human body
to an initial dose, D, of a drug is given by13

R D f.D/ D D2
�
C
2
�

D
3

�
where the constant C denotes the maximum amount of the drug
that may be given. Show that R has a maximum rate of change
when D D C=2.

11. Profit For a monopolist’s product, the demand function is

p D 75 � 0:05q

and the cost function is

c D 500C 40q

At what level of output will profit be maximized? At what price
does this occur, and what is the profit?

12. Profit For a monopolist, the cost per unit of producing a
product is $3, and the demand equation is

p D
10
p
q

What price will give the greatest profit?

13. Profit For a monopolist’s product, the demand equation is

p D 42 � 4q

and the average-cost function is

Nc D 2C
80
q

Find the profit-maximizing price.

14. Profit For a monopolist’s product, the demand function is

p D
50
p
q

and the average-cost function is

Nc D
1
4
C

2500
q

Find the profit-maximizing price and output.

15. Profit A manufacturer can produce at most 120 units of a
certain product each year. The demand equation for the product is

p D q2 � 100qC 3200

and the manufacturer’s average-cost function is

Nc D
2
3
q2 � 40qC

10;000
q

Determine the profit-maximizing output q and the corresponding
maximum profit.

12Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in
Single-Cell Protein, eds. R. I. Mateles and S. R. Tannenbaum (Cambridge,
MA: MIT Press, 1968).

13R. M. Thrall, J. A. Mortimer. K. R. Rebman, and R. F. Baum, eds., Some
Mathematical Models in Biology, rev. ed., Report No. 40241-R-7. Prepared at
University of Michigan, 1967.
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16. Cost A manufacturer has determined that, for a certain
product, the average cost (in dollars per unit) is given by

Nc D 2q2 � 48qC 210C
200
q

where 2 � q � 7.
(a) At what level within the interval Œ2; 7� should production be
fixed in order to minimize total cost? What is the minimum total
cost?
(b) If production were required to lie in the interval Œ3; 7�, what
value of q would minimize total cost?

17. Profit For XYZ Manufacturing Co., total fixed costs are
$1200, material and labor costs combined are $2 per unit, and the
demand equation is

p D
100
p
q

What level of output will maximize profit? Show that this occurs
when marginal revenue is equal to marginal cost. What is the
price at profit maximization?

18. Revenue A real-estate firm owns 100 garden-type
apartments. At $400 per month, each apartment can be rented.
However, for each $10-per-month increase, there will be two
vacancies with no possibility of filling them. What rent per
apartment will maximize monthly revenue?

19. Revenue A TV cable company has 6400 subscribers who
are each paying $24 per month. It can get 160 more subscribers
for each $0.50 decrease in the monthly fee. What rate will yield
maximum revenue, and what will this revenue be?
20. Profit A manufacturer of a product finds that, for the first
600 units that are produced and sold, the profit is $40 per unit.
The profit on each of the units beyond 600 is decreased by $0.05
times the number of additional units produced. For example, the
total profit when 602 units are produced and sold is 600.40/C
2.39:90/. What level of output will maximize profit?
21. Container Design A container manufacturer is designing a
rectangular box, open at the top and with a square base, that is to
have a volume of 13.5 ft3. If the box is to require the least amount
of material, what must be its dimensions?
22. Container Design An open-top box with a square base
is to be constructed from 192 ft2 of material. What should be the
dimensions of the box if the volume is to be a maximum? What is
the maximum volume?
23. Container Design An open box is to be made by cutting
equal squares from each corner of a L-inch-square piece of
cardboard and then folding up the sides. Find the length of the
side of the square (in terms of L) that must be cut out if the
volume of the box is to be maximized. What is the maximum
volume? (See Figure 13.66.)

Fold

L

L

Fold

F
o
ld

F
o
ld

FIGURE 13.66

24. Poster Design A rectangular cardboard poster is to have
720 in2 for printed matter. It is to have a 5-in. margin on each side
and a 4-in. margin at the top and bottom. Find the dimensions of
the poster so that the amount of cardboard used is minimized.
(See Figure 13.67.)

y

x

4–

5–5–

4–

FIGURE 13.67

25. Container Design A cylindrical can, open at the top, is to
have a fixed volume of K. Show that if the least amount of
material is to be used, then both the radius and height are equal to
3
p
K=� . (See Figure 13.68.)

Volume = rr
2
h 

Surface area = 2rrh + rr
2 

Open at top

h

r

FIGURE 13.68

26. Container Design A cylindrical can, including both top
and bottom, is to be made from a fixed amount of material, S. If
the volume is to be a maximum, show that the radius is equal tor

S
6�

. Try also to show that h D 2r. (See Figure 13.68.)

27. Profit The demand equation for a monopolist’s product is

p D 600 � 2q

and the total-cost function is

c D 0:2q2 C 28qC 200

Find the profit-maximizing output and price, and determine the
corresponding profit. If the government were to impose a tax of
$22 per unit on the manufacturer, what would be the new
profit-maximizing output and price? What is the profit now?

28. Profit Use the original data in Problem 27, and assume
that the government imposes a license fee of $1000 on the
manufacturer. This is a lump-sum amount without regard to
output. Show that the profit-maximizing price and output remain
the same. Show, however, that there will be less profit.
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29. Economic Lot Size A manufacturer has to produce
3000 units annually of a product that is sold at a uniform rate
during the year. The production cost of each unit is $12, and
carrying costs (insurance, interest, storage, etcetera) are estimated
to be 19.2% of the value of average inventory. Setup costs per
production run are $54. Find the economic lot size.

30. Profit For a monopolist’s product, the cost function is

c D 0:004q3 C 20qC 5000

and the demand function is

p D 450 � 4q

Find the profit-maximizing output.

31. Workshop Attendance Imperial Educational Services
(I.E.S.) is considering offering a workshop in resource allocation
to key personnel at Acme Corp. To make the offering
economically feasible, I.E.S. says that at least 40 persons must
attend at a cost of $200 each. Moreover, I.E.S. will agree to
reduce the charge for everybody by $2.50, for each person over
the committed 40, who attends. How many people should be in
the group for I.E.S. to maximize revenue? Assume that the
maximum allowable number in the group is 70.

32. Cost of Leasing Motor The Kiddie Toy Company
plans to lease an electric motor that will be used 80,000
horsepower-hours per year in manufacturing. One
horsepower-hour is the work done in 1 hour by a 1-horsepower
motor. The annual cost to lease a suitable motor is $200, plus
$0.40 per horsepower. The cost per horsepower-hour of operating
the motor is $0.008=N, where N is the horsepower. What size
motor, in horsepower, should be leased in order to minimize cost?

33. Transportation Cost The cost of operating a truck on a
thruway (excluding the salary of the driver) is

0:165C
s
200

dollars per mile, where s is the (steady) speed of the truck in miles
per hour. The truck driver’s salary is $18 per hour. At what speed
should the truck driver operate the truck to make a 700-mile trip
most economical?

34. Cost For a manufacturer, the cost of making a part is
$30 per unit for labor and $10 per unit for materials; overhead is
fixed at $20,000 per week. If more than 5000 units are made each
week, labor is $45 per unit for those units in excess of 5000. At
what level of production will average cost per unit be a minimum?

35. Profit Ms. Jones owns a small insurance agency that sells
policies for a large insurance company. For each policy sold,
Ms. Jones, who does not sell policies herself, is paid a commission
of $50 by the insurance company. From previous experience,
Ms. Jones has determined that, when she employs m salespeople,

q D m3
� 15m2

C 92m

policies can be sold per week. She pays each of the m salespeople
a salary of $1000 per week, and her weekly fixed cost is $3000.
Current office facilities can accommodate at most eight
salespeople. Determine the number of salespeople that Ms. Jones
should hire to maximize her weekly profit. What is the
corresponding maximum profit?

36. Profit A manufacturing company sells high-quality jackets
through a chain of specialty shops. The demand equation for these
jackets is

p D 1000 � 50q

where p is the selling price (in dollars per jacket) and q is the
demand (in thousands of jackets). If this company’s marginal-cost
function is given by

dc
dq
D

1000
qC 5

show that there is a maximum profit, and determine the number of
jackets that must be sold to obtain this maximum profit.

37. Chemical Production Each day, a firm makes x tons of
chemical A .x � 4/ and

y D
24 � 6x
5 � x

tons of chemical B. The profit on chemical A is $2000 per ton,
and on B it is $1000 per ton. How much of chemical A should be
produced per day to maximize profit? Answer the same question
if the profit on A is P per ton and that on B is P=2 per ton.

38. Rate of Return To erect an office building, fixed costs are
$1.44 million and include land, architect’s fees, a basement, a
foundation, and so on. If x floors are constructed, the cost
(excluding fixed costs) is

c D 10xŒ120;000C 3000.x � 1/�

The revenue per month is $60,000 per floor. How many floors will
yield a maximum rate of return on investment? (Rate of returnD
total revenue=total cost.)

39. Gait and Power Output of an Animal In a model by
Smith,14 the power output of an animal at a given speed as a
function of its movement or gait, j, is found to be

P.j/ D Aj
L4

V
C B

V3L2

1C j

where A and B are constants, j is a measure of the “jumpiness” of
the gait, L is a constant representing linear dimension, and V is a
constant forward speed.

14J. M. Smith, Mathematical Ideas in Biology (London: Cambridge University
Press, 1968).
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Assume that P is a minimum when dP=dj D 0. Show that when
this occurs,

.1C j/2 D
BV4

AL2
As a passing comment, Smith indicates that “at top speed, j is zero
for an elephant, 0.3 for a horse, and 1 for a greyhound,
approximately.”

40. Traffic Flow In a model of traffic flow on a lane of a
freeway, the number of cars the lane can carry per unit time is
given by15

N D
�2a

�2atr C v �
2al
v

where a is the acceleration of a car when stopping .a < 0/; tr is
the reaction time to begin braking, v is the average speed of the
cars, and l is the length of a car. Assume that a, tr, and l are
constant. To find how many cars a lane can carry at most, we want
to find the speed v that maximizes N. To maximize N, it suffices to
minimize the denominator

�2atr C v �
2al
v

(a) Find the value of v that minimizes the denominator.
(b) Evaluate your answer in part (a) when a D �19:6 .ft/s2/,
l D 20 (ft), and tr D 0:5 (s). Your answer will be in feet per
second.
(c) Find the corresponding value of N to one decimal place. Your
answer will be in cars per second. Convert your answer to cars
per hour.
(d) Find the relative change in N that results when l is reduced
from 20 ft to 15 ft, for the maximizing value of v.

41. Average Cost During the Christmas season, a promotional
company purchases cheap red felt stockings, glues fake white fur
and sequins onto them, and packages them for distribution. The
total cost of producing q cases of stockings is given by

c D 3q2 C 50q � 18q ln qC 120

Find the number of cases that should be processed in order to
minimize the average cost per case. Determine (to two decimal
places) this minimum average cost.

42. Profit A monopolist’s demand equation is given by

p D q2 � 20qC 160

where p is the selling price (in thousands of dollars) per ton when
q tons of product are sold. Suppose that fixed cost is $50,000 and
that each ton costs $30,000 to produce. If current equipment has
a maximum production capacity of 12 tons, use the graph of
the profit function to determine at what production level the
maximum profit occurs. Find the corresponding maximum profit
and selling price per ton.
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relative maximum relative minimum Ex. 2, p. 576
relative extrema absolute extrema Ex. 3, p. 577
critical value critical point first-derivative test Ex. 4, p. 577

Section 13.2 Absolute Extrema on a Closed Interval
extreme-value theorem Ex. 1, p. 583

Section 13.3 Concavity
concave up concave down inflection point Ex. 1, p. 585

Section 13.4 The Second-Derivative Test
second-derivative test Ex. 1, p. 591

Section 13.5 Asymptotes
vertical asymptote horizontal asymptote Ex. 1, p. 594
oblique asymptote Ex. 3, p. 596

Section 13.6 Applied Maxima and Minima
economic lot size Ex. 5, p. 607

15J. I. Shonle, Environmental Applications of General Physics (Reading, MA: Addison-Wesley Publishing Co., 1975).



Haeussler-50501 M14_HAEU1107_14_SE_C13 November 27, 2017 15:7

Chapter 13 Review 615

Summary
Calculus provides the best way of understanding the graphs
of functions. Even the best electronic computational aids
need the judgement added by calculus to tell the user where
to look at a graph.

The first derivative is used to determine where a function
is increasing or decreasing and to locate relative maxima and
minima. If f 0.x/ is positive throughout an interval, then over
that interval, f is increasing and its graph rises (from left to
right). If f 0.x/ is negative throughout an interval, then over
that interval, f is decreasing and its graph is falling.

A point .a; f.a// on the graph at which f 0.a/ is 0 or is
not defined is a candidate for a relative extremum, and a is
called a critical value. For a relative extremum to occur at a,
the first derivative must change sign around a. The following
procedure is the first-derivative test for the relative extrema
of y D f.x/:

First-Derivative Test for Relative Extrema

Step 1. Find f 0.x/.

Step 2. Determine all values a where f 0.a/ D 0 or f 0.a/
is not defined.

Step 3. On the intervals defined by the values in Step 2,
determine whether f is increasing (f 0.x/ > 0) or
decreasing (f 0.x/ < 0).

Step 4. For each critical value a at which f is continu-
ous, determine whether f 0.x/ changes sign as x
increases through a. There is a relative maximum
at a if f 0.x/ changes from C to �, and a rela-
tive minimum if f 0.x/ changes from � to C. If
f 0.x/ does not change sign, there is no relative
extremum at a.

Under certain conditions, a function is guaranteed to
have absolute extrema. The extreme-value theorem states
that if f is continuous on a closed interval, then f has an abso-
lutemaximum value and an absoluteminimum value over the
interval. To locate absolute extrema, the following procedure
can be used:

Procedure to Find Absolute Extrema for a Function
f Continuous on Œa; b�
Step 1. Find the critical values of f.
Step 2. Evaluate f.x/ at the endpoints a and b and at the

critical values in .a; b/.

Step 3. The maximum value of f is the greatest of the val-
ues found in Step 2. The minimum value of f is
the least of the values found in Step 2.

The second derivative is used to determine concavity and
inflection points. If f 00.x/ > 0 throughout an interval, then f

is concave up over that interval, meaning that its graph bends
upward. If f 00.x/ < 0 over an interval, then f is concave down
throughout that interval, and its graph bends downward. A
point on the graph where f is continuous and its concav-
ity changes is an inflection point. The point .a; f.a// on the
graph is a possible inflection point if either f 00.a/ D 0 or
f 00.a/ is not defined and f is continuous at a.

The second derivative also provides a means for testing
certain critical values for relative extrema:

Second-Derivative Test for Relative Extrema
Suppose f 0.a/ D 0. Then

If f 00.a/ < 0, then f has a relative maximum at a.

If f 00.a/ > 0, then f has a relative minimum at a.

Asymptotes are also aids in curve sketching. Graphs
“blow up” near vertical asymptotes, and they “settle” near
horizontal asymptotes and oblique asymptotes. The line
x D a is a vertical asymptote for the graph of a function f if
either limx!aC f.x/ D ˙1 or limx!a� f.x/ D ˙1. For the
case of a rational function, f.x/ D P.x/=Q.x/ in lowest terms,
we can find vertical asymptotes without evaluating limits. If
Q.a/ D 0 but P.a/ ¤ 0, then the line x D a is a vertical
asymptote.

The line y D b is a horizontal asymptote for the graph of
a function f if at least one of the following is true:

lim
x!1

f.x/ D b or lim
x!�1

f.x/ D b

The line y D mxCb is an oblique asymptote for the graph of
a function f if at least one (note˙) of the following is true:

lim
x!˙1

. f.x/ � .mxC b// D 0

In particular, a polynomial function of degree greater
than 1 has no asymptotes. Moreover, a rational function
whose numerator has degree greater than that of the denom-
inator does not have a horizontal asymptote, and a ratio-
nal function whose numerator has degree more than one
greater than that of the denominator does not have an oblique
asymptote.

Applied Maxima and Minima
In applied work, calculus is very important in maximization
and minimization problems. For example, in the area of eco-
nomics, we can use it to maximize profit or minimize cost.
Some important relationships that are used in economics
problems are the following:

Nc D
c
q

average cost per unit D
total cost
quantity

r D pq revenue D (price)(quantity)

P D r � c profit D total revenue � total cost
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Review Problems
In Problems 1–4, find horizontal and vertical asymptotes.

1. y D
3x2

x2 � 16
2. y D

xC 2
5x � x2

3. y D
5x2 � 3
.3xC 2/2

4. y D
4xC 1
3x � 5

�
3xC 1
2x � 11

In Problems 5–8, find critical values.

5. f.x/ D
3x2

9 � x2
6. f.x/ D 8.x � 1/2.xC 6/4

7. f.x/ D
3
p
x � 1

2 � 3x
8. f.x/ D

13xe�5x=6

6xC 5

In Problems 9–12, find intervals on which the function is
increasing or decreasing.

9. f.x/ D � 5
3x

3 C 15x2 C 35xC 10

10. f.x/ D
3x2

.xC 2/2
11. f.x/ D

6x4

x2 � 3

12. f.x/ D 5 3
p
2x3 � 3x

In Problems 13–18, find intervals on which the function is
concave up or concave down.

13. f.x/ D x4 � x3 � 14 14. f.x/ D
x � 2
xC 2

15. f.x/ D
1

3xC 2
16. f.x/ D x3 C 2x2 � 5xC 2

17. f.x/ D .3x � 1/.2x � 5/3 18. f.x/ D .x2 � x � 1/2

In Problems 19–24, test for relative extrema.

19. f.x/ D 2x3 � 9x2 C 12xC 7

20. f.x/ D
axC b
x2

for a > 0 and b > 0

21. f.x/ D
x10

10
C

x5

5
22. f.x/ D

2x2

x2 � 1

23. f.x/ D x2=3.xC 1/ 24. f.x/ D x3.x � 2/4

In Problems 25–30, find the x-values where inflection points occur.

25. y D 3x5 C 20x4 � 30x3 � 540x2 C 2xC 3

26. y D
x2 C 2
5x

27. y D 2.x � 3/.x4 C 1/

28. y D x2 C 2 ln.�x/ 29. y D
x3

ex

30. y D .x2 � 5/3

In Problems 31–34, test for absolute extrema on the given interval.

31. f.x/ D 3x4 � 4x3I Œ0; 2�

32. f.x/ D x3 � .9=2/x2 � 12xC 2; Œ0; 5�

33. f.x/ D
x

.5x � 6/2
I Œ�2; 0�

34. f.x/ D .xC 1/2.x � 1/2=3; Œ2; 3�

35. Let f.x/ D x ln x.
(a) Determine the values of x at which relative maxima and
relative minima, if any, occur.
(b) Determine the interval(s) on which the graph of f is concave
up, and find the coordinates of all points of inflection, if any.

36. Let f.x/ D
x

x2 � 1
.

(a) Determine whether the graph of f is symmetric about the
x-axis, y-axis, or origin.
(b) Find the interval(s) on which f is increasing.
(c) Find the coordinates of all relative extrema of f.
(d) Determine limx!�1 f.x/ and limx!1 f.x/.
(e) Sketch the graph of f.
(f) State the absolute minimum and absolute maximum values of
f.x/ (if they exist).

In Problems 37–48, indicate intervals on which the function is
increasing, decreasing, concave up, or concave down; indicate
relative maximum points, relative minimum points, inflection
points, horizontal asymptotes, vertical asymptotes, symmetry, and
those intercepts that can be obtained conveniently. Then sketch
the graph.

37. y D x2 � 4x � 21 38. y D 2x3 C 15x2 C 36xC 9

39. y D x3 � 12xC 20 40. y D e1=x

41. y D x3 � x 42. y D
xC 1
x � 1

43. f.x/ D
100.xC 5/

x2
44. y D

x2 � 4
x2 � 1

45. y D
x

.x � 1/3 46. y D 6x1=3.2x � 1/

47. f.x/ D
ex � e�x

2
48. f.x/ D 1 � ln.x3/

49. Are the following statements true or false?

(a) If f 0.x0/ D 0, then f must have a relative extremum at x0.
(b) Since the function f.x/ D 1=x is decreasing on the intervals
.�1; 0/ and .0;1/, it is impossible to find x1 and x2 in the
domain of f such that x1 < x2 and f.x1/ < f.x2/.
(c) On the interval .�1; 1�, the function f.x/ D x4 has an absolute
maximum and an absolute minimum.
(d) If f 00.x0/ D 0, then .x0; f.x0// must be a point of inflection.
(e) A function f defined on the interval .�2; 2/ with exactly one
relative maximum must have an absolute maximum.

50. An important function in probability theory is the standard
normal-density function

f.x/ D
1
p
2�

e�x2=2

(a) Determine whether the graph of f is symmetric about the
x-axis, y-axis, or origin.
(b) Find the intervals on which f is increasing and those on which
it is decreasing.
(c) Find the coordinates of all relative extrema of f.
(d) Find limx!�1 f.x/ and limx!1 f.x/.
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(e) Find the intervals on which the graph of f is concave up and
those on which it is concave down.
(f) Find the coordinates of all points of inflection.
(g) Sketch the graph of f.
(h) Find all absolute extrema.

51. Marginal Cost If c D q3 � 6q2 C 12qC 18 is a total-cost
function, for what values of q is marginal cost increasing?

52. Marginal Revenue If r D 200q3=2 � 3q2 is the revenue
function for a manufacturer’s product, determine the intervals on
which the marginal-revenue function is increasing.

53. Revenue Function The demand equation for a
manufacturer’s product is

p D 200 �
p
q

5
where q > 0

Show that the graph of the revenue function is concave down
wherever it is defined.

54. Contraception In a model of the effect of contraception on
birthrate,16 the equation

R D f.x/ D
x

4:4 � 3:4x
0 � x � 1

gives the proportional reduction R in the birthrate as a function of
the efficiency x of a contraception method. An efficiency of 0.2 (or
20%) means that the probability of becoming pregnant is 80% of
the probability of becoming pregnant without the contraceptive.
Find the reduction (as a percentage) when efficiency is (a) 0, (b)
0.5, and (c) 1. Find dR=dx and d2R=dx2, and sketch the graph of
the equation.

55. Learning and Memory If you were to recite members of a
category, such as four-legged animals, the words that you utter
would probably occur in “chunks,” with distinct pauses between
such chunks. For example, you might say the following for the
category of four-legged animals:

dog, cat, mouse, rat,
.pause/

horse, donkey, mule,
.pause/

cow, pig, goat, lamb,
etc.

The pauses may occur because you must mentally search for
subcategories (animals around the house, beasts of burden, farm
animals, etc.).

The elapsed time between onsets of successive words is
called interresponse time. A function has been used to analyze the
length of time for pauses and the chunk size (number of words in
a chunk).17 This function f is such that

f.t/ D

8<:the average number of wordsthat occur in succession with
interresponse times less than t

The graph of f has a shape similar to that in Figure 13.69 and is
best fit by a third-degree polynomial, such as

f.t/ D A t3 C Bt2 C CtC D

a
t

f (t)

(a, f (a))

P

FIGURE 13.69

The point P has special meaning. It is such that the value a
separates interresponse times within chunks from those between
chunks. Mathematically, P is a critical point that is also a point of
inflection. Assume these two conditions, and show that (a)
a D �B=.3A/ and (b) B2 D 3AC.

56. Market Penetration In a model for the market penetration
of a new product, sales S of the product at time t are given by18

S D g.t/ D
m.pC q/2

p

26664 e�.pCq/t�
q
p
e�.pCq/t

C 1
�2

37775
where p, q, and m are nonzero constants.

(a) Show that

dS
dt
D

m
p
.pC q/3e�.pCq/t

�
q
p
e�.pCq/t

� 1
�

�
q
p
e�.pCq/t

C 1
�3

(b) Determine the value of t for which maximum sales occur. You
may assume that S attains a maximum when dS=dt D 0.

In Problems 57–60, where appropriate, round the answers to two
decimal places.

57. From the graph of y D 3:9x3 C 5:2x2 � 7xC 3, using a
graphing utility, find the coordinates of all relative extrema.

58. From the graph of f.x/ D x4 � 2x3 C 3x � 1, determine the
absolute extrema of f over the interval [�1; 1].
59. The graph of a function f has exactly one inflection point. If

f 00.x/ D
x3 C 3xC 2
5x2 � 2xC 4

use the graph of f 00 to determine the x-value of the inflection point
of f.

16 R. K. Leik and B. F. Meeker,Mathematical Sociology (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1975).
17A. Graesser and G. Mandler, “Limited Processing Capacity Constrains the
Storage of Unrelated Sets of Words and Retrieval from Natural Categories,”
Human Learning and Memory, 4, no. 1 (1978), 86–100.

18A. P. Hurter, Jr., A. H. Rubenstein et al., “Market Penetration by New
Innovations: The Technological Literature,” Technological Forecasting and
Social Change, vol. 11 (1978), 197–221.
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60. Graph y D
5x2 C 2x

x3 C 2xC 1
. From the graph, locate any

horizontal or vertical asymptotes.

61. Maximization of Production A manufacturer determined
that m employees on a certain production line will produce q units
per month, where

q D 80m2
� 0:1m4

To obtain maximum monthly production, how many employees
should be assigned to the production line?

62. Revenue The demand function for a manufacturer’s
product is given by p D 80e�0:05q. For what value of q does the
manufacturer maximize total revenue?

63. Revenue The demand function for a monopolist’s
product is

p D
p
500 � q

If the monopolist wants to produce at least 100 units, but not more
than 200 units, how many units should be produced to maximize
total revenue?

64. Average Cost If c D 0:01q2 C 5qC 100 is a cost function,
find the average-cost function. At what level of production q is
there a minimum average cost?

65. Profit The demand function for a monopolist’s product is

p D 700 � 2q

and the average cost per unit for producing q units is

Nc D qC 100C
1000
q

where p and Nc are in dollars per unit. Find the maximum profit
that the monopolist can achieve.

66. Container Design A rectangular box is to be made by
cutting out equal squares from each corner of a piece of cardboard
10 in. by 16 in. and then folding up the sides. What must be the
length of the side of the square cut out if the volume of the box is
to be maximum?

67. Fencing A rectangular portion of a field is to be enclosed
by a fence and divided equally into four parts by three fences
parallel to one pair of the sides. If a total of M meter of fencing is
to be used, find the dimensions (in terms ofM) that will maximize
the fenced area.

68. Poster Design A rectangular poster having an area of
500 in2 is to have a 4-in. margin at each side and at the bottom
and a 6-in. margin at the top. The remainder of the poster is for
printed matter. Find the dimensions of the poster so that the area
for the printed matter is maximized.

69. Cost A furniture company makes personal-computer
stands. For a certain model, the total cost (in thousands of dollars)
when q hundred stands are produced is given by

c D 2q3 � 9q2 C 12qC 20

(a) The company is currently capable of manufacturing between
75 and 600 stands (inclusive) per week. Determine the number of
stands that should be produced per week to minimize the total
cost, and find the corresponding average cost per stand.
(b) Suppose that between 300 and 600 stands must be produced.
How many should the company now produce in order to minimize
total cost?

70. Bacteria In a laboratory, an experimental antibacterial
agent is applied to a population of 100 bacteria. Data indicate that
the number of bacteria t hours after the agent is introduced is
given by

N D
12;100C 110tC 100t2

121C t2

For what value of t does the maximum number of bacteria in the
population occur? What is this maximum number?
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Chapter 14 Review

A
nyone who runs a business knows the need for accurate cost estimates.
When jobs are individually contracted, determining how much a job will
cost is generally the first step in deciding how much to bid.
For example, a painter must determine how much paint a job will take.

Since a gallon of paint will cover a certain number of square feet, the key is to deter-
mine the area of the surfaces to be painted. Normally, even this requires only simple
arithmetic—walls and ceilings are rectangular, and so total area is a sum of products
of base and height.

But not all area calculations are as simple. Suppose, for instance, that the bridge
shown below must be sandblasted to remove accumulated soot. How would the con-
tractor who charges for sandblasting by the square foot calculate the area of the vertical
face on each side of the bridge?

A

CD

B

The area could be estimated as perhaps three-quarters of the area of the trapezoid
formed by points A, B, C, and D. But a more accurate calculation—which might be
desirable if the bid were for dozens of bridges of the same dimensions (as along a
stretch of railroad)—would require a more refined approach.

If the shape of the bridge’s arch can be described mathematically by a function, the
contractor could use the method introduced in this chapter: integration. Integration has
many applications, the simplest of which is finding areas of regions bounded by curves.
Other applications include calculating the total deflection of a beam due to bending
stress, calculating the distance traveled underwater by a submarine, and calculating the
electricity bill for a company that consumes power at differing rates over the course of
a month.

Chapters 11–13 dealt with differential calculus. We differentiated a function and
obtained another function, its derivative. Rather surprisingly, integral calculus, involv-
ing area considerations as mentioned above, is deeply connected with the reverse pro-
cess of differentiation: We are given the derivative of a function and must find the orig-
inal function. The need for solving this reverse problem also arises in a natural way.
For example, we might have a marginal-revenue function and want to find the revenue
function from it.

619
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Objective 14.1 Differentials
To define the differential, interpret
it geometrically, and use it in
approximations. Also, to restate the
reciprocal relationship between dx=dy
and dy=dx.

We will soon give a reason for using the symbol dy=dx to denote the derivative of y
with respect to x. To do this, we introduce the notion of the differential of a function.

Definition
Let y D f.x/ be a differentiable function of x, and let �x denote a change in x,
where �x can be any real number. Then the differential of y, denoted by either dy
or d. f.x// is given by

dy D f 0.x/�x

Note that dy depends on two variables, namely, x and �x. In fact, dy is a function of
two variables.

To review functions of several variables,
see Section 2.8.

EXAMPLE 1 Computing a Differential

Find the differential of y D x3�2x2C3x�4, and evaluate it when x D 1 and�x D 0:04.

Solution: The differential is

dy D
d
dx
.x3 � 2x2 C 3x � 4/�x

D .3x2 � 4xC 3/�x

When x D 1 and �x D 0:04,

dy D dy.1; 0:04/ D .3.1/2 � 4.1/C 3/.0:04/ D 0:08

Now Work Problem 1 G

If f is the identity function, then f.x/ D x. Following the notation above applied to
y D f.x/ D x we have dy D d.x/ D 1�x D �x. Said otherwise, the differential of x is
�x. We abbreviate d.x/ by dx. Thus, dx D �x. From now on, we will write dx for �x
when finding a differential. For example,

d.x2 C 5/ D
d
dx
.x2 C 5/dx D 2xdx

Summarizing, we say that if y D f.x/ defines a differentiable function of x, then

dy D f 0.x/dx

where dx is any real number. Provided that dx ¤ 0, we can divide both sides of the last
equation by dx:

dy
dx
D f 0.x/

That is, dy=dx can be viewed either as the quotient of two differentials, namely, dy
divided by dx, or as one symbol for the derivative of f at x. It is for this reason that the
symbol dy=dx is widely used to denote the derivative.

In Section 11.1 we noted marginally that for y D f.x/,
dy
dx

is Leibniz notation for

the derivative of f. The notation f 0 for the derivative could equally be called Newton
notation (although Pf is more closely related to Newton’s original writings). Leibniz and
Newton independently discovered calculus in the middle of the 17th century.
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EXAMPLE 2 Finding a Differential in Terms of dx

a. If f.x/ D
p
x, then

d.
p
x/ D

d
dx
.
p
x/dx D

1
2
x�1=2dx D

1

2
p
x
dx

b. If u D .x2 C 3/5, then du D 5.x2 C 3/4.2x/dx D 10x.x2 C 3/4dx.

Now Work Problem 3 G

The differential can be interpreted geometrically. In Figure 14.1, the pointP.x; f.x//
is on the curve y D f.x/. Suppose x changes by dx, a real number, to the new value
xC dx. Then the new function value is f.xC dx/, and the corresponding point on the
curve isQ.xCdx; f.xCdx//. Passing through P andQ are horizontal and vertical lines,
respectively, that intersect at S. A line L tangent to the curve at P intersects segmentQS
at R, forming the right triangle PRS. Observe that the graph of f near P is approximated
by the tangent line at P. The slope of L is f 0.x/ but it is also given by SR=PS so that

f 0.x/ D
SR

PS

Since dy D f 0.x/ dx and dx D PS,

dy D f 0.x/ dx D
SR

PS
� PS D SR

Thus, if dx is a change in x at P, then dy is the corresponding vertical change along
the tangent line at P. Note that for the same dx, the vertical change along the curve is
�y D SQ D f.xC dx/� f.x/. Do not confuse�y with dy. However, from Figure 14.1,
the following is apparent:

When dx is close to 0, dy is an approximation to �y. Therefore,

�y � dy

This fact is useful in estimating �y, a change in y, as Example 3 shows.

y

x

¢y

f (x + dx )

f (x + dx ) - f(x )

f(x )

dx 

x + dxx

Q

P

R

S

dy

L

y = f(x )

FIGURE 14.1 Geometric interpretation of dy and �x.

EXAMPLE 3 Using the Differential to Estimate a Change in a Quantity

A governmental health agency examined the records of a group of individuals who
were hospitalized with a particular illness. It was found that the total proportion P that
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are discharged at the end of t days of hospitalization is given by

P D P.t/ D 1 �
�

300
300C t

�3

Use differentials to approximate the change in the proportion discharged if t changes
from 300 to 305.

Solution: The change in t from 300 to 305 is �t D dt D 305� 300 D 5. The change
in P is �P D P.305/ � P.300/. We approximate �P by dP:

�P � dP D P0.t/dt D �3
�

300
300C t

�2 �
�

300
.300C t/2

�
dt D 3

3003

.300C t/4
dt

When t D 300 and dt D 5,

dP D 3
3003

6004
5 D

15
23600

D
1

2340
D

1
320
� 0:0031

For a comparison, the true value of �P is

P.305/ � P.300/ D 0:87807 � 0:87500 D 0:00307

(to five decimal places).

Now Work Problem 11 G

We said that if y D f.x/, then �y � dy if dx is close to zero. Thus,

�y D f.xC dx/ � f.x/ � dy

so thatFormula (1) is used to approximate a
function value, whereas the formula
�y � dy is used to approximate a change
in function values.

f.xC dx/ � f.x/C dy (1)

This formula gives us a way of estimating a function value f.x C dx/. For example,
suppose we estimate ln.1:06/. Letting y D f.x/ D ln x, we need to estimate f.1:06/.
Since d.ln x/ D .1=x/dx, we have, from Formula (1),

f.xC dx/ � f.x/C dy

ln.xC dx/ � ln xC
1
x
dx

We know the exact value of ln.1/, so we will let x D 1 and dx D 0:06. Then
xC dx D 1:06, and dx is close to 0. Therefore,

ln.1C 0:06/ � ln.1/C
1
1
.0:06/

ln.1:06/ � 0C 0:06 D 0:06

The true value of ln.1:06/ to five decimal places is 0:05827.

EXAMPLE 4 Using the Differential to Estimate a Function Value

The demand function for a product is given by

p D f.q/ D 20 �
p
q

where p is the price per unit in dollars for q units. By using differentials, approximate
the price when 99 units are demanded.

Solution: We want to approximate f.99/. By Formula (1),

f.qC dq/ � f.q/C dp

where

dp D �
1

2
p
q
dq since

dp
dq
D �

1
2
q�1=2
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We choose q D 100 and dq D �1 because qC dq D 99, dq is small, and it is easy to
compute f.100/ D 20 �

p
100 D 10. We, thus, have

f.99/ D f.100C .�1// � f.100/ �
1

2
p
100

.�1/

f.99/ � 10C 0:05 D 10:05

Hence, the price per unit when 99 units are demanded is approximately $10.05.

Now Work Problem 17 G

The equation y D x3 C 4x C 5 defines y as a function of x. We could write
f.x/ D x3C4xC5. However, the equation also defines x implicitly as a function of y. In
fact, if we restrict the domain of f to some set of real numbers x so that y D f.x/ is a one-
to-one function, then in principle we could solve for x in terms of y and get x D f �1.y/.
Actually, no restriction of the domain is necessary here. Since f 0.x/ D 3x2 C 4 > 0,
for all x, we see that f is strictly increasing on .�1;1/ and is thus one-to-one on
.�1;1/. As we did in Section 12.2, we can look at the derivative of x with respect
to y, dx=dy, and we have seen that it is given by

dx
dy
D

1
dy
dx

provided that dy=dx ¤ 0

Since dx=dy can be considered a quotient of differentials, we now see that it is the
reciprocal of the quotient of differentials dy=dx. Thus,

dx
dy
D

1
3x2 C 4

It is important to understand that it is not necessary to be able to solve y D x3C 4xC 5

for x in terms of y, and the equation
dx
dy
D

1
3x2 C 4

holds for all x.

EXAMPLE 5 Finding dp=dq from dq=dp

Find
dp
dq

if q D
p
2500 � p2.

Solution:

Strategy There are a number of ways to find dp=dq. One approach is to solve the
given equation for p explicitly in terms of q and then differentiate directly. Another
approach to find dp=dq is to use implicit differentiation. However, since q is given
explicitly as a function of p, we can easily find dq=dp and then use the preceding
reciprocal relation to find dp=dq. We will take this approach.

We have

dq
dp
D

1
2
.2500 � p2/�1=2.�2p/ D �

pp
2500 � p2

Hence,

dp
dq
D

1
dq
dp

D �

p
2500 � p2

p

Now Work Problem 27 G
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PROBLEMS 14.1
In Problems 1–10, find the differential of the function in terms of x
and dx.

1. y D axC b 2. y D 2

3. f.x/ D
p
x3 � 27 4. f.x/ D .4x2 � 5xC 2/3

5. u D
1
x2

6. u D
p
x

7. p D ln.x2 C 7/ 8. p D ex
4C3x2C1

9. y D .9xC 3/e2x
2C3 10. y D ln

p
x2 C 12

In Problems 11–16, find �y and dy for the given values of x
and dx.

11. y D axC b; for any x and any dx

12. y D 5x2; x D �1, dx D �0:02

13. y D x2 C 3xC 5; x D 2, dx D 0:01

14. y D .3xC 2/2; x D �1, dx D �0:03

15. y D
p
32 � x2; x D 4, dx D �0:05 Round your answer to

three decimal places.

16. y D ln x; x D 1, dx D 0:01

17. Let f.x/ D
xC 5
xC 1

.

(a) Evaluate f 0.1/.
(b) Use differentials to estimate the value of f(1.1).

18. Let f.x/ D xx.

(a) Evaluate f 0.1/.
(b) Use differentials to estimate the value of f.1:001/.

In Problems 19–26, approximate each expression by using
differentials.

19.
p
288 (Hint: 172 D 289.) 20.

p
122

21. 3
p
9 22. 4

p
16:3

23. ln.0:998/ 24. ln 1.01

25. e0:001 26. e�0:002

In Problems 27–32, find dx=dy or dp=dq as makes sense.

27. y D 2x � 1 28. y D 2x3 C 2xC 3

29. q D .p2 C 5/3 30. q D
p
pC 5

31. q D
1
p2

32. q D e4�2p

33. If y D 5x3 �
7
2
x2 C 3, find dx=dy

ˇ̌̌̌
xD1=3

.

34. If y D ln x2, find the value of dx=dy when x D 3.

In Problems 35 and 36, find the rate of change of q with respect to
p for the indicated value of q.

35. p D
500
qC 2

I q D 18 36. p D 60 �
p
2qI q D 50

37. Profit Suppose that the profit (in dollars) of producing
q units of a product is

P D 397q � 2:3q2 � 400

Using differentials, find the approximate change in profit if the
level of production changes from q D 90 to q D 91. Find the true
change.

38. Revenue Given the revenue function

r D 200qC 40q2 � q3

use differentials to find the approximate change in revenue if the
number of units increases from q D 10 q D 11. Find the true
change.

39. Demand The demand equation for a product is

p D
10
p
q

Using differentials, approximate the price when 24 units are
demanded.

40. Demand Given the demand function

p D
200
p
qC 8

use differentials to estimate the price per unit when 40 units are
demanded.

41. If y D f.x/, then the proportional change in y is defined to be
�y=y, which can be approximated with differentials by dy=y. Use
this last form to approximate the proportional change in the cost
function

c D f.q/ D
q2

2
C 5qC 300

when q D 10 and dq D 2. Round your answer to one decimal
place.

42. Status/Income Suppose that S is a numerical value of
status based on a person’s annual income I (in thousands of
dollars). For a certain population, suppose S D 20

p
I. Use

differentials to approximate the change in S if annual income
decreases from $45,000 to $44,500.

43. Biology The volume of a spherical cell is given by

V D
4
3
�r3, where r is the radius. Estimate the change in volume

when the radius changes from 5:40� 10�4 cm to 5:45� 10�4 cm.

44. Muscle Contraction The equation

.PC a/.vC b/ D k

is called the “fundamental equation of muscle contraction.”1 Here
P is the load imposed on the muscle, v is the velocity of the
shortening of the muscle fibers, and a, b, and k are positive
constants. Find P in terms of v, and then use the differential to
approximate the change in P due to a small change in v.

1R. W. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill, 1955).
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45. Demand The demand, q, for a monopolist’s product is
related to the price per unit, p, according to the equation

2C
q2

200
D

4000
p2

(a) Verify that 40 units will be demanded when the price per unit
is $20.

(b) Show that
dq
dp
D �2:5 when the price per unit is $20.

(c) Use differentials and the results of parts (a) and (b) to
approximate the number of units that will be demanded if the
price per unit is reduced to $19.20.

46. Profit The demand equation for a monopolist’s product is

p D
1
2
q2 � 66qC 7000

and the average-cost function is

Nc D 500 � qC
80;000
2q

(a) Find the profit when 100 units are demanded.
(b) Use differentials and the result of part (a) to estimate the
profit when 101 units are demanded.

Objective 14.2 The Indefinite Integral
To define the antiderivative and the
indefinite integral and to apply basic
integration formulas.

Given a function f, if F is a function such that

F0.x/ D f.x/ (1)

then F is called an antiderivative of f. Thus,

An antiderivative of f is simply a function whose derivative is f.

Multiplying both sides of Equation (1) by the differential dx gives F0.x/dx D f.x/dx.
However, because F0.x/dx is the differential of F, we have dF D f.x/dx. Hence, we can
also think of an antiderivative of f as a function whose differential is f.x/dx.

Definition
An antiderivative of a function f is a function F such that

F0.x/ D f.x/

Equivalently, in differential notation,

dF D f.x/dx

For example, because the derivative of x2 is 2x, x2 is an antiderivative of 2x. How-
ever, it is not the only antiderivative of 2x: Since

d
dx
.x2 C 1/ D 2x and

d
dx
.x2 � 5/ D 2x

both x2C1 and x2�5 are also antiderivatives of 2x. In fact, it is obvious that because the
derivative of a constant is zero, x2CC is also an antiderivative of 2x for any constant C.
Thus, 2x has infinitely many antiderivatives. More importantly, although not obviously,
every antiderivative of 2x is a function of the form x2CC, for some constantC. It can be
shown that if a continuous function has a derivative of 0 on an interval then the function
is constant on that interval. We note:

Any two antiderivatives of a function differ only by a constant.

Since x2 C C describes all antiderivatives of 2x, we refer to it as being the most
general antiderivative of 2x, and denote it by

R
2xdx, which is read “the indefinite

integral of 2x with respect to x.” In fact, we writeZ
2xdx D x2 C C



Haeussler-50501 M15_HAEU1107_14_SE_C14 October 16, 2017 16:47

626 Chapter 14 Integration

The symbol
R
is called the integral sign, 2x is the integrand, and C is the constant of

integration. The dx is part of the integral notation and indicates the variable involved.
Here x is the variable of integration.

More generally, the indefinite integral of any function fwith respect to x is writtenR
f.x/dx and denotes the most general antiderivative of f. Since all antiderivatives of f

differ only by a constant, if F is any antiderivative of f, thenZ
f.x/dx D F.x/C C; where C is a constant

To integrate f means to find
R
f.x/dx. In summary,Z

f.x/dx D F.x/C C if and only if F0.x/ D f.x/

It follows that both

d
dx

�Z
f.x/dx

�
D f.x/ and

Z
d
dx
.F.x//dx D F.x/C C

which show the extent to which differentiation and indefinite integration are inverse
operations.

It is good to begin by thinking of
Z
. /dx as an “operation” that is applied to a

function, in the same way that we initially regarded
d
dx
. /. In the previous section

we have introduced differentials that somewhat rationalize
d
dx
. /, but we suggest not

trying to rationalize
Z
. /dx at this time. It should be simply accepted as a (somewhat

odd) notation for now.

EXAMPLE 1 Finding an Indefinite Integral

Find
Z

5 dx.

APPLY IT I
1. If the marginal cost for a company
is f.q/ D 28:3, find

R
28:3 dq, which

gives the form of the cost function. Solution:

Strategy First we must find a function whose derivative is 5. Then we add the
constant of integration.

Since we know that the derivative of 5x is 5, 5x is an antiderivative of 5. Therefore,Z
5dx D 5xC C

Now Work Problem 1 G

A common mistake when finding
integrals is to omit C, the constant of
integration.

Using differentiation formulas from Chapters 11 and 12, we have compiled a list of
elementary integration formulas in Table 14.1. These formulas are easily verified. For
example, Formula (2) is true because the derivative of xaC1=.aC 1/ is xa for a ¤ �1.
(Wemust have a ¤ �1 because the denominator is 0 when a D �1.) Formula (2) states
that the indefinite integral of a power of x, other than x�1, is obtained by increasing the
exponent of x by 1, dividing by the new exponent, and adding a constant of integration.
The indefinite integral of x�1 will be discussed in Section 14.4.

To verify Formula (5), we must show that the derivative of k
R
f.x/dx is kf.x/. Since

the derivative of k
R
f.x/ dx is simply k times the derivative of

R
f.x/ dx, and the deriva-

tive of
R
f.x/dx is f.x/, Formula (5) is verified. The reader should verify the other for-

mulas. Formula (6) can be extended to any number of terms.
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Table 14.1 Elementary Integration Formulas

1.
Z

k dx D kxC C k is a constant

2.
Z

xa dx D
xaC1

aC 1
C C a ¤ �1

3.
Z

x�1 dx D
Z

1
x
dx D

Z
dx
x
D ln xC C for x > 0

4.
Z

ex dx D ex C C

5.
Z

kf.x/ dx D k
Z

f.x/ dx k is a constant

6.
Z
. f.x/˙ g.x// dx D

Z
f.x/ dx˙

Z
g.x/ dx

EXAMPLE 2 Indefinite Integrals of a Constant and of a Power of x

a. Find
Z

1dx.

Solution: By Formula (1) with k D 1Z
1dx D 1xC C D xC C

Usually, we write
R
1dx as

R
dx. Thus,

R
dx D xC C.

b. Find
Z

x5dx.

Solution: By Formula (2) with a D 5,Z
x5dx D

x5C1

5C 1
C C D

x6

6
C C

Now Work Problem 3 G

EXAMPLE 3 Indefinite Integral of a Constant Times a Function

Find
Z

7xdx.

APPLY IT I
2. If the rate of change of a com-
pany’s revenues can be modeled by
dR=dt D 0:12t2, find

R
0:12t2dt, which

gives the company’s revenue function to
within a constant.

Solution: By Formula (5) with k D 7 and f.x/ D x,Z
7x dx D 7

Z
x dx

Since x is x1, by Formula (2) we haveZ
x1 dx D

x1C1

1C 1
C C1 D

x2

2
C C1

Only a constant factor of the integrand
can be passed through an integral sign.

where C1 is the constant of integration. Therefore,Z
7x dx D 7

Z
x dx D 7

�
x2

2
C C1

�
D

7
2
x2 C 7C1

Since 7C1 is just an arbitrary constant, we will replace it by C for simplicity. Thus,Z
7x dx D

7
2
x2 C C
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It is not necessary to write all intermediate steps when integrating. More simply,
we write Z

7xdx D .7/
x2

2
C C D

7
2
x2 C C

Now Work Problem 5 G

EXAMPLE 4 Indefinite Integral of a Constant Times a Function

Find
Z
�
3
5
exdx

Solution: Z
�
3
5
exdx D �

3
5

Z
exdx Formula (5)

D �
3
5
ex C C Formula (4)

Now Work Problem 21 G

APPLY IT I
3. Due to new competition, the num-
ber of subscriptions to a certain mag-

azine is declining at a rate of
dS
dt
D

�
480

t3
subscriptions per month, where t

is the number of months since the com-
petition entered the market. Find the
form of the equation for the number of
subscribers to the magazine.

EXAMPLE 5 Finding Indefinite Integrals

a. Find
Z

1
p
t
dt.

Solution: Here t is the variable of integration. We rewrite the integrand so that a basic
formula can be used. Since 1=

p
t D t�1=2, applying Formula (2) givesZ

1
p
t
dt D

Z
t�1=2dt D

t.�1=2/C1

�
1
2
C 1
C C D

t1=2

1
2

C C D 2
p
tC C

b. Find
Z

1
6x3

dx

Solution:
Z

1
6x3

dx D
1
6

Z
x�3dx D

�
1
6

�
x�3C1

�3C 1
C C

D �
x�2

12
C C D �

1
12x2

C C

Now Work Problem 9 G

EXAMPLE 6 Indefinite Integral of a Sum

Find
Z
.x2 C 2x/dx.

APPLY IT I
4. The rate of growth of the popula-
tion of a new city is estimated to be
dN=dt D 500 C 300

p
t, where t is in

years. Find
R
.500C 300

p
t/dt. Solution: By Formula (6),Z

.x2 C 2x/ dx D
Z

x2 dxC
Z

2x dx

Now, Z
x2 dx D

x2C1

2C 1
C C1 D

x3

3
C C1



Haeussler-50501 M15_HAEU1107_14_SE_C14 October 16, 2017 16:47

Section 14.2 The Indefinite Integral 629

and Z
2x dx D 2

Z
x dx D .2/

x1C1

1C 1
C C2 D x2 C C2

Thus, Z
.x2 C 2x/ dx D

x3

3
C x2 C C1 C C2

For convenience, we will replace the constant C1 C C2 by C. We then haveZ
.x2 C 2x/ dx D

x3

3
C x2 C C

When integrating an expression involving
more than one term, only one constant of
integration is needed.

Omitting intermediate steps, we simply integrate term by term and writeZ
.x2 C 2x/dx D

x3

3
C .2/

x2

2
C C D

x3

3
C x2 C C

Now Work Problem 11 G

EXAMPLE 7 Indefinite Integral of a Sum and Difference

Find
Z
.2

5
p
x4 � 7x3 C 10ex � 1/dx.

APPLY IT I
5. Suppose the rate of savings
in the United States is given by
dS
dt
D 2:1t2 � 65:4tC 491:6, where t is

the time in years and S is the amount of
money saved in billions of dollars. Find
the form of the equation for the amount
of money saved.

Solution:Z
.2

5
p
x4 � 7x3 C 10ex � 1/dx

D 2
Z

x4=5dx � 7
Z

x3dxC 10
Z

exdx �
Z

1dx Formulas (5) and (6)

D .2/
x9=5

9
5

� .7/
x4

4
C 10ex � xC C Formulas (1), (2), and (4)

D
10
9
x9=5
�
7
4
x4 C 10ex � xC C

Now Work Problem 15 G

Sometimes, in order to apply the basic integration formulas, it is necessary first to
perform algebraic manipulations on the integrand, as Example 8 shows.

EXAMPLE 8 Using Algebraic Manipulation to Find an
Indefinite Integral

Find
Z

y2
�
yC

2
3

�
dy

Solution: The integrand does not fit a familiar integration form. However, by multi-
plying the integrand we get

In Example 8, we first multiplied the
factors in the integrand. The answer
could not have been found simply in

terms of
R
y2dy and

R
.yC

2
3
/dy. There is

not a formula for the integral of a general
product of functions.

Z
y2
�
yC

2
3

�
dy D

Z �
y3 C

2
3
y2
�

dy

D
y4

4
C

�
2
3

�
y3

3
C C D

y4

4
C

2y3

9
C C

Now Work Problem 41 G
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EXAMPLE 9 Using Algebraic Manipulation to Find an
Indefinite Integral

a. Find
Z
.2x � 1/.xC 3/

6
dx.

Solution: By factoring out the constant 1
6 and multiplying the binomials, we getZ

.2x � 1/.xC 3/
6

dx D
1
6

Z
.2x2 C 5x � 3/ dx

D
1
6

�
.2/

x3

3
C .5/

x2

2
� 3x

�
C C

D
x3

9
C

5x2

12
�

x
2
C C

b. Find
Z

x3 � 1
x2

dx.
Another algebraic approach to part (b) isZ

x3 � 1

x2
dx D

Z
.x3 � 1/x�2 dx

D

Z
.x � x�2/ dx

and so on.

Solution: We can break up the integrand into fractions by dividing each term in the
numerator by the denominator:Z

x3 � 1
x2

dx D
Z �

x3

x2
�

1
x2

�
dx D

Z
.x � x�2/ dx

D
x2

2
�

x�1

�1
C C D

x2

2
C

1
x
C C

Now Work Problem 49 G

PROBLEMS 14.2
In Problems 1–52, find the indefinite integrals.

1.
Z

7 dx 2.
Z

1
x
dx

3.
Z

x8 dx 4.
Z

3x37dx

5.
Z

5x�7 dx 6.
Z

z�3

3
dz

7.
Z

5
x7

dx 8.
Z

7
x4

dx

9.
Z

1

t5=2
dt 10.

Z
7

2x9=4
dx

11.
Z
.4C t/ dt 12.

Z
.7r5 C 4r2 C 1/ dr

13.
Z
.y5 � 5y/ dy 14.

Z
.2 � 3w � 5w2/dw

15.
Z
.3t2 � 4tC 5/ dt 16.

Z
.1C t2 C t4 C t6/ dt

17.
Z
.
p
2C e/ dx 18.

Z
.5 � 2�1/dx

19.
�
x
7
�
2
3
x5
�

20.
Z �

2x2

7
�
8
3
x4
�

dx

21.
Z
�ex dx 22.

Z
.ex C 3x2 C 2x/ dx

23.
Z
.x8:3
� 9x6 C 3x�4

C x�3/ dx

24.
Z
.0:3y4 C 2y�2/dy

25.
Z
�2
p
x

3
dx 26.

Z
dz

27.
Z

5

3 3
p
x2

dx 28.
Z
�4
.3x/3

dx

29.
Z �

x4

4
�

4
x4

�
dx 30.

Z �
1
2x3
�

1
x4

�
dx

31.
Z �

3w2

2
�

2
3w2

�
dw 32.

Z
7e�s ds

33.
Z

3u � 4
5

du 34.
Z

1
e

�
2
3
ex
�
dx

35.
Z
.ue C eu/ du 36.

Z �
3y3 � 2y2 C

ey

6

�
dy

37.
Z �

3
p
x
� 12 3
p
x
�

dx 38.
Z

0 dt

39.
Z  

5
p
x3

5
�

2

5
p
x
C 711x

!
dx

40.
Z �

3
p
uC

1
p
u

�
du 41.

Z
.x2 C 5/.x � 3/ dx
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42.
Z

x3.x2 C 5xC 2/ dx 43.
Z
p
x.xC 3/ dx

44.
Z
.z � 3/3dz 45.

Z
.3uC 2/3 du

46.
Z �

2
5
p
x
� 1

�2

dx 47.
Z

x�2.3x4 C 4x2 � 5/ dx

48.
Z
.6eu � u3.

p
uC 1// du 49.

Z
z5 C 7z2

3z
dz

50.
Z

x4 � 5x2 C 2x
5x2

dx 51.
Z

ex C e2x

ex
dx

52.
Z
.x2 C 1/3

x
dx

53. If F.x/ and G.x/ are such that F0.x/ D G0.x/, is it true that
F.x/ � G.x/ must be zero?

54. (a) Find a function F such that
R
F.x/dx D x2ex C C.

(b) How many functions F are there which satisfy the equation
given in part (a)?

55. Find
Z

d
dx

�
1

p
x2 C 1

�
dx.

Objective 14.3 Integration with Initial Conditions
To find a particular antiderivative
of a function that satisfies certain
conditions. This involves evaluating
constants of integration.

If we know the rate of change, f 0, of the function f, then the function f itself is an
antiderivative of f 0 (since the derivative of f is f 0). Of course, there are many antideriva-
tives of f 0, and themost general one is denoted by the indefinite integral. For example, if

f 0.x/ D 2x

then

f.x/ D
Z

f 0.x/dx D
Z

2xdx D x2C: (1)

That is, any function of the form f.x/ D x2C C has its derivative equal to 2x. Because
of the constant of integration, notice that we do not know f.x/ specifically. However, if f
must assume a certain function value for a particular value of x, then we can determine
the value of C and thus determine f.x/ specifically. For instance, if f.1/ D 4, then, from
Equation (1),

f.1/ D 12 C C

4 D 1C C

C D 3

Thus,

f.x/ D x2 C 3

That is, we now know the particular function f.x/ for which f 0.x/ D 2x and f.1/ D 4.
The condition f.1/ D 4, which gives a function value of f for a specific value of x, is
called an initial condition.

EXAMPLE 1 Initial-Condition Problem

If y is a function of x such that y0 D 8x�4 and y.2/ D 5, find y. (Note: y.2/ D 5 means
that y D 5 when x D 2.) Also, find y.4/.

APPLY IT I
6. The rate of growth of a species of

bacteria is estimated by
dN
dt
D 800 C

200et, whereN is the number of bacteria
(in thousands) after t hours. If N.5/ D
40;000, find N.t/.

Solution: Here y.2/ D 5 is the initial condition. Since y0 D 8x�4, y is an antiderivative
of 8x � 4,

y D
Z
.8x � 4/dx D 8 �

x2

2
� 4xC C D 4x2 � 4xC C (2)

We can determine the value of C by using the initial condition. Because y D 5 when
x D 2, from Equation (2), we have

5 D 4.2/2 � 4.2/C C

5 D 16 � 8C C

C D �3
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Replacing C by �3 in Equation (2) gives the function that we seek:

y D 4x2 � 4x � 3 (3)

To find y.4/, we let x D 4 in Equation (3):

y.4/ D 4.4/2 � 4.4/ � 3 D 64 � 16 � 3 D 45

Now Work Problem 1 G

EXAMPLE 2 Initial-Condition Problem Involving y00

Given that y00 D x2 � 6, y0.0/ D 2, and y.1/ D �1, find y.

APPLY IT I
7. The acceleration of an object after
t seconds is given by y00 D 84t C 24,
the velocity at 8 seconds is given by
y0.8/ D 2891 ft/s, and the position at
2 seconds is given by y.2/ D 185 ft.
Find y.t/.

Solution:

Strategy To go from y00 to y, two integrations are needed: the first to take us from
y00 to y0 and the other to take us from y0 to y. Hence, there will be two constants of
integration, which we will denote by C1 and C2.

Since y00 D
d
dx
.y0/ D x2 � 6, y0 is an antiderivative of x2 � 6. Thus,

y0
D

Z
.x2 � 6/dx D

x3

3
� 6xC C1 (4)

Now, y0.0/ D 2 means that y0 D 2 when x D 0; therefore, from Equation (4), we have

2 D
03

3
� 6.0/C C1

Hence, C1 D 2, so

y0
D

x3

3
� 6xC 2

By integration, we can find y:

y D
Z �

x3

3
� 6xC 2

�
dx

D

�
1
3

�
x4

4
� .6/

x2

2
C 2xC C2

so

y D
x4

12
� 3x2 C 2xC C2 (5)

Now, since y D �1 when x D 1, we have, from Equation (5),

�1 D
14

12
� 3.1/2 C 2.1/C C2

Thus, C2 D �
1
12
, so

y D
x4

12
� 3x2 C 2x �

1
12

Now Work Problem 5 G

Integration with initial conditions is applicable to many applied situations, as the
next three examples illustrate.
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EXAMPLE 3 Income and Education

For a particular urban group, sociologists studied the current average yearly income, y
(in dollars), that a person can expect to receive with x years of education before seeking
regular employment. They estimated that the rate at which income changes with respect
to education is given by

dy
dx
D 100x3=2 4 � x � 16

where y D 28;720 when x D 9. Find y.

Solution: Here y is an antiderivative of 100x3=2. Thus,

y D
Z

100x3=2 dx D 100
Z

x3=2 dx

D .100/
x5=2

5
2

C C

y D 40x5=2
C C (6)

The initial condition is that y D 28;720 when x D 9. By putting these values into
Equation (6), we can determine the value of C:

28;720 D 40.9/5=2
C C

D 40.243/C C

28;720 D 9720C C

Therefore, C D 19;000, and

y D 40x5=2
C 19;000

Now Work Problem 17 G

EXAMPLE 4 Finding the Demand Function from Marginal Revenue

If the marginal-revenue function for a manufacturer’s product is

dr
dq
D 2000 � 20q � 3q2

find the demand function.

Solution:

Strategy By integrating dr=dq and using an initial condition, we can find the
revenue function, r. But revenue is also given by the general relationship r D pq,
where p is the price per unit. Thus, p D r=q. Replacing r in this equation by the
revenue function yields the demand function.

Since dr=dq is the derivative of total revenue, r,

r D
Z
.2000 � 20q � 3q2/ dq

D 2000q � .20/
q2

2
� .3/

q3

3
C C

so that

r D 2000q � 10q2 � q3 C C (7)
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We assume that when no units are sold, there is no revenue; that is, r D 0 when q D 0.Revenue is 0 when q is 0.
This is our initial condition. Putting these values into Equation (7) gives

0 D 2000.0/ � 10.0/2 � 03 C C

Hence, C D 0, andAlthough q D 0 gives C D 0, this is not
true in general. It occurs in this section
because the revenue functions are
polynomials. In later sections, evaluating
at q D 0 may produce a nonzero value
for C.

r D 2000q � 10q2 � q3

To find the demand function, we use the fact that p D r=q and substitute for r:

p D
r
q
D

2000q � 10q2 � q3

q

p D 2000 � 10q � q2

Now Work Problem 11 G

EXAMPLE 5 Finding Cost from Marginal Cost

In the manufacture of a product, fixed costs per week are $4000. Fixed costs are costs,
such as rent and insurance, that remain constant at all levels of production during a
given time period. If the marginal-cost function is

dc
dq
D 0:000001.0:002q2 � 25q/C 0:2

where c is the total cost (in dollars) of producing q kilograms of product per week, find
the cost of producing 10,000 kg in 1 week.

Solution: Since dc=dq is the derivative of the total cost c,

c.q/ D
Z
.0:000001.0:002q2 � 25q/C 0:2/dq

D 0:000001
Z
.0:002q2 � 25q/dqC

Z
0:2dq

c.q/ D 0:000001
�
0:002q3

3
�
25q2

2

�
C 0:2qC C

Fixed costs are constant regardless of output. Therefore, when q D 0, c D 4000,When q is 0, total cost is equal to
fixed cost. which is our initial condition. Putting c.0/ D 4000 in the last equation, we find that

C D 4000, so

c.q/ D 0:000001
�
0:002q3

3
�
25q2

2

�
C 0:2qC 4000 (8)

From Equation (8), we have c.10; 000/ D 5416
2
3
. Thus, the total cost for producing

Although q D 0 gives C a value equal to
fixed costs, this is not true in general. It
occurs in this section because the cost
functions are polynomials. In later
sections, evaluating at q D 0 may
produce a value for C that is different
from fixed cost.

10,000 pounds of product in 1 week is $5416.67.

Now Work Problem 15 G

PROBLEMS 14.3
In Problems 1 and 2, find y, subject to the given conditions.

1. dy=dx D 3x � 4I y.�1/ D 13
2

2. dy=dx D x2 � xI y.3/ D 19
2

In Problems 3 and 4, if y satisfies the given conditions, find y.x/
for the given value of x.

3. y0 D
9

8
p
x
, y.16/ D 10; x D 9

4. y0 D � x2 C 2x; y.2/ D 1I x D 1

In Problems 5–8, find y, subject to the given conditions.

5. y00 D �5x2 C 2xI y0.1/ D 0; y.0/ D 3

6. y00 D xC 1I y0.0/ D 0; y.0/ D 5

7. y000 D 2xI y00.�1/ D 3; y0.3/ D 10; y.0/ D 13

8. y000 D 2e�x C 3I y00.0/ D 7; y0.0/ D 5; y.0/ D 1
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In Problems 9–12, dr=dq is a marginal-revenue function. Find the
demand function.

9. dr=dq D 0:7 10. dr=dq D 12 �
1
15

q

11. dr=dq D 275 � q � 0:3q2 12. dr=dq D 5;000 � 3.2qC 2q3/

In Problems 13–16, dc=dq is a marginal-cost function and fixed
costs are indicated in braces. For Problems 13 and 14, find the
total-cost function. For Problems 15 and 16, find the total cost for
the indicated value of q.

13. dc=dq D 2:47I f159g 14. dc=dq D 2qC 75I f2000g

15. dc=dq D 0:09q2 � 1:4qC 6:7I f8500gI q D 20

16. dc=dq D 0:000204q2 � 0:046qC 6I f15;000gI q D 200

17. Diet for Rats A group of biologists studied the nutritional
effects on rats that were fed a diet containing 10% protein.2 The
protein consisted of yeast and corn flour.

Over a period of time, the group found that the (approximate) rate
of change of the average weight gain G (in grams) of a rat with
respect to the percentage P of yeast in the protein mix was

dG
dP
D �

P
25
C 2 0 � P � 100

If G D 38 when P D 10, find G.

18. Winter Moth A study of the winter moth was made in
Nova Scotia.3 The prepupae of the moth fall onto the ground from
host trees. It was found that the (approximate) rate at which
prepupal density, y (the number of prepupae per square foot of
soil), changes with respect to distance, x (in feet), from the base
of a host tree is

dy
dx
D �1:5 � x 1 � x � 9

If y D 59:6 when x D 1, find y.

19. Fluid Flow In the study of the flow of fluid in a tube of
constant radius R, such as blood flow in portions of the body, one
can think of the tube as consisting of concentric tubes of radius r,
where 0 � r � R. The velocity, v, of the fluid is a function of r
and is given by4

v D
Z
�
.P1 � P2/r

2l�
dr

where P1 and P2 are pressures at the ends of the tube, � (a Greek
letter read “eta”) is fluid viscosity, and l is the length of the tube.
If v D 0 when r D R, show that

v D
.P1 � P2/.R2 � r2/

4l�

20. Elasticity of Demand The sole producer of a product has
determined that the marginal-revenue function is

dr
dq
D 800 � 6q2

Determine the point elasticity of demand for the product when
q D 5. (Hint: First find the demand function.)

21. Average Cost A manufacturer has determined that the
marginal-cost function is

dc
dq
D 0:003q2 � 0:4qC 40

where q is the number of units produced. If marginal cost is
$27.50 when q D 50 and fixed costs are $5000, what is the
average cost of producing 100 units?

22. If f 00.x/ D 30x4 C 12x and f 0.1/ D 10, evaluate

f.965:335245/ � f.�965:335245/

Objective 14.4 More Integration Formulas
To learn and apply the formulas forZ

uadu,
Z

euxdu, and
Z

1
u
du.

Power Rule for Integration
The formula Z

xa dx D
xaC1

nC 1
C C if a ¤ �1

which applies to a power of x, can be generalized to handle a power of a function
of x. Let u be a differentiable function of x. By the power rule for differentiation, if
a ¤ �1, then

d
dx

�
.u.x//aC1

aC 1

�
D
.aC 1/.u.x//a � u0.x/

aC 1
D .u.x//a � u0.x/

2Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in Single-Cell Protein, eds. R. I. Mateles and
S. R. Tannenbaum (Cambridge, MA: MIT Press, 1968).
3Adapted from D. G. Embree, “The Population Dynamics of the Winter Moth in Nova Scotia, 1954–1962,”
Memoirs of the Entomological Society of Canada, no. 46 (1965).
4R. W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill, 1955).
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Thus, Z
.u.x//a � u0.x/ dx D

.u.x//aC1

aC 1
C C a ¤ �1

We call this the power rule for integration. Note that u0.x/dx is the differential of u,
namely, du. If we abbreviate u.x/ by u and replace u0.x/dx by du, we get

Power Rule for Integration If u is differentiable, thenZ
uadu D

uaC1

aC 1
C C if a ¤ �1 (1)

It is important to appreciate the difference between the power rule for integration and
the formula for

R
xadx. In the power rule, u represents a function of x.

EXAMPLE 1 Applying the Power Rule for Integration

a. Find
Z
.xC 1/20dx.

Solution: Since the integrand is a power of the function xC 1, we will set u D xC 1.
Then du D dx, and

R
.xC1/20dx has the form

R
u20du. By the power rule for integration,Z

.xC 1/20dx D
Z

u20du D
u21

21
C C D

.xC 1/21

21
C C

Note that we give our answer not in terms of u, but explicitly in terms of x.

b. Find
Z

3x2.x3 C 7/3dx.

Solution: We observe that the integrand contains a power of the function x3 C 7. Let
u D x3C 7. Then du D 3x2dx. Fortunately, 3x2 appears as a factor in the integrand and
we have Z

3x2.x3 C 7/3dx D
Z
.x3 C 7/3.3x2dx/ D

Z
u3du

D
u4

4
C C D

.x3 C 7/4

4
C C

Now Work Problem 3 G

This example is more typical than
Example 1(a). Note again that
du D 3x2dx.

In order to apply the power rule for integration, sometimes an adjustment must be
made to obtain du in the integrand, as Example 2 illustrates.

EXAMPLE 2 Adjusting for du

Find
Z

x
p
x2 C 5dx.

Solution: We can write this as
R
x.x2 C 5/1=2dx. Notice that the integrand contains a

power of the function x2C 5. If u D x2C 5, then du D 2xdx. Since the constant factor
2 in du does not appear in the integrand, this integral does not have the form

R
undu.

However, from du D 2xdx we can write xdx D
du
2
so that the integral becomesZ

x.x2 C 5/1=2dx D
Z
.x2 C 5/1=2.xdx/ D

Z
u1=2 du

2
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Moving the constant factor 1
2 in front of the integral sign, we haveZ

x.x2 C 5/1=2dx D
1
2

Z
u1=2du D

1
2

0B@u3=2

3
2

1CAC C D
1
3
u3=2
C C

which, in terms of x, as is required, givesThe answer to an integration problem
must be expressed in terms of the
original variable. Z

x
p
x2 C 5dx D

.x2 C 5/3=2

3
C C

Now Work Problem 15 G

In Example 2, the integrand x
p
x2 C 5 missed being of the form .u.x//1=2u0.x/

by the constant factor of 2. In general, if we have
Z
.u.x//a

u0.x/
k

dx, for k a nonzero

constant, then we can writeZ
.u.x//a

u0.x/
k

dx D
Z

ua
du
k
D

1
k

Z
uadu

to simplify the integral, but such adjustments of the integrand are not possible for vari-

It must be stressed strongly that the k in
this displayed equation cannot be
variable. The equation applies only for
nonzero constants.

able factors.
When using the form

R
uadu, do not neglect du. For example,Z
.4xC 1/2dx ¤

.4xC 1/3

3
C C

The correct way to do this problem is as follows. Let u D 4xC1, from which it follows

that du D 4dx. Thus dx D
du
4
andZ

.4xC 1/2dx D
Z

u2
�
du
4

�
D

1
4

Z
u2du D

1
4
�
u3

3
C C D

.4xC 1/3

12
C C

EXAMPLE 3 Applying the Power Rule for Integration

a. Find
Z

3
p
6ydy.

Solution: The integrand is .6y/1=3, a power of a function. However, in this case the
obvious substitution u D 6y can be avoided. More simply, we haveZ

3
p
6ydy D

Z
61=3y1=3dy D 3

p
6
Z

y1=3dy D 3
p
6
y4=3

4
3

C C D
3 3
p
6

4
y4=3
C C

b. Find
Z

2x3 C 3x
.x4 C 3x2 C 7/4

dx.

Solution: We can write this as
R
.x4 C 3x2 C 7/�4.2x3 C 3x/dx. Let us try to use the

power rule for integration. If u D x4C 3x2C 7, then du D .4x3C 6x/dx, which is two

times the quantity .2x3C 3x/dx in the integral. Thus, .2x3C 3x/dx D
du
2
and we again

illustrate the adjustment technique:Z
.x4 C 3x2 C 7/�4..2x3 C 3x/dx/ D

Z
u�4

�
du
2

�
D

1
2

Z
u�4du

D
1
2
�
u�3

�3
C C D �

1
6u3
C C D �

1
6.x4 C 3x2 C 7/3

C C

Now Work Problem 5 G
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In using the power rule for integration, take care when making a choice for u.
In Example 3(b), letting u D 2x3 C 3x does not lead very far. At times it may be
necessary to try many different choices. Sometimes a wrong choice will provide a hint
as to what does work. Skill at integration comes only after many hours of practice
and conscientious study.

EXAMPLE 4 An Integral to Which the Power Rule Does Not Apply

Find
Z

4x2.x4 C 1/2dx.

Solution: If we set u D x4C1, then du D 4x3dx. To get du in the integral, we need an
additional factor of the variable x. However, we can adjust only for constant factors.
Thus, we cannot use the power rule. Instead, to find the integral, we will first expand
.x4 C 1/2: Z

4x2.x4 C 1/2dx D 4
Z

x2.x8 C 2x4 C 1/dx

D 4
Z
.x10 C 2x6 C x2/dx

D 4
�
x11

11
C

2x7

7
C

x3

3

�
C C

Now Work Problem 67 G

Integrating Natural Exponential Functions
We now turn our attention to integrating exponential functions. If u is a differentiable
function of x, then

d
dx
.eu/ D eu

du
dx

Corresponding to this differentiation formula is the integration formulaZ
eu
du
dx

dx D eu C C

But
du
dx

dx is the differential of u, namely, du. Thus,

Z
eudu D eu C C (2)

APPLY IT I
8. When an object is moved from
one environment to another, its tem-
perature, T, changes at a rate given by
dT
dt
D kCekt, where t is the time (in

hours) after changing environments, C
is the temperature difference (original
minus new) between the environments,
and k is a constant. If the original envi-
ronment is 70ı, the new environment
is 60ı, and k D �0:5, find the general
form of T.t/.

EXAMPLE 5 Integrals Involving Exponential Functions

a. Find
Z

2xex
2
dx.

Solution: Let u D x2. Then du D 2xdx, and, by Equation (2),Z
2xex

2
dx D

Z
ex

2
.2xdx/ D

Z
eudu

D eu C C D ex
2
C C
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b. Find
Z
.x2 C 1/ex

3C3xdx.

Solution: If u D x3 C 3x, then du D .3x2 C 3/dx D 3.x2 C 1/dx. If the integrand
contained a factor of 3, the integral would have the form

R
eudu. Thus, we writeZ

.x2 C 1/ex
3C3x dx D

Z
ex

3C3xŒ.x2 C 1/ dx�

D
1
3

Z
eu du D

1
3
eu C C

D
1
3
ex

3C3x
C C

where in the second stepwe replaced .x2C1/dx by
1
3
du but wrote

1
3
outside the integral.

Now Work Problem 41 G

Integrals Involving Logarithmic Functions
As we know, the power-rule formula

R
uadu D uaC1=.aC1/CC does not apply when

a D �1. To handle that situation, namely,
Z

u�1du D
Z

1
u
du, we first recall from

Section 12.1 that

d
dx
.ln juj/ D

1
u
du
dx

for u ¤ 0

which gives us the integration formulaZ
1
u
du D ln juj C C for u ¤ 0 (3)

In particular, if u D x, then du D dx, andZ
1
x
dx D ln jxj C C for x ¤ 0 (4)

APPLY IT I
9. If the rate of vocabulary memoriza-
tion of the average student in a for-

eign language is given by
dv
dt
D

35
tC 1

,

where v is the number of vocabulary
words memorized in t hours of study,
find the general form of v.t/.

EXAMPLE 6 Integrals Involving
1
u
du

a. Find
Z

7
x
dx.

Solution: From Equation (4),Z
7
x
dx D 7

Z
1
x
dx D 7 ln jxj C C

Using properties of logarithms, we can write this answer another way:Z
7
x
dx D ln jx7j C C

b. Find
Z

2x
x2 C 5

dx.

Solution: Let u D x2 C 5. Then du D 2xdx. From Equation (3),Z
2x

x2 C 5
dx D

Z
1

x2 C 5
.2xdx/ D

Z
1
u
du

D ln juj C C D ln jx2 C 5j C C
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Since x2 C 5 is always positive, we can omit the absolute-value bars:Z
2x

x2 C 5
dx D ln.x2 C 5/C C

Now Work Problem 31 G

EXAMPLE 7 An Integral Involving
1
u
du

Find
Z
.2x3 C 3x/dx
x4 C 3x2 C 7

.

Solution: If u D x4 C 3x2 C 7, then du D .4x3 C 6x/dx, which is two times the

numerator giving .2x3 C 3x/dx D
du
2
. To apply Equation (3), we writeZ

2x3 C 3x
x4 C 3x2 C 7

dx D
1
2

Z
1
u
du

D
1
2
ln juj C C

D
1
2
ln jx4 C 3x2 C 7j C C Rewrite u in terms of x.

D
1
2
ln.x4 C 3x2 C 7/C C x4 C 3x2 C 7 > 0 for all x

Now Work Problem 51 G

EXAMPLE 8 An Integral Involving Two Forms

Find
Z �

1
.1 � w/2

C
1

w � 1

�
dw.

Solution:Z �
1

.1 � w/2
C

1
w � 1

�
dw D

Z
.1 � w/�2dwC

Z
1

w � 1
dw

D �1
Z
.1 � w/�2.�dw/C

Z
1

w � 1
dw

The first integral has the form
R
u�2 du, and the second has the form

Z
1
v
dv. Thus,Z �

1
.1 � w/2

C
1

w � 1

�
dw D �

.1 � w/�1

�1
C ln jw � 1j C C

D
1

1 � w
C ln jw � 1j C C

G

PROBLEMS 14.4
In Problems 1–80, find the indefinite integrals.

1.
Z
.xC 3/5dx 2.

Z
15.xC 2/4 dx

3.
Z

2x.x2 C 3/5 dx 4.
Z
.4xC 3/.2x2 C 3xC 1/ dx

5.
Z
.3y2 C 6y/.y3 C 3y2 C 1/2=3 dy

6.
Z
.12t2 � 4tC 3/.4t3 � 2t2 C 3t/8dt

7.
Z

5
.3x � 1/3

dx 8.
Z

4x
.2x2 � 7/10

dx

9.
Z
p
7xC 3 dx 10.

Z
1

p
x � 5

dx

11.
Z
.5x � 2/5dx 12.

Z
x2.3x3 C 7/3 dx

13.
Z

u.5u2 � 9/14 du 14.
Z

x
p
3C 5x2 dx
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15.
Z

4x4.27C x5/1=3 dx 16.
Z
.3 � 2x/7dx

17.
Z

3e3x dx 18.
Z

5e3tC7 dt

19.
Z
.3tC 1/e3t

2C2tC1 dt 20.
Z
�3w2e�w3

dw

21.
Z

3xe5x
2
dx 22.

Z
x3e4x

4
dx

23.
Z

4e�3x dx 24.
Z

24x5e�2x6C7 dx

25.
Z

1
xC 5

dx 26.
Z

302 C 8xC 6
3xC 2x2 C 5x3

dx

27.
Z

3x2 C 4x3

x3 C x4
dx 28.

Z
6x2 � 6x

1 � 3x2 C 2x3
dx

29.
Z

8z
.z2 � 5/7

dz 30.
Z

3
.5v � 1/4

dv

31.
Z

7
x
dx 32.

Z
3

1C 2y
dy

33.
Z

s2

s3 C 5
ds 34.

Z
32x3

4x4 C 9
dx

35.
Z

5
4 � 2x

dx 36.
Z

4t
3t2 C 1

dt

37.
Z
p
5x dx 38.

Z
1

.3x/6
dx

39.
Z

x
p
ax2 C b

dx 40.
Z

9
1 � 3x

dx

41.
Z

2y3ey
4C1dy 42.

Z
2
p
2x � 1 dx

43.
Z

v2e�2v3C1 dv 44.
Z

x2 C xC 1

3
q
x3 C 3

2x
2 C 3x

dx

45.
Z
.e�5x

C 2ex/ dx 46.
Z

7 5
p
yC 3dy

47.
Z
.8xC 10/.7 � 2x2 � 5x/3 dx

48.
Z

2ye3y
2
dy 49.

Z
6x2 C 8
x3 C 4x

dx

50.
Z
.ex C 2e�3x

� e5x/ dx 51.
Z

24sC 16
1C 4sC 3s2

ds

52.
Z
.6t2 C 4t/.t3 C t2 C 1/6 dt

53.
Z

x.2x2 C 1/�1 dx

54.
Z
.45w4

C 18w2
C 12/.3w5

C 2w3
C 4/�4 dw

55.
Z
�.x2 � 2x5/.x3 � x6/�10 dx

56.
Z

2
7
.vC 4/e2C8vCv2dv 57.

Z
.2x3 C x/.x4 C x2/ dx

58.
Z
.e3:1/2 dx 59.

Z
9C 18x

.5 � x � x2/4
dx

60.
Z
.ex � e�x/2 dx 61.

Z �
9
2
x3 C 5x

�
e3x

3C5x2C2dx

62.
Z
.u3 � ue6�3u2/ du 63.

Z
x
p
.8 � 5x2/3 dx

64.
Z

eax dx 65.
Z �
p
2x �

1
p
2x

�
dx

66.
Z

4
x7

ex8
dx 67.

Z
.x2 C 1/2 dx

68.
Z �

x.x2 � 16/2 �
1

2xC 5

�
dx

69.
Z �

x
x2 C 1

C
x

.x2 C 1/2

�
dx 70.

Z �
3

x � 1
C

1
.x � 1/2

�
dx

71.
Z �

3
5xC 2

� .5x2 C 10x5/.x3 C x6/�5
�
dx

72.
Z
.r3 C 5/2 dr 73.

Z �
p
3xC 1 �

x
x2 C 3

�
dx

74.
Z �

x
7x2 C 2

�
x2

.x3 C 2/4

�
dx

75.
Z

e
p

x

p
x
dx 76.

Z
.e7 � 7e/dx

77.
Z

1C e2x

4ex
dx 78.

Z
2
t2

r
1
t
C 9 dt

79.
Z

4xC 3
2x2 C 3x

ln.2x2 C 3x/dx 80.
Z

3
p
xe

3p
8x4 dx

In Problems 81–84, find y, subject to the given conditions.

81. y0 D .5 � 7x/3I y.0/ D 2 82. y0 D
x

x2 C 6
I y.1/ D 0

83. y00 D
1
x2
I y0.�2/ D 3; y.1/ D 2

84. y00 D .xC 1/1=2I y0.8/ D 19, y.24/ D 2572
3

85. Real Estate The rate of change of the value of a house that

cost $350,000 to build can be modeled by
dV
dt
D 8e0:05t, where t is

the time in years since the house was built and V is the value (in
thousands of dollars) of the house. Find V.t/.

86. Life Span If the rate of change of the expected life span, l,
at birth of people born in Canada can be modeled by
dl
dt
D

12
2tC 50

, where t is the number of years after 1940 and the

expected life span was 63 years in 1940, find the expected life
span for people born in 2000.
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87. Oxygen in Capillary In a discussion of the diffusion of
oxygen from capillaries,5 concentric cylinders of radius r are used
as a model for a capillary. The concentration C of oxygen in the
capillary is given by

C D
Z �

Rr
2K
C

B1
r

�
dr

where R is the constant rate at which oxygen diffuses from the
capillary, and K and B1 are constants. Find C. (Write the constant
of integration as B2.)

88. Find f(2) if f
�
1
3

�
D 2 and f 0.x/ D e3xC2 � 3x.

Objective 14.5 Techniques of Integration
To discuss techniques of handling
more challenging integration problems,
namely, by algebraic manipulation and
by fitting the integrand to a familiar
form. To integrate an exponential
function with a base different from e
and to find the consumption function,
given the marginal propensity to
consume.

We turn now to some more difficult integration problems.
When integrating fractions, sometimes a preliminary division is needed to get

familiar integration forms, as the next example shows.

EXAMPLE 1 Preliminary Division before Integration

a. Find
Z

x3 C x
x2

dx.

Solution: A familiar integration form is not apparent. However, we can break up the
integrand into two fractions by dividing each term in the numerator by the denominator.
We then have Z

x3 C x
x2

dx D
Z �

x3

x2
C

x
x2

�
dx D

Z �
xC

1
x

�
dx

D
x2

2
C ln jxj C C

Here we split up the integrand.

b. Find
Z

2x3 C 3x2 C xC 1
2xC 1

dx.

Solution: Here the integrand is a quotient of polynomials in which the degree of the
numerator is greater than or equal to that of the denominator. In such a situation we first
use long division. Recall that if f and g are polynomials, with the degree of f greater than
or equal to the degree of g, then long division allows us to find, uniquely, polynomials
q and r, where either r is the zero polynomial or the degree of r is strictly less than the
degree of g, satisfying

f
g
D qC

r
g

Here we used long division to rewrite the
integrand.

Using an obvious, abbreviated notation, we see thatZ
f
g
D

Z �
qC

r
g

�
D

Z
qC

Z
r
g

Since integrating a polynomial is easy, we see that integrating rational functions reduces
to the task of integrating proper rational functions—those for which the degree of the
numerator is strictly less than the degree of the denominator. In the case here we obtainZ

2x3 C 3x2 C xC 1
2xC 1

dx D
Z �

x2 C xC
1

2xC 1

�
dx

D
x3

3
C

x2

2
C

Z
1

2xC 1
dx

D
x3

3
C

x2

2
C

1
2

Z
1

2xC 1
d.2xC 1/

D
x3

3
C

x2

2
C

1
2
ln j2xC 1j C C

Now Work Problem 1 G

5W. Simon, Mathematical Techniques for Physiology and Medicine (New York: Academic Press, Inc., 1972).
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EXAMPLE 2 Indefinite Integrals

a. Find
Z

1
p
x.
p
x � 2/3

dx.

Solution: We can write this integral as
Z
.
p
x � 2/�3

p
x

dx. Let us try the power rule for

integration with u D
p
x � 2. Then du D

1

2
p
x
dx, so that

dx
p
x
D 2 du, and

Here the integral is fit to the form to
which the power rule for integration
applies.

Z
.
p
x � 2/�3

p
x

dx D
Z
.
p
x � 2/�3

�
dx
p
x

�
D 2

Z
u�3du D 2

�
u�2

�2

�
C C

D �
1
u2
C C D �

1

.
p
x � 2/2

C C

b. Find
Z

1
x ln x

dx.

Solution: If u D ln x, then du D
1
x
dx, and

Here the integral fits the familiar formZ
1
u
du.

Z
1

x ln x
dx D

Z
1
ln x

�
1
x
dx
�
D

Z
1
u
du

D ln juj C C D ln j ln xj C C

c. Find
Z

5

w.lnw/3=2
dw.

Solution: If u D lnw, then du D
1
w
dw. Applying the power rule for integration, we

have

Here the integral is fit to the form to
which the power rule for integration
applies.

Z
5

w.lnw/3=2
dw D 5

Z
.lnw/�3=2

�
1
w
dw
�

D 5
Z

u�3=2du D 5 �
u�1=2

�
1
2

C C

D
�10

u1=2
C C D �

10

.lnw/1=2
C C

Now Work Problem 23 G

Integrating bu

In Section 14.4, we integrated an exponential function to the base e:Z
eudu D eu C C

Now let us consider the integral of an exponential function with an arbitrary base, b.Z
budu

To find this integral, we first convert to base e using

bu D e.ln b/u (1)

as we did in many differentiation examples, too. Example 3 will illustrate.
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EXAMPLE 3 An Integral Involving bu

Find
Z

23�xdx.

Solution:

Strategy We want to integrate an exponential function to the base 2. To do this,
we will first convert from base 2 to base e by using Equation (1).

Z
23�xdx D

Z
e.ln 2/.3�x/dx

The integrand of the second integral is of the form eu, where u D .ln 2/.3 � x/. Since
du D � ln 2dx, we can solve for dx and writeZ

e.ln 2/.3�x/dx D �
1
ln 2

Z
eudu

D �
1
ln 2

eu C C D �
1
ln 2

e.ln 2/.3�x/
C C D �

1
ln 2

23�x
C C

Thus, Z
23�xdx D �

1
ln 2

23�x
C C

Notice that we expressed our answer in terms of an exponential function to the base 2,
the base of the original integrand.

Now Work Problem 27 G

Generalizing the procedure described in Example 3, we can obtain a formula for
integrating bu:Z

budu D
Z

e.ln b/udu

D
1
ln b

Z
e.ln b/ud..ln b/u/ ln b is a constant

D
1
ln b

e.ln b/u
C C

D
1
ln b

bu C C

Hence, we have Z
budu D

1
ln b

bu C C

Applying this formula to the integral in Example 3 givesZ
23�xdx b D 2, u D 3 � x

D �

Z
23�xd.3 � x/ �d.3 � x/ D dx

D �
1
ln 2

23�x
C C

which is the same result that we obtained before.

Application of Integration
We will now consider an application of integration that relates a consumption function
to the marginal propensity to consume.
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EXAMPLE 4 Finding a Consumption Function from Marginal
Propensity to Consume

For a certain country, the marginal propensity to consume is given by

dC
dI
D

3
4
�

1

2
p
3I

where consumption C is a function of national income I. Here, I is expressed in large
denominations of money. Determine the consumption function for the country if it is
known that consumption is 10 .C D 10/ when I D 12.

Solution: Since the marginal propensity to consume is the derivative of C, we have

C D C.I/ D
Z �

3
4
�

1

2
p
3I

�
dI D

Z
3
4
dI �

1
2

Z
.3I/�1=2dI

D
3
4
I �

1
2

Z
.3I/�1=2dI

If we let u D 3I, then du D 3dI D d.3I/, and

C D
3
4
I �

�
1
2

�
1
3

Z
.3I/�1=2d.3I/

D
3
4
I �

1
6

.3I/1=2

1
2

C K

C D
3
4
I �

p
3I
3
C K

This is an example of an initial-value
problem. When I D 12, C D 10, so

10 D
3
4
.12/ �

p
3.12/

3
C K

10 D 9 � 2C K

Thus, K D 3, and the consumption function is

C D
3
4
I �

p
3I
3
C 3

Now Work Problem 61 G

PROBLEMS 14.5
In Problems 1–56, determine the indefinite integrals.

1.
Z

2x6 C 8x4 � 4x
2x2

dx 2.
Z

4x2 C 3
2x

dx

3.
Z
.3x2 C 2/

p
2x3 C 4xC 1 dx

4.
Z

x
4
p
x2 C 1

dx 5.
Z

3
p
4 � 5x

dx

6.
Z

2xex
2
dx

ex2 � 2
7.
Z

25xdx

8.
Z

5t dt 9.
Z

2x.7 � ex
2=4/ dx

10.
Z

ex C 1
ex

dx 11.
Z

6x2 � 11xC 5
3x � 1

dx

12.
Z
.3xC 1/.xC 3/

xC 2
dx 13.

Z
5e2x

7e2x C 4
dx

14.
Z

6.e4�3x/2 dx 15.
Z

5e13=x

x2
dx

16.
Z

2x4 � 6x3 C x � 2
x � 2

dx 17.
Z

2x3

x2 C 1
dx

18.
Z

5 � 4x2

3C 2x
dx 19.

Z
.
p
xC 2/2

3
p
x

dx
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20.
Z

5es

1C 3es
ds 21.

Z
5.x1=3 C 2/4

3
p
x2

dx

22.
Z p

aC
p
x

p
x

dx 23.
Z

ln x
x

dx

24.
Z
p
t.3 � t

p
t/0:6 dt 25.

Z
r
p
ln.r2 C 1/
r2 C 1

dr

26.
Z

9x5 � 6x4 � ex3

7x2
dx 27.

Z
.11/ln x

x
dx

28.
Z

4
x ln.2x2/

dx 29.
Z

x2
p
ex3C1 dx

30.
Z

axC b
cxC d

dx c ¤ 0 31.
Z

8
.xC 3/ ln.xC 3/

dx

32.
Z
.ee

e
C xe C ex/dx 33.

Z
x3 C x2 � x � 3

x2 � 3
dx

34.
Z

4x ln
p
1C x2

1C x2
dx 35.

Z
12x3

p
ln.x4 C 1/3

x4 C 1
dx

36.
Z

3.x2 C 2/�1=2xe
p

x2C2 dx 37.
Z �

x3 � 1
p
x4 � 4x

� ln 2
�
dx

38.
Z

x � x�2

x2 C 2x�1
dx 39.

Z
2x4 � 8x3 � 6x2 C 4

x3
dx

40.
Z

ex � e�x

ex C e�x
dx 41.

Z
x

xC 1
dx

42.
Z

4x3 C 2x
.x4 C x2/ ln.x4 C x2/

dx 43.
Z

xex
2p

ex2 C 2
dx

44.
Z

5
.3xC 1/Œ1C ln.3xC 1/�2

dx

45.
Z
.e�x C 5/3

ex
dx

46.
Z �

1
8xC 1

�
1

ex.8C e�x/2

�
dx

47.
Z
.x2 C

p
2x/
q
x2 C

p
2dx

48.
Z

3x ln x.1C ln x/ dx [Hint:
d
dx
.x ln x/ D 1C ln x�

49.
Z
p
x
q
.8x/3=2 C 3 dx 50.

Z
7

x.ln x/�
dx

51.
Z p

s

e
p

s3
ds 52.

Z
ln5 x
7x

dx

53.
Z

eln.x2C1/ dx 54.
Z

dx 55.
Z

ln. e
x

x /

x
dx

56.
Z

ef .x/Cln. f 0.x// dx assuming f 0 > 0

In Problems 57 and 58, dr=dq is a marginal-revenue function.
Find the demand function.

57.
dr
dq
D

300
.qC 3/2

58.
dr
dq
D

900
.2qC 3/3

In Problems 59 and 60, dc=dq is a marginal-cost function. Find
the total-cost function if fixed costs in each case are 2000.

59.
dc
dq
D

20
qC 5

60.
dc
dq
D 4e0:005q

In Problems 61–63, dC=dI represents the marginal propensity to
consume. Find the consumption function subject to the given
condition.

61.
dC
dI
D

1
p
I
I C.9/ D 8

62.
dC
dI
D

1
3
�

1

2
p
3I
; C.25=3/ D 2

63.
dC
dI
D

3
4
�

1

6
p
I
I C.25/ D 23

64. Cost Function The marginal-cost function for a
manufacturer’s product is given by

dc
dq
D 10 �

100
qC 10

where c is the total cost in dollars when q units are produced.
When 100 units are produced, the average cost is $50 per unit.
To the nearest dollar, determine the manufacturer’s fixed cost.

65. Cost Function Suppose the marginal-cost function for a
manufacturer’s product is given by

dc
dq
D

100q2 � 3998qC 60
q2 � 40qC 1

where c is the total cost in dollars when q units are produced.

(a) Determine the marginal cost when 40 units are produced.
(b) If fixed costs are $10,000, find the total cost of producing
40 units.
(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 42 units.

66. Cost Function The marginal-cost function for a
manufacturer’s product is given by

dc
dq
D

9
10
p
q
q
0:04q3=4 C 4

where c is the total cost in dollars when q units are produced.
Fixed costs are $360.

(a) Determine the marginal cost when 25 units are produced.
(b) Find the total cost of producing 25 units.
(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 23 units.

67. Value of Land It is estimated that t years from now the
value, V (in dollars), of an acre of land near the ghost town of

Lonely Falls, B.C., will be increasing at the rate of
8t3

p
0:2t4 C 8000

dollars per year. If the land is currently worth

$600 per acre, how much will it be worth in 15 years? Give the
answer to the nearest dollar.
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68. Revenue Function The marginal-revenue function for a
manufacturer’s product is of the form

dr
dq
D

a
eq C b

for constants a and b, where r is the total revenue received (in
dollars) when q units are produced and sold. Find the demand
function, and express it in the form p D f.q/. (Hint: Rewrite
dr=dq by multiplying both numerator and denominator by e�q.)

69. Savings A certain country’s marginal propensity to save is
given by

dS
dI
D

5
.IC 2/2

where S and I represent total national savings and income,
respectively, and are measured in billions of dollars. If total
national consumption is $7.5 billion when total national income
is $8 billion, for what value(s) of I is total national savings equal
to zero?

70. Consumption Function A certain country’s marginal
propensity to save is given by

dS
dI
D

2
5
�

1:6
3
p
2I2

where S and I represent total national savings and income,
respectively, and are measured in billions of dollars.

(a) Determine the marginal propensity to consume when total
national income is $16 billion.
(b) Determine the consumption function, given that savings are
$10 billion when total national income is $54 billion.
(c) Use the result in part (b) to show that consumption is

$ 825 D 16:4 billion when total national income is $16 billion

(a deficit situation).
(d) Use differentials and the results in parts (a) and (c) to
approximate consumption when total national income is
$18 billion.

Objective 14.6 The Definite Integral
To motivate, by means of the concept
of area, the definite integral as a limit of
a special sum; to evaluate simple
definite integrals by using a limiting
process.

Figure 14.2 shows the region, R, bounded by the lines y D f.x/ D 2x, y D 0 (the
x-axis), and x D 1. The region is simply a right triangle. If b and h are the lengths of
the base and the height, respectively, then, from geometry, the area of the triangle is
A D 1

2bh D
1
2 .1/.2/ D 1 square unit. (Henceforth, we will treat areas as pure numbers

and write square unit only if it seems necessary for emphasis.) We will now find this
area by another method, which, as we will see later, applies to more complex regions.
This method involves the summation of areas of rectangles.

Let us divide the interval Œ0; 1� on the x-axis into four subintervals of equal length

bymeans of the equally spaced points x0 D 0, x1 D 1
4 , x2 D

2
4 , x3 D

3
4 , and x4 D

4
4 D 1.

(See Figure 14.3.) Each subinterval has length �x D
1
4
. These subintervals determine

four subregions of R: R1, R2, R3, and R4, as indicated.
With each subregion, we can associate a circumscribed rectangle (Figure 14.4)—

that is, a rectangle whose base is the corresponding subinterval and whose height is
the maximum value of f.x/ on that subinterval. Since f is an increasing function, the
maximum value of f.x/ on each subinterval occurs when x is the right-hand endpoint.
Thus, the areas of the circumscribed rectangles associated with regions R1, R2, R3, and

1

2

f(x) = 2x

x

y

R

FIGURE 14.2 Region bounded
by f.x/ D 2x, y D 0, and x D 1.

f(x) = 2x

2

x0 x1 x2 x3
x4R1

R2

R3

R4

x

y

1

4

2

4

3

4

4

4

FIGURE 14.3 Four subregions of R.

y

x 

f(x) = 2x

1

4

2

4

3

4

4

4

 f

 f

 f

 f

1

4

2

4

3

4

4

4

FIGURE 14.4 Four circumscribed
rectangles.
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R4 are 1
4 f.

1
4 /,

1
4 f.

2
4 /,

1
4 f.

3
4 /, and

1
4 f.

4
4 /, respectively. The area of each rectangle is an

approximation to the area of its corresponding subregion. Hence, the sum of the areas
of these rectangles, denoted by S4, and called “the fourth upper sum”, approximates
the area A of the triangle. We have

S4 D 1
4 f
�
1
4

�
C

1
4 f
�
2
4

�
C

1
4 f
�
3
4

�
C

1
4 f
�
4
4

�
D

1
4

�
2
�
1
4

�
C 2

�
2
4

�
C 2

�
3
4

�
C 2

�
4
4

��
D

5
4

Using summation notation (see Section 1.5) we can write S4 D
P4

iD1 f.xi/�x D 5
4 .

The fact that S4 is greater than the actual area of the triangle might have been expected,
since S4 includes areas of shaded regions that are not in the triangle. (See Figure 14.4.)

1

4

2

4

3

4

4

4

1

4

2

4

3

4

y

x 

f(x) = 2x

 f

 f 

 f

f(0)

FIGURE 14.5 Four inscribed
rectangles.

On the other hand, with each subregionwe can also associate an inscribed rectangle
(Figure 14.5)—that is, a rectangle whose base is the corresponding subinterval, but
whose height is the minimum value of f.x/ on that subinterval. Since f is an increasing
function, the minimum value of f.x/ on each subinterval will occur when x is the left-
hand endpoint. Thus, the areas of the four inscribed rectangles associated with R1, R2,

R3, and R4 are 1
4 f.0/,

1
4 f.

1
4 /,

1
4 f.

2
4 /, and

1
4 f.

3
4 /, respectively. Their sum, denoted S4,

and called “the fourth lower sum”, is also an approximation to the area A of the triangle.
We have

S4 D 1
4 f.0/C

1
4 f
�
1
4

�
C

1
4 f
�
2
4

�
C

1
4 f
�
3
4

�
D

1
4

�
2.0/C 2

�
1
4

�
C 2

�
2
4

�
C 2

�
3
4

��
D

3
4

Using summation notation, we can write S4 D
P3

iD0 f.xi/�x D 3
4 . Note that S4 is less

than the area of the triangle, because the rectangles do not account for the portion of
the triangle that is not shaded in Figure 14.5.

Since

3
4
D S4 � A � S4 D

5
4

we say that S4 is an approximation to A from below and S4 is an approximation to A
from above.
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FIGURE 14.6 Six circumscribed
rectangles.
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FIGURE 14.7 Six inscribed rectangles.

If Œ0; 1� is divided into more subintervals, we expect that better approximations to

A will occur. To test this, let us use six subintervals of equal length �x D 1
6 . Then S6,

the total area of six circumscribed rectangles (see Figure 14.6), and S6, the total area
of six inscribed rectangles (see Figure 14.7), are

S6 D 1
6 f
�
1
6

�
C

1
6 f
�
2
6

�
C

1
6 f
�
3
6

�
C

1
6 f
�
4
6

�
C

1
6 f
�
5
6

�
C

1
6 f
�
6
6

�
D

1
6

�
2
�
1
6

�
C 2

�
2
6

�
C 2

�
3
6

�
C 2

�
4
6

�
C 2

�
5
6

�
C 2

�
6
6

��
D

7
6

and

S6 D 1
6 f.0/C

1
6 f
�
1
6

�
C

1
6 f
�
2
6

�
C

1
6 f
�
3
6

�
C

1
6 f
�
4
6

�
C

1
6 f
�
5
6

�
D

1
6

�
2.0/C 2

�
1
6

�
C 2

�
2
6

�
C 2

�
3
6

�
C 2

�
4
6

�
C 2

�
5
6

��
D

5
6

Note that S6 � A � S6, and, with appropriate labeling, both S6 and S6 will be of
the form †f.x/�x. Clearly, using six subintervals gives better approximations to the
area than does four subintervals, as expected.

More generally, if we divide Œ0; 1� into n subintervals of equal length �x, then
�x D 1=n, and the endpoints of the subintervals are x D 0; 1=n; 2=n; : : : ; .n�1/=n, and
n=n D 1. (See Figure 14.8.) The endpoints of the kth subinterval, for k D 1; : : : n, are
.k�1/=n and k=n and the maximum value of f occurs at the right-hand endpoint k=n. It
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follows that the area of the kth circumscribed rectangle is 1=n � f.k=n/ D 1=n �2.k=n/ D
2k=n2, for k D 1; : : : ; n. The total area of all n circumscribed rectangles is

Sn D
nX

kD1

f.k=n/�x D
nX

kD1

2k
n2

(1)

D
2
n2

nX
kD1

k by factoring
2
n2

from each term

D
2
n2
�
n.nC 1/

2
from Section 1.5

D
nC 1
n

(We recall that
Pn

kD1 k D 1C 2C � � � C n is the sum of the first n positive integers and
the formula used above was derived in Section 1.5.)

y

x 

f(x) = 2x
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FIGURE 14.8 n circumscribed
rectangles.
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FIGURE 14.9 n inscribed rectangles.

For inscribed rectangles, we note that the minimum value of f occurs at the left-
hand endpoint, .k � 1/=n, of Œ.k � 1/=n; k=n�, so that the area of the kth inscribed
rectangle is 1=n � f.k� 1=n/ D 1=n � 2..k� 1/=n/ D 2.k� 1/=n2, for k D 1; : : : n. The
total area determined of all n inscribed rectangles (see Figure 14.9) is

Sn D

nX
kD1

f..k � 1/=n/�x D
nX

kD1

2.k � 1/
n2

(2)

D
2
n2

nX
kD1

k � 1 by factoring
2
n2

from each term

D
2
n2

n�1X
kD0

k adjusting the summation

D
2
n2
�
.n � 1/n

2
adapted from Section 1.5

D
n � 1
n

From Equations (1) and (2), we again see that both Sn and Sn are sums of the formX
f.x/�x, namely, Sn D

nX
kD1

f
�
k
n

�
�x and Sn D

nX
kD1

f
�
k � 1
n

�
�x.

From the nature of Sn and Sn, it seems reasonable—and it is indeed true—that

Sn � A � Sn

As n becomes larger, Sn and Sn become better approximations to A. In fact, let us take

the limits of Sn and Sn as n approaches1 through positive integral values:

lim
n!1

Sn D lim
n!1

n � 1
n
D lim

n!1

�
1 �

1
n

�
D 1

lim
n!1

Sn D lim
n!1

nC 1
n
D lim

n!1

�
1C

1
n

�
D 1

Since Sn and Sn have the same limit, namely,

lim
n!1

Sn D 1 D lim
n!1

Sn (3)

And since

Sn � A � Sn
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for all n, where A is the area of the triangle, we conclude that A D 1. This agrees with
our prior finding. It is important to understand that here we developed a definition of
the notion of area that is applicable to many different regions.

We call the common limit of Sn and Sn, namely, 1, the definite integral of f.x/ D 2x
on the interval from x D 0 to x D 1, and we denote this quantity by writingZ 1

0
2xdx D 1 (4)

The reason for using the term definite integral and the symbolism in Equation (4) will
become apparent in the next section. The numbers 0 and 1 appearing with the integral
sign

R
in Equation (4) are called the bounds of integration; 0 is the lower bound, and

1 is the upper bound.
In general, for a continuous function f defined on the interval Œa; b�, where a < b,

we can form the sums Sn and Sn, which are obtained by considering the minimum and
maximum values, respectively, on each of n subintervals of equal length �x. These
extreme values exist because we have assumed that f is continuous. We can now state
the following:

The common limit of Sn and Sn as n!1, if it exists, is called the definite integral
of f over Œa; b� and is written Z b

a
f.x/dx

The numbers a and b are called bounds of integration; a is the lower bound, and
b is the upper bound. The symbol x is called the variable of integration and f.x/
is the integrand.

The definite integral is the limit of sums
of the form

P
f.x/�x. This definition

will be useful in later sections.

In terms of a limiting process, we haveX
f.x/�x!

Z b

a
f.x/ dx

Two points must be made about the definite integral. First, the definite integral is
the limit of a sum of the form

P
f.x/�x. In fact, we can think of the integral sign as

an elongated “S”, the first letter of “Summation”. Second, for any continuous function
f defined on an interval, we may be able to calculate the sums Sn and Sn and determine
their common limit. However, some terms in the sums will be negative if f takes on
some negative values in the interval. These terms are not areas of rectangles (an area
is never negative), so the common limit may not represent an area. Thus, the definite
integral is nothing more than a real number; it may or may not represent an area.

In our discussion of the integral of a function f on an interval Œa; b�we have limited
ourselves to continuous functions. Integrals can be defined in greater generality than we
need but continuity ensures that the sequences Sn and Sn have the same limit. Accord-
ingly, we will simplify our calculations in what follows by simply using the right-hand
endpoint of each subinterval when computing a sum of the form

P
f.x/�x. Of course

such right-hand endpoint values of f may be neither minima nor maxima in general.
The resulting sequence of sums will be denoted simply Sn.

APPLY IT I
10. A company has determined that its
marginal-revenue function is given by
R 0.x/ D 600 � 0:5x, where R is the
revenue (in dollars) received when x
units are sold. Find the total revenue
received for selling 10 units by finding
the area in the first quadrant bounded by
y D R 0.x/ D 600 � 0:5x and the lines
y D 0; x D 0, and x D 10.

EXAMPLE 1 Computing an Area by Using Right-Hand Endpoints

Find the area of the region in the first quadrant bounded by f.x/ D 4� x2 and the lines
x D 0 and y D 0.

In general, over Œa; b�, we have

�x D
b � a
n

x

y

2

4

f(x) = 4 - x2

FIGURE 14.10 Region of Example 1.

Solution: A sketch of the region appears in Figure 14.10. The interval over which x
varies in this region is seen to be Œ0; 2�, which we divide into n subintervals of equal
length �x. Since the length of Œ0; 2� is 2, we take �x D 2=n. The endpoints of the
subintervals are x D 0; 2=n; 2.2=n/; : : : ; .n � 1/.2=n/,and n.2=n/ D 2, which are
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shown in Figure 14.11. The diagram also shows the corresponding rectangles obtained
by using the right-hand endpoint of each subinterval. The area of the kth rectangle, for
k D 1; : : : n, is the product of its width, 2=n, and its height, f.k.2=n// D 4 � .2k=n/2,
which is the function value at the right-hand endpoint of its base. Summing these areas,
we get

Sn D
nX

kD1

f
�
k �
�
2
n

��
�x D

nX
kD1

 
4 �

�
2k
n

�2
!
2
n

D

nX
kD1

�
8
n
�
8k2

n3

�
D

nX
kD1

8
n
�

nX
kD1

8k2

n3
D

8
n

nX
kD1

1 �
8
n3

nX
kD1

k2

D
8
n
n �

8
n3

n.nC 1/.2nC 1/
6

D 8 �
4
3

�
.nC 1/.2nC 1/

n2

�
The second line of the preceding computations uses basic summation manipulations
as discussed in Section 1.5. The third line uses two specific summation formulas, also
from Section 1.5: The sum of n copies of 1 is n and the sum of the first n squares is
n.nC 1/.2nC 1/

6
.

n
2

n
2

n
2

n
2

f(x) = 4 - x2

n

2 (n-1)

y

x

4

FIGURE 14.11 n subintervals and
corresponding rectangles for Example 1.

Finally, we take the limit of the Sn as n!1:

lim
n!1

Sn D lim
n!1

�
8 �

4
3

�
.nC 1/.2nC 1/

n2

��
D 8 �

4
3
lim
n!1

�
2n2 C 3nC 1

n2

�
D 8 �

4
3
lim
n!1

�
2C

3
n
C

1
n2

�
D 8 �

8
3
D

16
3

Hence, the area of the region is
16
3
.

Now Work Problem 7 G

EXAMPLE 2 Evaluating a Definite Integral

Evaluate
Z 2

0
.4 � x2/dx.

Solution: We want to find the definite integral of f.x/ D 4�x2 over the interval Œ0; 2�.

Thus, we must compute limn!1 Sn. But this limit is precisely the limit
16
3

found in
Example 1, so we conclude that Z 2

0
.4 � x2/dx D

16
3

Now Work Problem 19 G
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EXAMPLE 3 Integrating a Function over an Interval

Integrate f.x/ D x � 5 from x D 0 to x D 3; that is, evaluate
R 3
0 .x � 5/dx.

Solution: We first divide Œ0; 3� into n subintervals of equal length �x D 3=n. The
endpoints are 0; 3=n; 2.3=n/; : : : ; .n� 1/.3=n/; n.3=n/ D 3. (See Figure 14.12.) Using
right-hand endpoints, we form the sum and simplify

2

n = 30
n
3

n
3

n
3 (n -1) 

n
3

FIGURE 14.12 Dividing Œ0; 3� into n
subintervals in Example 3.

No units are attached to the answer, since
a definite integral is simply a number.

-2

-5

f(x) = x - 5

x

y

n 

2 n
3

n
3

n
3

(n-1) 
n
3

FIGURE 14.13 f.x/ is negative at each
right-hand endpoint.

Sn D
nX

kD1

f
�
k
3
n

�
3
n

D

nX
kD1

��
k
3
n
� 5

�
3
n

�
D

nX
kD1

�
9
n2

k �
15
n

�
D

9
n2

nX
kD1

k �
15
n

nX
kD1

1

D
9
n2

�
n.nC 1/

2

�
�
15
n
.n/

D
9
2
nC 1
n
� 15 D

9
2

�
1C

1
n

�
� 15

Taking the limit, we obtain

lim
n!1

Sn D lim
n!1

�
9
2

�
1C

1
n

�
� 15

�
D

9
2
� 15 D �

21
2

Thus, Z 3

0
.x � 5/dx D �

21
2

Note that the definite integral here is a negative number. The reason is clear from the
graph of f.x/ D x�5 over the interval Œ0; 3�. (See Figure 14.13.) Since the value of f.x/
is negative at each right-hand endpoint, each term in Sn must also be negative. Hence,
limn!1 Sn, which is the definite integral, is negative.

Geometrically, each term in Sn is the negative of the area of a rectangle. (Refer
again to Figure 14.13.) Although the definite integral is simply a number, here we can
interpret it as representing the negative of the area of the region bounded by f.x/ D x�5,
x D 0, x D 3, and the x-axis (y D 0).

Now Work Problem 17 G

In Example 3, it was shown that the definite integral does not have to represent
an area. In fact, there the definite integral was negative. However, if f is continuous
and f.x/ � 0 on Œa; b�, then Sn � 0 for all values of n. Therefore, limn!1 Sn � 0, soR b
a f.x/dx � 0. Furthermore, this definite integral gives the area of the region bounded
by y D f.x/, y D 0, x D a, and x D b. (See Figure 14.14.)

x

y

y = f(x)

ba

FIGURE 14.14 If f is continuous and
f.x/ � 0 on Œa; b�, then

R b
a f.x/dx repre-

sents the area under the curve.

Although the approach that we took to discuss the definite integral is sufficient for
our purposes, it is by no means rigorous. The important thing to remember about the
definite integral is that it is the limit of a sequence of special sums.

PROBLEMS 14.6
In Problems 1–4, sketch the region in the first quadrant that is
bounded by the given curves. Approximate the area of the region
by the indicated sum. Use the right-hand endpoint of each
subinterval.

1. f.x/ D xC 1, y D 0, x D 0, x D 1; S4

2. f.x/ D 3x; y D 0; x D 1; S5

3. f.x/ D x3, y D 0, x D 1; S4

4. f.x/ D x2 C 1; y D 0; x D 0; x D 1; S2

In Problems 5 and 6, by dividing the indicated interval into n
subintervals of equal length, find Sn for the given function. Use the
right-hand endpoint of each subinterval. Do not find limn!1 Sn.

5. f.x/ D 4x; Œ0; 1� 6. f.x/ D 2xC 1; Œ0; 2�

In Problems 7 and 8, (a) simplify Sn and (b) find limn!1 Sn.

7. Sn D
1
n

��
1
n
C 1

�
C

�
2
n
C 1

�
C � � � C

�n
n
C 1

��
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8. Sn D
3
n

 �
1 �

3
n

�2

C

�
2 �

3
n

�2

C � � � C

�
n �

3
n

�2
!

In Problems 9–14, sketch the region in the first quadrant that is
bounded by the given curves. Determine the exact area of the
region by considering the limit of Sn as n!1. Use the
right-hand endpoint of each subinterval.

9. Region as described in Problem 1

10. Region as described in Problem 2

11. Region as described in Problem 3

12. y D x2, y D 0, x D 1, x D 2

13. f.x/ D x2 C 1, y D 0, x D 0, x D 3

14. f.x/ D 9 � x2; y D 0; x D 0

In Problems 15–20, evaluate the given definite integral by taking
the limit of Sn. Use the right-hand endpoint of each subinterval.
Sketch the graph, over the given interval, of the function to be
integrated.

15.
Z 3

1
5x dx 16.

Z a

0
b dx

17.
Z 3

0
�4x dx 18.

Z 3

1
.�2xC 7/dx

19.
Z 1

0
.x2 C x/ dx 20.

Z 2

1
.xC 2/ dx

21. Find
d
dx

�Z 1

0

p
1 � x2 dx

�
without the use of limits.

22. Find
Z 3

0
f.x/ dx without the use of limits, where

f.x/ D

8<: 2 if 0 � x < 1
4 � 2x if 1 � x < 2
5x � 10 if 2 � x � 3

23. Find
Z 3

�1
f.x/dx without the use of limits, where

f.x/ D

8<:�xC 2 if x < 1
1 if 1 � x � 2

�xC 3 if x > 2

In each of Problems 24–26, use a programmable aid, such as a
calculator or an online utility, to estimate, using 100 subdivisions
of the relevant interval, the area of the region in the first quadrant
bounded by the given curves. Round the answer to two decimal
places.

24. f.x/ D x3 C 1; y D 0; x D 2; x D 3:7

25. f.x/ D 4 �
p
x; y D 0; x D 1; x D 9

26. f.x/ D ln x, y D 0, x D 1, x D 2

In each of Problems 27–30, use a programmable aid, such as a
calculator or an online utility, to estimate, using 100 subdivisions
of the relevant interval, the value of the definite integral. Round
the answer to two decimal places.

27.
Z 5

2

xC 1
xC 2

dx 28.
Z 3

1

�
1C

1
x2

�
dx

29.
Z 2

�1
.4x2 C x � 13/ dx 30.

Z 2

1
ln x dx

Objective 14.7 The Fundamental Theorem of Calculus
To develop informally the Fundamental
Theorem of Calculus and to use it to
compute definite integrals. The Fundamental Theorem

Thus far, the limiting processes of both the derivative and definite integral have been
considered separately.Wewill now bring these fundamental ideas together and develop
the important relationship that exists between them. As a result, we will be able to
evaluate definite integrals much more efficiently.

The graph of a function f is given in Figure 14.15. Assume that f is continuous on
the interval Œa; b� and that its graph does not fall below the x-axis. That is, f.x/ � 0.
From the preceding section, the area of the region below the graph and above the

x-axis from x D a to x D b is given by
R b
a f.x/dx. We will now consider another

way to determine this area.
x

y

y = f(x)

ba

FIGURE 14.15 On Œa; b�, f is
continuous and f.x/ � 0.

Suppose that there is a function A D A.x/, which we will refer to as an area func-
tion, that gives the area of the region below the graph of f and above the x-axis from
a to x, where a � x � b. This region is shaded in Figure 14.16. Do not confuse A.x/,
which is an area, with f.x/, which is the height of the graph at x.

From its definition, we can state two properties of A immediately:

1. A.a/ D 0, since there is “no area” from a to a

2. A.b/ is the area from a to b; that is,

A.b/ D
Z b

a
f.x/dx
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If x is increased by h units, then A.x C h/ is the area of the shaded region in
Figure 14.17. Hence, A.xCh/�A.x/ is the difference of the areas in Figures 14.17 and
14.16, namely, the area of the shaded region in Figure 14.18. For h sufficiently close
to zero, the area of this region is the same as the area of a rectangle (Figure 14.19)
whose base is h and whose height is some value y between f.x/ and f.x C h/. Here y
is a function of h. Thus, on the one hand, the area of the rectangle is A.xC h/ � A.x/,
and, on the other hand, it is hy, so

A.xC h/ � A.x/ D hy
x

y

y = f(x)

ba x

A(x)

FIGURE 14.16 A.x/ is an area
function.

x

y

ba x

x + h

FIGURE 14.17 A.xC h/ gives
the area of the shaded region.

Equivalently,

A.xC h/ � A.x/
h

D y dividing by h

Since y is between f.x/ and f.xC h/, it follows that as h! 0, y approaches f.x/, so

lim
h!0

A.xC h/ � A.x/
h

D f.x/ (1)

But the left side is merely the derivative of A. Thus, Equation (1) becomes

A0.x/ D f.x/

We conclude that the area function A has the additional property that its derivative A0

is f. That is, A is an antiderivative of f. Now, suppose that F is any antiderivative of f.
Then, since both A and F are antiderivatives of the same function, they differ at most
by a constant C:

A.x/ D F.x/C C (2)

Recall that A.a/ D 0. So, evaluating both sides of Equation (2) when x D a gives

0 D F.a/C C

so that

C D �F.a/

Thus, Equation (2) becomes

A.x/ D F.x/ � F.a/ (3)

If x D b, then, from Equation (3),

A.b/ D F.b/ � F.a/ (4)

But recall that

A.b/ D
Z b

a
f.x/dx (5)

From Equations (4) and (5), we getZ b

a
f.x/dx D F.b/ � F.a/

x

y

ba x

x + h

FIGURE 14.18 Area of shaded
region is A.xC h/ � A.x/.

x

y

f(x + h)

f(x)

y-

h

FIGURE 14.19 Area of rectangle is
the same as area of shaded region in
Figure 14.18.

A relationship between a definite integral and antidifferentiation has now become
clear. To find

R b
a f.x/dx, it suffices to find an antiderivative of f, say, F, and subtract the

value of F at the lower bound a from its value at the upper bound b. We assumed here
that fwas continuous and f.x/ � 0 so that we could appeal to the concept of area. How-
ever, our result is true for any continuous function and is known as the Fundamental
Theorem of Calculus.
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Fundamental Theorem of Calculus
If f is continuous on the interval Œa; b� and F is any antiderivative of f on Œa; b�, thenZ b

a
f.x/dx D F.b/ � F.a/

It is important to understand the difference between a definite integral and an

indefinite integral. The definite integral
R b
a f.x/dx is a number defined to be the limit

of a sum. The Fundamental Theorem states that the indefinite integral
R
f.x/dx (the

The definite integral is a number, and an
indefinite integral is a function.

most general antiderivative of f ), which is a function of x related to the differentiation
process, can be used to determine this limit.

Suppose we apply the Fundamental Theorem to evaluate
R 2
0 .4 � x2/dx. Here

f.x/ D 4�x2, a D 0, and b D 2. Since an antiderivative of 4�x2 is F.x/ D 4x�.x3=3/,
it follows that Z 2

0
.4 � x2/dx D F.2/ � F.0/ D

�
8 �

8
3

�
� .0/ D

16
3

This confirms our result in Example 2 of Section 14.6. If we had chosen F.x/ to be
4x � .x3=3/C C, then we would have

F.2/ � F.0/ D
��

8 �
8
3

�
C C

�
� Œ0C C� D

16
3

as before. Since the choice of the value of C is immaterial, for convenience we will
always choose it to be 0, as originally done. Usually, F.b/ � F.a/ is abbreviated by
writing

F.b/ � F.a/ D F.x/
ˇ̌b
a

Since F in the Fundamental Theorem of Calculus is any antiderivative of f and
R
f.x/dx

is the most general antiderivative of f, it showcases the notation to writeZ b

a
f.x/dx D

�Z
f.x/dx

� ˇ̌̌̌b
a

Using the
ˇ̌b
a notation, we haveZ 2

0
.4 � x2/dx D

�
4x �

x3

3

� ˇ̌̌̌2
0
D

�
8 �

8
3

�
� 0 D

16
3

EXAMPLE 1 Applying the Fundamental Theorem

Find
Z 3

�1
.3x2 � xC 6/dx.

APPLY IT I
11. The income (in dollars) from a fast-
food chain is increasing at a rate of

f.t/ D 10;000e0:02t, where t is in years.
Find

R 6
3 10;000e

0:02t dt, which gives the
total income for the chain between the
third and sixth years.

Solution: An antiderivative of 3x2 � xC 6 is

x3 �
x2

2
C 6x

Thus, Z 3

�1
.3x2 � xC 6/dx

D

�
x3 �

x2

2
C 6x

� ˇ̌̌̌3
�1

D

�
33 �

32

2
C 6.3/

�
�

�
.�1/3 �

.�1/2

2
C 6.�1/

�
D

�
81
2

�
�

�
�
15
2

�
D 48

Now Work Problem 1 G
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Properties of the Definite Integral
For

R b
a f.x/dx, we have assumed that a < b. We now define the cases in which a > b

or a D b. First,

If a > b; then
Z b

a
f.x/dx D �

Z a

b
f.x/dx:

That is, interchanging the bounds of integration changes the integral’s sign. For exam-
ple, Z 0

2
.4 � x2/dx D �

Z 2

0
.4 � x2/dx

If the bounds of integration are equal, we haveZ a

a
f.x/dx D 0

Some properties of the definite integral deserve mention. The first of the properties
that follow restates more formally our comment from the preceding section concern-
ing area.

Properties of the Definite Integral

1. If f is continuous and f.x/ � 0 on Œa; b�, then
R b
a f.x/dx can be interpreted as the

area of the region bounded by the curve y D f.x/, the x-axis, and the lines x D a
and x D b.

2.
R b
a kf.x/dx D k

R b
a f.x/dx, where k is a constant

3.
R b
a . f.x/˙ g.x//dx D

R b
a f.x/dx˙

R b
a g.x/dx

Properties 2 and 3 are similar to rules for indefinite integrals because a definite
integral may be evaluated by the Fundamental Theorem in terms of an antiderivative.
Two more properties of definite integrals are as follows.

4.
R b
a f.x/dx D

R b
a f.t/dt

The variable of integration is a “dummy variable” in the sense that any other variable
produces the same result—that is, the same number.

To illustrate Property 4, you can verify, for example, thatZ 2

0
x2dx D

Z 2

0
t2dt

5. If f is continuous on an interval I and a, b, and c are in I, thenZ c

a
f.x/dx D

Z b

a
f.x/dxC

Z c

b
f.x/dx

Property 5 means that the definite integral over an interval can be expressed in
terms of definite integrals over subintervals. Thus,Z 2

0
.4 � x2/dx D

Z 1

0
.4 � x2/dxC

Z 2

1
.4 � x2/dx

Wewill look at some examples of definite integration now and compute some areas
in Section 14.9.
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EXAMPLE 2 Using the Fundamental Theorem

Find
Z 1

0

x3
p
1C x4

dx.

Solution: To find an antiderivative of the integrand, we will apply the power rule for
integration:

In Example 2, the value of the

antiderivative
1
2
.1C x4/1=2 at the lower

bound 0 is
1
2
.1/1=2. Do not assume that

an evaluation at the bound zero will
yield 0.

Z 1

0

x3
p
1C x4

dx D
Z 1

0
x3.1C x4/�1=2dx

D
1
4

Z 1

0
.1C x4/�1=2d.1C x4/ D

�
1
4

�
.1C x4/1=2

1
2

ˇ̌̌̌
ˇ̌̌
1

0

D
1
2
.1C x4/1=2

ˇ̌̌̌1
0
D

1
2

�
.2/1=2

� .1/1=2
�

D
1
2
.
p
2 � 1/

Now Work Problem 13 G

EXAMPLE 3 Evaluating Definite Integrals

a. Find
Z 2

1
.4t1=3

C t.t2 C 1/3/dt.

Solution: Z 2

1
.4t1=3

C t.t2 C 1/3�dt D 4
Z 2

1
t1=3dtC

1
2

Z 2

1
.t2 C 1/3d.t2 C 1/

D .4/
t4=3

4
3

ˇ̌̌̌
ˇ̌̌
2

1

C

�
1
2

�
.t2 C 1/4

4

ˇ̌̌̌2
1

D 3.24=3
� 1/C

1
8
.54 � 24/

D 3 � 24=3
� 3C

609
8

D 6 3
p
2C

585
8

b. Find
Z 1

0
e3tdt.

Solution: Z 1

0
e3tdt D

1
3

Z 1

0
e3td.3t/

D

�
1
3

�
e3t
ˇ̌̌̌1
0
D

1
3
.e3 � e0/ D

1
3
.e3 � 1/

Now Work Problem 15 G

EXAMPLE 4 Finding and Interpreting a Definite Integral

Evaluate
Z 1

�2
x3dx.

Solution: Z 1

�2
x3dx D

x4

4

ˇ̌̌̌1
�2
D

14

4
�
.�2/4

4
D

1
4
�
16
4
D �

15
4
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The reason the result is negative is clear from the graph of y D x3 on the interval Œ�2; 1�.
(See Figure 14.20.) For �2 � x < 0, f.x/ is negative. Since a definite integral is a limit

of a sum of the form †f.x/�x, it follows that
R 0

�2 x
3dx is not only a negative number

but also the negative of the area of the shaded region in the third quadrant. On the other

hand,
R 1
0 x3dx is the area of the shaded region in the first quadrant, since f.x/ � 0 on

Œ0; 1�. The definite integral over the entire interval Œ�2; 1� is the algebraic sum of these
numbers, because, from Property 5,Z 1

�2
x3dx D

Z 0

�2
x3dxC

Z 1

0
x3dx

x

y

-2

1

y = x
3

FIGURE 14.20 Graph of y D x3 on
the interval Œ�2; 1�.

Remember that
R b
a f.x/dx is a limit of a

sum. In some cases this limit represents
an area. In others it does not. When
f.x/ � 0 on Œa; b�, the integral represents
the area between the graph of f and the
x-axis from x D a to x D b.

Thus,
R 1

�2 x
3dx does not represent the area between the curve and the x-axis. However,

if area is desired, it can be given byˇ̌̌̌Z 0

�2
x3dx

ˇ̌̌̌
C

Z 1

0
x3dx

Now Work Problem 25 G

The Definite Integral of a Derivative
Since a function f is an antiderivative of f 0, by the Fundamental Theorem we haveZ b

a
f 0.x/dx D f.b/ � f.a/ (6)

But f 0.x/ is the rate of change of f with respect to x. Hence, if we know the rate of
change of f and want to find the difference in function values f.b/ � f.a/, it suffices to

evaluate
R b
a f 0.x/dx.

EXAMPLE 5 Finding a Change in Function Values by Definite
Integration

A manufacturer’s marginal-cost function is

dc
dq
D 0:6qC 2

If production is presently set at q D 80 units per week, how much more would it cost
to increase production to 100 units per week?

APPLY IT I
12. A managerial service determines
that the rate of increase in maintenance
costs (in dollars per year) for a par-
ticular apartment complex is given by
M0.x/ D 90x2C5000, where x is the age
of the apartment complex in years and
M.x/ is the total (accumulated) cost of
maintenance for x years. Find the total
cost for the first five years. Solution: The total-cost function is c D c.q/, and we want to find the difference

c.100/ � c.80/. The rate of change of c is dc=dq, so, by Equation (6),

c.100/ � c.80/ D
Z 100

80

dc
dq

dq D
Z 100

80
.0:6qC 2/dq

D

�
0:6q2

2
C 2q

�ˇ̌̌̌100
80
D Œ0:3q2 C 2q�

ˇ̌̌̌100
80

D Œ0:3.100/2 C 2.100/� � Œ0:3.80/2 C 2.80/�

D 3200 � 2080 D 1120

If c is in dollars, then the cost of increasing production from 80 units to 100 units
is $1120.

Now Work Problem 59 G
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PROBLEMS 14.7
In Problems 1–43, evaluate the definite integral.

1.
Z 3

0
5 dx 2.

Z 5

1
.eC 3e/ dx

3.
Z 2

1
5x dx 4.

Z 6

�1
�3xdx

5.
Z 1

�3
.2x � 3/ dx 6.

Z 1

�1
.4 � 9y/ dy

7.
Z 4

1
.y2 C 4yC 4/ dy 8.

Z 1

4
.2t � 3t2/ dt

9.
Z �2

�4
.3w2

� 2wC 3/dw 10.
Z 9

8
dt

11.
Z 3

1
3t�3 dt 12.

Z 3

2

3
x2

dx

13.
Z 8

�8

3
p
x4 dx 14.

Z 1

0
.x4 C x3 C x2 C xC 1/dx

15.
Z 3

1=2

1
x2

dx 16.
Z 36

9
.
p
x � 2/ dx

17.
Z 2

�2
.zC 1/4 dz 18.

Z 8

1
.x1=3

� x�1=3/ dx

19.
Z 1

0
3x3.x4 � 1/4dx 20.

Z 3

2
.xC 2/3 dx

21.
Z 8

1

4
y
dy 22.

Z �1

�e�

2
x
dx

23.
Z 1

0
e5 dx 24.

Z e

2

1
xC 1

dx

25.
Z 1

0
5x2ex

3
dx 26.

Z 1

0
.3x2 C 4x/.x3 C 2x2/4 dx

27.
Z 4

3

3
.xC 3/2

dx 28.
Z 20=3

�1=3

p
3xC 5 dx

29.
Z 6

1

p
10 � pdp 30.

Z 1

�1
q
p
q2 C 3 dq

31.
Z 1

0
x2 3
p
7x3 C 1 dx 32.

Z p
2

0

�
2x �

x

.x2 C 1/2=3

�
dx

33.
Z 1

0

2x3 C x
x2 C x4 C 1

dx 34.
Z b

a
.myC ny2/dy

35.
Z 1

0

ex � e�x

2
dx 36.

Z 1

�2
8jxj dx

37.
Z p

2

e
3.x�2

C x�3
� x�4/ dx

38.
Z 2

1

�
6
p
x �

1
p
2x

�
dx 39.

Z 2

1
.xC 1/e3x

2C6xdx

40.
Z 95

1

x
ln ex

dx

41.
Z 2

0

x6 C 6x4 C x3 C 8x2 C xC 5
x3 C 5xC 1

dx

42.
Z 2

1

1
1C ex

dx (Hint:Multiply the integrand by e�x

e�x .)

43.
Z 2

0
f.x/ dx, where f.x/ D

�
4x2 if 0 � x < 1

2
2x if 1

2 � x � 2

44. Evaluate
�Z 2

1
xdx

�2

�

Z 2

1
x2dx.

45. Suppose f.x/ D
Z x

1
3
1
t2

dt. Evaluate
Z 1

e
f.x/ dx.

46. Evaluate
Z 7

7
ex

2
dxC

Z p
2

0

1

3
p
2
dx.

47. If
Z 2

1
f.x/ dx D 5 and

Z 1

3
f.x/ dx D 2, find

Z 3

2
f.x/ dx.

48. If
Z 4

1
f.x/ dx D 6;

Z 4

2
f.x/ dx D 5, and

Z 3

1
f.x/ dx D 2, findZ 3

2
f.x/ dx.

49. Evaluate
Z 1

0

�
d
dx

Z 1

0
ex

2
dx
�
dx (Hint: It is not necessary to

find
R 1
0 ex

2
dx.)

50. Suppose that f.x/ D
Z x

e

et � e�t

et C e�t
dt where x > e. Find

f 0.x/.

51. Severity Index In discussing traffic safety, Shonle6

considers how much acceleration a person can tolerate in a crash
so that there is no major injury. The severity index is defined as

S.I. D
Z T

0
˛5=2 dt

where ˛ (a Greek letter read “alpha”) is considered a constant
involved with a weighted average acceleration, and T is the
duration of the crash. Find the severity index.

6J. I. Shonle, Environmental Applications of General Physics (Reading, MA:
Addison-Wesley Publishing Company, Inc., 1975).
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52. Statistics In statistics, the mean � (a Greek letter read
“mu”) of the continuous probability density function f defined on
the interval Œa; b� is given by

� D

Z b

a
xf.x/ dx

and the variance �2 (� is a Greek letter read “sigma”) is given by

�2 D

Z b

a
.x � �/2f.x/ dx

Compute � and then �2 if a D 0, b D 1, and f.x/ D 6.x � x2/.

53. Distribution of Incomes The economist Pareto7 has stated
an empirical law of distribution of higher incomes that gives the
number, N, of persons receiving x or more dollars. If

dN
dx
D �Ax�B

where A and B are constants, set up a definite integral that gives
the total number of persons with incomes between a and b, where
a < b.

54. Biology In a discussion of gene mutation,8 the following
integral occurs: Z 10�4

0
x�1=2dx

Evaluate this integral.

55. Continuous Income Flow The present value (in dollars) of
a continuous flow of income of $2000 a year for five years at 6%
compounded continuously is given byZ 5

0
2000e�0:06t dt

Evaluate the present value to the nearest dollar.

56. Biology In biology, problems frequently arise involving
the transfer of a substance between compartments. An example is
a transfer from the bloodstream to tissue. Evaluate the following
integral, which occurs in a two-compartment diffusion problem:9Z t

0
.e�a�

� e�b� /d�

Here, � (read “tau”) is a Greek letter; a and b are constants.

57. Demography For a certain small population, suppose l is a
function such that l.x/ is the number of persons who reach the age
of x in any year of time. This function is called a life table
function. Under appropriate conditions, the integralZ b

a
l.t/ dt

gives the expected number of people in the population between
the exact ages of a and b, inclusive. If

l.x/ D 1000
p
110 � x for 0 � x � 110

determine the number of people between the exact ages of 10 and
29, inclusive. Give your answer to the nearest integer, since
fractional answers make no sense. What is the size of the
population?

58. Mineral Consumption If C is the yearly consumption of a
mineral at time t D 0, then, under continuous consumption, the
total amount of the mineral used in the interval Œ0; t� isZ t

0
Cek� d�

where k is the rate of consumption. For a rare-earth mineral, it has
been determined that C D 3000 units and k D 0:05. Evaluate the
integral for these data.

59. Marginal Cost A manufacturer’s marginal-cost function is

dc
dq
D 0:1qC 9

If c is in dollars, determine the cost involved to increase
production from 71 to 82 units.

60. Marginal Cost Repeat Problem 59 if

dc
dq
D 0:004q2 � 0:5qC 50

and production increases from 90 to 180 units.

61. Marginal Revenue A manufacturer’s marginal-revenue
function is

dr
dq
D

2000p
300q

If r is in dollars, find the change in the manufacturer’s total
revenue if production is increased from 500 to 800 units.

62. Marginal Revenue Repeat Problem 61 if

dr
dq
D 100C 50q � 3q2

and production is increased from 5 to 10 units.

63. Crime Rate A sociologist is studying the crime rate in a
certain city. She estimates that t months after the beginning of
next year, the total number of crimes committed will increase at
the rate of 8tC 10 crimes per month. Determine the total number
of crimes that can be expected to be committed next year. How
many crimes can be expected to be committed during the last six
months of that year?

64. Hospital Discharges For a group of hospitalized
individuals, suppose the discharge rate is given by

f.t/ D
81 � 106

.300C t/4

where f.t/ is the proportion of the group discharged per day at the
end of t days. What proportion has been discharged by the end of
500 days?

7G. Tintner,Methodology of Mathematical Economics and Econometrics
(Chicago: University of Chicago Press, 1967), p. 16.
8W. J. Ewens, Population Genetics (London: Methuen & Company Ltd., 1969).
9W. Simon, Mathematical Techniques for Physiology and Medicine (New York:
Academic Press, Inc., 1972).
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65. Production Imagine a one-dimensional country of length
2R. (See Figure 14.21.10) Suppose the production of goods for this
country is continuously distributed from border to border. If the
amount produced each year per unit of distance is f.x/, then the
country’s total yearly production is given by

G D
Z R

�R
f.x/ dx

Evaluate G if f.x/ D i, where i is constant.

x
R0-R

BorderBorder

One-dimensional country

FIGURE 14.21

66. Exports For the one-dimensional country of Problem 65,
under certain conditions the amount of the country’s exports is
given by

E D
Z R

�R

i
2
Œe�k.R�x/

C e�k.RCx/� dx

where i and k are constants .k ¤ 0/. Evaluate E.

67. Average Delivered Price In a discussion of a delivered
price of a good from a mill to a customer, DeCanio11 claims that
the average delivered price paid by consumers is given by

A D

Z R

0
.mC x/Œ1 � .mC x/� dxZ R

0
Œ1 � .mC x/� dx

where m is mill price, and x is the maximum distance to the point
of sale. DeCanio determines that

A D
mC

R
2
� m2

� mR �
R2

3

1 � m �
R
2

Verify this.

In Problems 68–70, use the Fundamental Theorem of Integral
Calculus to determine the value of the definite integral.

68.
Z 3:5

2:5
.1C 2xC 3x2/ dx 69.

Z 1

0

1
.xC 1/2

dx

70.
Z 1

0
e3tdt Round the answer to two decimal places.

In Problems 71–74, estimate the value of the definite integral by
using an approximating sum. Round the answer to two decimal
places.

71.
Z 5

�1

x2 C 1
x2 C 4

dx 72.
Z 4

3

1
x ln x

dx

73.
Z 3

0
2
p
t2 C 3 dt 74.

Z 1

�1

6
p
qC 1

qC 3
dq

Chapter 14 Review
Important Terms and Symbols Examples
Section 14.1 Differentials

differential, dy, dx Ex. 1, p. 620

Section 14.2 The Indefinite Integral
antiderivative indefinite integral

R
f.x/ dx integral sign Ex. 1, p. 626

integrand variable of integration constant of integration Ex. 2, p. 627

Section 14.3 Integration with Initial Conditions
initial condition Ex. 1, p. 631

Section 14.4 More Integration Formulas
power rule for integration Ex. 1, p. 636

Section 14.5 Techniques of Integration
preliminary division Ex. 1, p. 642

Section 14.6 The Definite Integral
definite integral

R b
a f.x/ dx bounds of integration Ex. 2, p. 651

Section 14.7 The Fundamental Theorem of Calculus
Fundamental Theorem of Integral Calculus F.x/jba D F.b/ � F.a/ Ex. 1, p. 655

10R. Taagepera, “Why the Trade/GNP Ratio Decreases with Country Size,” Social Science Research, 5 (1976), 385–404.
11S. J. DeCanio, “Delivered Pricing and Multiple Basing Point Equationilibria: A Reevaluation,” The Quarterly Journal of Economics, XCIX, no. 2 (1984), 329–49.
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Summary
If y D f.x/ is a differentiable function of x, we define the
differential dy by

dy D f 0.x/dx

where dx D �x is a change in x, which can be any real num-
ber. (Thus, dy is a function of two variables, namely x and
dx.) If dx is close to zero, then dy is an approximation to
�y D f.xC dx/ � f.x/.

�y � dy

Moreover, dy can be used to approximate a function value
using

f.xC dx/ � f.x/C dy

An antiderivative of a function f is a function F such that
F0.x/ D f.x/. Any two antiderivatives of f differ at most by
a constant. The most general antiderivative of f is called the
indefinite integral of f and is denoted

R
f.x/dx. Thus,Z

f.x/dx D F.x/C C

where C is called the constant of integration, if and only if
F0 D f.

It is important to remember that
Z
. /dx is an operation,

like
d
dx
. /, that applies to functions to produce new func-

tions. The aptness of these strange notations becomes appar-
ent only after considerable study.

Some elementary integration formulas are as follows:Z
k dx D kxC C k a constantZ
xa dx D

xaC1

aC 1
C C a ¤ �1Z

1
x
dx D ln xC C for x > 0Z

ex dx D ex C CZ
kf.x/ dx D k

Z
f.x/ dx k a constantZ

Œf.x/˙ g.x/� dx D
Z

f.x/ dx˙
Z

g.x/ dx

Another formula is the power rule for integration:Z
uadu D

uaC1

aC 1
C C; if a ¤ �1

Here u represents a differentiable function of x, and du is its
differential. In applying the power rule to a given integral,

it is important that the integral be written in a form that pre-
cisely matches the power rule. Other integration formulas are

Z
eudu D eu C C

and
Z

1
u
du D ln juj C C u ¤ 0

If the rate of change of a function f is known—that is, if f 0

is known—then f is an antiderivative of f 0. In addition, if we
know that f satisfies an initial condition, then we can find
the particular antiderivative. For example, if a marginal-cost
function dc=dq is given to us, then by integration we can find
the most general form of c. That form involves a constant of
integration. However, if we are also given fixed costs (that is,
costs involved when q D 0), then we can determine the value
of the constant of integration and, thus, find the particular
cost function, c. Similarly, if we are given amarginal-revenue
function dr=dq, then by integration and by using the fact that
r D 0 when q D 0, we can determine the particular rev-
enue function, r. Once r is known, the corresponding demand
equation can be found by using the equation p D r=q.

It is helpful at this point to review summation notation
from Section 1.5. This notation is especially useful in deter-
mining areas. For continuous f � 0, to find the area of the
region bounded by y D f.x/, y D 0, x D a, and x D b, we
divide the interval Œa; b� into n subintervals of equal length
dx D .b�a/=n. If xi is the right-hand endpoint of an arbitrary
subinterval, then the product f.xi/ dx is the area of a rectan-
gle. Denoting the sum of all such areas of rectangles for the
n subintervals by Sn, we define the limit of Sn as n ! 1 as
the area of the entire region:

lim
n!1

Sn D lim
n!1

nX
iD1

f.xi/ dx D area

If the restriction that f.x/ � 0 is omitted, this limit is defined
as the definite integral of f over Œa; b�:

lim
n!1

nX
iD1

f.xi/ dx D
Z b

a
f.x/ dx

Instead of evaluating definite integrals by using limits,
we may be able to employ the Fundamental Theorem of
Calculus. In symbols,

Z b

a
f.x/ dx D F.x/

ˇ̌̌̌b
a
D F.b/ � F.a/

where F is any antiderivative of f.
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Some properties of the definite integral areZ b

a
kf.x/ dx D k

Z b

a
f.x/ dx k a constant

Z b

a
Œf.x/˙ g.x/� dx D

Z b

a
f.x/ dx˙

Z b

a
g.x/ dx

and Z c

a
f.x/ dx D

Z b

a
f.x/ dxC

Z c

b
f.x/ dx

It must be stressed that
Z

f.x/dx is a number, which if

f.x/ � 0 on Œa; b� gives the area of the region bounded by
y D f.x/, y D 0 and the vertical lines x D a and x D b.

Review Problems
In Problems 1–40, determine the integrals.

1.
Z
.x3 C 2x � 7/ dx 2.

Z
dx

3.
Z 12

0
.9
p
3xC 3x2/ dx 4.

Z
4

5 � 3x
dx

5.
Z

3
.xC 2/4

dx 6.
Z 9

3
.y � 6/301 dy

7.
Z

6x2 � 12
x3 � 6xC 1

dx 8.
Z 3

0
2xe5�x2 dx

9.
Z 1

0

3
p
3tC 8 dt 10.

Z
3 � 4x
2

dx

11.
Z

y.yC 1/2 dy 12.
Z 1

0
10�8 dx

13.
Z 7
p
t �
p
t

3
p
t

dt 14.
Z
.0:5x � 0:1/4

0:4
dx

15.
Z 2

0

6t2

5C 2t3
dt 16.

Z
4x2 � x

x
dx

17.
Z

x2
p
3x3 C 2 dx 18.

Z
.6x2 C 4x/.x3 C x2/3=2 dx

19.
Z
.e2y � e�2y/ dy 20.

Z
4x

5 4
p
7 � x2

dx

21.
Z �

1
x
C

2
x2

�
dx 22.

Z 2

0

3e3x

1C e3x
dx

23.
Z 2

�2
.y4 C y3 C y2 C y/ dy 24.

Z 70

7
dx

25.
Z 1

0
4x
p
5 � x2dx 26.

Z 1

0
.2xC 1/.x2 C x/4 dx

27.
Z 1

0

�
2x �

1

.xC 1/2=3

�
dx 28.

Z 18

0
.2x � 3

p
2xC 1/ dx

29.
Z p

t � 3
t2

dt 30.
Z

z2

z � 1
dz

31.
Z 0

�1

x2 C 4x � 1
xC 2

dx 32.
Z
.x2 C 4/2

x2
dx

33.
Z

e
p

x C x

2
p
x

dx 34.
Z

e
p

5x

p
3x

dx

35.
Z 2

1

eln x

x3
dx 36.

Z
6x2 C 4

ex3C2x
dx

37.
Z
.1C e2x/3

e�2x
dx 38.

Z
c

ebx.aC e�bx/n
dx

for n ¤ 1 and b ¤ 0

39.
Z

3
p
103x dx

40.
Z

3x3 C 6x2 C 17xC 2
x2 C 2xC 5

dx

In Problems 41 and 42, find y, subject to the given condition.

41. y0 D e2x C 3; y.0/ D � 1
2 42. y0 D

xC 5
x

; y.1/ D 3

In Problems 43–50, determine the area of the region bounded by
the given curve, the x-axis, and the given lines.

43. y D x3, x D 0, x D 2 44. y D 4ex; x D 0; x D 3

45. y D
p
xC 1, x D 0

46. y D x2 � x � 6; x D �4; x D 3

47. y D 5x � x2

48. y D 3
p
x, x D 8, x D 16

49. y D
1
x
C 2; x D 1; x D 4 50. y D x3 � 8, x D 0

51. Marginal Revenue If marginal revenue is given by

dr
dq
D 100 �

3
2

p
2q

determine the corresponding demand equation.
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52. Marginal Cost If marginal cost is given by

dc
dq
D q2 C 7qC 6

and fixed costs are 2500, determine the total cost of
producing six units. Assume that costs are in dollars.

53. Marginal Revenue A manufacturer’s marginal-revenue
function is

dr
dq
D 250 � q � 0:2q2

If r is in dollars, find the increase in the manufacturer’s total
revenue if production is increased from 15 to 25 units.

54. Marginal Cost A manufacturer’s marginal-cost function is

dc
dq
D

1000
p
3qC 70

If c is in dollars, determine the cost involved to increase
production from 10 to 33 units.

55. Hospital Discharges For a group of hospitalized
individuals, suppose the discharge rate is given by

f.t/ D 0:008e�0:008t

where f.t/ is the proportion discharged per day at the end of t
days of hospitalization. What proportion of the group is
discharged at the end of 100 days?

56. Business Expenses The total expenditures (in dollars) of a
business over the next five years are given by

Z 5

0
4000e0:05t dt

Evaluate the expenditures.

57. Biology In a discussion of gene mutation,12 the equationZ qn

q0

dq

q �bq D �.uC v/
Z n

0
dt

occurs, where u and v are gene mutation rates, the q’s are
gene frequencies, and n is the number of generations. Assume
that all letters represent constants, except q and t. Integrate
both sides and then use your result to show that

n D
1

uC v
ln

ˇ̌̌̌
q0 �bq
qn �bq

ˇ̌̌̌
58. Fluid Flow In studying the flow of a fluid in a tube of

constant radius R, such as blood flow in portions of the body,
we can think of the tube as consisting of concentric tubes of
radius r, where 0 � r � R. The velocity v of the fluid is a
function of r and is given by13

v D
.P1 � P2/.R2 � r2/

4�l
where P1 and P2 are pressures at the ends of the tube, � (a
Greek letter read “eta”) is the fluid viscosity, and l is the
length of the tube. The volume rate of flow through the tube,
Q, is given by

Q D
Z R

0
2�rv dr

Show that Q D
�R4.P1 � P2/

8�l
. Note that R occurs as a factor

to the fourth power. Thus, doubling the radius of the tube has
the effect of increasing the flow by a factor of 16. The
formula that you derived for the volume rate of flow is called
Poiseuille’s law, after the French physiologist Jean Poiseuille.

59. Inventory In a discussion of inventory, Barbosa and
Friedman14 refer to the function

g.x/ D
1
k

Z 1=x

1
kur du

where k and r are constants, k > 0 and r > �2, and x > 0.
Verify the claim that

g0.x/ D �
1

xrC2

(Hint: Consider two cases: when r ¤ �1 and when r D �1.)

12W. B. Mather, Principles of Quantitative Genetics (Minneapolis: Burgess
Publishing Company, 1964).
13R. W. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill, 1955).
14L. C. Barbosa and M. Friedman, “Deterministic Inventory Lot Size
Models—a General Root Law,”Management Science, 24, no. 8 (1978),
819–26.
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Differential Equations

15.8 Improper Integrals

Chapter 15 Review

A
ny function, f, constructed from polynomials, exponentials, and logarithms
using algebraic operations and composition can be differentiated and the
resulting function, f 0, is again of the same kind—one that can be con-
structed from polynomials, exponentials, and logarithms using algebraic

operations and composition. Let us call such functions elementary (although the term
usually has a slightly different meaning). In this terminology, the derivative of an ele-
mentary function is also elementary. Integration is more complicated. There are fairly
simple elementary functions, for example f.x/ D ex

2
, that do not have an elementary

antiderivative. Said otherwise, there are integrals of elementary functions that we can-
not do.

However, there are many integrals (of elementary functions) that can be done using
techniques that are beyond the scope of this text. A great many known integrals have
been collected together in tables and a very short such table appears in our Appendix B.
The first section of this chapter is devoted to explaining the use of such tables. For prac-
tical problems their use saves a lot of time. Even those who know advanced integration
techniques may wrestle for some time with an integral that looks deceptively simple.

Of course one of the main practical reasons for doing an integral is to compute a
definite integral (a number) using the Fundamental Theorem of Calculus. However, it
turns out that the numbers given by definite integrals can be calculated approximately,
but to any desired degree of accuracy, by techniques that are not too far removed from
the definition of the definite integral as a limit of sums. We explore the two most widely
used such techniques for approximate integration.

With the possibility of approximating definite integrals and doing indefinite inte-
grals using tables available from now on, we pursue further applications of integration.
The area warrants further study but perhaps the most important use of integration is
its role in studying and solving differential equations. These are equations where the
variable is a function, say y, that involve the first derivative y0 or perhaps higher order
derivatives of y. To solve such an equation is to find all functions, y, that satisfy the
given equation. A very common and simple example is the equation y0 D ky, where y
is understood to be a function of x and k is a constant.

665
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Objective 15.1 Integration by Tables
To illustrate the use of the table of
integrals in Appendix B. Certain forms of integrals that occur frequently can be found in standard tables of inte-

gration formulas. See, for example, W. H. Beyer (ed.), CRC Standard Mathematical
Tables and Formulae, 30th ed. (Boca Raton, FL: CRC Press, 1996). A very short table
appears in Appendix B, and its use will be illustrated in this section.

A given integral may have to be replaced by an equivalent form before it will fit
a formula in the table. The equivalent form must match the formula exactly. Conse-
quently, the steps performed to get the equivalent form should be written carefully
rather than performed mentally. Before proceeding with the exercises that use tables,
we recommend studying the examples of this section carefully.

In the following examples, the formula numbers refer to the Table of Selected Inte-
grals given in Appendix B. Before passing to such examples, though, we want to write
out here another “basic” integration formula.

Our rules for differentiation were of two types: Basic Rules that dealt with specific
function types or functions (namely, constants, c; powers of x, xa; and the logarithm
function, ln x) and Combining Rules that dealt with arithmetic operations, composition
of functions, and the Inverse Function Rule. For integration there are fewer combining
rules of universal applicability. However, we can state

Integral of an Inverse Rule

If f is invertible and differentiable and
Z

f.x/dx D F.x/C C thenZ
f �1.x/dx D x f �1.x/ � F. f �1.x//C C

This rule can be deduced using one of the general techniques for integration that we
will not cover, but notice that, like any putative antidifferention formula, it can easily
be verified by differentiation. Consider

d
dx

�
x f �1.x/C F. f �1.x//

�
D f �1.x/C

x
f 0. f �1.x//

�
f. f �1.x//
f 0. f �1.x//

D f �1.x/C
x

f 0. f �1.x//
�

x
f 0. f �1.x//

D f �1.x/

Here, the derivative of the first term on the left is given by the Product Rule, making
use of the Inverse Function Rule for differentiation, and the derivative of the second
term is given by the Chain Rule, making use of F0 D f and again the Inverse Function
Rule. Finally, the definition of inverse functions is used to replace f. f �1.x// by x.

If we apply this new rule to the case f.x/ D ex, where f �1.x/ D ln x, we obtainZ
ln xdx D x ln x � eln x C C D x ln x � xC C

It is worth generalizing this result to a logarithm of a function:

Integral of a Logarithm Z
ln udu D u ln u � uC C

This Integral of a Logarithm formula appears as Formula (41) in Appendix B.
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EXAMPLE 1 Integration by Tables

Find
Z

xdx
.2C 3x/2

Solution: Scanning the table, we identify the integrand with Formula (7):Z
udu

.aC bu/2
D

1
b2

�
ln jaC buj C

a
aC bu

�
C C

Now we see if we can exactly match the given integrand with that in the formula. If we
replace x by u, 2 by a, and 3 by b, then du D dx, and by substitution we haveZ

xdx
.2C 3x/2

D

Z
udu

.aC bu/2
D

1
b2

�
ln jaC buj C

a
aC bu

�
C C

Returning to the variable x and replacing a by 2 and b by 3, we obtainZ
xdx

.2C 3x/2
D

1
9

�
ln j2C 3xj C

2
2C 3x

�
C C

Note that the answer must be given in terms of x, the original variable of integration.

Now Work Problem 5 G

EXAMPLE 2 Integration by Tables

Find
Z

x2
p
x2 � 1 dx.

Solution: This integral is identified with Formula (24):Z
u2
p
u2 ˙ a2 du D

u
8
.2u2 ˙ a2/

p
u2 ˙ a2 �

a4

8
ln juC

p
u2 ˙ a2j C C

In the preceding formula, if the bottommost sign in the dual symbol “˙” on the left
side is used, then the bottommost sign in the dual symbols on the right side must also
be used. In the original integral, we let u D x and a D 1. Then du D dx, and by
substitution the integral becomesZ

x2
p
x2 � 1 dx D

Z
u2
p
u2 � a2 du

D
u
8
.2u2 � a2/

p
u2 � a2 �

a4

8
ln juC

p
u2 � a2j C C

Since u D x and a D 1,Z
x2
p
x2 � 1 dx D

x
8
.2x2 � 1/

p
x2 � 1 �

1
8
ln jxC

p
x2 � 1j C C

Now Work Problem 17 G

EXAMPLE 3 Integration by Tables

Find
Z

dx

x
p
16x2 C 3

.

This example, as well as Examples 4, 5,
and 7, shows how to adjust an integral so
that it conforms to one in the table.

Solution: The integrand can be identified with Formula (28):Z
du

u
p
u2 C a2

D
1
a
ln

ˇ̌̌̌
ˇ
p
u2 C a2 � a

u

ˇ̌̌̌
ˇC C

If we let u D 4x and a D
p
3, then du D 4 dx. Watch closely how, by inserting 4’s

in the numerator and denominator, we transform the given integral into an equivalent
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form that matches Formula (28):Z
dx

x
p
16x2 C 3

D

Z
.4 dx/

.4x/
q
.4x/2 C .

p
3 /2
D

Z
du

u
p
u2 C a2

D
1
a
ln

ˇ̌̌̌
ˇ
p
u2 C a2 � a

u

ˇ̌̌̌
ˇC C

D
1
p
3
ln

ˇ̌̌̌
ˇ
p
16x2 C 3 �

p
3

4x

ˇ̌̌̌
ˇC C

Now Work Problem 7 G

EXAMPLE 4 Integration by Tables

Find
Z

dx

x2.2 � 3x2/1=2
.

Solution: The integrand is identified with Formula (21):Z
du

u2
p
a2 � u2

D �

p
a2 � u2

a2u
C C

Letting u D
p
3x and a2 D 2, we have du D

p
3 dx. Hence, by inserting two factors

of
p
3 in both the numerator and denominator of the original integral, we haveZ

dx

x2.2 � 3x2/1=2
D
p
3
Z

.
p
3 dx/

.
p
3x/2Œ2 � .

p
3x/2�1=2

D
p
3
Z

du

u2.a2 � u2/1=2

D
p
3

"
�

p
a2 � u2

a2u

#
C C D

p
3

"
�

p
2 � 3x2

2.
p
3x/

#
C C

D �

p
2 � 3x2

2x
C C

Now Work Problem 35 G

EXAMPLE 5 Integration by Tables

Find
Z

7x2 ln.4x/ dx.

Solution: This is similar to Formula (42) with n D 2:Z
un ln u du D

unC1 ln u
nC 1

�
unC1

.nC 1/2
C C

If we let u D 4x, then du D 4 dx. Hence,Z
7x2 ln.4x/ dx D

7
43

Z
.4x/2 ln.4x/.4 dx/

D
7
64

Z
u2 ln u du D

7
64

�
u3 ln u
3
�

u3

9

�
C C

D
7
64

�
.4x/3 ln.4x/

3
�
.4x/3

9

�
C C

D 7x3
�
ln.4x/
3
�
1
9

�
C C

D
7x3

9
.3 ln.4x/ � 1/C C

Now Work Problem 45 G
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EXAMPLE 6 Integral Table Not Needed

Find
Z

e2x dx
7C e2x

.

Solution: At first glance, we do not identify the integrand with any form in the table.
Perhaps rewriting the integral will help. Let u D 7C e2x, then du D 2e2x dx. SoZ

e2x dx
7C e2x

D
1
2

Z
.2e2x dx/
7C e2x

D
1
2

Z
du
u
D

1
2
ln juj C C

D
1
2
ln j7C e2xj C C D

1
2
ln.7C e2x/C C

Thus, we had only to use our knowledge of basic integration forms. (Actually, this form
appears as Formula (2) in the table, with a D 0 and b D 1.)

Now Work Problem 39 G

EXAMPLE 7 Finding a Definite Integral by Using Tables

Evaluate
Z 4

1

dx

.4x2 C 2/3=2
.

Solution: We will use Formula (32) to get the indefinite integral first:Z
du

.u2 ˙ a2/3=2
D

˙u

a2
p
u2 ˙ a2

C C

Letting u D 2x and a2 D 2, we have du D 2 dx. Thus,Z
dx

.4x2 C 2/3=2
D

1
2

Z
.2 dx/

..2x/2 C 2/3=2
D

1
2

Z
du

.u2 C 2/3=2

D
1
2

�
u

2
p
u2 C 2

�
C C

Instead of substituting back to x and evaluating from x D 1 to x D 4, we can deter-
mine the corresponding limits of integration with respect to u and then evaluate the last
expression between those limits. Since u D 2x, when x D 1, we have u D 2; when

Here we determine the bounds of
integration with respect to u.

x D 4, we have u D 8. Hence,Z 4

1

dx

.4x2 C 2/3=2
D

1
2

Z 8

2

du

.u2 C 2/3=2

D
1
2

�
u

2
p
u2 C 2

�ˇ̌̌̌8
2
D

2
p
66
�

1

2
p
6

Now Work Problem 15 G

Integration Applied to Annuities
Tables of integrals are useful when we deal with integrals associated with annuities.

When changing the variable of
integration x to the variable of integration
u, be sure to change the bounds of
integration so that they agree with u.

Suppose that you must pay out $100 at the end of each year for the next two years.
Recall from Chapter 5 that a series of payments over a period of time, such as this,
is called an annuity. If you were to pay off the debt now instead, you would pay the
present value of the $100 that is due at the end of the first year, plus the present value
of the $100 that is due at the end of the second year. The sum of these present values
is the present value of the annuity. (The present value of an annuity is discussed in
Section 5.4.) We will now consider the present value of payments made continuously
over the time interval from t D 0 to t D T, with t in years, when interest is compounded
continuously at an annual rate of r.
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Suppose a payment is made at time t such that on an annual basis this payment is
f.t/. If we divide the interval Œ0; T � into subintervals Œti�1; ti� of length dt (where dt is
small), then the total amount of all payments over such a subinterval is approximately
f.ti/ dt. (For example, if f.t/ D 2000 and dt were one day, the total amount of the

payments would be 2000. 1
365 /.) The present value of these payments is approximately

e�rti f.ti/ dt. (See Section 5.3.) Over the interval Œ0;T�, the total of all such present val-
ues is X

e�rti f.ti/dt

This sum approximates the present value, A, of the annuity. The smaller dt is, the bet-
ter the approximation. That is, as dt ! 0, the limit of the sum is the present value.
However, this limit is also a definite integral. That is,

A D
Z T

0
f.t/e�rtdt (1)

where A is the present value of a continuous annuity at an annual rate r (com-
pounded continuously) for T years if a payment at time t is at the rate of f.t/ per year.

We say that Equation (1) gives the present value of a continuous income stream.
Equation (1) can also be used to find the present value of future profits of a business.
In this situation, f.t/ is the annual rate of profit at time t.

We can also consider the future value of an annuity rather than its present value. If
a payment is made at time t, then it has a certain value at the end of the period of the
annuity—that is, T � t years later. This value is�

amount of
payment

�
C

�
interest on this

payment for T � t years

�
If S is the total of such values for all payments, then S is called the accumulated amount
of a continuous annuity and is given by the formula

S D
Z T

0
f.t/er.T�t/ dt

where S is the accumulated amount of a continuous annuity at the end of T years
at an annual rate r (compounded continuously) when a payment at time t is at the
rate of f.t/ per year.

EXAMPLE 8 Present Value of a Continuous Annuity

Find the present value (to the nearest dollar) of a continuous annuity at an annual rate
of 8% for 10 years if the payment at time t is at the rate of t2 dollars per year.

Solution: The present value is given by

A D
Z T

0
f.t/e�rtdt D

Z 10

0
t2e�0:08tdt

We will use Formula (39),Z
uneaudu D

uneau

a
�

n
a

Z
un�1eaudu

This is called a reduction formula, since it reduces one integral to an expression that
involves another integral that is easier to determine. If u D t; n D 2, and a D �0:08,
then du D dt, and we have

A D
t2e�0:08t

�0:08

ˇ̌̌̌10
0
�

2
�0:08

Z 10

0
te�0:08t dt
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In the new integral, the exponent of t has been reduced to 1. We can match this integral
with Formula (38), Z

ueaudu D
eau

a2
.au � 1/C C

by letting u D t and a D �0:08. Then du D dt, and

A D
Z 10

0
t2e�0:08t dt D

t2e�0:08t

�0:08

ˇ̌̌̌10
0
�

2
�0:08

�
e�0:08t

.�0:08/2
.�0:08t � 1/

�ˇ̌̌̌10
0

D
100e�0:8

�0:08
�

2
�0:08

�
e�0:8

.�0:08/2
.�0:8 � 1/ �

1
.�0:08/2

.�1/
�

� 185

The present value is $185.

Now Work Problem 59 G

PROBLEMS 15.1
In Problems 1 and 2, use Formula (19) in Appendix B to
determine the integrals.

1.
Z

dx

.9 � x2/3=2
2.
Z

dx

.25 � 4x2/3=2

In Problems 3 and 4, use Formula (30) in Appendix B to
determine the integrals.

3.
Z

dx

x2
p
16x2 C 3

4.
Z

3 dx

x3
p
x4 � 9

In Problems 5–38, find the integrals by using the table in
Appendix B.

5.
Z

dx
x.6C 7x/ 6.

Z
3x2dx

.1C 2x/2

7.
Z

dx

x
p
x2 C 9

8.
Z

dx

.x2 C 7/3=2

9.
Z

x dx
.2C 3x/.4C 5x/

10.
Z

25x dx

11.
Z

dx
3C e2x

12.
Z

x2
p
1C x dx

13.
Z

7 dx
x.5C 2x/2

14.
Z

dx

x
p
5 � 11x2

15.
Z 1

0

x dx
2C x

16.
Z
�2x2dx
3x � 2

17.
Z
p
x2 � 3 dx 18.

Z
dx

.1C 5x/.2xC 3/

19.
Z 1=12

0
xe12x dx 20.

Z r
2C 3x
5C 3x

dx

21.
Z

x2e2xdx 22.
Z 2

1

4 dx
x2.1C x/

23.
Z p

5x2 C 1
2x2

dx 24.
Z

dx

x
p
2 � x

25.
Z

x dx
.1C 3x/2

26.
Z

2dxp
.2C 2x/.5C 2x/

27.
Z

dx
7 � 5x2

28.
Z

7x2
p
3x2 � 6 dx

29.
Z

36x5 ln.3x/ dx 30.
Z

5 dx
x2.3C 2x/2

31.
Z

2x
p
1C 3xdx 32.

Z
9x2 ln x dx

33.
Z

dx
p
4x2 � 13

34.
Z

dx
x ln.2x/

35.
Z

2 dx

x2
p
16 � 9x2

36.
Z p

5 � x2

x
dx

37.
Z

dx
p
x.� C 7e4

p
x/

38.
Z 1

0

3x2 dx
1C 2x3

In Problems 39–56, find the integrals by any method.

39.
Z

x dx
x2 C 1

40.
Z

3x
p
xex

5/2
dx

41.
Z
.ln x/2

x
dx 42.

Z
5x3 �

p
x

2x
dx

43.
Z

dx
x2 � 5xC 6 44.

Z
e2x

p
e2x C 3

dx

45.
Z

x3 ln x dx 46.
Z
.4xC 2/e6xC3dx

47.
Z

4x3e3x
2
dx 48.

Z 2

1
35x2
p
3C 2x dx

49.
Z

ln2 x dx 50.
Z e

1
3x ln x2 dx

51.
Z 1

�1

2xdx
p
5C 2x

52.
Z 3

2
x
p
2C 3x dx
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53.
Z 1

0

2x dx
p
8 � x2

54.
Z ln 2

0
x2e3x dx

55.
Z 2

1
x ln.2x/ dx 56.

Z 1

�1
dX

57. Biology In a discussion about gene frequency,1 the integral

Z qn

q0

dq
q.1 � q/

occurs, where the q’s represent gene frequencies. Evaluate this
integral.

58. Biology Under certain conditions, the number, n, of
generations required to change the frequency of a gene from 0.3
to 0.1 is given by2

n D �
1
0:4

Z 0:1

0:3

dq
q2.1 � q/

Find n (to the nearest integer).

59. Continuous Annuity Find the present value, to the nearest
dollar, of a continuous annuity at an annual rate of r for T years if
the payment at time t is at the annual rate of f.t/ dollars, given that

(a) r D 0:04 T D 9 f.t/ D 1000
(b) r D 0:06 T D 10 f.t/ D 500t

60. If f.t/ D k, where k is a positive constant, show that the value
of the integral in Equation (1) of this section is

k
�
1 � e�rT

r

�
61. Continuous Annuity Find the accumulated amount, to the
nearest dollar, of a continuous annuity at an annual rate of r for T
years if the payment at time t is at an annual rate of f.t/ dollars,
given that

(a) r D 0:05 T D 20 f.t/ D 100
(b) r D 0:06 T D 25 f.t/ D 100

62. Value of Business Over the next five years, the profits of
a business at time t are estimated to be 50,000t dollars per year.
The business is to be sold at a price equal to the present value of
these future profits. To the nearest 10 dollars, at what price should
the business be sold if interest is compounded continuously at the
annual rate of 7%?

Objective 15.2 Approximate Integration
To estimate the value of a definite
integral by using both the trapezoidal
rule and Simpson's rule. Trapezoidal Rule

We mentioned in the opening paragraphs for this chapter that there are seemingly sim-
ple functions that cannot be integrated in terms of elementary functions. No table con-
tains, for example, a “formula” for Z

e�x2dx

even though, as we will see, definite integrals with integrands very similar to that above
are extremely important in practical applications.

On the other hand, consider a function f that is continuous on a closed interval Œa; b�

with f.x/ � 0 for all x in Œa; b�. The definite integral
R b
a f.x/dx is simply the number

that gives the area of the region bounded by the curves y D f.x/, y D 0, x D a,
and x D b. It is unsatisfying, and perhaps impractical, not to say anything about the

number
R b
a f.x/dx because of an inability to “do” the integral

R
f.x/dx. This also applies

when the integral
R
f.x/dx is merely too difficult for the person who needs to find the

number
R b
a f.x/dx, and these remarks apply to any continuous function, not just those

with f.x/ � 0.

Since
R b
a f.x/dx is defined as a limit of sums of the form

P
f.x/�x, any partic-

ular well-formed sum of the form
P

f.x/�x can be regarded as an approximation ofR b
a f.x/dx. At least for nonnegative f, such sums can be regarded as sums of areas of

thin rectangles. Consider, for example, Figure 14.11 in Section 14.6, in which two rect-
angles are explicitly shown. It is clear that the error that arises from such rectangles is
associated with the small side at the top. The error would be reduced if we replaced

1W. B. Mather, Principles of Quantitative Genetics (Minneapolis: Burgess Publishing Company, 1964).
2E. O. Wilson and W. H. Bossert, A Primer of Population Biology (Stamford, CT: Sinauer Associates, Inc., 1971).
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the rectangles by shapes that have a top side that is closer to the shape of the curve.
We will consider two possibilities: using thin trapezoids rather than thin rectangles,
the trapezoidal rule; and using thin regions surmounted by parabolic arcs, Simpson’s
rule. In each case only a finite number of numerical values of f.x/ need to be known,
and the calculations involved are especially suitable for computers or calculators. In
both cases, we assume that f is continuous on Œa; b�.

In developing the trapezoidal rule, for convenience we will also assume that
f.x/ � 0 on Œa; b�, so that we can think in terms of area. This rule involves approx-
imating the graph of f by straight-line segments.

x

y

y = f(x)

x0 x1 x2 x3 xn - 1 xn

= a = b

FIGURE 15.1 Approximating an area by using trapezoids.

In Figure 15.1, the interval Œa; b� is divided into n subintervals of equal length by
the points a D x0, x1, x2, : : :, and xn D b. Since the length of Œa; b� is b � a, the length
of each subinterval is .b � a/=n, which we will call h.

Clearly,

x1 D aC h; x2 D aC 2h; : : : ; xn D aC nh D b

With each subinterval, we can associate a trapezoid (a four-sided figure with two par-
allel sides). The area A of the region bounded by the curve, the x-axis, and the lines

x D a and x D b is
R b
a f.x/dx and can be approximated by the sum of the areas of the

trapezoids determined by the subintervals.

f(a + h)

a      a + h

f(a)

h

FIGURE 15.2 First trapezoid.

Consider the first trapezoid, which is redrawn in Figure 15.2. Since the area of a
trapezoid is equal to one-half the base times the sum of the lengths of the parallel sides,
this trapezoid has area

1
2h. f.a/C f.aC h//

Similarly, the second trapezoid has area

1
2h. f.a/C f.aC h//

Similarly, the second trapezoid has area

1
2h. f.aC h/C f.aC 2h//

The area, A, under the curve is approximated by the sum of the areas of n trapezoids:

A � 1
2h. f.a/C f.aC h//C 1

2h. f.aC h/C f.aC 2h//

C
1
2h. f.aC 2h/C f.aC 3h//C � � � C 1

2h. f.aC .n � 1/h/C f.b//

Since A D
R b
a f.x/dx, by simplifying the preceding formula we have the trapezoidal

rule:
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The Trapezoidal RuleZ b

a
f.x/dx �

h
2
. f.a/C2f.aC h/C2f.aC2h/C� � �C2f.aC.n � 1/h/Cf.b//

where h D .b � a/=n

The pattern of the coefficients inside the braces is 1, 2, 2, : : : , 2, 1. Usually, the
more subintervals, the better is the approximation. In our development, we assumed
for convenience that f.x/ � 0 on Œa; b�. However, the trapezoidal rule is valid without
this restriction.

EXAMPLE 1 Trapezoidal Rule

Use the trapezoidal rule to estimate the value ofZ 1

0

1
1C x2

dx

for n D 5. Compute each term to four decimal places, and round the answer to three
decimal places.

APPLY IT I
1. An oil tanker is losing oil at a rate

of R0.t/ D
60

p
t2 C 9

, where t is the

time in minutes and R.t/ is the radius
of the oil slick in feet. Use the trape-
zoidal rule with nD 5 to approximateZ 5

0

60
p
t2 C 9

dt, the size of the radius

after five seconds.

Solution: Here, f.x/ D 1=.1C x2/; n D 5; a D 0; and b D 1. Thus,

h D
b � a
n
D

1 � 0
5
D

1
5
D 0:2

The terms to be added are

f.a/ D f.0/ D 1:0000
2f.aC h/ D 2f.0:2/ D 1:9231
2f.aC 2h/ D 2f.0:4/ D 1:7241
2f.aC 3h/ D 2f.0:6/ D 1:4706
2f.aC 4h/ D 2f.0:8/ D 1:2195

f.b/ D f.1/ D 0:5000 aC nh D b
7:8373 D sum

Hence, our estimate for the integral isZ 1

0

1
1C x2

dx �
0:2
2
.7:8373/ � 0:784

The actual value of the integral is approximately 0.785.

Now Work Problem 1 G

Simpson’s Rule
Another method for estimating

R b
a f.x/ dx is given by Simpson’s rule, which involves

approximating the graph of f by parabolic segments. We will omit the derivation.

Simpson's RuleZ b

a
f.x/dx �

h
3
. f.a/C4f.aCh/C2f.aC2h/C� � �C4f.aC.n � 1/h/Cf.b//

where h D .b � a/=n and n is even.
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The pattern of coefficients inside the braces is 1; 4; 2; 4; 2; : : : ; 2; 4; 1, which requires
that n be even. Let us use this rule for the integral in Example 1.

EXAMPLE 2 Simpson’s Rule

Use Simpson’s rule to estimate the value of
Z 1

0

1
1C x2

dx for n D 4. Compute each

term to four decimal places, and round the answer to three decimal places.

APPLY IT I
2. A yeast culture is growing at the
rate of A0.t/ D 0:3e0:2t2 , where t is the
time in hours and A.t/ is the amount in
grams. Use Simpson’s rule with n D
8 to approximate

R 4
0 0:3e

0:2t2 dt, the

amount the culture grew over the first
four hours.

Solution: Here f.x/ D 1=.1C x2/, n D 4, a D 0, and b D 1. Thus, h D .b � a/=n D
1=4 D 0:25. The terms to be added are

f.a/ D f.0/ D 1:0000
4f.aC h/ D 4f.0:25/ D 3:7647
2f.aC 2h/ D 2f.0:5/ D 1:6000
4f.aC 3h/ D 4f.0:75/ D 2:5600

f.b/ D f.1/ D 0:5000
9:4247 D sum

Therefore, by Simpson’s rule,Z 1

0

1
1C x2

dx �
0:25
3
.9:4247/ � 0:785

This is a better approximation than that which we obtained in Example 1 by using the
trapezoidal rule.

Now Work Problem 5 G

Both Simpson’s rule and the trapezoidal rule can be used if we know only f.a/,
f.a C h/, and so on; we do not need to know f.x/ for all x in Œa; b�. Example 3 will
illustrate.

EXAMPLE 3 Demography

A function often used in demography (the study of births, marriages, mortality, etc.,

In Example 3, a definite integral is
estimated from data points; the function
itself is not known.

in a population) is the life-table function, denoted l. In a population having 100,000
births in any year of time, l.x/ represents the number of persons who reach the age of
x in any year of time. For example, if l.20/ D 98; 857, then the number of persons
who attain age 20 in any year of time is 98,857. Suppose that the function l applies to
all people born over an extended period of time. It can be shown that, at any time, the
expected number of persons in the population between the exact ages of x and xC m,
inclusive, is given by Z xCm

x
l.t/dt

The following table gives values of l.x/ for males and females in the United States.3

Approximate the number of women in the 20–35 age group by using the trapezoidal
rule with n D 3.

3National Vital Statistics Report, vol. 48, no. 18, February 7, 2001.
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Life Table

l(x) l(x)

AgeD x Males Females AgeD x Males Females

0 100,000 100,000 45 93,717 96,582

5 99,066 99,220 50 91,616 95,392

10 98,967 99,144 55 88,646 93,562

15 98,834 99,059 60 84,188 90,700

20 98,346 98,857 65 77,547 86,288

25 97,648 98,627 70 68,375 79,926

30 96,970 98,350 75 56,288 70,761

35 96,184 97,964 80 42,127 58,573

40 95,163 97,398

Solution: We want to estimate Z 35

20
l.t/dt

We have h D
b � a
n
D

35 � 20
3

D 5. The terms to be added under the trapezoidal
rule are

l.20/ D 98; 857

2l.25/ D 2.98; 627/ D 197; 254

2l.30/ D 2.98; 350/ D 196; 700

l.35/ D 97; 964
590; 775 D sum

By the trapezoidal rule,Z 35

20
l.t/dt �

5
2
.590; 775/ D 1; 476; 937:5

Now Work Problem 17 G

Formulas used to determine the accuracy of answers obtained with the trapezoidal
rule or Simpson’s rule can be found in standard texts on numerical analysis. For exam-
ple, one such formula tells us that the error committed by using the trapezoidal rule to

estimate
R b
a f.x/dx is given by

�
.b � a/3

12n2
f 00.Nx/ for some Nx in .a; b/

The point of such formulas is that, given a required degree of accuracy, we can deter-
mine how big n needs to be to ensure that the trapezoidal approximation is adequate.

PROBLEMS 15.2
In Problems 1 and 2, use the trapezoidal rule or Simpson’s rule
(as indicated) and the given value of n to estimate the integral.

1.
Z 4

�2

170
1C x2

dx; trapezoidal rule, n D 6

2.
Z 4

�2

170
1C x2

dx; Simpson’s rule, n D 4

In Problems 3–8, use the trapezoidal rule or Simpson’s rule (as
indicated) and the given value of n to estimate the integral.
Compute each term to four decimal places, and round the answer

to three decimal places. In Problems 3–6, also evaluate the
integral by antidifferentiation (the Fundamental Theorem of
Calculus).

3.
Z 1

0
x3 dx; trapezoidal rule, n D 5

4.
Z 1

0
x2 dx; Simpson’s rule, n D 4

5.
Z 4

1

dx
x2
; Simpson’s rule, n D 4
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6.
Z 4

1

dx
x
; trapezoidal rule, n D 6

7.
Z 2

0

xdx
xC 1

; trapezoidal rule, n D 8

8.
Z 4

1

dx
x
; Simpson’s rule, n D 6

In Problems 9 and 10, use the life table in Example 3 to estimate
the given integrals by the trapezoidal rule.

9.
Z 70

45
l.t/ dt, males, n D 5

10.
Z 55

35
l.t/ dt, females, n D 4

In Problems 11 and 12, suppose the graph of a continuous
function f, where f.x/ � 0, contains the given points. Use
Simpson’s rule and all of the points to approximate the area
between the graph and the x-axis on the given interval. Round
the answer to one decimal place.

11. .1; 0:4/; .2; 0:6/; .3; 1:2/; .4; 0:8/; .5; 0:5/; [1,5]

12. .2; 1/, .2:5; 3/, .3; 6/, .3:5; 10/, .4; 6/, .4:5; 3/, .5; 1/; Œ2; 5�

13. Using all the information given in Figure 15.3, estimateR 3
1 f.x/dx by using Simpson’s rule. Give the answer in
fractional form.

x

y

1 2 3

2

1 (1, 1) (3, 1)

(2, 2)   , 2

   ,   

y = f(x)

 (    )

 (   )
3

2

5

2

1

2

3

2

5

2

FIGURE 15.3

In Problems 14 and 15, use Simpson’s rule and the given value of
n to estimate the integral. Compute each term to four decimal
places, and round the answer to three decimal places.

14.
Z 3

1

2
p
1C x

dx; n D 4 Also, evaluate the integral by the

Fundamental Theorem of Calculus.

15.
Z 1

0

p
1 � x2 dxI n D 4

16. Revenue Use Simpson’s rule to approximate the total
revenue received from the production and sale of 80 units of a
product if the values of the marginal-revenue function dr=dq are
as follows:

q (units) 0 10 20 30 40 50 60 70 80
dr
dq

($ per unit) 10 9 8.5 8 8.5 7.5 7 6.5 7

17. Area of Pool Dexter Griffith, who is keen on mathematics,
would like to determine the surface area of his family’s curved,
irregularly shaped, swimming pool. (All the tiles on the bottom of
the pool need to be replaced and nobody has been able to
determine how many boxes of tiles to buy.) There is a straight
fence that runs along the side of the pool deck. Dexter marks off
points a and b on the fence as shown in Figure 15.4. He notes that
the distance from a to b is 8m and subdivides the interval into
eight equal subintervals, naming the resulting points on the fence
x1, x2, x3, x4, x5, x6, and x7. Dexter (D) stands at point x1, holds a
tape measure, and has his little brother Remy (R) take the free end
of the tape measure to the point P1 on the far side of the pool. He
asks his Mum, Lesley (L) to stand at point Q1 on the near side of
the pool and note the distance on the tape measure. See
Figure 15.4.

B

P2
P1

R

L

a x1 x2 x3 x4 x5 x6 x7 b

A

Q1

D

Q2

FIGURE 15.4

Dexter then moves to point x2 and asks his brother to move to P2,
and his Mum to move to Q2 and repeat the procedure. They do
this for each of the remaining points x3 to x7. Dexter tabulates
their measurements in the following table:

Distance
along fence (m)

0 1 2 3 4 5 6 7 8

Distance
across pool (m)

0 3 4 3 3 2 2 2 0

Dexter says that Simpson’s rule now allows them to approximate
the area of the pool as

1
3
.4.3/C 2.4/C 4.3/C 2.3/C 4.2/C 2.2/C 4.2//

square meters. Remy says that this is not how he remembers
Simpson’s rule. Lesley thinks that some terms are missing, but
Remy gets bored and goes for a swim. Is Dexter’s calculation
correct? Explain, calculate the area, and then determine how many
tiles, each with area 6:25cm2, are needed to tile the bottom of the
pool.
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18. Manufacturing A manufacturer estimated both marginal
cost (MC) and marginal revenue (MR) at various levels of output
(q). These estimates are given in the following table:

q(units) 0 20 40 60 80 100

MC ($ per unit) 260 250 240 200 240 250

MR ($ per unit) 410 350 300 250 270 250

(a) Using the trapezoidal rule, estimate the total variable costs of
production for 100 units.
(b) Using the trapezoidal rule, estimate the total revenue from the
sale of 100 units.
(c) If we assume that maximum profit occurs when MR D MC
(that is, when q D 100), estimate the maximum profit if fixed
costs are $2000.

Objective 15.3 Area Between Curves
To find the area of a region bounded
by curves using integration over both
vertical and horizontal strips.

In Sections 14.6 and 14.7 we saw that the area of a region bounded by the lines x D a,
x D b, y D 0, and a curve y D f.x/ with f.x/ � 0 for a � x � b can be found

by evaluating the definite integral
Z b

a
f.x/dx. Similarly, for a function f.x/ � 0 on an

interval Œa; b�, the area of the region bounded by x D a, x D b, y D 0, and y D f.x/ is

given by �
Z b

a
f.x/dx D

Z b

a
�f.x/dx. Most of the functions, f, we have encountered,

and will encounter, are continuous and have a finite number of roots of f.x/ D 0. For
such functions, the roots of f.x/ D 0 partition the domain of f into a finite number of
intervals on each of which we have either f.x/ � 0 or f.x/ � 0. For such a function
we can determine the area bounded by y D f.x/, y D 0 and any pair of vertical lines
x D a and x D b, with a and b in the domain of f. We have only to find all the roots

c1 < c2 < � � � < ck with a < c1 and ck < b; calculate the integrals
Z c1

a
f.x/ dx,Z c2

c1

f.x/ dx, � � �,
Z b

ck

f.x/ dx; attach to each integral the correct sign to correspond to an

area; and add the results. Example 1 will provide a modest example of this idea.

x

y

y = x2 
- x - 2

2

-2 -1 ¢x = dx

¢x =
  dx

FIGURE 15.5 Diagram for
Example 1.

For such an area determination, a rough sketch of the region involved is extremely
valuable. To set up the integrals needed, a sample rectangle should be included in the
sketch for each individual integral as in Figure 15.5. The area of the region is a limit
of sums of areas of rectangles. A sketch helps to understand the integration process
and it is indispensable when setting up integrals to find areas of complicated regions.
Such a rectangle (see Figure 15.5) is called a vertical strip. In the diagram, the width
of the vertical strip is�x. We know from our work on differentials in Section 14.1 that
we can consistently write �x D dx, for x the independent variable. The height of the
vertical strip is the y-value of the curve. Hence, the rectangle has area y�x D f.x/dx.
The area of the entire region is found by summing the areas of all such vertical strips
between x D a and x D b and finding the limit of this sum, which is the definite
integral. Symbolically, we have

†y�x!
Z b

a
f.x/dx

For f.x/ � 0 it is helpful to think of dx as a length differential and f.x/dx as an area

differential dA. Then, as we saw in Section 14.7, we have
dA
dx
D f.x/ for some area

function A and Z b

a
f.x/ dx D

Z b

a
dA D A.b/ � A.a/

(If our area function Ameasures area starting at the line x D a, as it did in Section 14.7,
then A.a/ D 0 and the area under f (and over 0) from a to b is just A.b/.) It is important
to understand here that we need f.x/ � 0 in order to think of f.x/ as a length and, hence,
f.x/dx as a differential area. But if f.x/ � 0 then �f.x/ � 0 so that �f.x/ becomes a
length and �f.x/dx becomes a differential area.
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EXAMPLE 1 An Area Requiring Two Definite Integrals

Find the area of the region bounded by the curve

y D x2 � x � 2

and the line y D 0 (the x-axis) from x D �2 to x D 2.

Solution: A sketch of the region is given in Figure 15.5. Notice that the x-intercepts
are .�1; 0/ and .2; 0/.

It is wrong to write hastily that the area isR 2
�2 ydx, for the following reason: For the

left rectangle, the height is y. However,
for the rectangle on the right, y is
negative, so its height is the positive
number �y. This points out the
importance of sketching the region.

On the interval Œ�2;�1�, the area of the vertical strip is

ydx D .x2 � x � 2/dx

On the interval Œ�1; 2�, the area of the vertical strip is

.�y/dx D �.x2 � x � 2/dx

Thus,

area D
Z �1

�2
.x2 � x � 2/dxC

Z 2

�1
�.x2 � x � 2/dx

D

�
x3

3
�

x2

2
� 2x

� ˇ̌̌̌�1

�2
�

�
x3

3
�

x2

2
� 2x

� ˇ̌̌̌2
�1

D

��
�
1
3
�
1
2
C 2

�
�

�
�
8
3
�
4
2
C 4

��
�

��
8
3
�
4
2
� 4

�
�

�
�
1
3
�
1
2
C 2

��
D

19
3

Now Work Problem 22 G

Before embarking on more complicated area problems, we motivate the further
study of area by seeing the use of area as a probability in statistics.

EXAMPLE 2 Statistics Application

In statistics, a (probability) density function, f, of a variable, x, where x assumes all
values in the interval Œa; b�, has the following properties:

(i) f.x/ � 0

(ii)
R b
a f.x/dx D 1

The probability that x assumes a value between c and d, which is written P.c � x � d/,
where a � c � d � b, is represented by the area of the region bounded by the graph
of f and the x-axis between x D c and x D d. Hence (see Figure 15.6),

P.c � x � d/ D
Z d

c
f.x/dx

x

y

y = f (x)

P (c … x … d) =    f (x) dx
d

c

a c d b

FIGURE 15.6 Probability as an area.
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(In the terminology of Chapters 8 and 9, the condition c � x � d defines an event,
and P.c � x � d/ is consistent with the notation of the earlier chapters. Note, too, that
the hypothesis (ii) above ensures that a � x � b is the certain event.)

For the density function f.x/ D 6.x � x2/, where 0 � x � 1, find each of the
following probabilities.

a. P.0 � x � 1
4 /

Solution: Here Œa; b� is Œ0; 1�, c is 0, and d is 1
4 . We have

P
�
0 � x � 1

4

�
D

Z 1=4

0
6.x � x2/dx D 6

Z 1=4

0
.x � x2/dx

D 6
�
x2

2
�

x3

3

� ˇ̌̌̌1=4

0
D .3x2 � 2x3/

ˇ̌̌̌1=4

0

D

 
3
�
1
4

�2

� 2
�
1
4

�3
!
� 0 D

5
32

b. P
�
x � 1

2

�
Solution: Since the domain of f is 0 � x � 1, to say that x � 1

2 means that
1
2 � x � 1.

Thus,

P
�
x �

1
2

�
D

Z 1

1=2
6.x � x2/dx D 6

Z 1

1=2
.x � x2/dx

D 6
�
x2

2
�

x3

3

� ˇ̌̌̌1
1=2
D .3x2 � 2x3/

ˇ̌̌̌1
1=2
D

1
2

Now Work Problem 27 G

Vertical Strips
We will now find the area of a region enclosed by several curves. As before, our proce-
dure will be to draw a sample strip of area and use the definite integral to “add together”
the areas of all such strips.

For example, consider the area of the region in Figure 15.7 that is bounded on the
top and bottom by the curves y D f.x/ and y D g.x/ and on the sides by the lines
x D a and x D b. The width of the indicated vertical strip is dx, and the height is the
y-value of the upper curve minus the y-value of the lower curve, which we will write
as yupper � ylower. Thus, the area of the strip is

.yupper � ylower/dx

x

y

y = f(x)

a b

y = g(x)

(x, y
upper

)

(x, y
lower

)

dx

FIGURE 15.7 Region between curves.
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which is

. f.x/ � g.x//dx

Summing the areas of all such strips from x D a to x D b by the definite integral gives
the area of the region:X

. f.x/ � g.x//dx!
Z b

a
. f.x/ � g.x//dx D area

We remark that there is another way to view this area problem. In Figure 15.7 both
f and g are above y D 0 and it is clear that the area we seek is also the area under f
minus the area under g. That approach tells us that the required area isZ b

a
f.x/dx �

Z b

a
g.x/dx D

Z b

a
. f.x/ � g.x//dx

However, our first approach does not require that either f or g lie above 0. Our usage of
yupper and ylower is really just a way of saying that f � g on Œa; b�. This is equivalent to
saying that f � g � 0 on Œa; b� so that each differential . f.x/ � g.x// dx is meaningful
as an area.

EXAMPLE 3 Finding an Area between Two Curves

Find the area of the region bounded by the curves y D
p
x and y D x.

x

y

y = x

(x, yupper)

(x, ylower)

dx

(1, 1)

(0, 0) 1

y =   x

FIGURE 15.8 Diagram for Example 3.

Solution: A sketch of the region appears in Figure 15.8. To determinewhere the curves
intersect, we solve the system formed by the equations y D

p
x and y D x. Eliminating

y by substitution, we obtain

p
x D x

x D x2 squaring both sides

0 D x2 � x D x.x � 1/

x D 0 or x D 1

Since we squared both sides, we must check the solutions found with respect to the
original equation. It is easily determined that both x D 0 and x D 1 are solutions of
p
x D x. If x D 0, then y D 0; if x D 1, then y D 1. Thus, the curves intersect at .0; 0/

and .1; 1/. The width of the indicated strip of area is dx. The height is the y-value on
the upper curve minus the y-value on the lower curve:

yupper � ylower D
p
x � x

Hence, the area of the strip is .
p
x � x/dx. Summing the areas of all such strips from

It should be obvious that knowing the
points of intersection is important in
determining the bounds of integration.

x D 0 to x D 1 by the definite integral, we get the area of the entire region:

area D
Z 1

0
.
p
x � x/dx

D

Z 1

0
.x1=2

� x/dx D

0B@x3=2

3
2

�
x2

2

1CA
ˇ̌̌̌
ˇ̌̌
1

0

D

�
2
3
�
1
2

�
� .0 � 0/ D

1
6

Now Work Problem 47 G
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EXAMPLE 4 Finding an Area between Two Curves

Find the area of the region bounded by the curves y D 4x � x2 C 8 and y D x2 � 2x.

x

y

dx

(4, 8)

(-1, 3)

y = x2 
- 2x

y = 4x - x2
 + 8

FIGURE 15.9 Diagram for Example 4.

Solution: A sketch of the region appears in Figure 15.9. To find where the curves
intersect, we solve the system of equations y D 4x � x2 C 8 and y D x2 � 2x:

4x � x2 C 8 D x2 � 2x

�2x2 C 6xC 8 D 0

x2 � 3x � 4 D 0

.xC 1/.x � 4/ D 0 factoring

x D �1 or x D 4

When x D �1, then y D 3; when x D 4, then y D 8. Thus, the curves intersect at
.�1; 3/ and .4; 8/. The width of the indicated strip is dx. The height is the y-value on
the upper curve minus the y-value on the lower curve:

yupper � ylower D .4x � x2 C 8/ � .x2 � 2x/

Therefore, the area of the strip is

..4x � x2 C 8/ � .x2 � 2x//dx D .�2x2 C 6xC 8/dx

Summing all such areas from x D �1 to x D 4, we have

area D
Z 4

�1
.�2x2 C 6xC 8/dx D 41 23

Now Work Problem 51 G

EXAMPLE 5 Area of a Region Having Two Different Upper Curves

Find the area of the region between the curves y D 9 � x2 and y D x2 C 1 from x D 0
to x D 3.

y

x

9

dx dx

2 3

(2, 5)

y = x2
 + 1y = 9 - x2

FIGURE 15.10 yupper is 9 � x2 on
Œ0; 2� and is x2 C 1 on Œ2; 3�.

Solution: The region is sketched in Figure 15.10. The curves intersect when

9 � x2 D x2 C 1

8 D 2x2

4 D x2

x D ˙2 two solutions

When x D ˙2, then y D 5, so the points of intersection are .˙2; 5/. Because we are
interested in the region from x D 0 to x D 3, the intersection point that is of concern to
us is .2; 5/. Notice in Figure 15.10 that in the region to the left of the intersection point
.2; 5/, a strip has

yupper D 9 � x2 and ylower D x2 C 1

but for a strip to the right of .2; 5/ the reverse is true, namely,

yupper D x2 C 1 and ylower D 9 � x2

Thus, from x D 0 to x D 2, the area of a strip is

.yupper � ylower/dx D ..9 � x2/ � .x2 C 1/dx

D .8 � 2x2/dx

but from x D 2 to x D 3, it is

.yupper � ylower/dx D ..x2 C 1/ � .9 � x2//dx

D .2x2 � 8/dx
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Therefore, to find the area of the entire region, we need two integrals:

area D
Z 2

0
.8 � 2x2/dxC

Z 3

2
.2x2 � 8/dx

D

�
8x �

2x3

3

�ˇ̌̌̌2
0
C

�
2x3

3
� 8x

�ˇ̌̌̌3
2

D

��
16 �

16
3

�
� 0

�
C

�
.18 � 24/ �

�
16
3
� 16

��
D

46
3

Now Work Problem 42 G

Horizontal Strips
Sometimes, area can more easily be determined by summing areas of horizontal strips
rather than vertical strips. In the following example, an area will be found by both
methods. In each case, the strip of area determines the form of the integral.

EXAMPLE 6 Vertical Strips and Horizontal Strips

Find the area of the region bounded by the curve y2 D 4x and the lines y D 3 and x D 0
(the y-axis).

Solution: The region is sketched in Figure 15.11. When the curves y D 3 and y2 D 4x

intersect, 9 D 4x, so x D 9
4 . Thus, the intersection point is .

9
4 ; 3/. Since the width of

the vertical strip is dx, we integrate with respect to the variable x. Accordingly, yupper
and ylower must be expressed as functions of x. For the lower curve, y2 D 4x, we have
y D ˙2

p
x. But y � 0 for the portion of this curve that bounds the region, so we use

y D 2
p
x. The upper curve is y D 3. Hence, the height of the strip is

yupper � ylower D 3 � 2
p
x

dx

y = 3

3

y2
 = 4x

9
x

y

4

9

4
,  3

FIGURE 15.11 Vertical strip
of area.

Therefore, the strip has an area of .3�2
p
x/�x, and we wish to sum all such areas

from x D 0 to x D 9
4 . We have

area D
Z 9=4

0
.3 � 2

p
x/dx D

 
3x �

4x3=2

3

!ˇ̌̌̌
ˇ
9=4

0

D

 
3
�
9
4

�
�
4
3

�
9
4

�3=2
!
� .0/

D
27
4
�
4
3

 �
9
4

�1=2
!3

D
27
4
�
4
3

�
3
2

�3

D
9
4

Let us now approach this problem from the point of view of a horizontal strip as
shown in Figure 15.12. The width of the strip is dy. The length of the strip is the x-value
on the rightmost curve minus the x-value on the leftmost curve. Thus, the area of the
strip is

With horizontal strips, the width is dy.

.xright � xleft/dy

y = 3
3

y2
 = 4x

9

4
,  3

9

4

x

y

dy

x = 0

FIGURE 15.12 Horizontal
strip of area.

We wish to sum all such areas from y D 0 to y D 3:X
.xright � xleft/dy!

Z 3

0
.xright � xleft/dy
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Since the variable of integration is y, we must express xright and xleft as functions of y.
The rightmost curve is y2 D 4x so that x D y2=4. The left curve is x D 0. Thus,

area D
Z 3

0
.xright � xleft/dy

D

Z 3

0

�
y2

4
� 0

�
dy D

y3

12

ˇ̌̌̌3
0
D

9
4

Note that for this region, horizontal strips make the definite integral easier to evaluate
(and set up) than an integral with vertical strips. In any case, remember that the bounds
of integration are bounds for the variable of integration.

Now Work Problem 56 G

EXAMPLE 7 Advantage of Horizontal Elements

Find the area of the region bounded by the graphs of y2 D x and x � y D 2.

Solution: The region is sketched in Figure 15.13. The curves intersect when
y2 � y D 2. Thus, y2 � y � 2 D 0; equivalently, .y C 1/.y � 2/ D 0, from which
it follows that y D �1 or y D 2. This gives the intersection points .1;�1/ and .4; 2/.
Let us try vertical strips of area. [See Figure 15.13(a).] Solving y2 D x for y gives
y D ˙

p
x. As seen in Figure 15.13(a), to the left of x D 1, the upper end of the strip

lies on y D
p
x and the lower end lies on y D �

p
x. To the right of x D 1, the upper

curve is y D
p
x and the lower curve is x� y D 2 (equivalently y D x� 2). Thus, with

vertical strips, two integrals are needed to evaluate the area:

area D
Z 1

0
.
p
x � .�

p
x//dxC

Z 4

1
.
p
x � .x � 2//dx

x - y = 2

(4, 2)

y2
 = x

(1, -1)

dx

(a)

x

y

x - y = 2

(4, 2)

y2
 = x

(1, -1)

dy

(b)

x

y

FIGURE 15.13 Region of Example 7 with vertical and horizontal strips.

Perhaps the use of horizontal strips can simplify our work. In Figure 15.13(b), the width
of the strip is �y. The rightmost curve is always x � y D 2 (equivalently x D yC 2),
and the leftmost curve is always x D y2. Therefore, the area of the horizontal strip is
Œ.yC 2/ � y2��y, so the total area is

area D
Z 2

�1
.yC 2 � y2/dy D

9
2

Clearly, the use of horizontal strips is the most desirable approach to solving the prob-
lem. Only a single integral is needed, and it is much simpler to compute.

Now Work Problem 57 G
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PROBLEMS 15.3
In Problems 1–24, use a definite integral to find the area of the
region bounded by the given curve, the x-axis, and the given lines.
In each case, first sketch the region. Watch out for areas of regions
that are below the x-axis.

1. y D 5xC 2; x D 1; x D 4 2. y D xC 5; x D 2; x D 4

3. y D 5x2, x D 2, x D 6 4. y D x2; x D 2; x D 3

5. y D xC x2 C x3; x D 1

6. y D x2 � 2x; x D �3; x D �1

7. y D 3x2 � 4x; x D �2; x D �1

8. y D 2 � x � x2 9. y D
4
x
; x D 1; x D 2

10. y D 2 � x � x3; x D �3; x D 0

11. y D ex; x D 1; x D 3

12. y D
1

.x � 1/2
; x D 2; x D 3

13. y D �
1
x
, x D �e, x D �1

14. y D
p
xC 9; x D �9; x D 0

15. y D x2 � 4x; x D 2; x D 6

16. y D
p
2x � 1; x D 1; x D 5

17. y D x3 C 3x2; x D �2; x D 2

18. y D 3
p
x, x D 8

19. y D ex C 1; x D 0; x D 1

20. y D jxj; x D �2; x D 2

21. y D xC
2
x
; x D 1; x D 2

22. y D x3; x D �2; x D 4

23. y D
p
x � 3, x D 3, x D 28

24. y D x2 C 1; x D 0; x D 4

25. Given that

f.x/ D
�

3x2 if 0 � x < 2
16 � 2x if x � 2

determine the area of the region bounded by the graph of y D f.x/,
the x-axis, and the line x D 3. Include a sketch of the region.

26. Under conditions of a continuous uniform distribution (a topic
in statistics), the proportion of persons with incomes between a
and t, where a � t � b, is the area of the region between the curve
y D 1=.b � a/ and the x-axis from x D a to x D t. Sketch the
graph of the curve and determine the area of the given region.

27. Suppose f.x/ D x=8, where 0 � x � 4. If f is a density
function (refer to Example 2), find each of the following.
(a) P.0 � x � 1/ (b) P.2 � x � 4/ (c) P.x � 3/

28. Suppose f.x/ D
1
3
.1 � x/2, where 0 � x � 3. If f is a density

function (refer to Example 2), find each of the following.
(a) P .1 � x � 3/ (b) P

�
1 � x � 3

2

�
(c) P .x � 2/

(d) P .x � 2/ using the result from part (c)

29. Suppose f.x/ D 1=x, where e � x � e2. If f is a density
function (refer to Example 2), find each of the following.
(a) P.3 � x � 7/ (b) P.x � 5/ (c) P.x � 4/
(d) Verify that P.e � x � e2/ D 1.

30. (a) Let r be a real number, where r > 1. EvaluateZ r

1

1
x2

dx

(b) Your answer to part (a) can be interpreted as the area of a
certain region of the plane. Sketch this region.

(c) Evaluate lim
r!1

�Z r

1

1
x2

dx
�
.

(d) Your answer to part (c) can be interpreted as the area of a
certain region of the plane. Sketch this region.

In Problems 31–34, use definite integration to estimate the area of
the region bounded by the given curve, the x-axis, and the given
lines. Round the answers to two decimal places.

31. y D
1

x2 C 1
; x D �2; x D 1

32. y D
x

p
xC 5

; x D 2; x D 7

33. y D x4 � 2x3 � 2, x D 1, x D 4

34. y D 1C 3x � x4

In Problems 35–38, express the area of the shaded region in terms
of an integral (or integrals). Do not evaluate your expression.

35. See Figure 15.14.

y = 2x

x = 4

x

y

0

y = x
2 

- x

4

FIGURE 15.14

36. See Figure 15.15.

y

x

y = 2x

y = x(x - 3)
2

FIGURE 15.15
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37. See Figure 15.16.

y = 1

y = x - 1

y

x

y = 1 - x
2

FIGURE 15.16

38. See Figure 15.17.

y = 4

y = 2x

y

x

y = -2x - 8

FIGURE 15.17

39. Express, in terms of a single integral, the total area of the
region to the right of the line x D 1 that is between the curves
y D x2 � 5 and y D 7 � 2x2. Do not evaluate the integral.

40. Express, in terms of a single integral, the total area of the
region in the first quadrant bounded by the x-axis and the graphs
of y2 D x and 2y D 3 � x. Do not evaluate the integral.

In Problems 41–56, find the area of the region bounded by the
graphs of the given equations. Be sure to find any needed points of
intersection. Consider whether the use of horizontal strips makes
the integral simpler than when vertical strips are used.

41. y D x2; y D 2x 42. y D x; y D �xC 3; y D 0

43. y D 12 � x2, y D 3 44. y2 D xC 1; x D 1

45. x D 8C 2y; x D 0; y D �1; y D 3

46. y D x � 6; y2 D x 47. y2 D 4x; y D 2x � 4

48. y D x3, y D 6xC 9, x D 0

49. 2y D 4x � x2; 2y D x � 4

50. y D
p
x; y D x2

51. y D 8 � x2; y D x2; x D �1; x D 1

52. y D x3 C x, y D 0, x D �1, x D 2

53. y D x3, y D x 54. y D x3; y D
p
x

55. 4xC 4yC 17 D 0; y D
1
x

56. y2 D �x � 2; x � y D 5; y D �1; y D 1

57. Find the area of the region that is between the curves

y D x � 1 and y D 5 � 2x

from x D 0 to x D 4.

58. Find the area of the region that is between the curves

y D x2 � 4xC 4 and y D 10 � x2

from x D 1 to x D 5.

59. Lorenz Curve A Lorenz curve is used in studying income
distributions. If x is the cumulative percentage of income
recipients, ranked from poorest to richest, and y is the cumulative
percentage of income, then equality of income distribution is
given by the line y D x in Figure 15.18, where x and y are
expressed as decimals. For example, 10% of the people receive
10% of total income, 20% of the people receive 20% of the
income, and so on. Suppose the actual distribution is given by the
Lorenz curve defined by

y D
14
15

x2 C
1
15

x

1

0.104

10.300.10

Cumulative percentage of income recipients

C
u

m
u

la
ti

v
e
 p

e
rc

e
n

ta
g

e
 o

f 
in

co
m

e
 

y = x

Lorentz curve

x

y

y =       x2 +
1
15

14
15

x

FIGURE 15.18

Note, for example, that 30% of the people receive only 10.4% of
total income. The degree of deviation from equality is measured
by the coefficient of inequality4 for a Lorenz curve. This
coefficient is defined to be the area between the curve and
the diagonal, divided by the area under the diagonal:

area between curve and diagonal
area under diagonal

For example, when all incomes are equal, the coefficient of
inequality is zero. Find the coefficient of inequality for the Lorenz
curve just defined.

60. Lorenz curve Find the coefficient of inequality as in

Problem 59 for the Lorenz curve defined by y D 11
12x

2 C
1
12x.

61. Find the area of the region bounded by the graphs of the
equations y2 D 3x and y D mx, where m is a positive constant.

62. (a) Find the area of the region bounded by the graphs of
y D x2 � 1 and y D 2xC 2.
(b)What percentage of the area in part (a) lies above the x-axis?

63. The region bounded by the curve y D x2 and the line y D 1 is
divided into two parts of equal area by the line y D k, where k is a
constant. Find the value of k.

4G. Stigler, The Theory of Price, 3rd ed. (New York: The Macmillan
Company, 1966), pp. 293–94.
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In Problems 64–68, estimate the area of the region bounded by the
graphs of the given equations. Round your answer to two decimal
places.

64. y D x2 � 4xC 1; y D �
6
x

65. y D
p
25 � x2; y D 7 � 2x � x4

66. y D x3 � 8xC 1; y D x2 � 5

67. y D x5 � 3x3 C 2x; y D 3x2 � 4

68. y D x4 � 3x3 � 15x2 C 19xC 30; y D x3 C x2 � 20x

Objective 15.4 Consumers’ and Producers’ Surplus
To develop the economic concepts of
consumers’ surplus and producers’
surplus, which are represented by
areas.

Determining the area of a region has applications in economics. Figure 15.19 shows
a supply curve for a product. The curve indicates the price, p, per unit at which the
manufacturer will sell (supply) q units. The diagram also shows a demand curve for the
product. This curve indicates the price, p, per unit at which consumers will purchase
(demand) q units. The point .q0; p0/ where the two curves intersect is called the point
of equilibrium. Here p0 is the price per unit at which consumers will purchase the same
quantity, q0, of a product that producers wish to sell at that price. In short, p0 is the
price at which stability in the producer–consumer relationship occurs.

p1

p

p0

q
q1 q0

p

dq

Demand
curve

Supply
curve

FIGURE 15.19 Supply and
demand curves.

Let us assume that the market is at equilibrium and the price per unit of the product
is p0. According to the demand curve, there are consumers who would be willing to pay
more than p0. For example, at the price per unit of p1, consumers would buy q1 units.
These consumers are benefiting from the lower equilibrium price p0.

The vertical strip in Figure 15.19 has area pdq. This expression can also be thought
of as the total amount of money that consumers would spend by buying dq units of the
product if the price per unit were p. Since the price is actually p0, these consumers
spend only p0dq for the dq units and, thus, benefit by the amount pdq � p0dq. This
expression can be written .p � p0/dq, which is the area of a rectangle of width dq and
height p�p0. (See Figure 15.20.) Summing the areas of all such rectangles from q D 0
to q D q0 by definite integration, we haveZ q0

0
.p � p0/dq

This integral, under certain conditions, represents the total gain to consumers who are
willing to pay more than the equilibrium price. This total gain is called consumers’
surplus, abbreviated CS. If the demand function is given by p D f.q/, then

CS D
Z q0

0
. f.q/ � p0/dq

Geometrically (see Figure 15.21), consumers’ surplus is represented by the area between
the line p D p0 and the demand curve p D f.q/ from q D 0 to q D q0.

p

p0

q
q0

p

dq

Demand
curve

Supply
curve

FIGURE 15.20 Benefit to
consumers for dq units.

Some of the producers also benefit from the equilibrium price, since they are will-
ing to supply the product at prices less than p0. Under certain conditions, the total gain
to the producers is represented geometrically in Figure 15.22 by the area between the

p0

q
q0

p

Demand

curve

p = f(q)

CS

FIGURE 15.21 Consumers’ surplus.

Supply
curve

p0

q
q0

p

PS

p = g(q)

FIGURE 15.22 Producers’ surplus.
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line p D p0 and the supply curve p D g.q/ from q D 0 to q D q0. This gain, called
producers’ surplus and abbreviated PS, is given by

PS D
Z q0

0
.p0 � g.q//dq

EXAMPLE 1 Finding Consumers’ Surplus and Producers’ Surplus

The demand function for a product is

p D f.q/ D 100 � 0:05q

where p is the price per unit (in dollars) for q units. The supply function is

p D g.q/ D 10C 0:1q

Determine consumers’ surplus and producers’ surplus under market equilibrium.

Solution: First we must find the equilibrium point .p0; q0/ by solving the system
formed by the functions p D 100 � 0:05q and p D 10 C 0:1q. We thus equate the
two expressions for p and solve:

10C 0:1q D 100 � 0:05q

0:15q D 90

q D 600

When q D 600 then p D 10 C 0:1.600/ D 70. Hence, q0 D 600 and p0 D 70.
Consumers’ surplus is

CS D
Z q0

0
. f.q/ � p0/dq D

Z 600

0
.100 � 0:05q � 70/dq

D

�
30q � 0:05

q2

2

�ˇ̌̌̌600
0
D 9000

Producers’ surplus is

PS D
Z q0

0
.p0 � g.q//dq D

Z 600

0
.70 � .10C 0:1q//dq

D

�
60q � 0:1

q2

2

�ˇ̌̌̌600
0
D 18; 000

Therefore, consumers’ surplus is $9000 and producers’ surplus is $18,000.

Now Work Problem 1 G

EXAMPLE 2 Using Horizontal Strips to Find Consumers’ Surplus
and Producers’ Surplus

The demand equation for a product is

q D f.p/ D
90
p
� 2

and the supply equation is q D g.p/ D p � 1. Determine consumers’ surplus and
producers’ surplus when market equilibrium has been established.

Solution: Determining the equilibrium point, we have

p � 1 D
90
p
� 2

p2 C p � 90 D 0

.pC 10/.p � 9/ D 0
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1 q

p

q = p - 1

45

8

dp

PS
9

CS
q =       - 2

90
p

FIGURE 15.23 Diagram for Example 2.

Thus, p0 D 9, so q0 D 9 � 1 D 8. (See Figure 15.23.) Note that the demand equation
expresses q as a function of p and that when q D 0, p D 45. Since consumers’ surplus
can be considered an area, this area can be determined by means of horizontal strips
of width dp and length q D f.p/. The areas of these strips are summed from p D 9 to
p D 45 by integrating with respect to p:

CS D
Z 45

9

�
90
p
� 2

�
dp D .90 ln jpj � 2p/

ˇ̌̌̌45
9

D 90 ln 5 � 72 � 72:85

Using horizontal strips for producers’ surplus, we have

PS D
Z 9

1
.p � 1/ dp D

.p � 1/2

2

ˇ̌̌̌9
1
D 32

Now Work Problem 5 G

PROBLEMS 15.4
In Problems 1–6, the first equation is a demand equation and the
second is a supply equation of a product. In each case, determine
consumers’ surplus and producers’ surplus under market
equilibrium.

1. p D 22 � 0:8q
p D 6C 1:2q

2. pD 2200 � q2

pD 400C q2

3. pD
50

qC 5

pD
q
10
C 4:5

4. pD 1000 � q2

pD 10qC 400

5. qD 100.10 � 2p/
qD 50.2p � 1/

6. qD
p
100 � p

qD
p
2
� 10

7. The demand equation for a product is

q D 10
p
100 � p

Calculate consumers’ surplus under market equilibrium, which
occurs at a price of $84.

8. The demand equation for a product is

q D 400 � p2

and the supply equation is

p D
q
60
C 5

Find producers’ surplus and consumers’ surplus under market
equilibrium.

9. The demand equation for a product is p D 29�q, and the
supply equation is p D 2qC3, where p is the price per unit (in
hundreds of dollars) when q units are demanded or supplied.
Determine, to the nearest thousand dollars, consumers’ surplus
under market equilibrium.

10. The demand equation for a product is

.pC 10/.qC 20/ D 1000

and the supply equation is

q � 4pC 10 D 0

(a) Verify, by substitution, that market equilibrium occurs when
p D 10 and q D 30.
(b) Determine consumers’ surplus under market equilibrium.
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11. The demand equation for a product is

p D 60 �
50qp

q2 C 3600

and the supply equation is

p D 10 ln.qC 20/ � 26

Determine consumers’ surplus and producers’ surplus under
market equilibrium. Round the answers to the nearest integer.

12. Producers’ Surplus The supply function for a product
is given by the following table, where p is the price per unit
(in dollars) at which q units are supplied to the market:

q 0 10 20 30 40 50

p 25 49 59 71 80 94

Use the trapezoidal rule to estimate the producers’ surplus if the
selling price is $80.

Objective 15.5 Average Value of a Function
To develop the concept of the average
value of a function.

If we are given the three numbers 1, 2, and 9, then their average value, also known as
their mean, is their sum divided by 3. Denoting this average by y, we have

y D
1C 2C 9

3
D 4

Similarly, suppose we are given a function f defined on the interval Œa; b�, and the
points x1; x2; : : : ; xn are in the interval. Then the average value of the n corresponding
function values f.x1/; f.x2/; : : : ; f.xn/ is

y D
f.x1/C f.x2/C � � � C f.xn/

n
D

Pn
iD1 f.xi/

n
(1)

We can go a step further. Let us divide the interval Œa; b� into n subintervals of equal
length. We will choose xi to be the right-hand endpoint of the ith subinterval. Because

Œa; b� has length b� a, each subinterval has length
b � a
n

, which we will call dx. Thus,
Equation (1) can be written

y D

nX
iD1

f.xi/
�
dx
dx

�
n

D

1
dx

nX
iD1

f.xi/dx

n
D

1
n dx

nX
iD1

f.xi/dx (2)

Since dx D
b � a
n

, it follows that ndx D b � a. So the expression
1
ndx

in Equation (2)

can be replaced by
1

b � a
. Moreover, as n!1, the number of function values used in

computing y increases, and we get the so-called average value of the function f, denoted

by f:

f D lim
n!1

 
1

b � a

nX
iD1

f.xi/dx

!
D

1
b � a

lim
n!1

nX
iD1

f.xi/dx

But the limit on the right is just the definite integral
R b
a f.x/dx. This motivates the fol-

lowing definition:

Definition
The average value of a function f.x/ over the interval Œa; b� is denoted f and is
given by

f D
1

b � a

Z b

a
f.x/dx
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EXAMPLE 1 Average Value of a Function

Find the average value of the function f.x/ D x2 over the interval Œ1; 2�.

Solution:

f D
1

b � a

Z b

a
f.x/dx

D
1

2 � 1

Z 2

1
x2dx D

x3

3

ˇ̌̌̌2
1
D

7
3

Now Work Problem 1 G

In Example 1, we found that the average value of y D f.x/ D x2 over the interval

Œ1; 2� is 7
3 . We can interpret this value geometrically. Since

1
2 � 1

Z 2

1
x2dx D

7
3

by solving for the integral we have
x

y

1 2

f  =

4

3

2

1

f(x) = x2

7

3

7

3

FIGURE 15.24 Geometric
interpretation of the average value
of a function.

Z 2

1
x2dx D

7
3
.2 � 1/

However, this integral gives the area of the region bounded by f.x/ D x2 and the x-axis
from x D 1 to x D 2. (See Figure 15.24.) From the preceding equation, this area is�
7
3

�
.2 � 1/, which is the area of a rectangle whose height is the average value f D 7

3

and whose width is b � a D 2 � 1 D 1.

EXAMPLE 2 Average Flow of Blood

Suppose the flow of blood at time t in a system is given by

F.t/ D
F1

.1C ˛t/2
0 � t � T

where F1 and ˛ (a Greek letter read “alpha”) are constants.5 Find the average flow F
on the interval Œ0; T �.

Solution:

F D
1

T � 0

Z T

0
F.t/dt

D
1
T

Z T

0

F1
.1C ˛t/2

dt D
F1
˛T

Z T

0
.1C ˛t/�2.˛dt/

D
F1
˛T

�
.1C ˛t/�1

�1

�ˇ̌̌̌T
0
D

F1
˛T

�
�

1
1C ˛T

C 1
�

D
F1
˛T

�
�1C 1C ˛T

1C ˛T

�
D

F1
˛T

�
˛T

1C ˛T

�
D

F1
1C ˛T

Now Work Problem 11 G

5W. Simon, Mathematical Techniques for Physiology and Medicine (New York: Academic Press, Inc., 1972).
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PROBLEMS 15.5
In Problems 1–8, find the average value of the function over the
given interval.

1. f.x/ D x2; Œ�1; 3� 2. f.x/ D 2xC 1; Œ0; 1�

3. f.x/ D 2 � 3x2I Œ�1; 2� 4. f.x/ D x2 C xC 1; [1, 3]

5. f.t/ D 3t4; Œ�1; 2� 6. f.t/ D t
p
t2 C 9; [0, 4]

7. f.x/ D
p
x; Œ0; 1� 8. f.x/ D 5=x2; Œ1; 3�

9. Profit The profit (in dollars) of a business is given by

P D P.q/ D 369q � 2:1q2 � 400

where q is the number of units of the product sold. Find the
average profit on the interval from q D 0 to q D 100.

10. Cost Suppose the cost (in dollars) of producing q units
of a product is given by

c D 5000C 12qC 0:3q2

Find the average cost on the interval from q D 200 to q D 500.

11. Investment An investment of $3000 earns interest at an
annual rate of 5% compounded continuously. After t years, its

value, S (in dollars), is given by S D 3000e0:05t. Find the average
value of a two-year investment.

12. Medicine Suppose that colored dye is injected into the
bloodstream at a constant rate, R. At time t, let

C.t/ D
R

F.t/

be the concentration of dye at a location distant (distal) from the
point of injection, where F.t/ is as given in Example 2. Show that
the average concentration on [0, T] is

C D
R
�
1C ˛TC 1

3˛
2T2
�

F1
13. Revenue Suppose a manufacturer receives revenue, r, from
the sale of q units of a product. Show that the average value of the
marginal-revenue function over the interval [0, q0] is the price per
unit when q0 units are sold.

14. Find the average value of f.x/ D
1

x2 � 4xC 5
over the

interval Œ0; 1� using an approximate integration technique. Round
your answer to two decimal places.

Objective 15.6 Differential Equations
To solve a differential equation by using
the method of separation of variables.
To discuss particular solutions and
general solutions. To develop interest
compounded continuously in terms of
a differential equation. To discuss
exponential growth and decay.

Frequently, we have to solve an equation that involves the derivative of an unknown
function. Such an equation is called a differential equation. An example is

y0
D xy2 (1)

More precisely, Equation (1) is called a first-order differential equation, because
it involves a derivative of the first order and none of any higher order. A solution of
Equation (1) is any function y D f.x/ that is defined on an interval and satisfies the
equation for all x in the interval.

To solve y0 D xy2, equivalently,

dy
dx
D xy2 (2)

we think of dy=dx as a quotient of differentials, and algebraically we “separate the
variables” by rewriting the equation so that each side contains only one variable and
all differentials appear as numerators:

dy
y2
D xdx

Integrating both sides and combining the constants of integration, we obtainZ
1
y2
dy D

Z
xdx

�
1
y
D

x2

2
C C1

�
1
y
D

x2 C 2C1

2

Since 2C1 is an arbitrary constant, we can replace it by C.

�
1
y
D

x2 C C
2

(3)
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Solving Equation (3) for y, we have

y D �
2

x2 C C
(4)

We can verify that y is a solution to the differential Equation (2):
For if y is given by Equation (4), then

dy
dx
D

4x
.x2 C C/2

while also

xy2 D x
�
�

2
x2 C C

�2

D
4x

.x2 C C/2

showing that our y satisfies (2). Note in Equation (4) that, for each value of C, a differ-
ent solution is obtained. We call Equation (4) the general solution of the differential
equation. The method that we used to find it is called separation of variables.

In the foregoing example, suppose we are given the condition that y D � 2
3 when

x D 1; that is, y.1/ D � 2
3 . Then the particular function that satisfies both Equation (2)

and this condition can be found by substituting the values x D 1 and y D � 2
3 into

Equation (4) and solving for C:

�
2
3
D �

2
12 C C

C D 2

Therefore, the solution of dy=dx D xy2 such that y.1/ D � 2
3 is

y D �
2

x2 C 2
(5)

We call Equation (5) a particular solution of the differential equation.

EXAMPLE 1 Separation of Variables

Solve y0 D �
y
x
if x; y > 0.

APPLY IT I
3. For a clear liquid, light intensity

diminishes at a rate of
dI
dx
D �kI, where

I is the intensity of the light and x is the
number of feet below the surface of the
liquid. If k D 0:0085 and I D I0 when
x D 0, find I as a function of x.

Solution: Writing y0 as dy=dx, separating variables, and integrating, we have

dy
dx
D �

y
x

dy
y
D �

dx
xZ

1
y
dy D �

Z
1
x
dx

ln jyj D C1 � ln jxj

Since x; y > 0, we can omit the absolute-value bars:

ln y D C1 � ln x (6)

To solve for y, we convert Equation (6) to exponential form:

y D eC1�ln x

So

y D eC1e� ln x
D

eC1

eln x
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Replacing eC1 by C, where C > 0, and rewriting eln x as x gives

y D
C
x

C; x > 0

Now Work Problem 1 G

In Example 1, note that Equation (6) expresses the solution implicitly, whereas
the final equation, y D C=x, states the solution y explicitly in terms of x. Solutions of
certain differential equations are often expressed in implicit form for convenience (or
necessity if there is an insurmountable difficulty in obtaining an explicit form).

Exponential Growth and Decay
In Section 5.3, the notion of interest compounded continuously was developed. Let us
now take a different approach to this topic that involves a differential equation. Sup-
pose P dollars are invested at an annual rate, r, compounded n times a year. Let the
function S D S.t/ give the compound amount, S, that is the total amount present, after
t years from the date of the initial investment. Then the initial principal is S.0/ D P.
Furthermore, since there are n interest periods per year, each period has length 1=n
years, which we will denote by dt. At the end of the first period, the accrued interest for
that period is added to the principal, and the sum acts as the principal for the second
period, and so on. Hence, if the beginning of an interest period occurs at time t, then the
increase in the amount present at the end of a period, dt, is S.tC dt/ � S.t/, which we
write as �S. This increase, �S, is also the interest earned for the period. Equivalently,
the interest earned is principal times rate times time:

�S D S � r � dt

Dividing both sides by dt, we obtain

�S
dt
D rS (7)

As dt ! 0, then n D
1
dt
! 1, and consequently interest is being compounded

continuously; that is, the principal is subject to continuous growth at every instant.
However, as dt! 0, then �S=dt! dS=dt, and Equation (7) takes the form

dS
dt
D rS (8)

This differential equation means that when interest is compounded continuously, the
rate of change of the amount of money present at time t is proportional to the amount
present at time t. The constant of proportionality is r.

To determine the actual function S, we solve the differential Equation (8) by the
method of separation of variables:

dS
dt
D rS

dS
S
D rdtZ

1
S
dS D

Z
rdt

ln jSj D rtC C1

We assume that S > 0, so ln jSj D ln S. Thus,

ln S D rtC C1

To get an explicit form, we can solve for S by converting to exponential form.

S D ertCC1 D eC1ert
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For simplicity, eC1 can be replaced by C (and then necessarily C > 0) to obtain the
general solution

S D Cert

The condition S.0/ D P allows us to find the value of C:

P D Cer.0/
D C � 1

Hence, C D P, so

S D Pert (9)

Equation (9) gives the total value after t years of an initial investment of P dollars
compounded continuously at an annual rate, r. (See Figure 15.25.)

3P

2P

t

S

S = Pe
rt

P

FIGURE 15.25 Compounding
continuously. In our discussion of compound interest, we saw from Equation (8) that the rate of

change in the amount present was proportional to the amount present. There are many
natural quantities, such as population, whose rate of growth or decay at any time is
considered proportional to the amount of that quantity present. If N denotes the amount
of such a quantity at time t, then this rate of growth means that

dN
dt
D kN

where k is a constant. If we separate variables and solve forN as we did for Equation (8),
we get

N D N0ekt (10)

where N0 is a constant. In particular, if t D 0, then N D N0e0 D N0 � 1 D N0. Thus, the
constant N0 is simply N.0/. Due to the form of Equation (10), we say that the quantity
follows an exponential law of growth if k is positive and an exponential law of decay
if k is negative.

EXAMPLE 2 Population Growth

In a certain city, the rate at which the population grows at any time is proportional to
the size of the population. If the population was 125,000 in 1970 and 140,000 in 1990,
what was the expected population in 2010?

Solution: Let N be the size of the population at time t. Since the exponential law of
growth applies,

N D N0ekt

To find the population in 2010, we must first find the particular law of growth involved
by determining the values of N0 and k. Let the year 1970 correspond to t D 0. Then
t D 20 in 1990 and t D 40 in 2010. We have

N0 D N.0/ D 125; 000

Thus,

N D 125; 000ekt

To find k, we use the fact that N D 140; 000 when t D 20:

140; 000 D 125; 000e20k

Hence,

e20k D
140; 000
125; 000

D 1:12

Therefore, the law of growth is

N D 125; 000ekt

D 125; 000.e20k/t=20

D 125; 000.1:12/t=20 (11)
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Setting t D 40 gives the expected population in 2010:

N D N.40/ D 125; 000.1:12/2 D 156; 800

We remark that from e20k D 1:12 we have 20k D ln.1:12/ and hence k D
ln.1:12/

20
�

0:0057, which can be placed in N D 125; 000ekt to give

N � 125; 000e0:0057t (12)

Now Work Problem 23 G

In Chapter 4, radioactive decay was discussed. Here we will consider this topic
from the perspective of a differential equation. The rate at which a radioactive element
decays at any time is found to be proportional to the amount of that element present. If
N is the amount of a radioactive substance at time t, then the rate of decay is given by

dN
dt
D ��N: (13)

The positive constant � (a Greek letter read “lambda”) is called the decay constant, and
the minus sign indicates that N is decreasing as t increases. Thus, we have exponential
decay. From Equation (10), the solution of this differential equation is

N D N0e��t (14)

If t D 0, thenN D N0 �1 D N0, soN0 represents the amount of the radioactive substance
present when t D 0.

The time for one-half of the substance to decay is called the half-life of the sub-
stance. In Section 4.2, it was shown that the half-life is given by

half-life D
ln 2
�
�

0:69315
�

(15)

Note that the half-life depends on �. In Chapter 4, Figure 4.13 shows the graph of
radioactive decay.

EXAMPLE 3 Finding the Decay Constant and Half-Life

If 60% of a radioactive substance remains after 50 days, find the decay constant and
the half-life of the element.

Solution: From Equation (14),

N D N0e��t

where N0 is the amount of the element present at t D 0. When t D 50, then N D 0:6N0,
and we have

0:6N0 D N0e�50�

0:6 D e�50�

�50� D ln.0:6/ logarithmic form

� D �
ln.0:6/
50

� 0:01022

Thus, N � N0e�0:01022t. The half-life, from Equation (15), is

ln 2
�
� 67:82days

Now Work Problem 27 G
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Radioactivity is useful in dating such things as fossil plant remains and archaeo-
logical remains made from organic material. Plants and other living organisms con-
tain a small amount of radioactive carbon 14 (14C/ in addition to ordinary carbon
.12C/. The 12C atoms are stable, but the 14C atoms are decaying exponentially. How-
ever, 14C is formed in the atmosphere due to the effect of cosmic rays. This 14C is
taken up by plants during photosynthesis and replaces what has decayed. As a result,
the ratio of 14C atoms to 12C atoms is considered constant in living tissues over a
long period of time. When a plant dies, it stops absorbing 14C, and the remaining
14C atoms decay. By comparing the proportion of 14C to 12C in a fossil plant to that
of plants found today, we can estimate the age of the fossil. The half-life of 14C is
approximately 5730 years. Thus, if a fossil is found to have a 14C-to-12C ratio that
is half that of a similar substance found today, we would estimate the fossil to be
5730 years old.

EXAMPLE 4 Estimating the Age of an Ancient Tool

A wood tool found in a Middle East excavation site is found to have a 14C-to-12C ratio
that is 0.6 of the corresponding ratio in a present-day tree. Estimate the age of the tool
to the nearest hundred years.

Solution: Let N be the amount of 14C present in the wood t years after the tool was
made. Then N D N0e��t, where N0 is the amount of 14C when t D 0. Since the ratio
of 14C to 12C is 0.6 of the corresponding ratio in a present-day tree, this means that we
want to find the value of t for which N D 0:6N0. Thus, we have

0:6N0 D N0e��t

0:6 D e��t

��t D ln.0:6/ logarithmic form

t D �
1
�
ln.0:6/

From Equation (15), the half-life is .ln 2/=�, which is approximately 5730, so
� � .ln 2/=5730. Consequently,

t � �
1

.ln 2/=5730
ln.0:6/

� �
5730 ln.0:6/

ln 2
� 4200 years

Now Work Problem 29 G

PROBLEMS 15.6
In Problems 1–8, solve the differential equations.

1. y0 D 3xy2 2. y0 D x2y2

3.
dy
dx
� 2x ln .x2 C 1/ D 0 4.

dy
dx
D

x
y

5.
dy
dx
D y, y > 0 6. y0 D exy2

7. y0 D
y
x
; x; y > 0 8.

dy
dx
� x ln x D 0

In Problems 9–18, solve each of the differential equations, subject
to the given conditions.

9. y0 D
1
y2
; y.1/ D 1

10. y0 D ex�y; y.0/ D 0 (Hint: ex�y D ex=ey.)

11. eyy0 � x3 D 0; y D 1 when x D 0

12. x2y0 C
1
y2
D 0I y.1/ D 2

13. .3x2 C 2/3y0 � xy2 D 0I y.0/ D 2

14. y0 C x3y D 0I y D e when x D 0

15.
dy
dx
D

3x
p
1C y2

y
I y > 0; y.1/ D

p
8

16. 2y.x3 C xC 1/
dy
dx
D

3x2 C 1p
y2 C 4

; y.0/ D 0
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17. 2
dy
dx
D

xe�y

p
x2 C 3

I y.1/ D 0

18. dy D 2xyex
2
dx; y > 0I y.0/ D e

19. Cost Find the manufacturer’s cost function c D f.q/
given that

.qC 1/2
dc
dq
D cq

and fixed cost is e.

20. Find f.2/, given that f.1/ D 0 and that y D f.x/ satisfies the
differential equation

dy
dx
D xex�y

21. Circulation of Money A country has 1.00 billion dollars
of paper money in circulation. Each week 25 million dollars is
brought into the banks for deposit, and the same amount is paid
out. The government decides to issue new paper money; whenever
the old money comes into the banks, it is destroyed and replaced
by new money. Let y be the amount of old money (in millions of
dollars) in circulation at time t (in weeks). Then y satisfies the
differential equation

dy
dt
D �0:025y

How long will it take for 95% of the paper money in circulation to
be new? Round your answer to the nearest week. (Hint: If 95% of
money is new, then y is 5% of 1000.)

22. Marginal Revenue and Demand Suppose that a
monopolist’s marginal-revenue function is given by the
differential equation

dr
dq
D .50 � 4q/e�r=5

Find the demand equation for the monopolist’s product.

23. Population Growth In a certain town, the population
at any time changes at a rate proportional to the population.
If the population in 1990 was 60,000 and in 2000 was 64,000,
find an equation for the population at time t, where t is the
number of years past 1990. What is the expected population
in 2010?

24. Population Growth The population of a town increases by
natural growth at a rate proportional to the number, N, of persons
present. If the population at time t D 0 is 50,000, find two
expressions for the population N, t years later, if the population
doubles in 50 years. Assume that ln 2 D 0:69. Also, find N for
t D 100.

25. Population Growth Suppose that the population of
the world in 1930 was 2 billion and in 1960 was 3 billion. If the
exponential law of growth is assumed, what is the expected
population in 2015? Give your answer in terms of e.

26. Population Growth If exponential growth is assumed,
in approximately how many years will a population double if
it triples in 81 years?

27. Radioactivity If 30% of the initial amount of a radioactive
sample remains after 100 seconds, find the decay constant and the
half-life of the element.

28. Radioactivity If 20% of the initial amount of a radioactive
sample has decayed after 100 seconds, find the decay constant and
the half-life of the element.

29. Carbon Dating An Egyptian scroll was found to have
a 14C-to-12C ratio 0.7 of the corresponding ratio in similar
present-day material. Estimate the age of the scroll, to the nearest
hundred years.

30. Carbon Dating A recently discovered archaeological
specimen has a 14C-to-12C ratio 0.1 of the corresponding ratio
found in present-day organic material. Estimate the age of the
specimen, to the nearest hundred years.

31. Population Growth Suppose that a population follows
exponential growth given by dN=dt D kN for t � t0. Suppose
also that N D N0 when t D xt0. Find N, the population size at
time t.

32. Radioactivity Polonium-210 has a half-life of about
140 days. (a) Find the decay constant in terms of ln 2. (b)What
fraction of the original amount of a sample of polonium-210
remains after one year?

33. Radioactivity Radioactive isotopes are used in medical
diagnoses as tracers to determine abnormalities that may exist in
an organ. For example, if radioactive iodine is swallowed, after
some time it is taken up by the thyroid gland. With the use of a
detector, the rate at which it is taken up can be measured, and a
determination can be made as to whether the uptake is normal.
Suppose radioactive technetium-99m, which has a half-life of six
hours, is to be used in a brain scan two hours from now. What
should be its activity now if the activity when it is used is to be
12 units? Give your answer to one decimal place. [Hint: In
Equation (14), let N D activity t hours from now and
N0 D activity now.]

34. Radioactivity A radioactive substance that has a half-life
of eight days is to be temporarily implanted in a hospital patient
until three-fifths of the amount originally present remains. How
long should the implant remain in the patient?

35. Ecology In a forest, natural litter occurs, such as fallen
leaves and branches, dead animals, and so on.6 Let A D A.t/
denote the amount of litter present at time t, where A.t/ is
expressed in grams per square meter and t is in years. Suppose
that there is no litter at t D 0. Thus, A.0/ D 0. Assume that
(i) Litter falls to the ground continuously at a constant rate of
200 grams per square meter per year.
(ii) The accumulated litter decomposes continuously at the rate of
50% of the amount present per year (which is 0:50A).
The difference of the two rates is the rate of change of the amount
of litter present with respect to time:�

rate of change
of litter present

�
D

�
rate of falling
to ground

�
�

�
rate of

decomposition

�
Therefore,

dA
dt
D 200 � 0:50A

Solve for A. To the nearest gram, determine the amount of litter
per square meter after one year.

6R. W. Poole, An Introduction to Quantitative Ecology (New York:
McGraw-Hill Book Company, 1974).
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36. Profit and Advertising A company determines that the
rate of change of monthly net profit P, as a function of monthly
advertising expenditure x, is proportional to the difference
between a fixed amount, $250,000, and 2P; that is, dP=dx is
proportional to 250; 000 � 2P. Furthermore, if no money is spent
on monthly advertising, the monthly net profit is $10,000; if
$1000 is spent on monthly advertising, the monthly net profit is
$50,000. What would the monthly net profit be if $5000 were
spent on advertising each month?

37. Value of a Machine The value of a certain machine
depreciates 25% in the first year after the machine is purchased.
The rate at which the machine subsequently depreciates is
proportional to its value. Suppose that such a machine was
purchased new on July 1, 1995, for $80,000 and was valued at
$38,900 on January 1, 2006.
(a) Determine a formula that expresses the value V of the machine
in terms of t, the number of years after July 1, 1996.
(b) Use the formula in part (a) to determine the year and month in
which the machine has a value of exactly $14,000.

Objective 15.7 More Applications of Differential Equations
To develop the logistic function as a
solution of a differential equation. To
model the spread of a rumor. To
discuss and apply Newton's law of
cooling.

Logistic Growth
In the previous section, we found that if the number N of individuals in a population at
time t follows an exponential law of growth, then N D N0ekt, where k > 0 and N0 is
the population when t D 0. This law assumes that at time t the rate of growth, dN=dt,
of the population is proportional to the number of individuals in the population. That
is, dN=dt D kN.

Under exponential growth, a population would get “infinitely large” as time goes
on, meaning that limt!1 N0ekt D 1. In reality, however, when the population gets
large enough, environmental factors slow down the rate of growth. Examples are food
supply, predators, overcrowding, and so on. These factors cause dN=dt to decrease
eventually. It is reasonable to assume that the size of a population is limited to some
maximum numberM, where 0 < N < M, and as N! M, dN=dt! 0, and the popula-
tion size tends to be stable.

In summary, we want a population model that has exponential growth initially but
also includes the effects of environmental resistance to large population growth. Such a
model is obtained bymultiplying the right side of dN=dt D kN by the factor .M�N/=M:

dN
dt
D kN

�
M � N
M

�
Notice that if N is small, then .M � N/=M is close to 1, and we have growth that is
approximately exponential. As N ! M, then M � N ! 0 and dN=dt ! 0, as we
wanted in our model. Because k=M is a constant, we can replace it by K. Thus,

dN
dt
D KN.M � N/ (1)

This states that the rate of growth is proportional to the product of the size of the pop-
ulation and the difference between the maximum size and the actual size of the popu-
lation. We can solve for N in the differential Equation (1) by the method of separation
of variables:

dN
N.M � N/

D KdtZ
1

N.M � N/
dN D

Z
Kdt (2)

The integral on the left side can be found by using Formula (5) in the table of integrals
in Appendix B. Thus, Equation (2) becomes

1
M
ln

ˇ̌̌̌
N

M � N

ˇ̌̌̌
D KtC C

so

ln

ˇ̌̌̌
N

M � N

ˇ̌̌̌
D MKtCMC
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Since N > 0 and M � N > 0, we can write

ln
N

M � N
D MKtCMC

In exponential form, we have

N
M � N

D eMKtCMC
D eMKteMC

Replacing the positive constant eMC by A and solving for N gives

N
M � N

D AeMKt

N D .M � N/AeMKt

N D MAeMKt
� NAeMKt

NAeMKt
C N D MAeMKt

N.AeMKt
C 1/ D MAeMKt

N D
MAeMKt

AeMKt C 1

Dividing numerator and denominator by AeMKt, we have

N D
M

1C
1

AeMKt

D
M

1C
1
A
e�MKt

Replacing 1=A by b and MK by c yields the so-called logistic function:

Logistic Function
The function defined by

N D
M

1C be�ct
(3)

is called the logistic function or the Verhulst–Pearl logistic function.

M

t

N

M

1 + be-
ct

N =

M

2

FIGURE 15.26 Logistic
curve.

The graph of Equation (3), called a logistic curve, is S-shaped and appears in
Figure 15.26. Notice that the line N D M is a horizontal asymptote; that is,

lim
t!1

M
1C be�ct

D
M

1C b.0/
D M

Moreover, from Equation (1), the rate of growth is

KN.M � N/

which can be considered a function of N. To find when the maximum rate of growth

occurs, we solve
d
dN
.KN.M � N// D 0 for N:

d
dN
.KN.M � N// D

d
dN
.K.MN � N2//

D K.M � 2N/ D 0

Thus, N D M=2. In other words, the rate of growth increases until the population size
is M=2 and decreases thereafter. The maximum rate of growth occurs when N D M=2
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and corresponds to a point of inflection in the graph of N. To find the value of t for
which this occurs, we substitute M=2 for N in Equation (3) and solve for t:

M
2
D

M
1C be�ct

1C be�ct
D 2

e�ct
D

1
b

ect D b

ct D ln b logarithmic form

t D
ln b
c

Therefore, the maximum rate of growth occurs at the point ..ln b/=c;M=2/.
We remark that in Equation (3) we can replace e�c by C, and then the logistic

function has the following form:

Alternative Form of Logistic Function

N D
M

1C bCt

EXAMPLE 1 Logistic Growth of Club Membership

Suppose the membership in a new country club is to be a maximum of 800 persons,
due to limitations of the physical plant. One year ago the initial membership was 50
persons, and now there are 200. Provided that enrollment follows a logistic function,
how many members will there be three years from now?

Solution: Let N be the number of members enrolled t years after the formation of the
club. Then, from Equation (3),

N D
M

1C be�ct

Here M D 800, and when t D 0, we have N D 50. So

50 D
800
1C b

1C b D
800
50
D 16

b D 15

Thus,

N D
800

1C 15e�ct
(4)

When t D 1, then N D 200, so we have

200 D
800

1C 15e�c

1C 15e�c
D

800
200
D 4

e�c
D

3
15
D

1
5
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Hence, c D � ln 1
5 D ln 5. Rather than substituting this value of c into Equation (4),

it is more convenient to substitute the value of e�c there:

N D
800

1C 15
�
1
5

�t
Three years from now, t will be 4. Therefore,

N D
800

1C 15
�
1
5

�4 � 781

Now Work Problem 5 G

Modeling the Spread of a Rumor
Let us now consider a simple model of how a rumor spreads in a population of sizeM.
A similar situation would be the spread of an epidemic or a new fad.

Let N D N.t/ be the number of persons who know the rumor at time t. We will
assume that those who know the rumor spread it randomly in the population and that
those who are told the rumor become spreaders of the rumor. Furthermore, we will
assume that each knower tells the rumor to k individuals per unit of time. (Some of
these k individuals may already know the rumor.) We want an expression for the rate
of increase of the knowers of the rumor. Over a unit of time, each of approximately
N persons will tell the rumor to k persons. Thus, the total number of persons who are
told the rumor over the unit of time is (approximately) Nk. However, we are interested
only in new knowers. The proportion of the population that does not know the rumor
is .M � N/=M. Hence, the total number of new knowers of the rumor is

Nk
�
M � N
M

�
which can be written .k=M/N.M � N/. Therefore,

dN
dt
D

k
M
N.M � N/

D KN.M � N/; where K D
k
M

This differential equation has the form of Equation (1), so its solution, from
Equation (3), is a logistic function:

N D
M

1C be�ct

EXAMPLE 2 Campus Rumor

In a large university of 45,000 students, a sociology major is researching the spread of
a new campus rumor. When she begins her research, she determines that 300 students
know the rumor. After one week, she finds that 900 know it. Estimate the number of
students who know it four weeks after the research begins by assuming logistic growth.
Give the answer to the nearest thousand.

Solution: Let N be the number of students who know the rumor t weeks after the
research begins. Then

N D
M

1C be�ct

Here M, the size of the population, is 45,000, and when t D 0;N D 300. So we have

300 D
45; 000
1C b

1C b D
45; 000
300

D 150

b D 149
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Thus,

N D
45; 000

1C 149e�ct

When t D 1, then N D 900. Hence,

900 D
45; 000

1C 149e�c

1C 149e�c
D

45; 000
900

D 50

Therefore, e�c D
49
149 , so

N D
45; 000

1C 149
�
49
149

�t
When t D 4,

N D
45; 000

1C 149
�
49
149

�4 � 16; 000

After four weeks, approximately 16,000 students know the rumor.

Now Work Problem 3 G

Newton’s Law of Cooling
We conclude this section with an interesting application of a differential equation. If a
homicide is committed, the temperature of the victim’s body will gradually decrease
from 37ıC (normal body temperature) to the temperature of the surroundings (ambi-
ent temperature). In general, the temperature of the cooling body changes at a rate
proportional to the difference between the temperature of the body and the ambient
temperature. This statement is known as Newton’s law of cooling. Thus, if T.t/ is
the temperature of the body at time t and the ambient temperature is a, then

dT
dt
D k.T � a/

where k is the constant of proportionality. Therefore, Newton’s law of cooling is a
differential equation. It can be applied to determine the time at which a homicide was
committed, as the next example illustrates.

EXAMPLE 3 Time of Murder

A wealthy industrialist was found murdered in his home. Police arrived on the scene at
11:00 p.m. The temperature of the body at that time was 31ıC, and one hour later it was
30ıC. The temperature of the room in which the body was found was 22ıC. Estimate
the time at which the murder occurred.

Solution: Let t be the number of hours after the body was discovered and T.t/ be the
temperature (in degrees Celsius) of the body at time t. We want to find the value of t for
which T D 37 (normal body temperature). This value of t will, of course, be negative.
By Newton’s law of cooling,

dT
dt
D k.T � a/

where k is a constant and a (the ambient temperature) is 22. Thus,

dT
dt
D k.T � 22/
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Separating variables, we have
dT

T � 22
D kdtZ

dT
T � 22

D

Z
kdt

ln jT � 22j D ktC C

Because T � 22 > 0,

ln.T � 22/ D ktC C

When t D 0, then T D 31. Therefore,

ln.31 � 22/ D k � 0C C

C D ln 9

Hence,

ln.T � 22/ D ktC ln 9

ln.T � 22/ � ln 9 D kt

ln
T � 22
9
D kt ln a � ln b D ln

a
b

When t D 1, then T D 30, so

ln
30 � 22

9
D k � 1

k D ln
8
9

Thus,

ln
T � 22
9
D t ln

8
9

Now we find t when T D 37:

ln
37 � 22

9
D t ln

8
9

t D
ln.15=9/
ln.8=9/

� �4:34

Accordingly, the murder occurred about 4.34 hours before the time of discovery of the
body (11:00 p.m.). Since 4.34 hours is (approximately) 4 hours and 20 minutes, the
industrialist was murdered about 6:40 p.m.

Now Work Problem 9 G

PROBLEMS 15.7
1. Population The population of a city follows logistic growth
and is limited to 100,000. If the population in 1995 was 50,000
and in 2000 was 60,000, what will the population be in 2005?
Give your answer to the nearest hundred.

2. Production A company believes that the production of its
product in present facilities will follow logistic growth. Presently,
300 units per day are produced, and production will increase
to 500 units per day in one year. If production is limited to 900
units per day, what is the anticipated daily production in two
years? Give the answer to the nearest unit.

3. Spread of Rumor In a university of 40,000 students, the
administration holds meetings to discuss the idea of bringing
in a major rock band for homecoming weekend. Before the plans
are officially announced, student representatives on the

administrative council spread information about the event as a
rumor. At the end of one week, 100 people know the rumor.
Assuming logistic growth, how many people know the rumor
after two weeks? Give your answer to the nearest hundred.

4. Spread of a Fad At a university with 50,000 students,
it is believed that the number of students with a particular ring
tone on their mobile phones is following a logistic growth pattern.
The student newspaper investigates when a survey reveals that
500 students have the ring tone. One week later, a similar survey
reveals that 1500 students have it. The newspaper writes a story
about it and includes a formula predicting the number
N D N.t/ of students who will have the ring tone t weeks
after the first survey. What is the formula that the newspaper
publishes?
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5. Flu Outbreak In a city whose population is 100,000, an
outbreak of flu occurs. When the city health department begins its
recordkeeping, there are 500 infected persons. One week later,
there are 1000 infected persons. Assuming logistic growth,
estimate the number of infected persons two weeks after
recordkeeping begins.

6. Sigmoid Function A very special case of the logistic
function defined by Equation (3) is the sigmoid function, obtained
by taking M D b D c D 1 so that we have

N.t/ D
1

1C e�t

(a) Show directly that the sigmoid function is the solution of the
differential equation

dN
dt
D N.1 � N/

and the initial condition N.0/ D 1=2.
(b) Show that .0; 1=2/ is an inflection point on the graph of the
sigmoid function.
(c) Show that the function

f.t/ D
1

1C e�t
�
1
2

is symmetric about the origin.
(d) Explain how (c) above shows that the sigmoid function is
symmetric about the point .0; 1=2/, explaining at the same time
what this means.
(e) Sketch the graph of the sigmoid function.

7. Biology In an experiment,7 five Paramecia were placed
in a test tube containing a nutritive medium. The number N
of Paramecia in the tube at the end of t days is given
approximately by

N D
375

1C e5:2�2:3t

(a) Show that this equation can be written as

N D
375

1C 181:27e�2:3t

and, hence, is a logistic function.
(b) Find limt!1 N.
(c) How many days will it take for the number of Paramecia to
exceed 370?

8. Biology In a study of the growth of a colony of unicellular
organisms,8 the equation

N D
0:2524

e�2:128x C 0:005125
0 � x � 5

was obtained, where N is the estimated area of the growth in
square centimeters and x is the age of the colony in days after
being first observed.
(a) Put this equation in the form of a logistic function.
(b) Find the area when the age of the colony is 0.

9. Time of a Murder A murder was committed in an
abandoned warehouse, and the victim’s body was discovered at
3:17 a.m. by the police. At that time, the temperature of the body
was 27ıC and the temperature in the warehouse was �5ıC. One

hour later, the body temperature was 19ıC and the warehouse
temperature was unchanged. The police forensic mathematician
calculates using Newton’s law of cooling. What is the time she
reports as the time of the murder?

10. Enzyme Formation An enzyme is a protein that acts as a
catalyst for increasing the rate of a chemical reaction that occurs
in cells. In a certain reaction, an enzyme A is converted to another
enzyme, B. Enzyme B acts as a catalyst for its own formation. Let
p be the amount of enzyme B at time t and I be the total amount of
both enzymes when t D 0. Suppose the rate of formation of B is
proportional to p.I � p/. Without directly using calculus, find the
value of p for which the rate of formation will be a maximum.

11. Fund-Raising A small town decides to conduct a
fund-raising drive for a fire engine, the cost of which is $200,000.
The initial amount in the fund is $50,000. On the basis of past
drives, it is determined that t months after the beginning of the
drive, the rate, dx=dt, at which money is contributed to such a
fund is proportional to the difference between the desired goal of
$200,000 and the total amount, x, in the fund at that time. After
one month, a total of $100,000 is in the fund. How much will be
in the fund after three months?

12. Birthrate In a discussion of unexpected properties of
mathematical models of population, Bailey9 considers the case in
which the birthrate per individual is proportional to the population

size N at time t. Since the growth rate per individual is
1
N
dN
dt
, this

means that
1
N
dN
dt
D kN

so that
dN
dt
D kN2 subject to N D N0 at t D 0

where k > 0. Show that

N D
N0

1 � kN0t

Use this result to show that

limN D1 as t!
�

1
kN0

��

This means that over a finite interval of time, there is an infinite
amount of growth. Such a model might be useful only for rapid
growth over a short interval of time.

13. Population Suppose that the rate of growth of a population
is proportional to the difference between some maximum size
M and the number N of individuals in the population at time t.
Suppose that when t D 0, the size of the population is N0.
Find a formula for N.

7G. F. Gause, The Struggle for Existence (New York: Hafner Publishing Co.,
1964).
8A. J. Lotka, Elements of Mathematical Biology (New York: Dover Publications,
Inc., 1956).

9N. T. J. Bailey, The Mathematical Approach to Biology and Medicine (New
York: John Wiley & Sons, Inc., 1967).
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Objective 15.8 Improper Integrals
To define and evaluate improper
integrals.

Suppose f.x/ is continuous and nonnegative for a � x < 1. (See Figure 15.27.) We
know that the integral

R b
a f.x/dx is the area of the region between the curve y D f.x/

and the x-axis from x D a to x D b. As b!1, we can think of

lim
b!1

Z b

a
f.x/dx

x

y

a b

y = f (x)

FIGURE 15.27 Area from a to b.

x

y

a

y = f(x)

b      q

FIGURE 15.28 Area from a to b as b!1.

as the area of the unbounded region that is shaded in Figure 15.28. This limit is abbre-
viated by Z 1

a
f.x/dx (1)

and called an improper integral. If the limit exists,
R1

a f.x/dx is said to be convergent
and the improper integral converges to that limit. In this case the unbounded region is

considered to have a finite area, and this area is represented by
R1

a f.x/dx. If the limit

does not exist, the improper integral is said to be divergent, and the region does not
have a finite area.

We can remove the restriction that f.x/ � 0. In general, the improper integralR1

a f.x/dx is defined by Z 1

a
f.x/dx D lim

b!1

Z b

a
f.x/dx

Other types of improper integrals areZ b

�1

f.x/ dx (2)

and Z 1

�1

f.x/dx (3)

In each of the three types of improper integrals [(5), (2), and (3)], the interval over which
the integral is evaluated has infinite length. The improper integral in (2) is defined byZ b

�1

f.x/dx D lim
a!�1

Z b

a
f.x/dx

APPLY IT I
4. The rate at which the human
body eliminates a certain drug from
its system may be approximated by

R.t/ D 3e�0:1t � 3e�0:3t, where R.t/ is
in milliliters per minute and t is the time
in minutes since the drug was taken.

Find
R1

0 .3e�0:1t� 3e�0:3t/ dt, the total

amount of the drug that is eliminated.
If this limit exists,

R b
�1

f.x/dx is said to be convergent. Otherwise, it is divergent. We

will define the improper integral in (3) after the following example.
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EXAMPLE 1 Improper Integrals of the Form
R1

a f.x/dx and
R b

�1
f.x/dx

Determine whether the following improper integrals are convergent or divergent. For
any convergent integral, determine its value.

a.
Z 1

1

1
x3
dx

Solution:
Z 1

1

1
x3
dx D lim

b!1

Z b

1
x�3dx D lim

b!1
�
x�2

2

ˇ̌̌̌b
1

D lim
b!1

�
�

1
2b2
C

1
2

�
D �0C

1
2
D

1
2

Therefore,
Z 1

1

1
x3
dx converges to

1
2
.

b.
Z 0

�1

exdx

Solution:
Z 0

�1

exdx D lim
a!�1

Z 0

a
exdx D lim

a!1
ex
ˇ̌̌0
a

D lim
a!�1

.1 � ea/ D 1 � 0 D 1 e0 D 1

(Here we used the fact that as x! �1, the graph of y D ex approaches the x-axis, so
lima!�infty ea D 0.) Therefore,

R 0
�1

exdx converges to 1.

c.
Z 1

1

1
p
x
dx

Solution:
Z 1

1

1
p
x
dx D lim

b!1

Z b

1
x�1=2dx D lim

b!1
2x1=2

ˇ̌̌̌b
1

D lim
b!1

2.
p
b � 1/ D1

Therefore, the improper integral diverges.
Now Work Problem 3 G

The improper integral
R1

�1
f.x/dx is defined in terms of improper integrals of the forms

(5) and (2): Z 1

�1

f.x/dx D
Z 0

�1

f.x/dxC
Z 1

0
f.x/dx (4)

If both integrals on the right side of Equation (4) are convergent, then
R1

�1
f.x/dx is

said to be convergent; otherwise, it is divergent.

EXAMPLE 2 An Improper Integral of the Form
R1

�1
f.x/dx

Determine whether
Z 1

�1

exdx is convergent or divergent.

Solution:
Z 1

�1

ex dx D
Z 0

�1

exdxC
Z 1

0
exdx

By Example 1(b),
Z 0

�1

exdx D 1. On the other hand,Z 1

0
exdx D lim

b!1

Z b

0
exdx D lim

b!1
ex
ˇ̌̌̌b
0
D lim

b!1
.eb � 1/ D1

Since
R1

0 exdx is divergent,
R1

�1
exdx is also divergent.

Now Work Problem 11 G
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EXAMPLE 3 Density Function

In statistics, a function, f, is called a density function if f.x/ � 0 andZ 1

�1

f.x/dx D 1

Suppose

f.x/ D
�
ke�x for x � 0

0 elsewhere

is a density function. Find k.

Solution: We write the equation
R1

�1
f.x/dx D 1 asZ 0

�1

f.x/dxC
Z 1

0
f.x/dx D 1

Since f.x/ D 0 for x < 0,
R 0

�1
f.x/dx D 0. Thus,Z 1

0
ke�xdx D 1

lim
b!1

Z b

0
ke�xdx D 1

lim
b!1

�ke�x

ˇ̌̌̌b
0
D 1

lim
b!1

.�ke�b
C k/ D 1

0C k D 1 lim
b!1

e�b
D 0

k D 1

Now Work Problem 13 G

PROBLEMS 15.8
In Problems 1–12, determine the integrals if they exist. Indicate
those that are divergent.

1.
Z 1

3

1
x3

dx 2.
Z 1

1

1
.3x � 1/2

dx

3.
Z 1

e1000

1
x
dx 4.

Z 1

2

1
3
p
.xC 2/2

dx

5.
Z 1

37
e�x dx 6.

Z 1

0
.5C e�x/ dx

7.
Z 1

1

1
p
x
dx 8.

Z 1

5

xdxp
.x2 � 9/3

9.
Z �3

�1

1
.xC 1/2

dx 10.
Z 1

1

1
3
p
x � 1

dx

11.
Z 1

�1

2xe�x2 dx 12.
Z 1

�1

.5 � 3x/ dx

13. Density Function The density function for the life x, in
hours, of an electronic component in a radiation meter is given by

f.x/ D

( k
x2

for x � 500

0 for x < 500

(a) If k satisfies the condition that
R1

500 f.x/dx D 1, find k.

(b) The probability that the component will last at least 1000

hours is given by
R1

1000 f.x/dx. Evaluate this integral.

14. Density Function Given the density function

f.x/ D
�
ke�2x for x � 1

0 elsewhere

find k. (Hint: See Example 3.)

15. Future Profits For a business, the present value of
all future profits at an annual interest rate, r, compounded
continuously is given by Z 1

0
p.t/e�rt dt

where p.t/ is the profit per year in dollars at time t. If
p.t/ D 500; 000 and r D 0:02, evaluate this integral.
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16. Psychology In a psychological model for signal
detection,10 the probability ˛ (a Greek letter read “alpha”)
of reporting a signal when no signal is present is given by

˛ D

Z 1

xc

e�x dx x � 0

The probability ˇ (a Greek letter read “beta”) of detecting a signal
when it is present is

ˇ D

Z 1

xc

ke�kx dx x � 0

In both integrals, xc is a constant (called a criterion value in this

model). Find ˛ and ˇ if k D 1
8 .

17. Find the area of the region in the third quadrant bounded by
the curve y D e3x and the x-axis.

18. Economics In discussing entrance of a firm into an
industry, Stigler11 uses the equation

V D �0

Z 1

0
e� te��t dt

where �0; � (a Greek letter read “theta”), and � (a Greek letter
read “rho”) are constants. Show that V D �0=.� � �/ if � < �.

19. Population The predicted rate of growth per year of the
population of a certain small city is given by

40; 000
.tC 2/2

where t is the number of years from now. In the long run (that is,
as t!1), what is the expected change in population from
today’s level?

Chapter 15 Review
Important Terms and Symbols Examples
Section 15.1 Integration by Tables

present value and accumulated amount of a continuous annuity Ex. 8, p. 670

Section 15.2 Approximate Integration
trapezoidal rule Simpson’s rule Ex. 2, p. 675

Section 15.3 Area Between Curves
vertical strip of area Ex. 1, p. 679
horizontal strip of area Ex. 6, p. 683

Section 15.4 Consumers’ and Producers’ Surplus
consumers’ surplus producers’ surplus Ex. 1, p. 688

Section 15.5 Average Value of a Function
average value of a function Ex. 1, p. 691

Section 15.6 Differential Equations
first-order differential equation separation of variables Ex. 1, p. 693
exponential growth and decay decay constant half-life Ex. 3, p. 696

Section 15.7 More Applications of Differential Equations
logistic function Ex. 1, p. 701
Newton’s law of cooling Ex. 3, p. 703

Section 15.8 Improper Integrals
improper integral convergent divergent Ex. 1, p. 707R1

a f.x/dx,
R b

�1
f.x/dx,

R1

�1
f.x/dx Ex. 2, p. 707

Summary
An integral that does not have a familiar form may have been
done by others and recorded in a table of integrals. However,
it may be necessary to transform the given integral into an
equivalent form before the matching can occur.

An annuity is a series of payments over a period of time.
Suppose payments are made continuously for T years such

that a payment at time t is at the rate of f.t/ per year. If the
annual rate of interest is r compounded continuously, then
the present value of the continuous annuity is given by

A D
Z T

0
f.t/e�rtdt

10D. Laming, Mathematical Psychology (New York: Academic Press, Inc.,
1973).

11G. Stigler, The Theory of Price, 3rd ed. (New York: Macmillan Publishing
Company, 1966), p. 344.
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and the accumulated amount is given by

S D
Z T

0
f.t/er.T�t/dt

If the integrand of a definite integral,
R b
a f.x/dx, does not

have an elementary antiderivative, or even if the antideriva-
tive is merely daunting, the required number can be found,
approximately, with either the Trapezoidal Rule:

h
2
. f.a/C 2f.aC h/C � � � C 2f.aC .n � 1/h/C f.b//

or Simpson’s Rule:

h
3
. f.a/C4f.aCh/C2f.aC2h/C� � �C4f.aC.n�1/h/Cf.b//

where for both rules we haveD .b� a/=n, but in the case of
Simpson’s Rule n must be even.

If f.x/ � 0 is continuous on Œa; b�, then the definite inte-
gral can be used to find the area of the region bounded by
y D f.x/, the x-axis, x D a, and x D b. The definite integral
can also be used to find areas of more complicated regions. In
these situations, a strip of area should be drawn in the region.
This allows us to set up the proper definite integral. In this
regard, both vertical strips and horizontal strips have their
uses.

One application of finding areas involves consumers’
surplus and producers’ surplus. Suppose the market for a
product is at equilibrium and .q0; p0/ is the equilibrium point
(the point of intersection of the supply curve and the demand
curve for the product). Then consumers’ surplus, CS, corre-
sponds to the area from q D 0 to q D q0, bounded above by
the demand curve and below by the line p D p0. Thus,

CS D
Z q0

0
. f.q/ � p0/dq

where f is the demand function. Producers’ surplus, PS, cor-
responds to the area from q D 0 to q D q0, bounded above
by the line p D p0 and below by the supply curve. Therefore,

PS D
Z q0

0
.p0 � g.q//dq

where g is the supply function.
The average value, f, of a function, f, over the interval

Œa; b� is given by

f D
1

b � a

Z b

a
f.x/dx

An equation that involves the derivative of an unknown
function is called a differential equation. If the highest-order
derivative that occurs is the first, the equation is called a
first-order differential equation. Some first-order differential
equations can be solved by the method of separation of vari-

ables. In that method, by considering the derivative to be a
quotient of differentials, we rewrite the equation so that each
side contains only one variable and a single differential in the
numerator. Integrating both sides of the resulting equation
gives the solution. This solution involves a constant of inte-
gration and is called the general solution of the differential
equation. If the unknown function must satisfy the condition
that it has a specific function value for a given value of the
independent variable, then a particular solution can be found.

Differential equations arise when we know a relation
involving the rate of change of a function. For example, if
a quantity, N, at time t is such that it changes at a rate pro-
portional to the amount present, then

dN
dt
D kN; where k is a constant

The solution of this differential equation is

N D N0ekt

where N0 is the quantity present at t D 0. The value of k
may be determined when the value of N is known for a given
value of t other than t D 0. If k is positive, then N follows
an exponential law of growth; if k is negative, N follows an
exponential law of decay. If N represents a quantity of a
radioactive element, then

dN
dt
D ��N; where � is a positive constant

Thus, N follows an exponential law of decay, and hence,

N D N0e��t

The constant � is called the decay constant. The time for one-
half of the element to decay is the half-life of the element:

half-life D
ln 2
�
�

0:69315
�

A quantity, N, may follow a rate of growth given by

dN
dt
D KN.M � N/; where K;M are constants

Solving this differential equation gives a function of the form

N D
M

1C be�ct
; where b; c are constants

which is called a logistic function.Many population sizes can
be described by a logistic function. In this case,M represents
the limit of the size of the population. A logistic function is
also used in analyzing the spread of a rumor.

Newton’s law of cooling states that the temperature, T, of
a cooling body at time t changes at a rate proportional to the
difference T � a, where a is the ambient temperature. Thus,

dT
dt
D k.T � a/; where k is a constant
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The solution of this differential equation can be used to
determine, for example, the time at which a homicide was
committed.

An integral of the form

Z 1

a
f.x/ dx

Z b

�1

f.x/ dx or
Z 1

�1

f.x/ dx

is called an improper integral. The first two integrals are
defined as follows:Z 1

a
f.x/dx D lim

b!1

Z b

a
f.x/dx

and Z b

�1

f.x/dx D lim
a!�1

Z b

a
f.x/dx

If
R1

a f.x/dx [
R b

�1
f.x/ dx] is a finite number, we say that

the integral is convergent; otherwise, it is divergent. The
improper integral

R1

�1
f.x/dx is defined byZ 1

�1

f.x/dx D
Z 0

�1

f.x/dxC
Z 1

0
f.x/dx

If both integrals on the right side are convergent,
R1

�1
f.x/dx

is said to be convergent; otherwise, it is divergent.

Review Problems
In Problems 1–18, determine the integrals.

1.
Z

x2 ln x dx 2.
Z

1
p
4x2 C 1

dx

3.
Z 2

0

p
9x2 C 16 dx 4.

Z
5x � 13
x � 3

dx

5.
Z

15x � 2
.3xC 1/.x � 2/

dx 6.
Z eb

ea

1
x ln x

dx

7.
Z

dx
x.xC 2/2

8.
Z

dx
x2 � 1

9.
Z

dx

x2
p
4 � 9x2

10.
Z

x3 ln x2 dx

11.
Z

dx
x2 � a2

12.
Z

x
p
2C 5x

dx

13.
Z

49xe7x dx 14.
Z

dx
5C 2e3x

15.
Z

dx
2x ln x2

16.
Z

dx
x.xC a/

17.
Z

2x
3C 2x

dx 18.
Z

dx

x2
p
4x2 � 9

In Problems 19–24, find the area of the region bounded by the
given curves.

19. y D �x.x � a/, y D 0 for 0 < a

20. y D 2x2; y D x2 C 9 21. y D x2 � x; y D 10 � x2

22. y D
p
x; x D 0; y D 3

23. y D ln x; x D 0; y D 0; y D 1

24. y D 3 � x, y D x � 4, y D 0, y D 3

25. Show that ln b D
Z b

1

dx
x
. Use the trapezoidal rule, with n D 8

to approximate ln 2. Express just those digits which agree with the
true value of ln 2.

26. Repeat Problem 25 using Simpson’s rule with n D 8.

27. Consumers’ and Producers’ Surplus The demand
equation for a product is

p D 0:01q2 � 1:1qC 30

and the supply equation is

p D 0:01q2 C 8

Determine consumers’ surplus and producers’ surplus when
market equilibrium has been established.

28. Consumers’ Surplus The demand equation for a
product is

p D .q � 4/2

and the supply equation is

p D q2 C qC 7

where p (in thousands of dollars) is the price per 100 units when
q hundred units are demanded or supplied. Determine consumers’
surplus under market equilibrium.

29. Find the average value of f.x/ D x3 � 3x2 C 2xC 1 over the
interval Œ0; 5�.

30. Find the average value of f.t/ D t2et over the interval [0, 1].

In Problems 31 and 32, solve the differential equations.

31. y0 D 3x2yC 2xy y > 0

32. y0 � f 0.x/ef .x/�y D 0 y.0/ D f.0/

In Problems 33–36, determine the improper integrals if they exist.

33.
Z 1

1

1
x2:5

dx 34.
Z 0

�1

e3xdx

35.
Z 1

1

1
2x

dx 36.
Z 1

�1

xe1�x2 dx

37. Population The population of a fast-growing city was
500,000 in 1980 and 1,000,00 in 2000. Assuming exponential
growth, project the population in 2020.
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38. Population The population of a city doubles every
10 years due to exponential growth. At a certain time, the
population is 40,000. Find an expression for the number of
people, N, at time t years later. Give your answer in terms of ln 2.

39. Radioactive If 98% of a radioactive substance remains
after 1000 years, find the decay constant, and, to the nearest
percent, give the percentage of the original amount present after
5000 years.

40. Medicine Suppose q is the amount of penicillin in the body
at time t, and let q0 be the amount at t D 0. Assume that the rate
of change of q with respect to t is proportional to q and that q
decreases as t increases. Then we have dq=dt D �kq, where
k > 0. Solve for q. What percentage of the original amount
present is there when t D 7=k?

41. Biology Two organisms are initially placed in a medium
and begin to multiply. The number, N, of organisms that are
present after t days is recorded on a graph with the horizontal axis
labeled t and the vertical axis labeled N. It is observed that the
points lie on a logistic curve. The number of organisms present
after 6 days is 300, and beyond 10 days the number approaches a
limit of 450. Find the logistic equation.

42. College Enrollment A university believes that its
enrollment follows logistic growth. Last year enrollment was
10,000, and this year it is 11,000. If the university can
accommodate a maximum of 20,000 students, what is the
anticipated enrollment next year?

43. Time of Murder A coroner is called in on a murder
case. He arrives at 6:00 p.m. and finds that the victim’s temperature
is 35ıC. One hour later the body temperature is 34ıC. The
temperature of the room is 25ıC. About what time was the murder
committed? (Assume that normal body temperature is 37ıC.)

44. Annuity Find the present value, to the nearest dollar, of
a continuous annuity at an annual rate of 5% for 10 years if the
payment at time t is at the annual rate of f.t/ D 100t dollars.

45. Hospital Discharges For a group of hospitalized
individuals, suppose the proportion that has been discharged
at the end of t days is given byZ t

0
f.x/ dx

where f.x/ D 0:007e�0:01x C 0:00005e�0:0002x. EvaluateZ 1

0
f.x/ dx

46. Integration by Parts Let f and g be differentiable
functions. Show that if either f 0g or fg0 has an antiderivative then
the other one does. It suffices to show it in one case, so for
definiteness, assume that H0.x/ D f 0.x/g.x/ (equivalentlyR
f 0.x/g.x/dx D H.x/C C) and show thatR
f.x/g0.x/ D f.x/g.x/ � H.c/C C. This is often written asZ

f.x/g0.x/dx D f.x/g.x/ �
Z

f 0.x/g.x/dx

Writing u D f.x/ and v D g.x/ we have, equivalently,Z
udv D uv �

Z
vdu

47. Product Consumption Suppose that A.t/ is the amount of
a product that is consumed at time t and that A follows an
exponential law of growth. If t1 < t2 and at time t2 the amount
consumed, A.t2/, is double the amount consumed at time t1;A.t1/,
then t2 � t1 is called a doubling period. In a discussion of
exponential growth, Shonle12 states that under exponential
growth, “the amount of a product consumed during one doubling
period is equal to the total used for all time up to the beginning of
the doubling period in question.” To justify this statement,
reproduce his argument as follows. The amount of the product
used up to time t1 is given byZ t1

�1

A0ekt dt k > 0

where A0 is the amount when t D 0. Show that this is equal to
.A0=k/ekt1 . Next, the amount used during the time interval from t1
to t2 is Z t2

t1

A0ekt dt

Show that this is equal to

A0
k
ekt1 Œek.t2�t1/

� 1� (5)

If the interval [t1; t2] is a doubling period, then

A0ekt2 D 2A0ekt1

Show that this relationship implies that ek.t2�t1/ D 2. Substitute
this value into Equation (5); your result should be the same as the
total used during all time up to t1, namely, .A0=k/ekt1 .

48. Revenue, Cost, and Profit The following table gives
values of a company’s marginal-revenue (MR) and marginal-cost
(MC) functions:

q 0 3 6 9 12 15 18

MR 25 22 18 13 7 3 0

MC 15 14 12 10 7 4 2

The company’s fixed cost is 25. Assume that profit is a maximum
when MR D MC and that this occurs when q D 12. Moreover,
assume that the output of the company is chosen to maximize the
profit. Use the trapezoidal rule and Simpson’s rule for each of the
following parts.
(a) Estimate the total revenue by using as many data values as
possible.
(b) Estimate the total cost by using as few data values as possible.
(c) Determine how the maximum profit is related to the area
enclosed by the line q D 0 and the MR and MC curves, and use
this relation to estimate the maximum profit as accurately as
possible.

12 J. I. Shonle, Environmental Applications of General Physics (Reading, MA:
Addison-Wesley Publishing Company, Inc., 1975).



Haeussler-50501 M17_HAEU1107_14_SE_C16 October 17, 2017 9:34

16 Continuous Random
Variables

16.1 Continuous Random
Variables

16.2 The Normal Distribution

16.3 The Normal
Approximation to the
Binomial Distribution

Chapter 16 Review

C
onsider the problem of designing a cellular telephone network for a large
urban area. Ideally, the system would have enough capacity to meet all pos-
sible demands. However, demand fluctuates, sometimes wildly. Some fluc-
tuation is predictable. For example, at times when most people are asleep

there is less demand, and on weekends and holidays, when many people call their fam-
ilies and friends, there is more demand. However, some increases in demand are not
predictable. For example, after an earthquake or some other natural disaster, even a
severe storm, many people call emergency services and many call their family and
friends to check that they are all right. It is usually prohibitively expensive to build
and operate a system that will handle any sudden increase in demand. Striking a bal-
ance between the goal of serving customers and the need to limit costs to maintain
profitability is a serious problem.

A sensible approach is to design and build a system capable of handling the load
of telephone traffic under normally busy conditions, and to accept the fact that on rare
occasions, heavy traffic will lead to overloads. We cannot always predict when over-
loads will occur since disasters, such as earthquakes, are unforeseen occurrences. But
some good probabilistic predictions of future traffic volume will suffice. One could
build a system that would meet demand 99.4% of the time, for example. The remain-
ing 0.6% of the time, customers would simply have to put up with intermittent delays
in service.

A probabilistic description of traffic on a phone network is an example of a proba-
bility density function. Such functions are the focus of this chapter. Probability density
functions have a wide range of applications—not only calculating how often a system
will be overloaded, for example, but also calculating the system’s average load. Aver-
age load allows prediction of such things as average power consumption and average
volume of system maintenance activity. Such considerations are vital to the profitabil-
ity of a business.

713
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Objective 16.1 Continuous Random Variables
To introduce continuous random
variables; to discuss density functions,
including uniform and exponential
distributions; to discuss cumulative
distribution functions; and to compute
the mean, variance, and standard
deviation for a continuous random
variable.

Density Functions
In Chapter 9, the random variables that we considered were discrete. Now we will con-
cern ourselves with continuous random variables. A random variable is continuous
if it can assume any value in some interval or intervals. A continuous random variable
usually represents data that aremeasured, such as heights, weights, distances, and peri-
ods of time. By contrast, the discrete random variables of Chapter 9 usually represent
data that are counted.

For example, the number of hours of life of a calculator battery is a continuous
random variable, X. If the maximum possible life is 1000 hours, then X can assume any
value in the interval Œ0; 1000�. In a practical sense, the likelihood that X will assume a
single specified value, such as 764.1238, is extremely remote. It is more meaningful
to consider the likelihood of X lying within an interval, such as that between 764 and
765. Thus, 764 < X < 765. (For that matter, the nature of measurement of physical
quantities, like time, tells us that a statement such as X D 764:1238 is really one of the
form 764:123750 < X < 764:123849.) In general, with a continuous random variable,
our concern is the likelihood that it falls within an interval and not that it assumes a
particular value.

As another example, consider an experiment in which a number X is randomly
selected from the interval Œ0; 2�. Then X is a continuous random variable. What is the
probability that X lies in the interval Œ0; 1�? Because we can think of Œ0; 1� as being

“half” the interval Œ0; 2�, a reasonable (and correct) answer is 1
2 . Similarly, if we think

of the interval Œ0; 12 � as being one-fourth of Œ0; 2�, then P.0 � X � 1
2 / D

1
4 . Actually,

each one of these probabilities is simply the length of the given interval divided by the
length of Œ0; 2�. For example,

P
�
0 � X �

1
2

�
D

length of Œ0; 12 �

length of Œ0; 2�
D

1
2

2
D

1
4

Let us now consider a similar experiment in which X denotes a number chosen
at random from the interval Œ0; 1�. As might be expected, the probability that X will
assume a value in any given interval within Œ0; 1� is equal to the length of the given
interval divided by the length of Œ0; 1�. Because Œ0; 1� has length 1, we can simply say
that the probability of X falling in an interval is the length of the interval. For example,

P.0:2 � X � 0:5/ D 0:5 � 0:2 D 0:3

and P.0:2 � X � 0:2001/ D 0:0001. Clearly, as the length of an interval approaches
0, the probability that X assumes a value in that interval approaches 0. Keeping this in
mind, we can think of a single number such as 0:2 as the limiting case of an interval
as the length of the interval approaches 0. (Think of Œ0:2; 0:2 C x� as x ! 0.) Thus,
P.X D 0:2/ D 0. In general, the probability that a continuous random variable X
assumes a particular value is 0. As a result, the probability that X lies in some interval
is not affected by whether or not either of the endpoints of the interval is included or
excluded. For example,

P.X � 0:4/ D P.X < 0:4/C P.X D 0:4/

D P.X < 0:4/C 0

D P.X < 0:4/

Similarly, P.0:2 � X � 0:5/ D P.0:2 < X < 0:5/.
We can geometrically represent the probabilities associated with a continuous ran-

dom variable X. This is done by means of the graph of a function y D f.x/ � 0 such
that the area under this graph and above the x-axis, between the lines x D a and x D b,
represents the probability that X assumes a value between a and b. (See Figure 16.1.)
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x

y

a b

P(a … X … b) = area of shaded region

y = f(x)

FIGURE 16.1 Probability density function.

Since this area is given by the definite integral
R b
a f.x/dx, we have

P.a � X � b/ D
Z b

a
f.x/dx

We call the function f the probability density function for X (more simply the
density function for X) and say that it defines the distribution of X. Because
probabilities are always nonnegative, we must have f.x/ � 0. Also, because the event
�1 < X < 1 must occur, the total area under the density function curve must be 1.

That is,
R1

�1
f.x/dx D 1. In summary, we have the following definition.

Definition
A continuous function y D f.x/ is called a (probability) density function, for a
continuous random variable, if and only if it has the following properties:

1. f.x/ � 0

2.
R1

�1
f.x/dx D 1

If X is a continuous random variable, such an f is a density function for X, if

3. P.a � X � b/ D
R b
a f.x/dx

To illustrate a density function, we return to the previous experiment in which a
number X is chosen at random from the interval Œ0; 1�. Recall that

P.a � X � b/ D length of Œa; b� D b � a (1)

where a and b are in Œ0; 1�. We will show that the function

f.x/ D
�
1 if 0 � x � 1
0 otherwise (2)

whose graph appears in Figure 16.2(a), is a density function for X. To do this, we must
verify that f.x/ satisfies the conditions for a density function. First, f.x/ is either 0 or 1,

x

f(x)

a b

(a) (b)

1

1

x

f(x)

1

1

f(x) =
1  if 0 … x … 1

0  otherwise

FIGURE 16.2 Probability density function.
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so f.x/ � 0. Next, since f.x/ D 0 for x outside Œ0; 1�,Z 1

�1

f.x/dx D
Z 1

0
1dx D x

ˇ̌̌̌1
0
D 1

Finally, for the X under consideration and a and b in Œ0; 1� with a < b, we must verify

that P.a � X � b/ D
R b
a f.x/dx. We compute the area under the graph between x D a

and x D b (Figure 16.2(b)). We haveZ b

a
f.x/dx D

Z b

a
1dx D x

ˇ̌̌̌b
a
D b � a

which, as stated in Equation (1), is P.a � X � b/.
The function in Equation (2) is called the uniform density function over Œ0; 1�,

and X is said to have a uniform distribution. The word uniform is meaningful in the
sense that the graph of the density function is horizontal, “flat”, over Œ0; 1�. As a result,
X is just as likely to assume a value in one interval within Œ0; 1� as in another of equal
length. A more general uniform distribution is given in Example 1.

EXAMPLE 1 Uniform Density Function

The uniform density function over Œa; b� for the random variable X is given by

f.x/ D

8<: 1
b � a

if a � x � b

0 otherwisex

f(x)

a b

1

b - a

FIGURE 16.3 Uniform density
function over Œa; b�.

See Figure 16.3. Note that over Œa; b�, the region under the graph is a rectangle with
height 1=.b � a/ and width b � a. Thus, its area is given by .1=.b � a//.b � a/ D 1

so
R1

�1
f.x/dx D 1, as must be the case for a density function. If Œc; d� is any interval

within Œa; b�, then

P.c � X � d/ D
Z d

c
f.x/dx D

Z d

c

1
b � a

dx

D
x

b � a

ˇ̌̌d
c
D

d � c
b � a

For example, suppose X is uniformly distributed over the interval Œ1; 4� and we need to
find P.2 < X < 3/. Then a D 1; b D 4; c D 2, and d D 3. Therefore,

P.2 < X < 3/ D
3 � 2
4 � 1

D
1
3

Now Work Problem 3(a)--(g) G

EXAMPLE 2 Density Function

The density function for a random variable X is given by

f.x/ D
�
kx if 0 � x � 2

0 otherwise

where k is a constant.

APPLY IT I
1. Suppose the time (in minutes) pas-
sengers must wait for an airplane is
uniformly distributed with density func-

tion f.x/ D 1
60 ; where 0 � x � 60;

and f.x/ D 0 elsewhere. What is the
probability that a passenger must wait
between 25 and 45 minutes?

a. Find k.

Solution: Since
R1

�1
f.x/dx must be 1 and f.x/ D 0 outside Œ0; 2�, we haveZ 1

�1

f.x/dx D
Z 2

0
kxdx D

kx2

2

ˇ̌̌̌2
0
D 2k D 1

Thus, k D 1
2 , so f.x/ D 1

2x on Œ0; 2�.
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b. Find P. 12 < X < 1/.

Solution:

P
�
1
2
< X < 1

�
D

Z 1

1=2

1
2
xdx D

x2

4

ˇ̌̌̌1
1=2
D

1
4
�

1
16
D

3
16

c. Find P.X < 1/.

Solution: Since f.x/ D 0 for x < 0, we need only compute the area under the density
function between 0 and 1. Thus,

P.x < 1/ D
Z 1

0

1
2
xdx D

x2

4

ˇ̌̌̌1
0
D

1
4

Now Work Problem 9(a)--(d), (g), (h) G

EXAMPLE 3 Exponential Density Function

The exponential density function is defined by

f.x/ D
�
ke�kx if x � 0

0 if x < 0

where k is a positive constant, called a parameter, whose value depends on the exper-
iment under consideration. If X is a random variable with this density function, then X
is said to have an exponential distribution. The case k D 1 is shown in Figure 16.4.

APPLY IT I
2. The life expectancy (in years) of an
automobile’s brake pads is distributed
exponentially with k D 1

10 . If the brake
pads’ warranty lasts five years, what is
the probability that the brake pads will
break down after the warranty period?

x

f(x)

f(x) =
e
-x

 if x Ú 0 

   0 if x 6 0

FIGURE 16.4 Exponential density
function.

a. Verify that f is a density function.

Solution:
By definition, f � 0 on .�1;1/, and because f D 0 on .�1; 0/ we have, for any
positive k, Z 1

�1

f.x/ dx D
Z 1

0
ke�kxdx

D lim
b!1

Z b

0
ke�kxdx

D lim
b!1

�e�kx
ˇ̌b
0

D lim
b!1

..�e�kb/ � .�e0//

D .0/ � .�1/

D 1

b. For k D 1, find P.2 < X < 3/.

Solution:

P.2 < X < 3/ D
Z 3

2
e�xdx D �e�x

j
3
2

D �e�3
� .�e�2/ D e�2

� e�3
� 0:086

c. For k D 1, find P.X > 4/.

Solution: P.X > 4/ D
Z 1

4
e�xdx D lim

b!1

Z b

4
e�xdx

D lim
b!1

�e�x

ˇ̌̌̌b
4
D lim

b!1
.�e�b

C e�4/

D 0C e�4

� 0:018
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Alternatively, we can avoid an improper integral because

P.X > 4/ D 1 � P.X � 4/ D 1 �
Z 4

0
e�xdx

Now Work Problem 7(a)--(c), (e) G

The cumulative distribution function F for a continuous random variable X with
density function f is defined by

F.x/ D P.X � x/ D
Z x

�1

f.t/dt

For example, F(2) represents the entire area under the density curve that is to the left
of the line x D 2 (Figure 16.5). Where f.x/ is continuous, it can be shown that

F0.x/ D f.x/

That is, the derivative of the cumulative distribution function is the density function.
Thus, F is an antiderivative of f, and by the Fundamental Theorem of Calculus,

P.a < X < b/ D
Z b

a
f.x/dx D F.b/ � F.a/ (3)

Thismeans that the area under the density curve between a and b (Figure 16.6) is simply
the area to the left of b minus the area to the left of a.

x

f(x)

2

FIGURE 16.5 F.2/ D P.X � 2/ D area of
shaded region.

x

f(x)

a b

FIGURE 16.6 P.a < X < b/.

2

x

f(x)

1

f(x) =
  x if 0 … x … 2 
1

2

0 otherwise

FIGURE 16.7 Density function for
Example 4.

EXAMPLE 4 Finding and Applying the Cumulative
Distribution Function

Suppose X is a random variable with density function given by

f.x/ D

(
1
2x if 0 � x � 2

0 otherwise

as shown in Figure 16.7.

a. Find and sketch the cumulative distribution function.

Solution: Because f.x/ D 0 if x < 0, the area under the density curve to the left of
x D 0 is 0. Hence, F.x/ D 0 if x < 0. If 0 � x � 2, then

F.x/ D
Z x

�1

f.t/dt D
Z x

0

1
2
tdt D

t2

4

ˇ̌̌̌x
0
D

x2

4
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Since f is a density function and f.x/ D 0 for x < 0 and also for x > 2, the area under
the density curve from x D 0 to x D 2 is 1. Thus, if x > 2, the area to the left of x is 1,
so F.x/ D 1. Hence, the cumulative distribution function is

F.x/ D

8̂̂<̂
:̂

0 if x < 0
x2

4
if 0 � x � 2

1 if x > 2

which is shown in Figure 16.8.

2
x

F (x)

1

FIGURE 16.8 Cumulative
distribution function for Example 4.

b. Find P.X < 1/ and P.1 < X < 1:1/.

Solution: Using the results of part (a), we have

P.X < 1/ D F.1/ D
12

4
D

1
4

From Equation (3),

P.1 < X < 1:1/ D F.1:1/ � F.1/ D
1:12

4
�
1
4
D 0:0525

Now Work Problem 1 G

Mean, Variance, and Standard Deviation
For a random variable X with density function f, themean � (also called the expecta-
tion of X), E.X/ is given by

� D E.X/ D
Z 1

�1

xf.x/dx

if the integral is convergent, and can be thought of as the average value of X in the long
run. The variance �2 (also written Var.X/) is given by

�2 D Var.X/ D
Z 1

�1

.x � �/2f.x/dx

if the integral is convergent. Noticed that these formulas are similar to the corresponding
ones in Chapter 9 for a discrete random variable. It is easy to show that an alternative
formula for the variance is

�2 D Var.X/ D
Z 1

�1

x2f.x/dx � �2

The standard deviation is

� D
p
Var.X/

For example, it can be shown that if X is exponentially distributed (see Example 3),
then � D 1=k and � D 1=k. As with a discrete random variable, the standard deviation
of a continuous random variable X is small if X is likely to assume values close to the
mean but unlikely to assume values far from the mean. The standard deviation is large
if the opposite is true.

EXAMPLE 5 Finding the Mean and Standard Deviation

If X is a random variable with density function given by

f.x/ D

(
1
2x if 0 � x � 2

0 otherwise

find its mean and standard deviation.

APPLY IT I
3. The life expectancy (in years) of
patients after they have contracted a cer-
tain disease is exponentially distributed
with k D 0:2. Use the information in
the paragraph that precedes Example 5
to find the mean life expectancy and the
standard deviation. Solution: The mean is given by

� D

Z 1

�1

xf.x/dx D
Z 2

0
x �

1
2
xdx D

x3

6

ˇ̌̌̌2
0
D

4
3
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By the alternative formula for variance, we have

�2 D

Z 1

�1

x2f.x/dx � �2
D

Z 2

0
x2 �

1
2
xdx �

�
4
3

�2

D
x4

8

ˇ̌̌̌2
0
�
16
9
D 2 �

16
9
D

2
9

Thus, the standard deviation is

� D

r
2
9
D

p
2
3

Now Work Problem 5 G

We conclude this section by emphasizing that a density function for a continuous ran-
dom variablemust not be confusedwith a probability distribution function for a discrete
random variable. Evaluating such a probability distribution function at a point gives a
probability. But evaluating a density function at a point does not. Instead, the area
under the density function curve over an interval is interpreted as a probability. That
is, probabilities associated with a continuous random variable are given by integrals.

PROBLEMS 16.1
1. Suppose X is a continuous random variable with density
function given by

f.x/ D
�
1
6 .xC 1/ if 1 < x < 3

0 otherwise

(a) Find P.1 < X < 2/. (b) Find P.X < 2:5/.

(c) Find P.X � 3
2 /.

(d) Find c such that P.X < c/ D 1
2 . Give your answer in

radical form.

2. Suppose X is a continuous random variable with density
function given by

f.x/ D

(1000
x2

if x > 1000

0 otherwise

(a) Find P.1000 < X < 2000/. (b) Find P.X > 5000/.

3. Suppose X is a continuous random variable that is uniformly
distributed on [1, 4].

(a) What is the formula of the density function for X? Sketch its
graph.
(b) Find P

�
3
2 < X < 7

2

�
. (c) Find P.0 < X < 1/.

(d) Find P.X � 3:5/. (e) Find P.X > 3/.

(f) Find P.X D 2/. (g) Find P.X < 5/.

(h) Find �. (i) Find � .

(j) Find the cumulative distribution function F and sketch its
graph. Use F to find P.X < 2/ and P.1 < X < 3/.

4. Suppose X is a continuous random variable that is uniformly
distributed on [0, 5].

(a) What is the formula of the density function for X? Sketch its
graph.
(b) Find P.1 < X < 3/. (c) Find P.4:5 � X < 5/.

(d) Find P.X D 4/. (e) Find P.X > 2/.

(f) Find P.X < 5/. (g) Find P.X > 5/.

(h) Find �. (i) Find � .

(j) Find the cumulative distribution function F and sketch its
graph. Use F to find P.1 < X < 3:5/.

5. If X is a random variable with density function f, then the

expectation of X is given by � D E.X/ D
R1

�1
xf.x/dx. Now, we

will also write E.X2/ D
R1

�1
x2f.x/dx and

E..X � �/2/ D
R1

�1
.x � �/2f.x/dx. In the text it was claimed

that the variance of X, Var.X/ D
R1

�1
.x� �/2f.x/dx is also given

by Var.X/ D
R1

�1
x2f.x/dx � �2, so that

E..X � E.X//2/ D E.X2/ � E.X/2

Prove this.

6. Suppose X is a continuous random variable with density
function given by

f.x/ D
�
k if a � x � b

0 otherwise

(a) Show that k D
1

b � a
and thus X is uniformly distributed.

(b) Find the cumulative distribution function F.

7. Suppose the random variable X is exponentially distributed
with k D 2.
(a) Find P.1 < X < 2/. (b) Find P.X < 3/.
(c) Find P.X > 5/.
(d) Find P.� � 2� < X < �C 2�/.
(e) Find the cumulative distribution function F.

8. Suppose the random variable X is exponentially distributed
with k D 0:5.
(a) Find P.X > 4/. (b) Find P.0:5 < X < 2:6/.

(c) Find P.X < 5/. (d) Find P.X D 4/.

(e) Find c such that P.0 < X < c/ D 1
2 .
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9. The density function for a random variable X is given by

f.x/ D
�
kx if 0 � x � 4

0 otherwise

(a) Find k. (b) Find P.2 < X < 3/.

(c) Find P.X > 2:5/. (d) Find P.X > 0/.

(e) Find �. (f) Find � .

(g) Find c such that P.X < c/ D 1
2 .

(h) Find P.3 < X < 5/.

10. The density function for a random variable X is given by

f.x/ D

8<:
x
16
C k if 1 � x � 5

0 otherwise

(a) Find k. (b) Find P.X � 3/.
(c) Find �. (d) Find P.2 < X < �/.

11. Waiting Time At a bus stop, the time X (in minutes) that a
randomly arriving person must wait for a bus is uniformly
distributed with density function f.x/ D 1

10 , where 0 � x � 10

and f.x/ D 0 otherwise. What is the probability that a person must
wait at most seven minutes? What is the average time that a
person must wait?

12. Soft-Drink Dispensing An automatic soft-drink dispenser
at a fast-food restaurant dispenses X ounces of cola in a 12-ounce
drink. If X is uniformly distributed over Œ11:92; 12:08�, what is the
probability that less than 12 ounces will be dispensed? What is
the probability that exactly 12 ounces will be dispensed? What
is the average amount dispensed?

13. Emergency Room Arrivals At a particular hospital, the
length of time X (in hours) between successive arrivals at the
emergency room is exponentially distributed with k D 3. What is
the probability that more than one hour passes without an
arrival?

14. Electronic Component Life The length of life, X
(in years), of a computer component has an exponential
distribution with k D 2

5 . What is the probability that such a
component will fail within three years of use? What is the
probability that it will last more than five years?

Objective 16.2 The Normal Distribution
To discuss the normal distribution,
standard units, and the table of areas
under the standard normal curve
(Appendix C).

Quite often, measured data in nature—such as heights of individuals in a population—
are represented by a random variable whose density function may be approximated by
the bell-shaped curve in Figure 16.9. The curve extends indefinitely to the right and left
and never touches the x-axis. This curve, called the normal curve, is the graph of the
most important of all density functions, the normal density function.

Definition
A continuous random variable X is a normal random variable, and equivalently, has
a normal (also called Gaussian1) distribution, if its density function is given by

f.x/ D
1

�
p
2�

e�.1=2/Œ.x��/=��2
�1 < x <1

called the normal density function. The parameters � and � are the mean and
standard deviation of X, respectively.

Observe in Figure 16.9 that f.x/ ! 0 as x ! ˙1. That is, the normal curve
has the x-axis as a horizontal asymptote. Also note that the normal curve is symmetric
about the vertical line x D �. That is, the height of a point on the curve d units to the
right of x D � is the same as the height of the point on the curve that is d units to
the left of x D �. Because of this symmetry and the fact that the area under the normal
curve is 1, the area to the right (or left) of the mean must be 1

2 .
Each choice of values for � and � determines a different normal curve. The value

of � determines where the curve is “centered”, and � determines how “spread out”
the curve is. The smaller the value of � , the less spread out is the area near �. For
example, Figure 16.10 shows normal curves C1;C2, and C3, where C1 has mean �1

and standard deviation �1;C2 has mean �2, and so on. Here C1 and C2 have the same
mean but different standard deviations: �1 > �2. C1 and C3 have the same standard
deviation but different means: �1 < �3. Curves C2 and C3 have different means and
different standard deviations.

1After the German mathematician Carl Friedrich Gauss (1777–1855).
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x

f(x)

o

FIGURE 16.9 Normal curve.

C3

C2

o3

o1 = o2  o1 Z o3

u1 Z u2  u1 = u3

o1 = o2

C1

FIGURE 16.10 Normal curves.

o + uo - u o o + 2uo - 2u o + 3uo - 3u
x

f(x)

68%

95%

99.7%

Areas under normal curve

FIGURE 16.11 Probability and number of standard deviations from �.

The standard deviation plays a significant role in describing probabilities associated
with a normal random variable, X. More precisely, the probability that X will lie within
one standard deviation of the mean is approximately 0.68:

P.� � � < X < �C �/ D 0:68

In other words, approximately 68% of the area under a normal curve is within one
standard deviation of the mean (Figure 16.11). Between � ˙ 2� is about 95% of the
area, and between �˙ 3� is about 99.7%:

P.� � 2� < X < �C 2�/ D 0:95

P.� � 3� < X < �C 3�/ D 0:997

Thus, it is highly likely that Xwill lie within three standard deviations of the mean.The percentages in Figure 16.11 are
worth remembering.

EXAMPLE 1 Analysis of Test Scores

Let X be a random variable whose values are the scores obtained on a nationwide test
given to high school seniors. Suppose, for modeling purposes, that X is normally dis-
tributed with mean 600 and standard deviation 90. Then the probability that X lies
within 2� D 2.90/ D 180 points of 600 is 0.95. In other words, 95% of the scores lie
between 420 and 780. Similarly, 99.7% of the scores are within 3� D 3.90/ D 270
points of 600—that is, between 330 and 870.

Now Work Problem 17 G

If Z is a normally distributed random variable with � D 0 and � D 1, we obtain
the normal curve of Figure 16.12, called the standard normal curve.
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Definition
A continuous random variable Z is a standard normal random variable (equiva-
lently, has a standard normal distribution) if its density function is given by

f.z/ D
1
p
2�

e�z2=2

called the standard normal density function. The variable Z has mean 0 and stan-
dard deviation 1.

z

f(z)

-3 -2 -1

= -3u = -2u = -u = u

0 1 2 3

= o = 2u = 3u

FIGURE 16.12 Standard normal curve: � D 0, � D 1.

Because a standard normal random variable Z has mean 0 and standard deviation 1,
its values are in units of standard deviations from the mean, which are called standard
units. For example, if 0 < Z < 2:54, then Z lies within 2.54 standard deviations to the
right of 0, the mean. That is, 0 < Z < 2:54� . To find the probability P.0 < Z < 2:54/,
we have

P.0 < Z < 2:54/ D
Z 2:54

0

e�z2=2

p
2�

dz

The integral on the right cannot be evaluated by elementary functions. However, values
for integrals of this kind have been approximated and put in tabular form.

z
0 z0

A(z0)

FIGURE 16.13
A.z0/ D P.0 < Z < z0/.

One such table is given in Appendix C. The table there gives the area under a stan-
dard normal curve between z D 0 and z D z0, where z0 � 0. This area is shaded
in Figure 16.13 and is denoted by A.z0/. In the left-hand columns of the table are
z-values to the nearest tenth. The numbers across the top are the hundredths’ val-
ues. For example, the entry in the row for 2.5 and column under 0.04 corresponds
to z D 2:54 and is 0.4945. Thus, the area under a standard normal curve between z D 0
and z D 2:54 is (approximately) 0.4945:

P.0 < Z < 2:54/ D A.2:54/ � 0:4945

The numbers in the table are necessarily approximate, but for the balance of this chapter
we will write A.2:54/ D 0:4945 and the like in the interest of improved readability.
Similarly, we can verify that A.2/ D 0:4772 and A.0:33/ D 0:1293.

z
0 z0-z0

FIGURE 16.14 P.�z0 < Z < 0/ D
P.0 < Z < z0/.

Using symmetry, we compute an area to the left of z D 0 by computing the corre-
sponding area to the right of z D 0. For example,

P.�z0 < Z < 0/ D P.0 < Z < z0/ D A.z0/

as shown in Figure 16.14. Hence, P.�2:54 < Z < 0/ D A.2:54/ D 0:4945.
When computing probabilities for a standard normal variable, we may have to add

or subtract areas. A useful aid for doing this properly is a rough sketch of a standard
normal curve in whichwe have shaded the entire area that wewant to find, as Example 2
shows.



Haeussler-50501 M17_HAEU1107_14_SE_C16 October 17, 2017 9:34

724 Chapter 16 Continuous Random Variables

EXAMPLE 2 Probabilities for Standard Normal Variable Z

a. Find P.Z > 1:5/.

z
0 1.5

FIGURE 16.15 P.Z > 1:5/.

Solution: This probability is the area to the right of z D 1:5 (Figure 16.15). That area
is equal to the difference between the total area to the right of z D 0, which is 0.5, and
the area between z D 0 and z D 1:5, which is A(1.5). Thus,

P.Z > 1:5/ D 0:5 � A.1:5/

D 0:5 � 0:4332 D 0:0668 from Appendix C

b. Find P.0:5 < Z < 2/.

z
0 0.5 2

FIGURE 16.16 P.0:5 < Z < 2/.

Solution: This probability is the area between z D 0:5 and z D 2 (Figure 16.16). That
area is the difference of two areas. It is the area between z D 0 and z D 2, which is
A.2/, minus the area between z D 0 and z D 0:5, which is A(0.5). Thus,

P.0:5 < Z < 2/ D A.2/ � A.0:5/

D 0:4772 � 0:1915 D 0:2857

c. Find P.Z � 2/.

z
0 2

FIGURE 16.17 P.Z � 2/.

Solution: This probability is the area to the left of z D 2 (Figure 16.17). That area is
equal to the sum of the area to the left of z D 0, which is 0.5, and the area between
z D 0 and z D 2, which is A(2). Thus,

P.Z � 2/ D 0:5C A.2/

D 0:5C 0:4772 D 0:9772

Now Work Problem 1 G

EXAMPLE 3 Probabilities for Standard Normal Variable Z

a. Find P.�2 < Z < �0:5/.
z

0-0.5-2

FIGURE 16.18 P.�2 < Z < �0:5/.

Solution: This probability is the area between z D �2 and z D �0:5 (Figure 16.18).
By symmetry, that area is equal to the area between z D 0:5 and z D 2, which was
computed in Example 2(b). We have

P.�2 < Z < �0:5/ D P.0:5 < Z < 2/

D A.2/ � A.0:5/ D 0:2857

b. Find z0 such that P.�z0 < Z < z0/ D 0:9642.

z
0 z0-z0

FIGURE 16.19
P.�z0 < Z < z0/ D 0:9642.

Solution: Figure 16.19 shows the corresponding area. Because the total area is 0.9642,
by symmetry the area between z D 0 and z D z0 is 1

2 .0:9642/ D 0:4821, which isA.z0/.
Looking at the body of the table in Appendix C, we see that 0.4821 corresponds to a
Z-value of 2.1. Thus, z0 D 2:1.

Now Work Problem 3 G

Transforming to a Standard Normal Variable Z
If X is normally distributed with mean � and standard deviation � , one might think
that a table of areas is needed for each pair of values of � and � . Fortunately, this is
not the case. Appendix C is still used. But we must first express the area of a given
region as an equal area under a standard normal curve. This involves transforming X
into a standard variable Z (with mean 0 and standard deviation 1) by using the following
change-of-variable formula:

Z D
X � �
�

(1)
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On the right side, subtracting � from X gives the distance from � to X. Dividing by �Here we convert a normal variable to a
standard normal variable. expresses this distance in terms of units of standard deviation. Thus, Z is the number

of standard deviations that X is from �. That is, Formula (1) converts units of X into
standard units (Z-values). For example, if X D �, then using Formula (1) gives Z D 0.
Hence, � is zero standard deviations from �.

Suppose X is normally distributed with � D 4 and � D 2. Then, to find—for
example—P.0 < X < 6/, we first use Formula (1) to convert the X-values 0 and 6 to
Z-values (standard units):

z1 D
x1 � �
�
D

0 � 4
2
D �2

z2 D
x2 � �
�
D

6 � 4
2
D 1

It can be shown that

P.0 < X < 6/ D P.�2 < Z < 1/

This means that the area under a normal curve with � D 4 and � D 2 between x D 0
and x D 6 is equal to the area under a standard normal curve between z D �2 and
z D 1 (Figure 16.20). This area is the sum of the area A1 between z D �2 and z D 0
and the area A2 between z D 0 and z D 1. Using symmetry for A1, we have

P.�2 < Z < 1/ D A1 C A2 D A.2/C A.1/

D 0:4772C 0:3413 D 0:8185z
0 1-2

FIGURE 16.20 P.�2 < Z < 1/.

EXAMPLE 4 Employees’ Salaries

The weekly salaries of 5000 employees of a large corporation are assumed to be nor-
mally distributed with mean $640 and standard deviation $56. How many employees
earn less than $570 per week?

Solution: Converting to standard units, we have

P.X < 570/ D P
�
Z <

570 � 640
56

�
D P.Z < �1:25/

This probability is the area shown in Figure 16.21(a). By symmetry, that area is equal to
the area in Figure 16.21(b) that corresponds to P.Z > 1:25/. This area is the difference
between the total area to the right of x D 0, which is 0.5, and the area between z D 0
and z D 1:25, which is A(1.25). Thus,

P.X < 570/ D P.Z < �1:25/ D P.Z > 1:25/

D 0:5 � A.1:25/ D 0:5 � 0:3944 D 0:1056

z
0 1.25

z
0-1.25

(a) (b)

FIGURE 16.21 Diagram for Example 4.

That is, 10.56% of the employees have salaries less than $570. This corresponds to
0:1056.5000/ D 528 employees.

Now Work Problem 21 G
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PROBLEMS 16.2
1. If Z is a standard normal random variable, find each of the
following probabilities.

(a) P.0 < Z < 2:3/ (b) P.0:35 < Z < 1:31/

(c) P.Z > �0:57/ (d) P.Z � 1:46/

(e) P.�2:38 < Z � 1:70/ (f) P.Z > 0:19/

2. If Z is a standard normal random variable, find each of the
following.
(a) P.�1:96 < Z < 1:96/ (b) P.�2:11 < Z < �1:35/

(c) P.Z < �1:05/ (d) P.Z > 3�/
(e) P.jZj > 2/ (f) P.jZj < 1

2 /

In Problems 3–8, find z0 such that the given statement is true.
Assume that Z is a standard normal random variable.

3. P.Z < z0/ D 0:6368 4. P.Z < z0/ D 0:0668

5. P.Z > z0/ D 0:8599 6. P.Z > z0/ D 0:4286

7. P.�z0 < Z < z0/ D 0:2662 8. P.jZj > z0/ D 0:0456

9. If X is normally distributed with � D 16 and � D 4, find each
of the following probabilities.

(a) P.X < 27/ (b) P.X < 10/

(c) P.10:8 < X < 12:4/

10. If X is normally distributed with � D 200 and � D 40, find
each of the following probabilities.
(a) P.X > 150/ (b) P.210 < X < 250/

11. If X is normally distributed with � D 57 and � D 10, find
P.X > 80/.

12. If X is normally distributed with � D 0 and � D 1:5, find
P.X < 3/.

13. If X is normally distributed with � D 60 and �2 D 100,
find P.50 < X � 75/.

14. If X is normally distributed with � D 8 and � D 1, find
P.X > � � �/.

15. If X is normally distributed such that � D 40 and
P.X > 54/ D 0:0401, find � .

16. If X is normally distributed with � D 62 and � D 11,
find x0 such that the probability that X is between x0 and 62 is
0.4554.

17. Test Scores The scores on a national achievement test are
normally distributed with mean 500 and standard deviation 100.
What percentage of those who took the test had a score between
300 and 700?

18. Test Scores In a test given to a large group of people, the
scores were normally distributed with mean 55 and standard
deviation 10. What is the greatest whole-number score that a
person could get and yet score in about the bottom 10%?

19. Adult Heights The heights (in inches) of adults in a large
population are normally distributed with � D 68 and � D 3.
What percentage of the group is under 6 feet tall?

20. Income The yearly income for a group of 10,000
professional people is normally distributed with � D $60,000
and � D $5000.

(a) What is the probability that a person from this group has a
yearly income less than $46,000?
(b) How many of these people have yearly incomes over
$75,000?

21. IQ The IQs of a large population of children are normally
distributed with mean 100.4 and standard deviation 11.6.

(a) What percentage of the children have IQs greater than 120?
(b) About 95.05% of the children have IQs greater than what
value?

22. Suppose X is a random variable with � D 10 and � D 2. If
P.4 < X < 16/ D 0:25, can X be normally distributed?

Objective 16.3 The Normal Approximation
to the Binomial Distribution

To show the technique of estimating
the binomial distribution by using the
normal distribution.

We conclude this chapter by bringing together the notions of a discrete random variable
and a continuous random variable. Recall from Chapter 9 that if X is a binomial random
variable (which is discrete), and if the probability of success on any trial is p, then for
n independent trials, the probability of x successes is given by

P.X D x/ D nCxp
xqn�x

where q D 1� p. Calculating probabilities for a binomial random variable can be time
consuming when the number of trials is large. For example, 100C40.0:3/40.0:7/60 is a lot
of work to compute “by hand”. Fortunately, we can approximate a binomial distribution
like this by a normal distribution and then use a table of areas.

To show how this is done, let us take a simple example. Figure 16.22 gives a prob-
ability histogram for a binomial experiment with n D 10 and p D 0:5. The rectangles
centered at x D 0 and x D 10 are not shown because their heights are very close to 0.
Superimposed on the histogram is a normal curve, which approximates it. The approxi-
mation would be even better if n were larger. That is, as n gets larger, the width of each
unit interval appears to get smaller, and the outline of the histogram tends to take on
the appearance of a smooth curve. In fact, it is not unusual to think of a density curve as
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the limiting case of a probability histogram. In spite of the fact that in our case n is only
10, the approximation shown does not seem too bad. The question that now arises is,
“Which normal distribution approximates the binomial distribution?” Since the mean
and standard deviation are measures of central tendency and dispersion of a random
variable, we choose the approximating normal distribution to have the same mean and
standard deviation as that of the binomial distribution. For this choice, we can estimate
the areas of rectangles in the histogram (that is, the binomial probabilities) by finding
the corresponding area under the normal curve. In summary, we have the following:

If X is a binomial random variable and n is sufficiently large, then the distribution
of X can be approximated by a normal random variable whose mean and standard
deviation are the same as for X, which are np and

p
npq, respectively.

Aword of explanation is appropriate concerning the phrase “n is sufficiently large.”
Generally speaking, a normal approximation to a binomial distribution is not good if
n is small and p is near 0 or 1, because much of the area in the binomial histogram
would be concentrated at one end of the distribution (that is, at 0 or n). Thus, the dis-
tribution would not be fairly symmetric, and a normal curve would not “fit” well. A
general rule we can follow is that the normal approximation to the binomial distribu-
tion is reasonable if both np and nq are at least 5. This is the case in our example:
np D 10.0:5/ D 5 and nq D 10.0:5/ D 5.

Let us now use the normal approximation to estimate a binomial probability for
n D 10 and p D 0:5. If X denotes the number of successes, then its mean is

np D 10.0:5/ D 5

and its standard deviation is
p
npq D

p
10.0:5/.0:5/ D

p
2:5 � 1:58

The probability function for X is given by

f.x/ D 10Cx.0:5/x.0:5/10�x

We approximate this distribution by the normal distribution with� D 5 and � D
p
2:5.

x
10 2 3 4 5 6 7 8 9 10

0.246

0.205

0.117

0.044

0.010

FIGURE 16.22 Normal approximation to binomial distribution.

x
10 2 3 4 5 6 7 8 9 10

FIGURE 16.23 Normal approximation to P.4 � X � 7/.
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Suppose we estimate the probability that there are between 4 and 7 successes,
inclusive, which is given by

P.4 � X � 7/ D P.X D 4/C P.X D 5/C P.X D 6/C P.X D 7/

D

7X
xD4

10Cx.0:5/x.0:5/10�x

This probability is the sum of the areas of the rectangles for X D 4; 5; 6, and 7 in
Figure 16.23. Under the normal curve, we have shaded the corresponding area that we
will compute as an approximation to this probability. Note that the shading extends

not from 4 to 7, but from 4 � 1
2 to 7 C

1
2 ; that is, from 3.5 to 7.5. This “continuity

correction” of 0.5 on each end of the interval allows most of the area in the appropriate
rectangles to be included in the approximation, and such a correction must always be
made. The phrase continuity correction is used because X is treated as though it were
a continuous random variable. We now convert the X-values 3.5 and 7.5 to Z-values:

z1 D
3:5 � 5
p
2:5
� �0:95

z2 D
7:5 � 5
p
2:5
� 1:58

Thus,

P.4 � X � 7/ � P.�0:95 � Z � 1:58/

z
0 1.58-0.95

FIGURE 16.24
P.�0:95 � Z � 1:58/.

which corresponds to the area under a standard normal curve between z D �0:95 and
z D 1:58 (Figure 16.24). This area is the sum of the area between z D �0:95 and z D 0,
which, by symmetry, is A.0:95/, and the area between z D 0 and z D 1:58, which is
A.1:58/. Hence,

P.4 � X � 7/ � P.�0:95 � Z � 1:58/

D A.0:95/C A.1:58/

D 0:3289C 0:4429 D 0:7718

This result is close to the true value, which to four decimal places is 0.7734.

EXAMPLE 1 Normal Approximation to a Binomial Distribution

Suppose X is a binomial random variable with n D 100 and p D 0:3. Estimate
P.X D 40/ by using the normal approximation.

APPLY IT I
4. On a game show, the grand prize
is hidden behind one of four doors.
Assume that the probability of selecting

the grand prize is p D 1
4 . There were 20

winners among the last 60 contestants.
Suppose that X is the number of con-
testants that win the grand prize, and X
is binomial with n D 60. Approximate
P.X D 20/ by using the normal approx-
imation.

Solution: We have

P.X D 40/ D 100C40.0:3/40.0:7/60

using the formula that was mentioned at the beginning of this section. We use a normal
distribution with

� D np D 100.0:3/ D 30

and
� D
p
npq D

p
100.0:3/.0:7/ D

p
21 � 4:58

Converting the corrected X-values 39.5 and 40.5 to Z-values gives
Remember the continuity correction.

z1 D
39:5 � 30
p
21

� 2:07

z2 D
40:5 � 30
p
21

� 2:29

Therefore,
P.X D 40/ � P.2:07 � Z � 2:29/
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This probability is the area under a standard normal curve between z D 2:07 and
z D 2:29 (Figure 16.25). That area is the difference of the area between z D 0 and
z D 2:29, which is A.2:29/, and the area between z D 0 and z D 2:07, which is
A.2:07/. Thus,

P.X D 40/ � P.2:07 � Z � 2:29/

D A.2:29/ � A.2:07/

D 0:4890 � 0:4808 D 0:0082 from Appendix C

z
0

2.07 2.29

FIGURE 16.25 P.2:07 � Z � 2:29/.

Now Work Problem 3 G

EXAMPLE 2 Quality Control

In a quality-control experiment, a sample of 500 items is taken from an assembly line.
Customarily, 8% of the items produced are defective. What is the probability that more
than 50 defective items appear in the sample?

Solution: If X is the number of defective items in the sample, then we will consider
X to be binomial with n D 500 and p D 0:08. To find P.X � 51/, we use the normal
approximation to the binomial distribution with

� D np D 500.0:08/ D 40

and

� D
p
npq D

p
500.0:08/.0:92/ D

p
36:8 � 6:07

Converting the corrected value 50.5 to a Z-value gives

z D
50:5 � 40
p
36:8

� 1:73

Thus,

P.X � 51/ � P.Z � 1:73/

This probability is the area under a standard normal curve to the right of z D 1:73
(Figure 16.26). That area is the difference of the area to the right of z D 0, which is
0.5, and the area between z D 0 and z D 1:73, which is A.1:73/. Hence,

P.X � 51/ � P.Z � 1:73/

D 0:5 � A.1:73/ D 0:5 � 0:4582 D 0:0418

Now Work Problem 7 G

z
0 1.73

FIGURE 16.26 P.Z � 1:73/.

PROBLEMS 16.3
In Problems 1–4, X is a binomial random variable with the given
values of n and p. Calculate the indicated probabilities by using
the normal approximation.

1. n D 150; p D 0:4I P.X � 52/;P.X � 74/

2. n D 50, p D 0:3; P.X D 25/, P.X � 20/

3. n D 200; p D 0:6I P.X D 125/;P.110 � X � 135/

4. n D 50, p D 0:20I P.X � 10/

5. Die Tossing Suppose a fair die is tossed 300 times. What
is the probability that a 5 turns up between 45 and 60 times,
inclusive?

6. Coin Tossing For a biased coin, P.H/ D 0:4 and
P.T/ D 0:6. If the coin is tossed 200 times, what is the probability
of getting between 90 and 100 heads, inclusive?

7. Taxis out of service A taxi company has a fleet of 100 cars.
At any given time, the probability of a car being out of service
due to factors such as breakdowns and maintenance is 0.1.
What is the probability that 10 or more cars are out of service at
any time?

8. Quality Control In a manufacturing plant, a sample of 200
items is taken from the assembly line. For each item in the sample,
the probability of being defective is 0.05. What is the probability
that there are 7 or more defective items in the sample?

9. True–False Exam In a true–false exam with 50 questions,
what is the probability of getting at least 25 correct answers by
just guessing on all the questions? If there are 100 questions
instead of 50, what is the probability of getting at least 50 correct
answers by just guessing?
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10. Multiple-Choice Exam In a multiple-choice test with 50
questions, each question has four answers, only one of which is
correct. If a student guesses on the last 20 questions, what is the
probability of getting at least half of them correct?

11. Poker In a poker game, the probability of being dealt a
hand consisting of three cards of one suit and two cards of another
suit (in any order) is about 0.1. In 100 dealt hands, what is the
probability that 16 or more of them will be as just described?

12. Taste Test An energy drink company sponsors a national
taste test, in which subjects sample its drink as well as the
best-selling brand. Neither drink is identified by brand. The
subjects are then asked to choose the drink that tastes better. If
each of the 49 subjects in a supermarket actually has no
preference and arbitrarily chooses one of the drinks, what is the
probability that 30 or more of the subjects choose the drink from
the sponsoring company?

Chapter 16 Review
Important Terms and Symbols Examples
Section 16.1 Continuous Random Variables

continuous random variable uniform density function Ex. 1, p. 716
exponential density function exponential distribution Ex. 3, p. 717
cumulative distribution function (probability) density function Ex. 4, p. 718
mean, � variance, �2 standard deviation, � Ex. 5, p. 719

Section 16.2 The Normal Distribution
normal distribution normal density function Ex. 1, p. 722
standard normal curve standard normal random variable Ex. 2, p. 724
standard normal distribution standard normal density function Ex. 4, p. 725

Section 16.3 The Normal Approximation to the Binomial Distribution
continuity correction Ex. 1, p. 728

Summary
A continuous random variable, X, can assume any value in
an interval or intervals. A density function is a function that
has the following properties:

1. f.x/ � 0 2.
Z 1

�1

f.x/dx D 1

A density function is a density function for the random
variable X if

P.a � X � b/ D
Z b

a
f.x/dx

which means that the probability that X assumes a value in
the interval Œa; b� is to be given by the area under the graph of
f and above the x-axis from x D a to x D b. The probability
that X assumes a particular value is 0.

The continuous random variable X has a uniform distri-
bution over Œa; b� if its density function is given by

f.x/ D

8<: 1
b � a

if a � x � b

0 otherwise

X has an exponential density function, f, if

f.x/ D

(
ke�kx if x � 0

0 if x < 0

where k is a positive constant.

The cumulative distribution function, F, for the continu-
ous random variable X with density function f is given by

F.x/ D P.X � x/ D
Z x

�1

f.t/dt

Geometrically, F.x/ represents the area under the density
curve to the left of x. By using F, we are able to find
P.a � x � b/:

P.a � x � b/ D F.b/ � F.a/

The mean � of X (also called expectation of X) E.X/ is
given by

� D E.X/ D
Z 1

�1

xf.x/dx

provided that the integral is convergent. The variance is
given by

�2 D Var.X/ D
Z 1

�1

.x � �/2f.x/ dx

D

Z 1

�1

x2f.x/ dx � �2
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provided that the integral is convergent. The standard devia-
tion is given by

� D
p
Var.X/

The graph of the normal density function

f.x/ D
1

�
p
2�

e�.1=2/..x��/=�/2

is called a normal curve and is bell shaped. If X has a normal
distribution, then the probability that X lies within one stan-
dard deviation of the mean � is (approximately) 0.68; within
two standard deviations, the probability is 0.95; and within
three standard deviations, it is 0.997. If Z is a normal random
variable with � D 0 and � D 1, then Z is called a standard
normal random variable. The probability P.0 < Z < z0/ is
the area under the graph of the standard normal curve from

z D 0 to z D z0 and is denoted A.z0/. Values of A.z0/ appear
in Appendix C.

If X is normally distributed with mean � and standard
deviation � , then X can be transformed into a standard nor-
mal random variable by the change-of-variable formula

Z D
X � �
�

With this formula, probabilities for X can be found by using
areas under the standard normal curve.

If X is a binomial random variable and the number, n, of
independent trials is large, then the distribution of X can be
approximated by using a normal random variable with mean
np and standard deviation

p
npq, where p is the probability

of success on any trial and q D 1�p. It is important that con-
tinuity corrections be considered when we estimate binomial
probabilities by a normal random variable.

Review Problems
1. Suppose X is a continuous random variable with density
function given by

f.x/ D

(
1
3 C kx2 if 0 � x � 1

0 otherwise

(a) Find k. (b) Find P. 12 < X < 3
4 /. (c) Find P.X � 1

2 /.

(d) Find the cumulative distribution function.

2. Suppose X is exponentially distributed with k D 1
3 . Find

P.X > 2/.

3. Suppose X is a random variable with density function given by

f.x/ D

(
1
8x if 0 � x � 4

0 otherwise

(a) Find �. (b) Find � .

4. Let X be uniformly distributed over the interval [2, 6]. Find
P.X < 5/.

Let X be normally distributed with mean 20 and standard
deviation 4. In Problems 5–10, determine the given probabilities.

5. P.X > 25/ 6. P.X < 21/ 7. P.14 < X < 18/
8. P.X > 32/ 9. P.X < 23/ 10. P.21 < X < 31/

In Problems 11 and 12, X is a binomial random variable with
n D 100 and p D 0:35. Find the given probabilities by using the
normal approximation.

11. P.25 � X � 47/ 12. P.X D 48/

13. Heights of Individuals The heights in meters of
individuals in a certain group are normally distributed with mean
1.73 and standard deviation 0.05. Find the probability that an
individual from this group is taller than 1.83.

14. Coin Tossing If a fair coin is tossed 500 times, use the
normal approximation to the binomial distribution to estimate the
probability that a head comes up at least 215 times.
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Chapter 17 Review

We know how to maximize a company’s profit when both revenue and
cost are written as functions of a single quantity, namely, the number of
units produced. But, of course, the production level is itself determined
by many factors, and no single variable can represent all of them.

The amount of oil pumped from an oil field each week, for example, depends on
both the number of pumps and the number of hours that the pumps are operated. The
number of pumps in the field will depend on the amount of capital originally available
to build the pumps as well as the size and shape of the field. The number of hours
that the pumps can be operated depends on the labor available to run and maintain the
pumps. In addition, the amount of oil that the owner will be willing to have pumped
from the oil field will depend on the current demand for oil—which is related to the
price of the oil.

Maximizing the weekly profit from an oil field will require a balance between the
number of pumps and the amount of time each pump can be operated. The maximum
profit will not be achieved by building more pumps than can be operated or by running
a few pumps full time.

This is an example of the general problem of maximizing profit when production
depends on several factors. The solution involves an analysis of the production func-
tion, which relates production output to resources allocated for production. Because
several variables are needed to describe the resource allocation, the most profitable
allocation cannot be found by differentiation with respect to a single variable, as in
preceding chapters. The more advanced techniques necessary to do the job will be cov-
ered in this chapter. For the most part, we focus on functions of two variables because
the techniques involved in moving from one variable to two variables usually extend
unremarkably to introduction of further variables.

732
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Objective 17.1 Partial Derivatives
To compute partial derivatives. Throughout this text we have encountered many examples of functions of several vari-

ables. We recall, from Section 2.8, that the graph of a function of two variables is a
surface. Figure 17.1 shows the surface z D f.x; y/ and a plane that is parallel to the

To review functions of several variables,
see Section 2.8.

x; z-plane and that passes through the point .a; b; f.a; b// on the surface. The equation
of this plane is y D b. Hence, any point on the curve that is the intersection of the
surface z D f.x; y/ with the plane y D b must have the form .x; b; f.x; b//. Thus, the
curve can be described by the equation z D f.x; b/. Since b is constant, z D f.x; b/ can
be considered a function of one variable, x. When the derivative of this function is eval-
uated at a, it gives the slope of the tangent line to this curve at the point .a; b; f.a; b//.
(See Figure 17.1.) This slope is called the partial derivative of f with respect to x at
.a; b/ and is denoted fx.a; b/. In terms of limits,

fx.a; b/ D lim
h!0

f.aC h; b/ � f.a; b/
h

(1)

(x, b, f(x, b))

Tangent line

z

(a, b, 0)

z = f(x, y)

b

a

(a, b, f(a, b))

z = f(x, b)

y

x

FIGURE 17.1 Geometric interpretation of fx.a; b/.

y

(a, y, f(a, y))

(a, b, 0)

z = f(a, y)

b

a

Tangent line

z

x

(a, b, f(a, b))

FIGURE 17.2 Geometric interpretation of fy.a; b/.

On the other hand, in Figure 17.2, the plane x D a is parallel to the y; z-plane and
cuts the surface z D f.x; y/ in a curve given by z D f.a; y/, a function of y. When the
derivative of this function is evaluated at b, it gives the slope of the tangent line to this
curve at the point .a; b; f.a; b//. This slope is called the partial derivative of f with
respect to y at .a; b/ and is denoted fy.a; b/. In terms of limits,

fy.a; b/ D lim
h!0

f.a; bC h/ � f.a; b/
h

(2)

This gives us a geometric interpretation
of a partial derivative. We say that fx.a; b/ is the slope of the tangent line to the graph of f at .a; b; f.a; b//

in the x-direction; similarly, fy.a; b/ is the slope of the tangent line in the y-direction.
For generality, by replacing a and b in Equations (1) and (2) by x and y, respectively,

we get the following definition.
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Definition
If z D f.x; y/, the partial derivative of fwith respect to x, denoted fx, is the function,
of two variables, given by

fx.x; y/ D lim
h!0

f.xC h; y/ � f.x; y/
h

provided that the limit exists.
The partial derivative of f with respect to y, denoted fy, is the function, of two

variables, given by

fy.x; y/ D lim
h!0

f.x; yC h/ � f.x; y/
h

provided that the limit exists.

By analyzing the foregoing definition, we can state the following procedure to find
fx and fy:

Procedure to Find fx.x; y/ and fy.x; y/
To find fx, treat y as a constant, and differentiate f with respect to x in the usual way.

To find fy, treat x as a constant, and differentiate f with respect to y in the
usual way.

EXAMPLE 1 Finding Partial Derivatives

This gives us a mechanical way to find
partial derivatives.

If f.x; y/ D xy2 C x2y, find fx.x; y/ and fy.x; y/. Also, find fx.3; 4/ and fy.3; 4/.

Solution: To find fx.x; y/, we treat y as a constant and differentiate f with respect to x:

fx.x; y/ D .1/y2 C .2x/y D y2 C 2xy

To find fy.x; y/, we treat x as a constant and differentiate with respect to y:

fy.x; y/ D x.2y/C x2.1/ D 2xyC x2

Note that fx.x; y/ and fy.x; y/ are each functions of the two variables x and y. To find
fx.3; 4/, we evaluate fx.x; y/ when x D 3 and y D 4:

fx.3; 4/ D 42 C 2.3/.4/ D 40

Similarly,

fy.3; 4/ D 2.3/.4/C 32 D 33

Now Work Problem 1 G

Notations for partial derivatives of z D f.x; y/ are in Table 17.1. Table 17.2 gives
notations for partial derivatives evaluated at .a; b/. Note that the symbol @ (not d) is
used to denote a partial derivative. The symbol @z=@x is read “the partial derivative of
z with respect to x.”
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Table 17.1

Partial Derivative of f Partial Derivative of f
(or z) with Respect to x (or z) with Respect to y

fx.x; y/ fy.x; y/

@

@x
. f.x; y//

@

@y
. f.x; y//

@z
@x

@z
@y

Table 17.2

Partial Derivative of f Partial Derivative of f
(or z) with Respect to x (or z) with Respect to y
Evaluated at .a; b/ Evaluated at .a; b/

fx.a; b/ fy.a; b/

@f
@x

ˇ̌̌̌
.a;b/

@f
@y

ˇ̌̌̌
.a;b/

@z
@x

ˇ̌̌̌
xDa
yDb

@z
@y

ˇ̌̌̌
xDa
yDb

EXAMPLE 2 Finding Partial Derivatives

a. If z D 3x3y3 � 9x2yC xy2 C 4y, find
@z
@x
,
@z
@y
,
@z
@x

ˇ̌̌̌
.1;0/

, and
@z
@y

ˇ̌̌̌
.1;0/

.

Solution: To find @z=@x, we differentiate z with respect to x while treating y as a
constant:

@z
@x
D 3.3x2/y3 � 9.2x/yC .1/y2 C 0

D 9x2y3 � 18xyC y2

Evaluating the latter equation at .1; 0/, we obtain

@z
@x

ˇ̌̌̌
.1;0/

D 9.1/2.0/3 � 18.1/.0/C 02 D 0

To find @z=@y, we differentiate z with respect to y while treating x as a constant:

@z
@y
D 3x3.3y2/ � 9x2.1/C x.2y/C 4.1/

D 9x3y2 � 9x2 C 2xyC 4

Thus,

@z
@y

ˇ̌̌̌
.1;0/

D 9.1/3.0/2 � 9.1/2 C 2.1/.0/C 4 D �5

b. If w D x2e2xC3y, find @w=@x and @w=@y.

Solution: To find @w=@x, we treat y as a constant and differentiate with respect to x.
Since x2e2xC3y is a product of two functions, each involving x, we use the product rule:

@w
@x
D x2

@

@x
.e2xC3y/C e2xC3y @

@x
.x2/

D x2.2e2xC3y/C e2xC3y.2x/

D 2x.xC 1/e2xC3y

To find @w=@y, we treat x as a constant and differentiate with respect to y:

@w
@y
D x2

@

@y
.e2xC3y/ D 3x2e2xC3y

Now Work Problem 27 G
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We have seen that, for a function of two variables, two partial derivatives can be
considered. The concept of partial derivatives can be extended to functions of more
than two variables. For example, with w D f.x; y; z/ we have three partial derivatives:

the partial with respect to x, denoted fx.x; y; z/, @w=@x, and so on;
the partial with respect to y, denoted fy.x; y; z/, @w=@y, and so on;

and
the partial with respect to z, denoted fz.x; yz/, @w=@z, and so on

To determine @w=@x, treat y and z as constants, and differentiatewwith respect to x.
For @w=@y, treat x and z as constants, and differentiate with respect to y. For @w=@z, treat
x and y as constants, and differentiate with respect to z. For a function of n variables,
we have n partial derivatives, which are determined in an analogous way.

EXAMPLE 3 Partial Derivatives of a Function of Three Variables

If f.x; y; z/ D x2 C y2zC z3, find fx.x; y; z/, fy.x; y; z/, and fz.x; y; z/.

Solution: To find fx.x; y; z/, we treat y and z as constants and differentiate fwith respect
to x:

fx.x; y; z/ D 2x

Treating x and z as constants and differentiating with respect to y, we have

fy.x; y; z/ D 2yz

Treating x and y as constants and differentiating with respect to z, we have

fz.x; y; z/ D y2 C 3z2

Now Work Problem 23 G

EXAMPLE 4 Partial Derivatives of a Function of Four Variables

If p D g.r; s; t; u/ D
rsu

rt2 C s2t
, find

@p
@s
,
@p
@t
, and

@p
@t

ˇ̌̌̌
.0;1;1;1/

.

Solution: To find @p=@s, first note that p is a quotient of two functions, each involving
the variable s. Thus, we use the quotient rule and treat r, t, and u as constants:

@p
@s
D

.rt2C s2t/
@

@s
.rsu/ � rsu

@

@s
.rt2 C s2t/

.rt2 C s2t/2

D
.rt2 C s2t/.ru/ � .rsu/.2st/

.rt2 C s2t/2

Simplification gives

@p
@s
D

ru.rt � s2/
t.rtC s2/2

a factor of t cancels

To find @p=@t, we can first write p as

p D rsu.rt2 C s2t/�1

Next, we use the power rule and treat r, s, and u as constants:

@p
@t
D rsu.�1/.rt2 C s2t/�2 @

@t
.rt2 C s2t/

D �rsu.rt2 C s2t/�2.2rtC s2/

so that

@p
@s
D �

rsu.2rtC s2/
.rt2 C s2t/2
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Letting r D 0, s D 1, t D 1, and u D 1 gives

@p
@t

ˇ̌̌̌
.0;1;1;1/

D �
0.1/.1/.2.0/.1/C .1/2/
.0.1/2 C .1/2.1//2

D 0

Now Work Problem 31 G

PROBLEMS 17.1
In Problems 1–26, a function of two or more variables is given.
Find the partial derivative of the function with respect to each of
the variables.

1. f.x; y/ D 2x2 C 3xyC 4y2 C 5xC 6y � 7

2. f.x; y/ D 2x2 C 3xy
3. f.x; y/ D 2yC 1 4. f.x; y/ D e� ln 2
5. g.x; y/ D 3x4yC 2xy2 � 5xyC 8x � 9y

6. g.x; y/ D .x2 C 1/2 C .y3 � 3/3 C 5xy3 � 2x2y2

7. g.p; q/ D
p
pq 8. g.w; z/ D 3

p
w2 C z2

9. h.s; t/ D
s2 C 1
t2 � 1

10. h.u; v/ D
8uv2

u2 C v2

11. u.q1; q2/ D ln
p
q1 C 2C ln 3

p
q2 C 5

12. Q.l; k/ D 2l0:38k1:79 � 3l1:03 C 2k0:13

13. h.x; y/ D
x2 C 3xyC y2p

x2 C y2
14. h.x; y/ D

xC 4
xy2 � x2y

15. z D e5xy 16. z D .x3 C y3/exyC3xC3y

17. z D 5x ln.x2 C y/ 18. z D ln.5x3y2 C 2y4/4

19. f.r; s/ D
p
r � s.r2 � 2rsC s2/

20. f.r; s/ D
p
rs e2Cr 21. f.r; s/ D e3�r ln.7 � s/

22. f.r; s/ D .5r2 C 3s3/.2r � 5s/

23. g.x; y; z/ D 2x3y2 C 2xy3zC 4z2

24. g.x; y; z/ D xy2z3 C x3yz2 C x2y3z

25. g.r; s; t/ D esCt.r2 C 7s3/ 26. g.r; s; t; u/ D rs ln.t/eu

In Problems 27–34, evaluate the given partial derivatives.

27. f.x; y/ D x3yC 7x2y2I fx.1;�2/

28. z D
p
2x3 C 5xyC 2y2I

@z
@x

ˇ̌̌̌
xD0
yD1

29. g.x; y; z/ D exCyCz
p
x2 C y2 C z2; gz.0; 3; 4/

30. g.x; y; z/ D
3x2y2 C 2xyC x � y

xy � yzC xz
; gy.1; 1; 5/

31. h.r; s; t; u/ D .rst2u/ ln.1C rstu/I ht.1; 1; 0; 1/

32. h.r; s; t; u/ D
7rC 3s2u2

s
I ht.4; 3; 2; 1/

33. f.r; s; t/ D rst.r2 C s3 C t4/I fs.1;�1; 2/

34. z D
x2 � y2

ex2�y2
;

@z
@x

ˇ̌̌̌
x D 0
y D 1

,
@z
@y

ˇ̌̌̌
x D 1
y D 0

35. If z D xex�y C yey�x, show that
@z
@x
C
@z
@y
D ex�y

C ey�x

36. Stock Prices of a Dividend Cycle In a discussion of stock
prices of a dividend cycle, Palmon and Yaari1 consider the
function f given by

u D f.t; r; z/ D
.1C r/1�z ln.1C r/
.1C r/1�z � t

where u is the instantaneous rate of ask-price appreciation, r is an
annual opportunity rate of return, z is the fraction of a dividend
cycle over which a share of stock is held by a midcycle seller, and
t is the effective rate of capital gains tax. They claim that

@u
@z
D

t.1C r/1�z ln2.1C r/
Œ.1C r/1�z � t�2

Verify this.

37. Money Demand In a discussion of inventory theory of
money demand, Swanson2 considers the function

F.b;C; T; i/ D
bT
C
C

iC
2

and determines that
@F
@C
D �

bT
C2
C

i
2
. Verify this partial derivative.

38. Interest Rate Deregulation In an article on interest rate
deregulation, Christofi and Agapos3 arrive at the equation

rL D rC D
@r
@D
C

dC
dD

(3)

where r is the deposit rate paid by commercial banks, rL is the rate
earned by commercial banks, C is the administrative cost of
transforming deposits into return-earning assets, and D is the
savings deposit level. Christofi and Agapos state that

rL D r
�
1C �
�

�
C

dC
dD

(4)

where � D
r=D
@r=@D

is the deposit elasticity with respect to the

deposit rate. Express Equation (3) in terms of � to verify
Equation (4).

1D. Palmon and U. Yaari, “Taxation of Capital Gains and the Behavior of
Stock Prices over the Dividend Cycle,” The American Economist, XXVII, no. 1
(1983), 13–22.
2P. E. Swanson, “Integer Constraints on the Inventory Theory of Money
Demand,” Quarterly Journal of Business and Economics, 23, no. 1 (1984),
32–37.
3A. Christofi and A. Agapos, “Interest Rate Deregulation: An Empirical Justi-
fication,” Review of Business and Economic Research, XX (1984), 39–49.
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39. Advertising and Profitability In an analysis of advertising
and profitability, Swales4 considers a function R given by

R D R.r; a; n/ D
r

1C a
�
n � 1
2

�
where R is the adjusted rate of profit, r is the accounting rate of
profit, a is a measure of advertising expenditures, and n is the
number of years that advertising fully depreciates. In the analysis,
Swales determines @R=@n. Find this partial derivative and the
other two partial derivatives.

Objective 17.2 Applications of Partial Derivatives
To develop the notions of partial
marginal cost, marginal productivity,
and competitive and complementary
products.

From Section 17.1, we know that if z D f.x; y/, then @z=@x and @z=@y can be geomet-
rically interpreted as giving the slopes of the tangent lines to the surface z D f.x; y/ in
the x- and y-directions, respectively. There are other interpretations: Because @z=@x is
the derivative of z with respect to x when y is held fixed, and because a derivative is a
rate of change, we have

@z
@x

is the rate of change of z with respect to x when y is held fixed.

Similarly,

Here we have “rate of change”
interpretations of partial derivatives.

@z
@y

is the rate of change of z with respect to y when x is held fixed.

We will now look at some applications in which the “rate of change” notion of a partial
derivative is very useful.

Suppose a manufacturer produces x units of product X and y units of product Y.
Then the total cost c of these units is a function of x and y and is called a joint-cost
function. If such a function is c D f.x; y/, then @c=@x is called the (partial) marginal
cost with respect to x and is the rate of change of c with respect to x when y is held
fixed. Similarly, @c=@y is the (partial) marginal cost with respect to y and is the rate
of change of c with respect to y when x is held fixed. It also follows that @c=@x.x; y/ is
approximately the cost of producing one more unit of X when x units of X and y units
of Y are produced. Similarly, @c=@y.x; y/ is approximately the cost of producing one
more unit of Y when x units of X and y units of Y are produced.

For example, if c is expressed in dollars and @c=@y D 2, then the cost of producing
an extra unit of Y when the level of production of X is fixed is approximately two
dollars.

If a manufacturer produces n products, the joint-cost function is a function of
n variables, and there are n (partial) marginal-cost functions.

EXAMPLE 1 Marginal Costs

A company manufactures two types of skis, the Lightning and the Alpine models.
Suppose the joint-cost function for producing x pairs of the Lightning model and
y pairs of the Alpine model per week is

c D f.x; y/ D 0:07x2 C 75xC 85yC 6000

where c is expressed in dollars. Determine the marginal costs @c=@x and @c=@y when
x D 100 and y D 50, and interpret the results.

4J. K. Swales, “Advertising as an Intangible Asset: Profitability and Entry Barriers: A Comment on Reekie and
Bhoyrub,”Applied Economics, 17, no. 4 (1985), 603–17.

mailto:@c=@x.x
mailto:@c=@y.x
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Solution: The marginal costs are

@c
@x
D 0:14xC 75 and

@c
@y
D 85

Thus,

@c
@x

ˇ̌̌̌
.100;50/

D 0:14.100/C 75 D 89 (1)

and

@c
@y

ˇ̌̌̌
.100;50/

D 85 (2)

Equation (1) means that increasing the output of the Lightning model from 100 to 101
while maintaining production of the Alpine model at 50 increases costs by approxi-
mately $89. Equation (2) means that increasing the output of the Alpine model from
50 to 51 and holding production of the Lightning model at 100 will increase costs by
approximately $85. In fact, since @c=@y is a constant function, the marginal cost with
respect to y is $85 at all levels of production.

Now Work Problem 1 G

EXAMPLE 2 Loss of Body Heat

On a cold day, a person may feel colder when the wind is blowing than when the wind
is calm because the rate of heat loss is a function of both temperature and wind speed.
The equation

H D .10:45C 10
p
w � w/.33 � t/

indicates the rate of heat loss, H (in kilocalories per square meter per hour), when the
air temperature is t (in degrees Celsius) and the wind speed is w (in meters per second).
For H D 2000, exposed flesh will freeze in one minute.5

a. Evaluate H when t D 0 and w D 4.

Solution: When t D 0 and w D 4,

H D .10:45C 10
p
4 � 4/.33 � 0/ D 872:85

b. Evaluate @H=@w and @H=@t when t D 0 and w D 4, and interpret the results.

Solution:

@H
@w
D

�
5
p
w
� 1

�
.33 � t/;

@H
@w

ˇ̌̌̌
t D 0
w D 4

D 49:5

@H
@t
D .10:45C 10

p
w � w/.�1/;

@H
@t

ˇ̌̌̌
t D 0
w D 4

D �26:45

These equations mean that when t D 0 and w D 4, increasing w by a small amount
while keeping t fixed will make H increase approximately 49.5 times as much as w
increases. Increasing t by a small amount while keeping w fixed will make H decrease
approximately 26.45 times as much as t increases.

5G. E. Folk, Jr., Textbook of Environmental Physiology, 2nd ed. (Philadelphia: Lea & Febiger, 1974).
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c. When t D 0 and w D 4, which has a greater effect on H: a change in wind speed of
1m/s or a change in temperature of 1ıC?

Solution: Since the partial derivative of H with respect to w is greater in magnitude
than the partial with respect to t when t D 0 and w D 4, a change in wind speed of
1m/s has a greater effect on H.

Now Work Problem 13 G

The output of a product depends on many factors of production. Among these may
be labor, capital, land, machinery, and so on. For simplicity, let us suppose that output
depends only on labor and capital. If the function P D f.l; k/ gives the output P when
the producer uses l units of labor and k units of capital, then this function is called a
production function. We define the marginal productivity with respect to l to be
@P=@l. This is the rate of change of P with respect to l when k is held fixed. Likewise,
the marginal productivity with respect to k is @P=@k and is the rate of change of P
with respect to k when l is held fixed.

EXAMPLE 3 Marginal Productivity

A manufacturer of a popular toy determines that the production function is P D
p
lk,

where l is the number of labor-hours per week and k is the capital (expressed in hundreds
of dollars per week) required for a weekly production of P gross of the toy. (One gross
is 144 units.) Determine the marginal productivity functions, and evaluate them when
l D 400 and k D 16. Interpret the results.

Solution: Since P D .lk/1=2,

@P
@l
D

1
2
.lk/�1=2k D

k

2
p
lk

and
@P
@k
D

1
2
.lk/�1=2l D

l

2
p
lk

Evaluating these equations when l D 400 and k D 16, we obtain

@P
@l

ˇ̌̌̌
l D 400
k D 16

D
16

2
p
400.16/

D
1
10

and
@P
@k

ˇ̌̌̌
l D 400
k D 16

D
400

2
p
400.16/

D
5
2

Thus, if l D 400 and k D 16, increasing l to 401 and holding k at 16 will increase
output by approximately 1

10 gross. But if k is increased to 17 while l is held at 400, the

output increases by approximately
5
2
gross.

Now Work Problem 5 G

Competitive and Complementary Products
Sometimes, two products may be related such that changes in the price of one of them
affect the demand for the other. A typical example is that of butter and margarine. If
such a relationship exists between products A and B, then the demand for each product
is dependent on the prices of both. Suppose qA and qB are the quantities demanded for
A and B, respectively, and pA and pB are their respective prices. Then both qA and qB
are functions of pA and pB:

qA D f.pA; pB/ demand function for A

qB D g.pA; pB/ demand function for B
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We can find four partial derivatives:

@qA
@pA

the marginal demand for A with respect to pA

@qA
@pB

the marginal demand for A with respect to pB

@qB
@pA

the marginal demand for B with respect to pA

@qB
@pB

the marginal demand for B with respect to pB

Under typical conditions, if the price of B is fixed and the price of A increases, then
the quantity of A demanded will decrease. Thus, @qA=@pA< 0. Similarly, @qB=@pB< 0.
However, @qA=@pB and @qB=@pA may be either positive or negative. If

@qA
@pB

> 0 and
@qB
@pA

> 0

then A and B are said to be competitive products, also known as substitutes. In this
situation, an increase in the price of B causes an increase in the demand for A, if it is
assumed that the price of A does not change. Similarly, an increase in the price of A
causes an increase in the demand for B when the price of B is held fixed. Butter and
margarine are examples of substitutes.

Proceeding to a different situation, we say that if

@qA
@pB

< 0 and
@qB
@pA

< 0

then A and B are complementary products. In this case, an increase in the price of B
causes a decrease in the demand for A if the price of A does not change. Similarly, an
increase in the price of A causes a decrease in the demand for B when the price of B
is held fixed. For example, cars and gasoline are complementary products. An increase
in the price of gasoline will make driving more expensive. Hence, the demand for cars
will decrease. And an increase in the price of cars will reduce the demand for gasoline.

EXAMPLE 4 Determining Whether Products Are Competitive
or Complementary

The demand functions for products A and B are each a function of the prices of A and
B and are given by

qA D
50 3
p
pB

p
pA

and qB D
75pA
3
q
p2B

respectively. Find the four marginal-demand functions, and determine whether A and
B are competitive products, complementary products, or neither.

Solution: Writing qA D 50p�1=2
A p1=3

B and qB D 75pAp
�2=3
B , we have

@qA
@pA
D 50

�
�
1
2

�
p�3=2
A p1=3

B D �25p
�3=2
A p1=3

B

@qA
@pB
D 50p�1=2

A

�
1
3

�
p�2=3
B D

50
3
p�1=2
A p�2=3

B

@qB
@pA
D 75.1/p�2=3

B D 75p�2=3
B

@qB
@pB
D 75pA

�
�
2
3

�
p�5=3
B D �50pAp

�5=3
B
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Since pA and pB represent prices, they are both positive. Hence, @qA=@pB > 0 and
@qB=@pA > 0. We conclude that A and B are competitive products.

Now Work Problem 19 G

PROBLEMS 17.2
For the joint-cost functions in Problems 1–3, find the indicated
marginal cost at the given production level.

1. c D 7xC 0:3y2 C 2yC 900I
@c
@y
; x D 20; y D 30

2. c D 2x
p
xC yC 6000I

@c
@x
; x D 70; y D 74

3. c D 0:03.xC y/3 � 0:6.xC y/2 C 9:5.xC y/C 7700;
@c
@x
; x D 50; y D 80

For the production functions in Problems 4 and 5, find the
marginal productivity functions @P=@k and @P=@l.

4. P D 15lk � 3l2 C 5k2 C 500

5. P D 2:527l0:314k0:686

6. Cobb–Douglas Production Function In economics, a
Cobb–Douglas production function is a production function of the
form P D Al˛kˇ , where A, ˛, and ˇ are constants and ˛C ˇ D 1.
For such a function, show that

(a) @P=@l D ˛P=l (b) @P=@k D ˇP=k

(c) l
@P
@l
C k

@P
@k
D P. This means that summing the products of the

marginal productivity of each factor and the amount of that factor
results in the total product P.

In Problems 7–9, qA and qB are demand functions for products
A and B, respectively. In each case, find @qA=@pA; @qA=@pB;
@qB=@pA; and @qB=@pB, and determine whether A and B are
competitive, complementary, or neither.

7. qA D 1500 � 40pA C 3pBI qB D 900C 5pA � 20pB

8. qA D 20 � pA � 2pBI qB D 50 � 2pA � 3pB

9. qA D
100

pA
p
pB
I qB D

500
pB 3
p
pA

10. Canadian Manufacturing The production function for the
Canadian manufacturing industries for 1927 is estimated by6

P D 33:0l0:46k0:52, where P is product, l is labor, and k is capital.
Find the marginal productivities for labor and capital, and
evaluate when l D 1 and k D 1.

11. Dairy Farming An estimate of the production function for
dairy farming in Iowa (1939) is given by7

P D A0:27B0:01C0:01D0:23E0:09F0:27

where P is product, A is land, B is labor, C is improvements, D is
liquid assets, E is working assets, and F is cash operating
expenses. Find the marginal productivities for labor and
improvements.

12. Production Function Suppose a production function is

given by P D
kl

3kC 5l
.

(a) Determine the marginal productivity functions.

(b) Show that when k D l, the marginal productivities sum to
1
8
.

13. MBA Compensation In a study of success among
graduates with master of business administration (MBA) degrees,
it was estimated that for staff managers (which include
accountants, analysts, etc.), current annual compensation (in
dollars) was given by

z D 43;960C 4480xC 3492y

where x and y are the number of years of work experience before
and after receiving the MBA degree, respectively.8 Find @z=@x
and interpret your result.

14. Status A person’s general status Sg is believed to be a
function of status attributable to education, Se, and status
attributable to income, Si, where Sg; Se, and Si are represented
numerically. If

Sg D 7 3
p
Se
p
Si

determine @Sg=@Se and @Sg=@Si when Se D 125 and Si D 100, and
interpret your results.9

15. Reading Ease Sometimes we want to evaluate the degree
of readability of a piece of writing. Rudolf Flesch10 developed a
function of two variables that will do this, namely,

R D f.w; s/ D 206:835 � .1:015wC 0:846s/

where R is called the reading ease score, w is the average number
of words per sentence in 100-word samples, and s is the average
number of syllables in such samples. Flesch says that an article
for which R D 0 is “practically unreadable,” but one with
R D 100 is “easy for any literate person.” (a) Find @R=@w and
@R=@s. (b)Which is “easier” to read: an article for which w D w0

and s D s0, or one for which w D w0 C 1 and s D s0?

6P. Daly and P. Douglas, “The Production Function for Canadian Manufac-
tures,” Journal of the American Statistical Association, 38 (1943), 178–86.
7G. Tintner and O. H. Brownlee, “Production Functions Derived from Farm
Records,” American Journal of Agricultural Economics, 26 (1944), 566–71.

8Adapted from A. G. Weinstein and V. Srinivasen, “Predicting Managerial Suc-
cess of Master of Business Administration (M.B.A.) Graduates,” Journal of
Applied Psychology, 59, no. 2 (1974), 207–12.
9Adapted from R. K. Leik and B. F. Meeker, Mathematical Sociology (Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975).
10R. Flesch, The Art of Readable Writing (NewYork: Harper & Row Publishers,
Inc., 1949).
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16. Model for Voice The study of frequency of vibrations of a
taut wire is useful in considering such things as an individual’s
voice. Suppose

! D
1
bL

r
�

��

where ! (a Greek letter read “omega”) is frequency, b is diameter,
L is length, � (a Greek letter read “rho”) is density, and � (a Greek
letter read “tau”) is tension.11 Find @!=@b; @!=@L; @!=@�, and
@!=@� .

17. Traffic Flow Consider the following traffic-flow situation.
On a highway where two lanes of traffic flow in the same
direction, there is a maintenance vehicle blocking the left lane.
(See Figure 17.3.) Two vehicles (lead and following) are in the
right lane with a gap between them. The subject vehicle can
choose either to fill or not to fill the gap. That decision may be
based not only on the distance x shown in the diagram but also on
other factors (such as the velocity of the following vehicle). A gap
index g has been used in analyzing such a decision.12;13 The
greater the g-value, the greater is the propensity for the subject
vehicle to fill the gap. Suppose

g D
x
VF
�

�
0:75C

VF � VS

19:2

�
where x (in feet) is as before, VF is the velocity of the following
vehicle (in feet per second), and VS is the velocity of the
subject vehicle (in feet per second). From the diagram, it seems
reasonable that if both VF and VS are fixed and x increases, then g
should increase. Show that this is true by applying calculus to the
function g. Assume that x;VF, and VS are positive.

Following
vehicle

Lead
vehicle

Subject
vehicle

Maintenance
vehicle

Left lane

Right lane

x

FIGURE 17.3

18. Demand Suppose the demand equations for related
products A and B are

qA D e�.pACpB/ and qB D
16

p2Ap
2
B

where qA and qB are the number of units of A and B demanded
when the unit prices (in thousands of dollars) are pA and pB,
respectively.

(a) Classify A and B as competitive, complementary, or neither.
(b) If the unit prices of A and B are $1000 and $2000,
respectively, estimate the change in the demand for A when the
price of B is decreased by $20 and the price of A is held constant.

19. Demand The demand equations for related products A and
B are given by

qA D 10
r

pB
pA

and qB D 3 3

r
pA
pB

where qA and qB are the quantities of A and B demanded and pA
and pB are the corresponding prices (in dollars) per unit.
(a) Find the values of the two marginal demands for product A
when pA D 9 and pB D 16.
(b) If pB were reduced to 14 from 16, with pA fixed at 9, use part
(a) to estimate the corresponding change in demand for product A.

20. Joint-Cost Function A manufacturer’s joint-cost function
for producing qA units of product A and qB units of product B is
given by

c D
q2A.q

3
B C qA/1=2

16
C q1=2

A q1=3
B C 500

where c is in dollars.

(a) Find the marginal-cost function with respect to qA.
(b) Evaluate the marginal-cost function with respect to qA
when qA D 18 and qB D 9. Round your answer to two
decimal places.
(c) Use your answer to part (a) to estimate the change in
cost if production of product A is decreased from 18 to
17 units, while production of product B is held constant
at 9 units.

21. Elections For the congressional elections of 1974, the
Republican percentage, R, of the Republican–Democratic vote in
a district is given (approximately) by14

R D f.Er;Ed; Ir; Id;N/

D 15:4725C 2:5945Er � 0:0804E2r � 2:3648Ed

C 0:0687E2d C 2:1914Ir � 0:0912I2r

� 0:8096Id C 0:0081I2d � 0:0277ErIr

C 0:0493EdId C 0:8579N � 0:0061N2

Here Er and Ed are the campaign expenditures (in units of
$10,000) by Republicans and Democrats, respectively; Ir and Id
are the number of terms served in Congress, plus one, for the
Republican and Democratic candidates, respectively; and N is the
percentage of the two-party presidential vote that Richard Nixon
received in the district for 1968. The variable N gives a measure of
Republican strength in the district.
(a) In the Federal Election Campaign Act of 1974, Congress set a
limit of $188,000 on campaign expenditures. By analyzing
@R=@Er, would you have advised a Republican candidate who
served nine terms in Congress to spend $188,000 on his or her
campaign?

11R. M. Thrall, J. A. Mortimer, K. R. Rebman, and R. F. Baum, eds., Some
Mathematical Models in Biology, rev. ed., Report No. 40241-R-7. Prepared at
University of Michigan, 1967.
12P. M. Hurst, K. Perchonok, and E. L. Seguin, “Vehicle Kinematics and Gap
Acceptance,” Journal of Applied Psychology, 52, no. 4 (1968), 321–24.
13K. Perchonok and P. M. Hurst, “Effect of Lane-Closure Signals upon Driver
Decision Making and Traffic Flow,” Journal of Applied Psychology, 52, no. 5
(1968), 410–13.

14J. Silberman and G. Yochum, “The Role of Money in Determining Election
Outcomes,” Social Science Quarterly, 58, no. 4 (1978), 671–82.
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(b) Find the percentage above which the Nixon vote had a
negative effect on R; that is, find N when @R=@N < 0. Give your
answer to the nearest percent.

22. Sales After a new product has been launched onto
the market, its sales volume (in thousands of units) is given by

S D
ATC 450
p
AC T 2

where T is the time (in months) since the product was first
introduced and A is the amount (in hundreds of dollars) spent each
month on advertising.
(a) Verify that the partial derivative of sales volume with respect
to time is given by

@S
@T
D

A2 � 450T

.AC T 2/3=2

(b) Use the result in part (a) to predict the number of months that
will elapse before the sales volume begins to decrease if the
amount allocated to advertising is held fixed at $9000 per month.

Let qA be demand for product A and suppose that
qA D qA.pA; pB/, so that qA is the quantity of A demanded when
the price per unit of A is pA and the price per unit of product B is
pB. The partial elasticity of demand for A with respect to pA,
denoted �pA , is defined as �pA D .pA=qA/.@qA=@pA/. The partial
elasticity of demand for A with respect to pB, denoted �pB , is
defined as �pB D .pB=qA/.@qA=@pB/. Roughly speaking, �pA is the
ratio of a percentage change in the quantity of A demanded to a
percentage change in the price of A when the price of B is fixed.
Similarly, �pB can be roughly interpreted as the ratio of a
percentage change in the quantity of A demanded to a percentage
change in the price of B when the price of A is fixed. In
Problems 23–25, find �pA and �pB for the given values of pA
and pB.

23. qA D 1000 � 50pA C 2pBI pA D 2; pB D 10

24. qA D 60 � 3pA � 2pBI pA D 5; pB D 3

25. qA D 1000=.p2A
p
pB/; pA D 2, pB D 9

Objective 17.3 Higher-Order Partial Derivatives
To compute higher-order partial
derivatives.

If z D f.x; y/, then not only is z a function of x and y, but also fx and fy are each functions
of x and y, which may themselves have partial derivatives. If we can differentiate fx and
fy, we obtain second-order partial derivatives of f. Symbolically,

fxx means . fx/x fxy means . fx/y
fyx means . fy/x fyy means . fy/y

In terms of @-notation,

@2z
@x2

means
@

@x

�
@z
@x

�
@2z
@y @x

means
@

@y

�
@z
@x

�

@2z
@x @y

means
@

@x

�
@z
@y

�
@2z
@y2

means
@

@y

�
@z
@y

�
Note that to find fxy, we first differentiate f with respect to x. For @2z=@x @y, we first
differentiate with respect to y.

For z D f.x; y/, fxy D @2z=@y@x.

We can extend our notation beyond second-order partial derivatives. For example,
fxxy ( D @3z=@y@x2) is a third-order partial derivative of f, namely, the partial deriva-
tive of fxx (D @2z=@x2) with respect to y. The generalization of higher-order partial
derivatives to functions of more than two variables should be obvious.

EXAMPLE 1 Second-Order Partial Derivatives

Find the four second-order partial derivatives of f.x; y/ D x2yC x2y2.

Solution: Since

fx.x; y/ D 2xyC 2xy2

we have

fxx.x; y/ D
@

@x
.2xyC 2xy2/ D 2yC 2y2
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and

fxy.x; y/ D
@

@y
.2xyC 2xy2/ D 2xC 4xy

Also, since

fy.x; y/ D x2 C 2x2y

we have

fyy.x; y/ D
@

@y
.x2 C 2x2y/ D 2x2

and

fyx.x; y/ D
@

@x
.x2 C 2x2y/ D 2xC 4xy

Now Work Problem 1 G

The derivatives fxy and fyx are calledmixed partial derivatives. Observe in Exam-
ple 1 that fxy.x; y/ D fyx.x; y/. Under suitable conditions, mixed partial derivatives of a
function are equal; that is, the order of differentiation is of no concern. Youmay assume
that this is the case for all the functions that we consider.

EXAMPLE 2 Mixed Partial Derivative

Find the value of
@3w
@z@y@x

ˇ̌̌̌
.1;2;3/

if w D .2xC 3yC 4z/3.

Solution:
@w
@x
D 3.2xC 3yC 4z/2

@

@x
.2xC 3yC 4z/

D 6.2xC 3yC 4z/2

@2w
@y@x

D 6 � 2.2xC 3yC 4z/
@

@y
.2xC 3yC 4z/

D 36.2xC 3yC 4z/

@3w
@z@y@x

D 36 � 4 D 144

Thus,

@3w
@z@y@x

ˇ̌̌̌
.1;2;3/

D 144

Now Work Problem 3 G

PROBLEMS 17.3
In Problems 1–10, find the indicated partial derivatives.

1. f.x; y/ D 5x3y; fx.x; y/, fxy.x; y/, fyx.x; y/

2. f.x; y/ D 2x3y2 C 6x2y3 � 3xy; fx.x; y/, fxx.x; y/

3. f.x; y/ D 7x2 C 3y; fy.x; y/, fyy.x; y/, fyyx.x; y/

4. f.x; y/ D .x2 C xyC y2/.xyC xC y/; fx.x; y/, fxy.x; y/

5. f.x; y/ D 9e2xy; fy.x; y/, fyx.x; y/, fyxy.x; y/

6. f.x; y/ D ln.x2 C y3/C 5; fx.x; y/, fxx.x; y/, fxy.x; y/

7. f.x; y/ D .xC y/2.xy/; fx.x; y/, fy.x; y/, fxx.x; y/, fyy.x; y/

8. f.x; y; z/ D x2y3z4; fx.x; y; z/, fxz.x; y; z/, fzx.x; y; z/

9. z D ln
p
x2 C y2;

@z
@y
,
@2z
@y2

10. z D
ln.x2 C 5/

y
;

@z
@x
,
@2z
@y @x

In Problems 11–16, find the indicated value.

11. If f.x; y; z/ D 5, find fyxxz.4; 3;�2/.

12. If f.x; y; z/ D z2.3x2 � 4xy3/, find fxyz.1; 2; 3/.
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13. If f.l; k/ D 3l3k6 � 2l2k7, find fk lk.2; 1/.

14. If f.x; y/ D x3y2 C x2y � x2y2, find fxxy.2; 3/ and fxyx.2; 3/.

15. If f.x; y/ D y2ex C ln.xy/, find fxyy.1; 1/.

16. If f.x; y/ D 2x3 C 3x2yC 5xy2 C 7y3, find fxy.2; 3/.

17. Cost Function Suppose the cost, c, of producing qA units
of product A and qB units of product B is given by

c D .3q2A C q3B C 4/1=3

and the coupled demand functions for the products are given by

qA D 10 � pA C p2B

and

qB D 20C pA � 11pB

Find the value of

@2c
@qA @qB

when pA D 25 and pB D 4.

18. For f.x; y/ D x4y4 C 3x3y2 � 7xC 4, show that

fxyx.x; y/ D fxxy.x; y/

19. For f.x; y/ D ex
2CxyCy2 , show that

fxy.x; y/ D fyx.x; y/

20. For f.x; y/ D exy, show that

fxx.x; y/C fxy.x; y/C fyx.x; y/C fyy.x; y/

D f.x; y/..xC y/2 C 2/

21. For w D ln.x2 C y2/, show that
@2w
@x2
C
@2w
@y2
D 0. For

w D ln.x2 C y2 C z2/, show that

@2w
@x2
C
@2w
@y2
C
@2w
@z2
D

2
x2 C y2 C z2

Objective 17.4 Maxima and Minima for Functions
of Two VariablesTo discuss relative maxima and relative

minima, to find critical points, and to
apply the second-derivative test for a
function of two variables.

We now extend the notion of relative maxima and minima (relative extrema) to
functions of two variables.

Definition
A function z D f.x; y/ is said to have a relative maximum at the point .a; b/ if, for
all points .x; y/ in the plane that are sufficiently close to .a; b/, we have

f.a; b/ � f.x; y/ (1)

For a relative minimum, we replace � by � in Inequality (1).

To say that z D f.x; y/ has a relative maximum at .a; b/ means, geometrically,
that the point .a; b; f.a; b// on the graph of f is higher than or is as high as all other
points on the surface that are “near” .a; b; f.a; b//. In Figure 17.4(a), f has a relative
maximum at .a; b/. Similarly, the function f in Figure 17.4(b) has a relative minimum
when x D y D 0, which corresponds to a low point on the surface.

z

yy
Relative
minimum
point

(0, 0, 0)

Graph of f

Graph of f

Relative
maximum
point

b

(a) (b)

x

z

x

a

(a, b, 0)

FIGURE 17.4 Relative extrema.
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x

z

y

Tangent
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FIGURE 17.5 At relative extremum, fx.x; y/ D 0 and fy.x; y/ D 0.

Recall that in locating extrema for a function y D f.x/ of one variable, we examine
those values of x in the domain of f for which f 0.x/ D 0 or f 0.x/ does not exist. For
functions of two (or more) variables, a similar procedure is followed. However, for the
functions that concern us, extrema will not occur where a derivative does not exist, and
such situations will be excluded from our consideration.

Suppose z D f.x; y/ has a relativemaximum at .a; b/, as indicated in Figure 17.5(a).
Then the curve where the plane y D b intersects the surface must have a relative maxi-
mum when x D a. Hence, the slope of the tangent line to the surface in the x-direction
must be 0 at .a; b/. Equivalently, fx.x; y/ D 0 at .a; b/. Similarly, on the curve where
the plane x D a intersects the surface [Figure 17.5(b)], there must be a relative maxi-
mum when y D b. Thus, in the y-direction, the slope of the tangent to the surface must
be 0 at .a; b/. Equivalently, fy.x; y/ D 0 at .a; b/. Since a similar discussion applies to
a relative minimum, we can combine these results as follows:

Rule 1
If z D f.x; y/ has a relative maximum or minimum at .a; b/, and if both fx and fy are
defined for all points close to .a; b/, it is necessary that .a; b/ be a solution of the
system �

fx.x; y/ D 0
fy.x; y/ D 0

Rule 1 does not imply that there must be
an extremum at a critical point. Just as in
the case of functions of one variable, a
critical point can give rise to a relative
maximum, a relative minimum, or
neither. A critical point is only a
candidate for a relative extremum.

A point, .a; b/, for which fx.a; b/ D fy.a; b/ D 0 is called a critical point of f. Thus,
from Rule 1, we infer that, to locate relative extrema for a function, we should examine
its critical points.

Two additional comments are in order: First, Rule 1, as well as the notion of a
critical point, can be extended to functions of more than two variables. For example,
to locate possible extrema for w D f.x; y; z/, we would examine those points for which
wx D wy D wz D 0. Second, for a function whose domain is restricted, a thorough
examination for absolute extrema would include a consideration of boundary points.

EXAMPLE 1 Finding Critical Points

Find the critical points of the following functions.

a. f.x; y/ D 2x2 C y2 � 2xyC 5x � 3yC 1.

Solution: Since fx.x; y/ D 4x�2yC5 and fy.x; y/ D 2y�2x�3, we solve the system�
4x � 2yC 5 D 0
�2xC 2y � 3 D 0

This gives x D �1 and y D 1
2 . Thus, .�1;

1
2 / is the only critical point.
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b. f.l; k/ D l3 C k3 � lk.

Solution:

fl.l; k/ D 3l2 � k D 0 (2)
(
fk.l; k/ D 3k2 � l D 0 (3)

From Equation (2), k D 3l2. Substituting for k in Equation (3) gives

0 D 27l4 � l D l.27l3 � 1/

Hence, either l D 0 or l D 1
3 . If l D 0, then k D 0; if l D 1

3 , then k D 1
3 . The critical

points are therefore .0; 0/ and . 13 ;
1
3 /.

c. f.x; y; z/ D 2x2 C xyC y2 C 100 � z.xC y � 100/.

Solution: Solving the system8<: fx.x; y; z/ D 4xC y � z D 0
fy.x; y; z/ D xC 2y � z D 0
fz.x; y; z/ D �x � yC 100 D 0

gives the critical point .25; 75; 175/, which the reader should verify.

Now Work Problem 1 G

EXAMPLE 2 Finding Critical Points

Find the critical points of

f.x; y/ D x2 � 4xC 2y2 C 4yC 7

Solution: We have fx.x; y/ D 2x � 4 and fy.x; y/ D 4yC 4. The system�
2x � 4 D 0
4yC 4 D 0

gives the critical point .2;�1/. Observe that we can write the given function as

f.x; y/ D x2 � 4xC 4C 2.y2 C 2yC 1/C 1

D .x � 2/2 C 2.yC 1/2 C 1

and f.2;�1/ D 1. Clearly, if .x; y/ ¤ .2;�1/, then f.x; y/ > 1. Hence, a relative
minimum occurs at .2;�1/. Moreover, there is an absolute minimum at .2;�1/, since
f.x; y/ > f.2;�1/ for all .x; y/ ¤ .2;�1/.

Now Work Problem 3 G

Although in Example 2 we were able to show that the critical point gave rise to a
relative extremum, in many cases this is not so easy to do. There is, however, a second-
derivative test that gives conditions under which a critical point will be a relative max-
imum or minimum. We state it now, omitting the proof.
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Rule 2 Second-Derivative Test for Functions of Two Variables
Suppose z D f.x; y/ has continuous partial derivatives fxx, fyy, and fxy at all points
.x; y/ near a critical point, .a; b/. Let D be the function defined by

D.x; y/ D fxx.x; y/fyy.x; y/ � . fxy.x; y//2

Then

1. if D.a; b/ > 0 and fxx.a; b/ < 0, then f has a relative maximum at .a; b/;

2. if D.a; b/ > 0 and fxx.a; b/ > 0, then f has a relative minimum at .a; b/;

3. if D.a; b/ < 0, then f has a saddle point at .a; b/ (see Example 4);

4. if D.a; b/ D 0, then no conclusion about an extremum at .a; b/ can be drawn,
and further analysis is required.

We remark that when D.a; b/ > 0, the sign of fxx.a; b/ is necessarily the same as
the sign of fyy.a; b/. Thus, when D.a; b/ > 0 we can test either fxx.a; b/ or fyy.a; b/,
whichever is easiest, to make the determination required in parts 1 and 2 of the second
derivative test.

EXAMPLE 3 Applying the Second-Derivative Test

Examine f.x; y/ D x3 C y3 � xy for relative maxima or minima by using the second-
derivative test.

Solution: First we find critical points:

fx.x; y/ D 3x2 � y fy.x; y/ D 3y2 � x

In the same manner as in Example 1(b), solving fx.x; y/ D fy.x; y/ D 0 gives the critical
points .0; 0/ and . 13 ;

1
3 /. Now,

fxx.x; y/ D 6x fyy.x; y/ D 6y fxy.x; y/ D �1

Thus,

D.x; y/ D .6x/.6y/ � .�1/2 D 36xy � 1

Since D.0; 0/ D 36.0/.0/ � 1 D �1 < 0, there is no relative extremum at .0; 0/.

Also, since D. 13 ;
1
3 / D 36. 13 /.

1
3 /� 1 D 3 > 0 and fxx. 13 ;

1
3 / D 6. 13 / D 2 > 0, there is a

relative minimum at
�
1
3 ;

1
3

�
. At this point, the value of the function is

f. 13 ;
1
3 / D .

1
3 /

3 C . 13 /
3 � . 13 /.

1
3 / D �

1
27

Now Work Problem 7 G

EXAMPLE 4 A Saddle Point

Examine f.x; y/ D y2 � x2 for relative extrema.

Solution: Solving

fx.x; y/ D �2x D 0 and fy.x; y/ D 2y D 0

we get the critical point (0, 0). Now we apply the second-derivative test. At (0, 0), and
indeed at any point,

fxx.x; y/ D �2 fyy.x; y/ D 2 fxy.x; y/ D 0
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Because D.0; 0/ D .�2/.2/� .0/2 D �4 < 0, no relative extremum exists at .0; 0/. A
sketch of z D f.x; y/ D y2 � x2 appears in Figure 17.6. Note that, for the surface curve
cut by the plane y D 0, there is a maximum at (0,0); but for the surface curve cut by the
plane x D 0, there is a minimum at (0,0). Thus, on the surface, no relative extremum
can exist at the origin, although (0, 0) is a critical point. Around the origin the curve is
saddle shaped, and .0; 0/ is called a saddle point of f.

The surface in Figure 17.6 is called a
hyperbolic paraboloid.

Now Work Problem 11 G

z

y

z = f(x, y) = y2 - x2

fx(0, 0) = fy(0, 0) = 0

Saddle point
at (0, 0)

x

(0, 0)

FIGURE 17.6 Saddle point.

EXAMPLE 5 Finding Relative Extrema

Examine f.x; y/ D x4 C .x � y/4 for relative extrema.

Solution: If we set

fx.x; y/ D 4x3 C 4.x � y/3 D 0 (4)

and

fy.x; y/ D �4.x � y/3 D 0 (5)

then, from Equation (5), we have x � y D 0; equivalently, x D y. Substituting into
Equation (4) gives 4x3 D 0; equivalently, x D 0. Thus, x D y D 0, and (0,0) is the only
critical point. At (0,0),

fxx.x; y/ D 12x2 C 12.x � y/2 D 0

fyy.x; y/ D 12.x � y/2 D 0

and

fxy.x; y/ D �12.x � y/2 D 0

Hence, D.0; 0/ D 0, and the second-derivative test gives no information. However, for
all .x; y/ ¤ .0; 0/, we have f.x; y/ > 0, whereas f.0; 0/ D 0. Therefore, at (0, 0) the
graph of f has a low point, and we conclude that f has a relative (and absolute) minimum
at (0,0).

Now Work Problem 13 G
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Applications
In many situations involving functions of two variables, and especially in their appli-
cations, the nature of the given problem is an indicator of whether a critical point is
in fact a relative (or absolute) maximum or a relative (or absolute) minimum. In such
cases, the second-derivative test is not needed. Often, inmathematical studies of applied
problems, the appropriate second-order conditions are assumed to hold.

EXAMPLE 6 Maximizing Output

Let P be a production function given by

P D f.l; k/ D 0:54l2 � 0:02l3 C 1:89k2 � 0:09k3

where l and k are the amounts of labor and capital, respectively, and P is the quantity
of output produced. Find the values of l and k that maximize P.

Solution: To find the critical points, we solve the system Pl D 0 and Pk D 0:

Pl D 1:08l � 0:06l2 Pk D 3:78k � 0:27k2

D 0:06l.18 � l/ D 0 D 0:27k.14 � k/ D 0

l D 0; l D 18 k D 0; k D 14

There are four critical points: (0,0), (0,14), (18,0), and (18,14).
Now we apply the second-derivative test to each critical point. We have

Pll D 1:08 � 0:12l Pkk D 3:78 � 0:54k Plk D 0

Thus,

D.l; k/ D PllPkk � .Plk/
2

D .1:08 � 0:12l/.3:78 � 0:54k/

At (0,0),

D.0; 0/ D 1:08.3:78/ > 0

Since D.0; 0/ > 0 and Pll D 1:08 > 0, there is a relative minimum at (0,0). At (0,14),

D.0; 14/ D 1:08.�3:78/ < 0

Because D.0; 14/ < 0, there is no relative extremum at (0,14). At (18,0),

D.18; 0/ D .�1:08/.3:78/ < 0

Since D.18; 0/ < 0, there is no relative extremum at (18,0). At (18,14),

D.18; 14/ D .�1:08/.�3:78/ > 0

Because D.18; 14/ > 0 and Pll D �1:08 < 0, there is a relative maximum at (18, 14).
Hence, the maximum output is obtained when l D 18 and k D 14.

Now Work Problem 21 G

EXAMPLE 7 Profit Maximization

A candy company produces two types of candy, A and B, for which the average costs
of production are constant at $2 and $3 per pound, respectively. The quantities qA; qB
(in pounds) of A and B that can be sold each week are given by the joint-demand
functions

qA D 400.pB � pA/
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and

qB D 400.9C pA � 2pB/

where pA and pB are the selling prices (in dollars per pound) of A and B, respectively.
Determine the selling prices that will maximize the company’s profit, P.

Solution: The total profit is given by

P D

0@ profit
per pound
of A

1A0@pounds
of A
sold

1AC0@ profit
per pound

of B

1A0@pounds
of B
sold

1A
For A and B, the profits per pound are pA � 2 and pB � 3, respectively. Thus,

P D .pA � 2/qA C .pB � 3/qB

D .pA � 2/Œ400.pB � pA/�C .pB � 3/Œ400.9C pA � 2pB/�

Notice that P is expressed as a function of two variables, pA and pB. To maximize P,
we set its partial derivatives equal to 0:

@P
@pA
D .pA � 2/Œ400.�1/�C Œ400.pB � pA/�.1/C .pB � 3/Œ400.1/�

D 0
@P
@pB
D .pA � 2/Œ400.1/�C .pB � 3/Œ400.�2/�C 400.9C pA � 2pB/�.1/

D 0

Simplifying the preceding two equations gives�
�2pA C 2pB � 1 D 0
2pA � 4pB C 13 D 0

whose solution is pA D 5:5 and pB D 6. Moreover, we find that

@2P

@p2A
D �800

@2P

@p2B
D �1600

@2P
@pB@pA

D 800

Therefore,

D.5:5; 6/ D .�800/.�1600/ � .800/2 > 0

Since @2P=@p2A < 0, we indeed have a maximum, and the company should sell candy
A at $5.50 per pound and B at $6.00 per pound.

Now Work Problem 23 G

PROBLEMS 17.4
In Problems 1–6, find the critical points of the functions.

1. f.x; y/ D x2 � 3y2 � 8xC 9yC 3xy

2. f.x; y/ D x2 C 3y2 � 4x � 30y

3. f.x; y/ D
5
3
x3 C

2
3
y3 �

15
2
x2 C y2 � 4yC 7

4. f.x; y/ D xy � xC y

5. f.x; y; z/ D 2x2 C xyC y2 C 100 � z.xC y � 200/

6. f.x; y; z;w/ D x2 C y2 C z2 C w.xC yC z � 3/

In Problems 7–20, find the critical points of the functions. For
each critical point, determine, by the second-derivative test,
whether it corresponds to a relative maximum, to a relative
minimum, or to neither, or whether the test gives no information.

7. f.x; y/ D x2 C 4y2 � 6x � 32yC 1

8. f.x; y/ D �2x2 C 8x � 3y2 C 24yC 7

9. f.x; y/ D y � y2 � 3x � 6x2

10. f.x; y/ D 2x2 C
3
2
y2 C 3xy � 10x � 9yC 2
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11. f.x; y/ D x2 C 3xyC y2 � 9x � 11yC 3

12. f.x; y/ D 2x3 C 3y2 C 6xyC 6xC 6y

13. f.x; y/ D
1
3
.x3 C 8y3/ � 2.x2 C y2/C 1

14. f.x; y/ D x2 C y2 � xyC x3

15. f.l; k/ D
l2

2
C 2lkC 3k2 � 69l � 164kC 17

16. f.l; k/ D l2 C 4k2 � 4lk 17. f.x; y/ D xy �
1
x
�
1
y

18. f.x; y/ D .x � 3/.y � 3/.xC y � 3/

19. f.x; y/ D .y2 � 4/.ex � 1/

20. f.x; y/ D ln.xy/C 2x2 � xy � 6x

21. Maximizing Output Suppose

P D f.l; k/ D 2:18l2 � 0:02l3 C 1:97k2 � 0:03k3

is a production function for a firm. Find the quantities of inputs l
and k that maximize output P.

22. Maximizing Output In a certain office, computers C and
D are utilized for c and d hours, respectively. If daily output Q
is a function of c and d, namely,

Q D 10cC 20d � 3c2 � 4d2 � cd

find the values of c and d that maximize Q.

In Problems 23–35, unless otherwise indicated, the variables pA
and pB denote selling prices of products A and B, respectively.
Similarly, qA and qB denote quantities of A and B that are
produced and sold during some time period. In all cases, the
variables employed will be assumed to be units of output, input,
money, and so on.

23. Profit A candy company produces two varieties of candy,
A and B, for which the constant average costs of production are
60 and 70 (cents per lb), respectively. The demand functions for
A and B are given by

qA D 5.pB � pA/ and qB D 500C 5.pA � 2pB/

Find the selling prices pA and pB that maximize the company’s
profit.

24. Profit Repeat Problem 23 if the constant costs of
production of A and B are a and b (cents per lb), respectively.

25. Price Discrimination Suppose a monopolist is practicing
price discrimination in the sale of a product by charging different
prices in two separate markets. In market A the demand function is

pA D 100 � qA

and in B it is

pB D 84 � qB

where qA and qB are the quantities sold per week in A and B, and
pA and pB are the respective prices per unit. If the monopolist’s
cost function is

c D 600C 4.qA C qB/

how much should be sold in each market to maximize profit?
What selling prices give this maximum profit? Find the maximum
profit.

26. Profit A monopolist sells two competitive products, A and
B, for which the demand functions are

qA D 16 � pA C pB and qB D 24C 2pA � 4pB

If the constant average cost of producing a unit of A is 2 and a
unit of B is 4, how many units of A and B should be sold to
maximize the monopolist’s profit?

27. Profit For products A and B, the joint-cost function for a
manufacturer is

c D 9q2A C 6q2B

and the demand functions are pA D 81 � q2A and pB D 90 � 2q2B.
Find the level of production that maximizes profit.

28. Profit For a monopolist’s products A and B, the joint-cost
function is c D 2.qA C qB C qAqB/, and the demand functions are
qA D 20 � 2pA and qB D 10 � pB. Find the values of pA and pB
that maximize profit. What are the quantities of A and B that
correspond to these prices? What is the total profit?

29. Cost An open-top rectangular box is to have a volume of
6 ft3. The cost per square foot of materials is $3 for the bottom, $1
for the front and back, and $0.50 for the other two sides. Find the
dimensions of the box so that the cost of materials is minimized.
(See Figure 17.7.)

x

Front

y

z

x = width
y = length
z = height

FIGURE 17.7

30. Collusion Suppose A and B are the only two firms in the
market selling the same product. (We say that they are duopolists.)
The industry demand function for the product is

p D 92 � qA � qB

where qA and qB denote the output produced and sold by A and B,
respectively. For A, the cost function is cA D 10qA; for B, it is
cB D 0:5q2B. Suppose the firms decide to enter into an agreement
on output and price control by jointly acting as a monopoly. In
this case, we say they enter into collusion. Show that the profit
function for the monopoly is given by

P D pqA � cA C pqB � cB

Express P as a function of qA and qB, and determine how output
should be allocated so as to maximize the profit of the monopoly.

31. Suppose f.x; y/ D x2 C 3y2 C 9, where x and y must satisfy
the equation xC y D 2. Find the relative extrema of f, subject to
the given condition on x and y, by first solving the second
equation for y (or x). Substitute the result in the first equation.
Thus, f is expressed as a function of one variable. Now find where
relative extrema for f occur.

32. Repeat Problem 31 if f.x; y/ D x2 C 4y2 C 11, subject to the
condition that x � y D 1.
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33. Suppose the joint-cost function

c D q2A C 3q2B C 2qAqB C aqA C bqB C d

has a relative minimum value of 15 when qA D 3 and qB D 1.
Determine the values of the constants a, b, and d.

34. Suppose that the function f.x; y/ has continuous partial
derivatives fxx, fyy, and fxy at all points .x; y/ near a critical point
.a; b/. Let D.x; y/ D fxx.x; y/fyy.x; y/ � . fxy.x; y//2 and suppose
that D.a; b/ > 0.
(a) Show that fxx.a; b/ < 0 if and only if fyy.a; b/ < 0.
(b) Show that fxx.a; b/ > 0 if and only if fyy.a; b/ > 0.

35. Profit from Competitive Products A monopolist
sells two competitive products, A and B, for which the demand
equations are

pA D 35 � 2q2A C qB
and

pB D 20 � qB C qA
The joint-cost function is

c D �8 � 2q3A C 3qAqB C 30qA C 12qB C
1
2
q2A

(a) How many units of A and B should be sold to obtain a relative
maximum profit for the monopolist? Use the second-derivative
test to justify your answer.
(b) Determine the selling prices required to realize the relative
maximum profit. Also, find this relative maximum profit.

36. Profit and Advertising A retailer has determined that the
number of TV sets he can sell per week is

7x
2C x

C
4y

5C y

where x and y represent his weekly expenditures (in dollars) on
newspaper and radio advertising, respectively. The profit is $300
per sale, less the cost of advertising, so the weekly profit is given
by the formula

P D 300
�

7x
2C x

C
4y

5C y

�
� x � y

Find the values of x and y for which the profit is a relative
maximum. Use the second-derivative test to verify that your
answer corresponds to a relative maximum profit.

37. Profit from Tomato Crop The revenue (in dollars per
square meter of ground) obtained from the sale of a crop of
tomatoes grown in an artificially heated greenhouse is given by

r D 5T.1 � e�x/

where T is the temperature (in ıC) maintained in the greenhouse
and x is the amount of fertilizer applied per square meter. The cost
of fertilizer is 20x dollars per square meter, and the cost of heating
is given by 0:1T2 dollars per square meter.
(a) Find an expression, in terms of T and x, for the profit per
square meter obtained from the sale of the crop of tomatoes.
(b) Verify that the pairs

.T; x/ D .20; ln 5/ and .T; x/ D .5; ln 5
4 /

are critical points of the profit function in part (a). (Note: You
need not derive the pairs.)
(c) The points in part (b) are the only critical points of the profit
function in part (a). Use the second-derivative test to determine
whether either of these points corresponds to a relative maximum
profit per square meter.

Objective 17.5 Lagrange Multipliers
To find critical points for a function,
subject to constraints, by applying the
method of Lagrange multipliers.

We will now find relative maxima and minima for a function on which certain con-
straints are imposed. Such a situation could arise if a manufacturer wished to minimize
a joint-cost function and yet obtain a particular production level.

Suppose we want to find the relative extrema of

w D x2 C y2 C z2 (1)

subject to the constraint that x, y, and z must satisfy

x � yC 2z D 6 (2)

We can transform w, which is a function of three variables, into a function of two
variables such that the new function reflects constraint (2). Solving Equation (2) for x,
we get

x D y � 2zC 6 (3)

which, when substituted for x in Equation (1), gives

w D .y � 2zC 6/2 C y2 C z2 (4)

Since w is now expressed as a function of two variables, to find relative extrema we
follow the usual procedure of setting the partial derivatives of w equal to 0:

@w
@y
D 2.y � 2zC 6/C 2y D 4y � 4zC 12 D 0 (5)

@w
@z
D �4.y � 2zC 6/C 2z D �4yC 10z � 24 D 0 (6)
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Solving Equations (5) and (6) simultaneously gives y D �1 and z D 2. Substituting
into Equation (3), we get x D 1. Hence, the only critical point of Equation (1) subject to
the constraint represented by Equation (2) is .1;�1; 2/. By using the second-derivative
test on Equation (4) when y D �1 and z D 2, we have

@2w
@y2
D 4

@2w
@z2
D 10

@2w
@z @y

D �4

D.�1; 2/ D 4.10/ � .�4/2 D 24 > 0

Thus w, subject to the constraint, has a relative minimum at .1;�1; 2/.
This solutionwas found by using the constraint to express one of the variables in the

original function in terms of the other variables. Often this is not practical, but there is
another technique, called the method of Lagrange multipliers, after the French math-
ematician Joseph-Louis Lagrange (1736–1813), that avoids this step and yet allows us
to obtain critical points.

The method is as follows. Suppose we have a function f.x; y; z/ subject to the con-
straint g.x; y; z/ D 0. We construct a new function, F, of four variables defined by the
following (where � is a Greek letter read “lambda”):

F.x; y; z; �/ D f.x; y; z/ � �g.x; y; z/

It can be shown that if .a; b; c/ is a critical point of f, subject to the constraint
g.x; y; z/ D 0, there exists a value of �, say, �0, such that .a; b; c; �0/ is a critical
point of F. The number �0 is called a Lagrange multiplier. Also, if .a; b; c; �0/ is a
critical point of F, then .a; b; c/ is a critical point of f, subject to the constraint. Thus,
to find critical points of f, subject to g.x; y; z/ D 0, we instead find critical points of F.
These are obtained by solving the simultaneous equations8̂<̂

:
Fx.x; y; z; �/ D 0
Fy.x; y; z; �/ D 0
Fz.x; y; z; �/ D 0
F�.x; y; z; �/ D 0

At times, ingenuity must be used to solve the equations. Once we obtain a critical point
.a; b; c; �0/ of F, we can conclude that .a; b; c/ is a critical point of f, subject to the
constraint g.x; y; z/ D 0. Although f and g are functions of three variables, the method
of Lagrange multipliers can be extended to n variables.

Let us illustrate themethod of Lagrangemultipliers for the original situation, namely,

f.x; y; z/ D x2 C y2 C z2 subject to x � yC 2z D 6

First, we write the constraint as g.x; y; z/ D x � yC 2z � 6 D 0. Second, we form the
function

F.x; y; z; �/ D f.x; y; z/ � �g.x; y; z/

D x2 C y2 C z2 � �.x � yC 2z � 6/

Next, we set each partial derivative of F equal to 0. For convenience, we will write
Fx.x; y; z; �/ as Fx, and so on:

Fx D 2x � � D 0 (7)

Fy D 2yC � D 0 (8)

8̂̂̂̂
<̂̂
ˆ̂̂̂:Fz D 2z � 2� D 0 (9)

F� D �xC y � 2zC 6 D 0 (10)

From Equations (7)–(9), we see immediately that

x D
�

2
y D �

�

2
z D � (11)



Haeussler-50501 M18_HAEU1107_14_SE_C17 November 27, 2017 14:56

756 Chapter 17 Multivariable Calculus

Substituting these values into Equation (10), we obtain

�
�

2
�
�

2
� 2�C 6 D 0

�3�C 6 D 0

� D 2

Thus, from Equation (11),

x D 1 y D �1 z D 2

Hence, the only critical point of f, subject to the constraint, is .1;�1; 2/, at which there
may exist a relative maximum, a relative minimum, or neither of these. The method
of Lagrange multipliers does not directly indicate which of these possibilities occurs,
although from our previous work, we saw that .1;�1; 2/ is indeed a relative mini-
mum. In applied problems, the nature of the problem itself may give a clue as to how
a critical point is to be regarded. Often the existence of either a relative minimum or
a relative maximum is assumed, and a critical point is treated accordingly. Actually,
sufficient second-order conditions for relative extrema are available, but we will not
consider them.

EXAMPLE 1 Method of Lagrange Multipliers

Find the critical points for z D f.x; y/ D 3x�yC6, subject to the constraint x2Cy2 D 4.

Solution: We write the constraint as g.x; y/ D x2 C y2 � 4 D 0 and construct the
function

F.x; y; �/ D f.x; y/ � �g.x; y/ D 3x � yC 6 � �.x2 C y2 � 4/

Setting Fx D Fy D F� D 0, we have

3 � 2x� D 0 (12)
8̂̂̂<̂
ˆ̂: � 1 � 2y� D 0 (13)

�x2 � y2 C 4 D 0 (14)

From Equations (12) and (13), we can express x and y in terms of �. Then we will
substitute for x and y in Equation (14) and solve for �. Knowing �, we can find x and
y. To begin, from Equations (12) and (13), we have

x D
3
2�

and y D �
1
2�

Substituting into Equation (14), we obtain

�
9
4�2
�

1
4�2
C 4 D 0

�
10
4�2
C 4 D 0

� D ˙

p
10
4

With these �-values, we can find x and y. If � D
p
10=4, then

x D
3

2

 p
10
4

! D 3
p
10
5

y D �
1

2

 p
10
4

! D �p10
5

Similarly, if � D �
p
10=4,

x D �
3
p
10
5

y D

p
10
5
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Thus, the critical points of f, subject to the constraint, are .3
p
10=5;�

p
10=5/ and

.�3
p
10=5;

p
10=5/. Note that the values of � do not appear in the answer; they are

simply a means to obtain the solution.

Now Work Problem 1 G

EXAMPLE 2 Method of Lagrange Multipliers

Find critical points for f.x; y; z/ D xyz, where xyz ¤ 0, subject to the constraint x C
2yC 3z D 36.

Solution: We have

F.x; y; z; �/ D xyz � �.xC 2yC 3z � 36/

Setting Fx D Fy D Fz D F� D 0 gives, respectively,8̂<̂
:

yz � � D 0
xz � 2� D 0
xy � 3� D 0
�x � 2y � 3zC 36 D 0

Because we cannot directly express x, y, and z in terms of � only, we cannot follow the
procedure in Example 1. However, observe that we can express the products yz, xz, and
xy as multiples of �. This suggests that, by looking at quotients of equations, we can
obtain a relation between two variables that does not involve �. (The �’s will cancel.)
Proceeding to do this, we write the foregoing system as

yz D � (15)

xz D 2� (16)

8̂̂̂̂
<̂
ˆ̂̂: xy D 3� (17)

xC 2yC 3z � 36 D 0 (18)

Dividing each side of Equation (15) by the corresponding side of Equation (16), we get

yz
xz
D

�

2�
so y D

x
2

This division is valid, since xyz ¤ 0. Similarly, from Equations (15) and (17), we get

yz
xy
D

�

3�
so z D

x
3

Now that we have y and z expressed in terms of x only, we can substitute into
Equation (18) and solve for x:

xC 2
� x
2

�
C 3

� x
3

�
� 36 D 0

x D 12

Thus, y D 6 and z D 4. Hence, (12, 6, 4) is the only critical point satisfying the given
conditions. Note that in this situation, we found the critical point without having to find
the value for �.

Now Work Problem 7 G

EXAMPLE 3 Minimizing Costs

Suppose a firm has an order for 200 units of its product and wishes to distribute its
manufacture between two of its plants, plant 1 and plant 2. Let q1 and q2 denote the
outputs of plants 1 and 2, respectively, and suppose the total-cost function is given by
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c D f.q1; q2/ D 2q21C q1q2C q22C 200. How should the output be distributed in order
to minimize costs?

Solution: We minimize c D f.q1; q2/, given the constraint q1 C q2 D 200. We have

F.q1; q2; �/ D 2q21 C q1q2 C q22 C 200 � �.q1 C q2 � 200/

@F
@q1
D 4q1 C q2 � � D 0 (19)

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂
@F
@q2
D q1 C 2q2 � � D 0 (20)

@F
@�
D �q1 � q2 C 200 D 0 (21)

We can eliminate � from Equations (19) and (20) and obtain a relation between q1 and
q2. Then, solving this equation for q2 in terms of q1 and substituting into Equation (21),
we can find q1. We begin by subtracting Equation (20) from Equation (19), which gives

3q1 � q2 D 0 so q2 D 3q1

Substituting into Equation (21), we have

�q1 � 3q1 C 200 D 0

�4q1 D �200

q1 D 50

Thus, q2 D 150. Accordingly, plant 1 should produce 50 units and plant 2 should
produce 150 units in order to minimize costs.

Now Work Problem 13 G

An interesting observation can bemade concerning Example 3. FromEquation (19),
� D 4q1 C q2 D @c=@q1, the marginal cost of plant 1. From Equation (20),
� D q1 C 2q2 D @c=@q2, the marginal cost of plant 2. Hence, @c=@q1 D @c=@q2,
and we conclude that, to minimize cost, it is necessary that the marginal costs of each
plant be equal to each other.

EXAMPLE 4 Least-Cost Input Combination

Suppose a firm must produce a given quantity, P0, of output in the cheapest possible
manner. If there are two input factors, l and k, and their prices per unit are fixed at pl
and pk, respectively, discuss the economic significance of combining input to achieve
least cost. That is, describe the least-cost input combination.

Solution: Let P D f.l; k/ be the production function. Then we must minimize the cost
function

c D lpl C kpk

subject to

P0 D f.l; k/

We construct

F.l; k; �/ D lpl C kpk � �. f.l; k/ � P0/



Haeussler-50501 M18_HAEU1107_14_SE_C17 November 27, 2017 14:56

Section 17.5 Lagrange Multipliers 759

We have

@F
@l
D pl � �

@

@l
. f.l; k// D 0 (22)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
@F
@k
D pk � �

@

@k
. f.l; k// D 0 (23)

@F
@�
D �f.l; k/C P0 D 0

From Equations (22) and (23),

� D
pl

@

@l
. f.l; k//

D
pk

@

@k
. f.l; k//

(24)

Hence,

pl
pk
D

@

@l
. f.l; k//

@

@k
. f.l; k//

We conclude that when the least-cost combination of factors is used, the ratio of the
marginal productivities of the input factors must be equal to the ratio of their corre-
sponding unit prices.

Now Work Problem 15 G

Multiple Constraints
The method of Lagrange multipliers is by no means restricted to problems involv-
ing a single constraint. For example, suppose f.x; y; z;w/ were subject to constraints
g1.x; y; z;w/ D 0 and g2.x; y; z;w/ D 0. Then there would be two lambdas, �1 and �2
(one corresponding to each constraint), and we would construct the function
F D f � �1g1 � �2g2. We would then solve the system

Fx D Fy D Fz D Fw D F�1 D F�2 D 0

EXAMPLE 5 Method of Lagrange Multipliers with Two Constraints

Find critical points for f.x; y; z/ D xyC yz, subject to the constraints x2 C y2 D 8 and
yz D 8.

Solution: Set

F.x; y; z; �1; �2/ D xyC yz � �1.x2 C y2 � 8/ � �2.yz � 8/

Then

Fx D y � 2x�1 D 0 (25)

Fy D xC z � 2y�1 � z�2 D 0 (26)

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Fz D y � y�2 D 0 (27)

F�1 D �x
2
� y2 C 8 D 0 (28)

F�2 D �yzC 8 D 0 (29)
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This appears to be a challenging system to solve. Some ingenuity will come into play.
Here is one sequence of operations that will allow us to find the critical points. We can
write the system as

y
2x
D �1 (30)

xC z � 2y�1 � z�2 D 0 (31)

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:
�2 D 1 (32)

x2 C y2 D 8 (33)

z D
8
y

(34)

In deriving Equation (30) we assumed x ¤ 0. This is permissible because if x D 0,
then by Equation (25) we have also y D 0, which is impossible because the second con-
straint, yz D 8, provides y ¤ 0. We also used y ¤ 0 to derive Equations (32) and (34).

Substituting �2 D 1 from Equation (32) into Equation (31) and simplifying gives
the equation x � 2y�1 D 0, so

�1 D
x
2y

Substituting into Equation (30) gives
y
2x
D

x
2y

y2 D x2 (35)

Substituting into Equation (33) gives x2Cx2 D 8, fromwhich it follows that x D ˙2. If
x D 2, then, from Equation (35), we have y D ˙2. Similarly, if x D �2, then y D ˙2.
Thus, if x D 2 and y D 2, then, from Equation (34), we obtain z D 4. Continuing in
this manner, we obtain four critical points:

.2; 2; 4/ .2;�2;�4/ .�2; 2; 4/ .�2;�2;�4/

Now Work Problem 9 G

PROBLEMS 17.5
In Problems 1–12, find, by the method of Lagrange multipliers, the
critical points of the functions, subject to the given constraints.

1. f.x; y/ D x2 C 4y2 C 6I 2x � 8y D 20

2. f.x; y/ D 3x2 � 2y2 C 9; xC y D 1

3. f.x; y; z/ D x2 C y2 C z2; xC yC z D 1

4. f.x; y; z/ D xC yC zI xyz D 8

5. f.x; y; z/ D 2x2 C xyC y2 C zI xC 2yC 4z D 3

6. f.x; y; z/ D xyz2I x � yC z D 20 .xyz2 ¤ 0/

7. f.x; y; z/ D xyz; xC yC z D 1 (xyz ¤ 0)

8. f.x; y; z/ D x2 C 4y2 C 9z2; xC yC z D 3

9. f.x; y; z/ D x2 C 2y � z2I 2x � y D 0; yC z D 0

10. f.x; y; z/ D x2 C y2 C z2I xC yC z D 4; x � yC z D 4

11. f.x; y; z/ D xy2zI xC yC z D 1; x � yC z D 0 .xyz ¤ 0/

12. f.x; y; z;w/ D x2 C 2y2 C 3z2 � w2; 4xC 3yC 2zC w D 10

13. Production Allocation To fill an order for 100 units of its
product, a firm wishes to distribute production between its two
plants, plant 1 and plant 2. The total-cost function is given by

c D f.q1; q2/ D q21 C 3q1 C 25q2 C 1000

where q1 and q2 are the numbers of units produced at plants 1
and 2, respectively. How should the output be distributed in order
to minimize costs? (Assume that the critical point obtained
corresponds to the minimum cost.)

14. Production Allocation Repeat Problem 13 if the cost
function is

c D 3q21 C q1q2 C 2q22

and a total of 200 units are to be produced.

15. Maximizing Output The production function for a firm is

f.l; k/ D 12lC 20k � l2 � 2k2

The cost to the firm of l and k is 4 and 8 per unit, respectively. If
the firm wants the total cost of input to be 88, find the greatest
output possible, subject to this budget constraint. (You may
assume that the critical point obtained does correspond to the
maximum output.)
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16. Maximizing Output Repeat Problem 15, given that

f.l; k/ D 20lC 25k � l2 � 3k2

and the budget constraint is 2lC 4k D 50.

17. Advertising Budget A computer company has a monthly
advertising budget of $20,000. Its marketing department estimates
that if x dollars are spent each month on advertising in newspapers
and y dollars per month on television advertising, then the
monthly sales will be given by S D 80x1=4y3=4 dollars. If the
profit is 10% of sales, less the advertising cost, determine how to
allocate the advertising budget in order to maximize the monthly
profit. (You may assume that the critical point obtained does
correspond to the maximum profit.)

18. Maximizing Production When l units of labor and k units
of capital are invested, a manufacturer’s total production, q, is
given by the Cobb-Douglas production function, P D 8l3=5k2=5.
Each unit of labor costs $50, and each unit of capital costs $39. If
exactly $30,750 is to be spent on production, determine the
numbers of units of labor and capital that should be invested to
maximize production. (Assume that the maximum occurs at the
critical point obtained.)

19. Political Advertising Newspaper advertisements for
political parties always have some negative effects. The recently
elected party assumed that the three most important election
issues, X, Y, and Z, had to be mentioned in each ad, with space x,
y, and z units, respectively, allotted to each. The combined bad
effect of this coverage was estimated by the party’s backroom
operative as

B.x; y; z/ D x2 C y2 C 2z2

Aesthetics dictated that the total space for X and Y together must
be 20, and realism suggested that the total space allotted to Y and
Z together must also be 20 units. What values of x, y, and z in each
ad would produce the lowest negative effect? (You may assume
that any critical point obtained provides the minimum effect.)

20. Maximizing Profit Suppose a manufacturer’s production
function is given by

16q D 65 � 4.l � 4/2 � 2.k � 5/2

and the cost to the manufacturer is $8 per unit of labor and $16
per unit of capital, so that the total cost (in dollars) is 8lC 16k.
The selling price of the product is $64 per unit.
(a) Express the profit as a function of l and k. Give your answer in
expanded form.
(b) Find all critical points of the profit function obtained in
part (a). Apply the second-derivative test at each critical point. If
the profit is a relative maximum at a critical point, compute the
corresponding relative maximum profit.

(c) The profit may be considered a function of l, k, and q (that is,
P D 64q � 8l � 16k), subject to the constraint

16q D 65 � 4.l � 4/2 � 2.k � 5/2

Use the method of Lagrange multipliers to find all critical points
of P D 64q � 8l � 16k, subject to the constraint.

Problems 21–24 refer to the following definition. A utility function
is a function that attaches a measure to the satisfaction or utility a
consumer gets from the consumption of products per unit of time.
Suppose U D f.x; y/ is such a function, where x and y are the
amounts of two products, X and Y. The marginal utility of X is
@U=@x and approximately represents the change in total utility
resulting from a one-unit change in consumption of product X per
unit of time. We define the marginal utility of Y similarly. If the
prices of X and Y are pX and pY, respectively, and the consumer
has an income or budget of I to spend, then the budget
constraint is:

xpX C ypY D I

In Problems 21–23, find the quantities of each product that the
consumer should buy, subject to the budget, that will allow
maximum satisfaction. That is, in Problems 21 and 22, find values
of x and y that maximize U D f.x; y/, subject to xpX C ypY D I.
Perform a similar procedure for Problem 23. Assume that such a
maximum exists.

21. U D x3y3I pX D 2; pY D 3; I D 48 .x3y3 ¤ 0/

22. U D 40x � 8x2 C 2y � y2; pX D 4, pY D 6, I D 100

23. U D f.x; y; z/ D xyz; pX D 1; pY D 2; pZ D 3; I D 100;
.xyz ¤ 0/

24. Let U D f.x; y/ be a utility function subject to the budget
constraint xpX C ypY D I, where pX, pY, and I are constants. Show
that, to maximize satisfaction, it is necessary that

� D
fx.x; y/
pX

D
fy.x; y/

pY

where fx.x; y/ and fy.x; y/ are the marginal utilities of X and Y,
respectively. Show that fx.x; y/=pX is the marginal utility of one
dollar’s worth of X. Hence, maximum satisfaction is obtained
when the consumer allocates the budget so that the marginal
utility of a dollar’s worth of X is equal to the marginal utility per
dollar’s worth of Y. Performing the same procedure as that for
U D f.x; y/, verify that this is true for U D f.x; y; z;w/, subject to
the corresponding budget equation. In each case, � is called the
marginal utility of income.

Objective 17.6 Multiple Integrals
To compute double and triple integrals. Recall that the definite integral of a function of one variable is concerned with inte-

gration over an interval. There are also definite integrals of functions of two variables,
called (definite) double integrals. These involve integration over a region in the plane.

For example, the symbolZ 2

0

Z 4

3
xydxdy D

Z 2

0

�Z 4

3
xydx

�
dy
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is the double integral of f.x; y/ D xy over a region determined by the bounds of inte-
gration. That region consists of all points .x; y/ in the x; y-plane such that 3 � x � 4
and 0 � y � 2. (See Figure 17.8.)

x

y

2

3 4

FIGURE 17.8 Region over whichR 2
0

R 4
3 xydxdy is evaluated.

A double integral is a limit of a sum of the form
P

f.x; y/dxdy, where, in this
example, the points .x; y/ are in the shaded region. A geometric interpretation of a
double integral will be given later.

To evaluate Z 2

0

Z 4

3
xydxdy D

Z 2

0

�Z 4

3
xydx

�
dy

we use successive integrations starting with the innermost integral. First, we evaluateZ 4

3
xydx

by treating y as a constant and integrating with respect to x between the bounds 3 and 4:Z 4

3
xydx D

x2y
2

ˇ̌̌̌4
3

Substituting the limits for the variable x, we have

42 � y
2
�
32 � y
2
D

16y
2
�
9y
2
D

7
2
y

Now we integrate this result with respect to y between the bounds 0 and 2:Z 2

0

7
2
ydy D

7y2

4

ˇ̌̌̌2
0
D

7 � 22

4
� 0 D 7

Thus, Z 2

0

Z 4

3
xydxdy D 7

Now consider the double integralZ 1

0

Z x2

x3
.x3 � xy/dydx D

Z 1

0

 Z x2

x3
.x3 � xy/dy

!
dx

Here, we integrate first with respect to y and then with respect to x. The region over
which the integration takes places is all points .x; y/ such that x3� y� x2 and 0� x� 1.
(See Figure 17.9.) This double integral is evaluated by first treating x as a constant and
integrating x3 � xy with respect to y between x3 and x2, and then integrating the result
with respect to x between 0 and 1:

x

y

1

1

y = x
3

y = x
2

FIGURE 17.9 Region over whichR 1
0

R x2

x3 .x
3 � xy/dydx is evaluated.

Z 1

0

Z x2

x3
.x3 � xy/dydx D

Z 1

0

 Z x2

x3
.x3 � xy/dy

!
dx D

Z 1

0

�
x3y �

xy2

2

�ˇ̌̌̌x2
x3
dx

D

Z 1

0

��
x3.x2/ �

x.x2/2

2

�
�

�
x3.x3/ �

x.x3/2

2

��
dx

D

Z 1

0

�
x5 �

x5

2
� x6 C

x7

2

�
dx D

Z 1

0

�
x5

2
� x6 C

x7

2

�
dx

D

�
x6

12
�

x7

7
C

x8

16

�ˇ̌̌̌1
0
D

�
1
12
�
1
7
C

1
16

�
� 0 D

1
336
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EXAMPLE 1 Evaluating a Double Integral

Find
Z 1

�1

Z 1�x

0
.2xC 1/dydx

Solution: Here we first integrate with respect to y and then integrate the result with
respect to x:Z 1

�1

Z 1�x

0
.2xC 1/dydx D

Z 1

�1

�Z 1�x

0
.2xC 1/dy

�
dx

D

Z 1

�1
.2xyC y/

ˇ̌̌̌1�x

0
dx D

Z 1

�1
..2x.1 � x/C .1 � x// � 0/dx

D

Z 1

�1
.�2x2 C xC 1/dx D

�
�
2x3

3
C

x2

2
C x

�ˇ̌̌̌1
�1

D

�
�
2
3
C

1
2
C 1

�
�

�
2
3
C

1
2
� 1

�
D

2
3

Now Work Problem 9 G

EXAMPLE 2 Evaluating a Double Integral

Find
Z ln 2

1

Z 2

ey
dxdy

Solution: Here we first integrate with respect to x and then integrate the result with
respect to y: Z ln 2

1

Z 2

ey
dxdy D

Z ln 2

1

�Z 2

ey
dx
�
dy D

Z ln 2

1
x

ˇ̌̌̌2
ey
dy

D

Z ln 2

1
.2 � ey/dy D .2y � ey/

ˇ̌̌̌ln 2
1

D .2 ln 2 � 2/ � .2 � e/ D 2 ln 2 � 4C e

D ln 4 � 4C e

Now Work Problem 13 G

z

y

x

a

b

d

c

z = f(x, y)

dy
dx

FIGURE 17.10 Interpreting
R b
a

R d
c f.x; y/dydx in terms of volume, where f.x; y/ � 0.
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A double integral can be interpreted in terms of the volume of a region between
the x; y-plane and a surface z D f.x; y/ if z � 0. In Figure 17.10 is a region whose vol-
ume we will consider. The element of volume for this region is a vertical column with
height approximately x D f.x; y/ and base area dyx. Thus, its volume is approximately
f.x; y/dydx. The volume of the entire region can be found by summing the volumes of
all such elements for a � x � b and c � y � d via a double integral:

volume D
Z b

a

Z d

c
f.x; y/dydx

Triple integrals are handled by successively evaluating three integrals, as the next
example shows.

EXAMPLE 3 Evaluating a Triple Integral

Find
Z 1

0

Z x

0

Z x�y

0
xdzdydx.

Solution:Z 1

0

Z x

0

Z x�y

0
xdzdydx D

Z 1

0

Z x

0

�Z x�y

0
xdz
�
dydx

D

Z 1

0

Z x

0
.xz/

ˇ̌̌̌x�y

0
dydx D

Z 1

0

Z x

0
.x.x � y/ � 0/dydx

D

Z 1

0

Z x

0
.x2 � xy/dydx D

Z 1

0

�Z x

0
.x2 � xy/dy

�
dx

D

Z 1

0

�
x2y �

xy2

2

�ˇ̌̌̌x
0
dx D

Z 1

0

��
x3 �

x3

2

�
� 0

�
dx

D

Z 1

0

x3

2
dx D

x4

8

ˇ̌̌̌1
0
D

1
8

Now Work Problem 21 G

PROBLEMS 17.6
In Problems 1–22, evaluate the multiple integrals.

1.
Z 3

0

Z 4

0
x dy dx 2.

Z 4

1

Z 3

0
y dy dx

3.
Z 1

0

Z 1

0
xy dx dy 4.

Z 1

0

Z 2

0
xy2dydx

5.
Z 3

1

Z 2

1
.x2 � y/ dx dy 6.

Z 3

�2

Z 2

0
.y2 � 2xy/ dy dx

7.
Z 1

0

Z 2

0
.xC y/ dy dx 8.

Z 3

0

Z x

0
.x2 C y2/ dy dx

9.
Z 2

1

Z x2

0
ydydx 10.

Z 2

1

Z x�1

0
2y dy dx

11.
Z 1

0

Z x2

3x
14x2y dy dx 12.

Z 2

0

Z x2

0
xy dy dx

13.
Z 3

0

Z p
9�x2

0
y dy dx 14.

Z 1

0

Z y2

y3
dxdy

15.
Z 1

�1

Z 1�x

x
3.xC y/ dy dx 16.

Z 3

0

Z 3y

y2
5x dx dy

17.
Z 1

0

Z y

0
exCydx dy 18.

Z 1

0

Z 1

0
ey�xdx dy

19.
Z 1

0

Z 2

0

Z 3

0
x3y2zdxdydz 20.

Z 1

0

Z x

0

Z xCy

0
x2 dz dy dx

21.
Z 1

0

Z x

x2

Z xy

0
dz dy dx 22.

Z e

1

Z x

ln x

Z y

0
dz dy dx

23. Statistics In the study of statistics, a joint density function
z D f.x; y/ defined on a region in the x,y-plane is represented by a
surface in space. The probability that

a � x � b and c � y � d

is given by

P.a � x � b; c � y � d/ D
Z d

c

Z b

a
f.x; y/ dx dy
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and is represented by the volume between the graph of f and the
rectangular region given by

a � x � b and c � y � d

If f.x; y/ D e�.xCy/ is a joint density function, where x � 0 and
y � 0, find

P.0 � x � 2; 1 � y � 2/

and give your answer in terms of e.

24. Statistics In Problem 23, let f.x; y/ D 6e�.2xC3y/ for
x; y � 0. Find

P.1 � x � 3; 2 � y � 4/

and give your answer in terms of e.

25. Statistics In Problem 23, let f.x; y/ D 1, where 0 � x � 1
and 0 � y � 1. Find P.x � 1=2; y � 1=3/.

26. Statistics In Problem 23, let f be the uniform density
function f.x; y/ D 1=8 defined over the rectangle
0 � x � 4; 0 � y � 2. Determine the probability that 0 � x � 1
and 0 � y � 1.

Chapter 17 Review
Important Terms and Symbols Examples
Section 17.1 Partial Derivatives

partial derivative
@z
@x
D fx.x; y/

@z
@x

ˇ̌̌̌
.a;b/

D fx.a; b/ Ex. 2, p. 735

Section 17.2 Applications of Partial Derivatives
joint-cost function production function marginal productivity Ex. 3, p. 740
competitive products complementary products Ex. 4, p. 741

Section 17.3 Higher-Order Partial Derivatives
@2z
@y@x

D fxy
@2z
@x@y

D fyx
@2z
@x2
D fxx

@2z
@y2
D fyy Ex. 1, p. 744

Section 17.4 Maxima and Minima for Functions of Two Variables
relative maximum and minimum critical point Ex. 1, p. 747
second-derivative test for functions of two variables Ex. 3, p. 749

Section 17.5 Lagrange Multipliers
Lagrange multipliers Ex. 1, p. 756

Section 17.6 Multiple Integrals
double integral triple integral Ex. 3, p. 764

Summary
For a function of n variables, we can consider n partial deriva-
tives. For example, if w D f.x; y; z/, we have the partial
derivatives of f with respect to x, with respect to y, and with
respect to z, denoted either fx, fy, and fz, or @w=@x, @w=@y,
and @w=@z, respectively. To find fx.x; y; z/, we treat y and z
as constants and differentiate f with respect to x in the usual
way. The other partial derivatives are found similarly.We can
interpret fx.x; y; z/ as the approximate change inw that results
from a one-unit change in xwhen y and z are held fixed. There
are similar interpretations for the other partial derivatives.

Functions of several variables occur frequently in busi-
ness and economic analysis, as well as in other areas of study.
If a manufacturer produces x units of product X and y units
of product Y, then the total cost, c, of these units is a func-
tion of x and y and is called a joint-cost function. The partial
derivatives @c=@x and @c=@y are called the marginal costs
with respect to x and y, respectively. We can interpret, for
example, @c=@x as the approximate cost of producing an extra
unit of X while the level of production of Y is held fixed.

If l units of labor and k units of capital are used to pro-
duce P units of a product, then the function P D f.l; k/ is
called a production function. The partial derivatives of P are
called marginal productivity functions.

Suppose two products, A and B, are such that the quan-
tity demanded of each is dependent on the prices of both. If
qA and qB are the quantities of A and B demanded when the
prices of A and B are pA and pB, respectively, then qA and
qB are each functions of pA and pB. When @qA=@pB > 0 and
@qB=@pA > 0, then A and B are called competitive products
(or substitutes). When @qA=@pB < 0 and @qB=@pA < 0, then
A and B are called complementary products.

A partial derivative of a function of n variables is itself a
function of n variables. By successively taking partial deriva-
tives of partial derivatives, we obtain higher-order partial
derivatives. For example, if f is a function of x and y, then
fxy denotes the partial derivative of fx with respect to y; fxy is
called the second-partial derivative of f, first with respect to
x and then with respect to y.
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If the function f.x; y/ has a relative extremum at .a; b/,
then .a; b/ must be a solution of the system

�
fx.x; y/ D 0
fy.x; y/ D 0

Any solution of this system is called a critical point of f. Thus,
critical points are the candidates at which a relative extremum
may occur. The second-derivative test for functions of two
variables gives conditions under which a critical point cor-
responds to a relative maximum or a relative minimum. The
test states that if .a; b/ is a critical point of f and

D.x; y/ D fxx.x; y/fyy.x; y/ � Œfxy.x; y/�2

then

1. if D.a; b/ > 0 and fxx.a; b/ < 0, then f has a relative
maximum at .a; b/;

2. if D.a; b/ > 0 and fxx.a; b/ > 0, then f has a relative
minimum at .a; b/;

3. if D.a; b/ < 0, then f has a saddle point at .a; b/;

4. if D.a; b/ D 0, no conclusion about an extremum at
.a; b/ can yet be drawn, and further analysis is required.

To find critical points of a function of several variables,
subject to a constraint, we can sometimes use the method of
Lagrange multipliers. For example, to find the critical points
of f.x; y; z/, subject to the constraint g.x; y; z/ D 0, we first
form the function

F.x; y; z; �/ D f.x; y; z/ � �g.x; y; z/

By solving the system 8̂<̂
:

Fx D 0
Fy D 0
Fz D 0
F� D 0

we obtain the critical points of F. If .a; b; c; �0/ is such a
critical point, then .a; b; c/ is a critical point of f, subject
to the constraint. It is important to write the constraint in
the form g.x; y; z/ D 0. For example, if the constraint is
2xC3y�z D 4, then g.x; y; z/ D 2xC3y�z�4. If f.x; y; z/ is
subject to two constraints, g1.x; y; z/ D 0 and g2.x; y; z/ D 0,
then we would form the function F D f � �1g1 � �2g2 and
solve the system 8̂̂̂<̂

ˆ̂:
Fx D 0
Fy D 0
Fz D 0
F�1 D 0
F�2 D 0

When working with functions of several variables, we
can consider their multiple integrals. These are determined
by successive integration. For example, the double integralZ 2

1

Z y

0
.xC y/dxdy

is determined by first treating y as a constant and integrating
xC y with respect to x. After evaluating between the bounds
0 and y, we integrate that result with respect to y from y D 1
to y D 2. Thus,Z 2

1

Z y

0
.xC y/dxdy D

Z 2

1

�Z y

0
.xC y/dx

�
dy

Triple integrals involve functions of three variables and are
also evaluated by successive integration.

Review Problems
In Problems 1–12, find the indicated partial derivatives.

1. f.x; y/ D ln.x2 C y2/; fx.x; y/, fy.x; y/

2. P D l3 C k3 � lkI @P=@l; @P=@k

3. z D
x

xC y
I

@z
@x
;
@z
@y

4. f.pA; pB/ D 4.pA � 10/C 5.pB � 15/I fpB.pA; pB/

5. f.x; y/ D e
p

x2Cy2 ;
@

@y
. f.x; y//

6. w D
p
x2 C y2;

@w
@y

7. w D ex
2yzI wxy.x; y; z/

8. f.x; y/ D xy ln.xy/I fxy.x; y/

9. f.x; y; z/ D .xC yC z/.x2 C y2 C z2/I
@2

@z2
. f.x; y; z//

10. z D .x2 � y2/2; @2z=@y@x

11. w D exCyCz ln.xyz/; @3w=@z@y@x

12. P D 100l0:11k0:89I @2P=@k@l

13. If f.x; y; z/ D
xC y
xz

, find fxyz.2; 7; 4/.

14. If f.x; y; z/ D .6xC 1/ey
2 ln.zC1/, find fxyz.0; 1; 0/.

15. Production Function If a manufacturer’s production
function is defined by P D 100l0:8k0:2, determine the marginal
productivity functions.

16. Joint-Cost Function A manufacturer’s cost for producing
x units of product X and y units of product Y is given by

c D 3xC 0:05xyC 9yC 500

Determine the (partial) marginal cost with respect to x when
x D 50 and y D 100.
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17. Competitive/Complementary Products If
qA D 100 � pA C 2pB and qB D 150 � 3pA � 2pB, where qA and
qB are the number of units demanded of products A and B,
respectively, and pA and pB are their respective prices per unit,
determine whether A and B are competitive products or
complementary products or neither.

18. Innovation For industry, the following model describes
the rate ˛ (a Greek letter read “alpha”) at which an innovation
substitutes for an established process:15

˛ D ZC 0:530P � 0:027S

Here, Z is a constant that depends on the particular industry, P is
an index of profitability of the innovation, and S is an index of the
extent of the investment necessary to make use of the innovation.
Find @˛=@P and @˛=@S.

19. Examine f.x; y/ D x2 C 2y2 � 2xy � 4yC 3 for relative
extrema.

20. Examine f.w; z/ D w3 C z3 � 3wzC 5 for relative extrema.

21. Minimizing Material An open-top rectangular cardboard
box is to have a volume of 32 cubic feet. Find the dimensions of
the box so that the amount of cardboard used is minimized.

22. The function

f.x; y/ D ax2 C by2 C cxy � xC y

has a critical point at .x; y/ D .0; 1/, and the second-derivative test
is inconclusive at this point. Determine the values of the constants
a, b, and c.

23. Maximizing Profit A dairy produces two types of cheese,
A and B, at constant average costs of 50 cents and 60 cents per
pound, respectively. When the selling price per pound of A is pA
cents and of B is pB cents, the demands (in pounds) for A and B,
are, respectively,

qA D 250.pB � pA/

and

qB D 32;000C 250.pA � 2pB/

Find the selling prices that yield a relative maximum profit. Verify
that the profit has a relative maximum at these prices.

24. Find all critical points of f.x; y; z/ D xy2z, subject to the
condition that

xC yC z � 1 D 0 .xyz ¤ 0/

25. Find all critical points of f.x; y/ D
p
x2 C y2, subject to the

constraint 5xC y D 1. Explain the answer geometrically.

In Problems 26–29, evaluate the double integrals.

26.
Z 2

1

Z y

0
x2y2dx dy 27.

Z 1

0

Z y2

0
xy dx dy

28.
Z 4

1

Z 2x

x2
y dy dx 29.

Z 1

0

Z x2

p
x
7.x2 C 2xy � 3y2/ dy dx

15 A. P. Hurter, Jr., A. H. Rubenstein, et al., “Market Penetration by New Inno-
vations: The Technological Literature,” Technological Forecasting and Social
Change, 11 (1978), 197–221.
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r D 0:005

n .1C r/n .1C r/�n an r sn r

1 1.005000 0.995025 0.995025 1.000000
2 1.010025 0.990075 1.985099 2.005000
3 1.015075 0.985149 2.970248 3.015025
4 1.020151 0.980248 3.950496 4.030100
5 1.025251 0.975371 4.925866 5.050251

6 1.030378 0.970518 5.896384 6.075502
7 1.035529 0.965690 6.862074 7.105879
8 1.040707 0.960885 7.822959 8.141409
9 1.045911 0.956105 8.779064 9.182116
10 1.051140 0.951348 9.730412 10.228026

11 1.056396 0.946615 10.677027 11.279167
12 1.061678 0.941905 11.618932 12.335562
13 1.066986 0.937219 12.556151 13.397240
14 1.072321 0.932556 13.488708 14.464226
15 1.077683 0.927917 14.416625 15.536548

16 1.083071 0.923300 15.339925 16.614230
17 1.088487 0.918707 16.258632 17.697301
18 1.093929 0.914136 17.172768 18.785788
19 1.099399 0.909588 18.082356 19.879717
20 1.104896 0.905063 18.987419 20.979115

21 1.110420 0.900560 19.887979 22.084011
22 1.115972 0.896080 20.784059 23.194431
23 1.121552 0.891622 21.675681 24.310403
24 1.127160 0.887186 22.562866 25.431955
25 1.132796 0.882772 23.445638 26.559115

26 1.138460 0.878380 24.324018 27.691911
27 1.144152 0.874010 25.198028 28.830370
28 1.149873 0.869662 26.067689 29.974522
29 1.155622 0.865335 26.933024 31.124395
30 1.161400 0.861030 27.794054 32.280017

31 1.167207 0.856746 28.650800 33.441417
32 1.173043 0.852484 29.503284 34.608624
33 1.178908 0.848242 30.351526 35.781667
34 1.184803 0.844022 31.195548 36.960575
35 1.190727 0.839823 32.035371 38.145378

36 1.196681 0.835645 32.871016 39.336105
37 1.202664 0.831487 33.702504 40.532785
38 1.208677 0.827351 34.529854 41.735449
39 1.214721 0.823235 35.353089 42.944127
40 1.220794 0.819139 36.172228 44.158847

41 1.226898 0.815064 36.987291 45.379642
42 1.233033 0.811009 37.798300 46.606540
43 1.239198 0.806974 38.605274 47.839572
44 1.245394 0.802959 39.408232 49.078770
45 1.251621 0.798964 40.207196 50.324164

46 1.257879 0.794989 41.002185 51.575785
47 1.264168 0.791034 41.793219 52.833664
48 1.270489 0.787098 42.580318 54.097832
49 1.276842 0.783182 43.363500 55.368321
50 1.283226 0.779286 44.142786 56.645163

r D 0:0075

n .1C r/n .1C r/�n an r sn r

1 1.007500 0.992556 0.992556 1.000000
2 1.015056 0.985167 1.977723 2.007500
3 1.022669 0.977833 2.955556 3.022556
4 1.030339 0.970554 3.926110 4.045225
5 1.038067 0.963329 4.889440 5.075565

6 1.045852 0.956158 5.845598 6.113631
7 1.053696 0.949040 6.794638 7.159484
8 1.061599 0.941975 7.736613 8.213180
9 1.069561 0.934963 8.671576 9.274779
10 1.077583 0.928003 9.599580 10.344339

11 1.085664 0.921095 10.520675 11.421922
12 1.093807 0.914238 11.434913 12.507586
13 1.102010 0.907432 12.342345 13.601393
14 1.110276 0.900677 13.243022 14.703404
15 1.118603 0.893973 14.136995 15.813679

16 1.126992 0.887318 15.024313 16.932282
17 1.135445 0.880712 15.905025 18.059274
18 1.143960 0.874156 16.779181 19.194718
19 1.152540 0.867649 17.646830 20.338679
20 1.161184 0.861190 18.508020 21.491219

21 1.169893 0.854779 19.362799 22.652403
22 1.178667 0.848416 20.211215 23.822296
23 1.187507 0.842100 21.053315 25.000963
24 1.196414 0.835831 21.889146 26.188471
25 1.205387 0.829609 22.718755 27.384884

26 1.214427 0.823434 23.542189 28.590271
27 1.223535 0.817304 24.359493 29.804698
28 1.232712 0.811220 25.170713 31.028233
29 1.241957 0.805181 25.975893 32.260945
30 1.251272 0.799187 26.775080 33.502902

31 1.260656 0.793238 27.568318 34.754174
32 1.270111 0.787333 28.355650 36.014830
33 1.279637 0.781472 29.137122 37.284941
34 1.289234 0.775654 29.912776 38.564578
35 1.298904 0.769880 30.682656 39.853813

36 1.308645 0.764149 31.446805 41.152716
37 1.318460 0.758461 32.205266 42.461361
38 1.328349 0.752814 32.958080 43.779822
39 1.338311 0.747210 33.705290 45.108170
40 1.348349 0.741648 34.446938 46.446482

41 1.358461 0.736127 35.183065 47.794830
42 1.368650 0.730647 35.913713 49.153291
43 1.378915 0.725208 36.638921 50.521941
44 1.389256 0.719810 37.358730 51.900856
45 1.399676 0.714451 38.073181 53.290112

46 1.410173 0.709133 38.782314 54.689788
47 1.420750 0.703854 39.486168 56.099961
48 1.431405 0.698614 40.184782 57.520711
49 1.442141 0.693414 40.878195 58.952116
50 1.452957 0.688252 41.566447 60.394257
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r D 0:01

n .1C r/n .1C r/�n an r sn r

1 1.010000 0.990099 0.990099 1.000000
2 1.020100 0.980296 1.970395 2.010000
3 1.030301 0.970590 2.940985 3.030100
4 1.040604 0.960980 3.901966 4.060401
5 1.051010 0.951466 4.853431 5.101005

6 1.061520 0.942045 5.795476 6.152015
7 1.072135 0.932718 6.728195 7.213535
8 1.082857 0.923483 7.651678 8.285671
9 1.093685 0.914340 8.566018 9.368527
10 1.104622 0.905287 9.471305 10.462213

11 1.115668 0.896324 10.367628 11.566835
12 1.126825 0.887449 11.255077 12.682503
13 1.138093 0.878663 12.133740 13.809328
14 1.149474 0.869963 13.003703 14.947421
15 1.160969 0.861349 13.865053 16.096896

16 1.172579 0.852821 14.717874 17.257864
17 1.184304 0.844377 15.562251 18.430443
18 1.196147 0.836017 16.398269 19.614748
19 1.208109 0.827740 17.226008 20.810895
20 1.220190 0.819544 18.045553 22.019004

21 1.232392 0.811430 18.856983 23.239194
22 1.244716 0.803396 19.660379 24.471586
23 1.257163 0.795442 20.455821 25.716302
24 1.269735 0.787566 21.243387 26.973465
25 1.282432 0.779768 22.023156 28.243200

26 1.295256 0.772048 22.795204 29.525631
27 1.308209 0.764404 23.559608 30.820888
28 1.321291 0.756836 24.316443 32.129097
29 1.334504 0.749342 25.065785 33.450388
30 1.347849 0.741923 25.807708 34.784892

31 1.361327 0.734577 26.542285 36.132740
32 1.374941 0.727304 27.269589 37.494068
33 1.388690 0.720103 27.989693 38.869009
34 1.402577 0.712973 28.702666 40.257699
35 1.416603 0.705914 29.408580 41.660276

36 1.430769 0.698925 30.107505 43.076878
37 1.445076 0.692005 30.799510 44.507647
38 1.459527 0.685153 31.484663 45.952724
39 1.474123 0.678370 32.163033 47.412251
40 1.488864 0.671653 32.834686 48.886373

41 1.503752 0.665003 33.499689 50.375237
42 1.518790 0.658419 34.158108 51.878989
43 1.533978 0.651900 34.810008 53.397779
44 1.549318 0.645445 35.455454 54.931757
45 1.564811 0.639055 36.094508 56.481075

46 1.580459 0.632728 36.727236 58.045885
47 1.596263 0.626463 37.353699 59.626344
48 1.612226 0.620260 37.973959 61.222608
49 1.628348 0.614119 38.588079 62.834834
50 1.644632 0.608039 39.196118 64.463182

r D 0:0125

n .1C r/n .1C r/�n an r sn r

1 1.012500 0.987654 0.987654 1.000000
2 1.025156 0.975461 1.963115 2.012500
3 1.037971 0.963418 2.926534 3.037656
4 1.050945 0.951524 3.878058 4.075627
5 1.064082 0.939777 4.817835 5.126572

6 1.077383 0.928175 5.746010 6.190654
7 1.090850 0.916716 6.662726 7.268038
8 1.104486 0.905398 7.568124 8.358888
9 1.118292 0.894221 8.462345 9.463374
10 1.132271 0.883181 9.345526 10.581666

11 1.146424 0.872277 10.217803 11.713937
12 1.160755 0.861509 11.079312 12.860361
13 1.175264 0.850873 11.930185 14.021116
14 1.189955 0.840368 12.770553 15.196380
15 1.204829 0.829993 13.600546 16.386335

16 1.219890 0.819746 14.420292 17.591164
17 1.235138 0.809626 15.229918 18.811053
18 1.250577 0.799631 16.029549 20.046192
19 1.266210 0.789759 16.819308 21.296769
20 1.282037 0.780009 17.599316 22.562979

21 1.298063 0.770379 18.369695 23.845016
22 1.314288 0.760868 19.130563 25.143078
23 1.330717 0.751475 19.882037 26.457367
24 1.347351 0.742197 20.624235 27.788084
25 1.364193 0.733034 21.357269 29.135435

26 1.381245 0.723984 22.081253 30.499628
27 1.398511 0.715046 22.796299 31.880873
28 1.415992 0.706219 23.502518 33.279384
29 1.433692 0.697500 24.200018 34.695377
30 1.451613 0.688889 24.888906 36.129069

31 1.469759 0.680384 25.569290 37.580682
32 1.488131 0.671984 26.241274 39.050441
33 1.506732 0.663688 26.904962 40.538571
34 1.525566 0.655494 27.560456 42.045303
35 1.544636 0.647402 28.207858 43.570870

36 1.563944 0.639409 28.847267 45.115505
37 1.583493 0.631515 29.478783 46.679449
38 1.603287 0.623719 30.102501 48.262942
39 1.623328 0.616019 30.718520 49.866229
40 1.643619 0.608413 31.326933 51.489557

41 1.664165 0.600902 31.927835 53.133177
42 1.684967 0.593484 32.521319 54.797341
43 1.706029 0.586157 33.107475 56.482308
44 1.727354 0.578920 33.686395 58.188337
45 1.748946 0.571773 34.258168 59.915691

46 1.770808 0.564714 34.822882 61.664637
47 1.792943 0.557742 35.380624 63.435445
48 1.815355 0.550856 35.931481 65.228388
49 1.838047 0.544056 36.475537 67.043743
50 1.861022 0.537339 37.012876 68.881790
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772 Appendix A Compound Interest Tables

r D 0:015

n .1C r/n .1C r/�n an r sn r

1 1.015000 0.985222 0.985222 1.000000
2 1.030225 0.970662 1.955883 2.015000
3 1.045678 0.956317 2.912200 3.045225
4 1.061364 0.942184 3.854385 4.090903
5 1.077284 0.928260 4.782645 5.152267

6 1.093443 0.914542 5.697187 6.229551
7 1.109845 0.901027 6.598214 7.322994
8 1.126493 0.887711 7.485925 8.432839
9 1.143390 0.874592 8.360517 9.559332
10 1.160541 0.861667 9.222185 10.702722

11 1.177949 0.848933 10.071118 11.863262
12 1.195618 0.836387 10.907505 13.041211
13 1.213552 0.824027 11.731532 14.236830
14 1.231756 0.811849 12.543382 15.450382
15 1.250232 0.799852 13.343233 16.682138

16 1.268986 0.788031 14.131264 17.932370
17 1.288020 0.776385 14.907649 19.201355
18 1.307341 0.764912 15.672561 20.489376
19 1.326951 0.753607 16.426168 21.796716
20 1.346855 0.742470 17.168639 23.123667

21 1.367058 0.731498 17.900137 24.470522
22 1.387564 0.720688 18.620824 25.837580
23 1.408377 0.710037 19.330861 27.225144
24 1.429503 0.699544 20.030405 28.633521
25 1.450945 0.689206 20.719611 30.063024

26 1.472710 0.679021 21.398632 31.513969
27 1.494800 0.668986 22.067617 32.986678
28 1.517222 0.659099 22.726717 34.481479
29 1.539981 0.649359 23.376076 35.998701
30 1.563080 0.639762 24.015838 37.538681

31 1.586526 0.630308 24.646146 39.101762
32 1.610324 0.620993 25.267139 40.688288
33 1.634479 0.611816 25.878954 42.298612
34 1.658996 0.602774 26.481728 43.933092
35 1.683881 0.593866 27.075595 45.592088

36 1.709140 0.585090 27.660684 47.275969
37 1.734777 0.576443 28.237127 48.985109
38 1.760798 0.567924 28.805052 50.719885
39 1.787210 0.559531 29.364583 52.480684
40 1.814018 0.551262 29.915845 54.267894

41 1.841229 0.543116 30.458961 56.081912
42 1.868847 0.535089 30.994050 57.923141
43 1.896880 0.527182 31.521232 59.791988
44 1.925333 0.519391 32.040622 61.688868
45 1.954213 0.511715 32.552337 63.614201

46 1.983526 0.504153 33.056490 65.568414
47 2.013279 0.496702 33.553192 67.551940
48 2.043478 0.489362 34.042554 69.565219
49 2.074130 0.482130 34.524683 71.608698
50 2.105242 0.475005 34.999688 73.682828

r D 0:02

n .1C r/n .1C r/�n an r sn r

1 1.020000 0.980392 0.980392 1.000000
2 1.040400 0.961169 1.941561 2.020000
3 1.061208 0.942322 2.883883 3.060400
4 1.082432 0.923845 3.807729 4.121608
5 1.104081 0.905731 4.713460 5.204040

6 1.126162 0.887971 5.601431 6.308121
7 1.148686 0.870560 6.471991 7.434283
8 1.171659 0.853490 7.325481 8.582969
9 1.195093 0.836755 8.162237 9.754628
10 1.218994 0.820348 8.982585 10.949721

11 1.243374 0.804263 9.786848 12.168715
12 1.268242 0.788493 10.575341 13.412090
13 1.293607 0.773033 11.348374 14.680332
14 1.319479 0.757875 12.106249 15.973938
15 1.345868 0.743015 12.849264 17.293417

16 1.372786 0.728446 13.577709 18.639285
17 1.400241 0.714163 14.291872 20.012071
18 1.428246 0.700159 14.992031 21.412312
19 1.456811 0.686431 15.678462 22.840559
20 1.485947 0.672971 16.351433 24.297370

21 1.515666 0.659776 17.011209 25.783317
22 1.545980 0.646839 17.658048 27.298984
23 1.576899 0.634156 18.292204 28.844963
24 1.608437 0.621721 18.913926 30.421862
25 1.640606 0.609531 19.523456 32.030300

26 1.673418 0.597579 20.121036 33.670906
27 1.706886 0.585862 20.706898 35.344324
28 1.741024 0.574375 21.281272 37.051210
29 1.775845 0.563112 21.844385 38.792235
30 1.811362 0.552071 22.396456 40.568079

31 1.847589 0.541246 22.937702 42.379441
32 1.884541 0.530633 23.468335 44.227030
33 1.922231 0.520229 23.988564 46.111570
34 1.960676 0.510028 24.498592 48.033802
35 1.999890 0.500028 24.998619 49.994478

36 2.039887 0.490223 25.488842 51.994367
37 2.080685 0.480611 25.969453 54.034255
38 2.122299 0.471187 26.440641 56.114940
39 2.164745 0.461948 26.902589 58.237238
40 2.208040 0.452890 27.355479 60.401983

41 2.252200 0.444010 27.799489 62.610023
42 2.297244 0.435304 28.234794 64.862223
43 2.343189 0.426769 28.661562 67.159468
44 2.390053 0.418401 29.079963 69.502657
45 2.437854 0.410197 29.490160 71.892710

46 2.486611 0.402154 29.892314 74.330564
47 2.536344 0.394268 30.286582 76.817176
48 2.587070 0.386538 30.673120 79.353519
49 2.638812 0.378958 31.052078 81.940590
50 2.691588 0.371528 31.423606 84.579401
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Appendix A Compound Interest Tables 773

r D 0:025

n .1C r/n .1C r/�n an r sn r

1 1.025000 0.975610 0.975610 1.000000
2 1.050625 0.951814 1.927424 2.025000
3 1.076891 0.928599 2.856024 3.075625
4 1.103813 0.905951 3.761974 4.152516
5 1.131408 0.883854 4.645828 5.256329

6 1.159693 0.862297 5.508125 6.387737
7 1.188686 0.841265 6.349391 7.547430
8 1.218403 0.820747 7.170137 8.736116
9 1.248863 0.800728 7.970866 9.954519
10 1.280085 0.781198 8.752064 11.203382

11 1.312087 0.762145 9.514209 12.483466
12 1.344889 0.743556 10.257765 13.795553
13 1.378511 0.725420 10.983185 15.140442
14 1.412974 0.707727 11.690912 16.518953
15 1.448298 0.690466 12.381378 17.931927

16 1.484506 0.673625 13.055003 19.380225
17 1.521618 0.657195 13.712198 20.864730
18 1.559659 0.641166 14.353364 22.386349
19 1.598650 0.625528 14.978891 23.946007
20 1.638616 0.610271 15.589162 25.544658

21 1.679582 0.595386 16.184549 27.183274
22 1.721571 0.580865 16.765413 28.862856
23 1.764611 0.566697 17.332110 30.584427
24 1.808726 0.552875 17.884986 32.349038
25 1.853944 0.539391 18.424376 34.157764

26 1.900293 0.526235 18.950611 36.011708
27 1.947800 0.513400 19.464011 37.912001
28 1.996495 0.500878 19.964889 39.859801
29 2.046407 0.488661 20.453550 41.856296
30 2.097568 0.476743 20.930293 43.902703

31 2.150007 0.465115 21.395407 46.000271
32 2.203757 0.453771 21.849178 48.150278
33 2.258851 0.442703 22.291881 50.354034
34 2.315322 0.431905 22.723786 52.612885
35 2.373205 0.421371 23.145157 54.928207

36 2.432535 0.411094 23.556251 57.301413
37 2.493349 0.401067 23.957318 59.733948
38 2.555682 0.391285 24.348603 62.227297
39 2.619574 0.381741 24.730344 64.782979
40 2.685064 0.372431 25.102775 67.402554

41 2.752190 0.363347 25.466122 70.087617
42 2.820995 0.354485 25.820607 72.839808
43 2.891520 0.345839 26.166446 75.660803
44 2.963808 0.337404 26.503849 78.552323
45 3.037903 0.329174 26.833024 81.516131

46 3.113851 0.321146 27.154170 84.554034
47 3.191697 0.313313 27.467483 87.667885
48 3.271490 0.305671 27.773154 90.859582
49 3.353277 0.298216 28.071369 94.131072
50 3.437109 0.290942 28.362312 97.484349

r D 0:03

n .1C r/n .1C r/�n an r sn r

1 1.030000 0.970874 0.970874 1.000000
2 1.060900 0.942596 1.913470 2.030000
3 1.092727 0.915142 2.828611 3.090900
4 1.125509 0.888487 3.717098 4.183627
5 1.159274 0.862609 4.579707 5.309136

6 1.194052 0.837484 5.417191 6.468410
7 1.229874 0.813092 6.230283 7.662462
8 1.266770 0.789409 7.019692 8.892336
9 1.304773 0.766417 7.786109 10.159106
10 1.343916 0.744094 8.530203 11.463879

11 1.384234 0.722421 9.252624 12.807796
12 1.425761 0.701380 9.954004 14.192030
13 1.468534 0.680951 10.634955 15.617790
14 1.512590 0.661118 11.296073 17.086324
15 1.557967 0.641862 11.937935 18.598914

16 1.604706 0.623167 12.561102 20.156881
17 1.652848 0.605016 13.166118 21.761588
18 1.702433 0.587395 13.753513 23.414435
19 1.753506 0.570286 14.323799 25.116868
20 1.806111 0.553676 14.877475 26.870374

21 1.860295 0.537549 15.415024 28.676486
22 1.916103 0.521893 15.936917 30.536780
23 1.973587 0.506692 16.443608 32.452884
24 2.032794 0.491934 16.935542 34.426470
25 2.093778 0.477606 17.413148 36.459264

26 2.156591 0.463695 17.876842 38.553042
27 2.221289 0.450189 18.327031 40.709634
28 2.287928 0.437077 18.764108 42.930923
29 2.356566 0.424346 19.188455 45.218850
30 2.427262 0.411987 19.600441 47.575416

31 2.500080 0.399987 20.000428 50.002678
32 2.575083 0.388337 20.388766 52.502759
33 2.652335 0.377026 20.765792 55.077841
34 2.731905 0.366045 21.131837 57.730177
35 2.813862 0.355383 21.487220 60.462082

36 2.898278 0.345032 21.832252 63.275944
37 2.985227 0.334983 22.167235 66.174223
38 3.074783 0.325226 22.492462 69.159449
39 3.167027 0.315754 22.808215 72.234233
40 3.262038 0.306557 23.114772 75.401260

41 3.359899 0.297628 23.412400 78.663298
42 3.460696 0.288959 23.701359 82.023196
43 3.564517 0.280543 23.981902 85.483892
44 3.671452 0.272372 24.254274 89.048409
45 3.781596 0.264439 24.518713 92.719861

46 3.895044 0.256737 24.775449 96.501457
47 4.011895 0.249259 25.024708 100.396501
48 4.132252 0.241999 25.266707 104.408396
49 4.256219 0.234950 25.501657 108.540648
50 4.383906 0.228107 25.729764 112.796867
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774 Appendix A Compound Interest Tables

r D 0:035

n .1C r/n .1C r/�n an r sn r

1 1.035000 0.966184 0.966184 1.000000
2 1.071225 0.933511 1.899694 2.035000
3 1.108718 0.901943 2.801637 3.106225
4 1.147523 0.871442 3.673079 4.214943
5 1.187686 0.841973 4.515052 5.362466

6 1.229255 0.813501 5.328553 6.550152
7 1.272279 0.785991 6.114544 7.779408
8 1.316809 0.759412 6.873956 9.051687
9 1.362897 0.733731 7.607687 10.368496
10 1.410599 0.708919 8.316605 11.731393

11 1.459970 0.684946 9.001551 13.141992
12 1.511069 0.661783 9.663334 14.601962
13 1.563956 0.639404 10.302738 16.113030
14 1.618695 0.617782 10.920520 17.676986
15 1.675349 0.596891 11.517411 19.295681

16 1.733986 0.576706 12.094117 20.971030
17 1.794676 0.557204 12.651321 22.705016
18 1.857489 0.538361 13.189682 24.499691
19 1.922501 0.520156 13.709837 26.357180
20 1.989789 0.502566 14.212403 28.279682

21 2.059431 0.485571 14.697974 30.269471
22 2.131512 0.469151 15.167125 32.328902
23 2.206114 0.453286 15.620410 34.460414
24 2.283328 0.437957 16.058368 36.666528
25 2.363245 0.423147 16.481515 38.949857

26 2.445959 0.408838 16.890352 41.313102
27 2.531567 0.395012 17.285365 43.759060
28 2.620172 0.381654 17.667019 46.290627
29 2.711878 0.368748 18.035767 48.910799
30 2.806794 0.356278 18.392045 51.622677

31 2.905031 0.344230 18.736276 54.429471
32 3.006708 0.332590 19.068865 57.334502
33 3.111942 0.321343 19.390208 60.341210
34 3.220860 0.310476 19.700684 63.453152
35 3.333590 0.299977 20.000661 66.674013

36 3.450266 0.289833 20.290494 70.007603
37 3.571025 0.280032 20.570525 73.457869
38 3.696011 0.270562 20.841087 77.028895
39 3.825372 0.261413 21.102500 80.724906
40 3.959260 0.252572 21.355072 84.550278

41 4.097834 0.244031 21.599104 88.509537
42 4.241258 0.235779 21.834883 92.607371
43 4.389702 0.227806 22.062689 96.848629
44 4.543342 0.220102 22.282791 101.238331
45 4.702359 0.212659 22.495450 105.781673

46 4.866941 0.205468 22.700918 110.484031
47 5.037284 0.198520 22.899438 115.350973
48 5.213589 0.191806 23.091244 120.388257
49 5.396065 0.185320 23.276564 125.601846
50 5.584927 0.179053 23.455618 130.997910

r D 0:04

n .1C r/n .1C r/�n an r sn r

1 1.040000 0.961538 0.961538 1.000000
2 1.081600 0.924556 1.886095 2.040000
3 1.124864 0.888996 2.775091 3.121600
4 1.169859 0.854804 3.629895 4.246464
5 1.216653 0.821927 4.451822 5.416323

6 1.265319 0.790315 5.242137 6.632975
7 1.315932 0.759918 6.002055 7.898294
8 1.368569 0.730690 6.732745 9.214226
9 1.423312 0.702587 7.435332 10.582795
10 1.480244 0.675564 8.110896 12.006107

11 1.539454 0.649581 8.760477 13.486351
12 1.601032 0.624597 9.385074 15.025805
13 1.665074 0.600574 9.985648 16.626838
14 1.731676 0.577475 10.563123 18.291911
15 1.800944 0.555265 11.118387 20.023588

16 1.872981 0.533908 11.652296 21.824531
17 1.947900 0.513373 12.165669 23.697512
18 2.025817 0.493628 12.659297 25.645413
19 2.106849 0.474642 13.133939 27.671229
20 2.191123 0.456387 13.590326 29.778079

21 2.278768 0.438834 14.029160 31.969202
22 2.369919 0.421955 14.451115 34.247970
23 2.464716 0.405726 14.856842 36.617889
24 2.563304 0.390121 15.246963 39.082604
25 2.665836 0.375117 15.622080 41.645908

26 2.772470 0.360689 15.982769 44.311745
27 2.883369 0.346817 16.329586 47.084214
28 2.998703 0.333477 16.663063 49.967583
29 3.118651 0.320651 16.983715 52.966286
30 3.243398 0.308319 17.292033 56.084938

31 3.373133 0.296460 17.588494 59.328335
32 3.508059 0.285058 17.873551 62.701469
33 3.648381 0.274094 18.147646 66.209527
34 3.794316 0.263552 18.411198 69.857909
35 3.946089 0.253415 18.664613 73.652225

36 4.103933 0.243669 18.908282 77.598314
37 4.268090 0.234297 19.142579 81.702246
38 4.438813 0.225285 19.367864 85.970336
39 4.616366 0.216621 19.584485 90.409150
40 4.801021 0.208289 19.792774 95.025516

41 4.993061 0.200278 19.993052 99.826536
42 5.192784 0.192575 20.185627 104.819598
43 5.400495 0.185168 20.370795 110.012382
44 5.616515 0.178046 20.548841 115.412877
45 5.841176 0.171198 20.720040 121.029392

46 6.074823 0.164614 20.884654 126.870568
47 6.317816 0.158283 21.042936 132.945390
48 6.570528 0.152195 21.195131 139.263206
49 6.833349 0.146341 21.341472 145.833734
50 7.106683 0.140713 21.482185 152.667084
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r D 0:05

n .1C r/n .1C r/�n an r sn r

1 1.050000 0.952381 0.952381 1.000000
2 1.102500 0.907029 1.859410 2.050000
3 1.157625 0.863838 2.723248 3.152500
4 1.215506 0.822702 3.545951 4.310125
5 1.276282 0.783526 4.329477 5.525631

6 1.340096 0.746215 5.075692 6.801913
7 1.407100 0.710681 5.786373 8.142008
8 1.477455 0.676839 6.463213 9.549109
9 1.551328 0.644609 7.107822 11.026564
10 1.628895 0.613913 7.721735 12.577893

11 1.710339 0.584679 8.306414 14.206787
12 1.795856 0.556837 8.863252 15.917127
13 1.885649 0.530321 9.393573 17.712983
14 1.979932 0.505068 9.898641 19.598632
15 2.078928 0.481017 10.379658 21.578564

16 2.182875 0.458112 10.837770 23.657492
17 2.292018 0.436297 11.274066 25.840366
18 2.406619 0.415521 11.689587 28.132385
19 2.526950 0.395734 12.085321 30.539004
20 2.653298 0.376889 12.462210 33.065954

21 2.785963 0.358942 12.821153 35.719252
22 2.925261 0.341850 13.163003 38.505214
23 3.071524 0.325571 13.488574 41.430475
24 3.225100 0.310068 13.798642 44.501999
25 3.386355 0.295303 14.093945 47.727099

26 3.555673 0.281241 14.375185 51.113454
27 3.733456 0.267848 14.643034 54.669126
28 3.920129 0.255094 14.898127 58.402583
29 4.116136 0.242946 15.141074 62.322712
30 4.321942 0.231377 15.372451 66.438848

31 4.538039 0.220359 15.592811 70.760790
32 4.764941 0.209866 15.802677 75.298829
33 5.003189 0.199873 16.002549 80.063771
34 5.253348 0.190355 16.192904 85.066959
35 5.516015 0.181290 16.374194 90.320307

36 5.791816 0.172657 16.546852 95.836323
37 6.081407 0.164436 16.711287 101.628139
38 6.385477 0.156605 16.867893 107.709546
39 6.704751 0.149148 17.017041 114.095023
40 7.039989 0.142046 17.159086 120.799774

41 7.391988 0.135282 17.294368 127.839763
42 7.761588 0.128840 17.423208 135.231751
43 8.149667 0.122704 17.545912 142.993339
44 8.557150 0.116861 17.662773 151.143006
45 8.985008 0.111297 17.774070 159.700156

46 9.434258 0.105997 17.880066 168.685164
47 9.905971 0.100949 17.981016 178.119422
48 10.401270 0.096142 18.077158 188.025393
49 10.921333 0.091564 18.168722 198.426663
50 11.467400 0.087204 18.255925 209.347996

r D 0:06

n .1C r/n .1C r/�n an r sn r

1 1.060000 0.943396 0.943396 1.000000
2 1.123600 0.889996 1.833393 2.060000
3 1.191016 0.839619 2.673012 3.183600
4 1.262477 0.792094 3.465106 4.374616
5 1.338226 0.747258 4.212364 5.637093

6 1.418519 0.704961 4.917324 6.975319
7 1.503630 0.665057 5.582381 8.393838
8 1.593848 0.627412 6.209794 9.897468
9 1.689479 0.591898 6.801692 11.491316
10 1.790848 0.558395 7.360087 13.180795

11 1.898299 0.526788 7.886875 14.971643
12 2.012196 0.496969 8.383844 16.869941
13 2.132928 0.468839 8.852683 18.882138
14 2.260904 0.442301 9.294984 21.015066
15 2.396558 0.417265 9.712249 23.275970

16 2.540352 0.393646 10.105895 25.672528
17 2.692773 0.371364 10.477260 28.212880
18 2.854339 0.350344 10.827603 30.905653
19 3.025600 0.330513 11.158116 33.759992
20 3.207135 0.311805 11.469921 36.785591

21 3.399564 0.294155 11.764077 39.992727
22 3.603537 0.277505 12.041582 43.392290
23 3.819750 0.261797 12.303379 46.995828
24 4.048935 0.246979 12.550358 50.815577
25 4.291871 0.232999 12.783356 54.864512

26 4.549383 0.219810 13.003166 59.156383
27 4.822346 0.207368 13.210534 63.705766
28 5.111687 0.195630 13.406164 68.528112
29 5.418388 0.184557 13.590721 73.639798
30 5.743491 0.174110 13.764831 79.058186

31 6.088101 0.164255 13.929086 84.801677
32 6.453387 0.154957 14.084043 90.889778
33 6.840590 0.146186 14.230230 97.343165
34 7.251025 0.137912 14.368141 104.183755
35 7.686087 0.130105 14.498246 111.434780

36 8.147252 0.122741 14.620987 119.120867
37 8.636087 0.115793 14.736780 127.268119
38 9.154252 0.109239 14.846019 135.904206
39 9.703507 0.103056 14.949075 145.058458
40 10.285718 0.097222 15.046297 154.761966

41 10.902861 0.091719 15.138016 165.047684
42 11.557033 0.086527 15.224543 175.950545
43 12.250455 0.081630 15.306173 187.507577
44 12.985482 0.077009 15.383182 199.758032
45 13.764611 0.072650 15.455832 212.743514

46 14.590487 0.068538 15.524370 226.508125
47 15.465917 0.064658 15.589028 241.098612
48 16.393872 0.060998 15.650027 256.564529
49 17.377504 0.057546 15.707572 272.958401
50 18.420154 0.054288 15.761861 290.335905
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r D 0:07

n .1C r/n .1C r/�n an r sn r

1 1.070000 0.934579 0.934579 1.000000
2 1.144900 0.873439 1.808018 2.070000
3 1.225043 0.816298 2.624316 3.214900
4 1.310796 0.762895 3.387211 4.439943
5 1.402552 0.712986 4.100197 5.750739

6 1.500730 0.666342 4.766540 7.153291
7 1.605781 0.622750 5.389289 8.654021
8 1.718186 0.582009 5.971299 10.259803
9 1.838459 0.543934 6.515232 11.977989
10 1.967151 0.508349 7.023582 13.816448

11 2.104852 0.475093 7.498674 15.783599
12 2.252192 0.444012 7.942686 17.888451
13 2.409845 0.414964 8.357651 20.140643
14 2.578534 0.387817 8.745468 22.550488
15 2.759032 0.362446 9.107914 25.129022

16 2.952164 0.338735 9.446649 27.888054
17 3.158815 0.316574 9.763223 30.840217
18 3.379932 0.295864 10.059087 33.999033
19 3.616528 0.276508 10.335595 37.378965
20 3.869684 0.258419 10.594014 40.995492

21 4.140562 0.241513 10.835527 44.865177
22 4.430402 0.225713 11.061240 49.005739
23 4.740530 0.210947 11.272187 53.436141
24 5.072367 0.197147 11.469334 58.176671
25 5.427433 0.184249 11.653583 63.249038

26 5.807353 0.172195 11.825779 68.676470
27 6.213868 0.160930 11.986709 74.483823
28 6.648838 0.150402 12.137111 80.697691
29 7.114257 0.140563 12.277674 87.346529
30 7.612255 0.131367 12.409041 94.460786

31 8.145113 0.122773 12.531814 102.073041
32 8.715271 0.114741 12.646555 110.218154
33 9.325340 0.107235 12.753790 118.933425
34 9.978114 0.100219 12.854009 128.258765
35 10.676581 0.093663 12.947672 138.236878

36 11.423942 0.087535 13.035208 148.913460
37 12.223618 0.081809 13.117017 160.337402
38 13.079271 0.076457 13.193473 172.561020
39 13.994820 0.071455 13.264928 185.640292
40 14.974458 0.066780 13.331709 199.635112

41 16.022670 0.062412 13.394120 214.609570
42 17.144257 0.058329 13.452449 230.632240
43 18.344355 0.054513 13.506962 247.776496
44 19.628460 0.050946 13.557908 266.120851
45 21.002452 0.047613 13.605522 285.749311

46 22.472623 0.044499 13.650020 306.751763
47 24.045707 0.041587 13.691608 329.224386
48 25.728907 0.038867 13.730474 353.270093
49 27.529930 0.036324 13.766799 378.999000
50 29.457025 0.033948 13.800746 406.528929

r D 0:08

n .1C r/n .1C r/�n an r sn r

1 1.080000 0.925926 0.925926 1.000000
2 1.166400 0.857339 1.783265 2.080000
3 1.259712 0.793832 2.577097 3.246400
4 1.360489 0.735030 3.312127 4.506112
5 1.469328 0.680583 3.992710 5.866601

6 1.586874 0.630170 4.622880 7.335929
7 1.713824 0.583490 5.206370 8.922803
8 1.850930 0.540269 5.746639 10.636628
9 1.999005 0.500249 6.246888 12.487558
10 2.158925 0.463193 6.710081 14.486562

11 2.331639 0.428883 7.138964 16.645487
12 2.518170 0.397114 7.536078 18.977126
13 2.719624 0.367698 7.903776 21.495297
14 2.937194 0.340461 8.244237 24.214920
15 3.172169 0.315242 8.559479 27.152114

16 3.425943 0.291890 8.851369 30.324283
17 3.700018 0.270269 9.121638 33.750226
18 3.996019 0.250249 9.371887 37.450244
19 4.315701 0.231712 9.603599 41.446263
20 4.660957 0.214548 9.818147 45.761964

21 5.033834 0.198656 10.016803 50.422921
22 5.436540 0.183941 10.200744 55.456755
23 5.871464 0.170315 10.371059 60.893296
24 6.341181 0.157699 10.528758 66.764759
25 6.848475 0.146018 10.674776 73.105940

26 7.396353 0.135202 10.809978 79.954415
27 7.988061 0.125187 10.935165 87.350768
28 8.627106 0.115914 11.051078 95.338830
29 9.317275 0.107328 11.158406 103.965936
30 10.062657 0.099377 11.257783 113.283211

31 10.867669 0.092016 11.349799 123.345868
32 11.737083 0.085200 11.434999 134.213537
33 12.676050 0.078889 11.513888 145.950620
34 13.690134 0.073045 11.586934 158.626670
35 14.785344 0.067635 11.654568 172.316804

36 15.968172 0.062625 11.717193 187.102148
37 17.245626 0.057986 11.775179 203.070320
38 18.625276 0.053690 11.828869 220.315945
39 20.115298 0.049713 11.878582 238.941221
40 21.724521 0.046031 11.924613 259.056519

41 23.462483 0.042621 11.967235 280.781040
42 25.339482 0.039464 12.006699 304.243523
43 27.366640 0.036541 12.043240 329.583005
44 29.555972 0.033834 12.077074 356.949646
45 31.920449 0.031328 12.108402 386.505617

46 34.474085 0.029007 12.137409 418.426067
47 37.232012 0.026859 12.164267 452.900152
48 40.210573 0.024869 12.189136 490.132164
49 43.427419 0.023027 12.212163 530.342737
50 46.901613 0.021321 12.233485 573.770156
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Rational Forms Containing .aC bu/

1.
Z

un du D
unC1

nC 1
C C; n ¤ �1

2.
Z

du
aC bu

D
1
b
ln jaC buj C C

3.
Z

u du
aC bu

D
u
b
�

a
b2

ln jaC buj C C

4.
Z

u2 du
aC bu

D
u2

2b
�

au
b2
C

a2

b3
ln jaC buj C C

5.
Z

du
u.aC bu/

D
1
a
ln

ˇ̌̌̌
u

aC bu

ˇ̌̌̌
C C

6.
Z

du
u2.aC bu/

D �
1
au
C

b
a2

ln

ˇ̌̌̌
aC bu

u

ˇ̌̌̌
C C

7.
Z

u du
.aC bu/2

D
1
b2

�
ln jaC buj C

a
aC bu

�
C C

8.
Z

u2 du
.aC bu/2

D
u
b2
�

a2

b3.aC bu/
�
2a
b3

ln jaC buj C C

9.
Z

du
u.aC bu/2

D
1

a.aC bu/
C

1
a2

ln

ˇ̌̌̌
u

aC bu

ˇ̌̌̌
C C

10.
Z

du
u2.aC bu/2

D �
aC 2bu

a2u.aC bu/
C

2b
a3

ln

ˇ̌̌̌
aC bu

u

ˇ̌̌̌
C C

11.
Z

du
.aC bu/.cC ku/

D
1

bc � ak
ln

ˇ̌̌̌
aC bu
cC ku

ˇ̌̌̌
C C

12.
Z

u du
.aC bu/.cC ku/

D
1

bc � ak

hc
k
ln jcC kuj �

a
b
ln jaC buj

i
C C

Forms Containing
p
aC bu

13.
Z

u
p
aC bu du D

2.3bu � 2a/.aC bu/3=2

15b2
C C

14.
Z

u2
p
aC bu du D

2.8a2 � 12abuC 15b2u2/.aC bu/3=2

105b3
C C

15.
Z

u du
p
aC bu

D
2.bu � 2a/

p
aC bu

3b2
C C

16.
Z

u2 du
p
aC bu

D
2.3b2u2 � 4abuC 8a2/

p
aC bu

15b3
C C

777
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17.
Z

du

u
p
aC bu

D
1
p
a
ln

ˇ̌̌̌
ˇ
p
aC bu �

p
a

p
aC buC

p
a

ˇ̌̌̌
ˇC C; a > 0

18.
Z p

aC bu du
u

D 2
p
aC buC a

Z
du

u
p
aC bu

Forms Containing
p
a2 � u2

19.
Z

du

.a2 � u2/3=2
D

u

a2
p
a2 � u2

C C

20.
Z

du

u
p
a2 � u2

D �
1
a
ln

ˇ̌̌̌
ˇaC

p
a2 � u2

u

ˇ̌̌̌
ˇC C

21.
Z

du

u2
p
a2 � u2

D �

p
a2 � u2

a2u
C C

22.
Z p

a2 � u2 du
u

D
p
a2 � u2 � a ln

ˇ̌̌̌
ˇaC

p
a2 � u2

u

ˇ̌̌̌
ˇC C; a > 0

Forms Containing
p
u2 ˙ a2

23.
Z
p
u2 ˙ a2 du D

1
2

�
u
p
u2 ˙ a2 ˙ a2 ln

ˇ̌̌
uC
p
u2 ˙ a2

ˇ̌̌�
C C

24.
Z

u2
p
u2 ˙ a2 du D

u
8
.2u2 ˙ a2/

p
u2 ˙ a2 �

a4

8
ln
ˇ̌̌
uC
p
u2 ˙ a2

ˇ̌̌
C C

25.
Z p

u2 C a2 du
u

D

p
u2 C a2 � a ln

ˇ̌̌̌
ˇaC

p
u2 C a2

u

ˇ̌̌̌
ˇC C

26.
Z p

u2 ˙ a2 du
u2

D �

p
u2 ˙ a2

u
C ln

ˇ̌̌
uC
p
u2 ˙ a2

ˇ̌̌
C C

27.
Z

du
p
u2 ˙ a2

D ln
ˇ̌̌
uC
p
u2 ˙ a2

ˇ̌̌
C C

28.
Z

du

u
p
u2 C a2

D
1
a
ln

ˇ̌̌̌
ˇ
p
u2 C a2 � a

u

ˇ̌̌̌
ˇC C

29.
Z

u2du
p
u2 ˙ a2

D
1
2

�
u
p
u2 ˙ a2 � a2 ln

ˇ̌̌̌
uC
p
u2 ˙ a2

ˇ̌̌̌�
C C

30.
Z

du

u2
p
u2 ˙ a2

D �
˙
p
u2 ˙ a2

a2u
C C

31.
Z
.u2 ˙ a2/3=2du D

u
8
.2u2 ˙ 5a2/

p
u2 ˙ a2 C

3a4

8
ln

ˇ̌̌̌
uC
p
u2 ˙ a2

ˇ̌̌̌
C C

32.
Z

du

.u2 ˙ a2/3=2
D

˙u

a2
p
u2 ˙ a2

C C

33.
Z

u2du

.u2 ˙ a2/3=2
D

�u
p
u2 ˙ a2

C ln

ˇ̌̌̌
uC
p
u2 ˙ a2

ˇ̌̌̌
C C

Rational Forms Containing a2 � u2 and u2 � a2

34.
Z

du
a2 � u2

D
1
2a

ln

ˇ̌̌̌
aC u
a � u

ˇ̌̌̌
C C

35.
Z

du
u2 � a2

D
1
2a

ln

ˇ̌̌̌
u � a
uC a

ˇ̌̌̌
C C
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Exponential and Logarithmic Forms

36.
Z

eudu D eu C C

37.
Z

audu D
au

ln a
C C; a > 0; a ¤ 1

38.
Z

ueaudu D
eau

a2
.au � 1/C C

39.
Z

uneaudu D
uneau

a
�

n
a

Z
un�1eau du

40.
Z

eaudu
un
D �

eau

.n � 1/un�1
C

a
n � 1

Z
eaudu
un�1

; n ¤ 1

41.
Z

ln u du D u ln u � uC C

42.
Z

un ln u du D
unC1 ln u
nC 1

�
unC1

.nC 1/2
C C; n ¤ �1

43.
Z

un lnm u du D
unC1

nC 1
lnm u �

m
nC 1

Z
un lnm�1 u du; m; n ¤ �1

44.
Z

du
u ln u

D ln

ˇ̌̌̌
ln u

ˇ̌̌̌
C C

45.
Z

du
aC becu

D
1
ac

�
cu � ln

ˇ̌̌̌
aC becu

ˇ̌̌̌�
C C

Miscellaneous Forms

46.
Z r

aC u
bC u

du D
p
.aC u/.bC u/C .a � b/ ln.

p
aC uC

p
bC u/C C

47.
Z

dup
.aC u/.bC u/

D ln

ˇ̌̌̌
aC b
2
C uC

p
.aC u/.bC u/

ˇ̌̌̌
C C

48.
Z p

aC buC cu2du D
2cuC b

4c

p
aC buC cu2

�
b2 � 4ac

8c3=2
ln

ˇ̌̌̌
2cuCbC2

p
c
p
aC buC cu2

ˇ̌̌̌
CC; c> 0
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z0

A(z) = 3          e
-x

2
/2
 dx

2r

1

0

z

A(-z) = A(z)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998
3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998
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Answers to Odd-Numbered
Problems
Problems 0.1 (page 3)

1. false;
p
�13 is not a real number

3. false; the natural numbers are 1, 2, 3, and so on

5. false;
p
3 is not rational

7. false;
p
25 D 5; a positive integer

9. false; we cannot divide by 0

11. true; see Figure 0.1 in the text

13. true; we can regard a terminating sequence as being the same as
the sequence obtained from it by appending infinitely many zeros

Problems 0.2 (page 9)

1. false 3. false 5. false 7. false 9. false

11. distributive 13. associative

15. commutative and distributive 17. the definition of division

19. distributive and commutative 29. b � a

31. 5 33. 8 35. �18 37. 0:8 39. a

41. �7x 43. 6C y 45.
1
3

47. 6 49. �ab

51. X 53. 20C 4x 55. 0 57. X 59. �x

61.
3ab
c

63.
by
x

65.
10
xy

67.
xC 3y
3a

69.
aC c
b

71.
17
12

73.
6y
x 75. �

x2

yz
77. 0; for X ¤ 0

Problems 0.3 (page 14)

1. 25.D32/ 3. 177 5.
x8

y14
7.

a21

b20
9. 8x6y9

11. x4 13. y4 15. 5 17. �2 19.
1
2

21. 7 23. 27 25.
1
4

27.
1
16

29. 5
p
2

31. x 3
p
2 33. 7u4 35. 4

p
2 � 15

p
3C 4 3

p
2

37. 3z2 39.
9t2

4
41.

a5

b3c2
43.

3

ab2c3
45.

1

9t2

47. 51=5x2=5 49. x1=2 � y1=2 51.
x9=4z3=4

y1=2
53. 5

p
.a � bC c/3

55.
1

5
p
x4

57.
3

5p
w3
�

1
5p
27w3

59.
6
p
5

5
61.

2
p
2x
x

63.
5
p
.3b/4

3b
65. 2 67.

20p
16a10b15

ab
69.

2x6

y3

71. 9 73.
312y6

x2
75. xyz 77.

9
4

79.
4y4

x2

81. x2y5=2 83.
a10c18

b24
85. x8

Problems 0.4 (page 19)

1. 11x � 2y � 3 3. 6t2 � 2s2 C 6 5.
p
aC 5

p
3b �

p
c

7. 7x2 C 7xy � 2z 9. 3
p
3y � 4

p
4z 11. �15xC 15y � 27

13. 2x2 � 33y2 � 7xy 15. 6x2 C 96

17. �12u3 � 8u2 C 8u � 20 19. 6x2 C 11x � 10

21. w2 � 3w � 10 23. 10x2 C 19xC 6 25. X2 C 4XYC 4Y2

27. 49 � 14XC X2 29. 5x � 4
p
5xC 4 31. 4s2 � 1

33. x3 C 4x2 � 3x � 12 35. 3x4 C 2x3 � 13x2 � 8xC 4

37. 18t3 � 111t2 � 24t 39. 3s2 � st � 2t2 C 11sC 9t � 4

41. 8a3 C 36a2 C 54aC 27 43. 8x3 � 36x2 C 54x � 27

45. z � 18 47. 2u3 C 3u �
1

3u2
49. xC 2 �

15
xC 5

51. 3x2 � 8xC 17C
�37
xC 2

53. x2 � 2xC 4 �
8

xC 2

55. x � 2C
7

3xC 2

Problems 0.5 (page 22)

1. 5b.xC 1/ 3. 5x.2yC z/

5. abcd2.3a2 � 4b2cC 2a2c3d/ 7. .zC 7/.z � 7/

9. .pC 3/.pC 1/ 11. .5yC 2/.5y � 2/ 13. .aC 7/.aC 5/

15. .yC 3/.yC 5/ 17. 5.xC 3/.xC 2/ 19. 3.xC 1/.x � 1/

21. .5xC 1/.xC 3/ 23. 2s.3sC 4/.2s � 1/

25. a2=3b.a3 � 4b2/ 27. 2x.xC 3/.x � 2/

29. 4.2xC 1/2 31. x.xy � 8/2 33. .xC 2/.x � 2/2

35. .aC 3b/.2xC y/.2x � y/ 37. .bC 4/.b2 � 4bC 16/

39. .xC 1/.x2 � xC 1/.x � 1/.x2 C xC 1/

41. 2.xC 4/2.xC 1/.x � 2/ 43. P.1C r/2

45. .4u � 9vw/.4uC 9vw/

47. .y4 C 1/.y2 C 1/.yC 1/.y � 1/

49. .X 2 C 5/.XC 1/.X � 1/ 51. .aC 2/2.a � 2/2b

Problems 0.6 (page 27)

1.
x2 � 3xC 9

x
for x ¤ �3 3.

x � 5
xC 5

5.
5xC 2
xC 7

for x ¤
1
3 7. �

y2

.y � 3/.yC 2/
9.

b � ax
axC b

11.
3
x
for x ¤ �2 and x ¤ �1 and x ¤ 1

13.
X
2

15. 5v for u; v ¤ 0 17.
2
3

19. �27x2 21. 1 for x ¤ �1=2 and x ¤ 3 23.
2x2

x � 1

25. 1 for x ¤ �6;�3;�2; 5 27. �
.2xC 3/.1C x/

xC 4
29. xC 2

AN-1
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AN-2 Answers to Odd-Numbered Problems

31.
20xC 3

5x2
33.

1

1 � x3
35.

3x2 C 1
.xC 1/.3x � 1/

37.
2.xC 2/

.x � 3/.xC 1/.xC 3/
39.

35 � 8x
.x � 1/.xC 5/

41.
x

xC 1

43.
x

1 � xy
45.

5xC 2
3x

47.
.xC 2/.6x � 1/

2x2.xC 3/

49.
3. 3
p
x � 3
p
xC h/

3
p
xC h 3

p
x

51.
a �
p
b

a2 � b
53. �

p
6C 2

p
3

3

55.
p
15 � 3 57.

3t � 3
p
7

t2 � 7

59. K D 1:065=..0:75/.1:15// � 1:2347826

Problems 0.7 (page 36)

1. 0 3.
17
4

5. �2

7. adding 3; equivalence guaranteed

9. raising to fourth power; equivalence not guaranteed

11. dividing by x; equivalence not guaranteed

13. multiplying by x � 1; equivalence not guaranteed

15. multiplying by .2x � 3/=2x; equivalence not guaranteed

17. 3:14=� 19. 1 21.
12
5

23. �1

25. �
27
4

27. 5=6 29. 126 31. �
26
9

33. �
37
18

35. t D 9 37. 2 39.
25
52

41.
1
5

43. ; 45.
29
14

47.
ad � bc
a � c

if a ¤ c 49.
7
2

51. t D �
7
4

53. 3 55.
43
16

57. 1 59. 11

61. x D
13
2

63. �
10
9

65. 2 67. 23 69.
49
36

71. a D �2 73. r D
I
Pt

75. q D
pC 1
8

77. t D
S � P
Pr

79. R D
Ai

1 � .1C i/�n 81. r D n
r

S
P
� 1 83. n D

2mI
rB
� 1

85. 170 m 87. c D 1:065x 89. 3 years

91.
2172
47
� 46:2 hours 93. 20

95. t D
d

r � c
I c D r �

d
t

97. � 602 ft 99. � 13%

Problems 0.8 (page 44)

1. 2 3. t D �7 or t D 3 5. 3;�1 7. 4; 9 9. ˙2

11. 0; 5 13. �1=2; 3=2 15. 1;
2
3

17. 5;�2 19. 0;
3
2

21. 0; 1;�4 23. 0; 1;�1;�3 25. 0;
1
2
;�

4
3

27. 3;˙2

29. 3; 4 31. 4;�6 33.
7
3

35. 1˙ 2
p
2

37. no real roots 39.
�5˙

p
57

8
41. 40;�25

43. no real roots 45. ˙
p
3;˙
p
2 47. 3;

1
2

49. ˙

p
5
5
;˙

1
2

51. 3; 0 53. 9=2; 21=5

55.
3
2
;�1 57. 6;�2 59. �

1
2
; 1

61. 5;�2 63. No real roots 65. �2

67. 6 69. 4; 8 71.
5 �
p
21

2
73. 0 75. 1 77. � 64:15; 3:35

79. 6 inches by 8 inches

83. 1 year and 10 years; age 23; never

85. (a) 8 s (b) 5.4 s or 2.6 s

Review Problems---Chapter 0 (page 46)

1.
.bc/17=5

a
3.

1
p
xC hC

p
x
for h ¤ 0

5.
�.2xC h/

.xC h/2x2
for h ¤ 0 7. r D n

r
S
P
� 1 9. $349:28

Problems 1.1 (page 52)

1. 120 ft 3. 64
4
9
oz of A, 80

5
9
oz of B

5. 1600 ml 7. w D 5 �
p
60=� � 0:63 m.

9. � 13;077 tons 11. $4000 at 6%, $16;000 at 7
1
2
%

13. $4.25 15. r � 7:7217345% 17. 90 19. $8000

21. 1209 to break approximately even

23. $116.25 25. 30 27. 90,000

29. either $440 or $460 31. $100

33. 42 35. 115 m by 67:5 m

37. 11.51 cm long, 6.51 cm wide

39. $232,000;
100E
100 � p

41. 60 acres

43. 125 of A and 100 of B or 150 of A and 125 of B.

Apply It 1.2

1. 5375

2. 150 � x4 � 0; 3x4 � 210 � 0; x4 C 60 � 0; x4 � 0

Problems 1.2 (page 58)

1. .7;1/

7

3. .�1; 4�

4

5.
�
�1;�

1
2

�
1

-

2

7.
�
�1;

2
7

�
2

7

9. .0;1/

0

11. Œ1;1�

1

13.
�
�
2
7
;1

�
2

-

7

15. ; 17.

 
�1;

p
3 � 2
2

!

2

3 - 2
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Answers to Odd-Numbered Problems AN-3

19. .�1; 48/

48

21. .3=7;1/

3

7

23. .�1;1/

25.
�
17
9
;1

�
17

9

27. Œ�12;1/

-12

29. .0;1/

0

31. .�1; 0/

0

33. .�1;�2�

-2

35. 600 < S < 1800

600 1800

37. x < 70 degrees

Problems 1.3 (page 61)

1. 120,001 3. 17,000 5. 214,286

7. x � 28; 000 9. 1000 11. t > 36:7 13. 1

Apply It 1.4

3. jw � 22j � 0:3

Problems 1.4 (page 65)

1. 13 3. 2 5. 7 7. �4 < x < 4 9.
p
10 � 3

11. (a) jx � 7j < 3 (b) jx � 2j < 3 (c) jx � 7j � 5
(d) jx � 7j D 4 (e) jxC 4j < 2 (f) jxj < 3
(g) jxj > 6 (h) jx � 105j < 3 (i) jx � 850j < 100

13. jp1 � p2j � 5 15. ˙7 17. ˙35

19. f�4; 14g 21.
2
5

23. x D 1=5; 1

25. .�M;M/ 27. .�1;�8/ [ .8;1/

29. .�10;�4/ 31. .�1; 0/ [ .1;1/

33. Œ1=2; 5=2� 35. .�1; 0�[
�
16
3
;1

�
37. jd � 35:2j � 0:2

39. .�1; � � h�/ [ .�C h�;1/

Problems 1.5 (page 70)

1. 12, 17, t 3. 45 5. 532 7.
P60

iD36 i

9.
P6

kD2 3
k 11.

P8
iD1 2

i 13. 8; 750 15. 5

17. 37,750 19. 9030 21. 295,425 23.
483
200

25. 15 �
9.nC 1/.2nC 1/

2n2

Apply It 1.6

4. 183, 201, 219, 237, 255, 273

5. .9:57.1:06/k�1/4kD1

6. 1225, 1213, 1201, 1189, 1177, 1165, 1153

7. 21620, 19890, 18299, 16835

8. 220.5M$ 9. $44,865.18

Problems 1.6 (page 79)

1. 2:3 3. 81 5. 23 7. 9

9. .�1C .k � 1/3/4kD1 11. ..�1/kC12k/4kD1

13. no, first term of first is 64; that of second is �26

15. no, second is 1/5 times first

17. 256 19.
1
120

21. 22:5; 23:4; 24:3; 25:2; 26:1

23. 96; 94:5; 93; 91:5; 90

25. 1=2; �1=22; 1=23; �1=24; 1=25

27. 100; 105; 110:25; 115:7625; 121:550625

29. 55 31. 1024 33. 98 35. 6

37. � 199:80 39.
50.1 � .1:07/�10/

1 � .1:07/�1 41. 6

43. not possible, jrj D 17> 1 45. 2000

47. 33 49. $80

51. 50; 000.1:08/11 � 116;582

53.
8
2
.12;000C 19;000/ D 124;000

55. � 6977:00 57.
500.1:05/�1

1 � .1:05/�1 D 10;000

59. no, differences are not common

61. (a) 2; 4; 6; 8; 10; : : :
(b) 2; 4; 8; 16; 32; : : :
(c) 2; 4; 16; 256; 65; 536; : : :
(d) 2; 4; 16; 65; 536; 265;536; : : :

Review Problems---Chapter 1 (page 81)

1. x � �4 3.
�
2
3
;1

�
5. ; 7.

�
�1;

5
2

�
9. .�1;1/ 11. �5=3; 3 13. .�1; 4/

15.
�
�1;�

1
2

�
[

�
7
2
;1

�
17. 4320

19. 542 21. 10; 000 23. c < 212; 814

25. 100; 102; 104:04; 106:1208; 108:243216

27.
100.1 � .1:02/5/

�0:02
� 520:40

Apply It 2.1

1. (a) a.r/ D �r2 (b) .�1;1/ (c) r � 0

2. (a) t.r/ D
300
r

(b) .�1;1/ � f0g (c) r > 0

(d) t.x/ D
300
x
; t
� x
2

�
D

600
x
; t
� x
4

�
D

1200
x

(e) time scaled by a factor of c; t
�x
c

�
D

300c
x

3. (a) 300 (b) $21.00 per pizza (c) $16.00 per pizza

4. 5500; 8400; 11,900; 16,000

Problems 2.1 (page 90)

1. f ¤ g 3. h ¤ k

5. .�1;1/ � f1g 7. .�1;�1/ [ Œ2;1/

9. .�1;1/ 11. .�1;1/ �
�
7
2

�
13. .�1;1/ � f2g 15. .�1;1/�

�
�
1
3
; 2
�

17. 3;�7; 13 19. �62, 2 � u2, 2 � u4

21. 10; 8v2 � 2v; 2x2 C 4axC 2a2 � x � a
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AN-4 Answers to Odd-Numbered Problems

23. 4; 0; x2 C 2xhC h2 C 2xC 2hC 1

25. 0,
2x � 5

4x2 C 1
,

xC h � 5

x2 C 2xhC h2 C 1
27. 0; 9; 1=4

29. (a) 4xC 4h � 5 (b) 4

31. (a) x2 C 2hxC h2 C 2xC 2h (b) 2xC hC 2

33. (a) 3 � 2x � 2hC 4x2 C 8xhC 4h2 (b) �2C 8xC 4h

35. (a)
1

xC h � 1
(b)

�1
.x � 1/.xC h � 1/

for h ¤ 0

37. 3 for h ¤ 0

39. y is a function of x; x is a function of y

41. y is a function of x; x is not a function of y

43. Yes 45. V.t/ D 50; 000C .2300/t 47. P is a function of q

49. 402.72; 935.52; supply increases as price increases

51. (a) 4 (b) 8 3
p
2 (c) f.2I0/ D 2 3

p
2f.I0/;

doubling intensity increases response by a factor of 2 3
p
2

53. (a) 3000, 2900, 2300, 2000; 12, 10
(b) 10, 12, 17, 20; 3000, 2300

55. (a) �5:13 (b) 2.64 (c) �17:43

57. (a) 6:94 (b) 40:28 (c) 0:67

Apply It 2.2

5. (a) p.n/ D $125 (b) premiums do not change
(c) constant function

6. (a) quadratic function (b) 2 (c) 3

7. c.n/ D

8<: 3:50n if n � 5
3:00n if 5 < n � 10
2:75n if n > 10

8. 7Š D 5040

Problems 2.2 (page 95)

1. yes 3. no 5. yes 7. no

9. .�1;1/ 11. .�1;1/ 13. (a) 4 (b) 5

15. (a) 7 (b) 1 17. 8, 8, 8 19. 2, �1, 0, 2

21. 7, 2, 2, 2 23. 362; 880 25. 2 27. n

29. f.I/ D 2:50, where I is income; constant function

31. (a) C D 850C 3q (b) 250

33. c.j/ D

8̂̂<̂
:̂
0:075 if 0 � j � 44; 701
0:11 if 44; 701 < j � 89; 401
0:13 if 89; 401 < j � 138; 586
0:145 if 138; 586 < j

35.
9
64

37. (a) all T such that 30 � T � 39 (b) 4,
17
4
,
33
4

39. (a) 1182.74 (b) 4985.27 (c) 252.15

41. (a) 2.21 (b) 9.98 (c) �14:52

Apply It 2.3

9. c.s.x// D c.xC 3/ D 2.xC 3/ D 2xC 6

10. let side length be l.x/ D xC 3;
let area of square with side length x be a.x/ D x2;
then g.x/ D .xC 3/2 D .l.x//2 D a.l.x//

Problems 2.3 (page 100)

1. (a) 2xC 8 (b) 8 (c) �2 (d) x2 C 8xC 15

(e) 3 (f)
xC 3
xC 5

(g) xC 8 (h) 11 (i) xC 8 (j) 11

3. (a) 2x2 C x � 1 (b) �x � 1 (c) �
1
2

(d) x4 C x3 � x2 � x

(e)
x � 1
x

for x ¤ �1 (f) 3 (g) x4 C 2x3 C x2 � 1

(h) x4 � x2 (i) 72

5. 6; �32 7.
4

.t � 1/2
C

14
t � 1

C 1;
2

t2 C 7t

9.
2

3v � 2
;

s
v2 C 3

v2 � 3
11. f.x/ D x � 7, g.x/ D 11x

13. g.x/ D x2 C xC 1, f.x/ D
3
x
is a possibility

g.x/ D x2 C x f.x/ D
3

xC 1
is another

15. f.x/ D 4
p
x, g.x/ D

x2 � 1
xC 3

17. (a) r.x/ D 9:75x (b) e.x/ D 4:25xC 4500
(c) .r � e/.x/ D 5:5x � 4500

19. 12.20m � m2/ revenue from output of m employees

21. (a) 14.05 (b) 1169.64 23. (a) 194.47 (b) 0.29

Problems 2.4 (page 103)

1. f�1.x/ D
x
3
�
7
3

3. F�1.x/ D 2xC 14

5. r.A/ D

r
A
4�

7. not one-to-one; for example g
�
�
1
3

�
D 9 D g

�
�
7
3

�
9. h.x/ D .5xC 12/2, for x � �

5
12

, is one-to-one

11. x D

p
23
4
C

5
4

13. q D s
1;200;000

p
, p > 0

15. yes, is one-to-one

Apply It 2.5

11. y D �600xC 7250; x-intercept
�
145
12
; 0
�
;

y-intercept .0; 7250/

12. y D 24:95; horizontal line; no x-intercept;
y-intercept (0,24.95)

13.

x

hours

y

4321 5

12

24

36

M
il

e
s

(0, 0)

(5, 0)

(2.5, 30)

14.

x

therms

y

80604020 100

20

40

60

C
o

s
t 

(
d

o
ll

a
r
s
)

(0, 0)

(70, 37.1)

(100, 59.3)
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Answers to Odd-Numbered Problems AN-5

Problems 2.5 (page 110)

1. 3’rd; 4’th; 2’nd; on positive x-axis

x

y

(-1, -3) (4, -2)

Q.IQ.II

Q.III Q.IV

(6, 0)

(-   , 4)2
5

-4 2 6

-4

2

6

3. (a) 1, 2, 3, 0 (b) .�1;1/ (c) .�1;1/ (d) �2
5. (a) 0, 1, 1 (b) .�1;1/ (c) Œ0;1/ (d) 0
7. (0,0); function; one-to-one; .�1;1/; .�1;1/

x

y

9. .0;�5/,
�
5
3
; 0
�
; function; one-to-one; .�1;1/; .�1;1/

x

y

5

-5

3

11. .0; 0/ is only intercept

x

y

y is a function of x; is one-to-one; both are .�1;1/

13. every point on y-axis; not a function of x

x

y

15. (0,0); function; one-to-one; .�1;1/; .�1;1/

x

y

17. (0, 0); not a function of x

x

y

19. (0,2), (1,0); function; one-to-one; .�1;1/; .�1;1/

x

y

2

1

21.

v

u

1

1

domain .�1;1/; range .�1;1/;
intercepts are .0;�1/ and .1; 0/

23. .�1;1/; 3; (0, 3)

x

y

3

25. .�1;1/; Œ�3;1/; (0, 1), .2˙
p
3; 0/

x

y

2 +

(2, -3)

3

2 - 3

1

27. .�1;1/; .�1;1/; (0,0)

t

f(t)



Haeussler-50501 Z04_HAEU1107_14_SE_ANS November 27, 2017 17:13

AN-6 Answers to Odd-Numbered Problems

29. .�1;�3� [ Œ�3;1/; Œ0;1/; .�3; 0/, (3,0)

r

s

3-3

31.

x

f(x)

2

(   , 0)
2

7

Œ0;1/; .0; 2/, .2=7; 0/

33. .�1;1/ � f0g; .0;1/; no intercepts

t

F(t)

35. Œ0;1/; Œ1; 8/

7

8

5

p

c

37. .�1;1/; Œ0;1/

x

g(x)

3

9

39. (a), (b), (d)

41. D.n/ D 8700 � 300n; .0; 8700/ initial debt; .29; 0/ number of
months to clear debt

43. as price increases, quantity increases; p is a function of q

q

p

21030 90 150

50

10

30

45.

x

y

7 14 21

300

1000

47. 0.39 49. �0:61;�0:04

51.

x

f(x)

(-3.59, 0)

53. �1:70; 0

55. (a) 19.60 (b) �10:86 57. (a) 5 (b) 4

59. (a) 28 (b) .�1; 28� (c) �4:02, 0:60

61.

x

f(x)

1 2 3 4 5
0

10

20

30

Problems 2.6 (page 117)

1. (0,0); sym about origin 3. .˙2; 0/, .0; 8/; sym. about y-axis

5.
�
˙
13
5
; 0
�
;
�
0;˙

13
12

�
sym about x-axis, y-axis, and origin not

sym about y D x

7. .�7; 0/; symmetric about x-axis 9. sym. about x-axis

11. .�21; 0/; .0;�7/; .0; 3/ 13. (1, 0), (0, 0)

15.
�
0;

2
27

�
; no sym of the given kinds
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Answers to Odd-Numbered Problems AN-7

17. .0;�2/, .0; 2/, .8=5; 0/; symmetric about x-axis

x

y

-5 5

5

-5

19. .˙2; 0/, .0; 0/; sym about origin

x

y

2-2

21. (0,0); sym about x-axis, y-axis, origin, y D x

x

y

23.
�
˙
5
3
; 0
�
,
�
0;˙

5
2

�
; sym about x-axis, y-axis, origin

x

y

5

2

5

3
-

5

3

-

5

2

25. (a) .˙0:99; 0/, .0; 5/ (b) 5 (c) .�1; 5�

27.

(3, 0)(0,      )

(     ,  0)

(0, 3)

x

y

-

3

2

-

3

2

Problems 2.7 (page 120)

1.

x

y

y = x3 
- 1

f(x) = x3

3. translate 2 units left; stretch result vertically from x-axis by factor
of 3

x
5

5

-5

-5

y

5.

x

y

1–1

1

2

-1

-2
y =

2
3x

f(x) =
1
x

7.

x

y

-1

-2

  f(x) =  x

y =  x + 1  -2

9. shift y D x3 three units left, two units up

x

y

y = x
3y = 2 + (x+3)

3

11.

x

y

f(x) = xy = -x

13. translate 5 units right and 1 unit up; shrink result by a factor of 1/2
vertically towards x-axis; and reflect about x-axis

15. reflect about y-axis; move 5 units down

Apply It 2.8

15. (a) $3260 (b) $4410

Problems 2.8 (page 127)

1. 3 3. �6 5. �1 7. 88 9. 17

11. a2 C 2abC b2 C 2ahC 2bhC h2
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AN-8 Answers to Odd-Numbered Problems

13. 800 15. y D 2 17. z D 6

19.

y

x

z

1

1

3

1

2

21.

y

x

z

2

6

4

23.

y

x

z

3 6

25.

y
x

z

2

4

27.

y

x

z

3

3

3

29.

x

y

1

1

2

3

2 3

x + y = 1

x + y = 2

x + y = 3

Review Problems---Chapter 2 (page 129)

1. .�1;1/ � f1; 5g 3. .�1;1/

5. Œ2;1/ � f3g. 7. 5, 19, 40, 2�2 � 3� C 5

9. 0, 2, 4
p
t � 2,

4p
x3 � 3 11.

3
5
, 0,

p
xC 4
x

,

p
u

u � 4

13. 20, �3, �3, undefined 15. (a) 1 � 3x � 3h (b) �3 for h ¤ 0

17. (a) 3.xC h/2 C .xC h/ � 2 (b) 6xC 1C 3h for h ¤ 0

19. (a) 5xC 2 (b) 22 (c) x � 4 (d) 6x2 C 7x � 3 (e) 10

(f)
3x � 1
2xC 3

(g) 6xC 8 (h) 38 (i) 6xC 1

21.
1

.xC 1/2
,
1

x2
C 1 D

1C x2

x2
23.
p
x3 C 2, .xC 2/3=2

25. only intercept .0; 0/; symmetric about the origin

27. (0, 4) only intercept, symmetry
about y-axis

x

y

4

29. .0; 2/, .�4; 0/; Œ�4;1/; Œ0;1/

v

G(v)

-4

2

31.
�
0;
1
2

�
; .�1;1/ � f4g; Œ0;1/

t

g(t)

4

1

2

33. .�1;1/; .�1; 2�

x

y

2

35. shrink by a factor of 1/2 towards the x-axis; reflect in the x-axis;
and translate up by 2

x

y

2

y = -   x
2
 + 2

1

2

y = x
2

37. (a) and (c)

39. �0:67; 0:34; 1:73 41. �1:50;�0:88;�0:11; 1:09; 1:40

43. (a) .�1;1/ (b) (1.92,0), (0,7)
45.

x

f(x)

if k is even then symmetry about the y-axis; if k is odd then no axial or
original symmetries
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Answers to Odd-Numbered Problems AN-9

47.

y

x

z

10

10

10

3

49.

x

y

2.5 5 7.5

1

0.5

1.5

Apply It 3.1

1. depreciating at rate of $4000 per year

20

60

x

y

2. S D 14TC 8 3. F D
9
5
CC 32

4. slope D
125
3
I y-intercept D

125
3

5. 9C � 5FC 160 D 0

6.

C

F

100-100

-100

100

7. slopes of sides are 0, 7, and 1 no pair of which
are negative reciprocals no sides perpendicular so
not a right triangle

Problems 3.1 (page 138)

1. 4=3 3. �
1
2

5. undefined 7. 0

9. 5xC y � 2 D 0

11. 2x � 3yC 10 D 0

x

y

10

-5

3

13. 3x � 7yC 25 D 0 15. 4xC yC 16 D 0

17. 2x � yC 4 D 0 19. xC 2yC 6 D 0

21. y D �2 23. x � 2 D 0

25. 4I �6 27. �
3
5
;
9
5

29. slope undefined; no y-intercept

31. 7; .0; 0/ 33. 0I 3

35. 2xC 3y � 5 D 0; y D �
2
3
xC

5
3

37. 4xC 9y � 5 D 0; y D
4
9
xC

5
9

39. 6x � 8y � 57 D 0; y D
3
4
x �

57
8

41. parallel 43. parallel 45. neither

47. perpendicular 49. perpendicular 51. y D 2xC 7

53. y D 1 55. y D
1
3
xC 5 57. x D 5

59. y D �
2
3
x �

29
3

61. no such point

63. �2:9; price dropped an average of $2.90 per year

65. y D 28;000x � 100;000 67. �tC d � 184 D 0

71. C D .61:34/TC 883:14 75. the slope is 7:1.

Apply It 3.2

8. xD number of skis; yD number of boots; 8xC 14y D 1000

9. p D
3
8
qC 1025

10. answers may vary, two possibilities: .0; 60/ and .2; 140/

x

f(x)

2010

1000

500

11. f.t/ D 2:3tC 32:2 12. f.x/ D 70xC 150

Problems 3.2 (page 144)

1. �4; 0 3. 5I �7

x

y

t

h(t )

-7

5. �
1
3
;
5
3

q

p(q)

5

3

7. f.x/ D 4xC 3 9. f.x/ D �2xC 4

11. f.x/ D �
2
3
x �

10
9

13. f.x/ D xC 1

15. p D �
4
25

qC 24:90; $18.50

17. q D .1=2/p � 3=2 19. c D 3qC 10; $115
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AN-10 Answers to Odd-Numbered Problems

21. f.x/ D 0:125xC 4:15

23. v D �180tC 1800; slope D �180 v

t
10

1800

25. y D 53xC 865

27. C D 500C 3n; $500; $3

29. xC 10y D 100

31. (a) y D
35
44

xC
225
11

(b) 52:2

33. (a) p D 0:059tC 0:025 (b) 0:556

35. (a) t D
1
4
cC 37 (b) add 37 to # of chirps in 15 seconds

Apply It 3.3
13. vertex: .1; 400/; intercepts:
.0; 399/, .�19; 0/, .21; 0/

x

y

25-25

100

400

14. vertex: .1; 24/; intercepts:

.0; 8/,

 
1˙

p
6
2
; 0

!

x

y

5-5

30

15. 1000 units; $3000 maximum revenue

Problems 3.3 (page 151)

1. quadratic 3. not quadratic

5. quadratic 7. quadratic

9. (a)
�
�
5
6
;
13
12

�
(b) lowest point

11. (a) �6 (b) �3; 2 (c)
�
�
1
2
;�

25
4

�
13.

x

f(x)

(3, -16)

7

7-1

vertex .3;�16/; intercepts .�1; 0/, .7; 0/, .0;�7/; range Œ�16;1/

15. vertex:
�
�
3
2
;
9
2

�
; .0; 0/, .�3; 0/; range:

�
�1;

9
2

�

x

y

9

2

3

2

-3

-

17. vertex: .�3; 0/; .�3; 0/, .0; 9/; range: Œ0;1/

t

s

-3

9

19. vertex:
�
1
2
;�

17
4

�
; .0;�5/; range

�
�1;�

17
4

�

x

y

-1

-5

11

2

1

2

17

4
, - )(

21. vertex: .4;�2/; .0; 14/ .4˙
p
2; 0/; range: Œ�2;1/

s

t

(4, -2)

14

4 - 2 4 + 2

23. minimum 194=23 25. maximum; �10

27. g�1.x/ D 1C
p
x � 3, x � 3

y

x

g(x)

g
-1
(x)

29. max revenue $250 when q D 5

31. 200 units; $240,000 maximum revenue



Haeussler-50501 Z04_HAEU1107_14_SE_ANS November 27, 2017 17:13

Answers to Odd-Numbered Problems AN-11

33. maximum of 51; 250 at 225
P(x)

400

x
30-20

35. 70 grams 37. � 134.86 ft;� 2.7 sec

39. vertex
�
45
16
;
2249
16

�
; h-intercept .0; 14/;

for t � 0, t-intercept

 
45C

p
13 � 173
16

; 0

!

t

h(t)

45

16

41. 125 ft � 250 ft

Apply It 3.4

16. $120,000 at 9% and $80,000 at 8%

17. 500 of species A and 1000 of species B

18. infinitely many solutions of form A D
20;000

3
�
4
3
r,

B D r, where 0 � r � 5000

19.
1
6
lb of A;

1
3
lb of B;

1
2
lb of C

Problems 3.4 (page 161)

1. x D �1, y D 1 3. .2;�1/

5. u D 6, v D �1 7. x D �3, y D 2

9. no solution 11. x D 12; y D �12

13. ; 15. x D
1
2
, y D

1
2
, z D

1
4

17. x D 2, y D �1, z D 4

19. x D 0 � 2p, y D 3C p, z D 0C p, p in .�1;1/

21. x D �
1
3
r, y D

5
3
r, z D r; r in .�1;1/

23. f.5C 3r � s; r; s/ j r; s in .�1;1/g

25. 533
1
3
gal of 20% soln, 266

2
3
gal of 35% soln

27. 0.5 lb of cotton; 0.25 lb of polyester; 0.25 lb of nylon

29. 675 km per h in still air, 75 km per h speed of wind

31. 240 units early American, 200 units contemporary

33. 550 at Exton, 450 at Whyton

35. 4% on first $100,000, 6% on remainder

37. 190 boxes, 760 clamshells

39. 100 chairs, 50 side tables, 80 coffee tables

41. 10 semiskilled workers, 5 skilled workers, 55 shipping clerks

Problems 3.5 (page 163)

1. .1˙
p
13; 5��2

p
13/ 3. .�3;�4/; .2; 1/

5. no solution 7.

 
1˙
p
7

2
;
6˙
p
7

2

!
9. .0; 0/; .1; 1/ 11. .˙

p
17; 2/; .˙

p
14;�1/

13. .7; 6/

15. y � 4 D 4.x � 2/ or y � 4 D 4x � 8 or y D 4x � 4

17. two 19. .�1:3; 5:1/

21. x D 1:76 23. x D �1:46

Problems 3.6 (page 170)

1. equilibrium .75; 7:75/

q

p

(75, 7.75)

75

5

11

3. (5,212.50)

5. (9,38) 7. (15,5)

9. break-even quantity is 2500 units

q

p
TR

TC

2000 6000

15,000

(2500, 10000)

5000

11. cannot break even 13. cannot break even

15. (a) $12 (b) $12.18

17. 5840 units; 840 units; 1840 units 19. $4

21. (a) .1; 1/, .4; 2/

(b)

q

y

-10 10

10

(c) maximum profit for q in .1; 4/

23. decreases by $0.70 25. PA D 8; PB D 10

27. 2.4 and 11.3

q

y

40

12
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AN-12 Answers to Odd-Numbered Problems

Review Problems---Chapter 3 (page 173)

1. 9 3. y D �2x � 1; 2xC yC 1 D 0

5. y D 3x � 21; 3x � y � 21 D 0 7. y D 7; y � 7 D 0

9. y D
2
5
x � 3; 2x � 5y � 15 D 0 11. perpendicular

13. neither 15. parallel, both lines have slope 5

17. y D .5=3/x � 7=3; slope 7=3

y

x
(   , 0)

7

5

(0,-   )
7

3

19. y D
4
3
; 0

21. �5; .0; 17/

x

y

17

17

5

23. (3,0), .�3; 0/, (0,9); (0,9)

x

y

3-3

9

25. intercept (0,3); vertex .�1; 2/

t

y

1

3

-1

27.

t

s

�5; .0; 0/

29. .0;�3/; .�1;�2/

x

y

-1
-2

-3

31.
�
17
7
;�

8
7

�
33.

�
2;�

9
5

�
35. .4; 0/ 37. .1; 2; 3/

39.

 
�5˙

p
65

4
;
�21˙ 5

p
65

8

!
41. .�2 � 2r; 7C r; r/; r in .�1;1/

43. .r; r; 0/; r in .�1;1/ 45. 2aC 3bC 9 D 0; a D �9

47. f.x/ D .�3=2/x � 9=2 49. 50 units; $5000 51. � 6:55

53. 1250 units; $20,000 55. 2.36 tons per sq km

57.

x

y

(13.26, 0.17)

59. x D 0:75, y D 1:43

Apply It 4.1

1. graph shapes are the same
A scales second coordinate by A

2. Multiplicative
Year Increase Expression

0 1 1:10

1 1.1 1:11

2 1.21 1:12

3 1.33 1:13

4 1.46 1:14

1.1; investment increases by 10% every year;
.1C 1.0:1/ D 1C 0:1 D 1:1/

x

years

y

642 8

1

2

between 7 and 8 years

3. Multiplicative
Year Decrease Expression

0 1 0:850

1 0.85 0:851

2 0.72 0:852

3 0.61 0:853

0.85; car depreciates by 15% every year;
.1 � 1.0:15/ D 1 � 0:15 D 0:85/

x

years

y

4321 5

1

2

between 4 and 5 years

4. y D 1:08t�3; shift graph 3 units right
5. $3684.87; $1684.87 6. 117 employees

7.

t

years

P

10 20

1
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Answers to Odd-Numbered Problems AN-13

Problems 4.1 (page 186)

1.

x

y

1

4

1

3.

x

y

(-1, 5)

5.

x

y

1-1

8

2

7.

x

y

-2

1

9

9.

x

y

1

3

1

11.

1

-1

-2

2

3

4

5

6

7

8

9

-1 1 2 3-2
x

y

13. A 15. 138,750 17.
1
2
;
3
4
;
7
8

19. (a)�$2318.55 (b)�$318.55

21. (a) $1964.76 (b) $1264.76

23. (a) $18,309.16 (b) $15,309.16

25. (a) $6256.36 (b) $1256.36 27. (a) $9649.69 (b) $1649.69
29. �$6900.91 31. (a) N D 400.1:05/t (b) 420 (c) 486

33. Year Factor

0 1

1 1.32

2 1.7424

3 2.299968

4 3.03595776

5 4.007464243

35. 334,485 37. 4.4817 39. 0.4493

41.

x

y

1
-1

43. � 0:1680 45. .ek/t, where b D ek

47. (a) 12 (b) 8.8 (c) 3.1 (d) 22 hr

49. 27 yrs 51. 0.1465 53.

-5 5

5

-5

x

y

55. 3.17 57. 4.2 min 59. 8 yrs

Apply It 4.2

8. t D log2 16; number of times the bacteria have doubled

9.
I
I0
D 108:3 10.

x

y

5 10

6

3

multiplicative
increase

y = log1.5x

11.

x

y

1

8

4

multiplicative
decrease

y = log0.8x

12. �13.9% 13. �9.2%

Problems 4.2 (page 193)

1. log 10;000 D 4 3. 210 D 1024
5. ln 20:0855 D 3 7. e1:09861 D 3

9.

x

y

51

-5

1

11.

x

y

4

1

1

-1
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AN-14 Answers to Odd-Numbered Problems

13.

x

y

4 6

1

15.

x

y

e1

1

-1

-2

17. 2 19. 4 21. 1 23. �4 25. 0 27. �3

29. 343 31. 125 33.
1

1000
35. e�3 37. 2 39. 4

41.
1
27

43. 3 45.
5
3

47. 4 49. .ln 7/=5 51.
5C ln 3

2
53. 2.39790 55. 2.00013 57. y D log1:10 x 59. 3

61. (a) 2N0 (b) k is the doubling time

63. � 72.2 minutes 65. z D y3=2

67. (a) .0; 1/ (b) Œ�0:37;1/

69.

5-5

-5

5
(0.69, 2)

x

y
71. 1.41; 3.06

Apply It 4.3

14. log.900; 000/ � log.9000/ D log
�
900; 000
9000

�
D log.100/ D 2

15. log.10; 000/ D log.104/ D 4

Problems 4.3 (page 199)

1. aC bC c 3. a � b 5. 3a � c 7. 2.aC c/

9.
b
a

11. 48 13. �7 15. 2:77

17. �
1
2

19. 2

21. ln xC 2 ln.xC 1/ 23. 2 ln x � 3 ln.xC 1/

25. 3.2 ln xC ln.xC 2/ � ln.xC 1//

27. ln xC ln.xC 1/ � ln.xC 2/

29.
1
2
ln x � 2 ln.xC 1/ � 3 ln.xC 2/

31.
2
5
ln x �

1
5
ln.xC 1/ � ln.xC 2/

33. log 24 35. log2
.2x/3

.xC2/5 37. log3.5
7 � 174/

39. log.100.1:05/10/ 41.
81
64

43. 1 45. no solution

47. f�3; 1g 49.
ln.2xC 1/

ln 2
51.

ln.x2 C 1/
ln 3

53. y D ln
� z
7

�
55. amounts to ln.BC E/ D ln.BC E/C lnB � lnB

57.

10-10

7

-2

59. log x D
ln x
ln 10

61. ln 3

Apply It 4.4

16. 18 17. day 20 18. 67.5 times as intense

Problems 4.4 (page 203)

1. 1=2 3. 2.75 5. �3 7. 2

9. 0.125 11. .1=3/ ln 11 � 0:799 13. 0.028 15. 5.140

17. �0:073 19. 2.322

21. .1=5/..ln 11= ln 3/ � 7/ � �0:963 23. 0.483

25. 2.496 27. 1003 29. 2.222 31. � �2:072
33. 1.353 35. 0.5 37. S D 12:4A0:26 39. (a) 100 (b) 46

41. .ln 1:9 � ln 1:5/= ln 1:02 � 11:9

43. p D
log.80 � q/

log 2
; 4.32 49. 3.33

Review Problems---Chapter 4 (page 205)

1. log3 243 D 5 3. 811=4 D 3 5. ln 1096:63 � 7

7. 5 9. �4 11. �2 13. 4 15.
1

1024

17. �6=5 19. 3.aC 1/ 21. log

 
73

52

!
23. ln

 
x2y

z3

!

25. ln

 
x19=3

.x � 1/2.x � 2/3

!
27. 7 ln xC 5 ln yC 3 ln z

29.
1
3
.ln xC ln yC ln z/ 31.

1
2
.ln y � ln z/ � ln x

33.
ln.xC 5/

ln 3
35. �

5:20945
2:80735

� 1:85565 n

37. .1=5/x � 4y 39. 2xC 1 41. y D ex
2C2

43.

x

y

-3

1

8

45. 4 47. �4 49. 10 51.
1

3e2
53. 0.880

55. ln 8 � 2 � 0:07944 57. � 0:490

59. (a) $3829.04 (b) $1229.04 61. 14%

63. (a) P D 6000.0:995/t (b)� 5707

65. (a) 10 (b) 10e�0:41 � 6:6 (c) 10e�0:41.5/ � 1:3

(d)
ln 2
0:41

� 1:7 (e)
ln.100/
0:41

� 11:2

67. (a)� 7 (b)� 60

71. .�1; 0:37� 73. 2.53 75. g.x/ D
1
x



Haeussler-50501 Z04_HAEU1107_14_SE_ANS November 27, 2017 17:13

Answers to Odd-Numbered Problems AN-15

77.

-5

-5

5

5

x

y

Apply It 5.1

1. 4.9% 2. 7 years, 16 days 3. 7.7208%

4. 11.25% compounded quarterly is better the $10,000 investment
is better over 20 years

Problems 5.1 (page 213)

1. (a) $11,105.58 (b) $5105.58
3. � 2:785% 5. � 3.562%

7. (a) 10% (b) 10.25% (c) 10.381%
(d) 10.471% (e) 10.516%

9. 8.08% 11. 8.0 years 13. $8419:41

15. $30448.33 17. (a) 18% (b) $19.56%
19. $3198.54 21. 8% compounded annually

23. (a)� 3:35% (b)� 3:30% 25. 10.757% 27. 6.29%

Problems 5.2 (page 217)

1. $2261.34 3. $1751.83 5. $5821.55

7. $4862.31 9. � $7028:03 11. $11,381.89

13. $14,091.10 15. $1238.58 17. $3244.63

19. (a)� �$15; 359:163592 (b) not profitable
21. savings account 23. $226.25 25. 9.55%

Problems 5.3 (page 221)

1. $5819.97; $1819.97 3. $2217.30 5. � 2:0201%

7. 3.05% 9. $109.42 11. $778,800.78

13. (a) $43,248.06 (b) $20,737.68

15. � 2:95588% 17. 16 years

19. (a) $1072.51 (b) $1093.30 (c) $1072.18

21. (a) $9458.51 (b) this is better by $26.90

Apply It 5.4

5. 6.20% 6. $101,925; $121,925 7. $723.03

8. $13,962.01 9. $45,502.06 10. $48,095.67

Problems 5.4 (page 228)

1. � 23:091244 3. 8.213180 5. $2950.39

7. $29,984.06 9. $9887.08 11. � 172; 562:13

13. $204,977.46 15. $24,594.36 17. $5106.27

19. $1332.73 21. (a)� $7786:23 (b) $4386:23

23. $3474.12 25. $1725 27. 102.91305

29. 10,475.72 31. $66.30 33. $1,872,984.02

35. $205,073; $142,146 37. $181,269.25

Problems 5.5 (page 233)

1. $428.73 3. $502.84

5. (a) $221.43 (b) $25 (c) $196.43

7. multiply all entries by A D 10; 000:
Prin. Out. = Principal Outstanding at Beginning
Prin. Repd. = Interest Repaid at End

Period Prin. Out. Interest Payment Prin. Repd.

1) 1 0.05
1

a3 0:05

1 � .0:05/a3 0:05

a3 0:05

2)
a2 0:05

a3 0:05

a2 0:05

a3 0:05
.0:05/

1
a3 0:05

1 � .0:05/a2 0:05

a3 0:05

3)
a1 0:05

a3 0:05

a1 0:05

a3 0:05
.0:05/

a1 0:05

a3 0:05
.1:05/

1 � .0:05/a1 0:05

a3 0:05

Total
3

a3 0:05
� 1

3
a3 0:05

1

9. Prin. Outs. Interest Pmt. Prin.
at for at Repaid

Period Beginning Period End at End

1 900.00 22.50 193.72 171.22

2 728.78 18.22 193.72 175.50

3 553.28 13.83 193.72 179.89

4 373.39 9.33 193.72 184.39

5 189.00 4.73 193.73 189.00

Total 68.61 968.61 900.00

11. 13 13. $1606

15. (a) $2089.69 (b) $1878.33 (c) $211.36 (d) $381,907

17. 54 19. $113,302 21. $25.64

Problems 5.6 (page 237)

1. $4000 3. $1;800;000 5. $4800 7. 1 9. e2

Review Problems---Chapter 5 (page 239)

1.
ln 2

ln.1C r/
3. 8.5% compounded annually

5. $1005.41 7. (a) $1997.13 (b) $3325.37

9. � $6698:62 11. $886.98 13. $314.00

15. Prin. Outs. Interest Pmt. Prin.
at for at Repaid

Period Beginning Period End at End

1 15,000.00 112.50 3067.84 2955.34

2 12,044.66 90.33 3067.84 2977.51

3 9067.15 68.00 3067.84 2999.84

4 6067.31 45.50 3067.84 3022.34

5 3044.97 22.84 3067.81 3044.97

Total 339.17 15,339.17 15,000.00

17. $1279.36
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AN-16 Answers to Odd-Numbered Problems

Apply It 6.1

1. 3 � 2 or 2 � 3

2.

241 2 4 8 16
1 2 4 8 16
1 2 4 8 16

35
Problems 6.1 (page 245)

1. (a) 2 � 3I 3 � 3I 3 � 2I 2 � 2I 4 � 4I 1 � 2I 3 � 1I 3 � 3I 1 � 1
(b) B, D, E, H, J
(c) H, J upper triangular; D, J lower triangular
(d) F; J (e) G; J

3. 6 5. A24 D �2 7. 0 9. 5 4 1 0

11. (a) A D
�
1 3 5
0 2 4

�
(b) C D

�
4 9 16 25
9 16 25 36

�
13. 120 entries, 1, 0, 1, 0

15. (a)

24 0 0 0
0 0 0
0 0 0

35 (b)
�
0 0 0 0
0 0 0 0

�

17.
�

6 2
�3 4

�
19.

2664
2 0 7
5 3 8
�3 6 �2
0 2 1

3775
21. (a) A and C (b) all of them

25. x D 2, y D 7, z D �5 27. x D 0; y D 0

29. (a) 4 (b) 4 (c) February (d) none for either
(e) January (f) January (g) 37

31. �2001 33.

2664
3 1 1
1 7 4
4 3 1
2 6 2

3775

Apply It 6.2

3.
�
230 220
190 255

�
4. x1D 670; x2D 835; x3D 1405

Problems 6.2 (page 252)

1.
�
10 1
3 3

�
3.

24�3 �4�4 �9
�2 6

35 5. Œ�4 � 2 10�

7. undefined 9.
�
�12 36 �42 �6
�42 �6 �36 12

�
11.

24 0 13 9
5 �4 9
1 6 �5

35 13.
�
4 2
6 �6

�
15. 0

17.
�
66 51
0 9

�
19. undefined 21.

�
8 8

�10 12

�
23.

24�1963 �
134
3

�32 26

35 29.

24 4 7
2 �3
20 2

35
31.

�
7 16
9 5

�
33. undefined

35. x D
90
29
; y D �

24
29

37. x D 6; y D
4
3

39. x D �6; y D �14; z D 1 41.

24 45 105
1750 1400
50 60

35
43. 1.16 45.

�
15 �4 26
4 7 30

�
47.

�
�10 22 12
24 36 �44

�

Apply It 6.3

5. $5780 6. $22,843.75

7.

26641
8
5

1
1
3

3775� yx � D
2664
8
5
5
3

3775

Problems 6.3 (page 263)

1. �12 3. 19 5. 1 7. 2 � 2, 4

9. 3 � 5; 15 11. 2 � 1; 2 13. 3 � 1; 3 15. 3 � 1; 3

17.

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 19.
�
12 �12
10 6

�
21.

�
23
50

�

23.

24 1 �4 2
2 2 4
�3 �2 3

35 25. Œ�4 5 �1 �18�

27.
�
63 70
72 80

�
29.

�
78 84
�21 �12

�
31.

�
�5 �8
�5 �20

�

33.

24z
y
x

35 35.
�
2x1 C x2 C 3x3
4x1 C 9x2 C 7x3

�
37.

24 5 0 0
0 7 0
0 0 5

35

39.
�
�1 �20
�2 23

�
41.

266664
7
3

0 0

0
7
3

0

0 0
7
3

377775 43.

24�1 5
2 17
1 31

35

45. undefined 47.

24 0 0 �4
2 �1 �2
0 0 8

35 49.
�
�1 2
1 0

�

51.
�

0 3 0
�1 �1 2

�
53.

242 0 0
0 2 0
0 0 2

35 55.
�
1 �1 0
0 1 1

�

57.
�

6 �7
�7 9

�
59.

�
3 1
2 �9

� �
x
y

�
D

�
6
5

�

61.

242 �1 3
5 �1 2
3 �2 2

3524 r
s
t

35 D 24 9
5
11

35
63. $2075 65. $828,950

67. (a) $180,000; $520,000; $400,000; $270,000; $380,000; $640,000
(b) $390,000; $100,000; $800,000 (c) $2,390,000

(d)
110
239

;
129
239

71.
�
72:82 �9:8
51:32 �36:32

�
73.

�
15:606 64:08

�739:428 373:056

�
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Answers to Odd-Numbered Problems AN-17

Apply It 6.4

8. 5 blocks of A; 2 blocks of B; 1 block of C

9. 3 of X; 4 of Y; 2 of Z

10. AD 3DI BD 1000 � 2DI CD 500 � DI DD any amount
between 0 and 500

Problems 6.4 (page 273)

1. not reduced 3. reduced 5. not reduced

7.
�
1 0
0 1

�
9.

241 2 3
0 0 0
0 0 0

35 11.

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
13. x D 5, y D 2 15. no solution

17. x D �
2
3
rC

5
3
; y D �

1
6
rC

7
6
; z D r, for all r in .�1;1/

19. no solution 21. X D

24 2
0
3

35
23. x D 3, y D �2, z D 1

25. x1 D r; x2 D 0; x3 D 0; x4 D 0; x5 D r for all r in .�1;1/

27. federal, $72,000; state, $24,000

29. A, 2000; B, 4000; C, 5000

31. (a) 3 of X, 4 of Z; 2 of X, 1 of Y, 5 of Z; 1 of X, 2 of Y, 6 of Z;
3 of Y, 7 of Z (b) 3 of X, 4 of Z (c) 3 of X, 4 of Z; 3 of Y, 7 of Z

33. (a) Solve

8<: 12s C 20d C 32g D 220 stock A
16s C 12d C 28g D 176 stock B
8s C 28d C 36g D 264 stock C

(b)

24 1 0 1 5
0 1 1 8
0 0 0 0

35
s D 5 � r, d D 8 � r, g D r, r in .�1;1/
(c) .s; d; g/ in f.5; 8; 0/; .4; 7; 1/; .3; 6; 2/; .2; 5; 3/; .1; 4; 4/; .0; 3; 5/g
(d) C D C.s; d; g/ D 300sC 400dC 600g.
s d g 300.s/C 400.d/C 600.g/ D C

5 8 0 300.5/C 400.8/C 600.0/ D 4700
4 7 1 300.4/C 400.7/C 600.1/ D 4600
3 6 2 300.3/C 400.6/C 600.2/ D 4500
2 5 3 300.2/C 400.5/C 600.3/ D 4400
1 4 4 300.1/C 400.4/C 600.4/ D 4300
0 3 5 300.0/C 400.3/C 600.5/ D 4200
minimum C of $4200 for .s; d; g/ D .0; 3; 5/

Apply It 6.5

11. infinitely many solutions8̂̂̂̂
<̂
ˆ̂̂:r
266664
�
1
2

�
1
2
1

377775 j r in .�1;1/
9>>>>=>>>>;

Problems 6.5 (page 278)

1.

8̂̂<̂
:̂
2664
�1
2
4
0

3775C r

2664
7
�5
�7
1

3775 j r in .�1;1/
9>>=>>;

3.

8̂̂<̂
:̂
2664
0
2
0
0

3775C r

2664
0
�3
1
0

3775C s

2664
�1
�4
0
1

3775 j r; s in .�1;1/
9>>=>>;

5.

8̂̂<̂
:̂
2664
3
0
2
0

3775C r

2664
3
1
0
0

3775C s

2664
�1
0
2
1

3775 j r; s in .�1;1/
9>>=>>;

7.

8̂̂̂̂
<̂
ˆ̂̂:
266664
1
4
0
0
0

377775C r

266664
�2
�1
1
0
0

377775C s

266664
1
�2
0
1
0

377775C t

266664
�2
1
0
0
1

377775 j r; s; t in .�1;1/
9>>>>=>>>>;

9. infinitely many 11. trivial solution only

13. infinitely many 15.
�
0
0

�

17.

8̂̂̂̂
<̂
ˆ̂̂:r
266664
�
6
5

�
8
15
1

377775 j r in .�1;1/
9>>>>=>>>>;

19. x D 0, y D 0 21.

8<:r
24 1
�2
1

35 j r in .�1;1/
9=;

23.

8̂̂<̂
:̂r
2664
�2
�3
1
1

3775 j r in .�1;1/
9>>=>>;

Apply It 6.6

12. yes 13. MEET AT NOON FRIDAY

14. E�1 D

26666664
2
3
�
1
6
�
1
3

�
1
3

5
6
�
1
3

�
1
3
�
1
6

2
3

37777775; F is not invertible

15. A: 5000 shares; B: 2500 shares; C: 2500 shares

Problems 6.6 (page 284)

1.
�
�1 1
7 �6

�
3. not invertible 5.

24 1 0 0
1=2 �1=4 0
�1=4 1=8 1=2

35
7. not invertible 9. not invertible

11.

241 �2 1
0 1 �2
0 0 1

35 13.

241 0 2
0 1 0
3 0 7

35

15.

24�1=5 2=5 �6=5
3=5 �1=5 3=5
�1=5 2=5 �1=5

35 17.

26666664
11
3
�3

1
3

�
7
3

3 �
2
3

2
3
�1

1
3

37777775
19. X D

�
27
38

�
21. X D

�
17
�20

�
23. X D

�
2
1

�
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AN-18 Answers to Odd-Numbered Problems

25. coefficient invertible�
1=10 3=10
3=10 �1=10

� �
7
1

�
D

�
1
2

�

27. X D

24 0
1
2

35 29. X D
1
2

24 8
�1
�1

35
31. no solution 33. X D

2664
1
3
�2
7

3775 35. 1=14
�
3 1
2 �4

�
37. (a) 40 of model A, 60 of model B

(b) 45 of model A, 50 of model B

39. (b) .AB/�1 D

�
1 1
1 5

� �
1 3
2 4

�
D

�
3 7
11 23

�
41. yes

43. D: 5000 shares; E: 1000 shares; F: 4000 shares

Problems 6.7 (page 291)

1. 1152 agriculture, 696 forestry

3. reduce

264 680 �135 �48 28; 800

�80 540 �240 21; 600

�80 �135 600 0

375
5. (a) X D

�
812:5
1125

�
(b) X D

�
220
280

�
7. X D

24 1559:81
1112:44
1738:04

35 9. X D

24 1073
1016
952

35
Review Problems---Chapter 6 (page 292)

1.
�

3 8
�16 �10

�
3.

241 42 5
2 �18 �7
1 0 �2

35
5.
�
11 �4
8 11

�
7.
�
36
24

�
9.
�
�1 �2
2 1

�
11.

�
2 0
0 9

�
13. X D

�
3
21

�
15.

�
1 0
0 1

�

17.

24 1 0 1
0 1 2
0 0 0

35 19. X D
�
0
0

�
21. no solution

23.

2664�
3
2

5
6

1
2
�
1
6

3775 25. no inverse exists

27.

24 1=2 �1=2 1=2
1=2 1=2 �1=2
�1=2 1=2 1=2

3524 3
4
5

35 D 24 2
1
3

35
29. A2 D

240 0 1
0 0 0
0 0 0

35 ; A3 D 0; A1000 D 0, no inverse

31. (a) x, y, z represent weekly doses for I, II, III

there are four possibilities:
x 4 3 2 1
y 9 6 3 0
z 0 1 2 3

(b) x D 1; y D 0; z D 3

33.
�
215 87
89 141

�
35.

�
39:7
35:1

�
Apply It 7.1

1. y > �1:375xC 62:5

2. xC y � 50, x � 2y, y � 0

Problems 7.1 (page 298)

1.

x

y

1

2
2

3

3.

x

y

5.

x

y

2

4

7.

x

y

9.

x

y 11.

x

y

13.

x

y
15.

x

y

17.

x

y 19.

x

y

21.

x

y 23.

x

y
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Answers to Odd-Numbered Problems AN-19

25.

x

y

5

10

3

27.

y Ú 0

x

y

100

100

x + y … 100

x: number of lb from A
y: number of lb from B

x Ú 0

29. x � 0, y � 0, 3xC 2y � 240, 0:5xC y � 80

Problems 7.2 (page 304)

1. P D 112
1
2
when x D

45
2
, y D 0

3. Z D �10 when x D 2, y D 3

5. No optimum solution (empty feasible region)

7. C D 1 at .0; 1/

9. minimum 8=3, at .4=3; 4=3/

11. No optimum solution (unbounded)

13. 10 trucks, 20 spinning tops; $110

15. 4 units of food A, 4 units of food B; $8

17. C D
6500
3

at
�
25
3
;
125
6

�
19. minimum cost $4,600,000 using 6 A and 7 B

21. (c) x D 0, y D 200

23. Z D 15:54 when x D 2:56, y D 6:74

25. Z D �75:98 when x D 9:48, y D 16:67

Apply It 7.3

3. 0 of Type 1, 72 of Type 2, 12 of Type 3 for max $20,400

Problems 7.3 (page 318)

1. Z.0; 4/ D 8 3. Z.8=3; 5=3/ D 7 5. P.3; 2/ D 28

7. Z.0; 5; 0/ D 20 9. Z.1; 0; 0/ D 2

11. Z.22=13; 50=13/ D 72=13 13. Z.3; 0; 2; 0/ D 310

15. P.4; 1; 4; 0/ D 600 17. P.0; 2400/ D 1200

19. P.0; 300; 100/ D 10; 800

Apply It 7.4

4. plant I: 500 standard, 700 deluxe;
plant II: 500 standard, 100 deluxe;
maximum profit $89,500

Problems 7.4 (page 329)

1. P.10=3; 8=3/ D 38=3 3. Z.8=3; 0; 5=3/ D 23=3

5. Z.8; 2; 0/ D 28 7. Z.3; 2/ D �17

9. no solution (empty feasible region) 11. P.2; 5/ D 2

13. Z D 8000 at .200; 0/

15. 30% in A, 0% in AA, 70% in AAA; 6.6%

Problems 7.5 (page 333)

1. Z.7; 0/ D 14 3. Z.18; 0; 0/ D 216 5. Z.0; 0; 4/ D 4

7. C.3; 0; 1/ D 0 9. Z.3; 0; 5/ D 28

11. put A on 700,000 B on 2,600,000 at cost $1,215,000

13. C.AC; SC;AD; SD/ D C.150; 0; 0; 150/ D 1050

15. (a) column 3:1,3,3: column 4:0,4,8
(b) x1 D 10, x2 D 0, x3 D 20, x4 D 0 (c) 90 in

Apply It 7.6

5. Minimize W D 60;000y1 C 2000y2 C 120y3 subject to8̂̂<̂
:̂
300y1 C 20y2 C 3y3 � 300
220y1 C 40y2 C y3 � 200
180y1 C 20y2 C 2y3 � 200

y1; y2; y3 � 0

6. Minimize W D 98y1 C 80y2 subject to

8<: 20y1 C 8y2 � 6
6y1 C 16y2 � 2

y1; y2 � 0

7. produce 5 of device 1, 0 of device 2 and 15 of device 3

Problems 7.6 (page 342)

1. minimize W D 4y1 C 5y2 subject to

3y1 C 2y2 � 2

�y1 C 3y2 � 3

y1; y2 � 0

3. maximizeW D 4y1 � 3y2 subject to

y1 C y2 � 2

�y1 C 4y2 � �3

2y1 � 3y2 � 5

y1; y2 � 0

5. minimize W D 13y1 � 3y2 � 11y3 subject to

�y1 C y2 � y3 � 1

2y1 � y2 � y3 � �1

y1; y2; y3 � 0

7. maximizeW D �3y1 C 3y2 subject to

�y1 C y2 � 4

y1 � y2 � 4

y1 C y2 � 6

y1; y2 � 0

9. Z.0; 4=5; 7=5/ D 43=5 11. Z.3; 0/ D 15

13. Z.6; 7/ D 90 15. C.n; r/ D C.250; 1400/ D 1650

17. W.s; ss; sc; sca/ D W.0; 90; 40; 20/ D 1200
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AN-20 Answers to Odd-Numbered Problems

Review Problems---Chapter 7 (page 345)

1.

x

y

2

-3

3.

x

y

5
-

3

5.

x

y 7.

x

y

9.

x

y

11. Z D 3 when x D 3, y D 0

13. Z D �2 when x D 0, y D 2 15. Z D
70
9

at
�
20
9
;
10
9

�
17. Z D 32 on .1 � t/.0; 4/C t.2; 3/ for 0 � t � 1

19. W.8; 0/ D 16

21. Z D
5
3
at
�
0; 0;

5
3

�
23. Z D 24 when x1 D 0, x2 D 12

25. Z D
7
2
when x1 D

5
4
, x2 D 0, x3 D

9
4

27. no solution (Z has no upper bound)

29. a minimum is Z.5; 0; 0/ D 5; there may be others

31. 0 units of X, 6 units of Y, 14 units of Z; $398

33. 500,000 gal from A to D, 100,000 gal from A to C, 400,000 gal
from B to C; $19,000

35. 10 kg of food A only

37. Z D 129:83 when x D 9:38, y D 1:63

Problems 8.1 (page 354)

1.

Start

A
D

E

6 possible production routes

Assembly
line

Finishing
line

Production
route

B
D

E

C
D

E

AD

AE

BD

BE

CD

CE

3.

1

Red
Die

1 1, 1

36 possible results

Green
Die Result

2 1, 2

3 1, 3

4 1, 4

5 1, 5

6 1, 6

2

1 2, 1

2 2, 2

3 2, 3

4 2, 4

5 2, 5

6 2, 6

3

1 3, 1

2 3, 2

3 3, 3

4 3, 4

5 3, 5

6 3, 6

4

1 4, 1

2 4, 2

3 4, 3

4 4, 4

5 4, 5

6 4, 6

5

1 5, 1

2 5, 2

3 5, 3

4 5, 4

5 5, 5

6 5, 6

6

1 6, 1

2 6, 2

3 6, 3

4 6, 4

5 6, 5

6 6, 6

Start

5. 60 7. 96 9. 1024 11. 120 13. 720 15. 10;080

17. 1000; displayed error message 19. 6 21. 336 23. 1296

25. 11;880 27. 360 29. 720 31. 2520; 5040 33. 624

35. 24 37. (a) 11,880 (b) 19,008 39. 48 41. 4320

Problems 8.2 (page 365)

1. 35 3. 1 5. 360 9. 11,628

11. 495 13.
74Š

10Š � 64Š
15. 56 17. 415,800

19. 15 21. 40;320 23. 1680 25. 252

27. 756,756 29. 4083; 4 31. 7128

33. (a) 1 (b) 1 (c) 18 35. 3744 37. 5,250,960
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Answers to Odd-Numbered Problems AN-21

Apply It 8.3

1. 10,586,800

Problems 8.3 (page 373)

1. f9D, 9H, 9C, 9Sg

3. f1HH, 1HT, 1TH, 1TT, 2HH, 2HT, 2TH, 2TT, 3HH, 3HT, 3TH,
3TT, 4HH, 4HT, 4TH, 4TT, 5HH, 5HT, 5TH, 5TT, 6HH, 6HT, 6TH,
6TTg

5. f64, 69, 60, 61, 46, 49, 40, 41, 96, 94, 90, 91, 06, 04, 09, 01, 16, 14,
19, 10g

7. (a)

f.R;R;R/; .R;R;W/; .R;R;B/; .R;W;R/; .R;W;W/; .R;W;B/;
.R;B;R/; .R;B;W/; .R;B;B/; .W;R;R/; .W;R;W/; .W;R;B/;
.W;W;R/; .W;W;W/; .W;W;B/; .W;B;R/; .W;B;W/; .W;B;B/;
.B;R;R/; .B;R;W/; .B;R;B/; .B;W;R/; .B;W;W/; .B;W;B/;
.B;B;R/; .B;B;W/; .B;B;B/g

(b)

f.R;W;B/; .R;B;W/; .W;R;B/; .W;B;R/; .B;R;W/; .B;W;R/g

9. set of ordered 6-tuples of elements of fH,Tg; 64

11. f.c; i/jc is a card; i D 1; 2; 3; 4; 5; 6g; 312

13. combinations of 52 cards taken 4 at a time; 270,725
15. f1, 3, 5, 7, 9g 17. f2; 4; 6; 8g

19. f1, 2, 4, 6, 8, 10g 21. S

23. E1 and E4, E2 and E3, E2 and E4, E3 and E4
25. E and G, F and I, G and H, G and I

27. (a) S D fHHH;HHT;HTH;HTT;THH; THT; TTH; TTTg
(b) E D fHHH;HHT;HTH;THHg
(c) F D fHHT;HTH;HTT;THH; THT; TTH; TTTg
(d) E [ F D S (e) E \ F D fHHT;HTH; THHg
(f) .E [ F/0 D S0 D ;

(g) .E \ F/0 D fHHH;HTT; THT; TTH; TTTg

29. (a) fABC, ACB, BAC, BCA, CAB, CBAg (b) fABC, ACBg
(c) fBAC, BCA, CAB, CBAg

Problems 8.4 (page 386)

1. 500 3. (a) 0.5 (b) 0.8 5. no

7. (a)
5
36

(b)
1
12

(c)
1
4

(d)
1
36

(e)
1
2

(f)
1
2

(g)
5
6

9. (a)
1
52

(b)
1
4

(c)
1
13

(d)
1
2

(e)
1
2

(f)
1
52

(g)
4
13

(h)
1
26

(i) 0

11. (a)
1
624

(b)
1
156

(c)
1
78

(d)
1
16

13. (a) 4=22100 D 0:000180995 (b) 286=22100 D 0:012941176

15. (a)
1
8

(b)
3
8

(c)
1
8

(d)
7
8

17. (a)
4
5

(b)
1
5

19. (a) 0.1 (b) 0.35 (c) 0.7 (d) 0.95 (e) 0.1, 0.35, 0.7, 0.95

21.
1
7

23. (a) 1=510 D 0:000000102

25.
13 � 4C4 � 12 � 4C1

52C5
D

13 � 12 � 4

52C5

27. (a)
6545

161;700
� 0:040 (b)

4140
161;700

� 0:026

29. $19.34 31.
1
12

33. (a) 45=100 D 9=20
(b) 45=100 D 9=20
(c) 5=100 D 1=20

35. 4:1

37. 7:3 39.
7
12

41.
3
10

43.
0:78
0:22

D 39 W 11 45. � 56.9%

Problems 8.5 (page 399)

1. (a)
1
5

(b)
4
5

(c)
1
4

(d)
1
2

(e) 0

3. 1 5. 0.38 7. (a)
1
2

(b)
2
3

9. (a)
1
4

(b)
1
3

(c)
1
4

(d)
3
8

11. (a)
5
8

(b)
35
58

(c)
11
39

(d)
8
25

(e)
10
47

(f)
25
86

13. (a)
1
2

(b)
4
9

15.
2
3

17. (a)
1
2

(b)
1
4

19.
1
3

21.
1
11

23.
1
6

25.
5
12

27.
1
13

29. 39=51 31.
8

16; 575
33.

1
5525

35.
1
51

37. (a)
47
100

(b)
27
47

39. (a) 2=3 (b) 4=7 41.
9
20

43.
1
4

45.
11
800
� 1:4% 47. 0.049

49. (a) 0:10 (b) 0:295 51.
4
31

Problems 8.6 (page 409)

1. (a)
1
4

(b)
5
6

(c)
1
3

(d)
2
3

(e)
1
12

(f)
1
2

(g)
1
3

3.
7
18

5. independent 7. independent

9. dependent 11. dependent

13. (a) independent (b) dependent (c) dependent (d) no

15. dependent 17.
1
18

19.
1
16

21.
3
676

23. (a)
3
10

(b)
1
40

(c)
1
10

25. (a) 3=5 (b) 1=5 (c) 7=20 (d) 19=20 (e) 1=20

27. (a)
7
54

(b)
35
162

29.
3
11

31.
3
200

33. (a)
1

1728
(b)

3
8

35. (a)
120 � 47

510
� 0:201326592 (b)� 0:879126118

(c)� 0:120873882

37. 0.0106
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AN-22 Answers to Odd-Numbered Problems

Problems 8.7 (page 417)

1. (a) 8=17 (b) 9=23 3. � 48%

5. (a)
258
937
� 0:275 (b)

14
3021

� 0:005

7.
5
8

9.
6
31

11. 81=88 � 0:92 13.
27
62

15.
3
4

17.
24
29
� 0:828 19.

4
5

21.
4
5

23. (a)
23
80

(b)
17
23

(c)
9
80

Review Problems---Chapter 8 (page 421)

1. 336 3. 36 5. 17,576,000

7. 1024 9. 210 11. 462

13. (a) 2024 (b) 253 15. 34,650 17. 81; 681; 600

19. (a) f1, 2, 3, 4, 5, 6, 7g (b) f4, 5, 6g (c) f4, 5, 6, 7, 8g
(d) ; (e) f4, 5, 6, 7, 8g (f) no

21. (a) fR1R2R3;R1R2G3;R1G2R3;R1G2G3;G1R2R3;G1R2G3;

G1G2R3;G1G2G3g

(b) fR1R2G3;R1G2R3;G1R2R3g
(c) fR1R2R3;G1G2G3g

23. 0.2 25.
45
512

27. (a)
62

122
D 1=4 (b)

15
66
D 5=22 29. (a)

1
8

(b)
3
16

31. 3 W 5 33.
6
7

35.
10
13

37. 0:33

39. (a)
2
11

(b)
1
18

41.
1
4

43. (a)
1
3

(b) independent 45. dependent

47. (a) .0:7/4 D 0:2401 (b) 0:4116 (c) 0:6517

49.
22
45

51.
1
4

53. (a) 0.01625 (b)
3
13
� 0:23

Problems 9.1 (page 431)

1. � D 1:5; Var.X/ D 1:05; � � 1:02

x

f(x)

0 1 2 3

0.4

0.3

0.2

0.1

3. � D 25=12; Var.X/ D 83=144; � D
p
83=12

5. (a) 0.1 (b) 5.8 (c) 1.56

7. E.X/ D
3
2
D 1:5; �2 D

3
4
D 0:75; � � 0:87

9. E.X/ D
6
5
D 1:2; �2 D

9
25
D 0:36; � D

3
5
D 0:6

11. f.0/ D
3
28

; f.1/ D
15
28

; f.2/ D
10
28

13. (a) �2:2222 (b) �4:4444

15. $101.43 17. $3.00

19. $410 21. �$0.50, $2.00

Apply It 9.2

1.

x P(x)

0
2401
10,000

1
4116
10,000

2
2646
10,000

3
756

10,000

4
81

10,000

Problems 9.2 (page 437)

1. f.0/ D
16
25

; f.1/ D
8
25

; f.2/ D
1
25

; � D
2
5
; � D

2
p
2

5

3. f.0/ D
1
27

; f.1/ D
2
9
; f.2/ D

4
9
; f.3/ D

8
27

; � D 2; � D

p
6
3

5.
23

34
7.

96
625

9. 0:03078 11.
165
2048

13.
1225
3456 15.

33 � 972

29 � 59
17. (a)

9
64

(b)
5
32

19. � 0:99065386 21. 0.7599 23.
13
16

25.
36 � 7

214

Problems 9.3 (page 444)

1. no 3. no 5. yes 7. a D
1
3
; b D

3
4

9. a D 0:7; b D 0:1; c D 0:2 11. yes 13. no

15. X1 D
�
0
1

�
D X2 D X3

17. X1 D
�
0:42
0:58

�
; X2 D

�
0:416
0:584

�
; X3 D

�
0:4168
0:5832

�
19.

1
100

Œ 33 21 46 �T;
1

1000
Œ 271 230 499 �T;

1
10000

Œ 2768 2419 4813 �T
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Answers to Odd-Numbered Problems AN-23

21. (a) T2 D

2664
5
8

3
8

3
8

5
8

3775; T3 D
2664
7
16

9
16

9
16

7
16

3775 (b)
3
8

(c)
9
16

23. (a) T2 D

240:50 0:23 0:27
0:40 0:69 0:54
0:10 0:08 0:19

35; T3 D 240:230 0:369 0:327
0:690 0:530 0:543
0:080 0:101 0:130

35
(b) 0.40 (c) 0.369

25.
�
2=5
3=5

�
27.

2664
3
7
4
7

3775 29.
1
81
Œ 22 20 39 �T

31. (a)
flu no flu

flu
no flu

�
0:1 0:2
0:9 0:8

�
(b) 37; 36

33. (a)
A B

A
B

�
0:7 0:4
0:3 0:6

�
(b) 0.61

35. (a) rows, columns labelled in order L, C, O

24 0:7 0:1 0:3
0 0:7 0:1

0:3 0:2 0:6

35.
(b) 20% (c) 24%

37. (a)
A Comp

A
Comp

�
0:8 0:3
0:2 0:7

�
(b) 65% (c) 60%

39. (a)

2664
3
5
3
5

2
5

2
5

3775 (b) Œ0:6 0:4�T (c) Œ0:6 0:4�T

41. (a)

2664
2
3
1
3

3775 (b) 33
1
3
%

Review Problems---Chapter 9 (page 448)

1.

x

f(x)

1 2 3

0.2
0.3

0.5

� D 2:1; Var.X/ D 0:49; � D 0:7

3. (a) f.1/ D
1
12
D f.7/; f.2/ D f.3/ D f.4/ D f.5/ D f.6/ D

1
6

(b) E.X/ D 4

5. �$0:10 7. (a) $176 (b) $704,000

9. f.0/ D 0:522; f.1/ D 0:368; f.2/ D 0:098;
f.3/ D 0:011, f.4/ D 0:0005; � D 0:6; � � 0:71

11. 256=729 13.
53

24 � 35
15.

2072
3125

17. a D 0:3; b D 0:2; c D 0:5

19. X1 D

24 0:10
0:15
0:75

35; X2 D
24 0:130
0:155
0:715

35; X3 D
24 0:1310
0:1595
0:7095

35
21. (a) T2 D

�
9=25 8=25
16=25 17=25

�
; T3 D

�
41=125 42=125
84=125 83=125

�
(b) 8=25 (c) 84=125

23. Q D
1
13
Œ4 9�T

25. (a) 76% (b) 74.4% Japanese, 25.6% non-Japanese
(c) 75% Japanese, 25% non-Japanese

Apply It 10.1

1. exists if and only if a not an integer

2.
4
3
� 3. 3616 4. 20 5. 2

Problems 10.1 (page 459)

1. (a) 1 (b) 0 (c) 1

3. (a) 1 (b) does not exist (c) 3

5. f.�0:9/ D �3:7; f.�0:99/ D �3:97;
f.�0:999/ D �3:997; f.�1:001/ D �4:003;
f.�1:01/ D �4:03; f.�1:1/ D �4:3; �4

7.

x �0:001 �0:0001 0.0001 0.001 0.01 0.1

f.x/ 0:6929 0:6931 0.6932 0.6934 0.6956 0.7177
ln 2

9. 16 11. 20 13. �47 15. �
5
2

17. 0

19. 5 21. �2 23. 3 25. 5 27. �1=4

29. �
1
5

31.
11
9

33. 4 35. 2x 37. 7

39. 2x 41. 3x2 � 8x 43.
1
4

45. (a) 1 (b) 0

47. 1:569230769 49. 4.00 51. does not exist

Apply It 10.2

6. limx!1 p.x/ D 0; graph decreases rapidly to 0;
demand is a decreasing function of price

7. limx!1 y.x/ D 500; even with unlimited advertising sales
bounded by $500,000

8. limx!1 C.x/ D1; cost increases without bound as production
increases without bound

9. does not exist; $250

Problems 10.2 (page 467)

1. (a)1 (b)1 (c) �1 (d) does not exist (e) 0 (f) 0 (g) 0
(h) 1 (i) 2 (j) does not exist (k) 2

3. 12 5. �1 7. �1 9. 1 11. 0

13. C1 15. 0 17. 1 19. 0 21.
1
2

23. 0 25. 1 27. 0 29.
2
5

31. 1

33. 3=7 35. �1 37.
16
3

39.
1
2

41. 1

43. C1 45. 1 47. does not exist 49. 1
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AN-24 Answers to Odd-Numbered Problems

51. 0 53. 1

55. (a) 1 (b) 2 (c) does not exist (d) 1 (e) 2

57. (a) 0 (b) 0 (c) 0 (d) �1 (e) �1

59. 6

q

c

5000

6

lim c = 6
q      q

61. 40; 000 63. 20

65. 1, 0.5, 0.525, 0.631, 0.912, 0.986, 0.998; 1

67. 0 69. (a) 11 (b) 9 (c) does not exist

Problems 10.3 (page 474)

7. continuous at �2 and 0 9. discontinuous at ˙5

11. continuous at 2 and 0 13. f is a polynomial function

15. composite of continuous functions

17. none 19. x D 23 21. none 23. x D �5, 3

25. 0,˙3 27. none 29. x D 0 31. none 33. x D 2

35. 1, 2, 3 37. yes, no, no

1 2 3

0.20

0.16

0.12

0.08

t

y

3
1

2

x

y

5 10 15

100

600

Apply It 10.4

10. 0 < x < 4

Problems 10.4 (page 479)

1. .�1;�1/ [ .4;1/ 3. Œ�2; 5� 5. .2=3; 5/

7. no solution 9. .�1;�7� [ Œ�1; 2�

11. .�1;�4/ [ .0; 5/ 13. Œ0;1/

15. .�1; 0� [ Œ1; 2� 17. .�1;�3/ [ .0; 3/

19. .�1;1/ 21. .�1;�5/ [ Œ�2; 1/ [ Œ3;1/

23. .�5;�1/ 25. .�1;�3� [ Œ1=2;1/

27. integers in Œ37; 103� 29. 14in. by 14in.

31. .�1;�7:72� 33. .�1;�0:5/ [ .0:667;1/

35.
f(x)

-5 5

-5

5

x
e

yes, appears to be and is continuous on .0;1/, supports conclusions
of Example 5, appears to have and has a minimum of �1 at 1,
appears and can be shown lim

x!0C
f.x/ D 0

Review Problems---Chapter 10 (page 480)

1. 5 3. 2 5. x 7. �
8
3

9. 0 11. 3=11

13. does not exist 15. �1 17.
1
9

19. �1

21. C1 23. �1 25. 1 27. �1 29. 8 31. 21

35. continuous everywhere; f is a polynomial function

37. x D �3 39. none 41. x D �2; 3 43. x D 2

45. .�1;�6/ [ .2;1/ 47. .�1; 7�

49. .�1;�5/ [ .�1; 1/ 51. .�1;�1/ [ Œ0; 4/ [ Œ6;1/

53. 1.00 55. 0 57. Œ2:00;1/

Apply It 11.1

1.
dH
dt
D 40 � 32t

Problems 11.1 (page 490)

1. (a)

x-value of Q �3 �2:5 �2:2 �2:1 �2:01 �2:001

mPQ 19 15.25 13.24 12.61 12.0601 12.0060

(b) estimate mtan D 12

3. 1 5. 3 7. �7 9. 0

11. 2xC 4 13. 6qC 2 15.
6

x2
17.

5

2
p
5x

19. �4 21. 0 23. y D xC 4

25. y D 4xC 2 27. y � 1 D .�1=5/.x � 2/

29.
r

rL � r �
dC
dD

31. �3:000, 13.445

33. �5:120, 0.038

35. if tangent at .a; f.a// horizontal then f0.a/ D 0

37. D 10x4 � 15x2

Apply It 11.2

2. 50 � 0:6q

Problems 11.2 (page 498)

1. 0 3. 17x16 5. 80x79 7. 18x

9. 56w6 11.
18
5
x5 13.

s4

6
15. 1

17. 8x � 2 19. 4p3 � 9p2 21. 4x3 �
1
3
x�2=3

23. 55x4 C 36x2 � 5 25. �8x3 27.
4
3
x3

29. 16x3 C 3x2 � 9xC 8 31.
45
7
x8 C

21
5
x6

33.
2

7x5=7
35.

3
4
x�1=4

C
10
3
x2=3 37.

11
2
x�1=2

39. 2r�2=3 41. �6x�7 43. �6x�7 � 4x�5 � 2x�3

45. �x�2 47. �40x�6 49. �4x�4 51.
�9

5t4

53. x �
4

x3
55. �3x�2=3 � 2x�7=5
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Answers to Odd-Numbered Problems AN-25

57. �
1
3
x�5=3 59. �x�3=2 61.

10
3
x7=3

63. 30x4 � 27x2 65. 45x4 67.
1
3
x�2=3

�
10
3
x�5=3

69. 3C
2

q2
71. 2xC 1 73. w0.x/ D 1 for x ¤ 0

75. 4, 16, �14 77. 0, 0, 0 79. y D 13xC 2

81. y �
1
4
D �

1
4
.x � 2/ 83. y � 7 D 14.x � 1/

85. .0; 0/,
�
5
3
;
125
54

�
87. .3;�3/

89. 0 91. y D x � 1

Apply It 11.3

3. 2.5 units

4.
dy
dt
D 16 � 32t;

dy
dt

ˇ̌̌̌
tD0:5

D 0;

when t D 0:5 object at maximum height

5. 1.2 and 120%

Problems 11.3 (page 507)

1.
�t 1 0.5 0.2 0.1 0.01 0.001

�s=�t 9 8 7.4 7.2 7.02 7.002

estimate and confirm 7 m/s

3. (a) 70 m (b) 25 m/s (c) 24 m/s

5. (a) 32 (b) 18:1505 (c) 18

7. (a) 2 m (b) 10.261 m/s (c) 9 m/s

9.
dy
dx
D .27=2/x5=4; 432

11. 0.27 13. dc=dq D 10; 10

15. dc=dq D .0:4/qC 4; 8

17. dc=dq D 2qC 50; 80, 82, 84

19.
dc
dq
D 0:04qC 3; 4:6; 6:2

21. dc=dq D 0:00006q2 � 0:02qC 6; 4.6, 11

23. dr=dq D 0:8; 0.8, 0.8, 0.8

25. dr=dq D 240C 80q � 6q2; 440; 90; �560

27. dc=dq D 6:750 � 0:000656q; 5.438;

Nc D
�10; 484:69

q
C 6:750 � 0:000328q; 0.851655

29. P D 5; 000; 000R�0:93; dP=dR D �4; 650; 000R�1:93

31. (a) �7:5 (b) 4.5

33. (a) 1 (b)
1

xC 4
(c) 1 (d)

1
9

(e) 11.1%

35. (a) 4x (b)
4x

2x2 C 5
(c) 40 (d)

40
205

(e) 19.51%

37. (a) �3x2 (b) �
3x2

8 � x3
(c) �3 (d) �

3
7

(e) �42:9%

39. 19:2;
1920
235

%

41. (a) dr=dq D 30 � 0:6q (b)
4
45

(c) 9%

43.
0:432

t
45. $4150 47. $5.07/unit

Apply It 11.4

6.
dR
dx
D 6:25 � 6x

7. T0.x/ D 2x � x2; T0.1/ D 1

Problems 11.4 (page 517)

1. .4xC 1/.6/C .6xC 3/.4/ D 48xC 18 D 6.8xC 3/

3. .5 � 3t/.3t2 � 4t/C .t3 � 2t2/.�3/ D �12t3 C 33t2 � 20t

5. .14r6 � 15r4/.5r2 � 2rC 7/C .2r7 � 3r5/.10r � 2/

7. 8x3 � 10x

9. .2xC 5/.6x2 � 5xC 4/C .x2 C 5x � 7/.12x � 5/

11. .w2 C 3w � 7/.6w2/C .2w3 � 4/.2wC 3/

13. .x2 � 1/.9x2 � 6/C .3x3 � 6xC 5/.2x/ � 4.8xC 2/

15. 5
7 ..p

�1=2/.11pC 2/C .2
p
p � 3/.11//

17. 0

19. .5/.2x� 5/.7xC 9/C .5xC 3/.2/.7xC 9/C .5xC 3/.2x� 5/.7/

21.
.x � 1/.5/ � .5x/.1/

.x � 1/2
23.

65

3x6

25.
ad � bc

.cxC d/2
27.

.z2 � 4/.�2/ � .6 � 2z/.2z/

.z2 � 4/2

29.
.3x2 � 2xC 1/.8xC 3/ � .4x2 C 3xC 2/.6x � 2/

.3x2 � 2xC 1/2

31.
.2x2 � 3xC 2/.2x � 4/ � .x2 � 4xC 3/.4x � 3/

.2x2 � 3xC 2/2

33. �
100x99

.x100 C 7/2
35.

2v3 � 1

v2

37.
15x2 � 2xC 1

3x4=3
39.

10

.2xC 5/2
C
.3xC 1/.2/ � .2x/.3/

.3xC 1/2

41.
Œ.xC 2/.x � 4/�.1/ � .x � 5/.2x � 2/

Œ.xC 2/.x � 4/�2

43.
Œ.t2 � 1/.t3 C 7/�.2tC 3/ � .t2 C 3t/.5t4 � 3t2 C 14t/

Œ.t2 � 1/.t3 C 7/�2

45. 2C
�4x3 � 3x2 C 18x � 6

.x3 � 3x2 C 2x/2
47.

2a

.a � x/2
49. 25

51. y D �
3
2
xC

15
2

53. y D 16xC 24 55. 1=2

57. 1 m, �1:5 m/s 59. 80 � 0:04q 61.
216

.qC 2/2
� 3

63.
dC
dI
D 0:672 65. 7=24; 17=24 67. 0.615; 0.385

69. (a) 0:23 (b) 0:028 71.
dc
dq
D

6q.qC 4/

.qC 2/2

73.
9
10

75.
0:7355

.1C 0:02744x/2
77. �

1
120
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AN-26 Answers to Odd-Numbered Problems

Apply It 11.5

8. 288t

Problems 11.5 (page 525)

1. .3.x2 C 1/2 C 6.x2 C 1//2x 3.
�3

.3x � 5/2

5. 0 7. 0 9. 18.3xC 2/5 11. 7.2C 3x5/6.15x4/

13. 500.x3 � 3x2 C 2x/99.3x2 � 6xC 2/ 15. �6x.x2 � 2/�4

17. �
10
7
.2xC 5/.x2 C 5x � 2/�12=7

19.
1
2
.10x � 1/.5x2 � x/�1=2 21. .1=3/.5xC 7/�2=3.5/

23.
12
7
.x2 C 1/�4=7.2x/ 25. �6.4x � 1/.2x2 � xC 1/�2

27. �2.2x � 3/.x2 � 3x/�3 29. �36x.9x2 C 1/�3=2

31. .1=5/.5x/�4=5.5/C 5
p
5.1/

33. 3x2.2xC 3/7 C x3.7/.2xC 3/6.2/

35. 10x2.5xC 1/�1=2 C 8x
p
5xC 1

37. 5.x2 C 2x � 1/2.7x2 C 8x � 1/

39. 16.8x � 1/2.2xC 1/3.7xC 1/

41. 11
�
axC b
cxC d

�10 � .cxC d/a � .axC b/c

.cxC d/2

�
43.

1
2

�
xC 1
x � 5

��1=2
�6

.x � 5/2
45.
�2.5x2 � 15x � 4/

.x2 C 4/4

47.
.8x � 1/4.48x � 31/

.3x � 1/4

49. 12x.x4 C 5/�1=2.10x4 C 2x2 C 25/

51. 2C
2

.tC 3/2
� .14=5/

�
2tC 3
5

�6

53.

.x2 � 7/3..3/.3xC 2/2.3/.xC 1/4 C .3xC 2/3.4/.xC 1/3/
�.3xC 2/3.xC 1/4.3/.x2 � 7/2.2x/

.x2 � 7/6

55. 0 57. 0 59. y D 4x � 11

61. y� 1 D .�1=10/.x� 4/ 63. 400% 65. 130

67. � 13:99

69. (a) �
qp

q2 C 20
(b) �

q

100
p
q2 C 20 � q2 � 20

(c) 100 �
q2p

q2 C 20
�

q
q2 C 20

71. �340 73.
4q3 C 16q

.q2 C 2/3=2
75. 48�.10/�19

77. (a) �0:001416x3 C 0:01356x2 C 1:696x � 34:9, �256:238
(b) �0:016; �1:578%

79. �4 81. 10 83. 94:03

Review Problems---Chapter 11 (page 529)

1. �2x 3.

p
3

2
p
x

5. 0

7. 3ex2 C 2 3
p
3xC 14xC 5 9. 4s3 C 4s D 4s.s2 C 1/

11.
2x
5

13. 6x5 C 30x4 � 28x3 C 15x2 C 70x

15. 400.xC 1/.2x2 C 4x/99

17.
2.axC b/..cxC d/a � .axC b/c/

.cxC d/3

19. 2.x2 C 1/3.9x2 C 32xC 1/ 21.
10z

.z2 C 4/2

23.
4
3
.4x � 1/�2=3 25. x.1 � x2/�3=2

27. Am�1Bn�1Cp�1.mBCC AnCC ABp/
where A D xC a, B D xC b, C D xC c

29.
34

.xC 6/2
31. �

3
4
.1C 2�11=8/x�11=8

33.
x.x2 C 4/

.x2 C 5/3=2
35.

9
5
x.xC 4/.x3 C 6x2 C 9/�2=5

37. .2zC 3/.3zC 5/2.30zC 47/ 39. y D �4xC 3

41. y D
1
12

xC
4
3

43.
5
7
� 0:714; 71:4%

45. dr=dq D 20 � 0:2q 47. 0:56; 0:44

49. dr=dq D 500 � 0:2q

51. dc=dq D 0:125C 0:00878q; 0:7396

53. 84 eggs/mm 55. (a)
4
3

(b)
1
24

57. 400�

59. 4q �
10; 000

q2

61. (a) �315:456 (b) �0:00025 (c) no, dr=dmjmD240 < 0

63. 0.305 65. �0:32

Apply It 12.1

1.
dq
dp
D

12p

3p2 C 4
2.

dR
dI
D

1
I ln 10

Problems 12.1 (page 536)

1.
a
x

3.
a

axC b
5.

2
x

7. �
2x

1 � x2
9.

3.4X3 C 1/

X.2X3 C 1/

11. ln t 13. 2x ln.axC b/C
ax2

axC b
15.

8
.ln 3/.8x � 1/

17. 2x
�
1C

1

.ln 2/.x2 C 4/

�
19.

1 � ln z

z2

21.
.ln x/.4x3 C 6xC 1/ � .x3 C 3xC 1/

.ln x/2
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Answers to Odd-Numbered Problems AN-27

23.
d.2axC b/

ax2 C bxC c
25.

9x

1C x2
27.

2

1 � l2
29.

x

1 � x4

31.
p.2axC b/

ax2 C bxC c
C

q.2hxC k/

hx2 C kxC l
33.

f0.x/
f.x/
C

g0.x/
g.x/

35.
2.x2 C 1/
2xC 1

C2x ln.2xC1/ 37.
3.1C ln2 x/

x
39.

4 ln3.ax/
x

41.
f0.x/
2f.x/

43.
f0.x/C 1=x

2
p
.f.x/C ln x/

45. y D 5x � 20

47.
ln.3/ � 1

ln2 3
49.

25
7

51.
22

2pC 1

53.
6a

.T � a2 C aT/.a � T/
57. �1:65, 1.65

Apply It 12.2

3.
dT
dt
D Ckekt

Problems 12.2 (page 541)

1. 5ex 3. 4xe2x
2C3 5. �5e9�5x

7. .12r2 C 10rC 2/e4r
3C5r2C2rC6 9. xe�1ex.eC x/

11. 2xe�x2.1 � x2/ 13.
ex � e�x

3
15. .6x2/52x

3
ln 5

17.
.w2 C wC 1/aeaw � eaw.2wC 1/

.w2 C wC 1/2

19. �
e1�

p
x

2
p
x

21. 5x4 � 5x ln 5 23.
2ex

.ex C 1/2

25. 1 27. xx.ln xC 1/ 29. eaCbCc.2aC b/

31. y D e�2xC 3e�2 33. dp=dq D �0:015e�0:001q; �0:015e�0:5

35. dc=dq D 10eq=700; 10e0:5I 10e

37. �12e9 41. 100e�2 47. �b.10A�bM/ ln 10

51. 0.0036 53. �0:89, 0.56

Problems 12.3 (page 547)

1. �3 elastic 3. �1 unit elasticity 5. �
101
100

, elastic

7. �
�
150
e
� 1

�
elastic 9. �1 unit elasticity

11. �2 elastic 13. �
1
2
inelastic

15. �

ˇ̌̌̌
pD10

D �2 elastic; �

ˇ̌̌̌
pD5
D �0:5 inelastic;

�

ˇ̌̌̌
pD7:5

D �1 unit elasticity

17. �1:2; 0:6% decrease

23. (a) � D �
cp2

b � cp2
(b)

 r
b
2c
;

r
b
c

#
(c)

r
b
2c

25. (a) � D �
207
15
D �13:8 elastic (b) 27.6%

(c) increase, since demand is elastic

27. � D �1:6;
dr
dq
D 30

29. maximum at q D 5; minimum at q D 95

Apply It 12.4

4.
dP
dt
D 0:5.P � P2/

5.
dV
dt
D 4�r2

dr
dt

dV
dt

ˇ̌̌̌
rD12

D 2880� in3=min

6.
9
4
ft/sec

Problems 12.4 (page 553)

1.
x
y
for y ¤ 0 3.

7x

3y2
5. �

3
p
y2

3p
x2

7. �
y1=4

x1=4

9. �
y
x
for x ¤ 0 11. �

1C y
1C x

for x ¤ �1 13.
4y � 2x2

y2 � 4x

15.
4y3=4

2y1=4 C 1
17.

1 � 15x2y4

20x5y3 C 2y

19.
1=x � yexy

1=y � xexy
for 1=y � xexy ¤ 0

21. �
ey C yex

xey C ex
for xey C ex ¤ 0 23. 6e3x.1C e3x/.xC y/ � 1

25. �
3
5

27. 0; �
4x0
9y0

29. yC 1 D �.xC 1/; y D 3.xC 1/; y � 1 D �2.xC 1/

31.
�1

3q2
for q ¤ 0 33.

dq
dp
D �

.qC 5/3

40

35. ��I 37. �
f
�

39.
3
8

Problems 12.5 (page 558)

1. .xC 1/2.x � 2/.x2 C 3/
�

2
xC 1

C
1

x � 2
C

2x

x2 C 3

�
3. .3x3 � 1/2.2xC 5/3

"
18x2

3x3 � 1
C

6
2xC 5

#

5.
1
2

p
xC 1

p
x � 1

p
x2 C 1

�
1

xC 1
C

1
x � 1

C
2x

x2 C 1

�
7.

3p1C x2

1C x

�
2x

3.1C x2/
�

1
1C x

�
9.

.2x2 C 2/2

.xC 1/2.3xC 2/

�
4x

x2 C 1
�

2
xC 1

�
3

3xC 2

�

11.
1
2

r
.xC 3/.x � 2/

2x � 1

�
1

xC 3
C

1
x � 2

�
2

2x � 1

�
13. xx

2C1

 
x2 C 1

x
C 2x ln x

!
15. x

p
x
�
2C ln x

2
p
x

�

17. .2xC 3/5x
�
5 ln.2xC 3/C

10x
2xC 3

�
19. 4exx3x.4C 3 ln x/ 21. 12

23. y D 96xC 36 25. y � ee D 2ee.x � e/

27. x D 1=
p
e 29. 0.1% decrease
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AN-28 Answers to Odd-Numbered Problems

Apply It 12.6

7. 43; 1958

Problems 12.6 (page 561)

1. � 0:2016 3. � �0:682327804 5. �0:68233

7. 0.33767 9. 1.90785 11. 4:179 13. � 1:5052.

15. 13.33 17. 2.880 19. 3.45

Apply It 12.7

8.
d2h

dt2
D �32 ft/sec2 9. c00.3/ D 14 dollars/unit2

Problems 12.7 (page 565)

1. 24 3. 0 5. ex 7. 6 ln xC 11

9. �
20

q6
for q ¤ 0 11. �

1

4.9 � r/3=2
13.

8

.2xC 3/3

15.
4

.x � 1/3
17. �

�
1

x2
C

1

.xC a/2

�
19. ez.6C 18zC 9z2 C z3/ 21. 275 23. �

1

y3

25. �
4

y3 27.
a
b

r
y
x

29.
2.yC 1/

.xC 1/2
for x ¤ �1

31.
y

.1 � y/3 33.
25
32

35. 300.5x � 3/2

37. 0:04 39. x D 1; 2 41. �4:99; 1.94

Review Problems---Chapter 12 (page 567)

1. 3ex C 2xex
2
C e2xe

2�1 3.
14rC 4

7r2 C 4rC 5

5. .6xC 5/e3x
2C5xC7 7. ex.x2 C 2xC 2/

9.

p
.x � 6/.xC 5/.9 � x/

2

�
1

x � 6
C

1
xC 5

C
1

x � 9

�
11.

1 � x ln x
xex

13.
m

xC a
C

n
xC b

15. ln.3/.10xC 3/35x
2C3xC2

17.
4e2xC1.2x � 1/

x2
19.

16
.8xC 5/ ln 2 21.

1C 2lC 3l2

1C lC l2 C l3

23. .x2C1/xC1
�
ln.x2 C 1/C

2x.xC 1/

x2 C 1

�
25.

2
t
C
�3t2

2.5 � t3/

27. y

"
x

x2 C 1
C

2x

3.x2 C 2/
�

6.x2 C 1/

5.x3 C 3x/

#
29. .xx/x.xC 2x ln x/

31. 4 33. �2e�e 35. y � 4 D 4.x � ln 2/ 37. .0; 4 ln 2/

39. 2 41. 2 43. �1 45. �
y
x
for x ¤ 0

47.
4
9

49.
dy
dx
D

yC 1
y

;
d2y

dx2
D �

yC 1

y3

51. f0.t/ D 0:008e�0:01t C 0:00004e�0:0002t

53. 0:02 55. unit elasticity 57. � D �0:5 inelastic

59. �
9
16

;
3
8
% increase 61. 1.7693

Apply It 13.1

1. rel max q D 2; rel min q D 5 2. 2 hours after injection

Problems 13.1 (page 579)

1. dec on .�1;�1/, .3;1/; inc on .�1; 3/; rel min .�1;�1/; rel
max .3; 4/

3. dec on .�1;�2/, .0; 2/; inc on .�2; 0/, .2;1/; rel min .�2; 1/,
.2; 1/; no rel max

5. inc on .�3; 1/, .2;1/; dec on .�1;�3/, .1; 2/;
rel max x D 1; rel min x D �3, x D 2

7. dec on .�1;�1/; inc on .�1; 3/, .3;1/; rel min x D �1

9. dec on .�1; 0/, .0;1/; no rel ext

11. inc .�1;�1/; dec .�1;1/; max (at) �1

13. dec on .�1;�5/, .1;1/; inc on .�5; 1/; rel min x D �5;
rel max x D 1

15. dec on .�1;�1/, .0; 1/; inc on .�1; 0/, .1;1/; rel max x D 0;
rel min x D ˙1

17. inc on
�
�1;

1
3

�
, .2;1/; dec on

�
1
3
; 2
�
; rel max x D

1
3
; rel min

x D 2

19. inc on
�
�1;

2
3

�
,
�
5
2
;1

�
; dec on

�
2
3
;
5
2

�
; rel max x D

2
3
; rel

min x D
5
2

21. dec .�1; 1/, .1;1/; no rel ext

23. inc on .�1;�1/, .1;1/; dec on .�1; 0/, .0; 1/; rel max x D �1;
rel min x D 1

25. dec on .�1;�4/, .0;1/; inc on .�4; 0/; rel min x D �4; rel
max x D 0

27. inc on .�1;�
p
2/, .0;

p
2/; dec on .�

p
2; 0/, .

p
2;1/; rel max

x D ˙
p
2; rel min x D 0

29. inc on .�2; 0/, .2;1/; dec on .�1;�2/, .0; 2/; rel max x D 0;
rel min x D ˙2

31. dec on .�1;�2/, .�2;1/; no rel ext

33. dec on .0;1/; no rel ext

35. dec on .�1; 0/, .4;1/; inc on (0,2), (2,4); rel min x D 0; rel max
x D 4

37. inc on .�1;�3/, .�1;1/; dec on .�3;�2/, .�2;�1/; rel max
x D �3; rel min x D �1

39. (a) inc on

 
0;

r
�
d
c

!
,

 r
�
d
c
;1

!
; dec on

 
�1;�

r
�
d
c

!
, 

�

r
�
d
c
; 0

!
; rel min x D 0 (b) as for (a) with “inc” and “dec”

interchanged; “min” replaced by “max”

41. dec .�1;�1/; inc .�1;1/; min (at) �1

43. inc on .�1; 0/,
�
0;
18
7

�
, .6;1/; dec on

�
18
7
; 6
�
; rel max

x D
18
7
; rel min x D 6

45. dec on .�1;1/; no rel ext
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Answers to Odd-Numbered Problems AN-29

47. dec on

 
0;
3
p
2

2

!
; inc on

 
3
p
2

2
;1

!
; rel min x D

3
p
2

2

49. inc on .�1;1/; no rel ext

51. dec .0; 1=
p
e/; inc .1=

p
e;1/; min at 1=

p
e

53. dec on
�
�1;

3
2

�
; inc on

�
3
2
;1

�
; rel min x D

3
2
; int .�2; 0/,

(5,0), .0;�10/

x

y

5-2

-10
49

4
-

3

2

55. dec on .�1;�1/, .1;1/; inc on .�1; 1/; rel min x D �1; rel
max x D 1; sym about origin; int (˙

p
3; 0), (0,0)

x

y

1-1

2

-2

57. inc on .�1; 1/, .2;1/; dec on .1; 2/; rel max x D 1; rel min
x D 2; int (0,0)

x

y

1 2

5

4

59. inc on .�1; 0/, .1;1/; dec on .�1;�1/, .0; 1/; abs min x D ˙1,
relative max x D 0; sym about x D 0; int .�

p
2; 0/, .0; 0/, .

p
2; 0/

x

y

-1 1

- 2 2

61. int .1; 0/, .2; 0/, .0;�4/; no app(arent) sym(metry)
inc .�1; 1/, .1; 8=5/, .2;1/; dec .8=5; 2/; max 8=5; min 2;
.8=5; 108=3125/, .2; 0/

x

y

(1, 0)

(2, 0)

8

5

, 108

3125

63. dec on .1;1/; inc on
(0,1); rel max x D 1; int (0,0), (4,0)

x

y

1 4

1

65.

x

y

42

2

4

6

69. q < 50 71. q D 30

75. (a) 25,300 (b) 4 (c) 17,200

77. rel min .�3:83; 0:69/

79. rel max (2.74,3.74); rel min .�2:74;�3:74/

81. rel min 0, 1.50, 2.00; rel max 0.57, 1.77

83. (a) f0.x/ D 4� 6x� 3x2 (c) dec on .�1;�2:53/, .0:53;1/; inc
.�2:53; 0:53/

Problems 13.2 (page 583)

1. max .3; 6/; min .1; 2/ 3. max
�
�1;

19
6

�
; min .0; 1/

5. max .0; 50/; min .4; 2/

7. max .0; 0/; min .�1;�31=12/, min .1;�31=12/

9. max .
p
2; 4/; min .2;�16/

11. max .0; 2/, .3; 2/; min

 
3
p
2

2
;�

73
4

!
13. max .�26; 9/, .28; 9/; min .1; 0/

15. (a) �3:22, �0:78 (b) 2.75 (c) 9 (d) 14,283

Problems 13.3 (page 589)

1. conc up
�
�1;�

1
2

�
, .2;1/; conc down

�
�
1
2
; 2
�
; inf pt x D �

1
2
,

x D 2

3. cdn (concave down) .�1;�1/, .�1; 2/; cup (concave up) .2;1/;
ifl (inflection point at) 2

5. conc up .�1;�
p
2/, .
p
2;1/; conc down .�

p
2;
p
2/; no inf pt

7. conc down .�1;1/

9. conc down .�1;�1/; conc up .�1;1/; inf pt x D �1
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AN-30 Answers to Odd-Numbered Problems

11. conc up [down]
�
�

b
3a
;1

�
conc down [up]

�
�1;

b
3a

�
for

a > 0 [a < 0]; inf pt x D
b
3a

13. cdn .�1; 1/, .2; 3/; cup .1; 2/, .3;1/, ifl 1; 2; 3

15. conc up .�1; 0/; conc down .0;1/; inf pt x D 0

17. conc up
�
�1;�

7
2

�
,
�
1
3
;1

�
; conc down

�
�
7
2
;
1
3

�
; inf pt

x D �
7
2
, x D

1
3

19. conc down .�1; 0/,

 
3 �
p
5

2
;
3C
p
5

2

!
; conc up 

0;
3 �
p
5

2

!
,

 
3C
p
5

2
;1

!
; inf pt x D 0, x D

3˙
p
5

2

21. conc up .�1;�2/, .�
p
3;
p
3/, .2;1/; conc down .�2;�

p
3/,

.
p
3; 2/; inf pt x D �2, x D �

p
3, x D

p
3, x D 2

23. cup .�1;�1/; cdn .�1;1/; no ifl

25. conc down .�1;�1=
p
3/, .1=

p
3;1/; conc up

.�1=
p
3; 1=
p
3/; inf pt x D ˙1=

p
3

27. conc down .�1;�3/,
�
�3;

2
7

�
; conc up

�
2
7
;1

�
; inf pt x D

2
7

29. conc up .�1;1/

31. conc down [up] .�1;�2/ conc up [down] on .�2;1/ for a > 0
[a < 0]; inf pt x D �2

33. cdn .0;1/; no ifl

35. int .�2; 0/, (3,0), .0;�6/; dec
�
�1;

1
2

�
; inc

�
1
2
;1

�
; rel min

x D
1
2
; conc up .�1;1/

x

y

37. int (0,0),
�
5
2
; 0
�
; inc

�
�1;

5
4

�
; dec

�
5
4
;1

�
; rel max x D

5
4
;

conc down .�1;1/

x

y

39. int .0;�19/; inc .�1; 2/, .4;1/; dec (2,4); rel max x D 2; rel
min x D 4; conc down .�1; 3/; conc up .3;1/; inf pt x D 3

x

y

41. inc on .�1;�
p
5/, .
p
5;1/; dec on .�

p
5;
p
5/; conc down

.�1; 0/; conc up .0;1/; rel max
�
�
p
5;
10
3
.
p
5/
�
, rel min�

p
5;�

10
3
.
p
5/
�
; inf pt .0; 0/; sym about .0; 0/; int .˙

p
15; 0/, .0; 0/

x

y

(- 15, 0)

(0, 0)

5
10

3

( 15, 0)

( 5, -          )

5
10

3
( 5,           )-

43. int .�1; 0/, .0; 1/; no app sym; inc .�1;�1/, .�1;1/; no rel
ext; cdn .�1;�1/; cup .�1;1/; ifl at x D �1

y

x
42

-5

5

10

-10

-4 -2

45. int (0,0), .4=3; 0/; inc .�1; 0/, (0,1); dec .1;1/; rel max x D 1;
conc up .0; 2=3/; conc down .�1; 0/, .2=3;1/; inf pt x D 0, x D 2=3

x

y
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Answers to Odd-Numbered Problems AN-31

47. int .0;�2/; dec .�1;�2/, .2;1/; inc .�2; 2/; rel min x D �2;
rel max x D 2; conc up .�1; 0/; conc down .0;1/; inf pt x D 0

x

y

49. int .0;�2/, (1,0); inc on .�1; 1/, .1;1/; conc down .�1; 1/;
conc up .1;1/; inf pt x D 1

x

y

51. dec on
�
�1;�

2
4
p
5

�
,
�

2
4
p
5
;1

�
; inc on

�
�

2
4
p
5
;
2
4
p
5

�
; conc up

.�1; 0/; conc down .0;1/; rel min
�
�

2
4
p
5
;�

128
25
.5/3=4

�
; rel max�

2
4
p
5
;
128
25
.5/3=4

�
; inf pt .0; 0/; sym about .0; 0/; int .˙2; 0/,.0; 0/

x
(-2, 0) (2, 0)

y

53. int .0; 3/; no app sym; dec on .�1; 0/, .0; 1/; inc on .1;1/, min

at x D 1; cup .�1; 0/,
�
2
3
;1

�
; cdn

�
0;
2
3

�
; ifl at x D 0, x D 2=3;

.1; 1/, .2=3; 147=81/

x

y

-3 3
-1

5

55. int (0,0), .˙2; 0/; inc .�1;�
p
2/, .0;

p
2/; dec .�

p
2; 0/,

.
p
2;1/; rel max x D ˙

p
2; rel min x D 0; conc down

.�1;�
p
2=3/, .

p
2=3;1/; conc up .�

p
2=3;

p
2=3/; inf pt

x D ˙
p
2=3; sym about y-axis

x

y

57. int (0,0), (8,0); dec .�1; 0/, (0,2); inc .2;1/; rel min x D 2;
conc up .�1;�4/, .0;1/; conc down .�4; 0/; inf pt x D �4, x D 0

x

y

-4 2 8

12 
3

4

-6 
3

2

59. int (0,0), .�4; 0/; dec .�1;�1/; inc on .�1; 0/, .0;1/; rel min
x D �1; conc up .�1; 0/, .2;1/; conc down .0; 2/; inf pt x D 0,
x D 2

x

y

2-1-4

-3

6 3 2

61. dec on .�1; 0/,
�
64
27
;1

�
; inc on

�
0;
64
27

�
; conc down .�1; 0/,

.0;1/; rel min .0; 0/; rel max
�
64
27
;
32
27

�
; no inf pt; vertical tangent at

.0; 0/; no sym; .0; 0/, .8; 0/

x

y

(0, 0)

2

2

(8, 0)
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AN-32 Answers to Odd-Numbered Problems

63. f.x/ D x.x � 3/2 an example

x

y

5

-5

5-5

65.

x

y

1

1

69.

60

A

S

625

73. (b)

6.2

r

f (r )

1 10

(c) 0.26

75. two 77. above tangent line; concave up

79. �2:61, �0:26

Problems 13.4 (page 592)

1. rel min x D
5
2
; abs min

3. rel max x D
1
4
; abs max

5. rel max x D �5; rel min x D 1

7. rel max x D �2; rel min x D 3

9. test fails, rel and abs min .0; 3/

11. rel max x D �
1
3
; rel min x D

1
3

13. rel min x D �5, x D �2; rel max x D �
7
2

Problems 13.5 (page 602)

1. x D 1; y D 1 3. x D
�7
2
; y D

1
2

5. x D 0; y D 0 7. y D 0; x D 1, x D �1

9. none 11. y D 2; x D 2, x D �3

13. x D �
p
7, x D

p
7; y D 15 15. x D 5; y D 7

17. y D �xC 1; x D 0, x D �1 19. y D
1
4
; x D �

1
2

21. y D
1
2
; x D �

4
3

23. y D �2

25. sym about .0; 0/; ver ast x D 0; hor ast y D 0; no int; dec
.�1; 0/, .0;1/; no ext; cdn .�1; 0/; cup .0;1/

x

y

27. int (0,0); dec on .�1; 1/, .1;1/; conc up .1;1/; conc down
.�1; 1/; asymp x D 1, y D 1

x

y

1

1

29. dec on .�1;�1/, (0,1); inc on .�1; 0/, .1;1/; rel min x D ˙1;
conc up .�1; 0/, .0;1/; sym about x D 0; asymp x D 0

x

y

-1 1

2

31. int .0;�1/; inc on .�1;�1/, .�1; 0/; dec (0,1), .1;1/; rel max
x D 0; conc up .�1;�1/, .1;1/; conc down .�1; 1/; asymp x D 1,
x D �1, y D 0; sym about y-axis

x

y

1-1
-1

33. asymp x D 3, y D �1; int
�
0;
2
3

�
, .�2; 0/; inc on .�1; 3/,

.3;1/; conc up on .�1; 3/; conc down on .3;1/

x

y

3

-1

2

3
(0,   )

(-2, 0)

35. no app sym; ver ast x D 1; non-ver ast y D xC 1; int .0; 0/; inc
.�1; 1/, .2;1/; dec .0; 1/, .1; 2/; max 0; min 2; cdn .�1; 1/; cup
.1;1/; min pt .2; 4/

y

x
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Answers to Odd-Numbered Problems AN-33

37. int
�
0;�

9
8

�
; inc on

�
�1;�

2
3

�
,
�
�
2
3
;
1
3

�
; dec on

�
1
3
;
4
3

�
,�

4
3
;1

�
; rel max x D

1
3
; conc up

�
�1;�

2
3

�
,
�
4
3
;1

�
; conc down�

�
2
3
;
4
3

�
; asymp y D 0, x D �

2
3
, x D

4
3

x

y

2

3

4

3
-

    , -1
1

3

39. int
�
�
1
3
; 0
�
,
�
0;
1
4

�
; dec on

�
�1;�

4
3

�
,
�
2
3
;1

�
; inc on�

�
4
3
;
2
3

�
; rel min x D �

4
3
; conc down

�
�1;�

7
3

�
; conc up�

�
7
3
;
2
3

�
,
�
2
3
;1

�
; inf pt x D �

7
3
asymp x D

2
3
, y D 0

x

y

2

3

      ,   
4

3

1

12
--

      ,   
7

3

2

27
--

41. int .�1; 0/, (1,0); inc on .�
p
3; 0/, .0;

p
3/; dec on .�1;�

p
3/,

.
p
3;1/; rel max x D

p
3; rel min x D �

p
3; conc down

.�1;�
p
6/, .0;

p
6/; conc up .�

p
6; 0/, .

p
6;1/; inf pt x D ˙

p
6;

asympx D 0, y D 0; sym about origin

x

y

3

3-

43. asymp x D 1, y D 2xC 1; int .0; 0/,
�
1
2
; 0
�
; inc on 

�1; 1 �

p
2
2

!
,

 
1C

p
2
2
;1

!
; dec on

 
1 �

p
2
2
; 1

!
, 

1; 1C

p
2
2

!
; conc down .�1; 1/; conc up .1;1/, rel max 

1 �

p
2
2
; 3 � 2

p
2

!
; rel min

 
1C

p
2
2
; 3C 2

p
2

!
; sym .1; 3/ a

concept not covered in HPW

x

y

1

(0, 0) 1

2
(  , 0)

45. y D �1 for x ¤ �1 and x ¤ 1

x

y

-5 5

-5

5

(0, -1)

(1, -1)(-1, -1)

47.

x

y

1

2

49.

x

y

-1 2

51. x D �
a
b
; y D

1
b

53. limt!1250 � 83e�t D 250 since limt!1 e�t D 0
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AN-34 Answers to Odd-Numbered Problems

55. hor ast y D 2; ver ast x D 1, x D 2, x D 3

57. y � 0:48

Problems 13.6 (page 610)

1. 48; 48 3. 300 ft by 250 ft

5. 100 units 7. $15

9. maximum 105; minimum
1290
23
� 56:1

11. quantity 350, profit 5625, price 57:50

13. $22 15. 120 units; $86,000

17. 625 units; $4 19. $22; $154,880

21. 3 ft � 3 ft � 3=2 ft 23.
L
6
in.;

2L3

27
in3

27. 130 units, p D $340, P D $36;980; 125 units, p D $350,
P D $34;175

29. 375/lot (8 lots) 31. 60 attendees

33. 60 mi/h 35. 8; $3400

37. 5 �
p
3 tons; 5 �

p
3 tons 41. 10 cases; $50.55

Review Problems---Chapter 13 (page 616)

1. y D 3, x D 4, x D �4 3. y D
5
9
, x D �

2
3

5. 0

7. 7=6, 1 critical, f.2=3/ not defined

9. inc on .�1; 7/; dec on .�1;�1/, .7;1/

11. dec on .�1;�
p
6/, .0;

p
3/, .
p
3;
p
6/; inc on .�

p
6;�
p
3/,

.�
p
3; 0/, .

p
6;1/

13. conc up .�1; 0/,
�
1
2
;1

�
; conc down

�
0;
1
2

�
15. conc down

�
1;�

2
3

�
, conc up on

�
�
2
3
;1

�
17. cup .�1; 17=12/, .5=2;1/; cdn .17=12; 5=2/

19. rel max x D 1; rel min x D 2

21. rel min x D �1

23. rel max x D �
2
5
; rel min x D 0

25. 2 27. ifl 9=5 29. 0, 3˙
p
3

31. max .2; 16/; min .1;�1/ 33. max .0; 0/; min
�
�
6
5
;�

1
120

�
35. (a) e�1 (b) .0;1/, none

37. int .0;�21/, .�3; 0/, .7; 0/; no app sym; no ast; dec .�1; 2/; inc
.2;1/; rel min pt .2;�25/; cup .�1;1/

x

y

(7, 0)

(2, -25)

(0, -21)

(-3, 0)

39. int .0; 20/, inc on .�1;�2/, .2;1/; dec on .�2; 2/; rel max
x D �2; rel min x D 2; conc up .0;1/; conc down .�1; 0/; inf pt
x D 0

x

y

(2, 4)

(-2, 36)

41. int .0; 0/, .�1; 0/, .1; 0/; inc on

 
�1;�

p
3
3

!
,

 p
3
3
;1

!
; dec

on

 
�

p
3
3
;

p
3
3

!
; conc down .�1; 0/; conc up .0;1/; inf pt x D 0;

sym about origin

x

y

(-1, 0)

(1, 0)

(0, 0)

43. int .�5; 0/; inc .�10; 0/; dec on .�1;�10/, .0;1/; rel min
x D �10; conc up .�15; 0/, .0;1/; conc down .�1;�15/; inf pt
x D �15; asymp y D 0 x D 0

x

f(x)

45. inc on
�
1;�

1
2

�
; dec on

�
�
1
2
; 1
�
, .1;1/; conc up .�1;�1/,

.1;1/; conc down .�1; 1/; rel max
�
�
1
2
;
4
27

�
; inf pt

�
�1;

1
8

�
;

asymp y D 0, x D 1; no symmetry; int .0; 0/

x
1

y

1

8
(-1,   )

4

27

1

2
(-   ,    )

(0, 0)
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Answers to Odd-Numbered Problems AN-35

47. int .0; 0/; no ast; sym origin; x > 0 implies y.x/ > 0, (x < 0
implies y.x/ < 0); inc .�1;1/; cdn .�1; 0/; cup .0;1/; ifl pt .0; 0/

x

y

49. (a) false (b) false (c) true (d) false (e) false

51. q > 2

57. max .�1:34; 12:33/; min .0:45; 1:26/

-4 4
x

y

(-1.38, 12.33)

(0.45, 1.26)

14

59. x � �0:60 61. 20 63. 200

65. $29,000 67. M=10 � M=4

69. (a) 200 stands at $120 per stand (b) 300 stands

Problems 14.1 (page 624)

1. a dx 3.
3x2

2
p
x3 � 27

dx 5. �
2

x3
dx

7.
2x

x2 C 7
dx 9. 3e2x

2C3.12x2 C 4xC 3/ dx

11. �y D a dx D dy 13. �y D 0:0701; dy D 0:07

15. �y � 0:049, dy D 0:050 17. (a) �1 (b) 2.9

19.
577
34
� 16:97 21.

25
12

23. � �0:002

25. 1.001 27.
1
2

29.
1

6p.p2 C 5/2

31. �
p3

2
33.
�3
2

35. �
4
5

37. �17; �19:3 39. 2.04 41.
3
40
� 0:1

43. � 1:83 � 10�11 45. (c) 42 units

Apply It 14.2
1.
R
28:3 dq D 28:3qC C 2.

R
0:12t2 dt D 0:04t3 C C

3.
R
�
480

t3
dt D

240

t2
C C

4.
R
.500C 300

p
t/dt D 500tC 200t3=2 C C

5. S.t/ D 0:7t3 � 32:7t2 C 491:6tC C

Problems 14.2 (page 630)

1. 7xC C 3.
x9

9
C C 5. �

5

6x6
C C

7. �
5

6x6
C C 9. �

2

3t3=2
C C 11. 4tC

t2

2
C C

13.
y6

6
�
5y2

2
C C 15. t3 � 2t2 C 5tC C

17. .
p
2C e/xC C 19.

x2

10
�
2x6

18
C C

21. �ex C C 23.
x9:3

9:3
�
9x7

7
�

1

x3
�

1

2x2
C C

25. �
4x3=2

9
C C 27. 5 3

p
xC C 29.

x5

20
C

4
3
x�3
C C

31.
w3

2
C

2
3w
C C 33.

3
10

u2 �
4
5
uC C

35.
ueC1

eC 1
C eu C C 37. 6

p
x � 9

3p
x4 C C

39.
1
8
x8=5
�
4
5

p
xC

711
2

x2 C C 41.
x4

4
� x3 C

5x2

2
� 15xC C

43.
2x5=2

5
C 2x3=2

C C

45.
27
4
u4 C 18u3 C 18u2 C 8uC C

47. x3 C 4xC
5
x
C C 49.

1
3
..1=5/z5 C .7=2/z2/C C

51. xC ex C C

53. no, F.x/ � G.x/ ¤ 0 is possible

55.
1

p
x2 C 1

C C

Apply It 14.3

6. N.t/ D 800tC 200et C 6317:37

7. y.t/ D 14t3 C 12t2 C 11tC 3

Problems 14.3 (page 634)

1. y D
3x2

2
� 4xC 1 3.

31
4

5. y D �
5
12

x4 C
1
3
x3 C

2
3
xC 3 7. y D

x4

12
C x2 � 5xC 13

9. p D 0:7 11. p D 275 � 0:5q � 0:1q2

13. 2:47qC 159 15. 8594

17. G D �
P2

50
C 2PC 20

21. $80 (dc=dqjqD50 D 27:50 is not relevant)

Apply It 14.4

8. T.t/ D 10e�0:5t C C 9. 35 ln jtC 1j C C
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AN-36 Answers to Odd-Numbered Problems

Problems 14.4 (page 640)

1.
.xC 3/6

6
C C 3.

.x2 C 3/6

6
C C

5.
3
5
.y3 C 3y2 C 1/5=3

C C 7. �
5.3x � 1/�2

6
C C

9.
2
21
.7xC 3/3=2

C C 11.
1
30
.5x � 2/6 C C

13.
.5u2 � 9/15

150
C C 15.

3
5
.27C x5/4=3

C C

17. e3x C C 19.
1
2
e3t

2C2tC1
C C

21.
3
10

e5x
2
C C 23. �

4
3
e�3x
C C

25. ln jxC 5j C C 27. ln jx3 C x4j C C

29. �
2

3.z2 � 5/6
C C 31. 7 ln jxj C C

33.
1
3
ln js3 C 5j C C 35. �

5
2
ln j4 � 2xj C C

37.
2
15
.5x/3=2

C C D
2
p
5

3
x3=2
C C

39.
1
a

p
ax2 C bC C 41.

1
2
ey

4C1
C C

43. �
1
6
e�2v3C1

C C 45. �
1
5
e�5x
C 2ex C C

47. �
1
2
.7 � 2x2 � 5x/4 C C 49. 2 ln jx3 C 4xj C C

51. ln..1C 4sC 3s2/4/C C 53.
1
4
ln.2x2 C 1/C C

55.
1
27
.x3 � x6/�9

C C 57.
1
4
.x4 C x2/2 C C

59. 3.5 � x � x2/�3 C C 61.
1
2
e3x

3C5x2C2
C C

63. �
1
25
.8 � 5x2/5=2

C C 65.
2
p
2

3
x3=2
�
p
2x1=2

C C

67.
x5

5
C

2x3

3
C xC C

69.
1
2
.ln.x2 C 1/ � .x2 C 1/�1

C C

71. 3 ln j5xC 2j C
5
12
.x3 C x6/�4

C C

73.
2
9
.3xC 1/3=2

�
1
2
ln.x2 C 3/C C

75. 2e
p

x C C 77. �
1
4
e�x
C

1
4
ex C C

79.
1
2
.ln.2x2 C 3x//2 C C 81.

�1
28
.5 � 7x/4 C

681
28

83. y D ln j1=xj C
5
2
x �

1
2

85. 160e0:05t C 190

87.
Rr2

4K
C B1 ln jrj C B2

Problems 14.5 (page 645)

1.
1
5
x5 C

4
3
x3 � 2 ln jxj C C 3.

1
3
.2x3 C 4xC 1/3=2

C C

5. �
6
5

p
4 � 5xC C 7.

1
5 ln 2

25x C C

9. 7x2 � 4e.1=4/x2 C C 11. x2 � 3xC
2
3
ln j3x � 1j C C

13.
5
14

ln.7e2x C 4/C C 15. �
5
13

e13=x
C C

17. x2 � ln.x2 C 1/C C 19.
2
9
.
p
xC 2/3 C C

21. 3.x1=3 C 2/5 C C 23.
1
2
.ln2 x/C C

25.
1
3
.ln.r2 C 1//3=2

C C 27.
1

ln 11
xln 11 C C

29.
2
3
e.x3C1/=2

C C 31. 8 ln j ln.xC 3/j C C

33.
x2

2
C xC ln jx2 � 3j C C 35.

2
3
.ln.x4 C 1/3/3=2

C C

37.
1
2

p
x4 � 4x � .ln 2/xC C 39. x2 � 8x � 6 ln jxj �

2

x2
C C

41. x � ln jxC 1j C C 43.
p
ex2 C 2C C

45. �
1
4
.e�x
C 5/4 C C 47.

1
5
.x2 C

p
2/5=2

C C

49.
1

36
p
2
Œ.8x/3=2

C 3�3=2
C C 51. �

2
3
e�

p
s3
C C

53.
x3

3
C xC C 55. x �

1
2
.ln x/2 C C

57. p D
100
qC 3

59. c D 20 ln j.qC 5/=5j C 2000

61. C D 2.
p
IC 1/ 63. C D

3
4
I �

1
3

p
IC

71
12

65. (a) 140 per unit (b) $14,000 (c) $14,280

67. $1504 69. I D 3

Apply It 14.6

10. $5975

Problems 14.6 (page 652)

1.
13
8

3.
25
64

5. Sn D
1
n

�
4
�
1
n

�
C 4

�
2
n

�
C � � � C 4

�n
n

��
D

2.nC 1/
n

7. (a) Sn D
nC 1
2n
C 1 (b)

3
2

9.
3
2

11.
1
3

13. 12 15. 20 17. �18 19.
5
6

21. 0 23. 11=2 25. 14.7 27. 2.4 29. �25:5

Apply It 14.7

11. $32,830 12. $28,750
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Answers to Odd-Numbered Problems AN-37

Problems 14.7 (page 659)

1. 15 3.
15
2

5. �20 7. 63

9. 74 11.
4
3

13.
768
7

15.
5
3

17.
244
5

19. 3=20 21. 4 ln 8 23. e5

25.
5
3
.e � 1/ 27.

1
14

29. 38=3 31.
15
28

33.
1
2
ln 3 35.

1
2

�
eC

1
e
� 2

�

37. �
5
p
2C 3
4

C
3
e
C

3

2e2
�

1

e3

39. .1=6/.e24 � e9/ � 4; 414; 852; 338

41. 6C ln 19 43.
47
12

45. 6 � 3e 47. �7 49. 0 51. ˛5=2T

53.
R b
a .�Ax

�B/dx 55. $8639 57. 180; 667; 769; 126

59. 183:15 61. $1367.99 63. 696;492 65. 2Ri

69. 1=2 71. 3.52 73. 14.34

Review Problems---Chapter 14 (page 663)

1.
x4

4
C x2 � 7xC C 3. 2160 5.

�1

.xC 2/3
C C

7. 2 ln jx3 � 6xC 1j C C 9.
11 3
p
11

4
� 4

11.
y4

4
C

2y3

3
C

y2

2
C C 13.

21
17

t17=21
�
6
7
t7=6
C C

15. ln.21/ � ln.5/ � 1:435 17.
2
27
.3x3 C 2/3=2

C C

19.
1
2
.e2y C e�2y/C C 21. ln jxj �

2
x
C C 23.

272
15

25.
4
3
.
p
125 � 8/ 27. 4 � 3 3

p
2 29.

3
t
�

2
p
t
C C

31.
3
2
� 5 ln 2 33. e

p
x C

1
3
x
p
xC C 35. 1=2

37.
.1C e2x/4

8
C C 39.

2
p
103x

ln 10
C C

41. y D
1
2
e2x C 3x � 1 43. 4 45. 2=3

47.
125
6

49. 6C ln 4 51.
2
3

53.
a3

6
55. 55:07% 57. e � 1

59. p D 100 �
p
2q 61. $1483.33

63. 1 � e�0:7 � 0:5034 65. 15

67. CS D 166
2
3
, PS D 53

1
3

73.
1
2

75. CS � 1148, PS � 251

Problems 15.1 (page 671)

1.
x

9
p
9 � x2

C C 3. �

p
16x2 C 3
3x

C C

5.
1
6
ln

ˇ̌̌̌
x

6C 7x

ˇ̌̌̌
C C 7.

1
3
ln

ˇ̌̌̌
ˇ
p
x2 C 9 � 3

x

ˇ̌̌̌
ˇC C

9.
1
2

�
4
5
ln j4C 5xj �

2
3
ln j2C 3xj

�
C C

11.
1
6

�
2x � ln j3C e2xj

�
C C

13. 7
�

1
5.5C 2x/

C
1
25

ln
ˇ̌̌ x
5C 2x

ˇ̌̌�
CC 15. 1C ln

4
9

17.
1
2

�
x
p
x2 � 3 � 3 ln

ˇ̌̌
xC

p
x2 � 3

ˇ̌̌�
C C

19.
1
144 21.

x2e2x

2
�

 
e2x

4
.2x � 1/

!
C C

23.

p
5
2

 
�

p
5x2 C 1
p
5x

C ln
ˇ̌̌p

5xC
p
5x2 C 1

ˇ̌̌!
C C

25.
1
9

�
ln j1C 3xj C

1
1C 3x

�
C C

27.
1
p
5

 
1

2
p
7
ln
ˇ̌̌p7Cp5x
p
7 �
p
5x

ˇ̌̌!
C C

29. x6.6 ln.3x/ � 1/C C

31. 2

 
2.9x � 2/.1C 3x/3=2

135

!
C C

33.
1
2
ln
ˇ̌̌
2xC

p
4x2 � 13

ˇ̌̌
C C 35. �

p
16 � 9x2

8x
C C

37.
1
2�
.4
p
x � ln j� C 7e4

p
x
j/C C

39.
1
2
ln.x2 C 1/C C

41. .1=3/.ln x/3 C C

43. ln

ˇ̌̌̌
x � 3
x � 2

ˇ̌̌̌
C C 45.

x4

4

�
ln.x/ �

1
4

�
C C

47.
2
9
e3x

2
.3x2 � 1/C C 49. x.ln x/2 � 2x ln.x/C 2xC C

51. Formula 15 with u D x, a D 5, and b D 2 so thatZ 1

�1

2xdx
p
5C 2x

D 2
Z 1

�1

xdx
p
5C 2x

D 2

 
2.2x � 10/

p
5C 2x

12

! ˇ̌̌̌1
�1
D

�8
3

p
7C 4

p
3

53. 2.2
p
2 �
p
7/ 55.

7
2
ln.2/ �

3
4
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AN-38 Answers to Odd-Numbered Problems

57. ln

ˇ̌̌̌
qn.1 � q0/
q0.1 � qn/

ˇ̌̌̌
59. (a) $7558.09 (b) $16,930.75

61. (a) �2000e.e�1 � 1/ � 3436
(b) �1666:67e1:5.e�1:5 � 1/ � 5802

Apply It 15.2

3. 76.90 ft

4. 5.77 gm

Problems 15.2 (page 676)

1. 413 3. 0:26;
1
4

5. � 0:767; 0.750

7. � 0:7377 9. 2,115,215 11. 3.0

13.
8
3

15. 0.771

17. yes,� 30; 934 tiles

Problems 15.3 (page 685)

1.
87
2

3. 5=3.208/ 5. 13=12 7. 13

9. ln 16 11. e3 � e 13. 1 15. 16

17. 16 19. e 21.
3
2
C 2 ln 2 D

3
2
C ln 4

23. 2=3.125/

25. 19

27. (a)
1
16

(b)
3
4

(c)
7
16

29. (a) ln
7
3

(b) ln 5 � 1 (c) 2 � ln 4

31. 1.89 33. �78:11

35.
R 3
0 .2x � .x

2 � x//dxC
R 4
3 ..x

2 � x/ � 2x/ dx

37.
R 1
0 ..yC 1/ �

p
1 � y/ dy

39.
R 2
1 ..7 � 2x

2/ � .x2 � 5// dx

41.
4
3

43. 36 45. 40 47. 9

49.
125
12

51.
44
3

53. 1=2

55.
255
32
� 4 ln 2 57. 12 59.

14
45

61.
3

2m3 63. � 0:62996052 65. 4.76 67. 6.17

Problems 15.4 (page 689)

1. CS D 25:6; PS D 38:4 3. CS D 50 ln 2 � 25; PS D 1:25

5. CS D 225; PS D 450 7. $426:67

9. � 45; 432 11. CS � 1197; PS � 477

Problems 15.5 (page 692)

1.
7
3

3. �1 5. 33=5 7.
2
3

9. $11,050

11. $3155.13

Apply It 15.6

3. I D I0e�0:0085x

Problems 15.6 (page 697)

1. y D �
2

3x2 C C

3. y D .x2 C 1/ ln.x2 C 1/ � .x2 C 1/C C

5. y D Cex, C > 0 7. y D Cx;C > 0

9. y D 3
p
3x � 2 11. y D ln

 
x4 C 4e

4

!

13. y D
48.3x2 C 2/2

4C 23.3x2 C 2/2
15. y D

vuut 
3x2

2
C

3
2

!2
� 1

17. y D ln
�
1
2

p
x2 C 3

�
19. c D .qC 1/e1=.qC1/

21. 120 weeks

23. P.t/ D 60;000e
1
10 .4 ln 2�ln 3�ln 5/t; 68,266

25. 2e1:14882 billion 27. 0:01204; 57:57 sec

29. 2900 years 31. N D N0ek.t�t0/, t � t0

33. 12.21=3/ � 15:1 35. A D 400.1 � e�t=2/; 157 g/m2

37. (a) V D 60; 000e
t
9:5 ln.389=600/ (b) June 2028

Problems 15.7 (page 704)

1. 69,200 3. 500 5. 1990

7. (b) 375 (c)� 4:1322 days 9. 2:20 a.m.

11. $155,555.56 13. N D M � .M � N0/e�kt

Apply It 15.8

4. 20 ml

Problems 15.8 (page 708)

1.
1
18

3. divergent 5. e�37 7. divgt 9.
1
2

11. 0 13. (a) k D 500 (b) 1=2

15. 25,000,000 17.
1
3

19. 20,000 increase

Review Problems---Chapter 15 (page 711)

1.
1
3
x3
�
ln x �

1
3

�
3. 2
p
13C

8
3
ln

 
3C
p
13

2

!
5. ln j3xC 1j C 4 ln jx � 2j C C

7.
1

2.xC 2/
C

1
4
ln j

x
xC 2

j C C 9.
�
p
4 � 9x2

4x
C C

11.
1
2a
.ln jx � aj � ln jxC aj/C C

13. e7x.7x � 1/C C 15.
1
4
ln j ln x2j C C

17. x �
3
2
ln j3C 2xj C C 19.

a3

6

21.
243
8

23. e � 1 25. � 0:69
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Answers to Odd-Numbered Problems AN-39

27. CS D 166
2
3
, PS D 53

1
3

29. 12:25

31. y D Cex
3Cx2 , C > 0 33. 2=3

35. divgt 37. 2;000;000

39. is fine
41. N D

450

1C 224e�1:02t

43. 4:16 p.m. 45. 0:95

Apply It 16.1

1.
1
3

2. 0:607

3. mean 5 years, standard deviation 5 years

Problems 16.1 (page 720)

1. (a)
5
12

(b)
11
16
D 0:6875 (c)

13
16
D 0:8125 (d) �1C

p
10

3. (a) f.x/ D

8<:1
3

if 1 � x � 4

0 otherwise

x

f(x)

1 4

1

4

(b)
2
3

(c) 0 (d)
5
6

(e)
1
3

(f) 0 (g) 1 (h)
5
2

(i)

p
3
2

(j) F.x/ D

8̂<̂
:
0 if x < 1
1
3
.x � 1/ if 1 � x � 4

1 if x > 4

P.X < 2/ D
1
3
; P.1 < X < 3/ D

2
3

x

F (x)

2

1

6

7. (a) e�2 � e�4 � 0:11702 (b) 1 � e�6 � 0:99752
(c) e�10 � 0:00005 (d) 1 � e�3 � 0:95021

(e) F.x/ D
�

0 if x < 0
1 � e�2x if x � 0

9. (a)
1
8

(b)
5
16

(c)
39
64
� 0:609 (d) 1 (e)

8
3

(f)
2
p
2

3

(g) 2
p
2 (h)

7
16

11.
7
10

; 5 min 13. e�3 � 0:050

Problems 16.2 (page 726)

1. (a) 0:4893 (b) 0:2681 (c) 0:7157 (d) 0:9279 (e) 0:9467
(f) 0:4247

3. 0.35 5. �1:08 7. 0:34

9. (a) 0.9970 (b) 0.0668 (c) 0.0873

11. 0:0107 13. 0.8351 15. 8 17. 95%

19. 90:82% 21. (a) 4:55% (b) 81:26

Apply It 16.3

4. 0.0396

Problems 16.3 (page 729)

1. 0:9207I 0:0122 3. 0:0430I 0:9232

5. 0:7507 7. 0:9525

9. 0.5557; 0.5398 11. 0:0336

Review Problems---Chapter 16 (page 731)

1. (a) 2 (b)
9
32

(c)
3
4

(d) F.x/ D

8̂̂<̂
:̂
0 if x < 0
1
3
xC

2
3
x3 if 0 � x � 1

1 if x > 1

3. (a) � D 8=9 (b) � D .2
p
2/=3

5. 0.1056 7. 0.2417

9. 0:7734 11. 0:9817 13. 0:0228

Problems 17.1 (page 737)

1. fx.x; y/ D 4xC 3yC 5; fy.x; y/ D 3xC 8yC 6

3. fx.x; y/ D 0I fy.x; y/ D 2

5. gx.x; y/ D 12x3yC 2y2 � 5yC 8;

gy.x; y/ D 3x4 C 4xy � 5x � 9

7. gp.p; q/ D
q

2
p
pq

; gq.p; q/ D
p

2
p
pq

9. @h=@s D
2s

t2 � 1
; @h=@t D �

.s2 C 1/.2t/

.t2 � 1/2

11.
@u
@q1
D

1
2.q1 C 2/

;
@u
@q2
D

1
3.q2 C 5/

13. hx.x; y/ D .x3 C xy2 C 3y3/.x2 C y2/�3=2;
hy.x; y/ D .3x3 C x2yC y3/.x2 C y2/�3=2

15.
@z
@x
D 5ye5xy;

@z
@y
D 5xe5xy

17.
@z
@x
D 5

2x2

x2 C y
C ln.x2 C y/;

@z
@y
D

5x

x2 C y

19. @f=@r D .5=2/.r � s/3=2; @f=@s D �.5=2/.r � s/3=2

21.
@f
@r
D �e3�r ln.7 � s/;

@f
@s
D �

e3�r

7 � s
;

23. gx.x; y; z/ D 6x2y2 C 2y3z; gy.x; y; z/ D 4x3yC 6xy2z;
gz.x; y; z/ D 2xy3 C 8z

25. gr.r; s; t/ D 2resCt; gs.r; s; t/ D .7s3 C 21s2 C r2/esCt;
gt.r; s; t/ D esCt.r2 C 7s3/

27. 50 29. 29=5.e7/ 31. 0 33. 26

39.
@R
@r
D

2
2C a.n � 1/

;
@R
@a
D

�2r.n � 1/

.2C a.n � 1//2
;

@R
@n
D

�2ra

.2C a.n � 1//2

Problems 17.2 (page 742)

1. 20 3. 1374.5

5. @P=@l D 0:773478.k=l/0:686; @P=@k D 1:733522.l=k/0:314



Haeussler-50501 Z04_HAEU1107_14_SE_ANS November 27, 2017 17:13

AN-40 Answers to Odd-Numbered Problems

7. @qA=@pA D �40; @qA=@pB D 3; @qB=@pA D 5; @qB=@pB D �20;
competitive

9.
@qA
@pA
D �

100

p2Ap
1=2
B

;
@qA
@pB
D �

50

pAp
3=2
B

;
@qB
@pA
D �

500

3pBp
4=3
A

;

@qB
@pB
D �

500

p2Bp
1=3
A

; complementary

11.
@P
@B
D 0:01A0:27B�0:99C0:01D0:23E0:09F0:27;

@P
@C
D 0:01A0:27B0:01C�0:99D0:23E0:09F0:27

13. 4480

15. (a) �1:015I �0:846 (b) one with w D w0 and s D s0

17.
@g
@x
D

1
VF

> 0 for VF > 0; if VF and Vs fixed and x increases then

g increases.

19. (a)
@qA
@pA

ˇ̌̌
pAD9;pBD16

D �
20
27

;
@qA
@pB

ˇ̌̌
pAD9;pBD16

D
5
12

(b) demand for A decreases by�
5
6

21. (a) no (b) 70%

23. �pA D �
5
46
; �pB D

1
46

25. �pA D �2 for all prices; �pB D �1=2 for all prices

Problems 17.3 (page 745)

1. fx.x; y/ D 15x2y; fxy.x; y/ D 15x2; (fy D 5x3); fyx.x; y/ D 15x2

3. 3; 0; 0

5. 18xe2xy; 18e2xy.2xyC 1/; 72x.1C xy/e2xy

7. 3x2yC 4xy2 C y3; 3xy2 C 4x2yC x3; 6xyC 4y2; 6xyC 4x2

9. @z=@y D
y

x2 C y2
; @2z=@y2 D

x2 � y2

.x2 C y2/2

11. fy D 0; fyx D 0; fyxx D 0; fyxxz D 0; fyxxz.4; 3;�2/ D 0

13. 744 15. 2e 17. �
1
8

Problems 17.4 (page 752)

1. .1; 2/ 3. .0;�2/, .0; 1/, .3;�2/, .3; 1/

5. .50; 150; 350/ 7. .3; 4/; rel min

9.
�
�
1
4
;
1
2

�
rel max 11. .3; 1/; D.3; 1/ < 0 no rel ext

13. .0; 0/ rel max;
�
4;
1
2

�
rel min;

�
0;
1
2

�
, .4; 0/, not rel ext

15. .43; 13/ rel min 17. .�1;�1/; rel min of 3

19. .0;�2/, .0; 2/ not rel ext 21. l D 72:67, k D 43:78

23. pA D 80, pB D 85

25. qA D 48, qB D 40, pA D 52, pB D 44, profit D 3304

27. .3; 3/; rel max 29. 1 ft by 2 ft by 3 ft

31.
�
3
2
;
1
2

�
rel min 33. a D �8, b D �12, d D 33

35. (a) 2 of A, 3 of B (b) selling price for A is 30, for B is 19, rel
max profit is 25

37. (a) P D 5T.1 � e�x/ � 20x � 0:1T2 (c) .20; ln 5/ rel max,�
5; ln

5
4

�
not rel ext

Problems 17.5 (page 760)

1. .2;�2/ 3. .1=3; 1=3; 1=3/ 5.
�
0;
1
4
;
5
8

�
7.
�
1
3
;
1
3
;
1
3

�
9.
�
2
3
;
4
3
;�

4
3

�
11.

�
1
4
;
1
2
;
1
4

�
13. .11; 89/ 15. 74 when l D 8, k D 7

17. x D 5; 000 newspaper, y D 15; 000 TV
19. x D 5, y D 15, z D 5 21. x D 12, y D 8

23. .100=3; 50=3; 100=9/

Problems 17.6 (page 764)

1. 18 3. 1=4 5. 2=3

7. 3 9. 31=10 11. �58=5
13. 9 15. �1 17. e2=2 � eC 1=2

19. 27 21. 1=4

23. e�4 � e�2 � e�3 C e�1

25. 1=3

Review Problems---Chapter 17 (page 766)

1. fx D
2x

x2 C y2
; fy D

2y

x2 C y2
3.

y

.xC y/2
; �

x

.xC y/2

5.
yp

x2 C y2
e
p

x2Cy2 7. 2xzex
2yz.1C x2yz/

9. 2xC 2yC 6z 11. exCyCz.ln.xyz/C 1=xC 1=yC 1=z/

13.
1
64

15. @P=@l D 80.k=l/0:2; @P=@k D 20.l=k/0:8

17. neither 19. rel min at .2; 2/

21. 4 ft by 4 ft by 2 ft

23. max for A at 89 cents/lb and B at 94 cents/lb

25. .5=26; 1=26/ (is point on 5xC y D 5 closest to the origin)

27. 1=12

29. 1=30
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Index
A

Absolute extrema, on closed interval,
581–583, 592

Absolute value, 62–66
equations, 62–63
inequalities, 63–64
notation, 64
properties of, 65

Absolute-value functions, 93, 108–109
Accumulated amount, 180
Accumulated amount of continuous annuity,

670
Accumulated amount of interest, 209
Acid test ratio, 62
Addition
of algebraic expressions, 16
associative properties of, 4
closure properties of, 4
commutative properties of, 4, 5
elimination-by-addition method, 154–155
of fractions, 24–26
matrix, 246–248

Algebra
real numbers. See Real numbers
review of, 1–46

Algebraic expressions
addition, 16
defined, 15
multiplication, 18
operations with, 15–19
special products, 17–18
subtraction, 16

Algebraic manipulation, 457–458, 629–630
Amortization
defined, 230
finance charge, 230
formulas, 231
of loans, 230–234
periods of loan, 233
schedule, 230

Annual percentage rate (APR), 181, 209, 220
Annual rate of interest, 209
Annuities, 222–232
continuous, 230, 670–671
defined, 222
future value of, 226–228
integration applied to, 669–671
ordinary, 222
payment period, 222
periodic payment of, 225
present value of, 223–226
sinking fund, 227–228
term, 222

Annuity due, 222, 225–226, 227
Antiderivative, 625–626
Apartment rent, determination of, 51–52
Applications, and linear functions, 139–145
Applications, of systems of equations. See

Systems of equations, applications of
Applications of equations, 48–54. See also

Equations

Applications of inequalities, 59–62
Applied maxima and minima. SeeMaxima

and minima
Approximate integration, 672–678
Simpson’s rule, 673, 674–676
trapezoidal rule, 672–674

Approximations of e, 182
APR (annual percentage rate), 181, 209
Area, computing using right-hand endpoints,

650–651
Area, rectangular, 48–49
Area between curves, 678–687
Arithmetic sequences, 74–80
Artificial objective function, 321
Artificial problem, 320
Artificial variables, 320–329
defined, 320
and equality constraints, 325–327
example of, 323–325

Assets, current, 60
Associative properties, of addition and

multiplication, 4, 6
Associative property, matrix multiplication,

257
Asymptotes, 593–603
horizontal, 595–598
nonvertical, 596
oblique, 596–598
vertical, 593–594

Augmented coefficient matrix, 265–266
reducing, 269–271

Average cost per unit, 505
Average rate of change, 500
Average value of function, 690–692
Average velocity, 500
Axis of symmetry, 145

B
Base, 10
Basic Counting Principle, 349–351
Basic feasible solution (BSF), 309, 316.

See also Degeneracy
Basic variables, 309
Bayes’ formula, 411–419
defined, 414
jelly beans in bag, 416–417
partition, 413
posterior probability, 413
prior probabilities, 413
quality control, 414–416

Bayes’ probability tree, 416
Bernoulli trials, 434
Binomial coefficients, 433
Binomial distribution, 432–437
Bernoulli trials, 434
experiment, 434
independent trials, 433
random variable, 435
theorem, 432–433

Binomial distribution, normal approximation
to, 726–729

Binomials, 15
Binomial theorem, 432–433, 492
Bond redemption, 50–51
Borrower, 212
Bounded feasible region, 301
Bounds of integration, 650
Bounds of summation, 67
Break-even chart, 168
Break-even point, 167–169
Break-even quantity, 168, 169–170
Break-even revenue, 168
BSF (basic feasible solution), 309, 316.

See also Degeneracy
Budget equation, 295
Budget line, 295

C
Calculus, 619, 653–661. See also

Multivariable calculus
Cancelled factors, 23
Case-defined function, 109–110, 466–467,

471–472
Cash flows, 217
Cells, 363–365
Central tendency, 428
Certain event, 370
Chain rule, 519–527
defined, 519
example of, 520–522
marginal-revenue product, 524–525
power rule, 522–524

Change-of-base formula, 198
Chebyshev’s inequality theorem, 429
Clearance rate, 60
Closed half-plane, 295
Closed intervals, 57
Closure properties, of addition and

multiplication, 4
Coefficient matrix, 262, 265
augmented, 265–266
not invertible, 284
reduced, 276

Coefficient of inequality, 686
Coefficients, 15
Column vector, 242
Combinations, 355–361
basic combinational identity, 360–361
committee selection, 357
defined, 356
Pascal’s Triangle, 361
permutations vs., 356–357
poker hand, 357–358
and sets, 358–361
sum of, majority decision and, 358

Common difference, 74–75
Common factors, 20
Common logarithms, 191
Common ratio, 75
Commutative properties, of addition and

multiplication, 4, 5
Compensating balance, 54

I-1
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I-2 Index

Competitive products, 740–742
Complementary products, 740–742
Complement of events, probability of, 370,

371–372
Completing the square, 146
Composition functions, 98–100
Compound amount, 180–181, 209
Compounded continuously. See Interest

compounded continuously
Compound experiment, 394
Compound interest, 209–214
accumulated amount, 180, 209
annual percentage rate, 181, 209
comparing interest rates, 212
compound amount, 180–181, 209
defined, 180, 209
doubling money, 210, 211–212
effective rate, 210–211
example of, 180–181, 209, 210
formula, 209
interest periods, 181
negative interest rates, 212–213
nominal rate, 181, 209
periodic rate, 181, 209
rate per period, 209
solving, 210
tables, 769–776

Concavity, 583–590
criteria for, 585
curve sketching, 587–588
defined, 584
inflection point, 585–587
testing for, 585–586

Conditional probability, 388–394. See also
Probability

advertising, 393–394
defined, 388
of event, 392
formula for, 390
genders of offspring, 393
general multiplication law, 393
jelly beans in bag, 390–391
quality control, 392
reduced sample space, 389
subspace, 389
survey, 391–392
Venn diagram for, 389–390

Constant factor rule, 495
Constant functions, 91–92
derivatives of, 492

Constant of integration, 626
Constants, 15, 29
Constraints
defined, 299
equality, 325–327
multiple, 759–760

Consumers’ surplus, 687–690
Consumption function, 516–517, 645
Continuity, 469–479
applied to inequalities, 474–479
applying definition of, 469–470
case-defined functions, 471–472
continuous, 469
continuous on an interval, 470
continuous on its domain, 470
defined, 469

of derivatives, 490
discontinuous, 469
infinite discontinuity, 471
point of discontinuity, 469
of polynomial functions, 470
post-office function, 472–474
rational function, 471

Continuity correction, 728
Continuous, 469
Continuous annuity, 230, 670–671
Continuous random variables, 714–721
defined, 425
density functions, 714–719
mean, 719–720
standard deviation, 719–720

Contour lines, 126
Convergent, 706
Coordinate axes, 104
Coordinate planes, 124
Coordinates, 3
Corner points, 300, 301
Corollary, 277
Critical points, 573, 747–749
Critical value, 573
Cube roots, 10
Cumulative distribution function, 718–719
Current assets, 60
Current liabilities, 60
Current ratio, 60
Curves, 621
area between, 678–687
normal, 721, 722

Curve sketching, 569–618
absolute extrema, on closed interval,
581–583

applied maxima and minima. SeeMaxima
and minima

concavity. See Concavity
relative extrema, 570–581

D
Decay constant, 185, 696–697
Decimal numbers, nonterminating, 2
Decision variables, 308
Declining-balance depreciation, 206
de Fermat, Pierre, 348
Definite integral, 647–653, 672
area requiring two, 679
computing area by using right-hand
endpoints, 650–651

defined, 650, 654
of derivative, 658
evaluating, 651, 657
finding, by using tables, 669
finding and interpreting, 657–658
integrand, 650
properties of, 656–658
variable of integration, 650

Degeneracy, 316
Degree, of polynomial, 15
Demand, elasticity of, 543–548
Demand curves, 112, 139–140
Demand equation, 89, 140, 141, 164, 201, 543
Demand function, 89, 543
Demand schedule, 91, 112
Demand vectors for an economy, 248

Denominators, rationalizing, 12, 24
Density function, 714–719
defined, 679
example of, 708
exponential, 717–718
normal, 721
normal-distribution, 539
probability, 715
uniform, 716

Departing variable, 310
Dependent events, 402
Dependent variable, 85
Depreciation, 38, 144, 206
Derivative(s), 483–491. See also

Differentiation; Rate of change; Tangent
line

antiderivatives, 625–626
continuity of, 490
defined, 486
definite integral of, 658
difference quotient, 486
differentiability of, 490
differentiable, 486
differentiation, 486
of exponential functions. See Derivatives of
exponential functions

finding, 486–487, 488–490
higher-order, 562–566
higher-order partial derivatives, 744–746
of logarithmic functions. See Derivatives of
logarithmic functions

mixed partial derivatives, 745
partial derivatives, 733–739
as rate of change. See Rate of change
secant line, 483
second order, 562, 563, 744–745
slope of a curve, 484, 487
tangent line. See Tangent line
third order, 562

Derivatives of exponential functions, 537–542
with base 4, 540
to base b, 540–541
different forms, 540–541
functions involving eu, 539
functions involving ex, 538
inverse function rule, 538
normal-distribution density function, 539
power functions, 541

Derivatives of logarithmic functions, 532–537
to base 2, 536
to base 10, 536
to base b, 535–536
derivative of ln x, 533
functions involving ln u, 534
functions involving ln x, 533
functions involving logarithms, 535
overview of, 532–533
rewriting before differentiating, 534–535

Diagonal function, 127
Diagonal matrix, 245
Difference quotient, 89, 486
Difference rule, 496
Differentiability, of derivatives, 490
Differential equations, 692–699
ancient tool, estimating age of, 697
applications of, 699–705
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decay constant, finding, 696–697
defined, 692
exponential growth and decay, 694–697
first-order, 692
general solution, 693
half-life, finding, 696–697
particular solution, 693
population growth, 695–696
separation of variables, 693–694

Differentials, 620–625
computing, 620
curve, 621
defined, 620
estimate change in quantity, 621–622
estimate function value, 622–623
finding dp=dq from dq=dp, 623
finding in terms of dx, 621
tangent line, 621

Differentiation, logarithmic. See Logarithmic
differentiation

Discontinuous, 469. See also Continuity
Discount rate, 218
Discrete random variable, 425–432
central tendency, 428
Chebyshev’s inequality theorem, 429
continuous, 425
defined, 425
dispersion, 428
expected gain, 427–429
expected value, 427
mean, 429–430
probability function, 425
probability histogram, 426
probability table, 426
random variables, 425–427
standard deviation, 428–430
variance, 428–430

Disjoint events, 372–373, 390
Dispersion, 428
Displacement, 500
Distance, 62
Distribution, of random variable, 425–427
Distributive properties, 4–5, 6, 257–258
Divergent, 706
Dividend, 18
Division
defined, 5
fractions, 23–24
before integration, 642
long, 18–19
multinomial by monomial, 18
by zero, 5

Divisor, 18
Domain
of function, 85, 88, 103, 109
of sequence, 71

Double-declining-balance depreciation, 206
Double integrals, 761–764
Double subscripts, 241
Doubling money, 210, 211–212
Doubling period, 712
Dual, linear programming, 335–344
defined, 337
of maximization problem, 339–340
of minimization problem, 340
primal, 337–338

simplex method and, 340–342
slack variable, 339

Duality, 335

E
Economic lot size, 607
Effective rate, 210–211
Elastic, 545
Elasticity, and revenue, 546–547
Elasticity of demand, 543–548
Element, 2
Elementary row operations, 265, 266
Elimination-by-addition method, 154–155
Elimination by substitution, 155–156
Ellipsoid, 127
Empirical probability, 384–385
Empty feasible region, 301, 327–328
Empty set, 2, 34
Endpoints, 57
Entering variable, 310
Entries, matrix, 240, 241
Environmental demand equation, 174
Environmental supply equation, 174
Equality
of functions, 87–90
of matrix, 243
transitive property of, 3

Equality constraints, 325–327
Equality sign, 28, 461
Equally likely outcomes, 374
Equation of degree two. See Quadratic

equations
Equation of motion, 500
Equation of the first degree, 135
Equation of value, 215–217
Equations
absolute-value, 62–63
applications of, 48–54
basic, 286–287
defined, 28
demand, 89
differential. See Differential equations
equivalent, 29–30
examples of, 28–29
exponential. See Exponential equations
fractional, 34–35
graphs, 119
linear. See Linear equations
of lines, 133–136
literal, 32–34, 35
logarithmic. See Logarithmic equations
matrix, 251, 262
mixture, 48
of present value, 215–217
quadratic. See Quadratic equations
radical, 35–36
roots, 107
systems of, applications of. See Systems of
equations, applications of

of tangent line, 487
terminology for, 29

Equilibrium, 164–167
with nonlinear demand, 167
tax effect on, 165–167

Equilibrium price, 164
Equilibrium quantity, 164

Equiprobable spaces, 374–377
defined, 375
equally likely outcomes, 374
probability of simple event, 375
relative frequency, 375
trial, 374

Equivalent equations, 29–30
Equivalent inequalities, 56
Equivalent matrices, 266
Events, 369–373
certain, 370
complement, 370, 371–372
defined, 370
dependent, 402
example of, 370–371
impossible, 370
independent. See Independent events
intersection, 371–372
mutually exclusive/disjoint, 372–373, 379,
383, 409

properties of, 372
simple, 370
union, 370, 371–372
Venn diagram, 370, 389–390

Expected value, 425–432
Exponential density function, 717–718
Exponential distribution, 717
Exponential equations, 200–204
defined, 200
demand equation, 201
oxygen composition, 200
solving, 200–201

Exponential form, 189
Exponential functions, 176–188
with base e, 183–185
compound interest. See Compound interest
with constant base, graph of, 179

defined, 176
derivatives of. See Derivatives of
exponential functions

graphs involving e, 183–184
graphs of, 177–179
hemocytometer and cells, 184–185
natural, 183, 638–639
number e, 182–183
population growth, 181–182, 184
properties of, 178
radioactive decay, 185–186
rules for exponents, 176
transformations of, 179

Exponential growth, and decay, 694–697
Exponential law of decay, 185, 695
Exponential law of growth, 695
Exponents, 10–15
basic laws of, 11
examples of, 12–13
rules for, 176

External demand, 286, 288
Extrema. See Relative extrema
Extreme values, 581
Extreme-value theorem, 581–583

F
Factored expressions, 21
Factorial notation, 93
Factorials, 93
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Factoring, 20–22
Factors, 15
Feasible points, 299
Feasible region, 300, 301
Finance charge, 230
Finite sample space, 367
Finite sequence, 71
First-derivative test for relative extrema,

574–578
First octant, 124
First-order differential equation, 692
Fixed costs, 49, 168
Fractional equations, 34–35
Fractions, 22–28
addition, 24–26
combined operations with, 26
division, 23–24
least common denominator, 25
multiplication, 23
as percentages, 27
rationalizing denominator, 24
simplifying, 22–23
subtraction, 24–26

Function, increasing/decreasing nature of,
570–571

Function of four variables, partial derivatives
of, 736–737

Function of three variables, partial derivatives
of, 736

Functions
average value of, 690–692
combinations of, 96–101
composition, 98–100
defined, 84, 85
demand, 89
dependent variable for, 85
difference quotient, 89
domain of, 85, 88, 109
equality of, 87–90
exponential. See Exponential functions
independent variable for, 85
inverse, 101–104
inverse of, 149–150
linear. See Linear functions
logarithmic. See Logarithmic functions
probability, 390–392
quadratic. See Quadratic functions
range of, 85, 109
rational. See Rational functions
scalar product, 97
of several variables. See Functions, of
several variables

special. See Special functions
supply, 90
values, 86, 88, 109

Functions, of several variables, 120–127
graphing plane, 125
level curves, 126–127
temperature–humidity index,
123–125

3-dimensional rectangular coordinate
system, 123

of two variables, 122–123
Functions of two variables, 746–754
Function-value axis, 107
Fundamental principle of fractions, 8

Fundamental theorem of integral calculus,
653–661

Future value, 214, 223
of annuities, 226–228

G
Gap index, 743
Gauss, Carl Friedrich, 721
Gaussian distribution. See Normal distribution
General linear equation, 135, 136, 158
General multiplication law, 393
General solution, of differential equation,

693
Genetics, 93–94
Geometric manipulation, 118
Geometric sequences, 74–80
Gompertz equation, 204
Graphs/graphing
absolute-value function, 108–109
case-defined function, 109–110
defined, 105
equations, 119
of exponential functions, 177–179
of function, 121
of functions involving e, 183–184
general linear equation, 136
horizontal-line test, 110
intercepts of, 106–108
of inverse, 149–150
limit estimation from, 452–453
of linear function, 141–142
of logarithmic functions, 189–191
plane, 125
quadratic functions, 147–149
square-root function, 108

Graphs in rectangular coordinates, 104–112
absolute-value function, 108–109
coordinate axes, 104
function-value axis, 107
intercepts and, 106–108, 125
origin, 104
points, 104
quadrants, 104–105
rectangular coordinate system, 104
square-root function, 108
vertical-line test, 108, 109
x-intercept, 105, 106
x; y-plane, 104
y-intercept, 105, 106

Grouping symbols, removing, 16–17

H
Half-life, 185, 192–193, 696–697
Half-plane, 295–296
Higher-order derivative, 562–566
Higher-order implicit differentiation, 564–565
Higher-order partial derivatives, 744–746
Histogram, probability, 426
Homogeneous system, 275–278
Horizontal asymptotes, 595–598
Horizontal line equations, 135
Horizontal-line test, 110
Horizontal strips, 683–684, 688–689
Horizontal translation, 119
Horner’s method, 95

I
Identity function, 99
Identity matrix, 260, 281
Identity properties, 4
Imaginary unit, 42
Implicit differentiation, 548–554
higher-order, 564–565

Impossible event, 370
Improper integrals, 706–709
Income tax, 94–95
Indefinite integral, 625–631, 643
of constant and of power of x, 627
constant of integration, 626
of constant times a function, 627–628
defined, 655
finding, 628
integral sign, 626
integrand, 626
of sum, 628–629
of sum and difference, 629
using algebraic manipulation to find,
629–630

variable of integration, 626
Independent events, 401–411. See also Events
aptitude test, 408–409
cards, 404–405, 407–408
defined, 402, 407
dice, 406
example of, 402
sex of offspring, 406–407
smoking and sinusitis, 402–403
special multiplication law, 403
survival rates, 403–404

Independent trials, 433
Index of summation, 67
Indicators, 310
Inelastic, 545
Inequalities
absolute value, 63–64
applications of, 59–62
continuity and, 474–479
defined, 47, 55
equivalent, 56
linear. See Linear inequalities
rules for, 55–56
triangle, 65
usage, example of, 47

Inequality symbol, 55
Infinite geometric sequence, 78
Infinite limits, 461–467
Infinite sequence, 71
Infinity, limits at. See Limits at infinity
Infinity symbol, 480
Inflection point, 585–587
Initial amount, 185
Initial conditions, integration with, 631–635
cost from marginal cost, 634
defined, 631
demand function from marginal revenue,
633–634

income and education, 633
problem, 631–632
problem involving yn, 632

Initial distribution, 439
Initial simplex table, 309
Initial state vector, 439
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Input–output analysis, 286–292
application of inverses, 288
basic equation, 286–287
example of, 290–291
external demand, 286
internal demand, 287
Leontief matrix, 287

Input–output matrix, 286
Input variable, 85
Instantaneous rate of change, 501
Instantaneous velocity, 501
Integers, 2
Integral, definite. See Definite integral
Integral calculus, 619
Integral sign, 626
Integrand, 626, 650
Integration
application of, 644–645
approximate. See Approximate integration
consumption function, 645
definite integral, finding by using tables,
669

differential equations. See Differential
equations

formulas. See Integration formulas
improper integrals, 706–709
indefinite integrals, 643
integrating bu, 643–644
of inverse rule, 666
natural exponential functions and, 638–639
power rule for, 635–638
preliminary division before, 642
techniques of, 642–647

Integration applied to annuities, 669–671
Integration by tables, 666–672
annuities, applied to, 669–671
examples of, 667–668

Integration formulas, 635–642
involving logarithmic functions, 639–640
natural exponential functions and,
638–639

power rule for integration, 635–638
Integration with initial conditions. See Initial

conditions, integration with
Intercepts, 106–108, 114–116, 125
testing, 577–578

Interest, compound. See Compound interest
Interest compounded continuously, 218–222
compound amount, 219
defined, 218
effective rate under, 219–220
present value under, 220
trust fund, 220

Interest periods, 181
Internal demand, 287
Intersection of events, probability of,

371–372
Interval notations, 57
Intervals, 57
Inverse function rule, 538
Inverse functions, 101–104
defined, 101
graphing, 149–150
linear, 102
one-to-one function, 102
restricting domain of, 103

to solve equations, 103
symmetry and, 117

Inverse properties, 4
Inverse rule, integration of, 666
Inverses, 279–285
application of, 288
defined, 279–280
determination of, 281–282
example of, 280
finding, 282–283
to solve a system, 280–281, 283–284

Investment, modeling example, 50
Irrational numbers, 2
Isocost line, 144
Isoprofit line, 126, 144, 301
Isotherms, 126

J
Joint-cost function, 738

L
Laffer, Arthur, 569
Laffer curve, 569
Lagrange multipliers, 754–761
defined, 755
least-cost input combination, 758–759
method of, 756–757
minimizing costs, 757–758
multiple constraints, 759–760

Latency, 542
Law of compound probability, 394
Leading coefficient, 92
Leading entry, matrix, 267
Learning equation, 204
Least common denominator (LCD), 9, 25
Leibniz, Gottfried Wilhelm, 84
Leibniz notation, 486
Lender, 212
Leontief, Wassily W., 286
Leontief matrix, 287, 288–290
Level curves, 126
Liabilities, current, 60
Life-table function, 660, 675
Limits, 451–469
and algebraic manipulation, 457–458
for case-defined function, 466–467
defined, 451, 452
estimation from graph, 452–453
finding, 457–458
form 0=0, 458
infinite, 461–467
nonexistent, 453–454
one-sided, 461
overview, 451–452
perpetuities, 235–236
polynomial function, 456–457
properties of, 454–457
of sequence, 236
special, 458–459

Limits at infinity, 463–467
for polynomial functions, 466
for rational functions, 464–466

Line, symmetry about, 116–117
Linear demand curve, 140
Linear equations
defined, 30

first-degree, 31
solving, 31–32

Linear equations systems, 152–162
three-variable systems, 158–160
two-variable systems, 152–158

Linear functions
applications and, 139–145
defined, 141
demand curves, 139–140
demand equation, 140, 141
determination of, 142–143
diet for hens, 143
graphing, 141–142
inverses of, 102
production levels, 139
supply curves, 139–140
supply equation, 140
in x and y, 299

Linear inequalities, 55–59
defined, 56, 295, 299
rules for, 55–56
solving, 57–58, 296–297
system of, 297–298
in two variables, 295–299

Linearly related variables, 135
Linear programming, 299–306
artificial variables, 320–329
bounded feasible region, 301
corner points, 300
dual. See Dual, linear programming
empty feasible region, 301,
327–328

equality constraints, 325–327
feasible points, 299
feasible region, 300, 301
isoprofit line, 301
linear function in x and y, 299
maximization, 299
minimization, 299, 330–335
nonempty feasible region, 301
nonnegativity conditions, 300
objective function, 299, 300
overview, 294
problems, 299, 303
profit function, 300
and simplex method. See Simplex method
standard maximum linear programming
problem, 307–308

unbounded feasible region, 301
Linear supply curve, 140
Lines, 132–139
equations of, 133–136
forms of equations of lines, 136
general linear equation, 135, 136
horizontal line equations, 135
isocost, 144
isoprofit, 144
linearly related variables, 135
parallel, 137
perpendicular, 137
point-slope form, 134
slope-intercept form, 134–135
slope of. See Slope of line
vertical line equations, 135

Literal constants, 32
Literal equations, 32–34, 35
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Loans, amortization of, 230–234
Logarithm, integral of, 666
Logarithmic differentiation, 554–558
defined, 554
differentiating form uv, 555–558
example of, 555
relative rate of change of a product, 556

Logarithmic equations, 200–204
defined, 200
demand equation, 201
oxygen composition, 200
predator–prey relation, 202
solving, 202–203

Logarithmic form, 189
Logarithmic functions, 188–194
base, 188–189
common logarithms, 191
defined, 188
derivatives of. See Derivatives of
logarithmic functions

graph of, 189–191
integrals involving, 639–640
natural logarithms, 191
properties of. See Logarithms, properties of
radioactive decay and half-life, 192–193
solving, 191–192

Logarithms, properties of, 194–199
base 5, evaluating, 198
change-of-base formula, 198
combining logarithms, 196
expressions, rewriting, 195
expressions, simplifying, 197
finding, 194–195
writing in terms of simpler logarithms,
196

Logistic curve, 700
Logistic function, 700, 701
Logistic growth, 699–702
Long division, 18–19
Lorenz curve, 686
Loss, profit and, 168–169
Lower bound, 650
Lower triangular matrix, 245

M
Main diagonal square matrix, 245
Marginal cost, 504–505, 634, 738–739
Marginal productivity, 740
Marginal propensity to save, 516–517
Marginal revenue, 505–506, 515–516,

633–634
Marginal-revenue product, 524–525
Marginal utility of income, 761
Margin of profit, 54
Markov, Andrei, 437
Markov chains, 437–446
defined, 437
demography, 441
initial state vector, 439
k-state, 438
regular, 443
state vector, 439
steady-state vectors, 442–445
transition matrix, 438, 440
transition probabilities, 438
two-state, 438, 439

Matrix addition, 246–248
defined, 247
example of, 247
properties of, 247–248
scalar multiplication, 248–250

Matrix equations, 251
Matrix/matrices, 241–279
addition. SeeMatrix addition
applications of, 240
coefficient. See Coefficient matrix
column vector, 242
constructing, 243
defined, 242
diagonal, 245
double subscripts, 241
elementary row operations, 265, 266
entries, 240, 241
equality of, 243
equations, 251, 262
equivalent, 266
identity, 260, 281
input-output, 286
inverses of. See Inverses
leading entry, 267
Leontief matrix, 287, 288–290
lower triangular, 245
main diagonal square, 245
multiplication. SeeMatrix multiplication
nonzero-row, 267, 277
operations involving I and 0, 260–261
power of, 261
rectangular arrays, 241, 242
reduced, 267–269
row vector, 242
size of, 242
solving systems by reducing. SeeMethod
of reduction

special, 244–245
square, 244–245
subtraction of, 250–251
transition, 438, 440
transpose of, 244
triangular, 245
upper triangular, 245
zero, 244
zero-row, 267

Matrix multiplication, 253–264
associative property, 257
cost vector, 256
defined, 253
distributive property, 257–258
matrix product, 255–256
power of matrix, 261
properties of, 257–258
raw materials and cost, 258–259
sizes of matrices and their product, 255
transpose of product, 259–260

Maxima and minima, 603–614
critical points, finding, 747–749
dual linear programming, 339–340
economic lot size, 607
for functions of two variables, 746–754
guide for solving applied max–min
problems, 605

linear programming, 299, 330–335
maximization applied to enzymes, 606

maximization of profit, 609–610
maximizing output, 751
maximizing recipients of health-care
benefits, 608

maximizing revenue, 605
maximizing TV cable company revenue,
607–608

minimizing average cost, 606
minimizing cost of fence, 603–605
minimizing costs, 757–758
profit maximization, 751–752
relative, 746
relative extrema, finding, 572, 750
saddle point, 749–750
second-derivative test, 749

Mean, 184, 427, 429–430, 719–720
Method of reduction, 264–279
example of, 267–269
homogeneous system, 275–278
nonhomogeneous system, 275–277
parametric form of solution, 271–273
solving system by, 269–271
two-parameter family of solutions,
274–275

Minimization, 299, 330–335
Mixed partial derivatives, 745
Mixture equations, 48, 157–158
Modeling, 48, 702–703
Monomials, 15, 18
Monopolist, 608
Multinomials, 15, 18
Multiple constraints, 759–760
Multiple integrals, 761–764
Multiple optimal solutions, 301
Multiplication
associative properties of, 4
closure properties of, 4
commutative properties of, 4, 5
fractions, 23
matrix. SeeMatrix multiplication
multinomials, 18
scalar, 248–250

Multiplication law, 403
Multivariable calculus, 732–767
applications of partial derivatives, 738–744
higher-order partial derivatives, 744–746
Lagrange multipliers, 754–761
maxima/minima for functions of two
variables, 746–754

multiple integrals, 761–764
partial derivatives, 733–739

Mutually exclusive events, 372–373, 379,
383, 409

N
Natural exponential function, 183, 638–639
Natural logarithms, 191
Negative, 4, 250
Negative integers, 2
Negative interest rates, 212–213
Net present value (NPV), 217
Newton’s law of cooling, 703–704
Newton’s method, 558–562
defined, 558, 559
recursion formula, 560
root approximation by, 560–561
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Nominal rate, 181, 209, 220
Nonbasic variables, 309
Nonempty feasible region, 301
Nonexistent limits, 453–454
Nonhomogeneous system, 275–277
Nonlinear demand, 167
Nonlinear inequality, 478
Nonlinear systems, 162–164
Nonnegativity conditions, 300
Nonrational function inequality, 478
Nonterminating decimal numbers, 2
Nonvertical asymptote, 596
Nonzero constant, 15
Nonzero-row, of matrix, 267
Normal approximation to binomial

distribution, 726–729
Normal curve, 721, 722
Normal density function, 721
Normal distribution, 721–726
analysis of test scores, 722–723
defined, 721
standard normal variable, 723–725

Normal-distribution density function, 539
Normal random variable, 721
Notations
absolute value, 64
factorial, 93
interval, 57
Leibniz, 486
summation. See Summation notation

Not equal to symbol, 2
NPV (net present value), 217
Number e, 182–183
Numerators, rationalizing, 12
Numerical coefficient, 15

O
Objective function, 299, 300
artificial, 321

Objective row, 309
Oblique asymptotes, 596–598
Octants, 124
Odds, 385–386
One-sided limits, 461
One-to-one correspondence, 3
One-to-one function, 102
Open half-plane, 295
Open intervals, 57
Operating ratio, 82
Operations with algebraic expressions, 15–19
Ordered n-tuple, 121
Ordered pair, 84, 104, 121
Ordered triple, 120–121
Ordinary annuity, 222
Origin, 2, 104, 113–114
Output variable, 85

P
Paired-associate learning, 186
Parabola, 145
Parallel lines, 137
Parameters, 157, 717
Partial derivatives, 733–739
applications of, 738–744
competitive and complementary products,
740–742

defined, 734
finding, 734–735
of function of four variables, 736–737
of function of three variables, 736
higher-order, 744–746
joint-cost function, 738
loss of body heat, 739–740
marginal cost, 738–739
marginal productivity, 740
mixed, 745
production function, 740
second-order, 744–745

Particular solution, of differential equation,
693

Partition, 413
Pascal, Blaise, 348
Pascal’s Triangle, 361
Payment period, annuities, 222
Percentage rate of change, 506–507
Percentages, 27
Periodic payment, of annuities, 225
Periodic rate, 181, 209
Permutations, 351–355
club officers, 352–353
combinations vs., 356–357
defined, 351
legal firm, 353
political questionnaire, 353
with repeated objects, 361–363

Perpendicular lines, 137
Perpetuities, 234–237
defined, 234
limits, 235–236
present value of, 234–235

Pivot column, 311
Pivot entry, 311
Pivot row, 311
Planes, 124, 125
Point elasticity of demand, 544, 545–546
Point of discontinuity, 469
Point of equilibrium, 164, 687
Point of inflection, 585–587
Points, 104
Point-slope form, 134
Poiseuille’s law, 664
Poisson distribution function, 184
Polynomial, 15
Polynomial functions
asymptotes and, 598
continuity of, 470
defined, 92
limits at infinity for, 466
limits of, 456–457

Polynomial inequality, 476–477
Population growth, 181–182, 184
Position function, 500
Positive integers, 2
Posterior probability, 413
Power function, 492, 541
Power rule, 522–524, 538
Power rule for integration, 635–638
Preliminary division, before integration, 642
Present value, 214–218
of annuities, 223–226
under continuous interest, 220
defined, 214

equations of, 215–217
example of, 214–215
investments, comparing, 216
of perpetuities, 234–235
single-payment trust fund, 215

Present value of a continuous annuity, 670
Present value of continuous income stream,

670
Price–quantity relationship, 133
Pricing, 49–50
Primal, 337–338
Principal, 180, 209
Principal nth root, 10
Principal square root, 11
Prior probabilities, 413
Probability, 348, 374–388. See also

Conditional probability
birthday surprise, 380
of complement of events, 370
conditional. See Conditional probability
dice, 381–382
empirical, 384–385
equiprobable spaces. See Equiprobable
spaces

interrupted gambling, 382
of intersection of events, 371
odds, 385–386
opinion poll, 384–385
properties of, 377–382
quality control, 379–380
of union of events, 370, 378
of winning prize, 386

Probability density function. See Density
function

Probability functions, 390–392
Probability histogram, 426
Probability of E, 376
Probability of simple event, 375
Probability table, 426
Probability tree, 394, 416
Producers’ surplus, 687–690
Product, finding, 6–7
Production function, 740
Product rule, 509–519
applying, 510–511
consumption function, 516–517
differentiating product of three factors,
511–512

overview, 510
usage to find slope, 512–513

Profit, 49, 59, 168
Profit function, 300
Profit maximization, 609–610, 751–752
Prolate spheroid, 127
Promissory note, 218
Properties
absolute value, 65
definite integral, 656–658
demand vectors for an economy, 248
events, 372
exponential function, 178
limits, 454–457
logarithmic functions, 194–199
matrix addition, 247–248
matrix multiplication, 257–258
probability, 377–382
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Properties (continued)
real numbers, 3–9
scalar multiplication, 250
summation notation, 69–70

Proportional change, 624
Purchasing, renting vs., 59–60

Q
Quadrants, 104–105
Quadratic equations, 39–45
defined, 39
factoring, solution by, 39–40, 41
fractional equation leading to, 40–41
higher-degree, solving by factoring, 40
with no real roots, 43
with one real roots, 42
quadratic-form, 43
quadratic formula, 41–43
with two real roots, 42

Quadratic formula, 41–43
Quadratic functions, 145–152
axis of symmetry, 145
defined, 92, 145
graphing, 147–149
inverse, graphing, 149–150
maximum revenue, 150–151, 605
parabola, 145
vertex, 145, 146

Quadratic inequality, 476
Quick ratio, 62
Quotient rule, 509–519
applying, 514
differentiating quotients without using, 515
marginal revenue, 515–516, 633–634
overview, 513
rewriting before differentiating, 514–515

R
Radical equations, 35–36
Radicals, 10–15
basic laws of, 11
examples of, 13–14

Radioactive decay, 185–186, 192–193
Random variables, 425–427, 435
Range
of function, 85, 109
of sequence, 72

Rate of change, 499–509. See also
Derivative(s)

applications to economics, 504–505
average, 500
average cost per unit, 505
average velocity, 500
of enrollment, 504
equation of motion, 500
estimating �y by using dy=dx, 502
finding, 503
instantaneous, 501
instantaneous velocity, 501
marginal cost, 504–505
marginal revenue, 505–506
percentage, 506–507
position function, 500
price with respect to quantity, 503
relative, 506–507
total-cost function, 504

total-revenue function, 505
velocity, 501–502
of volume, 503

Rational functions
defined, 92
discontinuities in, 471
inequality, 477–478
limits at infinity for, 464–466

Rationalizing denominators, 12, 24
Rational numbers, 2
Real-number line, 3
Real numbers, 2
properties of, 3–9
sets of, 2–3

Recall interval, 542
Reciprocal, of number, 4, 5
Rectangular area, 48–49
Rectangular arrays, 241, 242
Rectangular coordinate plane, 104
Rectangular coordinate system, 104
Rectangular hyperbola, 107
Recursion formula, 560
Recursively defined sequences, 73–74
Reduced coefficient matrix, 276
Reduced matrix, 267–269
Reduced sample space, 389
Reduction methods, matrices. SeeMethod of

reduction
Reflections
shrinking and, 119–120
translations and, 118–120

Regular Markov chains, 443
Regular transition matrix, 443
Relation, defined, 84
Relative extrema, 570–581
absolute maximum/minimum, 572
condition for, 572
criteria for, 573
critical point, 573
critical value, 573
curve sketching, 577–578
finding, 577
first-derivative test for, 574–578
relative maximum/minimum, 572
second-derivative test for, 591–592
where f 0.x/ does not exist, 576

Relative frequency, 375
Relative maximum/minimum, 746
Relative rate of change, 506–507
Remainder, 19
Rent, apartment, determination of, 51–52
Renting vs. purchasing, 59–60
Repeated objects, permutations with, 361–363
Replacement, sample spaces, 369
Response magnitude, 206
Revenue, elasticity and, 546–547
Right-hand endpoint, 650–651
Root, 10, 29, 107
Row vector, 242
Rules for differentiation, 491–499. See also

Derivative(s)
constant factor rule, 495
derivative, finding, 497
derivative of constant, 492
derivative of xa, 493–494
derivatives of powers of x, 494

differentiating a constant times a function,
495–496

differentiating sums and differences of
functions, 496–497

equation of tangent line, finding,
497–498

rewriting functions in form xa, 494–495
sum/difference rule, 496

S
Saddle point, 749–750
Sample points, 367
Sample spaces, 367–369
defined, 367
finite, 367
jelly beans in bag, 368–369
outcome, 367
poker hand, 369
reduced, 389
replacement, 369
roll of two dice, 369
sample points, 367
three tosses of coin, 368
toss of two coins, 368

Scalar multiplication, 248–250
Scalar product, 97
Scalars, 249
Secant line, 483, 484
Second-degree equation. See Quadratic

equations
Second-derivative test
for functions of two variables, 749
for relative extrema, 591–592

Second-order derivative, 562, 563
Second-order partial derivatives, 744–745
Separation of variables, 693–694
Sequence of length, 70, 71
Sequences, 70–80
arithmetic, 74–80
domain of, 71
equality of, 73
finite, 71
formula for, 72–73
geometric, 74–80
infinite, 71
introduction, 70–73
limits of, 236
range of, 72
recursively defined, 73–74
sums of, 76–78
term of, 71, 72, 75–76
of trials, 394

Sets, 84
combinations and, 358–361
defined, 2
empty, 2, 34
of real numbers, 2–3
solution, 29
union, 64

Shadow price, 337
Shrinking, and reflections, 119–120
Sides, 28
Sigmoid function, 705
Sign chart, 475
Signs. See Symbols
Simple events, 370
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Simplex method, 306–319
basic feasible solution, 309
basic variables, 309
decision variables, 308
defined, 306
departing variable, 310
dual linear programming and,
340–342

entering variable, 310
example of, 314–318
indicators, 310
initial simplex table, 309
nonbasic variables, 309
objective row, 309
pivot column, 311
pivot entry, 311
pivot row, 311
slack variable, 308
solving, 313
standard maximum linear programming
problem, 307–308

Simpson’s rule, 673, 674–676
Single declining-balance depreciation,

206
Single-payment trust fund, 215
Sinking fund, 227–228
Sketching, of surface, 125–126
Slack variable, 308, 339
Slope-intercept form, 134–135
Slope of curve, 484, 487
Slope of line
defined, 132
equations of lines, 133–136
general linear equation, 135, 136
horizontal line equations, 135
parallel line, 137
perpendicular line, 137
point-slope form, 134
price–quantity relationship, 133
slope-intercept form, 134–135
from two points, 134
vertical line equations, 135

Solutions, of equation, 29
Solution set, 29
Special functions, 91–96
absolute-value functions, 93
case-defined function, 92–93
constant functions, 91–92
factorials, 93
genetics, 93–94
Horner’s method, 95
polynomial function. See Polynomial
functions

rational functions. See Rational
functions

Special limits, 458–459
Special matrices, 244–245
Special multiplication law, 403
Special products, 17–18
Square matrix, 244–245
Square-root function, 108
Square roots, 10
Standard deviation, 428–430, 719–720
Standard maximum linear programming

problem, 307–308
Standard normal curve, 722, 781

Standard normal density function, 723
Standard normal distribution, 723
Standard normal random variable,

723–725
Standard units, 723
State vector, 439
Statistics, 348. See also Probability
Statistics application, 679–680
Steady-state vectors, 442–444
Step function, 472
Stochastic processes, 394–398. See also

Markov chains
cards, 394–396
compound experiment, 394
defective computer chips, 396–397
defined, 394
jelly beans in bag, 397–398
law of compound probability, 394
probability tree, 394–395
stages, 394
trials, 394

Straight-line depreciation, 38, 144
Subset, 2
Substitutes products, 741
Substitution, elimination by, 155–156
Subtraction
of algebraic expressions, 16
defined, 5
of fractions, 24–26
of matrices, 250–251

Summation notation, 66–70
bounds of summation, 67
defined, 66, 67
index of summation, 67
properties of, 69–70
sums, evaluating, 67
sums, writing, 67–69

Sum rule, 496
Supply curves, 112, 139–140
Supply equation, 140, 164
Supply function, 90
Surface, sketching, 125–126
Surplus, consumers’ and producers’,

687–690
Surplus variable, 321
Symbols
equality, 28, 461
grouping, removing, 16–17
inequality, 55
infinity, 480
integral sign, 626
not equal to, 2
radical, 11
union, 64
for variables, 29

Symmetry, 113–118
about line, 116–117
axis of, 145
intercepts and, 114–116
and inverse functions, 117
of origin, 113–114
testing, 578
tests for, 114
x-Axis, 113
y-Axis, 113–114

System of inequalities, 297–298

Systems of equations, applications of,
164–171

break-even points, 167–169
equilibrium, 164–167

T
Tangent line
defined, 483
equation of, 487, 497–498
example of, 621
slope of, 485–486
vertical, function with, 488

Temperature–humidity index (THI),
123–125

Term
of annuities, 222
of sequence, 71, 75–76

Theorem of integral calculus, 653–661
Theoretical probabilities, 384
Third-degree equation, 40
Third-order derivative, 562
3-dimensional rectangular coordinate system,

123
Three-variable linear equations systems,

158–160
general linear equation, 158
one-parameter family of solutions,
159–160

solving, 158–159
two-parameter family of solutions, 160

Topographic map, 126
Total cost, 49, 168
Total-cost function, 504
Total revenue, 49, 168
Total-revenue function, 505
Traces, 125
Transformations, 118–119
of exponential functions, 179

Transition matrix, 438, 440, 443
Transitive property of equality, 3, 6
Translations, and reflections, 118–120
Transpose of matrix, 244
Transpose of product, 259–260
Trapezoidal rule, 672–674
Tree diagram, 349
Trend equation, 130
Trials, 394
Triangle inequality, 65
Triangular matrix, 245
Trinomials, 15, 20–21
Triple integrals, 764
Trivial solution, homogeneous system,

276
Two-level tree diagram, 349
Two-point form, 135
Two-state Markov chains, 438, 439
Two-variable functions, 122–123
Two-variable linear equations systems,

152–158
elimination-by-addition method,
154–155

elimination by substitution, 155–156
with infinitely many solutions,
156–157

mixture, 157–158
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U
Unbounded feasible region, 301
Unbounded solution, 316
Unconditional probability, 389,

413
Uniform density function, 716
Uniform distribution, 716
Union, of sets, 64
Union of events, probability of, 370,

371–372, 378
Union symbol, 64
Unit distance, 2
Unit elasticity, 545
Upper bound, 650
Upper triangular matrix, 245

V
Variable costs, 49, 168
Variable of integration, 626, 650

Variables
defined, 29
dependent, 85
independent, 85
restrictions on, 29
symbols for, 29

Variance, 428–430
Vehicle inspection pit, 48–49
Velocity, 501–502
Venn diagram, 370, 389–390
Verhulst–Pearl logistic function,

700
Vertex, 145, 146
Vertical asymptotes, 593–594
Vertical bars, 241
Vertical-line equations, 135
Vertical-line test, 108, 109
Vertical strips, 678, 680–683
Volume, rate of change, 503

X
x-Axis symmetry, 113
x-intercept, 105, 106, 147
x; y-plane, 104

Y
y-Axis symmetry, 113–114
y-intercept, 105, 106

Z
Zeno of Elea, 450
Zero
division by, 5
exponent, 10

Zero-coupon bond, 213
Zero function, 92
Zero matrix, 244
Zero-row, of matrix, 267
Zeros, of function, 107
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Business
Advertising, 393, 465
Break-even point, 168, 169
Break-even quantities, 560
Cashiers making change, 453
Cellular phone network, 713
Competition, 438, 628
Competitive pricing, 251
Competitive/complementary products,
741

Consumer goods sales, 1, 47, 93, 246,
248, 296

Cost/hours of production, 339
Costs, 107, 122, 466
Costs, tracking, 242
Demand equation, 141
Demand function, 463
Depreciation, 178, 190
Distribution, 298
Employees, 181, 435, 524
Equipment, regulation of, 47
Equipment, renting vs. purchasing, 59
Equipment rental, 228, 336
Expansion of, 72
Fast-food chains, 200
Food sales, 89, 511, 575
Health insurance premiums, 92
Income projections, 655
Industrial pollution, 131, 332
Inventory, 255
Inventory build up, 60
Least-cost input, 758
Marginal costs, 505, 626, 738

Marginal revenue, 496, 506, 515
Maximizing output, 751
Maximizing revenue, 607
Minimizing costs, 603, 606, 757
Multiple ventures, 50
Naming of, 353, 363
Oil production, 732
Postal rates, 472
Price reductions, 511
Price-quantity relationship, 133
Pricing, 57, 89, 93, 99
Product warranty, 717
Production, assembled parts, 396
Production, component mixing, 157
Production levels, 131, 139, 247, 323
Production quantities, 316, 349
Production run, units in, 607
Productivity, 457, 740
Profit, 49, 59, 147, 340, 502, 609,
751

Profit and distribution, 335
Promotional campaign, 200
Purchasing power, 183
Quality control, 379, 392, 414, 729
Real estate, 51, 224, 225, 257, 658
Rentals businesses, 108
Resource allocation, 294
Revenue, rate of change in, 627
Revenue function, 456, 511
Revenue projections, 76, 150, 296, 297
Salaries, 57, 725
Selling price/year sold relationship,
133

Service call cost, 142, 466

Supply schedule, 90
Supply-price, changes in, 534
Taxes and, 1, 33, 165, 436, 609
Total revenue, 650
Value of product, 142
Value-added-tax, 1, 33
Workplace, time-analysis matrix, 243

Economics
Amortization of loans, 230, 231
Annuities, 223, 224, 669, 670
Bond redemption, 50
Consumers’/producers’ surplus, 687,
688

Consumption of a country, 645
Current ratio, 60
Demand vectors, 248, 256
Depreciation, 178, 190
Doubling money, 210, 211
Effective rate of interest, 211, 212
Financing a car, 208
Interest, effective rate of, 211, 212
Interest, nominal rate of, 209, 211, 224
Interest compounded annually, 77,
180, 227

Interest compounded continuously,
191, 219

Interest compounded daily, 209, 210
Interest compounded monthly, 211,
212, 224

Interest compounded quarterly, 212,
224



Haeussler-50501 CVR_HAEU1107_14_SE_IBC November 24, 2017 16:56

Interest from investments, 154, 180
Interest on inactive bank account, 72
Investment returns, comparing, 179
Investments, growth of, 177
Investments in multiple ventures, 50,
216

Loan payments, 233
Net present value, 217
Nominal rate of interest, 209, 211, 224
Present value, 220, 223, 224
Reduced payments on debt, 215, 216
Retirement investments, 154, 227
Savings accounts, 179, 209, 210
Savings rate in US, 629
Stock portfolio, 269, 283
Trust fund, 215, 220

Life Sciences
Acceleration of objects, 563, 632
Age dating, 697
Animal food purchases, 271
Animals, feeding, 57, 156
Area, finding, 88
Bacteria growth, 176, 189, 631
Blood alcohol concentration levels, 83
Body heat loss, 739
Chemistry, half-life, 192, 696
Dietary supplements, 156, 270, 340
Diseases, 411, 551
Drug concentration in bloodstream,
577

Drug dosages, 135, 512
Earthquakes, measurement of, 189,
196, 197, 202, 536

Environmental impacts, 131, 332
Enzyme formation, rate of, 606
Fahrenheit–Celsius conversion, 136
Food and nutrition, 57, 143, 156,
271

Genetics, 93, 393, 406
Geometry, 99, 100, 455, 476, 503,
507, 552

Health-care recipients, 608
Life expectancy, 719
Light intensity of clear liquid, 693
Medicine, body elimination of,
706

Oil slick, size of, 674
Oxygen composition, 200
Predator-pray relation, 202
Radioactive decay, 185
Recycling, 189
Smoking and sinusitis, 402
Solutions, mixing, 48, 157
Survival rates, 403
Temperature, changes in, 539, 638
Temperature-humidity index, 123
Throwing objects, 148, 488, 503
Time of murder, 703
Velocity of moving object, 520
Weight, absolute value of, 64
Wind chill factor, 739
Yeast, growth of, 184, 675

Social Sciences
Art display in gallery, 364
Club membership/officers, 352, 701
Committee selections, 357

Communications, 607, 713
Computer viruses, spreading, 175
Conservation, encouraging, 109
Demographics, 441, 448, 675
Education, enrollment, 74, 134, 504
Education, expenses, 106, 256
Education, income expectations, 633
Education, promotion committee, 358
Education, testing, 386, 408, 722
Educational scholarships, 235
Gambling, 348, 382
Games, 424
Games, cards, 377, 394, 396, 404,
407

Games, poker hand, 357, 369, 377
Games, roll of a die, 350, 369, 381,
406, 433

Games coin tosses, 350, 367, 368, 370,
376, 402, 435

Gender makeup on committee, 377
Hospital discharges, 621
Message encoding, 280, 282
Opinion poll, 384
Passenger wait time, 716
Passengers in vehicles, assigning, 364
Political questionnaire, 353
Population, growth rate of, 75, 181,
184, 628, 695, 699

Population, of fish in habitat, 482
Probability of same day birthday, 380
Rumor spreading, 702
Surveys, 391
Travel routes, determining, 350
Vocabulary memorization, 639
Winning a prize, probability of, 386,
728
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About the Cover

The Royal Ontario Museum (ROM) in Toronto, Canada, opened in 

March 1914. The ROM has undergone several overhauls, the most 

dramatic being the addition of Daniel Libeskind’s Lee-Chin Crystal, 

finished in June of 2007. The soaring glass and metal structure leads 

a visitor from the chaos of the street to the more serene atmosphere 

of the museum. Like many modern buildings, the Crystal embodies 

application of many areas of mathematics in many ways. Readers of 

the linear programming chapter (7) of this book may find it useful to 

glance at the cover while contemplating routes, via edges, between 

the vertices of similar structures.
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