

Table of Contents
Deep Learning with TensorFlow - Second Edition

Why subscribe?
PacktPub.com

Contributors
About the authors
About the reviewers
Packt is Searching for Authors Like You

Preface
Who this book is for
What this book covers
To get the most out of this book

Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

1. Getting Started with Deep Learning
A soft introduction to machine learning

Supervised learning
Unbalanced data
Unsupervised learning
Reinforcement learning
What is deep learning?

Artificial neural networks
The biological neurons
The artificial neuron

How does an ANN learn?
ANNs and the backpropagation algorithm
Weight optimization
Stochastic gradient descent

Neural network architectures
Deep Neural Networks (DNNs)

Multilayer perceptron

Deep Belief Networks (DBNs)
Convolutional Neural Networks (CNNs)
AutoEncoders
Recurrent Neural Networks (RNNs)
Emergent architectures

Deep learning frameworks
Summary

2. A First Look at TensorFlow
A general overview of TensorFlow
What's new from TensorFlow v1.6 forwards?

Nvidia GPU support optimized
Introducing TensorFlow Lite
Eager execution
Optimized Accelerated Linear Algebra (XLA)

Installing and configuring TensorFlow
TensorFlow computational graph
TensorFlow code structure

Eager execution with TensorFlow
Data model in TensorFlow

Tensor
Rank and shape
Data type
Variables
Fetches
Feeds and placeholders

Visualizing computations through TensorBoard
How does TensorBoard work?

Linear regression and beyond
Linear regression revisited for a real dataset

Summary
3. Feed-Forward Neural Networks with TensorFlow

Feed-forward neural networks (FFNNs)
Feed-forward and backpropagation
Weights and biases
Activation functions

Using sigmoid
Using tanh

Using ReLU
Using softmax

Implementing a feed-forward neural network
Exploring the MNIST dataset

Softmax classifier
Implementing a multilayer perceptron (MLP)

Training an MLP
Using MLPs

Dataset description
Preprocessing
A TensorFlow implementation of MLP for client-subscription

assessment
Deep Belief Networks (DBNs)

Restricted Boltzmann Machines (RBMs)
Construction of a simple DBN
Unsupervised pre-training
Supervised fine-tuning

Implementing a DBN with TensorFlow for client-subscription
assessment
Tuning hyperparameters and advanced FFNNs

Tuning FFNN hyperparameters
Number of hidden layers
Number of neurons per hidden layer
Weight and biases initialization
Selecting the most suitable optimizer
GridSearch and randomized search for hyperparameters

tuning
Regularization
Dropout optimization

Summary
4. Convolutional Neural Networks

Main concepts of CNNs
CNNs in action
LeNet5
Implementing a LeNet-5 step by step

AlexNet
Transfer learning

Pretrained AlexNet
Dataset preparation
Fine-tuning implementation

VGG
Artistic style learning with VGG-19
Input images
Content extractor and loss
Style extractor and loss
Merger and total loss
Training

Inception-v3
Exploring Inception with TensorFlow

Emotion recognition with CNNs
Testing the model on your own image
Source code

Summary
5. Optimizing TensorFlow Autoencoders

How does an autoencoder work?
Implementing autoencoders with TensorFlow
Improving autoencoder robustness

Implementing a denoising autoencoder
Implementing a convolutional autoencoder

Encoder
Decoder

Fraud analytics with autoencoders
Description of the dataset
Problem description
Exploratory data analysis
Training, validation, and testing set preparation
Normalization
Autoencoder as an unsupervised feature learning algorithm
Evaluating the model

Summary
6. Recurrent Neural Networks

Working principles of RNNs
Implementing basic RNNs in TensorFlow
RNN and the long-term dependency problem

Bi-directional RNNs
RNN and the gradient vanishing-exploding problem

LSTM networks
GRU cell

Implementing an RNN for spam prediction
Data description and preprocessing

Developing a predictive model for time series data
Description of the dataset
Pre-processing and exploratory analysis
LSTM predictive model
Model evaluation

An LSTM predictive model for sentiment analysis
Network design
LSTM model training
Visualizing through TensorBoard
LSTM model evaluation

Human activity recognition using LSTM model
Dataset description
Workflow of the LSTM model for HAR
Implementing an LSTM model for HAR

Summary
7. Heterogeneous and Distributed Computing

GPGPU computing
The GPGPU history
The CUDA architecture
The GPU programming model

The TensorFlow GPU setup
Update TensorFlow
GPU representation
Using a GPU
GPU memory management
Assigning a single GPU on a multi-GPU system
The source code for GPU with soft placement
Using multiple GPUs

Distributed computing
Model parallelism
Data parallelism

The distributed TensorFlow setup
Summary

8. Advanced TensorFlow Programming
tf.estimator

Estimators
Graph actions
Parsing resources
Flower predictions

TFLearn
Installation
Titanic survival predictor

PrettyTensor
Chaining layers
Normal mode
Sequential mode
Branch and join
Digit classifier

Keras
Keras programming models

Sequential model
Sentiment classification of movie reviews

Functional API
SqueezeNet

Summary
9. Recommendation Systems Using Factorization Machines

Recommendation systems
Collaborative filtering approaches
Content-based filtering approaches
Hybrid recommender systems
Model-based collaborative filtering

Movie recommendation using collaborative filtering
The utility matrix
Description of the dataset

Ratings data
Movies data
Users data

Exploratory analysis of the MovieLens dataset

Implementing a movie RE
Training the model with the available ratings
Inferencing the saved model
Generating the user-item table
Clustering similar movies
Movie rating prediction by users
Finding top k movies
Predicting top k similar movies
Computing user-user similarity

Evaluating the recommender system
Factorization machines for recommendation systems

Factorization machines
Cold-start problem and collaborative-filtering approaches

Problem definition and formulation
Dataset description

Workflow of the implementation
Preprocessing

Training the FM model
Improved factorization machines

Neural factorization machines
Dataset description
Using NFM for the movie recommendation

Model training
Model evaluation

Summary
10. Reinforcement Learning

The RL problem
OpenAI Gym

OpenAI environments
The env class
Installing and running OpenAI Gym

The Q-Learning algorithm
The FrozenLake environment

Deep Q-learning
Deep Q neural networks
The Cart-Pole problem

Deep Q-Network for the Cart-Pole problem

The Experience Replay method
Exploitation and exploration
The Deep Q-Learning training algorithm

Summary
Other Books You May Enjoy

Leave a review – let other readers know what you think
Index

Deep Learning with TensorFlow
- Second Edition

Deep Learning with TensorFlow
- Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Acquisition Editors: Ben Renow-Clarke, Suresh Jain

Project Editor: Savvy Sequeira

Content Development Editors: Jo Lovell

Technical Editor: Nidhisha Shetty

Copy Editor: Safis Editing

Indexers: Tejal Daruwale Soni

Graphics: Tom Scaria

Production Coordinator: Arvindkumar Gupta

First published: April 2017

Second edition: March 2018

Production reference: 1290318

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78883-110-9

www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over
5,000 books and videos, as well as industry leading tools to help you
plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical
eBooks and Videos from over 4,000 industry professionals

http://www.packtpub.com/

Learn better with Skill Plans built especially for you
Get a free eBook or video every month
Mapt is fully searchable
Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com/
mailto:service@packtpub.com
http://www.packtpub.com/

Contributors
About the authors
Giancarlo Zaccone has over ten years of experience in managing
research projects in scientific and industrial areas.

Giancarlo worked as a researcher at the CNR, the National
Research Council of Italy. As part of his data science and software
engineering projects, he gained experience in numerical computing,
parallel computing, and scientific visualization.

Currently, Giancarlo is a senior software and system engineer, based
in the Netherlands. Here he tests and develops software systems for
space and defense applications.

Giancarlo holds a master's degree in Physics from the Federico II of
Naples and a 2nd level postgraduate master course in Scientific
Computing from La Sapienza of Rome.

Giancarlo is the author of the following books: Python Parallel
Programminng Cookbook, Getting Started with TensorFlow, Deep
Learning with TensorFlow, all by Packt Publishing.

You can follow him at https://it.linkedin.com/in/giancarlozaccone.

Md. Rezaul Karim is a research scientist at Fraunhofer FIT,
Germany. He is also pursuing his PhD at the RWTH Aachen
University, Aachen, Germany. He holds BSc and MSc degrees in
Computer Science. Before joining Fraunhofer FIT, Rezaul had been
working as a researcher at Insight Centre for Data Analytics, Ireland.
Previously, he worked as a Lead Engineer at Samsung Electronics.
He also worked as a research assistant at Database Lab, Kyung
Hee University, Korea and as an R&D engineer with BMTech21
Worldwide, Korea.

https://it.linkedin.com/in/giancarlozaccone

Rezaul has over 9 years of experience in research and development
with a solid understanding of algorithms and data structures in C,
C++, Java, Scala, R, and Python. He has published several research
papers and technical articles concerning Bioinformatics, Semantic
Web, Big Data, Machine Learning and Deep Learning using Spark,
Kafka, Docker, Zeppelin, Hadoop, and MapReduce.

Rezaul is also equally competent with (deep) machine learning
libraries such as Spark ML, Keras, Scikit-learn, TensorFlow,
DeepLearning4j, MXNet, and H2O. Moreover, Rezaul is the author of
the following books:

Large-Scale Machine Learning with Spark, Deep Learning with
TensorFlow, Scala and Spark for Big Data Analytics, Predictive
Analytics with TensorFlow, Scala Machine Learning Projects, all by
Packt Publishing.

Writing this book was made easier by amazing efforts by many
open source communities and documentation about many
projects. Further, I would like to thank a wonderful team at Packt
for their sincere cooperation and coordination. Finally, I appreciate
numerous efforts by the TensorFlow community and all those who
have contributed to APIs, whose work ultimately brought the
machine learning to the masses!

About the reviewers
Motaz Saad holds a PhD in Computer Science from the University of
Lorraine. He loves data and likes to play with it. Motaz has over ten
years of professional experience in NLP, computational linguistics,
and data science machine learning. Motaz currently works as an
assistant professor at the faculty of Information Technology, IUG.

Sefik Ilkin Serengil received his MSc in Computer Science from the
Galatasaray University in 2011.

Sefik has been working as a software developer for a FinTech
company since 2010. Currently, he is a member of the AI team as a
data scientist in this company.

Sefik's current research interests are Machine Learning and
Cryptography. He has published several research papers on these
topics. Nowadays, he enjoys speaking to communities about these
disciplines.

Sefik has also created several online courses on Machine Learning.

Vihan Jain has made several key contributions to the open-sourced
TensorFlow project. He has been advocating for the adoption of
TensorFlow since two years. Vihan has given tech-talks and has
taught tutorials on TensorFlow at various conferences. His research
interests include reinforcement learning, wide and deep learning,
recommendation systems, and machine learning infrastructure.
Vihan graduated from the Indian Institute of Technology, Roorkee, in
2013 with the President's gold medal.

I express my deepest gratitude to my parents, brother, sister, and
my good friend and mentor, Eugene Ie.

Packt is Searching for Authors
Like You
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with
thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com/

Preface
Every week, we follow news of applications and the shocking results
obtained from them, thanks to the artificial intelligence algorithms
applied in different fields. What we are witnessing is one of the
biggest accelerations in the entire history of this sector, and the main
suspect behind these important developments is called deep
learning.

Deep learning comprises a vast set of algorithms that are based on
the concept of neural networks and expand to contain a huge
number of nodes that are disseminated at several levels of depth.

Though the concept of neural networks, the so-called Artificial Neural
Network (ANN), dates back to the late 1940s, initially, they were
difficult to be used because of the need for huge computational
power resources and the lack of data required to train the algorithms.
Presently, the ability to use graphics processors (GPUs) in parallel to
perform intensive calculation operations has completely opened the
way to the use of deep learning.

In this context, we propose the second edition of this book, with
expanded and revised contents that introduce the core concepts of
deep learning, using the last version of TensorFlow.

TensorFlow is Google's open-source framework for the
mathematical, Machine Learning, and Deep Learning capabilities,
released in 2011. Subsequently, TensorFlow has been widely
adopted in academia, research, and industry. Recently, the most
stable version 1.6 has been released with a unified API. The most
stable version of TensorFlow at the time of writing was version 1.6,
which was released with a unified API and is thus a significant and
stable version in the TensorFlow roadmap. This book also discusses
and is compliant with the pre-release version, 1.7, which was
available during the production stages of this book.

TensorFlow provides the flexibility needed to implement and
research cutting-edge architectures, while allowing users to focus on
the structure of their models as opposed to mathematical details.

You will learn deep learning programming techniques with hands-on
model building, data collection, transformation, and much more!

Enjoy reading!

Who this book is for
This book is dedicated to developers, data analysts, and deep
learning enthusiasts who do not have much background with
complex numerical computations, but want to know what deep
learning is. The book majorly appeals to beginners who are looking
for a quick guide to gain some hands-on experience with deep
learning.

What this book covers
Chapter 1, Getting Started with Deep Learning, covers the concepts
that will be found in all the subsequent chapters. The basics of
machine learning and deep learning are also discussed. We will also
look at Deep learning architectures that are distinguished from the
more commonplace single-hidden-layer neural networks by their
depth, that is, the number of node layers through which data passes
in a multistep process of pattern recognition. We will also analyze
these architectures with a chart summarizing all the neural networks
from where most of the deep learning algorithm evolved. The
chapter ends with an analysis of the major deep learning
frameworks.

Chapter 2, A First Look at TensorFlow, gives a detailed description
of the main TensorFlow features based on a real-life problem,
followed by a detailed discussion on TensorFlow installation and
configurations. We then look at a computation graph, data, and
programming model before getting started with TensorFlow. Toward
the end of the chapter, we will look at an example of implementing
the linear regression model for predictive analytics.

Chapter 3, Feed-Forward Neural Networks with TensorFlow,
demonstrates the theoretical background of different Feed-Forward
Neural Networks' (FFNNs) architectures such as Deep Belief
Networks (DBNs) and Multilayer Perceptron (MLP). We will then see
how to train and analyze the performance metrics that are needed to
evaluate the models; also, how to tune the hyperparameters for
FFNNs for better and optimized performance. We will also look at
two examples using MLP and DBN on how to build very robust and
accurate predictive models for predictive analytics on a bank
marketing dataset.

Chapter 4, Convolutional Neural Networks, introduces the networks
of CNNs that are the basic blocks of a Deep Learning-based image
classifier. We will consider the most important CNN architectures,
such as Lenet, AlexNet, Vgg, and Inception with hands-on

examples, specifically for AlexNet and Vgg. We will then examine
the transfer learning and style learning techniques. We will end the
chapter by developing a CNN to train a network on a series of facial
images to classify their emotional stretch.

Chapter 5, Optimizing TensorFlow Autoencoders, provides sound
theoretical background on optimizing autoencoders for data
denoising and dimensionality reduction. We will then look at how to
implement an autoencoder, gradually moving over to more robust
autoencoder implementation, such as denoising autoencoders and
convolutional autoencoders. Finally, we will look at a real-life
example of fraud analytics using an autoencoder.

Chapter 6, Recurrent Neural Networks, provides some theoretical
background of RNNs. We will also look at a few examples for
implementing predictive models for classification of images,
sentiment analysis of movies, and products spam prediction for NLP.
Finally, we'll see how to develop predictive models for time series
data.

Chapter 7, Heterogeneous and Distributed Computing, shows the
fundamental topic to execute TensorFlow models on GPU cards and
distributed systems. We will also look at basic concepts with
application examples.

Chapter 8, Advanced TensorFlow Programming, gives an overview
of the following TensorFlow-based libraries: tf.contrib.learn,
Pretty Tensor, TFLearn, and Keras. For each library, we will describe
the main features with applications.

Chapter 9, Recommendation Systems using Factorization Machines,
provides several examples on how to develop recommendation
system for predictive analytics followed by some theoretical
background of recommendation systems. We will then look at an
example of developing a movie recommendation engine using
collaborative filtering and K-means. Considering the limitations of
classical approaches, we'll see how to use Neural Factorization

Machines for developing more accurate and robust recommendation
systems.

Chapter 10, Reinforcement Learning, covers the basic concepts of
RL. We will experience the Q-learning algorithm, which is one of the
most popular reinforcement learning algorithms. Furthermore, we'll
introduce the OpenAI gym framework that is a TensorFlow
compatible toolkit for developing and comparing reinforcement
learning algorithms. We end the chapter with the implementation of a
Deep Q-Learning algorithm to resolve the cart-pole problem.

To get the most out of this book
A rudimentary level of programming in one language is
assumed, as is a basic familiarity with computer science
techniques and technologies, including a basic awareness of
computer hardware and algorithms. Some competence in
mathematics is needed to the level of elementary linear algebra
and calculus.
Software: Python 3.5.0, Pip, pandas, numpy, tensorflow,
Matplotlib 2.1.1, IPython, Scipy 0.19.0, sklearn, seaborn, tffm,
and many more
Step: Issue the following command on Terminal on Ubuntu:

$ sudo pip3 install pandas numpy tensorflow

sklearn seaborn tffm

Nevertheless, installing guidelines are provided in the chapters.

Download the example code files
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the on-

screen instructions.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of any of the following:

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for macOS
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Deep-Learning-with-TensorFlow-
Second-Edition. We also have other code bundles from our rich
catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/DeepLearnin
gwithTensorFlowSecondEdition_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names,
folder names, filenames, file extensions, pathnames, dummy URLs,
user input, and Twitter handles. For example; " This means that
using tf.enable_eager_execution() is recommended."

A block of code is set as follows:

import tensorflow as tf # Import TensorFlow

x = tf.constant(8) # X op

y = tf.constant(9) # Y op

z = tf.multiply(x, y) # New op Z

sess = tf.Session() # Create TensorFlow session

out_z = sess.run(z) # execute Z op

sess.close() # Close TensorFlow session

print('The multiplication of x and y: %d' %

out_z)# print result

https://github.com/PacktPublishing/Deep-Learning-with-TensorFlow-Second-Edition
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DeepLearningwithTensorFlowSecondEdition_ColorImages.pdf

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

import tensorflow as tf # Import TensorFlow

x = tf.constant(8) # X op

y = tf.constant(9) # Y op

z = tf.multiply(x, y) # New op Z

sess = tf.Session() # Create TensorFlow session

out_z = sess.run(z) # execute Z op

sess.close() # Close TensorFlow session

print('The multiplication of x and y: %d' %

out_z)# print result

Any command-line input or output is written as follows:

>>>

MSE: 27.3749

Bold: Indicates a new term, an important word, or words that you
see on the screen, for example, in menus or dialog boxes, also
appear in the text like this. For example: " Now let's move to
http://localhost:6006 and on click on the GRAPH tab."

Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email <feedback@packtpub.com>, and mention the
book's title in the subject of your message. If you have questions
about any aspect of this book, please email us at
<questions@packtpub.com>.

Errata: Although we have taken every care to ensure the accuracy
of our content, mistakes do happen. If you have found a mistake in
this book we would be grateful if you would report this to us. Please
visit, http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any
form on the Internet, we would be grateful if you would provide us
with the location address or website name. Please contact us at
<copyright@packtpub.com> with a link to the material.

If you are interested in becoming an author: If there is a topic that
you have expertise in and you are interested in either writing or
contributing to a book, please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packtpub.com.

mailto:feedback@packtpub.com
mailto:questions@packtpub.com
http://www.packtpub.com/submit-errata
mailto:copyright@packtpub.com
http://authors.packtpub.com/
http://packtpub.com/

Chapter 1. Getting Started with
Deep Learning
This chapter explains some of the basic concepts of Machine
Learning (ML) and Deep Learning (DL) that will be used in all the
subsequent chapters. We will start with a brief introduction to ML.
Then we will move to DL, which is a branch of ML based on a set of
algorithms that attempt to model high-level abstractions in data.

We will briefly discuss some of the most well-known and widely used
neural network architectures, before moving on to coding with
TensorFlow in Chapter 2, A First Look at TensorFlow. In this chapter,
we will look at various features of DL frameworks and libraries, such
as the native language of the framework, multi-GPU support, and
aspects of usability.

In a nutshell, the following topics will be covered:

A soft introduction to ML
Artificial neural networks
ML versus DL
DL neural network architectures
Available DL frameworks

A soft introduction to machine
learning
ML is about using a set of statistical and mathematical algorithms to
perform tasks such as concept learning, predictive modeling,
clustering, and mining useful patterns. The ultimate goal is to
improve the learning in such a way that it becomes automatic, so
that no more human interactions are needed, or at least to reduce
the level of human interaction as much as possible.

We now refer to a famous definition of ML by Tom M. Mitchell
(Machine Learning, Tom Mitchell, McGraw Hill), where he explained
what learning really means from a computer science perspective:

"A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with

experience E."

Based on this definition, we can conclude that a computer program
or machine can do the following:

Learn from data and histories called training data
Improve with experience
Interactively enhance a model that can be used to predict
outcomes of questions

Almost every machine-learning algorithm we use can be treated as
an optimization problem. This is about finding parameters that
minimize some objective function, such as a weighted sum of two
terms such as a cost function and regularization (log-likelihood and
log-prior, respectively, in statistics).

Typically, an objective function has two components: a regularizer,
which controls the complexity of the model, and the loss, which
measures the error of the model on the training data (we’ll look into
the details).

On the other hand, the regularization parameter defines the trade-off
between the two goals of minimizing the loss of the training error and
of minimizing the model's complexity in an effort to avoid overfitting.
Now if both of these components are convex, then their sum is also
convex; else it is nonconvex.

Note

In machine learning, overfitting is when the predictor model fits
perfectly on the training examples, but does badly on the test
examples. This often happens when the model is too complex and
trivially fits the data (too many parameters), or when there is not
enough data to accurately estimate the parameters. When the
ratio of model complexity to training set size is too high, overfitting
will typically occur.

More elaborately, while using an ML algorithm, our goal is to obtain
the hyperparameters of a function that returns the minimum error
when making predictions. The error loss function has a typically U-
shaped curve, when visualized on a two-dimensional plane, and
there exists a point, which gives the minimum error.

Therefore, using a convex optimization technique, we can minimize
the function until it converges toward the minimum error (that is, it
tries to reach the middle region of the curve), which represents the
minimum error. Now that a problem is convex, it is usually easier to
analyze the asymptotic behavior of the algorithm that shows how fast
it converges as the model observes more and more training data.

The challenge of ML is to allow a computer to learn how to
automatically recognize complex patterns and make decisions as
intelligently as possible. The entire learning process requires a
dataset, as follows:

Training set: This is the knowledge base used to fit the
parameters of the machine-learning algorithm. During this
phase, we would use the training set to find the optimal weights,
with the back-prop rule, and all the parameters to set before the
learning process begins (hyperparameters).
Validation set: This is a set of examples used to tune the
parameters of an ML model. For example, we would use the
validation set to find the optimal number of hidden units, or
determine a stopping point for the back-propagation algorithm.
Some ML practitioners refer to it as development set or dev
set.

Test set: This is used for evaluating the performance of the
model on unseen data, which is called model inferencing. After
assessing the final model on the test set, we don't have to tune
the model any further.

Learning theory uses mathematical tools that derive from probability
theory and information theory. Three learning paradigms will be
briefly discussed:

Supervised learning
Unsupervised learning
Reinforcement learning

The following diagram summarizes the three types of learning, along
with the problems they address:

Figure 1: Types of learning and related problems.

Supervised learning
Supervised learning is the simplest and most well-known automatic
learning task. It is based on a number of pre-defined examples, in
which the category where each of the inputs should belong is

already known. In this case, the crucial issue is the problem of
generalization. After the analysis of a typical small sample of
examples, the system should produce a model that should work well
for all possible inputs.

The following figure shows a typical workflow of supervised learning.
An actor (for example, an ML practitioner, data scientist, data
engineer, or ML engineer) performs ETL (Extraction,
Transformation, and Load) and necessary feature engineering
(including feature extraction, selection) to get the appropriate data,
with features and labels.

Then he does the following:

Splits the data into the training, development, and test set
Uses the training set to train an ML model
Uses the validation set for validating the training against the
overfitting problem, and regularization
Evaluates the model's performance on the test set (that is,
unseen data)
If the performance is not satisfactory, he performs additional
tuning to get the best model, based on hyperparameter
optimization
Finally, he deploys the best model into a production-ready
environment

In the overall lifecycle, there might be many actors involved (for
example, data engineer, data scientist, or ML engineer) to perform
each step independently or collaboratively:

Figure 2: Supervised learning in action.

In supervised ML, the set consists of labeled data, that is, objects
and their associated values for regression. This set of labeled
examples, therefore, constitutes the training set. Most supervised
learning algorithms share one characteristic: the training is
performed by the minimization of a particular loss or cost function,
representing the output error provided by the system, with respect to
the desired output.

The supervised learning context includes classification and
regression tasks: classification is used to predict which class a data
point is a part of (discrete value) while regression is used to predict
continuous values:

Figure 3: Classification and regression

In other words, the classification task predicts the label of the class
attribute, while the regression task makes a numeric prediction of the
class attribute.

Unbalanced data
In the context of supervised learning, unbalanced data refers to
classification problems where we have unequal instances for
different classes. For example, if we have a classification task for
only two classes, balanced data would mean 50% preclassified
examples for each of the classes.

If the input dataset is a little unbalanced (for example, 60% for one
class and 40% for the other class) the learning process will be
required to randomly split the input dataset into three sets, with 50%
for the training set, 20% for the validation set, and the remaining
30% for the testing set.

Unsupervised learning
In unsupervised learning, an input set is supplied to the system
during the training phase. In contrast with supervised learning, the
input objects are not labeled with their class. This type of learning is
important because, in the human brain, it is probably far more
common than supervised learning.

For the classification, we assume that we are given a training
dataset of correctly labeled data. Unfortunately, we do not always
have that luxury when we collect data in the real world. The only
object in the domain of learning models, in this case, is the observed
data input, which is often assumed to be independent samples of an
unknown underlying probability distribution.

For example, suppose that you have a large collection of non-pirated
and totally legal MP3s in a crowded and massive folder on your hard
drive. How could you possibly group together songs without direct
access to their metadata? One possible approach could be a mixture
of various ML techniques, but clustering is often at the heart of the
solution.

Now, what if you could build a clustering predictive model that could
automatically group together similar songs, and organize them into
your favorite categories such as "country", "rap" and "rock"? The
MP3 would be added to the respective playlist in an unsupervised
way. In short, unsupervised learning algorithms are commonly used
in clustering problems:

Figure 4: Clustering techniques: an example of unsupervised learning

See the preceding diagram to get an idea of a clustering technique
being applied to solve this kind of problem. Although the data points
are not labeled, we can still do the necessary feature engineering,
and group a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense) to each
other, than to those in other groups (clusters).

This is not easy for a human, because a standard approach is to
define a similarity measure between two objects and then look for
any cluster of objects that are more similar to each other than they
are to the objects in the other clusters. Once we do the clustering,
the validation of data points (that is, MP3 files) is completed and we
know the pattern of the data (that is, what type of MP3 files fall in to
which group).

Reinforcement learning
Reinforcement learning is an artificial intelligence approach that
focuses on the learning of the system through its interactions with
the environment. With reinforcement learning, the system adapts its
parameters based on feedback received from the environment,
which then provides feedback on the decisions made. The following
diagram shows a person making decisions in order to arrive at their
destination. Suppose that, on your drive from home to work, you
always choose the same route. However, one day your curiosity

takes over and you decide to try a different route, in the hope of
finding a shorter commute. This dilemma of trying out new routes, or
sticking to the best-known route, is an example of exploration
versus exploitation:

Figure 5: An agent always tries to reach the destination.

Another example is a system that models a chess player, that uses
the result of its preceding moves to improve its performance. This is
a system that learns with reinforcement.

Current research on reinforcement learning is highly interdisciplinary,
including researchers specializing in genetic algorithms, neural
networks, psychology, and control engineering.

What is deep learning?
Simple ML methods that were used in the normal size data analysis
are not effective anymore, and should be substituted for more robust
ML methods. Although classical ML techniques allow researchers to

identify groups, or clusters, of related variables, the accuracy and
effectiveness of these methods diminishes with large and high-
dimensional datasets.

Therefore, here comes DL, which is one of the most important
developments in artificial intelligence in the last few years. DL is a
branch of ML based on a set of algorithms that attempt to model
high-level abstractions in data.

The development of DL occurred in parallel with the study of artificial
intelligence, and especially with the study of neural networks. It was
mainly in the 1980s that this area grew, thanks largely to Geoff
Hinton and the ML specialists who collaborated with him. At that
time, computer technology was not sufficiently advanced to allow a
real improvement in this direction, so we had to wait for a greater
availability of data and vastly improved computing power to see
significant developments.

In short, DL algorithms are a set of Artificial Neural Networks
(ANNs), which we will explore later, that can make better
representations of large-scale datasets, in order to build models that
learn these representations extensively. In this regard, Ian
Goodfellow and others defined DL as follows:

"Deep learning is a particular kind of machine learning that achieves
great power and flexibility by learning to represent the world as a

nested hierarchy of concepts, with each concept defined in relation
to simpler concepts, and more abstract representations computed in

terms of less abstract ones".

Let's give an example. Suppose we want to develop a predictive
analytics model, such as an animal recognizer, where our system
has to resolve two problems:

1. Classify if an image represents a cat or a dog
2. Cluster dog and cat images

If we solve the first problem using a typical ML method, we must
define the facial features (ears, eyes, whiskers, and so on), and write
a method to identify which features (typically non-linear) are more
important when classifying a particular animal.

However, at the same time, we cannot address the second problem,
because classical ML algorithms for clustering images (such as K-
means) cannot handle non-linear features.

DL algorithms will take these two problems one step further and the
most important features will be extracted automatically, after
determining which features are the most important for classification
or clustering. In contrast, using a classic ML algorithm, we would
have to manually provide the features.

In summary, the DL workflow would be as follows:

A DL algorithm would first identify the edges that are most
relevant when clustering cats or dogs
It would then build on this hierarchically to find the various
combinations of shapes and edges
After consecutive hierarchical identification of complex concepts
and features, it decides which of these features can be used to
classify the animal, then takes out the label column and
performs unsupervised training using an autoencoder, before
doing the clustering.

Up to this point, we have seen that DL systems are able to recognize
what an image represents. A computer does not see an image as we
see it because it only knows the position of each pixel and its color.
Using DL techniques, the image is divided into various layers of
analysis. At a lower level, the software analyzes, for example, a grid
of a few pixels, with the task of detecting a type of color or various
nuances. If it finds something, it informs the next level, which at this
point verifies whether that given color belongs to a larger form, such
as a line.

The process continues to the upper levels until you understand what
is shown in the image. Software capable of doing these things is now
widespread and is found in systems for recognizing faces or
searching for an image on Google, for example. In many cases,
these are hybrid systems, that work with more traditional IT
solutions, that are mixed with generation artificial intelligence.

The following diagram shows what we have discussed in the case of
an image classification system. Each block gradually extracts the
features of the input image and goes on to process data from the
previous blocks, that have already been processed, extracting
increasingly abstract features of the image, and thus building the
hierarchical representation of data that comes with a DL-based
system.

More precisely, it builds the layers as follows:

Layer 1: The system starts identifying the dark and light pixels
Layer 2: The system identifies edges and shapes
Layer 3: The system learns more complex shapes and objects
Layer 4: The system learns which objects define a human face

This is shown in the following diagram:

Figure 6: A DL system at work on a facial classification problem.

In the previous section, we saw that using a linear ML algorithm, we
typically handle only a few hyperparameters.

However, when neural networks come in the party, things become
too complex. In each layer, there are so many hyperparameters, and
the cost function always becomes nonconvex.

Another reason is that the activations functions used in the hidden
layers are nonlinear, so the cost is nonconvex. We’ll discuss this
phenomenon in more detail in the later chapters.

Artificial neural networks
ANNs take advantage of the concept of DL. They are an abstract
representation of the human nervous system, which contains a
collection of neurons that communicate with each other through
connections called axons.

Warren McCulloch and Walter Pitts proposed the first artificial
neuron model in 1943 in terms of a computational model of nervous
activity. This model was followed by another proposed by John von
Neumann, Marvin Minsky, Frank Rosenblatt (the so-called
perceptron), and many others.

The biological neurons
Look at the brain's architecture for inspiration. Neurons in the brain
are called biological neurons. They are unusual–looking cells,
mostly found in animal brains, consisting of cortexes. The cortex
itself is composed of a cell body, containing the nucleus and most of
the cell's complex components. There are many branching
extensions called dendrites, plus one very long extension called the
axon.

Near its extremity, the axon splits off into many branches called
telodendria and at the top of these branches are minuscule
structures called synaptic terminals (or simply synapses), which
connect to the dendrites of other neurons. Biological neurons receive
short electrical impulses called signals from other neurons, and in
response, they fire their own signals:

Figure 7: Working principles of biological neurons.

In biology, a neuron is composed of the following:

A cell body or soma
One or more dendrites, whose responsibility it is to receive
signals from other neurons
An axon, which in turn conveys the signals generated by the
same neuron to the other connected neurons

The neuron's activity alternates between sending a signal (active
state) and rest/receiving signals from other neurons (inactive state).
The transition from one phase to another is caused by the external
stimuli, represented by signals that are picked up by the dendrites.
Each signal has an excitatory or inhibitory effect, conceptually
represented by a weight associated with the stimulus.

A neuron in idle state accumulates all the signals it has received until
it reaches a certain activation threshold.

The artificial neuron
Based on the concept of biological neurons, the term and the idea of
artificial neurons arose, and they have been used to build intelligent
machines for DL-based predictive analytics. This is the key idea that
inspired ANNs. Similarly to biological neurons, the artificial neuron
consists of the following:

One or more incoming connections, with the task of collecting
numerical signals from other neurons: each connection is
assigned a weight that will be used to consider each signal sent
One or more output connections that carry the signal to the
other neurons
An activation function, which determines the numerical value of
the output signal, based on the signals received from the input
connections with other neurons, and suitably collected from the
weights associated with each received signal, and the activation
threshold of the neuron itself:

Figure 8: Artificial neuron model.

The output, that is, the signal that the neuron transmits, is calculated
by applying the activation function, also called the transfer function,
to the weighted sum of the inputs. These functions have a dynamic
range between -1 and 1, or between 0 and 1. Many activation
functions differ in terms of complexity and output. Here, we briefly
present the three simplest forms:

Step function: Once we fix the threshold value x (for example,
x = 10), the function will return zero, or one if the mathematical
sum of the inputs is at, above, or below the threshold value.
Linear combination: Instead of managing a threshold value,
the weighted sum of the input values is subtracted from a
default value. We will have a binary outcome that will be
expressed by a positive (+b) or negative (-b) output of the
subtraction.
Sigmoid: This produces a sigmoid curve, which is a curve with
an S trend. Often, the sigmoid function refers to a special case
of the logistic function.

From the simplest forms used in the prototyping of the first artificial
neurons, we move to more complex forms that allow greater
characterization of the functioning of the neuron:

Hyperbolic tangent function
Radial basis function
Conic section function
Softmax function:

Figure 9: The most commonly used artificial neuron model transfer functions. a. step
function. b. linear function c. computed sigmoid function with values between 0 and 1.

d. sigmoid function with computed values between -1 and 1.

Choosing proper activation functions (also weights initialization) is
key to making a network perform at its best and to obtain good
training. These topics are under a lot of research, and studies
indicate marginal differences in terms of output quality if the training
phase is carried out properly.

Note
There is no rule of thumb in the field of neural networks. It all
depends on your data and in what form you want the data to be
transformed, after passing through the activation function. If you
want to choose a particular activation function, you need to study
the graph of the function to see how the result changes with
respect to the values given to it.

How does an ANN learn?
The learning process of a neural network is configured as an
iterative process of the optimization of the weights and is therefore of
the supervised type. The weights are modified because of the
network's performance on a set of examples belonging to the
training set, that is, the set where you know the classes that the
examples belong to.

The aim is to minimize the loss function, which indicates the degree
to which the behavior of the network deviates from the desired
behavior. The performance of the network is then verified on a
testing set consisting of objects (for example, images in an image
classification problem) other than those in the training set.

ANNs and the backpropagation
algorithm
A commonly used supervised learning algorithm is the
backpropagation algorithm. The basic steps of the training procedure
are as follows:

1. Initialize the net with random weights
2. For all training cases, follow these steps:

Forward pass: Calculates the network's error, that is, the
difference between the desired output and the actual output
Backward pass: For all layers, starting with the output
layer back to input layer:

i: Shows the network layer's output with the correct input
(error function).

ii: Adapts the weights in the current layer to minimize the
error function. This is backpropagation's optimization step.

The training process ends when the error on the validation set
begins to increase because this could mark the beginning of a phase
overfitting, that is, the phase in which the network tends to
interpolate the training data at the expense of generalizability.

Weight optimization
The availability of efficient algorithms to optimize weights, therefore,
constitutes an essential tool for the construction of neural networks.
The problem can be solved with an iterative numerical technique
called Gradient Descent (GD). This technique works according to
the following algorithm:

1. Randomly choose initial values for the parameters of the model
2. Compute the gradient G of the error function with respect to

each parameter of the model
3. Change the model's parameters so that they move in the

direction of decreasing the error, that is, in the direction of -G
4. Repeat steps 2 and 3 until the value of G approaches zero

The gradient (G) of the error function E provides the direction in
which the error function with the current values has the steeper
slope; so to decrease E, we have to make some small steps in the
opposite direction, -G.

By repeating this operation several times in an iterative manner, we
move down towards the minimum of E, to reach a point where G = 0,
in such a way that no further progress is possible:

Figure 10: Searching for the minimum for the error function E. We move in the direction in
which the gradient G of the function E is minimal.

Stochastic gradient descent
In GD optimization, we compute the cost gradient based on the
complete training set, so we sometimes also call it batch GD. In the
case of very large datasets, using GD can be quite costly, since we
are only taking a single step for one pass over the training set. The
larger the training set, the more slowly our algorithm updates the
weights, and the longer it may take until it converges at the global
cost minimum.

The fastest method of gradient descent is Stochastic Gradient
Descent (SGD), and for this reason, it is widely used in deep neural
networks. In SGD, we use only one training sample from the training
set to do the update for a parameter in a particular iteration.

Here, the term stochastic comes from the fact that the gradient
based on a single training sample is a stochastic approximation of
the true cost gradient. Due to its stochastic nature, the path towards
the global cost minimum is not direct, as in GD, but may zigzag if we
are visualizing the cost surface in a 2D space:

Figure 11: GD versus SGD: the gradient descent (left figure) ensures that each update in
the weights is done in the right direction: the direction that minimizes the cost function. With
the growth in the dataset's size, and more complex computations in each step, SGD (right

figure) is preferred in these cases. Here, updates to the weights are done as each sample is
processed and, as such, subsequent calculations already use improved weights.

Nonetheless, this very reason leads to some misdirection in minimizing the error function.

Neural network architectures
The way that we connect the nodes and the number of layers
present (that is, the levels of nodes between input and output, and
the number of neurons per layer), defines the architecture of a neural
network.

There are various types of architectures in neural networks. We can
categorize DL architectures into four groups: Deep Neural
Networks (DNNs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Emergent Architectures
(EAs). The following sections of this chapter will offer a brief
introduction to these architectures. A more detailed analysis, with
examples of applications, will be the subject of the following chapters
of this book.

Deep Neural Networks (DNNs)
DNNs are ANNs which are strongly oriented to DL. Where normal
procedures of analysis are inapplicable, due to the complexity of the
data to be processed, such networks are therefore an excellent
modeling tool. DNNs are neural networks that are very similar to
those we have discussed, but they must implement a more complex
model (a greater number of neurons, hidden layers, and
connections), although they follow the learning principles that apply
to all ML problems (such as supervised learning). The computation
in each layer transforms the representations in the layer below into
slightly more abstract representations.

We will use the term DNN to refer specifically to Multilayer
Perceptron (MLP), Stacked Auto-Encoder (SAE), and Deep
Belief Networks (DBNs). SAEs and DBNs use AutoEncoders
(AEs) and RBMs as building blocks of the architectures. The main
difference between them and MLP is that training is executed in two
phases: unsupervised pre-training and supervised fine-tuning:

Figure 12: SAE and DBN using AE and RBM respectively.

In unsupervised pre-training, shown in the preceding diagram, the
layers are stacked sequentially and trained in a layer-wise manner,
like an AE or RBM using unlabeled data. Afterwards, in supervised
fine-tuning, an output classifier layer is stacked, and the complete
neural network is optimized, by retraining with labeled data.

In this chapter, we will not discuss SAEs (see more details in
Chapter 5, Optimizing TensorFlow Autoencoders), but will stick to
MLPs and DBNs and use these two DNN architectures. We will see
how to develop predictive models to deal with high-dimensional
datasets.

Multilayer perceptron
In multilayer networks, you can identify the artificial neurons of the
layers, so that each neuron is connected to all those in the next
layer, ensuring that:

There are no connections between neurons belonging to the
same layer
There are no connections between neurons belonging to non-
adjacent layers
The number of layers and neurons per layer depends on the
problem to be solved

The input and output layers define inputs and outputs, and there are
hidden layers, whose complexity realizes different behaviors of the
network. Finally, the connections between neurons are represented
by as many matrices as the pairs of adjacent layers.

Each array contains the weights of the connections between the
pairs of nodes of two adjacent layers. The feedforward networks are
networks with no loops within the layers.

We will describe feedforward networks in more detail in Chapter 3,
Feed-Forward Neural Networks with TensorFlow:

Figure 13: MLP architecture

Deep Belief Networks (DBNs)
To overcome the overfitting problem in MLP, we set up a DBN, do
unsupervised pre-training to get a decent set of feature
representations for the inputs, then fine-tune the training set to get
actual predictions from the network. While the weights of an MLP are

initialized randomly, a DBN uses a greedy layer-by-layer pre-training
algorithm to initialize the network weights through probabilistic
generative models. The models are composed of a visible layer and
multiple layers of stochastic and latent variables, which are called
hidden units or feature detectors.

DBNs are Deep Generative Models, which are neural network
models that can replicate the data distribution that you provide. This
allows you to generate "fake-but-realistic" data points from real data
points.

DBNs are composed of a visible layer and multiple layers of
stochastic, latent variables, which are called hidden units or feature
detectors. The top two layers have undirected, symmetric
connections between them and form an associative memory,
whereas lower layers receive top-down, directed connections from
the preceding layer. The building blocks of DBNs are Restricted
Boltzmann Machines (RBMs). As you can see in the following
figure, several RBMs are stacked one after another to form DBNs:

Figure 14: A DBN configured for semi-supervised learning

A single RBM consists of two layers. The first layer is composed of
visible neurons, and the second layer consists of hidden neurons.
The following figure shows the structure of a simple RBM. Visible
units accept inputs, and hidden units are nonlinear feature detectors.
Each visible neuron is connected to all the hidden neurons, but there
is no internal connection among neurons in the same layer.

An RBM consists of a visible layer node and a hidden layer node, but
without visible-visible and hidden-hidden connections, hence the
term restricted. They allow more efficient network training that can
be supervised or unsupervised. This type of neural network is able to
represent a large number of features of the inputs, then hidden
nodes can represent up to 2n features. The network can be trained
to respond to a single question (for example, yes or no to the
question: Is it a cat?) until it can respond (again in binary terms) to a
total of 2n questions (Is it a cat?, It is Siamese?, Is it white?).

The architecture of the RBM is as follows, with neurons arranged
according to a symmetrical bipartite graph:

Figure 15: RBM architecture.

A single hidden layer RBM cannot extract all the features from the
input data, due to its inability to model the relationship between
variables. Hence, multiple layers of RBMs are used one after
another to extract nonlinear features. In DBNs, an RBM is trained
first with input data, and the hidden layer represents the features
learned using a greedy learning approach. These learned features of
the first RBM, that is, a hidden layer of the first RBM, are used as the
input to the second RBM, as another layer in the DBN.

Similarly, the learned features of the second layer are used as input
for another layer. This way, DBNs can extract deep and nonlinear
features from input data. The hidden layer of the last RBM
represents the learned features of the whole network.

Convolutional Neural Networks
(CNNs)
CNNs have been specifically designed for image recognition. Each
image used in learning is divided into compact topological portions,
each of which will be processed by filters to search for particular
patterns. Formally, each image is represented as a three-
dimensional matrix of pixels (width, height, and color), and every
sub-portion can be placed on convolution with the filter set. In other
words, scrolling each filter along the image computes the inner
product of the same filter and input.

This procedure produces a set of feature maps (activation maps) for
the various filters. Superimposing the various feature maps onto the
same portion of the image, we get an output volume. This type of
layer is called the convolutional layer. The following diagram is a
schematic of the architecture of a CNN:

Figure 16: CNN architecture.

Although regular DNNs work fine for small images (for example,
MNIST and CIFAR-10), they break down with larger images because
of the huge number of parameters required. For example, a 100×100
image has 10,000 pixels, and if the first layer has just 1,000 neurons
(which already severely restricts the amount of information
transmitted to the next layer), this means 10 million connections. In
addition, that is just for the first layer.

CNNs solve this problem using partially connected layers. Because
consecutive layers are only partially connected and because it
heavily reuses its weights, a CNN has far fewer parameters than a
fully connected DNN, which makes it much faster to train. This
reduces the risk of overfitting and requires much less training data.
Moreover, when a CNN has learned a kernel that can detect a
particular feature, it can detect that feature anywhere on the image.
In contrast, when a DNN learns a feature in one location, it can
detect it only in that particular location. Since images typically have
very repetitive features, CNNs are able to generalize much better

than DNNs on image processing tasks such as classification and use
fewer training examples.

Importantly, the DNN has no prior knowledge of how the pixels are
organized; it does not know that nearby pixels are close. A CNN's
architecture embeds this prior knowledge. Lower layers typically
identify features in small areas of the images, while higher layers
combine the lower-level features into larger features. This works well
with most natural images, giving CNNs a decisive head-start over
DNNs:

Figure 17: A regular DNN versus a CNN.

For example, in the preceding diagram, on the left, you can see a
regular three-layer neural network. On the right, a CNN arranges its
neurons in three dimensions (width, height, and depth), as visualized
in one of the layers. Every layer of a CNN transforms the 3D input
volume to a 3D output volume of neuron activations. The red input
layer holds the image, so its width and height would be the
dimensions of the image, and the depth would be three (red, green
and blue channels).

Therefore, all the multilayer neural networks we looked at had layers
composed of a long line of neurons, and we had to flatten input
images or data to 1D before feeding them to the neural network.
However, what happens when you try to feed them a 2D image
directly? The answer is that in a CNN, each layer is represented in
2D, which makes it easier to match neurons with their corresponding
inputs. We will see examples of this in upcoming sections.

AutoEncoders
An AE is a network with three or more layers, where the input layer
and the output have the same number of neurons, and those
intermediate (hidden layers) have a lower number of neurons. The
network is trained to simply reproduce in the output, for each piece
of input data, the same pattern of activity in the input.

AEs are ANNs capable of learning efficient representations of the
input data without any supervision (that is, the training set is
unlabeled). They typically have a much lower dimensionality than the
input data, making AEs useful for dimensionality reduction. More
importantly, AEs act as powerful feature detectors, and they can be
used for unsupervised pre-training of DNNs.

The remarkable aspect of the problem is that, due to the lower
number of neurons in the hidden layer, if the network can learn from
examples and generalize to an acceptable extent, it performs data
compression; the status of the hidden neurons provides, for each
example, a compressed version of the input and output common
states. Useful applications of AEs are data denoising and
dimensionality reduction for data visualization.

The following diagram shows how an AE typically works; it
reconstructs the received input through two phases: an encoding
phase, which corresponds to a dimensional reduction for the original
input, and a decoding phase, which is capable of reconstructing the
original input from the encoded (compressed) representation:

Figure 18: Encoding and decoding phases of an autoencoder.

As an unsupervised neural network, the main characteristic of an
autoencoder is its symmetrical structure. An autoencoder has two
components: an encoder that converts the input to an internal
representation, followed by a decoder that converts the internal
representation to the output.

In other words, an autoencoder can be seen as a combination of an
encoder, where we encode some input into a code, and a decoder,
where we decode/reconstruct the code back to its original input as
the output. Thus, an MLP typically has the same architecture as an
autoencoder, except that the number of neurons in the output layer
must be equal to the number of inputs.

As mentioned previously, there is more than one way to train an
autoencoder. The first way is to train the whole layer at once, similar
to MLP. However, instead of using some labeled output when
calculating the cost function, as in supervised learning, we use the
input itself. Therefore, the cost function shows the difference
between the actual input and the reconstructed input.

Recurrent Neural Networks (RNNs)
The fundamental feature of an RNN is that the network contains at
least one feedback connection, so the activations can flow around in

a loop. It enables the networks to do temporal processing and learn
sequences, for example performing sequence
recognition/reproduction or temporal association/prediction.

RNN architectures can have many different forms. One common
type consists of a standard MLP plus added loops. These can exploit
the powerful non-linear mapping capabilities of the MLP, and have
some form of memory. Others have more uniform structures,
potentially with every neuron connected to all the others, and may
have stochastic activation functions:

Figure 19: RNN architecture.

For simple architectures and deterministic activation functions,
learning can be achieved using similar GD procedures to those
leading to the backpropagation algorithm for feedforward networks.

The preceding image looks at a few of the most important types and
features of RNNs. RNNs are designed to utilize sequential
information of input data with cyclic connections among building
blocks such as perceptrons, Long Short-term memory units

(LSTMs), or Gated Recurrent units (GRUs). The latter two are
used to remove the drawbacks of regular RNNs, such as the
gradient vanishing/exploding problem and long-short term
dependency. We will look at these architectures in later chapters.

Emergent architectures
Many other emergent DL architectures have been suggested, such
as Deep SpatioTemporal Neural Networks (DST-NNs), Multi-
Dimensional Recurrent Neural Networks (MD-RNNs), and
Convolutional AutoEncoders (CAEs).

Nevertheless, people are talking about and using other emerging
networks, such as CapsNets (an improved version of a CNN,
designed to remove the drawbacks of regular CNNs), Factorization
Machines for personalization, and Deep Reinforcement Learning.

Deep learning frameworks
In this section, we present some of the most popular DL frameworks. In short, almost all
of the libraries provide the possibility of using the graphics processor to speed up the
learning process, are released under an open license, and are the result of university
research groups.

TensorFlow is mathematical software, and an open source software library, written in
Python and C++ for machine intelligence. The Google Brain Team developed it in 2011,
and it can be used to help us analyze data, to predict an effective business outcome.
Once you have constructed your neural network model, after the necessary feature
engineering, you can simply perform the training interactively using plotting or
TensorBoard.

The main features offered by the latest release of TensorFlow are faster computing,
flexibility, portability, easy debugging, a unified API, transparent use of GPU computing,
easy use and extensibility. Other benefits include the fact that it is widely used,
supported, and is production-ready at scale.

Keras is a deep-learning library that sits atop TensorFlow and Theano, providing an
intuitive API, which is inspired by Torch (perhaps the best Python API in existence).
Deeplearning4j relies on Keras as its Python API and imports models from Keras, and
through Keras, from Theano and TensorFlow.

François Chollet, a software engineer at Google, created Keras. It runs seamlessly on
CPU and GPU. This allows for easy and fast prototyping through user friendliness,
modularity, and extensibility. Keras is probably one of the fastest growing frameworks,
because it is too easy to construct NN layers. Therefore, Keras is likely to become the
standard Python API for NNs.

Theano is probably the most widespread library. Theano is written in Python, which is
one of the most widely used languages in the field of ML (Python is also used in
TensorFlow). Moreover, Theano allows the use of GPU, which is 24x faster than a
single CPU. Theano lets you efficiently define, optimize, and evaluate complex
mathematical expressions, such as multidimensional arrays. Unfortunately, Yoshua
Bengio announced on 28th September 2017, that development on Theano would cease.
That means Theano is effectively dead.

Neon is a Python-based deep learning framework developed by Nirvana. Neon has a
syntax similar to Theano's high-level framework (for example, Keras). Currently, Neon is
considered the fastest tool for GPU-based implementation, especially for CNN. Although
it's CPU-based implementation is relatively worse than most other libraries.

Torch is a vast ecosystem for ML that offers a large number of algorithms and functions,
including for DL and for processing various types of multimedia data, with a particular
focus on parallel computing. It provides an excellent interface for the C language and
has a large community of users. Torch is a library that extends the scripting language
Lua and is intended to provide a flexible environment for designing and training ML

systems. Torch is a self-contained and highly portable framework on various platforms
(Windows, Mac, Linux, and Android) and scripts can run on these platforms without
modification. Torch provides many uses for different applications.

Caffe, developed primarily by Berkeley Vision and Learning Center (BVLC), is a
framework designed to stand out because of its expression, speed, and modularity. Its
unique architecture encourages application and innovation, by allowing an easier
transition from CPU to GPU calculations. The large community of users means that
considerable development has occurred recently. It is written in Python, but the
installation process can be long, due to the numerous support libraries it has to compile.

MXNet is a DL framework that supports many languages, such as R, Python, C++, and
Julia. This is helpful because if you know any of these languages, you will not need to
step out of your comfort zone at all to train your DL models. Its backend is written in C++
and CUDA and it is able to manage its own memory in a similar way to Theano.

MXNet is also popular because it scales very well and can work with multiple GPUs and
computers, which makes it very useful for enterprise. This is why Amazon has made
MXNet its reference library for DL. In November 2017, AWS announced the availability
of ONNX-MXNet, which is an open source Python package used to import Open Neural
Network Exchange (ONNX) DL models into Apache MXNet.

The Microsoft Cognitive Toolkit (CNTK) is a unified DL toolkit from Microsoft Research
that makes it easy to train and combine popular model types across multiple GPUs and
servers. CNTK implements highly efficient CNN and RNN training for speech, image,
and text data. It supports cuDNN v5.1 for GPU acceleration. CNTK also supports
Python, C++, C#, and command-line interface.

Here is a table summarizing these frameworks:

Framework
Supported
programming
languages

Training
materials
community

CNN
modeling
capability

RNN
modeling
capability

Usability
Multi-
GPU
support

Theano Python, C++ ++ Ample
CNN
tutorials
and
prebuilt
models

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

No

Neon Python, + Fastest
tools for
CNN

Minimal
resources

Modular
architecture

No

Framework
Supported
programming
languages

Training
materials
community

CNN
modeling
capability

RNN
modeling
capability

Usability
Multi-
GPU
support

Torch Lua, Python + Minimal
resources

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

Yes

Caffe C++ ++ Ample
CNN
tutorials
and
prebuilt
models

Minimal
resources

Creating
layers

takes time

Yes

MXNet R, Python,
Julia, Scala

++ Ample
CNN
tutorials
and
prebuilt
models

Minimal
resources

Modular
architecture

Yes

CNTK C++ + Ample
CNN
tutorials
and
prebuilt
models

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

Yes

TensorFlow Python, C++ +++ Ample
RNN
tutorials
and
prebuilt
models

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

Yes

Framework
Supported
programming
languages

Training
materials
community

CNN
modeling
capability

RNN
modeling
capability

Usability
Multi-
GPU
support

DeepLearning4j Java, Scala +++ Ample
RNN
tutorials
and
prebuilt
models

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

Yes

Keras Python +++ Ample
RNN
tutorials
and
prebuilt
models

Ample
RNN
tutorials
and
prebuilt
models

Modular
architecture

Yes

Apart from the preceding libraries, there are some recent initiatives for DL on the cloud.
The idea is to bring DL capability to big data, with billions of data points and high
dimensional data. For example, Amazon Web Services (AWS), Microsoft Azure,
Google Cloud Platform and NVIDIA GPU Cloud (NGC) all offer machine and deep
learning services (http://searchbusinessanalytics.techtarget.com/feature/Machine-
learning-platforms-comparison-Amazon-Azure-Google-IBM) that are native to their public
clouds.

In October 2017, AWS released Deep Learning AMIs (Amazon Machine Images) for
Amazon Elastic Compute Cloud (EC2) P3 Instances. These AMIs come pre-installed
with deep learning frameworks, such as TensorFlow, Gluon and Apache MXNet, that are
optimized for the NVIDIA Volta V100 GPUs within Amazon EC2 P3 instances. The deep
learning service currently offers three types of AMIs: Conda AMI, Base AMI and AMI with
Source Code.

The Microsoft Cognitive Toolkit is Azure's open source, deep learning service. Similar to
AWS' offering, it focuses on tools that can help developers build and deploy deep
learning applications. The toolkit is installed in Python 2.7, in the root environment. Azure
also provides a model gallery (https://www.microsoft.com/en-us/cognitive-
toolkit/features/model-gallery/) that includes resources, such as code samples, to help
enterprises get started with the service.

On the other hand, NGC empowers AI scientists and researchers with GPU-accelerated
containers (see https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/). The
NGC features containerized deep learning frameworks such as TensorFlow, PyTorch,
and MXNet that are tuned, tested, and certified by NVIDIA to run on the latest NVIDIA

http://searchbusinessanalytics.techtarget.com/feature/Machine-learning-platforms-comparison-Amazon-Azure-Google-IBM
https://www.microsoft.com/en-us/cognitive-toolkit/features/model-gallery/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/

GPUs on participating cloud service providers. Nevertheless, there are also third-party
services available through their respective marketplaces.

Summary
In this chapter, we introduced some of the fundamental themes of
DL. DL consists of a set of methods that allow an ML system to
obtain a hierarchical representation of data on multiple levels. This is
achieved by combining simple units, each of which transforms the
representation at its own level, starting from the input level, in a
representation at a higher and abstraction level.

Recently, these techniques have provided results that have never
been seen before in many applications, such as image recognition
and speech recognition. One of the main reasons for the spread of
these techniques has been the development of GPU architectures
that considerably reduce the training time of DNNs.

There are different DNN architectures, each of which has been
developed for a specific problem. We will talk more about these
architectures in later chapters and show examples of applications
created with the TensorFlow framework. This chapter ended with a
brief overview of the most important DL frameworks.

In the next chapter, we begin our journey into DL, introducing the
TensorFlow software library. We will describe the main features of
TensorFlow and see how to install it and set up our first working
remarketing dataset.

Chapter 2. A First Look at
TensorFlow
TensorFlow is a mathematical software and an open source
framework for deep learning developed by the Google Brain Team in
2011. Nevertheless, it can be used to help us analyze data in order
to predict an effective business outcome.

Although the initial target of TensorFlow was to conduct research in
ML and in Deep Neural Networks(DNNs), the system is general
enough to be applicable to a wide variety of classical machine
learning algorithm such as Support Vector Machine (SVM), logistic
regression, decision trees, and random forest.

Keeping in mind your needs and based on all the latest exciting
features of the most stable version 1.6 (v1.7 was the pre-release
during the production stage of this book), in this chapter, we will
describe the main capabilities and core concepts of TensorFlow that
will be used in all the subsequent chapters.

The following topics will be covered in this chapter:

A general overview of TensorFlow
What's new from TensorFlow v1.6 forwards?
TensorFlow computational graph
TensorFlow code structure
TensorFlow data model
Visualizing computations through TensorBoard
Linear regression and beyond

A general overview of
TensorFlow

TensorFlow is an open source framework from Google for scientific
and numerical computation using data flow graphs that stand for
TensorFlow's execution model. The data flow graphs used in
TensorFlow help ML experts to perform more advanced and
intensive training on their data to develop DL and predictive analytics
models.

As the name implies, TensorFlow includes operations that are
performed by neural networks on multidimensional data arrays, that
is, flow of tensors. Nodes in a flow graph correspond to
mathematical operations, that is, addition, multiplication, matrix
factorization, and so on; whereas, edges correspond to tensors that
ensure communication between edges and nodes – that is, data flow
and control flow. This way, TensorFlow provides some widely used
and robustly implemented linear models and DL algorithms.

You can perform numerical computations on a CPU. However, with
TensorFlow, it is also possible to distribute the training among
multiple devices on the same system, especially if you have more
than one GPU on your system that can share the computational
load.

Deploying a predictive or general-purpose model using TensorFlow
is straightforward. Once you have constructed your neural network
model after the required feature engineering, you can simply perform
the training interactively and use the TensorBoard to visualize your
TensorFlow graph, plot quantitative metrics about the execution of
your graph, and show additional data like images that pass through
it.

If TensorFlow can access GPU devices, it will automatically distribute
computations to multiple devices via a greedy process. Therefore, no
special configuration is needed to utilize the cores of the CPU.
Nevertheless, TensorFlow also allows the program to specify which
operations will be on which device via name scope placement.
Finally, after evaluating the model, you deploy it by feeding some
test data to it. The main features offered by the latest release of
TensorFlow are as follows:

Faster computing: The latest release of TensorFlow is
incredibly fast. For example, the Inception-v3 model runs 7.3
times faster on 8 GPUs, and distributed Inception-v3 runs 58
times faster on 64 GPUs.
Flexibility: TensorFlow is not just a DL library. It comes with
almost everything you need for powerful mathematical
operations, thanks to its functions for solving the most difficult
problems.
Portability: TensorFlow runs on Windows (only CPU support,
though), Linux, and Mac machines, and on mobile computing
platforms (that is, Android).
Easy debugging: TensorFlow provides the TensorBoard tool,
which is useful for analyzing the models you develop.
Unified API: TensorFlow offers you a very flexible architecture
that enables you to deploy computation to one or more CPUs or
GPUs on a desktop, server, or mobile device with a single API.
Transparent use of GPU computing: TensorFlow now
automates the management and optimization of the memory
and the data used. You can now use your machine for large-
scale and data-intensive GPU computing with NVIDIA's cuDNN
and CUDA toolkits.
Easy use: TensorFlow is for everyone. It is not only suitable for
students, researchers, DL practitioners, but also for
professionals who work in the industries.
Production-ready at scale: Recently, TensorFlow has evolved
into a neural network for machine translation at production
scale. TensorFlow 1.6 promises Python API stability, making it
easier to choose new features without worrying too much about
breaking your existing code.
Extensibility: TensorFlow is a relatively new technology, and it's
still in active development. The source codes are available on
GitHub (https://github.com/tensorflow/tensorflow).
Support: There is a large community of developers and users
working together to make TensorFlow a better product, both by
providing feedback and by actively contributing to the source
code.

https://github.com/tensorflow/tensorflow

Wide adoption: Numerous tech giants use TensorFlow to
increase their business intelligence, such as ARM, Google, Intel,
eBay, Qualcomm, SAM, Dropbox, DeepMind, Airbnb, and
Twitter.

Now, before we start coding with TensorFlow, let's see what the new
features in TensorFlow's latest release.

What's new from TensorFlow
v1.6 forwards?
In 2015, Google made TensorFlow open source, including all of its
reference implementation. All of the source code was made available
on GitHub under the Apache 2.0 license. Since then, TensorFlow
has been widely adopted in academia and industrial research, and
the most stable version, 1.6, has recently been released with a
unified API.

It is important to note that the APIs in TensorFlow 1.6 (and higher)
are not all backward compatible for pre v1.5 code. This means that
some programs that worked on pre v1.5 will not necessarily work on
TensorFlow 1.6.

Now let us see the new and exciting features that TensorFlow v1.6
has.

Nvidia GPU support optimized
From TensorFlow v1.5, prebuilt binaries are now built against CUDA
9.0 and cuDNN 7. However, from v1.6's release, TensorFlow prebuilt
binaries use AVX instructions, which may break TensorFlow on older
CPUs. Nevertheless, since v1.5, an added support for CUDA on
NVIDIA Tegra devices has been available.

Introducing TensorFlow Lite
TensorFlow Lite is TensorFlow's lightweight solution for mobile and
embedded devices. It enables low-latency inference of on-device
machine learning models with a small binary size and fast
performance supporting hardware acceleration.

TensorFlow Lite uses many techniques for achieving low latency like
optimizing the kernels for specific mobile apps, pre-fused activations,

quantized kernels that allow smaller and faster (fixed-point math)
models, and in the future, leverage-specialized machine learning
hardware to get the best possible performance for a particular model
on a particular device.

Figure 1: A conceptual view on how to use trained model on Android and iOS devices using
TensorFlow Lite

Machine learning is changing the computing paradigm, and we see
an emerging trend of new use cases on mobile and embedded
devices. Consumer expectations are also trending toward natural,
human-like interactions with their devices, driven by the camera and
voice interaction models.

Therefore, the user's expectations are no longer limited to the
computer, and the computational power of mobile devices has also
increased exponentially due to hardware acceleration, and

frameworks such as the Android Neural Networks API and C++ API
for iOS. As shown in the preceding figure, a pre-trained model can
be converted into a lighter version to be running as an Android or
iOS app.

Therefore, widely available smart appliances create new possibilities
for on-device intelligence. These allow us to use our smartphones to
perform real-time computer vision and Natural Language
Processing (NLP).

Eager execution
Eager execution is an interface for TensorFlow that provides an
imperative programming style. When you enable eager execution,
TensorFlow operations (defined in a program) execute immediately.

It is to be noted that from TensorFlow v1.7, eager execution will be
moved out of contrib. This means that using
tf.enable_eager_execution() is recommended. We will see an
example on this in a later section.

Optimized Accelerated Linear Algebra
(XLA)
Pre v1.5 XLA was unstable and had a very limited number of
features. However, v1.6 has more support for XLA. This includes the
following:

Complex64 support to XLA compiler has been added
Now the Fast Fourier Transformation (FFT) support has been
added for both CPU and GPU
The bfloat support is now added to the XLA infrastructure
The ClusterSpec propagation work with XLA devices has been
enabled
Android TF can now be built with CUDA acceleration on
compatible Tegra devices

Support for adding the deterministic executor to generate an
XLA graph has been enabled

Numerous bugs reported by the open source community have been
fixed and a significant amount of API-level changes have been
integrated with this version.

However, since we have not explored anything with TensorFlow yet,
we will see how to leverage these features for developing real-life
deep learning applications later on. Before that, let's see how to
prepare your programming environment.

Installing and configuring
TensorFlow
You can install and use TensorFlow on a number of platforms such
as Linux, macOS, and Windows. Moreover, you can also build and
install TensorFlow from the latest GitHub source of TensorFlow.
Furthermore, if you have a Windows machine, you can install
TensorFlow via native pip or Anacondas. TensorFlow supports
Python 3.5.x and 3.6.x on Windows.

In addition, Python 3 comes with the pip3 package manager, which
is the program you will use to install TensorFlow. Therefore, you do
not need to install pip if you are using this Python version. From our
experience, even if you have NVIDIA GPU hardware integrated on
your machine, it would be worth installing and trying the CPU-only
version first and if you don't experience good performance, you
should switch to GPU support then.

The GPU–enabled version of TensorFlow has several requirements
such as 64–bit Linux, Python 2.7 (or 3.3+ for Python 3), NVIDIA
CUDA® 7.5 or higher (CUDA 8.0 required for Pascal GPUs), and
NVIDIA cuDNN (this is GPU accelerated deep learning) v5.1 (or
higher is recommended). See more at
https://developer.nvidia.com/cudnn.

More specifically, the current development of TensorFlow supports
only GPU computing using NVIDIA toolkits and software. Therefore,
the following software must have to be installed on your machine to
get the GPU support on your predictive analytics applications:

NVIDIA driver
CUDA with compute capability >= 3.0
CudNN

The NVIDIA CUDA toolkit includes (see more at
https://developer.nvidia.com/cuda-zone):

https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-zone

GPU–accelerated libraries such as cuFFT for FFT
cuBLAS for Basic Linear Algebra Subroutines (BLAS)
cuSPARSE for sparse matrix routines
cuSOLVER for dense and sparse direct solvers
cuRAND for random number generation, NPP for image, and
video processing primitives
nvGRAPH for NVIDIA Graph Analytics Library
Thrust for templated parallel algorithms and data structures and
a dedicated CUDA math library

However, we will not cover the installation and configuration of
TensorFlow since the documentation provided on TensorFlow is very
rich to be followed and acted accordingly. Another reason is that the
version will be changed periodically. Therefore, keeping yourself
updated with the TensorFlow website
https://www.tensorflow.org/install/ will be a better idea.

If you have already installed and configured your programming
environment, let us dive into TensorFlow computation graph.

https://www.tensorflow.org/install/

TensorFlow computational
graph
When thinking of executing a TensorFlow program, we should be
familiar with the concepts of graph creation and session execution.
Basically, the first one is for building the model, and the second one
is for feeding the data in and getting the results.

Interestingly, TensorFlow does everything on the C++ engine, which
means not even a little multiplication or addition is executed in
Python. Python is just a wrapper. Fundamentally, the TensorFlow
C++ engine consists of the following two things:

Efficient implementations of operations, such as convolution,
max pool, and sigmoid for a CNN for example
Derivatives of the forwarding mode operation

The TensorFlow lib is an extraordinary lib in terms of coding and it is
not like conventional Python code (for example, you can write
statements and they get executed). TensorFlow code consists of
different operations. Even variable initialization is special in
TensorFlow. When you are performing a complex operation with
TensorFlow, such as training a linear regression, TensorFlow
internally represents its computation using a data flow graph. The
graph is called a computational graph, which is a directed graph
consisting of the following:

A set of nodes, each one representing an operation
A set of directed arcs, each one representing the data on which
the operations are performed

TensorFlow has two types of edges:

Normal: They carry the data structures between the nodes. The
output of one operation, that is, from one node, becomes the

input for another operation. The edge connecting two nodes
carries the values.
Special: This edge doesn't carry values, but only represents a
control dependency between two nodes, say X and Y. It means
that node Y will be executed only if the operation in X has
already been executed, but before the relationship between
operations on the data.

The TensorFlow implementation defines control dependencies to
enforce the order of otherwise independent operations as a way of
controlling the peak memory usage.

A computational graph is basically like a data flow graph. Figure 2
shows a computational graph for a simple computation such as

:

Figure 2: A very simple execution graph that computes a simple equation

In the preceding figure, the circles in the graph indicate the
operations, while the rectangles indicate the computational graph. As
stated earlier, a TensorFlow graph contains the following:

tf.Operation objects: These are the nodes in the graph. These
are usually simply referred to as ops. An op is simply TITO
(tensor-in-tensor-out). One or more tensors input and one or
more tensors output.
tf.Tensor objects: These are the edges of the graph. These are
usually simply referred to as tensors.

Tensor objects flow between various ops in the graph. In the
preceding figure, d is also an op. It can be a "constant" op whose

output is a tensor that contains the actual value assigned to d.

It is also possible to perform a deferred execution using TensorFlow.
In a nutshell, once you have composed a highly compositional
expression during the building phase of the computational graph,
you can still evaluate it in the running session phase. Technically
speaking, TensorFlow schedules the job and executes on time in an
efficient manner.

For example, parallel execution of independent parts of the code
using the GPU is shown in the following figure:

Figure 3: Edges and nodes in a TensorFlow graph to be executed on a session on devices
such as CPUs or GPUs

After a computational graph is created, TensorFlow needs to have an
active session that is executed by multiple CPUs (and GPUs if
available) in a distributed way. In general, you really don't need to
specify whether to use a CPU or a GPU explicitly, since TensorFlow
can choose which one to use.

By default, a GPU will be picked for as many operations as possible;
otherwise, CPU will be used. Nevertheless, generally, it allocates all
GPU memory even if does not consume it.

Here are the main components of a TensorFlow graph:

Variables: Used to contain values for the weights and biases
between TensorFlow sessions.
Tensors: A set of values that pass between nodes to perform
operations (aka. op).
Placeholders: Used to send data between the program and the
TensorFlow graph.
Session: When a session is started, TensorFlow automatically
calculates gradients for all the operations in the graph and uses
them in a chain rule. In fact, a session is invoked when the
graph is to be executed.

Don't worry, each of these preceding components will be discussed
in later sections. Technically, the program you will be writing can be
considered as a client. The client is then used to create the
execution graph in C/C++ or Python symbolically, and then your
code can ask TensorFlow to execute this graph. The whole concept
gets clearer from the following figure:

Figure 4: Using a client-master architecture to execute a TensorFlow graph

A computational graph helps to distribute the workload across
multiple computing nodes with a CPU or GPU. This way, a neural
network can be equated to a composite function where each layer
(input, hidden, or output layer) can be represented as a function. To
understand the operations performed on the tensors, knowing a
good workaround for the TensorFlow programming model is
necessary.

TensorFlow code structure
The TensorFlow programming model signifies how to structure your
predictive models. A TensorFlow program is generally divided into
four phases when you have imported the TensorFlow library:

Construction of the computational graph that involves some
operations on tensors (we will see what a tensor is soon)
Creation of a session
Running a session; performed for the operations defined in the
graph
Computation for data collection and analysis

These main phases define the programming model in TensorFlow.
Consider the following example, in which we want to multiply two
numbers:

import tensorflow as tf # Import TensorFlow

x = tf.constant(8) # X op

y = tf.constant(9) # Y op

z = tf.multiply(x, y) # New op Z

sess = tf.Session() # Create TensorFlow session

out_z = sess.run(z) # execute Z op

sess.close() # Close TensorFlow session

print('The multiplication of x and y: %d' %

out_z)# print result

The preceding code segment can be represented by the following
figure:

Figure 5: A simple multiplication executed and returned on a client-master architecture

To make the preceding program more efficient, TensorFlow also
allows exchanging data in your graph variables through placeholders
(to be discussed later). Now imagine the following code segment that
does the same thing but more efficiently:

import tensorflow as tf

Build a graph and create session passing the

graph

with tf.Session() as sess:

 x = tf.placeholder(tf.float32, name="x")

 y = tf.placeholder(tf.float32, name="y")

 z = tf.multiply(x,y)

Put the values 8,9 on the placeholders x,y and

execute the graph

z_output = sess.run(z,feed_dict={x: 8, y:9})

print(z_output)

TensorFlow is not necessary for multiplying two numbers. Also, there
are many lines of code for this simple operation. The purpose of the
example is to clarify how to structure code, from the simplest (as in
this instance) to the most complex. Furthermore, the example also
contains some basic instructions that we will find in all the other
examples given in this book.

This single import in the first line imports TensorFlow for your
command; it can be instantiated with tf, as stated earlier. The
TensorFlow operator will then be expressed by tf and by the name
of the operator to use. In the next line, we construct the session
object by means of the tf.Session() instruction:

with tf.Session() as sess:

Tip
The session object (that is, sess) encapsulates the environment
for the TensorFlow so that all the operation objects are executed,
and Tensor objects are evaluated. We will see them in upcoming
sections.

This object contains the computation graph, which, as we said
earlier, contains the calculations to be carried out. The following two
lines define variables x and y, using a placeholder. Through a
placeholder, you may define both an input (such as the variable x of
our example) and an output variable (such as the variable y):

x = tf.placeholder(tf.float32, name="x")

y = tf.placeholder(tf.float32, name="y")

Tip
Placeholders provide an interface between the elements of the
graph and the computational data of the problem. They allow us
to create our operations and build our computation graph without
needing the data, instead of using a reference to it.

To define a data or tensor (we will introduce you to the concept of
tensor soon) via the placeholder function, three arguments are
required:

Data type is the type of element in the tensor to be fed.
Shape of the placeholder is the shape of the tensor to be fed
(optional). If the shape is not specified, you can feed a tensor of
any shape.
Name is very useful for debugging and code analysis purposes,
but it is optional.

Note
For more on tensors, refer to
https://www.tensorflow.org/api_docs/python/tf/Tensor.

So, we can introduce the model that we want to compute with two
arguments, the placeholder and the constant, that were previously
defined. Next, we define the computational model.

The following statement, inside the session, builds the data structure
of the product of x and y, and the subsequent assignment of the
result of the operation to tensor z. Then it goes as follows:

 z = tf.multiply(x, y)

Since the result is already held by the placeholder z, we execute the
graph through the sess.run statement. Here, we feed two values to
patch a tensor into a graph node. It temporarily replaces the output
of an operation with a tensor value:

z_output = sess.run(z,feed_dict={x: 8, y:9})

In the final instruction, we print the result:

 print(z_output)

This prints the output, 72.0.

Eager execution with TensorFlow

https://www.tensorflow.org/api_docs/python/tf/Tensor

As described earlier, with eager execution for TensorFlow enabled,
we can execute TensorFlow operations immediately as they are
called from Python in an imperative way.

With eager execution enabled, TensorFlow functions execute
operations immediately and return concrete values. This is opposed
to adding to a graph to be executed later in a tf.Session

(https://www.tensorflow.org/versions/master/api_docs/python/tf/Sessi
on) and creating symbolic references to a node in a computational
graph.

TensorFlow serves eager execution features through
tf.enable_eager_execution, which is aliased with the following:

tf.contrib.eager.enable_eager_execution

tf.enable_eager_execution

The tf.enable_eager_execution has the following signature:

tf.enable_eager_execution(

 config=None,

 device_policy=None

)

In the above signature, config is a tf.ConfigProto used to configure
the environment in which operations are executed but this is an
optional argument. On the other hand, device_policy is also an
optional argument used for controlling the policy on how operations
requiring inputs on a specific device (for example, GPU0) handle
inputs on a different device (for example, GPU1 or CPU).

Now invoking the preceding code will enable the eager execution for
the lifetime of your program. For example, the following code
performs a simple multiplication operation in TensorFlow:

import tensorflow as tf

x = tf.placeholder(tf.float32, shape=[1, 1]) # a

placeholder for variable x

https://www.tensorflow.org/versions/master/api_docs/python/tf/Session

y = tf.placeholder(tf.float32, shape=[1, 1]) # a

placeholder for variable y

m = tf.matmul(x, y)

with tf.Session() as sess:

 print(sess.run(m, feed_dict={x: [[2.]], y:

[[4.]]}))

The following is the output of the preceding code:

>>>

8.

However, with the eager execution, the overall code looks much
simpler:

import tensorflow as tf

Eager execution (from TF v1.7 onwards):

tf.eager.enable_eager_execution()

x = [[2.]]

y = [[4.]]

m = tf.matmul(x, y)

print(m)

The following is the output of the preceding code:

>>>

tf.Tensor([[8.]], shape=(1, 1), dtype=float32)

Can you understand what happens when the preceding code block
is executed? Well, after eager execution is enabled, operations are
executed as they are defined and Tensor objects hold concrete
values, which can be accessed as numpy.ndarray through the
numpy() method.

Note that eager execution cannot be enabled after TensorFlow APIs
have been used to create or execute graphs. It is typically

recommended to invoke this function at program startup and not in a
library. Although this sounds fascinating, we will not use this feature
in the upcoming chapters since this a new feature and not well
explored yet.

Data model in TensorFlow
The data model in TensorFlow is represented by tensors. Without
using complex mathematical definitions, we can say that a tensor (in
TensorFlow) identifies a multidimensional numerical array. We will
see more details on tensors in the next subsection.

Tensor
Let's see the formal definition of tensor from Wikipedia
(https://en.wikipedia.org/wiki/Tensor):

"Tensors are geometric objects that describe linear relations
between geometric vectors, scalars, and other tensors. Elementary

examples of such relations include the dot product, the cross
product, and linear maps. Geometric vectors, often used in physics

and engineering applications, and scalars themselves are also
tensors."

This data structure is characterized by three parameters: rank,
shape, and type, as shown in the following figure:

https://en.wikipedia.org/wiki/Tensor

Figure 6: Tensors are nothing but geometric objects with a shape, rank, and type, used to
hold a multidimensional array

A tensor can thus be thought of as the generalization of a matrix that
specifies an element with an arbitrary number of indices. The syntax
for tensors is more or less the same as nested vectors.

Tip
Tensors just define the type of this value and the means by which
this value should be calculated during the session. Therefore,
they do not represent or hold any value produced by an operation.

Some people love to compare NumPy and TensorFlow. However, in
reality, TensorFlow and NumPy are quite similar in the sense that
both are N-d array libraries!

Well, it's true that NumPy has n-dimensional array support, but it
doesn't offer methods to create tensor functions and automatically
compute derivatives (and it has no GPU support). The following
figure is a short and one-to-one comparison of NumPy and
TensorFlow:

Figure 7: NumPy versus TensorFlow: a one-to-one comparison

Now let's see an alternative way of creating tensors before they
could be fed (we will see other feeding mechanisms later on) by the
TensorFlow graph:

>>> X = [[2.0, 4.0],

 [6.0, 8.0]] # X is a list of lists

>>> Y = np.array([[2.0, 4.0],

 [6.0, 6.0]], dtype=np.float32)#Y

is a Numpy array

>>> Z = tf.constant([[2.0, 4.0],

 [6.0, 8.0]]) # Z is a tensor

Here, X is a list, Y is an n-dimensional array from the NumPy library,
and Z is a TensorFlow tensor object. Now let's see their types:

>>> print(type(X))

>>> print(type(Y))

>>> print(type(Z))

#Output

<class 'list'>

<class 'numpy.ndarray'>

<class 'tensorflow.python.framework.ops.Tensor'>

Well, their types are printed correctly. However, a more convenient
function that we're formally dealing with tensors as opposed to the
other types is tf.convert_to_tensor() function as follows:

t1 = tf.convert_to_tensor(X, dtype=tf.float32)

t2 = tf.convert_to_tensor(Z, dtype=tf.float32)

Now let's see their types using the following code:

>>> print(type(t1))

>>> print(type(t2))

#Output:

<class 'tensorflow.python.framework.ops.Tensor'>

<class 'tensorflow.python.framework.ops.Tensor'>

Fantastic! That's enough discussion about tensors for now. So, we
can think about the structure that is characterized by the term rank.

Rank and shape
A unit of dimensionality called rank describes each tensor. It
identifies the number of dimensions of the tensor. For this reason, a
rank is known as order or n–dimensions of a tensor. A rank zero
tensor is a scalar, a rank one tensor is a vector, and a rank two
tensor is a matrix.

The following code defines a TensorFlow scalar, vector, matrix, and
cube_matrix. In the next example, we will show how rank works:

import tensorflow as tf

scalar = tf.constant(100)

vector = tf.constant([1,2,3,4,5])

matrix = tf.constant([[1,2,3],[4,5,6]])

cube_matrix = tf.constant([[[1],[2],[3]],[[4],[5],

[6]],[[7],[8],[9]]])

print(scalar.get_shape())

print(vector.get_shape())

print(matrix.get_shape())

print(cube_matrix.get_shape())

The results are printed here:

>>>

()

(5,)

(2, 3)

(3, 3, 1)

>>>

The shape of a tensor is the number of rows and columns it has.
Now we will see how to relate the shape of a tensor to its rank:

>>scalar.get_shape()

TensorShape([])

>>vector.get_shape()

TensorShape([Dimension(5)])

>>matrix.get_shape()

TensorShape([Dimension(2), Dimension(3)])

>>cube.get_shape()

TensorShape([Dimension(3), Dimension(3),

Dimension(1)])

Data type
In addition to rank and shape, tensors have a data type. Here is a list
of the data types:

Data type Python type Description

DT_FLOAT tf.float32 32-bit floating point

DT_DOUBLE tf.float64 64-bit floating point

DT_INT8 tf.int8 8-bit signed integer

DT_INT16 tf.int16 16-bit signed integer

DT_INT32 tf.int32 32-bit signed integer

DT_INT64 tf.int64 64-bit signed integer

DT_UINT8 tf.uint8 8-bit unsigned integer

DT_STRING tf.string Variable length byte arrays. Each
element of a tensor is a byte array

DT_BOOL tf.bool Boolean

Data type Python type Description

DT_COMPLEX64 tf.complex64 Complex number made of two 32-bit
floating points: real and imaginary
parts

DT_COMPLEX128 tf.complex128 Complex number made of two 64-bit
floating points: real and imaginary
parts

DT_QINT8 tf.qint8 8-bit signed integer used in quantized
Ops

DT_QINT32 tf.qint32 32-bit signed integer used in
quantized Ops

DT_QUINT8 tf.quint8 8-bit unsigned integer used in
quantized Ops

The preceding table is self-explanatory, so we have not provided a
detailed discussion of the data types. The TensorFlow APIs are
implemented to manage data to and from NumPy arrays.

Thus, to build a tensor with a constant value, pass a NumPy array to
the tf.constant() operator, and the result will be a tensor with that
value:

import tensorflow as tf

import numpy as np

array_1d = np.array([1,2,3,4,5,6,7,8,9,10])

tensor_1d = tf.constant(array_1d)

with tf.Session() as sess:

 print(tensor_1d.get_shape())

 print(sess.run(tensor_1d))

Running the example, we obtain the following:

>>>

 (10,)

 [1 2 3 4 5 6 7 8 9 10]

To build a tensor with variable values, use a NumPy array and pass
it to the tf.Variable constructor. The result will be a variable tensor
with that initial value:

import tensorflow as tf

import numpy as np

Create a sample NumPy array

array_2d = np.array([(1,2,3),(4,5,6),(7,8,9)])

Now pass the preceding array to tf.Variable()

tensor_2d = tf.Variable(array_2d)

Execute the preceding op under an active session

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 print(tensor_2d.get_shape())

 print sess.run(tensor_2d)

Finally, close the TensorFlow session when

you're done

sess.close()

In the preceding code block, tf.global_variables_initializer() is
used to initialize all the ops we created before. If you need to create
a variable with an initial value dependent on another variable, use
the other variable's initialized_value(). This ensures that variables
are initialized in the right order.

The result is as follows:

>>>

 (3, 3)

 [[1 2 3]

 [4 5 6]

 [7 8 9]]

For ease of use in interactive Python environments, we can use the
InteractiveSession class, and then use that session for all
Tensor.eval() and Operation.run() calls:

import tensorflow as tf # Import TensorFlow

import numpy as np # Import numpy

Create an interactive TensorFlow session

interactive_session = tf.InteractiveSession()

Create a 1d NumPy array

array1 = np.array([1,2,3,4,5]) # An array

Then convert the preceding array into a tensor

tensor = tf.constant(array1) # convert to tensor

print(tensor.eval()) # evaluate the tensor op

interactive_session.close() # close the session

Tip
tf.InteractiveSession() is just convenient syntactic sugar for
keeping a default session open in IPython.

The result is as follows:

>>>

 [1 2 3 4 5]

This can be easier in an interactive setting, such as the shell or an
IPython Notebook, as it can be tedious to pass around a session
object everywhere.

Note
The IPython Notebook is now known as the Jupyter Notebook. It
is an interactive computational environment in which you can
combine code execution, rich text, mathematics, plots, and rich
media. For more information, interested readers should refer to
https://ipython.org/notebook.html.

Another way to define a tensor is using the tf.convert_to_tensor
statement:

import tensorflow as tf

import numpy as np

tensor_3d = np.array([[[0, 1, 2], [3, 4, 5], [6,

7, 8]],

 [[9, 10, 11], [12, 13, 14],

[15, 16, 17]],

 [[18, 19, 20], [21, 22, 23],

[24, 25, 26]]])

tensor_3d = tf.convert_to_tensor(tensor_3d,

dtype=tf.float64)

with tf.Session() as sess:

 print(tensor_3d.get_shape())

 print(sess.run(tensor_3d))

Finally, close the TensorFlow session when

you're done

sess.close()

The following is the output of the preceding code:

>>>

(3, 3, 3)

[[[0. 1. 2.]

 [3. 4. 5.]

 [6. 7. 8.]]

 [[9. 10. 11.]

 [12. 13. 14.]

 [15. 16. 17.]]

 [[18. 19. 20.]

https://ipython.org/notebook.html

 [21. 22. 23.]

 [24. 25. 26.]]]

Variables
Variables are TensorFlow objects used to hold and update
parameters. A variable must be initialized so that you can save and
restore it to analyze your code later on. Variables are created by
using either tf.Variable() or tf.get_variable() statements.
Whereas tf.get_varaiable() is recommended but tf.Variable() is
lower-label abstraction.

In the following example, we want to count the numbers from 1 to 10,
but let's import TensorFlow first:

import tensorflow as tf

We created a variable that will be initialized to the scalar value 0:

value = tf.get_variable("value", shape=[],

dtype=tf.int32, initializer=None,

regularizer=None, trainable=True,

collections=None)

The assign() and add() operators are just nodes of the computation
graph, so they do not execute the assignment until the session is
run:

one = tf.constant(1)

update_value = tf.assign_add(value, one)

initialize_var = tf.global_variables_initializer()

We can instantiate the computation graph:

with tf.Session() as sess:

 sess.run(initialize_var)

 print(sess.run(value))

 for _ in range(5):

 sess.run(update_value)

 print(sess.run(value))

Close the session

Let's recall that a tensor object is a symbolic handle to the result of
an operation, but it does not actually hold the values of the
operation's output:

>>>

0

1

2

3

4

5

Fetches
To fetch the output of an operation, the graph can be executed by
calling run() on the session object and passing in the tensors. Apart
from fetching a single tensor node, you can also fetch multiple
tensors.

In the following example, the sum and multiply tensors are fetched
together using the run() call:

import tensorflow as tf

constant_A = tf.constant([100.0])

constant_B = tf.constant([300.0])

constant_C = tf.constant([3.0])

sum_ = tf.add(constant_A,constant_B)

mul_ = tf.multiply(constant_A,constant_C)

with tf.Session() as sess:

 result = sess.run([sum_,mul_])# _ means throw

away afterwards

 print(result)

The output is as follows:

>>>

[array(400.],dtype=float32),array([

300.],dtype=float32)]

It should be noted that all the ops that need to be executed (that is,
in order to produce tensor values) are run once (not once per
requested tensor).

Feeds and placeholders
There are four methods of getting data into a TensorFlow program
(for more information, see
https://www.tensorflow.org/api_guides/python/reading_data):

The Dataset API: This enables you to build complex input
pipelines from simple and reusable pieces of distributed
filesystems and perform complex operations. Using the Dataset
API is recommended if you are dealing with large amounts of
data in different data formats. The Dataset API introduces two
new abstractions to TensorFlow for creating a feedable dataset:
tf.contrib.data.Dataset (by creating a source or applying
transformation operations) and tf.contrib.data.Iterator.
Feeding: This allows us to inject data into any tensor in a
computation graph.
Reading from files: This allows us to develop an input pipeline
using Python's built-in mechanism for reading data from data
files at the beginning of the graph.
Preloaded data: For a small dataset, we can use either
constants or variables in the TensorFlow graph to hold all the
data.

In this section, we will see an example of a feeding mechanism. We
will see the other methods in upcoming chapters. TensorFlow
provides a feed mechanism that allows us to inject data into any
tensor in a computation graph. You can provide the feed data

https://www.tensorflow.org/api_guides/python/reading_data

through the feed_dict argument to a run() or eval() invocation that
initiates the computation.

Tip
Feeding using feed_dict argument is the least efficient way to
feed data into a TensorFlow execution graph and should only be
used for small experiments needing small dataset. It can also be
used for debugging.

We can also replace any tensor with feed data (that is, variables and
constants). Best practice is to use a TensorFlow placeholder node
using tf.placeholder()

(https://www.tensorflow.org/api_docs/python/tf/placeholder). A
placeholder exists exclusively to serve as the target of feeds. An
empty placeholder is not initialized, so it does not contain any data.

Therefore, it will always generate an error if it is executed without a
feed, so you won't forget to feed it. The following example shows
how to feed data to build a random 2×3 matrix:

import tensorflow as tf

import numpy as np

a = 3

b = 2

x = tf.placeholder(tf.float32,shape=(a,b))

y = tf.add(x,x)

data = np.random.rand(a,b)

sess = tf.Session()

print(sess.run(y,feed_dict={x:data}))

sess.close()# close the session

The output is as follows:

>>>

https://www.tensorflow.org/api_docs/python/tf/placeholder

[[1.78602004 1.64606333]

 [1.03966308 0.99269408]

 [0.98822606 1.50157797]]

>>>

Visualizing computations
through TensorBoard
TensorFlow includes functions that allow you to debug and optimize
programs in a visualization tool called TensorBoard. With
TensorBoard, you can graphically observe different types of statistics
concerning the parameters and details of any part of the graph.

Moreover, while doing predictive modeling using a complex DNN, the
graph can be complex and confusing. To make it easier to
understand, debug, and optimize TensorFlow programs, you can use
TensorBoard to visualize your TensorFlow graph, plot quantitative
metrics about the execution of your graph, and show additional data,
such as images that pass through it.

Therefore, TensorBoard can be thought of as a framework designed
for analyzing and debugging predictive models. TensorBoard uses
the so-called summaries to view the parameters of the model: once
a TensorFlow code is executed, we can call TensorBoard to view the
summaries in a GUI.

How does TensorBoard work?
TensorFlow uses the computation graph to execute an application. In
a computation graph, nodes represent an operation and the arcs are
the data between operations.

The main idea of TensorBoard is to associate the summary with the
nodes (operations) on the graph. When the code is running,
summary operations will serialize the data of the node and output the
data into a file. Later on, TensorBoard will visualize the summarized
operations. For more detailed discussion, readers can refer to
https://github.com/tensorflow/tensorboard.

https://github.com/tensorflow/tensorboard

Putting it simply, TensorBoard is a suite of web applications for
inspecting and understanding your TensorFlow runs and graphs. The
workflow when using TensorBoard is as follows:

1. Build your computational graph/code
2. Attach summary ops to the nodes you are interested in

examining
3. Start running your graph as you normally would
4. Run the summary ops
5. When the execution is finished, run TensorBoard to visualize the

summary outputs
file_writer =

tf.summary.FileWriter('/path/to/logs',

sess.graph)

For step 2 (that is, before running TensorBoard), make sure you
have generated summary data in a log directory by creating a
summary writer:

sess.graph contains the graph definition; that enables the graph
visualizer

Now if you type $ which tensorboard in Terminal, it should exist if
you installed it with pip:

root@ubuntu:~$ which tensorboard

/usr/local/bin/tensorboard

You need to give it a log directory. When you are in the directory
where you ran your graph, you can launch it from Terminal with
something like this:

tensorboard --logdir path/to/logs

When TensorBoard is fully configured, it can be accessed by issuing
the following command:

Make sure there's no space before or after '="

$ tensorboard –logdir=<trace_file_name>

Now you simply need to access localhost 6006 from the browser by
typing http://localhost:6006/. Then it should look like this:

Figure 8: Using TensorBoard on a browser

Note
TensorBoard can be used in Google Chrome or Firefox. Other
browsers might work, but there may be bugs or performance
issues.

Is this already too much? Don't worry, in the last section, we'll
combine all the ideas previously explained to build a single input
neuron model and to analyze it with TensorBoard.

Linear regression and beyond
In this section, we will take a closer look at the main concepts of
TensorFlow and TensorBoard and try to do some basic operations to
get you started. The model we want to implement simulates linear
regression.

In statistics and ML, linear regression is a technique that's frequently
used to measure the relationship between variables. This is a quite
simple but effective algorithm that can be used in predictive
modeling as well.

Linear regression models the relationship between a dependent

variable, , an interdependent variable,

, and a random term, b. This can be seen as follows:

A typical linear regression problem using TensorFlow has the
following workflow, which updates the parameters to minimize the
given cost (see in the following figure) function:

Figure 9: A learning algorithm using linear regression in TensorFlow

Now, let's try to follow the preceding figure and reproduce it for the
linear regression by conceptualizing the preceding equation. For this,
we're going to write a simple Python program for creating data in a
2D space. Then we will use TensorFlow to look for the line that best
fits the data points (as shown in the following figure):

Import libraries (Numpy, matplotlib)

import numpy as np

import matplotlib.pyplot as plot

Create 1000 points following a function y=0.1 *

x + 0.4z

(i.e. # y = W * x + b) with some normal random

distribution:

num_points = 1000

vectors_set = []

Create a few random data points

for i in range(num_points):

 W = 0.1 # W

 b = 0.4 # b

 x1 = np.random.normal(0.0, 1.0)#in: mean,

standard deviation

 nd = np.random.normal(0.0,

0.05)#in:mean,standard deviation

 y1 = W * x1 + b

 # Add some impurity with normal distribution -

i.e. nd

 y1 = y1 + nd

 # Append them and create a combined vector set:

 vectors_set.append([x1, y1])

Separate the data point across axises:

x_data = [v[0] for v in vectors_set]

y_data = [v[1] for v in vectors_set]

Plot and show the data points in a 2D space

plot.plot(x_data, y_data, 'ro', label='Original

data')

plot.legend()

plot.show()

If your compiler does not complain, you should get the following
graph:

Figure 10: Randomly generated (but original) data

Well, so far we have just created a few data points without an
associated model that could be executed through TensorFlow. So,
the next step is to create a linear regression model that can obtain
the output values y that is estimated from the input data points, that
is, x_data. In this context, we have only two associated parameters,
W and b.

Now the objective is to create a graph that allows us to find the
values for these two parameters based on the input data, x_data, by
adjusting them to y_data. So, the target function in our case would
be as follows:

If you recall, we defined W = 0.1 and b = 0.4 while creating the data
points in the 2D space. TensorFlow has to optimize these two values
so that W tends to 0.1 and b to 0.4.

A standard way to solve such optimization problems is to iterate
through each value of the data points and adjust the values of W and
b in order to get a more precise answer for each iteration. To see if
the values really are improving, we need to define a cost function
that measures how good a certain line is.

In our case, the cost function is the mean squared error, which helps
us find the average of the errors based on the distance function
between the real data points and the estimated ones on each
iteration. We start by importing the TensorFlow library:

import tensorflow as tf

W = tf.Variable(tf.zeros([1]))

b = tf.Variable(tf.zeros([1]))

y = W * x_data + b

In the preceding code segment, we are generating a random point
using a different strategy and storing it in the variable W. Now, let's

define a loss function, , and this returns a
scalar value with the mean of all distances between our data and the
model prediction. In terms of TensorFlow convention, the loss
function can be expressed as follows:

loss = tf.reduce_mean(tf.square(y - y_data))

The preceding line actually computes mean square error (MSE).
Without going into further detail, we can use some widely used
optimization algorithms, such as GD. At a minimal level, GD is an
algorithm that works on a set of given parameters that we already
have.

It starts with an initial set of parameter values and iteratively moves
toward a set of values that minimize the function by taking another

parameter called the learning rate. This iterative minimization is
achieved by taking steps in the negative direction of the gradient
function:

optimizer = tf.train.GradientDescentOptimizer(0.6)

train = optimizer.minimize(loss)

Before running this optimization function, we need to initialize all the
variables that we have so far. Let's do it using a conventional
TensorFlow technique, as follows:

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

Since we have created a TensorFlow session, we are ready for the
iterative process that helps us find the optimal values of W and b:

for i in range(6):

 sess.run(train)

 print(i, sess.run(W), sess.run(b),

sess.run(loss))

You should observe the following output:

>>>

0 [0.18418592] [0.47198644] 0.0152888

1 [0.08373772] [0.38146532] 0.00311204

2 [0.10470386] [0.39876288] 0.00262051

3 [0.10031486] [0.39547175] 0.00260051

4 [0.10123629] [0.39609471] 0.00259969

5 [0.1010423] [0.39597753] 0.00259966

6 [0.10108326] [0.3959994] 0.00259966

7 [0.10107458] [0.39599535] 0.00259966

You can see the algorithm starts with the initial values of W =

0.18418592 and b = 0.47198644, and the loss is pretty high. Then, the
algorithm iteratively adjusts the values by minimizing the cost

function. In the eighth iteration, all the values tend to our desired
values.

Now, what if we could plot them? Let's do it by adding a plotting line
under the for loop, as follows:

for i in range(6):

 sess.run(train)

 print(i, sess.run(W), sess.run(b),

sess.run(loss))

 plot.plot(x_data, y_data, 'ro',

label='Original data')

 plot.plot(x_data, sess.run(W)*x_data +

sess.run(b))

 plot.xlabel('X')

 plot.xlim(-2, 2)

 plot.ylim(0.1, 0.6)

 plot.ylabel('Y')

 plot.legend()

 plot.show()

The preceding code block, should produce the following figure
(merged together, though):

Figure 11: Linear regression optimizing the loss function after the sixth iteration

Now let's go up to the 16th iteration:

>>>

0 [0.23306453] [0.47967502] 0.0259004

1 [0.08183448] [0.38200468] 0.00311023

2 [0.10253634] [0.40177572] 0.00254209

3 [0.09969243] [0.39778906] 0.0025257

4 [0.10008509] [0.39859086] 0.00252516

5 [0.10003048] [0.39842987] 0.00252514

6 [0.10003816] [0.39846218] 0.00252514

7 [0.10003706] [0.39845571] 0.00252514

8 [0.10003722] [0.39845699] 0.00252514

9 [0.10003719] [0.39845672] 0.00252514

10 [0.1000372] [0.39845678] 0.00252514

11 [0.1000372] [0.39845678] 0.00252514

12 [0.1000372] [0.39845678] 0.00252514

13 [0.1000372] [0.39845678] 0.00252514

14 [0.1000372] [0.39845678] 0.00252514

15 [0.1000372] [0.39845678] 0.00252514

Much better, and we're closer to the optimized values, right? Now,
what if we improve our visual analytics further through TensorFlow to
help visualize what is happening in these graphs. TensorBoard
provides a web page for debugging your graph and inspecting the
variables, node, edges, and their corresponding connections.

Also, we need to annotate the preceding graphs with the variables,
such as the loss function, W, b, y_data, x_data, and so on. Then you
need to generate all the summaries by invoking the
tf.summary.merge_all() function.

Now, we need to make the following changes to the preceding code.
However, it is good practice to group related nodes on the graph
using the tf.name_scope() function. Thus, we can use
tf.name_scope() to organize things on the TensorBoard graph view,
but let's give it a better name:

with tf.name_scope("LinearRegression") as scope:

 W = tf.Variable(tf.zeros([1]))

 b = tf.Variable(tf.zeros([1]))

 y = W * x_data + b

Then, let's annotate the loss function in a similar way, but with a
suitable name, such as LossFunction:

with tf.name_scope("LossFunction") as scope:

 loss = tf.reduce_mean(tf.square(y - y_data))

Let's annotate the loss, weights, and bias that are needed for
TensorBoard:

loss_summary = tf.summary.scalar("loss", loss)

w_ = tf.summary.histogram("W", W)

b_ = tf.summary.histogram("b", b)

Once you have annotated the graph, it's time to configure the
summary by merging them:

merged_op = tf.summary.merge_all()

Before running the training (after the initialization), write the
summary using the tf.summary.FileWriter() API as follows:

writer_tensorboard =

tf.summary.FileWriter('logs/',

tf.get_default_graph())

Then start TensorBoard as follows:

$ tensorboard –logdir=<trace_dir_name>

In our case, it could be something like the following:

$ tensorboard --logdir=/home/root/LR/

Now let's move to http://localhost:6006 and click on the GRAPH
tab. You should see the following graph:

Figure 12: The main graph and auxiliary nodes on TensorBoard

Tip
Note that Ubuntu may ask you to install the python-tk package.
You can do it by executing the following command on Ubuntu:

$ sudo apt-get install python-tk

For Python 3.x, use the following

$ sudo apt-get install python3-tk

Linear regression revisited for a real
dataset
In the previous section, we saw an example of linear regression. We
saw how to use TensorFlow with a randomly generated dataset, that
is, fake data. We have seen that regression is a type of supervised
machine learning for predicting continuous (rather than discrete)
output.

However, running a linear regression on fake data is just like buying
a new car but never driving it. This awesome machinery begs to be

used in the real world! Fortunately, many datasets are available
online to test your new-found knowledge of regression.

One of them is the Boston housing dataset, which can be
downloaded from the UCI Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/Housing. It is also available as
a preprocessed dataset with scikit-learn.

So, let's get started by importing all the required libraries, including
TensorFlow, NumPy, Matplotlib, and scikit-learn:

import matplotlib.pyplot as plt

import tensorflow as tf

import numpy as np

from numpy import genfromtxt

from sklearn.datasets import load_boston

from sklearn.model_selection import

train_test_split

Next, we need to prepare the training set consisting of features and
labels from the Boston housing dataset. The read_boston_data ()
method reads from scikit-learn and returns the features and labels
separately:

def read_boston_data():

 boston = load_boston()

 features = np.array(boston.data)

 labels = np.array(boston.target)

 return features, labels

Now that we have the features and labels, we need to normalize the
features as well, using the normalizer() method. Here is the
signature of the method:

def normalizer(dataset):

 mu = np.mean(dataset,axis=0)

 sigma = np.std(dataset,axis=0)

 return(dataset - mu)/sigma

https://archive.ics.uci.edu/ml/datasets/Housing

bias_vector() is used to append the bias term (that is all 1s) to the
normalized features that we prepared in the preceding step. It
corresponds to the b term in the equation of straight line in the
previous example:

def bias_vector(features,labels):

 n_training_samples = features.shape[0]

 n_dim = features.shape[1]

 f =

np.reshape(np.c_[np.ones(n_training_samples),featu

res],[n_training_samples,n_dim + 1])

 l = np.reshape(labels,[n_training_samples,1])

 return f, l

We will now invoke these methods and split the dataset into training
and testing, 75% for training and rest for testing:

features,labels = read_boston_data()

normalized_features = normalizer(features)

data, label =

bias_vector(normalized_features,labels)

n_dim = data.shape[1]

Train-test split

train_x, test_x, train_y, test_y =

train_test_split(data,label,test_size =

0.25,random_state = 100)

Now let's use TensorFlow's data structures (such as placeholders,
labels, and weights):

learning_rate = 0.01

training_epochs = 100000

log_loss = np.empty(shape=[1],dtype=float)

X = tf.placeholder(tf.float32,[None,n_dim]) #takes

any number of rows but n_dim columns

Y = tf.placeholder(tf.float32,[None,1]) # #takes

any number of rows but only 1 continuous column

W = tf.Variable(tf.ones([n_dim,1])) # W weight

vector

Well done! We have prepared the data structure required to
construct the TensorFlow graph. Now it's time to construct the linear

regression, which is pretty straightforward:

y_ = tf.matmul(X, W)

cost_op = tf.reduce_mean(tf.square(y_ - Y))

training_step =

tf.train.GradientDescentOptimizer(learning_rate).m

inimize(cost_op)

In the preceding code segment, the first line multiplies the features
matrix by the weights matrix that can be used for prediction. The
second line computes the loss, which is the squared error of the
regression line. Finally, the third line performs one-step of GD
optimization to minimize the square error.

Tip
Which optimizer to use: the main objective of using optimizer is to
minimize the evaluated cost; therefore, we must define an
optimizer. Using the most common optimizer like SGD, the
learning rates must scale with 1/T to get convergence, where T is
the number of iteration.

Adam or RMSProp tries to overcome this limitation automatically
by adjusting the step size so that the step is on the same scale as
the gradients. In addition, in the previous example, we have used
Adam optimizer, which performs well in most of the cases.

Nevertheless, if you are training a neural network computing the
gradients is mandatory, using the RMSPropOptimizer function,
which implements the RMSProp algorithm is a better idea, since it
would be the faster way of learning in a mini-batch setting.
Researchers also recommend using the Momentum optimizer
while training a deep CNN or DNN.

Technically, RMSPropOptimizer is an advanced form of gradient
descent that divides the learning rate by an exponentially
decaying average of squared gradients. The suggested setting

value of the decay parameter is 0.9, while a good default value for
the learning rate is 0.001.

For example in TensorFlow, tf.train.RMSPropOptimizer() helps
us use this with ease:

optimizer = tf.train.RMSPropOptimizer(0.001,

0.9).minimize(cost_op)

Now, before we start training the model, we need to initialize all the
variables using the initialize_all_variables() method, as follows:

init = tf.initialize_all_variables()

Fantastic! Now that we have managed to prepare all the
components, we're ready to train the actual train. We start by
creating TensorFlow session as follows:

sess = tf.Session()

sess.run(init_op)

for epoch in range(training_epochs):

 sess.run(training_step,feed_dict=

{X:train_x,Y:train_y})

 log_loss =

np.append(log_loss,sess.run(cost_op,feed_dict={X:

train_x,Y: train_y}))

Once the training is completed, we are able to make predictions on
unseen data. However, it's even more exciting to see a visual
representation of the completed training. So, let's plot the cost as a
function of the number of iterations using Matplotlib:

plt.plot(range(len(log_loss)),log_loss)

plt.axis([0,training_epochs,0,np.max(log_loss)])

plt.show()

The following is the output of the preceding code:

>>>

Figure 13: Cost as a function of the number of iterations

Make some predictions on the test dataset and calculate the mean
squared error:

pred_y = sess.run(y_, feed_dict={X: test_x})

mse = tf.reduce_mean(tf.square(pred_y - test_y))

print("MSE: %.4f" % sess.run(mse))

The following is the output of the preceding code:

>>>

MSE: 27.3749

Finally, let's show the line of best fit:

fig, ax = plt.subplots()

ax.scatter(test_y, pred_y)

ax.plot([test_y.min(), test_y.max()],

[test_y.min(), test_y.max()], 'k--', lw=3)

ax.set_xlabel('Measured')

ax.set_ylabel('Predicted')

plt.show()

The following is the output of the preceding code:

>>>

Figure 14: Predicted versus actual values

Summary
TensorFlow is designed to make predictive analytics through ML
and DL easy for everyone, but using it does require a decent
understanding of some general principles and algorithms. The latest
release of TensorFlow comes with lots of exciting new features, so
we have tried to cover them so that you can use them with ease. In
summary, here is a brief recap of the key concepts of TensorFlow
that have been explained in this chapter:

Graph: Each TensorFlow computation can be represented as a
data flow graph, where each graph is built as a set of operation
objects. There are three core graph data structures: tf.Graph
(https://www.tensorflow.org/api_docs/python/tf/Graph),
tf.Operation

(https://www.tensorflow.org/api_docs/python/tf/Operation), and
tf.Tensor

(https://www.tensorflow.org/api_docs/python/tf/Tensor).
Operation: A graph node takes one or more tensors as input
and produces one or more tensors as output. A node can be
represented by an operation object for performing computational
units such as addition, multiplication, division, subtraction, or
more complex operations.
Tensors: They are like high-dimensional array objects. In other
words, they can be represented as edges of a data flow graph
and are the outputs of different operations.
Session: A session object is an entity that encapsulates the
environment in which operation objects are executed for running
calculations on the data flow graph. As a result, tensor objects
are evaluated inside a run() or eval() invocation.

In a later section of the chapter, we introduced TensorBoard, which is
a powerful tool for analyzing and debugging neural network models.
Finally, we saw how to implement one of the simplest TensorFlow-
based linear regression models on a fake and a real dataset.

https://www.tensorflow.org/api_docs/python/tf/Graph
https://www.tensorflow.org/api_docs/python/tf/Operation
https://www.tensorflow.org/api_docs/python/tf/Tensor

In the next chapter, we will discuss the theoretical background of
different FFNN architectures such as Deep Belief Networks (DBNs)
and Multilayer Perceptron (MLP).

We will then show how to train and analyze the performance metrics
that are needed to evaluate the models, followed by some ways to
tune hyperparameters for FFNNs for optimized performance. Finally,
we will provide two examples, using MLP and DBN, of how to build
very robust and accurate predictive models for predictive analytics
on a bank marketing dataset.

Chapter 3. Feed-Forward Neural
Networks with TensorFlow
ANNs are at the very core of DL. They are versatile, powerful, and
scalable, making them ideal for tackling large and highly complex ML
tasks. We can classify billions of images, power speech recognition
services, and even recommend that hundreds of millions of users
watch the best videos, by stacking multiple ANNs together. These
multiple stacked ANNs are called Deep Neural Networks (DNNs).
Using DNNs, we can build very robust and accurate models for
predictive analytics.

The architectures of DNNs can be very different: they are often
organized on different layers. The first layer receives the input
signals and the last layer produces the output signals. Usually, these
networks are identified as Feed-Forward Neural Networks
(FFNNs). In this chapter, we will construct an FFNN that classifies an
MNIST dataset. Later on, we will see two more implementations of
FFNNs (for building very robust and accurate models for predictive
analytics) called Deep Belief Networks (DBNs) and Multilayer
Perceptron (MLP), on a bank marketing dataset. Finally, we will see
how to tune the most important FFNN hyperparameters for optimized
performance.

Concisely, the following topics will be covered throughout this
chapter:

Feed-forward neural networks
Implementing a five-layer FFNN for digit classification
Implementing a deep MLP for client-subscription prediction
Revisiting client-subscription prediction: implementing a DBN
Hyperparameter tuning and dropout optimization in an FFNN

Feed-forward neural networks
(FFNNs)
An FFNN consists of a large number of neurons, organized in layers:
one input layer, one or more hidden layers, and one output layer.
Each neuron in a layer is connected to all the neurons of the
previous layer, although the connections are not all the same
because they have different weights. The weights of these
connections encode the knowledge of the network. Data enters at
the inputs and passes through the network, layer by layer until it
arrives at the outputs. During this operation, there is no feedback
between layers. Therefore, these types of networks are called feed-
forward neural networks.

An FFNN with enough neurons in the hidden layer is able to
approximate with arbitrary precision, and can model the linear, as
well as non-linear, relationships in your data:

Any continuous function, with one hidden layer
Any function, even discontinuous, with two hidden layers

However, it is not possible to determine a priori, with adequate
precision, the required number of hidden layers, or even the number
of neurons that must be contained inside each hidden layer to
compute a non-linear function. There is no straightforward answer to
this, but we can try increasing the number of neurons in a hidden
layer until the FFNN starts overfitting. We will discuss this later on.
Despite some rules of thumb, setting the number of hidden layers
relies on experience and on some heuristics to determine the
structure of the network.

Figure 1: A feed-forward neural network with two hidden layers and an input bias

If a low number of hidden layers, or neurons, constitute the neural
network architecture, then the network is not able to approximate
with adequate precision the unknown function, for example. This
could be because it is too complex, or because the backpropagation
algorithm falls within a local minimum. If the network is composed of
a high number of hidden layers, then we have an overfitting problem;
namely a worsening of the network's generalization ability. One
solution to this problem is regularization through dropout (we will
discuss this later in the chapter).

Therefore, a complex network can consist of many neurons, hidden
layers, and connections, but in general, an ANN with two or more
hidden layers is called a DNN. From the implementation perspective,
a DNN can be constructed by stacking multiple ANNs together.

Based on the types of layers used in DNNs and the corresponding
learning method, DNNs can be classified as MLPs, Staked Auto-
Encoders (SAEs), or DBNs. All of these are regular FFNNs, but
they have a number of hidden layers and they are architecturally
different. In this chapter we will mainly discuss MLPs and DBNs,
using hands-on examples, but SAE will be covered in Chapter 5,

Optimizing TensorFlow Autoencoders. However, first, let's focus on
the feed-forward and the backpropagation mechanism.

Feed-forward and backpropagation
The backpropagation algorithm aims to minimize the error between
the current and the desired output. Since the network is feed-
forward, the activation flow always proceeds forward from the input
units to the output units. The gradient of the cost function is
backpropagated through the modification of weights.

This method is recursive and can be applied to any number of
hidden layers. In such a method, the incorporation between two
phases is important. The feed-forward learning models are:

Forward pass
Backward pass

In the forward pass, we do a bunch of operations and obtain some
predictions or scores. Therefore, for each operation in the forward
pass, we need to create a graph connecting operations top to
bottom.

On the other hand, the backward pass is involved mainly with
mathematical operations, such as creating derivatives for all the
deferential operations (that is, auto differentiation methods) top to
bottom (for example, loss function to weights update), for all the
operations in the graph, and then using them in the chain rule. Note
that, there are two types of auto differentiation methods:

Reverse-mode: Derivation of a single output with respect to all
inputs
Forward-mode: Derivation of all outputs with respect to one
input

We will discuss how TensorFlow makes this easier for us. The
backpropagation algorithm processes the information in such a way
that the network decreases the global error during the learning

iterations; however, this does not guarantee that the global minimum
is reached. The presence of the hidden units and the non-linearity of
the output function means that the behavior of the error is very
complex and has many local minima.

The backpropagation algorithm, therefore, can stop at a local
minimum, providing a suboptimal solution. Normally, the error always
decreases on the training set, which improves the ability to represent
the input-output relationship between the data supplied. Because the
network is learning while on the testing set (which measures the
predictive capabilities from a certain value), it can grow due to the
over-fitting problem: the resulting network (or model) will have a high
classification accuracy for the training samples, and a low
classification accuracy for test samples.

Now let's see how TensorFlow performs the forward and backward
pass. While developing deep learning applications using TensorFlow,
we will only consider writing forward passcodes. Let's clarify the idea
further by recapping some concepts from Chapter 2, A First Look at
TensorFlow.

We have seen that a TensorFlow programme has the following two
components:

Graph creation (https://www.tensorflow.org/api_docs/python/tf
Session execution
(https://www.tensorflow.org/api_docs/python/tf/Session)

The first one is for building the model and the second one is for
feeding the data in and getting results. Each of these is executed on
a C++ engine, which consists of the following components:

Efficient implementations of different operations such as
activation functions (for example, sigmoid, ReLU, tanh, softmax,
cross entropy, and so on.)
Derivatives of forward-mode operation

https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf/Session

I am not kidding when I say that even a little addition or multiplication
is not executed in Python since Python is just a wrapper. Anyway, let
us return to our original discussion by introducing an example.
Imagine that we want to perform the dropout op (we will see more
details about this later in this chapter) to randomly turn off and on
some neurons:

yi =dropout(Sigmoid(Wx+b))

Now, for this, even though we do not care about the backward pass,
TensorFlow automatically creates derivatives for all the operations in
a top to bottom fashion. When we start a session, TensorFlow
automatically calculates gradients for all the deferential operations in
the graph and uses them in the chain rule. Therefore, the forward
pass consists of the following:

Variables and placeholders (weights W, input x, bias b)
Operations (nonlinear operations for example, ReLU, cross
entropy loss and so on.)

Now the forward pass is what we create, but TensorFlow
automatically creates a backward pass, which makes the training
process run by transferring data when doing the chain rule.

Weights and biases
Besides considering the state of a neuron and the way that it is
linked to others, we should consider the synaptic weight, which is the
influence of that connection within the network. Each weight has a

numerical value indicated by , which is the synaptic weight
connecting the neuron i to neuron j.

Tip
Synaptic weight: This has evolved from Biology and refers to the
strength or amplitude of a connection between two nodes; that is

in Biology, this corresponds to the amount of influence the firing of
one neuron has on another.

Depending on the point where a neuron is located, it will always
have one or more links, which correspond to relative synaptic
weights. The weights and output function determine the behavior of
an individual neuron and the network in general. They should be
correctly changed during the training phase to ensure the correct
behavior of the model.

For each unit i an input vector can be defined by

and a weight vector can be defined by . Then
during the forward propagation, each unit in the hidden layer gets the
following signal:

The preceding equation signifies that each hidden unit gets the sum
of inputs multiplied by the corresponding weight.

Among the weights, there is one special weight called a bias. It is not
tied to any other unit of the network but is considered to have an
input equal to one. This expedient allows for establishing a kind of
reference point, or threshold for neurons, and formally, the bias
performs a translation along the abscissa axis to the output function.
The previous formula will become as follows:

Now a tricky question: how do we initialize the weights? Well, if we
initialize all weights to the same value (for example, zero or one),
each hidden neuron will get exactly the same signal. Let's try to
break it down:

If all weights are initialized to one, then each unit gets a signal
equal to the sum of the inputs
If all weights are zeros, which is even worse, every neuron in a
hidden layer will get zero signal

In short, no matter what the input was, if all the weights are the same
then all the units in the hidden layer will be the same too. To get rid
of this issue, one of the most common initialization techniques in
training FNNs is the random initialization. The idea of using the
random initialization is just to sample each weight from a normal
distribution of the input dataset, with low deviation.

A low deviation allows you to bias the network towards the "simple"
zero solutions. However, what does this mean? The thing is that the
initialization can be completed without the bad repercussions of
actually initializing the weights to zero.

Secondly, Xavier initialization is nowadays used for training neural
networks. It is similar to random initialization but often turns out to
work much better. Now let me explain the reason: imagine that you
initialize the network weights randomly, but it turns out that you start
too small. The signal will shrink as it passes through each layer until
it is too tiny to be useful. On the other hand, if the weights in a
network start too large, then the signal will grow as it passes through
each layer until it is too massive to be useful.

The good thing when using Xavier initialization is that it makes sure
the weights are "just right," keeping the signal in a reasonable range
of values through many layers. In summary, it can automatically
determine the scale of initialization based on the number of input and
output neurons.

Note
Interested readers should refer to this publication for detailed
information: Xavier Glorot , Yoshua Bengio, Understanding the
difficulty of training deep feedforward neural networks,

Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2010, Chia Laguna Resort,
Sardinia, Italy. Volume 9 of JMLR: W&CP.

You may be wondering if you can get rid of the random initialization
while training a regular DNN (for example, MLP or DBN). Well,
recently, some researchers have been talking about random
orthogonal matrix initializations that perform better than just any
random initialization for training DNNs.

When it comes to initializing the biases, it is possible, and common,
to initialize the biases to be zero since the asymmetry breaking is
provided by the small random numbers in the weights. Setting the
biases to a small constant value such as 0.01 for all biases ensures
that all ReLU units can propagate some gradient. However, it neither
performs well nor shows consistent improvement. Therefore, sticking
with zero is recommended.

Activation functions
To allow a neural network to learn complex decision boundaries, we
apply a non-linear activation function to some of its layers.
Commonly used functions include tanh, ReLU, softmax, and variants
of these. More technically, each neuron receives as input signal the
weighted sum of the synaptic weights and the activation values of
the neurons connected.

To allow the neuron to calculate its activation value, that is, what the
neuron retransmits, the weighted sum must be passed as the
argument of the activation function. The activation function allows
the receiving neuron to transmit the received signal, modifying it.
One of the most widely used functions for this purpose is the so-
called sigmoid function. It is a special case of the logistic function,
which is defined by the following formula:

A sigmoid function is a bounded differentiable real function that is
defined for all real input values and has a non-negative derivative at
each point. In general, a sigmoid function is real-valued, monotonic,
and differentiable, having a non-negative first derivative, which is
bell-shaped.

The domain of this function, which includes all real numbers and the
co-domain, is (0, 1). This means that any value obtained as an
output from a neuron (as per the calculation of its activation state),
will always be between 0 and 1. The sigmoid function, as
represented in the following diagram, provides an interpretation of
the saturation rate of a neuron: from not being active (= 0), to
complete saturation, which occurs at a predetermined maximum
value (=1).

When new data has to be analyzed, it is loaded by the input layer,
which through (a) or (b) generates an output. This result, together
with the output from neurons of the same layer, will form a new input
to the neurons on the next layers. The process will be iterated until
the last layer.

On the other hand, hyperbolic tangent, or tanh, is another form of the
activation function. Tanh squashes a real-valued number to the
range [-1, 1]. Like the sigmoid neuron, its activations saturate, but
unlike the sigmoid neuron, its output is zero-centered. Therefore, in
practice, the tanh non-linearity is always preferred over the sigmoid
nonlinearity. Also, note that the tanh neuron is simply a scaled
sigmoid neuron. In particular, the following holds true:
tanh(x)=2σ(2x)−1, as shown in the following figure:

Figure 2: Sigmoid vs tanh activation function

In general, in the last level of an FFNN, the softmax function is
applied as the decision boundary. This is a common case, especially
when solving a classification problem. Otherwise, we do not need to
use any activation function for a regression problem at all.

In Mathematics, the softmax function is a generalization of the
logistic function, that "squashes" a K-dimensional vector of arbitrary

real values to a K-dimensional vector of real values in the
range [0, 1] that add up to 1:

Now the softmax function can be expressed as follows:

In the preceding equation, K represents the total number of outputs
from the network. In probability theory, the output of the softmax
function can be used to represent a categorical distribution – that is,
a probability distribution over K different possible outcomes. In fact, it
is the gradient-log-normalizer of the categorical probability
distribution.

Nevertheless, the softmax function is used in various multiclass
classification methods, such as multinomial logistic regression (also
known as softmax regression), multiclass linear discriminant
analyses, naive Bayes classifiers, and ANNs.

Now let us see how to use a few commonly-used activation functions
in TensorFlow syntax. For providing different types of nonlinearities
in neural networks, TensorFlow provides different activation ops.
These include smooth nonlinearities such as sigmoid, tanh, elu,
softplus, and softsign.

On the other hand, some continuous but not widespread
differentiable functions that can be used are ReLU, relu6, crelu, and
relu_x. All activation ops apply component-wise and produce a
tensor of the same shape as the input tensor.

Using sigmoid
In TensorFlow, the signature tf.sigmoid(x, name=None) computes
sigmoid of x element-wise using y = 1 / (1 + exp(-x)) and returns
a tensor with the same type x. Here is the parameter description:

x: A tensor. Must be one of the following types: float32, float64,
int32, complex64, int64, or qint32.
name: A name for the operation (optional).

Using tanh
In TensorFlow, the signature tf.tanh(x, name=None) computes the
hyperbolic tangent of x element-wise and returns a tensor with the
same type x. Here is the parameter description:

x: A tensor or sparse tensor with type float, double, int32,
complex64, int64, or qint32.
name: A name for the operation (optional).

Using ReLU
In TensorFlow, the signature tf.nn.relu(features, name=None)

computes rectified linear using max(features, 0) and returns a
tensor with the same type of features. Here is the parameter
description:

features: A tensor. Must be one of the following types: float32,
float64, int32, int64, uint8, int16, int8, uint16, or half
name: A name for the operation (optional)

Using softmax
In TensorFlow, the signature tf.nn.softmax(logits, axis=None,

name=None) computes softmax activations and returns a tensor having
the same type and shape as logits. Here is the parameter
description:

logits: A non-empty tensor. Must be one of the following types:
half, float32, or float64
axis: The dimension softmax would be performed on. The
default is -1, which indicates the last dimension
name: The name for the operation (optional)

This softmax function performs the equivalent of softmax =

tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis).

Implementing a feed-forward
neural network
Automatic recognition of handwritten digits is an important problem,
which can be found in many practical applications. In this section, we
will implement a feed-forward network to address this.

Figure 3: An example of data extracted from the MNIST database

To train, and test, the implemented models, we will be using one of
the most famous datasets called MNIST of handwritten digits. The
MNIST dataset is a training set of 60,000 examples and a test set of
10,000 examples. An example of the data, as it is stored in the files
of the examples, is shown in the preceding figure.

The source images were originally in black and white. Later, to
normalize them to the size of 20×20 pixels, intermediate brightness
levels were introduced, due to the effect of the anti-aliasing filter for

resizing. Subsequently, the images were focused in the center of
mass of the pixels, in an area of 28×28 pixels, in order to improve
the learning process. The entire database is stored in four files:

train-images-idx3-ubyte.gz: Training set images (9912422
bytes)
train-labels-idx1-ubyte.gz: Training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: Test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: Test set labels (4542 bytes)

Each database consists of two files; the first contains the images,
while the second contains the respective labels.

Exploring the MNIST dataset
Let's look at a short example of how to access the MNIST data, and
how to display a selected image. For this just execute the
Explore_MNIST.py script. First, we must import the numpy, because
we have to do some image manipulation:

import numpy as np

The pyplot function in Matplotlib is used for drawing the images:

import matplotlib.pyplot as plt

We will use the input_data class from the
tensorflow.examples.tutorials.mnist that allows us to download the
MNIST database and build the dataset:

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import

input_data

Then we load the dataset using the read_data_sets method:

import os

dataPath = "temp/"

if not os.path.exists(dataPath):

 os.makedirs(dataPath)

input = input_data.read_data_sets(dataPath,

one_hot=True)

The images will be saved in the temp/ directory. Now let's see the
shape of the images and labels:

print(input.train.images.shape)

print(input.train.labels.shape)

print(input.test.images.shape)

print(input.test.labels.shape)

The following is the output of the preceding code:

>>>

(55000, 784)

(55000, 10)

(10000, 784)

(10000, 10)

Using the Python library, matplotlib, we want to visualize a single
digit:

image_0 = input.train.images[0]

image_0 = np.resize(image_0,(28,28))

label_0 = input.train.labels[0]

print(label_0)

The following is the output of the preceding code:

>>>

[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

The number 1 is the eighth position of the array. This means that the
figure for our image is the digit 7. Finally, we must verify that the digit
is really 7. We can use the imported plt function, to draw the image_0
tensor:

plt.imshow(image_0, cmap='Greys_r')

plt.show()

Figure 4: The extracted image from the MNIST dataset

Softmax classifier
In the previous section, we showed how to access and manipulate
MNIST dataset. In this section, we will see how to use the preceding
dataset to address the classification problem of handwritten digits
with TensorFlow. We will apply the concepts learned to build more
models of neural networks, in order to assess and compare the
results of the different approaches followed.

The first feed-forward network architecture that will be implemented
is represented in the following figure:

Figure 5: The softmax neural network architecture

We will construct a five-layer network: layers one to four are sigmoid
and layer five is softmax activation function. Remember that this
network is defined so that its activation is a set of positive values,

with a total sum equal to 1. This means that the value of the
output is the probability that j is the class that corresponds to the
network input. Let's see how to implement our neural network model.

To determine the appropriate size of the network (that is, the number
of neurons or units in a layer), that is, the number of hidden layers
and the number of neurons per layer, typically we rely on general

empirical criteria, the personal experience, or appropriate tests.
These are a few hyperparameters to be tuned into. Later in this
chapter, we will see some examples of hyperparameter optimization.

The following table summarizes the implemented network
architecture. It shows the number of neurons per layer, and the
respective activation functions:

Layer Number of neurons Activation function

First L = 200 Sigmoid

Second M = 100 Sigmoid

Third N = 60 Sigmoid

Fourth O = 30 Sigmoid

Fifth 10 Softmax

The activation function for the first four layers is the sigmoid
function. The last layer of the activation function is always the
softmax since the output of the network must express a probability
for the input digit. In general, the number and the size, of the
intermediate layers greatly affect the network performance:

In a positive way because on these layers is based the ability of
the network to generalize, and to detect peculiar characteristics
of the input

In a negative way because if the network is redundant then it
unnecessarily weighs down the learning phase

For this just execute the five_layers_sigmoid.py script. First, we will
start to implement the network by importing the following libraries:

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import

input_data

import math

from tensorflow.python.framework import ops

import random

import os

Next, we will set the following configuration parameters:

logs_path = 'log_sigmoid/' # logging path

batch_size = 100 # batch size while performing

training

learning_rate = 0.003 # Learning rate

training_epochs = 10 # training epoch

display_epoch = 1

We will then download images and labels, and prepare the dataset:

dataPath = "temp/"

if not os.path.exists(dataPath):

 os.makedirs(dataPath)

mnist = input_data.read_data_sets(dataPath,

one_hot=True) # MNIST to be downloaded

Starting with the input layer, we will now see how to build the
network's architecture. The input layer is now a tensor of the shape
[1×784] –that is [1, 28 * 28], which represents the image to classify:

X = tf.placeholder(tf.float32, [None, 784],

name='InputData') # image shape 28*28=784

XX = tf.reshape(X, [-1, 784]) # reshape input

Y_ = tf.placeholder(tf.float32, [None, 10],

name='LabelData') # 0-9 digits => 10 classes

The first layer receives the pixels of the input image to be classified,
combined with the W1 weight connections, and added to the
respective values of the B1 biases tensor:

W1 = tf.Variable(tf.truncated_normal([784, L],

stddev=0.1)) # Initialize random weights for the

hidden layer 1

B1 = tf.Variable(tf.zeros([L])) # Bias vector for

layer 1

The first layer sends its output to the second layer, through the
sigmoid activation function:

Y1 = tf.nn.sigmoid(tf.matmul(XX, W1) + B1) #

Output from layer 1

The second layer receives the Y1 output from the first layer,
combines it with the W2 weight connections, and adds it to the
respective values of the B2 biases tensor:

W2 = tf.Variable(tf.truncated_normal([L, M],

stddev=0.1)) # Initialize random weights for the

hidden layer 2

B2 = tf.Variable(tf.ones([M])) # Bias vector for

layer 2

The second layer sends its output to the third layer, through the
sigmoid activation function:

Y2 = tf.nn.sigmoid(tf.matmul(Y1, W2) + B2) #

Output from layer 2

The third layer receives the Y2 output from the second layer,
combines it with the W3 weight connections, and adds it to the
respective values of the B3 biases tensor:

W3 = tf.Variable(tf.truncated_normal([M, N],

stddev=0.1)) # Initialize random weights for the

hidden layer 3

B3 = tf.Variable(tf.ones([N])) # Bias vector for

layer 3

The third layer sends its output to the fourth layer, through the
sigmoid activation function:

Y3 = tf.nn.sigmoid(tf.matmul(Y2, W3) + B3) #

Output from layer 3

The fourth layer receives the Y3 output from the third layer, combines
it with the W4 weight connections, and adds it to the respective values
of the B4 biases tensor:

W4 = tf.Variable(tf.truncated_normal([N, O],

stddev=0.1)) # Initialize random weights for the

hidden layer 4

B4 = tf.Variable(tf.ones([O])) # Bias vector for

layer 4

The output of fourth layer is then propagated to the fifth layer,
through the sigmoid activation function:

Y4 = tf.nn.sigmoid(tf.matmul(Y3, W4) + B4) #

Output from layer 4

The fifth layer will receive in input the O = 30 stimuli, coming from the
fourth layer that will be converted in the respective classes of
probability for each number, through the softmax activation function:

W5 = tf.Variable(tf.truncated_normal([O, 10],

stddev=0.1)) # Initialize random weights for the

hidden layer 5

B5 = tf.Variable(tf.ones([10])) # Bias vector for

layer 5

Ylogits = tf.matmul(Y4, W5) + B5 # computing the

logits

Y = tf.nn.softmax(Ylogits)# output from layer 5

Here, our loss function is the cross-entropy between the target and
the softmax activation function, applied to the model's prediction:

cross_entropy =

tf.nn.softmax_cross_entropy_with_logits_v2(logits=

Ylogits, labels=Y) # final outcome using softmax

cross entropy

cost_op = tf.reduce_mean(cross_entropy)*100

In addition, we define the correct_prediction and the model's
accuracy:

correct_prediction = tf.equal(tf.argmax(Y, 1),

tf.argmax(Y_, 1))

accuracy =

tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))

Now we need to use an optimizer to reduce the training error. The
AdamOptimizer offers several advantages over the simple
GradientDescentOptimizer. In fact, it uses a larger effective step size,
and the algorithm will converge to this step size without fine-tuning:

Optimization op (backprop)

train_op =

tf.train.AdamOptimizer(learning_rate).minimize(cos

t_op)

The Optimizer base class provides methods to compute gradients
for a loss and apply gradients to variables. A collection of subclasses
implements classic optimization algorithms, such as GradientDescent
and Adagrad. While training a NN model in TensorFlow, we never
instantiate the Optimizer class itself, but instead instantiate one of
the following subclasses

tf.train.Optimizer

(https://www.tensorflow.org/api_docs/python/tf/train/Optimizer)
tf.train.GradientDescentOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/GradientDes
centOptimizer)
tf.train.AdadeltaOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/AdadeltaOpt

https://www.tensorflow.org/api_docs/python/tf/train/Optimizer
https://www.tensorflow.org/api_docs/python/tf/train/GradientDescentOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdadeltaOptimizer

imizer)
tf.train.AdagradOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/AdagradOpti
mizer)
tf.train.AdagradDAOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/AdagradDA
Optimizer)
tf.train.MomentumOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/Momentum
Optimizer)
tf.train.AdamOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimi
zer)
tf.train.FtrlOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimize
r)
tf.train.ProximalGradientDescentOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/ProximalGra
dientDescentOptimizer)
tf.train.ProximalAdagradOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/ProximalAda
gradOptimize
tf.train.RMSPropOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOp
timizer)

See https://www.tensorflow.org/api_guides/python/train and
tf.contrib.opt

(https://www.tensorflow.org/api_docs/python/tf/contrib/opt) for more
optimizers.

Then let's construct a model encapsulating all ops into scopes,
making TensorBoard's graph visualization more convenient:

Create a summary to monitor cost tensor

tf.summary.scalar("cost", cost_op)

Create a summary to monitor accuracy tensor

tf.summary.scalar("accuracy", accuracy)

https://www.tensorflow.org/api_docs/python/tf/train/AdadeltaOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdagradDAOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/MomentumOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/FtrlOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/ProximalGradientDescentOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/ProximalAdagradOptimize
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_docs/python/tf/contrib/opt

Merge all summaries into a single op

summary_op = tf.summary.merge_all()

Finally, we'll start the training:

with tf.Session() as sess:

 # Run the initializer

 sess.run(init_op)

 # op to write logs to TensorBoard

 writer = tf.summary.FileWriter(logs_path,

graph=tf.get_default_graph())

 for epoch in range(training_epochs):

 batch_count =

int(mnist.train.num_examples/batch_size)

 for i in range(batch_count):

 batch_x, batch_y =

mnist.train.next_batch(batch_size)

 _,summary = sess.run([train_op,

summary_op], feed_dict={X: batch_x, Y_: batch_y})

 writer.add_summary(summary, epoch *

batch_count + i)

 print("Epoch: ", epoch)

 print("Optimization Finished!")

 print("Accuracy: ", accuracy.eval(feed_dict=

{X: mnist.test.images, Y_: mnist.test.labels}))

The source code for the definition of the summaries and the running
of the session is almost identical to the previous one. We can move
directly to evaluating the implemented model. When running the
model, we have the following output:

The final test set accuracy after running this code should be
approximately 97%:

Extracting temp/train-images-idx3-ubyte.gz

Extracting temp/train-labels-idx1-ubyte.gz

Extracting temp/t10k-images-idx3-ubyte.gz

Extracting temp/t10k-labels-idx1-ubyte.gz

Epoch: 0

Epoch: 1

Epoch: 2

Epoch: 3

Epoch: 4

Epoch: 5

Epoch: 6

Epoch: 7

Epoch: 8

Epoch: 9

Optimization Finished!

Accuracy: 0.9

715

We can now move onto TensorBoard by simply opening the Terminal
in the running folder, then performing this command:

$> tensorboard --logdir='log_sigmoid/' # if

required, provide absolute path

We then open our browser at localhost. In the following figure, we
show the trend of the cost function, as a function of the number of
examples, over the training set, and the accuracy on the test set:

Figure 6: Accuracy function over the test set, and the cost function over the training set

The cost function decreases with increasing iterations. If this does
not happen, it means that something went wrong. In the best-case
scenario, this could simply be because some parameters have not
been set properly. At worst, there could be a problem in the

constructed dataset, for example, there could be too little information
or poor-quality images. If this happens, we must directly fix the
dataset.

So far, we have seen an implementation of an FFNN. However, it
would be great to explore the more useful implementations of FFNNs
using real-life datasets. We will start with MLP.

Implementing a multilayer
perceptron (MLP)
A perceptron is composed of a single layer of LTUs, with each
neuron connected to all the inputs. These connections are often
represented using special pass-through neurons called input
neurons: they just output whatever input they are fed. Moreover, an
extra bias feature is generally added (x0 = 1).

This bias feature is typically represented using a special type of
neuron called a bias neuron, which just outputs 1 all the time. A
perceptron with two inputs and three outputs is represented in Figure
7. This perceptron can simultaneously classify instances into three
different binary classes, which makes it a multioutput classifier:

Figure 7: A perceptron with two inputs and three outputs

Since the decision boundary of each output neuron is linear,
perceptrons are incapable of learning complex patterns. However, if
the training instances are linearly separable, research has shown
that this algorithm will converge to a solution called "perceptron
convergence theorem."

An MLP is an FFNN, which means that it is the only connection
between neurons from different layers. More specifically, an MLP is
composed of one (pass through) input layer, one or more layers of
LTUs (called hidden layers), and one final layer of LTUs called the
output layer. Every layer, except the output layer, includes a bias
neuron, and is connected to the next layer as a fully connected
bipartite graph:

Figure 8: An MLP is composed of one input layer, one hidden layer, and an output layer

Training an MLP

An MLP was trained successfully using the backpropagation training
algorithm for the first time in 1986. However, nowadays the
optimized version of this algorithm is called gradient descent. During
the training phase, for each training instance, the algorithm feeds it
to the network and computes the output of every neuron, in each
consecutive layer.

Training the algorithm measures the network's output error (that is,
the difference between the desired output and the actual output of
the network), and it computes how much each neuron in the last
hidden layer contributed to each output neuron's error. It then
proceeds to measure how much of these error contributions came
from each neuron in the previously hidden layer, and so on until the
algorithm reaches the input layer. This reverse pass efficiently
measures the error gradient across all the connection weights in the
network, by propagating the error gradient backward in the network.

More technically, the calculation of the gradient of the cost function
for each layer is done by the backpropagation method. The idea of
gradient descent is to have a cost function that shows the difference
between the predicted outputs of some neural network, with the
actual output:

Figure 9: Sample implementation of an ANN for unsupervised learning

There are several known types of the cost function, such as the
squared error function and the log-likelihood function. The choice for
this cost function can be based on many factors. The gradient
descent method optimizes the network's weight, by minimizing this
cost function. The steps are as follows:

1. Weight initialization
2. Calculation of a neural network's predicted output, which is

usually called the forwarding propagation step
3. Calculation of cost/loss function. Some common cost/loss

functions include the log-likelihood function and the squared
error function

4. Calculation of the gradient of the cost/lost function. For most
DNN architecture, the most common method is backpropagation

5. Weight update based on the current weight, and the gradient of
the cost/loss function

6. Iteration of steps two to five, until the cost function, reaches a
certain threshold or after a certain amount of iteration

An illustration of gradient descent can be seen in Figure 9. The
graph shows a neural network's cost function based on the network's
weight. In the first iteration of gradient descent, we apply the cost
function on some random initial weight. With each iteration, we
update the weight in the direction of the gradient, which corresponds
to the arrows in Figure 9. The weight update is repeated until a
certain number of iterations or until the cost function reaches a
certain threshold.

Using MLPs
Multilayer perceptrons are commonly used for solving classification
and regression problems in a supervised way. Although CNNs have
gradually replaced their implementation in image and video data, a
low dimensional and numerical feature MLP still can be used
effectively: both the binary and multiclass classification problems can
be solved.

Figure 10: A modern MLP (including ReLU and softmax) for classification

However, for multiclass classification tasks and training, the output
layer is typically modified, by replacing the individual activation
functions with a shared softmax function. The output of each neuron
corresponds to the estimated probability of the corresponding class.
Note that the signal flows from the input to output in one direction
only, so this architecture is an example of an FFNN.

As a case study, we will be using bank-marketing datasets. The data
is related to the direct marketing campaigns of a Portuguese banking
institution. The marketing campaigns were based on phone calls.
Often, the same client was contacted more than once, in order to
assess whether the product (bank term deposit) would be (yes) or
would not be (no) subscribed. The target is to use MLP to predict
whether the client will subscribe a term deposit (variable y), that is, a
binary classification problem.

Dataset description
There are two sources that I would like to acknowledge here. This
dataset was used in a research paper published by Moro and others:
A data-driven approach to predict the success of bank telemarketing,
Decision support systems, Elsevier, June 2014. Later on, it was
donated to the UCI Machine Learning Repository, which can be
downloaded from
https://archive.ics.uci.edu/ml/datasets/bank+marketing.

According to the dataset description, there are four datasets:

bank-additional-full.csv: This includes all examples (41,188)
and 20 inputs, which are ordered by date (from May 2008 to
November 2010). This data is very close to the data analyzed by
Moro and others
bank-additional.csv: This includes 10% of the examples (4119),
randomly selected from 1, and 20 inputs
bank-full.csv: This includes all the examples and 17 inputs,
ordered by date (an older version of this dataset with fewer
inputs)

https://archive.ics.uci.edu/ml/datasets/bank+marketing

bank.csv: This includes 10% of the examples and 17 inputs,
randomly selected from 3 (the older version of this dataset with
fewer inputs)

There are 21 attributes in the dataset. The independent variables
can be further categorized as bank-client-related data (attributes 1 to
7), related to the last contact from the current campaign (attributes 8
to 11). Other attributes (attributes 12 to 15), and social and economic
context attributes (attributes 16 to 20) are categorized. The
dependent variable is specified by y, the last attribute (21):

ID Attribute Explanation

1 age Age in numbers.

2 job This is the type of job in a categorical format
with possible values: admin, blue-collar,
entrepreneur, housemaid, management, retired,
self-employed, services, student, technician,
unemployed, and unknown.

3 marital This is the marital status in a categorical format
with possible values: divorced (or widowed),
married, single, and unknown.

4 education This is the educational background in a
categorical format with possible values as
follows: basic.4y, basic.6y, basic.9y,
high.school, illiterate, professional.course,
university.degree, and unknown.

ID Attribute Explanation

5 default This is a categorical format with possible values
in credit in default: no, yes and unknown.

6 housing Has the customer had a housing loan?

7 loan The personal loan in a categorical format with
possible values: no, yes, and unknown.

8 contact This is the communication type in a categorical
format with possible values: cellular or
telephone.

9 month This is the last contact month of the year in a
categorical format with possible values: jan, feb,
mar, ... nov, and dec.

10 day_of_week This is the last contact day of the week in a
categorical format with possible values: mon, tue,
wed, thu, and fri.

ID Attribute Explanation

11 duration This is the last contact duration in seconds
(numerical value). This attribute highly affects
the output target (for example, if duration=0,
then y=no). Yet, the duration is not known
before a call is performed. In addition, after the
end of the call, y is obviously known. Thus, this
input should only be included for benchmark
purposes and should be discarded if the
intention is to have a realistic predictive model.

12 campaign This is the number of contacts made during this
campaign and for this client.

13 pdays This is the number of days that passed by after
the client was last contacted by a previous
campaign (numeric - 999 means the client was
not previously contacted).

14 previous This is the number of contacts performed before
this campaign and for this client (numeric).

15 poutcome The outcome of the previous marketing
campaign (categorical: failure, nonexistent,
and success).

16 emp.var.rate This is the employment variation rate and
quarterly indicator (numeric).

ID Attribute Explanation

17 cons.price.idx This is the consumer price index and monthly
indicator (numeric).

18 cons.conf.idx This is the consumer confidence index and
monthly indicator (numeric).

19 euribor3m This is the euribor 3-month rate and daily
indicator (numeric).

20 nr.employed This is the number of employees and quarterly
indicator (numeric).

21 y Signifies if the client subscribed a term deposit,
with the possible binary: yes and no values.

Preprocessing
You can see that the dataset is not ready to feed to your MLP, or
DBN classifier, directly since the feature is mixed with numerical and
categorical values. In addition, the outcome variable is in categorical
value. Therefore, we need to convert the categorical values into
numerical values, so that the feature and the outcome variable are in
numerical form. The next step shows this process. Refer to the
preprocessing_b.py file for this preprocessing.

Firstly, we must load the required packages and libraries needed for
the preprocessing:

import pandas as pd

import numpy as np

from sklearn import preprocessing

Then download the data file from the aforementioned URL and place
it in your convenient place – say input:

Then, we load and parse the dataset:

data = pd.read_csv('input/bank-additional-

full.csv', sep = ";")

Next, we'll extract variable names:

var_names = data.columns.tolist()

Now, based on the dataset description in Table 1, we'll extract the
categorical variables:

categs =

['job','marital','education','default','housing','

loan','contact','month','day_of_week','duration','

poutcome','y']

Then, we'll extract the quantitative variables:

Quantitative vars

quantit = [i for i in var_names if i not in

categs]

Then let's get the dummy variables for categorical variables:

job = pd.get_dummies(data['job'])

marital = pd.get_dummies(data['marital'])

education = pd.get_dummies(data['education'])

default = pd.get_dummies(data['default'])

housing = pd.get_dummies(data['housing'])

loan = pd.get_dummies(data['loan'])

contact = pd.get_dummies(data['contact'])

month = pd.get_dummies(data['month'])

day = pd.get_dummies(data['day_of_week'])

duration = pd.get_dummies(data['duration'])

poutcome = pd.get_dummies(data['poutcome'])

Now, it's time to map variables to predict:

dict_map = dict()

y_map = {'yes':1,'no':0}

dict_map['y'] = y_map

data = data.replace(dict_map)

label = data['y']

df_numerical = data[quantit]

df_names = df_numerical .keys().tolist()

Once we have converted the categorical variables into numerical
variables, the next task is to normalize the numerical variables too.
So, using the normalization, we scale an individual sample to have
unit norm. This process can be useful if you plan to use a quadratic
form such as the dot product, or any other kernel, to quantify the
similarity of any pair of samples. This assumption is the basis of the
vector space model
(https://en.wikipedia.org/wiki/Vector_space_model) often used in text
classification and clustering contexts.

So, let's scale the quantitative variables:

min_max_scaler = preprocessing.MinMaxScaler()

x_scaled =

min_max_scaler.fit_transform(df_numerical)

df_temp = pd.DataFrame(x_scaled)

df_temp.columns = df_names

Now that we have the temporary data frame for the (original)
numerical variables, the next task is to combine all the data frames
together and generate the normalized data frame. We will use
pandas for this:

normalized_df = pd.concat([df_temp,

 job,

 marital,

 education,

 default,

https://en.wikipedia.org/wiki/Vector_space_model

 housing,

 loan,

 contact,

 month,

 day,

 poutcome,

 duration,

 label], axis=1)

Finally, we need to save the resulting data frame in a CSV file as
follows:

normalized_df.to_csv('bank_normalized.csv', index

= False)

A TensorFlow implementation of MLP for
client-subscription assessment
For this example, we will be using the bank marketing dataset that
we have normalized in the previous example. There are several
steps to follow. To begin with, we need to import TensorFlow, and the
other necessary packages and modules:

import tensorflow as tf

import pandas as pd

import numpy as np

import os

from sklearn.cross_validation import

train_test_split # for random split of train/test

Now, we need to load the normalized bank marketing dataset, where
all the features and the labels are numeric. For this we use the
read_csv() method from the pandas library:

FILE_PATH = 'bank_normalized.csv' # Path

to .csv dataset

raw_data = pd.read_csv(FILE_PATH) # Open

raw .csv

print("Raw data loaded successfully...\n")

The following is the output of the preceding code:

>>>

Raw data loaded successfully...

As mentioned in the previous section, tuning the hyperparameters
for DNNs is not straightforward. However, it often depends on the
dataset that you are handling. For some datasets, a possible
workaround is setting these values based on dataset-related
statistics, for example, the number of training instances, the input
size, and the number of classes.

DNNs are not suitable for very small and low-dimensional datasets.
In these cases, a better option is to use the linear models instead. To
get started, let us put a pointer to the label column itself, compute
the number of instances and number of classes, and define the
train/test split ratio as follows:

Y_LABEL = 'y' # Name of the variable to be

predicted

KEYS = [i for i in raw_data.keys().tolist() if i

!= Y_LABEL]# Name of predictors

N_INSTANCES = raw_data.shape[0] # Number of

instances

N_INPUT = raw_data.shape[1] - 1 # Input

size

N_CLASSES = raw_data[Y_LABEL].unique().shape[0] #

Number of classes

TEST_SIZE = 0.25 # Test set size (% of

dataset)

TRAIN_SIZE = int(N_INSTANCES * (1 - TEST_SIZE)) #

Train size

Now, let's see the statistics of the dataset that we are going to use to
train the MLP model:

print("Variables loaded successfully...\n")

print("Number of predictors \t%s" %(N_INPUT))

print("Number of classes \t%s" %(N_CLASSES))

print("Number of instances \t%s" %(N_INSTANCES))

print("\n")

The following is the output of the preceding code:

>>>

Variables loaded successfully...

Number of predictors 1606

Number of classes 2

Number of instances 41188

The next task is to define the other parameters such as learning rate,
training epochs, batch size, and the standard deviation for the
weights. Usually, a low value of training rate will help your DNN to
learn more slowly, but intensively. Note that we need to define more
parameters, such as the number of hidden layers, and the activation
function.

LEARNING_RATE = 0.001 # learning rate

TRAINING_EPOCHS = 1000 # number of training

epoch for the forward pass

BATCH_SIZE = 100 # batch size to be used

during training

DISPLAY_STEP = 20 # print the error etc. at each

20 step

HIDDEN_SIZE = 256 # number of neurons in each

hidden layer

We use tanh as the activation function, but you

can try using ReLU as well

ACTIVATION_FUNCTION_OUT = tf.nn.tanh

STDDEV = 0.1 # Standard Deviations

RANDOM_STATE = 100

The preceding initialization is set on a trial-and-error basis.
Therefore, depending on your use case and data types, set them
wisely but we will provide some guidelines later in this chapter. In
addition, for the preceding code, RANDOM_STATE is used to signify
random state for the train and test split. At first, we separate the raw
features and the labels:

data = raw_data[KEYS].get_values() # X data

labels = raw_data[Y_LABEL].get_values() # y data

Now that we have the labels, they have to be coded:

labels_ = np.zeros((N_INSTANCES, N_CLASSES))

labels_[np.arange(N_INSTANCES), labels] = 1

Finally, we must split the training and test sets. As mentioned earlier,
we'll keep 75% of the input for training and the remaining 25% for
the test set:

data_train, data_test, labels_train, labels_test =

train_test_split(data,labels_,test_size =

TEST_SIZE,random_state = RANDOM_STATE)

print("Data loaded and splitted

successfully...\n")

The following is the output of the preceding code:

>>>

Data loaded and splitted successfully

Since this is a supervised classification problem, we should have
placeholders for the features and the labels:

As mentioned previously, an MLP is composed of one input layer,
several hidden layers, and one final layer of LTUs called the output
layer. For this example, I am going to incorporate the training with
four hidden layers. Thus, we are calling our classifier a deep feed-
forward MLP. Note that we also need to have the weight in each
layer (except in the input layer), and the bias in each layer (except
the output layer). Usually, each hidden layer includes a bias neuron,
and is fully connected to the next layer as a fully-connected bipartite
graph (feed-forward) from one hidden layer to another. So, let's
define the size of the hidden layers:

n_input = N_INPUT # input n

labels

n_hidden_1 = HIDDEN_SIZE # 1st layer

n_hidden_2 = HIDDEN_SIZE # 2nd layer

n_hidden_3 = HIDDEN_SIZE # 3rd layer

n_hidden_4 = HIDDEN_SIZE # 4th layer

n_classes = N_CLASSES # output m

classes

Since this is a supervised classification problem, we should have
placeholders for the features and the labels:

input shape is None * number of input

X = tf.placeholder(tf.float32, [None, n_input])

The first dimension of the placeholder is None, meaning we can have
any number of rows. The second dimension is fixed at number of
features, meaning each row needs to have that number of columns
of features.

label shape is None * number of classes

y = tf.placeholder(tf.float32, [None, n_classes])

Additionally, we need another placeholder for dropout, which is
implemented by only keeping a neuron active with some probability
(say p < 1.0, or setting it to zero otherwise). Note that this is also
hyperparameters to be tuned and the training time, but not the test
time:

dropout_keep_prob = tf.placeholder(tf.float32)

Using the scaling given here enables the same network to be used
for training (with dropout_keep_prob < 1.0) and evaluation (with
dropout_keep_prob == 1.0). Now, we can define a method that
implements the MLP classifier. For this, we are going to provide four
parameters such as input, weight, biases, and the drop out
probability as follows:

def DeepMLPClassifier(_X, _weights, _biases,

dropout_keep_prob):

 layer1 =

tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(_X,

_weights['h1']), _biases['b1'])),

dropout_keep_prob)

 layer2 =

tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer1,

_weights['h2']), _biases['b2'])),

dropout_keep_prob)

 layer3 =

tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer2,

_weights['h3']), _biases['b3'])),

dropout_keep_prob)

 layer4 =

tf.nn.dropout(tf.nn.tanh(tf.add(tf.matmul(layer3,

_weights['h4']), _biases['b4'])),

dropout_keep_prob)

 out =

ACTIVATION_FUNCTION_OUT(tf.add(tf.matmul(layer4,

_weights['out']), _biases['out']))

return out

The return value of the preceding method is the output of the
activation function. The preceding method is a stub implementation
that did not tell anything concrete about the weights and biases, so
before we start the training, we should have them defined:

weights = {

 'w1': tf.Variable(tf.random_normal([n_input,

n_hidden_1],stddev=STDDEV)),

 'w2':

tf.Variable(tf.random_normal([n_hidden_1,

n_hidden_2],stddev=STDDEV)),

 'w3':

tf.Variable(tf.random_normal([n_hidden_2,

n_hidden_3],stddev=STDDEV)),

 'w4':

tf.Variable(tf.random_normal([n_hidden_3,

n_hidden_4],stddev=STDDEV)),

 'out':

tf.Variable(tf.random_normal([n_hidden_4,

n_classes],stddev=STDDEV)),

}

biases = {

 'b1':

tf.Variable(tf.random_normal([n_hidden_1])),

 'b2':

tf.Variable(tf.random_normal([n_hidden_2])),

 'b3':

tf.Variable(tf.random_normal([n_hidden_3])),

 'b4':

tf.Variable(tf.random_normal([n_hidden_4])),

 'out':

tf.Variable(tf.random_normal([n_classes]))

}

Now we can invoke the preceding implementation of the MLP with
real arguments (an input layer, weights, biases, and the drop out)
keeping probability as follows:

pred = DeepMLPClassifier(X, weights, biases,

dropout_keep_prob)

We have built the MLP model and it's time to train the network itself.
At first, we need to define the cost op and then we will use Adam
optimizer, which will learn slowly and try to reduce the training loss
as much as possible:

cost =

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo

gits_v2(logits=pred, labels=y))

Optimization op (backprop)

optimizer = tf.train.AdamOptimizer(learning_rate =

LEARNING_RATE).minimize(cost_op)

Next, we need to define additional parameters for computing the
classification accuracy:

correct_prediction = tf.equal(tf.argmax(pred, 1),

tf.argmax(y, 1))

accuracy =

tf.reduce_mean(tf.cast(correct_prediction,

tf.float32))

print("Deep MLP networks has been built

successfully...")

print("Starting training...")

After that, we need to initialize all the variables and placeholders,
before launching a TensorFlow session:

init_op = tf.global_variables_initializer()

Now, we are very closer to starting the training, but before that, the
last step is to create a TensorFlow session and launch it as follows:

sess = tf.Session()

sess.run(init_op)

Finally, we are ready to start training our MLP on the training set. We
iterate over all the batches and fit using the batched data to compute
the average training cost. Nevertheless, it would be great to show
the training cost and accuracy for each epoch:

for epoch in range(TRAINING_EPOCHS):

 avg_cost = 0.0

 total_batch = int(data_train.shape[0] /

BATCH_SIZE)

 # Loop over all batches

 for i in range(total_batch):

 randidx =

np.random.randint(int(TRAIN_SIZE), size =

BATCH_SIZE)

 batch_xs = data_train[randidx, :]

 batch_ys = labels_train[randidx, :]

 # Fit using batched data

 sess.run(optimizer, feed_dict={X:

batch_xs, y: batch_ys, dropout_keep_prob: 0.9})

 # Calculate average cost

 avg_cost += sess.run(cost, feed_dict={X:

batch_xs, y: batch_ys,

dropout_keep_prob:1.})/total_batch

 # Display progress

 if epoch % DISPLAY_STEP == 0:

 print("Epoch: %3d/%3d cost: %.9f" %

(epoch, TRAINING_EPOCHS, avg_cost))

 train_acc = sess.run(accuracy, feed_dict=

{X: batch_xs, y: batch_ys, dropout_keep_prob:1.})

 print("Training accuracy: %.3f" %

(train_acc))

print("Your MLP model has been trained

successfully.")

Following is the output of the preceding code:

>>>

Starting training...

Epoch: 0/1000 cost: 0.356494816

Training accuracy: 0.920

…

Epoch: 180/1000 cost: 0.350044933

Training accuracy: 0.860

….

Epoch: 980/1000 cost: 0.358226758

Training accuracy: 0.910

Well done, our MLP model has been trained successfully! Now, what
if we see the cost and the accuracy graphically? Let's try it out:

Plot loss over time

plt.subplot(221)

plt.plot(i_data, cost_list, 'k--', label='Training

loss', linewidth=1.0)

plt.title('Cross entropy loss per iteration')

plt.xlabel('Iteration')

plt.ylabel('Cross entropy loss')

plt.legend(loc='upper right')

 plt.grid(True)

Following is the output of the preceding code:

>>>

Figure 11: Cross entropy loss per iteration in the training phase

The preceding figure shows that the cross-entropy loss is more or
less stable between 0.34 and 0.36, but with a little fluctuation. Now,
let's see how this affects the training accuracy overall:

Plot train and test accuracy

plt.subplot(222)

plt.plot(i_data, acc_list, 'r--', label='Accuracy

on the training set', linewidth=1.0)

plt.title('Accuracy on the training set')

plt.xlabel('Iteration')

plt.ylabel('Accuracy')

plt.legend(loc='upper right')

plt.grid(True)

plt.show()

Following is the output of the preceding code:

>>>

Figure 12: Accuracy on the training set on each iteration

We can see that the training accuracy fluctuates between 79% and
96% but does not increase or decrease uniformly. One possible way
around this is to add more hidden layers and use different
optimizers, such as gradient descent, which was discussed earlier in
this chapter. We will increase the dropout probability to 100%, that is,
1.0. The reason is to have the same network used for testing as well:

print("Evaluating MLP on the test set...")

test_acc = sess.run(accuracy, feed_dict={X:

data_test, y: labels_test, dropout_keep_prob:1.})

print ("Prediction/classification accuracy: %.3f"

% (test_acc))

Following is the output of the preceding code:

>>>

Evaluating MLP on the test set...

Prediction/classification accuracy: 0.889

Session closed!

Thus, the classification accuracy is about 89%. Not bad at all! Now, if
higher accuracy is desired, we can use another architecture of DNNs
called Deep Belief Networks (DBNs), that can be trained either in a
supervised or unsupervised way.

This is the easiest way to observe DBN in its application as a
classifier. If we have a DBN classifier, then the pre-training method is
done in an unsupervised way similar to an autoencoder which will be
described in Chapter 5, Optimizing TensorFlow Autoencoders and
the classifier is trained (fine-tuned) in a supervised way, exactly like
the one in MLP.

Deep Belief Networks (DBNs)
To overcome the overfitting problem in MLP, we set up a DBN, do
unsupervised pre-training to get a decent set of feature
representations for the inputs, then fine-tune on the training set to
get predictions from the network.

While weights of an MLP are initialized randomly, a DBN uses a
greedy layer-by-layer pre-training algorithm to initialize the network
weights, through probabilistic generative models. These models are
composed of a visible layer, and multiple layers of stochastic, latent
variables, which are called hidden units or feature detectors.

RBMs in the DBN are stacked, forming an undirected probabilistic
graphical model, similar to Markov Random Fields (MRF): the two
layers are composed of visible neurons and then hidden neurons.

The top two layers in a stacked RBM have undirected, symmetric
connections between them and form an associative memory,
whereas lower layers receive top-down, directed connections from
the layer above:

Figure 13: A high-level view of a DBN with RBM as the building block

The top two layers have undirected, symmetric connections between
them and form an associative memory, whereas lower layers receive
top-down, directed connections from the preceding layers. Several
RBMs are stacked one after another to form DBNs.

Restricted Boltzmann Machines (RBMs)
An RBM is an undirected probabilistic graphical model called Markov
random fields. It consists of two layers. The first layer is composed of
visible neurons and second layer consist of hidden neurons. Figure
14 shows the structure of a simple RBM. Visible units accept inputs,
and hidden units are nonlinear feature detectors. Each visible neuron

is connected to all the hidden neurons, but there is no internal
connection among neurons in the same layer:

Figure 14: The structure of a simple RBM

The RBM in Figure 14 consists of m visible units, V = (v1 ,…vm) and
n hidden units, H = (h1 …hn). Visible units accept values between 0
and 1 and generated values of hidden units are between 0 and 1.
The joint probability of the model is an energy function given by the
following equation:

In the preceding equation, i = 1…m, j = 1…n, b i, and c j are biases
of visible and hidden units respectively, and w ij is the weight
between v i and hj. The probability assigned by the model to a visible
vector v is given by the following equation:

In the second equation, Z is a partition function defined as follows:

The learning of weight can be attained by the following equation:

In equation 4, the learning rate is defined by . In general, a
smaller value of ensures that training is more intensive.
However, if you want your network to learn quickly, you can set this
value higher.

It is easy to calculate the first term since there are no connections
among units in the same layer. Conditional distributions of p(h|v) and
p(v|h) are factorial, and given by the logistic function in the following
equations:

Hence, the sample v ih j is unbiased. However, calculating the log-
likelihood of the second term is exponentially expensive to compute.
Although it is possible to get unbiased samples of the second term,
using Gibbs sampling by running Markov Chain Monte Carlo
(MCMC), this process is not cost-effective either. Instead, RBM uses
an efficient approximation method called contrastive divergence.

In general, MCMC requires many sampling steps to reach
convergence to stationary. Running Gibbs sampling for few steps
(usually one) is enough to train a model, which is called contrastive
divergence learning. The first step of contrastive divergence is to
initialize the visible units with a training vector.

The next step is to compute all hidden units, using visible units at the
same time, with equation five, then reconstruct visible units from
hidden units using equation four. Lastly, the hidden units are updated
with the reconstructed visible units. Therefore, instead of equation
four, we get the following weight-learning model in the end:

In short, this process tries to reduce the reconstruction error between
input data and reconstructed data. Several iterations of parameter
update are required for the algorithm to converge. Iterations are
called epoch. Input data is divided into mini batches, and parameters
are updated after each mini batch, with the average values of the
parameters.

Finally, as stated earlier, RBM maximizes the probability of visible
units p(v), which is defined by the mode and overall training data. It
is equivalent to minimizing the KL-divergence
(https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergen
ce) between the model distribution and the empirical data
distribution.

Contrastive divergence is only a crude approximation of this
objective function, but it works very well in practice. Although it is
convenient, the reconstruction error is actually a very poor measure
of the progress of learning. Considering these aspects, RBM
requires some time to converge, but if you see that the
reconstruction is decent, then your algorithm works well.

Construction of a simple DBN

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

A single hidden layer RBM cannot extract all the features from the
input data, due to its inability to model the relationship between
variables. Hence, multiple layers of RBMs are used one after
another to extract non-linear features. In DBNs, an RBM is trained
first with input data, and the hidden layer represents learned features
in a greedy learning approach.

These learned features of the first RBM are used as the input of the
second RBM, as another layer in the DBN, which is shown in Figure
15. Similarly, learned features of the second layer are used as input
for another layer.

This way, DBNs can extract deep and non-linear features from input
data. The hidden layer of the last RBM represents the learned
features of the whole network. The process of learning features,
described earlier for all RBM layers, is called pre-training.

Unsupervised pre-training
Suppose you want to tackle a complex task, for which you do not
have much-labeled training data. It will be difficult to find a suitable
DNN implementation, or architecture, to be trained and used for
predictive analytics. Nevertheless, if you have plenty of unlabeled
training data, you can try to train the layers one by one, starting with
the lowest layer and then going up, using an unsupervised feature
detector algorithm. This is how exactly RBMs (Figure 15) or
autoencoders (Figure 16) work.

Figure 15: Unsupervised pre-training in a DBN using autoencoders

Unsupervised pre-training is still a good option when you have a
complex task to solve, no similar model you can reuse, and little-
labeled training data, but plenty of unlabeled training data. The
current trend is using autoencoders rather than RBMs; however, for
the example in the next section, RBMs will be used for simplicity.
Readers can also try using autoencoders rather than RBMs.

Pre-training is an unsupervised learning process. After pre-training,
fine-tuning of the network is carried out, by adding a labeled layer at
the top of the last RBM layer. This step is a supervised learning
process. The unsupervised pre-training step tries to find network
weights:

Figure 16: Unsupervised pre-training in a DBN by constructing a simple a DBN with a stack
of RBMs

Supervised fine-tuning
In the supervised learning stage (also called supervised fine-tuning),
instead of randomly initializing network weights, they are initialized
with the weights computed in the pre-training step. This way, DBNs
can avoid converging to a local minimum when a supervised
gradient descent is used.

As stated earlier, using a stack of RBMs, a DBN can be constructed
as follows:

Train the bottom RBM (first RBM) with parameter W1

Initialize the second layer weights to W2 = W1T , which ensures
that the DBN is at least as good as our base RBM

Therefore, putting these steps together, Figure 17 shows the
construction of a simple DBN, consisting of three RBMs:

Figure 17: Construction of a simple DBN using several RBMs

Now, when it comes to tuning a DBN for better predictive accuracy,
we should tune several hyper-parameters, so that DBNs fit the
training data by untying and refining W 2. Putting this all together, we
have the conceptual workflow for creating a DBN-based classifier or
regressor.

Now that we have enough theoretical background on how to
construct a DBN using several RBMs, it is time to apply our theory in
practice. In the next section, we will see how to develop a supervised
DBN classifier for predictive analytics.

Implementing a DBN with TensorFlow
for client-subscription assessment
In the previous example of the bank marketing dataset, we observed
about 89% classification accuracy using MLP. We also normalized
the original dataset, before feeding it to the MLP. In this section, we
will see how to use the same datasets for the DBN-based predictive
model.

We will use the DBN implementation of the recently published book
Predictive Analytics with TensorFlow, by Md. Rezaul Karim, that can
be downloaded from GitHub at
https://github.com/PacktPublishing/Predictive-Analytics-with-
TensorFlow/tree/master/Chapter07/DBN.

The aforementioned implementation is a simple, clean, fast Python
implementation of DBNs, based on RBMs, and built upon NumPy
and TensorFlow libraries, in order to take advantage of GPU
computation. This library is implemented based on the following two
research papers:

A fast learning algorithm for deep belief nets, by Geoffrey E.
Hinton, Simon Osindero, and Yee-Whye Teh. Neural
Computation 18.7 (2006): 1527-1554.
Training Restricted Boltzmann Machines: An Introduction, Asja
Fischer, and Christian Igel. Pattern Recognition 47.1 (2014): 25-
39.

We will see how to train the RBMs in an unsupervised way and then
we will train the network in a supervised way. In short, there are
several steps to be followed. The main classifier is
classification_demo.py.

Tip
Although the dataset is not that big or high dimensional when
training a DBN in both a supervised and unsupervised way, there
will be so many computations in the training time and this requires
huge resources. Nevertheless, RBM requires a lot of time to
converge. Therefore, I would suggest that readers perform the
training on GPU, having at least 32 GB of RAM and a corei7
processor.

We will start by loading required modules and libraries:

https://github.com/PacktPublishing/Predictive-Analytics-with-TensorFlow/tree/master/Chapter07/DBN

import numpy as np

import pandas as pd

from sklearn.datasets import load_digits

from sklearn.model_selection import

train_test_split

from sklearn.metrics.classification import

accuracy_score

from sklearn.metrics import

precision_recall_fscore_support

from sklearn.metrics import confusion_matrix

import itertools

from tf_models import SupervisedDBNClassification

import matplotlib.pyplot as plt

We then load the already normalized dataset used in the previous
MLP example:

FILE_PATH = '../input/bank_normalized.csv'

raw_data = pd.read_csv(FILE_PATH)

In the preceding code, we have used pandas read_csv() method
and have created a DataFrame. Now, the next task is to spate the
features and labels as follows:

Y_LABEL = 'y'

KEYS = [i for i in raw_data.keys().tolist() if i

!= Y_LABEL]

X = raw_data[KEYS].get_values()

Y = raw_data[Y_LABEL].get_values()

class_names = list(raw_data.columns.values)

print(class_names)

In the preceding lines, we have separated the features and labels.
The features are stored in X and the labels are in Y. The next task is
to split them into the train (75%) and the test set (25%) as follows:

X_train, X_test, Y_train, Y_test =

train_test_split(X, Y, test_size=0.25,

random_state=100)

Now that we have the training and test set, we can go to the DBN
training step directly. However, first we need to instantiate the DBN.
We will do it in a supervised way for classification, but we need to
provide the hyperparameters for this DNN architecture:

classifier =

SupervisedDBNClassification(hidden_layers_structur

e=[64,

64],learning_rate_rbm=0.05,learning_rate=0.01,n_ep

ochs_rbm=10,n_iter_backprop=100,batch_size=32,acti

vation_function='relu',dropout_p=0.2)

In the preceding code segment, n_epochs_rbm is the number of epoch
for the pre-training (unsupervised) and n_iter_backprop for the
supervised fine-tuning. Nevertheless, we have defined two separate
learning rates for these two phases, as well using learning_rate_rbm
and learning_rate respectively.

Nevertheless, we will describe this class implementation for
SupervisedDBNClassification later in this section.

This library has an implementation to support sigmoid, ReLU, and
tanh activation functions. In addition, it utilizes the l2 regularization to
avoid overfitting. We will do the actual fitting as follows:

classifier.fit(X_train, Y_train)

If everything goes fine, you should observe the following progress on
the console:

[START] Pre-training step:

>> Epoch 1 finished RBM Reconstruction error

1.681226

….

>> Epoch 3 finished RBM Reconstruction error

4.926415

>> Epoch 5 finished RBM Reconstruction error

7.185334

…

>> Epoch 7 finished RBM Reconstruction error

37.734962

>> Epoch 8 finished RBM Reconstruction error

467.182892

….

>> Epoch 10 finished RBM Reconstruction error

938.583801

[END] Pre-training step

[START] Fine tuning step:

>> Epoch 0 finished ANN training loss 0.316619

>> Epoch 1 finished ANN training loss 0.311203

>> Epoch 2 finished ANN training loss 0.308707

….

>> Epoch 98 finished ANN training loss

0.288299

>> Epoch 99 finished

ANN training loss 0.288900

Since the weights of the RBM are randomly initialized, the difference
between the reconstructions and the original input is often large.

More technically, we can think of reconstruction error as the
difference between the reconstructed values and the input values.
This error is then backpropagated against the RBM's weights several
times that is, in an iterative learning process until an error minimum
is reached.

Nevertheless, in our case, the reconstruction reaches up to 938,
which is not that big (that is, not infinity) so we can still expect good
accuracy. Anyway, after 100 iterations, the fine-tuning graph showing
training gloss per epoch is as follows:

Figure 18: SGD fine-tuning loss per iteration (only 100 iterations)

However, when I iterated the preceding training and fine-tuning up to
1000 epochs, I did not see any significant improvement in the
training loss:

Figure 19: SGD fine-tuning loss per iteration (1000 iterations)

Here is the implementation of supervised DBN classifiers. This class
implements a DBN for classification problems. It converts network
output to original labels. It also takes network parameters and
returns a list, after performing index to label mapping.

This class then predicts the probability distribution of classes for
each sample in the given data and returns a list of dictionaries (one
per sample). Finally, it appends a softmax linear classifier as an
output layer:

class

SupervisedDBNClassification(TensorFlowAbstractSupe

rvisedDBN, ClassifierMixin):

 def _build_model(self, weights=None):

 super(SupervisedDBNClassification,

self)._build_model(weights)

 self.output = tf.nn.softmax(self.y)

 self.cost_function =

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo

gits_v2(logits=self.y, labels=self.y_))

 self.train_step =

self.optimizer.minimize(self.cost_function)

 @classmethod

 def _get_param_names(cls):

 return super(SupervisedDBNClassification,

cls)._get_param_names() + ['label_to_idx_map',

'idx_to_label_map']

 @classmethod

 def from_dict(cls, dct_to_load):

 label_to_idx_map =

dct_to_load.pop('label_to_idx_map')

 idx_to_label_map =

dct_to_load.pop('idx_to_label_map')

 instance =

super(SupervisedDBNClassification,

cls).from_dict(dct_to_load)

 setattr(instance, 'label_to_idx_map',

label_to_idx_map)

 setattr(instance, 'idx_to_label_map',

idx_to_label_map)

 return instance

 def _transform_labels_to_network_format(self,

labels):

 """

 Converts network output to original

labels.

 :param indexes: array-like, shape =

(n_samples,)

 :return:

 """

 new_labels, label_to_idx_map,

idx_to_label_map = to_categorical(labels,

self.num_classes)

 self.label_to_idx_map = label_to_idx_map

 self.idx_to_label_map = idx_to_label_map

 return new_labels

 def _transform_network_format_to_labels(self,

indexes):

 return list(map(lambda idx:

self.idx_to_label_map[idx], indexes))

 def predict(self, X):

 probs = self.predict_proba(X)

 indexes = np.argmax(probs, axis=1)

 return

self._transform_network_format_to_labels(indexes)

 def predict_proba(self, X):

 """

 Predicts probability distribution of

classes for each sample in the given data.

 :param X: array-like, shape = (n_samples,

n_features)

 :return:

 """

 return super(SupervisedDBNClassification,

self)._compute_output_units_matrix(X)

 def predict_proba_dict(self, X):

 """

 Predicts probability distribution of

classes for each sample in the given data.

 Returns a list of dictionaries, one per

sample. Each dict contains {label_1: prob_1, ...,

label_j: prob_j}

 :param X: array-like, shape = (n_samples,

n_features)

 :return:

 """

 if len(X.shape) == 1: # It is a single

sample

 X = np.expand_dims(X, 0)

 predicted_probs = self.predict_proba(X)

 result = []

 num_of_data, num_of_labels =

predicted_probs.shape

 for i in range(num_of_data):

 # key : label

 # value : predicted probability

 dict_prob = {}

 for j in range(num_of_labels):

dict_prob[self.idx_to_label_map[j]] =

predicted_probs[i][j]

 result.append(dict_prob)

 return result

 def _determine_num_output_neurons(self,

labels):

 return len(np.unique(labels))

As we mentioned in the previous example, and the running section,
fine-tuning the parameters of a neural network is a tricky process.
There are many different approaches out there, but there is no one-
size-fits-all approach to my knowledge. Nevertheless, with the
preceding combination, I have received better classification results.
Another important parameter to select is the learning rate. Adapting
the learning rate as your model goes is an approach that can be
taken in order to reduce training time while avoiding local minimums.
Here, I would like to discuss some tips that really helped me to get
better predictive accuracy, not only for this application but for others
as well.

Now that we have our model built, it is time to evaluate its
performance. To evaluate the classification accuracy, we will use
several performance metrics such as precision, recall, and f1
score. Moreover, we will draw the confusion matrix, to observe the
predicted labels against the true labels. First, let us compute the
prediction accuracy as follows:

Y_pred = classifier.predict(X_test)

print('Accuracy: %f' % accuracy_score(Y_test,

Y_pred))

Next, we need to compute the precision, recall, and f1 score of the
classification:

p, r, f, s =

precision_recall_fscore_support(Y_test, Y_pred,

average='weighted')

print('Precision:', p)

print('Recall:', r)

print('F1-score:', f)

The following is the output of the preceding code:

>>>

Accuracy: 0.900554

Precision: 0.8824140209830381

Recall: 0.9005535592891133

F1-score: 0.8767190584424599

Fantastic! Using our DBN implementation we have solved the same
classification problem that we did using MLP. Nevertheless, we have
managed to achieve a slightly better accuracy compared to MLP.

Now, if you want to solve a regression problem, where the labels to
be predicted are continuous, you will have to use the
SupervisedDBNRegression() function for this implementation. The
regression script (that is regression_demo.py) in the DBN folder can
be used to perform the regression operation too.

However, using another dataset specially prepared for regression y
would be the better idea. All you need to do is to prepare your
dataset so that it can be consumed by the TensorFlow-based DBN.
So, for minimal demonstration, I used the House Prices: Advanced
Regression Techniques dataset to predict the housing price.

Tuning hyperparameters and
advanced FFNNs
The flexibility of neural networks is also one of their main drawbacks:
there are many hyperparameters to tweak. Even in a simple MLP,
you can change the number of layers, the number of neurons per
layer, and the type of activation function to use in each layer. You
can also change the weight initialization logic, the drop out keep
probability, and so on.

Additionally, some common problems in FFNNs, such as the
gradient vanishing problem, and selecting the most suitable
activation function, learning rate, and optimizer, are of prime
importance.

Tuning FFNN hyperparameters
Hyperparameters are parameters that are not directly learned within
estimators. It is possible and recommended that you search the
hyperparameter space for the best cross-validation (http://scikit-
learn.org/stable/modules/cross_validation.html#cross-validation)
score. Any parameter provided when constructing an estimator may
be optimized in this manner. Now, the question is: how you do know
what combination of hyperparameters is best for your task? Of
course, you can use grid search, with cross-validation, to find the
right hyperparameters for linear machine learning models.

However, for the DNNs, there are many hyperparameters to tune.
Since training a neural network on a large dataset takes a lot of time,
you will only be able to explore a tiny part of the hyperparameter
space in a reasonable amount of time. Here are some insights that
can be followed.

Moreover, of course, as I said, you can use grid search or
randomized searches, with cross-validation, to find the right

http://scikit-learn.org/stable/modules/cross_validation.html#cross-validation

hyperparameters for linear machine learning models. We will see
some possible ways of exhaustive and randomized grid searching
and cross-validation later in this section.

Number of hidden layers
For many problems, you can start with just one or two hidden layers
and this setting will work just fine using two hidden layers, with the
same total amount of neurons (see below to get an idea about a
number of neurons), in roughly the same amount of training time.
Now let's see some naïve estimation about setting the number of
hidden layers:

0: Only capable of representing linear separable functions or
decisions
1: Can approximate any function that contains a continuous
mapping from one finite space to another
2: Can represent an arbitrary decision boundary to arbitrary
accuracy, with rational activation functions, and can approximate
any smooth mapping to any accuracy

However, for a more complex problem, you can gradually ramp up
the number of hidden layers, until you start overfitting the training
set. Very complex tasks, such as large image classification or
speech recognition, typically require networks with dozens of layers,
and they need a large amount of training data.

Nevertheless, you can try increasing the number of neurons
gradually until the network starts overfitting. This means the upper
bound on the number of hidden neurons that will not result in
overfitting is:

In the preceding equation:

N i = number of input neurons

N o = number of output neurons

N s = number of samples in training dataset

= an arbitrary scaling factor usually 2-10.

Note that the above equation does not come from any research, but
from my personal working experience. However, for an automated
procedure, you would start with an alpha of 2, that is twice as many
degrees of freedom in your training data as your model, and work
your way up to 10, if the error for training data is significantly smaller
than for the cross-validation data set.

Number of neurons per hidden layer
Obviously, the number of neurons in the input and output layers is
determined by the type of input and output your task requires. For
example, if your dataset has the shape of 28x28, it should have input
neurons of size 784, and the output neurons should be equal to the
number of classes to be predicted.

We will see how this works in practice in the next example, using
MLP, where there will be four hidden layers with 256 neurons (just
one hyperparameter to tune, instead of one per layer). Just like for
the number of layers, you can try increasing the number of neurons
gradually until the network starts overfitting.

There are some empirically derived rules-of-thumb, of which the
most commonly relied on is: "The optimal size of the hidden layer is
usually between the size of the input and size of the output layers."

In summary, for most problems, you could probably get decent
performance (even without a second optimization step) by setting the
hidden layer configuration using just two rules:

The number of hidden layers equals one
The number of neurons in that layer is the mean of the neurons
in the input and output layers

Nevertheless, just like for the number of layers, you can try
increasing the number of neurons gradually until the network starts
overfitting.

Weight and biases initialization
As we will see in the next example, initializing weight and biases for
the hidden layers is an important hyperparameter to be taken care
of:

Do not do all zero initialization: A reasonable-sounding idea
might be to set all the initial weights to zero, but it does not work
in practice. This is because if every neuron in the network
computes the same output, there will be no source of
asymmetry between neurons if their weights are initialized to be
the same.
Small random numbers: It is also possible to initialize the
weights of the neurons to small numbers, but not identically
zero. Alternatively, it is possible to use small numbers drawn
from a uniform distribution.
Initializing the biases: It is common to initialize the biases to
be zero since the small random numbers in the weights provide
the asymmetry breaking. Setting the biases to a small constant
value, such as 0.01 for all biases, ensures that all ReLU units
can propagate some gradient. However, it neither performs well
nor shows consistent improvement. Therefore, sticking with zero
is recommended.

Selecting the most suitable optimizer
Since, in FFNNs, one of the objective functions is to minimize the
evaluated cost, we must define an optimizer. We have already seen
how to use tf.train.AdamOptimizer

(https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer).
Tensorflow tf.train

(https://www.tensorflow.org/api_docs/python/tf/train) provides a set of
classes and functions that help to train models. Personally, I have
found that Adam optimizer works well for me in practice, without
having to think much about learning rates and so on.

For most of the cases, we can utilize Adam, but sometimes we can
adopt the implemented RMSPropOptimizer function, which is an
advanced form of gradient descent. The RMSPropOptimizer function
implements the RMSProp algorithm.

The RMSPropOptimizer function also divides the learning rate by an
exponentially decaying average of squared gradients. The
suggested setting value of the decay parameter is 0.9, while a good
default value for the learning rate is 0.001:

optimizer = tf.train.RMSPropOptimizer(0.001,

0.9).minimize(cost_op)

Using the most common optimizer SGD, the learning rates must
scale with 1/T to get convergence, where T is the number of
iterations. RMSProp tries to overcome this limitation automatically by
adjusting the step size so that the step is on the same scale as the
gradients.

So if you're training a neural network, but computing the gradients is
mandatory, using tf.train.RMSPropOptimizer() would be the faster
way of learning in a mini-batch setting. Researchers also
recommend using Momentum optimizer while training a deep
network such as CNN.

Finally, if you want to play around by setting these optimizers, you
just need to change one line. Due to time constraints, I have not tried
all of these. However, according to a recent research paper by
Sebastian Ruder (see at https://arxiv.org/abs/1609.04747),
optimizers with adaptive learning-rate methods that is, Adagrad,

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train
https://arxiv.org/abs/1609.04747

Adadelta, RMSprop, and Adam are most suitable and provide the best
convergence for these scenarios.

GridSearch and randomized search for
hyperparameters tuning
Two generic approaches to sampling search candidates are provided
in other Python-based machine-learning libraries such as Scikit-
learn. For given values, GridSearchCV (http://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.GridSe
archCV.html#sklearn.model_selection.GridSearchCV) exhaustively
considers all parameter combinations, while RandomizedSearchCV

(http://scikit-
learn.org/stable/modules/generated/sklearn.model_selection.Rando
mizedSearchCV.html#sklearn.model_selection.RandomizedSearchC
V) can sample a given number of candidates from a parameter
space with a specified distribution.

GridSearchCV is a great way to test and optimize hyperparameters
automatically. I often use it with Scikit-learn. However, it is not yet so
straightforward with TensorFlowEstimator to optimize learning_rate,
batch_size, and so on. Moreover, as I said, we often have so many
hyperparameters to tune to get the best result. Nevertheless, I found
this article quite useful to learn how to tune aforementioned
hyperparameters:https://machinelearningmastery.com/grid-search-
hyperparameters-deep-learning-models-python-keras/

The randomized search and the grid search explore exactly the
same space of parameters. The result in parameter settings is quite
similar, while the runtime for the randomized search is drastically
lower.

Some benchmarks (for example, http://scikit-
learn.org/stable/auto_examples/model_selection/) have reported that
the performance is slightly worse for the randomized search, though
this is most likely a noise effect and would not carry over to a held-
out test set.

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
http://scikit-learn.org/stable/auto_examples/model_selection/

Regularization
There are several ways of controlling the training of DNNs to prevent
overfitting in the training phase, for example, L2/L1 regularization,
max norm constraints, and drop out:

L2 regularization: This is probably the most common form of
regularization. Using the gradient descent parameter update, L2
regularization signifies that every weight will be decayed linearly
towards zero.
L1 regularization: For each weight w, we add the term to
the objective. However, it is also possible to combine L1 and L2
regularization to achieve elastic net regularization.
Max-norm constraints: This is issued to enforce an absolute
upper bound on the magnitude of the weight vector for each
hidden layer neuron. Projected gradient descent can be used
further to enforce the constraint.

The vanishing gradient problem arises in very deep neural networks
(typically RNNs, which will have a dedicated chapter on), that use
activation functions, whose gradients tend to be small (in the range
of 0 from 1).

Since these small gradients are further multiplied during the
backpropagation, they tend to "vanish" throughout the layers,
preventing the network from learning long-range dependencies. A
common way to counter this problem is to use activation functions
like Linear Unit (aka. ReLU), which does not suffer from small
gradients. We will see an improved variant of an RNN, called Long
Short-Term Memory (aka. LSTM), which can combat this problem.
We will see a more detailed discussion on this topic in Chapter 5,
Optimizing TensorFlow Autoencoders.

Nevertheless, we have seen that the last architectural change
improved the accuracy of our model, but we can do even better by
changing the sigmoid activation function with the ReLU, shown as
follows:

Figure 20: ReLU function

A ReLU unit computes the function f(x) = max(0, x). ReLU is
computationally fast because it does not require any exponential
computation, such as that required in sigmoid or tanh activation.
Furthermore, it was found to accelerate the convergence of
stochastic gradient descent greatly, compared to the sigmoid/tanh
functions. To use the ReLU function, we simply change, in the
previously implemented model, the following definitions of the first
four layers:

First layer output:

Y1 = tf.nn.relu(tf.matmul(XX, W1) + B1) # Output

from layer 1

Second layer output:

Y2 = tf.nn.relu(tf.matmul(Y1, W2) + B2) # Output

from layer 2

Third layer output:

Y3 = tf.nn.relu(tf.matmul(Y2, W3) + B3) # Output

from layer 3

Fourth layer output:

Y4 = tf.nn.relu(tf.matmul(Y3, W4) + B4) # Output

from layer 4

Output layer:

Ylogits = tf.matmul(Y4, W5) + B5 # computing the

logits

Y = tf.nn.softmax(Ylogits) # output from layer 5

Of course, tf.nn.relu is TensorFlow's implementation of ReLU. The
accuracy of the model is almost 98%, as you could see running the
network:

>>>

Loading data/train-images-idx3-ubyte.mnist

Loading data/train-labels-idx1-ubyte.mnist Loading

data/t10k-images-idx3-ubyte.mnist

Loading data/t10k-labels-idx1-ubyte.mnist

Epoch: 0

Epoch: 1

Epoch: 2

Epoch:

3

Epoch: 4

Epoch: 5

Epoch: 6

Epoch: 7

Epoch: 8

Epoch: 9

Accuracy:0.9789

done

>>>

As concerns, the TensorBoard analysis, from the folder where the
source has been executed, you should digit:

$> Tensorboard --logdir = 'log_relu' # Don't put

space before or after '='

Then open the browser at localhost to visualize TensorBoard's
starting page. In the following figure, we show the trend's accuracy
over the number of examples of the training set:

Figure 21: Accuracy function over the training set

You can easily see how the accuracy, after a bad initial trend, begins
a rapid progressive improvement after about 1000 examples.

Dropout optimization
While working with a DNN, we need another placeholder for dropout,
which is a hyperparameter to be tuned. It is implemented by only
keeping a neuron active with some probability (say p<1.0) or setting
it to zero otherwise. The idea is to use a single neural net at test time
without dropout. The weights of this network are scaled-down
versions of the trained weights. If a unit is retained with
dropout_keep_prob < 1.0 during training, the outgoing weights of
that unit are multiplied by p at test time.

During the learning phase, the connections with the next layer can
be limited to a subset of neurons, to reduce the weights to be
updated. This learning optimization technique is called dropout. The
dropout is, therefore, a technique used to decrease the overfitting
within a network with many layers and/or neurons. In general, the
dropout layers are positioned after the layers that possess a large
number of trainable neurons.

This technique allows the setting to 0, and then excluding the
activation, of a certain percentage of the neurons of the preceding
layer. The probability that the neuron's activation is set to 0 is
indicated by the dropout ratio parameter within the layer, via a
number between 0 and 1. In practice, the activation of a neuron is
held with probability equal to the dropout ratio; otherwise, it is
discarded, that is, set to 0.

Figure 22: Dropout representation

In this way, for each input, the network owns an architecture slightly
different from the previous one. Some connections are active and
some are not, in a different way, every time, even if these
architectures possess the same weights. The preceding figure
shows how the dropout works: each hidden unit is randomly omitted
from the network with a probability of p.

One thing to notice, though, is that selected dropout units are
different for each training instance; that is why this is more of a
training problem. Dropout can be seen as an efficient way to perform
model averaging, across a large number of different neural networks,
where overfitting can be avoided with much less cost of computation
than an architecture problem. The dropout reduces the possibility
that a neuron relies on the presence of other neurons. In this way, it
is forced to learn more about robust features, and that they are
useful with linkages to other different neurons.

The TensorFlow function that allows building a dropout layer is
tf.nn.dropout. The input of this function is the output of the previous
layer, and a dropout parameter, tf.nn.dropout, returns an output
tensor of the same size as the input tensor. The implementation of
this model follows the same rules used for the five-layer network. In
this case, we must insert the dropout function between one layer and
another layer:

pkeep = tf.placeholder(tf.float32)

Y1 = tf.nn.relu(tf.matmul(XX, W1) + B1) # Output

from layer 1

Y1d = tf.nn.dropout(Y1, pkeep)

Y2 = tf.nn.relu(tf.matmul(Y1, W2) + B2) # Output

from layer 2

Y2d = tf.nn.dropout(Y2, pkeep)

Y3 = tf.nn.relu(tf.matmul(Y2, W3) + B3) # Output

from layer 3

Y3d = tf.nn.dropout(Y3, pkeep)

Y4 = tf.nn.relu(tf.matmul(Y3, W4) + B4) # Output

from layer 4

Y4d = tf.nn.dropout(Y4, pkeep)

Ylogits = tf.matmul(Y4d, W5) + B5 # computing the

logits

Y = tf.nn.softmax(Ylogits) # output from layer 5

The dropout optimization produces the following results:

>>>

Loading data/train-images-idx3-ubyte.mnist Loading

data/train-labels-idx1-ubyte.mnist Loading

data/t10k-images-idx3-ubyte.mnist Loading

data/t10k-labels-idx1-ubyte.mnist Epoch: 0

Epoch: 1

Epoch: 2

Epoch: 3

Epoch: 4

Epoch: 5

Epoch: 6

Epoch:

 7

Epoch: 8

Epoch: 9

Accuracy: 0.9666 done

>>>

Despite this implementation, the previous ReLU network is still
better, but you can try to change the network parameters to improve
the model's accuracy. Also, since this is a tiny network and we dealt
with a small-scale dataset, when you handle a large-scale high-
dimensional dataset with a more complex network, you will realize
that the dropout could be really important. We will see a few hands-
on examples in the next chapter.

Now, to see the effect of the dropout optimization, let's start the
TensorBoard analysis. Just type the following:

$> Tensorboard --logdir='

log_softmax_relu_dropout/'

The following graph shows the accuracy cost function as a function
of the training examples:

Figure 23: a) accuracy in dropout optimization, b) the cost function over the training set

In the preceding chart, we display the cost function as a function of
the training examples. Both trends are what we expected: the
accuracy increases with training examples, while the cost function
decreases with increasing iterations.

Summary
We have seen how to implement FFNN architectures that are
characterized by a set of input units, a set of output units, and one or
more hidden units that connect the input level from that output. We
have seen how to organize the network layers so that the
connections between the levels are total and in a single direction:
each unit receives a signal from all the units of the previous layer
and transmits its output value, suitably weighed to all units of the
next layer.

We have also seen how to define an activation function (for example,
sigmoid, ReLU, tanh, and softmax) for each layer, where the choice
of an activation function depends on the architecture and the
problem being addressed.

We then implemented four different FFNN models. The first model
had a single hidden layer, with a softmax activation function. The
three other more complex models had five hidden layers in total, but
with different activation function. We have also seen how to
implement a deep MLP and DBN with TensorFlow, for solving a
classification task. Using these implementations, we managed to
achieve above 90% accuracy. Finally, we have discussed how to
tune the hyperparameters for DNNs for better and more optimized
performance.

Although a regular FFNN, such as an MLP, works fine for small
images (for example, MNIST or CIFAR-10), it breaks down for larger
images because of the huge number of parameters required. For
example, a 100×100 image has 10,000 pixels, and if the first layer
has just 1,000 neurons (which already severely restricts the amount
of information transmitted to the next layer), this means 10 million
connections. In addition, that is just for the first layer.

Importantly, a DNN has no prior knowledge of how pixels are
organized, so it does not know that nearby pixels are close. The
architecture of a CNN embeds this prior knowledge. Lower layers

typically identify features in small areas of the images, while higher
layers combine the lower-level features into larger features. This
works well with most natural images, giving CNNs a decisive head
start compared to DNNs.

In the next chapter, we will look further into the complexity of neural
network models, introducing CNNs, which may have a big impact on
deep learning techniques. We will study the main features and see
some implementation examples.

Chapter 4. Convolutional Neural
Networks
In this chapter, we will talk about CNNs, which are a feather in the
cap of deep learning. CNNs have achieved excellent results in many
practical applications, particularly in the field of object recognition in
images. We will explain and implement the LeNet architecture
(LeNet5), which was the first CNN to have great success with the
classic MNIST digit classification system. We will also analyze
AlexNet, which is a deep CNN that was invented by Alex
Krizhevsky. We'll use these networks to introduce transfer learning,
which is a machine learning method that utilizes a pre-trained neural
network. We will also introduce the VGG architecture, which is
usually used as a deep CNN for object recognition. This was
developed by Oxford University's renowned Visual Geometry
Group (VGG), which performed very well with the ImageNet
dataset. This architecture gives us the opportunity to show how to
use a neural network to draw a picture in a certain artistic style
(artistic style learning).

We will move on to the Inception-v3 model, which was created for
the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) using the data from the 2012 competition. This is a
standard task in computer vision, in which models try to classify
1.2M images of 1000 different categories. We'll demonstrate how to
train your own image classifier with Inception in TensorFlow. The last
example is taken from the Kaggle platform. The purpose here is to
train a network on a series of facial images to classify their emotional
stretch. We'll evaluate the accuracy of the model and then test it on a
single image that does not belong to the original dataset. The topics
covered in this chapter are as follows:

Main concepts of CNNs
CNNs in action
LeNet and the MNIST classification problem

AlexNet and transfer learning
VGG and artistic style learning
Inception-v3 model
Emotion recognition

Main concepts of CNNs
Recently, Deep Neural Networks (DNNs) have given fresh impetus
to research and therefore they are being used widely. CNNs are a
special type of DNN, and they have been used with great success in
image classification problems. Before diving into the implementation
of an image classifier based on CNNs, we'll introduce some basic
concepts in image recognition, such as feature detection and
convolution.

In computer vision, it is well known that a real image is associated
with a grid composed of a high number of small squares called
pixels. The following figure represents a black and white image
related to a 5×5 grid of pixels:

Figure 1: Pixel view of a black and white image.

Each element in the grid corresponds to a pixel. In the case of a
black and white image, a value of 1 is associated with black and a
value of 0 is associated with white. Alternatively, for a grayscale
image, the allowed values for each grid element are in the range [0,
255], where 0 is associated with black and 255 is associated with
white.

Finally, a color image is represented by a group of three matrices,
each corresponding to one color channel (red, green, and blue).
Each element of each matrix can vary over an interval of 0 to 255
that specifies the brightness of the fundamental color (or base color).
This is shown in the following figure, in which each matrix is 4×4 and
the number of color channels is three:

Figure 2: Color image

Let's focus now on the black and white image 5×5 matrix. Suppose
we slide a second matrix of lower dimensions, for example a 3×3
matrix (see the figure below), across the width and height of the
image matrix:

Figure 3: Kernel filter

This flowing matrix is called a kernel filter or a feature detector. While
a kernel filter moves along the input matrix (or input image), it
performs a scalar product of the kernel values and the values of the
matrix portion to which it is applied. The result is a new matrix called
a convolution matrix.

The next figure displays the convolution procedure: the convolved
feature (the resulting 3×3 matrix) is generated by the convolution
operation, flowing the kernel filter (the 3×3 matrix) on the input image
(the 5×5 matrix):

Figure 4: Input image (matrix 5×5 on the left), the kernel filter (matrix 3×3 on the input
image), and convolved feature (matrix 3×3 on the right)

CNNs in action
Taking as an example the 5×5 input matrix shown earlier, a CNN is
made up of an input layer consisting of 25 neurons (5×5) that has
the task of acquiring the input value corresponding to each pixel and
transferring it to the next layer.

In a multilayer network, the output from all of the neurons in the input
layer would be connected to each neuron in the hidden layer (the
fully connected layer). In CNN networks, however, the connection
scheme that defines the convolutional layer that we are going to
describe is significantly different. As you may be able to guess, this
is the main type of layer: the use of one or more of these layers in a
CNN is indispensable.

In a convolutional layer, each neuron is connected to a certain region
of the input area called the receptive field. For example, using a
3×3 kernel filter, each neuron will have a bias and 9 weights (3×3)
connected to a single receptive field. To effectively recognize an
image, we need various different kernel filters to be applied to the
same receptive field because each filter should recognize images
from a different feature. The set of neurons that identifies the same
feature defines a single feature map.

The following figure shows a CNN architecture in action: the 28×28
input image will be analyzed by a convolutional layer composed of a
28x28x32 feature map. The figure also shows a receptive field and a
3×3 kernel filter:

Figure 5: CNN in action

A CNN may consist of several convolution layers connected by
cascade connections. The output of each convolutional layer is a set
of feature maps (each generated by a single kernel filter). Each of
these matrices defines a new input that will be used by the next
layer.

Usually, in a CNN each neuron produces an output up to an
activation threshold, which is proportional to the input and is not
bounded.

CNNs also use pooling layers positioned immediately after the
convolutional layers. A pooling layer divides a convolutional region
into subregions. The pooling layer then selects a single
representative value (max-pooling or average pooling) to reduce the
computational time of subsequent layers and increase the
robustness of the feature with respect to its spatial position. The last
layer of a convolutional network is generally a fully connected
network with a softmax activation function for the output layer. In the
next few sections, the architectures of the most important CNNs will
be analyzed in detail.

LeNet5
The LeNet5 CNN architecture was invented by Yann LeCun in 1998
and was the first CNN. It is a multilayered feed-forward network
specifically designed to classify handwritten digits. It was used in
LeCun's experiments and consists of seven layers containing
trainable weights. The LeNet5 architecture looks like this:

Figure 6: The LeNet5 network

The LeNet5 architecture consists of three convolutional layers and
two alternating sequence pooling layers. The last two layers
correspond to a traditional fully connected neural network, that is, a
fully connected layer followed by an output layer. The main function
of the output layer is to calculate the Euclidean distance between the
input vector and the parameter vector. The output functions identify
the difference between the measurements of the input pattern and
our model. The output is kept minimal in order to achieve the best
model. Therefore, the fully connected layer is configured so that the
difference between the measurements of the input pattern and our
model is minimized. Although it performs well on the MNIST dataset,
the performance drops on datasets that have more images with
higher resolution and more classes.

Note
See http://yann.lecun.com/exdb/lenet/index.html for basic
references on LeNet family models.

http://yann.lecun.com/exdb/lenet/index.html

Implementing a LeNet-5 step by
step
In this section, we will learn how to build a LeNet-5 architecture to
classify images in the MNIST dataset. The next figure shows how
the data flows in the first two convolutional layers: the input image is
processed in the first convolutional layer using the filter weights. This
results in 32 new images, one for each filter in the convolutional
layer. The images are also down-sampled with the pooling operation,
so the image resolution is decreased from 28×28 to 14×14. These
32 smaller images are then processed in the second convolutional
layer. We need filter weights again for each of these 32 images and
we need filter weights for each output channel of this layer. The
images are again down-sampled with a pooling operation, so that the
image resolution is decreased from 14×14 to 7×7. The total number
of features for this convolutional layer is 64.

Figure 7: Data flow of the first two convolutional layers

The 64 resulting images are filtered again by a (3×3) third
convolutional layer. No pooling operation is applied to this layer. The
output of the third convolutional layer is 128 7×7-pixel images. These
images are then flattened to become a single vector, of length
4×4×128 = 2048, which is used as input to a fully connected layer.

The output layer of the LeNet-5 consists of 625 neurons as input
(that is, the output of the fully connected layer), and 10 neurons as
output, which is used to determine the class of the image, which
number is depicted in the image.

Figure 8: Data flow of the last three convolutional layers

The convolutional filters are initially chosen at random. The
difference between the predicted and the actual class of the input
image is referred to as the cost function, and this generalizes our
network beyond the training data. The optimizer then automatically
propagates this cost function back through the CNN and updates the
filter weights to improve the classification error. This is done
iteratively thousands of times until the classification error is
sufficiently low.

Now let's see in detail how to code our first CNN. Let's start by
importing the TensorFlow libraries we need for our implementation:

import tensorflow as tf

import numpy as np

from tensorflow.examples.tutorials.mnist import

input_data

Set the following parameters. They indicate the number of samples
to use in the training phase (128) and the test phase (256):

batch_size = 128

test_size = 256

When we define the following parameter, the value is 28 because a
MNIST image is 28 pixels in height and width:

img_size = 28

For the number of classes, the value 10 means that we'll have one
class for each 0 to 9 digits:

num_classes = 10

A placeholder variable, X, is defined for the input images. The data
type of this tensor is set to float32, and the shape is set to [None,
img_size, img_size, 1], where None means that the tensor may hold
an arbitrary number of images:

X = tf.placeholder("float", [None, img_size,

img_size, 1])

Then we set another placeholder variable, Y, for the labels that were
associated correctly with input images in the placeholder variable, X.
The shape of this placeholder variable is [None, num_classes], which
means that it may hold an arbitrary number of labels. Each label is a
vector of length num_classes, which is 10 in this case:

Y = tf.placeholder("float", [None, num_classes])

We collect the MNIST data, which will be copied into the data folder:

mnist = input_data.read_data_sets("MNIST-data",

one_hot=True)

We build the datasets for training (trX, trY) and testing the network
(teX, teY):

trX, trY, teX, teY = mnist.train.images, \

 mnist.train.labels, \

 mnist.test.images, \

 mnist.test.labels

The trX and teX image sets must be reshaped to match the input
shape:

trX = trX.reshape(-1, img_size, img_size, 1)

teX = teX.reshape(-1, img_size, img_size, 1)

We shall now proceed to defining the network's weights.

The init_weights function builds new variables in the shape
provided and initializes the network's weights with random values:

def init_weights(shape):

 return tf.Variable(tf.random_normal(shape,

stddev=0.01))

Each neuron of the first convolutional layer is convoluted to a small
subset of the input tensor, with the dimensions 3×3×1. The value 32
is just the number of feature maps we are considering for this first
layer. The weight, w, is then defined:

w = init_weights([3, 3, 1, 32])

The number of inputs is then increased to 32, which means that each
neuron in the second convolutional layer is convoluted to 3x3x32
neurons of the first convolutional layer. The w2 weight is as follows:

w2 = init_weights([3, 3, 32, 64])

The value 64 represents the number of output features obtained. The
third convolutional layer is convoluted to 3x3x64 neurons of the
previous layer, while 128 are the resulting features.

w3 = init_weights([3, 3, 64, 128])

The fourth layer is fully connected and receives 128x4x4 inputs,
while the output is equal to 625:

w4 = init_weights([128 * 4 * 4, 625])

The output layer receives 625 inputs, and the output is the number of
classes:

w_o = init_weights([625, num_classes])

Note that these initializations are not actually done at this point. They
are merely being defined in the TensorFlow graph.

p_keep_conv = tf.placeholder("float")

p_keep_hidden = tf.placeholder("float")

It's time to define the network model. Like the network's weights
definition, it will be a function. It receives the X tensor, the weights
tensors, and the dropout parameters as input for the convolutional
and fully connected layer:

def model(X, w, w2, w3, w4, w_o, p_keep_conv,

p_keep_hidden):

tf.nn.conv2d() executes the TensorFlow operation for convolution.
Note that the strides for all dimensions are set to 1. In fact, the first
and last stride must always be 1, because the first stride is for the
image number and the last stride is for the input channel. The
padding parameter is set to 'SAME', which means that the input
image is padded with zeroes, so the size of the output is the same:

conv1 = tf.nn.conv2d(X, w,strides=[1, 1, 1, 1],\

 padding='SAME')

Then we pass the conv1 layer to the ReLU layer. It calculates the
max(x, 0) function for each input pixel, x, adding some non-linearity
to the formula, and allows us to learn more complicated functions:

 conv1_a = tf.nn.relu(conv1)

The resulting layer is then pooled by the tf.nn.max_pool operator:

 conv1 = tf.nn.max_pool(conv1_a, ksize=[1, 2,

2, 1]\

 ,strides=[1, 2, 2, 1],\

 padding='SAME')

It is a 2×2 max-pooling, which means that we are examining 2×2
windows and selecting the largest value in each window. Then we
move 2 pixels to the next window. We try to reduce overfitting via the
tf.nn.dropout() function, to which we pass the conv1 layer and the
p_keep_conv probability value:

 conv1 = tf.nn.dropout(conv1, p_keep_conv)

As you can see, the next two convolutional layers, conv2 and conv3,
are defined in the same way as conv1:

 conv2 = tf.nn.conv2d(conv1, w2,\

 strides=[1, 1, 1, 1],\

 padding='SAME')

 conv2_a = tf.nn.relu(conv2)

 conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2,

1],\

 strides=[1, 2, 2, 1],\

 padding='SAME')

 conv2 = tf.nn.dropout(conv2, p_keep_conv)

 conv3=tf.nn.conv2d(conv2, w3,\

 strides=[1, 1, 1, 1]\

 ,padding='SAME')

 conv3 = tf.nn.relu(conv3)

The fully connected layers are added to the network. The input of the
first FC_layer is the convolutional layer from the previous
convolution:

 FC_layer = tf.nn.max_pool(conv3, ksize=[1, 2,

2, 1],\

 strides=[1, 2, 2, 1],\

 padding='SAME')

 FC_layer = tf.reshape(FC_layer,\

 [-1,

w4.get_shape().as_list()[0]])

A dropout function is again used to reduce overfitting:

 FC_layer = tf.nn.dropout(FC_layer,

p_keep_conv)

The output layer receives FC_layer and the w4 weight tensor as input.
ReLU and dropout operators are applied:

 output_layer = tf.nn.relu(tf.matmul(FC_layer,

w4))

 output_layer = tf.nn.dropout(output_layer,

p_keep_hidden)

The result is a vector with a length of 10. This is used to determine
which of the 10 input classes the image belongs to:

 result = tf.matmul(output_layer, w_o)

 return result

Cross-entropy is the performance measure we used in this classifier.
Cross-entropy is a continuous function that is always positive and is
equal to zero if the predicted output exactly matches the desired
output. The goal of this optimization is therefore to minimize the
cross-entropy, so it is as close to zero as possible, by changing the
variables in the network layers. TensorFlow has a built-in function for
calculating the cross-entropy. Note that the function calculates
softmax internally, so we must use the output of py_x directly:

py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv,

p_keep_hidden)

 Y_ =

tf.nn.softmax_cross_entropy_with_logits_v2\

 (labels=Y,logits=py_x)

Now that we have defined the cross-entropy for each classified
image, we have a measure of how well the model performs on each
image. We need a single scalar value to use the cross-entropy to
optimize the networks' variables, so we simply take the average of
the cross-entropy for all of the classified images:

cost = tf.reduce_mean(Y_)

To minimize the evaluated cost, we must define an optimizer. In this
case, we will use RMSPropOptimizer, which is an advanced form of
GD. RMSPropOptimizer implements the RMSProp algorithm, which is
an unpublished adaptive learning rate method that was proposed by
Geoff Hinton in Lecture 6e of his Coursera Class.
(http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.
pdf)

Note
You can find Geoff Hinton's course at
https://www.coursera.org/learn/neural-networks.

RMSPropOptimizer also divides the learning rate by an exponentially
decaying average of squared gradients. Hinton suggests setting the
decay parameter to 0.9, while a good default value for the learning
rate is 0.001:

optimizer = tf.train.RMSPropOptimizer(0.001,

0.9).minimize(cost)

Basically, the common SGD algorithm has a problem in that learning
rates must scale with 1/T (where T is the iteration number) to
achieve convergence. RMSProp tries to get around this by
automatically adjusting the step size so that the step is on the same

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.coursera.org/learn/neural-networks

scale as the gradients. As the average gradient gets smaller, the
coefficient in the SGD update gets bigger to compensate.

Note
An interesting reference about this algorithm can be found here:

http://www.cs.toronto.edu/%7Etijmen/csc321/slides/lecture_slides
_lec6.pdf

Finally, we define predict_op, which is the index with the largest
value across dimensions from the output of the mode:

predict_op = tf.argmax(py_x, 1)

Note that optimization is not performed at this point. Nothing is
calculated at all because we'll just add the optimizer object to the
TensorFlow graph for later execution.

We now come to defining the network's running session. There are
55,000 images in the training set, so it will take a long time to
calculate the gradient of the model using all of these images.
Therefore, we'll use a small batch of images in each iteration of the
optimizer. If your computer crashes or becomes very slow because
you run out of RAM, then you can reduce this number, but you may
then need to perform more optimization iterations.

Now we can proceed to implementing a TensorFlow session:

with tf.Session() as sess:

 tf.global_variables_initializer().run()

 for i in range(100):

We get a batch of training examples, and the training_batch tensor
now holds a subset of images and the corresponding labels:

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

 training_batch = zip(range(0, len(trX),

batch_size),\

range(batch_size, \

 len(trX)+1, \

 batch_size))

Put the batch into a feed_dict with appropriate names for the
placeholder variables in the graph. We can now run the optimizer
using this batch of training data. TensorFlow assigns the variables in
feed to the placeholder variables and then runs the optimizer:

 for start, end in training_batch:

 sess.run(optimizer, feed_dict={X:

trX[start:end],\

 Y:

trY[start:end],\

p_keep_conv: 0.8,\

p_keep_hidden: 0.5})

At the same time, we get a shuffled batch of test samples:

 test_indices = np.arange(len(teX))

 np.random.shuffle(test_indices)

 test_indices = test_indices[0:test_size]

For each iteration, we display the evaluated accuracy of the batch:

 print(i,

np.mean(np.argmax(teY[test_indices], axis=1) ==\

 sess.run\

 (predict_op,\

 feed_dict={X:

teX[test_indices],\

 Y:

teY[test_indices], \

 p_keep_conv:

1.0,\

p_keep_hidden: 1.0})))

Training a network can take several hours, depending on the
computational resources used. The results on my machine are as
follows:

Successfully downloaded train-images-idx3-ubyte.gz

9912422 bytes.

Successfully extracted to train-images-idx3-

ubyte.mnist 9912422 bytes.

Loading ata/train-images-idx3-ubyte.mnist

Successfully downloaded train-labels-idx1-ubyte.gz

28881 bytes.

Successfully extracted to train-labels-idx1-

ubyte.mnist 28881 bytes.

Loading ata/train-labels-idx1-ubyte.mnist

Successfully downloaded t10k-images-idx3-ubyte.gz

1648877 bytes.

Successfully extracted to t10k-images-idx3-

ubyte.mnist 1648877 bytes.

Loading ata/t10k-images-idx3-ubyte.mnist

Successfully downloaded t10k-labels-idx1-ubyte.gz

4542 bytes.

Successfully extracted to t10k-labels-idx1-

ubyte.mnist 4542 bytes.

Loading ata/t10k-labels-idx1-ubyte.mnist

(0, 0.95703125)

(1, 0.98046875)

(2, 0.9921875)

(3, 0.99609375)

(4, 0.99609375)

(5, 0.98828125)

(6, 0.99609375)

(7, 0.99609375)

(8, 0.98828125)

(9, 0.98046875)

(10, 0.99609375)

.

.

.

..

.

(90, 1.0)

(91, 0.9921875)

(92, 0.9921875)

(93, 0.99609375)

(94, 1.0)

(95, 0.98828125)

(96, 0.98828125)

(97, 0.99609375)

(98, 1.0)

(99, 0.99609375)

After 10,000 iterations, the model has an accuracy of 99.60%, which
is not bad!

AlexNet
The AlexNet neural network is one of the first CNNs to achieve
tremendous success. The winner of the 2012 ILSVRC, this neural
network was the first to get good results on a very complex dataset
such as ImageNet using the standard construction of neural
networks that the LeNet-5 network had defined earlier.

Note
The ImageNet project is a large visual database designed for use
in visual object recognition software research. As of 2016, over
ten million URLs of images have been hand-annotated by
ImageNet to indicate the objects in the images. In at least one
million of the images, bounding boxes are also provided. The
database of the annotations of the third-party image URLs is
freely available directly from ImageNet.

The architecture of an AlexNet is represented in the following figure:

Figure 9: AlexNet network

In the AlexNet architecture, there are eight layers with trainable
parameters: a series of five consecutive convolutional layers,
followed by three fully connected layers. Each convolutional layer is
followed by a ReLU layer, and optionally also by a max pooling layer,
especially at the beginning of the network, in order to reduce the
amount of space the network takes up.

All pooling layers have a 3x3 extension region and a step rate of 2:
this means that you always use overlapping pooling. This is because
this type of pooling provides slightly better network performance in
comparison to normal pooling without overlapping. At the beginning
of the network, between a pooling layer and the next convolutional
layer, a couple of LRN standardization layers were always used:
after some testing, it was seen that they tend to decrease the
network error.

The first two fully connected layers possess 4,096 neurons, while the
last one has 1,000 units, corresponding to the number of classes on
the ImageNet dataset. Given the huge number of connections in the
fully connected layers, a dropout layer with a ratio of 0.5 was added
between each pair fully connected layers, that is, half of the neurons'
activations are ignored each time. It has been noted in this case that
the use of the dropout technique not only speeds up the processing
of a single iteration, but also prevents overfitting quite well. Without
the dropout layer, network makers claim that the original network had
too much overfitting.

Transfer learning
Transfer learning consists of taking a network that has already been
built and making appropriate changes to the parameters of the
various layers so that it can adapt to another dataset. For example,
you can use a pre-tested network on a large dataset, such as
ImageNet, and train it again on a smaller dataset. Provided that our
dataset is not drastically different in content to the original dataset,
the pre-trained model will already have learned features that are
relevant to our own classification problem.

If our dataset is not drastically different from the dataset that the pre-
trained model was trained on, we can use the fine-tuning technique.
Models that have been pre-trained on a large and diverse dataset
may catch universal features such as curves and edges in its early
layers that are relevant and useful in most classification problems.
However, if our dataset is from a very specific domain, and no pre-
trained networks in this domain can be found, we should consider
training the network from scratch.

Pretrained AlexNet
We'll fine-tune a pre-trained AlexNet to distinguish between dogs
and cats. AlexNet is pre-trained on the ImageNet dataset.

To execute this example, you also need to install scipy (see
https://www.scipy.org/install.html) and PIL (Pillow), which is what
scipy uses to read images: pip install Pillow or pip3 install

Pillow.

Then you need to download the following files:

myalexnet_forward.py: AlexNet implementation and testing code
for 2017 versions of TensorFlow (Python 3.5)
bvlc_alexnet.npy: The weights, which need to be in the working
directory

https://www.scipy.org/install.html

caffe_classes.py: The classes, in the same order as the outputs
of the network
poodle.png, laska.png, dog.png, dog2.png, quail227.JPEG: The
test images (the images should be 227×227×3)

Download these files from the link:
http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/ or from the code
repository of this book.

First of all, we will test the network on the previously downloaded
images. To do this, just run myalexnet_forward.py from the Python
GUI.

As you can see by simply inspecting the source code (see the
following snippet), the pre-trained network will be called to classify
the following two images, laska.png and poodle.png, which were
previously downloaded:

im1 = (imread("laska.png")

[:,:,:3]).astype(float32)

im1 = im1 - mean(im1)

im1[:, :, 0], im1[:, :, 2] = im1[:, :, 2], im1[:,

:, 0]

im2 = (imread("poodle.png")

[:,:,:3]).astype(float32)

im2[:, :, 0], im2[:, :, 2] = im2[:, :, 2], im2[:,

:, 0]

Figure 10: Images to classify

http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/

The weights and biases of the bvlc_alexnet.npy file are loaded by
the following statement:

net_data = load(open("bvlc_alexnet.npy", "rb"),

encoding="latin1").item()

The network is a set of convolutional and pooling layers followed by
three fully connected states. The output of this model is a softmax
function:

prob = tf.nn.softmax(fc8)

The outputs of the softmax function are classification ranks, because
they indicate how strongly the network believes that the input image
belongs to a class defined in the caffe_classes.py file.

If we run the code, we should get the following results:

Image 0

weasel 0.503177

black-footed ferret, ferret, Mustela nigripes

0.263265

polecat, fitch, foulmart, foumart, Mustela

putorius 0.147746

mink 0.0649517

otter 0.00771955

Image 1

clumber, clumber spaniel 0.258953

komondor 0.165846

miniature poodle 0.149518

toy poodle 0.0984719

kuvasz 0.0848062

0.40007972717285156

>>>

In the preceding example, AlexNet gave a score of about 50% for
weasel. This means the model is quite confident that the image
shows a weasel and the remaining scores can be regarded as noise.

Dataset preparation
Our task is to build an image classifier that distinguishes between
dogs and cats. We get some help from Kaggle, from which we can
easily download the dataset: https://www.kaggle.com/c/dogs-vs-
cats/data.

In this dataset, training set contains 20,000 labeled images, and the
test and validation sets have 2,500 images.

To use the dataset, you must reshape each image to 227×227×3. In
order to do this, you can use the Python code in prep_images.py.
Otherwise, you can use the trainDir.rar and testDir.rar files from
the repository of this book. They contain 6,000 reshaped images of
dogs and cats for training, and 100 reshaped images for testing.

The following fine-tuning implementation, described in the section
below, is implemented in alexnet_finetune.py , which is
downloadable in the code repository of the book.

https://www.kaggle.com/c/dogs-vs-cats/data

Fine-tuning implementation
Our classification task contains two categories, so the new softmax
layer of the network will consist of 2 categories instead of 1,000
categories. Here is the input tensor, which is a 227×227×3 image,
and the output tensor of rank 2:

n_classes = 2

train_x = zeros((1, 227,227,3)).astype(float32)

train_y = zeros((1, n_classes))

Fine-tuning implementation consists of truncating the last layer (the
softmax layer) of the pre-trained network and replacing it with a new
softmax layer that is relevant to our problem.

For example, the pre-trained network on ImageNet comes with a
softmax layer with 1,000 categories.

The following code snippet defines the new softmax layer, fc8:

fc8W = tf.Variable(tf.random_normal\

 ([4096, n_classes]),\

 trainable=True, name="fc8w")

fc8b = tf.Variable(tf.random_normal\

 ([n_classes]),\

 trainable=True, name="fc8b")

fc8 = tf.nn.xw_plus_b(fc7, fc8W, fc8b)

prob = tf.nn.softmax(fc8)

Loss is a performance measure used in classification. It is a
continuous function that is always positive, and if the predicted
output of the model exactly matches the desired output then the
cross-entropy equals zero. The goal of optimization is therefore to
minimize the cross-entropy, by changing the weights and biases of
the model, so it is as close to zero as possible.

TensorFlow has a built-in function for calculating cross-entropy. In
order to use cross-entropy to optimize the model's variables we need

a single scalar value, so we simply take the average of the cross-
entropy for all the image classifications:

loss = tf.reduce_mean\

(tf.nn.softmax_cross_entropy_with_logits_v2\

 (logits =prob, labels=y))

opt_vars = [v for v in tf.trainable_variables()\

 if (v.name.startswith("fc8"))]

Now that we have a cost measure that must be minimized, we can
then create an optimizer:

optimizer = tf.train.AdamOptimizer\

(learning_rate=learning_rate).minimize\

 (loss, var_list = opt_vars)

correct_pred = tf.equal(tf.argmax(prob, 1),

tf.argmax(y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_pred,

tf.float32))

In this case, we use the AdamOptimizer in which the step size is set to
0.5. Note that optimization is not performed at this point. In fact,
nothing is calculated at all, we just add the optimizer object to the
TensorFlow graph for later execution. Then we run backpropagation
on the network to fine-tune the pre-trained weights:

batch_size = 100

training_iters = 6000

display_step = 1

dropout = 0.85 # Dropout, probability to keep

units

init = tf.global_variables_initializer()

with tf.Session() as sess:

 sess.run(init)

 step = 1

Keep training until we reach the maximum number of iterations:

 while step * batch_size < training_iters:

 batch_x, batch_y = \

 next(next_batch(batch_size))

#.next()

Run the optimization operation (backpropagation):

 sess.run(optimizer, \

 feed_dict={x: batch_x, \

 y: batch_y, \

 keep_prob: dropout})

 if step % display_step == 0:

Calculate the batch loss and accuracy:

 cost, acc = sess.run([loss,

accuracy],\

 feed_dict={x:

batch_x, \

 y:

batch_y, \

keep_prob: 1.})

 print ("Iter " + str(step*batch_size)

\

 + ", Minibatch Loss= " + \

 "{:.6f}".format(cost) + \

 ", Training Accuracy= " + \

 "{:.5f}".format(acc))

 step += 1

 print ("Optimization Finished!")

The training of the network produces the following results:

Iter 100, Minibatch Loss= 0.555294, Training

Accuracy= 0.76000

Iter 200, Minibatch Loss= 0.584999, Training

Accuracy= 0.73000

Iter 300, Minibatch Loss= 0.582527, Training

Accuracy= 0.73000

Iter 400, Minibatch Loss= 0.610702, Training

Accuracy= 0.70000

Iter 500, Minibatch Loss= 0.583640, Training

Accuracy= 0.73000

Iter 600, Minibatch Loss= 0.583523, Training

Accuracy= 0.73000

…………………………………………………………………

…………………………………………………………………

Iter 5400, Minibatch Loss= 0.361158, Training

Accuracy= 0.95000

Iter 5500, Minibatch Loss= 0.403371, Training

Accuracy= 0.91000

Iter 5600, Minibatch Loss= 0.404287, Training

Accuracy= 0.91000

Iter 5700, Minibatch Loss= 0.413305, Training

Accuracy= 0.90000

Iter 5800, Minibatch Loss= 0.413816, Training

Accuracy= 0.89000

Iter 5900, Minibatch Loss= 0.413476, Training

Accuracy= 0.90000

Optimization Finished!

To test our model, we compare the forecasts with the label set (cat =
0, dog = 1):

 output = sess.run(prob, feed_dict = {x:imlist,

keep_prob: 1.})

 result = np.argmax(output,1)

 testResult = [1,1,1,1,0,0,0,0,0,0,\

 0,1,0,0,0,0,1,1,0,0,\

 1,0,1,1,0,1,1,0,0,1,\

 1,1,1,0,0,0,0,0,1,0,\

 1,1,1,1,0,1,0,1,1,0,\

 1,0,0,1,0,0,1,1,1,0,\

 1,1,1,1,1,0,0,0,0,0,\

 0,1,1,1,0,1,1,1,1,0,\

 0,0,1,0,1,1,1,1,0,0,\

 0,0,0,1,1,0,1,1,0,0]

 count = 0

 for i in range(0,99):

 if result[i] == testResult[i]:

 count=count+1

 print("Testing Accuracy = " + str(count) +"%")

Finally, we have the accuracy of our model:

Testing Accuracy = 82%

VGG
VGG is the name of a team of people who presented their neural
networks during ILSVRC 2014. We are talking about networks,
plural, since more than one version of the same network was
created, each possessing a different number of layers. Depending
on the number of layers, n, with weight that one of these networks
has, each of them is usually called VGG-n. All of these networks are
more deep than AlexNet. This means that they are made up of a
number of layers with more workable parameters than AlexNet, in
this case 11 to 19 total trained layers. Often, only the workable layers
are considered, because they are the ones that affect the processing
and size of the model, as seen in the previous paragraph. However,
the overall structure remains very similar: there is always an initial
series of convolutional layers and a final series of fully connected
layers, the latter being exactly the same as in AlexNet. What
changes is therefore the number of convolutional layers used and, of
course, their parameters. The following table shows all the variants
built by the VGG team.

Each column, starting from the left and going to the right, shows a
certain VGG network, from the deepest to the shallowest. Bold terms
show what has been added in each version compared to the
previous version. The ReLU layer is not shown in the table, but in the
network it exists after each convolutional layer. All convolutional
layers use a stride of 1:

Table: VGGs network architectures

Note that AlexNet does not have convolutional layers with a fairly
large receptive field: here, all receptive fields are 3×3, except for a
couple of convolutional layers in VGG-16 that have a 1×1 receptive
field. Recall that a convex layer with a 1-step gradient does not
change the input space size while modifying the depth value that
becomes the same as the number of kernels used. Consequently,
the VGG convolutional layers do not ever affect the width and height
of the input volumes; only the pooling layers do that. The idea of
using a series of convolutional layers with a smaller receptive field,
which in the end overall simulates a single convolutional layer with a
larger receptive field, is motivated by the fact that in this way multiple
ReLU layers are used instead of one alone, thereby increasing the

nonlinearity of the activation function and thus making it more
discriminating. It also serves to reduce the number of parameters
used. These networks are considered an evolution of AlexNet
because, overall, and with the same dataset, they perform better
than AlexNet. The main concept demonstrated with VGG networks is
that more a congestion neural network is profound and more its
performance increases. However, it is necessary to have more and
more powerful hardware, otherwise network training would become
problematic.

For the VGGs, four NVIDIA Titan Blacks were used with 6 GB of
memory each. VGGs therefore have better performance but need a
lot of hardware for training and also use a very large number of
parameters: the VGG-19 model, for example, is about 550 MB (twice
as much as AlexNet). Smaller VGG networks still have a model of
about 507 MB.

Artistic style learning with VGG-19
In this project, we'll use a pretrained VGG-19 to learn the style and
patterns created by an artist and transfer them to an image (the
project file is style_transfer.py in the GitHub repository of this
book). This technique is called artistic style learning (see the
paper A Neural Algorithm of Artistic Style
(https://arxiv.org/pdf/1508.06576.pdf) by Gatys and others).
According to the academic literature, artistic style learning is defined
as follows: given two images as input, synthesize a third image that
has the semantic content of the first image and the texture/style of
the second.

For this to work properly, we need to train a deep convolutional
neural network to build the following:

A content extractor to determine the content of image A
A style extractor to determine the style of image B
A merger to merge some arbitrary content with another arbitrary
style to obtain the final result

https://arxiv.org/pdf/1508.06576.pdf

Figure 11: Artistic style learning operational schema

Input images
The input images, each of which is 478×478 pixels, are the following
images (cat.jpg, and mosaic.jpg) that you will also find in the code
repository for this book:

Figure 12: Input images in Artistic Style Learning

In order to be analyzed by the VGG model, these images need to be
preprocessed:

1. Adding an extra dimension
2. Subtracting MEAN_VALUES from the input image:

MEAN_VALUES = np.array([123.68, 116.779,

103.939]).reshape((1,1,1,3))

content_image = preprocess('cat.jpg')

style_image = preprocess('mosaic.jpg')

def preprocess(path):

 image = plt.imread(path)

 image = image[np.newaxis]

 image = image - MEAN_VALUES

 return image

Content extractor and loss
To isolate the semantic content of an image, we use a pre-trained
VGG-19 neural network, made some slight tweaks in the weights to
adapt to this problem, and then used the output of one of the hidden
layers as a content extractor. The following figure shows the CNN
used for this problem:

Figure 13: VGG-19 used for Artistic Style Learning

The pre-trained VGG is loaded using the following code:

import scipy.io

vgg = scipy.io.loadmat('imagenet-vgg-verydeep-

19.mat')

The imagenet-vgg-verydeep-19.mat model should be downloaded
from http://www.vlfeat.org/matconvnet/models/imagenet-vgg-
verydeep-19.mat.

http://www.vlfeat.org/matconvnet/models/imagenet-vgg-verydeep-19.mat

This model has 43 layers, 19 of which are convolutional layers. The
rest are max pooling/activation/fully connected layers.

We can check the shape of each convolutional layer:

 [print (vgg_layers[0][i][0][0][2][0][0].shape,\

 vgg_layers[0][i][0][0][0][0]) for i in

range(43)

 if 'conv' in vgg_layers[0][i][0][0][0][0] \

 or 'fc' in vgg_layers[0][i][0][0][0][0]]

The result of the preceding code is as follows:

(3, 3, 3, 64) conv1_1

(3, 3, 64, 64) conv1_2

(3, 3, 64, 128) conv2_1

(3, 3, 128, 128) conv2_2

(3, 3, 128, 256) conv3_1

(3, 3, 256, 256) conv3_2

(3, 3, 256, 256) conv3_3

(3, 3, 256, 256) conv3_4

(3, 3, 256, 512) conv4_1

(3, 3, 512, 512) conv4_2

(3, 3, 512, 512) conv4_3

(3, 3, 512, 512) conv4_4

(3, 3, 512, 512) conv5_1

(3, 3, 512, 512) conv5_2

(3, 3, 512, 512) conv5_3

(3, 3, 512, 512) conv5_4

(7, 7, 512, 4096) fc6

(1, 1, 4096, 4096) fc7

(1, 1, 4096, 1000) fc8

Each shape is represented in the following way: [kernel height,
kernel width, number of input channels, number of output

channels].

The first layer has 3 input channels because the input is an RGB
image, while the number of output channels goes from 64 to 512 for
the convolutional layers, and all kernels are 3x3 matrices.

Then we apply the transfer learning technique in order to adapt the
VGG-19 network to our problem:

1. Fully connected layers are not needed because they are used
for object recognition.

2. Max pooling layers are substituted for average pool layers in
order to achieve better results. Average layers work in the same
way as the kernels in the convolutional layers.

IMAGE_WIDTH = 478

IMAGE_HEIGHT = 478

INPUT_CHANNELS = 3

model = {}

model['input'] = tf.Variable(np.zeros((1,

IMAGE_HEIGHT,\

 IMAGE_WIDTH,\

INPUT_CHANNELS)),\

 dtype =

'float32')

model['conv1_1'] =

conv2d_relu(model['input'], 0, 'conv1_1')

model['conv1_2'] =

conv2d_relu(model['conv1_1'], 2, 'conv1_2')

model['avgpool1'] = avgpool(model['conv1_2'])

model['conv2_1'] =

conv2d_relu(model['avgpool1'], 5, 'conv2_1')

model['conv2_2'] =

conv2d_relu(model['conv2_1'], 7, 'conv2_2')

model['avgpool2'] = avgpool(model['conv2_2'])

model['conv3_1'] =

conv2d_relu(model['avgpool2'], 10, 'conv3_1')

model['conv3_2'] =

conv2d_relu(model['conv3_1'], 12, 'conv3_2')

model['conv3_3'] =

conv2d_relu(model['conv3_2'], 14, 'conv3_3')

model['conv3_4'] =

conv2d_relu(model['conv3_3'], 16, 'conv3_4')

model['avgpool3'] = avgpool(model['conv3_4'])

model['conv4_1'] =

conv2d_relu(model['avgpool3'], 19,'conv4_1')

model['conv4_2'] =

conv2d_relu(model['conv4_1'], 21, 'conv4_2')

model['conv4_3'] =

conv2d_relu(model['conv4_2'], 23, 'conv4_3')

model['conv4_4'] =

conv2d_relu(model['conv4_3'], 25,'conv4_4')

model['avgpool4'] = avgpool(model['conv4_4'])

model['conv5_1'] =

conv2d_relu(model['avgpool4'], 28, 'conv5_1')

model['conv5_2'] =

conv2d_relu(model['conv5_1'], 30, 'conv5_2')

model['conv5_3'] =

conv2d_relu(model['conv5_2'], 32, 'conv5_3')

model['conv5_4'] =

conv2d_relu(model['conv5_3'], 34, 'conv5_4')

model['avgpool5'] = avgpool(model['conv5_4'])

Here we defined the contentloss function that measures the
difference in content between two images p and x:

def contentloss(p, x):

 size = np.prod(p.shape[1:])

 loss = (1./(2*size)) * tf.reduce_sum(tf.pow((x

- p),2))

 return loss

This function tends to be 0 when the input images are very close to
each other in terms of content and grows as their content deviates.

We'll use contentloss on the conv5_4 layer. This is the output layer
and its output would be prediction, hence we need to compare this
prediction with actual one using the contentloss function:

content_loss = contentloss\

 (sess.run(model['conv5_4']),

model['conv5_4'])

Minimizing the content_loss means that the mixed image has
feature activation in the given layers that is very similar to the
activation of the content image.

Style extractor and loss
Style extractor uses the Gram matrix of the filters for a given hidden
layer. Simply speaking, using this matrix, we can destroy the
semantic of the image preserving its basic components and making
it a good texture extractor:

def gram_matrix(F, N, M):

 Ft = tf.reshape(F, (M, N))

 return tf.matmul(tf.transpose(Ft), Ft)

The style_loss, measures how close in style two images are to one
another. This function is the sum of the squared difference of the
elements of the Gram matrix produced by the style image and input
noise_image:

noise_image = np.random.uniform\

 (-20, 20,\

 (1, IMAGE_HEIGHT, \

 IMAGE_WIDTH,\

 INPUT_CHANNELS)).astype('float32')

def style_loss(a, x):

 N = a.shape[3]

 M = a.shape[1] * a.shape[2]

 A = gram_matrix(a, N, M)

 G = gram_matrix(x, N, M)

 result = (1/(4 * N**2 * M**2))*

tf.reduce_sum(tf.pow(G-A,2))

 return result

style_loss grows as its two input images (a and x) tend to deviate in
style.

Merger and total loss
We can merge the content and style loss so that the input
noise_image is trained to output (in the layers) a similar style as the
style image, along with features that are similar to the content image:

alpha = 1

beta = 100

total_loss = alpha * content_loss + beta *

styleloss

Training
Minimize the loss in the network so that the style loss (the loss
between the output image's style and the style of the style image),
content loss (loss between the content image and the output image),
and the total variation loss are as low as possible:

train_step =

tf.train.AdamOptimizer(1.5).minimize(total_loss)

The output image generated from such a network should resemble
the input image and have the stylist attributes of the style image.

Finally, we can prepare the network for training:

sess.run(tf.global_variables_initializer())

sess.run(model['input'].assign(input_noise))

for it in range(2001):

 sess.run(train_step)

 if it%100 == 0:

 mixed_image = sess.run(model['input'])

 print('iteration:',it,'cost: ',

sess.run(total_loss))

 filename = 'out2/%d.png' % (it)

 deprocess(filename, mixed_image)

The training time could be very time-consuming, but the results could
be very interesting:

iteration: 0 cost: 8.14037e+11

iteration: 100 cost: 1.65584e+10

iteration: 200 cost: 5.22747e+09

iteration: 300 cost: 2.72995e+09

iteration: 400 cost: 1.8309e+09

iteration: 500 cost: 1.36818e+09

iteration: 600 cost: 1.0804e+09

iteration: 700 cost: 8.83103e+08

iteration: 800 cost: 7.38783e+08

iteration: 900 cost: 6.28652e+08

iteration: 1000 cost: 5.41755e+08

After 1,000 iterations, we have created a new mosaic:

Figure 14: Output image in Artistic Style Learning

That's really amazing! You can finally train your neural network to
paint like Picasso...have fun!

Inception-v3
The Inception micro-architecture was first introduced by Szegedy
and others in their 2014 paper, Going Deeper with Convolutions:

Figure 15: Original Inception module used in GoogLeNet

The goal of the inception module is to act as a multi-level feature
extractor by computing 1×1, 3×3, and 5×5 convolutions within the
same module of the network—the output of these filters is then
stacked along the channel dimension before being fed into the next
layer in the network. The original incarnation of this architecture was
called GoogLeNet, but subsequent manifestations have simply been
called Inception vN, where N refers to the version number put out
by Google.

You might wonder why we are using different types of convolution on
the same input. The answer is that it is not always possible to obtain
enough useful features to perform an accurate classification with a
single convolution, as far as its parameters have been carefully
studied. In fact, with some input it works better with convolutions
small kernels, while others get better results with other types of

kernels. It is probably for this reason that the GoogLeNet team wants
to consider some alternatives within their own network. As
mentioned earlier, GoogLeNet uses three types of convolutional
layer at the same network level (that is, they are in parallel) for this
purpose: a 1×1 layer, a 3×3 layer, and a 5×5 layer.

The result of this 3-layer parallel local architecture is the combination
of all their output values, chained into a single vector output, that will
be the input of the next layer. This is done by using a layer concat. In
addition to the three parallel convolutional layers, in the same local
structure a pooling layer has been added, because pooling
operations are essential to the success of a CNN.

Exploring Inception with TensorFlow
From the following link, https://github.com/tensorflow/models, you
should be able to download the corresponding models repository.

Then type the following command:

cd models/tutorials/image/imagenet python

classify_image.py

classify_image.py downloads the trained model from tensorflow.org
when the program is run for the first time. You'll need about 200 MB
of free space available on your hard disk.

The preceding command will classify the supplied image of a panda.
If the model runs correctly, the script will produce the following
output:

giant panda, panda, panda bear, coon bear,

Ailuropoda melanoleuca (score = 0.88493)

indri, indris, Indri indri, Indri brevicaudatus

(score = 0.00878)

lesser panda, red panda, panda, bear cat, cat

bear, Ailurus fulgens (score = 0.00317)

https://github.com/tensorflow/models
http://tensorflow.org/

custard apple (score = 0.00149)

earthstar (score = 0.00127)

If you wish to supply other JPEG images, you may do so by editing:

image_file argument:

python classify_image.py --image=image.jpg

You can have fun testing Inception by downloading images from the
internet and seeing what results it produces.

For example, you can try the following image (we renamed it
inception_image.jpg), taken from https://pixabay.com/it/:

Figure 16: Input image to classify with Inception-v3

The result is as follows:

python classify_image.py --

image=inception_example.jpg

strawberry (score = 0.91541)

crayfish, crawfish, crawdad, crawdaddy (score =

0.01208)

chocolate sauce, chocolate syrup (score = 0.00628)

https://pixabay.com/it/

cockroach, roach (score = 0.00572)

grocery store, grocery, food market, market (score

= 0.00264)

That sounds about right!

Emotion recognition with CNNs
One of the hardest problems to solve in deep learning has nothing to
do with neural networks: it's the problem of getting the right data in
the right format. However, the Kaggle platform
(https://www.kaggle.com/) provides new problems, and new datasets
to study.

Kaggle was founded in 2010 as a platform for predictive modeling
and analytics competitions on which companies and researchers
post their data and statisticians and data miners from all over the
world compete to produce the best models. In this section, we show
how to make a CNN for emotion detection from facial images. The
train and test set of this example can be downloaded from
https://inclass.kaggle.com/c/facial-keypoints-detector/data.

Figure 17: Kaggle competition page

The train set consists of 3,761 grayscale images that are 48×48
pixels in size and 3,761 labels, each with 7 elements.

Each element encodes an emotion: 0 = anger, 1 = disgust, 2 = fear,
3 = happiness, 4 = sadness, 5 = surprise, 6 = neutral.

https://www.kaggle.com/
https://inclass.kaggle.com/c/facial-keypoints-detector/data

In a classic Kaggle competition, the set of labels obtained from the
test set must be evaluated by the platform. In this example, we will
train a neural network from the train set, after which we will evaluate
the model on a single image.

Before starting the CNN implementation, we'll take a look at the
downloaded data by implementing a simple procedure (file
download_and_display_images.py).

Import the libraries:

import tensorflow as tf

import numpy as np

from matplotlib import pyplot as plt

import EmotionUtils

The read_data function allows you to build all the datasets, starting
with the downloaded data, which you can find in the EmotionUtils
library in the code repository for this book:

FLAGS = tf.flags.FLAGS

tf.flags.DEFINE_string("data_dir",\

 "EmotionDetector/",\

 "Path to data files")

images = []

images = EmotionUtils.read_data(FLAGS.data_dir)

train_images = images[0]

train_labels = images[1]

valid_images = images[2]

valid_labels = images[3]

test_images = images[4]

Then print the shape of the train and test images:

print ("train images shape = ",train_images.shape)

print ("test labels shape = ",test_images.shape)

Display the first image of the train set and its correct label:

image_0 = train_images[0]

label_0 = train_labels[0]

print ("image_0 shape = ",image_0.shape)

print ("label set = ",label_0)

image_0 = np.resize(image_0,(48,48))

plt.imshow(image_0, cmap='Greys_r')

plt.show()

There are 3,761 48×48-pixel grayscale images:

train images shape = (3761, 48, 48, 1)

There are 3,761 class labels, with each class containing seven
elements:

train labels shape = (3761, 7)

The test set is formed of 1,312 48x48-pixel grayscale images:

test labels shape = (1312, 48, 48, 1)

A single image has the following shape:

image_0 shape = (48, 48, 1)

The label set for the first image is as follows:

label set = [0. 0. 0. 1. 0. 0. 0.]

This label corresponds to happy, and the image is visualized in the
following matplot figure:

Figure 18: First image from the emotion detection face dataset

We shall now move on to the CNN architecture.

The following figure shows how the data flows in the CNN that will be
implemented:

Figure 19: First two convolutional layers of the implemented CNN

The network has two convolutional layers, two fully-connected
layers, and finally a softmax classification layer. The input image
(48×48 pixels) is processed in the first convolutional layer using a
5×5 convolutional kernel. This results in 32 images, one for each
filter used. The images are also downsampled by a max pooling
operation to decrease the images from 48×48 to 24×24 pixels.
These 32 smaller images are then processed by a second
convolutional layer; this results in 64 new images (see the preceding
figure). The resulting images are downsampled again, to 12×12
pixels, by a second pooling operation.

The output of this second pooling layer is 64 12×12-pixel images.
These are then flattened to a single vector of length 12 × 12 × 64 =
9,126, which is used as the input to a fully-connected layer with 256
neurons. This feeds into another fully-connected layer with 10
neurons, one for each of the classes, which is used to determine the
class of the image, that is, which emotion is depicted in the image.

Figure 20: Last two layers of the implemented CNN

Let's move on to the weights and bias definitions. The following data
structure represents the definition of the network's weights and
summarizes what we have described so far:

weights = {

 'wc1': weight_variable([5, 5, 1, 32],

name="W_conv1"),

 'wc2': weight_variable([3, 3, 32,

64],name="W_conv2"),

 'wf1': weight_variable([(IMAGE_SIZE // 4) *

(IMAGE_SIZE // 4)

 *

64,256],name="W_fc1"),

 'wf2': weight_variable([256, NUM_LABELS],

name="W_fc2")

}

Note that the convolutional filters are randomly initialized, so the
classification is done randomly:

def weight_variable(shape, stddev=0.02,

name=None):

 initial = tf.truncated_normal(shape,

stddev=stddev)

 if name is None:

 return tf.Variable(initial)

 else:

 return tf.get_variable(name,

initializer=initial)

In a similar way, we have defined the bias:

biases = {

 'bc1': bias_variable([32], name="b_conv1"),

 'bc2': bias_variable([64], name="b_conv2"),

 'bf1': bias_variable([256], name="b_fc1"),

 'bf2': bias_variable([NUM_LABELS],

name="b_fc2")

}

def bias_variable(shape, name=None):

 initial = tf.constant(0.0, shape=shape)

 if name is None:

 return tf.Variable(initial)

 else:

 return tf.get_variable(name,

initializer=initial)

An optimizer must propagate the error back through the CNN using
the chain rule of differentiation and update the filter weights to
improve the classification error. The difference between the
predicted and true class of the input image is measured by the loss
function. It takes as input the predicted output of the pred model and
the desired output label:

def loss(pred, label):

 cross_entropy_loss =\

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo

gits_v2\

 (logits=pred, labels=label))

 tf.summary.scalar('Entropy',

cross_entropy_loss)

 reg_losses =

tf.add_n(tf.get_collection("losses"))

 tf.summary.scalar('Reg_loss', reg_losses)

 return cross_entropy_loss + REGULARIZATION

* reg_losses

The tf.nn.softmax_cross_entropy_with_logits_v2(pred, label)

function computes cross_entropy_loss of the result after applying the
softmax function (but it does it all together in a mathematically
careful way). It's like the result of the following:

a = tf.nn.softmax(x)

b = cross_entropy(a)

We calculate cross_entropy_loss for each of the classified images,
so we'll measure how well the model performs on each image
individually.

We take the cross-entropy's average for the classified images:

cross_entropy_loss =

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo

gits_v2 (logits=pred, labels=label))

To prevent overfitting, we will use L2 regularization, which consists of
inserting an additional term to the cross_entropy_loss:

reg_losses = tf.add_n(tf.get_collection("losses"))

return cross_entropy_loss + REGULARIZATION *

reg_losses

where:

def add_to_regularization_loss(W, b):

 tf.add_to_collection("losses",

tf.nn.l2_loss(W))

 tf.add_to_collection("losses",

tf.nn.l2_loss(b))

Note
See http://www.kdnuggets.com/2015/04/preventing-overfitting-
neural-networks.html/2 for more information.

We have built the network's weights and bias and the optimization
procedure. However, as with all the implemented networks we must
start the implementation by importing all the necessary libraries:

import tensorflow as tf

import numpy as np

from datetime import datetime

import EmotionUtils

import os, sys, inspect

from tensorflow.python.framework import ops

import warnings

warnings.filterwarnings("ignore")

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

ops.reset_default_graph()

We then set the paths for storing the dataset on your computer, and
the network parameters:

http://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html/2

FLAGS = tf.flags.FLAGS

tf.flags.DEFINE_string("data_dir",\

 "EmotionDetector/",\

 "Path to data files")

tf.flags.DEFINE_string("logs_dir",\

"logs/EmotionDetector_logs/",\

 "Path to where log files

are to be saved")

tf.flags.DEFINE_string("mode",\

 "train",\

 "mode: train (Default)/

test")

BATCH_SIZE = 128

LEARNING_RATE = 1e-3

MAX_ITERATIONS = 1001

REGULARIZATION = 1e-2

IMAGE_SIZE = 48

NUM_LABELS = 7

VALIDATION_PERCENT = 0.1

The emotion_cnn function implements our model:

def emotion_cnn(dataset):

 with tf.name_scope("conv1") as scope:

 tf.summary.histogram("W_conv1",

weights['wc1'])

 tf.summary.histogram("b_conv1",

biases['bc1'])

 conv_1 = tf.nn.conv2d(dataset,

weights['wc1'],\

 strides=[1, 1, 1,

1],\

 padding="SAME")

 h_conv1 = tf.nn.bias_add(conv_1,

biases['bc1'])

 h_1 = tf.nn.relu(h_conv1)

 h_pool1 = max_pool_2x2(h_1)

 add_to_regularization_loss(weights['wc1'],

biases['bc1'])

 with tf.name_scope("conv2") as scope:

 tf.summary.histogram("W_conv2",

weights['wc2'])

 tf.summary.histogram("b_conv2",

biases['bc2'])

 conv_2 = tf.nn.conv2d(h_pool1,

weights['wc2'],\

 strides=[1, 1, 1,

1], \

 padding="SAME")

 h_conv2 = tf.nn.bias_add(conv_2,

biases['bc2'])

 h_2 = tf.nn.relu(h_conv2)

 h_pool2 = max_pool_2x2(h_2)

 add_to_regularization_loss(weights['wc2'],

biases['bc2'])

 with tf.name_scope("fc_1") as scope:

 prob=0.5

 image_size = IMAGE_SIZE // 4

 h_flat = tf.reshape(h_pool2,

[-1,image_size*image_size*64])

 tf.summary.histogram("W_fc1",

weights['wf1'])

 tf.summary.histogram("b_fc1",

biases['bf1'])

 h_fc1 = tf.nn.relu(tf.matmul\

 (h_flat, weights['wf1']) +

biases['bf1'])

 h_fc1_dropout = tf.nn.dropout(h_fc1, prob)

 with tf.name_scope("fc_2") as scope:

 tf.summary.histogram("W_fc2",

weights['wf2'])

 tf.summary.histogram("b_fc2",

biases['bf2'])

 pred = tf.matmul(h_fc1_dropout,

weights['wf2']) +\

 biases['bf2']

 return pred

Then we define a main function, in which we'll define the dataset, the
input and output placeholder variables, and the main session, in
order to start the training procedure:

def main(argv=None):

The first operation in this function is to load the dataset for training
and validation. We'll use the training set to teach the classifier to

recognize the to-be-predicted labels, and the we'll use the validation
set to evaluate the classifier's performance:

train_images,\

train_labels,\

valid_images,\

valid_labels,\

test_images=EmotionUtils.read_data(FLAGS.data_dir)

print("Train size: %s" % train_images.shape[0])

print('Validation size: %s' %

valid_images.shape[0])

print("Test size: %s" % test_images.shape[0])

We define the placeholder variable for the input images. This allows
us to change the images that are input to the TensorFlow graph. The
datatype is set to float32, the shape is set to [None, img_size,

img_size, 1] (where None means that the tensor may hold an
arbitrary number of images with each image being img_size pixels
high and img_size pixels wide), and 1 is the number of color
channels:

 input_dataset = tf.placeholder(tf.float32, \

 [None, \

 IMAGE_SIZE, \

 IMAGE_SIZE,

1],name="input")

Next, we have the placeholder variable for the labels correctly
associated with the images that were input in the placeholder
variable, input_dataset. The shape of this placeholder variable is
[None, NUM_LABELS], which means it may hold an arbitrary number of
labels, and each label is a vector of length NUM_LABELS, which is 7 in
this case:

 input_labels = tf.placeholder(tf.float32,\

 [None,

NUM_LABELS])

global_step keeps track of the number of optimization iterations
performed so far. We want to save this variable with all the other

TensorFlow variables in the checkpoints. Note that trainable=False,
which means that TensorFlow will not try to optimize this variable:

 global_step = tf.Variable(0, trainable=False)

The following variable, dropout_prob, is for dropout optimization:

 dropout_prob = tf.placeholder(tf.float32)

Now create the neural network for the test phase. The emotion_cnn()
function returns the predicted class labels pred for the input_dataset:

 pred = emotion_cnn(input_dataset)

output_pred is the predictions for the test and validation, which we'll
compute in the running session:

 output_pred =

tf.nn.softmax(pred,name="output")

loss_val contains the difference between the predicted class (pred)
and the actual class of the input image (input_labels):

 loss_val = loss(pred, input_labels)

train_op defines the optimizer used to minimize the cost function. In
this case, we again use AdamOptimizer:

 train_op = tf.train.AdamOptimizer\

 (LEARNING_RATE).minimize\

 (loss_val,

global_step)

summary_op is used for TensorBoard visualizations:

summary_op = tf.summary.merge_all()

Once the graph has been created, we have to create a TensorFlow
session, which is used to execute the graph:

 with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

 summary_writer =

tf.summary.FileWriter(FLAGS.logs_dir, sess.graph)

We define a saver to restore the model:

 saver = tf.train.Saver()

 ckpt =

tf.train.get_checkpoint_state(FLAGS.logs_dir)

 if ckpt and ckpt.model_checkpoint_path:

 saver.restore(sess,

ckpt.model_checkpoint_path)

 print ("Model Restored!")

We next need to get a batch of training examples. batch_image now
holds a batch of images and batch_label contains the correct labels
for those images:

 for step in xrange(MAX_ITERATIONS):

 batch_image, batch_label =

get_next_batch(train_images,\

 train_labels,\

 step)

We put the batch into a dict containing the proper names for the
placeholder variables in the TensorFlow graph:

 feed_dict = {input_dataset:

batch_image, \

 input_labels:

batch_label}

We run the optimizer using this batch of training data. TensorFlow
assigns the variables in feed_dict_train to the placeholder variables
and then runs the optimizer:

 sess.run(train_op,

feed_dict=feed_dict)

 if step % 10 == 0:

 train_loss,\

 summary_str =\

sess.run([loss_val,summary_op],\

feed_dict=feed_dict)

summary_writer.add_summary(summary_str,\

global_step=step)

 print ("Training Loss: %f" %

train_loss)

When the running step is a multiple of 100 we run the trained model
on the validation set:

 if step % 100 == 0:

 valid_loss = \

 sess.run(loss_val, \

 feed_dict=

{input_dataset: valid_images, input_labels:

valid_labels})

Then we print out the loss value:

 print ("%s Validation Loss: %f" \

 % (datetime.now(),

valid_loss))

At the end of the training session, the model is saved:

 saver.save(sess, FLAGS.logs_dir\

 + 'model.ckpt', \

 global_step=step)

if __name__ == "__main__":

 tf.app.run()

Here is the output. As you can see, the loss function decreases
during the simulation:

Reading train.csv ...

(4178, 48, 48, 1)

(4178, 7)

Reading test.csv ...

Picking ...

Train size: 3761

Validation size: 417

Test size: 1312

2018-02-24 15:17:45.421344 Validation Loss:

1.962773

2018-02-24 15:19:09.568140 Validation Loss:

1.796418

2018-02-24 15:20:35.122450 Validation Loss:

1.328313

2018-02-24 15:21:58.200816 Validation Loss:

1.120482

2018-02-24 15:23:24.024985 Validation Loss:

1.066049

2018-02-24 15:24:38.838554 Validation Loss:

0.965881

2018-02-24 15:25:54.761599 Validation Loss:

0.953470

2018-02-24 15:27:15.592093 Validation Loss:

0.897236

2018-02-24 15:28:39.881676 Validation Loss:

0.838831

2018-02-24 15:29:53.012461 Validation Loss:

0.910777

2018-02-24 15:31:14.416664 Validation Loss:

0.888537

>>>

However, the model can be improved by acting on hyperparameters
or changing the architecture.

In the next section, we will see how to effectively test the model on
your own images.

Testing the model on your own image

The dataset we are using is standardized. All faces are pointing at
the camera and the expressions are exaggerated and even comical
in some situations. Let's see now what happens if we use a more
natural image. Make sure that there is no text overlaid on the face,
the emotion is recognizable, and the face is pointing mostly at the
camera.

I started with this JPEG image (it's a color image that you can
download from the book's code repository):

Figure 21: Input image

Using Matplotlib and other NumPy Python libraries, we convert the
input color image into a valid input for the network, that is, a
grayscale image:

img = mpimg.imread('author_image.jpg')

gray = rgb2gray(img)

The conversion function is as follows:

def rgb2gray(rgb):

 return np.dot(rgb[...,:3], [0.299, 0.587,

0.114])

The result is shown in the following figure:

Figure 22: Grayscale input image

Finally, we can feed the network with this image, but first we must
define a running TensorFlow session:

sess = tf.InteractiveSession()

Then we can recall the previously saved model:

new_saver = tf.train.\

import_meta_graph('logs/EmotionDetector_logs/model

.ckpt-1000.meta')

new_saver.restore(sess,'logs/EmotionDetector_logs/

model.ckpt-1000')

tf.get_default_graph().as_graph_def()

x = sess.graph.get_tensor_by_name("input:0")

y_conv = sess.graph.get_tensor_by_name("output:0")

To test an image, we must reshape it into a valid 48×48×1 format for
the network:

image_test = np.resize(gray,(1,48,48,1))

We evaluate the same picture several times (1000) in order to get a
range of possible emotions present in the input image:

tResult = testResult()

num_evaluations = 1000

for i in range(0,num_evaluations):

 result = sess.run(y_conv, feed_dict=

{x:image_test})

 label = sess.run(tf.argmax(result, 1))

 label = label[0]

 label = int(label)

 tResult.evaluate(label)

tResult.display_result(num_evaluations)

After few seconds, a result like this should appear:

>>>

anger = 0.1%

disgust = 0.1%

fear = 29.1%

happy = 50.3%

sad = 0.1%

surprise = 20.0%

neutral = 0.3%

>>>

The highest percentage confirms (happy = 50.3%) that we are on the
right track. Of course, this doesn't mean that our model is accurate.
Possible improvements can result from a greater and more diverse
training set, changing the network's parameters, or modifying the
network's architecture.

Source code
The second part of the implemented classifier is listed here:

from scipy import misc

import numpy as np

import matplotlib.cm as cm

import tensorflow as tf

from matplotlib import pyplot as plt

import matplotlib.image as mpimg

import EmotionUtils

from EmotionUtils import testResult

def rgb2gray(rgb):

 return np.dot(rgb[...,:3], [0.299, 0.587,

0.114])

img = mpimg.imread('author_image.jpg')

gray = rgb2gray(img)

plt.imshow(gray, cmap = plt.get_cmap('gray'))

plt.show()

sess = tf.InteractiveSession()

new_saver =

tf.train.import_meta_graph('logs/model.ckpt-

1000.meta')

new_saver.restore(sess, 'logs/model.ckpt-1000')

tf.get_default_graph().as_graph_def()

x = sess.graph.get_tensor_by_name("input:0")

y_conv = sess.graph.get_tensor_by_name("output:0")

image_test = np.resize(gray,(1,48,48,1))

tResult = testResult()

num_evaluations = 1000

for i in range(0,num_evaluations):

 result = sess.run(y_conv, feed_dict=

{x:image_test})

 label = sess.run(tf.argmax(result, 1))

 label = label[0]

 label = int(label)

 tResult.evaluate(label)

tResult.display_result(num_evaluations)

We implement the testResult Python class to display the resulting
percentages. It can be found in the EmotionUtils file.

Here is the implementation of this class:

class testResult:

 def __init__(self):

 self.anger = 0

 self.disgust = 0

 self.fear = 0

 self.happy = 0

 self.sad = 0

 self.surprise = 0

 self.neutral = 0

 def evaluate(self,label):

 if (0 == label):

 self.anger = self.anger+1

 if (1 == label):

 self.disgust = self.disgust+1

 if (2 == label):

 self.fear = self.fear+1

 if (3 == label):

 self.happy = self.happy+1

 if (4 == label):

 self.sad = self.sad+1

 if (5 == label):

 self.surprise = self.surprise+1

 if (6 == label):

 self.neutral = self.neutral+1

 def display_result(self,evaluations):

 print("anger = " +\

str((self.anger/float(evaluations))*100) + "%")

 print("disgust = " +\

str((self.disgust/float(evaluations))*100) + "%")

 print("fear = " +\

str((self.fear/float(evaluations))*100) + "%")

 print("happy = " +\

str((self.happy/float(evaluations))*100) + "%")

 print("sad = " +\

str((self.sad/float(evaluations))*100) + "%")

 print("surprise = " +\

str((self.surprise/float(evaluations))*100) + "%")

 print("neutral = " +\

str((self.neutral/float(evaluations))*100) + "%")

Summary
In this chapter, we introduced CNNs. We have seen that CNNs are
suitable for image classification problems, making the training phase
faster and the test phase more accurate.

The most common CNN architectures have been described: the
LeNet-5 model, designed for handwritten and machine-printed
character recognition; AlexNet, which competed in the ILSVRC in
2012; the VGG model, which achieves a top-5 test accuracy of
92.7% in ImageNet (a dataset of over 14 million images belonging to
1,000 classes); and finally the Inception-v3 model, which was
responsible for setting the standard for classification and detection in
the ILSVRC in 2014.

The description of each CNN architecture was followed by a code
example. Also, the AlexNet network and VGG examples have helped
to explain the concepts of the transfer and style learning techniques.

Finally, we built a CNN to classify emotions in a dataset of images;
we tested the network on a single image and evaluated the limits
and the quality of our model.

The next chapter describes autoencoders: these algorithms are
useful for dimensionality reduction, classification, regression,
collaborative filtering, feature learning, and topic modeling. We will
carry out further data analysis using autoencoders and measure
classification performance using image datasets.

Chapter 5. Optimizing
TensorFlow Autoencoders
In Machine Learning (ML), the so-called curse of dimensionality is a
progressive decline in performance with an increase in the input
space, often with hundreds or thousands of dimensions, which does
not occur in low-dimensional settings such as three-dimensional
space. This occurs because the number of samples needed to
obtain a sufficient sampling of the input space increases
exponentially with the number of dimensions. To overcome this
problem, some optimizing networks have been developed.

The first one is autoencoder networks. These are designed and
trained to transform an input pattern in itself so that in the presence
of a degraded or incomplete version of an input pattern, it is possible
to obtain the original pattern. An autoencoder is a Neural Network
(NN). The network is trained to create output data like those
presented in the entrance and the hidden layer stores the
compressed data.

The second optimizing networks are Boltzmann Machines (see
Chapter 3, Feed-Forward Neural Networks with TensorFlow for more
details). This type of network consists of a visible input/output layer
and one hidden layer. The connections between the visible layer and
the hidden one are non-directional—data can travel in both
directions, visible-hidden and hidden-visible, and the different
neuronal units can be fully connected or partially connected.

Autoencoders can be compared with Principal Component
Analysis (PCA) (refer to
https://en.wikipedia.org/wiki/Principal_component_analysis), which is
used to represent a given input using fewer dimensions than
originally present. However, in this chapter, we'll focus only on
autoencoders.

In a nutshell, the following topics will be covered in this chapter:

https://en.wikipedia.org/wiki/Principal_component_analysis

How does an autoencoder work?
How to implement an autoencoder
Improving autoencoder robustness
Building denoising autoencoders
Convolutional autoencoders
Fraud analytics using autoencoders

How does an autoencoder
work?
Autoencoding is a data compression technique where the
compression and decompression functions are data-specific, lossy,
and learned automatically from samples rather than human-crafted
manual features. Additionally, in almost all contexts where the term
autoencoder is used, the compression and decompression
functions are implemented with NNs.

An autoencoder is a network with three or more layers, where the
input and the output layers have the same number of neurons, and
those intermediate (hidden layers) have a lower number of neurons.
The network is trained to reproduce output simply, for each piece of
input data, the same pattern of activity in the input.

The remarkable aspect of autoencoders is that, due to the lower
number of neurons in the hidden layer, if the network can learn from
examples and generalize to an acceptable extent, it performs data
compression: the status of the hidden neurons provides, for each
example, a compressed version of the input and output common
states.

In the first examples of such networks, in the mid-1980s, a
compression of simple images was obtained in this way. Some
authors, who have developed an effective strategy for improving the
learning process in this type of network (they are usually very slow
and are not always effective), have recently revived interest in

autoencoders through a prelearning procedure, that provides a good
initial condition of the weights for the learning procedure.

Useful applications of autoencoders are data denoising and
dimensionality reduction for data visualization. The following diagram
shows how an autoencoder typically works—it reconstructs the
received input through two phases: an encoding phase, which
corresponds to a dimensional reduction for the original input, and a
decoding phase, capable of reconstructing the original input from the
encoded (compressed) representation:

Figure 1: Encoder and decoder phases in an autoencoder

As mentioned earlier, an autoencoder is an NN, as well as an
unsupervised learning (feature learning) algorithm. Less technically,
it tries to learn an approximation of an identity function. However, we
can impose constraints on the network such as fewer units in the
hidden layer. In this way, an autoencoder represents original input
from compressed, noisy, or corrupted data. The following diagram
shows an autoencoder that consists of the narrow hidden layer
between an encoder and a decoder:

Figure 2: An unsupervised autoencoder as a network for latent feature learning

In the preceding diagram, the hidden layer or the intermediate layer
is also called the latent space representation of the input data. Now,
suppose we have a set of unlabeled training examples

, where and x is a vector, and x (1) refers to
the first item in the vector.

An autoencoder NN is essentially an unsupervised learning
algorithm that applies backpropagation, setting the target values to

be equal to the inputs; it uses .

The autoencoder tries to learn a function, . In other words,
it is trying to learn an approximation to the identity function in order

to output that is similar to x. The identity function seems a
particularly trivial function to be trying to learn, but by placing
constraints on the network, such as by limiting the number of hidden
units, we can discover interesting features of the data:

Figure 3: Learning an approximation of the identity function autoencoder

As a concrete example, suppose the inputs x are the pixel intensity
values of a 10 × 10 image (100 pixels), so n=100, and there are

 hidden units in layer and . Since there are only 50
hidden units, the network is forced to learn a compressed
representation of the input. It is only given the vector of hidden unit
activations , so it must try to reconstruct the 100-pixel input,
that is, x 1 , x 2 , …, x 100 from the 50 hidden units. The preceding
diagram shows only 6 inputs feeding into layer 1 and exactly 6 units
feeding out from layer 3.

A neuron can be active (or firing) if its output value is close to 1, or
inactive if its output value is close to 0. However, for simplicity, we
assume that the neurons are inactive most of the time. This
argument is true as long as we are talking about the sigmoid
activation function. However, if you are using the tanh function as an
activation function, then a neuron is inactive when it outputs values
close to -1.

Implementing autoencoders
with TensorFlow
Training an autoencoder is a simple process. It is an NN, where an
output is the same as its input. There is an input layer, which is
followed by a few hidden layers, and then after a certain depth, the
hidden layers follow the reverse architecture until we reach a point
where the final layer is the same as the input layer. We pass data
into the network whose embedding we wish to learn.

In this example, we use images from the MNIST dataset as input.
We begin our implementation by importing all the main libraries:

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

Then we prepare the MNIST dataset. We use the built-in input_data
class from TensorFlow to load and set up the data. This class
ensures that the data is downloaded and preprocessed to be
consumed by the autoencoder. Therefore, basically, we don't need to
do any feature engineering at all:

from tensorflow.examples.tutorials.mnist import

input_data

mnist =

input_data.read_data_sets("MNIST_data/",one_hot=Tr

ue)

In the preceding code block, the one_hot=True parameter ensures
that all the features are one hot encoded. One hot encoding is a
technique by which categorical variables are converted into a form
that could be fed into ML algorithms.

Next, we configure the network parameters:

learning_rate = 0.01

training_epochs = 20

batch_size = 256

display_step = 1

examples_to_show = 20

The size of input images is as follows:

n_input = 784

The sizes of the hidden features are as follows:

n_hidden_1 = 256

n_hidden_2 = 128

The final size corresponds to 28 × 28 = 784 pixels.

We need to define a placeholder variable for the input images. The
data type for this tensor is set to float since the mnist values are in
scale of [0, 1], and the shape is set to [None, n_input]. Defining the
None parameter means that the tensor may hold an arbitrary number
of images:

X = tf.placeholder("float", [None, n_input])

Then we can define the weights and biases of the network. The
weights data structure contains the definition of the weights for the
encoder and decoder. Notice that weights are chosen using
tf.random_normal, which returns random values with a normal
distribution:

weights = {

 'encoder_h1': tf.Variable\

 (tf.random_normal([n_input, n_hidden_1])),

 'encoder_h2': tf.Variable\

 (tf.random_normal([n_hidden_1, n_hidden_2])),

 'decoder_h1': tf.Variable\

 (tf.random_normal([n_hidden_2, n_hidden_1])),

 'decoder_h2': tf.Variable\

 (tf.random_normal([n_hidden_1, n_input])),

}

Similarly, we define the network's bias:

biases = {

 'encoder_b1': tf.Variable\

 (tf.random_normal([n_hidden_1])),

 'encoder_b2': tf.Variable\

 (tf.random_normal([n_hidden_2])),

 'decoder_b1': tf.Variable\

 (tf.random_normal([n_hidden_1])),

 'decoder_b2': tf.Variable\

 (tf.random_normal([n_input])),

}

We split the network modeling into two complementary fully
connected networks: an encoder and a decoder. The encoder
encodes the data; it takes as input an image, X, from the MNIST
dataset, and performs the data encoding:

encoder_in = tf.nn.sigmoid(tf.add\

 (tf.matmul(X, \

weights['encoder_h1']),\

 biases['encoder_b1']))

The input data encoding is simply a matrix multiplication operation.
The input data, X, of dimension 784 is reduced to a lower dimension,
256, using matrix multiplication:

Here, W is the weight tensor, encoder_h1, and b is the bias tensor,
encoder_b1. Through this operation, we have coded the initial image
into a useful input for the autoencoder. The second step of the
encoding procedure consists of data compression. The data
represented by the input encoder_in tensor is reduced to a smaller
size by means of a second matrix multiplication operation:

encoder_out = tf.nn.sigmoid(tf.add\

(tf.matmul(encoder_in,\

weights['encoder_h2']),\

 biases['encoder_b2']))

The input data, encoder_in, of dimension 256 is then compressed to
a lower tensor of size 128:

Here, W stands for the weight tensor, encoder_h2, while b stands for
the bias tensor, encoder_b2. Notice that we used a sigmoid for the
activation function for the encoder phase.

The decoder performs the inverse operation of the encoder. It
decompresses the input to obtain an output of the same size of the
network input. The first step of the procedure is to transform the
encoder_out tensor of size 128 into a tensor of the intermediate
representation of size 256:

decoder_in = tf.nn.sigmoid(tf.add\

(tf.matmul(encoder_out,\

weights['decoder_h1']),\

 biases['decoder_b1']))

In formulas, it means this:

Here, W is the weight tensor, decoder_h1, of size 256 × 128, and b is
the bias tensor, decoder_b1, of size 256. The final decoding operation
is to decompress the data from its intermediate representation (of
size 256) to a final representation (of dimension 784), which is the
size of the original data:

decoder_out = tf.nn.sigmoid(tf.add\

(tf.matmul(decoder_in,\

weights['decoder_h2']),\

biases['decoder_b2']))

The y_pred parameter is set equal to decoder_out:

y_pred = decoder_out

The network will learn whether the input data, X, is equal to the
decoded data, so we define the following:

y_true = X

The point of the autoencoder is to create a reduction matrix that is
good at reconstructing the original data. Thus, we want to minimize
the cost function. Then we define the cost function as the mean
squared error between y_true and y_pred:

cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))

To optimize the cost function, we use the following RMSPropOptimizer
class:

optimizer =

tf.train.RMSPropOptimizer(learning_rate).minimize(

cost)

Then we prepare to launch the session:

init = tf.global_variables_initializer()

with tf.Session() as sess:

 sess.run(init)

We need to set the size of the batch images to train the network:

 total_batch =

int(mnist.train.num_examples/batch_size)

Start with the training cycle (the number of training_epochs is set to
10):

 for epoch in range(training_epochs):

While looping over all batches:

 for i in range(total_batch):

 batch_xs, batch_ys =\

mnist.train.next_batch(batch_size)

Then we run the optimization procedure, feeding the execution graph
with the batch set, batch_xs:

 _, c = sess.run([optimizer, cost],\

 feed_dict={X:

batch_xs})

Next, we display the results for each epoch step:

 if epoch % display_step == 0:

 print(„Epoch:", ‚%04d' % (epoch+1),

 „cost=", „{:.9f}".format(c))

 print("Optimization Finished!")

Finally, we test the model, applying the encode or decode procedure.
We feed the model a subset of images, where the value of
example_to_show is set to 4:

 encode_decode = sess.run(

 y_pred, feed_dict=\

 {X: mnist.test.images[:examples_to_show]})

We compare the original images with their reconstructions using
Matplotlib:

 f, a = plt.subplots(2, 10, figsize=(10, 2))

 for i in range(examples_to_show):

 a[0]

[i].imshow(np.reshape(mnist.test.images[i], (28,

28)))

 a[1]

[i].imshow(np.reshape(encode_decode[i], (28, 28)))

 f.show()

 plt.draw()

 plt.show()

When we run the session, we should have an output like this:

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

Epoch: 0001 cost= 0.208461761

Epoch: 0002 cost= 0.172908291

Epoch: 0003 cost= 0.153524384

Epoch: 0004 cost= 0.144243762

Epoch: 0005 cost= 0.137013704

Epoch: 0006 cost= 0.127291277

Epoch: 0007 cost= 0.125370100

Epoch: 0008 cost= 0.121299766

Epoch: 0009 cost= 0.111687921

Epoch: 0010 cost= 0.108801551

Epoch: 0011 cost= 0.105516203

Epoch: 0012 cost= 0.104304880

Epoch: 0013 cost= 0.103362709

Epoch: 0014 cost= 0.101118311

Epoch: 0015 cost= 0.098779991

Epoch: 0016 cost= 0.095374011

Epoch: 0017 cost= 0.095469855

Epoch: 0018 cost= 0.094381645

Epoch: 0019 cost= 0.090281256

Epoch: 0020 cost= 0.092290156

Optimization Finished!

Then we display the results. The first row is the original images, and
the second row is the decoded images:

Figure 4: Original and the decoded MNIST images

As you can see, the number two differs from the original one (it still
seems to be digit two like the number three). We can increase the
number of epochs or change the network parameters to improve the
result.

Improving autoencoder
robustness
A successful strategy we can use to improve the model's robustness
is to introduce a noise in the encoding phase. We call a denoising
autoencoder a stochastic version of an autoencoder; in a denoising
autoencoder, the input is stochastically corrupted, but the
uncorrupted version of the same input is used as the target for the
decoding phase.

Intuitively, a denoising autoencoder does two things: first, it tries to
encode the input, preserving the relevant information; and then, it
seeks to nullify the effect of the corruption process applied to the
same input. In the next section, we'll show an implementation of a
denoising autoencoder.

Implementing a denoising
autoencoder
The network architecture is very simple. A 784-pixel input image is
stochastically corrupted and then dimensionally reduced by an
encoding network layer. The image size is reduced from 784 to 256
pixels.

In the decoding phase, we prepare the network for output, returning
the image size to 784 pixels. As usual, we start loading all the
necessary libraries into our implementation:

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import

input_data

Then we set the basic network parameters:

n_input = 784

n_hidden_1 = 1024

n_hidden_2 = 2048

n_output = 784

And we set the session's parameters:

epochs = 100

batch_size = 100

disp_step = 10

We build the training and testing sets. We again use the input_data
feature imported from the tensorflow.examples.tutorials.mnist:

print ("PACKAGES LOADED")

mnist = input_data.read_data_sets('data/',

one_hot=True)

trainimg = mnist.train.images

trainlabel = mnist.train.labels

testimg = mnist.test.images

testlabel = mnist.test.labels

print ("MNIST LOADED")

Let's define a placeholder variable for the input images. The data
type is set to float and the shape is set to [None, n_input]. The
None parameter means that the tensor may hold an arbitrary number
of images, and the size per image is n_input:

x = tf.placeholder("float", [None, n_input])

Next, we have a placeholder variable for the true labels associated
with the images that were input in the placeholder variable, x. The
shape of this placeholder variable is [None, n_output], which means
it may hold an arbitrary number of labels and that each label is a
vector of length n_output, which is 10 in this case:

y = tf.placeholder("float", [None, n_output])

To reduce overfitting, we'll apply a dropout before the encoding and
decoding procedure, so we must define a placeholder for the
probability that a neuron's output is kept during dropout:

dropout_keep_prob = tf.placeholder("float")

On these definitions, we fix the weights and network biases:

weights = {

 'h1': tf.Variable(tf.random_normal([n_input,

n_hidden_1])),

 'h2':

tf.Variable(tf.random_normal([n_hidden_1,

n_hidden_2])),

 'out':

tf.Variable(tf.random_normal([n_hidden_2,

n_output]))

}

biases = {

 'b1':

tf.Variable(tf.random_normal([n_hidden_1])),

 'b2':

tf.Variable(tf.random_normal([n_hidden_2])),

 'out':

tf.Variable(tf.random_normal([n_output]))

}

The weights and biases values are chosen using tf.random_normal,
which returns random values with a normal distribution. The
encoding phase takes as input an image from the MNIST dataset,
and then performs the data compression by applying a matrix
multiplication operation:

encode_in = tf.nn.sigmoid\

 (tf.add(tf.matmul\

 (x, weights['h1']),\

 biases['b1']))

encode_out = tf.nn.dropout\

 (encode_in, dropout_keep_prob)

In the decoding phase we apply the same procedure:

decode_in = tf.nn.sigmoid\

 (tf.add(tf.matmul\

 (encode_out, weights['h2']),\

 biases['b2']))

The reduction in overfitting is performed by a dropout procedure:

decode_out = tf.nn.dropout(decode_in,\

 dropout_keep_prob)

Finally, we are ready to build the prediction tensor, y_pred:

y_pred = tf.nn.sigmoid\

 (tf.matmul(decode_out,\

 weights['out']) +\

 biases['out'])

We then define a cost measure, which is used to guide the variable
optimization procedure:

cost = tf.reduce_mean(tf.pow(y_pred - y, 2))

We will minimize the cost function using the RMSPropOptimizer class:

optimizer =

tf.train.RMSPropOptimizer(0.01).minimize(cost)

Finally, we can initialize the defined variables as follows:

init = tf.global_variables_initializer()

Then we set TensorFlow's running session:

with tf.Session() as sess:

 sess.run(init)

 print ("Start Training")

 for epoch in range(epochs):

 num_batch =

int(mnist.train.num_examples/batch_size)

 total_cost = 0.

 for i in range(num_batch):

For each training epoch, we select a smaller batch set from the
training dataset:

 batch_xs, batch_ys = \

mnist.train.next_batch(batch_size)

Here is the focal point. We randomly corrupt the batch_xs set using
the randn function from the NumPy package we imported earlier:

 batch_xs_noisy = batch_xs + \

0.3*np.random.randn(batch_size, 784)

We use these sets to feed the execution graph and then to run the
session (sess.run):

 feeds = {x: batch_xs_noisy,\

 y: batch_xs, \

 dropout_keep_prob: 0.8}

 sess.run(optimizer, feed_dict=feeds)

 total_cost += sess.run(cost,

feed_dict=feeds)

Every ten epochs, the average cost value will be displayed:

 if epoch % disp_step == 0:

 print("Epoch %02d/%02d average cost:

%.6f"

 % (epoch, epochs,

total_cost/num_batch))

Finally, we start to test the trained model:

 print("Start Test")

To do this, we randomly select an image from the testing set:

 randidx = np.random.randint\

 (testimg.shape[0],

size=1)

 orgvec = testimg[randidx, :]

 testvec = testimg[randidx, :]

 label =

np.argmax(testlabel[randidx, :], 1)

 print("Test label is %d" % (label))

 noisyvec = testvec +

0.3*np.random.randn(1, 784)

Then we run the trained model on the selected image:

 outvec = sess.run(y_pred,\

 feed_dict={x:

noisyvec,\

dropout_keep_prob: 1})

As we'll see, the following plotresult function will display the original
image, the noisy image, and the predicted image:

 plotresult(orgvec,noisyvec,outvec)

 print("restart Training")

When we run the session, we should see a result like this:

PACKAGES LOADED

Extracting data/train-images-idx3-ubyte.gz

Extracting data/train-labels-idx1-ubyte.gz

Extracting data/t10k-images-idx3-ubyte.gz

Extracting data/t10k-labels-idx1-ubyte.gz

MNIST LOADED

Start Training

For the sake of brevity, we have only reported the results after 100
epochs:

Epoch 100/100 average cost: 0.212313

Start Test

Test label is 6

These are the original and the noisy images (the number six, as you
can see):

Figure 5: The original and noisy images

Here's a badly reconstructed image:

Figure 6: A badly reconstructed image

After 100 epochs, we have a better result:

Epoch 100/100 average cost: 0.018221

Start Test

Test label is 5

Here are the original and the noisy images:

Figure 7: Original and noisy images

Here is a good reconstructed image:

Figure 8: A good reconstructed image

Implementing a convolutional
autoencoder
Until now, we have seen that autoencoder inputs are images. So, it
makes sense to ask whether a convolutional architecture can work
better on the autoencoder architectures that we showed earlier. We
will analyze how encoders and decoders work in convolutional
autoencoders.

Encoder
An encoder consists of three convolutional layers. The number of
features changes from 1, the input data, to 16 for the first
convolutional layer; then, from 16 to 32 for the second layer; and
finally, from 32 to 64 for the last convolutional layer. While moving
from a convolutional layer to another, the shape undergoes image
compression:

Figure 9: The data flow of the encoding phase

Decoder

The decoder consists of three deconvolutional layers arranged in
sequence. For each deconvolution operation, we reduce the number
of features to obtain an image that must be the same size as the
original image. In addition to reducing the number of features, a
deconvolution transforms the shape of the images:

Figure 10: The data flow of decoding phase

We're ready to see how to implement a convolutional autoencoder;
the first implementation step is loading the basic libraries:

import matplotlib.pyplot as plt

import numpy as np

import math

import tensorflow as tf

import

tensorflow.examples.tutorials.mnist.input_data as

input_data

Then we build the training and testing sets:

mnist = input_data.read_data_sets("data/",

one_hot=True)

trainings = mnist.train.images

trainlabels = mnist.train.labels

testings = mnist.test.images

testlabels = mnist.test.labels

ntrain = trainings.shape[0]

ntest = testings.shape[0]

dim = trainings.shape[1]

nout = trainlabels.shape[1]

We need to define a placeholder variable for the input images:

x = tf.placeholder(tf.float32, [None, dim])

The data type is set to float32 and the shape is set to [None, dim],
where None means that the tensor may hold an arbitrary number of
images, with each image being a vector of length dim. Next, we have
a placeholder variable for the output images. The shape of this
variable is set to [None, dim] the same as the input shape:

y = tf.placeholder(tf.float32, [None, dim])

Then we define the keepprob variable, which is used to configure the
dropout rate (https://www.tensorflow.org/tutorials/layers#dropout)
used during the training of the network:

keepprob = tf.placeholder(tf.float32)

Also, we have to define the number of nodes in each of the
network's layers:

n1 = 16

n2 = 32

n3 = 64

ksize = 5

The network contains a total number of six layers. The first three
layers are convolutional and belong to the encoding phase, while the
last three layers are deconvolutional and are part of the decoding
phase:

weights = {

 'ce1': tf.Variable(tf.random_normal\

 ([ksize, ksize, 1,

https://www.tensorflow.org/tutorials/layers#dropout

n1],stddev=0.1)),

 'ce2': tf.Variable(tf.random_normal\

 ([ksize, ksize, n1,

n2],stddev=0.1)),

 'ce3': tf.Variable(tf.random_normal\

 ([ksize, ksize, n2,

n3],stddev=0.1)),

 'cd3': tf.Variable(tf.random_normal\

 ([ksize, ksize, n2,

n3],stddev=0.1)),

 'cd2': tf.Variable(tf.random_normal\

 ([ksize, ksize, n1,

n2],stddev=0.1)),

 'cd1': tf.Variable(tf.random_normal\

 ([ksize, ksize, 1,

n1],stddev=0.1))

}

biases = {

 'be1': tf.Variable\

 (tf.random_normal([n1], stddev=0.1)),

 'be2': tf.Variable\

 (tf.random_normal([n2], stddev=0.1)),

 'be3': tf.Variable\

 (tf.random_normal([n3], stddev=0.1)),

 'bd3': tf.Variable\

 (tf.random_normal([n2], stddev=0.1)),

 'bd2': tf.Variable\

 (tf.random_normal([n1], stddev=0.1)),

 'bd1': tf.Variable\

 (tf.random_normal([1], stddev=0.1))

}

The following function, cae, builds the convolutional autoencoder: the
inputs passed are the image, _X; the data structure weights and bias,
_W and _b; and the _keepprob parameter:

def cae(_X, _W, _b, _keepprob):

The initial 784-pixel image must be reshaped into a 28 × 28 matrix to
be subsequently processed by the next convolutional layers:

 _input_r = tf.reshape(_X, shape=[-1, 28, 28,

1])

The first convolutional layer is _ce1. It has the _input_r tensor as
input, relative to the input image:

 _ce1 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d\

 (_input_r, _W['ce1'],\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['be1']))

Before moving to the second convolutional layer, we apply the
dropout operation:

 _ce1 = tf.nn.dropout(_ce1, _keepprob)

In the following two encoding layers, we apply the same convolution
and dropout operations:

 _ce2 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d\

 (_ce1, _W['ce2'],\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['be2']))

 _ce2 = tf.nn.dropout(_ce2, _keepprob)

 _ce3 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d\

 (_ce2, _W['ce3'],\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['be3']))

 _ce3 = tf.nn.dropout(_ce3, _keepprob)

The number of features has increased from 1 (the input image) to
64, while the original shape image has been reduced to 28 × 28 to 7
× 7. In the decoding phase, the compressed (or encoded) and
reshaped image must be as similar as possible to the original image.
To achieve this, we used the conv2d_transpose TensorFlow function
for the next three layers:

tf.nn.conv2d_transpose(value, filter,

output_shape, strides, padding='SAME')

This operation is sometimes called deconvolution; it is simply the
gradient of conv2d. The arguments of this function are as follows:

value: A 4D tensor of type float and shape [batch, height,
width, in_channels].
filter: A 4D tensor with the same type as value and shape
[height, width, output_channels, in_channels]. The
in_channels dimension must match that of value.
output_shape: A 1D tensor representing the output shape of the
deconvolution operation.
strides: A list of ints. The stride of the sliding window for each
dimension of the input tensor.
padding: A string, either valid or SAME.

The conv2d_transpose function will return a tensor with the same type
as the value argument. The first deconvolutional layer, _cd3, has the
convolutional layer _ce3 as input. It returns the _cd3 tensor, whose
shape is (1, 7, 7, 32):

 _cd3 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d_transpose\

 (_ce3, _W['cd3'],\

 tf.stack([tf.shape(_X)[0], 7,

7, n2]),\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['bd3']))

 _cd3 = tf.nn.dropout(_cd3, _keepprob)

To the second deconvolutional layer, _cd2, we pass as input the
deconvolutional layer _cd3. It returns the _cd2 tensor, whose shape is
(1, 14, 14, 16):

 _cd2 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d_transpose\

 (_cd3, _W['cd2'],\

 tf.stack([tf.shape(_X)[0], 14,

14, n1]),\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['bd2']))

 _cd2 = tf.nn.dropout(_cd2, _keepprob)

The third and final deconvolutional layer, _cd1, has the _cd2 layer
passed as input. It returns the resulting _out tensor, whose shape is
(1, 28, 28, 1), the same as the input image:

 _cd1 = tf.nn.sigmoid\

 (tf.add(tf.nn.conv2d_transpose\

 (_cd2, _W['cd1'],\

 tf.stack([tf.shape(_X)[0], 28,

28, 1]),\

 strides=[1, 2, 2, 1],\

 padding='SAME'),\

 _b['bd1']))

 _cd1 = tf.nn.dropout(_cd1, _keepprob)

 _out = _cd1

 return _out

Then we define a cost function as the mean squared error between y
and pred:

pred = cae(x, weights, biases, keepprob)

cost = tf.reduce_sum\

 (tf.square(cae(x, weights, biases,

keepprob)\

 - tf.reshape(y, shape=[-1, 28,

28, 1])))

learning_rate = 0.001

To optimize the cost, we'll use AdamOptimizer:

optm =

tf.train.AdamOptimizer(learning_rate).minimize(cos

t)

In the next step, we configure the running session for our network:

init = tf.global_variables_initializer()

print ("Functions ready")

sess = tf.Session()

sess.run(init)

mean_img = np.zeros((784))

The size of the batch is set to 128:

batch_size = 128

The number of epochs is 50:

n_epochs = 50

Then we start the loop session:

for epoch_i in range(n_epochs):

For each epoch, we get a batch set, trainbatch:

 for batch_i in range(mnist.train.num_examples

// batch_size):

 batch_xs, _ =

mnist.train.next_batch(batch_size)

 trainbatch = np.array([img - mean_img for

img in batch_xs])

We apply a random noise, just like with denoising autoencoders, to
improve the learning:

 trainbatch_noisy = trainbatch +

0.3*np.random.randn(\

 trainbatch.shape[0], 784)

 sess.run(optm, feed_dict={x:

trainbatch_noisy \

 , y: trainbatch,

keepprob: 0.7})

 print ("[%02d/%02d] cost: %.4f" %

(epoch_i, n_epochs \

 , sess.run(cost, feed_dict={x:

trainbatch_noisy \

 , y:

trainbatch, keepprob: 1.})))

For each training epoch, we randomly take five training examples:

 if (epoch_i % 10) == 0:

 n_examples = 5

 test_xs, _ =

mnist.test.next_batch(n_examples)

 test_xs_noisy = test_xs +

0.3*np.random.randn(

 test_xs.shape[0], 784)

Then we test the trained model on a little subset:

 recon = sess.run(pred, feed_dict={x:

test_xs_noisy,\

keepprob: 1.})

 fig, axs = plt.subplots(2, n_examples,

figsize=(15, 4))

 for example_i in range(n_examples):

 axs[0][example_i].matshow(np.reshape(

 test_xs_noisy[example_i, :], (28,

28))

 , cmap=plt.get_cmap('gray'))

Finally, we can display the inputs and the learned set using
Matplotlib:

 axs[1][example_i].matshow(np.reshape(

 np.reshape(recon[example_i, ...],

(784,))

 + mean_img, (28, 28)),

cmap=plt.get_cmap('gray'))

 plt.show()

The execution will produce the following output:

>>>

Extracting data/train-images-idx3-ubyte.gz

Extracting data/train-labels-idx1-ubyte.gz

Extracting data/t10k-images-idx3-ubyte.gz

Extracting data/t10k-labels-idx1-ubyte.gz

Packages loaded

Network ready

Functions ready

Start training..

[00/05] cost: 8049.0332

[01/05] cost: 3706.8667

[02/05] cost: 2839.9155

[03/05] cost: 2462.7021

[04/05] cost: 2391.9460

>>>

Note that for each epoch, we'll visualize the input set and the
corresponding learned set that are shown previously. As you can see
in the first epoch, we have no idea which images have been learned:

Figure 11: First epoch images

The idea becomes clearer in the second epoch:

Figure 12: Second epoch images

This is the third epoch:

Figure 13: Third epoch images

It's better again in the fourth epoch:

Figure 14: Fourth epoch images

We probably could have stopped in the previous epoch, but this is
the fifth and final epoch:

Figure 15: Fifth epoch images

So far, we have seen a different implementation of autoencoders and
an improved version as well. However, applying this technique to the
MNIST dataset does not tell its true power. Thus, it's time to see a

more real-life problem in which we can apply the autoencoder
technique.

Fraud analytics with
autoencoders
Fraud detection and prevention in financial companies such as
banks, insurance companies, and credit unions is an important task.
So far, we have seen how, and where, to use Deep Neural
Networks (DNNs) and Convolutional Neural Network (CNNs).

Now it's time to use other unsupervised learning algorithm, such as
autoencoders. In this section, we will be exploring a dataset of credit
card transactions and trying to build an unsupervised machine-
learning model that is able to tell whether a particular transaction is
fraudulent or genuine.

More specifically, we will use autoencoders to pretrain a
classification model and apply anomaly detection techniques to
predict possible fraud. Before we start, we need to know the dataset.

Description of the dataset
For this example, we will be using the Credit Card Fraud Detection
dataset from Kaggle. The dataset can be downloaded from
https://www.kaggle.com/hunk3749/credit-card/data. Since I am using
the dataset, it would a good idea to be transparent by citing the
following publication:

Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca
Bontempi. Calibrating Probability with Undersampling for
Unbalanced Classification. In Symposium on Computational
Intelligence and Data Mining (CIDM), IEEE, 2015.

The dataset contains transactions made by European credit card
holders in September 2013 over a span of two days. There are
285,299 transactions with only 492 frauds, meaning the dataset is

https://www.kaggle.com/hunk3749/credit-card/data

highly unbalanced. The positive class (frauds) account for 0.172% of
all transactions.

The dataset contains numerical input variables that are the result of
a PCA transformation. Unfortunately, due to confidentiality issues,
we cannot provide the original features and more background
information about the data. There are 28 features, namely V1, V2,
...V27, which are principal components obtained using PCA, except
for the Time and Amount features. The Class feature is the response
variable and it takes the value 1 in a case of fraud and 0 otherwise.

There are two additional features, Time and Amount. The Time column
signifies the time in seconds between each transaction and the first
transaction, whereas the Amount column signifies how much money
was transferred in this transaction. So, let's look at the input data
(only V1, V2, V26, and V27 are shown, though) in Figure 16:

Figure 16: A snapshot of the credit card fraud detection dataset

Problem description
For this example, we will use an autoencoder as an unsupervised
feature-learning algorithm that learns and generalizes the common
patterns shared by the training data. During the reconstruction
phase, the RMSE will be much higher for those data points that have
unusual patterns. Thus, those data points are outliers, or anomalies.
Our assumption is that the anomalies are also equal to the
fraudulent transactions we are after.

Now, during the evaluation step, we can select a threshold for RMSE
based on validation data and flag all data with an RMSE above the
threshold as fraudulent. Alternatively, if we believe 0.1% of all
transactions are fraudulent, we can also rank the data based on the
reconstruction error for each data point (that is, the RMSEs), then
select the top 0.1% to be the fraudulent transactions.

Given the class imbalance ratio, measuring the accuracy using Area
Under the Precision-Recall Curve (AUPRC) is recommended
because the confusion matrix accuracy is not meaningful in
unbalanced classification. In this case, using linear machine learning
models, such as random forests, logistic regression, or support
vector machines, by applying over-or-under sampling techniques,
would be a better idea. Alternatively, we can try to find anomalies in
the data since we assume that there are only a few fraud cases, that
is, anomalies, within the dataset.

When dealing with such a severe imbalance of response labels, we
also need to be careful when measuring model performance. There
are only a handful of fraudulent instances, so a model that predicts
everything as non-fraud will achieve an accuracy of more than 99%.
However, despite their high accuracy, linear ML models (even tree
ensembles) will not necessarily help us to find fraudulent cases.

For this example, we will build an unsupervised model: the model will
be trained with both positive and negative data (frauds and non-
frauds), but without providing the labels. Since we have many more
normal transactions than fraudulent ones, we should expect the
model to learn and memorize the patterns of normal transactions
after training, and the model should be able to give a score for any
transaction that is an outlier.

This unsupervised training will be quite useful for this purpose
because we do not have enough labeled data. So, let's get started.

Exploratory data analysis

Before we implement our model, exploring the dataset would provide
some insight. We start by importing the required packages and
modules (including others that will be required for this example):

import pandas as pd

import numpy as np

import tensorflow as tf

import os

from datetime import datetime

from sklearn.metrics import roc_auc_score as auc

import seaborn as sns # for statistical data

visualization

import matplotlib.pyplot as plt

import matplotlib.gridspec as gridspec

Tip
Installing seaborn

You can install seaborn, which is a Python module for statistical
data visualization in a number of ways:

$ sudo pip install seaborn # for Python 2.7

$ sudo pip3 install seaborn # for Python 3.x

$ sudo conda install seaborn # using conda

Directly from GitHub (use pip for Python 2.7)

$ pip3 install

git+https://github.com/mwaskom/seaborn.git

Now, I am assuming that you have already downloaded the dataset
from the aforementioned URL (that is
https://www.kaggle.com/hunk3749/credit-card/data). The download
comes with a CSV file called creditcard.csv.

So next, let's read the dataset and create a pandas DataFrame:

df = pd.read_csv('creditcard.csv')

print(df.shape)

https://www.kaggle.com/hunk3749/credit-card/data

>>>

(284807, 31)

So, the dataset has about 300,000 transactions, 30 features, and
two binary labels (that is, 0/1). Now let's see the column names and
their data types:

print(df.columns)

>>>

Index(['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6',

'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13',

'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20',

'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27',

'V28', 'Amount', 'Class'],

 dtype='object')

print(df.dtypes)

>>>

Time float64

V1 float64

V2 float64

V3 float64

…

V25 float64

V26 float64

V27 float64

V28 float64

Amount float64

 Class int64

Now let's take a look at the dataset:

print(df.head())

>>>

Figure 17: A snapshot of the dataset

Now let's see the timespan for all the transactions:

print("Total time spanning: {:.1f}

days".format(df['Time'].max() / (3600 * 24.0)))

>>>

Total time spanning: 2.0 days

Now let's have a look at the statistics for the classes:

print("{:.3f} % of all transactions are fraud.

".format(np.sum(df['Class']) / df.shape[0] * 100))

>>>

0.173 % of all transactions are fraud.

Therefore, we have only a few fraudulent transactions. This is also
called a rare event detection in literature, and means that the dataset
is highly unbalanced. Now, let's draw the histogram for first five
features:

plt.figure(figsize=(12,5*4))

gs = gridspec.GridSpec(5, 1)

for i, cn in enumerate(df.columns[:5]):

 ax = plt.subplot(gs[i])

 sns.distplot(df[cn][df.Class == 1], bins=50)

 sns.distplot(df[cn][df.Class == 0], bins=50)

 ax.set_xlabel('')

 ax.set_title('histogram of feature: ' +

str(cn))

plt.show()

>>>

Figure 18: Histograms showing first five features

In the preceding screenshot, it can be seen that all of the features
are either positively or negatively skewed. In addition, the dataset
does not have many features, so trimming the tails would lose
important information. So, for the time being, let's try not to do that,
and use all the features.

Training, validation, and testing set
preparation

Let's start the training by splitting the data into training, development
(also known as validation), and test set. We are using first 80% of
the data as the training and validation set. The remaining 20% will be
used as the testing set:

TEST_RATIO = 0.20

df.sort_values('Time', inplace = True)

TRA_INDEX = int((1-TEST_RATIO) * df.shape[0])

train_x = df.iloc[:TRA_INDEX, 1:-2].values

train_y = df.iloc[:TRA_INDEX, -1].values

test_x = df.iloc[TRA_INDEX:, 1:-2].values

test_y = df.iloc[TRA_INDEX:, -1].values

Now, let's the statistics of the preceding split:

print("Total train examples: {}, total fraud

cases: {}, equal to {:.5f} % of total cases.

".format(train_x.shape[0], np.sum(train_y),

(np.sum(train_y)/train_x.shape[0])*100))

print("Total test examples: {}, total fraud cases:

{}, equal to {:.5f} % of total cases.

".format(test_x.shape[0], np.sum(test_y),

(np.sum(test_y)/test_y.shape[0])*100))

>>>

Total train examples: 227845, total fraud cases:

417, equal to 0.18302 % of total cases.

Total test examples: 56962, total fraud cases: 75,

equal to 0.13167 % of total cases.

Normalization
For better predictive accuracy, we can consider two types of
standardization: z-score and min-max scaling:

Z-score: This normalizes each column towards a mean of zero
and standardization of ones. This is particularly suitable for
activation functions such as tanh that output values on both
sides of zero. Secondly, this will leave in extreme values, so

there will be some extremeness left after normalization. This
might be useful for detecting outliers in this case.
Min-max scaling: This ensures all the values are between 0
and 1, that is, positive. This is the default approach if we are
using sigmoid as our output activation.

We used a validation set to decide the data standardization
approach and activation functions. Based on experiments, we've
found that when used together with z-score normalization, tanh
performs slightly better than sigmoid. Therefore, we chose tanh
followed by z-score:

cols_mean = []

cols_std = []

for c in range(train_x.shape[1]):

 cols_mean.append(train_x[:,c].mean())

 cols_std.append(train_x[:,c].std())

 train_x[:, c] = (train_x[:, c] -

cols_mean[-1]) / cols_std[-1]

 test_x[:, c] = (test_x[:, c] - cols_mean[-1])

/ cols_std[-1]

Autoencoder as an unsupervised
feature learning algorithm
In this subsection, we will see how to use an autoencoder as an
unsupervised feature learning algorithm. First, let's initialize the
network hyperparameters:

learning_rate = 0.001

training_epochs = 1000

batch_size = 256

display_step = 10

n_hidden_1 = 15 # number of neurons is the num

features

n_input = train_x.shape[1]

Since first and second layers contain 15 and 5 neurons respectively,
we are building a network of such architecture: 28(input) -> 15 -> 5 -

> 15 -> 28(output). So let's construct our autoencoder network.

Let's create a TensorFlow placeholder to hold the input:

X = tf.placeholder("float", [None, n_input])

Now we have to create the bias and the weight vectors with random
initialization:

weights = {

 'encoder_h1': tf.Variable\

 (tf.random_normal([n_input,

n_hidden_1])),

 'decoder_h1': tf.Variable\

 (tf.random_normal([n_hidden_1,

n_input])),

}

biases = {

 'encoder_b1':

tf.Variable(tf.random_normal([n_hidden_1])),

 'decoder_b1':

tf.Variable(tf.random_normal([n_input])),

}

Now, we build a simple autoencoder. Here we have the encoder()
function, which constructs the encoder. We encode the hidden layer
with the tanh function as follows:

def encoder(x):

 layer_1 = tf.nn.tanh(tf.add\

 (tf.matmul(x,

weights['encoder_h1']),\

 biases['encoder_b1']))

 return layer_1

Here is the decoder() function, which constructs the decoder. We
decode the hidden layer with the tanh function as follows:

def decoder(x):

 layer_1 = tf.nn.tanh(tf.add\

 (tf.matmul(x,

weights['decoder_h1']),\

 biases['decoder_b1']))

 return layer_1

After that, we construct the model by passing the TensorFlow
placeholder for our input data. Weights and biases (the Ws and bs of
NNs) contain all parameters of the network that we will learn to
optimize, as follows:

encoder_op = encoder(X)

decoder_op = decoder(encoder_op)

Once we have constructed the autoencoder network, it's time to
make the prediction, where the targets are the input data:

y_pred = decoder_op

y_true = X

Now that we have made the prediction, it's time to define batch_mse
to evaluate the performance:

batch_mse = tf.reduce_mean(tf.pow(y_true - y_pred,

2), 1)

Note
The Mean Squared Error (MSE) of an unobserved quantity
measures the average
(https://en.wikipedia.org/wiki/Expected_value) of the squares of
the errors (https://en.wikipedia.org/wiki/Errors_and_residuals) or
deviations (https://en.wikipedia.org/wiki/Deviation_(statistics)).
From a statistical point of view, this is a measure of the quality of
an estimator (it is always non-negative, and values closer to zero
are better).

If is a vector of n predictions, and Y is the vector of observed
values of the variable being predicted, then the within-sample MSE
of the predictor is computed as follows:

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Deviation_(statistics)

Therefore, an MSE is the mean of the squares of the errors

.

We have another batch_mse here that will return RMSEs for all the
input data in a batch, which is a vector whose length equals the
number of rows in the input data. These will be the predicted values
—or fraud scores if you want—for the input (whether it is training,
validation or testing data), which we can extract out after prediction.
Then we define the loss and optimizer, and minimize the squared
error:

cost_op = tf.reduce_mean(tf.pow(y_true - y_pred,

2))

optimizer =

tf.train.RMSPropOptimizer(learning_rate).minimize(

cost_op)

The activation functions for each layer used is tanh. The objective
function here, or the cost, measures the total RMSE of our predicted
and input arrays in one batch, which means it's a scalar. We then run
the optimizer every time we want to do a batch update.

Fantastic! We're ready to start the training. However, before that,
let's define the path where we will be saving our trained model:

save_model = os.path.join(data_dir,

'autoencoder_model.ckpt')

saver = tf.train.Saver()

Up to this point, we have defined many variables as well as
hyperparameters, so we have to initialize the variables:

init_op = tf.global_variables_initializer()

Finally, we start the training. We loop over all batches in the training
cycle. Then we run the optimization operation and cost operation to
get the loss value. Then we display the logs per epoch step. Finally,
we save the trained model:

epoch_list = []

loss_list = []

train_auc_list = []

data_dir = 'Training_logs/'

with tf.Session() as sess:

 now = datetime.now()

 sess.run(init_op)

 total_batch = int(train_x.shape[0]/batch_size)

 # Training cycle

 for epoch in range(training_epochs):

 # Loop over all batches

 for i in range(total_batch):

 batch_idx =

np.random.choice(train_x.shape[0],\

 batch_size)

 batch_xs = train_x[batch_idx]

 # Run optimization op (backprop) and

 # cost op (to get loss value)

 _, c = sess.run([optimizer, cost_op],\

 feed_dict={X: batch_xs})

 # Display logs per epoch step

 if epoch % display_step == 0:

 train_batch_mse = sess.run(batch_mse,\

 feed_dict={X: train_x})

 epoch_list.append(epoch+1)

 loss_list.append(c)

 train_auc_list.append(auc(train_y,

train_batch_mse))

 print("Epoch:", '%04d,' % (epoch+1),

 "cost=", "{:.9f},".format(c),

 "Train auc=", "

{:.6f},".format(auc(train_y, \

 train_batch_mse)),

 print("Optimization Finished!")

 save_path = saver.save(sess, save_model)

 print("Model saved in: %s" % save_path)

save_model = os.path.join(data_dir,

autoencoder_model_1L.ckpt')

saver = tf.train.Saver()

The preceding code segment is straightforward. Each time, we
randomly sample a mini-batch of size 256 from train_x, feed it into
the model as the input of X, and run the optimizer to update the
parameters through Stochastic Gradient Descent (SGD):

>>>

Epoch: 0001, cost= 0.938937187, Train auc=

0.951383

Epoch: 0011, cost= 0.491790086, Train auc=

0.954131

…

Epoch: 0981, cost= 0.323749095, Train auc=

0.953185

Epoch: 0991, cost= 0.255667418, Train auc=

0.953107

Optimization Finished!

Model saved in:

Training_logs/autoencoder_model.ckpt

Test auc score: 0.947296

The AUC score we have obtained for the valuation on train_x is
around 0.95. Nevertheless, from the preceding logs, it's really difficult
to understand how the training went:

Plot Training AUC over time

plt.plot(epoch_list, train_auc_list, 'k--',

label='Training AUC', linewidth=1.0)

plt.title('Training AUC per iteration')

plt.xlabel('Iteration')

plt.ylabel('Training AUC')

plt.legend(loc='upper right')

plt.grid(True)

Plot train loss over time

plt.plot(epoch_list, loss_list, 'r--',

label='Training loss', linewidth=1.0)

plt.title('Training loss')

plt.xlabel('Iteration')

plt.ylabel('Loss')

plt.legend(loc='upper right')

plt.grid(True)

plt.show()

>>>

Figure 19: Training loss and AUC per iteration

In the preceding graph, we can see that the training error was a bit
bumpy but the training AUC remains almost steady, around 95%.
This might sound suspicious. You can also see that we used the
same data for training as well as for validation. This might sound
confusing too, but wait!

Since we are doing unsupervised training and the model never sees
the labels during training, this will not lead to overfitting. This
additional validation is used for monitoring early stopping as well as
hyperparameter tuning.

Evaluating the model
After we have finished training our autoencoder model and
hyperparameters, we can evaluate its performance on the 20% test
dataset, which is shown here:

save_model = os.path.join(data_dir,

autoencoder_model.ckpt')

saver = tf.train.Saver()

Initializing the variables

init = tf.global_variables_initializer()

with tf.Session() as sess:

 now = datetime.now()

 saver.restore(sess, save_model)

 test_batch_mse = sess.run(batch_mse,

feed_dict={X: test_x})

 print("Test auc score:

{:.6f}".format(auc(test_y, \

 test_batch_mse)))

In this code, we have reused the trained model we made earlier.
test_batch_mse is our fraud scores for test data:

>>>

Test auc score: 0.948843

Fantastic! Our trained model turned out to be a highly accurate
model, showing an AUC of about 95%. Now that we have seen the
evaluation, some visual analytics would be great. What do you think,
guys? Let's plot the fraud score (MSE) distribution for non-fraud
cases. The following code snippet does this:

plt.hist(test_batch_mse[test_y == 0.0], bins =

100)

plt.title("Fraud score (mse) distribution for non-

fraud cases")

plt.xlabel("Fraud score (mse)")

plt.show()

>>>

Figure 20: Fraud score with regard to MSE for non-fraud cases

The preceding screenshot is not understandable, so let's zoom it into
the (0, 30) range and plot the graph again:

Zoom into (0, 30) range

plt.hist(test_batch_mse[(test_y == 0.0) &

(test_batch_mse < 30)], bins = 100)

plt.title("Fraud score (mse) distribution for non-

fraud cases")

plt.xlabel("Fraud score (mse)")

plt.show()

>>>

Figure 21: Fraud score with regard to MSE for non-fraud cases, zoomed in to the (0, 30)
range

Now let's display only the fraud classes:

Display only fraud classes

plt.hist(test_batch_mse[test_y == 1.0], bins =

100)plt.title("Fraud score (mse) distribution for

fraud cases")

plt.xlabel("Fraud score (mse)")

plt.show()

>>>

Figure 22: Fraud score with regard to MSE for fraud cases

Finally, let's show some related statistics. For example, we use 10 as
our detection threshold. Now we can compute the number of
detected cases above the threshold, the number of positive cases
above the threshold, the percentage of accuracy above the threshold
(that is, precision), and compare it to the average percentage of
fraud in the testing set:

threshold = 10

print("Number of detected cases above threshold:

{}, \n\

Number of pos cases only above threshold: {}, \n\

The percentage of accuracy above threshold

(Precision): {:0.2f}%. \n\

Compared to the average percentage of fraud in

test set: 0.132%".format(\

np.sum(test_batch_mse > threshold), \

np.sum(test_y[test_batch_mse > threshold]), \

np.sum(test_y[test_batch_mse > threshold]) /

np.sum(test_batch_mse > threshold) * 100))

>>>

Number of detected cases above threshold: 198,

Number of positive cases only above threshold: 18,

The percentage of accuracy above threshold

(Precision): 9.09%.

Compared to the average percentage of fraud in

test set: 0.132%

To conclude, an autoencoder with just one hidden layer turned out to
be enough (for training, at least) for our case. However, you could
still try to adopt other variants, such as deconvolutional autoencoder
and denoising autoencoder, to solve the same problem.

Summary
In this chapter, we implemented some optimizing networks called
autoencoders. An autoencoder is basically a data compression
network model. It is used to encode a given input into a
representation of smaller dimensions, and then a decoder can be
used to reconstruct the input back from the encoded version. All the
autoencoders we implemented contain an encoding and a decoding
part.

We also saw how to improve the autoencoders' performance by
introducing noise during the network training and building a
denoising autoencoder. Finally, we applied the concepts of CNNs
introduced in Chapter 4, TensorFlow on a Convolutional Neural
Network with the implementation of convolutional autoencoders.

Even when the number of hidden units is large, we can still discover
the interesting and hidden structure of the dataset using
autoencoders by imposing other constraints on the network. In other
words, if we impose a sparsity constraint on the hidden units, then
the autoencoder will still discover interesting structure in the data,
even if the number of hidden units is large. To prove this argument,
we saw a real-life example, credit card fraud analytics, in which we
successfully applied an autoencoder.

A Recurrent Neural Network (RNN) is a class of artificial neural
network where the connections between units form a directed cycle.
RNNs make use of information from the past such as time series
forecasting. That way, they can make predictions about data with
high temporal dependencies. This creates an internal state of the
network, which allows it to exhibit dynamic temporal behavior.

In the next chapter, we'll examine RNNs. We will start by describing
the basic principles of these networks, and then we'll implement
some interesting examples of these architectures.

Chapter 6. Recurrent Neural
Networks
A RNN is a class of ANN where connections between units form a
directed cycle. RNNs make use of information from the past. That
way, they can make predictions in data with high temporal
dependencies. This creates an internal state of the network, which
allows it to exhibit dynamic temporal behavior. In this chapter, we will
develop several real-life predictive models, using RNNs and their
architectural variants, to make predictive analytics easier.

First, we will provide some theoretical background of RNNs. Then
we will look at a few examples that will show a systematic way of
implementing predictive models for image classification, sentiment
analysis of movies, and spam predictions for Natural Language
Processing (NLP).

Then we will show how to develop predictive models for time series
data. Finally, we will see a how to develop a LSTM network for
solving more advanced problems, such as human activity
recognition.

Concisely, the following topics will be covered throughout this
chapter:

Working principles of RNNS
RNNs and the gradient vanishing-exploding problem
LSTM networks
Implementing an RNN for spam prediction
Developing an LSTM predictive model for time series data
An LSTM predictive model for sentiment analysis
Human activity recognition using an LSTM network

Working principles of RNNs

In this section, we will first provide some contextual information
about RNNs. Then we will see some potential drawbacks of the
classical RNN. Finally, we will see an improved variation of RNNs
called LSTM to address the drawbacks.

Human beings do not start thinking from scratch. The human mind
has so-called persistence of memory, the ability to associate the past
with recent information. Traditional neural networks instead ignore
past events. Take the movie scenes classifier as an example; it is not
possible for a neural network to use past scenes to classify current
ones. RNNs were developed to try to solve this problem.

Figure 1: RNNs have loops

In contrast to conventional neural networks, RNNs are networks with
a loop that allows the information to be persistent in a neural
network. In the preceding diagram, with the network A, at some time

t, it receives the input and outputs a value of . So, in the
preceding figure, we think of an RNN as multiple copies of the same
network, each passing a message to a successor.

Now, if we unroll this network, what will we receive? Let's see a

simple but real-life example. Suppose =Monday, =Tuesday,

=Wednesday, and so on. If h stores what you eat, then yesterday's
meal decision would affect what you will eat tomorrow. This can be
explained using the following figure:

Figure 2: An unrolled representation of the same RNN represented in Figure 1

However, the unrolled network does not provide detailed information
about RNNs. An RNN is different from a traditional neural network in
that it introduces a transition weight W to transfer information
between times. RNNs process sequential input one piece at a time,
updating a kind of vector state that contains information about all
past elements of the sequence. The following diagram shows a
neural network that takes a value of X (t) as input, and then outputs
a value Y (t):

Figure 3: An RNN architecture can use the previous states of the network to its advantage

As shown in figure 1, the first half of the neural network is

characterized by the function, and the second half
of the neural network takes the form

. If you prefer, the complete neural networkis

At each time t, when calling the learned model, this architecture does
not take into account any knowledge about the previous runs. It is
like predicting stock market trends by only looking at data from the
current day. A better idea would be to exploit overarching patterns
from a week's worth or a month's worth of data.

Figure 4: An RNN architecture where all the weights in all the layers have to be learned with
time

A more explicit architecture can be found in figure 4, where the
temporally shared weights W2 (for the hidden layer) must be
learned, in addition to W1 (for the input layer)and W3 (for the output
layer).

From a computational point of view, an RNN takes many input
vectors to process and generate output vectors. Imagine that each
rectangle in the following diagram has a vectorial depth and other
special hidden quirks. It can have many forms, such as one-to-one,
one-to-many, and many-to-many.

As it can be seen that a one-to-one architecture would be a standard
feedforward neural network. A many-to-one architecture accepts
time series of feature vectors (one vector per time step) and converts
them to a probability vector at the output for classification:

Figure 5: RNNs can have many forms

Therefore, RNNs can have many forms. In the preceding diagram,
each rectangle is a vector and arrows represent functions (for
example, matrix multiply). Input vectors are in green, output vectors
are in yellow, and blue vectors hold the RNN's state (more on this
soon).

Implementing basic RNNs in
TensorFlow
TensorFlow has tf.contrib.rnn.BasicRNNCell and
tf.nn.rnn_cell.BasicRNNCell, which provide the basic building
blocks of RNNs. However, first let's implement a very simple RNN
model, without using either of these. The idea is to have a better
understanding of what goes on under the hood.

We will create an RNN composed of a layer of five recurrent neurons
using the ReLU activation function. We will assume that the RNN
runs over only two-time steps, taking input vectors of size 3 at each
time step. The following code builds this RNN, unrolled through two-
time steps:

n_inputs = 3

n_neurons = 5

X1 = tf.placeholder(tf.float32, [None, n_inputs])

X2 = tf.placeholder(tf.float32, [None, n_inputs])

Wx = tf.get_variable("Wx", shape=

[n_inputs,n_neurons], dtype=tf.float32,

initializer=None, regularizer=None,

trainable=True, collections=None)

Wy = tf.get_variable("Wy", shape=

[n_neurons,n_neurons], dtype=tf.float32,

initializer=None, regularizer=None,

trainable=True, collections=None)

b = tf.get_variable("b", shape=[1,n_neurons],

dtype=tf.float32, initializer=None,

regularizer=None, trainable=True,

collections=None)

Y1 = tf.nn.relu(tf.matmul(X1, Wx) + b)

Y2 = tf.nn.relu(tf.matmul(Y1, Wy) + tf.matmul(X2,

Wx) + b)

Then we initialize the global variables as follows:

init_op = tf.global_variables_initializer()

This network looks much like a two-layer feedforward neural
network, but both layers share the same weights and bias vectors.
Additionally, we feed inputs at each layer and receive outputs from
each layer.

X1_batch = np.array([[0, 2, 3], [2, 8, 9], [5, 3,

8], [3, 2, 9]]) # t = 0

X2_batch = np.array([[5, 6, 8], [1, 0, 0], [8, 2,

0], [2, 3, 6]]) # t = 1

These mini-batches contain four instances, each with an input
sequence composed of exactly two inputs. At the end, Y1_val and
Y2_val contain the outputs of the network at both time steps for all
neurons and all instances in the mini-batch. Then we create a
TensorFlow session and execute the computational graph as follows:

with tf.Session() as sess:

 init_op.run()

 Y1_val, Y2_val = sess.run([Y1, Y2],

feed_dict={X1: X1_batch, X2: X2_batch})

Finally, we print the result:

print(Y1_val) # output at t = 0

print(Y2_val) # output at t = 1

The following is the output:

>>>

[[0. 0. 0.

2.56200171 1.20286]

 [0. 0. 0.

12.39334488 2.7824254]

 [0. 0. 0.

13.58520699 5.16213894]

 [0. 0. 0.

9.95982838 6.20652485]]

[[0. 0. 0.

14.86255169 6.98305273]

 [0. 0. 26.35326385

0.66462421 18.31009483]

 [5.12617588 4.76199865 20.55905533

11.71787453 18.92538261]

 [0. 0. 19.75175095

3.38827515 15.98449326]]

The network we created is simple, but if you run it over 100 time
steps, for example, the graph is going to be very big. Now, let's look
at how to create the same RNN using TensorFlow's contrib

package. The static_rnn() function creates an unrolled RNN by
chaining cells as follows:

basic_cell =

tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)

output_seqs, states =

tf.contrib.rnn.static_rnn(basic_cell, [X1, X2],

dtype=tf.float32)

Y1, Y2 = output_seqs

init_op = tf.global_variables_initializer()

X1_batch = np.array([[0, 2, 3], [2, 8, 9], [5, 3,

8], [3, 2, 9]]) # t = 0

X2_batch = np.array([[5, 6, 8], [1, 0, 0], [8, 2,

0], [2, 3, 6]]) # t = 1

with tf.Session() as sess: init_op.run()

 Y1_val, Y2_val = sess.run([Y1, Y2], feed_dict=

{X1: X1_batch, X2: X2_batch})

print(Y1_val) # output at t = 0

print(Y2_val) # output at t = 1

The output is as follows:

>>>

[[-0.95058489 0.85824621 0.68384844 -0.55920446

-0.87788445]

 [-0.99997741 0.99928695 0.99601227 -0.98470896

-0.99964565]

 [-0.99321234 0.99998873 0.99999011 -0.83302033

-0.98657602]

 [-0.99771607 0.99999255 0.99997681 -0.74148595

-0.99279612]]

[[-0.99982268 0.99888307 0.999865 -0.98920071

-0.99867421]

 [-0.64704001 -0.87286478 0.34580848 -0.66372067

-0.52697307]

 [0.3253428 0.62628752 0.99945754 -0.887465

-0.17882833]

 [-0.99901992 0.9688856 0.99529684 -0.9469955

-0.99445421]]

However, if we use the static_rnn() function we can still build a
computational graph containing one cell per time step. Now, imagine
that there were 100 time steps; the graph would look very big and
would be difficult to make sense of. To get rid of this problem, the
dynamic_rnn() function provides a dynamic unrolling functionality
over time:

n_inputs = 3

n_neurons = 5

n_steps = 2

X = tf.placeholder(tf.float32, [None, n_steps,

n_inputs])

seq_length = tf.placeholder(tf.int32, [None])

basic_cell =

tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons)

output_seqs, states =

tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

X_batch = np.array([

 [[0, 2, 3], [2, 8, 9]], #

instance 0

 [[5, 6, 8], [0, 0, 0]], #

instance 1 (padded with a zero vector)

 [[6, 7, 8], [6, 5, 4]], #

instance 2

 [[8, 2, 0], [2, 3, 6]], #

instance 3

])

seq_length_batch = np.array([3, 4, 3, 5])

init_op = tf.global_variables_initializer()

with tf.Session() as sess:

 init_op.run()

 outputs_val, states_val =

sess.run([output_seqs, states], feed_dict={X:

X_batch, seq_length: seq_length_batch})

print(outputs_val)

The following is the output of the preceding code:

>>>

[[[0.03708282 0.24521144 -0.65296066 -0.42676723

0.67448044]

 [0.50789726 0.98529315 -0.99976575 -0.84865189

0.96734977]]

 [[0.99343652 0.96998596 -0.99997932 0.59788793

0.00364922]

 [-0.51829755 0.56738734 0.78150493 0.16428296

-0.33302191]]

 [[0.99764818 0.99349713 -0.99999821 0.60863507

-0.02698862]

 [0.99159312 0.99838346 -0.99994278 0.83168954

-0.81424212]]

print(states_val)

>>>

[[0.99968255 0.99266654 -0.99999398 0.99020076

-0.99553883]

 [0.85630441 0.72372746 -0.90620565 0.60570842

0.1554002]]]

[[0.50789726 0.98529315 -0.99976575 -0.84865189

0.96734977]

 [-0.51829755 0.56738734 0.78150493 0.16428296

-0.33302191]

 [0.99159312 0.99838346 -0.99994278 0.83168954

-0.81424212]

 [0.85630441 0.72372746 -0.90620565 0.60570842

0.1554002]]

Now, what happens under the hood? Well, during the
backpropagation, the dynamic_rnn() function uses a while_loop()
operation to run over the cell an appropriate number of times. Then,
the tensor values for each iteration in the forward pass are stored so
that the gradients during the reverse pass can be computed.

As we discussed in earlier chapters, overfitting is a major issue with
RNNs. A dropout layer can help us avoid overfitting. We will see a
user-friendly example of this later in the chapter.

RNN and the long-term dependency
problem
RNNs are very powerful and popular too. However, we often only
need to look at recent information to perform the present task rather
than stored information or information that happened a long time
ago. This happens frequently in NLP for language modeling. Let's
see a common example:

Figure 6: If the gap between the relevant information and the place that it is needed is small,
RNNs can learn to use the past information

Suppose that a language model is trying to predict the next word
based on the previous words. As a human being, if we try to predict
the last word in "the sky is...," without further context it's most likely
the next word that we will predict will be "blue." In such cases, the
gap between the relevant information and the position is small. Thus,
RNNs can learn to use past information easily.

Nevertheless, consider a longer text: "Reza grew up in Bangladesh.
He studied in Korea. He speaks fluent…", we need more context. In
this sentence, the most recent information advises that the next word
would probably be the name of a language: however, if we want to
narrow down which language it is, we need the context of
Bangladesh, from the previous words.

Figure 7: If the gap between the relevant information and the place that it's needed is
bigger, RNNs can't learn to use past information

Here, the gap is larger than the previous example, so an RNN is
unable to learn to connect the information. This is a serious
drawback of RNNs. Here comes the LSTM as the savior. Let's see
some commonly used architectures of RNNs, such as LSTM, bi-
directional RNNs, and GRU, in the next subsection.

Bi-directional RNNs
Bi-directional RNNs are based on the idea that the output at time t
may depend on the previous and future elements in the sequence.
To deal with this, the output of two RNNs must be mixed: one
executes the process in one direction, and the second runs the
process in the opposite direction. The following diagram shows the
basic difference between a regular RNN and a Bi-directional RNN
(BRNN).

A more explicit architecture of a BRNN can be found in the following
diagram, in which the temporally shared weights w2, w3, w4, and
w5 (for the forward and the backward layer) must be learned in
addition to input layer and the output layer:

Figure 8: A BRNN architecture where all the weights in all the layers have to be learned
over time

The unrolled architecture is also a very common implementation of
BRNN. The unrolled architecture of B-RNN is depicted in the
following diagram. The network splits the neurons of a regular RNN
into two directions, one for the positive time direction (forward
states), and another for the negative time direction (backward
states). With this structure, the output layer can get information from
the past and future states, as shown in figure 9:

Figure 9: An unrolled Bi-directional RNN

RNN and the gradient
vanishing-exploding problem
Gradients for deeper layers are calculated as products of many
gradients of activation functions in the multi-layer network. When
those gradients are small or zero, it will easily vanish. On the other
hand, when they are bigger than 1, it will possibly explode. So, it
becomes very hard to calculate and update.

Let's explain them in more detail:

If the weights are small, it can lead to a situation called
vanishing gradients, where the gradient signal gets so small that
learning either becomes very slow or stops working altogether.
This is often referred to as vanishing gradients.
If the weights in this matrix are large, it can lead to a situation
where the gradient signal is so large that it can cause learning to
diverge. This is often referred to as exploding gradients.

Thus, one of the major issues of RNN is the vanishing-exploding
gradient problem, which directly affects performance. In fact, the
backpropagation time rolls out the RNN, creating a very deep feed-
forward neural network. The impossibility of getting a long-term
context from the RNN is due precisely to this phenomenon: if the
gradient vanishes or explodes within a few layers, the network will
not be able to learn high temporal distance relationships between the
data.

The next diagram shows schematically what happens: the computed
and backpropagated gradient tends to decrease (or increase) at
each instant of time and then, after a certain number of instants of
time, the cost function tends to converge to zero (or explode to
infinity).

We can get the exploding gradients by two ways. Since the purpose
of activation function is to control the big changes in the network by

squashing them, the weights we set must be non-negative and large.
When these weights are multiplied along the layers, they cause a
large change in the cost. When our neural network model is learning,
the ultimate goal is to minimize the cost function and change the
weights to reach the optimum cost.

For example, the cost function is the mean squared error. It is a pure
convex function and the aim is to find the underlying cause of that
convex. If your weights increase to a certain big amount, then the
downward moment will increase and we will overshoot the optimum
repeatedly and the model will never learn!

In the preceding figure, we have the following parameters:

 denotes the parameters of the hidden recurrent layer

 denotes the parameter of input to the hidden layer

 denotes the parameter of the output layer

 denotes the activation function of the hidden layer

Input is represented as

The output from the hidden layer as

The final output as for t (timestep)

Note that the preceding diagram denotes the time lapse of the
recurrent neural network model given below. Now if you recall figure
1, the output can be formulated as follows:

Now let E represent the loss at the output layer: . Then the

above three equations tell us that the E depends upon the output

.Output changes with respect to the change in the hidden state of

the layer (). The hidden state of the current timestep () depends

upon the state of the neuron at the previous timestep (). Now the
following equation will clear the concept.

The rate of change of loss with respect to parameters chosen for the
hidden layer = , which is a chain rule that can be formulated
as follows:

(I)

In the preceding equation, the term is not only interesting
but also useful.

(IINow let's consider t = 5 and k = 1 then

(III)

Differentiating equation (II) with respect to () gives us:

(IV)

Now if we combine equation (III) and (IV), we can have the following
result:

In these cases,

also changes with timestep. The above equation shows the
dependency of the current state with respect to the previous states.
Now let's explain the anatomy of those two equations. Say you are
at a timestep five (t = 5), then k will range from one to five (k=1 to 5)
this means you have to calculate k) for the following:

Now come at equation (II), each of the above

. Moreover, it is dependent on the parameter of the recurrent layer

. If your weights get large during training, which they will due to
multiplications in equation (II) for each timestep (I). The problem of
gradient exploding will occur.

To overcome the vanishing-exploding problem, various extensions of
the basic RNN model have been proposed. LSTM networks, which
will be introduced in the next section, are one of these.

LSTM networks
One type of RNN model is LSTM. The precise implementation
details of LSTM are not in the scope of this book. An LSTM is a
special RNN architecture that was originally conceived by Hochreiter
and Schmidhuber in 1997.

This type of neural network has been recently rediscovered in the
context of deep learning because it is free from the problem of
vanishing gradients and offers excellent results and performance.
LSTM-based networks are ideal for the prediction and classification
of temporal sequences and are replacing many traditional
approaches to deep learning.

The name signifies that short-term patterns are not forgotten in the
long term. An LSTM network is composed of cells (LSTM blocks)
linked to each other. Each LSTM block contains three types of the
gate: an input gate, an output gate, and a forget gate, which
implements the functions of writing, reading, and reset on the cell
memory, respectively. These gates are not binary, but analog
(generally managed by a sigmoidal activation function mapped in the
range [0, 1], where 0 indicates total inhibition, and 1 shows total
activation).

If you consider an LSTM cell as a black box, it can be used very
much like a basic cell, except it will perform much better; training will
converge more quickly and it will detect long-term dependencies in
the data. In TensorFlow, you can simply use BasicLSTMCell instead of
BasicRNNCell:

lstm_cell =

tf.nn.rnn_cell.BasicLSTMCell(num_units=n_neurons)

LSTM cells manage two state vectors, and for performance reasons,
they are kept separate by default. You can change this default
behavior by setting state_is_tuple=False when creating
BasicLSTMCell. So, how does an LSTM cell work? The architecture of
a basic LSTM cell is shown in the following diagram:

Figure 11: Block diagram of an LSTM cell

Now, let's see the mathematical notation behind this architecture. If
we don't look at what's inside the LSTM box, the LSTM cell itself
looks exactly like a regular memory cell, except that its state is split

into two vectors, and :

 is a

 as the short-term s

 as the long-term state

Now, let's open the box! The key idea is that the network can learn
the following:

What to store in the long-term state
What to throw away
What to read it

As the long-term traverses the network from left to right, you can
see that it first goes through a forget gate, dropping some memory,
and then it adds some new memory via the addition operation (which

adds the memory that was selected by an input gate). Theresult
is sent straight out, without any further transfo

Therefore, at each time step, some memory is dropped and some
memory is added. Moreover, after the addition operation, the long-
term state is then copied and passed through the tanh function,
which produces outputs in the scale of [-1, +1].

Then the output gate filters the result. This produces the short-term

 (which is equal to the cell's output for this time step). Now,
let's look at where new memories come from and how the gates

work. First, the current input and the previous short-ter are
fed to four different fully connectedThe presence of these gates
allows LSTM cells to remember information for an indefinite period:
in fact, if the input gate is below the activation threshold, the cell will
retain the previous state, and if the current state is enabled, it will be
combined with the input value. As the name suggests, the forget
gate resets the current state of the cell (when its value is cleared to
0), and the output gate decides whether the value of the cell must
be carried out or not.

The following equations are used to do the LSTM computations of a
cell's long-term state, its short-term state, and its output at each time
step for a single instance:

In the preceding equation, , , , and are the weight
matrices of each of the four layers for their connection to the input

vector . On the other hand, , ,

, and

are the weight matrices of each of the four layers for their connection
to the previous short-term state

,

, , and

are the bias terms for each of the four layers. TensorFlow initializes

to a vector full of 1's instead of 0's. This prevents it from forgetting
everything at the beginning of training.

GRU cell
There are many other variants of the LSTM cell. One particularly
popular variant is the Gated Recurrent Unit (GRU) cell. Kyunghyun
Cho and others proposed the GRU cell in a 2014 paper that also
introduced the autoencoder network we mentioned earlier.

Technically, a GRU cell is a simplified version of an LSTM cell where

both the state vectors are merged into a single vector called . A
single gate controller controls both the forget gate and the input gate.
If the gate controller's output is 1, the input gate is open and the
forget gate

Figure 12: A GRU cell

On the other hand, if it's output is 0, the opposite happens.
Whenever a memory must be stored, the location where it will be
stored is erased first, which is actually a frequent variant of the
LSTM cell in and of itself. The second simplification is that since the
full state vector is output at every time step, there is no output gate.
However, a new gate controller controls which part of the previous
state will be shown to the main layer.

The following equations are used to do the GRU computations of a
cell's long-term state, its short-term state, and its output at each time
step for a single instance:

Creating a GRU cell in TensorFlow is straightforward. Here is an
example:

gru_cell =

tf.nn.rnn_cell.GRUCell(num_units=n_neurons)

These simplifications are not a weakness of this type of architecture;
it seems to perform successfully. The LSTM or GRU cells are one of
the main reasons behind the success of RNNs in recent years, in
particular for applications in NLP.

We will see examples of using LSTM in this chapter, but the next
section shows an example of using an RNN for spam/ham text
classification.

Implementing an RNN for spam
prediction
In this section, we will see how to implement an RNN in TensorFlow
to predict spam/ham from texts.

Data description and preprocessing
The popular spam dataset from the UCI ML repository will be used,
which can be downloaded from http://archive.ics.uci.edu/ml/machine-
learning-databases/00228/smssp amcollection.zip.

The dataset contains texts from several emails, some of which were
marked as spam. Here we will train a model that will learn to
distinguish between spam and non-spam emails using only the text
of the email. Let's get started by importing the required libraries and
model:

import os

import re

import io

import requests

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

from zipfile import ZipFile

from tensorflow.python.framework import ops

import warnings

Additionally, we can stop printing the warning produced by
TensorFlow if you want:

warnings.filterwarnings("ignore")

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

ops.reset_default_graph()

Now, let's create the TensorFlow session for the graph:

http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smssp
http://amcollection.zip/

sess = tf.Session()

The next task is to set the RNN parameters:

epochs = 300

batch_size = 250

max_sequence_length = 25

rnn_size = 10

embedding_size = 50

min_word_frequency = 10

learning_rate = 0.0001

dropout_keep_prob = tf.placeholder(tf.float32)

Let's manually download the dataset and store it in a text_data.txt
file in the temp directory. First, we set the path:

data_dir = 'temp'

data_file = 'text_data.txt'

if not os.path.exists(data_dir):

 os.makedirs(data_dir)

Now, we directly download the dataset in zipped format:

if not os.path.isfile(os.path.join(data_dir,

data_file)):

 zip_url =

'http://archive.ics.uci.edu/ml/machine-learning-

databases/00228/smsspamcollection.zip'

 r = requests.get(zip_url)

 z = ZipFile(io.BytesIO(r.content))

 file = z.read('SMSSpamCollection')

We still need to format the data:

 text_data = file.decode()

 text_data =

text_data.encode('ascii',errors='ignore')

 text_data = text_data.decode().split('\n')

Now, store in it the directory mentioned earlier in a text file:

 with open(os.path.join(data_dir, data_file),

'w') as file_conn:

 for text in text_data:

 file_conn.write("{}\n".format(text))

else:

 text_data = []

 with open(os.path.join(data_dir, data_file),

'r') as file_conn:

 for row in file_conn:

 text_data.append(row)

 text_data = text_data[:-1]

Let's split the words that have a word length of at least 2:

text_data = [x.split('\t') for x in text_data if

len(x)>=1]

[text_data_target, text_data_train] = [list(x) for

x in zip(*text_data)]

Now we create a text cleaning function:

def clean_text(text_string):

 text_string = re.sub(r'([^\s\w]|_|[0-9])+',

'', text_string)

 text_string = " ".join(text_string.split())

 text_string = text_string.lower()

 return(text_string)

We call the preceding method to clean the text:

text_data_train = [clean_text(x) for x in

text_data_train]

Now we need to do one of the most important tasks, which is
creating word embedding – changing text into numeric vectors:

vocab_processor =

tf.contrib.learn.preprocessing.VocabularyProcessor

(max_sequence_length,

min_frequency=min_word_frequency)

text_processed =

np.array(list(vocab_processor.fit_transform(text_d

ata_train)))

Now let's shuffle to make the dataset balance:

text_processed = np.array(text_processed)

text_data_target = np.array([1 if x=='ham' else 0

for x in text_data_target])

shuffled_ix =

np.random.permutation(np.arange(len(text_data_targ

et)))

x_shuffled = text_processed[shuffled_ix]

y_shuffled = text_data_target[shuffled_ix]

Now that we have shuffled the data, we can split the data into a
training and testing set:

ix_cutoff = int(len(y_shuffled)*0.75)

x_train, x_test = x_shuffled[:ix_cutoff],

x_shuffled[ix_cutoff:]

y_train, y_test = y_shuffled[:ix_cutoff],

y_shuffled[ix_cutoff:]

vocab_size = len(vocab_processor.vocabulary_)

print("Vocabulary size: {:d}".format(vocab_size))

print("Training set size:

{:d}".format(len(y_train)))

print("Test set size: {:d}".format(len(y_test)))

The following is the output of the preceding code:

>>>

Vocabulary size: 933

Training set size: 4180

Test set size: 1394

Before we start training, let's create placeholders for our TensorFlow
graph:

x_data = tf.placeholder(tf.int32, [None,

max_sequence_length])

y_output = tf.placeholder(tf.int32, [None])

Let's create the embedding:

embedding_mat = tf.get_variable("embedding_mat",

shape=[vocab_size, embedding_size],

dtype=tf.float32, initializer=None,

regularizer=None, trainable=True,

collections=None)

embedding_output =

tf.nn.embedding_lookup(embedding_mat, x_data)

Now it's time to construct our RNN. The following code defines the
RNN cell:

cell = tf.nn.rnn_cell.BasicRNNCell(num_units =

rnn_size)

output, state = tf.nn.dynamic_rnn(cell,

embedding_output, dtype=tf.float32)

output = tf.nn.dropout(output, dropout_keep_prob)

Now let's define the way to get the output from our RNN sequence:

output = tf.transpose(output, [1, 0, 2])

last = tf.gather(output, int(output.get_shape()

[0]) - 1)

Next, we define the weights and the biases for the RNN:

weight = bias = tf.get_variable("weight", shape=

[rnn_size, 2], dtype=tf.float32, initializer=None,

regularizer=None, trainable=True,

collections=None)

bias = tf.get_variable("bias", shape=[2],

dtype=tf.float32, initializer=None,

regularizer=None, trainable=True,

collections=None)

The logits output is then defined. It uses both the weight and the
bias from the preceding code:

logits_out = tf.nn.softmax(tf.matmul(last, weight)

+ bias)

Now we define the losses for each prediction so that later on, they
can contribute to the loss function:

losses =

tf.nn.sparse_softmax_cross_entropy_with_logits_v2(

logits=logits_out, labels=y_output)

We then define the loss function:

loss = tf.reduce_mean(losses)

We now define the accuracy of each prediction:

accuracy =

tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_o

ut, 1), tf.cast(y_output, tf.int64)), tf.float32))

We then create the training_op with RMSPropOptimizer:

optimizer =

tf.train.RMSPropOptimizer(learning_rate)

train_step = optimizer.minimize(loss)

Now let's initialize all the variables using the
global_variables_initializer() method:

init_op = tf.global_variables_initializer()

sess.run(init_op)

Additionally, we can create some empty lists to keep track of the
training loss, testing loss, training accuracy, and the testing accuracy
in each epoch:

train_loss = []

test_loss = []

train_accuracy = []

test_accuracy = []

Now we are ready to perform the training, so let's get started. The
workflow of the training goes as follows:

Shuffle the training data
Select the training set and calculate generations
Run training step for each batch
Run loss and accuracy of training
Run the evaluation steps.

The following codes includes all of the afore-mentioned steps:

 shuffled_ix =

np.random.permutation(np.arange(len(x_train)))

 x_train = x_train[shuffled_ix]

 y_train = y_train[shuffled_ix]

 num_batches = int(len(x_train)/batch_size) + 1

 for i in range(num_batches):

 min_ix = i * batch_size

 max_ix = np.min([len(x_train), ((i+1) *

batch_size)])

 x_train_batch = x_train[min_ix:max_ix]

 y_train_batch = y_train[min_ix:max_ix]

 train_dict = {x_data: x_train_batch,

y_output: \

y_train_batch, dropout_keep_prob:0.5}

 sess.run(train_step, feed_dict=train_dict)

 temp_train_loss, temp_train_acc =

sess.run([loss,\

 accuracy],

feed_dict=train_dict)

 train_loss.append(temp_train_loss)

 train_accuracy.append(temp_train_acc)

 test_dict = {x_data: x_test, y_output: y_test,

\

dropout_keep_prob:1.0}

 temp_test_loss, temp_test_acc =

sess.run([loss, accuracy], \

 feed_dict=test_dict)

 test_loss.append(temp_test_loss)

 test_accuracy.append(temp_test_acc)

 print('Epoch: {}, Test Loss: {:.2}, Test Acc:

{:.2}'.format(epoch+1, temp_test_loss,

temp_test_acc))

print('\nOverall accuracy on test set (%):

{}'.format(np.mean(temp_test_acc)*100.0))

The following is the output of the preceding code:

>>>

Epoch: 1, Test Loss: 0.68, Test Acc: 0.82

Epoch: 2, Test Loss: 0.68, Test Acc: 0.82

Epoch: 3, Test Loss: 0.67, Test Acc: 0.82

…

Epoch: 997, Test Loss: 0.36, Test Acc: 0.96

Epoch: 998, Test Loss: 0.36, Test Acc: 0.96

Epoch: 999, Test Loss: 0.35, Test Acc: 0.96

Epoch: 1000, Test Loss: 0.35, Test Acc: 0.96

Overall accuracy on test set (%):

96.19799256324768

Well done! The accuracy of the RNN is above 96%, which is
outstanding. Now let's observe how the loss propagates across each
iteration and over time:

epoch_seq = np.arange(1, epochs+1)

plt.plot(epoch_seq, train_loss, 'k--',

label='Train Set')

plt.plot(epoch_seq, test_loss, 'r-', label='Test

Set')

plt.title('RNN training/test loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend(loc='upper left')

plt.show()

Figure 13: a) RNN training and test loss per epoch b) test accuracy per epoch

We also plot the accuracy over time:

plt.plot(epoch_seq, train_accuracy, 'k--',

label='Train Set')

plt.plot(epoch_seq, test_accuracy, 'r-',

label='Test Set')

plt.title('Test accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend(loc='upper left')

plt.show()

The next application uses time series data for predictive modeling.
We will also see how to develop more complex RNNs called LSTM
networks.

Developing a predictive model
for time series data
RNNs, specifically LSTM models, is often a difficult topic to
understand. Time series prediction is a useful application of RNNs
because of temporal dependencies in the data. Time series data is
abundantly available online. In this section, we will see an example
of using an LSTM for handling time series data. Our LSTM network
will be able to predict the number of airline passengers in the future.

Description of the dataset
The dataset that I will be using is data about international airline
passengers from 1949 to 1960. The dataset can be downloaded
from https://datamarket.com/data/set/22u3/international-
airlinepassengers- monthly-totals-in#!ds=22u3&display=line. The
following screenshot shows the metadata of the international airline
passengers:

https://datamarket.com/data/set/22u3/international-airlinepassengers-%20monthly-totals-in#!ds=22u3&display=line

Figure 14: Metadata of the international airline passengers (source:
https://datamarket.com/)

You can download the data by choosing the Export tab and then
selecting CSV (,) in the Export group. You will have to edit the CSV
file manually to remove the header line, as well as the additional
footer line. I have downloaded and saved the data file named
international-airline-passengers.csv. The following graph is a nice
plot of the time series data:

Figure 15: International airline passengers: monthly totals in thousands from Jan 49 – Dec
60

Pre-processing and exploratory
analysis
Now let's load the original dataset and see some facts. At first, we
load the time series as follows (see time_series_preprocessor.py):

import csv

import numpy as np

https://datamarket.com/

Here, we can see the signature of load_series(), which is a user-
defined method that loads the time series and normalizes it:

def load_series(filename, series_idx=1):

 try:

 with open(filename) as csvfile:

 csvreader = csv.reader(csvfile)

 data = [float(row[series_idx]) for row

in csvreader if len(row) > 0]

 normalized_data = (data -

np.mean(data)) / np.std(data)

 return normalized_data

 except IOError:

 Print("Error occurred")

 return None

Now let's invoke the preceding method to load the time series and
print (issue $ python3 plot_time_series.py on Terminal) the number
of series in the dataset:

import csv

import numpy as np

import matplotlib.pyplot as plt

import time_series_preprocessor as tsp

timeseries = tsp.load_series('international-

airline-passengers.csv')

print(timeseries)

The following is the output of the preceding code:

>>>

[-1.40777884 -1.35759023 -1.24048348 -1.26557778

-1.33249593 -1.21538918

 -1.10664719 -1.10664719 -1.20702441 -1.34922546

-1.47469699 -1.35759023

…..

 2.85825285 2.72441656 1.9046693 1.5115252

0.91762667 1.26894693]

print(np.shape(timeseries))

>>>

144

That means there are 144 entries in the time series. Let's plot the
time series:

plt.figure()

plt.plot(timeseries)

plt.title('Normalized time series')

plt.xlabel('ID')

plt.ylabel('Normalized value')

plt.legend(loc='upper left')

plt.show()

The following is the output of the preceding code:

>>>

Figure 16: Time series (y-axis, normalized value versus x-axis, ID)

Once we have loaded the time series dataset, the next task is to
prepare the training set. Since we will be evaluating the model
multiple times to predict future values, we will split the data into
training and testing. To be more specific, the split_data() function
divides the dataset into two components for training and testing, 75%
for training and 25% for testing:

def split_data(data, percent_train):

 num_rows = len(data)

 train_data, test_data = [], []

 for idx, row in enumerate(data):

 if idx < num_rows * percent_train:

 train_data.append(row)

 else:

 test_data.append(row)

 return train_data, test_data

LSTM predictive model
Once we have our dataset ready, we can train the predictor by
loading the data in an acceptable format. For this step, I have written
a Python script called TimeSeriesPredictor.py, which starts by
importing the necessary library and modules (issue $ python3

TimeSeriesPredictor.py command on Terminal for this script):

import numpy as np

import tensorflow as tf

from tensorflow.python.ops import rnn, rnn_cell

import time_series_preprocessor as tsp

import matplotlib.pyplot as plt

Next, we define the hyperparameters for the LSTM network (tune it
accordingly):

input_dim = 1

seq_size = 5

hidden_dim = 5

We now define the weight variables (no biases) and input
placeholders:

W_out = tf.get_variable("W_out", shape=

[hidden_dim, 1], dtype=tf.float32,

initializer=None, regularizer=None,

trainable=True, collections=None)

b_out = tf.get_variable("b_out", shape=[1],

dtype=tf.float32, initializer=None,

regularizer=None, trainable=True,

collections=None)

x = tf.placeholder(tf.float32, [None, seq_size,

input_dim])

y = tf.placeholder(tf.float32, [None, seq_size])

The next task is to construct the LSTM network. The following
method, LSTM_Model(), takes three parameters, as follows:

x: Inputs of size [T, batch_size, input_size]
W: A matrix of fully-connected output layer weights
b: A vector of fully-connected output layer biases

Now let's see the signature of the method:

def LSTM_Model():

 cell = rnn_cell.BasicLSTMCell(hidden_dim)

 outputs, states = rnn.dynamic_rnn(cell, x,

dtype=tf.float32)

 num_examples = tf.shape(x)[0]

 W_repeated = tf.tile(tf.expand_dims(W_out,

0), [num_examples, 1, 1])

 out = tf.matmul(outputs, W_repeated) +

b_out

 out = tf.squeeze(out)

 return out

Additionally, we create three empty lists to store the training loss,
test loss, and the step:

train_loss = []

test_loss = []

step_list = []

The next method, called train(), is used to train the LSTM network:

def trainNetwork(train_x, train_y, test_x,

test_y):

 with tf.Session() as sess:

tf.get_variable_scope().reuse_variables()

sess.run(tf.global_variables_initializer())

 max_patience = 3

 patience = max_patience

 min_test_err = float('inf')

 step = 0

 while patience > 0:

 _, train_err = sess.run([train_op,

cost], feed_dict={x: train_x, y: train_y})

 if step % 100 == 0:

 test_err = sess.run(cost,

feed_dict={x: test_x, y: test_y})

 print('step: {}\t\ttrain err:

{}\t\ttest err: {}'.format(step, train_err,

test_err))

 train_loss.append(train_err)

 test_loss.append(test_err)

 step_list.append(step)

 if test_err < min_test_err:

 min_test_err = test_err

 patience = max_patience

 else:

 patience -= 1

 step += 1

 save_path = saver.save(sess,

'model.ckpt')

 print('Model saved to

{}'.format(save_path))

The next task is to create the cost optimizer and instantiate
training_op:

cost = tf.reduce_mean(tf.square(LSTM_Model()- y))

train_op =

tf.train.AdamOptimizer(learning_rate=0.003).minimi

ze(cost)

Additionally, here we have an auxiliary op called saving the model:

saver = tf.train.Saver()

Now that we have created the model, the next method, called
testLSTM(), is used to test the prediction power of the model on the
test set:

def testLSTM(sess, test_x):

 tf.get_variable_scope().reuse_variables()

 saver.restore(sess, 'model.ckpt')

 output = sess.run(LSTM_Model(), feed_dict=

{x: test_x})

 return output

To plot the predicted results, we have a function called
plot_results(). The signature is as follows:

def plot_results(train_x, predictions, actual,

filename):

 plt.figure()

 num_train = len(train_x)

 plt.plot(list(range(num_train)), train_x,

color='b', label='training data')

 plt.plot(list(range(num_train, num_train +

len(predictions))), predictions, color='r',

label='predicted')

 plt.plot(list(range(num_train, num_train +

len(actual))), actual, color='g', label='test

data')

 plt.legend()

 if filename is not None:

 plt.savefig(filename)

 else:

 plt.show()

Model evaluation
To evaluate the model, we have a method called main() that actually
invokes the preceding methods to create and train the LSTM
network. The workflow of the code is as following:

1. Load the data
2. Slide a window through the time series data to construct the

training dataset

3. Do the same window sliding strategy to construct the test
dataset

4. Train a model on the training dataset
5. Visualize the model's performance

Let's see the signature of the method:

def main():

 data = tsp.load_series('international-airline-

passengers.csv')

 train_data, actual_vals =

tsp.split_data(data=data, percent_train=0.75)

 train_x, train_y = [], []

 for i in range(len(train_data) - seq_size -

1):

train_x.append(np.expand_dims(train_data[i:i+seq_s

ize], axis=1).tolist())

train_y.append(train_data[i+1:i+seq_size+1])

 test_x, test_y = [], []

 for i in range(len(actual_vals) - seq_size -

1):

test_x.append(np.expand_dims(actual_vals[i:i+seq_s

ize], axis=1).tolist())

test_y.append(actual_vals[i+1:i+seq_size+1])

 trainNetwork(train_x, train_y, test_x, test_y)

 with tf.Session() as sess:

 predicted_vals = testLSTM(sess, test_x)

[:,0]

 # Following prediction results of the

model given ground truth values

 plot_results(train_data, predicted_vals,

actual_vals, 'ground_truth_predition.png')

 prev_seq = train_x[-1]

 predicted_vals = []

 for i in range(1000):

 next_seq = testLSTM(sess, [prev_seq])

 predicted_vals.append(next_seq[-1])

 prev_seq = np.vstack((prev_seq[1:],

next_seq[-1]))

 # Following predictions results where only

the training data was given

 plot_results(train_data, predicted_vals,

actual_vals, 'prediction_on_train_set.png')

>>>

Finally, we call the main() method to perform the training. Once the
training is completed, it further plots the prediction results of the
model consisting of ground truth values versus predictions results,
where only the training data was given:

>>>

Figure 17: The results of the model on the ground truth values

The next graph shows the prediction results on the training data.
This procedure has less information available, but it still did a good
job of matching the trends in the data:

Figure 18: The results of the model on the training set

The following method helps us plot the training and the test error:

def plot_error():

 # Plot training loss over time

 plt.plot(step_list, train_loss, 'r--',

label='LSTM training loss per iteration',

linewidth=4)

 plt.title('LSTM training loss per iteration')

 plt.xlabel('Iteration')

 plt.ylabel('Training loss')

 plt.legend(loc='upper right')

 plt.show()

 # Plot test loss over time

 plt.plot(step_list, test_loss, 'r--',

label='LSTM test loss per iteration', linewidth=4)

 plt.title('LSTM test loss per iteration')

 plt.xlabel('Iteration')

 plt.ylabel('Test loss')

 plt.legend(loc='upper left')

 plt.show()

Now we call the preceding method as follows:

plot_error()

>>>

Figure 19: a) LSTM training loss per iteration, b) LSTM test loss per iteration

We can use a time series predictor to reproduce realistic fluctuations
in data. Now you can prepare your own dataset and do some other
predictive analytics. The next example is about sentiment analysis
from the product and movie review dataset. We will also see how to
develop a more complex RNN using an LSTM network.

An LSTM predictive model for
sentiment analysis
Sentiment analysis is one of the most widely used tasks in NLP. An
LSTM network can be used to classify short texts into desired
categories, a classification problem. For example, a set of tweets
can be categorized as either positive or negative. In this section, we
will see such an example.

Network design
The implemented LSTM network will have three layers: an
embedding layer, an RNN layer, and a softmax layer. A high-level
view of this can be seen in the following diagram. Here, I summarize
the functionalities of all of the layers:

Embedding layer: We will see an example in Chapter 8,
Advanced TensorFlow Programming that shows that text
datasets cannot be fed to Deep Neural Networks (DNNs)
directly, so an additional layer called an embedding layer is
required. For this layer, we transform each input, which is a
tensor of k words, into a tensor of k N-dimensional vectors. This
is called word embedding, where N is the embedding size.
Every word will be associated with a vector of weights that
needs to be learned during the training process. You can gain
more insight into word embedding at vector representations of
words.
RNN layer: Once we have constructed the embedding layer,
there will be a new layer called the RNN layer, which is made
out of LSTM cells with a dropout wrapper. LSTM weights need
to be learned during the training process, as described in the
previous sections. The RNN layer is unrolled dynamically (as
shown in figure 4), taking k word embeddings as input and
outputting k M-dimensional vectors, where M is the hidden size
of the LSTM cells.

Softmax or sigmoid layer: The RNN layer's output is averaged
across k time steps, obtaining a single tensor of size M. Finally,
a softmax layer, for example, is used to compute classification
probabilities.

Figure 20: The high-level view of the LSTM network for sentiment analysis

We will see later how cross-entropy can be used as the loss
function, and RMSProp is the optimizer that minimizes it.

LSTM model training
The UMICH SI650 – sentiment classification dataset (with
duplication removed) contains data about product and movie reviews
donated by the University of Michigan can be downloaded from
https://inclass.kaggle.com/c/si650winter11/data. Unwanted or special
characters have been cleaned, before getting, the tokens (see the
data.csv file).

The following script also removes stop words (see
data_preparation.py). Some samples are given that are labeled as
either negative or positive (1 is positive and 0 is negative):

Sentiment SentimentText

1 The Da Vinci Code book is just awesome.

1 I liked the Da Vinci Code a lot.

0 OMG, I HATE BROKEBACK MOUNTAIN.

0 I hate Harry Potter.

Table 1: A sample of the sentiment dataset

Now, let's see a step-by-step example of training the LSTM network
for this task. At first, we import the necessary modules and packages
(execute the train.py file):

https://inclass.kaggle.com/c/si650winter11/data/

from data_preparation import Preprocessing

from lstm_network import LSTM_RNN_Network

import tensorflow as tf

import pickle

import datetime

import time

import os

import matplotlib.pyplot as plt

In the preceding import declarations, data_preparation and
lstm_network are two helper Python scripts that are used for dataset
preparation and network design. We will see more details later
shortly. Now let's define parameters for the LSTM:

data_dir = 'data/' # Data directory containing

'data.csv'

stopwords_file = 'data/stopwords.txt' # Path to

stopwords file

n_samples= None # Set n_samples=None to use the

whole dataset

Directory where TensorFlow summaries will be

stored'

summaries_dir= 'logs/'

batch_size = 100 #Batch size

train_steps = 1000 #Number of training steps

hidden_size= 75 # Hidden size of LSTM layer

embedding_size = 75 # Size of embeddings layer

learning_rate = 0.01

test_size = 0.2

dropout_keep_prob = 0.5 # Dropout keep-probability

sequence_len = None # Maximum sequence length

validate_every = 100 # Step frequency to validate

I believe the preceding parameters are self-explanatory. The next
task is to prepare summaries to be used by the TensorBoard:

summaries_dir = '{0}/{1}'.format(summaries_dir,

datetime.datetime.now().strftime('%d_%b_%Y-

%H_%M_%S'))

train_writer = tf.summary.FileWriter(summaries_dir

+ '/train')

validation_writer =

tf.summary.FileWriter(summaries_dir +

'/validation')

Now let's prepare the model directory:

model_name = str(int(time.time()))

model_dir = '{0}/{1}'.format(checkpoints_root,

model_name)

if not os.path.exists(model_dir):

 os.makedirs(model_dir)

Next, let's prepare the data and build a TensorFlow graph (see the
data_preparation.py file):

data_lstm = Preprocessing(data_dir=data_dir,

 stopwords_file=stopwords_file,

 sequence_len=sequence_len,

 test_size=test_size,

 val_samples=batch_size,

 n_samples=n_samples,

 random_state=100)

In the preceding code segment, Preprocessing is a class continuing
(see data_preparation.py for detail) several function and constructor
that help us pre-process the training and testing set in order to train
the LSTM network. Here, I have provided the code for each function
and its functionality.

The constructor of this class initializes the data pre-processor. This
class provides an interface to load, pre-process, and split the data
into training, validation, and testing sets. It takes the following
parameters:

data_dir: A data directory containing the dataset file, data.csv,
with columns called SentimentText and Sentiment.
stopwords_file: Optional. If provided, it discards each stop word
from the original data.
sequence_len: Optional. If m is the maximum sequence length in
the dataset, it's required that sequence_len >= m. If sequence_len
is None, then it'll be automatically assigned to m.

n_samples: Optional. It's the number of samples to load from the
dataset (which is useful for large datasets). If n_samples is None,
then the whole dataset will be loaded (be careful; if the dataset
is large it may take a while to pre-process every sample).
test_size: Optional. 0<test_size<1. It represents the proportion
of the dataset to include in the testing set (the default is 0.2).
val_samples: Optional but can be used to represent the absolute
number of validations samples (the default is 100).
random_state: This is an optional parameter for the random seed
used for splitting data into training, testing, and validation sets
(the default is 0).
ensure_preprocessed: Optional. If ensure_preprocessed=True, it
ensures that the dataset is already pre-processed (the default is
False).

The code for the constructor is as follows:

def __init__(self, data_dir, stopwords_file=None,

sequence_len=None, n_samples=None, test_size=0.2,

val_samples=100, random_state=0,

ensure_preprocessed=False):

 self._stopwords_file = stopwords_file

 self._n_samples = n_samples

 self.sequence_len = sequence_len

 self._input_file = os.path.join(data_dir,

'data.csv')

self._preprocessed_file=os.path.join(data_dir,"pre

processed_"+str(n_samples)+ ".npz")

 self._vocab_file =

os.path.join(data_dir,"vocab_" + str(n_samples) +

".pkl")

 self._tensors = None

 self._sentiments = None

 self._lengths = None

 self._vocab = None

 self.vocab_size = None

 # Prepare data

 if

os.path.exists(self._preprocessed_file)and

os.path.exists(self._vocab_file):

 print('Loading preprocessed files

...')

 self.__load_preprocessed()

 else:

 if ensure_preprocessed:

 raise ValueError('Unable to

findpreprocessed files.')

 print('Reading data ...')

 self.__preprocess()

 # Split data in train, validation and test

sets

 indices = np.arange(len(self._sentiments))

 x_tv, self._x_test, y_tv,

self._y_test,tv_indices, test_indices =

train_test_split(

 self._tensors,

 self._sentiments,

 indices,

 test_size=test_size,

 random_state=random_state,

 stratify=self._sentiments[:, 0])

self._x_train,self._x_val,self._y_train,self._y_va

l,train_indices,val_indices=

train_test_split(x_tv, y_tv, tv_indices,

test_size=val_samples,random_state = random_state,

 stratify=y_tv[:, 0])

 self._val_indices = val_indices

 self._test_indices = test_indices

 self._train_lengths =

self._lengths[train_indices]

 self._val_lengths =

self._lengths[val_indices]

 self._test_lengths =

self._lengths[test_indices]

 self._current_index = 0

 self._epoch_completed = 0

Now let's see the signature of the preceding method. We start with
the _preprocess() method, which loads data from data_dir/data.csv,
pre-processes each sample loaded, and stores intermediate files to
avoid pre-processing later. The workflow is as follows:

1. Load the data
2. Clean the sample text
3. Prepare the vocabulary dictionary

4. Remove the most uncommon words (they are probably
grammar mistakes), encode the samples into tensors, and pad
each tensor with zeros according to sequence_len

5. Save intermediate files
6. Store sample lengths for future use

Now let's take a look at the following code block, which represents
the preceding workflow:

def __preprocess(self):

 data = pd.read_csv(self._input_file,

nrows=self._n_samples)

 self._sentiments =

np.squeeze(data.as_matrix(columns=['Sentiment']))

 self._sentiments = np.eye(2)[self._sentiments]

 samples = data.as_matrix(columns=

['SentimentText'])[:, 0]

 samples = self.__clean_samples(samples)

 vocab = dict()

 vocab[''] = (0, len(samples)) # add empty

word

 for sample in samples:

 sample_words = sample.split()

 for word in list(set(sample_words)): #

distinct words

 value = vocab.get(word)

 if value is None:

 vocab[word] = (-1, 1)

 else:

 encoding, count = value

 vocab[word] = (-1, count + 1)

 sample_lengths = []

 tensors = []

 word_count = 1

 for sample in samples:

 sample_words = sample.split()

 encoded_sample = []

 for word in list(set(sample_words)): #

distinct words

 value = vocab.get(word)

 if value is not None:

 encoding, count = value

 if count / len(samples) >

0.0001:

 if encoding == -1:

 encoding = word_count

 vocab[word] = (encoding,

count)

 word_count += 1

 encoded_sample += [encoding]

 else:

 del vocab[word]

 tensors += [encoded_sample]

 sample_lengths += [len(encoded_sample)]

 self.vocab_size = len(vocab)

 self._vocab = vocab

 self._lengths = np.array(sample_lengths)

 self.sequence_len, self._tensors =

self.__apply_to_zeros(tensors, self.sequence_len)

 with open(self._vocab_file, 'wb') as f:

 pickle.dump(self._vocab, f)

 np.savez(self._preprocessed_file,

tensors=self._tensors, lengths=self._lengths,

sentiments=self._sentiments)

Next, we invoke the preceding method and load the intermediate
files, avoiding data pre-processing:

def __load_preprocessed(self):

 with open(self._vocab_file, 'rb') as f:

 self._vocab = pickle.load(f)

 self.vocab_size = len(self._vocab)

 load_dict = np.load(self._preprocessed_file)

 self._lengths = load_dict['lengths']

 self._tensors = load_dict['tensors']

 self._sentiments = load_dict['sentiments']

 self.sequence_len = len(self._tensors[0])

Once we have the pre-processed dataset, the next task is to clean
the samples. The workflow is as follows:

1. Prepare regex patterns.
2. Clean each sample.
3. Restore HTML characters.
4. Remove @users and URLs.
5. Transform to lowercase.
6. Remove punctuation symbols.

7. Replace CC(C+) (a character occurring more than twice in a
row) with C.

8. Remove stop words.

Now let's write the above steps programatically. For this, we have
the following function:

def __clean_samples(self, samples):

 print('Cleaning samples ...')

 ret = []

 reg_punct = '[' +

re.escape(''.join(string.punctuation)) + ']'

 if self._stopwords_file is not None:

 stopwords = self.__read_stopwords()

 sw_pattern = re.compile(r'\b(' +

'|'.join(stopwords) + r')\b')

 for sample in samples:

 text = html.unescape(sample)

 words = text.split()

 words = [word for word in words if not

word.startswith('@') and not

word.startswith('http://')]

 text = ' '.join(words)

 text = text.lower()

 text = re.sub(reg_punct, ' ', text)

 text = re.sub(r'([a-z])\1{2,}', r'\1',

text)

 if stopwords is not None:

 text = sw_pattern.sub('', text)

 ret += [text]

 return ret

The __apply_to_zeros() method returns the padding_length used
and a NumPy array of padded tensors. First, it finds the maximum
length, m, and ensures that m>=sequence_len. Then it pads the list with
zeros according to sequence_len:

def __apply_to_zeros(self, lst,

sequence_len=None):

 inner_max_len = max(map(len, lst))

 if sequence_len is not None:

 if inner_max_len > sequence_len:

 raise Exception('Error: Provided

sequence length is not sufficient')

 else:

 inner_max_len = sequence_len

result = np.zeros([len(lst), inner_max_len],

np.int32)

for i, row in enumerate(lst):

 for j, val in enumerate(row):

 result[i][j] = val

return inner_max_len, result

The next task is to remove all the stop words (which are provided in
the data/StopWords.txt file). This method returns the stop words
list:

def __read_stopwords(self):

 if self._stopwords_file is None:

 return None

 with open(self._stopwords_file, mode='r') as

f:

 stopwords = f.read().splitlines()

 return stopwords

The next_batch() method takes batch_size>0 as the number of
samples that'll be included, returns batch size samples (text_tensor,
text_target, text_length) after completing the epoch, and randomly
shuffles the training samples:

def next_batch(self, batch_size):

 start = self._current_index

 self._current_index += batch_size

 if self._current_index > len(self._y_train):

 self._epoch_completed += 1

 ind = np.arange(len(self._y_train))

 np.random.shuffle(ind)

 self._x_train = self._x_train[ind]

 self._y_train = self._y_train[ind]

 self._train_lengths =

self._train_lengths[ind]

 start = 0

 self._current_index = batch_size

 end = self._current_index

 return self._x_train[start:end],

self._y_train[start:end],

self._train_lengths[start:end]

The next method, called get_val_data(), is then used to get the
validation set to be used during the training period. It takes the
original text and returns the validation data. By default, it returns the
original_text (original_samples, text_tensor, text_target,
text_length), or otherwise returns text_tensor, text_target,
text_length:

def get_val_data(self, original_text=False):

 if original_text:

 data = pd.read_csv(self._input_file,

nrows=self._n_samples)

 samples = data.as_matrix(columns=

['SentimentText'])[:, 0]

 return samples[self._val_indices],

self._x_val, self._y_val, self._val_lengths

 return self._x_val, self._y_val,

self._val_lengths

Finally, we have an additional method called get_test_data(), which
is used to prepare the testing set that will be used during the model
evaluation period:

 def get_test_data(self, original_text=False):

 if original_text:

 data = pd.read_csv(self._input_file,

nrows=self._n_samples)

 samples = data.as_matrix(columns=

['SentimentText'])[:, 0]

 return samples[self._test_indices],

self._x_test, self._y_test, self._test_lengths

 return self._x_test, self._y_test,

self._test_lengths

Now we prepare the data so that the LSTM network can feed it:

lstm_model = LSTM_RNN_Network(hidden_size=

[hidden_size],

vocab_size=data_lstm.vocab_size,

embedding_size=embedding_size,

max_length=data_lstm.sequence_len,

learning_rate=learning_rate)

In the preceding code segment, LSTM_RNN_Network is a class
containing several functions and constructors that help us create the
LSTM network. The upcoming constructor builds a TensorFlow
LSTM model. It takes the following parameters:

hidden_size: An array holding the number of units in an LSTM
cell of rnn layers
vocab_size: The vocabulary size in the sample
embedding_size: Words will be encoded using a vector of this
size
max_length: The maximum length of an input tensor
n_classes: The number of classification classes
learning_rate: The learning rate of the RMSProp algorithm
random_state: The random state for dropout

The code for the constructor is as follows:

def __init__(self, hidden_size, vocab_size,

embedding_size, max_length, n_classes=2,

learning_rate=0.01, random_state=None):

 # Build TensorFlow graph

 self.input = self.__input(max_length)

 self.seq_len = self.__seq_len()

 self.target = self.__target(n_classes)

 self.dropout_keep_prob =

self.__dropout_keep_prob()

 self.word_embeddings =

self.__word_embeddings(self.input, vocab_size,

embedding_size, random_state)

 self.scores =

self.__scores(self.word_embeddings, self.seq_len,

hidden_size, n_classes, self.dropout_keep_prob,

 random_state)

 self.predict = self.__predict(self.scores)

 self.losses = self.__losses(self.scores,

self.target)

 self.loss = self.__loss(self.losses)

 self.train_step =

self.__train_step(learning_rate, self.loss)

 self.accuracy =

self.__accuracy(self.predict, self.target)

 self.merged = tf.summary.merge_all()

The next function is called _input(), and it takes a parameter called
param max_length, which is the maximum length of an input tensor. It
then returns an input placeholder with the shape [batch_size,
max_length] for the TensorFlow computation:

 def __input(self, max_length):

 return tf.placeholder(tf.int32, [None,

max_length], name='input')

Next, the _seq_len() function returns a sequence length placeholder
with the shape [batch_size]. It holds each tensor's real length in a
given batch, allowing a dynamic sequence length:

def __seq_len(self):

 return tf.placeholder(tf.int32, [None],

name='lengths')

The next function is called _target(). It takes a parameter called
param n_classes, which contains the number of classification
classes. Finally, it returns the target placeholder with the shape
[batch_size, n_classes]:

def __target(self, n_classes):

 return tf.placeholder(tf.float32, [None,

n_classes], name='target')

_dropout_keep_prob() returns a placeholder holding the dropout
keep probability to reduce the overfitting:

def __dropout_keep_prob(self):

 return tf.placeholder(tf.float32,

name='dropout_keep_prob')

The _cell() method is used to build a LSTM cell with a dropout
wrapper. It takes the following parameters:

hidden_size: It is the number of units in the LSTM cell
dropout_keep_prob: This indicates the tensor holding the dropout
keep probability
seed: It is an optional value that ensures the reproducibility of
the computation for the random state for the dropout wrapper.

Finally, it returns an LSTM cell with a dropout wrapper:

def __cell(self, hidden_size, dropout_keep_prob,

seed=None):

 lstm_cell =

tf.nn.rnn_cell.LSTMCell(hidden_size,

state_is_tuple=True)

 dropout_cell =

tf.nn.rnn_cell.DropoutWrapper(lstm_cell,

input_keep_prob=dropout_keep_prob,

output_keep_prob = dropout_keep_prob, seed=seed)

 return dropout_cell

Once we have created the LSTM cells, we can create the
embedding of the input tokens. For this, __word_embeddings() does
the trick. It builds an embedding layer with the shape [vocab_size,
embedding_size], with input parameters such as x, which is the input
with the shape [batch_size, max_length]. The vocab_size is the
vocabulary size, that is, the number of possible words that may
appear in a sample. The embedding_size is the words that will be
represented using a vector of this size and seed is optional, but it
ensures the random state for the embedding initialization.

Finally, it returns the embedding lookup tensor with the shape
[batch_size, max_length, embedding_size]:

def __word_embeddings(self, x, vocab_size,

embedding_size, seed=None):

 with tf.name_scope('word_embeddings'):

 embeddings =

tf.get_variable("embeddings",shape=[vocab_size,

embedding_size], dtype=tf.float32,

initializer=None, regularizer=None,

trainable=True, collections=None)

 embedded_words =

tf.nn.embedding_lookup(embeddings, x)

 return embedded_words

The __rnn_layer () method creates the LSTM layer. It takes several
input parameters, which are described here:

hidden_size: This is the number of units in the LSTM cell
x: This is the input with shape
seq_len: This is the sequence length tensor with shape
dropout_keep_prob: This is the tensor holding the dropout keep
probability
variable_scope: This is the name of the variable scope (the
default layer is rnn_layer)
random_state: This is the random state for the dropout wrapper

Finally, it returns the outputs with the shape [batch_size,

max_seq_len, hidden_size]:

def __rnn_layer(self, hidden_size, x, seq_len,

dropout_keep_prob, variable_scope=None,

random_state=None):

 with tf.variable_scope(variable_scope,

default_name='rnn_layer'):

 lstm_cell = self.__cell(hidden_size,

dropout_keep_prob, random_state)

 outputs, _ = tf.nn.dynamic_rnn(lstm_cell,

x, dtype=tf.float32, sequence_length=seq_len)

 return outputs

The _score() method is used to compute the network output. It takes
several input parameters, as follows:

embedded_words: This is the embedding lookup tensor with the
shape [batch_size, max_length, embedding_size]
seq_len: This is the sequence length tensor with the shape
[batch_size]

hidden_size: This is an array holding the number of units in the
LSTM cell in each RNN layer
n_classes: This is the number of classification classes

dropout_keep_prob: This is the tensor holding the dropout keep
probability
random_state: This is an optional parameter, but it can be used
to ensure the random state for the dropout wrapper

Finally, the _score() method returns the linear activation of each
class with the shape [batch_size, n_classes]:

def __scores(self, embedded_words, seq_len,

hidden_size, n_classes, dropout_keep_prob,

random_state=None):

 outputs = embedded_words

 for h in hidden_size:

 outputs = self.__rnn_layer(h, outputs,

seq_len, dropout_keep_prob)

 outputs = tf.reduce_mean(outputs, axis=[1])

 with tf.name_scope('final_layer/weights'):

 w = tf.get_variable("w", shape=

[hidden_size[-1], n_classes], dtype=tf.float32,

initializer=None, regularizer=None,

trainable=True, collections=None)

 self.variable_summaries(w,

'final_layer/weights')

 with tf.name_scope('final_layer/biases'):

 b = tf.get_variable("b", shape=

[n_classes], dtype=tf.float32, initializer=None,

regularizer=None,trainable=True, collections=None)

 self.variable_summaries(b,

'final_layer/biases')

 with

tf.name_scope('final_layer/wx_plus_b'):

 scores = tf.nn.xw_plus_b(outputs, w,

b, name='scores')

tf.summary.histogram('final_layer/wx_plus_b',

scores)

 return scores

The _predict() method takes scores as the linear activation of each
class with the shape [batch_size, n_classes] and returns softmax
(to normalize the score in a scale of [0, 1]) activations with the
shape [batch_size, n_classes]:

def __predict(self, scores):

 with tf.name_scope('final_layer/softmax'):

 softmax = tf.nn.softmax(scores,

name='predictions')

tf.summary.histogram('final_layer/softmax',

softmax)

 return softmax

The _losses() method returns the cross-entropy losses (since
softmax is used as the activation function) with the shape
[batch_size]. It also takes two parameters, such as scores, as the
linear activation of each class with the shape [batch_size,

n_classes] and the target tensor with the shape [batch_size,

n_classes]:

def __losses(self, scores, target):

 with tf.name_scope('cross_entropy'):

 cross_entropy =

tf.nn.softmax_cross_entropy_with_logits_v2(logits=

scores, labels=target, name='cross_entropy')

 return cross_entropy

The _loss() function computes and returns the mean cross-entropy
loss. It takes only one parameter, called losses, which indicates the
cross-entropy losses with the shape [batch_size] and is computed
by the previous function:

def __loss(self, losses):

 with tf.name_scope('loss'):

 loss = tf.reduce_mean(losses, name='loss')

 tf.summary.scalar('loss', loss)

 return loss

Now, _train_step() computes and returns the RMSProp training step
operation. It takes two parameters, learning_rate, which is the
learning rate for the RMSProp optimizer; and the mean cross-entropy
loss computed by the previous function:

def __train_step(self, learning_rate, loss):

 return

tf.train.RMSPropOptimizer(learning_rate).minimize(

loss)

When it is time for performance evaluation, the _accuracy() function
computes the accuracy of the classification. It takes three
parameters, predict, which the softmax activation is having the
shape [batch_size, n_classes]; and the target tensor with the
shape [batch_size, n_classes] and the mean accuracy obtained in
the current batch:

def __accuracy(self, predict, target):

 with tf.name_scope('accuracy'):

 correct_pred = tf.equal(tf.argmax(predict,

1), tf.argmax(target, 1))

 accuracy =

tf.reduce_mean(tf.cast(correct_pred, tf.float32),

name='accuracy')

 tf.summary.scalar('accuracy', accuracy)

 return accuracy

The next function is called initialize_all_variable() and, as you
may be able to guess, it initializes all variables:

def initialize_all_variables(self):

 return tf.global_variables_initializer()

Finally, we have a static method called variable_summaries(), which
attaches a lot of summaries to a tensor for the TensorBoard
visualization. It takes the following parameters:

var: is the variable to summarize

mean: mean of the summary name.

The signature is given below:

 @staticmethod

 def variable_summaries(var, name):

 with tf.name_scope('summaries'):

 mean = tf.reduce_mean(var)

 tf.summary.scalar('mean/' + name,

mean)

 with tf.name_scope('stddev'):

 stddev =

tf.sqrt(tf.reduce_mean(tf.square(var - mean)))

 tf.summary.scalar('stddev/' + name,

stddev)

 tf.summary.scalar('max/' + name,

tf.reduce_max(var))

 tf.summary.scalar('min/' + name,

tf.reduce_min(var))

 tf.summary.histogram(name, var)

Now we need to create a TensorFlow session before we can train
the model:

sess = tf.Session()

Let's initialize all the variables:

init_op = tf.global_variables_initializer()

sess.run(init_op)

Then we save the TensorFlow model for future use:

saver = tf.train.Saver()

Now let's prepare the training set:

x_val, y_val, val_seq_len =

data_lstm.get_val_data()

Now we should write the logs of the TensorFlow graph computation:

train_writer.add_graph(lstm_model.input.graph)

Additionally, we can create some empty lists to hold the training loss,
validation loss, and the steps so that we can see them graphically:

train_loss_list = []

val_loss_list = []

step_list = []

sub_step_list = []

step = 0

Now we start the training. In each step, we record the training error.
The validation errors are recorded in each sub-step:

for i in range(train_steps):

 x_train, y_train, train_seq_len =

data_lstm.next_batch(batch_size)

 train_loss, _, summary =

sess.run([lstm_model.loss, lstm_model.train_step,

lstm_model.merged],

 feed_dict=

{lstm_model.input: x_train,

lstm_model.target: y_train,

lstm_model.seq_len: train_seq_len,

lstm_model.dropout_keep_prob:dropout_keep_prob})

 train_writer.add_summary(summary, i) # Write

train summary for step i (TensorBoard

visualization)

 train_loss_list.append(train_loss)

 step_list.append(i)

 print('{0}/{1} train loss:

{2:.4f}'.format(i + 1, FLAGS.train_steps,

train_loss))

 if (i + 1) %validate_every == 0:

 val_loss, accuracy, summary =

sess.run([lstm_model.loss, lstm_model.accuracy,

lstm_model.merged],

feed_dict={lstm_model.input: x_val,

lstm_model.target: y_val,

lstm_model.seq_len: val_seq_len,

lstm_model.dropout_keep_prob: 1})

 validation_writer.add_summary(summary, i)

 print(' validation loss: {0:.4f}

(accuracy {1:.4f})'.format(val_loss, accuracy))

 step = step + 1

 val_loss_list.append(val_loss)

 sub_step_list.append(step)

The following is the output of the preceding code:

>>>

1/1000 train loss: 0.6883

2/1000 train loss: 0.6879

3/1000 train loss: 0.6943

99/1000 train loss: 0.4870

100/1000 train loss: 0.5307

validation loss: 0.4018 (accuracy 0.9200)

…

199/1000 train loss: 0.1103

200/1000 train loss: 0.1032

validation loss: 0.0607 (accuracy 0.9800)

…

299/1000 train loss: 0.0292

300/1000 train loss: 0.0266

validation loss: 0.0417 (accuracy 0.9800)

…

998/1000 train loss: 0.0021

999/1000 train loss: 0.0007

1000/1000 train loss: 0.0004

validation loss: 0.0939 (accuracy 0.9700)

The preceding code prints the training and validation error. When the
training is over, the model will be saved to the checkpoint directory
that has a unique id:

checkpoint_file =

'{}/model.ckpt'.format(model_dir)

save_path = saver.save(sess, checkpoint_file)

print('Model saved in: {0}'.format(model_dir))

The following is the output of the preceding code:

>>>

Model saved in checkpoints/1517781236

The checkpoint directory will produce at least three files:

config.pkl contains parameters used to train the model.
model.ckpt contains the weights of the model.
model.ckpt.meta contains the TensorFlow graph definition.

Let's see how the training went, that is, what were the training and
the validation losses like:

Plot loss over time

plt.plot(step_list, train_loss_list, 'r--',

label='LSTM training loss per iteration',

linewidth=4)

plt.title('LSTM training loss per iteration')

plt.xlabel('Iteration')

plt.ylabel('Training loss')

plt.legend(loc='upper right')

plt.show()

Plot accuracy over time

plt.plot(sub_step_list, val_loss_list, 'r--',

label='LSTM validation loss per validating

interval', linewidth=4)

plt.title('LSTM validation loss per validation

interval')

plt.xlabel('Validation interval')

plt.ylabel('Validation loss')

plt.legend(loc='upper left')

plt.show()

The following is the output of the preceding code:

>>>

Figure 21: a) LSTM training loss per iteration on test set, b) LSTM validation loss per
validation interval

If we examine the preceding graphs, it is clear that the training went
pretty well in both the training phase and the validation phase with
only 1,000 steps. However, readers should increase the training
step, tune the hyperparameters, and see how it goes.

Visualizing through TensorBoard
Now let's observe the TensorFlow computational graph on
TensorBoard. Simply execute the following command and access
TensorBoard at localhost:6006/:

tensorboard --logdir /home/logs/

The graph tab shows the execution graph, including the gradients
used, loss_op, the accuracy, the final layer, the optimizer used (in our
case it's RMSPro), the LSTM layer (that is, RNN layer), the embedding
layer, and save_op:

Figure 22: The execution graph on TensorBoard

The execution graph shows that the computations we have done for
this LSTM-based classifier for sentiment analysis are quite
transparent. We can also observe the validation, training losses,
accuracies, and the operations in the layers:

Figure 23: Validation, training losses, accuracies and the operations in the layers on
TensorBoard

LSTM model evaluation
We have trained and saved our LSTM model. We can easily restore
the trained model and do some evaluation. We need to prepare the
testing set and use the previously trained TensorFlow model to make
predictions on it. Let's do this straight away. First, we load the
required models:

import tensorflow as tf

from data_preparation import Preprocessing

 import pickle

Then we load to show the checkpoint directory

where the model was saved. For our case, it was

checkpoints/1505148083.

Note
For this step, execute the predict.py script with the following
command:

$ python3 predict.py --checkpoints_dir

checkpoints/1517781236

Change this path based on output by 'python3

train.py'

checkpoints_dir = 'checkpoints/1517781236'

ifcheckpoints_dir is None:

 raise ValueError('Please, a valid checkpoints

directory is required (--checkpoints_dir <file

name>)')

Now load the testing dataset and prepare it to evaluate the model:

data_lstm = Preprocessing(data_dir=data_dir,

 stopwords_file=stopwords_file,

 sequence_len=sequence_len,

 n_samples=n_samples,

 test_size=test_size,

 val_samples=batch_size,

 random_state=random_state,

 ensure_preprocessed=True)

In the preceding code, use the following parameters exactly as we
did in the training step:

data_dir = 'data/' # Data directory containing

'data.csv'

stopwords_file = 'data/stopwords.txt' # Path to

stopwords file.

sequence_len = None # Maximum sequence length

n_samples= None # Set n_samples=None to use the

whole dataset

test_size = 0.2

batch_size = 100 #Batch size

random_state = 0 # Random state used for data

splitting. Default is 0

The workflow for this evaluation method is as follows:

1. First, import the meta graph and evaluate the model using the
testing data

2. Create the TensorFlow session for the computation
3. Import the graph and restore its weights
4. Recover the input/output tensors
5. Perform the prediction
6. Finally, we print the accuracy and the result on the simple

testing set

Step 1 has already been completed previously. This code does steps
2 to 5:

original_text, x_test, y_test, test_seq_len =

data_lstm.get_test_data(original_text=True)

graph = tf.Graph()

with graph.as_default():

 sess = tf.Session()

 print('Restoring graph ...')

 saver = tf.train.import_meta_graph("

{}/model.ckpt.meta".format(FLAGS.checkpoints_dir))

 saver.restore(sess, ("

{}/model.ckpt".format(checkpoints_dir)))

 input =

graph.get_operation_by_name('input').outputs[0]

 target =

graph.get_operation_by_name('target').outputs[0]

 seq_len =

graph.get_operation_by_name('lengths').outputs[0]

 dropout_keep_prob =

graph.get_operation_by_name('dropout_keep_prob').o

utputs[0]

 predict =

graph.get_operation_by_name('final_layer/softmax/p

redictions').outputs[0]

 accuracy =

graph.get_operation_by_name('accuracy/accuracy').o

utputs[0]

 pred, acc = sess.run([predict, accuracy],

 feed_dict={input: x_test,

 target:

y_test,

 seq_len:

test_seq_len,

dropout_keep_prob: 1})

 print("Evaluation done.")

The following is the output of the preceding code:

>>>

Restoring graph ...

The evaluation was done.

Well done! The training is finished, so let's print the results:

print('\nAccuracy: {0:.4f}\n'.format(acc))

for i in range(100):

 print('Sample: {0}'.format(original_text[i]))

 print('Predicted sentiment: [{0:.4f},

{1:.4f}]'.format(pred[i, 0], pred[i, 1]))

 print('Real sentiment:

{0}\n'.format(y_test[i]))

The following is the output of the preceding code:

>>>

Accuracy: 0.9858

Sample: I loved the Da Vinci code, but it raises

many theological questions most of which are very

absurd...

Predicted sentiment: [0.0000, 1.0000]

Real sentiment: [0. 1.]

…

Sample: I'm sorry I hate to read Harry Potter, but

I love the movies!

Predicted sentiment: [1.0000, 0.0000]

Real sentiment: [1. 0.]

…

Sample: I LOVE Brokeback Mountain...

Predicted sentiment: [0.0002, 0.9998]

Real sentiment: [0. 1.]

…

Sample: We also went to see Brokeback Mountain

which totally SUCKED!!!

Predicted sentiment: [1.0000, 0.0000]

Real sentiment: [1. 0.]

The accuracy is above 98%. This is brilliant! However, you could try
to iterate the training for even higher iterations with tuned
hyperparameters, and you might get even higher accuracy. I leave
this up to the readers.

In the next section, we will see how to develop a more advanced ML
project using LSTM, which is called human activity recognition using
smartphones dataset. In short, our ML model will be able to classify
human movement into six categories: walking, walking upstairs,
walking downstairs, sitting, standing, and laying.

Human activity recognition
using LSTM model
The Human Activity Recognition (HAR) database was built by
taking measurements from 30 participants who performed activities
of daily living (ADL) while carrying a waist-mounted smartphone
with embedded inertial sensors. The objective is to classify their
activities into one of the six categories mentioned previously.

Dataset description
The experiments were carried out on a group of 30 volunteers within
an age range of 19-48 years. Each person accomplished six
activities (walking, walking upstairs, walking downstairs, sitting,
standing, and laying) while wearing a Samsung Galaxy S II
smartphone on their waist. Using an accelerometer and a gyroscope,
the author captured 3-axial linear acceleration and 3-axial angular
velocity at a constant rate of 50 Hz.

Only two sensors, an accelerometer, and gyroscope, were used. The
sensor signals were pre-processed by applying noise filters and then
sampled in fixed-width sliding windows of 2.56 sec with a 50%
overlap. This gives 128 readings per window. The gravitational and
body motion components from the sensor acceleration signal were
separated via a Butterworth low-pass filter into body acceleration
and gravity.

For more information, please refer to this paper: Davide Anguita,
Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-
Ortiz, A Public Domain Dataset for Human Activity Recognition
Using Smartphones and 21st European Symposium on Artifi cial
Neural Networks, Computational Intelligence and Machine Learning,
ESANN 2013. Bruges, Belgium 24-26, April 2013.

For simplicity, the gravitational force was assumed to have only a
few low-frequency components. Therefore, a filter of 0.3 Hz cut-off
frequency was used. From each window, a feature vector was found
by calculating variables from the time and frequency domain.

The experiments have been video-recorded to facilitate manually
labeling of the data. The dataset has been randomly partitioned into
two sets, where 70% of the volunteers were selected for the training
data and 30% for the testing data. When I explore the dataset, both
the training and testing set have the following file structure:

Figure 24: HAR dataset file structure

For each record in the dataset, the following is provided:

Triaxial acceleration from the accelerometer and the estimated
body acceleration
Triaxial angular velocity from the gyroscope sensor
A 561-feature vector with time and frequency domain variables
Its activity label
An identifier of the subject who carried out the experiment

Therefore, we know the problem that needs to be addressed. It is
time to explore the technology and the related challenges.

Workflow of the LSTM model for HAR
The overall algorithm has the following workflow:

1. Load the data.
2. Define the hyperparameters.
3. Set up the LSTM model using imperative programming and the

hyperparameters.
4. Apply batch-wise training. That is, pick a batch of data, feed it to

the model, then, after some iterations, evaluate the model and
print the batch loss and the accuracy.

5. Output the chart for the training and test errors.

The above steps can be followed and constructed a pipeline:

Figure 25: An LSTM-based pipeline for HAR

Implementing an LSTM model for HAR
First, we import the required packages and modules:

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import tensorflow as tf

from sklearn import metrics

from tensorflow.python.framework import ops

import warnings

import random

warnings.filterwarnings("ignore")

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

As stated earlier, INPUT_SIGNAL_TYPES contain some useful constants.
They are separate normalized input features for the neural network:

INPUT_SIGNAL_TYPES = [

 "body_acc_x_",

 "body_acc_y_",

 "body_acc_z_",

 "body_gyro_x_",

 "body_gyro_y_",

 "body_gyro_z_",

 "total_acc_x_",

 "total_acc_y_",

 "total_acc_z_"

]

The labels are defined in another array – that is output classes used
to learn how to classify:

LABELS = [

 "WALKING",

 "WALKING_UPSTAIRS",

 "WALKING_DOWNSTAIRS",

 "SITTING",

 "STANDING",

 "LAYING"

]

We are now assuming that you have already downloaded the HAR
dataset from https://archive.ics.uci.edu/ml/machine-learning-
databases/00240/UCI HAR Dataset.zip and put in a folder named
UCIHARDataset (or you can choose a suitable name that sounds
better). Additionally, we need to provide the paths to the training and
the testing set:

DATASET_PATH = "UCIHARDataset/"

print("\n" + "Dataset is now located at: " +

DATASET_PATH)

TRAIN = "train/"

TEST = "test/"

Then we load and map the data from each .txt file based on the
input signal type defined by the INPUT_SIGNAL_TYPES array in the
Array [Array [Array [Float]]] format. X denotes the neural
network's training and testing inputs:

https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip

def load_X(X_signals_paths):

 X_signals = []

 for signal_type_path in X_signals_paths:

 file = open(signal_type_path, 'r')

 # Read dataset from disk, dealing with

text files' syntax

 X_signals.append(

 [np.array(serie, dtype=np.float32) for

serie in [

 row.replace(' ', '

').strip().split(' ') for row in file

]]

)

 file.close()

 return np.transpose(np.array(X_signals), (1,

2, 0))

X_train_signals_paths = [DATASET_PATH + TRAIN +

"Inertial Signals/" + signal + "train.txt" for

signal in INPUT_SIGNAL_TYPES]

X_test_signals_paths = [DATASET_PATH + TEST +

"Inertial Signals/" + signal + "test.txt" for

signal in INPUT_SIGNAL_TYPES]

X_train = load_X(X_train_signals_paths)

X_test = load_X(X_test_signals_paths)

Then we load y, the labels for the neural network's training and
testing outputs:

def load_y(y_path):

 file = open(y_path, 'r')

 # Read dataset from disk, dealing with text

file's syntax

 y_ = np.array(

 [elem for elem in [

 row.replace(' ', ' ').strip().split('

') for row in file

]],

 dtype=np.int32

)

 file.close()

 # We subtract 1 to each output class for 0-

based indexing

 return y_ - 1

y_train_path = DATASET_PATH + TRAIN +

"y_train.txt"

y_test_path = DATASET_PATH + TEST + "y_test.txt"

y_train = load_y(y_train_path)

y_test = load_y(y_test_path)

Let's look at some of the dataset's statistics, such as the number of
training series (as described earlier, this is with a 50% overlap
between each series), the number of test series, the number of
timesteps per series, and the number of input parameters per
timestep:

training_data_count = len(X_train)

test_data_count = len(X_test)

n_steps = len(X_train[0])

n_input = len(X_train[0][0])

print("Number of training series: "+

trainingDataCount)

print("Number of test series: "+ testDataCount)

print("Number of timestep per series: "+ nSteps)

print("Number of input parameters per timestep: "+

nInput)

The following is the output of the preceding code:

>>>

Number of training series: 7352

Number of test series: 2947

Number of timestep per series: 128

Number of input parameters per timestep: 9

Now let's define some core parameter definitions for the training.
The whole neural network's structure could be summarized by
enumerating those parameters and the fact an LSTM is used:

n_hidden = 32 # Hidden layer num of features

n_classes = 6 # Total classes (should go up, or

should go down)

learning_rate = 0.0025

lambda_loss_amount = 0.0015

training_iters = training_data_count * 300

#Iterate 300 times

batch_size = 1500

display_iter = 30000 # to show test set accuracy

during training

We have defined all the core parameters and network parameters.
These are random choices. I did not do hyperparameter tuning but
still it worked well. Therefore, I would suggest tuning these
hyperparameters using grid-search techniques. There are many
online materials available.

Nevertheless, before we construct the LSTM network and start the
training, let's print some debugging information to make sure that the
execution does not stop halfway through:

print("Some useful info to get an insight on

dataset's shape and normalization:")

print("(X shape, y shape, every X's mean, every

X's standard deviation)")

print(X_test.shape, y_test.shape, np.mean(X_test),

np.std(X_test))

print("The dataset is therefore properly

normalized, as expected, but not yet one-hot

encoded.")

The following is the output of the preceding code:

>>>

Some useful info to get an insight on dataset's

shape and normalization:

(X shape, y shape, every X's mean, every X's

standard deviation)

(2947, 128, 9) (2947, 1) 0.0991399 0.395671

The dataset is therefore properly normalized, as expected, but not
yet one-hot encoded.

Now that the training dataset is in corrected and normalized order, it
is time to construct the LSTM network. The following function returns
a TensorFlow LSTM network from the given parameters. Moreover,
two LSTM cells are stacked together, which adds depth to the neural
network:

def LSTM_RNN(_X, _weights, _biases):

 _X = tf.transpose(_X, [1,0,2])# permute

n_steps & batch_size

 _X = tf.reshape(_X, [-1, n_input])

 _X = tf.nn.relu(tf.matmul(_X,

_weights['hidden']) + _biases['hidden'])

 _X = tf.split(_X, n_steps, 0)

 lstm_cell_1 =

tf.nn.rnn_cell.BasicLSTMCell(n_hidden,

forget_bias=1.0, state_is_tuple=True)

 lstm_cell_2 =

tf.nn.rnn_cell.BasicLSTMCell(n_hidden,

forget_bias=1.0, state_is_tuple=True)

 lstm_cells =

tf.nn.rnn_cell.MultiRNNCell([lstm_cell_1,

lstm_cell_2], state_is_tuple=True)

 outputs, states =

tf.contrib.rnn.static_rnn(lstm_cells, _X,

dtype=tf.float32)

 lstm_last_output = outputs[-1]

 return tf.matmul(lstm_last_output,

_weights['out']) + _biases['out']

If we look at the preceding code snippet carefully, we can see that
we get the last time step's output feature for a "many to one" style
classifier. Now, the question is what is a many-to-one RNN
classifier? Well, similar to figure 5, we accept a time series of feature
vectors (one vector per time step) and convert them to a probability
vector in the output for classification.

Now that we have been able to construct our LSTM network, we
need to prepare the training dataset into a batch. The following
function fetches a batch_size amount of data from (X|y)_train data:

def extract_batch_size(_train, step, batch_size):

 shape = list(_train.shape)

 shape[0] = batch_size

 batch_s = np.empty(shape)

 for i in range(batch_size):

 index = ((step-1)*batch_size + i) %

len(_train)

 batch_s[i] = _train[index]

 return batch_s

After that, we need to encode output labels from number indexes to
binary categories. Then we perform training steps with batch_size.
For example, [[5], [0], [3]] needs to be converted into a shape
similar to [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1,
0, 0]]. Well, we can do this with one-hot-encoding. The following
method does exactly the same transformation:

def one_hot(y_):

 y_ = y_.reshape(len(y_))

 n_values = int(np.max(y_)) + 1

 return np.eye(n_values)[np.array(y_,

dtype=np.int32)]

Excellent! Our dataset is ready, so we can start building the network.
First, we create two separate placeholders for the input and the
labels:

x = tf.placeholder(tf.float32, [None, n_steps,

n_input])

y = tf.placeholder(tf.float32, [None, n_classes])

We then create the required weight vectors:

weights = {

 'hidden':

tf.Variable(tf.random_normal([n_input,

n_hidden])),

 'out': tf.Variable(tf.random_normal([n_hidden,

n_classes], mean=1.0))

}

Then we create the required bias vectors:

biases = {

 'hidden':

tf.Variable(tf.random_normal([n_hidden])),

 'out':

tf.Variable(tf.random_normal([n_classes]))

}

Then we build the model by passing the input tensor, the weight
vector, and the bias vector as follows:

pred = LSTM_RNN(x, weights, biases)

Additionally, we also need to compute the cost op, the regularization,
the optimizer, and the evaluation. We use L2 loss for regularization,
that prevents this overkill neural network to over fit issue in the
training:

l2 = lambda_loss_amount *

sum(tf.nn.l2_loss(tf_var) for tf_var in

tf.trainable_variables())

cost =

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_lo

gits_v2(labels=y, logits=pred)) + l2

optimizer =

tf.train.AdamOptimizer(learning_rate=learning_rate

).minimize(cost)

correct_pred = tf.equal(tf.argmax(pred,1),

tf.argmax(y,1))

accuracy = tf.reduce_mean(tf.cast(correct_pred,

tf.float32))

Great! So far, everything has been fine. Now we

are ready to train the neural network. First, we

create some lists to hold some training's

performance:

test_losses = []

test_accuracies = []

train_losses = []

train_accuracies = []

Then we create a TensorFlow session, launch the graph, and
initialize the global variables:

sess =

tf.InteractiveSession(config=tf.ConfigProto(log_de

vice_placement=False))

init = tf.global_variables_initializer()

sess.run(init)

Then we perform training steps with batch_size amount of example
data in each loop. We first fit the training using the batch of data, and
then we evaluate the network only at a few steps for faster training.
Additionally, we evaluate on the testing set (no learning happens
here, just evaluation for diagnosis). Finally, we print the result:

step = 1

while step * batch_size <= training_iters:

 batch_xs = extract_batch_size(X_train, step,

batch_size)

 batch_ys = one_hot(extract_batch_size(y_train,

step, batch_size))

 _, loss, acc = sess.run(

 [optimizer, cost, accuracy],

 feed_dict={

 x: batch_xs,

 y: batch_ys

 }

)

 train_losses.append(loss)

 train_accuracies.append(acc)

 if (step*batch_size % display_iter == 0) or

(step == 1) or (step * batch_size >

training_iters):

 print("Training iter #" +

str(step*batch_size) + \": Batch Loss = " + "

{:.6f}".format(loss) + \", Accuracy =

{}".format(acc))

 loss, acc = sess.run(

 [cost, accuracy],

 feed_dict={

 x: X_test,

 y: one_hot(y_test)

 }

)

 test_losses.append(loss)

 test_accuracies.append(acc)

 print("PERFORMANCE ON TEST SET: " + \

 "Batch Loss = {}".format(loss) + \

 ", Accuracy = {}".format(acc))

 step += 1

print("Optimization Finished!")

one_hot_predictions, accuracy, final_loss =

sess.run(

 [pred, accuracy, cost],

 feed_dict={

 x: X_test,

 y: one_hot(y_test)

 })

test_losses.append(final_loss)

test_accuracies.append(accuracy)

print("FINAL RESULT: " + \

 "Batch Loss = {}".format(final_loss) + \

 ", Accuracy = {}".format(accuracy))

The following is the output of the preceding code:

>>>

Training iter #1500: Batch Loss = 3.266330,

Accuracy = 0.15733332931995392

PERFORMANCE ON TEST SET: Batch Loss =

2.6498606204986572, Accuracy = 0.15473362803459167

Training iter #30000: Batch Loss = 1.538126,

Accuracy = 0.6380000114440918

…PERFORMANCE ON TEST SET: Batch Loss =

0.5507552623748779, Accuracy = 0.8924329876899719

Optimization Finished!

FINAL RESULT: Batch Loss = 0.6077192425727844,

Accuracy = 0.8686800003051758

Well done! The training went well. However, a visual overview would
be more useful:

indep_train_axis = np.array(range(batch_size,

(len(train_losses)+1)*batch_size, batch_size))

plt.plot(indep_train_axis, np.array(train_losses),

"b--", label="Train losses")

plt.plot(indep_train_axis,

np.array(train_accuracies), "g--", label="Train

accuracies")

indep_test_axis =

np.append(np.array(range(batch_size,

len(test_losses)*display_iter, display_iter)

[:-1]),

 [training_iters])

plt.plot(indep_test_axis, np.array(test_losses),

"b-", label="Test losses")

plt.plot(indep_test_axis,

np.array(test_accuracies), "g-", label="Test

accuracies")

plt.title("Training session's progress over

iterations")

plt.legend(loc='upper right', shadow=True)

plt.ylabel('Training Progress (Loss or Accuracy

values)')

plt.xlabel('Training iteration')

plt.show()

The following is the output of the preceding code:

>>>

Figure 26: LSTM training sessions over iterations

We will need to compute other performance metrics, such as
accuracy, precision, recall, and f1 measure:

predictions = one_hot_predictions.argmax(1)

print("Testing Accuracy:

{}%".format(100*accuracy))

print("")

print("Precision:

{}%".format(100*metrics.precision_score(y_test,

predictions, average="weighted")))

print("Recall:

{}%".format(100*metrics.recall_score(y_test,

predictions, average="weighted")))

print("f1_score:

{}%".format(100*metrics.f1_score(y_test,

predictions, average="weighted")))

The following is the output of the preceding code:

>>>

Testing Accuracy: 89.51476216316223%

Precision: 89.65053428376297%

Recall: 89.51476077366813%

f1_score: 89.48593061935716%

Since the problem that we are approaching is a multiclass
classification, drawing the confusion matrix make sense:

print("")

print ("Showing Confusion Matrix")

cm = metrics.confusion_matrix(y_test, predictions)

df_cm = pd.DataFrame(cm, LABELS, LABELS)

plt.figure(figsize = (16,8))

plt.ylabel('True label')

plt.xlabel('Predicted label')

sn.heatmap(df_cm, annot=True, annot_kws={"size":

14}, fmt='g', linewidths=.5)

plt.show()

The following is the output of the preceding code:

>>>

Figure 27: Multiclass confusion matrix (predicted vs actual)

In the confusion matrix, the training and testing data are not equally
distributed amongst classes, so it is normal that more than a sixth of
the data is correctly classified in the last category. Having said that,
we have managed to achieve a prediction accuracy of about 87%.
We will see more analysis soon. It could have been higher, but the
training was done on the CPU, so it has low precision and, of course,
takes a long time. Therefore, I would recommend that you train on a
GPU instead to get a better result. In addition, tuning
hyperparameters could be a good option.

Summary
LSTM networks are equipped with special hidden units, called
memory cells, whose purpose is to remember the previous input for
a long time. These cells take, at each instant of time, the previous
state and the current input of the network as input. By combining
them with the current contents of memory, and deciding what to keep
and what to delete from memory with a gating mechanism by other
units, LSTM has proved to be very useful and an effective way of
learning long-term dependency.

In this chapter, we discussed RNNs. We saw how to make
predictions with data that has a high temporal dependency. We saw
how to develop several real-life predictive models that make the
predictive analytics easier using RNNs and the different architectural
variants. We started the chapter with a theoretical background of
RNNs.

Then we looked at a few examples that showed a systematic way of
implementing predictive models for image classification, sentiment
analysis of movies and products, and spam prediction for NLP. Then
we saw how to develop predictive models for time series data.
Finally, we saw a more advanced application of RNNs for human
activity recognition, and we observed a classification accuracy of
about 87%.

DNNs are structured in a uniform manner so that, at each layer of
the network, thousands of identical artificial neurons perform the
same computation. Therefore, the architecture of a DNN fits quite
well with the kinds of computation that a GPU can efficiently perform.
GPUs have additional advantages over CPUs; these include having
more computational units and having a higher bandwidth for memory
retrieval.

Furthermore, in many deep learning applications that require a lot of
computational effort, the graphics-specific capabilities of GPUs can
be exploited to further speed up calculations. In the next chapter, we

will see how to make the training faster, more accurate, and even
distributed among nodes.

Chapter 7. Heterogeneous and
Distributed Computing
A computation expressed using TensorFlow can be executed with
little or no changes on a wide variety of heterogeneous systems,
ranging from mobile devices such as phones and tablets up to large-
scale distributed systems of hundreds of machines and thousands of
computational devices, such as GPU cards.

In this chapter, we explore this fundamental topic on TensorFlow. In
particular, we shall consider the possibility of executing TensorFlow
models on GPU cards and distributed systems.

GPUs have additional advantages over CPUs, including having more
computational units and having a higher bandwidth for memory
retrieval. Furthermore, in many deep learning applications that
require a lot of computational effort, GPU graphics specific
capabilities can be exploited to further speed up calculations.

At the same time, a distributed computing strategy can be useful if
you have to handle a very large dataset to train your model.

The chapter introduces the following topics:

GPGPU computing
The GPU programming model
The TensorFlow GPU setup
Distributed computing
The distributed TensorFlow setup

GPGPU computing
There are several reasons that led to deep learning (DL) being
developed and placed at the center of attention in the field of
machine learning (ML) in the recent decades.

One reason, perhaps the main one, is surely represented by the
progress in hardware, with the availability of new processors, such
as Graphics Processing Units (GPUs), which have greatly reduced
the time needed to train networks, reducing the time by 10 or even
20 times.

In fact, since the connections between the individual neurons have a
numerically estimated weight, and since networks learn by
calibrating the weights appropriately, increasing network complexity
would cause high computing power, and high computing power can
be handled by GPU.

The GPGPU history
GPGPU is an acronym that stands for General Purpose
Computing on Graphics Processing Units. It recognizes the trend
of employing GPU technology for applications other than graphics.
Until 2006, the graphics API OpenGL and DirectX standards were
the only ways to program with a GPU. Any attempt to execute
arbitrary calculations on the GPU was subject to the programming
restrictions of those APIs.

GPUs are designed to produce a color for each pixel on the screen
using programmable arithmetic units called pixel shaders.
Programmers realized that if the input was numerical data with a
different meaning from pixel colors, then they could program the
pixel shader to perform arbitrary computations.

There were memory limitations because the programs could only
receive a handful of input color and texture units as input data. It was
almost impossible to predict how a GPU would handle floating-point
data (if it had been able to process them), so many scientific
calculations could not use the GPU.

Anyone who wanted to resolve a numerical problem would have to
learn OpenGL or DirectX, the only ways to communicate with the
GPU.

The CUDA architecture
In 2006, NVIDIA presented the first GPU to support DirectX 10. The
GeForce 8800GTX was also the first GPU to use the CUDA
architecture. This architecture included several new components
designed specifically for GPU computing and that aimed to remove
the limitations that prevented previous GPUs from being used for
non-graphical calculations. In fact, the execution units on the GPU
could read and write arbitrary memory as well as access a cache
maintained in software called shared memory.

These architectural features that were added made a CUDA GPU
excel at general-purpose calculations as well as in traditional
graphics tasks. The following diagram summarizes the division of
space between the various components of a GPU and a CPU. As
you can see, a GPU devotes more transistors to data processing; it
is a highly parallel, multithreaded, and manycore processor:

Figure 1: CPU versus GPU architecture

Note that almost all the space on the GPU chip is dedicated to the
ALU, rather than cache and control, making it suitable for repetitive

calculations on large amounts of data. The GPU accesses local
memory and is connected to the system, the CPU, via a bus
(currently, the PCI Express).

The graphics chip consists of a series of multiprocessors, the
streaming multiprocessor (SM). The number of multiprocessors
depends on the specific characteristics and the performance class of
each GPU.

Each multiprocessor is in turn formed of stream processors (or
cores). Each of these processors can perform basic arithmetic
operations on integer or floating point numbers with single and
double precision.

The GPU programming model
At this point, it is necessary to introduce some basic concepts to
clarify the CUDA programming model.

The first distinction is between host and device.

The code executed on the host side is a part of code executed on
the CPU, and this will also include the RAM and the hard disk. The
code executed on the device is the code that is automatically loaded
on the graphics card and runs on the latter.

Another important concept is the kernel; it stands for a function
performed on the device and launched from the host. The code
defined in the kernel will be performed in parallel by an array of
threads.

The following schema summarizes how the GPU programming
model works:

The running program will have source code to run on the CPU
and code to run on the GPU
The CPU and GPU have separated memories

The data is transferred from the CPU to the GPU to be
computed
The data output from GPU computation is copied back to CPU
memory

Figure 2: GPU programming model

The TensorFlow GPU setup
To use TensorFlow with NVIDIA GPUs, the first step is to install the
CUDA Toolkit.

Note
To know more, visit https://developer.nvidia.com/cuda-downloads.

Once the CUDA Toolkit is installed, you must download the cuDNN
v5.1 library for Linux from https://developer.nvidia.com/cudnn.

cuDNN is a library that helps accelerate deep learning frameworks,
such as TensorFlow and Theano. Here's a brief explanation from the
NVIDIA website:

"The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a
GPU-accelerated library of primitives for deep neural networks.

cuDNN provides highly tuned implementations for standard routines
such as forward and backward convolution, pooling, normalization,
and activation layers. cuDNN is part of the NVIDIA Deep Learning

SDK."

Before installing it, you'll need to register on NVIDIA's Accelerated
Computing Developer Program. Once you're registered, log in and
download cuDNN 5.1 to your local computer.

Once it is downloaded, decompress the files and copy them into the
CUDA Toolkit directory (we've assumed here that the directory is
/usr/local/cuda/):

$ sudo tar -xvf cudnn-8.0-linux-x64-v5.1-rc.tgz -C

/usr/local

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

Update TensorFlow
We're assuming you'll be using TensorFlow to build your deep neural
network models. Simply update TensorFlow via pip with the upgrade
flag.

We suppose you're currently using TensorFlow 0.11:

pip install — upgrade

https://storage.googleapis.com/tensorflow/linux/gp

u/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl

Now you should have everything you need to run a model using your
GPU.

GPU representation
In TensorFlow, the supported devices are represented as strings:

"/cpu:0": The CPU of your machine
"/gpu:0": The GPU of your machine, if you have one
"/gpu:1": The second GPU of your machine, and so on

The execution flow gives priority when an operation is assigned to a
GPU device.

Using a GPU
To use a GPU in your TensorFlow program, just type the following:

with tf.device("/gpu:0"):

Then you need to do the setup operations. This line of code will
create a new context manager, telling TensorFlow to perform those
actions on the GPU.

Let's consider the following example, in which we want to execute
the following sum of two large matrices: .

Define the basic imports:

import numpy as np

import tensorflow as tf

import datetime

We can configure a TensorFlow program to find out which devices
your operations and tensors are assigned to. To do this, we'll create
a session with the following log_device_placement parameter set to
True:

log_device_placement = True

Then we set the n parameter, which is the number of multiplications
to perform:

n=10

Then we build two random large matrixes. We use NumPy's rand
function to perform this operation:

A = np.random.rand(10000, 10000).astype('float32')

B = np.random.rand(10000, 10000).astype('float32')

A and B will each be of size 10000x10000.

The following arrays will be used to store the results:

c1 = []

c2 = []

Next, we define the kernel matrix multiplication function, that will be
performed by the GPU:

def matpow(M, n):

 if n == 1:

 return M

 else:

 return tf.matmul(M, matpow(M, n-1))

As we previously explained, we must configure the GPU and the
GPU with the operations to perform:

The GPU will compute the and operations and store
results in c1:

with tf.device('/gpu:0'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

 c1.append(matpow(b, n))

The addition of all elements in c1 () is performed by the
CPU, so we define the following:

with tf.device('/cpu:0'):

 sum = tf.add_n(c1)

The datetime class allows us to evaluate the computational time:

t1_1 = datetime.datetime.now()

with tf.Session(config=tf.ConfigProto\

(log_device_placement=log_device_placement)) as

sess:

 sess.run(sum, {a:A, b:B})

t2_1 = datetime.datetime.now()

The computational time is then displayed:

print("GPU computation time: " + str(t2_1-t1_1))

On my laptop, using a GeForce 840M graphic card, the result is as
follows:

GPU computation time: 0:00:13.816644

GPU memory management
In some cases, it is desirable for the process to only allocate a
subset of the available memory, or to only grow the memory usage
as it is needed by the process. TensorFlow provides two config
options on the session to control this.

The first is the allow_growth option, which attempts to allocate only
as much GPU memory based on runtime allocations: it starts out
allocating very little memory, and as sessions get run and more GPU
memory is needed, we extend the amount of GPU memory needed
by the TensorFlow process.

Note that we do not release memory, since that can lead to even
worse memory fragmentation. To turn this option on, set the option in
ConfigProto as follows:

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

session = tf.Session(config=config, ...)

The second method is the per_process_gpu_memory_fraction option,
which determines the fraction of the overall amount of memory that
each visible GPU should be allocated. For example, you can tell
TensorFlow to only allocate 40% of the total memory of each GPU as
follows:

config = tf.ConfigProto()

config.gpu_options.per_process_gpu_memory_fraction

= 0.4

session = tf.Session(config=config, ...)

This is useful if you want to truly limit the amount of GPU memory
available to the TensorFlow process.

Assigning a single GPU on a multi-
GPU system
If you have more than one GPU in your system, the GPU with the
lowest ID will be selected by default. If you would like to run your
session on a different GPU, you will need to specify the preference
explicitly.

For example, we can try to change the GPU assignation in the
previous code:

with tf.device('/gpu:1'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

 c1.append(matpow(b, n))

In this way, we are telling gpu1 to execute the kernel function. If the
device we have specified does not exist (as in my case), you will get
InvalidArgumentError:

InvalidArgumentError (see above for traceback):

Cannot assign a device to node 'Placeholder_1':

Could not satisfy explicit device specification

'/device:GPU:1' because no devices matching that

specification are registered in this process;

available devices:

/job:localhost/replica:0/task:0/cpu:0

 [[Node: Placeholder_1 =

Placeholder[dtype=DT_FLOAT, shape=[100,100],

_device="/device:GPU:1"]()]]

If you would like TensorFlow to automatically choose an existing and
supported device to run the operations if the specified one doesn't
exist, you can set allow_soft_placement to True in the configuration
option when creating the session.

Again, we set '/gpu:1' for the following node:

with tf.device('/gpu:1'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

 c1.append(matpow(b, n))

Then we build a Session with the following allow_soft_placement
parameter set to True:

with tf.Session(config=tf.ConfigProto\

 (allow_soft_placement=True,\

log_device_placement=log_device_placement))\

 as sess:

In this way, when we run the session, no InvalidArgumentError will
be displayed. We'll get a correct result, in this case, with a little
delay:

GPU computation time: 0:00:15.006644

The source code for GPU with soft
placement
Here's the complete source code, just for clarity:

import numpy as np

import tensorflow as tf

import datetime

log_device_placement = True

n = 10

A = np.random.rand(10000, 10000).astype('float32')

B = np.random.rand(10000, 10000).astype('float32')

c1 = []

c2 = []

def matpow(M, n):

 if n == 1:

 return M

 else:

 return tf.matmul(M, matpow(M, n-1))

with tf.device('/gpu:0'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

 c1.append(matpow(b, n))

with tf.device('/cpu:0'):

 sum = tf.add_n(c1)

t1_1 = datetime.datetime.now()

with tf.Session(config=tf.ConfigProto\

 (allow_soft_placement=True,\

log_device_placement=log_device_placement))\

 as sess:

 sess.run(sum, {a:A, b:B})

t2_1 = datetime.datetime.now()

Using multiple GPUs
If you would like to run TensorFlow on multiple GPUs, you can
construct your model by assigning a specific chink of code to a GPU.
For example, if we have two GPUs, we can split the previous code
as follows, assigning the first matrix computation to the first GPU:

with tf.device('/gpu:0'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

The second matrix computation is assigned to the second GPU:

with tf.device('/gpu:1'):

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(b, n))

The CPU will manage the results. Also, note that we used the shared
c1 array to collect them:

with tf.device('/cpu:0'):

 sum = tf.add_n(c1)

In the following code snippet, we provide a concrete example of
management of two GPUs:

import numpy as np

import tensorflow as tf

import datetime

log_device_placement = True

n = 10

A = np.random.rand(10000, 10000).astype('float32')

B = np.random.rand(10000, 10000).astype('float32')

c1 = []

def matpow(M, n):

 if n == 1:

 return M

 else:

 return tf.matmul(M, matpow(M, n-1))

#FIRST GPU

with tf.device('/gpu:0'):

 a = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(a, n))

#SECOND GPU

with tf.device('/gpu:1'):

 b = tf.placeholder(tf.float32, [10000, 10000])

 c1.append(matpow(b, n))

with tf.device('/cpu:0'):

 sum = tf.add_n(c1)

t1_1 = datetime.datetime.now()

with tf.Session(config=tf.ConfigProto\

 (allow_soft_placement=True,\

log_device_placement=log_device_placement))\

 as sess:

 sess.run(sum, {a:A, b:B})

t2_1 = datetime.datetime.now()

Distributed computing
DL models have to be trained on a large amount of data to improve
their performance. However, training a deep network with millions of
parameters may take days, or even weeks. In Large Scale
Distributed Deep Networks, Dean et al. proposed two paradigms,
namely model parallelism and data parallelism, which allow us to
train and serve a network model on multiple physical machines. In
the following section, we introduce these paradigms with a focus on
distributed TensorFlow capabilities.

Model parallelism
Model parallelism gives every processor the same data but applies a
different model to it. If the network model is too big to fit into one
machine's memory, different parts of the model can be assigned to
different machines. A possible model parallelism approach is to have
the first layer on a machine (node 1), the second layer on the second
machine (node 2), and so on. Sometimes this is not the optimal
approach, because the last layer has to wait for the first layer's
computation to complete during the forward step, and the first layer
has to wait for the deepest layers during the backpropagation step.
Only if the model is parallelizable (such as GoogleNet) can this
happen on different machines without coming across such a
bottleneck:

Figure 3: In model parallelism, each node computes different parts of the network

People who train neural networks may have been the originators of
the term model parallelism almost 20 years ago, because they have
different models of neural network to train and test, and multiple
layers within a network that can be trained with the same data.

Data parallelism
Data parallelism means the application of a single instruction to
multiple data items. It is the ideal workload for a SIMD (single
instruction, multiple data) computer architecture, the oldest and
simplest form of parallel processing on electronic digital computers.

In this approach, the network model fits in one machine, called the
parameter server, while most of the computational work is done by
multiple machines called workers:

Parameter server: This is a CPU where you store the variables
you need in the workers. In my case, this is where I defined the
weights variables needed for my networks.
Workers: This is where we do most of our computationally
intensive work.

Each worker is in charge of reading, computing, and updating the
model parameters, and sending them to the parameter server:

In the forward pass, the worker takes variables from the
parameter server, do something with them on our workers.
In the backward pass, the worker sends the current state back
to the parameter server, which does an update operation and
gives us the new weights to try out:

Figure 4: In the data parallelism model, each node computes all the parameters

Two main options are possible for data parallelism:

Synchronous training: All the workers read the parameters at
the same time, compute a training operation, and wait for all the
others to be done. Then the gradients will be averaged and a
single update will be sent to the parameter server. Hence, at any
point in time, the workers will all be aware of the same values
for the graph parameters.
Asynchronous training: The workers will read from the
parameter server(s) asynchronously, compute their training
operation, and send asynchronous updates. At any point in time,
two different workers might be aware of different values for the
graph parameters.

The distributed TensorFlow
setup
In this section, we will explore the mechanisms through which
computation in TensorFlow can be distributed. The first step in
running distributed TensorFlow is to specify the architecture of the
cluster using tf.train.ClusterSpec:

import tensorflow as tf

cluster = tf.train.ClusterSpec({"ps":

["localhost:2222"],\

 "worker":

["localhost:2223",\

"localhost:2224"]})

Nodes are typically divided into two jobs: parameter servers (ps),
which host variables, and workers, which perform heavy
computation. In the preceding code, we have one parameter server
and two workers, as well as the IP address and port of each node.

Then we have to build a tf.train.Server for each parameter server
and worker, previously defined:

ps = tf.train.Server(cluster, job_name="ps",

task_index=0)

worker0 = tf.train.Server(cluster,\

 job_name="worker",

task_index=0)

worker1 = tf.train.Server(cluster,\

 job_name="worker",

task_index=1)

The tf.train.Server object contains a set of local devices, a set of
connections to other tasks in its tf.train.ClusterSpec, and a

tf.Session that can use these to perform a distributed computation.
It is created to allow for connectivity between devices.

Next, we assign model variables to workers using the following
command:

tf.device :

with tf.device("/job:ps/task:0"):

 a = tf.constant(3.0, dtype=tf.float32)

 b = tf.constant(4.0)

Copy these instructions into a file named main.py.

In two separate files, worker0.py and worker1.py, we must define the
workers. In worker0.py, multiply the two variables a and b and print
out the result:

import tensorflow as tf

from main import *

with tf.Session(worker0.target) as sess:

 init = tf.global_variables_initializer()

 add_node = tf.multiply(a,b)

 sess.run(init)

 print(sess.run(add_node))

In worker1.py, first change the value of a and then multiply the two
variables a and b:

import tensorflow as tf

from main import *

with tf.Session(worker1.target) as sess:

 init = tf.global_variables_initializer()

 a = tf.constant(10.0, dtype=tf.float32)

 add_node = tf.multiply(a,b)

 sess.run(init)

 a = add_node

 print(sess.run(add_node))

To execute this example, first run the main.py file from the command
prompt.

You should get a result like this:

>python main.py

Found device 0 with properties:

name: GeForce 840M

major: 5 minor: 0 memoryClockRate (GHz) 1.124

pciBusID 0000:08:00.0

Total memory: 2.00GiB

Free memory: 1.66GiB

 Started server with target:

grpc://localhost:2222

Then we can run the workers:

> python worker0.py

Found device 0 with properties:

name: GeForce 840M

major: 5 minor: 0 memoryClockRate (GHz) 1.124

pciBusID 0000:08:00.0

Total memory: 2.00GiB

Free memory: 1.66GiB

 Start master session 83740f48d039c97d with

config:

 12.0

> python worker1.py

Found device 0 with properties:

name: GeForce 840M

major: 5 minor: 0 memoryClockRate (GHz) 1.124

pciBusID 0000:08:00.0

Total memory: 2.00GiB

Free memory: 1.66GiB

 Start master session 3465f63a4d9feb85 with

config:

 40.0

Summary
In this chapter, we had a quick look at two fundamentals topics
related to optimizing the computation of DNNs.

The first topic explained how to use GPUs and TensorFlow to
implement DNNs. They are structured in a very uniform manner so
that, at each layer of the network, thousands of identical artificial
neurons perform the same computation. Hence, the architecture of a
DNN fits quite well with the kinds of computation that a GPU can
efficiently perform.

The second topic introduced distributed computing. This was initially
used to perform very complex calculations that could not be
completed by a single machine. Likewise, analyzing large amounts
of data quickly by splitting this task among different nodes appears
to be the best strategy when faced with such a big challenge.

At the same time, DL problems can be exploited using distributed
computing. DL computations can be divided into multiple activities
(tasks); each of them will be given a fraction of data and will return a
result that will have to be recomposed with the results provided by
the other activities. Alternatively, in most complex situations, a
different calculation algorithm can be assigned to each machine.

Finally, in the last example, we showed how computation in
TensorFlow can be distributed.

Chapter 8. Advanced
TensorFlow Programming
The development of deep learning (DL) networks requires rapid
prototyping when testing new models. For this reason, several
TensorFlow-based libraries have been built, which abstract many
programming concepts and provides high-level building blocks.

We'll describe the main characteristics of each library with an
application example.

This chapter covers the following high-level TensorFlow APIs and
their overviews:

tf.estimator
TFLearn
Pretty Tensor
Keras

tf.estimator
tf.estimator is a high-level TensorFlow API for creating and training
models by encapsulating the functionalities for training, evaluating,
predicting and exporting. TensorFlow recently re-branded and
released the TF Learn package within TensorFlow under a new
name, TF Estimator, probably to avoid confusion with the TFLearn
package from tflearn.org.

tf.estimator allows developers to easily extend the package and
implement new ML algorithms by using the existing modular
components and TensorFlow's low-level APIs, which serve as the
building blocks of ML algorithms. Some examples of these building
blocks are evaluation metrics, layers, losses, and optimizers.

The main features provided by tf.estimator are described in the next
sections.

Estimators
An estimator is a rule that calculates an estimate of a given quantity.
Estimators are used to train and evaluate TensorFlow models. Each
estimator is an implementation of a particular type of ML algorithm.
They currently support regression and classification problems. A list
of the available estimators includes LinearRegressor/Classifier,
DNNRegressor/Classifier, DNNLinearCombinedRegressor/Classifier,
TensorForestEstimator, SVM, LogisticRegressor, and a generic
estimator that can be used to construct a custom model for either
classification or regression problems. This provides a wide range of
state-of-art ML algorithms, as well as the building blocks users need
to construct their own algorithms.

Graph actions
Graph actions contain all the complicated logic for distributed
training, inference, and the evaluation of a model. They are built on
top of TensorFlow's low-level APIs; these complexities are hidden
away from users so that they can focus on using the simplified
interface to conduct their research. Estimators can then be
distributed using multiple machines and devices, and all extended
estimators get this functionality for free.

For example, tf.estimator.RunConfig specifies the runtime
configurations for an Estimator run, providing the required
parameters such as the number of cores to be used and the amount
of GPU memory to be used. It also contains a ClusterConfig that
specifies the configuration for a distributed run. It configures the
tasks, clusters, master nodes, parameter servers, and everything
else.

Parsing resources

Similar to libraries such as pandas, a high-level DataFrame module
was included in tf.estimator to facilitate many common data
reading/parsing tasks from resources such as TensorFlow.

Flower predictions
To illustrate the basic functionalities of the tf.estimator module, we
will start by building a basic deep neural network (DNN) model and
training it on the Iris dataset with the aim of predicting flower species
based on sepal/petal geometry. The Iris dataset contains 150 rows of
data, comprising 50 samples from each of three related Iris species:
Iris Setosa, Iris Virginica, and Iris Versicolor. Each row contains the
following data for each flower sample: sepal length, sepal width,
petal length, petal width, and flower species. Flower species are
represented as integers, with 0 denoting Iris Setosa, 1 denoting Iris
Versicolor, and 2 denoting Iris Virginica:

Figure 1: Iris dataset

The example described in this section, premade_estimator.py, is
downloadable from
https://github.com/tensorflow/models/blob/master/samples/core/get_
started/premade_estimator.py.

To fetch the training data, iris_data.py is used, downloadable from
https://github.com/tensorflow/models/blob/master/samples/core/get_
started/iris_data.py.

The Iris dataset is randomized and split into two separate CSVs; the
first is the training set of 120 samples (iris_training.csv):

https://github.com/tensorflow/models/blob/master/samples/core/get_started/premade_estimator.py
https://github.com/tensorflow/models/blob/master/samples/core/get_started/iris_data.py

TRAIN_URL =

"http://download.tensorflow.org/data/iris_training

.csv"

The second is the testing set of 30 samples (iris_test.csv):

TEST_URL =

"http://download.tensorflow.org/data/iris_test.csv

"

Here you find the feature fields:

CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',

 'PetalLength', 'PetalWidth',

'Species']

Here you find the species to classify:

SPECIES = ['Setosa', 'Versicolor', 'Virginica']

Training and testing data are loaded using the
iris_data.load_data() function:

(train_x, train_y), (test_x, test_y) =

iris_data.load_data()

tf.estimator offers a variety of predefined estimators that can be used
to run training and evaluation operations on input data.

Here we'll configure a DNN Classifier model to fit the Iris data.
Using tf.estimator, we instantiate a tf.estimator.DNNClassifier with
just a couple of lines of code. The code above defines the model's
features, which specifies the datatypes for the features in the
dataset:

my_feature_columns = []

for key in train_x.keys():

my_feature_columns.append(tf.feature_column.numeri

c_column(key=key))

All the feature data is continuous, so
tf.feature_column.numeric_column is the appropriate function to use
to construct the feature columns. There are four features in the
dataset (sepal width, sepal height, petal width, and petal height), so
the shape must be set to [4] to hold all the data.

Now let's build a classifier, using the DNNClassifier model:

classifier = tf.estimator.DNNClassifier(

 feature_columns=my_feature_columns,

 hidden_units=[10, 10],

 n_classes=3)

DNNClassifier model uses the following arguments:

feature_columns= my_feature_columns: The set of feature
columns defined previously
hidden_units=[10, 10]: Two hidden layers, containing 10 and
10 neurons
n_classes=3: Three target classes, representing the three Iris
species

Define the input pipeline (input_fn) and train the data using the
train method. The number of training steps is 1000:

classifier.train(

input_fn=lambda:iris_data.train_input_fn(train_x,

train_y,

args.batch_size),

 steps=args.train_steps)

The model's accuracy is evaluated using the evaluate method:

eval_result = classifier.evaluate(

input_fn=lambda:iris_data.eval_input_fn(test_x,

test_y,

args.batch_size))

print('\nTest set accuracy:

{accuracy:0.3f}\n'.format(**eval_result))

Like the method train, evaluate takes an input function that builds
its input pipeline. evaluate returns a dict with the evaluation results.

The code example (premade_estimator.py) outputs training logs
followed by some predictions against the test set:

INFO:tensorflow:loss = 120.53493, step = 1

INFO:tensorflow:global_step/sec: 437.609

INFO:tensorflow:loss = 14.973656, step = 101

(0.291 sec)

INFO:tensorflow:global_step/sec: 369.482

INFO:tensorflow:loss = 8.025629, step = 201 (0.248

sec)

INFO:tensorflow:global_step/sec: 267.963

INFO:tensorflow:loss = 7.3872843, step = 301

(0.364 sec)

INFO:tensorflow:global_step/sec: 337.761

INFO:tensorflow:loss = 7.1775312, step = 401

(0.260 sec)

INFO:tensorflow:global_step/sec: 684.081

INFO:tensorflow:loss = 6.1282234, step = 501

(0.146 sec)

INFO:tensorflow:global_step/sec: 686.175

INFO:tensorflow:loss = 7.441858, step = 601 (0.146

sec)

INFO:tensorflow:global_step/sec: 731.402

INFO:tensorflow:loss = 4.633889, step = 701 (0.137

sec)

INFO:tensorflow:global_step/sec: 687.698

INFO:tensorflow:loss = 8.395943, step = 801 (0.145

sec)

INFO:tensorflow:global_step/sec: 687.174

INFO:tensorflow:loss = 6.0668287, step = 901

(0.146 sec)

INFO:tensorflow:Saving checkpoints for 1000 into

C:\Users\GIANCA~1\AppData\Local\Temp\tmp9yaobdrg\m

odel.ckpt.

INFO:tensorflow:Loss for final step: 7.467471.

INFO:tensorflow:Starting evaluation at 2018-03-03-

14:11:13

INFO:tensorflow:Restoring parameters from

C:\Users\GIANCA~1\AppData\Local\Temp\tmp9yaobdrg\m

odel.ckpt-1000

INFO:tensorflow:Finished evaluation at 2018-03-03-

14:11:14

INFO:tensorflow:Saving dict for global step 1000:

accuracy = 0.96666664, average_loss = 0.060853884,

global_step = 1000, loss = 1.8256165

Test set accuracy: 0.967

INFO:tensorflow:Restoring parameters from

C:\Users\GIANCA~1\AppData\Local\Temp\tmp9yaobdrg\m

odel.ckpt-1000

We can use the trained model to predict the species of an iris flower
based on some unlabeled measurements.

Let's consider the following flower samples:

expected = ['Setosa', 'Versicolor', 'Virginica']

 predict_x = {

 'SepalLength': [5.1, 5.9, 6.9],

 'SepalWidth': [3.3, 3.0, 3.1],

 'PetalLength': [1.7, 4.2, 5.4],

 'PetalWidth': [0.5, 1.5, 2.1],

 }

As with training and evaluation, we make predictions using a single
function call, via the predict method:

 predictions = classifier.predict(

input_fn=lambda:iris_data.eval_input_fn(predict_x,

labels=None,

 batch_size=args.batch_size))

 for pred_dict, expec in zip(predictions,

expected):

 template = ('\nPrediction is "{}"

({:.1f}%), expected "{}"')

 class_id = pred_dict['class_ids'][0]

 probability = pred_dict['probabilities']

[class_id]

print(template.format(iris_data.SPECIES[class_id],

 100 * probability,

expec))

The preceding code yields the following output:

Prediction is "Setosa" (99.8%), expected "Setosa"

Prediction is "Versicolor" (99.8%), expected

"Versicolor"

Prediction is "Virginica" (97.4%), expected

"Virginica"

TFLearn
TFLearn is a library that wraps a lot of new TensorFlow APIs with the
nice and familiar scikit-learn API.

TensorFlow is all about a building and executing graphs. This is a
very powerful concept, but it is also cumbersome to start with.

Looking under the hood of TF.Learn, we just used three parts:

layers: A set of advanced TensorFlow functions that allow us to
easily build complex graphs, from fully connected layers,
convolution, and batch norm to losses and optimization.
graph_actions: A set of tools to perform training, evaluating,
and running inference on TensorFlow graphs.
Estimator: This packages everything into a class that follows
scikit-learn interface and provides a way to easily build and train
custom TensorFlow models.

Installation
To install TFLearn, the easiest way is to run the following command:

pip install

git+https://github.com/tflearn/tflearn.git

For the latest stable version, use this command:

pip install tflearn

Otherwise, you can also install it from source by running the following
(from the source folder):

python setup.py install

Titanic survival predictor
In this tutorial, we will learn to use TFLearn and TensorFlow to model
the chance of survival of passengers on the Titanic using their
personal information (such as gender and age). To tackle this classic
ML task, we are going to build a DNN classifier.

Let's take a look at the dataset (TFLearn will automatically download
it for you).

For each passenger, the following information is provided:

survived Survived (0 = No; 1 = Yes)

pclass Passenger Class (1 = st; 2 = nd;

3 = rd)

name Name

sex Sex

age Age

sibsp Number of Siblings/Spouses

Aboard

parch Number of Parents/Children

Aboard

ticket Ticket Number

fare Passenger Fare

Here are some examples from the dataset:

survived pclass name sex age sibsp parch ticket fare

1 1 Aubart,
Mme.
Leontine
Pauline

female 24 0 0 PC
17477

69.3000

0 2 Bowenur, male 42 0 0 211535 13.0000

Mr.
Solomon

1 3 Baclini,
Miss.
Marie
Catherine

female 5 2 1 2666 19.2583

0 3 Youseff,
Mr.
Gerious

male 45.5 0 0 2628 7.2250

There are two classes in our task: not survived (class = 0) and
survived (class = 1). The passenger data has 8 features. The Titanic
dataset is stored in a CSV file, so we can use the TFLearn load_csv()
function to load the data from the file into a Python list. We specify
the target_column argument to indicate that our labels (survived or
not) are located in the first column (id: 0). The functions will return a
tuple: (data, labels).

Let's start with importing the NumPy and TFLearn libraries:

import numpy as np

import tflearn as tfl

Download the Titanic dataset:

from tflearn.datasets import titanic

titanic.download_dataset('titanic_dataset.csv')

Load the CSV file, and indicate that the first column represents
labels:

from tflearn.data_utils import load_csv

data, labels = load_csv('titanic_dataset.csv',

target_column=0,

 categorical_labels=True,

n_classes=2)

Data needs some preprocessing before it is ready to be used in our
DNN classifier. We must delete the column fields that won't help us
with our analysis. We discard the name and ticket fields, because we
estimate that a passenger's name and ticket are not related with their
chance of surviving:

def preprocess(data, columns_to_ignore):

The preprocessing phase starts by descending the id and delete
columns:

 for id in sorted(columns_to_ignore,

reverse=True):

 [r.pop(id) for r in data]

 for i in range(len(data)):

The sex field is converted to float (to be manipulated):

 data[i][1] = 1. if data[i][1] == 'female' else

0.

 return np.array(data, dtype=np.float32)

As already described, the name and ticket fields will be ignored by
the analysis:

to_ignore=[1, 6]

Then we call the preprocess procedure:

data = preprocess(data, to_ignore)

Next, we specify the shape of our input data. The input sample has a
total of 6 features, and we will process samples in batches to save
memory, so our data input shape is [None, 6]. The None parameter

means an unknown dimension, so we can change the total number of
samples that are processed in a batch:

net = tfl.input_data(shape=[None, 6])

Finally, we build a 3-layer neural network with this simple sequence of
statements:

net = tfl.fully_connected(net, 32)

net = tfl.fully_connected(net, 32)

net = tfl.fully_connected(net, 2,

activation='softmax')

net = tfl.regression(net)

TFLearn provides a model wrapper, DNN, that automatically performs
neural network classifier tasks:

model = tfl.DNN(net)

We will run it for 10 epochs with a batch size of 16:

model.fit(data, labels, n_epoch=10, batch_size=16,

show_metric=True)

When we run the model, we should get the following output:

Training samples: 1309

Validation samples: 0

--

Training Step: 82 | total loss: 0.64003

| Adam | epoch: 001 | loss: 0.64003 - acc: 0.6620

-- iter: 1309/1309

--

Training Step: 164 | total loss: 0.61915

| Adam | epoch: 002 | loss: 0.61915 - acc: 0.6614

-- iter: 1309/1309

--

Training Step: 246 | total loss: 0.56067

| Adam | epoch: 003 | loss: 0.56067 - acc: 0.7171

-- iter: 1309/1309

--

Training Step: 328 | total loss: 0.51807

| Adam | epoch: 004 | loss: 0.51807 - acc: 0.7799

-- iter: 1309/1309

--

Training Step: 410 | total loss: 0.47475

| Adam | epoch: 005 | loss: 0.47475 - acc: 0.7962

-- iter: 1309/1309

--

Training Step: 574 | total loss: 0.48988

| Adam | epoch: 007 | loss: 0.48988 - acc: 0.7891

-- iter: 1309/1309

--

Training Step: 656 | total loss: 0.55073

| Adam | epoch: 008 | loss: 0.55073 - acc: 0.7427

-- iter: 1309/1309

--

Training Step: 738 | total loss: 0.50242

| Adam | epoch: 009 | loss: 0.50242 - acc: 0.7854

-- iter: 1309/1309

--

Training Step: 820 | total loss: 0.41557

| Adam | epoch: 010 | loss: 0.41557 - acc: 0.8110

-- iter: 1309/1309

--

The model accuracy is around 81%, which means that it can predict
the correct outcome (that is, whether the passenger survived or not)
for 81% of the passengers.

PrettyTensor
PrettyTensor allows the developer to wrap TensorFlow operations to
quickly chain any number of layers to define neural networks.
Coming up is simple example of Pretty Tensor's capabilities: we
wrap a standard TensorFlow object, pretty, into a library-compatible
object; then we feed it through three fully connected layers, and we
finally output a softmax distribution:

pretty = tf.placeholder([None, 784], tf.float32)

softmax = (prettytensor.wrap(examples)

 .fully_connected(256, tf.nn.relu)

 .fully_connected(128, tf.sigmoid)

 .fully_connected(64, tf.tanh)

 .softmax(10))

The PrettyTensor installation is very simple. You can just use the pip
installer:

sudo pip install prettytensor

Chaining layers
PrettyTensor has three modes of operation that share the ability to
chain methods.

Normal mode
In normal mode, every time a method is called, a new PrettyTensor
is created. This allows easy chaining, and you can still use any
particular object multiple times. This makes it easy to branch your
network.

Sequential mode

In sequential mode, an internal variable – the head – keeps track of
the most recent output tensor, thus allowing call chains to be broken
into multiple statements.

Here is a quick example:

seq = pretty_tensor.wrap(input_data).sequential()

seq.flatten()

seq.fully_connected(200, activation_fn=tf.nn.relu)

seq.fully_connected(10, activation_fn=None)

result = seq.softmax(labels, name=softmax_name))

Branch and join
Complex networks can be built using the first-class branch and join
methods:

branch creates a separate PrettyTensor object that points to the
current head when it is called, and this allows the user to define
a separate tower that either ends in a regression target, ends in
output, or rejoins the network. Rejoining allows the user to
define composite layers like inception.
join is used to join multiple inputs or to rejoin a composite layer.

Digit classifier
In this example, we'll define and train a two-layer model and a
convolutional model in the style of LeNet 5:

import tensorflow as tf

import prettytensor as pt

from prettytensor.tutorial import data_utils

tf.app.flags.DEFINE_string('save_path',\

 None, \

 'Where to save the

model checkpoints.')

FLAGS = tf.app.flags.FLAGS

BATCH_SIZE = 50

EPOCH_SIZE = 60000

TEST_SIZE = 10000

Since we are feeding our data as NumPy arrays, we need to create
placeholders in the graph. These must then be fed using the feed
dict statement:

image_placeholder = tf.placeholder\

 (tf.float32, [BATCH_SIZE, 28,

28, 1])

labels_placeholder = tf.placeholder\

 (tf.float32, [BATCH_SIZE,

10])

Next, we create the multilayer_fully_connected function. The first
two layers are fully connected (100 neurons) and the last layer is a
softmax result layer. As you can see, chaining layers is a very simple
operation:

def multilayer_fully_connected(images, labels):

 images = pt.wrap(images)

 with pt.defaults_scope\

(activation_fn=tf.nn.relu,l2loss=0.00001):

 return (images.flatten().\

 fully_connected(100).\

 fully_connected(100).\

 softmax_classifier(10, labels))

Now we'll build a multilayer convolutional network: the architecture is
similar to LeNet 5's. Please change this so you can experiment with
other architectures:

def lenet5(images, labels):

 images = pt.wrap(images)

 with pt.defaults_scope\

 (activation_fn=tf.nn.relu,

l2loss=0.00001):

 return (images.conv2d(5, 20).\

 max_pool(2, 2).\

 conv2d(5, 50).\

 max_pool(2, 2).\

 flatten().\

 fully_connected(500).\

 softmax_classifier(10, labels))

Depending on the chosen model, we may have a 2-layer classifier
(multilayer_fully_connected) or a convolutional classifier (lenet5):

def make_choice():

 var = int(input('(1) = multy layer model (2)

= lenet 5 '))

 print(var)

 if var == 1:

 result = multilayer_fully_connected\

(image_placeholder,labels_placeholder)

 run_model(result)

 elif var == 2:

 result = lenet5\

(image_placeholder,labels_placeholder)

 run_model(result)

 else:

 print ('incorrect input value')

Finally, we define the accuracy of the chosen model:

def run_model(result):

 accuracy = result.softmax.evaluate_classifier\

(labels_placeholder,phase=pt.Phase.test)

Next, we build the training and testing sets:

 train_images, train_labels =

data_utils.mnist(training=True)

 test_images, test_labels =

data_utils.mnist(training=False)

We will use a gradient descent optimizer procedure and apply it to
the graph. The pt.apply_optimizer function adds regularization
losses and sets up a step counter:

 optimizer =

tf.train.GradientDescentOptimizer(0.01)

 train_op = pt.apply_optimizer\

 (optimizer,losses=

[result.loss])

We can set a save_path in the running session to automatically save
the progress every so often. Otherwise, the model will be lost at the
end of the session:

runner =

pt.train.Runner(save_path=FLAGS.save_path)

with tf.Session():

 for epoch in range(0,10)

Shuffle the training data:

 train_images, train_labels = \

 data_utils.permute_data\

 ((train_images,

train_labels))

 runner.train_model(train_op,result.\

 loss,EPOCH_SIZE,\

 feed_vars=

(image_placeholder,\

labels_placeholder),\

 feed_data=pt.train.\

 feed_numpy(BATCH_SIZE,\

train_images,\

train_labels),\

 print_every=100)

 classification_accuracy =

runner.evaluate_model\

 (accuracy,\

 TEST_SIZE,\

 feed_vars=

(image_placeholder,\

labels_placeholder),\

feed_data=pt.train.\

feed_numpy(BATCH_SIZE,\

test_images,\

test_labels))

 print("epoch" , epoch + 1)

 print("accuracy", classification_accuracy)

if __name__ == '__main__':

 make_choice()

Running the example, we have to choose the model to train:

(1) = multylayer model (2) = lenet 5

By selecting the multylayer model, we should have an accuracy of
95.5 %:

Extracting /tmp/data\train-images-idx3-ubyte.gz

Extracting /tmp/data\train-labels-idx1-ubyte.gz

Extracting /tmp/data\t10k-images-idx3-ubyte.gz

Extracting /tmp/data\t10k-labels-idx1-ubyte.gz

epoch 1

accuracy [0.8969]

epoch 2

accuracy [0.914]

epoch 3

accuracy [0.9188]

epoch 4

accuracy [0.9306]

epoch 5

accuracy [0.9353]

epoch 6

accuracy [0.9384]

epoch 7

accuracy [0.9445]

epoch 8

accuracy [0.9472]

epoch 9

accuracy [0.9531]

epoch 10

accuracy [0.9552]

While for the Lenet5 we should have an accuracy of 98.8 %:

Extracting /tmp/data\train-images-idx3-ubyte.gz

Extracting /tmp/data\train-labels-idx1-ubyte.gz

Extracting /tmp/data\t10k-images-idx3-ubyte.gz

Extracting /tmp/data\t10k-labels-idx1-ubyte.gz

epoch 1

accuracy [0.9686]

epoch 2

accuracy [0.9755]

epoch 3

accuracy [0.983]

epoch 4

accuracy [0.9841]

epoch 5

accuracy [0.9844]

epoch 6

accuracy [0.9863]

epoch 7

accuracy [0.9862]

epoch 8

accuracy [0.9877]

epoch 9

accuracy [0.9855]

epoch 10

accuracy [0.9886]

Keras
Keras is an open source neural network library that is written in
Python. It focuses on being minimal, modular, and extensible, and
was designed in order to enable fast experimentation with DNNs.

This library, whose primary author and maintainer is a Google
engineer named François Chollet, was developed as part of the
research effort of project ONEIROS (Open-ended Neuro-Electronic
Intelligent Robot Operating System).

Keras was developed following these design principles:

Modularity: A model is understood as a sequence or a graph of
standalone, fully-configurable modules that can be plugged
together with as few restrictions as possible. Neural layers, cost
functions, optimizers, initialization schemes, and activation
functions are all standalone modules that can be combined to
create new models.
Minimalism: Each module must be short (a few lines of code)
and simple. The source code should be transparent upon the
dirt reading.
Extensibility: New modules are simple to add (like new classes
and functions), and existing modules provide examples on
which to base new modules. Being able to easily create new
modules allows total expressiveness, making Keras suitable for
advanced research.

Keras, is available both in the embedded version as a TensorFlow
API, and as a library:

tf.keras from
https://www.tensorflow.org/api_docs/python/tf/keras
Keras v 2.1.4 (please see at https://keras.io for updates and
installation guide)

https://www.tensorflow.org/api_docs/python/tf/keras
https://keras.io/

In the following sections we will see how to use both the first
and the second implementation.

Keras programming models
The core data structure of Keras is a model, which is a way to
organize layers. There are two types of model:

Sequential: This is just a linear stack of layers used to
implement simple models
Functional APIs: These are used for more complex
architectures, such as models with multiple output and directed
acyclic graphs

Sequential model
In this section, we'll quickly explain how sequential models work by
showing you the code. Let's start by importing and building the Keras
Sequential model using the TensorFlow APIs:

import tensorflow as tf

from tensorflow.python.keras.models import

Sequential

model = Sequential()

Once we have defined a model we can add one or more layers. The
stacking operation is provided by the add() statement:

from keras.layers import Dense, Activation

For example, let's add a first fully connected neural network layer
and the activation function:

model.add(Dense(output_dim=64, input_dim=100))

model.add(Activation("relu"))

Then we add a second softmax layer:

model.add(Dense(output_dim=10))

model.add(Activation("softmax"))

If the model looks fine, we must compile() the model, specifying the
loss function and the optimizer to be used:

model.compile(loss='categorical_crossentropy',\

 optimizer='sgd',\

 metrics=['accuracy'])

We can now configure our optimizer. Keras tries to make
programming reasonably simple, allowing the user to be fully in
control when they need to.

Once compiled, the model must fit the data:

model.fit(X_train, Y_train, nb_epoch=5,

batch_size=32)

Alternatively, we can feed batches to our model manually:

model.train_on_batch(X_batch, Y_batch)

Once it is trained, we can use our model to make predictions on new
data:

classes = model.predict_classes(X_test,

batch_size=32)

proba = model.predict_proba(X_test, batch_size=32)

Sentiment classification of movie reviews

In this example, we apply the Keras sequential model to a sentiment
analysis problem. Sentiment analysis is the act of deciphering the
opinions contained in a written or spoken text. The main purpose of
this technique is to identify the sentiment (or polarity) of a lexical
expression, which may have a neutral, positive, or negative
connotation. The problem that we want to solve is the IMDB movie
review sentiment classification problem: each movie review is a

variable sequence of words, and the sentiment (positive or negative)
of each movie review must be classified.

The problem is very complex because the sequences can vary in
length and contain a large vocabulary of input symbols. The solution
requires the model to learn long-term dependencies between
symbols in the input sequence.

The IMDB dataset contains 25,000 highly polar movie reviews (good
or bad) for training, and the same amount again for testing. The data
was collected by Stanford researchers and was used in a 2011
paper where a 50-50 split of the data was used for training and
testing. In this paper, an accuracy of 88.89% was achieved.

Once we have defined our problem, we are ready to develop a
sequential LSTM model to classify the sentiment of movie reviews.
We can quickly develop a LSTM for the IMDB problem and achieve
good accuracy. Let's start off by importing the classes and functions
required for this model and initializing the random number generator
to a constant value to ensure we can easily reproduce the results.

In this example we are using the embedded Keras in TensorFlow
APIs:

import numpy

from tensorflow.python.keras.models import

Sequential

from tensorflow.python.keras.datasets import imdb

from tensorflow.python.keras.layers import Dense

from tensorflow.python.keras.layers import LSTM

from tensorflow.python.keras.layers import

Embedding

from tensorflow.python.keras.preprocessing import

sequence

numpy.random.seed(7)

We load the IMDB dataset. We are restricting the dataset to the top
5,000 words. We also split the dataset into training (50%) and testing
(50%) sets.

Keras provides built-in access to the IMDB dataset. The
imdb.load_data() function allows you to load the dataset in a format
that is ready for use in neural networks and DL models. The words
have been replaced by integers that indicate the ordered frequency
of each word in the dataset. The sentences in each review therefore
comprise a sequence of integers.

Here's the code:

top_words = 5000

(X_train, y_train), (X_test, y_test) = \

imdb.load_data(num_words=top_words)

Next, we need to truncate and pad the input sequences so that they
are all the same length for modeling. The model will learn the zero
values that carry no information, so the sequences are not the same
length in terms of content, but the vectors need to be the same
length to be computed in Keras. The sequence length in each review
varies, so we restricted each review to 500 words, truncating long
reviews and padding the shorter reviews with zero values:

Let's see:

max_review_length = 500

X_train = sequence.pad_sequences\

 (X_train,

maxlen=max_review_length)

X_test = sequence.pad_sequences\

 (X_test,

maxlen=max_review_length)

We can now define, compile, and fit our LSTM model.

To resolve the sentiment classification problem, we'll use the word
embedding technique. It consists of representing words in a
continuous vector space, which is an area in which the words that
are semantically similar are mapped to neighboring points. Word
embedding is based on the distributional hypothesis, which states

that the words that appear in a given context must share the same
semantic meaning. Each movie review will then be mapped into a
real vector domain, where the similarity between words in terms of
meaning translates to closeness in the vector space. Keras provides
a convenient way to convert positive integer representations of
words into a word embedding by using an embedding layer.

Here, we define the length of the embedding vector and the model:

embedding_vector_length = 32

model = Sequential()

The first layer is the embedded layer. It uses 32 length vectors to
represent each word:

model.add(Embedding(top_words, \

 embedding_vector_length,\

input_length=max_review_length))

The next layer is the LSTM layer with 100 memory units. Finally,
because this is a classification problem, we use a dense output layer
with a single neuron and a sigmoid activation function to make
predictions about the classes (good and bad) in the problem:

model.add(LSTM(100))

model.add(Dense(1, activation='sigmoid'))

Because it is a binary classification problem, we use
binary_crossentropy as the loss function, while the optimizer used
here is the adam optimization algorithm (we encountered it in a
previous TensorFlow implementation):

model.compile(loss='binary_crossentropy',\

 optimizer='adam',\

 metrics=['accuracy'])

print(model.summary())

We only fit three epochs, because the model quickly overfits. A batch
size of 64 reviews is used to space out weight updates:

model.fit(X_train, y_train, \

 validation_data=(X_test, y_test),\

 num_epochs=3, \

 batch_size=64)

Then, we estimate the model's performance on unseen reviews:

scores = model.evaluate(X_test, y_test, verbose=0)

print("Accuracy: %.2f%%" % (scores[1]*100))

Running this example produces the following output:

Epoch 1/3

16750/16750 [==============================] -

107s - loss: 0.5570 - acc: 0.7149

Epoch 2/3

16750/16750 [==============================] -

107s - loss: 0.3530 - acc: 0.8577

Epoch 3/3

16750/16750 [==============================] -

107s - loss: 0.2559 - acc: 0.9019

Accuracy: 86.79%

You can see that this simple LSTM with little tuning achieves near
state-of-the-art results on the IMDB problem. Importantly, this is a
template that you can use to apply LSTM networks to your own
sequence classification problems.

Functional API
To build complex networks, the functional approach, which we will
describe here, turns out to be very useful. As shown in Chapter 4,
TensorFlow on a Convolutional Neural Network, the most popular
neural networks (AlexNET, VGG, and so on) consist of one or more
neural mini-networks repeated several times. Functional API
consists of considering a neural network as a function that we can
call several times. This approach turns out to be computationally

advantageous because in order to build a neural network, even a
complex one, just a few lines of code are needed.

In the following examples, we are using the Keras v2.1.4 from
https://keras.io.

Let's see how it works. First, you need to import the Model module:

from keras.models import Model

The first thing to do is to specify the input for the model. Let's declare
a tensor of shape 28×28×1 using the Input() function:

from keras.layers import Input

digit_input = Input(shape=(28, 28,1))

This is one of the notable differences between sequential models
and Functional APIs. So, using the Conv2D and MaxPooling2D APIs,
we build a convolutional layer:

x = Conv2D(64, (3, 3))(digit_input)

x = Conv2D(64, (3, 3))(x)

x = MaxPooling2D((2, 2))(x)

out = Flatten()(x)

Note that the variable x specifies the variable to which the layer is
applied. Finally, we define the model by specifying the input and
output:

vision_model = Model(digit_input, out)

Of course, we will also need to specify the loss, optimizer, and so on
using the fit and compile methods, in the same way as we did for the
sequential models.

SqueezeNet

In this example, we introduce a small CNN architecture called
SqueezeNet that achieves AlexNet-level accuracy on ImageNet with

https://keras.io/

50 times fewer parameters. This architecture is inspired by the
inception module of GoogleNet and was published in the paper :
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and
< 1MB model size, downloadable from the following link:
http://arxiv.org/pdf/1602.07360v2.pdf.

The idea behind SqueezeNet is to reduce the number of parameters
we have to deal with using a compression scheme. This strategy
reduces the number of parameters using fewer filters. This is done
by feeding squeeze layers into what they refer to as expand layers.
These two layers compose the so-called Fire Module as shown in
the following diagram:

Figure 2: SqueezeNet Fire Module

fire_module is composed of 1×1 convolution filters followed by a
ReLU operation:

http://arxiv.org/pdf/1602.07360v2.pdf

x = Convolution2D(squeeze,(1,1),padding='valid',

name='fire2/squeeze1x1')(x)

x = Activation('relu',

name='fire2/relu_squeeze1x1')(x)

The expand part has two portions: left and right.

The left part uses 1×1 convolutions and is called expand 1×1:

left = Conv2D(expand, (1, 1), padding='valid',

name=s_id + exp1x1)(x)

left = Activation('relu', name=s_id + relu +

exp1x1)(left)

The right part uses 3×3 convolutions and is called expand3x3. Both
of these parts are followed by a ReLU layer:

right = Conv2D(expand, (3, 3), padding='same',

name=s_id + exp3x3)(x)

right = Activation('relu', name=s_id + relu +

exp3x3)(right)

The final output of the Fire Module is a concatenation of left and
right:

x = concatenate([left, right], axis=channel_axis,

name=s_id + 'concat')

Then, fire_module is used repeatedly to build the complete network,
which looks like this:

x = Convolution2D(64,(3,3),strides=(2,2),

padding='valid',\

name='conv1')(img_input)

x = Activation('relu', name='relu_conv1')(x)

x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),

name='pool1')(x)

x = fire_module(x, fire_id=2, squeeze=16,

expand=64)

x = fire_module(x, fire_id=3, squeeze=16,

expand=64)

x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),

name='pool3')(x)

x = fire_module(x, fire_id=4, squeeze=32,

expand=128)

x = fire_module(x, fire_id=5, squeeze=32,

expand=128)

x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2),

name='pool5')(x)

x = fire_module(x, fire_id=6, squeeze=48,

expand=192)

x = fire_module(x, fire_id=7, squeeze=48,

expand=192)

x = fire_module(x, fire_id=8, squeeze=64,

expand=256)

x = fire_module(x, fire_id=9, squeeze=64,

expand=256)

x = Dropout(0.5, name='drop9')(x)

x = Convolution2D(classes, (1, 1),

padding='valid', name='conv10')(x)

x = Activation('relu', name='relu_conv10')(x)

x = GlobalAveragePooling2D()(x)

x = Activation('softmax', name='loss')(x)

model = Model(inputs, x, name='squeezenet')

The following diagram shows the SqueezeNet architecture:

Figure 3: SqueezeNet architecture

You can download the Keras implementation of SqueezeNet (the
squeezenet.py file) from the following link:
https://github.com/rcmalli/keras-squeezenet.

Then we test the model on the following squeeze_test.jpg (227×227)
image:

https://github.com/rcmalli/keras-squeezenet

Figure 4: SqueezeNet test image

We do this by just using the following few lines of code:

import os

import numpy as np

import squeezenet as sq

from keras.applications.imagenet_utils import

preprocess_input

from keras.applications.imagenet_utils import

preprocess_input, decode_predictions

from keras.preprocessing import image

model = sq.SqueezeNet()

img = image.load_img('squeeze_test.jpg',

target_size=(227, 227))

x = image.img_to_array(img)

x = np.expand_dims(x, axis=0)

x = preprocess_input(x)

preds = model.predict(x)

print('Predicted:', decode_predictions(preds))

As you can see, the results are very interesting:

Predicted: [[('n02504013', 'Indian_elephant',

0.64139527), ('n02504458', 'African_elephant',

0.22846894), ('n01871265', 'tusker', 0.12922771),

('n02397096', 'warthog', 0.00037213496),

('n02408429', 'water_buffalo', 0.00032306617)]]

Summary
In this chapter, we looked at some TensorFlow-based libraries for DL
research and development. We introduced tf.estimator, which is a
simplified interface for DL/ML, and is now part of TensorFlow and a
high-level ML API that makes it easy to train, configure, and evaluate
a variety of ML models. We used the estimator feature to implement
a classifier for the Iris dataset.

We also had a look at the TFLearn library, which wraps a lot of
TensorFlow APIs. In the example, we used TFLearn to estimate the
chance of survival of passengers on the Titanic. To tackle this task,
we built a DNN classifier.

Then, we introduced PrettyTensor, which allows TensorFlow
operations to be wrapped to chain any number of layers. We
implemented a convolutional model in the style of LeNet to quickly
resolve the handwritten classification model.

Then we had a quick look at Keras, which is designed for minimalism
and modularity, allowing the user to quickly define DL models. Using
Keras, we have learned how to develop a simple single-layer LSTM
model for the IMDB movie review sentiment classification problem.
In the last example, we used Keras' functionality to build a
SqueezeNet neural network starting from a pretrained inception
model.

The next chapter introduces reinforcement learning. We'll explore the
basic principles and algorithms of reinforcement learning. We'll also
see some examples using TensorFlow and the OpenAI Gym
framework, which is a powerful toolkit for developing and comparing
reinforcement learning algorithms.

Chapter 9. Recommendation
Systems Using Factorization
Machines
Factorization models are very popular in recommendation systems
because they can be used to discover latent features underlying the
interactions between two different kinds of entities. In this chapter,
we will provide several examples of how to develop recommendation
system for predictive analytics.

We will see the theoretical background of recommendation systems,
such as matrix factorization. Later in the chapter, we will see how to
use a collaborative approach to develop a movie recommendation
system. Finally, will see how to use Factorization Machines (FMs)
and improved versions of them to develop more robust
recommendation systems.

In summary, the following topics will be covered in this chapter:

Recommendation systems
A movie recommendation system using the collaborative filtering
approach
K-means for clustering similar movies
FM-based recommendation systems
Using improved FMs for movie recommendation

Recommendation systems
Recommender techniques are nothing but information agents that try
to predict items that users may be interested in and recommend the
best ones to the target user. These techniques can be classified
based on the information sources they use. For example, user
features (age, gender, income, and location), item features
(keywords and genres), user-item ratings (explicit ratings and

transaction data), and other information about the user and item that
are useful for the process of recommendation.

Thus, a recommendation system (otherwise known as a
recommendation engine or RE) is a subclass of information filtering
systems that help to predict the rating or preference, based on the
rating provided by users for an item. In recent years,
recommendation systems have become increasingly popular.

For example, at Amazon, the importance of suggesting the right item
to the right user can be gauged by the fact that 35% of all sales are
estimated to be generated by the recommendation engine.
Therefore, Amazon is investing a large amount of talent and
resources on getting better at AI – specifically "deep learning"
technology – to make recommendation engines which learn and
scale even more efficiently.

Consequently, they are being used in many areas, such as movies,
music, news, books, research articles, search queries, social tags,
products, jokes, restaurants, garments, financial services, life
insurance, and online dating sites.

There are a couple of ways to develop REs to produce a list of
recommendations. For example, collaborative and content-based
filtering, knowledge-based, or the personality-based approach.

Collaborative filtering approaches
Using collaborative filtering approaches, an RE can be built based
on a user's past behavior. Numerical ratings are given on consumed
items. Sometimes, it can be based on the decisions made by other
users who also have purchased the same items, using some widely-
used data mining algorithms such as Apriori or FP-growth. In the
following diagram, you can get some idea of different
recommendation systems:

Figure 1: A comparative view of different recommendation systems

Collaborative filtering-based approaches often suffer from the
following three problems:

Cold start: Sometimes they can be stuck when a large amount
of data about users is required to make a more accurate
recommendation system.
Scalability: A large amount of computation power is often
necessary to calculate recommendations using a dataset with
millions of users and products.
Sparsity: This often happens with crowdsourced datasets when
a huge number of items are sold on major e-commerce sites. All
recommendation datasets are crowd-sourced in some sense.
This is a general problem for almost all recommendation
systems that have a sufficiently large number of items to offer to
a sufficiently large number of users and need not be confined to
e-commerce sites only.

In this case, active users may rate only a small subset of the
whole items sold, so even the most popular items have very few
ratings. Accordingly, the user versus items matrix becomes very
sparse. In other words, handling a large-scale sparse matrix is
computationally very challenging.

To overcome these issues, a particular type of collaborative filtering
algorithm uses matrix factorization, which is a low-rank matrix
approximation technique. We will see an example of this later in the
chapter.

Content-based filtering approaches
With content-based filtering approaches, a series of discrete
characteristics of an item is utilized to recommend additional items
with similar properties. Sometimes it is based on a description of the
item and a profile of the user's preferences. These approaches try to
recommend items that are similar to those that a user liked in the
past, or that are being used currently.

A key issue with content-based filtering is whether the system is able
to learn user preferences from their actions regarding one content
source and use them with other content types. When this type of RE
is deployed, it can then be used to predict items, or ratings for items,
that the user may have an interest in.

Hybrid recommender systems
As you have seen, there are several pros and cons of using
collaborative filtering and content-based filtering approaches.
Therefore, to overcome the limitations of these two approaches, the
recent trend has shown that a hybrid approach can be more effective
and accurate. Sometimes, factorization approaches such as
Factorization Matrix (FM) and Singular Value Decomposition
(SVD) are used to make them robust. Hybrid approaches can be
implemented in several ways:

Content-based and collaborative predictions are computed
separately and later are combined into one model. In this
approach, FM and SVD are often used extensively.
Content-based capabilities are added to a collaborative
approach or vice versa. Again, FM and SVD are used for better
prediction.

Netflix is a perfect example of using this hybrid approach to make
recommendations to their subscribers. This site makes
recommendations in two ways:

Collaborative filtering: By comparing the watching and
searching habits of similar users
Content-based filtering: By recommending movies that share
characteristics with films that a user has rated highly

Model-based collaborative filtering
Collaborative filtering methods are classified as memory-based i.e.
user-based algorithm and model-based collaborative filtering (kernel
mapping recommended). In the model-based collaborative filtering
technique, users and products are described by a small set of
factors, also called latent factors (LFs).

The LFs are then used to predict the missing entries. The
Alternating Least Squares (ALS) algorithm is used to learn these
latent factors. There are several advantages:

Compared to a memory-based approach, a model-based
approach can handle the sparsity of the original matrix better
Using this approach, the resulting models become much smaller
than the actual dataset, which imparts scalability to the overall
system.
Model-based systems are faster than memory-based systems
because the resulting model is much smaller than what you
need to query the whole dataset.
Using this approach, it is relatively easy to avoid overfitting.

As a downside, the model-based approach is not flexible and
adaptable because it is difficult to add data to the model. The quality
of predictions depends on the way the model is built, but since this
approach is inflexible, we cannot utilize all the data. This implies that
we may not get high predictive accuracy.

Movie recommendation using
collaborative filtering
In this section, we will see how to utilize collaborative filtering to
develop a recommendation engine. However, before that let's discuss
the utility matrix of preferences.

The utility matrix
In a collaborative filtering-based recommendation system, there are
dimensions of entities: users and items (items refer to products, such
as movies, games, and songs). As a user, you might have preferences
for certain items. Therefore, these preferences must be extracted out of
the data about items, users, or ratings. This data is often represented
as a utility matrix, such as a user-item pair. This type of value can
represent what is known about the degree of preference that the user
has for a particular item.

The entry in the matrix can come from an ordered set. For example,
integers 1-5 can be used to represent the number of stars that the user
gave when rating items. We have already mentioned that users might
not rate items very often, so most entries are unknown. Therefore,
assigning 0 to unknown items would fail, which also means that the
matrix is might be sparse. An unknown rating implies that we have no
explicit information about the user's preference for the item.

Table 1 shows an example utility matrix. The matrix represents the
rating users have given to movies on a 1-5 scale, with 5 being the
highest rating. A blank entry represents the fact that the particular user
has not provided any rating for that particular movie. HP1, HP2, and
HP3 are acronyms for Harry Potter I, II, and III, TW stands for Twilight,
and SW1, SW2, and SW3 for Star Wars episodes 1, 2, and 3. The
letters A, B, C, and D represent the users:

Table 1: Utility matrix (user versus movies matrix)

There are many blank entries for the user-movie pairs. This means that
users have not rated those movies. In a real-life scenario, the matrix
might be even sparser, with the typical user rating only a tiny fraction of
all available movies. Using this matrix, the goal is to predict the blanks
in the utility matrix. Now, let's see an example. Suppose we are curious
to know whether user A would like SW2. It is difficult to work this out
because there is not much data to work within the matrix in Table 1.

Thus, in practice, we might develop a movie recommendation engine to
consider other properties of movies, such as the producer, director,
leading actors, or even the similarity of their names. This way, we can
compute the similarity of the movies SW1 and SW2. This similarity
would drive us to conclude that since A did not like SW1, so they are
unlikely to enjoy SW2 either.

However, this might not work for a larger dataset. Therefore, with much
more data, we might observe that the people who rated both SW1 and
SW2 were inclined to give them similar ratings. Finally, we can
conclude that A would also give SW2 a low rating, similar to A's rating
of SW1.

In the next section, we will see how to develop a movie
recommendation engine using the collaborative filtering approach. We
will see how to utilize this type of matrix.

Note

How to use the code repo: there are eight Python scripts in this code
repo (that is, Deep Learning with
TensorFlow_09_Codes/Collaborative Filtering/). First, execute the
eda.py that performs an exploratory analysis of the dataset. Then,
invoke the train.py script to perform the training. Finally, Test.py
can be used for model inferencing and evaluation.

Here is the brief functionality of each script:

eda.py: This is used for the exploratory analysis of the MovieLe
1M dataset.
train.py: It performs the training as well as validation. Then it prin
the validation error. Finally, it creates the user-item dense table.
Test.py: It restores the user vs item table generated in the trainin
Then evaluates all the models.
run.py: It is used for model inferencing and does predictions.
kmean.py: It clusters similar movies.
main.py: It computes the top k movies, creates the user rating, find
top k similar items, computes the user similarity, computes the ite
correlation and computes the user Pearson correlation.
readers.py: It reads the rating and movies data and performs som
preprocessing. Finally, it prepares the dataset for the batch training
model.py: It creates the model and computes the train/validatio
loss.

The workflow can be described as follows:

1. First, we will train a model by using the available ratings.
2. Then we use the trained model to predict the missing ratings in the

users versus movies matrix.
3. Then, with all the predicted ratings, a new user versus movie

matrix will be constructed and saved in the form of a .pkl file.
4. Then, we use this matrix to make predictions of ratings for

particular users.
5. Finally, we will train the K-means model to cluster related movies.

Description of the dataset

Before we start implementing the movie RE, let's look at the dataset
that will be used. The MovieLens 1M dataset was downloaded from the
MovieLens website at http://files.grouplens.org/datasets/movielens/ml-
1m.zip.

I sincerely acknowledge and thank F. Maxwell Harper and Joseph A.
Konstan for making the datasets available for use. The dataset was
published in MovieLens Dataset: History and Context. ACM
Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19
(December 2015), 19 pages.

There are three files in the dataset, and they relate to movies, ratings,
and users. These files contain 1,000,209 anonymous ratings of
approximately 3,900 movies made by 6,040 MovieLens users who
joined MovieLens in 2000.

Ratings data
All the ratings are contained in the ratings.dat file and are in the
following format - UserID::MovieID::Rating::Timestamp:

UserIDs range between 1 and 6,040
MovieIDs range between 1 and 3,952
Ratings are made on a 5-star scale
Timestamp is represented in seconds

Note that each user has rated at least 20 movies.

Movies data
Movie information is in the movies.dat file and is in the following format
- MovieID::Title::Genres:

Titles are identical to titles provided by IMDb (with the release
year)
Genres are pipe-separated (::), and each movie is categorized as
action, adventure, animation, children's, comedy, crime, drama,
war, documentary, fantasy, film-noir, horror, musical, mystery,
romance, sci-fi, thriller, and western

http://files.grouplens.org/datasets/movielens/ml-1m.zip

Users data
User information is in the users.dat file and is in the following format -
UserID::Gender::Age::Occupation::Zip-code.

All demographic information is provided voluntarily by the users and is
not checked for accuracy. Only users who have provided some
demographic information are included in this dataset. An M for male
and F for female denotes gender.

Age is chosen from the following ranges:

1: Under 18
18: 18-24
25: 25-34
35: 35-44
45: 45-49
50: 50-55
56: 56+

Occupation is chosen from the following choices:

0: other, or not specified

1: academic/educator

2: artist

3: clerical/admin

4: college/grad student

5: customer service

6: doctor/health care

7: executive/managerial

8: farmer

9: homemaker

10: K-12 student

11: lawyer

12: programmer

13: retired

14: sales/marketing

15: scientist

16: self-employed

17: technician/engineer

18: tradesman/craftsman

19: unemployed

20: writer

Exploratory analysis of the MovieLens
dataset
Here, we will see an exploratory description of the dataset before we
start developing the RE. I am assuming that the reader has already
downloaded the MovieLens 1m dataset from
http://files.grouplens.org/datasets/movielens/ml-1m.zip and unzipped it
in the input directory in this code repo. Now, for this, execute the $
python3 eda.py command on the terminal:

1. First, let's import the required libraries and packages:
import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

import numpy as np

http://files.grouplens.org/datasets/movielens/ml-1m.zip

2. Now let's load the users, ratings, and movies dataset and create a
pandas DataFrame:

ratings_list = [i.strip().split("::") for i in

open('Input/ratings.dat', 'r').readlines()]

users_list = [i.strip().split("::") for i in

open('Input/users.dat', 'r').readlines()]

movies_list = [i.strip().split("::") for i in

open('Input/movies.dat', 'r',encoding='latin-

1').readlines()]

ratings_df = pd.DataFrame(ratings_list, columns

= ['UserID', 'MovieID', 'Rating', 'Timestamp'],

dtype = int)

movies_df = pd.DataFrame(movies_list, columns =

['MovieID', 'Title', 'Genres'])

user_df=pd.DataFrame(users_list, columns=

['UserID','Gender','Age','Occupation','ZipCode']

)

3. The next task is to convert the categorical columns, such as
MovieID, UserID, and Age, into numerical values using the built-in
to_numeric() pandas function:

movies_df['MovieID'] =

movies_df['MovieID'].apply(pd.to_numeric)

user_df['UserID'] =

user_df['UserID'].apply(pd.to_numeric)

user_df['Age'] =

user_df['Age'].apply(pd.to_numeric)

4. Let's see some examples from the user table:
print("User table description:")

print(user_df.head())

print(user_df.describe())

>>>

User table description:

UserID Gender Age Occupation ZipCode

 1 F 1 10

48067

 2 M 56 16

70072

 3 M 25 15

55117

 4 M 45 7

02460

 5 M 25 20

55455

 UserID Age

count 6040.000000 6040.000000

mean 3020.500000 30.639238

std 1743.742145 12.895962

min 1.000000 1.000000

25% 1510.750000 25.000000

50% 3020.500000 25.000000

75% 4530.250000 35.000000

max 6040.000000 56.000000

5. Let's see some info from the rating dataset:
print("Rating table description:")

print(ratings_df.head())

print(ratings_df.describe())

>>>

Rating table description:

UserID MovieID Rating Timestamp

 1 1193 5

978300760

 1 661 3

978302109

 1 914 3

978301968

 1 3408 4

978300275

 1 2355 5

978824291

 UserID MovieID Rating

Timestamp

count 1.000209e+06 1.000209e+06 1.000209e+06

1.000209e+06

mean 3.024512e+03 1.865540e+03 3.581564e+00

9.722437e+08

std 1.728413e+03 1.096041e+03 1.117102e+00

1.215256e+07

min 1.000000e+00 1.000000e+00 1.000000e+00

9.567039e+08

25% 1.506000e+03 1.030000e+03 3.000000e+00

9.653026e+08

50% 3.070000e+03 1.835000e+03 4.000000e+00

9.730180e+08

75% 4.476000e+03 2.770000e+03 4.000000e+00

9.752209e+08

max 6.040000e+03 3.952000e+03 5.000000e+00

1.046455e+09

6. Let's look at some info from the movie dataset:

>>>

print("Movies table description:")

print(movies_df.head())

print(movies_df.describe())

>>>

Movies table description:

 MovieID Title

Genres

0 1 Toy Story (1995)

Animation|Children's|Comedy

1 2 Jumanji (1995)

Adventure|Children's|Fantasy

2 3 Grumpier Old Men (1995)

Comedy|Romance

3 4 Waiting to Exhale (1995)

Comedy|Drama

4 5 Father of the Bride Part

II (1995) Comedy

 MovieID

count 3883.000000

mean 1986.049446

std 1146.778349

min 1.000000

25% 982.500000

50% 2010.000000

75% 2980.500000

max 3952.000000

7. Now let's see the top five most rated movies:
print("Top ten most rated movies:")

print(ratings_df['MovieID'].value_counts().head(

))

>>>

Top 10 most rated movies with title and rating

count:

American Beauty (1999)

3428

Star Wars: Episode IV - A New Hope (1977)

2991

Star Wars: Episode V - The Empire Strikes Back

(1980) 2990

Star Wars: Episode VI - Return of the Jedi

(1983) 2883

Jurassic Park (1993)

2672

Saving Private Ryan (1998)

2653

Terminator 2: Judgment Day (1991)

2649

Matrix, The (1999)

2590

Back to the Future (1985)

2583

Silence of the Lambs, The (1991)

2578

8. Now let's look at the movie rating distribution. For this, let's use a
histogram plot, that demonstrates an important pattern where
votes are distributed normally:

plt.hist(ratings_df.groupby(['MovieID'])

['Rating'].mean().sort_values(axis=0,

ascending=False))

plt.title("Movie rating Distribution")

plt.ylabel('Count of movies')

plt.xlabel('Rating');

plt.show()

>>>

Figure 3: Movie rating distribution

9. Let's see how the ratings are distributed across different age
groups:

user_df.Age.plot.hist()

plt.title("Distribution of users (by ages)")

plt.ylabel('Count of users')

plt.xlabel('Age');

plt.show()

>>>

Figure 4: Distribution of users by age

10. Now let's see the highest-rated movie with a minimum of 150
ratings:

movie_stats = df.groupby('Title').agg({'Rating':

[np.size, np.mean]})

print("Highest rated movie with minimum 150

ratings")

print(movie_stats.Rating[movie_stats.Rating['siz

e'] > 150].sort_values(['mean'],ascending=

[0]).head())

>>>

Top 5 and a highest rated movie with a minimum

of 150 ratings----------------------------------

Title

size mean

Seven Samurai (The Magnificent Seven) 628

4.560510

Shawshank Redemption, The (1994) 2227

4.554558

Godfather, The (1972)

2223 4.524966

Close Shave, A (1995)

657 4.520548

Usual Suspects, The (1995)

1783 4.517106

11. Let's look at gender bias in movie ratings, that is, how the movies'
ratings compare by gender of the reviewer:

>>>

pivoted = df.pivot_table(index=['MovieID',

'Title'], columns=['Gender'], values='Rating',

fill_value=0)

print("Gender biasing towards movie rating")

print(pivoted.head())

12. We can now have a look at gender bias towards movie ratings and
the difference between them, that is, how men and women rate the
movies differently:

pivoted['diff'] = pivoted.M - pivoted.F

print(pivoted.head())

>>>

Gender

F M

diff

MovieID Title

1 Toy Story (1995)

4.87817 4.130552 -0.057265

2 Jumanji (1995)

3.278409 3.175238 -0.103171

3 Grumpier Old Men (1995) 3.073529

2.994152 -0.079377

4 Waiting to Exhale (1995)

2.976471 2.482353 -0.494118

5 Father of the Bride Part II (1995) 3.212963

2.888298 -0.324665

13. From the preceding output, it is clear that in most cases, men
provided higher ratings than women. Now that we have seen some
info and statistics about the dataset, it is time to build our
TensorFlow recommendation model.

Implementing a movie RE
In this example, we will see how to recommend the top k movies
(where k is the number of movies), predict user ratings and
recommend the top k similar items (where k is the number of items).
Then we will see how to compute user similarity.

Then we will see the item-item correlation and user-user correlation
using Pearson's correlation algorithm. Finally, we will see how to
cluster similar movies using the K-means algorithm.

In other words, we will make a movie recommendation engine using
the collaborative filtering approach and K-means to cluster similar
movies.

Distance calculation: There are other ways to calculate the distance as
well. For example:

1. Chebyshev distance can be used to measure the distance by
considering only the most notable dimensions.

2. The Hamming distance algorithm can identify the difference
between two strings.

3. Mahalanobis distance can be used to normalize the covariance
matrix.

4. Manhattan distance is used to measure the distance by
considering only axis-aligned directions.

5. The Haversine distance is used to measure the great-circle
distances between two points on a sphere from the location.

Considering these distance-measuring algorithms, it is clear that the
Euclidean distance algorithm would be the most appropriate to solve
our purpose of distance calculation in the K-means algorithm

In summary, here is the workflow that will be used to develop this
model:

1. First, train a model by using the available ratings.
2. Use that trained model to predict missing ratings in users versus

movies matrix.
3. With all the predicted ratings, the users versus movies matrix

become the trained users versus movies matrix, and we save both
in the form of a .pkl file.

4. Then, we use the users versus movies matrix, or trained users
versus movies matrix by the trained argument, for further
processing.

Before training the model, the very first job is to prepare the training set
by utilizing all of the available datasets.

Training the model with the available ratings
For this part, use the train.py script, which is dependent on other
scripts. We will see the dependencies:

1. First, let's import necessary packages and modules:
from collections import deque

from six import next

import readers

import os

import tensorflow as tf

import numpy as np

import model as md

import pandas as pd

import time

import matplotlib.pyplot as plt

2. Then we set the random seed for reproducibility:
np.random.seed(12345)

3. The next task is to define the training parameters. Let's define the
required data parameters, such as the location of the ratings
dataset, the batch size, the dimension of SVD, the maximum
epochs, and the checkpoint directory:

data_file ="Input/ratings.dat"# Input user-

movie-rating information file

batch_size = 100 #Batch Size (default: 100)

dims =15 #Dimensions of SVD (default: 15)

max_epochs = 50 # Maximum epoch (default: 25)

checkpoint_dir ="save/" #Checkpoint directory

from training run

 val = True #True if Folders with files and

False if single file

is_gpu = True # Want to train model with GPU

4. We also need some other parameters, such as allowing soft
placement and log device placement:

allow_soft_placement = True #Allow device soft

device placement

log_device_placement=False #Log placement of ops

on devices

5. We don't want to contaminate our fresh training with old metadata,
or checkpoint and model files, so let's remove them if there are
any:

print("Start removing previous Files ...")

if os.path.isfile("model/user_item_table.pkl"):

 os.remove("model/user_item_table.pkl")

if

os.path.isfile("model/user_item_table_train.pkl"

):

 os.remove("model/user_item_table_train.pkl")

if os.path.isfile("model/item_item_corr.pkl"):

 os.remove("model/item_item_corr.pkl")

if

os.path.isfile("model/item_item_corr_train.pkl")

:

 os.remove("model/item_item_corr_train.pkl")

if os.path.isfile("model/user_user_corr.pkl"):

 os.remove("model/user_user_corr.pkl")

if

os.path.isfile("model/user_user_corr_train.pkl")

:

 os.remove("model/user_user_corr_train.pkl")

if os.path.isfile("model/clusters.csv"):

 os.remove("model/clusters.csv")

if os.path.isfile("model/val_error.pkl"):

 os.remove("model/val_error.pkl")

print("Done ...")

>>>

Start removing previous Files...

Done...

6. Then let's define the checkpoint directory. TensorFlow assumes
this directory already exists, so we need to create it:

checkpoint_prefix = os.path.join(checkpoint_dir,

"model")

if not os.path.exists(checkpoint_dir):

 os.makedirs(checkpoint_dir)

7. Before getting into the data, let's set the number of samples per
batch, the dimension of the data, and the number of times the
network sees all the training data:

batch_size =batch_size

dims =dims

max_epochs =max_epochs

8. Now let's specify the devices to be used for all TensorFlow
computations, CPU or GPU:

if is_gpu:

 place_device = "/gpu:0"

else:

 place_device="/cpu:0"

9. Now we read the rating file with the delimiter, ::, through the
get_data() function. A sample column consists of user ID, item ID,
rating, and timestamp, for example, 3::1196::4::978297539. Then
the above code does the purely integer-location based indexing for
selection by position. After that, it splits the data into training and
testing, 75% for training and 25% for testing. Finally, it uses the
indices to separate the data and returns the data frame to use for
the training:

def get_data():

 print("Inside get data ...")

 df = readers.read_file(data_file, sep="::")

 rows = len(df)

 df =

df.iloc[np.random.permutation(rows)].reset_index

(drop=True)

 split_index = int(rows * 0.75)

 df_train = df[0:split_index]

 df_test =

df[split_index:].reset_index(drop=True)

 print("Done !!!")

 print(df.shape)

 return df_train,

df_test,df['user'].max(),df['item'].max()

10. We then clip the limit of the values in an array: given an interval,
values outside the interval are clipped to the edges of the interval.
For example, if an interval of [0, 1] is specified, values smaller than
0 become 0, and values larger than 1 become 1:

def clip(x):

 return np.clip(x, 1.0, 5.0)

We then invoke the read_data() method to read data from the ratings
file to build a TensorFlow model:

df_train, df_test,u_num,i_num = get_data()

>>>

Inside get data...

Done!!!

1. We then define the number of users in the dataset who rated the
movies, and the number of movies in the dataset:

u_num = 6040 # Number of users in the dataset

i_num = 3952 # Number of movies in the dataset

2. Now let's generate the number of samples per batch:
samples_per_batch = len(df_train) // batch_size

print("Number of train samples %d, test samples

%d, samples per batch %d" % (len(df_train),

len(df_test), samples_per_batch))

>>>

Number of train samples 750156, test samples

250053, samples per batch 7501

3. Now, using a shuffle iterator, we generate random batches. In
training, this helps to prevent a biased result as well as overfitting:

iter_train =

readers.ShuffleIterator([df_train["user"],

df_train["item"],df_train["rate"]],

batch_size=batch_size)

4. For more on this class, refer to the readers.py script. For your
convenience, here is the source of this class:

class ShuffleIterator(object):

 def __init__(self, inputs, batch_size=10):

 self.inputs = inputs

 self.batch_size = batch_size

 self.num_cols = len(self.inputs)

 self.len = len(self.inputs[0])

 self.inputs =

np.transpose(np.vstack([np.array(self.inputs[i])

for i in range(self.num_cols)]))

 def __len__(self):

 return self.len

 def __iter__(self):

 return self

 def __next__(self):

 return self.next()

 def next(self):

 ids = np.random.randint(0, self.len,

(self.batch_size,))

 out = self.inputs[ids, :]

 return [out[:, i] for i in

range(self.num_cols)]

5. Then we sequentially generate one-epoch batches for testing (see
train.py):

iter_test =

readers.OneEpochIterator([df_test["user"],

df_test["item"], df_test["rate"]],

batch_size=-1)

6. For more on this class, refer to the readers.py script. For your
convenience, here is the source of this class:

class OneEpochIterator(ShuffleIterator):

 def __init__(self, inputs, batch_size=10):

 super(OneEpochIterator,

self).__init__(inputs, batch_size=batch_size)

 if batch_size > 0:

 self.idx_group =

np.array_split(np.arange(self.len),

np.ceil(self.len / batch_size))

 else:

 self.idx_group =

[np.arange(self.len)]

 self.group_id = 0

 def next(self):

 if self.group_id >= len(self.idx_group):

 self.group_id = 0

 raise StopIteration

 out =

self.inputs[self.idx_group[self.group_id], :]

 self.group_id += 1

 return [out[:, i] for i in

range(self.num_cols)]

7. Now it's time to create the TensorFlow placeholders:
user_batch = tf.placeholder(tf.int32, shape=

[None], name="id_user")

item_batch = tf.placeholder(tf.int32, shape=

[None], name="id_item")

rate_batch = tf.placeholder(tf.float32, shape=

[None])

8. Now that our training set and the placeholders are ready to hold
the batches of training values, it time to instantiate the model. For
this, we use the model() method and use l2 regularization to avoid
overfitting (see the model.py script):

infer, regularizer = md.model(user_batch,

item_batch, user_num=u_num, item_num=i_num,

dim=dims, device=place_device)

The model() method is as follows:

def model(user_batch, item_batch, user_num,

item_num, dim=5, device="/cpu:0"):

 with tf.device("/cpu:0"):

 # Using a global bias term

 bias_global =

tf.get_variable("bias_global", shape=[])

 # User and item bias variables:

get_variable: Prefixes the name with the current

variable

 # scope and performs reuse checks.

 w_bias_user =

tf.get_variable("embd_bias_user", shape=

[user_num])

 w_bias_item =

tf.get_variable("embd_bias_item", shape=

[item_num])

 # embedding_lookup: Looks up 'ids' in a

list of embedding tensors

 # Bias embeddings for user and items,

given a batch

 bias_user =

tf.nn.embedding_lookup(w_bias_user, user_batch,

name="bias_user")

 bias_item =

tf.nn.embedding_lookup(w_bias_item, item_batch,

name="bias_item")

 # User and item weight variables

 w_user = tf.get_variable("embd_user",

shape=[user_num, dim],

initializer=tf.truncated_normal_initializer(stdd

ev=0.02))

 w_item = tf.get_variable("embd_item",

shape=[item_num, dim],

initializer=tf.truncated_normal_initializer(stdd

ev=0.02))

 # Weight embeddings for user and items,

given a batch

 embd_user =

tf.nn.embedding_lookup(w_user, user_batch,

name="embedding_user")

 embd_item =

tf.nn.embedding_lookup(w_item, item_batch,

name="embedding_item")

 # reduce_sum: Computes the sum of

elements across dimensions of a tensor

 infer =

tf.reduce_sum(tf.multiply(embd_user, embd_item),

1)

 infer = tf.add(infer, bias_global)

 infer = tf.add(infer, bias_user)

 infer = tf.add(infer, bias_item,

name="svd_inference")

 # l2_loss: Computes half the L2 norm of

a tensor without the sqrt

 regularizer =

tf.add(tf.nn.l2_loss(embd_user),

tf.nn.l2_loss(embd_item),

name="svd_regularizer")

 return infer, regularizer

9. Now let's define the training ops (see more in models.py script):
_, train_op = md.loss(infer, regularizer,

rate_batch, learning_rate=0.001, reg=0.05,

device=place_device)

The loss() method is as follows:

def loss(infer, regularizer, rate_batch,

learning_rate=0.1, reg=0.1, device="/cpu:0"):

 with tf.device(device):

 cost_l2 = tf.nn.l2_loss(tf.subtract(infer,

rate_batch))

 penalty = tf.constant(reg, dtype=tf.float32,

shape=[], name="l2")

 cost = tf.add(cost_l2,

tf.multiply(regularizer, penalty))

 train_op =

tf.train.FtrlOptimizer(learning_rate).minimize(cost)

 return cost, train_op

1. Once we have instantiated the model and training ops, we can
save the model for future use:

saver = tf.train.Saver()

init_op = tf.global_variables_initializer()

session_conf = tf.ConfigProto(

 allow_soft_placement=allow_soft_placement,

log_device_placement=log_device_placement)

2. Now we start training the model:
with tf.Session(config = session_conf) as sess:

 sess.run(init_op)

 print("%s\t%s\t%s\t%s" % ("Epoch", "Train

err", "Validation err", "Elapsed Time"))

 errors = deque(maxlen=samples_per_batch)

 train_error=[]

 val_error=[]

 start = time.time()

 for i in range(max_epochs *

samples_per_batch):

 users, items, rates = next(iter_train)

 _, pred_batch = sess.run([train_op,

infer], feed_dict={user_batch: users,

item_batch: items, rate_batch: rates})

 pred_batch = clip(pred_batch)

 errors.append(np.power(pred_batch -

rates, 2))

 if i % samples_per_batch == 0:

 train_err = np.sqrt(np.mean(errors))

 test_err2 = np.array([])

 for users, items, rates in

iter_test:

 pred_batch = sess.run(infer,

feed_dict={user_batch: users, item_batch:

items})

 pred_batch = clip(pred_batch)

 test_err2 = np.append(test_err2,

np.power(pred_batch - rates, 2))

 end = time.time()

 print("%02d\t%.3f\t\t%.3f\t\t%.3f

secs" % (i // samples_per_batch, train_err,

np.sqrt(np.mean(test_err2)), end - start))

 train_error.append(train_err)

val_error.append(np.sqrt(np.mean(test_err2)))

 start = end

 saver.save(sess, checkpoint_prefix)

 pd.DataFrame({'training

error':train_error,'validation

error':val_error}).to_pickle("val_error.pkl")

 print("Training Done !!!")

sess.close()

3. The preceding code carries out the training and saves the errors in
a pickle file. Finally, it prints the training and validation error and
the time taken:

>>>

Epoch Train err Validation err Elapsed

Time

00 2.816 2.812

0.118 secs

01 2.813 2.812

4.898 secs

… … …

…

48 2.770 2.767

1.618 secs

49 2.765 2.760

1.678 secs

Training Done!!!

The result is abridged, only a few steps have been shown. Now let's
see these errors graphically:

error = pd.read_pickle("val_error.pkl")

error.plot(title="Training vs validation error (per

epoch)")

plt.ylabel('Error/loss')

plt.xlabel('Epoch');

plt.show()

>>>

Figure 5: Training versus validation error per epoch

This graph shows that over time, both the training and the validation
errors decrease, which means that we are walking in the correct
direction. Nevertheless, you could still try to increase the steps and see

if these two values can be further reduced, which means better
accuracy.

Inferencing the saved model
The following code performs the model inferencing using the saved
model and it prints the overall validation error:

if val:

 print("Validation ...")

 init_op = tf.global_variables_initializer()

 session_conf = tf.ConfigProto(

 allow_soft_placement=allow_soft_placement,

 log_device_placement=log_device_placement)

 with tf.Session(config = session_conf) as sess:

 new_saver = tf.train.import_meta_graph("

{}.meta".format(checkpoint_prefix))

 new_saver.restore(sess,

tf.train.latest_checkpoint(checkpoint_dir))

 test_err2 = np.array([])

 for users, items, rates in iter_test:

 pred_batch = sess.run(infer, feed_dict=

{user_batch: users, item_batch: items})

 pred_batch = clip(pred_batch)

 test_err2 = np.append(test_err2,

np.power(pred_batch - rates, 2))

 print("Validation Error:

",np.sqrt(np.mean(test_err2)))

 print("Done !!!")

sess.close()

>>>

Validation Error: 2.14626890224

Done!!!

Generating the user-item table
The following method creates the user-item dataframe. It is used to
create a trained DataFrame. All the missing values in the user-item
table are filled in here using the SVD trained model. It takes the ratings
dataframe and stores all the user ratings for all the movies. Finally, it
generates a filled ratings dataframe, where the rows are the users and
the columns are the items:

def

create_df(ratings_df=readers.read_file(data_file,

sep="::")):

 if os.path.isfile("model/user_item_table.pkl"):

 df=pd.read_pickle("user_item_table.pkl")

 else:

 df = ratings_df.pivot(index = 'user',

columns ='item', values = 'rate').fillna(0)

 df.to_pickle("user_item_table.pkl")

 df=df.T

 users=[]

 items=[]

 start = time.time()

 print("Start creating user-item dense table")

 total_movies=list(ratings_df.item.unique())

 for index in df.columns.tolist():

#rated_movies=ratings_df[ratings_df['user']==index].

drop(['st', 'user'], axis=1)

 rated_movie=[]

rated_movie=list(ratings_df[ratings_df['user']==inde

x].drop(['st', 'user'], axis=1)['item'].values)

 unseen_movies=[]

 unseen_movies=list(set(total_movies) -

set(rated_movie))

 for movie in unseen_movies:

 users.append(index)

 items.append(movie)

 end = time.time()

 print(("Found in %.2f seconds" % (end-start)))

 del df

 rated_list = []

 init_op = tf.global_variables_initializer()

 session_conf = tf.ConfigProto(

 allow_soft_placement=allow_soft_placement,

 log_device_placement=log_device_placement)

 with tf.Session(config = session_conf) as sess:

 #sess.run(init_op)

 print("prediction started ...")

 new_saver = tf.train.import_meta_graph("

{}.meta".format(checkpoint_prefix))

 new_saver.restore(sess,

tf.train.latest_checkpoint(checkpoint_dir))

 test_err2 = np.array([])

 rated_list = sess.run(infer, feed_dict=

{user_batch: users, item_batch: items})

 rated_list = clip(rated_list)

 print("Done !!!")

 sess.close()

 df_dict=

{'user':users,'item':items,'rate':rated_list}

 df =

ratings_df.drop(['st'],axis=1).append(pd.DataFrame(d

f_dict)).pivot(index = 'user', columns ='item',

values = 'rate').fillna(0)

 df.to_pickle("user_item_table_train.pkl")

 return df

Now let's invoke the preceding method to generate the user-item table
as a pandas dataframe:

create_df(ratings_df = readers.read_file(data_file,

sep="::"))

This line will create the user versus item table for the training set and
save the dataframe as a user_item_table_train.pkl file in your
specified directory.

Clustering similar movies
For this section, refer to the kmean.py script. This script takes the rating
data file as input and returns movies along with their respective
clusters.

More technically, the aim of this section is to find similar movies; for
example, user 1 liked movie 1, and because movie 1 and movie 2 are
similar, the user would like movie 2. Let's get started by importing
required packages and modules:

import tensorflow as tf

import numpy as np

import pandas as pd

import time

import readers

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.decomposition import PCA

Now let's define the data parameters to be used: the path of the rating
data file, number of clusters, K, and maximum number of iterations.
Additionally, we also define whether we would like to use a trained user
versus item matrix:

data_file = "Input/ratings.dat" #Data source for the

positive data

 K = 5 # Number of clusters

 MAX_ITERS =1000 # Maximum number of iterations

 TRAINED = False # Use TRAINED user vs item matrix

Then the k_mean_clustering () method is defined. It returns the
movies along with their respective clusters. It takes the ratings dataset,
ratings_df, which is a rating data frame. It then stores all the user
ratings for respective movies, K is the number of clusters, MAX_ITERS is
the maximum number of recommendations, and TRAINED is a Boolean
type that signifies whether to use the trained user versus movie table or
the untrained one.

Tip
How to find the optimal K value

Here we set the value of K naively. However, to fine-tune the
clustering performance, we can use a heuristic approach called
Elbow method. We start from K = 2, then, we run the K-means
algorithm by increasing K and observe the value of the cost function
(CF) using WCSS. At some point, a big drop in CF will happen.
Nevertheless, the improvement then becomes marginal with an
increasing value of K. In summary, we can pick the K after the last
big drop of WCSS as an optimal one.

Finally, the k_mean_clustering() function returns a list of movies/items
and a list of clusters:

def

k_mean_clustering(ratings_df,K,MAX_ITERS,TRAINED=Fal

se):

 if TRAINED:

df=pd.read_pickle("user_item_table_train.pkl")

 else:

 df=pd.read_pickle("user_item_table.pkl")

 df = df.T

 start = time.time()

 N=df.shape[0]

 points = tf.Variable(df.as_matrix())

 cluster_assignments = tf.Variable(tf.zeros([N],

dtype=tf.int64))

 centroids =

tf.Variable(tf.slice(points.initialized_value(),

[0,0], [K,df.shape[1]]))

 rep_centroids = tf.reshape(tf.tile(centroids,

[N, 1]), [N, K, df.shape[1]])

 rep_points = tf.reshape(tf.tile(points, [1, K]),

[N, K, df.shape[1]])

 sum_squares = tf.reduce_sum(tf.square(rep_points

- rep_centroids),reduction_indices=2)

 best_centroids = tf.argmin(sum_squares, 1)

did_assignments_change =

tf.reduce_any(tf.not_equal(best_centroids,

cluster_assignments))

 means = bucket_mean(points, best_centroids, K)

 with

tf.control_dependencies([did_assignments_change]):

 do_updates = tf.group(

 centroids.assign(means),

cluster_assignments.assign(best_centroids))

 init = tf.global_variables_initializer()

 sess = tf.Session()

 sess.run(init)

 changed = True

 iters = 0

 while changed and iters < MAX_ITERS:

 iters += 1

 [changed, _] =

sess.run([did_assignments_change, do_updates])

 [centers, assignments] = sess.run([centroids,

cluster_assignments])

 end = time.time()

 print (("Found in %.2f seconds" % (end-start)),

iters, "iterations")

cluster_df=pd.DataFrame({'movies':df.index.values,'c

lusters':assignments})

 cluster_df.to_csv("clusters.csv",index=True)

 return assignments,df.index.values

In the preceding code, we have a silly initialization in a sense that we
use the first K points as the starting centroids. In the real world, it can
be further improved.

In the preceding code block, we replicate N copies of each centroid
and K copies of each data point. Then we subtract and compute the
sum of squared distances. We then use the argmin to select the lowest-
distance point. However, we do not write the assigned clusters variable
until after computing whether the assignments have changed, hence
with dependencies.

If you look at the preceding code carefully, there is a function called
bucket_mean(). It takes the data points, the best centroids, and the
number of the tentative cluster, K, and computes the mean to use in
cluster computation:

def bucket_mean(data, bucket_ids, num_buckets):

 total = tf.unsorted_segment_sum(data,

bucket_ids, num_buckets)

 count =

tf.unsorted_segment_sum(tf.ones_like(data),

bucket_ids, num_buckets)

 return total / count

Once we have trained our K-means model, the next task is to visualize
those clusters representing similar movies. For this, we have a function
called showClusters(), which takes the user-item table, the clustered
data written in a CSV file (clusters.csv), the number of principal

components (the default is 2), and the SVD solver (possible values are
randomized and full).

The thing is, in a 2D space it would be difficult to plot all the data points
representing the movie clusters. For this reason, we have applied
Principal Component Analysis (PCA) to reduce the dimensionality
without sacrificing the quality much:

 user_item=pd.read_pickle(user_item_table)

 cluster=pd.read_csv(clustered_data,

index_col=False)

 user_item=user_item.T

 pcs = PCA(number_of_PCA_components, svd_solver)

 cluster['x']=pcs.fit_transform(user_item)[:,0]

 cluster['y']=pcs.fit_transform(user_item)[:,1]

 fig = plt.figure()

 ax = plt.subplot(111)

 ax.scatter(cluster[cluster['clusters']==0]

['x'].values,cluster[cluster['clusters']==0]

['y'].values,color="r", label='cluster 0')

 ax.scatter(cluster[cluster['clusters']==1]

['x'].values,cluster[cluster['clusters']==1]

['y'].values,color="g", label='cluster 1')

 ax.scatter(cluster[cluster['clusters']==2]

['x'].values,cluster[cluster['clusters']==2]

['y'].values,color="b", label='cluster 2')

 ax.scatter(cluster[cluster['clusters']==3]

['x'].values,cluster[cluster['clusters']==3]

['y'].values,color="k", label='cluster 3')

 ax.scatter(cluster[cluster['clusters']==4]

['x'].values,cluster[cluster['clusters']==4]

['y'].values,color="c", label='cluster 4')

 ax.legend()

 plt.title("Clusters of similar movies using K-

means")

 plt.ylabel('PC2')

 plt.xlabel('PC1');

 plt.show()

Well done. We will evaluate our model and plot the clusters in the
evaluation step.

Movie rating prediction by users

For this I have written a function called prediction(). It takes the
sample input about users and items (in this case, movies), and creates
TensorFlow placeholders from the graph by name. It then evaluates
those tensors. In the following code, it is to be noted that TensorFlow
assumes that the checkpoint directory already exists, so make sure
that it already exists. For details on this step refer to the run.py file.
Note that this script does not show any result but a function from this
script named prediction is further invoked in the main.py script for
making predictions:

def prediction(users=predicted_user,

items=predicted_item,

allow_soft_placement=allow_soft_placement,\

log_device_placement=log_device_placement,

checkpoint_dir=checkpoint_dir):

 rating_prediction=[]

 checkpoint_prefix = os.path.join(checkpoint_dir,

"model")

 graph = tf.Graph()

 with graph.as_default():

 session_conf =

tf.ConfigProto(allow_soft_placement=allow_soft_place

ment,log_device_placement=log_device_placement)

 with tf.Session(config = session_conf) as

sess:

 new_saver = tf.train.import_meta_graph("

{}.meta".format(checkpoint_prefix))

 new_saver.restore(sess,

tf.train.latest_checkpoint(checkpoint_dir))

 user_batch =

graph.get_operation_by_name("id_user").outputs[0]

 item_batch =

graph.get_operation_by_name("id_item").outputs[0]

 predictions =

graph.get_operation_by_name("svd_inference").outputs

[0]

 pred = sess.run(predictions, feed_dict=

{user_batch: users, item_batch: items})

 pred = clip(pred)

 sess.close()

 return pred

We will see how we could use this method to predict the top k movies
and user ratings for movies. In the preceding code segment, clip() is

a user-defined function that limits the values in an array. Here is the
implementation:

def clip(x):

 return np.clip(x, 1.0, 5.0) # rating 1 to 5

Now let's see how we could use the prediction() method to make a
set of movie ratings predictions by a user:

def user_rating(users,movies):

 if type(users) is not list:

users=np.array([users])

 if type(movies) is not list:

 movies=np.array([movies])

 return prediction(users,movies)

The preceding function returns a user rating for respective user. It
takes a list of one or more numbers, a list of one or more user IDs, and
a list of one or more numbers and a list of one or more movie IDs.
Finally, it returns a list of predicted movies.

Finding top k movies
The following method extracts the top k movies that a user has not
seen where k is an arbitrary integer such as 10. The name of the
function is top_k_movies(). It returns the top k movies for a certain user.
It takes a list of user IDs and the rating dataframe. It then stores all the
user ratings for these movies. The output is a dictionary containing the
user ID as the key and the list of the top k movies for that user as the
value:

def top_k_movies(users,ratings_df,k):

 dicts={}

 if type(users) is not list:

 users = [users]

 for user in users:

 rated_movies =

ratings_df[ratings_df['user']==user].drop(['st',

'user'], axis=1)

 rated_movie =

list(rated_movies['item'].values)

 total_movies =

list(ratings_df.item.unique())

 unseen_movies = list(set(total_movies) -

set(rated_movie))

 rated_list = []

 rated_list =

prediction(np.full(len(unseen_movies),user),np.array

(unseen_movies))

 useen_movies_df = pd.DataFrame({'item':

unseen_movies,'rate':rated_list})

 top_k =

list(useen_movies_df.sort_values(['rate','item'],

ascending=[0, 0])['item'].head(k).values)

 dicts.update({user:top_k})

 result = pd.DataFrame(dicts)

 result.to_csv("user_top_k.csv")

 return dicts

In the preceding code segment, prediction() is a user-defined function
that we described previously. We will see an example of how to predict
the top k movies (see Test.py for more or in a later section).

Predicting top k similar movies
I have written a function called top_k_similar_items() that computes
and returns k movies that are similar to a particular movie. It takes a list
of numbers, or number, a list of movie IDs, and the rating dataframe. It
stores all user ratings for these movies. It also takes k as a natural
number.

The value of TRAINED can be either TRUE or FALSE, and it specifies
whether to use the trained user versus movie table or the untrained
one. Finally, it returns a list of k movies that are similar to the one
passed as input:

def

top_k_similar_items(movies,ratings_df,k,TRAINED=Fals

e):

 if TRAINED:

df=pd.read_pickle("user_item_table_train.pkl")

 else:

 df=pd.read_pickle("user_item_table.pkl")

 corr_matrix=item_item_correlation(df,TRAINED)

 if type(movies) is not list:

 return

corr_matrix[movies].sort_values(ascending=False).dro

p(movies).index.values[0:k]

 else:

 dict={}

 for movie in movies:

dict.update({movie:corr_matrix[movie].sort_values(as

cending=False).drop(movie).index.values[0:k]})

 pd.DataFrame(dict).to_csv("movie_top_k.csv")

 return dict

In the preceding code, the item_item_correlation() function is a user-
defined function that computes the movie-movie correlation that is used
in when predicting the top k similar movies. The method is as follows:

def item_item_correlation(df,TRAINED):

 if TRAINED:

 if

os.path.isfile("model/item_item_corr_train.pkl"):

df_corr=pd.read_pickle("item_item_corr_train.pkl")

 else:

 df_corr=df.corr()

df_corr.to_pickle("item_item_corr_train.pkl")

 else:

 if

os.path.isfile("model/item_item_corr.pkl"):

df_corr=pd.read_pickle("item_item_corr.pkl")

 else:

 df_corr=df.corr()

 df_corr.to_pickle("item_item_corr.pkl")

 return df_corr

Computing user-user similarity
To compute user-user similarity, I have written the user_similarity()
function, which returns the similarity between two users. It takes three
parameters: user 1, user 2; the ratings dataframe; and the value of
TRAINED can be either TRUE or FALSE and refers to whether the trained
user versus movie table or untrained one should be used. Finally, it
computes the Pearson coefficient between users (a value between -1
and 1):

def

user_similarity(user_1,user_2,ratings_df,TRAINED=Fal

se):

corr_matrix=user_user_pearson_corr(ratings_df,TRAINE

D)

 return corr_matrix[user_1][user_2]

In the preceding function, user_user_pearson_corr() is a function that
computes the user-user Pearson correlation:

def user_user_pearson_corr(ratings_df,TRAINED):

 if TRAINED:

 if

os.path.isfile("model/user_user_corr_train.pkl"):

df_corr=pd.read_pickle("user_user_corr_train.pkl")

 else:

 df

=pd.read_pickle("user_item_table_train.pkl")

 df=df.T

 df_corr=df.corr()

df_corr.to_pickle("user_user_corr_train.pkl")

 else:

 if

os.path.isfile("model/user_user_corr.pkl"):

df_corr=pd.read_pickle("user_user_corr.pkl")

 else:

 df =

pd.read_pickle("user_item_table.pkl")

 df=df.T

 df_corr=df.corr()

 df_corr.to_pickle("user_user_corr.pkl")

 return df_corr

Evaluating the recommender system
In this sub-section, we will evaluate the clusters by plotting them to see
how the movies are spread across different clusters.

We will then see top k movies and see the user-user similarity and
other metrics we have previously discussed. Now let's get started by
importing required libraries:

import tensorflow as tf

import pandas as pd

import readers

import main

import kmean as km

import numpy as np

Next, let's define the data parameters to use for the evaluation:

DATA_FILE = "Input/ratings.dat" # Data source for

the positive data.

K = 5 #Number of clusters

MAX_ITERS = 1000 #Maximum number of iterations

TRAINED = False # Use TRAINED user vs item matrix

USER_ITEM_TABLE = "user_item_table.pkl"

COMPUTED_CLUSTER_CSV = "clusters.csv"

NO_OF_PCA_COMPONENTS = 2 #number of pca components

SVD_SOLVER = "randomized" #svd solver -e.g.

randomized, full etc.

Let's see load the ratings dataset that will be used in the invoke call to
the k_mean_clustering() method:

ratings_df = readers.read_file("Input/ratings.dat",

sep="::")

clusters,movies = km.k_mean_clustering(ratings_df,

K, MAX_ITERS, TRAINED = False)

cluster_df=pd.DataFrame({'movies':movies,'clusters':

clusters})

Well done! Now let's see some clusters of simple inputs (movies along
with respective clusters):

print(cluster_df.head(10))

>>>

clusters movies

0 0 0

1 4 1

2 4 2

3 3 3

4 4 4

5 2 5

6 4 6

7 3 7

8 3 8

9 2 9

print(cluster_df[cluster_df['movies']==1721])

>>>

 clusters movies

1575 2 1721

print(cluster_df[cluster_df['movies']==647])

>>>

clusters movies

627 2 647

Let's see how the movies are scattered across clusters:

km.showClusters(USER_ITEM_TABLE,

COMPUTED_CLUSTER_CSV, NO_OF_PCA_COMPONENTS,

SVD_SOLVER)

>>>

Figure 6: Clusters of similar movies

If we look at the graph, it is clear that the data points are more
accurately clustered across clusters 3 and 4. However, clusters 0, 1,

and 2 are more scattered and did not cluster well.

Here we did not compute any accuracy metric because train data
doesn't have labels. Now let's compute the top k similar movies for a
given respective movie name and print them:

ratings_df = readers.read_file("Input/ratings.dat",

sep="::")

topK = main.top_k_similar_items(9,ratings_df =

ratings_df,k = 10,TRAINED = False)

print(topK)

>>>

[1721, 1369, 164, 3081, 732, 348, 647, 2005, 379,

3255]

The above result computes Top-K similar movies for the movie
9::Sudden Death (1995)::Action. Now if you observe the movies.dat
file, you will see that the following movies are similar to this one:

1721::Titanic (1997)::Drama|Romance

1369::I Can't Sleep (J'ai pas sommeil)

(1994)::Drama|Thriller

164::Devil in a Blue Dress (1995)::Crime|Film-

Noir|Mystery|Thriller

3081::Sleepy Hollow (1999)::Horror|Romance

732::Original Gangstas (1996)::Crime

348::Bullets Over Broadway (1994)::Comedy

647::Courage Under Fire (1996)::Drama|War

2005::Goonies, The

(1985)::Adventure|Children's|Fantasy

379::Timecop (1994)::Action|Sci-Fi

3255::League of Their Own, A (1992)::Comedy|Drama

Now let's compute the user-user Pearson correlation. When you run
this user similarity function, on the first run it will take time to give
output but after that, its response is in real time:

print(main.user_similarity(1,345,ratings_df))

>>>

0.15045477803357316

Now let's compute the aspect rating given by a user

for a movie:

print(main.user_rating(0,1192))

>>>

4.25545645

print(main.user_rating(0,660))

>>>

3.20203304

Let's also see the top K movie recommendations for the user:

print(main.top_k_movies([768],ratings_df,10))

>>>

{768: [2857, 2570, 607, 109, 1209, 2027, 592, 588,

2761, 479]}

print(main.top_k_movies(1198,ratings_df,10))

>>>

{1198: [2857, 1195, 259, 607, 109, 2027, 592, 857,

295, 479]}

So far, we have seen how to develop a simple RE using a movies and
rating dataset. However, most recommendation problems assume that
we have a consumption/rating dataset formed by a collection of (user,
item, rating) tuples. This is the starting point for most variations of
collaborative filtering algorithms, and they have proven to yield good
results; however, in many applications, we have plenty of item
metadata (tags, categories, and genres) that can be used to make
better predictions.

This is one of the benefits of using FMs with feature-rich datasets,
because there is a natural way in which extra features can be included
in the model, and higher-order interactions can be modeled using the
dimensionality parameter d (see figure 7 below for more detail).

A few recent types of research show that feature-rich datasets give
better predictions: i) Xiangnan He and Tat-Seng Chua, Neural
Factorization Machines for Sparse Predictive Analytics. In Proceedings
of SIGIR '17, Shinjuku, Tokyo, Japan, August 07-11, 2017. ii) Jun Xiao,
Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu and Tat-Seng Chua
(2017) Attentional Factorization Machines: Learning the Weight of
Feature Interactions via Attention Networks IJCAI, Melbourne,
Australia, August 19-25, 2017.

These papers explain how to make existing data into a feature-rich
dataset and how FMs were implemented on the dataset. Therefore,

researchers are trying to use FMs to develop more accurate and robust
REs. In the next section, we will see some examples of using FMs and
some variations.

Factorization machines for
recommendation systems
In this section, we will see two examples of developing a more
robust recommendation system using FMs. We will start with a brief
explanation of FM and their application to the cold-start
recommendation problem.

Then we will see a short example of using an FM to developing a
real-life recommendation system. After that, we will see an example
using an improved version of the FM algorithm called a Neural
Factorization Machine (NFM).

Factorization machines
FM-based techniques are at the cutting edge of personalization.
They have proven to be extremely powerful with enough expressive
capacity to generalize existing models, such as matrix/tensor
factorization and polynomial kernel regression. In other words, this
type of algorithm is a supervised learning approach that enhances
the performance of linear models by incorporating second-order
feature interactions that are absent in matrix factorization algorithms.

Existing recommendation algorithms require consumption (product)
or rating (movie) dataset in (user, item, and rating) tuples. These
types of the dataset are mostly used by variations of Collaborative
Filtering (CF) algorithms. CF algorithms have gained wide adoption
and have proven to yield good results. However, in many instances,
we have plenty of item metadata (tags, categories, and genres) that
can be used to make better predictions as well. Unfortunately, CF
algorithms do not use these types of metadata.

FMs can make use of these feature-rich (meta) datasets. An FM can
consume these extra features to model higher-order interactions
specifying the dimensionality parameter d. Most importantly, FMs are

also optimized for handling large-scale sparse datasets. Therefore, a
second order FM model would suffice because there is not enough
information to estimate interactions that are more complex:

Figure 7: An example training dataset representing a personalization problem with the
feature vectors x and the target y. Here rows refer to movies and columns to director, actor

and genre info

Let's assume that the dataset of a prediction problem is described by
a design matrix , as shown in figure 7. In figure 1, the

row, of X, describes one case, where p is a real-valued

variable. On the other hand, is the prediction target of the

case. Alternatively, we can describe this set as a set S of tuples (x,
y), where (again) is a feature vector and y is its corresponding
target or label.

In other words, in figure 7, every row represents a feature vector

with its corresponding target

. For easier interpretation, the features are grouped into indicators
for the active user (blue), the active item (red), other movies rated by
the same user (orange), the time in months (green), and the last
movie rated (brown). Then, the FM algorithm models all the nested
interactions (up to order d) between p input variables in x using the
following factorized interaction parameters:

In the equation, the v's represent k-dimensional latent vectors
associated with each variable (the users and the items), and the
bracket operator represents the inner product. This kind of
representation with data matrices and feature vectors is common in
many machine-learning approaches, for example, in linear
regression or support vector machines (SVM).

However, if you are familiar with the Matrix Factorization (MF)
models, the preceding equation should look familiar: it contains a
global bias as well as user/item-specific biases and includes user-
item interactions. Now, if we assume that each x(j) vector is only
non-zero at positions u and i, we get the classic MF model:

Nevertheless, MF models for recommendation systems often suffer
from the cold-start problem. We will talk about this in the next
section.

Cold-start problem and collaborative-filtering
approaches
The term cold-start problem sounds funny, but as the name implies,
it derives from cars. Suppose you live in Alaska. Due to the cold,

your car's engine might not start smoothly, but once it reaches its
optimal operating temperature, it will start, run, and operate normally.

In the realm of recommendation engines, the term cold-start simply
means a circumstance that is not yet optimal for the engine to
provide the best possible results. In e-commerce, there are two
distinct categories for a cold start: product cold-start and user cold-
start.

Cold-start is a potential problem in computer-based information
systems that involve a degree of automated data modeling.
Specifically, it concerns the issue that the system cannot draw any
inferences on users or items about which it has not yet gathered
sufficient information.

The cold-start problem is most prevalent in recommender systems.
In the collaborative filtering approach, the recommender system
would identify users who share preferences with the active user and
propose items that the like-minded users have favored (and the
active user has not yet seen). Due to the cold-start problem, this
approach would fail to consider items that no one in the community
has rated.

The cold-start problem is often reduced by adopting a hybrid
approach between content-based matching and collaborative
filtering. New items that have not yet received any ratings from users
would be assigned a rating automatically, based on the ratings
assigned by the community to other similar items. Item similarity
would be determined according to the item's content-based
characteristics.

Recommendation engines using CF-based approaches recommend
each item based on user actions. The more user actions an item
has, the easier it is to tell which user would be interested in it and
what other items are similar to it. As time progresses, the system will
be able to give more and more accurate recommendations. At a
certain stage, when new items or users are added to the user-item
matrix, this problem occurs:

Figure 8: Users versus items matrixes sometimes lead to the cold-start problem

In this case, the RE does not have enough knowledge about this
new user or this new item yet. The content-based filtering approach,
similar to FM, is a method that can be incorporated to alleviate the
cold-start problem.

The main difference between the previous two equations is that FM
introduces higher-order interactions in terms of latent vectors that
are also affected by categorical or tag data. This means that the
models go beyond co-occurrences in order to find stronger
relationships between latent representations of each feature.

Problem definition and formulation
Given a sequence of click events performed by a user during a
typical session on an e-commerce website, the goal is to predict
whether the user is going to buy something or not, and if they are
buying, what items they would buy. The task, therefore, could be
divided into two sub-goals:

Is the user going to buy items in this session?
If yes, what are the items that are going to be bought?

To predict the quantity of an item bought in a session, a robust
classifier can help to predict whether a user will buy that item or not.
Following the original implementation of FM, the training data should
be structured as follows:

Figure 9: A user versus item/category/history table can be used to train the
recommendation model

To prepare our training set like this, we can use the get_dummies()
method from pandas to transform all the columns into categorical
data, because FM models work with categorical data represented as
integers.

We used two functions, TFFMClassifier and TFFMRegressor, to make
a prediction (see items.py) and calculate MSE respectively (see
quantity.py script from the tffm library (under the MIT license)). The
tffm is a TensorFlow-based implementation of FM and pandas for
pre-processing and structuring data. This TensorFlow-based
implementation provides an arbitrary order (>=2) Factorization
Machine, which supports:

Dense and sparse inputs
Different (gradient-based) optimization methods
Classification/regression via different loss functions (logistic and
mse implemented)
Logging via TensorBoard

Another good thing is that the inference time is linear with respect to
the number of features.

We would like to thank the authors and cite their work as follows:
Mikhail Trofimov, Alexander Novikov, TFFM: TensorFlow
implementation of an arbitrary order Factorization Machine, GitHub
repository, https://github.com/geffy/tffm, 2016.

To use this library, just issue the following command on Terminal:

$ sudo pip3 install tffm # For Python3.x

$ sudo pip install tffm # For Python 2.7.x

Before we start the implementation, let's take a look at the dataset
we will use for this example.

Dataset description
For this example, I will use the RecSys 2015 challenge dataset to
illustrate how to fit an FM model to get a personalized
recommendation. The data contains click and purchase events for
an e-commerce site, with additional item category data. The
dataset's size is about 275 MB, and it can be downloaded from
https://s3-eu-west-1.amazonaws.com/yc-rdata/yoochoose-data.7z.

There are three files and a readme file; however, we will be using
youchoose-buys.dat (buy events) and youchoose-clicks.dat (click
events):

youchoose-clicks.dat: Each record/line in the file has the
following fields:

Session ID: One or many clicks in one session
Timestamp: The time when the click occurred
Item ID: The unique identifier of the item
Category: The category of the item

youchoose-buys.dat: Each record/line in the file has the following
fields:

https://github.com/geffy/tffm
https://s3-eu-west-1.amazonaws.com/yc-rdata/yoochoose-data.7z

Session ID: session ID: One or many buying events in a
session
Timestamp: The time when the buy occurred
Item ID: A unique identifier of items
Price: The price of the item
Quantity: How many of this item were bought

The session IDs in youchoose-buys.dat also exist in the youchoose-
clicks.dat file. That means the records with the same session ID
together form the sequence of click events of a certain user during
the session.

The session could be short (a few minutes) or very long (a few
hours), and it could have one click or hundreds of clicks. It all
depends on the activity of the user.

Workflow of the implementation
Let's develop a recommendation model that predicts and generates
a solution.data file. Here is the short workflow:

1. Download and load the RecSys 2015 challenge dataset and
copy in the 'data' folder in the code repository of this chapter

2. Buy data contains Session ID, Timestamp, Item ID, Category,
and Quantity. In addition, youchoose-clicks.dat contains Session
ID, Timestamp, Item ID, and Category. We will not be using
Timestamp here. We remove the time stamps, one-hot encode
all the columns, and merge the buy and click datasets to make
the dataset feature-rich. After pre-processing, the data looks
similar to that shown in figure 11.

3. For simplification, we consider only the top 10,000 sessions and
split the dataset into training (75%) and testing (25%) sets.

4. We then split the test into normal (keeping historical data) and
cold-start (by removing historical data) to differentiate the model
for the users/items with history or without history.

5. We then use the tffm to train our FM model, which is an
implementation of FM in TensorFlow and train the model using

the training data.
6. Finally, we evaluate the model on both the normal and cold-start

datasets.

Figure 10: Workflow for predicting a list of bought items in a session using FMs

Preprocessing

If we want to make the full use of the categories and the expanded
historical data, we need to load and convert the data into the right
format. Thus, some preprocessing is necessary before getting the
training set prepared. Let's start by loading the packages and
modules:

import tensorflow as tf

import pandas as pd

from collections import Counter

from tffm import TFFMClassifier

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import

train_test_split

import numpy as np

from sklearn.metrics import accuracy_score

import os

I am assuming that you have already downloaded the dataset from
the previously mentioned link. Now let's load the dataset:

buys = open('data/yoochoose-buys.dat', 'r')

clicks = open('data/yoochoose-clicks.dat', 'r')

Now create the pandas dataframe for the click and buys datasets:

initial_buys_df = pd.read_csv(buys, names=

['Session ID', 'Timestamp', 'Item ID', 'Category',

'Quantity'], dtype={'Session ID': 'float32',

'Timestamp': 'str', 'Item ID':

'float32','Category': 'str'})

initial_buys_df.set_index('Session ID',

inplace=True)

initial_clicks_df = pd.read_csv(clicks, names=

['Session ID', 'Timestamp', 'Item ID',

'Category'],dtype={'Category': 'str'})

initial_clicks_df.set_index('Session ID',

inplace=True)

We do not need to use the timestamps in this example, so let's drop
them from the dataframe:

initial_buys_df =

initial_buys_df.drop('Timestamp', 1)

 print(initial_buys_df.head()) # first five

records

 print(initial_buys_df.shape) # shape of

the dataframe

>>>

initial_clicks_df =

initial_clicks_df.drop('Timestamp', 1)

print(initial_clicks_df.head())

print(initial_clicks_df.shape)

>>>

Since we won't use timestamps in this example, remove the
Timestamp column from dataframe(df):

initial_buys_df =

initial_buys_df.drop('Timestamp', 1)

print(initial_buys_df.head(n=5))

print(initial_buys_df.shape)

>>>

initial_clicks_df =

initial_clicks_df.drop('Timestamp', 1)

print(initial_clicks_df.head(n=5))

print(initial_clicks_df.shape)

>>>

Let's take the top 10,000 buying users:

x =

Counter(initial_buys_df.index).most_common(10000)

top_k = dict(x).keys()

initial_buys_df =

initial_buys_df[initial_buys_df.index.isin(top_k)]

 print(initial_buys_df.head())

 print(initial_buys_df.shape)

>>>

initial_clicks_df =

initial_clicks_df[initial_clicks_df.index.isin(top

_k)]

 print(initial_clicks_df.head())

 print(initial_clicks_df.shape)

>>>

Now let's create a copy of the index, since we will also apply one-hot
encoding to it:

initial_buys_df['_Session ID'] =

initial_buys_df.index

print(initial_buys_df.head())

print(initial_buys_df.shape)

>>>

As we mentioned earlier, we can introduce historical engagement
data into our FM model. We will use some group_by magic to
generate a history profile of the entire user's engagement. At first,
we one-hot encode all columns for clicks and buys:

transformed_buys = pd.get_dummies(initial_buys_df)

 print(transformed_buys.shape)

>>>

(106956, 356)

transformed_clicks =

pd.get_dummies(initial_clicks_df)print(transformed

_clicks.shape)

>>>

(209024, 56)

Now it's time to aggregate the historical data for items and
categories:

filtered_buys =

transformed_buys.filter(regex="Item.*|Category.*")

 print(filtered_buys.shape)

>>>

(106956, 354)

filtered_clicks =

transformed_clicks.filter(regex="Item.*|Category.*

")

 print(filtered_clicks.shape)

>>>

(209024, 56)

historical_buy_data =

filtered_buys.groupby(filtered_buys.index).sum()

 print(historical_buy_data.shape)

>>>

(10000, 354)

historical_buy_data =

historical_buy_data.rename(columns=lambda

column_name: 'buy history:' + column_name)

 print(historical_buy_data.shape)

 >>>

 (10000, 354)

historical_click_data =

filtered_clicks.groupby(filtered_clicks.index).sum

()

 print(historical_click_data.shape)

 >>>

(10000, 56)

historical_click_data =

historical_click_data.rename(columns=lambda

column_name: 'click history:' + column_name)

Then we merge the historical data of every user_id:

merged1 = pd.merge(transformed_buys,

historical_buy_data, left_index=True,

right_index=True)

print(merged1.shape)

merged2 = pd.merge(merged1, historical_click_data,

left_index=True, right_index=True)

print(merged2.shape)

>>>

(106956, 710)

(106956, 766)

Then we take the quantity as the target and convert it into binary:

y = np.array(merged2['Quantity'].as_matrix())

Now let's convert y into binary [if buying happens, 1; else 0]:

for i in range(y.shape[0]):

 if y[i]!=0:

 y[i]=1

 else:

 y[i]=0

print(y.shape)

print(y[0:100])

print(y, y.shape[0])

print(y[0])

print(y[0:100])

print(y, y.shape)

>>>

Training the FM model
Since we have prepared the dataset, the next task is to create the
MF model. First, though, let's split the data into training and testing
sets:

X_tr, X_te, y_tr, y_te = train_test_split(merged2,

y, test_size=0.25)

Then we split the testing data into half, one for normal testing and
one for cold-start testing:

X_te, X_te_cs, y_te, y_te_cs =

train_test_split(X_te, y_te, test_size=0.5)

Now let's include the session ID and item ID in the dataframe:

test_x = pd.DataFrame(X_te, columns = ['Item ID'])

print(test_x.head())

>>>

test_x_cs = pd.DataFrame(X_te_cs, columns = ['Item

ID'])

print(test_x_cs.head())

>>>

Then we have to remove the unwanted features from the datasets:

X_tr.drop(['Item ID', '_Session ID', 'click

history:Item ID', 'buy history:Item ID',

'Quantity'], 1, inplace=True)

X_te.drop(['Item ID', '_Session ID', 'click

history:Item ID', 'buy history:Item ID',

'Quantity'], 1, inplace=True)

X_te_cs.drop(['Item ID', '_Session ID', 'click

history:Item ID', 'buy history:Item ID',

'Quantity'], 1, inplace=True)

Then we need to convert the DataFrames into arrays:

ax_tr = np.array(X_tr)

ax_te = np.array(X_te)

ax_te_cs = np.array(X_te_cs)

Now that the pandas DataFrames have been converted into NumPy
arrays, we need to do some null treatment. We simply replace NaN
with zeros:

ax_tr = np.nan_to_num(ax_tr)

ax_te = np.nan_to_num(ax_te)

ax_te_cs = np.nan_to_num(ax_te_cs)

Then we instantiate the TF model with optimized hyperparameters
for classification:

model = TFFMClassifier(

 order=2,

 rank=7,

optimizer=tf.train.AdamOptimizer(learning_rate=0.0

01),

 n_epochs=100,

 batch_size=1024,

 init_std=0.001,

 reg=0.01,

 input_type='dense',

 log_dir = ' logs/',

 verbose=1,

 seed=12345

)

Before we start training the model, we have to prepare the data for
the cold-start:

cold_start = pd.DataFrame(ax_te_cs,

columns=X_tr.columns)

As was mentioned earlier, we are also interested in seeing what
happens if we only have access to categories and no historical
click/purchase data. Let's delete historical click and purchasing data
for the cold_start testing set:

for column in cold_start.columns:

 if ('buy' in column or 'click' in column) and

('Category' not in column):

 cold_start[column] = 0

Now let's train the model:

model.fit(ax_tr, y_tr, show_progress=True)

One of the most important tasks is predicting the buying events in
the sessions:

predictions = model.predict(ax_te)

print('accuracy: {}'.format(accuracy_score(y_te,

predictions)))

print("predictions:",predictions[:10])

print("actual value:",y_te[:10])

>>>

accuracy: 1.0

predictions: [0 0 1 0 0 1 0 1 1 0]

actual value: [0 0 1 0 0 1 0 1 1 0]

cold_start_predictions = model.predict(ax_te_cs)

print('Cold-start accuracy:

{}'.format(accuracy_score(y_te_cs,

cold_start_predictions)))

print("cold start

predictions:",cold_start_predictions[:10])

print("actual value:",y_te_cs[:10])

>>>

Cold-start accuracy: 1.0

cold start predictions: [1 1 1 1 1 0 1 0 0 1]

actual value: [1 1 1 1 1 0 1 0 0 1]

Then let's add the predicted values to the testing data:

test_x["Predicted"] = predictions

test_x_cs["Predicted"] = cold_start_predictions

Now it's time to find all the buy events for each session_id in the
testing data and retrieve the respective item IDs:

sess = list(set(test_x.index))

fout = open("solution.dat", "w")

print("writing the results into .dat file....")

for i in sess:

 if test_x.loc[i]["Predicted"].any()!= 0:

 fout.write(str(i)+";"+','.join(s for s in

str(test_x.loc[i]["Item

ID"].tolist()).strip('[]').split(','))+'\n')

fout.close()

>>>

writing the results into .dat file....

Then we do the same for the cold-start testing data:

sess_cs = list(set(test_x_cs.index))

fout = open("solution_cs.dat", "w")

print("writing the cold start results into .dat

file....")

for i in sess_cs:

 if test_x_cs.loc[i]["Predicted"].any()!= 0:

 fout.write(str(i)+";"+','.join(s for s in

str(test_x_cs.loc[i]["Item

ID"].tolist()).strip('[]').split(','))+'\n')

fout.close()

>>>

writing the cold start results into .dat file....

print("completed..!!")

>>>

completed!!

Finally, we destroy the model to free the memory:

model.destroy()

Additionally, we can see the sample contents of the file:

11009963;214853767

10846132;214854343, 214851590

8486841;214848315

10256314;214854125

8912828;214853085

11304897;214567215

9928686;214854300, 214819577

10125303;214567215, 214853852

10223609;214854358

The experimental results are good, considering that we have used a
relatively small dataset to fit our model. As expected, it is easier to

generate predictions if we have access to all of the information set
with item purchases and clicks, but we still get a decent predictor for
cold-start recommendations using only aggregated category data.

Now that we have seen that the customer will buy in each session, it
would be great to compute the mean squared error for both testing
sets. The TFFMRegressor method can help us with this. For this, use
the quantity.py script.

First, the question is what happens if we only have access to
categories and no historical click/purchase data. Let's delete
historical click and purchasing data for the cold_start testing set:

for column in cold_start.columns:

 if ('buy' in column or 'click' in column) and

('Category' not in column):

 cold_start[column] = 0

Let's create the MF model. You can play around with the
hyperparameters:

reg_model = TFFMRegressor(

 order=2,

 rank=7,

optimizer=tf.train.AdamOptimizer(learning_rate=0.1

),

 n_epochs=100,

 batch_size=-1,

 init_std=0.001,

 input_type='dense',

 log_dir = ' logs/',

 verbose=1

)

In the preceding code block, feel free to put in your own logging
path. Now it is time to train the regression model using the normal
and the cold-start training sets:

reg_model.fit(X_tr, y_tr, show_progress=True)

Then we compute the mean squared error for both testing sets:

predictions = reg_model.predict(X_te)

print('MSE: {}'.format(mean_squared_error(y_te,

predictions)))

print("predictions:",predictions[:10])

print("actual value:",y_te[:10])

cold_start_predictions =

reg_model.predict(X_te_cs)

print('Cold-start MSE:

{}'.format(mean_squared_error(y_te_cs,

cold_start_predictions)))

print("cold start

predictions:",cold_start_predictions[:10])

print("actual value:",y_te_cs[:10])

print("Regression completed..!!")

>>>MSE: 0.4897467853668941

predictions: [1.35086 0.03489107 1.0565269

-0.17359206 -0.01603088 0.03424695

 2.29936886 1.65422797 0.01069662 0.02166392]

actual value: [1 0 1 0 0 0 1 1 0 0]

Cold-start MSE: 0.5663486183636738

cold start predictions: [-0.0112379 1.21811676

1.29267406 0.02357371 -0.39662406 1.06616664

 -0.10646269 0.00861482 1.22619736 0.09728943]

actual value: [0 1 1 0 1 1 0 0 1 0]

Regression completed..!!

Finally, we destroy the model to free the memory:

reg_model.destroy()

So, dropping category columns from the training dataset makes the
MSE even smaller, but doing so means that we cannot tackle the
cold-start recommendation problem. The experimental results are
good given the condition that we have used a relatively small
dataset.

As expected, it is easier to generate predictions if we have access to
the full information setting with item purchases and clicks, but we still
get a decent predictor for cold-start recommendations using only
aggregated category data.

Improved factorization
machines
Many predictive tasks for web applications need to model categorical
variables, such as user IDs, and demographic information, such as
genders and occupations. To apply standard ML techniques, these
categorical predictors need to be converted to a set of binary
features via one-hot encoding (or any other technique). This makes
the resultant feature vector highly sparse. To learn effectively from
such sparse data, it is important to consider the interactions between
features.

In the previous section, we saw that FM could be applied to model
second-order feature interactions effectively. However, FM models
feature interactions in a linear way, which is insufficient if you want to
capture the non-linear and inherently complex structure of real-world
data.

Xiangnan He and Jun Xiao et al. have proposed several research
initiatives, such as Neural Factorization Machine (NFM) and
Attentional Factorization Machine (AFM), in an attempt to overcome
this limitation.

For more information, see the following papers:

Xiangnan He and Tat-Seng Chua, Neural Factorization
Machines for Sparse Predictive Analytics. In Proceedings of
SIGIR '17, Shinjuku, Tokyo, Japan, August 07-11, 2017.
Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu and
Tat-Seng Chua (2017). Attentional Factorization Machines:
Learning the Weight of Feature Interactions via Attention
Networks IJCAI, Melbourne, Australia, August 19-25, 2017.

NFMs can be used to make predictions under sparse settings by
seamlessly combining the linearity of FM in modeling second-order

feature interactions and the non-linearity of the neural network in
modeling higher-order feature interactions.

On the other hand, AFMs can be used to model the data even if all
the feature interactions have the same weight, as not all feature
interactions are equally useful and predictive.

In the next section, we will see an example of using an NFM for the
movie recommendation.

Neural factorization machines
Using the original FM algorithm, performance can be hindered by the
way it models all feature interactions with the same weight, as not all
feature interactions are equally useful and predictive. For example,
the interactions with useless features may even introduce noise and
adversely degrade the performance.

Recently, Xiangnan H. et al. proposed an improved version of FM
algorithm called Neural Factorization Machines (NFMs). NFMs
seamlessly combines the linearity of FMs in modeling second-order
feature interactions and the non-linearity of the neural network in
modeling higher-order feature interactions. Conceptually, NFMs are
more expressive than FMs since FMs can be seen as a special case
of NFMs without hidden layers.

Dataset description
We used the MovieLens data for personalized tag recommendation.
It contains 668,953 tag applications of users on movies. Each tag
application (user ID, movie ID, and tag) is converted into a feature
vector using one-hot encoding. This leaves 90,445 binary features,
called the ml-tag dataset.

I have used a Perl script to convert it from .dat to.libfm format. The
conversion procedure is described at http://www.libfm.org/libfm-

http://www.libfm.org/libfm-1.42.manual.pdf

1.42.manual.pdf (section 2.2.1). The converted dataset has files for
the training, validation, and the testing, as follows:

ml-tag.train.libfm

ml-tag.validation.libfm

ml-tag.test.libfm

For more information about this file format, see http://www.libfm.org/.

Using NFM for the movie recommendation
We have reused and extended the NFM implementation using
TensorFlow from this GitHub,
https://github.com/hexiangnan/neural_factorization_machine. This is
a deep version of an FM, which is more expressive compared to
regular FMs. The repository has three files, namely NeuralFM.py,
FM.py, and LoadData.py:

FM.py is used to train the dataset. This is the original
implementation of the FMs.
NeuralFM.py is used to train the dataset. This is the original
implementation of NFMs but with some improvements and
extension.
LoadData.py is used to preprocess and load the dataset in libfm
format.

Model training

First, we train the FM model with the following command. The
command also includes the parameters needed to perform the
training:

$ python3 FM.py --dataset ml-tag --epoch 20 --

pretrain -1 --batch_size 4096 --lr 0.01 --keep 0.7

>>>

FM: dataset=ml-tag, factors=16, #epoch=20,

batch=4096, lr=0.0100, lambda=0.0e+00, keep=0.70,

optimizer=AdagradOptimizer, batch_norm=1

#params: 1537566

Init: train=1.0000, validation=1.0000 [5.7 s]

http://www.libfm.org/libfm-1.42.manual.pdf
http://www.libfm.org/
https://github.com/hexiangnan/neural_factorization_machine

Epoch 1 [13.9 s] train=0.5413,

validation=0.6005 [7.8 s]

Epoch 2 [14.2 s] train=0.4927,

validation=0.5779 [8.3 s]

…

Epoch 19 [15.4 s] train=0.3272,

validation=0.5429 [8.1 s]

Epoch 20 [16.6 s] train=0.3242,

validation=0.5425 [7.8 s]

Once the training is finished, the trained model will be saved in the
pretrain folder in your home directory:

>>>

Save model to file as pretrain.

Additionally, I have tried to make training and the validation error
visible for the validation and the training loss using the following
code:

 # Plot loss over time

 plt.plot(epoch_list, train_err_list, 'r--',

label='FM training loss per epoch', linewidth=4)

 plt.title('FM training loss per epoch')

 plt.xlabel('Epoch')

 plt.ylabel('Training loss')

 plt.legend(loc='upper right')

 plt.show()

 # Plot accuracy over time

 plt.plot(epoch_list, valid_err_list, 'r--',

label='FM validation loss per epoch', linewidth=4)

 plt.title('FM validation loss per epoch')

 plt.xlabel('Epoch')

 plt.ylabel('Validation loss')

 plt.legend(loc='upper left')

 plt.show()

The preceding code produces graphs showing the training versus
validation loss per iteration in the FM model:

Figure 11: Training versus validation loss per iteration in the FM model

If you look at the preceding output logs, the best training (that is for
both validation and training) occurs at the 20th and last iteration.
However, you could do more iterations to improve the training, which
means a low RMSE value in the evaluation step:

Best Iter(validation)= 20 train = 0.3242, valid

= 0.5425 [490.9 s]

Now let's train the NFM model using the following command (but
play with the parameters too):

$ python3 NeuralFM.py --dataset ml-tag --

hidden_factor 64 --layers [64] --keep_prob

[0.8,0.5] --loss_type square_loss --activation

relu --pretrain 0 --optimizer AdagradOptimizer --

lr 0.01 --batch_norm 1 --verbose 1 --early_stop 1

--epoch 20

>>>

Neural FM: dataset=ml-tag, hidden_factor=64,

dropout_keep=[0.8,0.5], layers=[64],

loss_type=square_loss, pretrain=0, #epoch=20,

batch=128, lr=0.0100, lambda=0.0000,

optimizer=AdagradOptimizer, batch_norm=1,

activation=relu, early_stop=1

#params: 5883150

Init: train=0.9911, validation=0.9916,

test=0.9920 [25.8 s]

Epoch 1 [60.0 s] train=0.6297,

validation=0.6739, test=0.6721 [28.7 s]

Epoch 2 [60.4 s] train=0.5646,

validation=0.6390, test=0.6373 [28.5 s]

…

Epoch 19 [53.4 s] train=0.3504,

validation=0.5607, test=0.5587 [25.7 s]

Epoch 20 [55.1 s] train=0.3432,

validation=0.5577, test=0.5556 [27.5 s]

Additionally, I have tried to make the training and the validation error
visible for the validation and the training loss using the following
code:

 # Plot test accuracy over time

 plt.plot(epoch_list, test_err_list, 'r--',

label='NFM test loss per epoch', linewidth=4)

 plt.title('NFM test loss per epoch')

 plt.xlabel('Epoch')

 plt.ylabel('Test loss')

 plt.legend(loc='upper left')

 plt.show()

The preceding code produces training versus validation loss per
iteration in the NFM model:

Figure 12: training vs validation loss per iteration in NFM model

For the NFM model, the best training (for both validation and
training) occurs at the 20th and last iteration. However, you could do
more iterations to improve the training, which means a low RMSE
value in the evaluation step:

Best Iter (validation) = 20 train = 0.3432,

valid = 0.5577, test = 0.5556 [1702.5 s]

Model evaluation

Now, to evaluate the original FM model, execute the following
command:

$ python3 FM.py --dataset ml-tag --epoch 20 --

batch_size 4096 --lr 0.01 --keep 0.7 --process

evaluate

Test RMSE: 0.5427

Note
For an Attentional Factorization Machines implementation on
TensorFlow, interested readers can refer to the GitHub repository
at
https://github.com/hexiangnan/attentional_factorization_machine.
However, note that some codes might not work. I updated them to
be TensorFlow v1.6 compatible. Therefore, I would highly
recommend using the code provided with this book.

To evaluate the NFM model, just add the following line to the main()
method in the NeuralFM.py script as follows:

Model evaluation

print("RMSE: ")

print(model.evaluate(data.Test_data)) #evaluate on

test set

>>>

RMSE: 0.5578330373003925

Therefore, the RMSE is almost the same as the FM model. Now let's
see how the test errors went per iteration:

Plot test accuracy over time

plt.plot(epoch_list, test_err_list, 'r--',

label='NFM test loss per epoch', linewidth=4)

https://github.com/hexiangnan/attentional_factorization_machine

plt.title('NFM test loss per epoch')

plt.xlabel('Epoch')

plt.ylabel('Test loss')

plt.legend(loc='upper left')

plt.show()

The preceding code plots the test loss per iteration in NFM model:

Figure 13: Test loss per iteration in the NFM model

Summary
In this chapter, we have discussed how to develop scalable
recommendation systems with TensorFlow. We have seen some of
the theoretical backgrounds of recommendation systems and using a
collaborative filtering approach in developing recommendation
systems. Later in the chapter, we saw how to use SVD, and K-
means, to develop a movie recommendation system.

Finally, we saw how to use FMs and a variation called NFM to
develop more accurate recommendation systems that can handle
large-scale sparse matrixes. We have seen that the best way to
handle the cold-start problem is to use a collaborative filtering
approach with FMs.

The next chapter is about designing an ML system driven by
criticisms and rewards. We will see how to apply RL algorithms to
make a predictive model for real-life datasets.

Chapter 10. Reinforcement
Learning
Reinforcement learning (RL) is an area of machine learning that
studies the science of decision-making processes, in particular trying
to understand what the best way is to make decisions in a given
context. The learning paradigm of RL algorithms is different from
most common methodologies, such as supervised or unsupervised
learning.

In RL, an agent is programmed as if he were a human being who
must learn through a trial and error mechanism in order to find the
best strategy to achieve the best result in terms of long-term reward.

RL has achieved incredible results within games (digital and table)
and automated robot control, so it is still widely studied. In the last
decade, it has been decided to add a key component to RL: neural
networks.

This integration of RL and deep neural networks (DNNs), called
deep reinforcement learning, has enabled Google DeepMind
researchers to achieve amazing results in previously unexplored
areas. In particular, in 2013, the Deep Q-Learning algorithm
achieved the performance of experienced human players in the Atari
games domain by taking the pixels that represented the game
screen as input, placing the agent in the same situation as a human
being playing a game.

Another extremely important achievement came in October 2015
when the same research lab, using the same family of algorithms,
beat the European Go champion (Go is a Chinese game of great
complexity), and finally beat the world champion in March 2016.

The chapter covers the following topics:

The RL problem

Open AI gym
The Q-Learning algorithm
Deep Q-Learning

The RL problem
RL differs greatly from supervised learning. In supervised learning,
each example is a pair consisting of an input object (typically a
vector) and a desired output value (also called the supervisory
signal). The supervised learning algorithm analyzes the training data
and produces an inferred function, which can be used to map new
examples.

RL does not provide an association between incoming data and the
desired output values, so the learning structure is completely
different. The main concept of RL is the presence of two components
that interact with one another: an agent and an environment.

An RL agent learns to make decisions within an unfamiliar
environment by performing a series of actions and obtaining the
numerical rewards associated with them. By accumulating
experience through a trial and error process, the agent learns which
actions are the best to perform depending on the state it is in,
defined by the environment and the set of previously performed
actions. The agent has the ability to figure out what the most
successful moves are by simply assessing the reward it has earned
and adjusting its policy, in order to get the maximum cumulative
reward over time.

The RL model is made up of the following:

A set of states , defined by the interaction
between the environment and the agent

A set of possible actions (, suitably selected
by the agent according to the input state

A reward, r, associated with each interaction between the
environment and the agent
A policy mapping each state into an output action
A set of functions called state-value functions and action-value
functions that determine the value of the state of the agent at a
given time and the value that the agent performs a specific
action on a given moment.

An RL agent interacts with the environment at a certain time t. At

each t, the agent receives a state and a reward as input.

Accordingly, the agent determines the action to be
performed, where A (st) represents the set of possible actions in a
given state.

The latter is received by the environment, which processes a new
 state and a new reward signal, , corresponding to the

next agent input at time t + 1. This recursive process is the learning
algorithm of the RL agent. The agent's goal is to earn as much as
possible in terms of the final cumulative reward. The purpose can be
achieved by using different methodologies.

During training, the agent is able to learn appropriate strategies that
allow it to gain a more immediate reward or gain a greater long-term
reward at the expense of immediate rewards.

Figure 1: RL model

OpenAI Gym
OpenAI Gym is an open source Python framework developed by
OpenAI, a non-profit AI research company, as a toolkit for
developing and evaluating RL algorithms. It gives us a set of test
problems, known as environments, that we can write RL algorithms
to solve. This enables us to dedicate more of our time to
implementing and improving the learning algorithm instead of
spending a lot of time simulating the environment. In addition, it
provides a medium for people to compare and review the algorithms
of others.

OpenAI environments
OpenAI Gym has a collection of environments. At the time of writing
this book, the following environments are available:

Classic control and toy text: Small-scale tasks from the RL
literature.
Algorithmic: Performs computations such as adding multi-digit
numbers and reversing sequences. Most of these tasks require
memory, and their difficulty can be changed by varying the
sequence length.
Atari: Classic Atari games, with screen images or RAM as input,
using the Arcade Learning Environment.
Board games: Currently, we have included the game of Go on
9x9 and 19x19 boards, and the Pachi engine [13] serves as an
opponent.
2D and 3D robots: Allows you to control a robot in simulation.
These tasks use the MuJoCo physics engine, which was
designed for fast and accurate robot simulation. A few of the
tasks are adapted from RLLab.

The env class

OpenAI Gym allows the use of the env class, which encapsulates the
environment and any internal dynamics. This class has different
methods and attributes that enable you to implement to create a new
environment. The most important methods are named reset, step,
and render:

The reset method has the task of resetting the environment by
initializing it to the initial state. Within the reset method, the
definitions of the elements that make up the environment (in this
case, the definition of the mechanical arm, the object to be
grasped, and its support) must be contained.
The step method is used to advance the environment
temporally. It requires the action to be entered and returns the
new observation to the agent. Within the method, movement
dynamics management, status and reward calculation, and
episode completion controls must be defined.
The last method is render, which is used to visualize the current
state.

Using the env class proposed by the framework as the basis for new
environments, it adopts the common interface provided by the toolkit.

This way, built environments can be integrated into the library of the
toolkit, and their dynamics can be learned from algorithms that have
been made by the users of the OpenAI Gym community.

Installing and running OpenAI Gym
For a more detailed explanation of how to use and run OpenAI Gym,
please refer to the official documentation page at
(https://gym.openai.com/docs/). A minimal installation of OpenAI
Gym can be achieved with the following command:

git clone https://github.com/openai/gym

cd gym

pip install -e

https://gym.openai.com/docs/

After OpenAI Gym has been installed, you can instantiate and run an
environment in your Python code:

import gym

env = gym.make('CartPole-v0')

obs = env.reset()

for step_idx in range(500):

 env.render()

 obs, reward, done, _ =

env.step(env.action_space.sample())

This code snippet will first import the gym library. Then it creates an
instance of the Cart-Pole (https://gym.openai.com/envs/CartPole-v0/)
environment, which is a classical problem in RL. The Cart-Pole
environment simulates an inverted pendulum mounted on a cart. The
pendulum is initially vertical, and your goal is to maintain its vertical
balance. The only way to control the pendulum is to choose a
horizontal direction for the cart to move (either to left or right).

The preceding code runs the environment for 500 time steps, and it
chooses a random action to perform at each step. As a result, you
see in the video below that the pole is not kept stable for long. The
reward is measured by the number of time steps elapsed before the
pole becomes more than 15 degrees away from the vertical. The
longer you remain within this range, the higher your total reward.

https://gym.openai.com/envs/CartPole-v0/

The Q-Learning algorithm
Solving an RL problem requires an estimate, during the learning
process, of an evaluation function. This function must be able to
assess, through the sum of the rewards, the success of a policy.

The basic idea of Q-Learning is that the algorithm learns the optimal
evaluation function for the entire space of states and actions (S × A).
This so-called Q-function provides a match in the form Q: S × A -> R,
where R is the expected value of the future rewards of an action

 executed in the state, . Once the agent has learned the
optimal function, Q, it will be able to recognize what action will lead
to the highest future reward in a certain state.

One of the most commonly used examples of implementing the Q-
Learning algorithm involves the use of a table. Each cell of the table
is a value Q(s; a)= R and it is initialized to 0. The action ,
performed by the agent, is chosen using a policy which is epsilon-
greedy with respect to Q.

The basic idea of the Q-Learning algorithm is the training rule, which
updates a table element Q (s; a).

The algorithm follows these basic steps:

1. Initialize Q (s; a) arbitrarily.
2. Repeat the following (for each episode):

1. Initialize s.
2. Repeat (for each step of episode):
3. Choose an action from using policy derived

from Q.
4. Take an action a, observe r, s':

s' : s <- s'

5. Continue until s is terminal.

We have depicted the algorithm in the following diagram:

Figure 2: Q-Learning algorithm

Let's summarize the parameters used in the Q-value update
process:

 is the learning rate, which is set between 0 and 1. Setting it to
0 means that the Q-values are never updated, and hence
nothing is learned. Setting a high value such as 0.9 means that
learning can occur quickly.

 is the discount factor, which is set between 0 and 1. This
models the fact that future rewards are worth less than
immediate rewards. Mathematically, the discount factor needs to
be set less than 1 for the algorithm to converge.
max Q(s'; a) is the maximum reward that is attainable in the
state following the current one, that is, the reward for taking the
optimal action thereafter.

The FrozenLake environment

The agent controls the movement of a character in a 4×4 grid world.
Some tiles of the grid are walkable, and others lead to the agent
falling into the water. Additionally, the movement direction of the
agent is uncertain and only partially depends on the chosen
direction. The agent is rewarded for finding a walkable path to a goal
tile:

Figure 3: A representation of the Frozen-Lake v0 grid word

The surface shown above is described using a grid such as the
following:

SFFF (S: starting point, safe)

FHFH (F: frozensurface, safe)

FFFH (H: hole, fall to yourdoom)

HFFG (G: goal, where the frisbee islocated)

The episode ends when we reach the goal or fall in a hole. We
receive a reward of 1 if we reach the goal, and 0 otherwise.

Q-Learning for the FrozenLake problem

Neural networks are exceptionally strong at coming up with good
features for highly structured data.

To resolve the FrozenLake problem, we'll build a one-layer network
that takes the state encoded in a [1× 16] vector and learns the best

move (action), mapping the possible actions in a vector of length
four.

The following implementation is based in TensorFlow:

First, we need to import all the libraries:

import gym

import numpy as np

import random

import tensorflow as tf

import matplotlib.pyplot as plt

Then we load and set the environment to test:

env = gym.make('FrozenLake-v0')

The input network is a state, encoded in a tensor of shape [1,16]. For
this reason, we define the inputs1 placeholder:

inputs1 = tf.placeholder(shape=

[1,16],dtype=tf.float32)

The network weights are initially chosen randomly by the
tf.random_uniform function:

W = tf.Variable(tf.random_uniform([16,4],0,0.01))

The network output is given by the product of the inputs1

placeholder and the weights:

Qout = tf.matmul(inputs1,W)

The argmax evaluated on Qout will give the predicted value:

predict = tf.argmax(Qout,1)

The best move (nextQ) is encoded in a tensor of shape [1,4]:

nextQ = tf.placeholder(shape=

[1,4],dtype=tf.float32)

Next, we define a loss function to implement the backpropagation
procedure.

The loss function is , where the difference
between the current predicted Q-values and the target value is
computed and the gradients are passed through the network:

loss = tf.reduce_sum(tf.square(nextQ - Qout))

The optimizing function is the well-known GradientDescentOptimizer:

trainer =

tf.train.GradientDescentOptimizer(learning_rate=0.

1)

updateModel = trainer.minimize(loss)

Reset and initialize the computational graph:

tf.reset_default_graph()

init = tf.global_variables_initializer()

Then we set the parameter for the Q-Learning training procedure:

y = .99

e = 0.1

num_episodes = 6000

jList = []

rList = []

We define the session, sess, in which the network will have to learn
the best possible sequence of moves:

with tf.Session() as sess:

 sess.run(init)

 for i in range(num_episodes):

 s = env.reset()

 rAll = 0

 d = False

 j = 0

 while j < 99:

 j+=1

The input state is used here to feed the network:

 a,allQ = sess.run([predict,Qout],\

 feed_dict=\

{inputs1:np.identity(16)[s:s+1]})

A random state is chosen from the output tensor a:

 if np.random.rand(1) < e:

 a[0] = env.action_space.sample()

Evaluate the a[0] action using the env.step() function, obtaining the
reward, r, and the state, s1:

 s1,r,d,_ = env.step(a[0])

This new state, s1, is used to update the Q-tensor:

 Q1 = sess.run(Qout,feed_dict=\

 {inputs1:np.identity(16)

[s1:s1+1]})

 maxQ1 = np.max(Q1)

 targetQ = allQ

 targetQ[0,a[0]] = r + y*maxQ1

Of course, the weights must be updated for the backpropagation
procedure:

 _,W1 = sess.run([updateModel,W],\

 feed_dict=\

{inputs1:np.identity(16)[s:s+1],nextQ:targetQ})

rAll here defines the total reward that will be gained during the
session. Let's recall that the goal of an RL agent is to maximize the
total reward that it receives in the long run:

rAll += r

Update the state of the environment for the next step:

 s = s1

 if d == True:

 e = 1./((i/50) + 10)

 break

 jList.append(j)

 rList.append(rAll)

When the computation ends, the percent of successful episodes will
be displayed:

print ("Percent of successfulepisodes: " +\

str(sum(rList)/num_episodes) + "%")

If we run the model, we should get a result like this, which can be
improved by tuning the network parameters:

>>>[2017-01-15 16:56:01,048] Making new env:

FrozenLake-v0

Percentage of successful episodes: 0.558%

Deep Q-learning
Thanks to the recent achievements of Google DeepMind in 2013 and
2016, which succeeded at reaching so-called superhuman levels in
Atari games and beat the world champion Go, RL has become very
interesting in of the machine learning community. This renewed
interest is also due to the advent of Deep Neural Networks (DNNs)
as approximation functions, bringing the potential value of this type
of algorithm to an even higher level. The algorithm that has gained
the most interest in recent times is definitely Deep Q-Learning. The
following section introduces the Deep Q-Learning algorithm and also
discusses some optimization techniques to maximize its
performance.

Deep Q neural networks
The Q-learning base algorithm can cause tremendous problems
when the number of states and possible actions increases and
becomes unmanageable from a matrix point of view. Just think of the
input configuration in the case of the structure used by Google to
achieve the level of performance in the Atari games. State space is
discrete, but the number of states is huge. This is the point where
deep learning steps in. Neural networks are exceptionally good at
coming up with good features for highly structured data. In fact, we
can identify the Q function with a neural network, which takes the
state and action as input and outputs the corresponding Q value:

Q (state; action) = value

The most common implementation of a deep neural network is
pictured below:

Figure 4: Common implementation of a Deep Q neural network

Alternatively, it can take the state as input and produce the
corresponding value for each possible action:

Q (state) = value for each possible action

This optimized implementation can be seen in the following diagram:

Figure 5: Optimized implementation of a Deep Q neural network

This last approach is computationally advantageous, because to
update the Q value (or choose the highest Q value) we just have to
take a step forward through the network and immediately we will
have all Q values for all available actions.

The Cart-Pole problem
We'll build a deep neural network that can learn to play games
through RL. More specifically, we'll use Deep Q-learning to train an
agent to play the Cart-Pole game.

In this game, a freely swinging pole is attached to a cart. The cart
can move to the left and right, and the goal is to keep the pole
upright as long as possible:

Figure 6: Cart-Pole

We simulate this game using OpenAI Gym. We need to import the
required libraries:

import gym

import tensorflow as tf

import numpy as np

import time

Let's create the Cart-Pole game environment:

env = gym.make('CartPole-v0')

Initialize the environment, the rewards list, and the starting time:

env.reset()

rewards = []

tic = time.time()

The env.render() statement is used here to show the window with
the running simulation:

for _ in range(1000):

 env.render()

env.action_space.sample() is passed to the env.step() statement to
build the next step in the simulation:

 state, reward, done, info = \

 env.step\

 (env.action_space.sample())

In the Cart-Pole game, there are two possible actions: moving the
cart left or right. So, there are two actions we can take, encoded as 0
and 1.

Here, we take a random action:

 rewards.append(reward)

 if done:

 rewards = []

 env.reset()

toc = time.time()

After 10 seconds, the simulation ends:

if toc-tic > 10:

 env.close()

To shut the window showing the simulation, use env.close().

When we run the simulation, we have a list of rewards, as follows:

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

The game resets after the pole has fallen past a certain angle. The
simulation returns a reward of 1.0 for each frame that it is running.
The longer the game runs, the more rewards we get. So, our
network's goal is to maximize the reward by keeping the pole
vertical. It will do this by moving the cart to the left and the right.

Deep Q-Network for the Cart-Pole problem

We train our Q-learning agent again using the Bellman equation:

Here, s is a state, a is an action, and s' is the next state from state s
and action a.

Earlier, we used this equation to learn values for a Q-table.
However, there are a huge number of states available for this game.
The state has four values: the position and velocity of the cart, and
the position and velocity of the pole. These are all real-valued
numbers, so if we ignore floating point precisions, we practically
have infinite states. Instead of using a table, then, we'll replace it
with a neural network that will approximate the Q-table lookup
function.

The Q value is calculated by passing in a state to the network, while
the output will be Q-values for each available action, with fully
connected hidden layers:

Figure 7: Deep Q-Learning

In this Cart-Pole game, we have four inputs, one for each value in
the state; and two outputs, one for each action. The network weights
update will take place by choosing an action and simulating the
game with the chosen action. This will take us to the next state and
then to the reward.

Here is a brief code snippet of the neural network used to solve the
Cart-Pole problem:

import tensorflow as tf

class DQNetwork:

 def __init__(self,\

 learning_rate=0.01, \

 state_size=4,\

 action_size=2, \

 hidden_size=10,\

 name='DQNetwork'):

The hidden layers consist of two fully connected layers with ReLU
activations:

 self.fc1

=tf.contrib.layers.fully_connected\

 (self.inputs_,\

 hidden_size)

 self.fc2 =

tf.contrib.layers.fully_connected\

 (self.fc1,\

 hidden_size)

The output layer is a linear output layer:

 self.output =

tf.contrib.layers.fully_connected\

 (self.fc2,\

action_size,activation_fn=None)

The Experience Replay method

The approximation function can suffer greatly from the presence of
non-independent and identically distributed and non-stationary data
(correlations between states).

This kind of problem can be overcome by using the Experience
Replay method.

During the interaction between the agent and the environment, all
experiences (state, action, reward, and next_state) are saved in a
replay memory, which is fixed size memory and operates in First In
First Out (FIFO).

Here is the implementation of the replay memory class:

from collections import deque

import numpy as np

class replayMemory():

 def __init__(self, max_size = 1000):

 self.buffer = \

 deque(maxlen=max_size)

 def build(self, experience):

 self.buffer.append(experience)

 def sample(self, batch_size):

 idx = np.random.choice\

 (np.arange(len(self.buffer)),

 size=batch_size,

 replace=False)

 return [self.buffer[ii] for ii in idx]

This will allow the use of mini-batches of experiences taken
randomly within the replay memory during the training of the
network, instead of using recent experiences one after the other.

Using the experience replay method helps to mitigate the problem of
sequential training data that could lead to the algorithm remaining
stuck in a local minimum, denying it the chance to reach the optimal
solution.

Exploitation and exploration
Whenever the agent has to choose which action to take, it basically
has two ways that it can carry out its strategy. The first mode is
called exploitation and consists of taking the best possible decision
given the information obtained so far, that is, the past and stored
experiences. This information is always available as a value function,
which expresses which of the actions offers the greatest final
cumulative return for each state-action pair.

The second mode is called exploration, and it is a strategy of
making decisions that are different from what is currently considered
optimal.

The exploration phase is very important, because it is used to gather
information on unexplored states. In fact, it is possible that an agent
that only performs the optimal action is limited to always follow the
same sequence of actions without ever having had the opportunity to
explore and find out that there could be strategies that, in the long
run, could lead to much better results, even if this if it means the
immediate gain is lower.

The policy most often used to reach the right compromise between
exploration and exploitation is the greedy policy. It represents a
methodology of selection of actions based on the possibility of
choosing a random action with uniform probability distribution.

The Deep Q-Learning training algorithm
Let's see how to build a deep Q-Learning algorithm to solve the Cart-
Pole problem.

The project is rather complex. For this reason. it has been
subdivided into several file modules:

DQNetwork.py: Implements the Deep Neural Network
memory.py: Implements the experience replay method

start_simulation.py: Creates the Cart-Pole environment that
we want to resolve
solve_cart_pole.py: Solves the Cart-Pole environment with the
trained neural network
plot_result_DQN.py: Plots the final rewards versus the episodes
deepQlearning.py: The main program

The following commands provide a brief description of the
implementation of the deepQlearning.py file:

import tensorflow as tf

import gym

import numpy as np

import time

import os

from create_cart_pole_env import *

from DQNetwork import *

from memory import *

from solve_cart_pole import *

from plot_result_DQN import *

The next thing to do is to define the hyperparameters used for this
implementation, so we need to define the maximum number of
episodes to learn from, the maximum number of steps in an episode,
and the future reward discount:

train_episodes = 1000

max_steps = 200

gamma = 0.99

Exploration parameters are the exploration probability at the start,
the minimum exploration probability, and the exponential decay rate
for the exploration probability:

explore_start = 1.0

explore_stop = 0.01

decay_rate = 0.0001

Network parameters are the number of units in each hidden Q-
network layer and the Q-network learning rate:

hidden_size = 64

learning_rate = 0.0001

Define the following memory parameters:

memory_size = 10000

batch_size = 20

Then we have the number of experiences to use to pretrain the
memory:

pretrain_length = batch_size

Now we can create the environment and start the Cart-Pole
simulation:

env = gym.make('CartPole-v0')

start_simulation(env)

Next, we instantiate the DNN with the hidden_size and
learning_rate hyperparameters:

tf.reset_default_graph()

deepQN = DQNetwork(name='main', hidden_size=64, \

 learning_rate=0.0001)

Finally, we re-initialize the simulation:

env.reset()

Let's take a random step, from which we can get the state and the
reward:

state, rew, done, _ =

env.step(env.action_space.sample())

Instantiate the replayMemory object to implement the Experience
Replay method:

memory = replayMemory(max_size=10000)

Take a chunk of random actions to store the relative experiences, the
state and actions, using the memory.build method:

pretrain_length= 20

for j in range(pretrain_length):

 action = env.action_space.sample()

 next_state, rew, done, _ = \

env.step(env.action_space.sample())

 if done:

 env.reset()

 memory.build((state,\

 action,\

 rew,\

 np.zeros(state.shape)))

 state, rew, done, _ = \

 env.step(env.action_space.sample())

 else:

 memory.build((state, action, rew,

next_state))

 state = next_state

With the new experiences obtained, we can carry out the training of
the neural network:

rew_list = []

train_episodes = 100

max_steps=200

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 step = 0

 for ep in range(1, train_episodes):

 tot_rew = 0

 t = 0

 while t < max_steps:

 step += 1

 explore_p = stop_exp + (start_exp -

stop_exp)*\

 np.exp(-decay_rate*step)

 if explore_p > np.random.rand():

 action = env.action_space.sample()

 else:

Then we compute the Q state:

 Qs = sess.run(deepQN.output, \

 feed_dict=

{deepQN.inputs_: \

state.reshape\

 ((1,

*state.shape))})

We can now obtain the action:

 action = np.argmax(Qs)

 next_state, rew, done, _ =

env.step(action)

 tot_rew += rew

 if done:

 next_state = np.zeros(state.shape)

 t = max_steps

 print('Episode: {}'.format(ep),

 'Total rew:

{}'.format(tot_rew),

 'Training loss:

{:.4f}'.format(loss),

 'Explore P:

{:.4f}'.format(explore_p))

 rew_list.append((ep, tot_rew))

 memory.build((state, action, rew,

next_state))

 env.reset()

 state, rew, done, _ = env.step\

(env.action_space.sample())

 else:

 memory.build((state, action, rew,

next_state))

 state = next_state

 t += 1

 batch_size = pretrain_length

 states = np.array([item[0] for item \

 in

memory.sample(batch_size)])

 actions = np.array([item[1] for item \

 in

memory.sample(batch_size)])

 rews = np.array([item[2] for item in \

memory.sample(batch_size)])

 next_states = np.array([item[3] for

item\

 in

memory.sample(batch_size)])

Finally, we start training the agent. The training is slow because it's
rendering the frames slower than the network can train:

 target_Qs = sess.run(deepQN.output, \

 feed_dict=\

 {deepQN.inputs_:

next_states})

 target_Qs[(next_states == \

 np.zeros(states[0].shape))\

 .all(axis=1)] = (0, 0)

 targets = rews + 0.99 *

np.max(target_Qs, axis=1)

 loss, _ = sess.run([deepQN.loss,

deepQN.opt],

 feed_dict=

{deepQN.inputs_: states,

deepQN.targetQs_: targets,

deepQN.actions_: actions})

 env = gym.make('CartPole-v0')

To test the model, we call the following function:

 solve_cart_pole(env,deepQN,state,sess)

 plot_result(rew_list)

This is the implementation of the solve_cart_pole function.py,
which is used here to test the neural network on the cart pole
problem:

import numpy as np

def solve_cart_pole(env,dQN,state,sess):

 test_episodes = 10

 test_max_steps = 400

 env.reset()

 for ep in range(1, test_episodes):

 t = 0

 while t < test_max_steps:

 env.render()

 Qs = sess.run(dQN.output, \

 feed_dict={dQN.inputs_:

state.reshape\

 ((1,

*state.shape))})

 action = np.argmax(Qs)

 next_state, reward, done, _ =

env.step(action)

 if done:

 t = test_max_steps

 env.reset()

 state, reward, done, _ =

env.step(env.action_space.sample())

 else:

 state = next_state

 t += 1

Finally, if we run the deepQlearning.py script we should obtain a
result like this:

[2017-12-03 10:20:43,915] Making new env:

CartPole-v0

[]

Episode: 1 Total reward: 7.0 Training loss: 1.1949

Explore P: 0.9993

Episode: 2 Total reward: 21.0 Training loss:

1.1786 Explore P: 0.9972

Episode: 3 Total reward: 38.0 Training loss:

1.1868 Explore P: 0.9935

Episode: 4 Total reward: 8.0 Training loss: 1.3752

Explore P: 0.9927

Episode: 5 Total reward: 9.0 Training loss: 1.6286

Explore P: 0.9918

Episode: 6 Total reward: 32.0 Training loss:

1.4313 Explore P: 0.9887

Episode: 7 Total reward: 19.0 Training loss:

1.2806 Explore P: 0.9868

……

Episode: 581 Total reward: 47.0 Training loss:

0.9959 Explore P: 0.1844

Episode: 582 Total reward: 133.0 Training loss:

21.3187 Explore P: 0.1821

Episode: 583 Total reward: 54.0 Training loss:

42.5041 Explore P: 0.1812

Episode: 584 Total reward: 95.0 Training loss:

1.5211 Explore P: 0.1795

Episode: 585 Total reward: 52.0 Training loss:

1.3615 Explore P: 0.1787

Episode: 586 Total reward: 78.0 Training loss:

1.1606 Explore P: 0.1774

…….

Episode: 984 Total reward: 199.0 Training loss:

0.2630 Explore P: 0.0103

Episode: 985 Total reward: 199.0 Training loss:

0.3037 Explore P: 0.0103

Episode: 986 Total reward: 199.0 Training loss:

256.8498 Explore P: 0.0103

Episode: 987 Total reward: 199.0 Training loss:

0.2177 Explore P: 0.0103

Episode: 988 Total reward: 199.0 Training loss:

0.3051 Explore P: 0.0103

Episode: 989 Total reward: 199.0 Training loss:

218.1568 Explore P: 0.0103

Episode: 990 Total reward: 199.0 Training loss:

0.1679 Explore P: 0.0103

Episode: 991 Total reward: 199.0 Training loss:

0.2048 Explore P: 0.0103

Episode: 992 Total reward: 199.0 Training loss:

0.4215 Explore P: 0.0102

Episode: 993 Total reward: 199.0 Training loss:

0.2133 Explore P: 0.0102

Episode: 994 Total reward: 199.0 Training loss:

0.1836 Explore P: 0.0102

Episode: 995 Total reward: 199.0 Training loss:

0.1656 Explore P: 0.0102

Episode: 996 Total reward: 199.0 Training loss:

0.2620 Explore P: 0.0102

Episode: 997 Total reward: 199.0 Training loss:

0.2358 Explore P: 0.0102

Episode: 998 Total reward: 199.0 Training loss:

0.4601 Explore P: 0.0102

Episode: 999 Total reward: 199.0 Training loss:

0.2845 Explore P: 0.0102

[2017-12-03 10:23:43,770] Making new env:

CartPole-v0

>>>

The total reward increases as the training loss decreases.

During the test, the cart pole balances perfectly:

Figure 8: Resolved Cart-Pole problem

To visualize the training, we have used the plot_result() function (it
is defined in the plot_result_DQN.py function).

The plot_result() function plots the total reward for each episode:

def plot_result(rew_list):

 eps, rews = np.array(rew_list).T

 smoothed_rews = running_mean(rews, 10)

 smoothed_rews = running_mean(rews, 10)

 plt.plot(eps[-len(smoothed_rews):],

smoothed_rews)

 plt.plot(eps, rews, color='grey', alpha=0.3)

 plt.xlabel('Episode')

 plt.ylabel('Total Reward')

 plt.show()

The following graph shows the total reward per episode increasing
as the agent improves its estimate of the value function:

Summary
Many researchers believe that RL is the best shot we have of
creating artificial general intelligence. It is an exciting field, with many
unsolved challenges and huge potential. Although it can appear
challenging at first, getting started in RL is actually not so difficult. In
this chapter, we have described some basic principles of RL.

The main thing we have discussed is the Q-Learning algorithm. Its
distinctive feature is the capacity to choose between immediate
rewards and delayed rewards. Q-learning at its simplest uses tables
to store data. This very quickly loses viability when the size of the
state/action space of the system it is monitoring/controlling
increases.

We can overcome this problem using a neural network as a function
approximator that takes the state and action as input and outputs the
corresponding Q-value.

Following this idea, we implemented a Q-learning neural network
using the TensorFlow framework and the OpenAI Gym toolkit to win
at the FrozenLake game.

In the last part of the chapter, we introduced deep reinforcement
learning. In traditional RL, the problem spaces were very limited and
there were only a few possible states in an environment. This was
one of the major limitations of traditional approaches. Over the
years, there have been a couple of relatively successful approaches
that were able to deal with larger state spaces by approximating the
state.

The advances in deep learning algorithms have led to a new wave of
successful applications in RL, because it offers the opportunity to
efficiently work with high-dimensional input data (such as images). In
this context, trained DNNs can be seen as a kind of end-to-end RL
approach, where the agent can learn a state abstraction and a policy

approximation directly from its input data. Following this approach,
we implemented a DNN to solve the Cart-Pole problem.

Our journey in Deep Learning with TensorFlow ends here. Deep
learning is a very productive research area; there are many books,
courses, and online resources that may help the reader to go deeper
into the theory and programming. In addition, TensorFlow provides a
rich set of tools for working with deep learning models. I would like
the reader of this book to be a part of the TensorFlow community,
which is very active and expects enthusiastic people to join them
soon.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books
by Packt:

Python Machine Learning - Second Edition

Sebastian Raschka, Vahid Mirjalili

ISBN: 978-1-78712-593-3

Understand the key frameworks in data science, machine
learning, and deep learning
Harness the power of the latest Python open source libraries in
machine learning
Master machine learning techniques using challenging real-
world data
Master deep neural network implementation using the
TensorFlow library
Ask new questions of your data through machine learning
models and neural networks
Learn the mechanics of classification algorithms to implement
the best tool for the job
Predict continuous target outcomes using regression analysis
Uncover hidden patterns and structures in data with clustering

Delve deeper into textual and social media data using sentiment
analysis

Python Interviews

Mike Driscoll

ISBN: 978-1-78839-908-1

How successful programmers think
The history of Python
Insights into the minds of the Python core team
Trends in Python programming

Leave a review – let other
readers know what you think
Please share your thoughts on this book with others by leaving a
review on the site that you bought it from. If you purchased the book
from Amazon, please leave us an honest review on this book's
Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we
can understand what our customers think about our products, and

our authors can see your feedback on the title that they have worked
with Packt to create. It will only take a few minutes of your time, but
is valuable to other potential customers, our authors, and Packt.
Thank you!

Index
A

activation functions

about / Activation functions
sigmoid / Using sigmoid
tanh / Using tanh
ReLU / Using ReLU
softmax / Using softmax

AlexNet

about / AlexNet
architecture / AlexNet

Alternating Least Squares (ALS) algorithm

about / Model-based collaborative filtering
advantages / Model-based collaborative filtering

Amazon Web Services (AWS) / Deep learning frameworks
AMIs (Amazon Machine Images) / Deep learning frameworks
Area Under the Precision-Recall Curve (AUPRC) / Problem
description
Artificial Neural Networks (ANNs)

about / What is deep learning?, Artificial neural networks
learning / How does an ANN learn?
backpropagation algorithm / ANNs and the backpropagation
algorithm

artificial neuron

about / The artificial neuron

artistic style learning, with VGG-19

about / Artistic style learning with VGG-19

autoencoder

working / How does an autoencoder work?
implementing, with TensorFlow / Implementing
autoencoders with TensorFlow
robustness, improving / Improving autoencoder robustness

autoencoders

about / AutoEncoders

AutoEncoders (AEs) / Deep Neural Networks (DNNs)
autoenoder

as unsupervised feature learning algorithm / Autoencoder
as an unsupervised feature learning algorithm

axon

about / The biological neurons

B
backpropagation algorithm / Feed-forward and backpropagation
backward pass

about / Data parallelism

Basic Linear Algebra Subroutines (BLAS) / Installing and
configuring TensorFlow
basic RNNs

implementing, in TensorFlow / Implementing basic RNNs in
TensorFlow

Berkeley Vision and Learning Center (BVLC) / Deep learning
frameworks
Bi-directional RNN (BRNN) / Bi-directional RNNs
bias neuron / Implementing a multilayer perceptron (MLP)
biological neurons

about / The biological neurons

C
Caffe / Deep learning frameworks
Cart-Pole

URL / Installing and running OpenAI Gym

Cart-Pole problem

about / The Cart-Pole problem
Deep Q-Network, for / Deep Q-Network for the Cart-Pole
problem
experience replay method, using / The Experience Replay
method
exploitation / Exploitation and exploration
exploration / Exploitation and exploration
Deep Q-Learning training algorithm / The Deep Q-Learning
training algorithm

classification / Supervised learning
clustering / Unsupervised learning
CNNs

about / Main concepts of CNNs
in action / CNNs in action
emotion recognition with / Emotion recognition with CNNs

code structure, TensorFlow / TensorFlow code structure
cold-start problem

about / Cold-start problem and collaborative-filtering
approaches

collaborative filtering approaches

about / Collaborative filtering approaches
issues / Collaborative filtering approaches

content-based filtering approaches / Content-based filtering
approaches
hybrid recommender systems / Hybrid recommender
systems
model-based collaborative filtering / Model-based
collaborative filtering

components, TensorFlow graph

variables / TensorFlow computational graph
tensors / TensorFlow computational graph
placeholders / TensorFlow computational graph
session / TensorFlow computational graph

computational graph, TensorFlow / TensorFlow computational
graph
computations

visualizing, through TensorBoard / Visualizing computations
through TensorBoard

content-based filtering approaches

about / Content-based filtering approaches

contrastive divergence / Restricted Boltzmann Machines
(RBMs)
convolutional autoencoder

implementing / Implementing a convolutional autoencoder

convolutional autoencoders

encoder, working / Encoder
decoder, working / Decoder

Convolutional AutoEncoders (CAEs)

about / Emergent architectures

convolutional layer / CNNs in action

Convolutional Neural Network (CNNs) / Fraud analytics with
autoencoders
Convolutional Neural Networks (CNNs)

about / Neural network architectures, Convolutional Neural
Networks (CNNs)

convolution matrix

about / Main concepts of CNNs

cross-entropy

about / Implementing a LeNet-5 step by step

CUDA architecture

about / The CUDA architecture

D
data model, TensorFlow

about / Data model in TensorFlow
tensor / Tensor
rank / Rank and shape
shape / Rank and shape
data type / Data type
variables / Variables
fetches / Fetches
feeds / Feeds and placeholders
placeholders / Feeds and placeholders

data parallelism

about / Data parallelism
synchronous training / Data parallelism
asynchronous training / Data parallelism

dataset preparation

about / Dataset preparation

decoders

working, in convolutional autoencoders / Decoder

deconvolution / Decoder
Deep Belief Networks (DBNs) / Deep Neural Networks (DNNs)

about / Deep Belief Networks (DBNs), Deep Belief
Networks (DBNs)
Restricted Boltzmann Machines (RBMs) / Restricted
Boltzmann Machines (RBMs)
simple DBN, constructing / Construction of a simple DBN
unsupervised pre-training / Unsupervised pre-training
supervised fine-tuning / Supervised fine-tuning
implementing, with TensorFlow for client-subscription
assessment / Implementing a DBN with TensorFlow for
client-subscription assessment

deep learning

about / What is deep learning?

deep learning frameworks

about / Deep learning frameworks
TensorFlow / Deep learning frameworks
Keras / Deep learning frameworks
Theano / Deep learning frameworks
Neon / Deep learning frameworks
Torch / Deep learning frameworks
Caffe / Deep learning frameworks
MXNet / Deep learning frameworks

Deep Neural Networks (DNNs)

about / Neural network architectures, Deep Neural
Networks (DNNs), Fraud analytics with autoencoders
multilayer perceptron / Multilayer perceptron

Deep Belief Networks (DBNs) / Deep Belief Networks
(DBNs)

/ Main concepts of CNNs, Network design, Deep Q-learning
Deep Q-Learning

about / Deep Q-learning
Deep Q neural networks / Deep Q neural networks
Cart-Pole problem / The Cart-Pole problem

Deep Q-Learning training algorithm

about / The Deep Q-Learning training algorithm

Deep SpatioTemporal Neural Networks (DST-NNs)

about / Emergent architectures

dendrites

about / The biological neurons

denoising autoencoder

implementing / Implementing a denoising autoencoder

design principles, Keras

modularity / Keras
minimalism / Keras
extensibility / Keras

development set

about / A soft introduction to machine learning

deviations

reference / Autoencoder as an unsupervised feature
learning algorithm

distributed computing

about / Distributed computing
model parallelism / Model parallelism
data parallelism / Data parallelism

distributed TensorFlow setup

about / The distributed TensorFlow setup

dropout operator / Implementing a LeNet-5 step by step
dropout optimization / Dropout optimization
dropout_prob

about / Emotion recognition with CNNs

E
eager execution, TensorFlow / Eager execution with TensorFlow
edges, TensorFlow

normal / TensorFlow computational graph
special / TensorFlow computational graph

Elastic Compute Cloud (EC2) / Deep learning frameworks
Emergent Architectures (EAs)

about / Neural network architectures

emotion recognition, with CNNs

about / Emotion recognition with CNNs
model, testing on own image / Testing the model on your
own image
source code / Source code

emotion_cnn() function

about / Emotion recognition with CNNs

emotion_cnn function

about / Emotion recognition with CNNs

encoders

working, in convolutional autoencoders / Encoder

env class

about / The env class
reset method / The env class
step method / The env class
render method / The env class

errors

reference / Autoencoder as an unsupervised feature
learning algorithm

estimator

about / Estimators

ETL (Extraction, Transformation, and Load)

about / Supervised learning

expected value

reference / Autoencoder as an unsupervised feature
learning algorithm

exploitation

about / Exploitation and exploration

exploration

about / Exploitation and exploration

exploration versus exploitation example / Reinforcement
learning

F

Factorization Machines (FMs)

for recommendation systems / Factorization machines for
recommendation systems, Factorization machines
cold-start problem / Cold-start problem and collaborative-
filtering approaches
collaborative-filtering approaches / Cold-start problem and
collaborative-filtering approaches
problem definition / Problem definition and formulation
formulation / Problem definition and formulation
dataset description / Dataset description
workflow of implementation / Workflow of the
implementation
preprocessing / Preprocessing
FM model, training / Training the FM model
improved factorization machines / Improved factorization
machines

Factorization Matrix (FM)

about / Hybrid recommender systems

Fast Fourier Transformation (FFT) / Optimized Accelerated
Linear Algebra (XLA)
feature map / CNNs in action
feed-forward neural networks (FFNNs)

about / Feed-forward neural networks (FFNNs)
backpropagation algorithm / Feed-forward and
backpropagation
weights / Weights and biases
biases / Weights and biases
activation functions / Activation functions
implementing / Implementing a feed-forward neural network
MNIST dataset, exploring / Exploring the MNIST dataset

FFNN hyperparameters

tuning / Tuning hyperparameters and advanced FFNNs,
Tuning FFNN hyperparameters

number of hidden layers / Number of hidden layers
number of neurons per hidden layer / Number of neurons
per hidden layer
weight initialization / Weight and biases initialization
biases initialization / Weight and biases initialization
suitable optimizer, selecting / Selecting the most suitable
optimizer
GridSearch, for hyperparameter tuning / GridSearch and
randomized search for hyperparameters tuning
randomized search, for hyperparameter tuning / GridSearch
and randomized search for hyperparameters tuning

fine-tuning implementation

about / Fine-tuning implementation
VGG / VGG
artistic style learning, with VGG-19 / Artistic style learning
with VGG-19
input images / Input images
content extractor / Content extractor and loss
content loss / Content extractor and loss
style extractor / Style extractor and loss
style loss / Style extractor and loss
merger / Merger and total loss
total loss / Merger and total loss
training / Training

forward pass

about / Data parallelism

fraud analytics, with autoencoders

about / Fraud analytics with autoencoders
dataset, description / Description of the dataset
problem description / Problem description
exploratory data analysis / Exploratory data analysis
training set preparation / Training, validation, and testing set
preparation

validation set preparation / Training, validation, and testing
set preparation
testing set preparation / Training, validation, and testing set
preparation
normalization / Normalization
model evaluation / Evaluating the model

FrozenLake environment

about / The FrozenLake environment

FrozenLake problem

resolving, with Q-Learning / The FrozenLake environment

G
Gated Recurrent Unit (GRU) cell / GRU cell
Gated Recurrent units (GRUs)

about / Recurrent Neural Networks (RNNs)

global_step

about / Emotion recognition with CNNs

GoogLeNet

about / Inception-v3

GPGPU

about / The GPGPU history

GPGPU computing

about / GPGPU computing
GPGPU history / The GPGPU history
CUDA architecture / The CUDA architecture
GPU programming model / The GPU programming model

GPU programming model

working / The GPU programming model

Gradient Descent (GD)

about / Weight optimization

Gram matrix / Style extractor and loss
greedy policy

about / Exploitation and exploration

GridSearchCV

reference / GridSearch and randomized search for
hyperparameters tuning

H
Human Activity Recognition (HAR), with LSTM model

about / Human activity recognition using LSTM model
dataset description / Dataset description
workflow / Workflow of the LSTM model for HAR
implementation / Implementing an LSTM model for HAR

hybrid recommender systems

about / Hybrid recommender systems

hyperparameters

about / A soft introduction to machine learning

I
improved factorization machines

about / Improved factorization machines
Neural Factorization Machines (NFMs) / Neural
factorization machines

Inception-v3

about / Inception-v3
exploring, with TensorFlow / Exploring Inception with
TensorFlow

Inception vN

about / Inception-v3

input neurons / Implementing a multilayer perceptron (MLP)
IPython Notebook

reference / Data type

issues, collaborative filtering approaches

cold start / Collaborative filtering approaches
scalability / Collaborative filtering approaches
sparsity / Collaborative filtering approaches

K
K-means / What is deep learning?
Kaggle platform

URL / Emotion recognition with CNNs

Keras / Deep learning frameworks

about / Keras
design principles / Keras

Keras implementation, of SqueezeNet

reference / SqueezeNet

Keras programming models

sequential model / Keras programming models, Sequential
model

functional APIs / Keras programming models, Functional
API

Keras v2.1.4

reference / Functional API

L
latent factors (LFs)

about / Model-based collaborative filtering

LeNet5

about / LeNet5
implementing / Implementing a LeNet-5 step by step
AlexNet / AlexNet
transfer learning / Transfer learning
pre-trained AlexNet / Pretrained AlexNet

linear combination

about / The artificial neuron

linear regression

about / Linear regression and beyond
for real dataset / Linear regression revisited for a real
dataset

Long Short-Term Memory (LSTM) / Regularization
Long Short-term memory units (LSTMs)

about / Recurrent Neural Networks (RNNs)

loss

about / Fine-tuning implementation

loss_val

about / Emotion recognition with CNNs

LSTM networks / LSTM networks
LSTM predictive model, for sentiment analysis

about / An LSTM predictive model for sentiment analysis
network design / Network design
LSTM model training / LSTM model training
visualization, through TensorBoard / Visualizing through
TensorBoard
LSTM model evaluation / LSTM model evaluation

M
machine learning

about / A soft introduction to machine learning
supervised learning / Supervised learning
unsupervised learning / Unsupervised learning
reinforcement learning / Reinforcement learning

Markov Chain Monte Carlo (MCMC) / Restricted Boltzmann
Machines (RBMs)
Markov Random Fields (MRF)

about / Deep Belief Networks (DBNs)

Mean Squared Error (MSE) / Autoencoder as an unsupervised
feature learning algorithm
mean square error (MSE)

about / Linear regression and beyond

Microsoft Cognitive Toolkit

reference / Deep learning frameworks

Microsoft Cognitive Toolkit (CNTK) / Deep learning frameworks
model-based collaborative filtering

about / Model-based collaborative filtering

model inferencing

about / A soft introduction to machine learning

model parallelism

about / Model parallelism

MovieLens dataset

about / Description of the dataset
ratings data / Ratings data
movies data / Movies data
users data / Users data
exploratory analysis / Exploratory analysis of the MovieLens
dataset

MovieLens website

URL / Description of the dataset

movie recommendation, with collaborative filtering

developing / Movie recommendation using collaborative
filtering
utility matrix / The utility matrix
dataset / Description of the dataset
exploratory analysis, of MovieLens dataset / Exploratory
analysis of the MovieLens dataset
implementing / Implementing a movie RE
evaluating / Evaluating the recommender system

movie RE implementation

performing / Implementing a movie RE
model, training with available ratings / Training the model
with the available ratings
saved model, inferencing / Inferencing the saved model
user-item table, generating / Generating the user-item table
similar movies, clustering / Clustering similar movies

movie rating prediction, by users / Movie rating prediction
by users
top k movies, finding / Finding top k movies
top k similar movies, predicting / Predicting top k similar
movies
user-user similarity, computing / Computing user-user
similarity

Multi-Dimensional Recurrent Neural Networks (MD-RNNs)

about / Emergent architectures

multilayer perceptron

about / Multilayer perceptron

multilayer perceptron (MLP)

implementing / Implementing a multilayer perceptron (MLP)
training / Training an MLP
using / Using MLPs
dataset description / Dataset description
preprocessing / Preprocessing
TensorFlow implementation, for client-subscription
assessment / A TensorFlow implementation of MLP for
client-subscription assessment

Multilayer Perceptron (MLP) / Deep Neural Networks (DNNs)
MXNet / Deep learning frameworks

N
Natural Language Processing (NLP) / Introducing TensorFlow
Lite
Neon / Deep learning frameworks
Neural Factorization Machines (NFMs)

about / Neural factorization machines
dataset description / Dataset description

using, for movie recommendation / Using NFM for the
movie recommendation
FM model training / Model training
NFM model training / Model training
FM model, evaluating / Model evaluation
NFM model, evaluating / Model evaluation

neural network architectures

about / Neural network architectures
Deep Neural Networks (DNNs) / Deep Neural Networks
(DNNs)
Convolutional Neural Networks (CNNs) / Convolutional
Neural Networks (CNNs)
autoencoders / AutoEncoders
Recurrent Neural Networks (RNNs) / Recurrent Neural
Networks (RNNs)

neuron

about / The biological neurons

normalization

Z-score / Normalization
min-max scaling / Normalization

NVIDIA CUDA toolkit

reference / Installing and configuring TensorFlow

NVIDIA cuDNN

reference / Installing and configuring TensorFlow

NVIDIA GPU Cloud (NGC) / Deep learning frameworks
NVIDIA Graph Analytics Library / Installing and configuring
TensorFlow

O

OpenAI environments

classic control and toy text / OpenAI environments
algorithmic / OpenAI environments
Atari / OpenAI environments
board games / OpenAI environments
2D and 3D robots / OpenAI environments

OpenAI Gym

about / OpenAI Gym
OpenAI environments / OpenAI environments
env class / The env class
installing / Installing and running OpenAI Gym
URL / Installing and running OpenAI Gym
running / Installing and running OpenAI Gym

Open Neural Network Exchange (ONNX) / Deep learning
frameworks
output_pred

about / Emotion recognition with CNNs

overfitting

about / A soft introduction to machine learning

P
parameter server

about / Data parallelism

PIL (Pillow)

about / Pretrained AlexNet

pixels

about / Main concepts of CNNs

pixel shaders

about / The GPGPU history

placeholders / TensorFlow code structure
pre-trained AlexNet

about / Pretrained AlexNet

pre-trained VGG-19 neural network

about / Content extractor and loss

predictive model, for time series

developing / Developing a predictive model for time series
data
dataset description / Description of the dataset
pre-processing / Pre-processing and exploratory analysis
exploratory analysis / Pre-processing and exploratory
analysis
LSTM predictive model / LSTM predictive model
model evaluation / Model evaluation

PrettyTensor

about / PrettyTensor
chaining layers / Chaining layers
normal mode / Normal mode
sequential mode / Sequential mode
branch method / Branch and join
join method / Branch and join
digit classifier / Digit classifier

Q
Q-Learning algorithm

about / The Q-Learning algorithm
FrozenLake environment / The FrozenLake environment

for FrozenLake problem / The FrozenLake environment

Q-table / Deep Q-Network for the Cart-Pole problem

R
RandomizedSearchCV

reference / GridSearch and randomized search for
hyperparameters tuning

read_data function

about / Emotion recognition with CNNs

receptive field / CNNs in action
recommendation systems

about / Recommendation systems
collaborative filtering approaches, using / Collaborative
filtering approaches

Recurrent Neural Networks (RNNs)

about / Neural network architectures, Recurrent Neural
Networks (RNNs)
working principles / Working principles of RNNs
long-term dependency problem / RNN and the long-term
dependency problem
bi-directional RNNs / Bi-directional RNNs
Bi-directional RNNs / Bi-directional RNNs
gradient vanishing-exploding problem / RNN and the
gradient vanishing-exploding problem
LSTM networks / LSTM networks
Gated Recurrent Unit (GRU) cell / GRU cell

Recurrent Neural Networks (RNNs), for spam prediction

implementing / Implementing an RNN for spam prediction
data description / Data description and preprocessing

data preprocessing / Data description and preprocessing

regression / Supervised learning
regularization

L2 regularization / Regularization
L1 regularization / Regularization
max-norm constraints / Regularization

reinforcement learning

about / Reinforcement learning

ReLU

using / Using ReLU

ReLU operator / Implementing a LeNet-5 step by step
residuals

reference / Autoencoder as an unsupervised feature
learning algorithm

Restricted Boltzmann Machines (RBMs)

about / Deep Belief Networks (DBNs)

/ Restricted Boltzmann Machines (RBMs)
RL problem

about / The RL problem

RMSPropOptimizer

about / Implementing a LeNet-5 step by step

S
sequential model, Keras

sentiment classification, of movie reviews / Sentiment
classification of movie reviews

shared memory

about / The CUDA architecture

sigmoid

about / The artificial neuron
using / Using sigmoid

Singular Value Decomposition (SVD)

about / Hybrid recommender systems

softmax activation function / CNNs in action
softmax classifier / Softmax classifier
softmax function / Activation functions

using / Using softmax

SqueezeNet / SqueezeNet
Stacked Auto-Encoder (SAE) / Deep Neural Networks (DNNs)
Staked Auto-Encoders (SAEs)

about / Feed-forward neural networks (FFNNs)

step function

about / The artificial neuron

Stochastic Gradient Descent (SDG)

about / Stochastic gradient descent

Stochastic Gradient Descent (SGD) / Autoencoder as an
unsupervised feature learning algorithm
streaming multiprocessor (SM)

about / The CUDA architecture

summary_op

about / Emotion recognition with CNNs

supervised learning

about / Supervised learning

synapses

about / The biological neurons

synaptic terminals

about / The biological neurons

T
tanh

using / Using tanh

telodendria

about / The biological neurons

TensorBoard

computations, visualizing / Visualizing computations
through TensorBoard
working / How does TensorBoard work?

TensorFlow / Deep learning frameworks

overview / A general overview of TensorFlow
features, by latest release / A general overview of
TensorFlow
reference / A general overview of TensorFlow
installing / Installing and configuring TensorFlow
configuring / Installing and configuring TensorFlow
computational graph / TensorFlow computational graph
edges / TensorFlow computational graph
code structure / TensorFlow code structure
data model / Data model in TensorFlow
about / Fine-tuning implementation

Inception, exploring with / Exploring Inception with
TensorFlow
autoencoder, implementing / Implementing autoencoders
with TensorFlow
basic RNNs, implementing in / Implementing basic RNNs in
TensorFlow

TensorFlow GPU setup

about / The TensorFlow GPU setup
TensorFlow, updating / Update TensorFlow
GPU representation / GPU representation
GPU, using / Using a GPU
GPU memory management / GPU memory management
single GPU, assigning on multi-GPU system / Assigning a
single GPU on a multi-GPU system
source code, for GPU / The source code for GPU with soft
placement
multiple GPUs, using / Using multiple GPUs

TensorFlow graph

tf.Operation objects / TensorFlow computational graph
tf.Tensor objects / TensorFlow computational graph
components / TensorFlow computational graph

TensorFlow Lite

about / Introducing TensorFlow Lite

TensorFlow v1.6

about / What's new from TensorFlow v1.6 forwards?
Nvidia GPU support optimized / Nvidia GPU support
optimized
eager execution / Eager execution
optimized accelerated linear algebra (XLA) / Optimized
Accelerated Linear Algebra (XLA)

tensors

reference / TensorFlow code structure, Tensor
about / Tensor

test set

about / A soft introduction to machine learning

tf.estimator

about / tf.estimator
graph actions / Graph actions
resources, parsing / Parsing resources
flower predictions / Flower predictions

TFLearn

about / TFLearn
layers / TFLearn
graph_actions / TFLearn
estimator / TFLearn
installing / Installation
Titanic survival predictor / Titanic survival predictor

Theano / Deep learning frameworks
TITO (tensor-in-tensor-out) / TensorFlow computational graph
Torch / Deep learning frameworks
training set

about / A soft introduction to machine learning

train_op

about / Emotion recognition with CNNs

transfer learning

about / Transfer learning

U
unbalanced data

about / Unbalanced data

unsupervised learning

about / Unsupervised learning

utility matrix

about / The utility matrix

V
validation set

about / A soft introduction to machine learning

vector space model

reference / Preprocessing

VGG

about / VGG

VGG-n

about / VGG

W
weight optimization

about / Weight optimization

workers

about / Data parallelism

X
Xavier initialization / Weights and biases

	Deep Learning with TensorFlow - Second Edition
	Table of Contents
	Deep Learning with TensorFlow - Second Edition
	Why subscribe?
	PacktPub.com

	Contributors
	About the authors
	About the reviewers
	Packt is Searching for Authors Like You

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	1. Getting Started with Deep Learning
	A soft introduction to machine learning
	Supervised learning
	Unbalanced data
	Unsupervised learning
	Reinforcement learning
	What is deep learning?

	Artificial neural networks
	The biological neurons
	The artificial neuron

	How does an ANN learn?
	ANNs and the backpropagation algorithm
	Weight optimization
	Stochastic gradient descent

	Neural network architectures
	Deep Neural Networks (DNNs)
	Multilayer perceptron
	Deep Belief Networks (DBNs)

	Convolutional Neural Networks (CNNs)
	AutoEncoders
	Recurrent Neural Networks (RNNs)
	Emergent architectures

	Deep learning frameworks
	Summary

	2. A First Look at TensorFlow
	A general overview of TensorFlow
	What's new from TensorFlow v1.6 forwards?
	Nvidia GPU support optimized
	Introducing TensorFlow Lite
	Eager execution
	Optimized Accelerated Linear Algebra (XLA)

	Installing and configuring TensorFlow
	TensorFlow computational graph
	TensorFlow code structure
	Eager execution with TensorFlow

	Data model in TensorFlow
	Tensor
	Rank and shape
	Data type
	Variables
	Fetches
	Feeds and placeholders

	Visualizing computations through TensorBoard
	How does TensorBoard work?

	Linear regression and beyond
	Linear regression revisited for a real dataset

	Summary

	3. Feed-Forward Neural Networks with TensorFlow
	Feed-forward neural networks (FFNNs)
	Feed-forward and backpropagation
	Weights and biases
	Activation functions
	Using sigmoid
	Using tanh
	Using ReLU
	Using softmax

	Implementing a feed-forward neural network
	Exploring the MNIST dataset
	Softmax classifier

	Implementing a multilayer perceptron (MLP)
	Training an MLP
	Using MLPs
	Dataset description
	Preprocessing
	A TensorFlow implementation of MLP for client-subscription assessment

	Deep Belief Networks (DBNs)
	Restricted Boltzmann Machines (RBMs)
	Construction of a simple DBN
	Unsupervised pre-training
	Supervised fine-tuning

	Implementing a DBN with TensorFlow for client-subscription assessment

	Tuning hyperparameters and advanced FFNNs
	Tuning FFNN hyperparameters
	Number of hidden layers
	Number of neurons per hidden layer
	Weight and biases initialization
	Selecting the most suitable optimizer
	GridSearch and randomized search for hyperparameters tuning

	Regularization
	Dropout optimization

	Summary

	4. Convolutional Neural Networks
	Main concepts of CNNs
	CNNs in action
	LeNet5
	Implementing a LeNet-5 step by step
	AlexNet
	Transfer learning
	Pretrained AlexNet

	Dataset preparation
	Fine-tuning implementation
	VGG
	Artistic style learning with VGG-19
	Input images
	Content extractor and loss
	Style extractor and loss
	Merger and total loss
	Training

	Inception-v3
	Exploring Inception with TensorFlow

	Emotion recognition with CNNs
	Testing the model on your own image
	Source code

	Summary

	5. Optimizing TensorFlow Autoencoders
	How does an autoencoder work?
	Implementing autoencoders with TensorFlow
	Improving autoencoder robustness
	Implementing a denoising autoencoder
	Implementing a convolutional autoencoder
	Encoder
	Decoder

	Fraud analytics with autoencoders
	Description of the dataset
	Problem description
	Exploratory data analysis
	Training, validation, and testing set preparation
	Normalization
	Autoencoder as an unsupervised feature learning algorithm
	Evaluating the model

	Summary

	6. Recurrent Neural Networks
	Working principles of RNNs
	Implementing basic RNNs in TensorFlow
	RNN and the long-term dependency problem
	Bi-directional RNNs

	RNN and the gradient vanishing-exploding problem
	LSTM networks
	GRU cell

	Implementing an RNN for spam prediction
	Data description and preprocessing

	Developing a predictive model for time series data
	Description of the dataset
	Pre-processing and exploratory analysis
	LSTM predictive model
	Model evaluation

	An LSTM predictive model for sentiment analysis
	Network design
	LSTM model training
	Visualizing through TensorBoard
	LSTM model evaluation

	Human activity recognition using LSTM model
	Dataset description
	Workflow of the LSTM model for HAR
	Implementing an LSTM model for HAR

	Summary

	7. Heterogeneous and Distributed Computing
	GPGPU computing
	The GPGPU history
	The CUDA architecture
	The GPU programming model

	The TensorFlow GPU setup
	Update TensorFlow
	GPU representation
	Using a GPU
	GPU memory management
	Assigning a single GPU on a multi-GPU system
	The source code for GPU with soft placement
	Using multiple GPUs

	Distributed computing
	Model parallelism
	Data parallelism

	The distributed TensorFlow setup
	Summary

	8. Advanced TensorFlow Programming
	tf.estimator
	Estimators
	Graph actions
	Parsing resources
	Flower predictions

	TFLearn
	Installation
	Titanic survival predictor

	PrettyTensor
	Chaining layers
	Normal mode
	Sequential mode
	Branch and join
	Digit classifier

	Keras
	Keras programming models
	Sequential model
	Sentiment classification of movie reviews

	Functional API
	SqueezeNet

	Summary

	9. Recommendation Systems Using Factorization Machines
	Recommendation systems
	Collaborative filtering approaches
	Content-based filtering approaches
	Hybrid recommender systems
	Model-based collaborative filtering

	Movie recommendation using collaborative filtering
	The utility matrix
	Description of the dataset
	Ratings data
	Movies data
	Users data

	Exploratory analysis of the MovieLens dataset
	Implementing a movie RE
	Training the model with the available ratings
	Inferencing the saved model
	Generating the user-item table
	Clustering similar movies
	Movie rating prediction by users
	Finding top k movies
	Predicting top k similar movies
	Computing user-user similarity

	Evaluating the recommender system

	Factorization machines for recommendation systems
	Factorization machines
	Cold-start problem and collaborative-filtering approaches

	Problem definition and formulation
	Dataset description
	Workflow of the implementation

	Preprocessing
	Training the FM model

	Improved factorization machines
	Neural factorization machines
	Dataset description
	Using NFM for the movie recommendation
	Model training
	Model evaluation

	Summary

	10. Reinforcement Learning
	The RL problem
	OpenAI Gym
	OpenAI environments
	The env class
	Installing and running OpenAI Gym

	The Q-Learning algorithm
	The FrozenLake environment

	Deep Q-learning
	Deep Q neural networks
	The Cart-Pole problem
	Deep Q-Network for the Cart-Pole problem
	The Experience Replay method
	Exploitation and exploration
	The Deep Q-Learning training algorithm

	Summary

	Other Books You May Enjoy
	Leave a review – let other readers know what you think

	Index

