
R A N D A L L H Y D E

T H E A R T O F
6 4 - B I T A S S E M B L Y

V O L U M E 1

X 8 6 - 6 4 M A C H I N E O R G A N I Z A T I O N

A N D P R O G R A M M I N G

EARLY
EARLY

ACCESS
ACCESS

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

Welcome to the Early Access edition of the as yet unpublished The Art of
64-Bit Assembly by Randall Hyde! As a prepublication title, this book may
be incomplete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

EarlyAccessTemplate_Hyde501089.indd 2EarlyAccessTemplate_Hyde501089.indd 2 6/14/21 4:43 PM6/14/21 4:43 PM

mailto:earlyaccess%40nostarch.com?subject=The%20Art%20of%2064-Bit%20Assembly%206/15/21

T H E A R T O F
6 4 - B I T A S S E M B LY

R A N D A L L H Y D E

Early Access edition, 6/15/21

Copyright © 2022 by Randall Hyde

ISBN 13: 978-1-7185-0108-9 (print)
ISBN 13: 978-1-7185-0109-6 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editors: Katrina Taylor and Miles Bond
Developmental Editor: Athabasca Witschi and Nathan Heidelberger
Cover Design: Gina Redman
Technical Reviewer: Anthony Tribelli
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sadie Barry

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Part I: Machine Organization . 1
Chapter 1: Hello, World of Assembly Language 3
Chapter 2: Computer Data Representation and Operations . . . 43
Chapter 3: Memory Access and Organization 105
Chapter 4: Constants, Variables, and Data Types 147

Part II: Assembly Language Programming 213
Chapter 5: Procedures . 215
Chapter 6: Arithmetic . 287
Chapter 7: Low-Level Control Structures 377
Chapter 8: Advanced Arithmetic . 453
Chapter 9: Numeric Conversion . 493
Chapter 10: Table Lookups . 587
Chapter 11: SIMD Instructions
Chapter 12: Bit Manipulation
Chapter 13: Macros and the MASM Compile-Time Language
Chapter 14: The String Instructions
Chapter 15: Managing Complex Projects
Chapter 16: Standalone Assembly Language Programs

Part III: Reference Material
Appendix A: ASCII Character Set
Appendix B Glossary
Appendix C: Installing and Using Visual Studio
Appendix D: The Windows Command-Line Interpreter
Appendix E: Answers to Questions

The chapters in red are included in this Early Access PDF.

PART I
M A C H I N E O R G A N I Z A T I O N

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

1
H E L L O , W O R L D O F

A S S E M B LY L A N G U A G E

This chapter is a “quick-start” chapter that
lets you begin writing basic assembly lan-

guage programs as rapidly as possible. By
the conclusion of this chapter, you should

understand the basic syntax of a Microsoft Macro Assembler (MASM)
program and the prerequisites for learning new assembly language
features in the chapters that follow.

N O T E This book uses the MASM running under Windows because that is, by far, the
most commonly used assembler for writing x86-64 assembly language programs.
Furthermore, the Intel documentation typically uses assembly language examples that
are syntax-compatible with MASM. If you encounter x86 source code in the real world,
it will likely be written using MASM. That being said, many other popular x86-64
assemblers are out there, including the GNU Assembler (gas), Netwide Assembler
(NASM), Flat Assembler (FASM), and others. These assemblers employ a different
syntax from MASM (gas being the one most radically different). At some point, if you
work in assembly language much, you’ll probably encounter source code written with
one of these other assemblers. Don’t fret; learning the syntactical differences isn’t that
hard once you’ve mastered x86-64 assembly language using MASM.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

4 Chapter 1

This chapter covers the following:

•	 Basic syntax of a MASM program

•	 The Intel central processing unit (CPU) architecture

•	 Setting aside memory for variables

•	 Using machine instructions to control the CPU

•	 Linking a MASM program with C/C++ code so you can call routines in
the C Standard Library

•	 Writing some simple assembly language programs

 1.1 What You’ll Need . . .
You’ll need a few prerequisites to learn assembly language programming
with MASM: a 64-bit version of MASM, plus a text editor (for creating and
modifying MASM source files), a linker, various library files, and a C++
compiler.

Today’s software engineers drop down into assembly language only when
their C++, C#, Java, Swift, or Python code is running too slow and they need
to improve the performance of certain modules (or functions) in their code.
Because you’ll typically be interfacing assembly language with C++, or other
high-level language (HLL) code, when using assembly in the real world, we’ll
do so in this book as well.

Another reason to use C++ is for the C Standard Library. While differ-
ent individuals have created several useful libraries for MASM (see http://
www.masm32.com/ for a good example), there is no universally accepted stan-
dard set of libraries. To make the C Standard Library immediately accessible
to MASM programs, this book presents examples with a short C/C++ main
function that calls a single external function written in assembly language
using MASM. Compiling the C++ main program along with the MASM
source file will produce a single executable file that you can run and test.

Do you need to know C++ to learn assembly language? Not really. This
book will spoon-feed you the C++ you’ll need to run the example programs.
Nevertheless, assembly language isn’t the best choice for your first language,
so this book assumes that you have some experience in a language such as
C/C++, Pascal (or Delphi), Java, Swift, Rust, BASIC, Python, or any other
imperative or object-oriented programming language.

 1.2 Setting Up MASM on Your Machine
MASM is a Microsoft product that is part of the Visual Studio suite of
developer tools. Because it’s Microsoft’s tool set, you need to be running
some variant of Windows (as I write this, Windows 10 is the latest version;
however, any later version of Windows will likely work as well). Appendix C
provides a complete description of how to install Visual Studio Community
(the “no-cost” version, which includes MASM and the Visual C++ compiler,
plus other tools you will need). Please refer to that appendix for more
details.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

http://www.masm32.com/
http://www.masm32.com/

Hello, World of Assembly Language 5

 1.3 Setting Up a Text Editor on Your Machine
Visual Studio includes a text editor that you can use to create and edit
MASM and C++ programs. Because you have to install the Visual Studio
package to obtain MASM, you automatically get a production-quality pro-
grammer’s text editor you can use for your assembly language source files.

However, you can use any editor that works with straight ASCII files
(UTF-8 is also fine) to create MASM and C++ source files, such as Notepad++
or the text editor available from https://www.masm32.com/. Word processing
programs, such as Microsoft Word, are not appropriate for editing program
source files.

 1.4 The Anatomy of a MASM Program
A typical (stand-alone) MASM program looks like Listing 1-1.

; Comments consist of all text from a semicolon character
; to the end of the line.

; The ".code" directive tells MASM that the statements following
; this directive go in the section of memory reserved for machine
; instructions (code).

 .code

; Here is the "main" function. (This example assumes that the
; assembly language program is a stand-alone program with its
; own main function.)

main PROC

; Machine Instructions go here.

 ret ; Returns to caller

main ENDP

; The END directive marks the end of the source file.

 END

Listing 1-1: Trivial shell program

A typical MASM program contains one or more sections representing
the type of data appearing in memory. These sections begin with a MASM
statement such as .code or .data. Variables and other memory values appear
in a data section. Machine instructions appear in procedures that appear
within a code section. And so on. The individual sections appearing in an
assembly language source file are optional, so not every type of section will
appear in a particular source file. For example, Listing 1-1 contains only a
single code section.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://www.masm32.com/

6 Chapter 1

The .code statement is an example of an assembler directive—a state-
ment that tells MASM something about the program but is not an actual
x86-64 machine instruction. In particular, the .code directive tells MASM to
group the statements following it into a special section of memory reserved
for machine instructions.

 1.5 Running Your First MASM Program
A traditional first program people write, popularized by Brian Kernighan
and Dennis Ritchie’s The C Programming Language (Prentice Hall, 1978)
is the “Hello, world!” program. The whole purpose of this program is to
provide a simple example that someone learning a new programming lan-
guage can use to figure out how to use the tools needed to compile and
run programs in that language.

Unfortunately, writing something as simple as a “Hello, world!” pro-
gram is a major production in assembly language. You have to learn several
machine instruction and assembler directives, not to mention Windows
system calls, to print the string “Hello, world!” At this point in the game,
that’s too much to ask from a beginning assembly language programmer
(for those who want to blast on ahead, take a look at the sample program in
Appendix C).

However, the program shell in Listing 1-1 is actually a complete
assembly language program. You can compile (assemble) and run it. It
doesn’t produce any output. It simply returns back to Windows imme-
diately after you start it. However, it does run, and it will serve as the
mechanism for showing you how to assemble, link, and run an assembly
language source file.

The MASM is a traditional command line assembler, which means you
need to run it from a Windows command line prompt (available by running the
cmd.exe program). To do so, enter something like the following into the com-
mand line prompt or shell window:

C:\>ml64 programShell.asm /link /subsystem:console /entry:main

This command tells MASM to assemble the programShell.asm program
(where I’ve saved Listing 1-1) to an executable file, link the result to pro-
duce a console application (one that you can run from the command line),
and begin execution at the label main in the assembly language source file.
Assuming that no errors occur, you can run the resulting program by typ-
ing the following command into your command prompt window:

C:\>programShell

Windows should immediately respond with a new command line
prompt (as the programShell application simply returns control back to
Windows after it starts running).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 7

 1.6 Running Your First MASM/C++ Hybrid Program
This book commonly combines an assembly language module (containing
one or more functions written in assembly language) with a C/C++ main
program that calls those functions. Because the compilation and execution
process is slightly different from a stand-alone MASM program, this section
demonstrates how to create, compile, and run a hybrid assembly/C++ pro-
gram. Listing 1-2 provides the main C++ program that calls the assembly
language module.

// Listing 1-2

// A simple C++ program that calls an assembly language function.
// Need to include stdio.h so this program can call "printf()".

#include <stdio.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function, written in assembly
 // language, that this program will call:

 void asmFunc(void);
};

int main(void)
{
 printf("Calling asmMain:\n");
 asmFunc();
 printf("Returned from asmMain\n");
}

Listing 1-2: A sample C/C++ program, listing1-2.cpp, that calls an assembly language
function

Listing 1-3 is a slight modification of the stand-alone MASM program
that contains the asmFunc() function that the C++ program calls.

; Listing 1-3:
; A simple MASM module that contains an empty function to be
; called by the C++ code in Listing 1-2.

 .CODE

; (See text concerning option directive.)

 option casemap:none

; Here is the "asmFunc" function.

 public asmFunc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

8 Chapter 1

asmFunc PROC
; Empty function just returns to C++ code.

 ret ; Returns to caller

asmFunc ENDP
 END

Listing 1-3: A MASM program, listing1-3.asm, that the C++ program in Listing 1-2 calls

Listing 1-3 has three changes from the original programShell.asm source
file. First, there are two new statements: the option statement and the public
statement.

The option statement tells MASM to make all symbols case-sensitive. This
is necessary because MASM, by default, is case-insensitive and maps all iden-
tifiers to uppercase (so asmFunc() would become ASMFUNC()). C++ is a case-
sensitive language and treats asmFunc() and ASMFUNC() as two different identifiers.
Therefore, it’s important to tell MASM to respect the case of the identifiers
so as not to confuse the C++ program.

N O T E MASM identifiers may begin with a dollar sign ($), underscore (_), or an alphabetic
character and may be followed by zero or more alphanumeric, dollar sign, or under-
score characters. An identifier may not consist of a $ character by itself (this has a
special meaning to MASM).

The public statement declares that the asmFunc() identifier will be vis-
ible outside the MASM source/object file. Without this statement, asmFunc()
would be accessible only within the MASM module, and the C++ compila-
tion would complain that asmFunc() is an undefined identifier.

The third difference between Listing 1-3 and Listing 1-1 is that the
function’s name was changed from main() to asmFunc(). The C++ compiler
and linker would get confused if the assembly code used the name main(),
as that’s also the name of the C++ main() function.

To compile and run these source files, you use the following commands:

C:\>ml64 /c listing1-3.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-3.asm

C:\>cl listing1-2.cpp listing1-3.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

listing1-2.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-2.exe
listing1-2.obj
listing1-3.obj

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 9

C:\>listing1-2
Calling asmFunc:
Returned from asmFunc

The ml64 command uses the /c option, which stands for compile-only, and
does not attempt to run the linker (which would fail because listing1-3.asm is
not a stand-alone program). The output from the MASM is an object code
file (listing1-3.obj), which serves as input to the Microsoft Visual C++ (MSVC)
compiler in the next command.

The cl command runs the MSVC compiler on the listing1-2.cpp file and
links in the assembled code (listing1-3.obj). The output from the MSVC com-
piler is the listing1-2.exe executable file. Executing that program from the
command line produces the output we expect.

 1.7 An Introduction to the Intel x86-64 CPU Family
Thus far, you’ve seen a single MASM program that will actually compile and
run. However, the program does nothing more than return control to Windows.
Before you can progress any further and learn some real assembly language,
a detour is necessary: unless you understand the basic structure of the Intel
x86-64 CPU family, the machine instructions will make little sense.

The Intel CPU family is generally classified as a von Neumann architec-
ture machine. Von Neumann computer systems contain three main building
blocks: the central processing unit (CPU), memory, and input/output (I/0) devices.
These three components are interconnected via the system bus (consisting
of the address, data, and control buses). The block diagram in Figure 1-1
shows these relationships.

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations or
I/O device port locations, each of which has a unique numeric address.
Then the CPU, memory, and I/O devices pass data among themselves by
placing the data on the data bus. The control bus contains signals that
determine the direction of the data transfer (to/from memory and to/from
an I/O device).

CPU

Memory

I/O devices

Figure 1-1: Von Neumann computer system
block diagram

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

10 Chapter 1

Within the CPU, special locations known as registers are used to manip-
ulate data. The x86-64 CPU registers can be broken into four categories:
general-purpose registers, special-purpose application-accessible registers,
segment registers, and special-purpose kernel-mode registers. Because
the segment registers aren’t used much in modern 64-bit operating systems
(such as Windows), there is little need to discuss them in this book. The
special-purpose kernel-mode registers are intended for writing operating
systems, debuggers, and other system-level tools. Such software construc-
tion is well beyond the scope of this text.

The x86-64 (Intel family) CPUs provide several general-purpose registers
for application use. These include the following:

•	 Sixteen 64-bit registers that have the following names: RAX, RBX, RCX,
RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, and R15

•	 Sixteen 32-bit registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, and R15D

•	 Sixteen 16-bit registers: AX, BX, CX, DX, SI, DI, BP, SP, R8W, R9W,
R10W, R11W, R12W, R13W, R14W, and R15W

•	 Twenty 8-bit registers: AL, AH, BL, BH, CL, CH, DL, DH, DIL, SIL,
BPL, SPL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, and R15B

Unfortunately, these are not 68 independent registers; instead, the x86-64
overlays the 64-bit registers over the 32-bit registers, the 32-bit registers over
the 16-bit registers, and the 16-bit registers over the 8-bit registers. Table 1-1
shows these relationships.

Because the general-purpose registers are not independent, modify-
ing one register may modify as many as three other registers. For example,
modifying the EAX register may very well modify the AL, AH, AX, and
RAX registers. This fact cannot be overemphasized. A common mistake in
programs written by beginning assembly language programmers is register
value corruption due to the programmer not completely understanding the
ramifications of the relationships shown in Table 1-1.

Table 1-1: General-Purpose Registers on the x86-64

Bits 0–63 Bits 0–31 Bits 0–15 Bits 8–15 Bits 0–7

RAX EAX AX AH AL

RBX EBX BX BH BL

RCX ECX CX CH CL

RDX EDX DX DH DL

RSI ESI SI SIL

RDI EDI DI DIL

RBP EBP BP BPL

RSP ESP SP SPL

R8 R8D R8W R8B

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 11

Bits 0–63 Bits 0–31 Bits 0–15 Bits 8–15 Bits 0–7

R9 R9D R9W R9B

R10 R10D R10W R10B

R11 R11D R11W R11B

R12 R12D R12W R12B

R13 R13D R13W R13B

R14 R14D R14W R14B

R15 R15D R15W R15B

In addition to the general-purpose registers, the x86-64 provides special-
purpose registers, including eight floating-point registers implemented in the
x87 floating-point unit (FPU). Intel named these registers ST(0) to ST(7).
Unlike with the general-purpose registers, an application program cannot
directly access these. Instead, a program treats the floating-point regis-
ter file as an eight-entry-deep stack and accesses only the top one or two
entries (see “Floating-Point Arithmetic” in Chapter 6 for more details).

Each floating-point register is 80 bits wide, holding an extended-
precision real value (hereafter just extended precision). Although Intel added
other floating-point registers to the x86-64 CPUs over the years, the FPU
registers still find common use in code because they support this 80-bit
floating-point format.

In the 1990s, Intel introduced the MMX register set and instructions
to support single instruction, multiple data (SIMD) operations. The MMX reg-
ister set is a group of eight 64-bit registers that overlay the ST(0) to ST(7)
registers on the FPU. Intel chose to overlay the FPU registers because this
made the MMX registers immediately compatible with multitasking oper-
ating systems (such as Windows) without any code changes to those OSs.
Unfortunately, this choice meant that an application could not simultane-
ously use the FPU and MMX instructions.

Intel corrected this issue in later revisions of the x86-64 by adding the
XMM register set. For that reason, you rarely see modern applications using
the MMX registers and instruction set. They are available if you really want
to use them, but it is almost always better to use the XMM registers (and
instruction set) and leave the registers in FPU mode.

To overcome the limitations of the MMX/FPU register conflicts,
AMD/Intel added sixteen 128-bit XMM registers (XMM0 to XMM15) and
the SSE/SSE2 instruction set. Each register can be configured as four 32-bit
floating-point registers; two 64-bit double-precision floating-point registers;
or sixteen 8-bit, eight 16-bit, four 32-bit, two 64-bit, or one 128-bit integer
registers. In later variants of the x86-64 CPU family, AMD/Intel doubled
the size of the registers to 256 bits each (renaming them YMM0 to YMM15)
to support eight 32-bit floating-point values or four 64-bit double-precision
floating-point values (integer operations were still limited to 128 bits).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

12 Chapter 1

The RFLAGS (or just FLAGS) register is a 64-bit register that encapsu-
lates several single-bit Boolean (true/false) values.1 Most of the bits in the
RFLAGS register are either reserved for kernel mode (operating system)
functions or are of little interest to the application programmer. Eight
of these bits (or flags) are of interest to application programmers writing
assembly language programs: the overflow, direction, interrupt disable,2
sign, zero, auxiliary carry, parity, and carry flags. Figure 1-2 shows the lay-
out of the flags within the lower 16 bits of the RFLAGS register.

Overflow
Direction
Interrupt

Sign
Zero

Auxiliary carry

Parity

Carry

Not very
interesting to
application
programmers

15 0

Figure 1-2: Layout of the FLAGS register (lower 16 bits of RFLAGS)

Four flags in particular are extremely valuable: the overflow, carry, sign,
and zero flags, collectively called the condition codes.3 The state of these flags
lets you test the result of previous computations. For example, after compar-
ing two values, the condition code flags will tell you whether one value is
less than, equal to, or greater than a second value.

One important fact that comes as a surprise to those just learning assem-
bly language is that almost all calculations on the x86-64 CPU involve a regis-
ter. For example, to add two variables together and store the sum into a third
variable, you must load one of the variables into a register, add the second
operand to the value in the register, and then store the register away in the
destination variable. Registers are a middleman in nearly every calculation.

You should also be aware that, although the registers are called general-
purpose, you cannot use any register for any purpose. All the x86-64 registers
have their own special purposes that limit their use in certain contexts. The
RSP register, for example, has a very special purpose that effectively prevents

1. Technically, the I/O privilege level (IOPL) is 2 bits, but these bits are not accessible from
user-mode programs, so this book ignores this field.

2. Application programs cannot modify the interrupt flag, but we’ll look at this flag in
Chapter 2; hence the discussion of this flag here.

3. Technically, the parity flag is also a condition code, but we will not use that flag in this text.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 13

you from using it for anything else (it’s the stack pointer). Likewise, the RBP
register has a special purpose that limits its usefulness as a general-purpose
register. For the time being, avoid the use of the RSP and RBP registers for
generic calculations; also, keep in mind that the remaining registers are not
completely interchangeable in your programs.

 1.8 The Memory Subsystem
The memory subsystem holds data such as program variables, constants,
machine instructions, and other information. Memory is organized into
cells, each of which holds a small piece of information. The system can com-
bine the information from these small cells (or memory locations) to form
larger pieces of information.

The x86-64 supports byte-addressable memory, which means the basic
memory unit is a byte, sufficient to hold a single character or a (very) small
integer value (we’ll talk more about that in Chapter 2).

Think of memory as a linear array of bytes. The address of the first byte
is 0, and the address of the last byte is 232 – 1. For an x86 processor with
4GB memory installed,4 the following pseudo-Pascal array declaration is
a good approximation of memory:

Memory: array [0..4294967295] of byte;

C/C++ and Java users might prefer the following syntax:

byte Memory[4294967296];

For example, to execute the equivalent of the Pascal statement Memory
[125] := 0;, the CPU places the value 0 on the data bus, places the address
125 on the address bus, and asserts the write line (this generally involves set-
ting that line to 0), as shown in Figure 1-3.

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
125

Figure 1-3: Memory write operation

To execute the equivalent of CPU := Memory [125];, the CPU places the
address 125 on the address bus, asserts the read line (because the CPU is
reading data from memory), and then reads the resulting data from the
data bus (see Figure 1-4).

4. The following discussion will use the 4GB address space of the older 32-bit x86-64 proces-
sors. A typical x86-64 processor running a modern 64-bit OS can access a maximum of 248
memory locations, or just over 256TB.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

14 Chapter 1

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
125

Figure 1-4: Memory read operation

To store larger values, the x86 uses a sequence of consecutive memory
locations. Figure 1-5 shows how the x86 stores bytes, words (2 bytes), and
double words (4 bytes) in memory. The memory address of each object is the
address of the first byte of each object (that is, the lowest address).

195

194

193

192

191

190

189

188

187

186

Double word
at address 192

Word at
address 188

Byte at
address 186

Address

Figure 1-5: Byte, word, and double-word storage
in memory

 1.9 Declaring Memory Variables in MASM
Although it is possible to reference memory by using numeric addresses in
assembly language, doing so is painful and error-prone. Rather than having
your program state, “Give me the 32-bit value held in memory location 192
and the 16-bit value held in memory location 188,” it’s much nicer to state,
“Give me the contents of elementCount and portNumber.” Using variable names,
rather than memory addresses, makes your program much easier to write,
read, and maintain.

To create (writable) data variables, you have to put them in a data section
of the MASM source file, defined using the .data directive. This directive tells
MASM that all following statements (up to the next .code or other section-
defining directive) will define data declarations to be grouped into a read/
write section of memory.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 15

Within a .data section, MASM allows you to declare variable objects by
using a set of data declaration directives. The basic form of a data declara-
tion directive is

label directive ?

where label is a legal MASM identifier and directive is one of the directives
appearing in Table 1-2.

Table 1-2: MASM Data Declaration Directives

Directive Meaning

byte (or db) Byte (unsigned 8-bit) value

sbyte Signed 8-bit integer value

word (or dw) Unsigned 16-bit (word) value

sword Signed 16-bit integer value

dword (or dd) Unsigned 32-bit (double-word) value

sdword Signed 32-bit integer value

qword (or dq) Unsigned 64-bit (quad-word) value

sqword Signed 64-bit integer value

tbyte (or dt) Unsigned 80-bit (10-byte) value

oword 128-bit (octal-word) value

real4 Single-precision (32-bit) floating-point value

real8 Double-precision (64-bit) floating-point value

real10 Extended-precision (80-bit) floating-point value

The question mark (?) operand tells MASM that the object will not
have an explicit value when the program loads into memory (the default
initialization is zero). If you would like to initialize the variable with an
explicit value, replace the ? with the initial value; for example:

hasInitialValue sdword -1

Some of the data declaration directives in Table 1-2 have a signed version
(the directives with the s prefix). For the most part, MASM ignores this prefix.
It is the machine instructions you write that differentiate between signed and
unsigned operations; MASM itself usually doesn’t care whether a variable holds
a signed or an unsigned value. Indeed, MASM allows both of the following:

 .data
u8 byte -1 ; Negative initializer is okay
i8 sbyte 250 ; even though +128 is maximum signed byte

All MASM cares about is whether the initial value will fit into a byte.
The -1, even though it is not an unsigned value, will fit into a byte in
memory. Even though 250 is too large to fit into a signed 8-bit integer (see

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

16 Chapter 1

“Signed and Unsigned Numbers” in Chapter 2), MASM will happily accept
this because 250 will fit into a byte variable (as an unsigned number).

It is possible to reserve storage for multiple data values in a single data
declaration directive. The string multi-valued data type is critical to this
chapter (later chapters discuss other types, such as arrays in Chapter 4).
You can create a null-terminated string of characters in memory by using
the byte directive as follows:

; Zero-terminated C/C++ string.
strVarName byte 'String of characters', 0

Notice the , 0 that appears after the string of characters. In any data
declaration (not just byte declarations), you can place multiple data values in
the operand field, separated by commas, and MASM will emit an object of
the specified size and value for each operand. For string values (surrounded
by apostrophes in this example), MASM emits a byte for each character in the
string (plus a zero byte for the , 0 operand at the end of the string). MASM
allows you to define strings by using either apostrophes or quotes; you must
terminate the string of characters with the same delimiter that begins the
string (quote or apostrophe).

1.9.1 Associating Memory Addresses with Variables
One of the nice things about using an assembler/compiler like MASM is that
you don’t have to worry about numeric memory addresses. All you need to
do is declare a variable in MASM, and MASM associates that variable with
a unique set of memory addresses. For example, say you have the following
declaration section:

 .data
i8 sbyte ?
i16 sword ?
i32 sdword ?
i64 sqword ?

MASM will find an unused 8-bit byte in memory and associate it with
the i8 variable; it will find a pair of consecutive unused bytes and associate
them with i16; it will find four consecutive locations and associate them
with i32; finally, MASM will find 8 consecutive unused bytes and associate
them with i64. You’ll always refer to these variables by their name. You gen-
erally don’t have to concern yourself with their numeric address. Still, you
should be aware that MASM is doing this for you.

When MASM is processing declarations in a .data section, it assigns
consecutive memory locations to each variable.5 Assuming i8 (in the pre-
vious declarations) as a memory address of 101, MASM will assign the
addresses appearing in Table 1-3 to i8, i16, i32, and i64.

5. Technically, MASM assigns offsets into the .data section to variables. Windows converts
these offsets to physical memory addresses when it loads the program into memory at
runtime.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 17

Table 1-3: Variable Address Assignment

Variable Memory address

i8 101

i16 102 (address of i8 plus 1)

i32 104 (address of i16 plus 2)

i64 108 (address of i32 plus 4)

Whenever you have multiple operands in a data declaration statement,
MASM will emit the values to sequential memory locations in the order
they appear in the operand field. The label associated with the data decla-
ration (if one is present) is associated with the address of the first (leftmost)
operand’s value. See Chapter 4 for more details.

1.9.2 Associating Data Types with Variables
During assembly, MASM associates a data type with every label you define,
including variables. This is rather advanced for an assembly language (most
assemblers simply associate a value or an address with an identifier).

For the most part, MASM uses the variable’s size (in bytes) as its type
(see Table 1-4).

Table 1-4: MASM Data Types

Type Size Description

byte (db) 1 1-byte memory operand, unsigned (generic integer)

sbyte 1 1-byte memory operand, signed integer

word (dw) 2 2-byte memory operand, unsigned (generic integer)

sword 2 2-byte memory operand, signed integer

dword (dd) 4 4-byte memory operand, unsigned (generic integer)

sdword 4 4-byte memory operand, signed integer

qword (dq) 8 8-byte memory operand, unsigned (generic integer)

sqword 8 8-byte memory operand, signed integer

tbyte (dt) 10 10-byte memory operand, unsigned (generic integer or BCD)

oword 16 16-byte memory operand, unsigned (generic integer)

real4 4 4-byte single-precision floating-point memory operand

real8 8 8-byte double-precision floating-point memory operand

real10 10 10-byte extended-precision floating-point memory operand

proc N/A Procedure label (associated with PROC directive)

label: N/A Statement label (any identifier immediately followed by a :)

constant Varies Constant declaration (equate) using = or EQU directive

text N/A Textual substitution using macro or TEXTEQU directive

Later sections and chapters fully describe the proc, label, constant, and
text types.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

18 Chapter 1

 1.10 Declaring (Named) Constants in MASM
MASM allows you to declare manifest constants by using the = directive. A
manifest constant is a symbolic name (identifier) that MASM associates with a
value. Everywhere the symbol appears in the program, MASM will directly
substitute the value of that symbol for the symbol.

A manifest constant declaration takes the following form:

label = expression

Here, label is a legal MASM identifier, and expression is a constant arith-
metic expression (typically, a single literal constant value). The following
example defines the symbol dataSize to be equal to 256:

dataSize = 256

Most of the time, MASM’s equ directive is a synonym for the = directive.
For the purposes of this chapter, the following statement is largely equiva-
lent to the previous declaration:

dataSize equ 256

Constant declarations (equates in MASM terminology) may appear any-
where in your MASM source file, prior to their first use. They may appear in
a .data section, a .code section, or even outside any sections.

 1.11 Some Basic Machine Instructions
The x86-64 CPU family provides from just over a couple hundred to many
thousands of machine instructions, depending on how you define a machine
instruction. But most assembly language programs use around 30 to 50
machine instructions,6 and you can write several meaningful programs with
only a few. This section provides a small handful of machine instructions so
you can start writing simple MASM assembly language programs right away.

1.11.1 The mov Instruction
Without question, the mov instruction is the most oft-used assembly lan-
guage statement. In a typical program, anywhere from 25 percent to
40 percent of the instructions are mov instructions. As its name suggests, this
instruction moves data from one location to another.7 Here’s the generic
MASM syntax for this instruction:

mov destination_operand, source_operand

6. Different programs may use a different set of 30 to 50 instructions, but few programs use
more than 50 distinct instructions.

7. Technically, mov copies data from one location to another. It does not destroy the original
data in the source operand. Perhaps a better name for this instruction would have been
copy. Alas, it’s too late to change it now.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 19

The source_operand may be a (general-purpose) register, a memory vari-
able, or a constant. The destination_operand may be a register or a memory
variable. The x86-64 instruction set does not allow both operands to be
memory variables. In a high-level language like Pascal or C/C++, the mov
instruction is roughly equivalent to the following assignment statement:

destination_operand = source_operand ;

The mov instruction’s operands must both be the same size. That is, you
can move data between a pair of byte (8-bit) objects, word (16-bit) objects,
double-word (32-bit), or quad-word (64-bit) objects; you may not, however,
mix the sizes of the operands. Table 1-5 lists all the legal combinations for
the mov instruction.

You should study this table carefully because most of the general-purpose
x86-64 instructions use this syntax.

Table 1-5: Legal x86-64 mov Instruction Operands

Source* Destination

Reg8 Reg8

Reg8 Mem8

Mem8 Reg8

Constant** Reg8

Constant Mem8

Reg16 Reg16

Reg16 Mem16

Mem16 Reg16

Constant Reg16

Constant Mem16

Reg32 Reg32

Reg32 Mem32

Mem32 Reg32

Constant Reg32

Constant Mem32

Reg64 Reg64

Reg64 Mem64

Mem64 Reg64

Constant Reg64

Constant32 Mem64

* Regn means an n -bit register, and Memn means an n -bit memory location.
** The constant must be small enough to fit in the specified destination

operand.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

20 Chapter 1

This table includes one important thing to note: the x86-64 allows you
to move only a 32-bit constant value into a 64-bit memory location (it will
sign-extend this value to 64 bits; see “Sign Extension and Zero Extension”
in Chapter 2 for more information about sign extension). Moving a 64-bit
constant into a 64-bit register is the only x86-64 instruction that allows a
64-bit constant operand. This inconsistency in the x86-64 instruction set
is annoying. Welcome to the x86-64.

1.11.2 Type Checking on Instruction Operands
MASM enforces some type checking on instruction operands. In particular,
the size of an instruction’s operands must agree. For example, MASM will
generate an error for the following:

i8 byte ?
 .
 .
 .
mov ax, i8

The problem is that you are attempting to load an 8-bit variable (i8)
into a 16-bit register (AX). As their sizes are not compatible, MASM
assumes that this is a logic error in the program and reports an error.8

For the most part, MASM ignores the difference between signed
and unsigned variables. MASM is perfectly happy with both of these mov
instructions:

i8 sbyte ?
u8 byte ?
 .
 .
 .
mov al, i8
mov bl, u8

All MASM cares about is that you’re moving a byte variable into a byte-
sized register. Differentiating signed and unsigned values in those registers
is up to the application program. MASM even allows something like this:

r4v real4 ?
r8v real8 ?
 .
 .
 .
mov eax, r4v
mov rbx, r8v

8. It is possible that you might actually want to do this, with the mov instruction loading AL
with the byte at location i8 and AH with the byte immediately following i8 in memory. If
you really want to do this (admittedly crazy) operation, see “Type Coercion” on page xx.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 21

Again, all MASM really cares about is the size of the memory operands,
not that you wouldn’t normally load a floating-point variable into a general-
purpose register (which typically holds integer values).

In Table 1-4, you’ll notice that there are proc, label, and constant types.
MASM will report an error if you attempt to use a proc or label reserved
word in a mov instruction. The procedure and label types are associated with
addresses of machine instructions, not variables, and it doesn’t make sense
to “load a procedure” into a register.

However, you may specify a constant symbol as a source operand to an
instruction; for example:

someConst = 5
 .
 .
 .
mov eax, someConst

As there is no size associated with constants, the only type checking
MASM will do on a constant operand is to verify that the constant will fit in
the destination operand. For example, MASM will reject the following:

wordConst = 1000
 .
 .
 .
mov al, wordConst

1.11.3 The add and sub Instructions
The x86-64 add and sub instructions add or subtract two operands, respec-
tively. Their syntax is nearly identical to the mov instruction:

add destination_operand, source_operand
sub destination_operand, source_operand

However, constant operands are limited to a maximum of 32 bits. If
your destination operand is 64 bits, the CPU allows only a 32-bit immedi-
ate source operand (it will sign-extend that operand to 64 bits; see “Sign
Extension and Zero Extension” in Chapter 2 for more details on sign
extension).

The add instruction does the following:

destination_operand = destination_operand + source_operand

The sub instruction does the calculation:

destination_operand = destination_operand - source_operand

With these three instructions, plus some MASM control structures, you
can actually write sophisticated programs.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

22 Chapter 1

1.11.4 The lea Instruction
Sometimes you need to load the address of a variable into a register rather
than the value of that variable. You can use the lea (load effective address)
instruction for this purpose. The lea instruction takes the following form:

lea reg64, memoryVar

Here, reg64 is any general-purpose 64-bit register, and memoryVar is a
variable name. Note that memoryVar’s type is irrelevant; it doesn’t have to be
a qword variable (as is the case with mov, add, and sub instructions). Every vari-
able has a memory address associated with it, and that address is always 64
bits. The following example loads the RCX register with the address of the
first character in the strVar string:

strVar byte "Some String", 0
 .
 .
 .
 lea rcx, strVar

The lea instruction is roughly equivalent to the C/C++ unary & (address-of)
operator. The preceding assembly example is conceptually equivalent to the
following C/C++ code:

char strVar[] = "Some String";
char *RCX;
 .
 .
 .
 RCX = &strVar[0];

1.11.5 The call and ret Instructions and MASM Procedures
To make function calls (as well as write your own simple functions), you need
the call and ret instructions.

The ret instruction serves the same purpose in an assembly language
program as the return statement in C/C++: it returns control from an assem-
bly language procedure (assembly language functions are called procedures).
For the time being, this book will use the variant of the ret instruction that
does not have an operand:

ret

(The ret instruction does allow a single operand, but unlike in C/C++,
the operand does not specify a function return value. You’ll see the pur-
pose of the ret instruction operand in Chapter 5.)

As you can probably guess, you call a MASM procedure by using the call
instruction. This instruction can take a couple of forms. The most common
form is

call procName

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 23

where procName is the name of the procedure you want to call.
As you’ve seen in a couple code examples already, a MASM procedure

consists of the line

procName proc

followed by the body of the procedure (typically ending with a ret instruc-
tion). At the end of the procedure (typically immediately after the ret
instruction), you end the procedure with the following statement:

procName endp

The label on the endp directive must be identical to the one you supply
for the proc statement.

In the stand-alone assembly language program in Listing 1-4, the main
program calls myProc, which will immediately return to the main program,
which then immediately returns to Windows.

; Listing 1-4
; A simple demonstration of a user-defined procedure.

 .code

; A sample user-defined procedure that this program can call.

myProc proc
 ret ; Immediately return to the caller
myProc endp

; Here is the "main" procedure.

main PROC

; Call the user-defined procedure.

 call myProc

 ret ; Returns to caller
main endp
 end

Listing 1-4: A sample user-defined procedure in an assembly language program

You can compile this program and try running it by using the following
commands:

C:\>ml64 listing1-4.asm /link /subsystem:console /entry:main
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-4.asm
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

24 Chapter 1

/OUT:listing1-4.exe
listing1-4.obj
/subsystem:console
/entry:main

C:\>listing1-4

 1.12 Calling C/C++ Procedures
While writing your own procedures and calling them are quite useful, the
reason for introducing procedures at this point is not to allow you to write
your own procedures, but rather to give you the ability to call procedures
(functions) written in C/C++. Writing your own procedures to convert and
output data to the console is a rather complex task (probably well beyond
your capabilities at this point). Instead, you can call the C/C++ printf()
function to produce program output and verify that your programs are
actually doing something when you run them.

Unfortunately, if you call printf() in your assembly language code with-
out providing a printf() procedure, MASM will complain that you’ve used an
undefined symbol. To call a procedure outside your source file, you need to
use the MASM externdef directive.9 This directive has the following syntax:

externdef symbol:type

Here, symbol is the external symbol you want to define, and type is the
type of that symbol (which will be proc for external procedure definitions).
To define the printf() symbol in your assembly language file, use this
statement:

externdef printf:proc

When defining external procedure symbols, you should put the externdef
directive in your .code section.

The externdef directive doesn’t let you specify parameters to pass to
the printf() procedure, nor does the call instruction provide a mecha-
nism for specifying parameters. Instead, you can pass up to four param-
eters to the printf() function in the x86-64 registers RCX, RDX, R8, and
R9. The printf() function requires that the first parameter be the address
of a format string. Therefore, you should load RCX with the address of a
zero-terminated string prior to calling printf(). If the format string con-
tains any format specifiers (for example, %d), you must pass appropriate
parameter values in RDX, R8, and R9. Chapter 5 goes into great detail
concerning procedure parameters, including how to pass floating-point
values and more than four parameters.

9. MASM has two other directives, extrn and extern, that could also be used. This book uses
the externdef directive because it is the most general directive.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 25

 1.13 Hello, World!
At this point (many pages into this chapter), you finally have enough infor-
mation to write this chapter’s namesake application: the “Hello, world!”
program, shown in Listing 1-5.

; Listing 1-5

; A "Hello, world!" program using the C/C++ printf() function to
; provide the output.

 option casemap:none
 .data

; Note: "10" value is a line feed character, also known as the
; "C" newline character.

fmtStr byte 'Hello, world!', 10, 0

 .code

; External declaration so MASM knows about the C/C++ printf()
; function.

 externdef printf:proc

; Here is the "asmFunc" function.

 public asmFunc
asmFunc proc

; "Magic" instruction offered without explanation at this
point:

 sub rsp, 56

; Here's where we’ll call the C printf() function to print
; "Hello, world!" Pass the address of the format string
; to printf() in the RCX register. Use the LEA instruction
; to get the address of fmtStr.

 lea rcx, fmtStr
 call printf

; Another "magic" instruction that undoes the effect of the
; previous one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmFunc endp
 end

Listing 1-5: Assembly language code for the “Hello, world!” program

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

26 Chapter 1

The assembly language code contains two “magic” statements that this
chapter includes without further explanation. Just accept the fact that sub-
tracting from the RSP register at the beginning of the function and then
adding this value back to RSP at the end of the function are needed to make
the calls to C/C++ functions work properly. Chapter 5 more fully explains
the purpose of these statements.

The C++ function in Listing 1-6 calls the assembly code and makes the
printf() function available for use.

// Listing 1-6

// C++ driver program to demonstrate calling printf() from assembly
// language.

// Need to include stdio.h so this program can call "printf()".

#include <stdio.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function, written in assembly
 // language, that this program will call:

 void asmFunc(void);
};

int main(void)
{
 // Need at least one call to printf() in the C program to allow
 // calling it from assembly.

 printf("Calling asmFunc:\n");
 asmFunc();
 printf("Returned from asmFunc\n");
}

Listing 1-6: C++ code for the “Hello, world!” program

Here’s the sequence of steps needed to compile and run this code on
my machine:

C:\>ml64 /c listing1-5.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-5.asm

C:\>cl listing1-6.cpp listing1-5.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 27

Copyright (C) Microsoft Corporation. All rights reserved.

listing1-6.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-6.exe
listing1-6.obj
listing1-5.obj

C:\>listing1-6
Calling asmFunc:
Hello, World!
Returned from asmFunc

You can finally print “Hello, world!” on the console!

 1.14 Returning Function Results in Assembly Language
In a previous section, you saw how to pass up to four parameters to a proce-
dure written in assembly language. This section describes the opposite pro-
cess: returning a value to code that has called one of your procedures.

In pure assembly language (where one assembly language proce-
dure calls another), passing parameters and returning function results are
strictly a convention that the caller and callee procedures share with one
another. Either the callee (the procedure being called) or the caller (the
procedure doing the calling) may choose where function results appear.

From the callee viewpoint, the procedure returning the value determines
where the caller can find the function result, and whoever calls that func-
tion must respect that choice. If a procedure returns a function result in the
XMM0 register (a common place to return floating-point results), whoever
calls that procedure must expect to find the result in XMM0. A different pro-
cedure could return its function result in the RBX register.

From the caller’s viewpoint, the choice is reversed. Existing code expects
a function to return its result in a particular location, and the function being
called must respect that wish.

Unfortunately, without appropriate coordination, one section of code
might demand that functions it calls return their function results in one
location, while a set of existing library functions might insist on returning
their function results in another location. Clearly, such functions would not
be compatible with the calling code. While there are ways to handle this
situation (typically by writing facade code that sits between the caller and
callee and moves the return results around), the best solution is to ensure
that everybody agrees on things like where function return results will be
found prior to writing any code.

This agreement is known as an application binary interface (ABI). An ABI
is a contract, of sorts, between different sections of code that describe calling
conventions (where things are passed, where they are returned, and so on),

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

28 Chapter 1

data types, memory usage and alignment, and other attributes. CPU manu-
facturers, compiler writers, and operating system vendors all provide their
own ABIs. For obvious reasons, this book uses the Microsoft Windows ABI.

Once again, it’s important to understand that when you’re writing your
own assembly language code, the way you pass data between your proce-
dures is totally up to you. One of the benefits of using assembly language
is that you can decide the interface on a procedure-by-procedure basis.
The only time you have to worry about adhering to an ABI is when you call
code that is outside your control (or if that external code makes calls to
your code). This book covers writing assembly language under Microsoft
Windows (specifically, assembly code that interfaces with MSVC); there-
fore, when dealing with external code (Windows and C++ code), you have
to use the Windows/MSVC ABI. The Microsoft ABI specifies that the first
four parameters to printf() (or any C++ function, for that matter) must be
passed in RCX, RDX, R8, and R9.

The Windows ABI also states that functions (procedures) return inte-
ger and pointer values (that fit into 64 bits) in the RAX register. So if some
C++ code expects your assembly procedure to return an integer result, you
would load the integer result into RAX immediately before returning from
your procedure.

To demonstrate returning a function result, we’ll use the C++ program
in Listing 1-7 (c.cpp, a generic C++ program that this book uses for most
of the C++/assembly examples hereafter). This C++ program includes two
extra function declarations: getTitle() (supplied by the assembly language
code), which returns a pointer to a string containing the title of the pro-
gram (the C++ code prints this title), and readLine() (supplied by the C++
program), which the assembly language code can call to read a line of text
from the user (and put into a string buffer in the assembly language code).

// Listing 1-7

// c.cpp

// Generic C++ driver program to demonstrate returning function
// results from assembly language to C++. Also includes a
// "readLine" function that reads a string from the user and
// passes it on to the assembly language code.

// Need to include stdio.h so this program can call "printf()"
// and string.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 29

extern "C"
{
 // asmMain is the assembly language code's "main program":

 void asmMain(void);

 // getTitle returns a pointer to a string of characters
 // from the assembly code that specifies the title of that
 // program (that makes this program generic and usable
 // with a large number of sample programs in "The Art of
 // 64-Bit Assembly Language").

 char *getTitle(void);

 // C++ function that the assembly
 // language program can call:

 int readLine(char *dest, int maxLen);

};

// readLine reads a line of text from the user (from the
// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument
// (minus 1).

// This function returns the number of characters actually
// read, or -1 if there was an error.

// Note that if the user enters too many characters (maxlen or
// more), then this function returns only the first maxlen-1
// characters. This is not considered an error.

int readLine(char *dest, int maxLen)
{
 // Note: fgets returns NULL if there was an error, else
 // it returns a pointer to the string data read (which
 // will be the value of the dest pointer).

 char *result = fgets(dest, maxLen, stdin);
 if(result != NULL)
 {
 // Wipe out the new line character at the
 // end of the string:

 int len = strlen(result);
 if(len > 0)
 {
 dest[len - 1] = 0;
 }
 return len;
 }

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

30 Chapter 1

 return -1; // If there was an error
}

int main(void)
{
 // Get the assembly language program's title:

 try
 {
 char *title = getTitle();

 printf("Calling %s:\n", title);
 asmMain();
 printf("%s terminated\n", title);
 }
 catch(...)
 {
 printf
 (
 "Exception occurred during program execution\n"
 "Abnormal program termination.\n"
);
 }
}

Listing 1-7: Generic C++ code for calling assembly language programs

The try.catch block catches any exceptions the assembly code generates,
so you get some sort of indication if the program aborts abnormally.

Listing 1-8 provides assembly code that demonstrates several new
concepts, foremost returning a function result (to the C++ program). The
assembly language function getTitle() returns a pointer to a string that the
calling C++ code will print as the title of the program. In the .data section,
you’ll see a string variable titleStr that is initialized with the name of this
assembly code (Listing 1-8). The getTitle() function loads the address of that
string into RAX and returns this string pointer to the C++ code (Listing 1-7)
that prints the title before and after running the assembly code.

This program also demonstrates reading a line of text from the user.
The assembly code calls the readLine() function appearing in the C++
code. The readLine() function expects two parameters: the address of a
character buffer (C string) and a maximum buffer length. The code in
Listing 1-8 passes the address of the character buffer to the readLine()
function in RCX and the maximum buffer size in RDX. The maximum
buffer length must include room for two extra characters: a newline char-
acter (line feed) and a zero-terminating byte.

Finally, Listing 1-8 demonstrates declaring a character buffer (that
is, an array of characters). In the .data section, you will find the following
declaration:

input byte maxLen dup (?)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 31

The maxLen dup (?) operand tells MASM to duplicate the (?) (that is, an
uninitialized byte) maxLen times. maxLen is a constant set to 256 by an equate
directive (=) at the beginning of the source file. (For more details, see
“Declaring Arrays in Your MASM Programs” in Chapter 4).

; Listing 1-8

; An assembly language program that demonstrates returning
; a function result to a C++ program.

 option casemap:none

nl = 10 ; ASCII code for newline
maxLen = 256 ; Maximum string size + 1

 .data
titleStr byte 'Listing 1-8', 0
prompt byte 'Enter a string: ', 0
fmtStr byte "User entered: '%s'", nl, 0

; "input" is a buffer having "maxLen" bytes. This program
; will read a user string into this buffer.

; The "maxLen dup (?)" operand tells MASM to make "maxLen"
; duplicate copies of a byte, each of which is uninitialized.

input byte maxLen dup (?)

 .code

 externdef printf:proc
 externdef readLine:proc

; The C++ function calling this assembly language module
; expects a function named "getTitle" that returns a pointer
; to a string as the function result. This is that function:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds
; the function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 sub rsp, 56

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

32 Chapter 1

; Call the readLine function (written in C++) to read a line
; of text from the console.

; int readLine(char *dest, int maxLen)

; Pass a pointer to the destination buffer in the RCX register.
; Pass the maximum buffer size (max chars + 1) in EDX.
; This function ignores the readLine return result.
; Prompt the user to enter a string:

 lea rcx, prompt
 call printf

; Ensure the input string is zero terminated (in the event
; there is an error):

 mov input, 0

; Read a line of text from the user:

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Print the string input by the user by calling printf():

 lea rcx, fmtStr
 lea rdx, input
 call printf

 add rsp, 56
 ret ; Returns to caller

asmMain endp
 end

Listing 1-8: Assembly language program that returns a function result

To compile and run the programs in Listing 1-7 and Listing 1-8, use
statements such as the following:

C:\>ml64 /c listing1-8.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-8.asm

C:\>cl /EHa /Felisting1-8.exe c.cpp listing1-8.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

c.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 33

Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-8.exe
c.obj
listing1-8.obj

C:\> listing1-8
Calling Listing 1-8:
Enter a string: This is a test
User entered: 'This is a test'
Listing 1-8 terminated

The /Felisting1-8.exe command line option tells MSVC to name the
executable file listing1-8.exe. Without the /Fe option, MSVC would name the
resulting executable file c.exe (after c.cpp, the generic example C++ file from
Listing 1-7).

 1.15 Automating the Build Process
At this point, you’re probably thinking it’s a bit tiresome to type all these (long)
command lines every time you want to compile and run your programs. This is
especially true if you start adding more command line options to the ml64 and
cl commands. Consider the following two commands:

ml64 /nologo /c /Zi /Cp listing1-8.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Felisting1-8.exe c.cpp listing1-8.obj
listing1-8

The /Zi option tells MASM and MSVC to compile extra debug informa-
tion into the code. The /nologo option tells MASM and MSVC to skip print-
ing copyright and version information during compilation. The MASM /Cp
option tells MASM to make compilations case-insensitive (so you don’t need
the options casemap:none directive in your assembly source file). The /O2 option
tells MSVC to optimize the machine code the compiler produces. The
/utf-8 option tells MSVC to use UTF-8 Unicode encoding (which is ASCII-
compatible) rather than UTF-16 encoding (or other character encoding).
The /EHa option tells MSVC to handle processor-generated exceptions (such
as memory access faults—a common exception in assembly language pro-
grams). As noted earlier, the /Fe option specifies the executable output
filename. Typing all these command line options every time you want to
build a sample program is going to be a lot of work.

The easy solution is to create a batch file that automates this process.
You could, for example, type the three previous command lines into a text
file, name it l8.bat, and then simply type l8 at the command line to auto-
matically execute those three commands. That saves a lot of typing and is
much quicker (and less error-prone) than typing these three commands
every time you want to compile and run the program.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

34 Chapter 1

The only drawback to putting those three commands into a batch file is
that the batch file is specific to the listing1-8.asm source file, and you would
have to create a new batch file to compile other programs. Fortunately, it is
easy to create a batch file that will work with any single assembly source file
that compiles and links with the generic c.cpp program. Consider the follow-
ing build.bat batch file:

echo off
ml64 /nologo /c /Zi /Cp %1.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Fe%1.exe c.cpp %1.obj

The %1 item in these commands tells the Windows command line pro-
cessor to substitute a command line parameter (specifically, command line
parameter number 1) in place of the %1. If you type the following from the
command line

build listing1-8

then Windows executes the following three commands:

echo off
ml64 /nologo /c /Zi /Cp listing1-8.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Felisting1-8.exe c.cpp listing1-8.obj

With this build.bat file, you can compile several projects simply by speci-
fying the assembly language source file name (without the .asm suffix) on
the build command line.

The build.bat file does not run the program after compiling and linking
it. You could add this capability to the batch file by appending a single line
containing %1 to the end of the file. However, that would always attempt to
run the program, even if the compilation failed because of errors in the
C++ or assembly language source files. For that reason, it’s probably better
to run the program manually after building it with the batch file, as follows:

C:\>build listing1-8
C:\>listing1-8

A little extra typing, to be sure, but safer in the long run.
Microsoft provides another useful tool for controlling compilations

from the command line: makefiles. They are a better solution than batch
files because makefiles allow you to conditionally control steps in the pro-
cess (such as running the executable) based on the success of earlier steps.
However, using Microsoft’s make program (nmake.exe) is beyond the scope
of this chapter. It’s a good tool to learn (and Chapter 15 will teach you
the basics). However, batch files are sufficient for the simple projects appear-
ing throughout most of this book and require little extra knowledge or
training to use. If you are interested in learning more about makefiles, see
Chapter 15 or “For More Information” on page xx.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 35

 1.16 Microsoft ABI Notes
As noted earlier (see “Returning Function Results in Assembly Language”
on page xx), the Microsoft ABI is a contract between modules in a program
to ensure compatibility (between modules, especially modules written in
different programming languages).10 In this book, the C++ programs will be
calling assembly language code, and the assembly modules will be calling
C++ code, so it’s important that the assembly language code adhere to the
Microsoft ABI.

Even if you were to write stand-alone assembly language code, it would
still be calling C++ code, as it would (undoubtedly) need to make Windows
application programming interface (API) calls. The Windows API functions are
all written in C++, so calls to Windows must respect the Windows ABI.

Because following the Microsoft ABI is so important, each chapter in this
book (if appropriate) includes a section at the end discussing those compo-
nents of the Microsoft ABI that the chapter introduces or heavily uses. This
section covers several concepts from the Microsoft ABI: variable size, register
usage, and stack alignment.

1.16.1 Variable Size
Although dealing with different data types in assembly language is com-
pletely up to the assembly language programmer (and the choice of
machine instructions to use on that data), it’s crucial to maintain the size
of the data (in bytes) between the C++ and assembly language programs.
Table 1-6 lists several common C++ data types and the corresponding
assembly language types (that maintain the size information).

Table 1-6: C++ and Assembly Language Types

C++ type Size (in bytes) Assembly language type

char 1 Sbyte

signed char 1 Sbyte

unsigned char 1 Byte

short int 2 Sword

short unsigned 2 Word

int 4 Sdword

unsigned (unsigned int) 4 Dword

long 4 Sdword

long int 4 Sdword

long unsigned 4 Dword

long int 8 Sqword

long unsigned 8 Qword

10. Microsoft also refers to the ABI as the X64 Calling Conventions in its documentation.

(continued)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

36 Chapter 1

C++ type Size (in bytes) Assembly language type

__int64 8 Sqword

unsigned __int64 8 Qword

Float 4 real4

double 8 real8

pointer (for example, void *) 8 Qword

Although MASM provides signed type declarations (sbyte, sword, sdword,
and sqword), assembly language instructions do not differentiate between
the unsigned and signed variants. You could process a signed integer
(sdword) by using unsigned instruction sequences, and you could process
an unsigned integer (dword) by using signed instruction sequences. In an
assembly language source file, these different directives mainly serve as a
documentation aid to help describe the programmer’s intentions.11

Listing 1-9 is a simple program that verifies the sizes of each of these
C++ data types.

N O T E The %2zd format string displays size_t type values (the sizeof operator returns a
value of type size_t). This quiets down the MSVC compiler (which generates warn-
ings if you use only %2d). Most compilers are happy with %2d.

// Listing 1-9

// A simple C++ program that demonstrates Microsoft C++ data
// type sizes:

#include <stdio.h>

int main(void)
{
 char v1;
 unsigned char v2;
 short v3;
 short int v4;
 short unsigned v5;
 int v6;
 unsigned v7;
 long v8;
 long int v9;
 long unsigned v10;

11. Earlier 32-bit versions of MASM included some high-level language control statements
(for example, .if, .else, .endif) that made use of the signed versus unsigned declarations.
However, Microsoft no longer supports these high-level statements. As a result, MASM no
longer differentiates signed versus unsigned declarations.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Hello, World of Assembly Language 37

 long long int v11;
 long long unsigned v12;
 __int64 v13;
 unsigned __int64 v14;
 float v15;
 double v16;
 void * v17;

 printf
 (
 "Size of char: %2zd\n"
 "Size of unsigned char: %2zd\n"
 "Size of short: %2zd\n"
 "Size of short int: %2zd\n"
 "Size of short unsigned: %2zd\n"
 "Size of int: %2zd\n"
 "Size of unsigned: %2zd\n"
 "Size of long: %2zd\n"
 "Size of long int: %2zd\n"
 "Size of long unsigned: %2zd\n"
 "Size of long long int: %2zd\n"
 "Size of long long unsigned: %2zd\n"
 "Size of __int64: %2zd\n"
 "Size of unsigned __int64: %2zd\n"
 "Size of float: %2zd\n"
 "Size of double: %2zd\n"
 "Size of pointer: %2zd\n",
 sizeof v1,
 sizeof v2,
 sizeof v3,
 sizeof v4,
 sizeof v5,
 sizeof v6,
 sizeof v7,
 sizeof v8,
 sizeof v9,
 sizeof v10,
 sizeof v11,
 sizeof v12,
 sizeof v13,
 sizeof v14,
 sizeof v15,
 sizeof v16,
 sizeof v17
);
}

Listing 1-9: Output sizes of common C++ data types

Here’s the build command and output from Listing 1-9:

C:\>cl listing1-9.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

38 Chapter 1

listing1-9.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-9.exe
listing1-9.obj

C:\>listing1-9
Size of char: 1
Size of unsigned char: 1
Size of short: 2
Size of short int: 2
Size of short unsigned: 2
Size of int: 4
Size of unsigned: 4
Size of long: 4
Size of long int: 4
Size of long unsigned: 4
Size of long long int: 8
Size of long long unsigned: 8
Size of __int64: 8
Size of unsigned __int64: 8
Size of float: 4
Size of double: 8
Size of pointer: 8

1.16.2 Register Usage
Register usage in an assembly language procedure (including the main assem-
bly language function) is also subject to certain Microsoft ABI rules. Within
a procedure, the Microsoft ABI has this to say about register usage):12

•	 Code that calls a function can pass the first four (integer) arguments
to the function (procedure) in the RCX, RDX, R8, and R9 registers,
respectively. Programs pass the first four floating-point arguments in
XMM0, XMM1, XMM2, and XMM3.

•	 Registers RAX, RCX, RDX, R8, R9, R10, and R11 are volatile, which
means that the function/procedure does not need to save the registers’
values across a function/procedure call.

•	 XMM0/YMM0 through XMM5/YMM5 are also volatile. The function/
procedure does not need to preserve these registers across a call.

•	 RBX, RBP, RDI, RSI, RSP, R12, R13, R14, and R15 are nonvolatile
registers. A procedure/function must preserve these registers’ values
across a call. If a procedure modifies one of these registers, it must
save the register’s value before the first such modification and restore
the register’s value from the saved location prior to returning from
the function/procedure.

12. For more details, see the Microsoft documentation at https://docs.microsoft.com/en-us/cpp/
build/x64-calling-convention?view=msvc-160/.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160/.
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160/.

Hello, World of Assembly Language 39

•	 XMM6 through XMM15 are nonvolatile. A function must preserve
these registers across a function/procedure call (that is, when a pro-
cedure returns, these registers must contain the same values they had
upon entry to that procedure).

•	 Programs that use the x86-64’s floating-point coprocessor instructions
must preserve the value of the floating-point control word across pro-
cedure calls. Such procedures should also leave the floating-point stack
cleared.

•	 Any procedure/function that uses the x86-64’s direction flag must leave
that flag cleared upon return from the procedure/function.

Microsoft C++ expects function return values to appear in one of two
places. Integer (and other non-scalar) results come back in the RAX register
(up to 64 bits). If the return type is smaller than 64 bits, the upper bits of the
RAX register are undefined—for example, if a function returns a short int
(16-bit) result, bits 16 to 63 in RAX may contain garbage. Microsoft’s ABI
specifies that floating-point (and vector) function return results shall come
back in the XMM0 register.

1.16.3 Stack Alignment
Some “magic” instructions appear in various source listings throughout this
chapter (they basically add or subtract values from the RSP register). These
instructions have to do with stack alignment (as required by the Microsoft
ABI). This chapter (and several that follow) supply these instructions in the
code without further explanation. For more details on the purpose of these
instructions, see Chapter 5.

 1.17 For More Information
This chapter has covered a lot of ground! While you still have a lot to learn
about assembly language programming, this chapter, combined with your
knowledge of HLLs (especially C/C++), provides just enough information
to let you start writing real assembly language programs.

Although this chapter covered many topics, the three primary ones of
interest are the x86-64 CPU architecture, the syntax for simple MASM pro-
grams, and interfacing with the C Standard Library.

The following resources provide more information about makefiles:

•	 Wikipedia: https://en.wikipedia.org/wiki/Make_(software)

•	 Managing Projects with GNU Make by Robert Mecklenburg (O’Reilly
Media, 2004)

•	 The GNU Make Book, First Edition, by John Graham-Cumming (No
Starch Press, 2015)

•	 Managing Projects with make, by Andrew Oram and Steve Talbott
(O’Reilly & Associates, 1993)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://en.wikipedia.org/wiki/Make_(software)

40 Chapter 1

For more information about MVSC:

•	 Microsoft Visual Studio websites: https://visualstudio.microsoft.com/ and
https://visualstudio.microsoft.com/vs/

•	 Microsoft free developer offers: https://visualstudio.microsoft.com/
free-developer-offers/

For more information about the MASM:

•	 Microsoft, C++, C, and Assembler documentation: https://docs.microsoft.com/
en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/

•	 Waite Group MASM Bible (covers MASM 6, which is 32-bit only, but still
contains lots of useful information about MASM): https://www.amazon.com/
Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/

For more information about the ABI:

•	 The best documentation comes from Agner Fog’s website: https://www
.agner.org/optimize/.

•	 Microsoft’s website also has information on Microsoft ABI calling
conventions (see https://docs.microsoft.com/en-us/cpp/build/x64-calling-
convention?view=msvc-160 or search for Microsoft calling conventions).

 1.18 Test Yourself

1. What is the name of the Windows command line interpreter program?

2. What is the name of the MASM executable program file?

3. What are the names of the three main system buses?

4. Which register(s) overlap the RAX register?

5. Which register(s) overlap the RBX register?

6. Which register(s) overlap the RSI register?

7. Which register(s) overlap the R8 register?

8. Which register holds the condition code bits?

9. How many bytes are consumed by the following data types?

a. word

b. dword

c. oword

d. qword with a 4 dup (?) operand

e. real8

10. If an 8-bit (byte) memory variable is the destination operand of a mov
instruction, what source operands are legal?

11. If a mov instruction’s destination operand is the EAX register, what is the
largest constant (in bits) you can load into that register?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/free-developer-offers/
https://visualstudio.microsoft.com/free-developer-offers/
https://docs.microsoft.com/en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/
https://docs.microsoft.com/en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/
https://www.amazon.com/Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/
https://www.amazon.com/Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/
https://www.agner.org/optimize/
https://www.agner.org/optimize/
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Hello, World of Assembly Language 41

12. For the add instruction, fill in the largest constant size (in bits) for all
the destination operands specified in the following table:

Destination Constant size

RAX

EAX

AX

AL

AH

Mem32

Mem64

13. What is the destination (register) operand size for the lea instruction?

14. What is the source (memory) operand size of the lea instruction?

15. What is the name of the assembly language instruction you use to call a
procedure or function?

16. What is the name of the assembly language instruction you use to
return from a procedure or function?

17. What does ABI stand for?

18. In the Windows ABI, where do you return the following function return
results?

a. 8-bit byte values

b. 16-bit word values

c. 32-bit integer values

d. 64-bit integer values

e. Floating-point values

f. 64-bit pointer values

19. Where do you pass the first parameter to a Microsoft ABI–compatible
function?

20. Where do you pass the second parameter to a Microsoft ABI–compatible
function?

21. Where do you pass the third parameter to a Microsoft ABI–compatible
function?

22. Where do you pass the fourth parameter to a Microsoft ABI–compatible
function?

23. What assembly language data type corresponds to a C/C++ long int?

24. What assembly language data type corresponds to a C/C++ long long
unsigned?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

2
C O M P U T E R D A T A

R E P R E S E N T A T I O N
A N D O P E R A T I O N S

A major stumbling block many beginners
encounter when attempting to learn assem-

bly language is the common use of the binary
and hexadecimal numbering systems. Although

hexadecimal numbers are a little strange, their advan-
tages outweigh their disadvantages by a large margin.
Understanding the binary and hexadecimal numbering
systems is important because their use simplifies the discussion of other topics,
including bit operations, signed numeric representation, character codes, and
packed data.

This chapter discusses several important concepts, including the following:

•	 The binary and hexadecimal numbering systems

•	 Binary data organization (bits, nibbles, bytes, words, and double words)

•	 Signed and unsigned numbering systems

•	 Arithmetic, logical, shift, and rotate operations on binary values

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

44 Chapter 2

•	 Bit fields and packed data

•	 Floating-point and binary-code decimal formats

•	 Character data

This is basic material, and the remainder of this text depends on your
understanding of these concepts. If you are already familiar with these terms
from other courses or study, you should at least skim this material before
proceeding to the next chapter. If you are unfamiliar with this material, or
only vaguely familiar with it, you should study it carefully before proceeding.
All of the material in this chapter is important! Do not skip over any material.

 2.1 Numbering Systems
Most modern computer systems do not represent numeric values using the
decimal (base-10) system. Instead, they typically use a binary, or two’s com-
plement, numbering system.

2.1.1 A Review of the Decimal System
You’ve been using the decimal numbering system for so long that you probably
take it for granted. When you see a number like 123, you don’t think about the
value 123; rather, you generate a mental image of how many items this value
represents. In reality, however, the number 123 represents the following:

(1 × 102) + (2 × 101) + (3 × 100)

or

100 + 20 + 3

In a decimal positional numbering system, each digit appearing to the left
of the decimal point represents a value between 0 and 9 times an increasing
power of 10. Digits appearing to the right of the decimal point represent a
value between 0 and 9 times an increasing negative power of 10. For exam-
ple, the value 123.456 means this:

(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10-1) + (5 × 10-2) + (6 × 10-3)

or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

2.1.2 The Binary Numbering System
Most modern computer systems operate using binary logic. The computer
represents values using two voltage levels (usually 0 V and +2.4 to 5 V).
These two levels can represent exactly two unique values. These could be
any two different values, but they typically represent the values 0 and 1, the
two digits in the binary numbering system.

The binary numbering system works just like the decimal numbering
system, except binary allows only the digits 0 and 1 (rather than 0 to 9) and

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 45

uses powers of 2 rather than powers of 10. Therefore, converting a binary
number to decimal is easy. For each 1 in a binary string, add 2n, where n is
the zero-based position of the binary digit. For example, the binary value
110010102 represents the following:

(1 × 27) + (1 × 26) + (0 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21)
+ (0 × 20)

=

12810 + 6410 + 810 + 210

=

20210

Converting decimal to binary is slightly more difficult. You must find
those powers of 2 that, when added together, produce the decimal result.

A simple way to convert decimal to binary is the even/odd—divide-by-two
algorithm. This algorithm uses the following steps:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and throw away any fractional component or
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and is odd, insert a 1 before the current string; if
the number is even, prefix your binary string with 0.

5. Go back to step 2 and repeat.

Binary numbers, although they have little importance in high-level lan-
guages, appear everywhere in assembly language programs. So you should
be comfortable with them.

2.1.3 Binary Conventions
In the purest sense, every binary number contains an infinite number of
digits (or bits, which is short for binary digits). For example, we can represent
the number 5 by any of the following:

101 00000101 0000000000101 . . . 000000000000101

Any number of leading-zero digits may precede the binary number with-
out changing its value. Because the x86-64 typically works with groups of 8
bits, we’ll zero-extend all binary numbers to a multiple of 4 or 8 bits. Following
this convention, we’d represent the number 5 as 01012 or 000001012.

To make larger numbers easier to read, we will separate each group
of 4 binary bits with an underscore. For example, we will write the binary
value 1010111110110010 as 1010_1111_1011_0010.

N O T E MASM does not allow you to insert underscores into the middle of a binary number.
This is a convention adopted in this book for readability purposes.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

46 Chapter 2

We’ll number each bit as follows:

1. The rightmost bit in a binary number is bit position 0.

2. Each bit to the left is given the next successive bit number.

An 8-bit binary value uses bits 0 to 7:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions 0 to 15:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions 0 to 31, and so on.
Bit 0 is the low-order (LO) bit; some refer to this as the least significant bit.

The leftmost bit is called the high-order (HO) bit, or the most significant bit.
We’ll refer to the intermediate bits by their respective bit numbers.

In MASM, you can specify binary values as a string of 0 or 1 digits end-
ing with the character b. Remember, MASM doesn’t allow underscores in
binary numbers.

 2.2 The Hexadecimal Numbering System
Unfortunately, binary numbers are verbose. To represent the value 20210
requires eight binary digits, but only three decimal digits. When dealing
with large values, binary numbers quickly become unwieldy. Unfortunately,
the computer “thinks” in binary, so most of the time using the binary num-
bering system is convenient. Although we can convert between decimal and
binary, the conversion is not a trivial task.

The hexadecimal (base-16) numbering system solves many of the prob-
lems inherent in the binary system: hexadecimal numbers are compact, and
it’s simple to convert them to binary, and vice versa. For this reason, most
engineers use the hexadecimal numbering system.

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents a certain
value multiplied by a successive power of 16. For example, the number
123416 is equal to this:

(1 × 163) + (2 × 162) + (3 × 161) + (4 × 160)

or

4096 + 512 + 48 + 4 = 466010

Each hexadecimal digit can represent one of 16 values between 0 and 1510.
Because there are only 10 decimal digits, we need 6 additional digits to rep-
resent the values in the range 1010 to 1510. Rather than create new symbols for
these digits, we use the letters A to F. The following are all examples of valid
hexadecimal numbers:

123416 DEAD16 BEEF16 0AFB16 F00116 D8B416

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 47

Because we’ll often need to enter hexadecimal numbers into the computer
system, and on most computer systems you cannot enter a subscript to denote
the radix of the associated value, we need a different mechanism for repre-
senting hexadecimal numbers. We’ll adopt the following MASM conventions:

1. All hexadecimal values begin with a numeric character and have an h
suffix; for example, 123A4h and 0DEAD.

2. All binary values end with a b character; for example, 10010b.

3. Decimal numbers do not have a suffix character.

4. If the radix is clear from the context, this book may drop the trailing h
or b character.

Here are some examples of valid hexadecimal numbers using MASM
notation:

1234h 0DEADh 0BEEFh 0AFBh 0F001h 0D8B4h

As you can see, hexadecimal numbers are compact and easy to read. In
addition, you can easily convert between hexadecimal and binary. Table 2-1
provides all the information you’ll ever need to convert any hexadecimal
number into a binary number, or vice versa.

Table 2-1: Binary/Hexadecimal
Conversion

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

To convert a hexadecimal number into a binary number, substitute
the corresponding 4 bits for each hexadecimal digit in the number. For

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

48 Chapter 2

example, to convert 0ABCDh into a binary value, convert each hexadecimal
digit according to Table 2-1, as shown here:

A B C D Hexadecimal

1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy:

1. Pad the binary number with 0s to make sure that the number contains a
multiple of 4 bits. For example, given the binary number 1011001010, add
2 bits to the left of the number so that it contains 12 bits: 001011001010.

2. Separate the binary value into groups of 4 bits; for example,
0010_1100_1010.

3. Look up these binary values in Table 2-1 and substitute the appropriate
hexadecimal digits: 2CAh.

Contrast this with the difficulty of conversion between decimal and
binary, or decimal and hexadecimal!

Because converting between hexadecimal and binary is an operation
you will need to perform over and over again, you should take a few min-
utes to memorize the conversion table. Even if you have a calculator that
will do the conversion for you, you’ll find manual conversion to be a lot
faster and more convenient.

 2.3 A Note About Numbers vs. Representation
Many people confuse numbers and their representation. A common ques-
tion beginning assembly language students ask is, “I have a binary number
in the EAX register; How do I convert that to a hexadecimal number in the
EAX register?” The answer is, “You don’t.”

Although a strong argument could be made that numbers in memory
or in registers are represented in binary, it is best to view values in memory
or in a register as abstract numeric quantities. Strings of symbols like 128,
80h, or 10000000b are not different numbers; they are simply different rep-
resentations for the same abstract quantity that we refer to as one hundred
twenty-eight. Inside the computer, a number is a number regardless of repre-
sentation; the only time representation matters is when you input or output
the value in a human-readable form.

Human-readable forms of numeric quantities are always strings of char-
acters. To print the value 128 in human-readable form, you must convert the
numeric value 128 to the three-character sequence 1 followed by 2 followed
by 8. This would provide the decimal representation of the numeric quantity.
If you prefer, you could convert the numeric value 128 to the three-character
sequence 80h. It’s the same number, but we’ve converted it to a different
sequence of characters because (presumably) we wanted to view the number
using hexadecimal representation rather than decimal. Likewise, if we want
to see the number in binary, we must convert this numeric value to a string
containing a 1 followed by seven 0 characters.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 49

Pure assembly language has no generic print or write functions you
can call to display numeric quantities as strings on your console. You could
write your own procedures to handle this process (and this book considers
some of those procedures later). For the time being, the MASM code in this
book relies on the C Standard Library printf() function to display numeric
values. Consider the program in Listing 2-1, which converts various values
to their hexadecimal equivalents.

; Listing 2-1

; Displays some numeric values on the console:

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
i qword 1
j qword 123
k qword 456789

titleStr byte 'Listing 2-1', 0

fmtStrI byte "i=%d, converted to hex=%x", nl, 0
fmtStrJ byte "j=%d, converted to hex=%x", nl, 0
fmtStrK byte "k=%d, converted to hex=%x", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds
; the function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Call printf three times to print the three values i, j, and k:

; printf("i=%d, converted to hex=%x\n", i, i);

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

50 Chapter 2

 lea rcx, fmtStrI
 mov rdx, i
 mov r8, rdx
 call printf

; printf("j=%d, converted to hex=%x\n", j, j);

 lea rcx, fmtStrJ
 mov rdx, j
 mov r8, rdx
 call printf

; printf("k=%d, converted to hex=%x\n", k, k);

 lea rcx, fmtStrK
 mov rdx, k
 mov r8, rdx
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmMain endp
 end

Listing 2-1: Decimal-to-hexadecimal conversion program

Listing 2-1 uses the generic c.cpp program from Chapter 1 (and the
generic build.bat batch file as well). You can compile and run this program
by using the following commands at the command line:

C:\>build Listing2-1

C:\>echo off
 Assembling: listing2-1.asm
c.cpp

C:\> Listing2-1
Calling Listing 2-1:
i=1, converted to hex=1
j=123, converted to hex=7b
k=456789, converted to hex=6f855
Listing 2-1 terminated

 2.4 Data Organization
In pure mathematics, a value’s representation may require an arbitrary
number of bits. Computers, on the other hand, generally work with a

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 51

specific number of bits. Common collections are single bits, groups of 4 bits
(called nibbles), 8 bits (bytes), 16 bits (words), 32 bits (double words, or dwords),
64 bits (quad words, or qwords), 128 bits (octal words, or owords), and more.

2.4.1 Bits
The smallest unit of data on a binary computer is a single bit. With a single
bit, you can represent any two distinct items. Examples include 0 or 1, true
or false, and right or wrong. However, you are not limited to representing
binary data types; you could use a single bit to represent the numbers 723
and 1245 or, perhaps, the colors red and blue, or even the color red and the
number 3256. You can represent any two different values with a single bit,
but only two values with a single bit.

Different bits can represent different things. For example, you could
use 1 bit to represent the values 0 and 1, while a different bit could repre-
sent the values true and false. How can you tell by looking at the bits? The
answer is that you can’t. This illustrates the whole idea behind computer
data structures: data is what you define it to be. If you use a bit to represent
a Boolean (true/false) value, then that bit (by your definition) represents
true or false. However, you must be consistent. If you’re using a bit to repre-
sent true or false at one point in your program, you shouldn’t use that value
to represent red or blue later.

2.4.2 Nibbles
A nibble is a collection of 4 bits. With a nibble, we can represent up to 16 dis-
tinct values because a string of 4 bits has 16 unique combinations:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Nibbles are an interesting data structure because it takes 4 bits to rep-
resent a single digit in binary-coded decimal (BCD) numbers1 and hexadecimal
numbers. In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7,

1. Binary-coded decimal is a numeric scheme used to represent decimal numbers, using 4 bits
for each decimal digit.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

52 Chapter 2

8, 9, A, B, C, D, E, and F are represented with 4 bits. BCD uses 10 different
digits (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) and also requires 4 bits (because we can
represent only eight different values with 3 bits, and the additional six values
we can represent with 4 bits are never used in BCD representation). In fact,
any 16 distinct values can be represented with a nibble, though hexadecimal
and BCD digits are the primary items we can represent with a single nibble.

2.4.3 Bytes
Without question, the most important data structure used by the x86-64
microprocessor is the byte, which consists of 8 bits. Main memory and I/O
addresses on the x86-64 are all byte addresses. This means that the small-
est item that can be individually accessed by an x86-64 program is an 8-bit
value. To access anything smaller requires that we read the byte containing
the data and eliminate the unwanted bits. The bits in a byte are normally
numbered from 0 to 7, as shown in Figure 2-1.

7 6 5 4 3 2 1 0

Figure 2-1: Bit numbering

Bit 0 is the LO bit, or least significant bit, and bit 7 is the HO bit, or most
significant bit of the byte. We’ll refer to all other bits by their number.

A byte contains exactly two nibbles (see Figure 2-2).

HO Nibble

7 6 5 4 3 2 1 0

LO Nibble

Figure 2-2: The two nibbles in
a byte

Bits 0 to 3 compose the low-order nibble, and bits 4 to 7 form the high-
order nibble. Because a byte contains exactly two nibbles, byte values require
two hexadecimal digits.

Because a byte contains 8 bits, it can represent 28 (256) different val-
ues. Generally, we’ll use a byte to represent numeric values in the range 0
through 255, signed numbers in the range –128 through +127 (see “Signed
and Unsigned Numbers” on page xx), The American Standard Code for
Information Interchange (ASCII)/IBM character codes, and other special
data types requiring no more than 256 different values. Many data types have
fewer than 256 items, so 8 bits are usually sufficient.

Because the x86-64 is a byte-addressable machine, it’s more efficient to
manipulate a whole byte than an individual bit or nibble. So it’s more effi-
cient to use a whole byte to represent data types that require no more than
256 items, even if fewer than 8 bits would suffice.

Probably the most important use for a byte is holding a character value.
Characters typed at the keyboard, displayed on the screen, and printed on

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 53

the printer all have numeric values. To communicate with the rest of the
world, PCs typically use a variant of the ASCII character set or the Unicode
character set. The ASCII character set has 128 defined codes.

Bytes are also the smallest variable you can create in a MASM program. To
create an arbitrary byte variable, you should use the byte data type, as follows:

 .data
byteVar byte ?

The byte data type is a partially untyped data type. The only type
information associated with a byte object is its size (1 byte).2 You may store
any 8-bit value (small signed integers, small unsigned integers, characters,
and the like) into a byte variable. It is up to you to keep track of the type of
object you’ve put into a byte variable.

2.4.4 Words
A word is a group of 16 bits. We’ll number the bits in a word from 0 to 15, as
Figure 2-3 shows. Like the byte, bit 0 is the low-order bit. For words, bit 15
is the high-order bit. When referencing the other bits in a word, we’ll use
their bit position number.

7 6 5 4 3 2 1 089101112131415

Figure 2-3: Bit numbers in a word

A word contains exactly 2 bytes (and, therefore, four nibbles). Bits 0 to
7 form the low-order byte, and bits 8 to 15 form the high-order byte (see
Figure 2-4 and Figure 2-5).

7 6 5 4 3 2 1 089101112131415

HO Byte LO Byte

Figure 2-4: The 2 bytes in a word

HO nibble

Nibble 3

7 6 5 4 3 2 1 089101112131415

LO nibble

Nibble 0Nibble 1Nibble 2

Figure 2-5: Nibbles in a word

2. For MASM’s HLL statements, the byte directive also notes that the value is an unsigned,
rather than signed, value. However, for most normal machine instructions, MASM ignores
this extra type information.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

54 Chapter 2

With 16 bits, you can represent 216 (65,536) values. These could be the
values in the range 0 to 65,535 or, as is usually the case, the signed values
–32,768 to +32,767, or any other data type with no more than 65,536 values.

The three major uses for words are short signed integer values, short
unsigned integer values, and Unicode characters. Unsigned numeric values
are represented by the binary value corresponding to the bits in the word.
Signed numeric values use the two’s complement form for numeric values
(see “Sign Extension and Zero Extension” on page xx). As Unicode charac-
ters, words can represent up to 65,536 characters, allowing the use of non-
Roman character sets in a computer program. Unicode is an international
standard, like ASCII, that allows computers to process non-Roman charac-
ters such as Kanji, Greek, and Russian characters.

As with bytes, you can also create word variables in a MASM program.
To create an arbitrary word variable, use the word data type as follows:

 .data
w word ?

2.4.5 Double Words
A double word is exactly what its name indicates: a pair of words. Therefore,
a double-word quantity is 32 bits long, as shown in Figure 2-6.

31 24 16 8 071523

Figure 2-6: Bit numbers in a double word

Naturally, this double word can be divided into a high-order word and a
low-order word, 4 bytes, or eight different nibbles (see Figure 2-7).

Double words (dwords) can represent all kinds of things. A common item
you will represent with a double word is a 32-bit integer value (which allows
unsigned numbers in the range 0 to 4,294,967,295 or signed numbers in
the range –2,147,483,648 to 2,147,483,647). 32-bit floating-point values also
fit into a double word.

31 24 16 8 071523

HO word LO word

31 24 16 8 071523

Byte 3 Byte 2 Byte 1 Byte 0
HO byte LO byte

31 24 16 8 071523

Nibble 7 Nibble 6 Nibble 5 Nibble 4 Nibble 3 Nibble 2 Nibble 1 Nibble 0

HO nibble LO nibble
Figure 2-7: Nibbles, bytes, and words in a double word

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 55

You can create an arbitrary double-word variable by using the dword data
type, as the following example demonstrates:

 .data
d dword ?

2.4.6 Quad Words and Octal Words
Quad-word (64-bit) values are also important because 64-bit integers, point-
ers, and certain floating-point data types require 64 bits. Likewise, the SSE/
MMX instruction set of modern x86-64 processors can manipulate 64-bit
values. In a similar vein, octal-word (128-bit) values are important because the
AVX/SSE instruction set can manipulate 128-bit values. MASM allows the dec-
laration of 64- and 128-bit values by using the qword and oword types, as follows:

 .data
o oword ?
q qword ?

You may not directly manipulate 128-bit integer objects using standard
instructions like mov, add, and sub because the standard x86-64 integer registers
process only 64 bits at a time. In Chapter 8, you will see how to manipulate
these extended-precision values; Chapter 11 describes how to directly manipu-
late oword values by using SIMD instructions.

 2.5 Logical Operations on Bits
We’ll do four primary logical operations (Boolean functions) with hexadec-
imal and binary numbers: AND, OR, XOR (exclusive-or), and NOT.

2.5.1 The AND Operation
The logical AND operation is a dyadic operation (meaning it accepts exactly
two operands).3 These operands are individual binary bits. The AND opera-
tion is shown here:

0 and 0 = 0
0 and 1 = 0
1 and 0 = 0
1 and 1 = 1

A compact way to represent the logical AND operation is with a truth
table. A truth table takes the form shown in Table 2-2.

Table 2-2: AND Truth
Table

AND 0 1

0 0 0

1 0 1

3. Many texts call this a binary operation. The term dyadic means the same thing and avoids the
confusion with the binary numbering system.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

56 Chapter 2

This is just like the multiplication tables you’ve encountered in school.
The values in the left column correspond to the left operand of the AND
operation. The values in the top row correspond to the right operand of
the AND operation. The value located at the intersection of the row and
column (for a particular pair of input values) is the result of logically ANDing
those two values together.

In English, the logical AND operation is, “If the first operand is 1 and
the second operand is 1, the result is 1; otherwise, the result is 0.” We could
also state this as, “If either or both operands are 0, the result is 0.”

You can use the logical AND operation to force a 0 result: if one of
the operands is 0, the result is always 0 regardless of the other operand. In
Table 2-2, for example, the row labeled with a 0 input contains only 0s, and
the column labeled with a 0 contains only 0s. Conversely, if one operand
contains a 1, the result is exactly the value of the second operand. These
results of the AND operation are important, particularly when we want to
force bits to 0. We will investigate these uses of the logical AND operation
in the next section.

2.5.2 The OR Operation
The logical OR operation is also a dyadic operation. Its definition is as follows:

0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

Table 2-3 shows the truth table for the OR operation.

Table 2-3: OR Truth
Table

OR 0 1

0 0 1

1 1 1

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is 1, the result is 1; otherwise, the result is 0.” This
is also known as the inclusive-or operation.

If one of the operands to the logical OR operation is a 1, the result
is always 1 regardless of the second operand’s value. If one operand is 0,
the result is always the value of the second operand. Like the logical AND
operation, this is an important side effect of the logical OR operation that
will prove quite useful.

Note that there is a difference between this form of the inclusive logical
OR operation and the standard English meaning. Consider the sentence “I am
going to the store or I am going to the park.” Such a statement implies that the
speaker is going to the store or to the park, but not to both places. Therefore,
the English version of logical OR is slightly different from the inclusive-or
operation; indeed, this is the definition of the exclusive-or operation.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 57

2.5.3 The XOR Operation
The logical XOR (exclusive-or) operation is also a dyadic operation. Its defini-
tion follows:

0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0

Table 2-4 shows the truth table for the XOR operation.

Table 2-4: XOR Truth
Table

XOR 0 1

0 0 1

1 1 0

In English, the logical XOR operation is, “If the first operand or the
second operand, but not both, is 1, the result is 1; otherwise, the result is 0.”
The exclusive-or operation is closer to the English meaning of the word or
than is the logical OR operation.

If one of the operands to the logical exclusive-or operation is a 1, the
result is always the inverse of the other operand; that is, if one operand is 1,
the result is 0 if the other operand is 1, and the result is 1 if the other oper-
and is 0. If the first operand contains a 0, the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

2.5.4 The NOT Operation
The logical NOT operation is a monadic operation (meaning it accepts only
one operand):

not 0 = 1
not 1 = 0

The truth table for the NOT operation appears in Table 2-5.

Table 2-5: NOT Truth
Table

NOT 0 1

1 0

 2.6 Logical Operations on Binary Numbers and Bit Strings
The previous section defines the logical functions for single-bit operands.
Because the x86-64 uses groups of 8, 16, 32, 64, or more bits,4 we need to
extend the definition of these functions to deal with more than 2 bits.

4. The XMM and YMM registers process up to 128 or 256 bits, respectively. If you have a CPU
that supports ZMM registers, it can process 512 bits at a time.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

58 Chapter 2

Logical functions on the x86-64 operate on a bit-by-bit (or bitwise) basis.
Given two values, these functions operate on bit 0 of each value, producing
bit 0 of the result; then they operate on bit 1 of the input values, producing
bit 1 of the result, and so on. For example, if you want to compute the logi-
cal AND of the following two 8-bit numbers, you would perform the logical
AND operation on each column independently of the others:

1011_0101b
1110_1110b

1010_0100b

You may apply this bit-by-bit calculation to the other logical functions
as well.

To perform a logical operation on two hexadecimal numbers, you should
convert them to binary first.

The ability to force bits to 0 or 1 by using the logical AND/OR opera-
tions and the ability to invert bits using the logical XOR operation are very
important when working with strings of bits (for example, binary numbers).
These operations let you selectively manipulate certain bits within a bit
string while leaving other bits unaffected.

For example, if you have an 8-bit binary value X and you want to guar-
antee that bits 4 to 7 contain 0s, you could logically AND the value X with
the binary value 0000_1111b. This bitwise logical AND operation would
force the HO 4 bits to 0 and pass the LO 4 bits of X unchanged. Likewise,
you could force the LO bit of X to 1 and invert bit 2 of X by logically ORing
X with 0000_0001b and logically XORing X with 0000_0100b, respectively.

Using the logical AND, OR, and XOR operations to manipulate bit
strings in this fashion is known as masking bit strings. We use the term mask-
ing because we can use certain values (1 for AND, 0 for OR/XOR) to mask
out or mask in certain bits from the operation when forcing bits to 0, 1, or
their inverse.

The x86-64 CPUs support four instructions that apply these bitwise
logical operations to their operands. The instructions are and, or, xor, and
not. The and, or, and xor instructions use the same syntax as the add and sub
instructions:

and dest, source
or dest, source
xor dest, source

These operands have the same limitations as the add operands. Specifically,
the source operand has to be a constant, memory, or register operand, and
the dest operand must be a memory or register operand. Also, the operands
must be the same size and cannot both be memory operands. If the destina-
tion operand is 64 bits and the source operand is a constant, that constant
is limited to 32 bits (or fewer), and the CPU will sign-extend the value to
64 bits (see “Sign Extension and Zero Extension” on page xx).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 59

These instructions compute the obvious bitwise logical operation via
the following equation:

dest = dest operator source

The x86-64 logical not instruction, because it has only a single operand,
uses a slightly different syntax. This instruction takes the following form:

not dest

This instruction computes the following result:

dest = not(dest)

The dest operand must be a register or memory operand. This instruc-
tion inverts all the bits in the specified destination operand.

The program in Listing 2-2 inputs two hexadecimal values from the user
and calculates their logical and, or, xor, and not.

; Listing 2-2

; Demonstrate AND, OR, XOR, and NOT logical instructions.

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
leftOp dword 0f0f0f0fh
rightOp1 dword 0f0f0f0f0h
rightOp2 dword 12345678h

titleStr byte 'Listing 2-2', 0

fmtStr1 byte "%lx AND %lx = %lx", nl, 0
fmtStr2 byte "%lx OR %lx = %lx", nl, 0
fmtStr3 byte "%lx XOR %lx = %lx", nl, 0
fmtStr4 byte "NOT %lx = %lx", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds the
; function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

60 Chapter 2

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Demonstrate the AND instruction:

 lea rcx, fmtStr1
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 and r9d, r8d ; AND rightOp1
 call printf

 lea rcx, fmtStr1
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d
 and r9d, edx
 call printf

; Demonstrate the OR instruction:

 lea rcx, fmtStr2
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 or r9d, r8d ; OR rightOp1
 call printf

 lea rcx, fmtStr2
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d
 or r9d, edx
 call printf

; Demonstrate the XOR instruction:

 lea rcx, fmtStr3
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 xor r9d, r8d ; XOR rightOp1
 call printf

 lea rcx, fmtStr3
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 61

 xor r9d, edx
 call printf

; Demonstrate the NOT instruction:

 lea rcx, fmtStr4
 mov edx, leftOp
 mov r8d, edx ; Compute not leftOp
 not r8d
 call printf

 lea rcx, fmtStr4
 mov edx, rightOp1
 mov r8d, edx ; Compute not rightOp1
 not r8d
 call printf

 lea rcx, fmtStr4
 mov edx, rightOp2
 mov r8d, edx ; Compute not rightOp2
 not r8d
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmMain endp
 end

Listing 2-2: and, or, xor, and not example

Here’s the result of building and running this code:

C:\MASM64>build Listing2-2

C:\MASM64>ml64 /nologo /c /Zi /Cp Listing2-2.asm
 Assembling: listing2-2.asm

C:\MASM64>cl /nologo /O2 /Zi /utf-8 /Fe Listing2-2.exe c.cpp Listing2-2.obj
c.cpp

C:\MASM64> Listing2-2
Calling Listing 2-2:
f0f0f0f AND f0f0f0f0 = 0
f0f0f0f AND 12345678 = 2040608
f0f0f0f OR f0f0f0f0 = ffffffff
f0f0f0f OR 12345678 = 1f3f5f7f
f0f0f0f XOR f0f0f0f0 = ffffffff
f0f0f0f XOR 12345678 = 1d3b5977
NOT f0f0f0f = f0f0f0f0
NOT f0f0f0f0 = f0f0f0f

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

62 Chapter 2

NOT 12345678 = edcba987
Listing 2-2 terminated

By the way, you will often see the following “magic” instruction:

xor reg, reg

XORing a register with itself sets that register to 0. Except for 8-bit
registers, the xor instruction is usually more efficient than moving the
immediate constant into the register. Consider the following:

xor eax, eax ; Just 2 bytes long in machine code
mov eax, 0 ; Depending on register, often 6 bytes long

The savings are even greater when dealing with 64-bit registers (as the
immediate constant 0 is 8 bytes long by itself).

 2.7 Signed and Unsigned Numbers
Thus far, we’ve treated binary numbers as unsigned values. The binary
number . . . 00000 represents 0, . . . 00001 represents 1, . . . 00010 represents 2,
and so on toward infinity. With n bits, we can represent 2n unsigned numbers.
What about negative numbers? If we assign half of the possible combina-
tions to the negative values, and half to the positive values and 0, with n bits
we can represent the signed values in the range –2n-1 to +2n-1 –1. So we can
represent the negative values –128 to –1 and the non-negative values 0 to
127 with a single 8-bit byte. With a 16-bit word, we can represent values in
the range –32,768 to +32,767. With a 32-bit double word, we can represent
values in the range –2,147,483,648 to +2,147,483,647.

In mathematics (and computer science), the complement method encodes
negative and non-negative (positive plus zero) numbers into two equal sets
in such a way that they can use the same algorithm (or hardware) to perform
addition and produce the correct result regardless of the sign.

The x86-64 microprocessor uses the two’s complement notation to represent
signed numbers. In this system, the HO bit of a number is a sign bit (dividing
the integers into two equal sets). If the sign bit is 0, the number is positive (or
zero); if the sign bit is 1, the number is negative (taking a complement form,
which I’ll describe in a moment). Following are some examples.

For 16-bit numbers:

•	 8000h is negative because the HO bit is 1.

•	 100h is positive because the HO bit is 0.

•	 7FFFh is positive.

•	 0FFFFh is negative.

•	 0FFFh is positive.

If the HO bit is 0, the number is positive (or 0) and uses the standard
binary format. If the HO bit is 1, the number is negative and uses the two’s

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 63

complement form (which is the magic form that supports addition of nega-
tive and non-negative numbers with no special hardware).

To convert a positive number to its negative, two’s complement form,
you use the following algorithm:

1. Invert all the bits in the number; that is, apply the logical NOT function.

2. Add 1 to the inverted result and ignore any carry out of the HO bit.

This produces a bit pattern that satisfies the mathematical definition
of the complement form. In particular, adding negative and non-negative
numbers using this form produces the expected result.

For example, to compute the 8-bit equivalent of –5:

•	 0000_0101b 5 (in binary).

•	 1111_1010b Invert all the bits.

•	 1111_1011b Add 1 to obtain result.

If we take –5 and perform the two’s complement operation on it, we get
our original value, 0000_0101b, back again:

•	 1111_1011b Two’s complement for –5.

•	 0000_0100b Invert all the bits.

•	 0000_0101b Add 1 to obtain result (+5).

Note that if we add +5 and –5 together (ignoring any carry out of the
HO bit), we get the expected result of 0:

 1111_1011b Two's complement for -5.
 + 0000_0101b Invert all the bits and add 1.

 (1) 0000_0000b Sum is zero, if we ignore carry.

The following examples provide some positive and negative 16-bit
signed values:

•	 7FFFh: +32767, the largest 16-bit positive number

•	 8000h: –32768, the smallest 16-bit negative number

•	 4000h: +16384

To convert the preceding numbers to their negative counterpart (that
is, to negate them), do the following:

7FFFh: 0111_1111_1111_1111b +32,767
 1000_0000_0000_0000b Invert all the bits (8000h)
 1000_0000_0000_0001b Add 1 (8001h or -32,767)

4000h: 0100_0000_0000_0000b 16,384
 1011_1111_1111_1111b Invert all the bits (0BFFFh)
 1100_0000_0000_0000b Add 1 (0C000h or -16,384)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

64 Chapter 2

8000h: 1000_0000_0000_0000b -32,768
 0111_1111_1111_1111b Invert all the bits (7FFFh)
 1000_0000_0000_0000b Add one (8000h or -32,768)

8000h inverted becomes 7FFFh. After adding 1, we obtain 8000h! Wait,
what’s going on here? – (–32,768) is –32,768? Of course not. But the value
+32,768 cannot be represented with a 16-bit signed number, so we cannot
negate the smallest negative value.

Usually, you will not need to perform the two’s complement operation
by hand. The x86-64 microprocessor provides an instruction, neg (negate),
that performs this operation for you:

neg dest

This instruction computes dest = -dest; and the operand must be a mem-
ory location or a register. neg operates on byte-, word-, dword-, and qword-sized
objects. Because this is a signed integer operation, it only makes sense to oper-
ate on signed integer values. The program in Listing 2-3 demonstrates the two’s
complement operation and the neg instruction on signed 8-bit integer values.

; Listing 2-3

; Demonstrate two's complement operation and input of numeric values.

 option casemap:none

nl = 10 ; ASCII code for newline
maxLen = 256

 .data
titleStr byte 'Listing 2-3', 0

prompt1 byte "Enter an integer between 0 and 127:", 0
fmtStr1 byte "Value in hexadecimal: %x", nl, 0
fmtStr2 byte "Invert all the bits (hexadecimal): %x", nl, 0
fmtStr3 byte "Add 1 (hexadecimal): %x", nl, 0
fmtStr4 byte "Output as signed integer: %d", nl, 0
fmtStr5 byte "Using neg instruction: %d", nl, 0

intValue sqword ?
input byte maxLen dup (?)

 .code
 externdef printf:proc
 externdef atoi:proc
 externdef readLine:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, titleStr

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 65

 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Read an unsigned integer from the user: This code will blindly
; assume that the user's input was correct. The atoi function returns
; zero if there was some sort of error on the user input. Later
; chapters in Ao64A will describe how to check for errors from the
; user.

 lea rcx, prompt1
 call printf

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Call C stdlib atoi function.

; i = atoi(str)

 lea rcx, input
 call atoi
 and rax, 0ffh ; Only keep L.O. 8 bits
 mov intValue, rax

; Print the input value (in decimal) as a hexadecimal number:

 lea rcx, fmtStr1
 mov rdx, rax
 call printf

; Perform the two's complement operation on the input number.
; Begin by inverting all the bits (just work with a byte here).

 mov rdx, intValue
 not dl ; Only work with 8-bit values!
 lea rcx, fmtStr2
 call printf

; Invert all the bits and add 1 (still working with just a byte).

 mov rdx, intValue
 not rdx
 add rdx, 1
 and rdx, 0ffh ; Only keep L.O. eight bits

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

66 Chapter 2

 lea rcx, fmtStr3
 call printf

; Negate the value and print as a signed integer (work with a full
; integer here, because C++ %d format specifier expects a 32-bit
; integer. HO 32 bits of RDX get ignored by C++.

 mov rdx, intValue
 not rdx
 add rdx, 1
 lea rcx, fmtStr4
 call printf

; Negate the value using the neg instruction.

 mov rdx, intValue
 neg rdx
 lea rcx, fmtStr5
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56
 ret ; Returns to caller
asmMain endp
 end

Listing 2-3: Two’s complement example

The following commands build and run the program in Listing 2-3:

C:\>build Listing2-3

C:\>echo off
 Assembling: listing2-3.asm
c.cpp

C:\> Listing2-3
Calling Listing 2-3:
Enter an integer between 0 and 127:123
Value in hexadecimal: 7b
Invert all the bits (hexadecimal): 84
Add 1 (hexadecimal): 85
Output as signed integer: -123
Using neg instruction: -123
Listing 2-3 terminated

Beyond the two’s complement operation (both by inversion/add 1 and
using the neg instruction), this program demonstrates one new feature: user
numeric input. Numeric input is accomplished by reading an input string
from the user (using the readLine() function that is part of the c.cpp source
file) and then calling the C Standard Library atoi() function. This function

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 67

requires a single parameter (passed in RCX) that points to a string contain-
ing an integer value. It translates that string to the corresponding integer
and returns the integer value in RAX.5

 2.8 Sign Extension and Zero Extension
Converting an 8-bit two’s complement value to 16 bits, and conversely con-
verting a 16-bit value to 8 bits, can be accomplished via sign extension and
contraction operations.

To extend a signed value from a certain number of bits to a greater
number of bits, copy the sign bit into all the additional bits in the new
format. For example, to sign-extend an 8-bit number to a 16-bit number,
copy bit 7 of the 8-bit number into bits 8 to 15 of the 16-bit number. To
sign-extend a 16-bit number to a double word, copy bit 15 into bits 16 to
31 of the double word.

You must use sign extension when manipulating signed values of vary-
ing lengths. For example, to add a byte quantity to a word quantity, you
must sign-extend the byte quantity to a word before adding the two values.
Other operations (multiplication and division, in particular) may require a
sign extension to 32 bits; see Table 2-6.

Table 2-6: Sign Extension

8 Bits 16 Bits 32 Bits

80h 0FF80h 0FFFFFF80h

28h 0028h 00000028h

9Ah 0FF9Ah 0FFFFFF9Ah

7Fh 007Fh 0000007Fh

1020h 00001020h

8086h 0FFFF8086h

To extend an unsigned value to a larger one, you must zero-extend the
value, as shown in Table 2-7. Zero extension is easy—just store a 0 into the HO
byte(s) of the larger operand. For example, to zero-extend the 8-bit value
82h to 16 bits, you prepend a 0 to the HO byte, yielding 0082h.

Table 2-7: Zero Extension

8 Bits 16 Bits 32 Bits

80h 0080h 00000080h

28h 0028h 00000028h

5. Technically, atoi() returns a 32-bit integer in EAX. This code goes ahead and uses 64-bit
values; the C Standard Library code ignores the HO 32 bits in RAX.

(continued)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

68 Chapter 2

8 Bits 16 Bits 32 Bits

9Ah 009Ah 0000009Ah

7Fh 007Fh 0000007Fh

1020h 00001020h

8086h 00008086h

 2.9 Sign Contraction and Saturation
Sign contraction, converting a value with a certain number of bits to the
identical value with a fewer number of bits, is a little more troublesome.
Given an n-bit number, you cannot always convert it to an m -bit number if
m < n. For example, consider the value –448. As a 16-bit signed number, its
hexadecimal representation is 0FE40h. The magnitude of this number is
too large for an 8-bit value, so you cannot sign-contract it to 8 bits (doing
so would create an overflow condition).

To properly sign-contract a value, the HO bytes to discard must all con-
tain either 0 or 0FFh, and the HO bit of your resulting value must match
every bit you’ve removed from the number. Here are some examples (16 bits
to 8 bits):

•	 0FF80h can be sign-contracted to 80h.

•	 0040h can be sign-contracted to 40h.

•	 0FE40h cannot be sign-contracted to 8 bits.

•	 0100h cannot be sign-contracted to 8 bits.

If you must convert a larger object to a smaller object, and you’re will-
ing to live with loss of precision, you can use saturation. To convert a value
via saturation, you copy the larger value to the smaller value if it is not out-
side the range of the smaller object. If the larger value is outside the range
of the smaller value, you clip the value by setting it to the largest (or small-
est) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed
integer, if the 16-bit value is in the range –128 to +127, you copy the LO byte
of the 16-bit object to the 8-bit object. If the 16-bit signed value is greater
than +127, then you clip the value to +127 and store +127 into the 8-bit
object. Likewise, if the value is less than –128, you clip the final 8-bit object
to –128.

Although clipping the value to the limits of the smaller object results in
loss of precision, sometimes this is acceptable because the alternative is to
raise an exception or otherwise reject the calculation. For many applications,
such as audio or video processing, the clipped result is still recognizable, so
this is a reasonable conversion.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 69

 2.10 Brief Detour: An Introduction to Control Transfer
Instructions
The assembly language examples thus far have limped along without mak-
ing use of conditional execution (that is, the ability to make decisions while
executing code). Indeed, except for the call and ret instructions, you
haven’t seen any way to affect the straight-line execution of assembly code.

However, this book is rapidly approaching the point where meaningful
examples require the ability to conditionally execute different sections of
code. This section provides a brief introduction to the subject of conditional
execution and transferring control to other sections of your program.

2.10.1 The jmp Instruction
Perhaps the best place to start is with a discussion of the x86-64 unconditional
transfer-of-control instruction—the jmp instruction. The jmp instruction takes
several forms, but the most common form is

jmp statementLabel

where statementLabel is an identifier attached to a machine instruction in your
.code section. The jmp instruction immediately transfers control to the state-
ment prefaced by the label. This is semantically equivalent to a goto statement
in an HLL.

Here is an example of a statement label in front of a mov instruction:

stmtLbl: mov eax, 55

Like all MASM symbols, statement labels have two major attributes asso-
ciated with them: an address (which is the memory address of the machine
instruction following the label) and a type. The type is label, which is the
same type as a proc directive’s identifier.

Statement labels don’t have to be on the same physical source line as a
machine instruction. Consider the following example:

anotherLabel:
 mov eax, 55

This example is semantically equivalent to the previous one. The value
(address) bound to anotherLabel is the address of the machine instruction
following the label. In this case, it’s still the mov instruction even though that
mov instruction appears on the next line (it still follows the label without any
other MASM statements that would generate code occurring between the
label and the mov statement).

Technically, you could also jump to a proc label instead of a statement
label. However, the jmp instruction does not set up a return address, so if the
procedure executes a ret instruction, the return location may be undefined.
(Chapter 5 explores return addresses in greater detail.)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

70 Chapter 2

2.10.2 The Conditional Jump Instructions
Although the common form of the jmp instruction is indispensable in assem-
bly language programs, it doesn’t provide any ability to conditionally execute
different sections of code—hence the name unconditional jump.6 Fortunately,
the x86-64 CPUs provide a wide array of conditional jump instructions that, as
their name suggests, allow conditional execution of code.

These instructions test the condition code bits (see “An Introduction to
the Intel x86-64 CPU Family” in Chapter 1) in the FLAGS register to deter-
mine whether a branch should be taken. There are four condition code
bits in the FLAGs register that these conditional jump instructions test: the
carry, sign, overflow, and zero flags.7

The x86-64 CPUs provide eight instructions that test each of these four
flags (see Table 2-8). The basic operation of the conditional jump instruc-
tions is that they test a flag to see if it is set (1) or clear (0) and branch to a
target label if the test succeeds. If the test fails, the program continues exe-
cution with the next instruction following the conditional jump instruction.

Table 2-8: Conditional Jump Instructions That Test the Condition Code Flags

Instruction Explanation

jc label Jump if carry set. Jump to label if the carry flag is set (1); fall through if
carry is clear (0).

jnc label Jump if no carry. Jump to label if the carry flag is clear (0); fall through if
carry is set (1).

jo label Jump if overflow. Jump to label if the overflow flag is set (1); fall through
if overflow is clear (0).

jno label Jump if no overflow. Jump to label if the overflow flag is clear (0); fall
through if overflow is set (1).

js label Jump if sign (negative). Jump to label if the sign flag is set (1); fall
through if sign is clear (0).

jns label Jump if not sign. Jump to label if the sign flag is clear (0); fall through if
sign is set (1).

jz label Jump if zero. Jump to label if the zero flag is set (1); fall through if zero
is clear (0).

jnz label Jump if not zero. Jump to label if the zero flag is clear (0); fall through if
zero is set (1).

To use a conditional jump instruction, you must first execute an
instruction that affects one (or more) of the condition code flags. For
example, an unsigned arithmetic overflow will set the carry flag (and

6. Note that variants of the jmp instruction, known as indirect jumps, can provide conditional
execution capabilities. For more information, see Chapter 7.

7. Technically, you can test a fifth condition code flag: the parity flag. This book does not
cover its use. See the Intel documentation for more details about the parity flag.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 71

likewise, if overflow does not occur, the carry flag will be clear). Therefore,
you could use the jc and jnc instructions after an add instruction to see if an
(unsigned) overflow occurred during the calculation. For example:

 mov eax, int32Var
 add eax, anotherVar
 jc overflowOccured

; Continue down here if the addition did not
; produce an overflow.

 .
 .
 .

overflowOccured:

; Execute this code if the sum of int32Var and anotherVar
; does not fit into 32 bits.

Not all instructions affect the flags. Of all the instructions we’ve looked
at thus far (mov, add, sub, and, or, not, xor, and lea), only the add, sub, and, or,
xor, and not instructions affect the flags. The add and sub instructions affect
the flags as shown in Table 2-9.

Table 2-9: Flag Settings After Executing add or sub

Flag Explanation

Carry Set if an unsigned overflow occurs (for example, adding the byte values
0FFh and 01h). Clear if no overflow occurs. Note that subtracting 1 from 0
will also clear the carry flag (that is, 0 – 1 is equivalent to 0 + (–1), and –1
is 0FFh in two’s complement form).

Overflow Set if a signed overflow occurs (for example, adding the byte values 07Fh
and 01h). Signed overflow occurs when the next-to-HO-bit overflows into
the HO bit (for example, 7Fh becomes 80h, or 0FFh becomes 0, when
dealing with byte-sized calculations).

Sign The sign flag is set if the HO bit of the result is set. The sign flag is clear
otherwise (that is, the sign flag reflects the state of the HO bit of the result).

Zero The zero flag is set if the result of a computation produces 0; it is clear
otherwise.

The logical instructions (and, or, xor, and not) always clear the carry and
overflow flags. They copy the HO bit of their result into the sign flag and
set/clear the zero flag if they produce a zero/nonzero result.

In addition to the conditional jump instructions, the x86-64 CPUs
also provide a set of conditional move instructions. Chapter 7 covers those
instructions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

72 Chapter 2

2.10.3 The cmp Instruction and Corresponding Conditional Jumps
The cmp (compare) instruction is probably the most useful instruction to
execute prior to a conditional jump. The compare instruction has the same
syntax as the sub instruction and, in fact, it also subtracts the second operand
from the first operand and sets the condition code flags based on the result of
the subtraction.8 But the cmp instruction doesn’t store the difference back into
the first (destination) operand. The whole purpose of the cmp instruction is to
set the condition code flags based on the result of the subtraction.

Though you could use the jc/jnc, jo/jno, js/jns, and jz/jnz instructions
immediately after a cmp instruction (to test how cmp has set the individual flags),
the flag names don’t really mean much in the context of the cmp instruction.
Logically, when you see the following instruction (note that the cmp instruc-
tion’s operand syntax is identical to the add, sub, and mov instructions),

cmp leftOperand, rightOperand

you read this instruction as “compare the leftOperand to the rightOperand.”
Questions you would normally ask after such a comparison are as follows:

•	 Is the leftOperand equal to the rightOperand?

•	 Is the leftOperand not equal to the rightOperand?

•	 Is the leftOperand less than the rightOperand?

•	 Is the leftOperand less than or equal to the rightOperand?

•	 Is the leftOperand greater than the rightOperand?

•	 Is the leftOperand greater than or equal to the rightOperand?

The conditional jump instructions presented thus far don’t (intuitively)
answer any of these questions.

The x86-64 CPUs provide an additional set of conditional jump instruc-
tions, shown in Table 2-10, that allow you to test for comparison conditions.

Table 2-10: Conditional Jump Instructions for Use After a cmp Instruction

Instruction Flags tested Explanation

je label ZF == 1 Jump if equal. Transfers control to target label if the
leftOperand is equal to the rightOperand. This is a syn-
onym for jz, as the zero flag will be set if the two oper-
ands are equal (their subtraction produces a 0 result in
that case).

jne label ZF == 0 Jump if not equal. Transfers control to target label if the
leftOperand is not equal to the rightOperand. This is a
synonym for jnz, as the zero flag will be clear if the two
operands are not equal (their subtraction produces a non-
zero result in that case).

8. Immediate operands for 64-bit instructions are also limited to 32 bits, which the CPU sign
extends to 64 bits.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 73

Instruction Flags tested Explanation

ja label CF == 0
and
ZF == 0

Jump if above. Transfers control to target label if the
unsigned leftOperand is greater than the unsigned
rightOperand.

jae label CF == 0 Jump if above or equal. Transfers control to target label if
the unsigned leftOperand is greater than or equal to the
unsigned rightOperand. This is a synonym for jnc, as it
turns out that an unsigned overflow (well, underflow, actu-
ally) will not occur if the leftOperand is greater than or
equal to the rightOperand.

jb label CF == 1 Jump if below. Transfers control to target label if the
unsigned leftOperand is less than the unsigned right-
Operand. This is a synonym for jc, as it turns out that an
unsigned overflow (well, underflow, actually) occurs if the
leftOperand is less than the rightOperand.

jbe label CF == 1
or
ZF == 1

Jump if below or equal. Transfers control to target label
if the unsigned leftOperand is less than or equal to the
unsigned rightOperand.

jg label SF == OF
and
ZF == 0

Jump if greater. Transfers control to target label if
the signed leftOperand is greater than the signed
rightOperand.

jge label SF == OF Jump if greater or equal. Transfers control to target label
if the signed leftOperand is greater than or equal to the
signed rightOperand.

jl label SF != OF Jump if less. Transfers control to target label if the signed
leftOperand is less than the signed rightOperand.

jle label ZF == 1
or
SF != OF

Jump if less or equal. Transfers control to target label if
the signed leftOperand is less than or equal to the signed
rightOperand.

Perhaps the most important thing to note in Table 2-10 is that separate
conditional jump instructions test for signed and unsigned comparisons.
Consider the two byte values 0FFh and 01h. From an unsigned perspective,
0FFh is greater than 01h. However, when we treat these as signed numbers
(using the two’s complement numbering system), 0FFh is actually –1, which
is clearly less than 1. They have the same bit representations but two com-
pletely different comparison results when treating these values as signed or
unsigned numbers.

2.10.4 Conditional Jump Synonyms
Some of the instructions are synonyms for other instructions. For example,
jb and jc are the same instruction (that is, they have the same numeric
machine code encoding). This is done for convenience and readability’s sake.
After a cmp instruction, jb is much more meaningful than jc, for example.
MASM defines several synonyms for various conditional branch instructions
that make coding a little easier. Table 2-11 lists many of these synonyms.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

74 Chapter 2

Table 2-11: Conditional Jump Synonyms

Instruction Equivalents Description

ja Jnbe Jump if above, jump if not below or equal.

jae jnb, jnc Jump if above or equal, jump if not below, jump if no carry.

jb jc, jnae Jump if below, jump if carry, jump if not above or equal.

jbe Jna Jump if below or equal, jump if not above.

jc jb, jnae Jump if carry, jump if below, jump if not above or equal.

je Jz Jump if equal, jump if zero.

jg Jnle Jump if greater, jump if not less or equal.

jge Jnl Jump if greater or equal, jump if not less.

jl Jnge Jump if less, jump if not greater or equal.

jle Jng Jump if less or equal, jump if not greater.

jna Jbe Jump if not above, jump if below or equal.

jnae jb, jc Jump if not above or equal, jump if below, jump if carry.

jnb jae, jnc Jump if not below, jump if above or equal, jump if no carry.

jnbe Ja Jump if not below or equal, jump if above.

jnc jnb, jae Jump if no carry, jump if no below, jump if above or equal.

jne Jnz Jump if not equal, jump if not zero.

jng Jle Jump if not greater, jump if less or equal.

jnge Jl Jump if not greater or equal, jump if less.

jnl Jge Jump if not less, jump if greater or equal.

jnle Jg Jump if not less or equal, jump if greater.

jnz Jne Jump if not zero, jump if not equal.

jz Je Jump if zero, jump if equal.

There is a very important thing to note about the cmp instruction: it sets
the flags only for integer comparisons (which will also cover characters and
other types you can encode with an integer number). Specifically, it does
not compare floating-point values and set the flags as appropriate for a
floating-point comparison. To learn more about floating-point arithmetic
(and comparisons), see “Floating-Point Arithmetic” in Chapter 6.

 2.11 Shifts and Rotates
Another set of logical operations that apply to bit strings is the shift and
rotate operations. These two categories can be further broken down into left
shifts, left rotates, right shifts, and right rotates.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 75

The shift-left operation moves each bit in a bit string one position to the
left, as shown in Figure 2-8.

7 6 5 4 3 2 1 0

Figure 2-8: Shift-left operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves
into bit position 2, and so on. We’ll shift a 0 into bit 0, and the previous value
of the high-order bit will become the carry out of this operation.

The x86-64 provides a shift-left instruction, shl, that performs this use-
ful operation. The syntax for the shl instruction is shown here:

shl dest, count

The count operand is either the CL register or a constant in the range 0
to n, where n is one less than the number of bits in the destination operand
(for example, n = 7 for 8-bit operands, n = 15 for 16-bit operands, n = 31 for
32-bit operands, and n = 63 for 64-bit operands). The dest operand is a typi-
cal destination operand. It can be either a memory location or a register.

When the count operand is the constant 1, the shl instruction does the
operation shown in Figure 2-9.

HO bit 4 3 2 1 0

0...C

Figure 2-9: shl by 1 operation

In Figure 2-9, the C represents the carry flag—that is, the HO bit shifted
out of the operand moves into the carry flag. Therefore, you can test for
overflow after a shl dest, 1 instruction by testing the carry flag immediately
after executing the instruction (for example, by using jc and jnc).

The shl instruction sets the zero flag based on the result (z=1 if the
result is zero, z=0 otherwise). The shl instruction sets the sign flag if the HO
bit of the result is 1. If the shift count is 1, then shl sets the overflow flag if
the HO bit changes (that is, you shift a 0 into the HO bit when it was previ-
ously 1, or shift a 1 in when it was previously 0); the overflow flag is unde-
fined for all other shift counts.

Shifting a value to the left one digit is the same thing as multiplying it
by its radix (base). For example, shifting a decimal number one position to
the left (adding a 0 to the right of the number) effectively multiplies it by 10
(the radix):

1234 shl 1 = 12340

(shl 1 means shift one digit position to the left.)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

76 Chapter 2

 Because the radix of a binary number is 2, shifting it left multiplies it
by 2. If you shift a value to the left n times, you multiply that value by 2n.

A shift-right operation works the same way, except we’re moving the data
in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6 moves
into bit 5, bit 5 moves into bit 4, and so on. During a right shift, we’ll move a
0 into bit 7, and bit 0 will be the carry out of the operation (see Figure 2-10).

7 4 3 2 1 056

0 C

Figure 2-10: Shift-right operation

As you would probably expect, the x86-64 provides a shr instruction
that will shift the bits to the right in a destination operand. The syntax is
similar to the shl instruction:

shr dest, count

This instruction shifts a 0 into the HO bit of the destination operand;
it shifts the other bits one place to the right (from a higher bit number to a
lower bit number). Finally, bit 0 is shifted into the carry flag. If you specify a
count of 1, the shr instruction does the operation shown in Figure 2-11.

. . . C

HO bit

0

45 3 2 1 0

Figure 2-11: shr by 1 operation

The shr instruction sets the zero flag based on the result (ZF=1 if the result
is zero, ZF=0 otherwise). The shr instruction clears the sign flag (because the
HO bit of the result is always 0). If the shift count is 1, shl sets the overflow flag
if the HO bit changes (that is, you shift a 0 into the HO bit when it was previ-
ously 1, or shift a 1 in when it was previously 0); the overflow flag is undefined
for all other shift counts.

Because a left shift is equivalent to a multiplication by 2, it should come
as no surprise that a right shift is roughly comparable to a division by 2 (or,
in general, a division by the radix of the number). If you perform n right
shifts, you will divide that number by 2n.

However, a shift right is equivalent to only an unsigned division by 2. For
example, if you shift the unsigned representation of 254 (0FEh) one place
to the right, you get 127 (7Fh), exactly what you would expect. However,
if you shift the two’s complement representation of –2 (0FEh) to the right
one position, you get 127 (7Fh), which is not correct. This problem occurs
because we’re shifting a 0 into bit 7. If bit 7 previously contained a 1, we’re

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 77

changing it from a negative to a positive number. Not a good thing to do
when dividing by 2.

To use the shift right as a division operator, we must define a third shift
operation: arithmetic shift right.9 This works just like the normal shift-right oper-
ation (a logical shift right) except, instead of shifting a 0 into the high-order
bit, an arithmetic shift-right operation copies the HO bit back into itself; that
is, during the shift operation, it does not modify the HO bit, as Figure 2-12
shows.

4567 3 2 1 0

Figure 2-12: Arithmetic shift-right operation

An arithmetic shift right generally produces the result you expect. For
example, if you perform the arithmetic shift-right operation on –2 (0FEh),
you get –1 (0FFh). However, this operation always rounds the numbers to
the closest integer that is less than or equal to the actual result. For example, if
you apply the arithmetic shift-right operation on –1 (0FFh), the result is –1,
not 0. Because –1 is less than 0, the arithmetic shift-right operation rounds
toward –1. This is not a bug in the arithmetic shift-right operation; it just
uses a different (though valid) definition of integer division.

The x86-64 provides an arithmetic shift-right instruction, sar (shift arith-
metic right). This instruction’s syntax is nearly identical to that of shl and shr:

sar dest, count

The usual limitations on the count and destination operands apply.
This instruction operates as shown in Figure 2-13 if the count is 1.

C

45

. . .

HO bit 3 2 1 0

Figure 2-13: sar dest, 1 operation

The sar instruction sets the zero flag based on the result (z=1 if the
result is zero, and z=0 otherwise). The sar instruction sets the sign flag to
the HO bit of the result. The overflow flag should always be clear after a sar
instruction, as signed overflow is impossible with this operation.

The rotate-left and rotate-right operations behave like the shift-left and
shift-right operations, except the bit shifted out from one end is shifted
back in at the other end. Figure 2-14 diagrams these operations.

9. There is no need for an arithmetic shift left. The standard shift-left operation works for
both signed and unsigned numbers, assuming no overflow occurs.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

78 Chapter 2

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Figure 2-14: Rotate-left and rotate-right operations

The x86-64 provides rol (rotate left) and ror (rotate right) instructions
that do these basic operations on their operands. The syntax for these two
instructions is similar to the shift instructions:

rol dest, count
ror dest, count

If the shift count is 1, these two instructions copy the bit shifted out of
the destination operand into the carry flag, as Figures 2-15 and 2-16 show.

45HO bit

. . .

3

C

2 1 0

Figure 2-15: rol dest, 1 operation

45HO bit

. . .

3

C

2 1 0

Figure 2-16: ror dest, 1 operation

Unlike the shift instructions, the rotate instructions do not affect the set-
tings of the sign or zero flags. The OF flag is defined only for the 1-bit rotates;
it is undefined in all other cases (except RCL and RCR instructions only: a
zero-bit rotate does nothing—that is, it affects no flags). For left rotates, the
OF flag is set to the exclusive-or of the original HO 2 bits. For right rotates,
the OF flag is set to the exclusive-or of the HO 2 bits after the rotate.

It is often more convenient for the rotate operation to shift the output
bit through the carry and to shift the previous carry value back into the
input bit of the shift operation. The x86-64 rcl (rotate through carry left) and

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 79

rcr (rotate through carry right) instructions achieve this for you. These instruc-
tions use the following syntax:

rcl dest, count
rcr dest, count

The count operand is either a constant or the CL register, and the dest
operand is a memory location or register. The count operand must be a value
that is less than the number of bits in the dest operand. For a count value of
1, these two instructions do the rotation shown in Figure 2-17.

45HO bit

. . .

3 2 1 0

C

45HO bit

. . .

3 2 1 0

C

Figure 2-17: rcl dest, 1 and rcr dest, 1 operations

Unlike the shift instructions, the rotate-through-carry instructions do
not affect the settings of the sign or zero flags. The OF flag is defined only
for the 1-bit rotates. For left rotates, the OF flag is set if the original HO
2 bits change. For right rotates, the OF flag is set to the exclusive OR of the
resultant HO 2 bits.

 2.12 Bit Fields and Packed Data
Although the x86-64 operates most efficiently on byte, word, dword, and qword
data types, occasionally you’ll need to work with a data type that uses a
number of bits other than 8, 16, 32, or 64. You can also zero-extend a non-
standard data size to the next larger power of 2 (such as extending a 22-bit
value to a 32-bit value). This turns out to be fast, but if you have a large
array of such values, slightly more than 31 percent of the memory is going
to waste (10 bits in every 32-bit value). However, suppose you were to repur-
pose those 10 bits for something else? By packing the separate 22-bit and
10-bit values into a single 32-bit value, you don’t waste any space.

For example, consider a date of the form 04/02/01. Representing this
date requires three numeric values: month, day, and year values. Months,
of course, take on the values 1 to 12. At least 4 bits (a maximum of 16 dif-
ferent values) are needed to represent the month. Days range from 1 to 31.
So it will take 5 bits (a maximum of 32 different values) to represent the day
entry. The year value, assuming that we’re working with values in the range

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

80 Chapter 2

0 to 99, requires 7 bits (which can be used to represent up to 128 different
values). So, 4 + 5 + 7 = 16 bits, or 2 bytes.

In other words, we can pack our date data into 2 bytes rather than the
3 that would be required if we used a separate byte for each of the month,
day, and year values. This saves 1 byte of memory for each date stored, which
could be a substantial savings if you need to store many dates. The bits could
be arranged as shown in Figure 2-18.

15 14 13 12 11 10 9 7 6 5 4 3 2 1

D YD D D D Y Y Y Y Y Y

08

MMM M

Figure 2-18: Short packed date format (2 bytes)

MMMM represents the 4 bits making up the month value, DDDDD rep-
resents the 5 bits making up the day, and YYYYYYY is the 7 bits composing
the year. Each collection of bits representing a data item is a bit field. For
example, April 2, 2001, would be represented as 4101h:

0100 00010 0000001 = 0100_0001_0000_0001b or 4101h
 4 2 01

Although packed values are space-efficient (that is, they make efficient
use of memory), they are computationally inefficient (slow!). The reason?
It takes extra instructions to unpack the data packed into the various bit
fields. These extra instructions take additional time to execute (and addi-
tional bytes to hold the instructions); hence, you must carefully consider
whether packed data fields will save you anything. The sample program in
Listing 2-4 demonstrates the effort that must go into packing and unpack-
ing this 16-bit date format.

; Listing 2-4

; Demonstrate packed data types.

 option casemap:none

NULL = 0
nl = 10 ; ASCII code for newline
maxLen = 256

; New data declaration section.
; .const holds data values for read-only constants.

 .const
ttlStr byte 'Listing 2-4', 0
moPrompt byte 'Enter current month: ', 0
dayPrompt byte 'Enter current day: ', 0
yearPrompt byte 'Enter current year '
 byte '(last 2 digits only): ', 0

packed byte 'Packed date is %04x', nl, 0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 81

theDate byte 'The date is %02d/%02d/%02d'
 byte nl, 0

badDayStr byte 'Bad day value was entered '
 byte '(expected 1-31)', nl, 0

badMonthStr byte 'Bad month value was entered '
 byte '(expected 1-12)', nl, 0
badYearStr byte 'Bad year value was entered '
 byte '(expected 00-99)', nl, 0

 .data
month byte ?
day byte ?
year byte ?
date word ?

input byte maxLen dup (?)

 .code
 externdef printf:proc
 externdef readLine:proc
 externdef atoi:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's a user-written function that reads a numeric value from the
; user:

; int readNum(char *prompt);

; A pointer to a string containing a prompt message is passed in the
; RCX register.

; This procedure prints the prompt, reads an input string from the
; user, then converts the input string to an integer and returns the
; integer value in RAX.

readNum proc

; Must set up stack properly (using this "magic" instruction) before
; we can call any C/C++ functions:

 sub rsp, 56

; Print the prompt message. Note that the prompt message was passed to
; this procedure in RCX, we're just passing it on to printf:

 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

82 Chapter 2

; Set up arguments for readLine and read a line of text from the user.
; Note that readLine returns NULL (0) in RAX if there was an error.

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Test for a bad input string:

 cmp rax, NULL
 je badInput

; Okay, good input at this point, try converting the string to an
; integer by calling atoi. The atoi function returns zero if there was
; an error, but zero is a perfectly fine return result, so we ignore
; errors.

 lea rcx, input ; Ptr to string
 call atoi ; Convert to integer

badInput:
 add rsp, 56 ; Undo stack setup
 ret
readNum endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 sub rsp, 56

; Read the date from the user. Begin by reading the month:

 lea rcx, moPrompt
 call readNum

; Verify the month is in the range 1..12:

 cmp rax, 1
 jl badMonth
 cmp rax, 12
 jg badMonth

; Good month, save it for now:

 mov month, al ;1..12 fits in a byte

; Read the day:

 lea rcx, dayPrompt
 call readNum

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 83

; We'll be lazy here and verify only that the day is in the range
; 1..31.

 cmp rax, 1
 jl badDay
 cmp rax, 31
 jg badDay

; Good day, save it for now:

 mov day, al ;1..31 fits in a byte

; Read the year:

 lea rcx, yearPrompt
 call readNum

; Verify that the year is in the range 0..99.

 cmp rax, 0
 jl badYear
 cmp rax, 99
 jg badYear

; Good year, save it for now:

 mov year, al ;0..99 fits in a byte

; Pack the data into the following bits:

; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; m m m m d d d d d y y y y y y y

 movzx ax, month
 shl ax, 5
 or al, day
 shl ax, 7
 or al, year
 mov date, ax

; Print the packed date:

 lea rcx, packed
 movzx rdx, date
 call printf

; Unpack the date and print it:

 movzx rdx, date
 mov r9, rdx
 and r9, 7fh ; Keep LO 7 bits (year)
 shr rdx, 7 ; Get day in position
 mov r8, rdx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

84 Chapter 2

 and r8, 1fh ; Keep LO 5 bits
 shr rdx, 5 ; Get month in position
 lea rcx, theDate
 call printf

 jmp allDone

; Come down here if a bad day was entered:

badDay:
 lea rcx, badDayStr
 call printf
 jmp allDone

; Come down here if a bad month was entered:

badMonth:
 lea rcx, badMonthStr
 call printf
 jmp allDone

; Come here if a bad year was entered:

badYear:
 lea rcx, badYearStr
 call printf

allDone:
 add rsp, 56
 ret ; Returns to caller
asmMain endp
 end

Listing 2-4: Packing and unpacking date data

Here’s the result of building and running this program:

C:\>build Listing2-4

C:\>echo off
 Assembling: listing2-4.asm
c.cpp

C:\> Listing2-4
Calling Listing 2-4:
Enter current month: 2
Enter current day: 4
Enter current year (last 2 digits only): 68
Packed date is 2244
The date is 02/04/68
Listing 2-4 terminated

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 85

Of course, having gone through the problems with Y2K (Year 2000),10
you know that using a date format that limits you to 100 years (or even 127
years) would be quite foolish. To future-proof the packed date format, we
can extend it to 4 bytes packed into a double-word variable, as shown in
Figure 2-19. (As you will see in Chapter 4, you should always try to create
data objects whose length is an even power of 2—1 byte, 2 bytes, 4 bytes,
8 bytes, and so on—or you will pay a performance penalty.)

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)

Figure 2-19: Long packed date format (4 bytes)

The Month and Day fields now consist of 8 bits each, so they can be
extracted as a byte object from the double word. This leaves 16 bits for the
year, with a range of 65,536 years. By rearranging the bits so the Year field is
in the HO bit positions, the Month field is in the middle bit positions, and
the Day field is in the LO bit positions, the long date format allows you to
easily compare two dates to see if one date is less than, equal to, or greater
than another date. Consider the following code:

 mov eax, Date1 ; Assume Date1 and Date2 are dword variables
 cmp eax, Date2 ; using the Long Packed Date format.
 jna d1LEd2

 Do something if Date1 > Date2

d1LEd2:

Had you kept the different date fields in separate variables, or orga-
nized the fields differently, you would not have been able to compare Date1
and Date2 as easily as for the short packed data format. Therefore, this
example demonstrates another reason for packing data even if you don’t
realize any space savings—it can make certain computations more conve-
nient or even more efficient (contrary to what normally happens when you
pack data).

Examples of practical packed data types abound. You could pack eight
Boolean values into a single byte, you could pack two BCD digits into a byte,
and so on.

A classic example of packed data is the RFLAGS register. This register
packs nine important Boolean objects (along with seven important system
flags) into a single 16-bit register. You will commonly need to access many of
these flags. You can test many of the condition code flags by using the con-
ditional jump instructions and manipulate the individual bits in the FLAGS
register with the instructions in Table 2-12 that directly affect certain flags.

10. If you’re too young to remember this fiasco, programmers in the middle to late 1900s
used to encode only the last two digits of the year in their dates. When the year 2000
rolled around, the programs were incapable of distinguishing dates like 2019 and 1919.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

86 Chapter 2

Table 2-12: Instructions That Affect Certain Flags

Instruction Explanation

cld Clears (sets to 0) the direction flag.

std Sets (to 1) the direction flag.

cli Clears the interrupt disable flag.

sti Sets the interrupt disable flag.

clc Clears the carry flag.

stc Sets the carry flag.

cmc Complements (inverts) the carry flag.

sahf Stores the AH register into the LO 8 bits of the FLAGS register. (Warning:
certain early x86-64 CPUs do not support this instruction.)

lahf Loads AH from the LO 8 bits of the FLAGS register. (Warning: certain
early x86-64 CPUs do not support this instruction.)

The lahf and sahf instructions provide a convenient way to access the
LO 8 bits of the FLAGS register as an 8-bit byte (rather than as eight sepa-
rate 1-bit values). See Figure 2-20 for a layout of the FLAGS register.

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary carry

Parity

Carry

Reserved
for system
purposes

Figure 2-20: FLAGS register as packed Boolean data

The lahf (load AH with the LO eight bits of the FLAGS register) and the sahf
(store AH into the LO byte of the RFLAGS register) use the following syntax:

 lahf
 sahf

 2.13 IEEE Floating-Point Formats
When Intel planned to introduce a floating-point unit (the 8087 FPU)
for its new 8086 microprocessor, it hired the best numerical analyst it
could find to design a floating-point format. That person then hired two
other experts in the field, and the three of them (William Kahan, Jerome
Coonen, and Harold Stone) designed Intel’s floating-point format. They

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 87

did such a good job designing the KCS Floating-Point Standard that the
Institute of Electrical and Electronics Engineers (IEEE) adopted this for-
mat for its floating-point format.11

To handle a wide range of performance and accuracy requirements,
Intel actually introduced three floating-point formats: single-precision, double-
precision, and extended-precision. The single- and double-precision formats
corresponded to C’s float and double types or FORTRAN’s real and double-
precision types. The extended-precision format contains 16 extra bits that
long chains of computations could use as guard bits before rounding down to
a double-precision value when storing the result.

2.13.1 Single-Precision Format
The single-precision format uses a one’s complement 24-bit mantissa, an 8-bit
excess-127 exponent, and a single sign bit. The mantissa usually represents
a value from 1.0 to just under 2.0. The HO bit of the mantissa is always
assumed to be 1 and represents a value just to the left of the binary point.12
The remaining 23 mantissa bits appear to the right of the binary point.
Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Note that
because the HO bit of the mantissa is always 1, the single-precision format
doesn’t actually store this bit within the 32 bits of the floating-point num-
ber. This is known as an implied bit.

Because we are working with binary numbers, each position to the right
of the binary point represents a value (0 or 1) times a successive negative
power of 2. The implied 1 bit is always multiplied by 20, which is 1. This is
why the mantissa is always greater than or equal to 1. Even if the other man-
tissa bits are all 0, the implied 1 bit always gives us the value 1.13 Of course,
even if we had an almost infinite number of 1 bits after the binary point,
they still would not add up to 2. This is why the mantissa can represent val-
ues in the range 1 to just under 2.

Although there is an infinite number of values between 1 and 2, we can
represent only 8 million of them because we use a 23-bit mantissa (with
the implied 24th bit always 1). This is the reason for inaccuracy in floating-
point arithmetic—we are limited to a fixed number of bits in computations
involving single-precision floating-point values.

The mantissa uses a one’s complement format rather than two’s comple-
ment to represent signed values. The 24-bit value of the mantissa is simply

11. Minor changes were made to the way certain degenerate operations were handled, but the
bit representation remained essentially unchanged.

12. The binary point is the same thing as the decimal point except it appears in binary numbers
rather than decimal numbers.

13. This isn’t necessarily true. The IEEE floating-point format supports denormalized values
where the HO bit is not 0. However, we will ignore denormalized values in our discussion.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

88 Chapter 2

an unsigned binary number, and the sign bit determines whether that value
is positive or negative. One’s complement numbers have the unusual prop-
erty that there are two representations for 0 (with the sign bit set or clear).
Generally, this is important only to the person designing the floating-point
software or hardware system. We will assume that the value 0 always has the
sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the expo-
nent portion of the floating-point format comes into play. The floating-
point format raises 2 to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is 8 bits and is stored
in an excess-127 format. In excess-127 format, the exponent 0 is represented
by the value 127 (7Fh), negative exponents are values in the range 0 to
126, and positive exponents are values in the range 128 to 255. To convert
an exponent to excess-127 format, add 127 to the exponent value. The use
of excess-127 format makes it easier to compare floating-point values. The
single-precision floating-point format takes the form shown in Figure 2-21.

31 24 16 8 071523

Sign
bit

Exponent bits

The 24th mantissa bit is
implied and is always 1

Mantissa bits1

Figure 2-21: Single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately six and a half (decimal)
digits of precision (half a digit of precision means that the first six digits can
all be in the range 0 to 9, but the seventh digit can be only in the range 0 to x,
where x < 9 and is generally close to 5). With an 8-bit excess-127 exponent, the
dynamic range14 of single-precision floating-point numbers is approximately
2±127, or about 10±38.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the precision and dynamic range are somewhat lim-
ited and unsuitable for many financial, scientific, and other applications.
Furthermore, during long chains of computations, the limited accuracy of
the single-precision format may introduce serious error.

2.13.2 Double-Precision Format
The double-precision format helps overcome the problems of single-precision
floating-point. Using twice the space, the double-precision format has an
11-bit excess-1023 exponent and a 53-bit mantissa (with an implied HO bit
of 1) plus a sign bit. This provides a dynamic range of about 10±308 and
14.5 digits of precision, sufficient for most applications. Double-precision
floating-point values take the form shown in Figure 2-22.

14. The dynamic range is the difference in size between the smallest and largest positive
values.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 89

63 53 8 0752

Sign
bit

Exponent bits

The 53rd mantissa bit is
implied and is always 1

Mantissa bits1

......

Figure 2-22: 64-bit double-precision floating-point format

2.13.3 Extended-Precision Format
To ensure accuracy during long chains of computations involving double-
precision floating-point numbers, Intel designed the extended-precision format. It
uses 80 bits. Twelve of the additional 16 bits are appended to the mantissa, and
4 of the additional bits are appended to the end of the exponent. Unlike the
single- and double-precision values, the extended-precision format’s mantissa
does not have an implied HO bit. Therefore, the extended-precision format
provides a 64-bit mantissa, a 15-bit excess-16383 exponent, and a 1-bit sign.
Figure 2-23 shows the format for the extended-precision floating-point value.

79 65 8 0764

Sign
bit

Exponent bits Mantissa bits

......

Figure 2-23: 80-bit extended-precision floating-point format

On the x86-64 FPU, all computations are done using the extended-
precision format. Whenever you load a single- or double-precision value,
the FPU automatically converts it to an extended-precision value. Likewise,
when you store a single- or double-precision value to memory, the FPU
automatically rounds the value down to the appropriate size before storing
it. By always working with the extended-precision format, Intel guarantees
that a large number of guard bits are present to ensure the accuracy of your
computations.

2.13.4 Normalized Floating-Point Values
To maintain maximum precision during computation, most computations
use normalized values. A normalized floating-point value is one whose HO
mantissa bit contains 1. Almost any non-normalized value can be normal-
ized: shift the mantissa bits to the left and decrement the exponent until a 1
appears in the HO bit of the mantissa.

Remember, the exponent is a binary exponent. Each time you incre-
ment the exponent, you multiply the floating-point value by 2. Likewise,
whenever you decrement the exponent, you divide the floating-point value
by 2. By the same token, shifting the mantissa to the left one bit position
multiplies the floating-point value by 2; likewise, shifting the mantissa to the
right divides the floating-point value by 2. Therefore, shifting the mantissa

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

90 Chapter 2

to the left one position and decrementing the exponent does not change the
value of the floating-point number at all.

Keeping floating-point numbers normalized is beneficial because it
maintains the maximum number of bits of precision for a computation. If
the HO n bits of the mantissa are all 0, the mantissa has that many fewer
bits of precision available for computation. Therefore, a floating-point
computation will be more accurate if it involves only normalized values.

In two important cases, a floating-point number cannot be normal-
ized. Zero is one of these special cases. Obviously, it cannot be normalized
because the floating-point representation for 0 has no 1 bits in the man-
tissa. This, however, is not a problem because we can exactly represent the
value 0 with only a single bit.

In the second case, we have some HO bits in the mantissa that are 0, but
the biased exponent is also 0 (and we cannot decrement it to normalize the
mantissa). Rather than disallow certain small values, whose HO mantissa
bits and biased exponent are 0 (the most negative exponent possible), the
IEEE standard allows special denormalized values to represent these smaller
values.15 Although the use of denormalized values allows IEEE floating-point
computations to produce better results than if underflow occurred, keep in
mind that denormalized values offer fewer bits of precision.

2.13.5 Non-Numeric Values
The IEEE floating-point standard recognizes three special non-numeric
values: –infinity, +infinity, and a special not-a-number (NaN). For each of
these special numbers, the exponent field is filled with all 1 bits.

If the exponent is all 1 bits and the mantissa is all 0 bits, then the value
is infinity. The sign bit will be 0 for +infinity, and 1 for –infinity.

If the exponent is all 1 bits and the mantissa is not all 0 bits, then the
value is an invalid number (known as a not-a-number in IEEE 754 terminol-
ogy). NaNs represent illegal operations, such as trying to take the square
root of a negative number.

Unordered comparisons occur whenever either operand (or both) is a
NaN. As NaNs have an indeterminate value, they cannot be compared (that
is, they are incomparable). Any attempt to perform an unordered comparison
typically results in an exception or some sort of error. Ordered comparisons,
on the other hand, involve two operands, neither of which are NaNs.

2.13.6 MASM Support for Floating-Point Values
MASM provides several data types to support the use of floating-point data
in your assembly language programs. MASM floating-point constants allow
the following syntax:

•	 An optional + or - symbol, denoting the sign of the mantissa (if this is
not present, MASM assumes that the mantissa is positive)

•	 Followed by one or more decimal digits

15. The alternative would be to underflow the values to 0.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 91

•	 Followed by a decimal point and zero or more decimal digits

•	 Optionally followed by an e or E, optionally followed by a sign (+ or -)
and one or more decimal digits

The decimal point or the e/E must be present in order to differenti-
ate this value from an integer or unsigned literal constant. Here are some
examples of legal literal floating-point constants:

1.234 3.75e2 -1.0 1.1e-1 1.e+4 0.1 -123.456e+789 +25.0e0 1.e3

A floating-point literal constant must begin with a decimal digit, so you
must use, for example, 0.1 to represent .1 in your programs.

To declare a floating-point variable, you use the real4, real8, or real10
data types. The number at the end of these data type declarations specifies
the number of bytes used for each type’s binary representation. Therefore,
you use real4 to declare single-precision real values, real8 to declare double-
precision floating-point values, and real10 to declare extended-precision
floating-point values. Aside from using these types to declare floating-point
variables rather than integers, their use is nearly identical to that of byte,
word, dword, and so on. The following examples demonstrate these declara-
tions and their syntax:

 .data

fltVar1 real4 ?
fltVar1a real4 2.7
pi real4 3.14159
DblVar real8 ?
DblVar2 real8 1.23456789e+10
XPVar real10 ?
XPVar2 real10 -1.0e-104

As usual, this book uses the C/C++ printf() function to print floating-
point values to the console output. Certainly, an assembly language routine
could be written to do this same thing, but the C Standard Library provides
a convenient way to avoid writing that (complex) code, at least for the time
being.

N O T E Floating-point arithmetic is different from integer arithmetic; you cannot use the
x86-64 add and sub instructions to operate on floating-point values. Floating-point
arithmetic is covered in Chapter 6.

 2.14 Binary-Coded Decimal Representation
Although the integer and floating-point formats cover most of the numeric
needs of an average program, in some special cases other numeric rep-
resentations are convenient. In this section, we’ll discuss the binary-coded
decimal (BCD) format because the x86-64 CPU provides a small amount of
hardware support for this data representation.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

92 Chapter 2

BCD values are a sequence of nibbles, with each nibble representing a
value in the range 0 to 9. With a single byte, we can represent values con-
taining two decimal digits, or values in the range 0 to 99 (see Figure 2-24).

7 6 5 4 3 2 1 0

HO nibble
(HO digits 0–9)

LO nibble
(LO digits 0–9)

Figure 2-24: BCD data representation in memory

As you can see, BCD storage isn’t particularly memory efficient. For
example, an 8-bit BCD variable can represent values in the range 0 to 99,
while that same 8 bits, when holding a binary value, can represent values
in the range 0 to 255. Likewise, a 16-bit binary value can represent values
in the range 0 to 65,535, while a 16-bit BCD value can represent only about
one-sixth of those values (0 to 9999).

However, it’s easy to convert BCD values between the internal numeric
representation and their string representation, and to encode multi-digit
decimal values in hardware (for example, using a thumb wheel or dial)
using BCD. For these two reasons, you’re likely to see people using BCD in
embedded systems (such as toaster ovens, alarm clocks, and nuclear reac-
tors) but rarely in general-purpose computer software.

The Intel x86-64 floating-point unit supports a pair of instructions
for loading and storing BCD values. Internally, however, the FPU converts
these BCD values to binary and performs all calculations in binary. It uses
BCD only as an external data format (external to the FPU, that is). This
generally produces more-accurate results and requires far less silicon than
having a separate coprocessor that supports decimal arithmetic.

 2.15 Characters
Perhaps the most important data type on a personal computer is the
character data type. The term character refers to a human or machine-
readable symbol that is typically a non-numeric entity, specifically any
symbol that you can normally type on a keyboard (including some sym-
bols that may require multiple keypresses to produce) or display on a
video display. Letters (alphabetic characters), punctuation symbols, numeric
digits, spaces, tabs, carriage returns (ENTER), other control characters,
and other special symbols are all characters.

N O T E Numeric characters are distinct from numbers: the character '1' is different from
the value 1. The computer (generally) uses two different internal representations for
numeric characters ('0', '1', . . . , '9') versus the numeric values 0 to 9.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 93

Most computer systems use a 1- or 2-byte sequence to encode the vari-
ous characters in binary form. Windows, macOS, FreeBSD, and Linux use
either the ASCII or Unicode encodings for characters. This section dis-
cusses the ASCII and Unicode character sets and the character declaration
facilities that MASM provides.

2.15.1 The ASCII Character Encoding
The American Standard Code for Information Interchange (ASCII) character set maps
128 textual characters to the unsigned integer values 0 to 127 (0 to 7Fh).
Although the exact mapping of characters to numeric values is arbitrary
and unimportant, using a standardized code for this mapping is important
because when you communicate with other programs and peripheral devices,
you all need to speak the same “language.” ASCII is a standardized code
that nearly everyone has agreed on: if you use the ASCII code 65 to represent
the character A, then you know that a peripheral device (such as a printer)
will correctly interpret this value as the character A whenever you transmit
data to that device.

Despite some major shortcomings, ASCII data has become the stan-
dard for data interchange across computer systems and programs.16 Most
programs can accept ASCII data; likewise, most programs can produce
ASCII data. Because you will be dealing with ASCII characters in assem-
bly language, it would be wise to study the layout of the character set and
memorize a few key ASCII codes (for example, for 0, A, a, and so on). See
Appendix A for a list of all the ASCII character codes.

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes 0 to 1Fh (31), form a special set of non-
printing characters, the control characters. We call them control characters
because they perform various printer/display control operations rather than
display symbols. Examples include carriage return, which positions the cursor
to the left side of the current line of characters;17 line feed, which moves the
cursor down one line on the output device; and backspace, which moves
the cursor back one position to the left.

Unfortunately, different control characters perform different opera-
tions on different output devices. Little standardization exists among
output devices. To find out exactly how a control character affects a par-
ticular device, you will need to consult its manual.

The second group of 32 ASCII character codes contains various punctua-
tion symbols, special characters, and the numeric digits. The most notable
characters in this group include the space character (ASCII code 20h) and
the numeric digits (ASCII codes 30h to 39h).

16. Today, Unicode (especially the UTF-8 encoding) is rapidly replacing ASCII because the
ASCII character set is insufficient for handling international alphabets and other special
characters.

17. Historically, carriage return refers to the paper carriage used on typewriters: physically
moving the carriage all the way to the right enabled the next character typed to appear at
the left side of the paper.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

94 Chapter 2

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A to Z lie in the range
41h to 5Ah (65 to 90). Because there are only 26 alphabetic characters, the
remaining 6 codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes represents
the lowercase alphabetic symbols, 5 additional special symbols, and another
control character (delete). The lowercase character symbols use the ASCII
codes 61h to 7Ah. If you convert the codes for the upper- and lowercase
characters to binary, you will notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example, con-
sider the character codes for E and e appearing in Figure 2-25.

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e
7 6 5 4 3 2 1 0

Figure 2-25: ASCII codes for E and e

The only place these two codes differ is in bit 5. Uppercase characters
always contain a 0 in bit 5; lowercase alphabetic characters always contain
a 1 in bit 5. You can use this fact to quickly convert between upper- and
lowercase. If you have an uppercase character, you can force it to lower-
case by setting bit 5 to 1. If you have a lowercase character, you can force it
to uppercase by setting bit 5 to 0. You can toggle an alphabetic character
between upper- and lowercase by simply inverting bit 5.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII
character set you’re in, as Table 2-13 shows.

Table 2-13: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation

1 0 Uppercase and special

1 1 Lowercase and special

So you could, for instance, convert any upper- or lowercase (or corre-
sponding special) character to its equivalent control character by setting
bits 5 and 6 to 0.

Consider, for a moment, the ASCII codes of the numeric digit charac-
ters appearing in Table 2-14.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 95

Table 2-14: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

0 48 30h

1 49 31h

2 50 32h

3 51 33h

4 52 34h

5 53 35h

6 54 36h

7 55 37h

8 56 38h

9 57 39h

The LO nibble of the ASCII code is the binary equivalent of the repre-
sented number. By stripping away (that is, setting to 0) the HO nibble of a
numeric character, you can convert that character code to the correspond-
ing binary representation. Conversely, you can convert a binary value in the
range 0 to 9 to its ASCII character representation by simply setting the HO
nibble to 3. You can use the logical AND operation to force the HO bits
to 0; likewise, you can use the logical OR operation to force the HO
bits to 0011b (3).

Unfortunately, you cannot convert a string of numeric characters to
their equivalent binary representation by simply stripping the HO nibble
from each digit in the string. Converting 123 (31h 32h 33h) in this fashion
yields 3 bytes, 010203h, but the correct value for 123 is 7Bh. The conversion
described in the preceding paragraph works only for single digits.

2.15.2 MASM Support for ASCII Characters
MASM provides support for character variables and literals in your assembly
language programs. Character literal constants in MASM take one of two
forms: a single character surrounded by apostrophes or a single character
surrounded by quotes, as follows:

'A' "A"

Both forms represent the same character (A).
If you wish to represent an apostrophe or a quote within a string, use

the other character as the string delimiter. For example:

'A "quotation" appears within this string'
"Can't have quotes in this string"

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

96 Chapter 2

Unlike the C/C++ language, MASM doesn’t use different delimiters
for single-character objects versus string objects, or differentiate between a
character constant and a string constant with a single character. A character
literal constant has a single character between the quotes (or apostrophes);
a string literal has multiple characters between the delimiters.

To declare a character variable in a MASM program, you use the byte
data type. For example, the following declaration demonstrates how to
declare a variable named UserInput:

 .data
UserInput byte ?

This declaration reserves 1 byte of storage that you could use to store
any character value (including 8-bit extended ASCII/ANSI characters). You
can also initialize character variables as follows:

 .data
TheCharA byte 'A'
ExtendedChar byte 128 ; Character code greater than 7Fh

Because character variables are 8-bit objects, you can manipulate them
using 8-bit registers. You can move character variables into 8-bit registers,
and you can store the value of an 8-bit register into a character variable.

 2.16 The Unicode Character Set
The problem with ASCII is that it supports only 128 character codes. Even
if you extend the definition to 8 bits (as IBM did on the original PC), you’re
limited to 256 characters. This is way too small for modern multinational/
multilingual applications. Back in the 1990s, several companies developed
an extension to ASCII, known as Unicode, using a 2-byte character size.
Therefore, (the original) Unicode supported up to 65,536 character codes.

Alas, as well-thought-out as the original Unicode standard could be,
systems engineers discovered that even 65,536 symbols were insufficient.
Today, Unicode defines 1,112,064 possible characters, encoded using a
variable-length character format.

2.16.1 Unicode Code Points
A Unicode code point is an integer value that Unicode associates with a
particular character symbol. The convention for Unicode code points is to
specify the value in hexadecimal with a preceding U+ prefix; for example,
U+0041 is the Unicode code point for the A character (41h is also the ASCII
code for A; Unicode code points in the range U+0000 to U+007F corre-
spond to the ASCII character set).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 97

2.16.2 Unicode Code Planes
The Unicode standard defines code points in the range U+000000 to
U+10FFFF (10FFFFh is 1,114,111, which is where most of the 1,112,064 char-
acters in the Unicode character set come from; the remaining 2047 code
points are reserved for use as surrogates, which are Unicode extensions).18
The Unicode standard breaks this range up into 17 multilingual planes, each
supporting up to 65,536 code points. The HO two hexadecimal digits of the
six-digit code point value specify the multilingual plane, and the remaining
four digits specify the character within the plane.

The first multilingual plane, U+000000 to U+00FFFF, roughly corre-
sponds to the original 16-bit Unicode definition; the Unicode standard calls
this the Basic Multilingual Plane (BMP). Planes 1 (U+010000 to U+01FFFF),
2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF) are supple-
mentary (extension) planes. Unicode reserves planes 3 to 13 for future
expansion, and planes 15 and 16 for user-defined character sets.

Obviously, representing Unicode code points outside the BMP requires
more than 2 bytes. To reduce memory usage, Unicode (specifically the UTF-
16 encoding; see the next section) uses 2 bytes for the Unicode code points
in the BMP, and uses 4 bytes to represent code points outside the BMP. Within
the BMP, Unicode reserves the surrogate code points (U+D800–U+DFFF) to
specify the 16 planes after the BMP. Figure 2-26 shows the encoding.

1 1 0 1 1

Unit 1

0 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10

1 1 0 1 1 1 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Unit 2

Figure 2-26: Surrogate code point encoding for Unicode
planes 1 to 16

Note that the two words (unit 1 and unit 2) always appear together. The
unit 1 value (with HO bits 110110b) specifies the upper 10 bits (b10 to b19)
of the Unicode scalar, and the unit 2 value (with HO bits 110111b) specifies
the lower 10 bits (b0 to b9) of the Unicode scalar. Therefore, bits b16 to b19
(plus one) specify Unicode plane 1 to 16. Bits b0 to b15 specify the Unicode
scalar value within the plane.

2.16.3 Unicode Encodings
As of Unicode v2.0, the standard supports a 21-bit character space capable
of handling over a million characters (though most of the code points
remain reserved for future use). Rather than use a 3-byte (or worse, 4-byte)
encoding to allow the larger character set, Unicode, Inc., allowed different
encodings, each with its own advantages and disadvantages.

18. Unicode scalars is another term you might hear. A Unicode scalar is a value from the set of
all Unicode code points except the 2047 surrogate code points.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

98 Chapter 2

UTF-32 uses 32-bit integers to hold Unicode scalars.19 The advantage
to this scheme is that a 32-bit integer can represent every Unicode scalar
value (which requires only 21 bits). Programs that require random access
to characters in strings (without having to search for surrogate pairs) and
other constant-time operations are (mostly) possible when using UTF-32.
The obvious drawback to UTF-32 is that each Unicode scalar value requires
4 bytes of storage (twice that of the original Unicode definition and four
times that of ASCII characters).

The second encoding format the Unicode supports is UTF-16. As the
name suggests, UTF-16 uses 16-bit (unsigned) integers to represent Unicode
values. To handle scalar values greater than 0FFFFh, UTF-16 uses the surro-
gate pair scheme to represent values in the range 010000h to 10FFFFh (see the
discussion of code planes and surrogate code points in the previous section).
Because the vast majority of useful characters fit into 16 bits, most UTF-16 char-
acters require only 2 bytes. For those rare cases where surrogates are necessary,
UTF-16 requires two words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8. The
UTF-8 encoding is upward compatible from the ASCII character set. In
particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the character
contains a 0 bit). If the UTF-8 HO bit is 1, UTF-8 requires additional bytes
(1 to 3 additional bytes) to represent the Unicode code point. Table 2-15
provides the UTF-8 encoding schema.

Table 2-15: UTF-8 Encoding

Bytes
Bits for code
point

First code
point

Last code
point Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The xxx . . . bits are the Unicode code point bits. For multi-byte
sequences, byte 1 contains the HO bits, byte 2 contains the next HO bits,
and so on. For example, the 2-byte sequence 11011111b, 10000001b corre-
sponds to the Unicode scalar 0000_0111_1100_0001b (U+07C1).

 2.17 MASM Support for Unicode
Unfortunately, MASM provides almost zero support for Unicode text in a
source file. Fortunately, MASM’s macro facilities provide a way for you to
create your own Unicode support for strings in MASM. See Chapter 13 for
more details on MASM macros. I will also return to this subject in The Art

19. UTF stands for Universal Transformation Format, if you were wondering.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 99

of 64-Bit Assembly Language, Volume 2, where I will spend considerable time
describing how to force MASM to accept and process Unicode strings in
source and resource files.

 2.18 For More Information
For general information about data representation and Boolean functions,
consider reading my book Write Great Code, Volume 1, Second Edition (No
Starch Press, 2020), or a textbook on data structures and algorithms (avail-
able at any bookstore).

ASCII, EBCDIC, and Unicode are all international standards. You can
find out more about the Extended Binary Coded Decimal Interchange Code
(EBCDIC) character set families on IBM’s website (http://www.ibm.com/).
ASCII and Unicode are both International Organization for Standardization
(ISO) standards, and ISO provides reports for both character sets. Generally,
those reports cost money, but you can also find out lots of information about
the ASCII and Unicode character sets by searching for them by name on the
internet. You can also read about Unicode at http://www.unicode.org/. Write
Great Code also contains additional information on the history, use, and
encoding of the Unicode character set.

 2.19 Test Yourself

1. What does the decimal value 9384.576 represent (in terms of powers
of 10)?

2. Convert the following binary values to decimal:

a. 1010

b. 1100

c. 0111

d. 1001

e. 0011

f. 1111

3. Convert the following binary values to hexadecimal:

a. 1010

b. 1110

c. 1011

d. 1101

e. 0010

f. 1100

g. 1100_1111

h. 1001_1000_1101_0001

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

100 Chapter 2

4. Convert the following hexadecimal values to binary:

a. 12AF

b. 9BE7

c. 4A

d. 137F

e. F00D

f. BEAD

g. 4938

5. Convert the following hexadecimal values to decimal:

a. A

b. B

c. F

d. D

e. E

f. C

6. How many bits are there in a

a. Word

b. Qword

c. Oword

d. Dword

e. BCD digit

f. Byte

g. Nibble

7. How many bytes are there in a

a. Word

b. Dword

c. Qword

d. Oword

8. How different values can you represent with a

a. Nibble

b. Byte

c. Word

d. Bit

9. How many bits does it take to represent a hexadecimal digit?

10. How are the bits in a byte numbered?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 101

11. Which bit number is the LO bit of a word?

12. Which bit number is the HO bit of a dword?

13. Compute the logical AND of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

14. Compute the logical OR of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

15. Compute the logical XOR of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

16. The logical NOT operation is the same as XORing with what value?

17. Which logical operation would you use to force bits to 0 in a bit string?

18. Which logical operation would you use to force bits to 1 in a bit string?

19. Which logical operation would you use to invert all the bits in a bit
string?

20. Which logical operation would you use to invert selected bits in a bit
string?

21. Which machine instruction will invert all the bits in a register?

22. What is the two’s complement of the 8-bit value 5 (00000101b)?

23. What is the two’s complement of the signed 8-bit value –2 (11111110)?

24. Which of the following signed 8-bit values are negative?

a. 1111_1111b

b. 0111_0001b

c. 1000_0000b

d. 0000_0000b

e. 1000_0001b

f. 0000_0001b

25. Which machine instruction takes the two’s complement of a value in a
register or memory location?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

102 Chapter 2

26. Which of the following 16-bit values can be correctly sign-contracted to
8 bits?

a. 1111_1111_1111_1111

b. 1000_0000_0000_0000

c. 000_0000_0000_0001

d. 1111_1111_1111_0000

e. 1111_1111_0000_0000

f. 0000_1111_0000_1111

g. 0000_0000_1111_1111

h. 0000_0001_0000_0000

27. What machine instruction provides the equivalent of an HLL goto
statement?

28. What is the syntax for a MASM statement label?

29. What flags are the condition codes?

30. JE is a synonym for what instruction that tests a condition code?

31. JB is a synonym for what instruction that tests a condition code?

32. Which conditional jump instructions transfer control based on an
unsigned comparison?

33. Which conditional jump instructions transfer control based on a signed
comparison?

34. How does the SHL instruction affect the zero flag?

35. How does the SHL instruction affect the carry flag?

36. How does the SHL instruction affect the overflow flag?

37. How does the SHL instruction affect the sign flag?

38. How does the SHR instruction affect the zero flag?

39. How does the SHR instruction affect the carry flag?

40. How does the SHR instruction affect the overflow flag?

41. How does the SHR instruction affect the sign flag?

42. How does the SAR instruction affect the zero flag?

43. How does the SAR instruction affect the carry flag?

44. How does the SAR instruction affect the overflow flag?

45. How does the SAR instruction affect the sign flag?

46. How does the RCL instruction affect the carry flag?

47. How does the RCL instruction affect the zero flag?

48. How does the RCR instruction affect the carry flag?

49. How does the RCR instruction affect the sign flag?

50. A shift left is equivalent to what arithmetic operation?

51. A shift right is equivalent to what arithmetic operation?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Computer Data Representation and Operations 103

52. When performing a chain of floating-point addition, subtraction, mul-
tiplication, and division operations, which operations should you try to
do first?

53. How should you compare floating-point values for equality?

54. What is a normalized floating-point value?

55. How many bits does a (standard) ASCII character require?

56. What is the hexadecimal representation of the ASCII characters 0
through 9?

57. What delimiter character(s) does MASM use to define character
constants?

58. What are the three common encodings for Unicode characters?

59. What is a Unicode code point?

60. What is a Unicode code plane?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

104 Chapter

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

3
M E M O R Y A C C E S S A N D

O R G A N I Z A T I O N

Chapters 1 and 2 showed you how to declare
and access simple variables in an assem-

bly language program. This chapter fully
explains x86-64 memory access. In this chapter,

you will learn how to efficiently organize your variable
declarations to speed up access to their data. You’ll also
learn about the x86-64 stack and how to manipulate
data on it.

This chapter discusses several important concepts, including the
following:

•	 Memory organization

•	 Memory allocation by program

•	 x86-64 memory addressing modes

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

106 Chapter 3

•	 Indirect and scaled-indexed addressing modes

•	 Data type coercion

•	 The x86-64 stack

This chapter will teach to you make efficient use of your computer’s
memory resources.

 3.1 Runtime Memory Organization
A running program uses memory in many ways, depending on the data’s
type. Here are some common data classifications you’ll find in an assembly
language program:

Code

Memory values that encode machine instructions.

Uninitialized static data

An area in memory that the program sets aside for uninitialized vari-
ables that exist the whole time the program runs; Windows will initial-
ize this storage area to 0s when it loads the program into memory.

Initialized static data

A section of memory that also exists the whole time the program runs.
However, Windows loads values for all the variables appearing in this
section from the program’s executable file so they have an initial value
when the program first begins execution.

Read-only data

Similar to initialized static data insofar as Windows loads initial data
for this section of memory from the executable file. However, this sec-
tion of memory is marked read-only to prevent inadvertent modification
of the data. Programs typically store constants and other unchanging
data in this section of memory (by the way, note that the code section is
also marked read-only by the operating system).

Heap

This special section of memory is designated to hold dynamically
allocated storage. Functions such as C’s malloc() and free() are respon-
sible for allocating and deallocating storage in the heap area. “Pointer
Variables and Dynamic Memory Allocation” in Chapter 4 discusses
dynamic storage allocation in greater detail.

Stack

In this special section in memory, the program maintains local vari-
ables for procedures and functions, program state information, and
other transient data. See “The Stack Segment and the push and pop
Instructions” on page xx for more information about the stack section.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 107

These are the typical sections you will find in common programs (assem-
bly language or otherwise). Smaller programs won’t use all of these sections
(code, stack, and data sections are a good minimum number). Complex
programs may create additional sections in memory for their own purposes.
Some programs may combine several of these sections together. For example,
many programs will combine the code and read-only sections into the same
section in memory (as the data in both sections gets marked as read-only).
Some programs combine the uninitialized and initialized data sections
together (initializing the uninitialized variables to 0). Combining sections is
generally handled by the linker program. See the Microsoft linker documen-
tation for more details on combining sections.1

Windows tends to put different types of data into different sections (or
segments) of memory. Although it is possible to reconfigure memory as you
choose by running the linker and specifying various parameters, by default
Windows loads a MASM program into memory by using an organization
similar to that in Figure 3-1.2

High addresses

Adrs = $0

Stack (default size = 1MB)

Heap (default size = 1MB)

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Reserved by OS
(typically 128KB)

Figure 3-1: MASM typical runtime memory organization

Windows reserves the lowest memory addresses. Generally, your appli-
cation cannot access data (or execute instructions) at these low addresses.
One reason the operating system reserves this space is to help trap NULL
pointer references: if you attempt to access memory location 0 (NULL),
the operating system will generate a general protection fault (also known as a
segmentation fault), meaning you’ve accessed a memory location that doesn’t
contain valid data.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the .code section, the .data (static) section,

1. The Microsoft linker documentation can be accessed at https://docs.microsoft.com/en-us/cpp/
build/reference/linking?view=msvc-160/.

2. This is, of course, subject to change over time at the whims of Microsoft.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://docs.microsoft.com/en-us/cpp/build/reference/linking?view=msvc-160/
https://docs.microsoft.com/en-us/cpp/build/reference/linking?view=msvc-160/

108 Chapter 3

the .const section, and the .data? (storage) section. Each corresponds to
a type of data you can create in your MASM programs. The .code, .data,
.const, and .data? sections are described next in detail.3

3.1.1 The .code Section
The .code section contains the machine instructions that appear in a
MASM program. MASM translates each machine instruction you write
into a sequence of one or more byte values. The CPU interprets these
byte values as machine instructions during program execution.

By default, when MASM links your program, it tells the system that
your program can execute instructions and read data from the code seg-
ment but cannot write data to the code segment. The operating system will
generate a general protection fault if you attempt to store any data into the
code segment.

3.1.2 The .data Section
The .data section is where you will typically put your variables. In addition
to declaring static variables, you can also embed lists of data into the .data
declaration section. You use the same technique to embed data into your
.data section that you use to embed data into the .code section: you use
the byte, word, dword, qword, and so on, directives. Consider the following
example:

 .data
b byte 0
 byte 1,2,3

u dword 1
 dword 5,2,10;

c byte ?
 byte 'a', 'b', 'c', 'd', 'e', 'f';

bn byte ?
 byte true ; Assumes true is defined as '1'

Values that MASM places in the .data memory segment by using these
directives are written to the segment after the preceding variables. For
example, the byte values 1, 2, and 3 are emitted to the .data section after b’s
0 byte. Because there aren’t any labels associated with these values, you do
not have direct access to them in your program. You can use the indexed
addressing modes to access these extra values.

In the preceding examples, note that the c and bn variables do not
have an (explicit) initial value. However, if you don’t provide an initial

3. The OS provides the stack and heap sections; you don’t normally declare these two in an
assembly language program. Therefore, there isn’t anything more to discuss about them
here.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 109

value, MASM will initialize the variables in the .data section to 0, so
MASM assigns the NULL character (ASCII code 0) to c as its initial value.
Likewise, MASM assigns false as the initial value for bn (assuming false is
defined as 0). Variable declarations in the .data section always consume
memory, even if you haven’t assigned them an initial value.

3.1.3 The .const Section
The .const data section holds constants, tables, and other data that your
program cannot change during execution. You create read-only objects by
declaring them in the .const declaration section. The .const section is simi-
lar to the .data section, with three differences:

•	 The .const section begins with the reserved word .const rather than .data.

•	 All declarations in the .const section have an initializer.

•	 The system does not allow you to write data to variables in a .const
object while the program is running.

Here’s an example:

 .const
pi real4 3.14159
e real4 2.71
MaxU16 word 65535
MaxI16 sword 32767

All .const object declarations must have an initializer because you can-
not initialize the value under program control. For many purposes, you can
treat .const objects as literal constants. However, because they are actually
memory objects, they behave like (read-only) .data objects. You cannot use a
.const object anywhere a literal constant is allowed; for example, you cannot
use them as displacements in addressing modes (see “The x86-64 Addressing
Modes” on page xx), and you cannot use them in constant expressions. In
practice, you can use them anywhere that reading a .data variable is legal.

As with the .data section, you may embed data values in the .const sec-
tion by using the byte, word, dword, and so on, data declarations, though all
declarations must be initialized. For example:

 .const
roArray byte 0
 byte 1, 2, 3, 4, 5
qwVal qword 1
 qword 0

Note that you can also declare constant values in the .code section. Data
values you declare in this section are also read-only objects, as Windows
write-protects the .code section. If you do place constant declarations in
the .code section, you should take care to place them in a location that
the program will not attempt to execute as code (such as after a jmp or ret

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

110 Chapter 3

instruction). Unless you’re manually encoding x86 machine instructions
using data declarations (which would be rare, and done only by expert
programmers), you don’t want your program to attempt to execute data as
machine instructions; the result is usually undefined.4

3.1.4 The .data? Section
The .const section requires that you initialize all objects you declare. The
.data section lets you optionally initialize objects (or leave them uninitial-
ized, in which case they have the default initial value of 0). The .data?
section lets you declare variables that are always uninitialized when
the program begins running. The .data? section begins with the .data?
reserved word and contains variable declarations without initializers.
Here is an example:

 .data?
UninitUns32 dword ?
i sdword ?
character byte ?
b byte ?

Windows will initialize all .data? objects to 0 when it loads your pro-
gram into memory. However, it’s probably not a good idea to depend on
this implicit initialization. If you need an object initialized with 0, declare it
in a .data section and explicitly set it to 0.

Variables you declare in the .data? section may consume less disk space
in the executable file for the program. This is because MASM writes out
initial values for .const and .data objects to the executable file, but it may
use a compact representation for uninitialized variables you declare in the
.data? section; note, however, that this behavior is dependent on the OS ver-
sion and object-module format.

3.1.5 Organization of Declaration Sections Within Your Programs
The .data, .const, .data?, and .code sections may appear zero or more times
in your program. The declaration sections may appear in any order, as the
following example demonstrates:

 .data
i_static sdword 0

 .data?
i_uninit sdword ?

 .const
i_readonly dword 5

4. Technically, it is well defined: the machine will decode whatever bit pattern you place in
memory as a machine instruction. However, few people will be able to look at a piece of
data and interpret its meaning as a machine instruction.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 111

 .data
j dword ?

 .const
i2 dword 9

 .data?
c byte ?

 .data?
d dword ?

 .code

 Code goes here.

 end

The sections may appear in an arbitrary order, and a given declaration
section may appear more than once in your program. As noted previously,
when multiple declaration sections of the same type (for example, the three
.data? sections in the preceding example) appear in a declaration section
of your program, MASM combines them into a single group (in any order it
pleases).

3.1.6 Memory Access and 4K Memory Management Unit Pages
The x86-64’s memory management unit (MMU) divides memory into blocks
known as pages.5 The operating system is responsible for managing pages
in memory, so application programs don’t typically worry about page
organization. However, you should be aware of a couple of issues when
working with pages in memory: specifically, whether the CPU even allows
access to a given memory location and whether it is read/write or read-only
(write-protected).

Each program section appears in memory in contiguous MMU pages.
That is, the .const section begins at offset 0 in an MMU page and sequentially
consumes pages in memory for all the data appearing in that section. The
next section in memory (perhaps .data) begins at offset 0 in the next MMU
page following the last page of the previous section. If that previous section
(for example, .const) did not consume an integral multiple of 4096 bytes,
padding space will be present between the end of that section’s data to the
end of its last page (to guarantee that the next section begins on an MMU
page boundary).

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU
controls whether a page in memory is readable/writable or read-only. For

5. Unfortunately, early Intel documentation called 256-byte blocks pages, and some early
MMUs used 512-byte pages, so this term elicits a lot of confusion. In memory, however,
pages are always 4096-byte blocks on the x86-64.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

112 Chapter 3

.const sections, you want the memory to be read-only. For the .data section,
you want to allow reads and writes. Because the MMU can enforce these
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as a .const section.

Normally, all of this is completely transparent to your code. Data you
declare in a .data (or .data?) section is readable and writable, and data in a
.const section (and .code section) is read-only (.code sections are also execut-
able). Beyond placing data in a particular section, you don’t have to worry
too much about the page attributes.

You do have to worry about MMU page organization in memory in one
situation. Sometimes it is convenient to access (read) data beyond the end of
a data structure in memory (for legitimate reasons—see Chapter 11 on SIMD
instructions and Chapter 14 on string instructions). However, if that data
structure is aligned with the end of an MMU page, accessing the next page
in memory could be problematic. Some pages in memory are inaccessible; the
MMU does not allow reading, writing, or execution to occur on that page.

Attempting to do so will generate an x86-64 general protection (segmenta-
tion) fault and abort the normal execution of your program.6 If you have a data
access that crosses a page boundary, and the next page in memory is inacces-
sible, this will crash your program. For example, consider a word access to a
byte object at the very end of an MMU page, as shown in Figure 3-2.

Offset 0FFFh
in page xxxx

Page boundary

Word access crossing
page boundary

Offset 0FFFh
in page xxxx + 1

Figure 3-2: Word access at the end of an MMU

As a general rule, you should never read data beyond the end of a data
structure.7 If for some reason you need to do so, you should ensure that
it is legal to access the next page in memory (alas, there is no instruction
on modern x86-64 CPUs to allow this; the only way to be sure that access
is legal is to make sure there is valid data after the data structure you are
accessing).

6. This will typically crash your program unless you have an exception handler in place to
handle general protection faults.

7. It goes without saying that you should never write data beyond the end of a given data
structure; this is always incorrect and can create far more problems than just crashing your
program (including severe security issues).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 113

 3.2 How MASM Allocates Memory for Variables
MASM associates a current location counter with each of the four declaration
sections (.code, .data, .const, and .data?). These location counters initially
contain 0, and whenever you declare a variable in one of these sections (or
write code in a code section), MASM associates the current value of that
section’s location counter with the variable; MASM also bumps up the value
of that location counter by the size of the object you’re declaring. As an
example, assume that the following is the only .data declaration section in a
program:

 .data
b byte ? ; Location counter = 0, size = 1
w word ? ; Location counter = 1, size = 2
d dword ? ; Location counter = 3, size = 4
q qword ? ; Location counter = 7, size = 8
o oword ? ; Location counter = 15, size = 16
 ; Location counter is now 31.

As you can see, the variable declarations appearing in a (single) .data
section have contiguous offsets (location counter values) into the .data sec-
tion. Given the preceding declaration, w will immediately follow b in memory,
d will immediately follow w in memory, q will immediately follow d, and so
on. These offsets aren’t the actual runtime address of the variables. At
runtime, the system loads each section to a (base) address in memory. The
linker and Windows add the base address of the memory section to each of
these location counter values (which we call displacements, or offsets) to pro-
duce the actual memory address of the variables.

Keep in mind that you may link other modules with your program
(for example, from the C Standard Library) or even additional .data sec-
tions in the same source file, and the linker has to merge the .data sections
together. Each section has its own location counter that also starts from
zero when allocating storage for the variables in the section. Hence, the
offset of an individual variable may have little bearing on its final memory
address.

Remember that MASM allocates memory objects you declare in .const,
.data, and .data? sections in completely different regions of memory.
Therefore, you cannot assume that the following three memory objects
appear in adjacent memory locations (indeed, they probably will not):

 .data
b byte ?

 .const
w word 1234h

 .data?
d dword ?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

114 Chapter 3

In fact, MASM will not even guarantee that variables you declare in
separate .data (or whatever) sections are adjacent in memory, even if there
is nothing between the declarations in your code. For example, you cannot
assume that b, w, and d are in adjacent memory locations in the following
declarations, nor can you assume that they won’t be adjacent in memory:

 .data
b byte ?

 .data
w word 1234h

 .data
d dword ?

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

 3.3 The Label Declaration
The label declaration lets you declare variables in a section (.code, .data,
.const, and .data?) without allocating memory for the variable. The label
directive tells MASM to assign the current address in a declaration section
to a variable but not to allocate any storage for the object. That variable
shares the same memory address as the next object appearing in the vari-
able declaration section. Here is the syntax for the label declaration:

variableName label type

The following code sequence provides an example of using the label
declaration in the .const section:

 .const
abcd label dword
 byte 'a', 'b', 'c', 'd'

In this example, abcd is a double word whose LO byte contains 97 (the
ASCII code for 'a'), byte 1 contains 98 ('b'), byte 2 contains 99 ('c'), and
the HO byte contains 100 ('d'). MASM does not reserve storage for the abcd
variable, so MASM associates the following 4 bytes in memory (allocated by
the byte directive) with abcd.

 3.4 Little-Endian and Big-Endian Data Organization
Back in “The Memory Subsystem” in Chapter 1, this book pointed out that
the x86-64 stores multi-byte data types in memory with the LO byte at the
lowest address in memory and the HO byte at the highest address in mem-
ory (see Figure 1-5 in Chapter 1). This type of data organization in memory
is known as little endian. Little-endian data organization (in which the LO

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 115

byte comes first and the HO byte comes last) is a common memory organi-
zation shared by many modern CPUs. It is not, however, the only possible
data organization.

The big-endian data organization reverses the order of the bytes in mem-
ory. The HO byte of the data structure appears first (in the lowest memory
address), and the LO byte appears in the highest memory address. Tables 3-1,
3-2, and 3-3 describe the memory organization for words, double words, and
quad words, respectively.

Table 3-1: Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 1

1 (HO byte) base + 1 base + 0

Table 3-2: Double-Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 3

1 base + 1 base + 2

2 base + 2 base + 1

3 (HO byte) base + 3 base + 0

Table 3-3: Quad-Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 7

1 base + 1 base + 6

2 base + 2 base + 5

3 base + 3 base + 4

4 base + 4 base + 3

5 base + 5 base + 2

6 base + 6 base + 1

7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory
organization on an x86-64 CPU. However, on occasion you may need to
deal with data produced by a different CPU (or by a protocol, such as TCP/
IP, that uses big-endian organization as its canonical integer format). If you
were to load a big-endian value in memory into a CPU register, your calcu-
lations would be incorrect.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

116 Chapter 3

If you have a 16-bit big-endian value in memory and you load it into a
16-bit register, it will have its bytes swapped. For 16-bit values, you can cor-
rect this issue by using the xchg instruction. It has the following syntax:

xchg reg, reg
xchg reg, mem

where reg is any 8-, 16-, 32-, or 64-bit general-purpose register, and mem is any
appropriate memory location. The reg operands in the first instruction, or the
reg and mem operands in the second instruction, must both be the same size.

Though you can use the xchg instruction to exchange the values between
any two arbitrary (like-sized) registers, or a register and a memory location,
it is also useful for converting between (16-bit) little- and big-endian for-
mats. For example, if AX contains a big-endian value that you would like to
convert to little-endian form prior to some calculations, you can use the fol-
lowing instruction to swap the bytes in the AX register to convert the value
to little-endian form:

xchg al, ah

You can use the xchg instruction to convert between little- and big-
endian form for any of the 16-bit registers AX, BX, CX, and DX by using
the low/high register designations (AL/AH, BL/BH, CL/CH, and DL/DH).

Unfortunately, the xchg trick doesn’t work for registers other than AX,
BX, CX, and DX. To handle larger values, Intel introduced the bswap (byte
swap) instruction. As its name suggests, this instruction swaps the bytes in a
32- or 64-bit register. It swaps the HO and LO bytes, and the (HO – 1) and
(LO + 1) bytes (plus all the other bytes, in opposing pairs, for 64-bit regis-
ters). The bswap instruction works for all general-purpose 32-bit and 64-bit
registers.

 3.5 Memory Access
As you saw in “The Memory Subsystem” in Chapter 1, the x86-64 CPU
fetches data from memory on the data bus. In an idealized CPU, the data
bus is the size of the standard integer registers on the CPU; therefore, you
would expect the x86-64 CPUs to have a 64-bit data bus. In practice, mod-
ern CPUs often make the physical data bus connection to main memory
much larger in order to improve system performance. The bus brings in
large chunks of data from memory in a single operation and places that
data in the CPU’s cache, which acts as a buffer between the CPU and physi-
cal memory.

From the CPU’s point of view, the cache is memory. Therefore, when
the remainder of this section discusses memory, it’s generally talking about
data sitting in the cache. As the system transparently maps memory accesses
into the cache, we can discuss memory as though the cache were not pres-
ent and discuss the advantages of the cache as necessary.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 117

On early x86 processors, memory was arranged as an array of bytes
(8-bit machines such as the 8088), words (16-bit machines such as the 8086
and 80286), or double words (on 32-bit machines such as the 80386). On
a 16-bit machine, the LO bit of the address did not physically appear on
the address bus. So the addresses 126 and 127 put the same bit pattern
on the address bus (126, with an implicit 0 in bit position 0), as shown in
Figure 3-3.8

16-bit
CPU

Memory

Address = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-3: Address and data bus for 16-bit processors

When reading a byte, the CPU uses the LO bit of the address to select
the LO byte or HO byte on the data bus. Figure 3-4 shows the process when
accessing a byte at an even address (126 in this figure). Figure 3-5 shows
the same operation when reading a byte from an odd address (127 in this
figure). Note that in both Figures 3-4 and 3-5, the address appearing on the
address bus is 126.

16-bit
CPU

Memory

Address = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-4: Reading a byte from an even address on a 16-bit CPU

8. 32-bit processors did not put the LO 2 bits onto the address bus, so addresses 124, 125, 126,
and 127 would all have the value 124 on the address bus.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

118 Chapter 3

16-bit
CPU

Memory

Address = 126

Byte data = Memory[127]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-5: Reading a byte from an odd address on a 16-bit CPU

So, what happens when this 16-bit CPU wants to access 16 bits of data
at an odd address? For example, suppose in these figures the CPU reads
the word at address 125. When the CPU puts address 125 on the address
bus, the LO bit doesn’t physically appear. Therefore, the actual address on
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this
point, it would get the data at address 124, not address 125.

Fortunately, the CPU is smart enough to figure out what is going on
here, and extracts the data from the HO 8 bits on the address bus and uses
this as the LO 8 bits of the data operand. However, the HO 8 bits that the
CPU needs are not found on the data bus. The CPU has to initiate a second
read operation, placing address 126 on the address bus, to get the HO 8 bits
(which will be sitting in the LO 8 bits of the data bus, but the CPU can
figure that out). The bottom line is that it takes two memory cycles for this
read operation to complete. Therefore, the instruction reading the data
from memory will take longer to execute than had the data been read from
an address that was an integral multiple of two.

The same problem exists on 32-bit processors, except the 32-bit data
bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value at an
address that is not an integral multiple of four incurs the same perfor-
mance penalty. Note, however, that accessing a 16-bit operand at an odd
address doesn’t always guarantee an extra memory cycle—only addresses
whose remainder when divided by four is 3 incur the penalty. In particular,
if you access a 16-bit value (on a 32-bit bus) at an address where the LO 2
bits contain 01b, the CPU can read the word in a single memory cycle, as
shown in Figure 3-6.

Modern x86-64 CPUs, with cache systems, have largely eliminated this
problem. As long as the data (1, 2, 4, 8, or 10 bytes in size) is fully within a
cache line, there is no memory cycle penalty for an unaligned access. If the
access does cross a cache line boundary, the CPU will run a bit slower while
it executes two memory operations to get (or store) the data.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 119

32-bit
CPU

Memory

Address = 124

32-bit data bus
Word data = Memory[125]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-6: Accessing a word on a 32-bit data bus

 3.6 MASM Support for Data Alignment
To write fast programs, you need to ensure that you properly align data
objects in memory. Proper alignment means that the starting address for
an object is a multiple of a certain size, usually the size of an object if the
object’s size is a power of two for values up to 32 bytes in length. For objects
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address
boundary is probably sufficient. For objects fewer than 16 bytes, aligning the
object at an address that is the next power of two greater than the object’s
size is usually fine. Accessing data that is not aligned at an appropriate
address may require extra time (as noted in the previous section); so, if you
want to ensure that your program runs as rapidly as possible, you should try
to align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare
a byte variable, it will consume 1 byte of storage, and the next variable
you declare in that declaration section will have the address of that byte
object plus 1. If the byte variable’s address happens to be an even address,
the variable following that byte will start at an odd address. If that follow-
ing variable is a word or double-word object, its starting address will not
be optimal. In this section, we’ll explore ways to ensure that a variable is
aligned at an appropriate starting address based on that object’s size.

Consider the following MASM variable declarations:

 .data
dw dword ?
b byte ?
w word ?
dw2 dword ?
w2 word ?
b2 byte ?
dw3 dword ?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

120 Chapter 3

The first .data declaration in a program (running under Windows)
places its variables at an address that is an even multiple of 4096 bytes.
Whatever variable first appears in that .data declaration is guaranteed to be
aligned on a reasonable address. Each successive variable is allocated at an
address that is the sum of the sizes of all the preceding variables plus the
starting address of that .data section. Therefore, assuming MASM allocates
the variables in the previous example at a starting address of 4096, MASM
will allocate them at the following addresses:

 ; Start Adrs Length
dw dword ? ; 4096 4
b byte ? ; 4100 1
w word ? ; 4101 2
dw2 dword ? ; 4103 4
w2 word ? ; 4107 2
b2 byte ? ; 4109 1
dw3 dword ? ; 4110 4

With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
of these variables are misaligned. The w, w2, and dw2 variables start at odd
addresses, and the dw3 variable is aligned on an even address that is not a
multiple of four.

An easy way to guarantee that your variables are aligned properly is to
put all the double-word variables first, the word variables second, and the
byte variables last in the declaration, as shown here:

 .data
dw dword ?
dw2 dword ?
dw3 dword ?
w word ?
w2 word ?
b byte ?
b2 byte ?

This organization produces the following addresses in memory:

 ; Start Adrs Length
dw: dword ? ; 4096 4
dw2: dword ? ; 4100 4
dw3: dword ? ; 4104 4
w: word ? ; 4108 2
w2: word ? ; 4110 2
b: byte ? ; 4112 1
b2: byte ? ; 4113 1

As you can see, these variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in this

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 121

manner. While many technical reasons make this alignment impossible, a
good practical reason for not doing this is that it doesn’t let you organize
your variable declarations by logical function (that is, you probably want to
keep related variables next to one another regardless of their size).

To resolve this problem, MASM provides the align directive, which uses
the following syntax:

align integer_constant

The integer constant must be one of the following small unsigned
integer values: 1, 2, 4, 8, or 16. If MASM encounters the align directive in
a .data section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example
could be rewritten, using the align directive, as follows:

 .data
 align 4
dw dword ?
b byte ?
 align 2
w word ?
 align 4
dw2 dword ?
w2 word ?
b2 byte ?
 align 4
dw3 dword ?

If MASM determines that the current address (location counter value)
of an align directive is not an integral multiple of the specified value, MASM
will quietly emit extra bytes of padding after the previous variable declaration
until the current address in the .data section is a multiple of the specified
value. This makes your program slightly larger (by a few bytes) in exchange
for faster access to your data. Given that your program will grow by only a few
bytes when you use this feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, you should
choose an alignment value that is equal to the size of the object you want
to align. That is, you should align words to even boundaries by using an
align 2 statement, double words to 4-byte boundaries by using align 4, quad
words to 8-byte boundaries by using align 8, and so on. If the object’s size is
not a power of two, align it to the next higher power of two (up to a maxi-
mum of 16 bytes). Note, however, that you need only align real80 (and tbyte)
objects on an 8-byte boundary.

Note that data alignment isn’t always necessary. The cache architecture
of modern x86-64 CPUs actually handles most misaligned data. Therefore,
you should use the alignment directives only with variables for which speedy
access is absolutely critical. This is a reasonable space/speed trade-off.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

122 Chapter 3

 3.7 The x86-64 Addressing Modes
Until now, you’ve seen only a single way to access a variable: the PC-relative
addressing mode. In this section, you’ll see additional ways your programs
can access memory by using x86-64 memory addressing modes. An address-
ing mode is a mechanism the CPU uses to determine the address of a mem-
ory location an instruction will access.

The x86-64 memory addressing modes provide flexible access to mem-
ory, allowing you to easily access variables, arrays, records, pointers, and
other complex data types. Mastery of the x86-64 addressing modes is the
first step toward mastering x86-64 assembly language.

The x86-64 provides several addressing modes:

•	 Register addressing modes

•	 PC-relative memory addressing modes

•	 Register-indirect addressing modes: [reg64]

•	 Indirect-plus-offset addressing modes: [reg64 + expression]

•	 Scaled-indexed addressing modes: [reg64 + reg64 * scale] and [reg64
+ expression + reg64 * scale]

The following sections describe each of these modes.

3.7.1 x86-64 Register Addressing Modes
The register addressing modes provide access to the x86-64’s general-purpose
register set. By specifying the name of the register as an operand to the
instruction, you can access the contents of that register. This section uses
the x86-64 mov (move) instruction to demonstrate the register addressing
mode. The generic syntax for the mov instruction is shown here:

mov destination, source

The mov instruction copies the data from the source operand to the
destination operand. The 8-, 16-, 32-, and 64-bit registers are all valid
operands for this instruction. The only restriction is that both operands
must be the same size. The following mov instructions demonstrate the
use of various registers:

mov ax, bx ; Copies the value from BX into AX
mov dl, al ; Copies the value from AL into DL
mov esi, edx ; Copies the value from EDX into ESI
mov rsp, rbp ; Copies the value from RBP into RSP
mov ch, cl ; Copies the value from CL into DH
mov ax, ax ; Yes, this is legal! (Though not very useful)

The registers are the best place to keep variables. Instructions using the
registers are shorter and faster than those that access memory. Because most
computations require at least one register operand, the register addressing
mode is popular in x86-64 assembly code.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 123

3.7.2 x86-64 64-Bit Memory Addressing Modes
The addressing modes provided by the x86-64 family include PC-relative,
register-indirect, indirect-plus-offset, and scaled-indexed. Variations on
these four forms provide all the addressing modes on the x86-64.

3.7.2.1 The PC-Relative Addressing Mode

The most common addressing mode, and the one that’s easiest to under-
stand, is the PC-relative (or RIP-relative) addressing mode. This mode
consists of a 32-bit constant that the CPU adds with the current value of
the RIP (instruction pointer) register to specify the address of the target
location.

The syntax for the PC-relative addressing mode is to use the name of a
symbol you declare in one of the many MASM sections (.data, .data?, .const,
.code, etc.), as this book has been doing all along:

mov al, symbol ; PC-relative addressing mode automatically provides [RIP]

Assuming that variable j is an int8 variable appearing at offset 8088h
from RIP, the instruction mov al, j loads the AL register with a copy of
the byte at memory location RIP + 8088h. Likewise, if int8 variable K is at
address RIP + 1234h in memory, then the instruction mov K, dl stores the
value in the DL register to memory location RIP + 1234h (see Figure 3-7).

AL RIP + 8088h (address of j)

RIP + 1234h (address of K)

mov al, j

mov K, dl

DL

Figure 3-7: PC-relative addressing mode

MASM does not directly encode the address of j or K into the instruction’s
operation code (or opcode, the numeric machine encoding of the instruction).
Instead, it encodes a signed displacement from the end of the current instruc-
tion’s address to the variable’s address in memory. For example, if the next
instruction’s opcode is sitting in memory at location 8000h (the end of the
current instruction), then MASM will encode the value 88h as a 32-bit signed
constant for j in the instruction opcode.

You can also access words and double words on the x86-64 processors
by specifying the address of their first byte (see Figure 3-8).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

124 Chapter 3

AX RIP + 1235h
RIP + 1234 (address of K)

RIP + 1003h
RIP + 1002h
RIP + 1001h
RIP + 1000h (address of M)

mov ax, K

EDX

mov M, edx

Figure 3-8: Accessing a word or dword by using the PC-relative addressing mode

3.7.2.2 The Register-Indirect Addressing Modes

The x86-64 CPUs let you access memory indirectly through a register by
using the register-indirect addressing modes. The term indirect means that the
operand is not the actual address, but the operand’s value specifies the mem-
ory address to use. In the case of the register-indirect addressing modes, the
value held in the register is the address of the memory location to access. For
example, the instruction mov [rbx], eax tells the CPU to store EAX’s value at
the location whose address is currently in RBX (the square brackets around
RBX tell MASM to use the register-indirect addressing mode).

The x86-64 has 16 forms of this addressing mode. The following
instructions provide examples of these 16 forms:

mov [reg64], al

where reg64 is one of the 64-bit general-purpose registers: RAX, RBX, RCX,
RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, or R15. This
addressing mode references the memory location at the offset found in the
register enclosed by brackets.

The register-indirect addressing modes require a 64-bit register. You
cannot specify a 32-, 16-, or 8-bit register in the square brackets when using
an indirect addressing mode. Technically, you could load a 64-bit register
with an arbitrary numeric value and access that location indirectly using
the register-indirect addressing mode:

mov rbx, 12345678
mov [rbx], al ; Attempts to access location 12345678

Unfortunately (or fortunately, depending on how you look at it), this will
probably cause the operating system to generate a protection fault because
it’s not always legal to access arbitrary memory locations. As it turns out,
there are better ways to load the address of an object into a register, and
you’ll see those shortly.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 125

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, you can use them to step through array data, and, in
general, you can use them whenever you need to modify the address of a
variable while your program is running.

The register-indirect addressing mode provides an example of an anon-
ymous variable; when using a register-indirect addressing mode, you refer to
the value of a variable by its numeric memory address (the value you load
into a register) rather than by the name of the variable.

MASM provides a simple instruction that you can use to take the
address of a variable and put it into a 64-bit register, the lea (load effective
address) instruction:

lea rbx, j

After executing this lea instruction, you can use the [rbx] register-indirect
addressing mode to indirectly access the value of j.

3.7.2.3 Indirect-Plus-Offset Addressing Mode

The indirect-plus-offset addressing modes compute an effective address by add-
ing a 32-bit signed constant to the value of a 64-bit register.9 The instruction
then uses the data at this effective address in memory.

The indirect-plus-offset addressing modes use the following syntax:

mov [reg64 + constant], source
mov [reg64 - constant], source

where reg64 is a 64-bit general-purpose register, constant is a 4-byte constant
(±2 billion), and source is a register or constant value.

If constant is 1100h and RBX contains 12345678h, then

mov [rbx + 1100h], al

stores AL into the byte at address 12346778h in memory (see Figure 3-9).

RBX: 12345678h 12345678h (RBX points here)

12346778h

AL
mov al, [rbx + 1100h]

+ 1100h

Figure 3-9: Indirect-plus-offset addressing mode

9. The effective address is the ultimate address in memory that an instruction will access, once
all the address calculations are complete.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

126 Chapter 3

The indirect-plus-offset addressing modes are really handy for access-
ing fields of classes and records/structures. You will see how to use these
addressing modes for that purpose in Chapter 4.

3.7.2.4 Scaled-Indexed Addressing Modes

The scaled-indexed addressing modes are similar to the indexed addressing
modes, except the scaled-indexed addressing modes allow you to combine
two registers plus a displacement, and multiply the index register by a (scal-
ing) factor of 1, 2, 4, or 8 to compute the effective address by adding in the
value of the second register multiplied by the scaling factor. (Figure 3-10
shows an example involving RBX as the base register and RSI as the index
register.)

The syntax for the scaled-indexed addressing modes is shown here:

[BaseReg64 + IndexReg64*scale]
[BaseReg64 + IndexReg64*scale + displacement]
[BaseReg64 + IndexReg64*scale - displacement]

BaseReg64 represents any general-purpose 64-bit register, IndexReg64 rep-
resents any general-purpose 64-bit register except RSP, and scale must be
one of the constants 1, 2, 4, or 8.

RBX

+ RSI*scale

+ const

AL

mov al, [rbx + rsi*scale + const]

Figure 3-10: Scaled-indexed addressing mode

In Figure 3-10, suppose that RBX contains 1000ff00h, RSI contains
20h, and const is 2000h; then the instruction

mov al, [rbx + rsi*4 + 2000h]

will move the byte at address 10011f80h—1000ff00h + (20h × 4) + 2000—
into the AL register.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 127

The scaled-indexed addressing modes are useful for accessing array ele-
ments that are 2, 4, or 8 bytes each. These addressing modes are also useful
for accessing elements of an array when you have a pointer to the beginning
of the array.

3.7.3 Large Address Unaware Applications
One advantage of 64-bit addresses is that they can access a frightfully large
amount of memory (something like 8TB under Windows). By default, the
Microsoft linker (when it links together the C++ and assembly language
code) sets a flag named LARGEADDRESSAWARE to true (yes). This makes it possible
for your programs to access a huge amount of memory. However, there is a
price to be paid for operating in LARGEADDRESSAWARE mode: the const compo-
nent of the [reg64 + const] addressing mode is limited to 32 bits and cannot
span the entire address space.

Because of instruction-encoding limitations, the const value is limited
to a signed value in the range ±2GB. This is probably far more than enough
when the register contains a 64-bit base address and you want to access
a memory location at a fixed offset (less than ±2GB) around that base
address. A typical way you would use this addressing mode is as follows:

lea rcx, someStructure
mov al, [rcx+fieldOffset]

Prior to the introduction of 64-bit addresses, the const offset appearing
in the (32-bit) indirect-plus-offset addressing mode could span the entire
(32-bit) address space. So if you had an array declaration such as

 .data
buf byte 256 dup (?)

you could access elements of this array by using the following addressing
mode form:

mov al, buf[ebx] ; EBX was used on 32-bit processors

If you were to attempt to assemble the instruction mov al, buf[rbx] in
a 64-bit program (or any other addressing mode involving buf other than
PC-relative), MASM would assemble the code properly, but the linker would
report an error:

error LNK2017: 'ADDR32' relocation to 'buf' invalid without /LARGEADDRESSAWARE:NO

The linker is complaining that in an address space exceeding 32 bits,
it is impossible to encode the offset to the buf buffer because the machine
instruction opcodes provide only a 32-bit offset to hold the address of buf.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

128 Chapter 3

However, if we were to artificially limit the amount of memory that our
application uses to 2GB, then MASM can encode the 32-bit offset to buf into
the machine instruction. As long as we kept our promise and never used any
more memory than 2GB, several new variations on the indirect-plus-offset
and scaled-indexed addressing modes become possible.

To turn off the large address–aware flag, you need to add an extra com-
mand line option to the ml64 command. This is easily done in the build.bat
file; let’s create a new build.bat file and call it sbuild.bat. This file will have
the following lines:

echo off
ml64 /nologo /c /Zi /Cp %1.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Fe%1.exe c.cpp %1.obj /link /largeaddressaware:no

This set of commands (sbuild.bat for small build) tells MASM to pass a
command to the linker that turns off the large address–aware file. MASM,
MSVC, and the Microsoft linker will construct an executable file that
requires only 32-bit addresses (ignoring the 32 HO bits in the 64-bit regis-
ters appearing in addressing modes).

Once you’ve disabled LARGEADDRESSAWARE, several new variants of the
indirect-plus-offset and scaled-indexed addressing modes become available
to your programs:

variable[reg64]
variable[reg64 + const]
variable[reg64 - const]
variable[reg64 * scale]
variable[reg64 * scale + const]
variable[reg64 * scale - const]
variable[reg64 + regNotRSP64 * scale]
variable[reg64 + regNotRSP64 * scale + const]
variable[reg64 + regNotRSP64 * scale - const]

where variable is the name of an object you’ve declared in your source file
by using directives like byte, word, dword, and so on; const is a (maximum
32-bit) constant expression; and scale is 1, 2, 4, or 8. These addressing mode
forms use the address of variable as the base address and add in the current
value of the 64-bit registers (see Figures 3-11 through 3-16 for examples).

+

AL

RBX

variable

mov al, variable[rbx]

Address of variable

Figure 3-11: Base address form of indirect-plus-offset addressing mode

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 129

Although the small address forms (LARGEADDRESSAWARE:NO) are convenient
and efficient, they can fail spectacularly if your program ever uses more
than 2GB of memory. Should your programs ever grow beyond that point,
you will have to completely rewrite every instruction that uses one of these
addresses (that uses a global data object as the base address rather than
loading the base address into a register). This can be very painful and error
prone. Think twice before ever using the LARGEADDRESSAWARE:NO option.

+

AL

RBX

variable

+ const

mov al, variable[rbx + const]

Address of variable

Figure 3-12: Small address plus constant form of indirect-plus-offset
addressing mode

+

AL

RBX

variable

+ RSI*scale

mov al, variable[rbx + rsi*scale]

Address of variable

Figure 3-13: Small address form of base-plus-scaled-indexed addressing mode

+RBX

variable

+ RSI*scale

mov al, variable[rbx + rsi*scale + const]

Address of variable

+ const
AL

Figure 3-14: Small address form of base-plus-scaled-indexed-plus-constant
addressing mode

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

130 Chapter 3

variable

+ RSI*scale

mov al, variable[rsi*scale]

Address of variable

AL

Figure 3-15: Small address form of scaled-indexed addressing mode

variable

+ RSI*scale

mov al, variable[rsi*scale + const]

Address of variable

AL
+ const

Figure 3-16: Small address form of scaled-indexed-plus-constant
addressing mode

 3.8 Address Expressions
Often, when accessing variables and other objects in memory, we need to
access memory locations immediately before or after a variable rather than
the memory at the address specified by the variable. For example, when
accessing an element of an array or a field of a structure/record, the exact
element or field is probably not at the address of the variable itself. Address
expressions provide a mechanism to attach an arithmetic expression to an
address to access memory around a variable’s address.

This book considers an address expression to be any legal x86-64 address-
ing mode that includes a displacement (that is, variable name) or an offset.
For example, the following are legal address expressions:

[Reg64 + offset]
[Reg64 + RegNotRSP64 * scale + offset]

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 131

Consider the following legal MASM syntax for a memory address,
which isn’t actually a new addressing mode but simply an extension of the
PC-relative addressing mode:

VarName[offset]

This extended form computes its effective address by adding the con-
stant offset within the brackets to the variable’s address. For example, the
instruction mov al, Address[3] loads the AL register with the byte in memory
that is 3 bytes beyond the Address object (see Figure 3-17).

The offset value in these examples must be a constant. If Index is an
int32 variable, then Variable[Index] is not a legal address expression. If you
wish to specify an index that varies at runtime, you must use one of the
indirect or scaled-indexed addressing modes.

Another important thing to remember is that the offset in Address[offset]
is a byte address. Although this syntax is reminiscent of array indexing in a
high-level language like C/C++ or Java, this does not properly index into an
array of objects unless Address is an array of bytes.

1003h (i + 3)
1002h
1001h
1000h (address of i)

AL

mov al, i[3]

Figure 3-17: Using an address expression to access data beyond a variable

Until this point, the offset in all the addressing mode examples has
always been a single numeric constant. However, MASM also allows a con-
stant expression anywhere an offset is legal. A constant expression consists
of one or more constant terms manipulated by operators such as addi-
tion, subtraction, multiplication, division, modulo, and a wide variety of
others. Most address expressions, however, will involve only addition, sub-
traction, multiplication, and sometimes division. Consider the following
example:

mov al, X[2*4 + 1]

This instruction will move the byte at address X + 9 into the AL register.
The value of an address expression is always computed at compile

time, never while the program is running. When MASM encounters the

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

132 Chapter 3

preceding instruction, it calculates 2 × 4 + 1 on the spot and adds this
result to the base address of X in memory. MASM encodes this single sum
(base address of X plus 9) as part of the instruction; MASM does not emit
extra instructions to compute this sum for you at runtime (which is good,
because doing so would be less efficient). Because MASM computes the
value of address expressions at compile time, all components of the expres-
sion must be constants because MASM cannot know the runtime value of a
variable while it is compiling the program.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used the byte, word, dword, and so on,
statements in a .data or .const section to tack on additional bytes after a
data declaration. For example, consider the program in Listing 3-1 that
uses address expressions to access the four consecutive bytes associated
with variable i.

; Listing 3-1

; Demonstrate address expressions

 option casemap:none

nl = 10 ; ASCII code for newline

 .const
ttlStr byte 'Listing 3-1', 0
fmtStr1 byte 'i[0]=%d ', 0
fmtStr2 byte 'i[1]=%d ', 0
fmtStr3 byte 'i[2]=%d ', 0
fmtStr4 byte 'i[3]=%d',nl, 0

 .data
i byte 0, 1, 2, 3

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 133

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

 lea rcx, fmtStr1
 movzx rdx, i[0]
 call printf

 lea rcx, fmtStr2
 movzx rdx, i[1]
 call printf

 lea rcx, fmtStr3
 movzx rdx, i[2]
 call printf

 lea rcx, fmtStr4
 movzx rdx, i[3]
 call printf

 add rsp, 48
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 3-1: Demonstration of address expressions

Here’s the output from the program:

C:\>build listing3-1

C:\>echo off
 Assembling: listing3-1.asm
c.cpp

C:\>listing3-1
Calling Listing 3-1:
i[0]=0 i[1]=1 i[2]=2 i[3]=3
Listing 3-1 terminated

The program in Listing 3-1 displays the four values 0, 1, 2, and 3 as
though they were array elements. This is because the value at the address of
i is 0. The address expression i[1] tells MASM to fetch the byte appearing
at i’s address plus 1. This is the value 1, because the byte statement in this
program emits the value 1 to the .data segment immediately after the value
0. Likewise for i[2] and i[3], this program displays the values 2 and 3.

Note that MASM also provides a special operator, this, that returns the
current location counter (current position) within a section. You can use
the this operator to represent the address of the current instruction in an
address expression. See “Constant Expressions” in Chapter 4 for more details.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

134 Chapter 3

 3.9 The Stack Segment and the push and pop
Instructions
The x86-64 maintains the stack in the stack segment of memory. The stack
is a dynamic data structure that grows and shrinks according to certain
needs of the program. The stack also stores important information about
the program, including local variables, subroutine information, and tempo-
rary data.

The x86-64 controls its stack via the RSP (stack pointer) register. When
your program begins execution, the operating system initializes RSP with
the address of the last memory location in the stack memory segment. Data
is written to the stack segment by “pushing” data onto the stack and “pop-
ping” data off the stack.

3.9.1 The Basic push Instruction
Here’s the syntax for the x86-64 push instruction:

push reg16
push reg64
push memory16
push memory64
pushw constant16
push constant32 ; Sign extends constant32 to 64 bits

These six forms allow you to push 16-bit or 64-bit registers, 16-bit or
64-bit memory locations, and 16-bit or 64-bit constants, but not 32-bit regis-
ters, memory locations, or constants.

The push instruction does the following:

RSP := RSP - Size_of_Register_or_Memory_Operand (2 or 8)
[RSP] := Operand's_Value

For example, assuming that RSP contains 00FF_FFFCh, the instruction
push rax will set RSP to 00FF_FFE4h and store the current value of RAX
into memory location 00FF_FFE04, as Figures 3-18 and 3-19 show.

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4

Before

instruction
push rax

RAX

RSP

Figure 3-18: Stack segment before the push rax operation

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 135

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

After

RSP

RAX

After

instruction
push rax

Figure 3-19: Stack segment after the push rax operation

Although the x86-64 supports 16-bit push operations, their primary use
is in 16-bit environments such as Microsoft Disk Operating System (MS-DOS).
For maximum performance, the stack pointer’s value should always be a multi-
ple of eight; indeed, your program may malfunction under a 64-bit OS if RSP
contains a value that is not a multiple of eight. The only practical reason for
pushing fewer than 8 bytes at a time on the stack is to build up a quad word
via four successive word pushes.

3.9.2 The Basic pop Instruction
To retrieve data you’ve pushed onto the stack, you use the pop instruction.
The basic pop instruction allows the following forms:

pop reg16
pop reg64
pop memory16
pop memory64

Like the push instruction, the pop instruction supports only 16-bit and
64-bit operands; you cannot pop an 8-bit or 32-bit value from the stack. As
with the push instruction, you should avoid popping 16-bit values (unless you
do four 16-bit pops in a row) because 16-bit pops may leave the RSP regis-
ter containing a value that is not a multiple of eight. One major difference
between push and pop is that you cannot pop a constant value (which makes
sense, because the operand for push is a source operand, while the operand
for pop is a destination operand).

Formally, here’s what the pop instruction does:

Operand := [RSP]
RSP := RSP + Size_of_Operand (2 or 8)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

136 Chapter 3

As you can see, the pop operation is the converse of the push operation.
Note that the pop instruction copies the data from memory location [RSP]
before adjusting the value in RSP. See Figure 3-20 and Figure 3-21 for
details on this operation.

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

pop rax

RSP

RAX

Before

instruction

Figure 3-20: Memory before a pop rax operation

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

RSP

RAX value from the stack

pop rax
After

instruction

Figure 3-21: Memory after the pop rax operation

The value popped from the stack is still present in memory. Popping a
value does not erase the value in memory; it just adjusts the stack pointer so
that it points at the next value above the popped value. However, you should
never attempt to access a value you’ve popped off the stack. The next time
something is pushed onto the stack, the popped value will be obliterated.
Because your code isn’t the only thing that uses the stack (for example, the
operating system uses the stack, as do subroutines), you cannot rely on data
remaining in stack memory once you’ve popped it off the stack.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 137

3.9.3 Preserving Registers with the push and pop Instructions
Perhaps the most common use of the push and pop instructions is to save reg-
ister values during intermediate calculations. Because registers are the best
place to hold temporary values, and registers are also needed for the vari-
ous addressing modes, it is easy to run out of registers when writing code
that performs complex calculations. The push and pop instructions can come
to your rescue when this happens.

Consider the following program outline:

 Some instructions that use the RAX register

 Some instructions that need to use RAX, for a
 different purpose than the above instructions

 Some instructions that need the original value in RAX

The push and pop instructions are perfect for this situation. By insert-
ing a push instruction before the middle sequence and a pop instruction
after the middle sequence, you can preserve the value in RAX across those
calculations:

 Some instructions that use the RAX register

 push rax

 Some instructions that need to use RAX, for a
 different purpose than the above instructions

 pop rax

 Some instructions that need the original value in RAX

This push instruction copies the data computed in the first sequence of
instructions onto the stack. Now the middle sequence of instructions can
use RAX for any purpose it chooses. After the middle sequence of instruc-
tions finishes, the pop instruction restores the value in RAX so the last
sequence of instructions can use the original value in RAX.

 3.10 The Stack Is a LIFO Data Structure
You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful how you push and pop multiple
values. For example, suppose you want to preserve RAX and RBX across a

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

138 Chapter 3

block of instructions; the following code demonstrates the obvious way to
handle this:

push rax
push rbx
 Code that uses RAX and RBX goes here.
pop rax
pop rbx

Unfortunately, this code will not work properly! Figures 3-22 through 3-25
show the problem. Because this code pushes RAX first and RBX second,
the stack pointer is left pointing at RBX’s value on the stack. When the pop
rax instruction comes along, it removes the value that was originally in RBX
from the stack and places it in RAX! Likewise, the pop rbx instruction pops
the value that was originally in RAX into the RBX register. The result is that
this code manages to swap the values in the registers by popping them in the
same order that it pushes them.

Each box in this diagram represents 8 bytes
on the stack (note the addresses).

RAX value

RSP

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

push rax
After

instruction

Figure 3-22: Stack after pushing RAX

To rectify this problem, you must note that the stack is a LIFO data
structure, so the first thing you must pop is the last thing you push onto the
stack. Therefore, you must always observe the following maxim: always pop
values in the reverse order that you push them.

The correction to the previous code is shown here:

push rax
push rbx
 Code that uses RAX and RBX goes here.
pop rbx
pop rax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 139

Each box in this diagram represents 8 bytes
on the stack (note the addresses).

RAX value
RBX valueRSP

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

push rbx

After

instruction

Figure 3-23: Stack after pushing RBX

RAX value

Notice how this instruction pops RBX‘s saved
value into the RAX register.

RBX value
RSP

RAX

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

pop rax

After

instruction

Figure 3-24: Stack after popping RAX

Another important maxim to remember is this: always pop exactly the
same number of bytes that you push. This generally means that the number of
pushes and pops must exactly agree. If you have too few pops, you will leave
data on the stack, which may confuse the running program. If you have too
many pops, you will accidentally remove previously pushed data, often with
disastrous results.

A corollary to the preceding maxim is be careful when pushing and popping
data within a loop. Often it is quite easy to put the pushes in a loop and leave the
pops outside the loop (or vice versa), creating an inconsistent stack. Remember,
it is the execution of the push and pop instructions that matters, not the number
of push and pop instructions that appear in your program. At runtime, the num-
ber (and order) of the push instructions the program executes must match the
number (and reverse order) of the pop instructions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

140 Chapter 3

RAX value

Notice how this instruction pops RAX‘s saved
value into the RBX register.

RBX value

RSP

RBX

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

pop rbx

After

instruction

Figure 3-25: Stack after popping RBX

One final thing to note: the Microsoft ABI requires the stack to be aligned on
a 16-byte boundary. If you push and pop items on the stack, make sure that
the stack is aligned on a 16-byte boundary before calling any functions or
procedures that adhere to the Microsoft ABI (and require the stack to be
aligned on a 16-byte boundary).

 3.11 Other push and pop Instructions
The x86-64 provides four additional push and pop instructions in addition to
the basic ones:

pushf popf

pushfq popfq

The pushf, pushfq, popf, and popfq instructions push and pop the RFLAGS
register. These instructions allow you to preserve condition code and other
flag settings across the execution of a sequence of instructions. Unfortunately,
unless you go to a lot of trouble, it is difficult to preserve individual flags.
When using the pushf(q) and popf(q) instructions, it’s an all-or-nothing propo-
sition: you preserve all the flags when you push them; you restore all the flags
when you pop them.

You should really use the pushfq and popfq instructions to push the full
64-bit version of the RFLAGS register (rather than pushing only the 16-bit
FLAGs portion). Although the extra 48 bits you push and pop are essen-
tially ignored when writing applications, you still want to keep the stack
aligned by pushing and popping only quad words.

 3.12 Removing Data from the Stack Without Popping It
Quite often you may discover that you’ve pushed data onto the stack that
you no longer need. Although you could pop the data into an unused

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 141

register or memory location, there is an easier way to remove unwanted
data from the stack—simply adjust the value in the RSP register to skip over
the unwanted data on the stack.

Consider the following dilemma (in pseudocode, not actual assembly
language):

push rax
push rbx

 Some code that winds up computing some values we want to keep
 in RAX and RBX

if(Calculation_was_performed) then

 ; Whoops, we don't want to pop RAX and RBX!
 ; What to do here?

else

 ; No calculation, so restore RAX, RBX.

 pop rbx
 pop rax

endif;

Within the then section of the if statement, this code wants to remove
the old values of RAX and RBX without otherwise affecting any registers or
memory locations. How can we do this?

Because the RSP register contains the memory address of the item on
the top of the stack, we can remove the item from the top of the stack by
adding the size of that item to the RSP register. In the preceding example,
we wanted to remove two quad-word items from the top of the stack. We
can easily accomplish this by adding 16 to the stack pointer (see Figures
3-26 and 3-27 for the details):

push rax
push rbx

 Some code that winds up computing some values we want to keep
 into RAX and RBX

if(Calculation_was_performed) then

 ; Remove unneeded RAX/RBX values
 ; from the stack.

 add rsp, 16

else

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

142 Chapter 3

 ; No calculation, so restore RAX, RBX.

 pop rbx
 pop rax

endif;

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP − 8
RSP − 16

RAX value
RBX value

Figure 3-26: Removing data from the stack, before
add rsp, 16

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP – 8
RSP – 16

RAX value
RBX value

Figure 3-27: Removing data from the stack, after
add rsp, 16

Effectively, this code pops the data off the stack without moving it any-
where. Also note that this code is faster than two dummy pop instructions
because it can remove any number of bytes from the stack with a single add
instruction.

N O T E Remember to keep the stack aligned on a quad-word boundary. Therefore, you should
always add a constant that is a multiple of eight to RSP when removing data from
the stack.

 3.13 Accessing Data You’ve Pushed onto the Stack
Without Popping It
Once in a while, you will push data onto the stack and will want to get a
copy of that data’s value, or perhaps you will want to change that data’s
value without actually popping the data off the stack (that is, you wish
to pop the data off the stack at a later time). The x86-64 [reg64 ± offset]
addressing mode provides the mechanism for this.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Memory Access and Organization 143

Consider the stack after the execution of the following two instructions
(see Figure 3-28):

push rax
push rbx

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP − 8
RSP − 16

RAX value
RBX value

Figure 3-28: Stack after pushing RAX and RBX

If you wanted to access the original RBX value without removing it
from the stack, you could cheat and pop the value and then immediately
push it again. Suppose, however, that you wish to access RAX’s old value
or another value even further up the stack. Popping all the intermediate
values and then pushing them back onto the stack is problematic at best,
impossible at worst. However, as you will notice from Figure 3-28, each
value pushed on the stack is at a certain offset from the RSP register in
memory. Therefore, we can use the [rsp ± offset] addressing mode to gain
direct access to the value we are interested in. In the preceding example,
you can reload RAX with its original value by using this single instruction:

mov rax, [rsp + 8]

This code copies the 8 bytes starting at memory address rsp + 8 into the
RAX register. This value just happens to be the previous value of RAX that
was pushed onto the stack. You can use this same technique to access other
data values you’ve pushed onto the stack.

N O T E Don’t forget that the offsets of values from RSP into the stack change every time you
push or pop data. Abusing this feature can create code that is hard to modify; if you use
this feature throughout your code, it will make it difficult to push and pop other data
items between the point where you first push data onto the stack and the point where you
decide to access that data again using the [rsp + offset] memory addressing mode.

The previous section pointed out how to remove data from the stack
by adding a constant to the RSP register. That pseudocode example could
probably be written more safely as this:

push rax
push rbx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

144 Chapter 3

 Some code that winds up computing some values we want to keep
 into RAX and RBX

if(Calculation_was_performed) then

 Overwrite saved values on stack with
 new RAX/RBX values (so the pops that
 follow won't change the values in RAX/RBX)

 mov [rsp + 8], rax
 mov [rsp], rbx

endif
pop rbx
pop rax

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later, when the program pops the values, it
loads these calculated values into RAX and RBX.

 3.14 Microsoft ABI Notes
About the only feature this chapter introduces that affects the Microsoft
ABI is data alignment. As a general rule, the Microsoft ABI requires all
data to be aligned on a natural boundary for that data object. A natural
boundary is an address that is a multiple of the object’s size (up to 16 bytes).
Therefore, if you intend to pass a word/sword, dword/sdword, or qword/
sqword value to a C++ procedure, you should attempt to align that object
on a 2-, 4-, or 8-byte boundary, respectively.

When calling code written in a Microsoft ABI–aware language, you
must ensure that the stack is aligned on a 16-byte boundary before issuing
a call instruction. This can severely limit the usefulness of the push and pop
instructions. If you use the push instructions to save a register’s value prior
to a call, you must make sure you push two (64-bit) values, or otherwise
make sure the RSP address is a multiple of 16 bytes, prior to making the
call. Chapter 5 explores this issue in greater detail.

 3.15 For More Information
An older, 16-bit version of my book The Art of Assembly Language Programming
can be found at https://artofasm.randallhyde.com/. In that text, you will find infor-
mation about the 8086 16-bit addressing modes and segmentation. The pub-
lished edition of this book (No Starch Press, 2010) covers the 32-bit addressing
modes. Of course, the Intel x86 documentation (found at http://www.intel
.com/) provides complete information on x86-64 address modes and machine
instruction encoding.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

http://www.intel.com/
http://www.intel.com/

Memory Access and Organization 145

 3.16 Test Yourself

1. The PC-relative addressing mode indexes off which 64-bit register?

2. What does opcode stand for?

3. What type of data is the PC-relative addressing mode typically used for?

4. What is the address range of the PC-relative addressing mode?

5. In a register-indirect addressing mode, what does the register contain?

6. Which of the following registers is valid for use with the register-indirect
addressing mode?

a. AL

b. AX

c. EAX

d. RAX

7. What instruction would you normally use to load the address of a mem-
ory object into a register?

8. What is an effective address?

9. What scaling values are legal with the scaled-indexed addressing mode?

10. What is the memory limitation on a LARGEADDRESSAWARE:NO application?

11. What is the advantage of using the LARGEADDRESSAWARE:NO option when
compiling a program?

12. What is the difference between the .data section and the .data? section?

13. Which (standard MASM) memory sections are read-only?

14. Which (standard MASM) memory sections are readable and writable?

15. What is the location counter?

16. Explain how to use the label directive to coerce data to a different type.

17. Explain what happens if two (or more) .data sections appear in a MASM
source file.

18. How would you align a variable in the .data section to an 8-byte
boundary?

19. What does MMU stand for?

20. If b is a byte variable in read/write memory, explain how a mov ax, b
instruction could cause a general protection fault.

21. What is an address expression?

22. What is the purpose of the MASM PTR operator?

23. What is the difference between a big-endian value and a little-endian
value?

24. If AX contains a big-endian value, what instruction could you use to
convert it to a little-endian value?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

146 Chapter 3

25. If EAX contains a little-endian value, what instruction could you use to
convert it to a big-endian value?

26. If RAX contains a big-endian value, what instruction could you use to
convert it to a little-endian value?

27. Explain, step by step, what the push rax instruction does.

28. Explain, step by step, what the pop rax instruction does.

29. When using the push and pop instructions to preserve registers, you
must always pop the registers in the order that you
pushed them.

30. What does LIFO stand for?

31. How do you access data on the stack without using the push and pop
instructions?

32. How can pushing RAX onto the stack before calling a Windows
ABI–compatible function create problems?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

4
C O N S T A N T S , V A R I A B L E S ,

A N D D A T A T Y P E S

Chapter 2 discussed the basic format for
data in memory. Chapter 3 covered how a

computer system physically organizes that
data in memory. This chapter finishes the dis-

cussion by connecting the concept of data representa-
tion to its actual physical representation. As the title
indicates, this chapter concerns itself with three main
topics: constants, variables, and data structures. I do
not assume that you’ve had a formal course in data
structures, though such experience would be useful.

This chapter discusses how to declare and use constants, scalar variables,
integers, data types, pointers, arrays, records/structures, and unions. You
must master these subjects before going on to the next chapter. Declaring
and accessing arrays, in particular, seems to present a multitude of problems
to beginning assembly language programmers. However, the rest of this text
depends on your understanding of these data structures and their memory

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

148 Chapter 4

representation. Do not try to skim over this material with the expectation that
you will pick it up as you need it later. You will need it right away, and trying to
learn this material along with later material will only confuse you more.

 4.1 The imul Instruction
This chapter introduces arrays and other concepts that will require the expan-
sion of your x86-64 instruction set knowledge. In particular, you will need to
learn how to multiply two values; hence, this section looks at the imul (integer
multiply) instruction.

The imul instruction has several forms. This section doesn’t cover all of
them, just the ones that are useful for array calculations (for the remaining
imul instructions, see “Arithmetic Expressions” in Chapter 6). The imul vari-
ants of interest right now are as follows:

; The following compute destreg = destreg * constant:

imul destreg16, constant
imul destreg32, constant
imul destreg64, constant32

; The following compute dest = src * constant:

imul destreg16, srcreg16, constant
imul destreg16, srcmem16, constant

imul destreg32, srcreg32, constant
imul destreg32, srcmem32, constant

imul destreg64, srcreg64, constant32
imul destreg64, srcmem64, constant32

; The following compute dest = destreg * src:

imul destreg16, srcreg16
imul destreg16, srcmem16
imul destreg32, srcreg32
imul destreg32, srcmem32
imul destreg64, srcreg64
imul destreg64, srcmem64

Note that the syntax of the imul instruction is different from that of the
add and sub instructions. In particular, the destination operand must be a
register (add and sub both allow a memory operand as a destination). Also
note that imul allows three operands when the last operand is a constant.
Another important difference is that the imul instruction allows only 16-,
32-, and 64-bit operands; it does not multiply 8-bit operands. Finally, as is
true for most instructions that support the immediate addressing mode,
the CPU limits constant sizes to 32 bits. For 64-bit operands, the x86-64 will
sign-extend the 32-bit immediate constant to 64 bits.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 149

imul computes the product of its specified operands and stores the
result into the destination register. If an overflow occurs (which is always a
signed overflow, because imul multiplies only signed integer values), then
this instruction sets both the carry and overflow flags. imul leaves the other
condition code flags undefined (so, for example, you cannot meaningfully
check the sign flag or the zero flag after executing imul).

 4.2 The inc and dec Instructions
As several examples up to this point have indicated, adding or subtracting
1 from a register or memory location is a very common operation. In fact,
these operations are so common that Intel’s engineers included a pair of
instructions to perform these specific operations: inc (increment) and dec
(decrement).

The inc and dec instructions use the following syntax:

inc mem/reg
dec mem/reg

The single operand can be any legal 8-, 16-, 32-, or 64-bit register or
memory operand. The inc instruction will add 1 to the specified operand,
and the dec instruction will subtract 1 from the specified operand.

These two instructions are slightly shorter than the corresponding add
or sub instructions (their encoding uses fewer bytes). There is also one slight
difference between these two instructions and the corresponding add or sub
instructions: they do not affect the carry flag.

 4.3 MASM Constant Declarations
MASM provides three directives that let you define constants in your assem-
bly language programs.1 Collectively, these three directives are known as
equates. You’ve already seen the most common form:

symbol = constantExpression

For example:

MaxIndex = 15

Once you declare a symbolic constant in this manner, you may use the
symbolic identifier anywhere the corresponding literal constant is legal. These
constants are known as manifest constants—symbolic representations that allow
you to substitute the literal value for the symbol anywhere in the program.

Contrast this with .const variables; a .const variable is certainly a constant
value because you cannot change its value at runtime. However, a memory

1. Technically, you could also use macro functions to define constants in MASM. See
Chapter 13 for more details.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

150 Chapter 4

location is associated with a .const variable; the operating system, not the
MASM compiler, enforces the read-only attribute. Although it will certainly
crash your program when it runs, it is perfectly legal to write an instruction
like mov ReadOnlyVar, eax. On the other hand, it is no more legal to write mov
MaxIndex, eax (using the preceding declaration) than it is to write mov 15, eax.
In fact, both statements are equivalent because the compiler substitutes 15 for
MaxIndex whenever it encounters this manifest constant.

Constant declarations are great for defining “magic” numbers that might
possibly change during program modification. Most of the listings through-
out this book have used manifest constants like nl (newline), maxLen, and NULL.

In addition to the = directive, MASM provides the equ directive:

symbol equ constantExpression

With a couple exceptions, these two equate directives do the same
thing: they define a manifest constant, and MASM will substitute the
constantExpression value wherever the symbol appears in the source file.

The first difference between the two is that MASM allows you to rede-
fine symbols that use the = directive. Consider the following code snippet:

maxSize = 100

code that uses maxSize, expecting it to be 100

maxSize = 256

code that uses maxSize, expecting it to be 256

You might question the term constant when it’s pretty clear in this example
that maxSize’s value changes at various points in the source file. However, note
that while maxSize’s value does change during assembly, at runtime the particu-
lar literal constant (100 or 256 in this example) can never change.

You cannot redefine the value of a constant you declare with an equ
directive (at runtime or assembly time). Any attempt to redefine an equ
symbol results in a symbol redefinition error from MASM. So if you want to
prevent the accidental redefinition of a constant symbol in your source file,
you should use the equ directive rather than the = directive.

Another difference between the = and equ directives is that constants you
define with = must be representable as a 64-bit (or smaller) integer. Short
character strings are legal as = operands, but only if they have eight or fewer
characters (which would fit into a 64-bit value). Equates using equ have no
such limitation.

Ultimately, the difference between = and equ is that the = directive com-
putes the value of a numeric expression and saves that value to substitute
wherever that symbol appears in the program. The equ directive, if its oper-
and can be reduced to a numeric value, will work the same way. However, if
the equ operand cannot be converted to a numeric value, then the equ direc-
tive will save its operand as textual data and substitute that textual data in
place of the symbol.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 151

Because of the numeric/text processing, equ can get confused on occa-
sion by its operand. Consider the following example:

SomeStr equ "abcdefgh"
 .
 .
 .
memStr byte SomeStr

MASM will report an error (initializer magnitude too large for specified
size or something similar) because a 64-bit value (obtained by creating
an integer value from the eight characters abcdefgh) will not fit into a byte
variable. However, if we add one more character to the string, MASM will
gladly accept this:

SomeStr equ "abcdefghi"
 .
 .
 .
memStr byte SomeStr

The difference between these two examples is that in the first case,
MASM decides that it can represent the string as a 64-bit integer, so the con-
stant is a quad-word constant rather than a string of characters. In the second
example, MASM cannot represent the string of characters as an integer, so it
treats the operand as a text operand rather than a numeric operand. When
MASM does a textual substitution of the string abcdefghi for memStr in the
second example, MASM assembles the code properly because strings are per-
fectly legitimate operands for the byte directive.

Assuming you really want MASM to treat a string of eight characters
or fewer as a string rather than as an integer value, there are two solutions.
The first is to surround the operand with text delimiters. MASM uses the sym-
bols < and > as text delimiters in an equ operand field. So, you could use the
following code to solve this problem:

SomeStr equ <"abcdefgh">
 .
 .
 .
memStr byte SomeStr

Because the equ directive’s operand can be somewhat ambiguous at
times, Microsoft introduced a third equate directive, textequ, to use when
you want to create a text equate. Here’s the current example using a text
equate:

SomeStr textequ <"abcdefgh">
 .
 .
 .
memStr byte SomeStr

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

152 Chapter 4

Note that textequ operands must always use the text delimiters (< and >)
in the operand field.

Whenever MASM encounters a symbol defined with the text directive
in a source file, it will immediately substitute the text associated with that
directive for the identifier. This is somewhat similar to the C/C++ #define
macro (except you don’t get to specify any parameters). Consider the fol-
lowing example:

maxCnt = 10
max textequ <maxCnt>
max = max+1

MASM substitutes maxCnt for max throughout the program (after the
textequ declaring max). In the third line of this example, this substitution
yields the statement:

maxCnt = maxCnt+1

Thereafter in the program, MASM will substitute the value 11 everywhere
it sees the symbol maxCnt. Whenever MASM sees max after that point, it will
substitute maxCnt, and then it will substitute 11 for maxCnt.

You could even use MASM text equates to do something like the
following:

mv textequ <mov>
 .
 .
 .
 mv rax,0

MASM will substitute mov for mv and compile the last statement in this
sequence into a mov instruction. Most people would consider this a huge
violation of assembly language programming style, but it’s perfectly legal.

4.3.1 Constant Expressions
Thus far, this chapter has given the impression that a symbolic constant
definition consists of an identifier, an optional type, and a literal constant.
Actually, MASM constant declarations can be a lot more sophisticated than
this because MASM allows the assignment of a constant expression, not just
a literal constant, to a symbolic constant. The generic constant declaration
takes one of the following two forms:

Identifier = constant_expression
Identifier equ constant_expression

Constant (integer) expressions take the familiar form you’re used to in
high-level languages like C/C++ and Python. They may contain literal con-
stant values, previously declared symbolic constants, and various arithmetic
operators.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 153

The constant expression operators follow standard precedence rules
(similar to those in C/C++); you may use the parentheses to override the
precedence if necessary. In general, if the precedence isn’t obvious, use
parentheses to exactly state the order of evaluation. Table 4-1 lists the arith-
metic operators MASM allows in constant (and address) expressions.

Table 4-1: Operations Allowed in Constant Expressions

Arithmetic operators

- (unary negation) Negates the expression immediately following -.

* Multiplies the integer or real values around the asterisk.

/ Divides the left integer operand by the right integer operand,
producing an integer (truncated) result.

mod Divides the left integer operand by the right integer operand,
producing an integer remainder.

/ Divides the left numeric operand by the second numeric operand,
producing a floating-point result.

+ Adds the left and right numeric operands.

- Subtracts the right numeric operand from the left numeric operand.

[] expr1[expr2] computes the sum of expr1 + expr2.

Comparison operators

EQ Compares left operand with right operand. Returns true if equal.2

NE Compares left operand with right operand. Returns true if not equal.

LT Returns true if left operand is less than right operand.

LE Returns true if left operand is ≤ right operand.

GT Returns true if left operand is greater than right operand.

GE Returns true if left operand is ≥ right operand.

Logical operators3

AND For Boolean operands, returns the logical AND of the two
operands.

OR For Boolean operands, returns the logical OR of the two operands.

NOT For Boolean operands, returns the logical negation (inverse).

Unary operators

HIGH Returns the HO byte of the LO 16 bits of the following expression.

HIGHWORD Returns the HO word of the LO 32 bits of the following expression.

HIGH32 Returns the HO 32 bits of the 64-bit expression following the
operator.

2. MASM represents “true” by using all 1 bits (–1 or 0FFFFFF…FFh).

3. Note to C/C++ and Java users: MASM’s constant expressions use complete Boolean evalu-
ation rather than short-circuit Boolean evaluation. Hence, MASM constant expressions do
not behave identically to C/C++ and Java expressions.

(continued)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

154 Chapter 4

LENGTHOF Returns the number of data elements of the variable name follow-
ing the operator.

LOW Returns the LO byte of the expression following the operator.

LOWWORD Returns the LO word of the expression following the operator.

LOW32 Returns the LO dword of the expression following the operator.

OFFSET Returns the offset into its respective section for the symbol follow-
ing the operator.

OPATTR Returns the attributes of the expression following the operator. The
attributes are returned as a bit map with the following meanings:
bit 0: There is a code label in the expression.
bit 1: The expression is relocatable.
bit 2: The expression is a constant expression.
bit 3: The expression uses direct addressing.
bit 4: The expression is a register.
bit 5: The expression contains no undefined symbols.
bit 6: The expression is a stack-segment memory expression.
bit 7: The expression references an external label.
bit 8–11: Language type (probably 0 for 64-bit code).

SIZE Returns the size, in bytes, of the first initializer in a symbol’s
declaration.

SIZEOF Returns the size, in bytes, allocated for a given symbol.

THIS Returns an address expression equal to the value of the current
program counter within a section. Must include type after this; for
example, this byte.

$ Synonym for this.

4.3.2 this and $ Operators
The last two operators in Table 4-1 deserve special mention. The this and $
operands (they are roughly synonyms for one another) return the current
offset into the section containing them. The current offset into the section
is known as the location counter (see “How MASM Allocates Memory for
Variables” in Chapter 3). Consider the following:

someLabel equ $

This sets the label’s offset to the current location in the program. The
type of the symbol will be statement label (for example, proc). Typically, people
use the $ operator for branch labels (and advanced features). For example,
the following creates an infinite loop (effectively locking up the CPU):

jmp $;"$" is equivalent to the address of the jmp instr

You can also use instructions like this to skip a fixed number of bytes
ahead (or behind) in the source file:

jmp $+5 ; Skip to a position 5 bytes beyond the jmp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 155

For the most part, creating operands like this is crazy because it depends
on knowing the number of bytes of machine code each machine instruction
compiles into. Obviously, this is an advanced operation and not recommended
for beginning assembly language programmers (it’s even hard to recommend
for most advanced assembly language programmers).

One practical use of the $ operator (and probably its most common use)
is to compute the size of a block of data declarations in the source file:

someData byte 1, 2, 3, 4, 5
sizeSomeData = $-someData

The address expression $-someData computes the current offset minus
the offset of someData in the current section. In this case, this produces 5,
the number of bytes in the someData operand field. In this simple example,
you’re probably better off using the sizeof someData expression. This also
returns the number of bytes required for the someData declaration. However,
consider the following statements:

someData byte 1, 2, 3, 4, 5
 byte 6, 7, 8, 9, 0
sizeSomeData = $-someData

In this case, sizeof someData still returns 5 (because it returns only the
length of the operands attached to someData), whereas sizeSomeData is set to 10.

If an identifier appears in a constant expression, that identifier must
be a constant identifier that you have previously defined in your program
in the equate directive. You may not use variable identifiers in a constant
expression; their values are not defined at assembly time when MASM
evaluates the constant expression. Also, don’t confuse compile-time and
runtime operations:

; Constant expression, computed while MASM
; is assembling your program:

x = 5
y = 6
Sum = x + y

; Runtime calculation, computed while your program
; is running, long after MASM has assembled it:

 mov al, x
 add al, y

The this operator differs from the $ operator in one important way:
the $ has a default type of statement label. The this operator, on the other
hand, allows you to specify a type. The syntax for the this operator is the
following:

this type

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

156 Chapter 4

where type is one of the usual data types (byte, sbyte, word, sword, and so forth).
Therefore, this proc is what is directly equivalent to $. Note that the following
two MASM statements are equivalent:

someLabel label byte
someLabel equ this byte

4.3.3 Constant Expression Evaluation
MASM immediately interprets the value of a constant expression during
assembly. It does not emit any machine instructions to compute x + y in the
constant expression of the example in the previous section. Instead, it directly
computes the sum of these two constant values. From that point forward in
the program, MASM associates the value 11 with the constant Sum just as if
the program had contained the statement Sum = 11 rather than Sum = x + y.
On the other hand, MASM does not precompute the value 11 in AL for the
mov and add instructions in the previous section; it faithfully emits the object
code for these two instructions, and the x86-64 computes their sum when
the program is run (sometime after the assembly is complete).

In general, constant expressions don’t get very sophisticated in assembly
language programs. Usually, you’re adding, subtracting, or multiplying two
integer values. For example, the following set of equates defines a set of
constants that have consecutive values:

TapeDAT = 0
Tape8mm = TapeDAT + 1
TapeQIC80 = Tape8mm + 1
TapeTravan = TapeQIC80 + 1
TapeDLT = TapeTravan + 1

These constants have the following values: TapeDAT=0, Tape8mm=1, TapeQIC80=2,
TapeTravan=3, and TapeDLT=4. This example, by the way, demonstrates how you
would create a list of enumerated data constants in MASM.

 4.4 The MASM typedef Statement
Let’s say that you do not like the names that MASM uses for declaring byte,
word, dword, real4, and other variables. Let’s say that you prefer Pascal’s nam-
ing convention or perhaps C’s naming convention. You want to use terms
like integer, float, double, or whatever. If MASM were Pascal, you could rede-
fine the names in the type section of the program. With C, you could use
a typedef statement to accomplish the task. Well, MASM, like C/C++, has
its own type statement that also lets you create aliases of these names. The
MASM typedef statement takes the following form:

newTypeName typedef existingTypeName

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 157

The following example demonstrates how to set up some names in your
MASM programs that are compatible with C/C++ or Pascal:

integer typedef sdword
float typedef real4
double typedef real8
colors typedef byte

Now you can declare your variables with more meaningful statements
like these:

 .data
i integer ?
x float 1.0
HouseColor colors ?

If you program in Ada, C/C++, or FORTRAN (or any other language,
for that matter), you can pick type names you’re more comfortable with. Of
course, this doesn’t change how the x86-64 or MASM reacts to these vari-
ables one iota, but it does let you create programs that are easier to read and
understand because the type names are more indicative of the actual under-
lying types. One warning for C/C++ programmers: don’t get too excited and
go off and define an int data type. Unfortunately, int is an x86-64 machine
instruction (interrupt), and therefore this is a reserved word in MASM.

 4.5 Type Coercion
Although MASM is fairly loose when it comes to type checking, MASM does
ensure that you specify appropriate operand sizes to an instruction. For
example, consider the following (incorrect) program in Listing 4-1.

; Listing 4-1

; Type checking errors

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
i8 sbyte ?
i16 sword ?
i32 sdword ?
i64 sqword ?

 .code

; Here is the "asmMain" function.

 public asmMain
asmMain proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

158 Chapter 4

 mov eax, i8
 mov al, i16
 mov rax, i32
 mov ax, i64

 ret ; Returns to caller
asmMain endp
 end

Listing 4-1: MASM type checking

MASM will generate errors for these four mov instructions because the
operand sizes are incompatible. The mov instruction requires both operands to
be the same size. The first instruction attempts to move a byte into EAX, the
second instruction attempts to move a word into AL, and the third instruction
attempts to move a double word into RAX. The fourth instruction attempts to
move a qword into AX. Here’s the output from the compiler when you attempt
to assemble this file:

C:\>ml64 /c listing4-1.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing4-1.asm
listing4-1.asm(24) : error A2022:instruction operands must be the same size
listing4-1.asm(25) : error A2022:instruction operands must be the same size
listing4-1.asm(26) : error A2022:instruction operands must be the same size
listing4-1.asm(27) : error A2022:instruction operands must be the same size

While this is a good feature in MASM,4 sometimes it gets in the way.
Consider the following code fragments:

 .data
byte_values label byte
 byte 0, 1

 .
 .
 .

 mov ax, byte_values

In this example, let’s assume that the programmer really wants to load
the word starting at the address of byte_values into the AX register because
they want to load AL with 0, and AH with 1, by using a single instruction
(0 is held in the LO memory byte, and 1 is held in the HO memory byte).
MASM will refuse, claiming a type mismatch error (because byte_values is a
byte object and AX is a word object).

4. After all, if the two operand sizes are different, this usually indicates an error in the
program.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 159

The programmer could break this into two instructions, one to load AL
with the byte at address byte_values and the other to load AH with the byte at
address byte_values[1]. Unfortunately, this decomposition makes the program
slightly less efficient (which was probably the reason for using the single mov
instruction in the first place). To tell MASM that we know what we’re doing
and we want to treat the byte_values variable as a word object, we can use type
coercion.

Type coercion is the process of telling MASM that you want to treat an
object as an explicit type, regardless of its actual type.5 To coerce the type
of a variable, you use the following syntax:

newTypeName ptr addressExpression

The newTypeName item is the new type you wish to associate with the mem-
ory location specified by addressExpression. You may use this coercion opera-
tor anywhere a memory address is legal. To correct the previous example, so
MASM doesn’t complain about type mismatches, you would use the follow-
ing statement:

mov ax, word ptr byte_values

This instruction tells MASM to load the AX register with the word start-
ing at address byte_values in memory. Assuming byte_values still contains its
initial value, this instruction will load 0 into AL and 1 into AH.

Table 4-2 lists all the MASM type-coercion operators.

Table 4-2: MASM Type-Coercion Operators

Directive Meaning

byte ptr Byte (unsigned 8-bit) value

sbyte ptr Signed 8-bit integer value

word ptr Unsigned 16-bit (word) value

sword ptr Signed 16-bit integer value

dword ptr Unsigned 32-bit (double-word) value

sdword ptr Signed 32-bit integer value

qword ptr Unsigned 64-bit (quad-word) value

sqword ptr Signed 64-bit integer value

tbyte ptr Unsigned 80-bit (10-byte) value

oword ptr 128-bit (octal word) value

xmmword ptr 128-bit (octal word) value—same as oword ptr

ymmword ptr 256-bit value (for use with AVX YMM registers)

zmmword ptr 512-bit value (for use with AVX-512 ZMM registers)

5. Type coercion is also called type casting in some languages.

continued

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

160 Chapter 4

Directive Meaning

real4 ptr Single-precision (32-bit) floating-point value

real8 ptr Double-precision (64-bit) floating-point value

real10 ptr Extended-precision (80-bit) floating-point value

Type coercion is necessary when you specify an anonymous variable as
the operand to an instruction that directly modifies memory (for example,
neg, shl, not, and so on). Consider the following statement:

not [rbx]

MASM will generate an error on this instruction because it cannot
determine the size of the memory operand. The instruction does not supply
sufficient information to determine whether the program should invert the
bits in the byte pointed at by RBX, the word pointed at by RBX, the double
word pointed at by RBX, or the quad word pointed at by RBX. You must use
type coercion to explicitly specify the size of anonymous references with
these types of instructions:

not byte ptr [rbx]
not dword ptr [rbx]

W A R N I N G Do not use the type-coercion operator unless you know exactly what you are doing and
fully understand the effect it has on your program. Beginning assembly language
programmers often use type coercion as a tool to quiet the assembler when it complains
about type mismatches, without solving the underlying problem.

Consider the following statement (where byteVar is an 8-bit variable):

mov dword ptr byteVar, eax

Without the type-coercion operator, MASM complains about this
instruction because it attempts to store a 32-bit register in an 8-bit memory
location. Beginning programmers, wanting their programs to assemble,
may take a shortcut and use the type-coercion operator, as shown in this
instruction; this certainly quiets the assembler—it will no longer complain
about a type mismatch—so the beginning programmers are happy.

However, the program is still incorrect; the only difference is that
MASM no longer warns you about your error. The type-coercion operator
does not fix the problem of attempting to store a 32-bit value into an 8-bit
memory location—it simply allows the instruction to store a 32-bit value
starting at the address specified by the 8-bit variable. The program still stores
4 bytes, overwriting the 3 bytes following byteVar in memory.

This often produces unexpected results, including the phantom modi-
fication of variables in your program.6 Another, rarer possibility is for the

6. If you have a variable immediately following byteVar in this example, the mov instruction will
surely overwrite the value of that variable, whether or not you intend for this to happen.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 161

program to abort with a general protection fault, if the 3 bytes following
byteVar are not allocated in real memory or if those bytes just happen to fall
in a read-only section of memory. The important thing to remember about
the type-coercion operator is this: if you cannot exactly state the effect this
operator has, don’t use it.

Also keep in mind that the type-coercion operator does not perform
any translation of the data in memory. It simply tells the assembler to treat
the bits in memory as a different type. It will not automatically extend an
8-bit value to 32 bits, nor will it convert an integer to a floating-point value.
It simply tells the compiler to treat the bit pattern of the memory operand
as a different type.

 4.6 Pointer Data Types
You’ve probably experienced pointers firsthand in the Pascal, C, or Ada
programming languages, and you’re probably getting worried right now.
Almost everyone has a bad experience when they first encounter pointers in
a high-level language. Well, fear not! Pointers are actually easier to deal with
in assembly language than in high-level languages.

Besides, most of the problems you had with pointers probably had noth-
ing to do with pointers but rather with the linked list and tree data structures
you were trying to implement with them. Pointers, on the other hand, have
many uses in assembly language that have nothing to do with linked lists,
trees, and other scary data structures. Indeed, simple data structures like
arrays and records often involve the use of pointers. So, if you have some
deep-rooted fear about pointers, forget everything you know about them.
You’re going to learn how great pointers really are.

Probably the best place to start is with the definition of a pointer. A
pointer is a memory location whose value is the address of another memory
location. Unfortunately, high-level languages like C/C++ tend to hide the
simplicity of pointers behind a wall of abstraction. This added complexity
(which exists for good reason, by the way) tends to frighten programmers
because they don’t understand what’s going on.

To illuminate what’s really happening, consider the following array dec-
laration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to under-
stand. M is an array with 1024 integers in it, indexed from M[0] to M[1023].
Each one of these array elements can hold an integer value that is indepen-
dent of all the others. In other words, this array gives you 1024 different
integer variables, each of which you refer to by number (the array index)
rather than by name.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

162 Chapter 4

If you encounter a program that has the statement M[0]:=100;, you prob-
ably won’t have to think at all about what is happening with this statement.
It is storing the value 100 into the first element of the array M. Now consider
the following two statements:

i := 0; (* Assume "i" is an integer variable. *)
M [i] := 100;

You should agree, without too much hesitation, that these two statements
perform the same operation as M[0]:=100;. Indeed, you’re probably willing to
agree that you can use any integer expression in the range 0 to 1023 as an
index into this array. The following statements still perform the same opera-
tion as our single assignment to index 0:

i := 5; (* Assume all variables are integers.*)
j := 10;
k := 50;
m [i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that
produces an integer in the range 0 to 1023 is legal. So what?” Okay, how
about the following:

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it
slowly, it makes sense, and you’ll discover that these two instructions perform
the same operation you’ve been doing all along. The first statement stores
0 into array element M[1]. The second statement fetches the value of M[1],
which is an integer so you can use it as an array index into M, and uses that
value (0) to control where it stores the value 100.

If you’re willing to accept this as reasonable—perhaps bizarre, but
usable nonetheless—then you’ll have no problems with pointers. Because
M[1] is a pointer! Well, not really, but if you were to change M to memory and
treat this array as all of memory, this is the exact definition of a pointer:
a memory location whose value is the address (or index, if you prefer) of
another memory location. Pointers are easy to declare and use in an assem-
bly language program. You don’t even have to worry about array indices or
anything like that.

4.6.1 Using Pointers in Assembly Language
A MASM pointer is a 64-bit value that may contain the address of another
variable. If you have a dword variable p that contains 1000_0000h, then p
“points” at memory location 1000_0000h. To access the dword that p points
at, you could use code like the following:

mov rbx, p ; Load RBX with the value of pointer p
mov rax, [rbx] ; Fetch the data that p points at

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 163

By loading the value of p into RBX, this code loads the value
1000_0000h into RBX (assuming p contains 1000_0000h). The second
instruction loads the RAX register with the qword starting at the location
whose offset appears in RBX. Because RBX now contains 1000_0000h, this
will load RAX from locations 1000_0000h through 1000_0007h.

Why not just load RAX directly from location 1000_0000h by using an
instruction like mov rax, mem (assuming mem is at address 1000_0000h)? Well,
there are several reasons. But the primary reason is that this mov instruction
always loads RAX from location mem. You cannot change the address from
where it loads RAX. The former instructions, however, always load RAX
from the location where p is pointing. This is easy to change under program
control. In fact, the two instructions mov rax, offset mem2 and mov p, rax will
cause those previous two instructions to load RAX from mem2 the next time
they execute. Consider the following code fragment:

 mov rax, offset i
 mov p, rax
 .
 .
 .
 ; Some code that sets or clears the carry flag ...

 jc skipSetp

 mov rax, offset j
 mov p, rax
 .
 .
 .

skipSetp:
 mov rbx, p ; Assume both code paths wind up
 mov rax, [rbx] ; down here.

This short example demonstrates two execution paths through the pro-
gram. The first path loads the variable p with the address of the variable i.
The second path through the code loads p with the address of the variable j.
Both execution paths converge on the last two mov instructions that load
RAX with i or j depending on which execution path was taken. In many
respects, this is like a parameter to a procedure in a high-level language like
Swift. Executing the same instructions accesses different variables depend-
ing on whose address (i or j) winds up in p.

4.6.2 Declaring Pointers in MASM
Because pointers are 64 bits long, you could use the qword type to allocate
storage for your pointers. However, rather than use qword declarations, an
arguably better approach is to use typedef to create a pointer type:

 .data
pointer typedef qword

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

164 Chapter 4

b byte ?
d dword ?
pByteVar pointer b
pDWordVar pointer d

This example demonstrates that it is possible to initialize as well as
declare pointer variables in MASM. Note that you may specify addresses of
static variables (.data, .const, and .data? objects) in the operand field of a
qword/pointer directive, so you can initialize only pointer variables with the
addresses of static objects.

4.6.3 Pointer Constants and Pointer Constant Expressions
MASM allows very simple constant expressions wherever a pointer constant
is legal. Pointer constant expressions take one of the three following forms:7

offset StaticVarName [PureConstantExpression]
offset StaticVarName + PureConstantExpression
offset StaticVarName - PureConstantExpression

The PureConstantExpression term is a numeric constant expression that
does not involve any pointer constants. This type of expression produces
a memory address that is the specified number of bytes before or after
(- or +, respectively) the StaticVarName variable in memory. Note that the
first two forms shown here are semantically equivalent; both return a pointer
constant whose address is the sum of the static variable and the constant
expression.

Because you can create pointer constant expressions, it should come
as no surprise to discover that MASM lets you define manifest pointer con-
stants by using equates. The program in Listing 4-2 demonstrates how you
can do this.

; Listing 4-2

; Pointer constant demonstration:

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-2", 0
fmtStr byte "pb's value is %ph", nl
 byte "*pb's value is %d", nl, 0

 .data
b byte 0
 byte 1, 2, 3, 4, 5, 6, 7

7. In MASM syntax, the form x[y] is equivalent to x + y. Likewise, [x][y] is also equivalent to
x + y.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 165

pb textequ <offset b[2]>

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

 lea rcx, fmtStr
 mov rdx, pb
 movzx r8, byte ptr [rdx]
 call printf

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-2: Pointer constant expressions in a MASM program

Here’s the assembly and execution of this code:

C:\>build listing4-2

C:\>echo off
 Assembling: listing4-2.asm
c.cpp

C:\>listing4-2
Calling Listing 4-2:
pb's value is 00007FF6AC381002h
*pb's value is 2
Listing 4-2 terminated

Note that the address printed may vary on different machines and dif-
ferent versions of Windows.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

166 Chapter 4

4.6.4 Pointer Variables and Dynamic Memory Allocation
Pointer variables are the perfect place to store the return result from the
C Standard Library malloc() function. This function returns the address of the
storage it allocates in the RAX register; therefore, you can store the address
directly into a pointer variable with a single mov instruction immediately after
a call to malloc(). Listing 4-3 demonstrates calls to the C Standard Library
malloc() and free() functions.

; Listing 4-3

; Demonstration of calls
; to C standard library malloc
; and free functions.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-3", 0
fmtStr byte "Addresses returned by malloc: %ph, %ph", nl, 0

 .data
ptrVar qword ?
ptrVar2 qword ?

 .code
 externdef printf:proc
 externdef malloc:proc
 externdef free:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; C standard library malloc function

; ptr = malloc(byteCnt);

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 167

 mov rcx, 256 ; Allocate 256 bytes
 call malloc
 mov ptrVar, rax ; Save pointer to buffer

 mov rcx, 1024 ; Allocate 1,024 bytes
 call malloc
 mov ptrVar2, rax ; Save pointer to buffer

 lea rcx, fmtStr
 mov rdx, ptrVar
 mov r8, rax ; Print addresses
 call printf

; Free the storage by calling
; C standard library free function.

; free(ptrToFree);

 mov rcx, ptrVar
 call free

 mov rcx, ptrVar2
 call free

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-3: Demonstration of malloc() and free() calls

Here’s the output I obtained when building and running this program.
Note that the addresses that malloc() returns may vary by system, by operating
system version, and for other reasons. Therefore, you will likely get different
numbers than I obtained on my system.

C:\>build listing4-3

C:\>echo off
 Assembling: listing4-3.asm
c.cpp

C:\>listing4-3
Calling Listing 4-3:
Addresses returned by malloc: 0000013B2BC43AD0h, 0000013B2BC43BE0h
Listing 4-3 terminated

4.6.5 Common Pointer Problems
Programmers encounter five common problems when using pointers. Some
of these errors will cause your programs to immediately stop with a diagnos-
tic message; other problems are subtler, yielding incorrect results without

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

168 Chapter 4

otherwise reporting an error or simply affecting the performance of your
program without displaying an error. These five problems are as follows:

1. Using an uninitialized pointer

2. Using a pointer that contains an illegal value (for example, NULL)

3. Continuing to use malloc()’d storage after that storage has been freed

4. Failing to free() storage once the program is finished using it

5. Accessing indirect data by using the wrong data type

The first problem is using a pointer variable before you have assigned a
valid memory address to the pointer. Beginning programmers often don’t
realize that declaring a pointer variable reserves storage only for the pointer
itself; it does not reserve storage for the data that the pointer references. The
short program in Listing 4-4 demonstrates this problem (don’t try to com-
pile and run this program; it will crash).

; Listing 4-4

; Uninitialized pointer demonstration.
; Note that this program will not
; run properly.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-4", 0
fmtStr byte "Pointer value= %p", nl, 0

 .data
ptrVar qword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 169

 lea rcx, fmtStr
 mov rdx, ptrVar
 mov rdx, [rdx] ; Will crash system
 call printf

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-4: Uninitialized pointer demonstration

Although variables you declare in the .data section are, technically,
initialized, static initialization still doesn’t initialize the pointer in this pro-
gram with a valid address (it initializes the pointer with 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on the
x86-64. What you really have are variables that you’ve explicitly given an ini-
tial value to and variables that just happen to inherit whatever bit pattern was
in memory when storage for the variable was allocated. Much of the time,
these garbage bit patterns lying around in memory don’t correspond to a
valid memory address. Attempting to dereference such a pointer (that is, access
the data in memory at which it points) typically raises a memory access violation
exception.

Sometimes, however, those random bits in memory just happen to cor-
respond to a valid memory location you can access. In this situation, the
CPU will access the specified memory location without aborting the pro-
gram. Although to a naive programmer this situation may seem preferable
to stopping the program, in reality this is far worse because your defective
program continues to run without alerting you to the problem. If you store
data through an uninitialized pointer, you may very well overwrite the val-
ues of other important variables in memory. This defect can produce some
very difficult-to-locate problems in your program.

The second problem programmers have with pointers is storing invalid
address values into a pointer. The first problem is actually a special case of this
second problem (with garbage bits in memory supplying the invalid address
rather than you producing it via a miscalculation). The effects are the same; if
you attempt to dereference a pointer containing an invalid address, you either
will get a memory access violation exception or will access an unexpected
memory location.

The third problem listed is also known as the dangling pointer problem.
To understand this problem, consider the following code fragment:

mov rcx, 256
call malloc ; Allocate some storage
mov ptrVar, rax ; Save address away in ptrVar
 .
 . ; Code that uses the pointer variable ptrVar.
 .

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

170 Chapter 4

mov rcx, ptrVar
call free ; Free storage associated with ptrVar
 .
 . ; Code that does not change the value in ptrVar.
 .
mov rbx, ptrVar
mov [rbx], al

In this example, the program allocates 256 bytes of storage and saves
the address of that storage in the ptrVar variable. Then the code uses this
block of 256 bytes for a while and frees the storage, returning it to the system
for other uses. Note that calling free() does not change the value of ptrVar in
any way; ptrVar still points at the block of memory allocated by malloc() ear-
lier. Indeed, free() does not change any data in this block, so upon return
from free(), ptrVar still points at the data stored into the block by this code.

However, note that the call to free() tells the system that the program
no longer needs this 256-byte block of memory and the system can use this
region of memory for other purposes. The free() function cannot enforce
the fact that you will never access this data again; you are simply promising
that you won’t. Of course, the preceding code fragment breaks this prom-
ise; as you can see in the last two instructions, the program fetches the value
in ptrVar and accesses the data it points at in memory.

The biggest problem with dangling pointers is that you can get away
with using them a good part of the time. As long as the system doesn’t
reuse the storage you’ve freed, using a dangling pointer produces no
ill effects in your program. However, with each new call to malloc(), the
system may decide to reuse the memory released by that previous call
to free(). When this happens, any attempt to dereference the dangling
pointer may produce unintended consequences. The problems range
from reading data that has been overwritten (by the new, legal use of the
data storage), to overwriting the new data, to (the worst case) overwriting
system heap management pointers (doing so will probably cause your pro-
gram to crash). The solution is clear: never use a pointer value once you free
the storage associated with that pointer.

Of all the problems, the fourth (failing to free allocated storage) will
probably have the least impact on the proper operation of your program.
The following code fragment demonstrates this problem:

mov rcx, 256
call malloc
mov ptrVar, rax
 . ; Code that uses ptrVar.
 . ; This code does not free up the storage
 . ; associated with ptrVar.
mov rcx, 512
call malloc
mov ptrVar, rax

; At this point, there is no way to reference the original
; block of 256 bytes pointed at by ptrVar.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 171

In this example, the program allocates 256 bytes of storage and ref-
erences this storage by using the ptrVar variable. At some later time, the
program allocates another block of bytes and overwrites the value in ptrVar
with the address of this new block. Note that the former value in ptrVar is
lost. Because the program no longer has this address value, there is no way
to call free() to return the storage for later use.

As a result, this memory is no longer available to your program. While
making 256 bytes of memory inaccessible to your program may not seem
like a big deal, imagine that this code is in a loop that repeats over and over
again. With each execution of the loop, the program loses another 256 bytes
of memory. After a sufficient number of loop iterations, the program will
exhaust the memory available on the heap. This problem is often called a
memory leak because the effect is the same as though the memory bits were
leaking out of your computer (yielding less and less available storage) during
program execution.

Memory leaks are far less damaging than dangling pointers. Indeed,
memory leaks create only two problems: the danger of running out of heap
space (which, ultimately, may cause the program to abort, though this is
rare) and performance problems due to virtual memory page swapping.
Nevertheless, you should get in the habit of always freeing all storage once
you have finished using it. When your program quits, the operating system
reclaims all storage, including the data lost via memory leaks. Therefore,
memory lost via a leak is lost only to your program, not the whole system.

The last problem with pointers is the lack of type-safe access. This can
occur because MASM cannot and does not enforce pointer type checking.
For example, consider the program in Listing 4-5.

; Listing 4-5

; Demonstration of lack of type
; checking in assembly language
; pointer access.

 option casemap:none

nl = 10
maxLen = 256

 .const
ttlStr byte "Listing 4-5", 0
prompt byte "Input a string: ", 0
fmtStr byte "%d: Hex value of char read: %x", nl, 0

 .data
bufPtr qword ?
bytesRead qword ?

 .code
 externdef readLine:proc
 externdef printf:proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

172 Chapter 4

 externdef malloc:proc
 externdef free:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx ; Preserve RBX

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

; C standard library malloc function.
; Allocate sufficient characters
; to hold a line of text input
; by the user:

 mov rcx, maxLen ; Allocate 256 bytes
 call malloc
 mov bufPtr, rax ; Save pointer to buffer

; Read a line of text from the user and place in
; the newly allocated buffer:

 lea rcx, prompt ; Prompt user to input
 call printf ; a line of text.

 mov rcx, bufPtr ; Pointer to input buffer
 mov rdx, maxLen ; Maximum input buffer length
 call readLine ; Read text from user
 cmp rax, -1 ; Skip output if error
 je allDone
 mov bytesRead, rax ; Save number of chars read

; Display the data input by the user:

 xor rbx, rbx ; Set index to zero
dispLp: mov r9, bufPtr ; Pointer to buffer
 mov rdx, rbx ; Display index into buffer
 mov r8d, [r9+rbx*1] ; Read dword rather than byte!
 lea rcx, fmtStr
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 173

 inc rbx ; Repeat for each char in buffer
 cmp rbx, bytesRead
 jb dispLp

; Free the storage by calling
; C standard library free function.

; free(bufPtr);

allDone:
 mov rcx, bufPtr
 call free

 add rsp, 40
 pop rbx ; Restore RBX
 ret ; Returns to caller
asmMain endp
 end

Listing 4-5: Type-unsafe pointer access example

Here are the commands to build and run this sample program:

C:\>build listing4-5

C:\>echo off
 Assembling: listing4-5.asm
c.cpp

C:\>listing4-5
Calling Listing 4-5:
Input a string: Hello, World!
0: Hex value of char read: 6c6c6548
1: Hex value of char read: 6f6c6c65
2: Hex value of char read: 2c6f6c6c
3: Hex value of char read: 202c6f6c
4: Hex value of char read: 57202c6f
5: Hex value of char read: 6f57202c
6: Hex value of char read: 726f5720
7: Hex value of char read: 6c726f57
8: Hex value of char read: 646c726f
9: Hex value of char read: 21646c72
10: Hex value of char read: 21646c
11: Hex value of char read: 2164
12: Hex value of char read: 21
13: Hex value of char read: 5c000000
Listing 4-5 terminated

The program in Listing 4-5 reads data from the user as character val-
ues and then displays the data as double-word hexadecimal values. While a
powerful feature of assembly language is that it lets you ignore data types
at will and automatically coerce the data without any effort, this power is a

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

174 Chapter 4

two-edged sword. If you make a mistake and access indirect data by using
the wrong data type, MASM and the x86-64 may not catch the mistake,
and your program may produce inaccurate results. Therefore, when using
pointers and indirection in your programs, you need to take care that you
use the data consistently with respect to data type.

This demonstration program has one fundamental flaw that could create
a problem for you: when reading the last two characters of the input buffer,
the program accesses data beyond the characters input by the user. If the
user inputs 255 characters (plus the zero-terminating byte that readLine()
appends), this program will access data beyond the end of the buffer allo-
cated by malloc(). In theory, this could cause the program to crash. This is yet
another problem that can occur when accessing data by using the wrong type
via pointers.

 4.7 Composite Data Types
Composite data types, also known as aggregate data types, are those that are built
up from other (generally scalar) data types. The next sections cover several of
the more important composite data types—character strings, arrays, multi-
dimensional arrays, records/structs, and unions. A string is a good example
of a composite data type; it is a data structure built up from a sequence of
individual characters and other data.

 4.8 Character Strings
After integer values, character strings are probably the most common data
type that modern programs use. The x86-64 does support a handful of
string instructions, but these instructions are really intended for block
memory operations, not a specific implementation of a character string.
Therefore, this section will provide a couple of definitions of character
strings and discuss how to process them.

In general, a character string is a sequence of ASCII characters that
possesses two main attributes: a length and character data. Different lan-
guages use different data structures to represent strings. Assembly language
(at least, sans any library routines) doesn’t really care how you implement
strings. All you need to do is create a sequence of machine instructions to
process the string data in whatever format the strings take.

4.8.1 Zero-Terminated Strings
Without question, zero-terminated strings are the most common string rep-
resentation in use today because this is the native string format for C,
C++, and other languages. A zero-terminated string consists of a sequence
of zero or more ASCII characters ending with a 0 byte. For example, in
C/C++, the string "abc" requires 4 bytes: the three characters a, b, and c
followed by a 0. As you’ll soon see, MASM character strings are upward

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 175

compatible with zero-terminated strings, but in the meantime, you should
note that creating zero-terminated strings in MASM is easy. The easiest
place to do this is in the .data section by using code like the following:

 .data
zeroString byte "This is the zero-terminated string", 0

Whenever a character string appears in the byte directive as it does
here, MASM emits each character in the string to successive memory loca-
tions. The zero value at the end of the string terminates this string.

Zero-terminated strings have two principal attributes: they are simple
to implement, and the strings can be any length. On the other hand, zero-
terminated strings have a few drawbacks. First, though not usually important,
zero-terminated strings cannot contain the NUL character (whose ASCII
code is 0). Generally, this isn’t a problem, but it does create havoc once in a
while. The second problem with zero-terminated strings is that many opera-
tions on them are somewhat inefficient. For example, to compute the length
of a zero-terminated string, you must scan the entire string looking for that
0 byte (counting characters up to the 0). The following program fragment
demonstrates how to compute the length of the preceding string:

 lea rbx, zeroString
 xor rax, rax ; Set RAX to zero
whileLp: cmp byte ptr [rbx+rax*1], 0
 je endwhile

 inc rax
 jmp whileLp

endwhile:

; String length is now in RAX.

As you can see from this code, the time it takes to compute the length
of the string is proportional to the length of the string; as the string gets
longer, it takes longer to compute its length.

4.8.2 Length-Prefixed Strings
The length-prefixed string format overcomes some of the problems with zero-
terminated strings. Length-prefixed strings are common in languages like
Pascal; they generally consist of a length byte followed by zero or more
character values. The first byte specifies the string length, and the follow-
ing bytes (up to the specified length) are the character data. In a length-
prefixed scheme, the string "abc" would consist of the 4 bytes: 03 (the string
length) followed by a, b, and c. You can create length-prefixed strings in
MASM by using code like the following:

 .data
lengthPrefixedString label byte;
 byte 3, "abc"

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

176 Chapter 4

Counting the characters ahead of time and inserting them into the byte
statement, as was done here, may seem like a major pain. Fortunately, there
are ways to have MASM automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with
zero-terminated strings. It is possible to include the NUL character in
length-prefixed strings, and those operations on zero-terminated strings
that are relatively inefficient (for example, string length) are more efficient
when using length-prefixed strings. However, length-prefixed strings have
their own drawbacks. The principal drawback is that they are limited to a
maximum of 255 characters in length (assuming a 1-byte length prefix).

Of course, if you have a problem with a string length limitation of 255
characters, it’s perfectly possible to create a length-prefixed string by using
any number of bytes for the length as needed. For example, the High-
Level Assembler (HLA) uses a 4-byte length variant of length-prefixed strings,
allowing strings up to 4GB long.8 The point is that in assembly language,
you can define string formats however you like.

If you want to create length-prefixed strings in your assembly language
programs, you don’t want to have to manually count the characters in the
string and emit that length in your code. It’s far better to have the assem-
bler do this kind of grunge work for you. This is easily accomplished using
the location counter operator ($) as follows:

 .data
lengthPrefixedString label byte;
 byte lpsLen, "abc"
lpsLen = $-lengthPrefixedString-1

The lpsLen operand subtracts 1 in the address expression because
$-lengthPrefixedString also includes the length prefix byte, which isn’t con-
sidered part of the string length.

4.8.3 String Descriptors
Another common string format is a string descriptor. A string descriptor is
typically a small data structure (record or structure, see “Records/Structs”
on page xx) that contains several pieces of data describing a string. At a
bare minimum, a string descriptor will probably have a pointer to the actual
string data and a field specifying the number of characters in the string
(that is, the string length). Other possible fields might include the number
of bytes currently occupied by the string,9 the maximum number of bytes
the string could occupy, the string encoding (for example, ASCII, Latin-1,
UTF-8, or UTF-16), and any other information the string data structure’s
designer could dream up.

8. Visit https://artofasm.randallhyde.com/ for more details on the High-Level Assembler.

9. The number of bytes could be different from the number of characters in the string if the
string encoding includes multi-byte character sequences, such as what you would find in
UTF-8 or UTF-16 encodings.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 177

By far, the most common descriptor format incorporates a pointer to the
string’s data and a size field specifying the number of bytes currently occu-
pied by that string data. Note that this particular string descriptor is not the
same thing as a length-prefixed string. In a length-prefixed string, the length
immediately precedes the character data itself. In a descriptor, the length
and a pointer are kept together, and this pair is (usually) separate from the
character data itself.

4.8.4 Pointers to Strings
Most of the time, an assembly language program won’t directly work with
strings appearing in the .data (or .const or .data?) section. Instead, the pro-
gram will work with pointers to strings (including strings whose storage the
program has dynamically allocated with a call to a function like malloc()).
Listing 4-5 provided a simple (if not broken) example. In such applications,
your assembly code will typically load a pointer to a string into a base regis-
ter and then use a second (index) register to access individual characters in
the string.

4.8.5 String Functions
Unfortunately, very few assemblers provide a set of string functions you can
call from your assembly language programs.10 As an assembly language pro-
grammer, you’re expected to write these functions on your own. Fortunately,
a couple of solutions are available if you don’t quite feel up to the task.

The first set of string functions you can call (without having to write
them yourself) is the C Standard Library string functions (from the string.h
header file in C). Of course, you’ll have to use C strings (zero-terminated
strings) in your code when calling C Standard Library functions, but this
generally isn’t a big problem. Listing 4-6 provides examples of calls to vari-
ous C string functions.

; Listing 4-6

; Calling C Standard Library string functions:

 option casemap:none

nl = 10
maxLen = 256

 .const
ttlStr byte "Listing 4-6", 0
prompt byte "Input a string: ", 0
fmtStr1 byte "After strncpy, resultStr='%s'", nl, 0

10. The High-Level Assembler (HLA) is a notable exception. The HLA Standard Library
includes a wide set of string functions written in HLA. Were it not for the HLA Standard
Library being all 32-bit code, you would have been able to call those functions from your
MASM code. That being said, it isn’t that difficult to rewrite the HLA library functions
in MASM. You can obtain the HLA Standard Library source code from https://artofasm
.randallhyde.com/ if you care to try this.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

178 Chapter 4

fmtStr2 byte "After strncat, resultStr='%s'", nl, 0
fmtStr3 byte "After strcmp (3), eax=%d", nl, 0
fmtStr4 byte "After strcmp (4), eax=%d", nl, 0
fmtStr5 byte "After strcmp (5), eax=%d", nl, 0
fmtStr6 byte "After strchr, rax='%s'", nl, 0
fmtStr7 byte "After strstr, rax='%s'", nl, 0
fmtStr8 byte "resultStr length is %d", nl, 0

str1 byte "Hello, ", 0
str2 byte "World!", 0
str3 byte "Hello, World!", 0
str4 byte "hello, world!", 0
str5 byte "HELLO, WORLD!", 0

 .data
strLength dword ?
resultStr byte maxLen dup (?)

 .code
 externdef readLine:proc
 externdef printf:proc
 externdef malloc:proc
 externdef free:proc

; Some C standard library string functions:

; size_t strlen(char *str)

 externdef strlen:proc

; char *strncat(char *dest, const char *src, size_t n)

 externdef strncat:proc

; char *strchr(const char *str, int c)

 externdef strchr:proc

; int strcmp(const char *str1, const char *str2)

 externdef strcmp:proc

; char *strncpy(char *dest, const char *src, size_t n)

 externdef strncpy:proc

; char *strstr(const char *inStr, const char *search4)

 externdef strstr:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 179

 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; Demonstrate the strncpy function to copy a
; string from one location to another:

 lea rcx, resultStr ; Destination string
 lea rdx, str1 ; Source string
 mov r8, maxLen ; Max number of chars to copy
 call strncpy

 lea rcx, fmtStr1
 lea rdx, resultStr
 call printf

; Demonstrate the strncat function to concatenate str2 to
; the end of resultStr:

 lea rcx, resultStr
 lea rdx, str2
 mov r8, maxLen
 call strncat

 lea rcx, fmtStr2
 lea rdx, resultStr
 call printf

; Demonstrate the strcmp function to compare resultStr
; with str3, str4, and str5:

 lea rcx, resultStr
 lea rdx, str3
 call strcmp

 lea rcx, fmtStr3
 mov rdx, rax
 call printf

 lea rcx, resultStr
 lea rdx, str4
 call strcmp

 lea rcx, fmtStr4
 mov rdx, rax
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

180 Chapter 4

 lea rcx, resultStr
 lea rdx, str5
 call strcmp

 lea rcx, fmtStr5
 mov rdx, rax
 call printf

; Demonstrate the strchr function to search for
; ',' in resultStr

 lea rcx, resultStr
 mov rdx, ','
 call strchr

 lea rcx, fmtStr6
 mov rdx, rax
 call printf

; Demonstrate the strstr function to search for
; str2 in resultStr

 lea rcx, resultStr
 lea rdx, str2
 call strstr

 lea rcx, fmtStr7
 mov rdx, rax
 call printf

; Demonstrate a call to the strlen function

 lea rcx, resultStr
 call strlen

 lea rcx, fmtStr8
 mov rdx, rax
 call printf

 add rsp, 48
 ret ; Returns to caller
asmMain endp
 end

Listing 4-6: Calling C Standard Library string function from MASM source code

Here are the commands to build and run Listing 4-6:

C:\>build listing4-6

C:\>echo off
 Assembling: listing4-6.asm
c.cpp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 181

C:\>listing4-6
Calling Listing 4-6:
After strncpy, resultStr='Hello, '
After strncat, resultStr='Hello, World!'
After strcmp (3), eax=0
After strcmp (4), eax=-1
After strcmp (5), eax=1
After strchr, rax=', World!'
After strstr, rax='World!'
resultStr length is 13
Listing 4-6 terminated

Of course, you could make a good argument that if all your assembly
code does is call a bunch of C Standard Library functions, you should have
written your application in C in the first place. Most of the benefits of writing
code in assembly language happen only when you “think” in assembly lan-
guage, not C. In particular, you can dramatically improve the performance of
your string function calls if you stop using zero-terminated strings and switch
to another string format (such as length-prefixed or descriptor-based strings
that include a length component).

In addition to the C Standard Library, you can find lots of x86-64 string
functions written in assembly language out on the internet. A good place
to start is the MASM Forum at https://masm32.com/board/ (despite the name,
this message forum supports 64-bit as well as 32-bit MASM programming).
Chapter 14 discusses string functions written in assembly language in
greater detail.

 4.9 Arrays
Along with strings, arrays are probably the most commonly used composite
data. Yet most beginning programmers don’t understand how arrays operate
internally and their associated efficiency trade-offs. It’s surprising how many
novice (and even advanced!) programmers view arrays from a completely dif-
ferent perspective once they learn how to deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements)
are all the same type. Selection of a member from the array is by an integer
index.11 Different indices select unique elements of the array. This book
assumes that the integer indices are contiguous (though this is by no means
required). That is, if the number x is a valid index into the array and y is also
a valid index, with x < y, then all i such that x < i < y are valid indices.

Whenever you apply the indexing operator to an array, the result is the
specific array element chosen by that index. For example, A[i] chooses the
ith element from array A. There is no formal requirement that element i be
anywhere near element i+1 in memory. As long as A[i] always refers to the

11. Or it could be a value whose underlying representation is integer, such as character, enu-
merated, and Boolean types.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://masm32.com/board/

182 Chapter 4

same memory location and A[i+1] always refers to its corresponding loca-
tion (and the two are different), the definition of an array is satisfied.

In this book, we assume that array elements occupy contiguous loca-
tions in memory. An array with five elements will appear in memory as
Figure 4-1 shows.

Low memory
addresses Base address of A

High memory
addresses

A[0] A[1] A[2] A[3] A[4]

Figure 4-1: Array layout in memory

The base address of an array is the address of the first element in the
array and always appears in the lowest memory location. The second array
element directly follows the first in memory, the third element follows the
second, and so on. Indices are not required to start at zero. They may start
with any number as long as they are contiguous. However, for the purposes
of discussion, this book will start all indexes at zero.

To access an element of an array, you need a function that translates an
array index to the address of the indexed element. For a single-dimensional
array, this function is very simple:

Element_Address = Base_Address + ((Index - Initial_Index) × Element_Size)

where Initial_Index is the value of the first index in the array (which you
can ignore if it’s zero), and the value Element_Size is the size, in bytes, of an
individual array element.

4.9.1 Declaring Arrays in Your MASM Programs
Before you can access elements of an array, you need to set aside storage for
that array. Fortunately, array declarations build on the declarations you’ve
already seen. To allocate n elements in an array, you would use a declara-
tion like the following in one of the variable declaration sections:

ArrayName basetype n dup (?)

ArrayName is the name of the array variable, and basetype is the type of an
element of that array. This declaration sets aside storage for the array. To
obtain the base address of the array, just use ArrayName.

The n dup (?) operand tells MASM to duplicate the object n times. Now
let’s look at some specific examples:

 .data

; Character array with elements 0 to 127.

CharArray byte 128 dup (?)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 183

; Array of bytes with elements 0 to 9.

ByteArray byte 10 dup (?)

; Array of double words with elements 0 to 3.

DWArray dword 4 dup (?)

These examples all allocate storage for uninitialized arrays. You may
also specify that the elements of the arrays be initialized using declarations
like the following in the .data and .const sections:

RealArray real4 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
IntegerAry sdword 1, 1, 1, 1, 1, 1, 1, 1

Both definitions create arrays with eight elements. The first definition
initializes each 4-byte real value to 1.0, and the second declaration initial-
izes each 32-bit integer (sdword) element to 1.

If all the array elements have the same initial value, you can save a little
work by using the following declarations:

RealArray real4 8 dup (1.0)
IntegerAry sdword 8 dup (1)

These operand fields tell MASM to make eight copies of the value inside
the parentheses. In past examples, this has always been ? (an uninitialized
value). However, you can put an initial value inside the parentheses, and
MASM will duplicate that value. In fact, you can put a comma-separated list
of values, and MASM will duplicate everything inside the parentheses:

RealArray real4 4 dup (1.0, 2.0)
IntegerAry sdword 4 dup (1, 2)

These two examples also create eight-element arrays. Their initial
values will be 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, and 1, 2, 1, 2, 1, 2, 1, 2,
respectively.

4.9.2 Accessing Elements of a Single-Dimensional Array
To access an element of a zero-based array, you can use this formula:

Element_Address = Base_Address + index × Element_Size

If you are operating in LARGEADDRESSAWARE:NO mode, for the Base_Address
entry you can use the name of the array (because MASM associates the
address of the first element of an array with the name of that array). If you
are operating in a large address mode, you’ll need to load the base address
of the array into a 64-bit (base) register; for example:

lea rbx, Base_Address

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

184 Chapter 4

The Element_Size entry is the number of bytes for each array element.
If the object is an array of bytes, the Element_Size field is 1 (resulting in a
very simple computation). If each element of the array is a word (or other
2-byte type), then Element_Size is 2, and so on. To access an element of the
IntegerAry array in the previous section, you’d use the following formula
(the size is 4 because each element is an sdword object):

Element_Address = IntegerAry + (index × 4)

Assuming LARGEADDRESSAWARE:NO, the x86-64 code equivalent to the state-
ment eax = IntegerAry[index] is as follows:

mov rbx, index
mov eax, IntegerAry[rbx*4]

In large address mode (LARGEADDRESSAWARE:YES), you’d have to load the
address of the array into a base register; for example:

lea rdx, IntegerAry
mov rbx, index
mov eax, [rdx + rbx*4]

These two instructions don’t explicitly multiply the index register (RBX)
by 4 (the size of a 32-bit integer element in IntegerAry). Instead, they use the
scaled-indexed address mode to perform the multiplication.

Another thing to note about this instruction sequence is that it does
not explicitly compute the sum of the base address plus the index times 4.
Instead, it relies on the scaled-indexed addressing mode to implicitly com-
pute this sum. The instruction mov eax, IntegerAry[rbx*4] loads EAX from
location IntegerAry + rbx*4, which is the base address plus index*4 (because
RBX contains index*4). Similarly, mov eax, [rdx+rbx*4] computes this same
sum as part of the addressing mode. Sure, you could have used

lea rax, IntegerAry
mov rbx, index
shl rbx, 2 ; Sneaky way to compute 4 * RBX
add rbx, rax ; Compute base address plus index * 4
mov eax, [rbx]

in place of the previous sequence, but why use five instructions when two or
three will do the same job? This is a good example of why you should know
your addressing modes inside and out. Choosing the proper addressing
mode can reduce the size of your program, thereby speeding it up.

However, if you need to multiply by a constant other than 1, 2, 4, or 8,
then you cannot use the scaled-indexed addressing modes. Similarly, if you
need to multiply by an element size that is not a power of two, you will not
be able to use the shl instruction to multiply the index by the element size;
instead, you will have to use imul or another instruction sequence to do the
multiplication.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 185

The indexed addressing mode on the x86-64 is a natural for accessing
elements of a single-dimensional array. Indeed, its syntax even suggests an
array access. The important thing to keep in mind is that you must remem-
ber to multiply the index by the size of an element. Failure to do so will pro-
duce incorrect results.

The examples appearing in this section assume that the index variable
is a 64-bit value. In reality, integer indexes into arrays are generally 32-bit
integers or 32-bit unsigned integers. Therefore, you’d typically use the fol-
lowing instruction to load the index value into RBX:

mov ebx, index ; Zero-extends into RBX

Because loading a 32-bit value into a general-purpose register automati-
cally zero-extends that register to 64 bits, the former instruction sequences
(which expect a 64-bit index value) will still work properly when you’re
using 32-bit integers as indexes into an array.

4.9.3 Sorting an Array of Values
Almost every textbook on this planet gives an example of a sort when intro-
ducing arrays. Because you’ve probably seen how to do a sort in high-level
languages already, it’s instructive to take a quick look at a sort in MASM.
Listing 4-7 uses a variant of the bubble sort, which is great for short lists
of data and lists that are nearly sorted, but horrible for just about every-
thing else.12

; Listing 4-7

; A simple bubble sort example.

; Note: This example must be assembled
; and linked with LARGEADDRESSAWARE:NO.

 option casemap:none

nl = 10
maxLen = 256
true = 1
false = 0

bool typedef ptr byte

 .const
ttlStr byte "Listing 4-7", 0
fmtStr byte "Sortme[%d] = %d", nl, 0

 .data

12. Fear not, you’ll see some better sorting algorithms in Chapter 5.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

186 Chapter 4

; sortMe - A 16-element array to sort:

sortMe label dword
 dword 1, 2, 16, 14
 dword 3, 9, 4, 10
 dword 5, 7, 15, 12
 dword 8, 6, 11, 13
sortSize = ($ - sortMe) / sizeof dword ; Number of elements

; didSwap - A Boolean value that indicates
; whether a swap occurred on the
; last loop iteration.

didSwap bool ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's the bubblesort function.

; sort(dword *array, qword count);

; Note: this is not an external (C)
; function, nor does it call any
; external functions. So it will
; dispense with some of the Windows
; calling sequence stuff.

; array - Address passed in RCX.
; count - Element count passed in RDX.

sort proc
 push rax ; In pure assembly language
 push rbx ; it's always a good idea
 push rcx ; to preserve all registers
 push rdx ; you modify.
 push r8

 dec rdx ; numElements - 1

; Outer loop:

outer: mov didSwap, false

 xor rbx, rbx ; RBX = 0
inner: cmp rbx, rdx ; while RBX < count - 1
 jnb xInner

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 187

 mov eax, [rcx + rbx*4] ; EAX = sortMe[RBX]
 cmp eax, [rcx + rbx*4 + 4] ; if EAX > sortMe[RBX + 1]
 jna dontSwap ; then swap

 ; sortMe[RBX] > sortMe[RBX + 1], so swap elements:

 mov r8d, [rcx + rbx*4 + 4]
 mov [rcx + rbx*4 + 4], eax
 mov [rcx + rbx*4], r8d
 mov didSwap, true

dontSwap:
 inc rbx ; Next loop iteration
 jmp inner

; Exited from inner loop, test for repeat
; of outer loop:

xInner: cmp didSwap, true
 je outer

 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
sort endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

; Sort the "sortMe" array:

 lea rcx, sortMe
 mov rdx, sortSize ; 16 elements in array
 call sort

; Display the sorted array:

 xor rbx, rbx
dispLp: mov r8d, sortMe[rbx*4]
 mov rdx, rbx
 lea rcx, fmtStr
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

188 Chapter 4

 inc rbx
 cmp rbx, sortSize
 jb dispLp

 add rsp, 40
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 4-7: A simple bubble sort example

Here are the commands to assemble and run this sample code:

C:\>sbuild listing4-7

C:\>echo off
 Assembling: listing4-7.asm
c.cpp

C:\>listing4-7
Calling Listing 4-7:
Sortme[0] = 1
Sortme[1] = 2
Sortme[2] = 3
Sortme[3] = 4
Sortme[4] = 5
Sortme[5] = 6
Sortme[6] = 7
Sortme[7] = 8
Sortme[8] = 9
Sortme[9] = 10
Sortme[10] = 11
Sortme[11] = 12
Sortme[12] = 13
Sortme[13] = 14
Sortme[14] = 15
Sortme[15] = 16
Listing 4-7 terminated

The bubble sort works by comparing adjacent elements in an array. The
cmp instruction (before ; if EAX > sortMe[RBX + 1]) compares EAX (which
contains sortMe[rbx*4]) against sortMe[rbx*4 + 4]. Because each element of
this array is 4 bytes (dword), the index [rbx*4 + 4] references the next ele-
ment beyond [rbx*4].

As is typical for a bubble sort, this algorithm terminates if the inner-
most loop completes without swapping any data. If the data is already
presorted, the bubble sort is very efficient, making only one pass over
the data. Unfortunately, if the data is not sorted (worst case, if the data
is sorted in reverse order), then this algorithm is extremely inefficient.
However, the bubble sort is easy to implement and understand (which is
why introductory texts continue to use it in examples).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 189

 4.10 Multidimensional Arrays
The x86-64 hardware can easily handle single-dimensional arrays.
Unfortunately, there is no magic addressing mode that lets you easily
access elements of multidimensional arrays. That’s going to take some
work and several instructions.

Before discussing how to declare or access multidimensional arrays, it
would be a good idea to figure out how to implement them in memory. The
first problem is to figure out how to store a multidimensional object into a
one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of
char;. This array contains 16 bytes organized as four rows of four characters.
Somehow, you’ve got to draw a correspondence with each of the 16 bytes in
this array and 16 contiguous bytes in main memory. Figure 4-2 shows one
way to do this.

Memory

0 1 2 3

0

1

2

3

Figure 4-2: Mapping a 4×4 array to sequential memory locations

The actual mapping is not important as long as two things occur:
(1) each element maps to a unique memory location (that is, no two
entries in the array occupy the same memory locations) and (2) the map-
ping is consistent (that is, a given element in the array always maps to the
same memory location). So, what you really need is a function with two
input parameters (row and column) that produces an offset into a linear
array of 16 memory locations.

Now any function that satisfies these constraints will work fine. Indeed,
you could randomly choose a mapping as long as it was consistent. However,
what you really want is a mapping that is efficient to compute at runtime
and works for any size array (not just 4×4 or even limited to two dimen-
sions). While a large number of possible functions fit this bill, two functions
in particular are used by most programmers and high-level languages:
row-major ordering and column-major ordering.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

190 Chapter 4

4.10.1 Row-Major Ordering
Row-major ordering assigns successive elements, moving across the rows and
then down the columns, to successive memory locations. This mapping is
demonstrated in Figure 4-3.

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

A:array[0..3, 0..3] of char;

Figure 4-3: Row-major array element ordering

Row-major ordering is the method most high-level programming lan-
guages employ. It is easy to implement and use in machine language. You
start with the first row (row 0) and then concatenate the second row to its
end. You then concatenate the third row to the end of the list, then the
fourth row, and so on (see Figure 4-4).

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

High addressesLow addresses

Figure 4-4: Another view of row-major ordering for a 4×4 array

The actual function that converts a list of index values into an offset is a
slight modification of the formula for computing the address of an element

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 191

of a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is as follows:

Element_Address
 Base_Address + (colindex × row_size + rowindex) × Element_Size

As usual, Base_Address is the address of the first element of the array (A[0]
[0] in this case), and Element_Size is the size of an individual element of the
array, in bytes. colindex is the leftmost index, and rowindex is the rightmost
index into the array. row_size is the number of elements in one row of the
array (4, in this case, because each row has four elements). Assuming Element
_Size is 1, this formula computes the following offsets from the base address:

Column Row Offset
Index Index into Array
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into
memory is the following:

Address = Base
 ((depthindex × col_size + colindex) × row_size + rowindex) × Element_Size

The col_size is the number of items in a column, and row_size is the
number of items in a row. In C/C++, if you’ve declared the array as type A[i]
[j][k];, then row_size is equal to k and col_size is equal to j.

For a four-dimensional array, declared in C/C++ as type A[i][j][k][m];,
the formula for computing the address of an array element is shown here:

Address = Base +
(((LeftIndex × depth_size + depthindex) × col_size + colindex) ×
row_size + rowindex) × Element_Size

The depth_size is equal to j, col_size is equal to k, and row_size is equal
to m. LeftIndex represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic
formula that will compute the offset into memory for an array with any
number of dimensions; however, you’ll rarely use more than four.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

192 Chapter 4

Another convenient way to think of row-major arrays is as arrays of
arrays. Consider the following single-dimensional Pascal array definition:

A: array [0..3] of sometype;

where sometype is the type sometype = array [0..3] of char;.
A is a single-dimensional array. Its individual elements happen to be

arrays, but you can safely ignore that for the time being. The formula to com-
pute the address of an element of a single-dimensional array is as follows:

Element_Address = Base + Index × Element_Size

In this case, Element_Size happens to be 4 because each element of A is
an array of four characters. So, this formula computes the base address of
each row in this 4×4 array of characters (see Figure 4-5).

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(A[0][0])

(A[0][1])

(A[0][2])

(A[0][3])

Each element of A
is 4 bytes long.

A[0]

A[1]

A[2]

A[3]

Figure 4-5: Viewing a 4×4 array as an array of arrays

Of course, once you compute the base address of a row, you can reapply
the single-dimensional formula to get the address of a particular element.
While this doesn’t affect the computation, it’s probably a little easier to deal
with several single-dimensional computations rather than a complex multi-
dimensional array computation.

Consider a Pascal array defined as A:array [0..3, 0..3, 0..3, 0..3, 0..3]
of char;. You can view this five-dimensional array as a single-dimensional
array of arrays. The following Pascal code provides such a definition:

type
 OneD = array[0..3] of char;
 TwoD = array[0..3] of OneD;
 ThreeD = array[0..3] of TwoD;
 FourD = array[0..3] of ThreeD;
var
 A: array[0..3] of FourD;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 193

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size
is 16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD
is four ThreeDs, so it is 256 bytes long. To compute the address of A [b, c, d,
e, f], you could use the following steps:

1. Compute the address of A[b] as Base + b × size. Here size is 256 bytes.
Use this result as the new base address in the next computation.

2. Compute the address of A[b, c] by the formula Base + c × size, where
Base is the value obtained in the previous step and size is 64. Use the
result as the new base in the next computation.

3. Compute the base address of A [b, c, d] by Base + d × size, where Base
comes from the previous computation, and size is 16. Use the result
as the new base in the next computation.

4. Compute the address of A[b, c, d, e] with the formula Base + e × size,
where Base comes from the previous computation, and size is 4. Use this
value as the base for the next computation.

5. Finally, compute the address of A[b, c, d, e, f] by using the formula
Base + f × size, where Base comes from the previous computation and
size is 1 (obviously, you can ignore this final multiplication). The result
you obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in
assembly language is that assembly language emphasizes the inefficiencies
associated with such access. It’s easy to enter something like A[b, c, d, e, f]
into a Pascal program, not realizing what the compiler is doing with the code.
Assembly language programmers are not so cavalier—they see the mess you
wind up with when you use higher-dimensional arrays. Indeed, good assem-
bly language programmers try to avoid two-dimensional arrays and often
resort to tricks in order to access data in such an array when its use becomes
absolutely mandatory.

4.10.2 Column-Major Ordering
Column-major ordering is the other function high-level languages frequently
use to compute the address of an array element. FORTRAN and various
dialects of BASIC (for example, older versions of Microsoft BASIC) use
this method.

In row-major ordering, the rightmost index increases the fastest as you
move through consecutive memory locations. In column-major ordering,
the leftmost index increases the fastest. Pictorially, a column-major ordered
array is organized as shown in Figure 4-6.

The formula for computing the address of an array element when using
column-major ordering is similar to that for row-major ordering. You reverse
the indexes and sizes in the computation.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

194 Chapter 4

A:array[0..3, 0..3] of char;

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]

9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

Memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

Figure 4-6: Column-major array element ordering

For a two-dimension column-major array:

Element_Address = Base_Address + (rowindex × col_size + colindex)
Element_Size

For a three-dimension column-major array:

Address = Base +
((rowindex × col_size + colindex) ×
depth_size + depthindex) × Element_Size

For a four-dimension column-major array:

Address =
Base + (((rowindex × col_size + colindex) × depth_size + depthindex) ×
Left_size + Leftindex) × Element_Size

4.10.3 Allocating Storage for Multidimensional Arrays
If you have an m×n array, it will have m × n elements and require m × n ×
Element_Size bytes of storage. To allocate storage for an array, you must
reserve this memory. As usual, there are several ways of accomplishing this
task. To declare a multidimensional array in MASM, you could use a decla-
ration like the following:

ArrayName elementType size1*size2*size3*...*sizen dup (?)

where size1 to sizen are the sizes of each of the dimensions of the array.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 195

For example, here is a declaration for a 4×4 array of characters:

GameGrid byte 4*4 dup (?)

Here is another example that shows how to declare a three-dimensional
array of strings (assuming the array holds 64-bit pointers to the strings):

NameItems qword 2 * 3 * 3 dup (?)

As was the case with single-dimensional arrays, you may initialize every
element of the array to a specific value by following the declaration with
the values of the array constant. Array constants ignore dimension informa-
tion; all that matters is that the number of elements in the array constant
corresponds to the number of elements in the actual array. The following
example shows the GameGrid declaration with an initializer:

GameGrid byte 'a', 'b', 'c', 'd'
 byte 'e', 'f', 'g', 'h'
 byte 'i', 'j', 'k', 'l'
 byte 'm', 'n', 'o', 'p'

This example was laid out to enhance readability (which is always a good
idea). MASM does not interpret the four separate lines as representing rows
of data in the array. Humans do, which is why it’s good to write the data in
this manner. All that matters is that there are 16 (4 × 4) characters in the
array constant. You’ll probably agree that this is much easier to read than

GameGrid byte 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p'

Of course, if you have a large array, an array with really large rows, or
an array with many dimensions, there is little hope for winding up with
something readable. That’s when comments that carefully explain every-
thing come in handy.

As for single-dimensional arrays, you can use the dup operator to ini-
tialize each element of a large array with the same value. The following
example initializes a 256×64 array of bytes so that each byte contains the
value 0FFh:

StateValue byte 256*64 dup (0FFh)

The use of a constant expression to compute the number of array ele-
ments rather than simply using the constant 16,384 (256 × 64) more clearly
suggests that this code is initializing each element of a 256×64 element array
than does the simple literal constant 16,384.

Another MASM trick you can use to improve the readability of your
programs is to use nested dup declarations. The following is an example of a
MASM nested dup declaration:

StateValue byte 256 dup (64 dup (0FFh))

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

196 Chapter 4

MASM replicates anything inside the parentheses the number of times
specified by the constant preceding the dup operator; this includes nested
dup declarations. This example says, “Duplicate the stuff inside the paren-
theses 256 times.” Inside the parentheses, there is a dup operator that says,
“Duplicate 0FFh 64 times,” so the outside dup operator duplicates the duplica-
tion of 64 0FFh values 256 times.

It is probably a good programming convention to declare multidimen-
sional arrays by using the “dup of dup (. . .of dup)” syntax. This can make it
clearer that you’re creating a multidimensional array rather than a single-
dimensional array with a large number of elements.

4.10.4 Accessing Multidimensional Array Elements in Assembly Language
Well, you’ve seen the formulas for computing the address of a multidimen-
sional array element. Now it’s time to see how to access elements of those
arrays by using assembly language.

The mov, shl, and imul instructions make short work of the various equa-
tions that compute offsets into multidimensional arrays. Let’s consider a
two-dimensional array first:

 .data
i sdword ?
j sdword ?
TwoD sdword 4 dup (8 dup (?))

 .
 .
 .

; To perform the operation TwoD[i,j] := 5;
; you'd use code like the following.
; Note that the array index computation is (i*8 + j)*4.

 mov ebx, i ; Remember, zero-extends into RBX
 shl rbx, 3 ; Multiply by 8
 add ebx, j ; Also zero-extends result into RBX13

 mov TwoD[rbx*4], 5

Note that this code does not require the use of a two-register address-
ing mode on the x86-64 (at least, not when using the LARGEADDRESSAWARE:NO
option). Although an addressing mode like TwoD[rbx][rsi] looks like it
should be a natural for accessing two-dimensional arrays, that isn’t the pur-
pose of this addressing mode.

Now consider a second example that uses a three-dimensional array
(again, assuming LARGEADDRESSAWARE:NO):

 .data
i dword ?

13. The add instruction zero-extends into RBX, assuming the HO 32 bits of RBX were zero
after the shl operation. This is generally a safe assumption, but something to keep in
mind if i’s value is large.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 197

j dword ?
k dword ?
ThreeD sdword 3 dup (4 dup (5 dup (?)))
 .
 .
 .

; To perform the operation ThreeD[i,j,k] := esi;
; you'd use the following code that computes
; ((i*4 + j)*5 + k)*4 as the address of ThreeD[i,j,k].

 mov ebx, i ; Zero-extends into RBX
 shl ebx, 2 ; Four elements per column
 add ebx, j
 imul ebx, 5 ; Five elements per row
 add ebx, k
 mov ThreeD[rbx*4], esi

This code uses the imul instruction to multiply the value in RBX by 5,
because the shl instruction can multiply a register by only a power of two.
While there are ways to multiply the value in a register by a constant other
than a power of two, the imul instruction is more convenient.14 Also remem-
ber that operations on the 32-bit general-purpose registers automatically
zero-extend their result into the 64-bit register.

 4.11 Records/Structs
Another major composite data structure is the Pascal record or C/C++/C#
structure.15 The Pascal terminology is probably better, because it tends to
avoid confusion with the more general term data structure. However, MASM
uses the term struct, so this book favors that term.

Whereas an array is homogeneous, with elements that are all the same
type, the elements in a struct can have different types. Arrays let you select
a particular element via an integer index. With structs, you must select an
element (known as a field) by name.

The whole purpose of a structure is to let you encapsulate different,
though logically related, data into a single package. The Pascal record dec-
laration for a student is a typical example:

student =
 record
 Name: string[64];
 Major: integer;
 SSN: string[11];
 Midterm1: integer;

14. A full discussion of multiplication by constants other than a power of two appears in
Chapter 6.

15. Records and structures also go by other names in other languages, but most people
recognize at least one of these names.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

198 Chapter 4

 Midterm2: integer;
 Final: integer;
 Homework: integer;
 Projects: integer;
 end;

Most Pascal compilers allocate each field in a record to contiguous
memory locations. This means that Pascal will reserve the first 65 bytes for
the name,16 the next 2 bytes hold the major code (assuming a 16-bit inte-
ger), the next 12 bytes hold the Social Security number, and so on.

4.11.1 MASM Struct Declarations
In MASM, you can create record types by using the struct/ends declaration.
You would encode the preceding record in MASM as follows:

student struct
sName byte 65 dup (?) ; "Name" is a MASM reserved word
Major word ?
SSN byte 12 dup (?)
Midterm1 word ?
Midterm2 word ?
Final word ?
Homework word ?
Projects word ?
student ends

As you can see, the MASM declaration is similar to the Pascal decla-
ration. To be true to the Pascal declaration, this example uses character
arrays rather than strings for the sName and SSN (US Social Security number)
fields. Also, the MASM declaration assumes that integers are unsigned 16-bit
values (which is probably appropriate for this type of data structure).

The field names within the struct must be unique; the same name may
not appear two or more times in the same record. However, all field names
are local to that record. Therefore, you may reuse those field names else-
where in the program or in different records.

The struct/ends declaration may appear anywhere in the source file
as long as you define it before you use it. A struct declaration does not
actually allocate any storage for a student variable. Instead, you have to
explicitly declare a variable of type student. The following example dem-
onstrates how to do this:

 .data
John student {}

The funny operand ({}) is a MASM-ism, just something you’ll have to
remember.

16. Strings require an extra byte, in addition to all the characters in the string, to encode
the length.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 199

The John variable declaration allocates 89 bytes of storage laid out in
memory, as shown in Figure 4-7.

John

sName
(65 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Major
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)

Figure 4-7: Student data structure storage in memory

If the label John corresponds to the base address of this record, the
sName field is at offset John + 0, the Major field is at offset John + 65, the SSN
field is at offset John + 67, and so on.

4.11.2 Accessing Record/Struct Fields
To access an element of a structure, you need to know the offset from the
beginning of the structure to the desired field. For example, the Major field
in the variable John is at offset 65 from the base address of John. Therefore,
you could store the value in AX into this field by using this instruction:

mov word ptr John[65], ax

Unfortunately, memorizing all the offsets to fields in a struct defeats
the whole purpose of using them in the first place. After all, if you have to
deal with these numeric offsets, why not just use an array of bytes instead of
a struct?

Fortunately, MASM lets you refer to field names in a record by using
the same mechanism most HLLs use: the dot operator. To store AX into the
Major field, you could use mov John.Major, ax instead of the previous instruc-
tion. This is much more readable and certainly easier to use.

The use of the dot operator does not introduce a new addressing
mode. The instruction mov John.Major, ax still uses the PC-relative address-
ing mode. MASM simply adds the base address of John with the offset
to the Major field (65) to get the actual displacement to encode into the
instruction.

The dot operator works quite well when dealing with struct variables
you declare in one of the static sections (.data, .const, or .data?) and access
via the PC-relative addressing mode. However, what happens when you have
a pointer to a record object? Consider the following code fragment:

mov rcx, sizeof student ; Size of student struct
call malloc ; Returns pointer in RAX
mov [rax].Final, 100

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

200 Chapter 4

Unfortunately, the Final field name is local to the student structure. As
a result, MASM will complain that the name Final is undefined in this code
sequence. To get around this problem, you add the structure name to the
dotted name list when using pointer references. Here’s the correct form of
the preceding code:

mov rcx, sizeof student ; Size of student struct
call malloc
mov [rax].student.Final, 100

4.11.3 Nesting MASM Structs
MASM allows you to define fields of a structure that are themselves struc-
ture types. Consider the following two struct declarations:

grades struct
Midterm1 word ?
Midterm2 word ?
Final word ?
Homework word ?
Projects word ?
grades ends

student struct
sName byte 65 dup (?) ; "Name" is a MASM reserved word
Major word ?
SSN byte 12 dup (?)
sGrades grades {}
student ends

The sGrades field now holds all the individual grade fields that were
formerly individual fields in the grades structure. Note that this particu-
lar example has the same memory layout as the previous examples (see
Figure 4-7). The grades structure itself doesn’t add any new data; it simply
organizes the grade fields under its own substructure.

To access the subfields, you use the same syntax you’d use with C/C++
(and most other HLLs supporting records/structures). If the John variable
declaration appearing in previous sections was of this new struct type,
you’d access the Homework field by using a statement such as the following:

mov ax, John.sGrades.Homework

4.11.4 Initializing Struct Fields
A typical structure declaration such as the following

 .data
structVar structType {}

leaves all fields in structType uninitialized (similar to having the ? operand
in other variable declarations). MASM will allow you to provide initial values

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 201

for all the fields of a structure by supplying a list of comma-separated items
between the braces in the operand field of a structure variable declaration,
as shown in Listing 4-8.

; Listing 4-8

; Sample struct initialization example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-8", 0
fmtStr byte "aString: maxLen:%d, len:%d, string data:'%s'"
 byte nl, 0

; Define a struct for a string descriptor:

strDesc struct
maxLen dword ?
len dword ?
strPtr qword ?
strDesc ends

 .data

; Here's the string data we will initialize the
; string descriptor with:

charData byte "Initial String Data", 0
len = lengthof charData ; Includes zero byte

; Create a string descriptor initialized with
; the charData string value:

aString strDesc {len, len, offset charData}

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

202 Chapter 4

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; Display the fields of the string descriptor.

 lea rcx, fmtStr
 mov edx, aString.maxLen ; Zero-extends!
 mov r8d, aString.len ; Zero-extends!
 mov r9, aString.strPtr
 call printf

 add rsp, 48 ; Restore RSP
 ret ; Returns to caller
asmMain endp
 end

Listing 4-8: Initializing the fields of a structure

Here are the build commands and output for Listing 4-8:

C:\>build listing4-8

C:\>echo off
 Assembling: listing4-8.asm
c.cpp

C:\>listing4-8
Calling Listing 4-8:
aString: maxLen:20, len:20, string data:'Initial String Data'
Listing 4-8 terminated

If a structure field is an array object, you’ll need special syntax to ini-
tialize that array data. Consider the following structure definition:

aryStruct struct
aryField1 byte 8 dup (?)
aryField2 word 4 dup (?)
aryStruct ends

The initialization operands must either be a string or a single item.
Therefore, the following is not legal:

a aryStruct {1,2,3,4,5,6,7,8, 1,2,3,4}

This (presumably) is an attempt to initialize aryField1 with {1,2,3,4,5,6,7,8}
and aryField2 with {1,2,3,4}. MASM, however, won’t accept this. MASM wants
only two values in the operand field (one for aryField1 and one for aryField2).
The solution is to place the array constants for the two arrays in their own
set of braces:

a aryStruct {{1,2,3,4,5,6,7,8}, {1,2,3,4}}

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 203

If you supply too many initializers for a given array element, MASM will
report an error. If you supply too few initializers, MASM will quietly fill in
the remaining array entries with 0 values:

a aryStruct {{1,2,3,4}, {1,2,3,4}}

This example initializes a.aryField1 with {1,2,3,4,0,0,0,0} and
a.aryField2 with {1,2,3,4}.

If the field is an array of bytes, you can substitute a character string (with
no more characters than the array size) for the list of byte values:

b aryStruct {"abcdefgh", {1,2,3,4}}

If you supply too few characters, MASM will fill out the rest of the byte
array with 0 bytes; too many characters produce an error.

4.11.5 Arrays of Structs
It is a perfectly reasonable operation to create an array of structures. To do
so, you create a struct type and then use the standard array declaration syn-
tax. The following example demonstrates how you could do this:

recElement struct
 Fields for this record
recElement ends
 .
 .
 .
 .data
recArray recElement 4 dup ({})

To access an element of this array, you use the standard array-indexing
techniques. Because recArray is a single-dimensional array, you’d compute
the address of an element of this array by using the formula baseAddress +
index × lengthOf recElement. For example, to access an element of recArray,
you’d use code like the following:

; Access element i of recArray:
; rbx := i*lengthof(recElement)

 imul ebx, i, sizeOf recElement ; Zero-extends EBX to RBX!
 mov eax, recArray.someField[rbx] ; LARGEADDRESSAWARE:NO!

The index specification follows the entire variable name; remember,
this is assembly, not a high-level language (in a high-level language, you’d
probably use recArray[i].someField).

Naturally, you can create multidimensional arrays of records as well.
You would use the row-major or column-major order functions to compute
the address of an element within such records. The only thing that really

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

204 Chapter 4

changes (from the discussion of arrays) is that the size of each element is
the size of the record object:

 .data
rec2D recElement 4 dup (6 dup ({}))
 .
 .
 .
; Access element [i,j] of rec2D and load someField into EAX:

 imul ebx, i, 6
 add ebx, j
 imul ebx, sizeof recElement
 lea rcx, rec2D ; To avoid requiring LARGEADDRESS...
 mov eax, [rcx].recElement.someField[rbx*1]

4.11.6 Aligning Fields Within a Record
To achieve maximum performance in your programs, or to ensure that
MASM’s structures properly map to records or structures in a high-level
language, you will often need to be able to control the alignment of fields
within a record. For example, you might want to ensure that a double-word
field’s offset is a multiple of four. You can use the align directive to do this.
The following creates a structure with unaligned fields:

Padded struct
b byte ?
d dword ?
b2 byte ?
b3 byte ?
w word ?
Padded ends

Here’s how MASM organizes this structure’s fields in memory:17

 N a m e Size
 Offset Type
Padded 00000009
 b 00000000 Byte
 d 00000001 DWord
 b2 00000005 Byte
 b3 00000006 Byte
 w 00000007 Word

As you can see from this example, the d and w fields are both aligned on
odd offsets, which may result in slower performance. Ideally, you would like
d to be aligned on a double-word offset (multiple of four) and w aligned on
an even offset.

17. By the way, if you would like MASM to provide you with this information, supply a /Fl
command line option to ml64.exe. This tells MASM to produce a listing file, which
contains this information.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 205

You can fix this problem by adding align directives to the structure, as
follows:

Padded struct
b byte ?
 align 4
d dword ?
b2 byte ?
b3 byte ?
 align 2
w word ?
Padded ends

Now, MASM uses the following offsets for each of these fields:

Padded 0000000C
 b 00000000 Byte
 d 00000004 DWord
 b2 00000008 Byte
 b3 00000009 Byte
 w 0000000A Word

As you can see, d is now aligned on a 4-byte offset, and w is aligned at an
even offset.

MASM provides one additional option that lets you automatically align
objects in a struct declaration. If you supply a value (which must be 1, 2, 4,
8, or 16) as the operand to the struct statement, MASM will automatically
align all fields in the structure to an offset that is a multiple of that field’s
size or to the value you specify as the operand, whichever is smaller. Consider
the following example:

Padded struct 4
b byte ?
d dword ?
b2 byte ?
b3 byte ?
w word ?
Padded ends

Here’s the alignment MASM produces for this structure:

Padded 0000000C
 b 00000000 Byte
 d 00000004 DWord
 b2 00000008 Byte
 b3 00000009 Byte
 w 0000000A Word

Note that MASM properly aligns d on a dword boundary and w on a
word boundary (within the structure). Also note that w is not aligned on a
dword boundary (even though the struct operand was 4). This is because
MASM uses the smaller of the operand or the field’s size as the alignment
value (and w’s size is 2).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

206 Chapter 4

 4.12 Unions
A record/struct definition assigns different offsets to each field in the
record according to the size of those fields. This behavior is quite similar to
the allocation of memory offsets in a .data?, .data, or .const section. MASM
provides a second type of structure declaration, the union, that does not
assign different addresses to each object; instead, each field in a union dec-
laration has the same offset: zero. The following example demonstrates the
syntax for a union declaration:

unionType union
 Fields (syntactically identical to struct declarations)
unionType ends

Yes, it seems rather weird that MASM still uses ends for the end of the
union (rather than endu). If this really bothers you, just create a textequ for
endu as follows:

endu textequ <ends>

Now, you can use endu to your heart’s content to mark the end of a union.
You access the fields of a union exactly the same way you access the fields

of a struct: using dot notation and field names. The following is a concrete
example of a union type declaration and a variable of the union type:

numeric union
i sdword ?
u dword ?
q qword ?
numeric ends
 .
 .
 .
 .data
number numeric {}
 .
 .
 .
 mov number.u, 55
 .
 .
 .
 mov number.i, -62
 .
 .
 .
 mov rbx, number.q

The important thing to note about union objects is that all the fields of
a union have the same offset in the structure. In the preceding example, the
number.u, number.i, and number.q fields all have the same offset: zero. Therefore,

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 207

the fields of a union overlap in memory; this is similar to the way the x86-64
8-, 16-, 32-, and 64-bit general-purpose registers overlap one another. Usually,
you may access only one field of a union at a time; you do not manipulate
separate fields of a particular union variable concurrently because writing to
one field overwrites the other fields. In the preceding example, any modifica-
tion of number.u would also change number.i and number.q.

Programmers typically use unions for two reasons: to conserve memory
or to create aliases. Memory conservation is the intended use of this data
structure facility. To see how this works, let’s compare the numeric union in
the preceding example with a corresponding structure type:

numericRec struct
i sdword ?
u dword ?
q qword ?
numericRec ends

If you declare a variable, say n, of type numericRec, you access the fields as
n.i, n.u, and n.q exactly as though you had declared the variable to be type
numeric. The difference between the two is that numericRec variables allocate
separate storage for each field of the structure, whereas numeric (union)
objects allocate the same storage for all fields. Therefore, sizeof numericRec
is 16 because the record contains two double-word fields and a quad-word
(real64) field. The sizeof numeric, however, is 8. This is because all the fields
of a union occupy the same memory locations, and the size of a union object
is the size of the largest field of that object (see Figure 4-8).

i u q

q

i, u

0 4 8

union variable

record /struct variable

Offset

Figure 4-8: Layout of a union versus a struct variable

In addition to conserving memory, programmers often use unions to
create aliases in their code. As you may recall, an alias is a different name
for the same memory object. Aliases are often a source of confusion in a
program, so you should use them sparingly; sometimes, however, using an
alias can be quite convenient. For example, in one section of your program,
you might need to constantly use type coercion to refer to an object using
a different type. Although you can use a MASM textequ to simplify this

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

208 Chapter 4

process, another way to do this is to use a union variable with the fields rep-
resenting the different types you want to use for the object. As an example,
consider the following code:

CharOrUns union
chr byte ?
u dword ?
CharOrUns ends

 .data
v CharOrUns {}

With a declaration like this, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this dword
variable as a character, you can do so by accessing the v.chr variable; for
example:

mov v.u, eax
mov ch, v.chr

You can use unions exactly the same way you use structures in a MASM
program. In particular, union declarations may appear as fields in structures,
struct declarations may appear as fields in unions, array declarations may
appear within unions, you can create arrays of unions, and so on.

4.12.1 Anonymous Unions
Within a struct declaration, you can place a union declaration without speci-
fying a field name for the union object. The following example demonstrates
the syntax:

HasAnonUnion struct
r real8 ?

 union
u dword ?
i sdword ?
 ends

s qword ?
HasAnonUnion ends

 .data
v HasAnonUnion {}

Whenever an anonymous union appears within a record, you can access
the fields of the union as though they were unenclosed fields of the record.
In the preceding example, for instance, you would access v’s u and i fields
by using the syntax v.u and v.i, respectively. The u and i fields have the

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Constants, Variables, and Data Types 209

same offset in the record (8, because they follow a real8 object). The fields
of v have the following offsets from v’s base address:

v.r 0
v.u 8
v.i 8
v.s 12

sizeof(v) is 20 because the u and i fields consume only 4 bytes.
MASM also allows anonymous structures within unions. Please see the

MASM documentation for more details, though the syntax and usage are
identical to anonymous unions within structures.

4.12.2 Variant Types
One big use of unions in programs is to create variant types. A variant vari-
able can change its type dynamically while the program is running. A variant
object can be an integer at one point in the program, switch to a string at a
different part of the program, and then change to a real value at a later time.
Many very high-level language (VHLL) systems use a dynamic type system
(that is, variant objects) to reduce the overall complexity of the program;
indeed, proponents of many VHLLs insist that the use of a dynamic typing
system is one of the reasons you can write complex programs with so few lines
of code using those languages.

Of course, if you can create variant objects in a VHLL, you can cer-
tainly do it in assembly language. In this section, we’ll look at how we can
use the union structure to create variant types.

At any one given instant during program execution, a variant object
has a specific type, but under program control, the variable can switch to
a different type. Therefore, when the program processes a variant object,
it must use an if statement or switch statement (or something similar) to
execute different instructions based on the object’s current type. VHLLs
do this transparently.

In assembly language, you have to provide the code to test the type your-
self. To achieve this, the variant type needs additional information beyond
the object’s value. Specifically, the variant object needs a field that specifies
the current type of the object. This field (often known as the tag field) is
an enumerated type or integer that specifies the object’s type at any given
instant. The following code demonstrates how to create a variant type:

VariantType struct
tag dword ? ; 0-uns32, 1-int32, 2-real64

 union
u dword ?
i sdword ?
r real8 ?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

210 Chapter 4

 ends
VariantType ends

 .data
v VariantType {}

The program would test the v.tag field to determine the current type of
the v object. Based on this test, the program would manipulate the v.i, v.u,
or v.r field.

Of course, when operating on variant objects, the program’s code must
constantly be testing the tag field and executing a separate sequence of
instructions for dword, sdword, or real8 values. If you use the variant fields
often, it makes a lot of sense to write procedures to handle these operations
for you (for example, vadd, vsub, vmul, and vdiv).

 4.13 Microsoft ABI Notes
The Microsoft ABI expects fields of an array to be aligned on their natural
size: the offset from the beginning of the structure to a given field must be
a multiple of the field’s size. On top of this, the whole structure must be
aligned at a memory address that is a multiple of the size of the largest object
in the structure (up to 16 bytes). Finally, the entire structure’s size must be a
multiple of the largest element in the structure (you must add padding bytes
to the end of the structure to appropriately fill out the structure’s size).

The Microsoft ABI expects arrays to begin at an address in memory
that is a multiple of the element size. For example, if you have an array of
32-bit objects, the array must begin on a 4-byte boundary.

Of course, if you’re not passing an array or structure data to another
language (you’re only processing the struct or array in your assembly code),
you can align (or misalign) the data however you want.

 4.14 For More Information
For additional information about data structure representation in memory,
consider reading my book Write Great Code, Volume 1 (No Starch Press, 2004).
For an in-depth discussion of data types, consult a textbook on data struc-
tures and algorithms. Of course, the MASM online documentation (at
https://www.microsoft.com/) is a good source of information.

 4.15 Test Yourself

1. What is the two-operand form of the imul instruction that multiplies a
register by a constant?

2. What is the three-operand form of the imul instruction that multiplies a
register by a constant and leaves the result in a destination register?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://www.microsoft.com/

Constants, Variables, and Data Types 211

3. What is the syntax for the imul instruction that multiplies one register
by another?

4. What is a manifest constant?

5. Which directive(s) would you use to create a manifest constant?

6. What is the difference between a text equate and a numeric equate?

7. Explain how you would use an equate to define literal strings whose
length is greater than eight characters.

8. What is a constant expression?

9. What operator would you use to determine the number of data ele-
ments in the operand field of a byte directive?

10. What is the location counter?

11. What operator(s) return(s) the current location counter?

12. How would you compute the number of bytes between two declarations
in the .data section?

13. How would you create a set of enumerated data constants using MASM?

14. How do you define your own data types using MASM?

15. What is a pointer (how is it implemented)?

16. How do you dereference a pointer in assembly language?

17. How do you declare pointer variables in assembly language?

18. What operator would you use to obtain the address of a static data
object (for example, in the .data section)?

19. What are the five common problems encountered when using pointers
in a program?

20. What is a dangling pointer?

21. What is a memory leak?

22. What is a composite data type?

23. What is a zero-terminated string?

24. What is a length-prefixed string?

25. What is a descriptor-based string?

26. What is an array?

27. What is the base address of an array?

28. Provide an example of an array declaration using the dup operator.

29. Describe how to create an array whose elements you initialize at assem-
bly time.

30. What is the formula for accessing elements of a

a. Single-dimension array dword A[10]?

b. Two-dimensional array word W[4, 8]?

c. Three-dimensional array real8 R[2, 4, 6]?

31. What is row-major order?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

212 Chapter 4

32. What is column-major order?

33. Provide an example of a two-dimensional array declaration (word array
W[4,8]) using nested dup operators.

34. What is a record/struct?

35. What MASM directives do you use to declare a record data structure?

36. What operator do you use to access fields of a record/struct?

37. What is a union?

38. What directives do you use to declare unions in MASM?

39. What is the difference between the memory organization of fields in a
union versus those in a record/struct?

40. What is an anonymous union in a struct?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

PART II
A S S E M B LY L A N G U A G E

P R O G R A M M I N G

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

5
P R O C E D U R E S

In a procedural programming language,
the basic unit of code is the procedure. A

procedure is a set of instructions that compute
a value or take an action (such as printing or

reading a character value). This chapter discusses
how MASM implements procedures, parameters, and
local variables. By the end of this chapter, you should
be well versed in writing your own procedures and
functions, and fully understand parameter passing
and the Microsoft ABI calling convention.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

216 Chapter 5

 5.1 Procedures
Most procedural programming languages implement procedures by using
the call/return mechanism. The code calls a procedure, the procedure
does its thing, and then the procedure returns to the caller. The call and
return instructions provide the x86-64’s procedure invocation mechanism. The
calling code calls a procedure with the call instruction, and the procedure
returns to the caller with the ret instruction. For example, the following
x86-64 instruction calls the C Standard Library printf() function:

call printf

Alas, the C Standard Library does not supply all the routines you will
ever need. Most of the time you’ll have to write your own procedures. To do
this, you will use MASM’s procedure-declaration facilities. A basic MASM
procedure declaration takes the following form:

ProcName proc options
 Procedure statements
ProcName endp

Procedure declarations appear in the .code section of your program. In
the preceding syntax example, ProcName represents the name of the procedure
you wish to define. This can be any valid (and unique) MASM identifier.

Here is a concrete example of a MASM procedure declaration. This
procedure stores 0s into the 256 double words that RCX points at upon
entry into the procedure:

zeroBytes proc
 mov eax, 0
 mov edx, 256
repeatlp: mov [rcx+rdx*4-4], eax
 dec rdx
 jnz repeatlp
 ret
zeroBytes endp

As you’ve probably noticed, this simple procedure doesn’t bother with
the “magic” instructions that add and subtract a value to and from the RSP
register. Those instructions are a requirement of the Microsoft ABI when
the procedure will be calling other C/C++ code (or other code written in a
Microsoft ABI–compliant language). Because this little function doesn’t call
any other procedures, it doesn’t bother executing such code. Also note that
this code uses the loop index to count down from 256 to 0, filling in the
256 dword array backward (from end to beginning) rather than filling it in
from beginning to end. This is a common technique in assembly language.

You can use the x86-64 call instruction to call this procedure.
When, during program execution, the code falls into the ret instruction,

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 217

the procedure returns to whoever called it and begins executing the first
instruction beyond the call instruction. The program in Listing 5-1 provides
an example of a call to the zeroBytes routine.

; Listing 5-1

; Simple procedure call example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-1", 0

 .data
dwArray dword 256 dup (1)

 .code

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the user-written procedure
; that zeros out a buffer.

zeroBytes proc
 mov eax, 0
 mov edx, 256
repeatlp: mov [rcx+rdx*4-4], eax
 dec rdx
 jnz repeatlp
 ret
zeroBytes endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

218 Chapter 5

 lea rcx, dwArray
 call zeroBytes

 add rsp, 48 ; Restore RSP
 ret ; Returns to caller
asmMain endp
 end

Listing 5-1: Example of a simple procedure

5.1.1 The call and ret Instructions
The x86-64 call instruction does two things. First, it pushes the (64-bit)
address of the instruction immediately following the call onto the stack;
then it transfers control to the address of the specified procedure. The
value that call pushes onto the stack is known as the return address.

When the procedure wants to return to the caller and continue execution
with the first statement following the call instruction, most procedures return
to their caller by executing a ret (return) instruction. The ret instruction pops
a (64-bit) return address off the stack and transfers control indirectly to that
address.

The following is an example of the minimal procedure:

minimal proc
 ret
minimal endp

If you call this procedure with the call instruction, minimal will simply
pop the return address off the stack and return to the caller. If you fail to
put the ret instruction in the procedure, the program will not return to the
caller upon encountering the endp statement. Instead, the program will fall
through to whatever code happens to follow the procedure in memory.

The example program in Listing 5-2 demonstrates this problem. The
main program calls noRet, which falls straight through to followingProc
(printing the message followingProc was called).

; Listing 5-2

; A procedure without a ret instruction.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-2", 0
fpMsg byte "followingProc was called", nl, 0

 .code
 externdef printf:proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 219

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; noRet-

; Demonstrates what happens when a procedure
; does not have a return instruction.

noRet proc
noRet endp

followingProc proc
 sub rsp, 28h
 lea rcx, fpMsg
 call printf
 add rsp, 28h
 ret
followingProc endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

 sub rsp, 40 ; "Magic" instruction

 call noRet

 add rsp, 40 ; "Magic" instruction
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-2: Effect of a missing ret instruction in a procedure

Although this behavior might be desirable in certain rare circumstances,
it usually represents a defect in most programs. Therefore, always remember
to explicitly return from the procedure by using the ret instruction.

5.1.2 Labels in a Procedure
Procedures may contain statement labels, just like the main procedure in
your assembly language program (after all, the main procedure, asmMain in
most of the examples in this book, is just another procedure declaration as
far as MASM is concerned). Note, however, that statement labels defined
within a procedure are local to that procedure; such symbols are not visible
outside the procedure.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

220 Chapter 5

In most situations, having scoped symbols in a procedure is nice (see
“Local (Automatic) Variables” on page xx for a discussion of scope). You
don’t have to worry about namespace pollution (conflicting symbol names)
among the different procedures in your source file. Sometimes, however,
MASM’s name scoping can create problems. You might actually want to
refer to a statement label outside a procedure.

One way to do this on a label-by-label basis is to use a global statement
label declaration. Global statement labels are similar to normal statement labels
in a procedure except you follow the symbol with two colons instead of a
single colon, like so:

globalSymbol:: mov eax, 0

Global statement labels are visible outside the procedure. You can use
an unconditional or conditional jump instruction to transfer control to a
global symbol from outside the procedure; you can even use a call instruc-
tion to call that global symbol (in which case, it becomes a second entry
point to the procedure). Generally, having multiple entry points to a pro-
cedure is considered bad programming style, and the use of multiple entry
points often leads to programming errors. As such, you should rarely use
global symbols in assembly language procedures.

If, for some reason, you don’t want MASM to treat all the statement
labels in a procedure as local to that procedure, you can turn scoping on
and off with the following statements:

option scoped
option noscoped

The option noscoped directive disables scoping in procedures (for all pro-
cedures following the directive). The option scoped directive turns scoping
back on. Therefore, you can turn scoping off for a single procedure (or set
of procedures) and turn it back on immediately afterward.

 5.2 Saving the State of the Machine
Take a look at Listing 5-3. This program attempts to print 20 lines of 40 spaces
and an asterisk. Unfortunately, a subtle bug creates an infinite loop. The main
program uses the jnz printLp instruction to create a loop that calls PrintSpaces
20 times. This function uses EBX to count off the 40 spaces it prints, and then
returns with ECX containing 0. The main program then prints an asterisk
and a newline, decrements ECX, and then repeats because ECX isn’t 0 (it will
always contain 0FFFF_FFFFh at this point).

The problem here is that the print40Spaces subroutine doesn’t preserve
the EBX register. Preserving a register means you save it upon entry into the
subroutine and restore it before leaving. Had the print40Spaces subroutine
preserved the contents of the EBX register, Listing 5-3 would have func-
tioned properly.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 221

; Listing 5-3

; Preserving registers (failure) example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-3", 0
space byte " ", 0
asterisk byte '*, %d', nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; print40Spaces

; Prints out a sequence of 40 spaces
; to the console display.

print40Spaces proc
 sub rsp, 48 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until ebx==0
 add rsp, 48 ; "Magic" instruction
 ret
print40Spaces endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40 ; "Magic" instruction

 mov rbx, 20
astLp: call print40Spaces
 lea rcx, asterisk

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

222 Chapter 5

 mov rdx, rbx
 call printf
 dec rbx
 jnz astLp

 add rsp, 40 ;" Magic" instruction
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-3: Program with an unintended infinite loop

You can use the x86-64’s push and pop instructions to preserve register
values while you need to use them for something else. Consider the follow-
ing code for PrintSpaces:

print40Spaces proc
 push rbx
 sub rsp, 40 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until ebx==0
 add rsp, 40 ; "Magic" instruction
 pop rbx
 ret
print40Spaces endp

print40Spaces saves and restores RBX by using push and pop instructions.
Either the caller (the code containing the call instruction) or the callee
(the subroutine) can take responsibility for preserving the registers. In the
preceding example, the callee preserves the registers.

Listing 5-4 shows what this code might look like if the caller preserves
the registers (for reasons that will become clear in “Saving the State of the
Machine, Part II” on page xx, the main program saves the value of RBX in
a static memory location rather than using the stack).

; Listing 5-4

; Preserving registers (caller) example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-4", 0
space byte " ", 0
asterisk byte '*, %d', nl, 0

 .data
saveRBX qword ?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 223

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; print40Spaces

; Prints out a sequence of 40 spaces
; to the console display.

print40Spaces proc
 sub rsp, 48 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until ebx==0
 add rsp, 48 ; "Magic" instruction
 ret
print40Spaces endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

 mov rbx, 20
astLp: mov saveRBX, rbx
 call print40Spaces
 lea rcx, asterisk
 mov rdx, saveRBX
 call printf
 mov rbx, saveRBX
 dec rbx
 jnz astLp

 add rsp, 40
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-4: Demonstration of caller register preservation

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

224 Chapter 5

Callee preservation has two advantages: space and maintainability. If
the callee (the procedure) preserves all affected registers, only one copy
of the push and pop instructions exists—those the procedure contains. If the
caller saves the values in the registers, the program needs a set of preser-
vation instructions around every call. This makes your programs not only
longer but also harder to maintain. Remembering which registers to save
and restore on each procedure call is not easily done.

On the other hand, a subroutine may unnecessarily preserve some reg-
isters if it preserves all the registers it modifies. In the preceding examples,
the print40Spaces procedure didn’t save RBX. Although print40Spaces changes
RBX, this won’t affect the program’s operation. If the caller is preserving the
registers, it doesn’t have to save registers it doesn’t care about.

One big problem with having the caller preserve registers is that your
program may change over time. You may modify the calling code or the pro-
cedure to use additional registers. Such changes, of course, may change the
set of registers that you must preserve. Worse still, if the modification is in
the subroutine itself, you will need to locate every call to the routine and ver-
ify that the subroutine does not change any registers the calling code uses.

Assembly language programmers use a common convention with respect
to register preservation: unless there is a good reason (performance) for
doing otherwise, most programmers will preserve all registers that a pro-
cedure modifies (and that doesn’t explicitly return a value in a modified
register). This reduces the likelihood of defects occurring in a program
because a procedure modifies a register the caller expects to be preserved.
Of course, you could follow the rules concerning the Microsoft ABI with
respect to volatile and nonvolatile registers; however, such calling conventions
impose their own inefficiencies on programmers (and other programs).

Preserving registers isn’t all there is to preserving the environment. You
can also push and pop variables and other values that a subroutine might
change. Because the x86-64 allows you to push and pop memory locations,
you can easily preserve these values as well.

 5.3 Procedures and the Stack
Because procedures use the stack to hold the return address, you must exer-
cise caution when pushing and popping data within a procedure. Consider
the following simple (and defective) procedure:

MessedUp proc

 push rax
 ret

MessedUp endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 225

At the point the program encounters the ret instruction, the x86-64
stack takes the form shown in Figure 5-1.

Previous
stack

contents

Return address

Saved RAX
value RSP

Figure 5-1: Stack contents before ret in the
MessedUp procedure

The ret instruction isn’t aware that the value on the top of the stack is
not a valid address. It simply pops whatever value is on top and jumps to
that location. In this example, the top of the stack contains the saved RAX
value. Because it is very unlikely that RAX’s value pushed on the stack was
the proper return address, this program will probably crash or exhibit
another undefined behavior. Therefore, when pushing data onto the stack
within a procedure, you must take care to properly pop that data prior to
returning from the procedure.

Popping extra data off the stack prior to executing the ret statement
can also create havoc in your programs. Consider the following defective
procedure:

MessedUp2 proc

 pop rax
 ret

MessedUp2 endp

Upon reaching the ret instruction in this procedure, the x86-64 stack
looks something like Figure 5-2.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

226 Chapter 5

Return address

Previous
stack

contents

Return address

RSP
RAX

Figure 5-2: Stack contents before ret in MessedUp2

Once again, the ret instruction blindly pops whatever data happens to
be on the top of the stack and attempts to return to that address. Unlike
the previous example, in which the top of the stack was unlikely to contain
a valid return address (because it contained the value in RAX), there is a
small possibility that the top of the stack in this example does contain a return
address. However, this will not be the proper return address for the messedUp2
procedure; instead, it will be the return address for the procedure that called
messedUp2. To understand the effect of this code, consider the program in
Listing 5-5.

; Listing 5-5

; Popping a return address by mistake.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-5", 0
calling byte "Calling proc2", nl, 0
call1 byte "Called proc1", nl, 0
rtn1 byte "Returned from proc 1", nl, 0
rtn2 byte "Returned from proc 2", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 227

; proc1 - Gets called by proc2, but returns
; back to the main program.

proc1 proc
 pop rcx ; Pops return address off stack
 ret
proc1 endp

proc2 proc
 call proc1 ;W ill never return

; This code never executes because the call to proc1
; pops the return address off the stack and returns
; directly to asmMain.

 sub rsp, 40
 lea rcx, rtn1
 call printf
 add rsp, 40
 ret
proc2 endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

 sub rsp, 40

 lea rcx, calling
 call printf

 call proc2
 lea rcx, rtn2
 call printf

 add rsp, 40
 ret ; Returns to caller
asmMain endp
 end

Listing 5-5: Effect of popping too much data off the stack

Because a valid return address is sitting on the top of the stack when
proc1 is entered, you might think that this program will actually work (prop-
erly). However, when returning from the proc1 procedure, this code returns
directly to the asmMain program rather than to the proper return address in
the proc2 procedure. Therefore, all code in the proc2 procedure that follows
the call to proc1 does not execute.

When reading the source code,you may find it very difficult to figure out
why those statements are not executing, because they immediately follow
the call to the proc1 procedure. It isn’t clear, unless you look very closely, that
the program is popping an extra return address off the stack and therefore
doesn’t return to proc2 but rather returns directly to whoever calls proc2.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

228 Chapter 5

Therefore, you should always be careful about pushing and popping data
in a procedure, and verify that a one-to-one relationship exists between the
pushes in your procedures and the corresponding pops.1

5.3.1 Activation Records
Whenever you call a procedure, the program associates certain information
with that procedure call, including the return address, parameters, and
automatic local variables, using a data structure called an activation record.2
The program creates an activation record when calling (activating) a pro-
cedure, and the data in the structure is organized in a manner identical to
records.

N O T E This section begins by discussing traditional activation records created by a hypotheti-
cal compiler, ignoring the parameter-passing conventions of the Microsoft ABI. Once
this initial discussion is complete, this chapter will incorporate the Microsoft ABI
conventions.

Construction of an activation record begins in the code that calls a pro-
cedure. The caller makes room for the parameter data (if any) on the stack
and copies the data onto the stack. Then the call instruction pushes the
return address onto the stack. At this point, construction of the activation
record continues within the procedure itself. The procedure pushes reg-
isters and other important state information and then makes room in the
activation record for local variables. The procedure might also update the
RBP register so that it points at the base address of the activation record.

To see what a traditional activation record looks like, consider the fol-
lowing C++ procedure declaration:

void ARDemo(unsigned i, int j, unsigned k)
{
 int a;
 float r;
 char c;
 bool b;
 short w
 .
 .
 .
}

Whenever a program calls this ARDemo procedure, it begins by pushing the
data for the parameters onto the stack. In the original C/C++ calling conven-
tion (ignoring the Microsoft ABI), the calling code pushes the parameters
onto the stack in the opposite order that they appear in the parameter list,

1. One possible recommendation is to always push registers in the same order: RAX, RBX,
RCX, RDX, RSI, RDI, R8, . . . , R15 (leaving out the registers you don’t push). This makes
visual inspections of the code easier.

2. Stack frame is another term used to describe the activation record.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 229

from right to left. Therefore, the calling code first pushes the value for the k
parameter, then it pushes the value for the j parameter, and it finally pushes
the data for the i parameter. After pushing the parameters, the program
calls the ARDemo procedure. Immediately upon entry into the ARDemo procedure,
the stack contains these four items arranged as shown in Figure 5-3. By
pushing the parameters in the reverse order, they appear on the stack in the
correct order (with the first parameter at the lowest address in memory).

N O T E The x86-64 push instruction is capable of pushing 16-bit or 64-bit objects onto the
stack. For performance reasons, you always want to keep RSP aligned on an 8-byte
boundary (which largely eliminates using 16-bit pushes). For this and other reasons,
modern programs always reserve at least 8 bytes for each parameter, regardless of the
actual parameter size.

Previous
stack

contents

RSPReturn address

i‘s value

j‘s value

k‘s value

Figure 5-3: Stack organization immediately upon entry
into ARDemo

N O T E The Microsoft ABI requires the stack to be aligned on a 16-byte boundary when mak-
ing system calls. Assembly programs don’t require this, but it’s often convenient to
keep the stack aligned this way for those times when you need to make a system call
(OS or C Standard Library call).

The first few instructions in ARDemo will push the current value of RBP
onto the stack and then copy the value of RSP into RBP.3 Next, the code
drops the stack pointer down in memory to make room for the local vari-
ables. This produces the stack organization shown in Figure 5-4.

3. Technically speaking, few actual optimizing C/C++ compilers will do this unless you have
certain options turned on. However, this chapter ignores such optimizations in favor of an
easier-to-understand example.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

230 Chapter 5

Previous
stack

contents

RSP

k‘s value

j‘s value

i‘s value

Return address

Old RBP value RBP

a

r

c
b
w

Possible padding

Figure 5-4: Activation record for ARDemo

N O T E Unlike parameters, local variables do not have to be a multiple of 8 bytes in the
activation record. However, the entire block of local variables must be a multiple of
16 bytes in size so that RSP remains aligned on a 16-byte boundary as required by
the Microsoft ABI. Hence the presence of possible padding in Figure 5-4.

5.3.1.1 Accessing Objects in the Activation Record

To access objects in the activation record, you must use offsets from the RBP
register to the desired object. The two items of immediate interest to you
are the parameters and the local variables. You can access the parameters at
positive offsets from the RBP register; you can access the local variables at
negative offsets from the RBP register, as Figure 5-5 shows.

Intel specifically reserves the RBP (Base Pointer) register for use as a
pointer to the base of the activation record. This is why you should avoid
using the RBP register for general calculations. If you arbitrarily change the
value in the RBP register, you could lose access to the current procedure’s
parameters and local variables.

The local variables are aligned on offsets that are equal to their native
size (chars are aligned on 1-byte addresses, shorts/words are aligned on
2-byte addresses, longs/ints/unsigneds/dwords are aligned on 4-byte
addresses, and so forth). In the ARDemo example, all of the locals just happen
to be allocated on appropriate addresses (assuming a compiler allocates
storage in the order of declaration).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 231

Previous
stack

contents

k‘s value

j‘s value

i‘s value

Return address

Old value RBP RBP+0

−4

−8

−9
−10
−12

+8

+16

+24

+32

Offset from RBP

Padding −16 RSP

a

r

c
b
w

Figure 5-5: Offsets of objects in the ARDemo activation record

5.3.1.2 Using Microsoft ABI Parameter Conventions

The Microsoft ABI makes several modifications to the activation record
model, in particular:

•	 The caller passes the first four parameters in registers rather than on
the stack (though it must still reserve storage on the stack for those
parameters).

•	 Parameters are always 8-byte values.

•	 The caller must reserve (at least) 32 bytes of parameter data on the
stack, even if there are fewer than five parameters (plus 8 bytes for each
additional parameter if there are five or more parameters).

•	 RSP must be 16 byte-aligned immediately before the call instruction
pushes the return address onto the stack.

For more information, see “Microsoft ABI Notes” in Chapter 1. You must
follow these conventions only when calling Windows or other Microsoft ABI–
compliant code. For assembly language procedures that you write and call,
you can use any convention you like.

5.3.2 The Assembly Language Standard Entry Sequence
The caller of a procedure is responsible for allocating storage for parameters
on the stack and moving the parameter data to its appropriate location. In
the simplest case, this just involves pushing the data onto the stack by using

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

232 Chapter 5

64-bit push instructions. The call instruction pushes the return address onto
the stack. It is the procedure’s responsibility to construct the rest of the
activation record. You can accomplish this by using the following assembly
language standard entry sequence code:

push rbp ; Save a copy of the old RBP value
mov rbp, rsp ; Get ptr to activation record into RBP
sub rsp, NumVars ; Allocate local variable storage plus padding

If the procedure doesn’t have any local variables, the third instruction
shown here, sub rsp, NumVars, isn’t necessary.

NumVars represents the number of bytes of local variables needed by the
procedure, a constant that should be a multiple of 16 (so the RSP register
remains aligned on a 16-byte boundary).4 If the number of bytes of local vari-
ables in the procedure is not a multiple of 16, you should round up the value
to the next higher multiple of 16 before subtracting this constant from RSP.
Doing so will slightly increase the amount of storage the procedure uses for
local variables but will not otherwise affect the operation of the procedure.

If a Microsoft ABI–compliant program calls your procedure, the stack
will be aligned on a 16-byte boundary immediately prior to the execution
of the call instruction. As the return address adds 8 bytes to the stack,
immediately upon entry into your procedure, the stack will be aligned on
an (RSP mod 16) == 8 address (aligned on an 8-byte address but not on a
16-byte address). Pushing RBP onto the stack (to save the old value before
copying RSP into RBP) adds another 8 bytes to the stack so that RSP is now
16-byte aligned. Therefore, assuming the stack was 16-byte aligned prior
to the call, and the number you subtract from RSP is a multiple of 16, the
stack will be 16-byte aligned after allocating storage for local variables.

If you cannot ensure that RSP is 16-byte aligned (RSP mod 16 == 8) upon
entry into your procedure, you can always force 16-byte alignment by using
the following sequence at the beginning of your procedure:

push rbp
mov rbp, rsp
sub rsp, NumVars ; Make room for local variables
and rsp, -16 ; Force qword stack alignment

The –16 is equivalent to 0ffff_ffff_ffff_fff0h. The and instruction sequence
forces the stack to be aligned on a 16-byte boundary (it reduces the value in
the stack pointer so that it is a multiple of 16).

The ARDemo activation record has only 12 bytes of local storage. Therefore,
subtracting 12 from RSP for the local variables will not leave the stack 16-byte
aligned. The and instruction in the preceding sequence, however, guarantees
that RSP is 16-byte aligned regardless of RSP’s value upon entry into the

4. Alignment of the stack on a 16-byte boundary is a Microsoft ABI requirement, not a hard-
ware requirement. The hardware is happy with an 8-byte address alignment. However,
if you make any calls to Microsoft ABI–compliant code, you will need to keep the stack
aligned on a 16-byte boundary.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 233

procedure (this adds in the padding bytes shown in Figure 5-5). The few
bytes and CPU cycles needed to execute this instruction would pay off hand-
somely if RSP was not oword aligned. Of course, if you know that the stack
was properly aligned before the call, you could dispense with the extra and
instruction and simply subtract 16 from RSP rather than 12 (in other words,
reserving 4 more bytes than the ARDemo procedure needs, to keep the stack
aligned).

5.3.3 The Assembly Language Standard Exit Sequence
Before a procedure returns to its caller, it needs to clean up the activation
record. Standard MASM procedures and procedure calls, therefore, assume
that it is the procedure’s responsibility to clean up the activation record,
although it is possible to share the cleanup duties between the procedure
and the procedure’s caller.

If a procedure does not have any parameters, the exit sequence is simple.
It requires only three instructions:

mov rsp, rbp ; Deallocate locals and clean up stack
pop rbp ; Restore pointer to caller's activation record
ret ; Return to the caller

In the Microsoft ABI (as opposed to pure assembly procedures), it is
the caller’s responsibility to clean up any parameters pushed on the stack.
Therefore, if you are writing a function to be called from C/C++ (or other
Microsoft ABI–compliant code), your procedure doesn’t have to do any-
thing at all about the parameters on the stack.

If you are writing procedures that will be called only from your assembly
language programs, it is possible to have the callee (the procedure) rather
than the caller clean up the parameters on the stack upon returning to the
caller, using the following standard exit sequence:

mov rsp, rbp ; Deallocate locals and clean up stack
pop rbp ; Restore pointer to caller's activation record
ret ParmBytes ; Return to the caller and pop the parameters

The ParmBytes operand of the ret instruction is a constant that specifies
the number of bytes of parameter data to remove from the stack after the
return instruction pops the return address. For example, the ARDemo example
code in the previous sections has three quad words reserved for the param-
eters (because we want to keep the stack qword aligned). Therefore, the
standard exit sequence would take the following form:

mov rsp, rbp
pop rbp
ret 24

If you do not specify a 16-bit constant operand to the ret instruction, the
x86-64 will not pop the parameters off the stack upon return. Those param-
eters will still be sitting on the stack when you execute the first instruction

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

234 Chapter 5

following the call to the procedure. Similarly, if you specify a value that is
too small, some of the parameters will be left on the stack upon return from
the procedure. If the ret operand you specify is too large, the ret instruction
will actually pop some of the caller’s data off the stack, usually with disas-
trous consequences.

By the way, Intel has added a special instruction to the instruction set to
shorten the standard exit sequence: leave. This instruction copies RBP into
RSP and then pops RBP. The following is equivalent to the standard exit
sequence presented thus far:

leave
ret optional_const

The choice is up to you. Most compilers generate the leave instruction
(because it’s shorter), so using it is the standard choice.

 5.4 Local (Automatic) Variables
Procedures and functions in most high-level languages let you declare local
variables. These are generally accessible only within the procedure; they are
not accessible by the code that calls the procedure.

Local variables possess two special attributes in HLLs: scope and life-
time. The scope of an identifier determines where that identifier is visible
(accessible) in the source file during compilation. In most HLLs, the scope
of a procedure’s local variable is the body of that procedure; the identifier
is inaccessible outside that procedure.

Whereas scope is a compile-time attribute of a symbol, lifetime is a run-
time attribute. The lifetime of a variable is from that point when storage
is first bound to the variable until the point where the storage is no longer
available for that variable. Static objects (those you declare in the .data,
.const, .data?, and .code sections) have a lifetime equivalent to the total
runtime of the application. The program allocates storage for such vari-
ables when the program first loads into memory, and those variables
maintain that storage until the program terminates.

Local variables (or, more properly, automatic variables) have their stor-
age allocated upon entry into a procedure, and that storage is returned
for other use when the procedure returns to its caller. The name automatic
refers to the program automatically allocating and deallocating storage for
the variable on procedure invocation and return.

A procedure can access any global .data, .data?, or .const object the
same way the main program accesses such variables—by referencing the
name (using the PC-relative addressing mode). Accessing global objects is
convenient and easy. Of course, accessing global objects makes your pro-
grams harder to read, understand, and maintain, so you should avoid using
global variables within procedures. Although accessing global variables
within a procedure may sometimes be the best solution to a given problem,

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 235

you likely won’t be writing such code at this point, so you should carefully
consider your options before doing so.5

5.4.1 Low-Level Implementation of Automatic (Local) Variables
Your program accesses local variables in a procedure by using negative off-
sets from the activation record base address (RBP). Consider the following
MASM procedure in Listing 5-6 (which admittedly doesn’t do much, other
than demonstrate the use of local variables):

; Listing 5-6

; Accessing local variables

 option casemap:none
 .code

; sdword a is at offset -4 from RBP
; sdword b is at offset -8 from RBP

; On entry, ECX and EDX contain values to store
; into the local variables a & b (respectively)

localVars proc
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Make room for a & b

 mov [rbp-4], ecx ; a = ecx
 mov [rbp-8], edx ; b = edx

 ; Additional code here that uses a & b

 mov rsp, rbp
 pop rbp
 ret
localVars endp

Listing 5-6: Sample procedure that accesses local variables

The standard entry sequence allocates 16 bytes of storage even though
locals a and b require only 8. This keeps the stack 16-byte aligned. If this isn’t
necessary for a particular procedure, subtracting 8 would work just as well.

The activation record for localVars appears in Figure 5-6.
Of course, having to refer to the local variables by the offset from the

RBP register is truly horrible. This code is not only difficult to read (is [rbp-4]
the a or the b variable?) but also hard to maintain. For example, if you decide
you no longer need the a variable, you’d have to go find every occurrence of
[rbp-8] (accessing the b variable) and change it to [rbp-4].

5. This argument against accessing global variables does not apply to other global symbols. It
is perfectly reasonable to access global constants, types, procedures, and other objects in
your programs.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

236 Chapter 5

Previous
stack

contents

Return address

Old RBP value RBP

a

b

+0

−4

−8

+8

+16

Offset from RBP

−12

−16

Space reserved to keep
stack 16-byte aligned

RSP

Figure 5-6: Activation record for the LocalVars procedure

A slightly better solution is to create equates for your local variable
names. Consider the modification to Listing 5-6 shown here in Listing 5-7.

; Listing 5-7

; Accessing local variables #2.

 option casemap:none
 .code

; localVars - Demonstrates local variable access.

; sdword a is at offset -4 from RBP.
; sdword b is at offset -8 from RBP.

; On entry, ECX and EDX contain values to store
; into the local variables a & b (respectively):

a equ <[rbp-4]>
b equ <[rbp-8]>
localVars proc
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Make room for a & b

 mov a, ecx
 mov b, edx

 ; Additional code here that uses a & b:

 mov rsp, rbp
 pop rbp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 237

 ret
localVars endp

Listing 5-7: Local variables using equates

This is considerably easier to read and maintain than the former pro-
gram in Listing 5-6. It’s possible to improve on this equate system. For
example, the following four equates are perfectly legitimate:

a equ <[rbp-4]>
b equ a-4
d equ b-4
e equ d-4

MASM will associate [rbp-4] with a, [rbp-8] with b, [rbp-12] with d, and
[rbp-16] with e. However, getting too crazy with fancy equates doesn’t pay;
MASM provides a high-level-like declaration for local variables (and param-
eters) you can use if you really want your declarations to be as maintainable
as possible.

5.4.2 The MASM Local Directive
Creating equates for local variables is a lot of work and error prone. It’s easy
to specify the wrong offset when defining equates, and adding and removing
local variables from a procedure is a headache. Fortunately, MASM provides
a directive that lets you specify local variables, and MASM automatically fills
in the offsets for the locals. That directive, local, uses the following syntax:

local list_of_declarations

The list_of_declarations is a list of local variable declarations, separated
by commas. A local variable declaration has two main forms:

identifier:type
identifier [elements]:type

Here, type is one of the usual MASM data types (byte, word, dword, and
so forth), and identifier is the name of the local variable you are declar-
ing. The second form declares local arrays, where elements is the number
of array elements. elements must be a constant expression that MASM can
resolve at assembly time.

local directives, if they appear in a procedure, must be the first
statement(s) after a procedure declaration (the proc directive). A proce-
dure may have more than one local statement; if there is more than one
local directive, all must appear together after the proc declaration. Here’s
a code snippet with examples of local variable declarations:

procWithLocals proc
 local var1:byte, local2:word, dVar:dword
 local qArray[4]:qword, rlocal:real4

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

238 Chapter 5

 local ptrVar:qword
 local userTypeVar:userType
 .
 . ; Other statements in the procedure.
 .
procWithLocals endp

MASM automatically associates appropriate offsets with each variable
you declare via the local directive. MASM assigns offsets to the variables by
subtracting the variable’s size from the current offset (starting at zero) and
then rounding down to an offset that is a multiple of the object’s size. For
example, if userType is typedef’d to real8, MASM assigns offsets to the local
variables in procWithLocals as shown in the following MASM listing output:

var1 Byte rbp - 00000001
local2 Word rbp - 00000004
dVar DWord rbp - 00000008
qArray QWord rbp - 00000028
rlocal DWord rbp - 0000002C
ptrVar QWord rbp - 00000034
userTypeVar QWord rbp - 0000003C

In addition to assigning an offset to each local variable, MASM asso-
ciates the [RBP-constant] addressing mode with each of these symbols.
Therefore, if you use a statement like mov ax, local2 in the procedure,
MASM will substitute [RBP-4] for the symbol local2.

Of course, upon entry into the procedure, you must still allocate stor-
age for the local variables on the stack; that is, you must still provide the
code for the standard entry (and standard exit) sequence. This means you
must add up all the storage needed for the local variables so you can sub-
tract this value from RSP after moving RSP’s value into RBP. Once again,
this is grunt work that could turn out to be a source of defects in the proce-
dure (if you miscount the number of bytes of local variable storage), so you
must take care when manually computing the storage requirements.

MASM does provide a solution (of sorts) for this problem: the option
directive. You’ve seen the option casemap:none, option noscoped, and option
scoped directives already; the option directive actually supports a wide array
of arguments that control MASM’s behavior. Two option operands control
procedure code generation when using the local directive: prologue and
epilogue. These operands typically take the following two forms:

option prologue:PrologueDef
option prologue:none
option epilogue:EpilogueDef
option epilogue:none

By default, MASM assumes prologue:none and epilogue:none. When you
specify none as the prologue and epilogue values, MASM will not generate any
extra code to support local variable storage allocation and deallocation in a

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 239

procedure; you will be responsible for supplying the standard entry and exit
sequences for the procedure.

If you insert the option prologue:PrologueDef (default prologue generation)
and option epilogue:EpilogueDef (default epilogue generation) into your source
file, all following procedures will automatically generate the appropri-
ate standard entry and exit sequences for you (assuming local directives
are in the procedure). MASM will quietly generate the standard entry
sequence (the prologue) immediately after the last local directive (and before
the first machine instruction) in a procedure, consisting of the usual standard
entry sequence instructions

push rbp
mov rbp, rsp
sub rsp, localSize

where localSize is a constant specifying the number of local variables plus a
(possible) additional amount to leave the stack aligned on a 16-byte bound-
ary. (MASM usually assumes the stack was aligned on a mod 16 == 8 boundary
prior to the push rbp instruction.)

For MASM’s automatically generated prologue code to work, the pro-
cedure must have exactly one entry point. If you define a global statement
label as a second entry point, MASM won’t know that it is supposed to
generate the prologue code at that point. Entering the procedure at that
second entry point will create problems unless you explicitly include the
standard entry sequence yourself. Moral of the story: procedures should
have exactly one entry point.

Generating the standard exit sequence for the epilogue is a bit more prob-
lematic. Although it is rare for an assembly language procedure to have more
than a single entry point, it’s common to have multiple exit points. After all, the
exit point is controlled by the programmer’s placement of a ret instruction,
not by a directive (like endp). MASM deals with the issue of multiple exit points
by automatically translating any ret instruction it finds into the standard exit
sequence:

leave
ret

Assuming, of course, that option epilogue:EpilogueDef is active.
You can control whether MASM generates prologues (standard entry

sequences) and epilogues (standard exit sequences) independently of one
another. So if you would prefer to write the leave instruction yourself (while
having MASM generate the standard entry sequence), you can.

One final note about the prologue: and epilogue: options. In addition to
specifying prologue:PrologueDef and epilogue:EpilogueDef, you can also sup-
ply a macro identifier after the prologue: or epilogue: options. If you supply
a macro identifier, MASM will expand that macro for the standard entry
or exit sequence. For more information on macros, see “Macros and the
MASM Compile-Time Language” in Chapter 13.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

240 Chapter 5

Most of the example programs throughout the remainder of this book
continue to use textequ declarations for local variables rather than the local
directive to make the use of the [RBP-constant] addressing mode and local
variable offsets more explicit.

5.4.3 Automatic Allocation
One big advantage to automatic storage allocation is that it efficiently shares
a fixed pool of memory among several procedures. For example, say you call
three procedures in a row, like so:

call ProcA
call ProcB
call ProcC

The first procedure (ProcA in this code) allocates its local variables on
the stack. Upon return, ProcA deallocates that stack storage. Upon entry into
ProcB, the program allocates storage for ProcB’s local variables by using the
same memory locations just freed by ProcA. Likewise, when ProcB returns and the
program calls ProcC, ProcC uses the same stack space for its local variables that
ProcB recently freed up. This memory reuse makes efficient use of the system
resources and is probably the greatest advantage to using automatic variables.

Now that you’ve seen how assembly language allocates and deallocates
storage for local variables, it’s easy to understand why automatic variables
do not maintain their values between two calls to the same procedure. Once
the procedure returns to its caller, the storage for the automatic variable is
lost, and, therefore, the value is lost as well. Thus, you must always assume that
a local var object is uninitialized upon entry into a procedure. If you need to main-
tain the value of a variable between calls to a procedure, you should use one
of the static variable declaration types.

 5.5 Parameters
Although many procedures are totally self-contained, most require input
data and return data to the caller. Parameters are values that you pass to and
from a procedure. In straight assembly language, passing parameters can
be a real chore.

The first thing to consider when discussing parameters is how we pass
them to a procedure. If you are familiar with Pascal or C/C++, you’ve prob-
ably seen two ways to pass parameters: pass by value and pass by reference.
Anything that can be done in an HLL can be done in assembly language
(obviously, as HLL code compiles into machine code), but you have to pro-
vide the instruction sequence to access those parameters in an appropriate
fashion.

Another concern you will face when dealing with parameters is where
you pass them. There are many places to pass parameters: in registers,
on the stack, in the code stream, in global variables, or in a combination of
these. This chapter covers several of the possibilities.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 241

5.5.1 Pass by Value
A parameter passed by value is just that—the caller passes a value to the
procedure. Pass-by-value parameters are input-only parameters. You can
pass them to a procedure, but the procedure cannot return values through
them. Consider this C/C++ function call:

CallProc(I);

If you pass I by value, CallProc() does not change the value of I, regard-
less of what happens to the parameter inside CallProc().

Because you must pass a copy of the data to the procedure, you should
use this method only for passing small objects like bytes, words, double
words, and quad words. Passing large arrays and records by value is inefficient
(because you must create and pass a copy of the object to the procedure).6

5.5.2 Pass by Reference
To pass a parameter by reference, you must pass the address of a variable
rather than its value. In other words, you must pass a pointer to the data.
The procedure must dereference this pointer to access the data. Passing
parameters by reference is useful when you must modify the actual param-
eter or when you pass large data structures between procedures. Because
pointers on the x86-64 are 64 bits wide, a parameter that you pass by refer-
ence will consist of a quad-word value.

You can compute the address of an object in memory in two common
ways: the offset operator or the lea instruction. You can use the offset oper-
ator to take the address of any static variable you’ve declared in your .data,
.data?, .const, or .code sections. Listing 5-8 demonstrates how to obtain the
address of a static variable (staticVar) and pass that address to a procedure
(someFunc) in the RCX register.

; Listing 5-8

; Demonstrate obtaining the address
; of a static variable using offset
; operator.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc

getAddress proc

6. The Microsoft ABI doesn’t allow passing objects larger than 64 bits by value. If you’re writ-
ing Microsoft ABI–compliant code, the inefficiency of passing large objects is irrelevant.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

242 Chapter 5

 mov rcx, offset staticVar
 call someFunc

 ret
getAddress endp

 end

Listing 5-8: Using the offset operator to obtain the address of a static variable

Using the offset operator raises a couple of issues. First of all, it can
compute the address of only a static variable; you cannot obtain the address
of an automatic (local) variable or parameter, nor can you compute the
address of a memory reference involving a complex memory addressing
mode (for example, [RBX+RDX*1-5]). Another problem is that an instruc-
tion like mov rcx, offset staticVar assembles into a large number of bytes
(because the offset operator returns a 64-bit constant). If you look at the
assembly listing MASM produces (with the /Fl command line option), you
can see how big this instruction is:

00000000 48/ B9 mov rcx, offset staticVar
 0000000000000000 R
0000000A E8 00000000 E call someFunc

As you can see here, the mov instruction is 10 (0Ah) bytes long.
You’ve seen numerous examples of the second way to obtain the address

of a variable: the lea instruction (for example, when loading the address of
a format string into RCX prior to calling printf()). Listing 5-9 shows the
example in Listing 5-8 recoded to use the lea instruction.

; Listing 5-9

; Demonstrate obtaining the address
; of a variable using the lea instruction.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc

getAddress proc

 lea rcx, staticVar
 call someFunc

 ret
getAddress endp
 end

Listing 5-9: Obtaining the address of a variable using the lea instruction

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 243

Looking at the listing MASM produces for this code, we find that the
lea instruction is only 7 bytes long:

00000000 48/ 8D 0D lea rcx, staticVar
 00000000 R
00000007 E8 00000000 E call someFunc

So, if nothing else, your programs will be shorter if you use the lea
instruction rather than the offset operator.

Another advantage to using lea is that it will accept any memory address-
ing mode, not just the name of a static variable. For example, if staticVar
were an array of 32-bit integers, you could load the current element address,
indexed by the RDX register, in RCX by using an instruction such as this:

lea rcx, staticVar[rdx*4] ; Assumes LARGEADDRESSAWARE:NO

Pass by reference is usually less efficient than pass by value. You must
dereference all pass-by-reference parameters on each access; this is slower
than simply using a value because it typically requires at least two instruc-
tions. However, when passing a large data structure, pass by reference is
faster because you do not have to copy the large data structure before call-
ing the procedure. Of course, you’d probably need to access elements of
that large data structure (for example, an array) by using a pointer, so little
efficiency is lost when you pass large arrays by reference.

5.5.3 Low-Level Parameter Implementation
A parameter-passing mechanism is a contract between the caller and the
callee (the procedure). Both parties have to agree on where the parameter
data will appear and what form it will take (for example, value or address).
If your assembly language procedures are being called only by other
assembly language code that you’ve written, you control both sides of the
contract negotiation and get to decide where and how you’re going to pass
parameters.

However, if external code is calling your procedure, or your procedure is
calling external code, your procedure will have to adhere to whatever calling
convention that external code uses. On 64-bit Windows systems, that calling
convention will, undoubtedly, be the Windows ABI.

Before discussing the Windows calling conventions, we’ll consider the
situation of calling code that you’ve written (and, therefore, have com-
plete control over the calling conventions). The following sections provide
insight into the various ways you can pass parameters in pure assembly lan-
guage code (without the overhead associated with the Microsoft ABI).

5.5.3.1 Passing Parameters in Registers

Having touched on how to pass parameters to a procedure, the next thing
to discuss is where to pass parameters. This depends on the size and number
of those parameters. If you are passing a small number of parameters to a

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

244 Chapter 5

procedure, the registers are an excellent place to pass them. If you are pass-
ing a single parameter to a procedure, you should use the registers listed in
Table 5-1 for the accompanying data types.

Table 5-1: Parameter Location by Size

Data size Pass in this register

Byte CL

Word CX

Double word ECX

Quad word RCX

This is not a hard-and-fast rule. However, these registers are convenient
because they mesh with the first parameter register in the Microsoft ABI
(which is where most people will pass a single parameter).

If you are passing several parameters to a procedure in the x86-64’s
registers, you should probably use up the registers in the following order:

First Last
RCX, RDX, R8, R9, R10, R11, RAX, XMM0/YMM0-XMM5/YMM5

In general, you should pass integer and other non-floating-point
values in the general-purpose registers, and floating-point values in the
XMMx/YMMx registers. This is not a hard requirement, but Microsoft
reserves these registers for passing parameters and for local variables
(volatile), so using these registers to pass parameters won’t mess with
Microsoft ABI nonvolatile registers. Of course, if you intend to have
Microsoft ABI–compliant code call your procedure, you must exactly
observe the Microsoft calling conventions (see “Calling Conventions
and the Microsoft ABI” on page xx).

N O T E You can use the movsd instruction to load a double-precision value into one of the
XMM registers.7 This instruction has the following syntax:

movsd XMMn, mem64

Of course, if you’re writing pure assembly language code (no calls to or
from any code you didn’t write), you can use most of the general-purpose
registers as you see fit (RSP is an exception, and you should avoid RBP, but
the others are fair game). Ditto for the XMM/YMM registers.

As an example, consider the strfill(s,c) procedure that copies the
character c (passed by value in AL) to each character position in s (passed
by reference in RDI) up to a zero-terminating byte (Listing 5-10).

7. Intel has overloaded the meaning of the movsd mnemonic. When it has two operands (the
first being an XMM register and the second being a 64-bit memory location), movsd stands
for move scalar double-precision. When it has no operands, movsd is a string instruction and
stands for move string double.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 245

; Listing 5-10

; Demonstrate passing parameters in registers.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc
; strfill - Overwrites the data in a string with a character.

; RDI - Pointer to zero-terminated string
; (for example, a C/C++ string).
; AL - Character to store into the string.

strfill proc
 push rdi ; Preserve RDI because it changes

; While we haven't reached the end of the string:

whlNot0: cmp byte ptr [rdi], 0
 je endOfStr

; Overwrite character in string with the character
; passed to this procedure in AL:

 mov [rdi], al

; Move on to the next character in the string and
; repeat this process:

 inc rdi
 jmp whlNot0

endOfStr: pop rdi
 ret
strfill endp
 end

Listing 5-10: Passing parameters in registers to the strfill procedure

To call the strfill procedure, you would load the address of the string
data into RDI and the character value into AL prior to the call. The follow-
ing code fragment demonstrates a typical call to strfill:

lea rdi, stringData ; Load address of string into RDI
mov al, ' ' ; Fill string with spaces
call strfill

This code passes the string by reference and the character data by value.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

246 Chapter 5

5.5.3.2 Passing Parameters in the Code Stream

Another place where you can pass parameters is in the code stream imme-
diately after the call instruction. Consider the following print routine that
prints a literal string constant to the standard output device:

call print
byte "This parameter is in the code stream.",0

Normally, a subroutine returns control to the first instruction immedi-
ately following the call instruction. Were that to happen here, the x86-64
would attempt to interpret the ASCII codes for "This . . . " as an instruc-
tion. This would produce undesirable results. Fortunately, you can skip over
this string before returning from the subroutine.

So how do you gain access to these parameters? Easy. The return address
on the stack points at them. Consider the implementation of print appearing
in Listing 5-11.

; Listing 5-11

; Demonstration passing parameters in the code stream.

 option casemap:none

nl = 10
stdout = -11

 .const
ttlStr byte "Listing 5-11", 0

 .data
soHandle qword ?
bWritten dword ?

 .code

 ; Magic equates for Windows API calls:

 extrn __imp_GetStdHandle:qword
 extrn __imp_WriteFile:qword

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's the print procedure.
; It expects a zero-terminated string
; to follow the call to print.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 247

print proc
 push rbp
 mov rbp, rsp
 and rsp, -16 ; Ensure stack 16-byte aligned
 sub rsp, 48 ; Set up stack for MS ABI

; Get the pointer to the string immediately following the
; call instruction and scan for the zero-terminating byte.

 mov rdx, [rbp+8] ; Return address is here
 lea r8, [rdx-1] ; R8 = return address - 1
search4_0: inc r8 ; Move on to next char
 cmp byte ptr [R8], 0 ; At end of string?
 jne search4_0

; Fix return address and compute length of string:

 inc r8 ; Point at new return address
 mov [rbp+8], r8 ; Save return address
 sub r8, rdx ; Compute string length
 dec r8 ; Don't include 0 byte

; Call WriteFile to print the string to the console

; WriteFile(fd, bufAdrs, len, &bytesWritten);

; Note: pointer to the buffer (string) is already
; in RDX. The len is already in R8. Just need to
; load the file descriptor (handle) into RCX:

 mov rcx, soHandle ; Zero-extends!
 lea r9, bWritten ; Address of "bWritten" in R9
 call __imp_WriteFile

 leave
 ret
print endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

; Call getStdHandle with "stdout" parameter
; in order to get the standard output handle
; we can use to call write. Must set up
; soHandle before first call to print procedure.

 mov ecx, stdout ; Zero-extends!
 call __imp_GetStdHandle
 mov soHandle, rax ; Save handle

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

248 Chapter 5

; Demonstrate passing parameters in code stream
; by calling the print procedure:

 call print
 byte "Hello, world!", nl, 0

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-11: Print procedure implementation (using code stream parameters)

One quick note about a machine idiom in Listing 5-11. The instruction

lea r8, [rdx-1]

isn’t actually loading an address into R8, per se. This is really an arithmetic
instruction that is computing R8 = RDX – 1 (with a single instruction rather
than two as would normally be required). This is a common usage of the lea
instruction in assembly language programs. Therefore, it’s a little program-
ming trick that you should become comfortable with.

Besides showing how to pass parameters in the code stream, the print
routine also exhibits another concept: variable-length parameters. The string
following the call can be any practical length. The zero-terminating byte
marks the end of the parameter list.

We have two easy ways to handle variable-length parameters: either use
a special terminating value (like 0) or pass a special length value that tells
the subroutine the number of parameters you are passing. Both methods
have their advantages and disadvantages.

Using a special value to terminate a parameter list requires that you
choose a value that never appears in the list. For example, print uses 0 as
the terminating value, so it cannot print the NUL character (whose ASCII
code is 0). Sometimes this isn’t a limitation. Specifying a length parameter
is another mechanism you can use to pass a variable-length parameter list.
While this doesn’t require any special codes, or limit the range of possible
values that can be passed to a subroutine, setting up the length parameter
and maintaining the resulting code can be a real nightmare.8

Despite the convenience afforded by passing parameters in the code
stream, passing parameters there has disadvantages. First, if you fail to
provide the exact number of parameters the procedure requires, the sub-
routine will get confused. Consider the print example. It prints a string of
characters up to a zero-terminating byte and then returns control to the
first instruction following that byte. If you leave off the zero-terminating

8. This is especially true if the parameter list changes frequently.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 249

byte, the print routine happily prints the following opcode bytes as ASCII
characters until it finds a zero byte. Because zero bytes often appear in the
middle of an instruction, the print routine might return control into the
middle of another instruction, which will probably crash the machine.

Inserting an extra 0, which occurs more often than you might think,
is another problem programmers have with the print routine. In such a
case, the print routine would return upon encountering the first zero byte
and attempt to execute the following ASCII characters as machine code.
Problems notwithstanding, however, the code stream is an efficient place to
pass parameters whose values do not change.

5.5.3.3 Passing Parameters on the Stack

Most high-level languages use the stack to pass a large number of param-
eters because this method is fairly efficient. Although passing parameters
on the stack is slightly less efficient than passing parameters in registers, the
register set is limited (especially if you’re limiting yourself to the four reg-
isters the Microsoft ABI sets aside for this purpose), and you can pass only
a few value or reference parameters through registers. The stack, on the
other hand, allows you to pass a large amount of parameter data without
difficulty. This is the reason that most programs pass their parameters on
the stack (at least, when passing more than about three to six parameters).

To manually pass parameters on the stack, push them immediately
before calling the subroutine. The subroutine then reads this data from
the stack memory and operates on it appropriately. Consider the following
high-level language function call:

CallProc(i,j,k);

Back in the days of 32-bit assembly language, you could have passed
these parameters to CallProc by using an instruction sequence such as the
following:

push k ; Assumes i, j, and k are all 32-bit
push j ; variables.
push i
call CallProc

Unfortunately, with the advent of the x86-64 64-bit CPU, the 32-bit
push instruction was removed from the instruction set (the 64-bit push
instruction replaced it). If you want to pass parameters to a procedure by
using the push instruction, they must be 64-bit operands.9

Because keeping RSP aligned on an appropriate boundary (8 or
16 bytes) is crucial, the Microsoft ABI simply requires that every parameter

9. Actually, the x86-64 allows you to push 16-bit operands onto the stack. However, keeping
RSP properly aligned on an 8- or 16-byte boundary when using 16-bit push instructions will
be a big source of bugs in your program. Furthermore, it winds up taking two instructions
to push a 32-bit value with 16-bit push instructions, so it is hardly cost-effective to use those
instructions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

250 Chapter 5

consume 8 bytes on the stack, and thus doesn’t allow larger arguments
on the stack. If you’re controlling both sides of the parameter contract
(caller and callee), you can pass larger arguments to your procedures.
However, it is a good idea to ensure that all parameter sizes are a mul-
tiple of 8 bytes.

One simple solution is to make all your variables qword objects. Then
you can directly push them onto the stack by using the push instruction
prior to calling a procedure. However, not all objects fit nicely into 64 bits
(characters, for example). Even those objects that could be 64 bits (for
example, integers) often don’t require the use of so much storage.

One sneaky way to use the push instruction on smaller objects is to use
type coercion. Consider the following calling sequence for CallProc:

push qword ptr k
push qword ptr j
push qword ptr i
call CallProc

This sequence pushes the 64-bit values starting at the addresses associ-
ated with variables i, j, and k, regardless of the size of these variables. If the
i, j, and k variables are smaller objects (perhaps 32-bit integers), these push
instructions will push their values onto the stack along with additional data
beyond these variables. As long as CallProc treats these parameter values as
their actual size (say, 32 bits) and ignores the HO bits pushed for each argu-
ment onto the stack, this will usually work out properly.

Pushing extra data beyond the bounds of the variable onto the stack
creates one possible problem. If the variable is at the very end of a page
in memory and the following page is not readable, then pushing data
beyond the variable may attempt to push data from that next memory page,
resulting in a memory access violation (which will crash your program).
Therefore, if you use this technique, you must ensure that such variables do
not appear at the very end of a memory page (with the possibility that the
next page in memory is inaccessible). The easiest way to do this is to make
sure the variables you push on the stack in this fashion are never the last
variables you declare in your data sections; for example:

i dword ?
j dword ?
k dword ?
pad qword ? ; Ensures that there are at least 64 bits
 ; beyond the k variable.

While pushing extra data beyond a variable will work, it’s still a ques-
tionable programming practice. A better technique is to abandon the push
instructions altogether and use a different technique to move the param-
eter data onto the stack.

Another way to “push” data onto the stack is to drop the RSP register
down an appropriate amount in memory and then simply move data onto

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 251

the stack by using a mov (or similar) instruction. Consider the following call-
ing sequence for CallProc:

sub rsp, 12
mov eax, k
mov [rsp+8], eax
mov eax, j
mov [rsp+4], eax
mov eax, i
mov [rsp], eax
call CallProc

Although this takes twice as many instructions as the previous examples
(eight versus four), this sequence is safe (no possibility of accessing inaccessible
memory pages). Furthermore, it pushes exactly the amount of data needed for
the parameters onto the stack (32 bits for each object, for a total of 12 bytes).

The major problem with this approach is that it is a really bad idea to have
an address in the RSP register that is not aligned on an 8-byte boundary. In
the worst case, having a nonaligned (to 8 bytes) stack will crash your program;
in the very best case, it will affect the performance of your program. So even if
you want to pass the parameters as 32-bit integers, you should always allocate
a multiple of 8 bytes for parameters on the stack prior to a call. The previous
example would be encoded as follows:

sub rsp, 16 ; Allocate a multiple of 8 bytes
mov eax, k
mov [rsp+8], eax
mov eax, j
mov [rsp+4], eax
mov eax, i
mov [rsp], eax
call CallProc

Note that CallProc will simply ignore the extra 4 bytes allocated on the
stack in this fashion (don’t forget to remove this extra storage from the stack
on return).

To satisfy the requirement of the Microsoft ABI (and, in fact, of most appli-
cation binary interfaces for the x86-64 CPUs) that each parameter consume
exactly 8 bytes (even if their native data size is smaller), you can use the follow-
ing code (same number of instructions, just uses a little more stack space):

sub rsp, 24 ; Allocate a multiple of 8 bytes
mov eax, k
mov [rsp+16], eax
mov eax, j
mov [rsp+8], eax
mov eax, i
mov [rsp], eax
call CallProc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

252 Chapter 5

The mov instructions spread out the data on 8-byte boundaries. The HO
dword of each 64-bit entry on the stack will contain garbage (whatever data
was in stack memory prior to this sequence). That’s okay; the CallProc proce-
dure (presumably) will ignore that extra data and operate only on the LO
32 bits of each parameter value.

Upon entry into CallProc, using this sequence, the x86-64’s stack looks
like Figure 5-7.

Previous stack contents

k‘s current value

j‘s current value

i‘s current value

Return address RSP

Garbage bits

Garbage bits

Garbage bits

RSP + 28

+ 24

+ 20

+ 16

+ 12

+ 8

+ 0

Figure 5-7: Stack layout upon entry into CallProc

If your procedure includes the standard entry and exit sequences, you
may directly access the parameter values in the activation record by index-
ing off the RBP register. Consider the layout of the activation record for
CallProc that uses the following declaration:

CallProc proc
 push rbp ; This is the standard entry sequence
 mov rbp, rsp ; Get base address of A.R. into RBP
 .
 .
 .
 leave
 ret 24

Assuming you’ve pushed three quad-word parameters onto the stack, it
should look something like Figure 5-8 immediately after the execution of
mov rbp, rsp in CallProc.

Now you can access the parameters by indexing off the RBP register:

mov eax, [rbp+32] ; Accesses the k parameter.
mov ebx, [rbp+24] ; Accesses the j parameter.
mov ecx, [rbp+16] ; Accesses the i parameter.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 253

RBP + 8

RBP + 16

RBP + 24

Previous stack contents

k‘s current value

j‘s current value

i‘s current value

RSP, RBP

RBP + 32

Garbage bits

Garbage bits

Garbage bits

Old RBP value

Return address

Figure 5-8: Activation record for CallProc after standard
entry sequence execution

5.5.3.4 Accessing Value Parameters on the Stack

Accessing parameters passed by value is no different from accessing a local
variable object. One way to accomplish this is by using equates, as was dem-
onstrated for local variables earlier. (Listing 5-12 provides an example
program whose procedure accesses a parameter that the main program
passes to it by value.

; Listing 5-12

; Accessing a parameter on the stack.

 option casemap:none

nl = 10
stdout = -11

 .const
ttlStr byte "Listing 5-12", 0
fmtStr1 byte "Value of parameter: %d", nl, 0

 .data
value1 dword 20
value2 dword 30

 .code
 externdef printf:proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

254 Chapter 5

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

theParm equ <[rbp+16]>
ValueParm proc
 push rbp
 mov rbp, rsp

 sub rsp, 32 ; Magic instruction

 lea rcx, fmtStr1
 mov edx, theParm
 call printf

 leave
 ret
ValueParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

 mov eax, value1
 mov [rsp], eax ; Store parameter on stack
 call ValueParm

 mov eax, value2
 mov [rsp], eax
 call ValueParm

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-12: Demonstration of value parameters

Although you could access the value of theParm by using the anonymous
address [RBP+16] within your code, using the equate in this fashion makes
your code more readable and maintainable.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 255

5.5.4 Declaring Parameters with the proc Directive
MASM provides another solution for declaring parameters for procedures
using the proc directive. You can supply a list of parameters as operands to
the proc directive, as follows:

procName proc parameter_list

where parameter_list is a list of one or more parameter declarations sepa-
rated by commas. Each parameter declaration takes the form

parmName:type

where parmName is a valid MASM identifier, and type is one of the usual MASM
types (proc, byte, word, dword, and so forth). With one exception, the parameter
list declarations are identical to the local directive’s operands: the exception
is that MASM doesn’t allow arrays as parameters. (MASM parameters assume
that the Microsoft ABI is being used, and the Microsoft ABI allows only 64-bit
parameters.)

The parameter declarations appearing as proc operands assume that
a standard entry sequence is executed and that the program will access
parameters off the RBP register, with the saved RBP and return address val-
ues at offsets 0 and 8 from the RBP register (so the first parameter will start
at offset 16). MASM assigns offsets for each parameter that are 8 bytes apart
(per the Microsoft ABI). As an example, consider the following parameter
declaration:

procWithParms proc k:byte, j:word, i:dword
 .
 .
 .
procWithParms endp

k will have the offset [RBP+16], j will have the offset [RBP+24], and i will
have the offset [RBP+32]. Again, the offsets are always 8 bytes, regardless of
the parameter data type.

As per the Microsoft ABI, MASM will allocate storage on the stack for
the first four parameters, even though you would normally pass these param-
eters in RCX, RDX, R8, and R9. These 32 bytes of storage (starting at RBP+16)
are called shadow storage in Microsoft ABI nomenclature. Upon entry into
the procedure, the parameter values do not appear in this shadow storage
(instead, the values are in the registers). The procedure can save the register
values in this preallocated storage, or it can use the shadow storage for any
purpose it desires (such as for additional local variable storage). However, if
the procedure refers to the parameter names declared in the proc operand
field, expecting to access the parameter data, the procedure should store the
values from these registers into that shadow storage (assuming the param-
eters were passed in the RCX, RDX, R8, and R9 registers). Of course, if you

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

256 Chapter 5

push these arguments on the stack prior to the call (in assembly language,
ignoring the Microsoft ABI calling convention), then the data is already in
place, and you don’t have to worry about shadow storage issues.

When calling a procedure whose parameters you declare in the oper-
and field of a proc directive, don’t forget that MASM assumes you push the
parameters onto the stack in the reverse order they appear in the param-
eter list, to ensure that the first parameter in the list is at the lowest memory
address on the stack. For example, if you call the procWithParms procedure
from the previous code snippet, you’d typically use code like the following
to push the parameters:

mov eax, dwordValue
push rax ; Parms are always 64 bits
mov ax, wordValue
push rax
mov al, byteValue
push rax
call procWithParms

Another possible solution (a few bytes longer, but often faster) is to use
the following code:

sub rsp, 24 ; Reserve storage for parameters
mov eax, dwordValue ; i
mov [rsp+16], eax
mov ax, wordValue
mov [rsp+8], ax ; j
mov al, byteValue
mov [rsp], al ; k
call procWithParms

Don’t forget that if it is the callee’s responsibility to clean up the stack,
you’d probably use an add rsp, 24 instruction after the preceding two
sequences to remove the parameters from the stack. Of course, you can also
have the procedure itself clean up the stack by specifying the number to add
to RSP as a ret instruction operand, as explained earlier in this chapter.

5.5.5 Accessing Reference Parameters on the Stack
Because you pass the addresses of objects as reference parameters, access-
ing the reference parameters within a procedure is slightly more difficult
than accessing value parameters because you have to dereference the point-
ers to the reference parameters.

In Listing 5-13, the RefParm procedure has a single pass-by-reference
parameter. A pass-by-reference parameter is always a (64-bit) pointer to an
object. To access the value associated with the parameter, this code has to load
that quad-word address into a 64-bit register and access the data indirectly.
The mov rax, theParm instruction in Listing 5-13 fetches this pointer into the
RAX register, and then the procedure RefParm uses the [rax] addressing mode
to access the actual value of theParm.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 257

; Listing 5-13

; Accessing a reference parameter on the stack.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-13", 0
fmtStr1 byte "Value of parameter: %d", nl, 0

 .data
value1 dword 20
value2 dword 30

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

theParm equ <[rbp+16]>
RefParm proc
 push rbp
 mov rbp, rsp

 sub rsp, 32 ; Magic instruction

 lea rcx, fmtStr1
 mov rax, theParm ; Dereference parameter
 mov edx, [rax]
 call printf

 leave
 ret
RefParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

 lea rax, value1
 mov [rsp], rax ; Store address on stack
 call RefParm

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

258 Chapter 5

 lea rax, value2
 mov [rsp], rax
 call RefParm

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-13: Accessing a reference parameter

Here are the build commands and program output for Listing 5-13:

C:\>build listing5-13

C:\>echo off
 Assembling: listing5-13.asm
c.cpp

C:\>listing5-13
Calling Listing 5-13:
Value of parameter: 20
Value of parameter: 30
Listing 5-13 terminated

As you can see, accessing (small) pass-by-reference parameters is a little
less efficient than accessing value parameters because you need an extra
instruction to load the address into a 64-bit pointer register (not to mention
you have to reserve a 64-bit register for this purpose). If you access refer-
ence parameters frequently, these extra instructions can really begin to add
up, reducing the efficiency of your program. Furthermore, it’s easy to forget
to dereference a reference parameter and use the address of the value in
your calculations. Therefore, unless you really need to affect the value of
the actual parameter, you should use pass by value to pass small objects to a
procedure.

Passing large objects, like arrays and records, is where using reference
parameters becomes efficient. When passing these objects by value, the call-
ing code has to make a copy of the actual parameter; if it is a large object,
the copy process can be inefficient. Because computing the address of a
large object is just as efficient as computing the address of a small scalar
object, no efficiency is lost when passing large objects by reference. Within
the procedure, you must still dereference the pointer to access the object,
but the efficiency loss due to indirection is minimal when you contrast this
with the cost of copying that large object. The program in Listing 5-14 dem-
onstrates how to use pass by reference to initialize an array of records.

; Listing 5-14

; Passing a large object by reference.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 259

 option casemap:none

nl = 10
NumElements = 24

Pt struct
x byte ?
y byte ?
Pt ends

 .const
ttlStr byte "Listing 5-14", 0
fmtStr1 byte "RefArrayParm[%d].x=%d ", 0
fmtStr2 byte "RefArrayParm[%d].y=%d", nl, 0

 .data
index dword ?
Pts Pt NumElements dup ({})

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

ptArray equ <[rbp+16]>
RefAryParm proc
 push rbp
 mov rbp, rsp

 mov rdx, ptArray
 xor rcx, rcx ; RCX = 0

; While ecx < NumElements, initialize each
; array element. x = ecx/8, y=ecx % 8.

ForEachEl: cmp ecx, NumElements
 jnl LoopDone

 mov al, cl
 shr al, 3 ;AL = ecx / 8
 mov [rdx][rcx*2].Pt.x, al

 mov al, cl
 and al, 111b ;AL = ecx % 8
 mov [rdx][rcx*2].Pt.y, al
 inc ecx
 jmp ForEachEl

LoopDone: leave

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

260 Chapter 5

 ret
RefAryParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

; Initialize the array of points:

 lea rax, Pts
 mov [rsp], rax ; Store address on stack
 call RefAryParm

; Display the array:

 mov index, 0
dispLp: cmp index, NumElements
 jnl dispDone

 lea rcx, fmtStr1
 mov edx, index ; Zero-extends!
 lea r8, Pts ; Get array base
 movzx r8, [r8][rdx*2].Pt.x ; Get x field
 call printf

 lea rcx, fmtStr2
 mov edx, index ; Zero-extends!
 lea r8, Pts ; Get array base
 movzx r8, [r8][rdx*2].Pt.y ; Get y field
 call printf

 inc index
 jmp dispLp

; Clean up, as per Microsoft ABI:

dispDone:
 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-14: Passing an array of records by referencing

Here are the build commands and output for Listing 5-14:

C:\>build listing5-14

C:\>echo off

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 261

 Assembling: listing5-14.asm
c.cpp

C:\>listing5-14
Calling Listing 5-14:
RefArrayParm[0].x=0 RefArrayParm[0].y=0
RefArrayParm[1].x=0 RefArrayParm[1].y=1
RefArrayParm[2].x=0 RefArrayParm[2].y=2
RefArrayParm[3].x=0 RefArrayParm[3].y=3
RefArrayParm[4].x=0 RefArrayParm[4].y=4
RefArrayParm[5].x=0 RefArrayParm[5].y=5
RefArrayParm[6].x=0 RefArrayParm[6].y=6
RefArrayParm[7].x=0 RefArrayParm[7].y=7
RefArrayParm[8].x=1 RefArrayParm[8].y=0
RefArrayParm[9].x=1 RefArrayParm[9].y=1
RefArrayParm[10].x=1 RefArrayParm[10].y=2
RefArrayParm[11].x=1 RefArrayParm[11].y=3
RefArrayParm[12].x=1 RefArrayParm[12].y=4
RefArrayParm[13].x=1 RefArrayParm[13].y=5
RefArrayParm[14].x=1 RefArrayParm[14].y=6
RefArrayParm[15].x=1 RefArrayParm[15].y=7
RefArrayParm[16].x=2 RefArrayParm[16].y=0
RefArrayParm[17].x=2 RefArrayParm[17].y=1
RefArrayParm[18].x=2 RefArrayParm[18].y=2
RefArrayParm[19].x=2 RefArrayParm[19].y=3
RefArrayParm[20].x=2 RefArrayParm[20].y=4
RefArrayParm[21].x=2 RefArrayParm[21].y=5
RefArrayParm[22].x=2 RefArrayParm[22].y=6
RefArrayParm[23].x=2 RefArrayParm[23].y=7
Listing 5-14 terminated

As you can see from this example, passing large objects by reference is
very efficient.

 5.6 Calling Conventions and the Microsoft ABI
Back in the days of 32-bit programs, different compilers and languages typi-
cally used completely different parameter-passing conventions. As a result,
a program written in Pascal could not call a C/C++ function (at least, using
the native Pascal parameter-passing conventions). Similarly, C/C++ programs
couldn’t call FORTRAN, or BASIC, or functions written in other languages,
without special help from the programmer. It was literally a Tower of Babel
situation, as the languages were incompatible with one another.10

To resolve these problems, CPU manufacturers, such as Intel, devised
a set of protocols known as the application binary interface (ABI) to pro-
vide conformity to procedure calls. Languages that conformed to the CPU

10. In the Tower of Babel story, from Genesis in the Bible, God changed the spoken lan-
guages of the people constructing the tower so they couldn’t communicate with one
another.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

262 Chapter 5

manufacturer’s ABI were able to call functions and procedures written in
other languages that also conformed to the same ABI. This brought a modi-
cum of sanity to the world of programming language interoperability.

For programs running under Windows, Microsoft took a subset of the
Intel ABI and created the Microsoft calling convention (which most people
call the Microsoft ABI). The next section covers the Microsoft calling conven-
tions in detail. However, first it’s worthwhile to discuss many of the other
calling conventions that existed prior to the Microsoft ABI.11

One of the older formal calling conventions is the Pascal calling convention.
In this convention, a caller pushes parameters on the stack in the order that
they appear in the actual parameter list (from left to right). On the 80x86/
x86-64 CPUs, where the stack grows down in memory, the first parameter
winds up at the highest address on the stack, and the last parameter winds up
at the lowest address on the stack.

While it might look like the parameters appear backward on the stack,
the computer doesn’t really care. After all, the procedure will access the
parameters by using a numeric offset, and it doesn’t care about the offset’s
value.12 On the other hand, for simple compilers, it’s much easier to gener-
ate code that pushes the parameters in the order they appear in the source
file, so the Pascal calling convention makes life a little easier for compiler
writers (though optimizing compilers often rearrange the code anyway).

Another feature of the Pascal calling convention is that the callee (the
procedure itself) is responsible for removing parameter data from the
stack upon subroutine return. This localizes the cleanup code to the pro-
cedure so that parameter cleanup isn’t duplicated across every call to the
procedure.

The big drawback to the Pascal calling sequence is that handling vari-
able parameter lists is difficult. If one call to a procedure has three parame-
ters, and a second call has four parameters, the offset to the first parameter
will vary depending on the actual number of parameters. Furthermore, it’s
more difficult (though certainly not impossible) for a procedure to clean up
the stack after itself if the number of parameters varies. This is not an issue
for Pascal programs, as standard Pascal does not allow user-written proce-
dures and functions to have varying parameter lists. For languages like
C/C++, however, this is an issue.

Because C (and other C-based programming languages) supports
varying parameter lists (for example, the printf() function), C adopted
a different calling convention: the C calling convention, also known as the
cdecl calling convention. In C, the caller pushes parameters on the stack
in the reverse order that they appear in the actual parameter list. So,
it pushes the last parameter first and pushes the first parameter last.

11. It’s important to note here that Intel’s ABI and Microsoft’s ABI are not exactly the same.
A compiler that adheres to the Intel ABI is not necessarily compatible with Microsoft lan-
guages (and other languages that adhere to the Microsoft ABI).

12. Strictly speaking, this is not true. Offsets in the range ±127 require only a 1-byte encoding,
so smaller offsets are preferable to larger offsets. However, having more than 128 bytes of
parameters is rare, so this isn’t a big issue for most programs.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 263

Because the stack is a LIFO data structure, the first parameter winds up
at the lowest address on the stack (and at a fixed offset from the return
address, typically right above it in memory; this is true regardless of how
many actual parameters appear on the stack). Also, because C supports
varying parameter lists, it is up to the caller to clean up the parameters
on the stack after the return from the function.

The third common calling convention in use on 32-bit Intel machines,
STDCALL, is basically a combination of the Pascal and C/C++ calling con-
ventions. Parameters are passed right to left (as in C/C++). However, the
callee is responsible for cleaning up the parameters on the stack before
returning.

One problem with these three calling conventions is that they all use
only memory to pass their parameters to a procedure. Of course, the most
efficient place to pass parameters is in machine registers. This led to a
fourth common calling convention known as the FASTCALL calling conven-
tion. In this convention, the calling program passes parameters in registers
to a procedure. However, as registers are a limited resource on most CPUs,
the FASTCALL calling convention typically passes only the first three to
six parameters in registers. If more parameters are needed, the FASTCALL
passes the remaining parameters on the stack (typically in reverse order,
like the C/C++ and STDCALL calling conventions).

 5.7 The Microsoft ABI and Microsoft Calling Convention
This chapter has repeatedly referred to the Microsoft ABI. Now it’s time to
formally describe the Microsoft calling convention.

N O T E Remember that adhering to the Microsoft ABI is necessary only if you need to call
another function that uses it, or if outside code is calling your function and expects
the function to use the Microsoft ABI. If this is not the case, you can use any calling
conventions that are convenient for your code.

5.7.1 Data Types and the Microsoft ABI
As noted in “Microsoft ABI Notes” in Chapters 1, 3, and 4, the native data
type sizes are 1, 2, 4, and 8 bytes (see Table 1-6 in Chapter 1). All such vari-
ables should be aligned in memory on their native size.

For parameters, all procedure/function parameters must consume
exactly 64 bits. If a data object is smaller than 64 bits, the HO bits of the
parameter value (the bits beyond the actual parameter’s native size) are
undefined (and not guaranteed to be zero). Procedures should access only
the actual data bits for the parameter’s native type and ignore the HO bits.

If a parameter’s native type is larger than 64 bits, the Microsoft ABI
requires the caller to pass the parameter by reference rather than by value
(that is, the caller must pass the address of the data).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

264 Chapter 5

5.7.2 Parameter Locations
The Microsoft ABI uses a variant of the FASTCALL calling convention that
requires the caller to pass the first four parameters in registers. Table 5-2
lists the register locations for these parameters.

Table 5-2: FASTCALL Parameter Locations

Parameter If scalar/reference If floating point

1 RCX XMM0

2 RDX XMM1

3 R8 XMM2

4 R9 XMM3

5 to n On stack, right to left On stack, right to left

If the procedure has floating-point parameters, the calling convention
skips the use of the general-purpose register for that same parameter loca-
tion. Say you have the following C/C++ function:

void someFunc(int a, double b, char *c, double d)

Then the Microsoft calling convention would expect the caller to
pass a in (the LO 32 bits of) RCX, b in XMM1, a pointer to c in R8, and
d in XMM3, skipping RDX, R9, XMM0, and XMM2. This rule has an
exception: for vararg (variable number of parameters) or unprototyped
functions, floating-point values must be duplicated in the correspond-
ing general-purpose register (see https://docs.microsoft.com/en-us/cpp/build/
x64-calling-convention?view=msvc-160#parameter-passing/).

Although the Microsoft calling convention passes the first four param-
eters in registers, it still requires the caller to allocate storage on the stack
for these parameters (shadow storage).13 In fact, the Microsoft calling conven-
tion requires the caller to allocate storage for four parameters on the stack
even if the procedure doesn’t have four parameters (or any parameters
at all). The caller doesn’t need to copy the parameter data into this stack
storage area—leaving the parameter data only in the registers is sufficient.
However, that stack space must be present. Microsoft compilers assume the
stack space is there and will use that stack space to save the register values
(for example, if the procedure calls another procedure and needs to pre-
serve the registers across that other call). Sometimes Microsoft’s compilers
use this shadow storage as local variables.

If you’re calling an external function (such as a C/C++ library function)
that adheres to the Microsoft calling convention and you do not allocate
the shadow storage, the application will almost certainly crash.

13. Also called shadow store in various documents.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160#parameter-passing/
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160#parameter-passing/

Procedures 265

5.7.3 Volatile and Nonvolatile Registers
As noted way back in Chapter 1, the Microsoft ABI declares certain regis-
ters to be volatile and others to be nonvolatile. Volatile means that a proce-
dure can modify the contents of the register without preserving its value.
Nonvolatile means that a procedure must preserve a register’s value if it
modifies that value. Table 5-3 lists the registers and their volatility.

Table 5-3: Register Volatility

Register Volatile/nonvolatile

RAX Volatile

RBX Nonvolatile

RCX Volatile

RDX Volatile

RDI Nonvolatile

RSI Nonvolatile

RBP Nonvolatile

RSP Nonvolatile

R8 Volatile

R9 Volatile

R10 Volatile

R11 Volatile

R12 Nonvolatile

R13 Nonvolatile

R14 Nonvolatile

R15 Nonvolatile

XMM0/YMM0 Volatile

XMM1/YMM1 Volatile

XMM2/YMM2 Volatile

XMM3/YMM3 Volatile

XMM4/YMM4 Volatile

XMM5/YMM5 Volatile

XMM6/YMM6 XMM6 Nonvolatile, upper half of YMM6 volatile

XMM7/YMM7 XMM7 Nonvolatile, upper half of YMM7 volatile

XMM8/YMM8 XMM8 Nonvolatile, upper half of YMM8 volatile

XMM9/YMM9 XMM9 Nonvolatile, upper half of YMM9 volatile

XMM10/YMM10 XMM10 Nonvolatile, upper half of YMM10 volatile

XMM11/YMM11 XMM11 Nonvolatile, upper half of YMM11 volatile

(continued)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

266 Chapter 5

Register Volatile/nonvolatile

XMM12/YMM12 XMM12 Nonvolatile, upper half of YMM12 volatile

XMM13/YMM13 XMM13 Nonvolatile, upper half of YMM13 volatile

XMM14/YMM14 XMM14 Nonvolatile, upper half of YMM14 volatile

XMM15/YMM15 XMM15 Nonvolatile, upper half of YMM15 volatile

FPU Volatile, but FPU stack must be empty upon return

Direction flag Must be cleared upon return

It is perfectly reasonable to use nonvolatile registers within a procedure.
However, you must preserve those register values so that they are unchanged
upon return from a function. If you’re not using the shadow storage for any-
thing else, this is a good place to save and restore nonvolatile register values
during a procedure call; for example:

someProc proc
 push rbp
 mov rbp, rsp
 mov [rbp+16], rbx ; Save RBX in parm 1's shadow
 .
 . ; Procedure's code
 .
 mov rbx, [rbp+16] ; Restore RBX from shadow
 leave
 ret
someProc endp

Of course, if you’re using the shadow storage for another purpose, you
can always save nonvolatile register values in local variables or can even
push and pop the register values:

someProc proc ; Save RBX via push
 push rbx ; Note that this affects parm offsets
 push rbp
 mov rbp, rsp
 .
 . ; Procedure's code
 .
 leave
 pop rbx ; Restore RBX from stack
 ret
someProc endp

someProc2 proc ; Save RBX in a local
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Keep stack aligned
 mov [rbp-8], rbx ; Save RBX
 .
 . ; Procedure’s code
 .

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 267

 mov rbx, [rbp-8] ; Restore RBX
 leave
 ret
someProc2 endp

5.7.4 Stack Alignment
As I’ve mentioned many times now, the Microsoft ABI requires the stack to
be aligned on a 16-byte boundary whenever you make a call to a procedure.
When Windows transfers control to your assembly code (or when another
Windows ABI–compliant code calls your assembly code), you’re guaran-
teed that the stack will be aligned on an 8-byte boundary that is not also a
16-byte boundary (because the return address consumed 8 bytes after the
stack was 16-byte aligned). If, within your assembly code, you don’t care
about 16-byte alignment, you can do anything you like with the stack (how-
ever, you should keep it aligned on at least an 8-byte boundary).

On the other hand, if you ever plan on calling code that uses the
Microsoft calling conventions, you need to be able to ensure that the stack
is properly aligned before the call. There are two ways to do this: carefully
manage any modifications to the RSP register after entry into your code (so
you know the stack is 16-byte aligned whenever you make a call), or force
the stack to an appropriate alignment prior to making a call. Forcing align-
ment to 16 bytes is easily achieved using this instruction:

and rsp, -16

However, you must execute this instruction before setting up parameters
for a call. If you execute this instruction immediately before a call instruc-
tion (but after placing all the parameters on the stack), this could shift RSP
down in memory, and then the parameters will not be at the expected off-
set upon entry into the procedure.

Suppose you don’t know the state of RSP and need to make a call to a
procedure that expects five parameters (40 bytes, which is not a multiple of
16 bytes). Here’s a typical calling sequence you would use:

 sub rsp, 40 ; Make room for 4 shadow parms plus a 5th parm
 and rsp, -16 ; Guarantee RSP is now 16-byte aligned

; Code to move four parameters into registers and the
; 5th parameter to location [RSP+32]:

 mov rcx, parm1
 mov rdx, parm2
 mov r8, parm3
 mov r9, parm4
 mov rax, parm5
 mov [rsp+32], rax
 call procWith5Parms

The only problem with this code is that it is hard to clean up the stack
upon return (because you don’t know exactly how many bytes you reserved

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

268 Chapter 5

on the stack as a result of the and instruction). However, as you’ll see in the
next section, you’ll rarely clean up the stack after an individual procedure
call, so you don’t have to worry about the stack cleanup here.

5.7.5 Parameter Setup and Cleanup (or “What’s With These Magic
Instructions?”)

The Microsoft ABI requires the caller to set up the parameters and then
clean them up (remove them from the stack) upon return from the func-
tion. In theory, this means that a call to a Microsoft ABI–compliant func-
tion is going to look something like the following:

; Make room for parameters. parm_size is a constant
; with the number of bytes of parameters required
; (including 32 bytes for the shadow parameters).

 sub rsp, parm_size

 Code that copies parameters to the stack

 call procedure

; Clean up the stack after the call:

 add rsp, parm_size

This allocation and cleanup sequence has two problems. First, you have
to repeat the sequence (sub rsp, parm_size and add rsp, parm_size) for every
call in your program (which can be rather inefficient). Second, as you saw
in the preceding section, sometimes aligning the stack to a 16-byte bound-
ary forces you to adjust the stack downward by an unknown amount, so you
don’t know how many bytes to add to RSP in order to clean up the stack.

If you have several calls sprinkled through a given procedure, you can
optimize the process of allocating and deallocating parameters on the stack
by doing this operation just once. To understand how this works, consider
the following code sequence:

; 1st procedure call:

 sub rsp, parm_size ; Allocate storage for proc1 parms
 Code that copies parameters to the registers and stack
 call proc1
 add rsp, parm_size ; Clean up the stack

; 2nd procedure call:

 sub rsp, parm_size2 ; Allocate storage for proc2 parms
 Code that copies parameters to the registers and stack
 call proc2
 add rsp, parm_size2 ; Clean up the stack

If you study this code, you should be able to convince yourself that the first
add and second sub are somewhat redundant. If you were to modify the first sub

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 269

instruction to reduce the stack size by the greater of parm_size and parm_size2,
and replace the final add instruction with this same value, you could eliminate
the add and sub instructions appearing between the two calls:

; 1st procedure call:

 sub rsp, max_parm_size ; Allocate storage for all parms
 Code that copies parameters to the registers and stack for proc1
 call proc1

 Code that copies parameters to the registers and stack for proc2
 call proc2
 add rsp, max_parm_size ; Clean up the stack

If you determine the maximum number of bytes of parameters needed
by all calls within your procedure, you can eliminate all the individual stack
allocations and cleanups throughout the procedure (don’t forget, the mini-
mum parameter size is 32 bytes, even if the procedure has no parameters at
all, because of the shadow storage requirements).

It gets even better, though. If your procedure has local variables, you
can combine the sub instruction that allocates local variables with the
one that allocates storage for your parameters. Similarly, if you’re using the
standard entry/exit sequence, the leave instruction at the end of your pro-
cedure will automatically deallocate all the parameters (as well as the local
variables) when you exit your procedure.

Throughout this book, you’ve seen lots of “magic” add and subtract
instructions that have been offered without much in the way of explanation.
Now you know what those instructions have been doing: they’ve been allocat-
ing storage for local variables and all the parameter space for the procedures
being called as well as keeping the stack 16-byte aligned.

Here’s one last example of a procedure that uses the standard entry/exit
procedure to set up locals and parameter space:

rbxSave equ [rbp-8]
someProc proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Also leave stack 16-byte aligned
 mov rbxSave, rbx ; Preserve RBX
 .
 .
 .
 lea rcx, fmtStr
 mov rdx, rbx ; Print value in RBX (presumably)
 call printf
 .
 .
 .
 mov rbx, rbxSave ; Restore RBX
 leave ; Clean up stack
 ret
someProc endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

270 Chapter 5

However, if you use this trick to allocate storage for your procedures’
parameters, you will not be able to use the push instructions to move the
data onto the stack. The storage has already been allocated on the stack
for the parameters; you must use mov instructions to copy the data onto the
stack (using the [rsp+constant] addressing mode) when copying the fifth and
greater parameters.

 5.8 Functions and Function Results
Functions are procedures that return a result to the caller. In assembly lan-
guage, few syntactical differences exist between a procedure and a function,
which is why MASM doesn’t provide a specific declaration for a function.
Nevertheless, there are some semantic differences; although you can declare
them the same way in MASM, you use them differently.

Procedures are a sequence of machine instructions that fulfill a task. The
result of the execution of a procedure is the accomplishment of that activity.
Functions, on the other hand, execute a sequence of machine instructions
specifically to compute a value to return to the caller. Of course, a function
can perform an activity as well, and procedures can undoubtedly compute
values, but the main difference is that the purpose of a function is to return a
computed result; procedures don’t have this requirement.

In assembly language, you don’t specifically define a function by using
special syntax. To MASM, everything is a proc. A section of code becomes
a function by virtue of the fact that the programmer explicitly decides to
return a function result somewhere (typically in a register) via the proce-
dure’s execution.

The x86-64’s registers are the most common place to return function
results. The strlen() routine in the C Standard Library is a good example
of a function that returns a value in one of the CPU’s registers. It returns
the length of the string (whose address you pass as a parameter) in the
RAX register.

By convention, programmers try to return 8-, 16-, 32-, and 64-bit (non-
real) results in the AL, AX, EAX, and RAX registers, respectively. This
is where most high-level languages return these types of results, and it’s
where the Microsoft ABI states that you should return function results. The
exception is floating-point values. The Microsoft ABI states that you should
return floating-point values in the XMM0 register.

Of course, there is nothing particularly sacred about the AL, AX, EAX,
and RAX registers. You could return function results in any register if it is more
convenient to do so. Of course, if you’re calling a Microsoft ABI–compliant
function (such as strlen()), you have no choice but to expect the function’s
return result in the RAX register (strlen() returns a 64-bit integer in RAX, for
example).

If you need to return a function result that is larger than 64 bits,
you obviously must return it somewhere other than in RAX (which can
hold only 64-bit values). For values slightly larger than 64 bits (for example,
128 bits or maybe even as many as 256 bits), you can split the result into
pieces and return those parts in two or more registers. It is common to

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 271

see functions returning 128-bit values in the RDX:RAX register pair. Of
course, the XMM/YMM registers are another good place to return large
values. Just keep in mind that these schemes are not Microsoft ABI–compli-
ant, so they’re practical only when calling code you’ve written.

If you need to return a large object as a function result (say, an array
of 1000 elements), you obviously are not going to be able to return the func-
tion result in the registers. You can deal with large function return results
in two common ways: either pass the return value as a reference parameter
or allocate storage on the heap (for example, using the C Standard Library
malloc() function) for the object and return a pointer to it in a 64-bit register.
Of course, if you return a pointer to storage you’ve allocated on the heap, the
calling program must free this storage when it has finished with it.

 5.9 Recursion
Recursion occurs when a procedure calls itself. The following, for example,
is a recursive procedure:

Recursive proc

 call Recursive
 ret

Recursive endp

Of course, the CPU will never return from this procedure. Upon entry
into Recursive, this procedure will immediately call itself again, and control
will never pass to the end of the procedure. In this particular case, runaway
recursion results in an infinite loop.14

Like a looping structure, recursion requires a termination condition in
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

Recursive proc

 dec eax
 jz allDone
 call Recursive
allDone:
 ret

Recursive endp

This modification to the routine causes Recursive to call itself the number
of times appearing in the EAX register. On each call, Recursive decrements the
EAX register by 1 and then calls itself again. Eventually, Recursive decrements
EAX to 0 and returns from each call until it returns to the original caller.

14. Well, not really infinite. The stack will overflow, and Windows will raise an exception at
that point.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

272 Chapter 5

So far, however, there hasn’t been a real need for recursion. After all,
you could efficiently code this procedure as follows:

Recursive proc
iterLp:
 dec eax
 jnz iterLp
 ret
Recursive endp

Both examples would repeat the body of the procedure the number
of times passed in the EAX register.15 As it turns out, there are only a few
recursive algorithms that you cannot implement in an iterative fashion.
However, many recursively implemented algorithms are more efficient than
their iterative counterparts, and most of the time the recursive form of the
algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that usu-
ally appears in recursive form. A MASM implementation of this algorithm
appears in Listing 5-15.

; Listing 5-15

; Recursive quicksort.

 option casemap:none

nl = 10
numElements = 10

 .const
ttlStr byte "Listing 5-15", 0
fmtStr1 byte "Data before sorting: ", nl, 0
fmtStr2 byte "%d " ;Use nl and 0 from fmtStr3
fmtStr3 byte nl, 0
fmtStr4 byte "Data after sorting: ", nl, 0

 .data
theArray dword 1,10,2,9,3,8,4,7,5,6

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

15. The latter version will do it considerably faster because it doesn’t have the overhead of the
call/ret instructions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 273

; quicksort - Sorts an array using the
; quicksort algorithm.

; Here's the algorithm in C, so you can follow along:

 void quicksort(int a[], int low, int high)
 {
 int i,j,Middle;
 if(low < high)
 {
 Middle = a[(low+high)/2];
 i = low;
 j = high;
 do
 {
 while(a[i] <= Middle) i++;
 while(a[j] > Middle) j--;
 if(i <= j)
 {
 swap(a[i],a[j]);
 i++;
 j--;
 }
 } while(i <= j);

 // recursively sort the two subarrays

 if(low < j) quicksort(a,low,j-1);
 if(i < high) quicksort(a,j+1,high);
 }
 }

; Args:
 RCX (_a): Pointer to array to sort
 RDX (_lowBnd): Index to low bound of array to sort
 R8 (_highBnd): Index to high bound of array to sort

_a equ [rbp+16] ; Ptr to array
_lowBnd equ [rbp+24] ; Low bounds of array
_highBnd equ [rbp+32] ; High bounds of array

; Local variables (register save area):

saveR9 equ [rbp+40] ; Shadow storage for R9
saveRDI equ [rbp-8]
saveRSI equ [rbp-16]
saveRBX equ [rbp-24]
saveRAX equ [rbp-32]

; Within the procedure body, these registers
; have the following meaning:

; RCX: Pointer to base address of array to sort.
; EDX: Lower bound of array (32-bit index).
; r8d: Higher bound of array (32-bit index).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

274 Chapter 5

; edi: index (i) into array.
; esi: index (j) into array.
; r9d: Middle element to compare against.

quicksort proc
 push rbp
 mov rbp, rsp
 sub rsp, 32

; This code doesn't mess with RCX. No
; need to save it. When it does mess
; with RDX and R8, it saves those registers
; at that point.

; Preserve other registers we use:

 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRSI, rsi
 mov saveRDI, rdi
 mov saveR9, r9

 mov edi, edx ; i=low
 mov esi, r8d ; j=high

; Compute a pivotal element by selecting the
; physical middle element of the array.

 lea rax, [rsi+rdi*1] ; RAX=i+j
 shr rax, 1 ; (i+j)/2
 mov r9d, [rcx][rax*4] ; Middle = ary[(i+j)/2]

; Repeat until the EDI and ESI indexes cross one
; another (EDI works from the start toward the end
; of the array, ESI works from the end toward the
; start of the array).

rptUntil:

; Scan from the start of the array forward
; looking for the first element greater or equal
; to the middle element)

 dec edi ; to counteract inc, below
while1: inc edi ; i = i + 1
 cmp r9d, [rcx][rdi*4] ; While middle > ary[i]
 jg while1

; Scan from the end of the array backward looking
; for the first element that is less than or equal
; to the middle element.

 inc esi ; To counteract dec, below
while2: dec esi ; j = j - 1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 275

 cmp r9d, [rcx][rsi*4] ; while middle < ary[j]
 jl while2

; If we've stopped before the two pointers have
; passed over one another, then we've got two
; elements that are out of order with respect
; to the middle element, so swap these two elements.

 cmp edi, esi ;If i <= j
 jnle endif1

 mov eax, [rcx][rdi*4] ; Swap ary[i] and ary[j]
 mov r9d, [rcx][rsi*4]
 mov [rcx][rsi*4], eax
 mov [rcx][rdi*4], r9d

 inc edi ; i = i + 1
 dec esi ; j = j - 1

endif1: cmp edi, esi ; Until i > j
 jng rptUntil

; We have just placed all elements in the array in
; their correct positions with respect to the middle
; element of the array. So all elements at indexes
; greater than the middle element are also numerically
; greater than this element. Likewise, elements at
; indexes less than the middle (pivotal) element are
; now less than that element. Unfortunately, the
; two halves of the array on either side of the pivotal
; element are not yet sorted. Call quicksort recursively
; to sort these two halves if they have more than one
; element in them (if they have zero or one elements, then
; they are already sorted).

 cmp edx, esi ;if lowBnd < j
 jnl endif2

 ; Note: a is still in RCX,
 ; Low is still in RDX.
 ; Need to preserve R8 (High).
 ; Note: quicksort doesn't require stack alignment.

 push r8
 mov r8d, esi
 call quicksort ; (a, Low, j)
 pop r8

endif2: cmp edi, r8d ; if i < High
 jnl endif3

 ; Note: a is still in RCX,
 ; High is still in R8d.
 ; Need to preserve RDX (Low).
 ; Note: quicksort doesn't require stack alignment.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

276 Chapter 5

 push rdx
 mov edx, edi
 call quicksort ; (a, i, High)
 pop rdx

; Restore registers and leave:

endif3:
 mov rax, saveRAX
 mov rbx, saveRBX
 mov rsi, saveRSI
 mov rdi, saveRDI
 mov r9, saveR9
 leave
 ret
quicksort endp

; Little utility to print the array elements:

printArray proc
 push r15
 push rbp
 mov rbp, rsp
 sub rsp, 40 ; Shadow parameters

 lea r9, theArray
 mov r15d, 0
whileLT10: cmp r15d, numElements
 jnl endwhile1

 lea rcx, fmtStr2
 lea r9, theArray
 mov edx, [r9][r15*4]
 call printf

 inc r15d
 jmp whileLT10

endwhile1: lea rcx, fmtStr3
 call printf
 leave
 pop r15
 ret
printArray endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; Shadow storage

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 277

; Display unsorted array:

 lea rcx, fmtStr1
 call printf
 call printArray

; Sort the array:

 lea rcx, theArray
 xor rdx, rdx ; low = 0
 mov r8d, numElements-1 ; high= 9
 call quicksort ;(theArray, 0, 9)

; Display sorted results:

 lea rcx, fmtStr4
 call printf
 call printArray

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-15: Recursive quicksort program

Here is the build command and sample output for the quicksort program:

C:\>build listing5-15

C:\>echo off
 Assembling: listing5-15.asm
c.cpp

C:\>listing5-15
Calling Listing 5-15:
Data before sorting:
1
10
2
9
3
8
4
7
5
6

Data after sorting:
1
2
3

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

278 Chapter 5

4
5
6
7
8
9
10

Listing 5-15 terminated

Note that this quicksort procedure uses registers for all local variables.
The quicksort function is a leaf function; it doesn’t call any other functions.
Therefore, it doesn’t need to align the stack on a 16-byte boundary. Also, as
is a good idea for any pure-assembly procedure (that will be called only by
other assembly language procedures), this quicksort procedure preserves
all the registers whose values it modifies (even the volatile registers). That’s
just good programming practice even if it is a little less efficient.

 5.10 Procedure Pointers
The x86-64 call instruction allows three basic forms: PC-relative calls (via a
procedure name), indirect calls through a 64-bit general-purpose register,
and indirect calls through a quad-word pointer variable. The call instruc-
tion supports the following (low-level) syntax:

call Procname ; Direct call to procedure Procname
call Reg64 ; Indirect call to procedure whose address
 ; appears in the Reg64
call qwordVar ; Indirect call to the procedure whose address
 ; appears in the qwordVar quad-word variable

We’ve been using the first form throughout this book, so there is little
need to discuss it here. The second form, the register indirect call, calls
the procedure whose address is held in the specified 64-bit register. The
address of a procedure is the byte address of the first instruction to execute
within that procedure. On a von Neumann architecture machine (like the
x86-64), the system stores machine instructions in memory along with other
data. The CPU fetches the instruction opcode values from memory prior
to executing them. When you execute the register indirect call instruction,
the x86-64 first pushes the return address onto the stack and then begins
fetching the next opcode byte (instruction) from the address specified by
the register’s value.

The third form of the preceding call instruction fetches the address
of a procedure’s first instruction from a quad-word variable in memory.
Although this instruction suggests that the call uses the direct addressing of
the procedure, you should realize that any legal memory addressing mode
is also legal here. For example, call procPtrTable[rbx*8] is perfectly legiti-
mate; this statement fetches the quad word from the array of quad words
(procPtrTable) and calls the procedure whose address is the value contained
within that quad word.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 279

MASM treats procedure names like static objects. Therefore, you can
compute the address of a procedure by using the offset operator along with
the procedure’s name or by using the lea instruction. For example, offset
Procname is the address of the very first instruction of the Procname procedure.
So, all three of the following code sequences wind up calling the Procname
procedure:

call Procname
 .
 .
 .
mov rax, offset Procname
call rax
 .
 .
 .
lea rax, Procname
call rax

Because the address of a procedure fits in a 64-bit object, you can store
such an address into a quad-word variable; in fact, you can initialize a quad-
word variable with the address of a procedure by using code like the following:

p proc
 .
 .
 .
p endp
 .
 .
 .
 .data
ptrToP qword offset p
 .
 .
 .
 call ptrToP ; Calls p if ptrToP has not changed

As with all pointer objects, you should not attempt to indirectly call a
procedure through a pointer variable unless you’ve initialized that variable
with an appropriate address. You can initialize a procedure pointer variable
in two ways: .data and .const objects allow an initializer, or you can compute
the address of a routine (as a 64-bit value) and store that 64-bit address
directly into the procedure pointer at runtime. The following code frag-
ment demonstrates both ways to initialize a procedure pointer:

 .data
ProcPointer qword offset p ; Initialize ProcPointer with
 ; the address of p
 .
 .
 .
 call ProcPointer ; First invocation calls p

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

280 Chapter 5

; Reload ProcPointer with the address of q.

 lea rax, q
 mov ProcPointer, rax
 .
 .
 .
 call ProcPointer ; This invocation calls q

Although all the examples in this section use static variable declarations
(.data, .const, .data?), don’t think you can declare simple procedure pointers
only in the static variable declaration sections. You can also declare proce-
dure pointers (which are just qword variables) as local variables, pass them
as parameters, or declare them as fields of a record or a union.

 5.11 Procedural Parameters
One place where procedure pointers are quite invaluable is in parameter
lists. Selecting one of several procedures to call by passing the address of a
procedure is a common operation. Of course, a procedural parameter is just
a quad-word parameter containing the address of a procedure, so this is
really no different from using a local variable to hold a procedure pointer
(except, of course, that the caller initializes the parameter with the address
of the procedure to call indirectly).

When using parameter lists with the MASM proc directive, you can spec-
ify a procedure pointer type by using the proc type specifier; for example:

procWithProcParm proc parm1:word, procParm:proc

You can call the procedure pointed at by this parameter by using the
following call instruction:

call procParm

 5.12 Saving the State of the Machine, Part II
“Saving the State of the Machine” on page 216 described the use of the push
and pop instructions to save the state of the registers across a procedure call
(callee register preservation). While this is certainly one way to preserve
registers across a procedure call, it certainly isn’t the only way, nor is it
always (or even usually) the best way to save and restore registers.

The push and pop instructions have a couple of major benefits: they are
short (pushing or popping a 64-bit register uses a 1-byte instruction opcode),
and they work with constant and memory operands. These instructions do
have drawbacks, however: they modify the stack pointer, they work with
only 2- or 8-byte registers, they work only with the general-purpose integer
registers (and the FLAGS register), and they might be slower than an equiva-
lent instruction that moves the register data onto the stack. Often, a better

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 281

solution is to reserve storage in the local variable space and simply move the
registers to/from those local variables on the stack.

Consider the following procedure declaration that preserves registers
by using push and pop instructions:

preserveRegs proc
 push rax
 push rbx
 push rcx
 .
 .
 .
 pop rcx
 pop rbx
 pop rax
 ret
preserveRegs endp

You can achieve the same thing with the following code:

preserveRegs proc
saveRAX textequ <[rsp+16]>
saveRBX textequ <[rsp+8]>
saveRCX textequ <[rsp]>

 sub rsp, 24 ; Make room for locals
 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRCX, rcx
 .
 .
 .
 mov rcx, saveRCX
 mov rbx, saveRBX
 mov rax, saveRAX
 add rsp, 24 ;D eallocate locals
 ret
preserveRegs endp

The disadvantage to this code is that two extra instructions are needed
to allocate (and deallocate) storage on the stack for the local variables that
hold the register values. The push and pop instructions automatically allocate
this storage, sparing you from having to supply these extra instructions. For
a simple situation such as this, the push and pop instructions probably are the
better solution.

For more complex procedures, especially those that expect parameters
on the stack or have local variables, the procedure is already setting up
the activation record, and subtracting a larger number from RSP doesn’t
require any additional instructions:

 option prologue:PrologueDef
 option epilogue:EpilogueDef
preserveRegs proc parm1:byte, parm2:dword

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

282 Chapter 5

 local localVar1:dword, localVar2:qword
 local saveRAX:qword, saveRBX:qword
 local saveRCX:qword

 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRCX, rcx
 .
 .
 .
 mov rcx, saveRCX
 mov rbx, saveRBX
 mov rax, saveRAX
 ret
preserveRegs endp

MASM automatically generates the code to allocate the storage for
saveRAX, saveRBX, and saveRCX (along with all the other local variables) on
the stack, as well as clean up the local storage on return.

When allocating local variables on the stack along with storage for
any parameters a procedure might pass to functions it calls, pushing and
popping registers to preserve them becomes problematic. For example,
consider the following procedure:

callsFuncs proc
saveRAX textequ <[rbp-8]>
saveRBX textequ <[rbp-16]>
saveRCX textequ <[rbp-24]>
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Make room for locals & parms
 mov saveRAX, rax ; Preserve registers in
 mov saveRBX, rbx ; local variables
 mov saveRCX, rcx

 .
 .
 .
 mov [rsp], rax ; Store parm1
 mov [rsp+8], rbx ; Store parm2
 mov [rsp+16], rcx ; Store parm3
 call theFunction
 .
 .
 .
 mov rcx, saveRCX ; Restore registers
 mov rbx, saveRBX
 mov rax, saveRAX
 leave ; Deallocate locals
 ret
callsFuncs endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Procedures 283

Had this function pushed RAX, RBX, and RCX on the stack after
subtracting 48 from RSP, those save registers would have wound up on the
stack where the function passes parm1, parm2, and parm3 to theFunction. That’s
why the push and pop instructions don’t work well when working with func-
tions that build an activation record containing local storage.

 5.13 Microsoft ABI Notes
This chapter has all but completed the discussion of the Microsoft calling
conventions. Specifically, a Microsoft ABI–compliant function must follow
these rules:

•	 (Scalar) parameters must be passed in RCX, RDX, R8, and R9, then
pushed on the stack. Floating-point parameters substitute XMM0,
XMM1, XMM2, and XMM3 for RCX, RDX, R8, and R9, respectively.

•	 Varargs functions (functions with a variable number of parameters,
such as printf()) and unprototyped functions must pass floating-point
values in both the general-purpose (integer) registers and in the XMM
registers. (For what it’s worth, printf() seems to be happy with just pass-
ing the floating-point values in the integer registers, though that might
be a happy accident with the version of MSVC used in the preparation
of this book.)

•	 All parameters must be less than or equal to 64 bits in size; larger
parameters must be passed by reference.

•	 On the stack, parameters always consume 64 bits (8 bytes) regardless of
their actual size; the HO bits of smaller objects are undefined.

•	 Immediately before a call instruction, the stack must be aligned on a
16-byte boundary.

•	 Registers RAX, RCX, RDX, R8, R9, R10, R11, and XMM0/YMM0 to
XMM5/YMM5 are volatile. The caller must preserve the registers
across a call if it needs their values to be saved across the call. Also note
that the HO 128 bits of YMM0 to YMM15 are volatile, and the caller
must preserve these registers if it needs these bits to be preserved across
a call.

•	 Registers RBX, RSI, RDI, RBP, RSP, R12 to R15, and XMM6 to XMM15
are nonvolatile. The callee must preserve these registers if it changes
their values. As noted earlier, while YMM0L to YMM15L (the LO 128 bits)
are nonvolatile, the upper 128 bits of these registers can be considered
volatile. However, if a procedure is saving the LO 128 bits of YMM0 to
YMM15, it may as well preserve all the bits (this inconsistency in the
Microsoft ABI is to support legacy code running on CPUs that don’t
support the YMM registers).

•	 Scalar function returns (64 bits or fewer) come back in the RAX reg-
ister. If the data type is smaller than 64 bits, the HO bits of RAX are
undefined.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

284 Chapter 5

•	 Functions that return values larger than 64 bits must allocate storage
for the return value and pass the address of that storage in the first
parameter (RCX) to the function. On return, the function must return
this pointer in the RAX register.

•	 Functions return floating-point results (double or single) in the XMM0
register.

 5.14 For More Information
The electronic edition of the 32-bit edition this book (found at https://artofasm
.randallhyde.com/) contains a whole “volume” on advanced and intermediate
procedures. Though that book covers 32-bit assembly language programming,
the concepts apply directly to 64-bit assembly by simply using 64-bit addresses
rather than 32-bit addresses.

While the information appearing in this chapter covers 99 percent of
the material that assembly programmers typically use, there is additional
information on procedures and parameters that you may find interesting.
In particular, the electronic edition covers additional parameter-passing
mechanisms (pass by value/result, pass by result, pass by name, and pass by
lazy evaluation) and goes into greater detail about the places you can pass
parameters. The electronic version also covers iterators, thunks, and other
advanced procedure types. Finally, a good compiler construction textbook
will cover additional details about runtime support for procedures.

For more information on the Microsoft ABI, search for Microsoft calling
conventions on the Microsoft website (or on the internet).

 5.15 Test Yourself

1. Explain, step by step, how the call instruction works.

2. Explain, step by step, how the ret instruction works.

3. What does the ret instruction, with a numeric constant operand, do?

4. What value is pushed on the stack for a return address?

5. What is namespace pollution?

6. How do you define a single global symbol in a procedure?

7. How would you make all symbols in a procedure non-scoped (that is, all
the symbols in a procedure would be global)?

8. Explain how to use the push and pop instructions to preserve registers in
a function.

9. What is the main disadvantage of caller preservation?

10. What is the main problem with callee preservation?

11. What happens if you fail to pop a value in a function that you pushed
on the stack at the beginning of the function?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/
https://artofasm.randallhyde.com/

Procedures 285

12. What happens if you pop extra data off the stack in a function (data
that you did not push on the stack in the function)?

13. What is an activation record?

14. What register usually points at an activation record, providing access to
the data in that record?

15. How many bytes are reserved for a typical parameter on the stack when
using the Microsoft ABI?

16. What is the standard entry sequence for a procedure (the instructions)?

17. What is the standard exit sequence for a procedure (the instructions)?

18. What instruction can you use to force 16-byte alignment of the stack
pointer if the current value in RSP is unknown?

19. What is the scope of a variable?

20. What is the lifetime of a variable?

21. What is an automatic variable?

22. When does the system allocate storage for an automatic variable?

23. Explain two ways to declare local/automatic variables in a procedure.

24. Given the following procedure source code snippet, provide the offsets
for each of the local variables:

procWithLocals proc
 local var1:word, local2:dword, dVar:byte
 local qArray[2]:qword, rlocal[2]:real4
 local ptrVar:qword
 .
 . ; Other statements in the procedure.
 .
 procWithLocals endp

25. What statement(s) would you insert in the source file to tell MASM to
automatically generate the standard entry and standard exit sequences
for a procedure?

26. When MASM automatically generates a standard entry sequence for a
procedure, how does it determine where to put the code sequence?

27. When MASM automatically generates a standard exit sequence for a
procedure, how does it determine where to put the code sequence?

28. What value does a pass-by-value parameter pass to a function?

29. What value does a pass-by-reference parameter pass to a function?

30. When passing four integer parameters to a function, where does the
Windows ABI state those parameters are to be passed?

31. When passing a floating-point value as one of the first four parameters,
where does the Windows ABI insist the values will be passed?

32. When passing more than four parameters to a function, where does the
Windows ABI state the parameters will be passed?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

286 Chapter 5

33. What is the difference between a volatile and nonvolatile register in the
Windows ABI?

34. Which registers are volatile in the Windows ABI?

35. Which registers are nonvolatile in the Windows ABI?

36. When passing parameters in the code stream, how does a function access
the parameter data?

37. What is a shadow parameter?

38. How many bytes of shadow storage will a function require if it has a single
32-bit integer parameter?

39. How many bytes of shadow storage will a function require if it has two
64-bit integer parameters?

40. How many bytes of shadow storage will a function require if it has six
64-bit integer parameters?

41. What offsets will MASM associate with each of the parameters in the
following proc declaration?

procWithParms proc parm1:byte, parm2:word, parm3:dword, parm4:qword

42. Suppose that parm4 in the preceding question is a pass-by-reference
character parameter. How would you load that character into the AL
register (provide a code sequence)?

43. What offsets will MASM associate with each of the local variables in the
following proc snippet?

procWithLocals proc
 local lclVar1:byte, lclVar2:word, lclVar3:dword,
lclVar4:qword

44. What is the best way to pass a large array to a procedure?

45. What does ABI stand for?

46. Where is the most common place to return a function result?

47. What is a procedural parameter?

48. How would you call a procedure passed as a parameter to a function/
procedure?

49. If a procedure has local variables, what is the best way to preserve
registers within that procedure?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

6
A R I T H M E T I C

This chapter discusses arithmetic computa-
tion in assembly language. By the end of

this chapter, you should be able to translate
arithmetic expressions and assignment state-

ments from high-level languages like Pascal and C/C++
into x86-64 assembly language.

 6.1 x86-64 Integer Arithmetic Instructions
Before describing how to encode arithmetic expressions in assembly lan-
guage, it would be a good idea to first discuss the remaining arithmetic
instructions in the x86-64 instruction set. Previous chapters have covered
most of the arithmetic and logical instructions, so this section covers the
few remaining instructions you’ll need.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

288 Chapter 6

6.1.1 Sign- and Zero-Extension Instructions
Several arithmetic operations require sign- or zero-extended values before
the operation. So let’s first consider the sign- and zero-extension instruc-
tions. The x86-64 provides several instructions to sign- or zero-extend a
smaller number to a larger number. Table 6-1 lists a group of instructions
that will sign-extend the AL, AX, EAX, and RAX registers.

Table 6-1: Instructions for Extending AL, AX, EAX, and RAX

Instruction Explanation

cbw Converts the byte in AL to a word in AX via sign extension

cwd Converts the word in AX to a double word in DX:AX via sign extension

cdq Converts the double word in EAX to a quad word in EDX:EAX via sign
extension

cqo Converts the quad word in RAX to an octal word in RDX:RAX via sign
extension

cwde Converts the word in AX to a double word in EAX via sign extension

cdqe Converts the double word in EAX to a quad word in RAX via sign
extension

Note that the cwd (convert word to double word) instruction does not sign-
extend the word in AX to a double word in EAX. Instead, it stores the HO word
of the sign extension into the DX register (the notation DX:AX indicates that
you have a double-word value, with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX
to go into EAX, you should use the cwde (convert word to double word, extended)
instruction. In a similar fashion, the cdq instruction sign-extends EAX into
EDX:EAX. Use the cdqe instruction if you want to sign-extend EAX into RAX.

For general sign-extension operations, the x86-64 provides an exten-
sion of the mov instruction, movsx (move with sign extension), that copies data
and sign-extends the data while copying it. The movsx instruction’s syntax is
similar to that of mov:

movsxd dest, source ;If dest is 64 bits and source is 32 bits
movsx dest, source ;For all other operand combinations

The big difference in syntax between these instructions and the mov
instruction is that the destination operand must usually be larger than the
source operand.1 For example, if the source operand is a byte, the destina-
tion operand must be a word, dword, or qword. The destination operand
must also be a register; the source operand, however, can be a memory
location.2 The movsx instruction does not allow constant operands.

1. In two special cases, the operands are the same size. Those two instructions, however,
aren’t especially useful.

2. This doesn’t turn out to be much of a limitation because sign extension almost always pre-
cedes an arithmetic operation that must take place in a register.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 289

For whatever reason, MASM requires a different instruction mnemonic
(instruction name) when sign-extending a 32-bit operand into a 64-bit reg-
ister (movsxd rather than movsx).

To zero-extend a value, you can use the movzx instruction. It does not
have the restrictions of movsx; as long as the destination operand is larger
than the source operand, the instruction works fine. It allows 8 to 16, 32, or
64 bits, and 16 to 32 or 64 bits. There is no 32- to 64-bit version (it turns out
this is unnecessary).

The x86-64 CPUs, for historical reasons, will always zero-extend a regis-
ter from 32 bits to 64 bits when performing 32-bit operations. Therefore, to
zero-extend a 32-bit register into a 64-bit register, you need only move the
(32-bit) register into itself; for example:

mov eax, eax ;zero-extends EAX into RAX

Zero-extending certain 8-bit registers (AL, BL, CL, and DL) into their
corresponding 16-bit registers is easily accomplished without using movzx by
loading the complementary HO register (AH, BH, CH, or DH) with 0. To
zero-extend AX into DX:AX or EAX into EDX:EAX, all you need to do is
load DX or EDX with 0.3

Because of instruction-encoding limitations, the x86-64 does not allow
you to zero- or sign-extend the AH, BH, CH, or DH registers into any of the
64-bit registers.

6.1.2 The mul and imul Instructions
You’ve already seen a subset of the imul instructions available in the x86-64
instruction set (see “The imul Instruction” in Chapter 4). This section presents
the extended-precision version of imul along with the unsigned mul instruction.

The multiplication instructions provide you with another taste of
irregularity in the x86-64’s instruction set. Instructions like add, sub, and
many others in the x86-64 instruction set support two operands, just like
the mov instruction. Unfortunately, there weren’t enough bits in the origi-
nal 8086 opcode byte to support all instructions, so the x86-64 treats
the mul (unsigned multiply) and imul (signed integer multiply) instructions as
single-operand instructions, just like the inc, dec, and neg instructions.
Of course, multiplication is a two-operand function. To work around this
fact, the x86-64 always assumes the accumulator (AL, AX, EAX, or RAX)
is the destination operand.

Another problem with the mul and imul instructions is that you cannot
use them to multiply the accumulator by a constant. Intel quickly discovered
the need to support multiplication by a constant and added the more gen-
eral versions of the imul instruction to overcome this problem. Nevertheless,
you must be aware that the basic mul and imul instructions do not support the
full range of operands as the imul appearing in Chapter 4.

3. Zero-extending into DX:AX or EDX:EAX is just as necessary as the cwd and cdq instruc-
tions, as you will eventually see.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

290 Chapter 6

The multiply instruction has two forms: unsigned multiplication (mul)
and signed multiplication (imul). Unlike addition and subtraction, you need
separate instructions for signed and unsigned operations.

The single-operand multiply instructions take the following forms:
Unsigned multiplication:

mul reg8 ;returns AX
mul reg16 ; returns DX:AX
mul reg32 ; returns EDX:EAX
mul reg64 ; returns RDX:RAX

mul mem8 ; returns AX
mul mem16 ; returns DX:AX
mul mem32 ; returns EDX:EAX
mul mem64 ; returns RDX:RAX

Signed (integer) multiplication:

imul reg8 ; returns AX
imul reg16 ; returns DX:AX
imul reg32 ; returns EDX:EAX
imul reg64 ; returns RDX:RAX

imul mem8 ; returns AX
imul mem16 ; returns DX:AX
imul mem32 ; returns EDX:EAX
imul mem64 ; returns RDX:RAX

When multiplying two n -bit values, the result may require as many as
2 × n bits. Therefore, if the operand is an 8-bit quantity, the result could
require 16 bits. Likewise, a 16-bit operand produces a 32-bit result, a 32-bit
operand produces 64 bits, and a 64-bit operand requires as many as 128 bits
to hold the result. Table 6-2 lists the various computations.

Table 6-2: mul and imul Operations

Instruction Computes

mul operand8 AX = AL × operand8 (unsigned)

imul operand8 AX = AL × operand8 (signed)

mul operand16 DX:AX = AX × operand16 (unsigned)

imul operand16 DX:AX = AX × operand16 (signed)

mul operand32 EDX:EAX = EAX × operand32 (unsigned)

imul operand32 EDX:EAX = EAX × operand32 (signed)

mul operand64 RDX:RAX = RAX × operand64 (unsigned)

imul operand64 RDX:RAX = RAX × operand64 (signed)

If an 8×8-, 16×16-, 32×32-, or 64×64-bit product requires more than 8,
16, 32, or 64 bits (respectively), the mul and imul instructions set the carry
and overflow flags. mul and imul scramble the sign and zero flags.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 291

N O T E The sign and zero flags do not contain meaningful values after the execution of these
two instructions.

You’ll use the single-operand mul and imul instructions quite a lot
when you learn about extended-precision arithmetic in Chapter 8. Unless
you’re doing multiprecision work, however, you’ll probably want to use the
more generic multi-operand version of the imul instruction in place of the
extended-precision mul or imul. However, the generic imul (see Chapter 4)
is not a complete replacement for these two instructions; in addition to the
number of operands, several differences exist. The following rules apply
specifically to the generic (multi-operand) imul instruction:

•	 There isn’t an 8×8-bit multi-operand imul instruction available.

•	 The generic imul instruction does not produce a 2n-bit result, but trun-
cates the result to n bits. That is, a 16×16bit multiplication produces a
16-bit result. Likewise, a 32×32-bit multiplication produces a 32-bit result.
These instructions set the carry and overflow flags if the result does not
fit into the destination register.

6.1.3 The div and idiv Instructions
The x86-64 divide instructions perform a 128/64-bit division, a 64/32-bit
division, a 32/16-bit division, or a 16/8-bit division. These instructions take
the following forms:

div reg8
div reg16
div reg32
div reg64

div mem8
div mem16
div mem32
div mem64

idiv reg8
idiv reg16
idiv reg32
idiv reg64

idiv mem8
idiv mem16
idiv mem32
idiv mem64

The div instruction is an unsigned division operation. If the operand
is an 8-bit operand, div divides the AX register by the operand, leaving
the quotient in AL and the remainder (modulo) in AH. If the operand is a
16-bit quantity, the div instruction divides the 32-bit quantity in DX:AX by
the operand, leaving the quotient in AX and the remainder in DX. With

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

292 Chapter 6

32-bit operands, div divides the 64-bit value in EDX:EAX by the operand,
leaving the quotient in EAX and the remainder in EDX. Finally, with 64-bit
operands, div divides the 128-bit value in RDX:RAX by the operand, leav-
ing the quotient in RAX and the remainder in RDX.

There is no variant of the div or idiv instructions that allows you to
divide a value by a constant. If you want to divide a value by a constant, you
need to create a memory object (preferably in the .const section) that is ini-
tialized with the constant, and then use that memory value as the div/idiv
operand. For example:

 .const
ten dword 10
 .
 .
 .
 div ten ;Divides EDX:EAX by 10

The idiv instruction computes a signed quotient and remainder. The
syntax for the idiv instruction is identical to div (except for the use of the
idiv mnemonic), though creating signed operands for idiv may require a
different sequence of instructions prior to executing idiv than for div.

You cannot, on the x86-64, simply divide one unsigned 8-bit value by
another. If the denominator is an 8-bit value, the numerator must be a
16-bit value. If you need to divide one unsigned 8-bit value by another, you
must zero-extend the numerator to 16 bits by loading the numerator into
the AL register and then moving 0 into the AH register. Failing to zero-extend
AL before executing div may cause the x86-64 to produce incorrect results! When
you need to divide two 16-bit unsigned values, you must zero-extend the
AX register (which contains the numerator) into the DX register. To do
this, just load 0 into the DX register. If you need to divide one 32-bit value
by another, you must zero-extend the EAX register into EDX (by loading
a 0 into EDX) before the division. Finally, to divide one 64-bit number by
another, you must zero-extend RAX into RDX (for example, using an xor
rdx, rdx instruction) prior to the division.

When dealing with signed integer values, you will need to sign-extend
AL into AX, AX into DX, EAX into EDX, or RAX into RDX before execut-
ing idiv. To do so, use the cbw, cwd, cdq, or cqo instructions.4 Failure to do so
may produce incorrect results.

The x86-64’s divide instructions have one other issue: you can get a fatal
error when using this instruction. First, of course, you can attempt to divide
a value by 0. Another problem is that the quotient may be too large to fit
into the RAX, EAX, AX, or AL register. For example, the 16/8-bit division
8000h/2 produces the quotient 4000h with a remainder of 0. 4000h will
not fit into 8 bits. If this happens, or you attempt to divide by 0, the x86-64
will generate a division exception or integer overflow exception. This usu-
ally means your program will crash. If this happens to you, chances are you

4. You could also use movsx to sign-extend AL into AX.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 293

didn’t sign- or zero-extend your numerator before executing the division
operation. Because this error may cause your program to crash, you should
be very careful about the values you select when using division.

The x86-64 leaves the carry, overflow, sign, and zero flags undefined
after a division operation. Therefore, you cannot test for problems after a
division operation by checking the flag bits.

6.1.4 The cmp Instruction, Revisited
As noted in “The cmp Instruction and Corresponding Conditional Jumps”
in Chapter 2, the cmp instruction updates the x86-64’s flags according to the
result of the subtraction operation (leftOperand - rightOperand). The x86-64
sets the flags in an appropriate fashion so that we can read this instruction
as “compare leftOperand to rightOperand.” You can test the result of the com-
parison by using the conditional set instructions to check the appropriate
flags in the flags register (see “The setcc Instructions” on page xx) or the
conditional jump instructions (Chapter 2 or Chapter 7).

Probably the first place to start when exploring the cmp instruction
is to look at exactly how it affects the flags. Consider the following cmp
instruction:

cmp ax, bx

This instruction performs the computation AX – BX and sets the flags
depending on the result of the computation. The flags are set as follows
(also see Table 6-3):

ZF

The zero flag is set if and only if AX = BX. This is the only time AX
– BX produces a 0 result. Hence, you can use the zero flag to test for
equality or inequality.

SF

The sign flag is set to 1 if the result is negative. At first glance, you might
think that this flag would be set if AX is less than BX, but this isn’t always
the case. If AX = 7FFFh and BX = –1 (0FFFFh), then subtracting AX
from BX produces 8000h, which is negative (and so the sign flag will be
set). So, for signed comparisons anyway, the sign flag doesn’t contain
the proper status. For unsigned operands, consider AX = 0FFFFh and
BX = 1. Here, AX is greater than BX but their difference is 0FFFEh,
which is still negative. As it turns out, the sign flag and the overflow flag,
taken together, can be used for comparing two signed values.

OF

The overflow flag is set after a cmp operation if the difference of AX and
BX produced an overflow or underflow. As mentioned previously, the sign
and overflow flags are both used when performing signed comparisons.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

294 Chapter 6

CF

The carry flag is set after a cmp operation if subtracting BX from AX
requires a borrow. This occurs only when AX is less than BX, where AX
and BX are both unsigned values.

Table 6-3: Condition Code Settings After cmp

Unsigned operands Signed operands

ZF: Equality/inequality ZF: Equality/inequality

CF: Left < Right (C = 1)
 Left >= Right (C = 0)

CF: No meaning

SF: No meaning SF: See discussion in this section

OF: No meaning O:F See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test
the comparison of the two operands with the following flags:

cmp Left, Right

For signed comparisons, the SF (sign) and OF (overflow) flags, taken
together, have the following meanings:

•	 If [(SF = 0) and (OF = 1)] or [(SF = 1) and (OF = 0)], then Left < Right for
a signed comparison.

•	 If [(SF = 0) and (OF = 0)] or [(SF = 1) and (OF = 1)], then Left >= Right
for a signed comparison.

Note that (SF xor OF) is 1 if the left operand is less than the right oper-
and. Conversely, (SF xor OF) is 0 if the left operand is greater or equal to
the right operand.

To understand why these flags are set in this manner, consider the
examples in Table 6-4.

Table 6-4: Sign and Overflow Flag Settings After Subtraction

Left Minus Right SF OF

0FFFFh (–1) – 0FFFEh (–2) 0 0

8000h (–32,768) – 0001h 0 1

0FFFEh (–2) – 0FFFFh (–1) 1 0

7FFFh (32767) – 0FFFFh (–1) 1 1

Remember, the cmp operation is really a subtraction; therefore, the first
example in Table 6-4 computes (–1) – (–2), which is (+1). The result is posi-
tive and an overflow did not occur, so both the S and O flags are 0. Because
(SF xor OF) is 0, Left is greater than or equal to Right.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 295

In the second example, the cmp instruction would compute (–32,768)
– (+1), which is (–32,769). Because a 16-bit signed integer cannot represent
this value, the value wraps around to 7FFFh (+32,767) and sets the overflow
flag. The result is positive (at least as a 16-bit value), so the CPU clears the
sign flag. (SF xor OF) is 1 here, so Left is less than Right.

In the third example, cmp computes (–2) – (–1), which produces (–1).
No overflow occurred, so the OF is 0, the result is negative, so the SF is 1.
Because (SF xor OF) is 1, Left is less than Right.

In the fourth (and final) example, cmp computes (+32,767) – (–1). This
produces (+32,768), setting the overflow flag. Furthermore, the value wraps
around to 8000h (–32,768), so the sign flag is set as well. Because (SF xor
OF) is 0, Left is greater than or equal to Right.

6.1.5 The setcc Instructions
The setcc (set on condition) instructions set a single-byte operand (register or
memory) to 0 or 1 depending on the values in the flags register. The gen-
eral formats for the setcc instructions are as follows:

setcc reg8
setcc mem8

setcc represents a mnemonic appearing in Tables 6-5, 6-6, and 6-7.
These instructions store a 0 in the corresponding operand if the condition
is false, and they store a 1 in the 8-bit operand if the condition is true.

Table 6-5: setcc Instructions That Test Flags

Instruction Description Condition Comments

setc Set if carry Carry = 1 Same as setb,
setnae

setnc Set if no carry Carry = 0 Same as setnb,
setae

setz Set if zero Zero = 1 Same as sete

setnz Set if not zero Zero = 0 Same as setne

sets Set if sign Sign = 1

setns Set if no sign Sign = 0

seto Set if overflow Overflow = 1

setno Set if no overflow Overflow = 0

setp Set if parity Parity = 1 Same as setpe

setpe Set if parity even Parity = 1 Same as setp

setnp Set if no parity Parity = 0 Same as setpo

setpo Set if parity odd Parity = 0 Same as setnp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

296 Chapter 6

The setcc instructions in Table 6-5 simply test the flags without any
other meaning attached to the operation. You could, for example, use setc
to check the carry flag after a shift, rotate, bit test, or arithmetic operation.

The setp/setpe and setnp/setpo instructions check the parity flag. These
instructions appear here for completeness, but this book will not spend
much time discussing the parity flag; in modern code, it’s typically used
only to check for an FPU not-a-number (NaN) condition.

The cmp instruction works synergistically with the setcc instructions.
Immediately after a cmp operation, the processor flags provide information
concerning the relative values of those operands. They allow you to see if
one operand is less than, equal to, or greater than the other.

Two additional groups of setcc instructions are useful after a cmp operation.
The first group deals with the result of an unsigned comparison (Table 6-6);
the second group deals with the result of a signed comparison (Table 6-7).

Table 6-6: setcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

seta Set if above (>) Carry = 0, Zero = 0 Same as setnbe

setnbe Set if not below or
equal (not <=)

Carry = 0, Zero = 0 Same as seta

setae Set if above or
equal (>=)

Carry = 0 Same as setnc,
setnb

setnb Set if not below
(not <)

Carry = 0 Same as setnc,
setae

setb Set if below (<) Carry = 1 Same as setc,
setnae

setnae Set if not above or
equal (not >=)

Carry = 1 Same as setc, setb

setbe Set if below or
equal (<=)

Carry = 1 or Zero
= 1

Same as setna

setna Set if not above
(not >)

Carry = 1 or Zero
= 1

Same as setbe

sete Set if equal (==) Zero = 1 Same as setz

setne Set if not equal (!=) Zero = 0 Same as setnz

Table 6-7: setcc Instructions for Signed Comparisons

Instruction Description Condition Comments

setg Set if greater (>) Sign == Overflow
and
Zero == 0

Same as setnle

setnle Set if not less than
or equal (not <=)

Sign == Overflow
or
Zero == 0

Same as setg

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 297

Instruction Description Condition Comments

setge Set if greater than
or equal (>=)

Sign == Overflow Same as setnl

setnl Set if not less than
(not <)

Sign == Overflow Same as setge

setl Set if less than (<) Sign != Overflow Same as setnge

setnge Set if not greater or
equal (not >=)

Sign != Overflow Same as setl

setle Set if less than or
equal (<=)

Sign != Overflow or
Zero == 1

Same as setng

setng Set if not greater
than (not >)

Sign != Overflow or
Zero == 1

Same as setle

sete Set if equal (=) Zero == 1 Same as setz

setne Set if not equal (!=) Zero == 0 Same as setnz

The setcc instructions are particularly valuable because they can con-
vert the result of a comparison to a Boolean value (false/true or 0/1). This
is especially important when translating statements from a high-level lan-
guage like Swift or C/C++ into assembly language. The following example
shows how to use these instructions in this manner:

; bool = a <= b

 mov eax, a
 cmp eax, b
 setle bool ; bool is a byte variable.

Because the setcc instructions always produce 0 or 1, you can use the
results with the and and or instructions to compute complex Boolean values:

; bool = ((a <= b) && (d == e))

 mov eax, a
 cmp eax, b
 setle bl
 mov eax, d
 cmp eax, e
 sete bh
 and bh, bl
 mov bool, bh

6.1.6 The test Instruction
The x86-64 test instruction is to the and instruction what the cmp instruction
is to sub. That is, the test instruction computes the logical AND of its two
operands and sets the condition code flags based on the result; it does not,

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

298 Chapter 6

however, store the result of the logical AND back into the destination oper-
and. The syntax for the test instruction is similar to and:

test operand1, operand2

The test instruction sets the zero flag if the result of the logical AND
operation is 0. It sets the sign flag if the HO bit of the result contains a 1.
The test instruction always clears the carry and overflow flags.

The primary use of the test instruction is to check whether an indi-
vidual bit contains a 0 or a 1. Consider the instruction test al, 1. This
instruction logically ANDs AL with the value 1; if bit 1 of AL contains 0, the
result will be 0 (setting the zero flag) because all the other bits in the con-
stant 1 are 0. Conversely, if bit 1 of AL contains 1, then the result is not 0, so
test clears the zero flag. Therefore, you can test the zero flag after this test
instruction to see if bit 0 contains a 0 or a 1 (for example, using setz or setnz
instructions, or the jz/jnz instructions).

The test instruction can also check whether all the bits in a specified
set of bits contain 0. The instruction test al, 0fh sets the zero flag if and
only if the LO 4 bits of AL all contain 0.

One important use of the test instruction is to check whether a register
contains 0. The instruction test reg, reg, where both operands are the same
register, will logically AND that register with itself. If the register contains
0, the result is 0 and the CPU will set the zero flag. However, if the register
contains a nonzero value, logically ANDing that value with itself produces
that same nonzero value, so the CPU clears the zero flag. Therefore, you
can check the zero flag immediately after the execution of this instruction
(for example, using the setz or setnz instructions or the jz and jnz instruc-
tions) to see if the register contains 0. Here are some examples:

 test eax, eax
 setz bl ; bl is set to 1 if EAX contains 0.
 .
 .
 .
 test bl, bl
 jz bxIs0

 Do something if bl != 0

bxIs0:

One major failing of the test instruction is that immediate (constant)
operands can be no larger than 32 bits (as is the case with most instruc-
tions), which makes it difficult to use this instruction to test for set bits
beyond bit position 31. For testing individual bits, you can use the bt (bit
test) instruction (see “Instructions That Manipulate Bits” in Chapter 12).
Otherwise, you’ll have to move the 64-bit constant into a register (the mov
instruction does support 64-bit immediate operands) and then test your
target register against the 64-bit constant value in the newly loaded register.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 299

 6.2 Arithmetic Expressions
Probably the biggest shock to beginners facing assembly language for the first
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most
high-level languages, look similar to their algebraic equivalents. For example:

x = y * z;

In assembly language, you’ll need several statements to accomplish this
same task:

mov eax, y
imul eax, z
mov x, eax

Obviously, the HLL version is much easier to type, read, and understand.
Although a lot of typing is involved, converting an arithmetic expression into
assembly language isn’t difficult at all. By attacking the problem in steps,
the same way you would solve the problem by hand, you can easily break any
arithmetic expression into an equivalent sequence of assembly language
statements.

6.2.1 Simple Assignments
The easiest expressions to convert to assembly language are simple assign-
ments. Simple assignments copy a single value into a variable and take one of
two forms:

variable = constant

or

var1 = var2

Converting the first form to assembly language is simple—just use this
assembly language statement:

mov variable, constant

This mov instruction copies the constant into the variable.
The second assignment is slightly more complicated because the x86-64

doesn’t provide a memory-to-memory mov instruction. Therefore, to copy
one memory variable into another, you must move the data through a reg-
ister. By convention (and for slight efficiency reasons), most programmers
tend to favor AL/AX/EAX/RAX for this purpose. For example:

var1 = var2;

becomes

mov eax, var2
mov var1, eax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

300 Chapter 6

assuming that var1 and var2 are 32-bit variables. Use AL if they are 8-bit
variables; use AX if they are 16-bit variables, or use RAX if they are 64-bit
variables.

Of course, if you’re already using AL, AX, EAX, or RAX for something
else, one of the other registers will suffice. Regardless, you will generally
use a register to transfer one memory location to another.

6.2.2 Simple Expressions
The next level of complexity is a simple expression. A simple expression takes
the following form:

var1 = term1 op term2;

var1 is a variable, term1 and term2 are variables or constants, and op is an
arithmetic operator (addition, subtraction, multiplication, and so on). Most
expressions take this form. It should come as no surprise, then, that the
x86-64 architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the following
form:

mov eax, term1
op eax, term2
mov var1, eax

op is the mnemonic that corresponds to the specified operation (for
example, + is add, – is sub, and so forth).

Note that the simple expression var1 = const1 op const2; is easily handled
with a compile-time expression and a single mov instruction. For example, to
compute var1 = 5 + 3;,use the single instruction mov var1, 5 + 3.

You need to be aware of a few inconsistencies. When dealing with the (i)
mul and (i)div instructions on the x86-64, you must use the AL/AX/EAX/
RAX and AH/DX/EDX/RDX registers. You cannot use arbitrary registers as
you can with other operations. Also, don’t forget the sign-extension instruc-
tions if you’re performing a division operation to divide one 16/32/64-bit
number by another. Finally, don’t forget that some instructions may cause
overflow. You may want to check for an overflow (or underflow) condition
after an arithmetic operation.

Here are examples of common simple expressions:

;x = y + z;

 mov eax, y
 add eax, z
 mov x, eax

;x = y - z;

 mov eax, y

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 301

 sub eax, z
 mov x, eax

;x = y * z; {unsigned}

 mov eax, y
 mul z ; Don't forget this wipes out EDX.
 mov x, eax

;x = y * z; {signed}

 mov eax, y
 imul eax, z ; Does not affect EDX!
 mov x, eax

;x = y div z; {unsigned div}

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX.
 div z
 mov x, eax

;x = y idiv z; {signed div}

 mov eax, y
 cdq ; Sign-extend EAX into EDX.
 idiv z
 mov x, eax

;x = y % z; {unsigned remainder}

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX.
 div z
 mov x, edx ; Note that remainder is in EDX.

;x = y % z; {signed remainder}

 mov eax, y
 cdq ; Sign-extend EAX into EDX.
 idiv z
 mov x, edx ; Remainder is in EDX.

Certain unary operations also qualify as simple expressions, producing
additional inconsistencies to the general rule. A good example of a unary
operation is negation. In a high-level language, negation takes one of two
possible forms:

var = –var

or

var1 = –var2

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

302 Chapter 6

Note that var = –constant is really a simple assignment, not a simple
expression. You can specify a negative constant as an operand to the mov
instruction:

mov var, -14

To handle var1 = –var1, use this single assembly language statement:

; var1 = -var1;

neg var1

If two different variables are involved, use the following:

; var1 = -var2;

mov eax, var2
neg eax
mov var1, eax

6.2.3 Complex Expressions
A complex expression is any arithmetic expression involving more than two
terms and one operator. Such expressions are commonly found in programs
written in a high-level language. Complex expressions may include paren-
theses to override operator precedence, function calls, array accesses, and so
on. This section outlines the rules for converting such expressions.

A complex expression that is easy to convert to assembly language is
one that involves three terms and two operators. For example:

w = w - y - z;

Clearly the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as
simple as this, the conversion is not trivial. There are actually two ways to
convert the preceding statement into assembly language:

mov eax, w
sub eax, y
sub eax, z
mov w, eax

and

mov eax, y
sub eax, z
sub w, eax

The second conversion, because it is shorter, looks better. However, it
produces an incorrect result (assuming C-like semantics for the original state-
ment). Associativity is the problem. The second sequence in the preceding
example computes w = w – (y – z), which is not the same as w = (w – y) – z.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 303

How we place the parentheses around the subexpressions can affect the
result. Note that if you are interested in a shorter form, you can use the fol-
lowing sequence:

mov eax, y
add eax, z
sub w, eax

This computes w = w – (y + z), equivalent to w = (w – y) – z.
Precedence is another issue. Consider this expression:

x = w * y + z;

Once again, we can evaluate this expression in two ways:

x = (w * y) + z;

or

x = w * (y + z);

By now, you’re probably thinking that this explanation is crazy. Everyone
knows the correct way to evaluate these expressions is by the former form.
However, you’d be wrong. The APL programming language, for example,
evaluates expressions solely from right to left and does not give one operator
precedence over another. Which way is “correct” depends entirely on how
you define precedence in your arithmetic system.

Consider this expression:

x op1 y op2 z

If op1 takes precedence over op2, then this evaluates to (x op1 y) op2 z.
Otherwise, if op2 takes precedence over op1, this evaluates to x op1 (y op2 z).
Depending on the operators and operands involved, these two computa-
tions could produce different results.

Most high-level languages use a fixed set of precedence rules to describe
the order of evaluation in an expression involving two or more different
operators. Such programming languages usually compute multiplication
and division before addition and subtraction. Those that support exponen-
tiation (for example, FORTRAN and BASIC) usually compute that before
multiplication and division. These rules are intuitive because almost every-
one learns them before high school.

When converting expressions into assembly language, you must be sure
to compute the subexpression with the highest precedence first. The follow-
ing example demonstrates this technique:

; w = x + y * z;

 mov ebx, x
 mov eax, y ; Must compute y * z first because "*"
 imul eax, z ; has higher precedence than "+".

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

304 Chapter 6

 add eax, ebx
 mov w, eax

If two operators appearing within an expression have the same pre-
cedence, you determine the order of evaluation by using associativity rules.
Most operators are left-associative, meaning that they evaluate from left to right.
Addition, subtraction, multiplication, and division are all left-associative. A
right-associative operator evaluates from right to left. The exponentiation oper-
ator in FORTRAN is a good example of a right-associative operator:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evaluation.
Indirectly, these rules tell you where to place parentheses in an expression to
determine the order of evaluation. Of course, you can always use parentheses
to override the default precedence and associativity. However, the ultimate
point is that your assembly code must complete certain operations before
others to correctly compute the value of a given expression. The following
examples demonstrate this principle:

; w = x - y - z

 mov eax, x ; All the same operator precedence,
 sub eax, y ; so we need to evaluate from left
 sub eax, z ; to right because they are left-
 mov w, eax ; associative.

; w = x + y * z

 mov eax, y ; Must compute y * z first because
 imul eax, z ; multiplication has a higher
 add eax, x ; precedence than addition.
 mov w, eax

; w = x / y - z

 mov eax, x ; Here we need to compute division
 cdq ; first because it has the highest
 idiv y ; precedence.
 sub eax, z
 mov w, eax

; w = x * y * z

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 305

 mov eax, y ; Addition and multiplication are
 imul eax, z ; commutative; therefore, the order
 imul eax, x ; of evaluation does not matter.
 mov w, eax

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication
first. For example, given an expression of the form

w = x / y * z ; Note: This is (x * z) / y, not x / (y * z).

it is usually better to compute x * z and then divide the result by y rather
than divide x by y and multiply the quotient by z.

This approach is better for two reasons. First, remember that the imul
instruction always produces a 64-bit result (assuming 32-bit operands). By
doing the multiplication first, you automatically sign-extend the product
into the EDX register so you do not have to sign-extend EAX prior to the
division.

A second reason for doing the multiplication first is to increase the
accuracy of the computation. Remember, (integer) division often produces an
inexact result. For example, if you compute 5 / 2, you will get the value 2, not
2.5. Computing (5 / 2) × 3 produces 6. However, if you compute (5 × 3) / 2,
you get the value 7, which is a little closer to the real quotient (7.5). Therefore,
if you encounter an expression of the form

w = x / y * z;

you can usually convert it to the following assembly code:

mov eax, x
imul z ; Note the use of extended imul!
idiv y
mov w, eax

If the algorithm you’re encoding depends on the truncation effect of
the division operation, you cannot use this trick to improve the algorithm.
Moral of the story: always make sure you fully understand any expression
you are converting to assembly language. If the semantics dictate that you
must perform the division first, then do so.

Consider the following statement:

w = x – y * x;

 Because subtraction is not commutative, you cannot compute y * x and
then subtract x from this result. Rather than use a straightforward multipli-
cation-and-addition sequence, you’ll have to load x into a register, multiply
y and x, leaving their product in a different register, and then subtract this
product from x. For example:

mov ecx, x
mov eax, y

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

306 Chapter 6

imul eax, x
sub ecx, eax
mov w, ecx

This trivial example demonstrates the need for temporary variables in
an expression. The code uses the ECX register to temporarily hold a copy
of x until it computes the product of y and x. As your expressions increase
in complexity, the need for temporaries grows. Consider the following C
statement:

w = (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the
subexpressions inside the parentheses first (that is, the two subexpressions
with the highest precedence) and set their values aside. When you’ve com-
puted the values for both subexpressions, you can compute their product.
One way to deal with a complex expression like this is to reduce it to a
sequence of simple expressions whose results wind up in temporary vari-
ables. For example, you can convert the preceding single expression into
the following sequence:

temp1 = a + b;
temp2 = y + z;
w = temp1 * temp2;

Because converting simple expressions to assembly language is quite
easy, it’s now a snap to compute the former complex expression in assembly.
The code is shown here:

mov eax, a
add eax, b
mov temp1, eax
mov eax, y
add eax, z
mov temp2, eax
mov eax, temp1
imul eax, temp2
mov w, eax

This code is grossly inefficient and requires that you declare a couple
of temporary variables in your data segment. However, it is easy to optimize
this code by keeping temporary variables, as much as possible, in x86-64
registers. By using x86-64 registers to hold the temporary results, this code
becomes the following:

mov eax, a
add eax, b
mov ebx, y
add ebx, z
imul eax, ebx
mov w, eax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 307

Here’s yet another example:

x = (y + z) * (a - b) / 10;

This can be converted to a set of four simple expressions:

temp1 = (y + z)
temp2 = (a - b)
temp1 = temp1 * temp2
x = temp1 / 10

You can convert these four simple expressions into the following assem-
bly language statements:

 .const
ten dword 10
 .
 .
 .
 mov eax, y ; Compute EAX = y + z
 add eax, z
 mov ebx, a ; Compute EBX = a - b
 sub ebx, b
 imul ebx ; This sign-extends EAX into EDX.
 idiv ten
 mov x, eax

The most important thing to keep in mind is that you should keep tem-
porary values in registers for efficiency. Use memory locations to hold tempo-
raries only if you’ve run out of registers.

Ultimately, converting a complex expression to assembly language is
a little different from solving the expression by hand. Instead of actually
computing the result at each stage of the computation, you simply write the
assembly code that computes the result.

6.2.4 Commutative Operators
If op represents an operator, that operator is commutative if the following
relationship is always true:

(A op B) = (B op A)

As you saw in the previous section, commutative operators are nice
because the order of their operands is immaterial, and this lets you rear-
range a computation, often making it easier or more efficient. Often,
rearranging a computation allows you to use fewer temporary variables.
Whenever you encounter a commutative operator in an expression, you
should always check whether you can use a better sequence to improve
the size or speed of your code.

Tables 6-8 and 6-9, respectively, list the commutative and noncommuta-
tive operators you typically find in high-level languages.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

308 Chapter 6

Table 6-8: Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise AND

or || or | Logical or bitwise OR

xor ^ (Logical or) bitwise
exclusive-OR

= == Equality

<> != Inequality

Table 6-9: Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or div / Division

mod % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

 6.3 Logical (Boolean) Expressions
Consider the following expression from a C/C++ program:

b = ((x == y) && (a <= c)) || ((z - a) != 5);

Here, b is a Boolean variable, and the remaining variables are all
integers.

Although it takes only a single bit to represent a Boolean value, most
assembly language programmers allocate a whole byte or word to represent
Boolean variables. Most programmers (and, indeed, some programming
languages like C) choose 0 to represent false and anything else to represent
true. Some people prefer to represent true and false with 1 and 0 (respec-
tively) and not allow any other values. Others select all 1 bits (0FFFF_FFFF_
FFFF_FFFFh, 0FFFF_FFFFh, 0FFFFh, or 0FFh) for true and 0 for false. You
could also use a positive value for true and a negative value for false. All
these mechanisms have their advantages and drawbacks.

Using only 0 and 1 to represent false and true offers two big advan-
tages. First, The setcc instructions produce these results, so this scheme is
compatible with those instructions. Second, the x86-64 logical instructions
(and, or, xor, and, to a lesser extent, not) operate on these values exactly as

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 309

you would expect. That is, if you have two Boolean variables a and b, then
the following instructions perform the basic logical operations on these two
variables:

; d = a AND b;

 mov al, a
 and al, b
 mov d, al

; d = a || b;

 mov al, a
 or al, b
 mov d, al

; d = a XOR b;

 mov al, a
 xor al, b
 mov d, al

; b = NOT a;

 mov al, a ; Note that the NOT instruction does not
 not al ; properly compute al = NOT all by itself.
 and al, 1 ; That is, (NOT 0) does not equal 1. The AND
 mov b, al ; instruction corrects this problem.

 mov al, a ; Another way to do b = NOT a;
 xor al, 1 ; Inverts bit 0.
 mov b, al

As pointed out here, the not instruction will not properly compute logi-
cal negation. The bitwise not of 0 is 0FFh, and the bitwise not of 1 is 0FEh.
Neither result is 0 or 1. However, by ANDing the result with 1, you get the
proper result. Note that you can implement the not operation more effi-
ciently by using the xor al, 1 instruction because it affects only the LO bit.

As it turns out, using 0 for false and anything else for true has a lot of
subtle advantages. Specifically, the test for true or false is often implicit
in the execution of any logical instruction. However, this mechanism suf-
fers from a big disadvantage: you cannot use the x86-64 and, or, xor, and
not instructions to implement the Boolean operations of the same name.
Consider the two values 55h and 0AAh. They’re both nonzero so they both
represent the value true. However, if you logically AND 55h and 0AAh
together by using the x86-64 and instruction, the result is 0. True AND true
should produce true, not false. Although you can account for situations like
this, it usually requires a few extra instructions and is somewhat less effi-
cient when computing Boolean operations.

A system that uses nonzero values to represent true and 0 to represent
false is an arithmetic logical system. A system that uses two distinct values like

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

310 Chapter 6

0 and 1 to represent false and true is called a Boolean logical system, or simply
a Boolean system. You can use either system, as convenient. Consider again
this Boolean expression:

b = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

mov eax, x
cmp eax, y
sete al ; al = x == y;

mov ebx, a
cmp ebx, d
setle bl ; bl = a <= d;
and bl, al ; bl = (x = y) and (a <= d);

mov eax, z
sub eax, a
cmp eax, 5
setne al
or al, bl ; al = ((x == y) && (a <= d)) ||
mov b, al ; ((z - a) != 5);

When working with Boolean expressions, don’t forget that you might
be able to optimize your code by simplifying them with algebraic transfor-
mations. In Chapter 7, you’ll also see how to use control flow to calculate a
Boolean result, which is generally quite a bit more efficient than using com-
plete Boolean evaluation as the examples in this section teach.

 6.4 Machine and Arithmetic Idioms
An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations
and x86-64 instructions have idiosyncrasies that you can take advantage
of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as tricky programming that you should always
avoid in well-written programs. While it is wise to avoid tricks just for the
sake of tricks, many machine and arithmetic idioms are well-known and
commonly found in assembly language programs. You will see some impor-
tant idioms all the time, so it makes sense to discuss them.

6.4.1 Multiplying without mul or imul
When multiplying by a constant, you can sometimes write faster code
by using shifts, additions, and subtractions in place of multiplication
instructions.

Remember, a shl instruction computes the same result as multiplying
the specified operand by 2. Shifting to the left two bit positions multiplies
the operand by 4. Shifting to the left three bit positions multiplies the oper-
and by 8. In general, shifting an operand to the left n bits multiplies it by

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 311

2n. You can multiply any value by a constant by using a series of shifts and
additions or shifts and subtractions. For example, to multiply the AX regis-
ter by 10, you need only multiply it by 8 and then add two times the original
value. That is, 10 × AX = 8 × AX + 2 × AX. The code to accomplish this is as
follows:

shl ax, 1 ; Multiply AX by 2.
mov bx, ax ; Save 2 * AX for later.
shl ax, 2 ; Multiply AX by 8 (*4 really,
 ; but AX contains *2).
add ax, bx ; Add in AX * 2 to AX * 8 to get AX * 10.

If you look at the instruction timings, the preceding shift and add
example requires fewer clock cycles on some processors in the 80x86 family
than the mul instruction. Of course, the code is somewhat larger (by a few
bytes), but the performance improvement is usually worth it.

You can also use subtraction with shifts to perform a multiplication
operation. Consider the following multiplication by 7:

mov ebx, eax ; Save EAX * 1
shl eax, 3 ; EAX = EAX * 8
sub eax, ebx ; EAX * 8 - EAX * 1 is EAX * 7

A common error that beginning assembly language programmers make
is subtracting or adding 1 or 2 rather than EAX × 1 or EAX × 2. The follow-
ing does not compute EAX × 7:

shl eax, 3
sub eax, 1

It computes (8 × EAX) – 1, something entirely different (unless, of
course, EAX = 1). Beware of this pitfall when using shifts, additions, and
subtractions to perform multiplication operations.

You can also use the lea instruction to compute certain products. The
trick is to use the scaled-index addressing modes. The following examples
demonstrate some simple cases:

lea eax, [ecx][ecx] ; EAX = ECX * 2
lea eax, [eax][eax * 2] ; EAX = ECX * 3
lea eax, [eax * 4] ; EAX = ECX * 4
lea eax, [ebx][ebx * 4] ; EAX = EBX * 5
lea eax, [eax * 8] ; EAX = EAX * 8
lea eax, [edx][edx * 8] ; EAX = EDX * 9

As time has progressed, Intel (and AMD) have improved the perfor-
mance of the imul instruction to the point that it rarely makes sense to try
to improve performance by using strength-reduction optimizations such as sub-
stituting shifts and adds for a multiplication. You should consult the Intel/
AMD documentation (particularly the section on instruction timing) to see
if a multi-instruction sequence is faster. Generally, a single shift instruction

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

312 Chapter 6

(for multiplication by a power of two) or lea is going to produce better
results than imul; beyond that, it’s best to measure and see.

6.4.2 Dividing Without div or idiv
Just as the shl instruction is useful for simulating a multiplication by a
power of two, the shr and sar instructions can simulate a division by a power
of two. Unfortunately, you cannot easily use shifts, additions, and subtrac-
tions to perform division by an arbitrary constant. Therefore, this trick is
useful only when dividing by powers of two. Also, don’t forget that the sar
instruction rounds toward negative infinity, unlike the idiv instruction,
which rounds toward 0.

You can also divide by a value by multiplying by its reciprocal. Because
the multiply instruction is faster than the divide instruction, multiplying by
a reciprocal is usually faster than division.

To multiply by a reciprocal when dealing with integers, we must cheat.
If you want to multiply by 1/10, there is no way you can load the value 1/10
into an x86-64 integer register prior to performing the multiplication.
However, we could multiply 1/10 by 10, perform the multiplication, and
then divide the result by 10 to get the final result. Of course, this wouldn’t
buy you anything; in fact, it would make things worse because you’re now
doing a multiplication by 10 as well as a division by 10. However, suppose
you multiply 1/10 by 65,536 (6,554), perform the multiplication, and then
divide by 65,536. This would still perform the correct operation, and, as it
turns out, if you set up the problem correctly, you can get the division opera-
tion for free. Consider the following code that divides AX by 10:

mov dx, 6554 ; 6,554 = round(65,536 / 10)
mul dx

This code leaves AX/10 in the DX register.
To understand how this works, consider what happens when you use the

mul instruction to multiply AX by 65,536 (1_0000h). This moves AX into DX
and sets AX to 0 (a multiplication by 1_0000h is equivalent to a shift left by
16 bits). Multiplying by 6,554 (65,536 divided by 10) puts AX divided by 10
into the DX register. Because mul is faster than div, this technique runs a
little faster than using division.

Multiplying by a reciprocal works well when you need to divide by a
constant. You could even use this approach to divide by a variable, but the
overhead to compute the reciprocal pays off only if you perform the divi-
sion many, many times by the same value.

6.4.3 Implementing Modulo-N Counters with AND
If you want to implement a counter variable that counts up to 2n – 1 and
then resets to 0, use the following code:

inc CounterVar
and CounterVar, nBits

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 313

where nBits is a binary value containing n bits of 1s right-justified in the
number. For example, to create a counter that cycles between 0 and 15
(24 –1), you could use the following:

inc CounterVar
and CounterVar, 00001111b

 6.5 Floating-Point Arithmetic
Integer arithmetic does not let you represent fractional numeric values.
Therefore, modern CPUs support an approximation of real arithmetic:
floating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.

For example, in the number 3.456e+12, the mantissa consists of 3.456,
and the exponent digits are 12. Because the number of bits is fixed in
computer-based representations, computers can represent only a certain
number of digits (known as significant digits) in the mantissa. For example,
if a floating-point representation could handle only three significant
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately
represented with that format, as three significant digits can represent only
3.45e+12 correctly.

Because computer-based floating-point representations also use a finite
number of bits to represent the exponent, it also has a limited range of
values, ranging from 10±38 for the single-precision format to 10±308 for the
double-precision format (and up to 10±4932 for extended-precision format).
This is known as the dynamic range of the value.

A big problem with floating-point arithmetic is that it does not follow
the standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic.

Consider the simple statement x = x + 1, where x is an integer. On any
modern computer, this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain
values of x (minint <= x < maxint). Most programmers do not have a problem
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse.
After all, integers are a subset of real numbers. Therefore, the floating-point
values must represent the same infinite set of integers. However, an infinite
number of real values exist between any two integer values. In addition to
having to limit your values between a maximum and minimum range, you
cannot represent all the values between any pair of integers, either.

To demonstrate the impact of limited-precision arithmetic, we will
adopt a simplified decimal floating-point format for our examples. Our

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

314 Chapter 6

floating-point format will provide a mantissa with three significant digits
and a decimal exponent with two digits. The mantissa and exponents are
both signed values, as shown in Figure 6-1.

e ±±

Figure 6-1: A floating-point format

When adding and subtracting two numbers in scientific notation, we must
adjust the two values so that their exponents are the same. Multiplication and
division don’t require the exponents to be the same; instead, the exponent
after a multiplication is the sum of the two operand exponents, and the expo-
nent after a division is the difference of the dividend and divisor’s exponents.

For example, when adding 1.2e1 and 4.5e0, we must adjust the values
so they have the same exponent. One way to do this is to convert 4.5e0
to 0.45e1 and then add. This produces 1.65e1. Because the computation
and result require only three significant digits, we can compute the cor-
rect result via the representation shown in Figure 6-1. However, suppose we
want to add the two values 1.23e1 and 4.56e0. Although both values can
be represented using the three-significant-digit format, the computation
and result do not fit into three significant digits. That is, 1.23e1 + 0.456e1
requires four digits of precision in order to compute the correct result of
1.686, so we must either round or truncate the result to three significant
digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1.

In fact, the rounding does not occur after adding the two values together
(that is, producing the sum 1.686e1 and then rounding this to 1.69e1). The
rounding actually occurs when converting 4.56e0 to 0.456e1, because the
value 0.456e1 requires four digits of precision to maintain. Therefore, during
the conversion, we have to round it to 0.46e1 so that the result fits into three
significant digits. Then, the sum of 1.23e1 and 0.46e1 produces the final
(rounded) sum of 1.69e1.

As you can see, the lack of precision (the number of digits or bits we
maintain in a computation) affects the accuracy (the correctness of the
computation).

In the addition/subtraction example, we were able to round the result
because we maintained four significant digits during the calculation (specifi-
cally, when converting 4.56e0 to 0.456e1). If our floating-point calculation
had been limited to three significant digits during computation, we would
have had to truncate the last digit of the smaller number, obtaining 0.45e1,
resulting in a sum of 1.68e1, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to
maintain one or more extra digits for use during the calculation (such as
the extra digit used to convert 4.56e0 to 0.456e1). Extra digits available
during a computation are known as guard digits (or guard bits in the case
of a binary format). They greatly enhance accuracy during a long chain of
computations.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 315

In a sequence of floating-point operations, the error can accumulate
and greatly affect the computation itself. For example, suppose we were to
add 1.23e3 to 1.00e0. Adjusting the numbers so their exponents are the
same before the addition produces 1.23e3 + 0.001e3. The sum of these two
values, even after rounding, is 1.23e3. This might seem perfectly reasonable
to you; after all, we can maintain only three significant digits, so adding in
a small value shouldn’t affect the result at all. However, suppose we were to
add 1.00e0 to 1.23e3 10 times.5 The first time we add 1.00e0 to 1.23e3, we
get 1.23e3. Likewise, we get this same result the second, third, fourth . . .
and tenth times we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself 10 times, then added the result (1.00e1) to 1.23e3, we would
have gotten a different result, 1.24e3. This is an important fact to know
about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

You will get more-accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point
values. If you are performing a chain calculation involving addition and
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up
with false precision. Consider the computation 1.23e0 – 1.22e0, which pro-
duces 0.01e0. Although the result is mathematically equivalent to 1.00e – 2,
this latter form suggests that the last two digits are exactly 0. Unfortunately,
we have only a single significant digit at this time (remember, the original
result was 0.01e0, and those two leading 0s were significant digits). Indeed,
some floating-point unit (FPU) or software packages might actually insert
random digits (or bits) into the LO positions. This brings up a second
important rule concerning limited-precision arithmetic:

Subtracting two numbers with the same signs (or adding two
numbers with different signs) can produce high-order significant
digits (bits) that are 0. This reduces the number of significant
digits (bits) by a like amount in the final result.

By themselves, multiplication and division do not produce particularly
poor results. However, they tend to multiply any error that already exists in
a value. For example, if you multiply 1.23e0 by 2, when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This brings up a third
important rule when working with limited-precision arithmetic:

When performing a chain of calculations involving addition, sub-
traction, multiplication, and division, try to perform the multipli-
cation and division operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x * (y + z). Normally you would add y and

5. But not in the same calculation, where guard digits could maintain the fourth digit during
the calculation.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

316 Chapter 6

z together and multiply their sum by x. However, you will get a little more
accuracy if you transform x * (y + z) to get x * y + x * z and compute the
result by performing the multiplications first.6

Multiplication and division are not without their own problems. When
multiplying two very large or very small numbers, it is quite possible for
overflow or underflow to occur. The same situation occurs when dividing
a small number by a large number, or dividing a large number by a small
(fractional) number. This brings up a fourth rule you should attempt to fol-
low when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange
the multiplications so that they multiply large and small numbers
together; likewise, try to divide numbers that have the same rela-
tive magnitudes.

Given the inaccuracies present in any computation (including convert-
ing an input string to a floating-point value), you should never compare two
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should
produce 3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However,
if you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you
might find out that these sums are not equal to one another. The test for
equality succeeds if and only if all bits (or digits) in the two operands are
exactly the same. Because this is not necessarily true after two different
floating-point computations that should produce the same result, a straight
test for equality may not work. Instead, you should use the following test:

if Value1 >= (Value2 - error) and Value1 <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1 - Value2) <= error then ...

error should be a value slightly greater than the largest amount of error
that will creep into your computations. The exact value will depend on the
particular floating-point format you use. Here is the final rule we will state
in this section:

When comparing two floating-point numbers, always compare
one value to see if it is in the range given by the second value plus
or minus a small error value.

Many other little problems can occur when using floating-point values.
This book can point out only some of the major problems and make you
aware that you cannot treat floating-point arithmetic like real arithmetic

6. Of course, the drawback is that you must now perform two multiplications rather than one,
so the result may be slower.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 317

because of the inaccuracies present in limited-precision arithmetic. A good
text on numerical analysis or even scientific computing can help fill in the
details. If you are going to be working with floating-point arithmetic, in any
language, you should take the time to study the effects of limited-precision
arithmetic on your computations.

6.5.2 Floating-Point on the x86-64
When the 8086 CPU first appeared in the late 1970s, semiconductor tech-
nology was not to the point where Intel could put floating-point instructions
directly on the 8086 CPU. Therefore, Intel devised a scheme to use a sec-
ond chip to perform the floating-point calculations—the 8087 floating-point
unit (or x87 FPU).7 By the release of the Intel Pentium chip, semiconductor
technology had advanced to the point that the FPU was fully integrated
onto the x86 CPU. Today, the x86-64 still contains the x87 FPU device, but
it has also expanded the floating-point capabilities by using the SSE, SSE2,
AVX, and AVX2 instruction sets.

This section describes the x86 FPU instruction set. Later sections (and
chapters) discuss the more advanced floating-point capabilities of the SSE
through AVX2 instruction sets.

6.5.3 FPU Registers
The x87 FPUs add 14 registers to the x86-64: eight floating-point data regis-
ters, a control register, a status register, a tag register, an instruction pointer,
a data pointer, and an opcode register. The data registers are similar to the
x86-64’s general-purpose register set insofar as all floating-point calcula-
tions take place in these registers. The control register contains bits that let you
decide how the FPU handles certain degenerate cases like rounding of inac-
curate computations; it also contains bits that control precision and so on.
The status register is similar to the x86-64’s flags register; it contains the con-
dition code bits and several other floating-point flags that describe the state
of the FPU. The tag register contains several groups of bits that determine
the state of the value in each of the eight floating-point data registers. The
instruction, data pointer, and opcode registers contain certain state information
about the last floating-point instruction executed. We do not consider the
last four registers here; see the Intel documentation for more details.

6.5.3.1 FPU Data Registers

The FPUs provide eight 80-bit data registers organized as a stack, a signifi-
cant departure from the organization of the general-purpose registers on
the x86-64 CPU. MASM refers to these registers as ST(0), ST(1), . . . ST(7).8

7. Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor
Extension (NPX), and math coprocessor.

8. Often, programmers will create text equates for these register names to use the identifiers
ST0 to ST7.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

318 Chapter 6

The biggest difference between the FPU register set and the x86-64
register set is the stack organization. On the x86-64 CPU, the AX register
is always the AX register, no matter what happens. On the FPU, however,
the register set is an eight-element stack of 80-bit floating-point values
(Figure 6-2).

ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

ST(0)
79 63 0

Figure 6-2: FPU floating-point register stack

ST(0) refers to the item on the top of stack, ST(1) refers to the next
item on the stack, and so on. Many floating-point instructions push and
pop items on the stack; therefore, ST(1) will refer to the previous contents
of ST(0) after you push something onto the stack. Getting used to the reg-
ister numbers changing will take some thought and practice, but this is an
easy problem to overcome.

6.5.3.2 The FPU Control Register

When Intel designed the 8087 (and, essentially, the IEEE floating-point
standard), there were no standards in floating-point hardware. Different
(mainframe and mini) computer manufacturers all had different and
incompatible floating-point formats. Unfortunately, several applications
had been written taking into account the idiosyncrasies of these different
floating-point formats.

Intel wanted to design an FPU that could work with the majority of
the software out there (keep in mind that the IBM PC was three to four
years away when Intel began designing the 8087, so Intel couldn’t rely on
that “mountain” of software available for the PC to make its chip popular).
Unfortunately, many of the features found in these older floating-point
formats were mutually incompatible. For example, in some floating-point
systems, rounding would occur when there was insufficient precision; in
others, truncation would occur. Some applications would work with one
floating-point system but not with the other.

Intel wanted as many applications as possible to work with as few changes
as possible on its 8087 FPUs, so it added a special register, the FPU control
register, that lets the user choose one of several possible operating modes for
the FPU. The 80x87 control register contains 16 bits organized as shown in
Figure 6-3.

Bits 10 and 11 of the FPU control register provide rounding control
according to the values in Table 6-10.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 319

Round
00 – To nearest or even
01 – Down
10 – Up
11 – Truncate result

Reserved

Underflow
Precision

Overflow
Zero divide

Denormalized
Invalid operation

00 – 24 bits
01 – Reserved
10 – 53 bits
11 – 64 bits

Precision
control

Rounding
control

Exception masks

0891011 5

Figure 6-3: FPU control register

Table 6-10: Rounding Control

Bits 10 and 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

The 00 setting is the default. The FPU rounds up values above one-half
of the least significant bit. It rounds down values below one-half of the least
significant bit. If the value below the least significant bit is exactly one-half
of the least significant bit, the FPU rounds the value toward the value whose
least significant bit is 0. For long strings of computations, this provides a
reasonable, automatic way to maintain maximum precision.

The round-up and round-down options are present for those computa-
tions requiring accuracy. By setting the rounding control to round down
and performing the operation, then repeating the operation with the
rounding control set to round up, you can determine the minimum and
maximum ranges between which the true result will fall.

The truncate option forces all computations to truncate any excess bits.
You will rarely use this option if accuracy is important. However, you might
use this option to help when porting older software to the FPU. This option
is also extremely useful when converting a floating-point value to an inte-
ger. Because most software expects floating-point-to-integer conversions to
truncate the result, you will need to use the truncation/rounding mode to
achieve this.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

320 Chapter 6

Bits 8 and 9 of the control register specify the precision during compu-
tation. This capability is provided to allow compatibility with older software
as required by the IEEE 754 standard. The precision-control bits use the
values in Table 6-11.

Table 6-11: Mantissa Precision-Control Bits

Bits 8 and 9 Precision Control

00 24 bits

01 Reserved

10 53 bits

11 64 bits

Some CPUs may operate faster with floating-point values whose preci-
sion is 53 bits (that is, 64-bit floating-point format) rather than 64 bits (that
is, 80-bit floating-point format). See the documentation for your specific
processor for details. Generally, the CPU defaults these bits to 11 to select
the 64-bit mantissa precision.

Bits 0 to 5 are the exception masks. These are similar to the interrupt
enable bit in the x86-64’s flags register. If these bits contain a 1, the corre-
sponding condition is ignored by the FPU. However, if any bit contains 0s,
and the corresponding condition occurs, then the FPU immediately gener-
ates an interrupt so the program can handle the degenerate condition.

Bit 0 corresponds to an invalid operation error, which generally occurs
as the result of a programming error. Situations that raise the invalid
operation exception include pushing more than eight items onto the stack
or attempting to pop an item off an empty stack, taking the square root of a
negative number, or loading a non-empty register.

Bit 1 masks the denormalized interrupt that occurs whenever you try to
manipulate denormalized values. Denormalized exceptions occur when
you load arbitrary extended-precision values into the FPU or work with very
small numbers just beyond the range of the FPU’s capabilities. Normally,
you would probably not enable this exception. If you enable this exception
and the FPU generates this interrupt, the Windows runtime system raises
an exception.

Bit 2 masks the zero-divide exception. If this bit contains 0, the FPU will
generate an interrupt if you attempt to divide a nonzero value by 0. If you
do not enable the zero-divide exception, the FPU will produce NaN when-
ever you perform a zero division. It’s probably a good idea to enable this
exception by programming a 0 into this bit. Note that if your program gen-
erates this interrupt, the Windows runtime system will raise an exception.

Bit 3 masks the overflow exception. The FPU will raise the overflow
exception if a calculation overflows or if you attempt to store a value that is
too large to fit into the destination operand (for example, storing a large

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 321

extended-precision value into a single-precision variable). If you enable this
exception and the FPU generates this interrupt, the Windows runtime sys-
tem raises an exception.

Bit 4, if set, masks the underflow exception. Underflow occurs when
the result is too small to fit in the destination operand. Like overflow, this
exception can occur whenever you store a small extended-precision value
into a smaller variable (single or double precision) or when the result of a
computation is too small for extended precision. If you enable this excep-
tion and the FPU generates this interrupt, the Windows runtime system
raises an exception.

Bit 5 controls whether the precision exception can occur. A precision
exception occurs whenever the FPU produces an imprecise result, generally
the result of an internal rounding operation. Although many operations
will produce an exact result, many more will not. For example, dividing 1
by 10 will produce an inexact result. Therefore, this bit is usually 1 because
inexact results are common. If you enable this exception and the FPU gen-
erates this interrupt, the Windows runtime system raises an exception.

Bits 6 and 7, and 12 to 15, in the control register are currently unde-
fined and reserved for future use (bits 7 and 12 were valid on older FPUs
but are no longer used).

The FPU provides two instructions, fldcw (load control word) and fstcw
(store control word), that let you load and store the contents of the control reg-
ister, respectively. The single operand to these instructions must be a 16-bit
memory location. The fldcw instruction loads the control register from the
specified memory location. fstcw stores the control register into the specified
memory location. The syntax for these instructions is shown here:

fldcw mem16
fstcw mem16

Here’s some example code that sets the rounding control to truncate
result and sets the rounding precision to 24 bits:

 .data
fcw16 word ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 and ax, 0f0ffh ; Clears bits 8-11.
 or ax, 0c00h ; Rounding control=%11, Precision = %00.
 mov fcw16, ax
 fldcw fcw16

6.5.3.3 The FPU Status Register

The 16-bit FPU status register provides the status of the FPU at the instant
you read it; its layout appears in Figure 6-4. The fstsw instruction stores the
16-bit floating-point status register into a word variable.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

322 Chapter 6

Exception flags

Top of stack
pointer

0123456789101112131415

Busy C3 C2 C1 C0

Condition codes

Precision
Underflow

Stack fault
Exception flag

Overflow
Zero divide

Denormalized
Invalid operation

Figure 6-4: The FPU status register

Bits 0 through 5 are the exception flags. These bits appear in the same
order as the exception masks in the control register. If the corresponding
condition exists, the bit is set. These bits are independent of the exception
masks in the control register. The FPU sets and clears these bits regardless
of the corresponding mask setting.

Bit 6 indicates a stack fault. A stack fault occurs whenever a stack over-
flow or underflow occurs. When this bit is set, the C1 condition code bit
determines whether there was a stack overflow (C1 = 1) or stack underflow
(C1 = 0) condition.

Bit 7 of the status register is set if any error condition bit is set. It is the
logical or of bits 0 through 5. A program can test this bit to quickly deter-
mine if an error condition exists.

Bits 8, 9, 10, and 14 are the coprocessor condition code bits. Various
instructions set the condition code bits, as shown in Tables 6-12 and 6-13,
respectively.

Table 6-12: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source not comparable

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or –)
ST is not comparable

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 323

Instruction Condition code bits Condition

C3 C2 C1 C0

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1
0
1
X

0
0
0
0
0
0
0
0
1
1
1
1
1

Unsupported
Unsupported
+ Normalized
– Normalized
+ 0
– 0
+ Denormalized
– Denormalized
+ NaN
– NaN
+ Infinity
– Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered / not comparable

Table 6-13: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits

C0 C3 C2 C1

fcom, fcomp, fcompp,
ftst, fucom, fucomp,
fucompp, ficom,
ficomp

Result of com-
parison, see
Table 6-12.

Result of com-
parison, see
Table 6-12.

Operands are not
comparable.

Set to 0.

Fxam See Table 6-12. See Table 6-12. See Table 6-12. Sign of result, or
stack overflow/
underflow if stack
exception bit is set.

fprem, fprem1 Bit 2 of quotient Bit 0 of quotient 0—reduction done
1—reduction
incomplete

Bit 0 of quotient,
or stack overflow/
underflow if stack
exception bit is set.

fist, fbstp, frndint,
fst, fstp, fadd,
fmul, fdiv, fdivr,
fsub, fsubr, fscale,
fsqrt, fpatan, f2xm1,
fyl2x, fyl2xp1

Undefined Undefined Undefined Rounding direction
if exception; other-
wise, set to 0.

fptan, fsin, fcos,
fsincos

Undefined Undefined Set to 1 if within
range; otherwise, 0.

Round-up occurred
or stack overflow/
underflow if stack
exception bit is set.
Undefined if C2
is set.

continued

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

324 Chapter 6

Instruction Condition code bits

C0 C3 C2 C1

fchs, fabs, fxch,
fincstp, fdec-
stp, const loads,
fxtract, fld, fild,
fbld, fstp (80 bit)

Undefined Undefined Undefined Set to 0 or stack
overflow/underflow
if stack exception
bit is set.

fldenv, frstor Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

fldcw, fstenv,
fstcw, fstsw, fclex

Undefined Undefined Undefined Undefined

finit, fsave Cleared to 0 Cleared to 0 Cleared to 0 Cleared to 0

Bits 11 to 13 of the FPU status register provide the register number of
the top of stack. During computations, the FPU adds (modulo-8) the logical
register numbers supplied by the programmer to these 3 bits to determine
the physical register number at runtime.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is
busy. This bit is a historical artifact from the days when the FPU was a sepa-
rate chip; most programs will have little reason to access this bit.

6.5.4 FPU Data Types
The FPU supports seven data types: three integer types, a packed deci-
mal type, and three floating-point types. The integer type supports 16-, 32-,
and 64-bit integers, although it is often faster to do the integer arithmetic
by using the integer unit of the CPU. The packed decimal type provides an
18-digit signed decimal (BCD) integer. The primary purpose of the BCD
format is to convert between strings and floating-point values. The remain-
ing three data types are the 32-, 64-, and 80-bit floating-point data types. The
80x87 data types appear in Figures 6-5, 6-6, and 6-7. Just note, for future
reference, that the largest BCD value the x87 supports is an 18-digit BCD
value (bits 72 to 78 are unused in this format).

The FPU generally stores values in a normalized format. When a float-
ing-point number is normalized, the HO bit of the mantissa is always 1. In
the 32- and 64-bit floating-point formats, the FPU does not actually store
this bit; the FPU always assumes that it is 1. Therefore, 32- and 64-bit float-
ing-point numbers are always normalized. In the extended-precision 80-bit
floating-point format, the FPU does not assume that the HO bit of the man-
tissa is 1; the HO bit of the mantissa appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of
bits. However, many non-normalized values cannot be represented with the
80-bit format. These values are very close to 0 and represent the set of val-
ues whose mantissa HO bit is not 0. The FPUs support a special 80-bit form
known as denormalized values. Denormalized values allow the FPU to encode

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 325

very small values it cannot encode using normalized values, but denormal-
ized values offer fewer bits of precision than normalized values. Therefore,
using denormalized values in a computation may introduce slight inaccu-
racy. Of course, this is always better than underflowing the denormalized
value to 0 (which could make the computation even less accurate), but you
must keep in mind that if you work with very small values, you may lose some
accuracy in your computations. The FPU status register contains a bit you
can use to detect when the FPU uses a denormalized value in a computation.

31

32-bit single-precision floating-point format

64-bit single-precision floating-point format

80-bit single-precision floating-point format

... ...

... ...

63 52

79 64

23 16 15

078

078

078

Figure 6-5: FPU floating-point formats

16-bit two’s complement integer

32-bit two’s complement integer

64-bit two’s complement integer

07815

078

... ...

151631

07863

Figure 6-6: FPU integer formats

79

Sign Unused d17 d16

80-bit packed-decimal integer (BCD)

d15 d2 d1 d0

72 71 68 63 59
...

8 4 0

Figure 6-7: FPU packed decimal format

6.5.5 The FPU Instruction Set
The FPU adds many instructions to the x86-64 instruction set. We can
classify these instructions as data movement instructions, conversions,
arithmetic instructions, comparisons, constant instructions, transcenden-
tal instructions, and miscellaneous instructions. The following sections
describe each of the instructions in these categories.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

326 Chapter 6

6.5.6 FPU Data Movement Instructions
The data movement instructions transfer data between the internal FPU regis-
ters and memory. The instructions in this category are fld, fst, fstp, and fxch.
The fld instruction always pushes its operand onto the floating-point stack.
The fstp instruction always pops the top of stack (TOS) after storing it. The
remaining instructions do not affect the number of items on the stack.

6.5.6.1 The fld Instruction

The fld instruction loads a 32-, 64-, or 80-bit floating-point value onto the
stack. This instruction converts 32- and 64-bit operands to an 80-bit extended-
precision value before pushing the value onto the floating-point stack.

The fld instruction first decrements the TOS pointer (bits 11 to 13 of the
status register) and then stores the 80-bit value in the physical register speci-
fied by the new TOS pointer. If the source operand of the fld instruction is a
floating-point data register, ST(i), then the actual register that the FPU uses
for the load operation is the register number before decrementing the TOS
pointer. Therefore, fld st(0) duplicates the value on the top of stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets
the denormalized exception bit if you load an 80-bit denormalized value. It
sets the invalid operation bit if you attempt to load an empty floating-point
register onto the TOS (or perform another invalid operation).

Here are some examples:

fld st(1)
fld real4_variable
fld real8_variable
fld real10_variable
fld real8 ptr [rbx]

There is no way to directly load a 32-bit integer register onto the floating-
point stack, even if that register contains a real4 value. To do so, you must first
store the integer register into a memory location, and then push that memory
location onto the FPU stack by using the fld instruction. For example:

mov tempReal4, eax ; Save real4 value in EAX to memory.
fld tempReal4 ; Push that value onto the FPU stack.

6.5.6.2 The fst and fstp Instructions

The fst and fstp instructions copy the value on the top of the floating-point
stack to another floating-point register or to a 32-, 64-, or (fstp only) 80-bit
memory variable. When copying data to a 32- or 64-bit memory variable, the
FPU rounds the 80-bit extended-precision value on the TOS to the smaller
format as specified by the rounding control bits in the FPU control register.

The fstp instruction pops the value off the top of stack when moving it
to the destination location, by incrementing the TOS pointer in the status

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 327

register after accessing the data in ST(0). If the destination operand is a
floating-point register, the FPU stores the value at the specified register
number before popping the data off the top of stack.

Executing an fstp st(0) instruction effectively pops the data off the top
of stack with no data transfer. Here are some examples:

fst real4_variable
fst real8_variable
fst realArray[rbx * 8]
fst st(2)
fstp st(1)

The last example effectively pops ST(1) while leaving ST(0) on the top
of stack.

The fst and fstp instructions will set the stack exception bit if a stack
underflow occurs (attempting to store a value from an empty register stack).
They will set the precision bit if a loss of precision occurs during the store
operation (for example, when storing an 80-bit extended-precision value
into a 32- or 64-bit memory variable and some bits are lost during conver-
sion). They will set the underflow exception bit when storing an 80-bit value
into a 32- or 64-bit memory variable, but the value is too small to fit into
the destination operand. Likewise, these instructions will set the overflow
exception bit if the value on the top of stack is too big to fit into a 32- or
64-bit memory variable. They set the invalid operation flag if an invalid
operation (such as storing into an empty register) occurs. Finally, these
instructions set the C1 condition bit if rounding occurs during the store
operation (this occurs only when storing into a 32- or 64-bit memory vari-
able and you have to round the mantissa to fit into the destination) or if a
stack fault occurs.

N O T E Because of an idiosyncrasy in the FPU instruction set related to the encoding of the
instructions, you cannot use the fst instruction to store data into a real10 memory
variable. You may, however, store 80-bit data by using the fstp instruction.

6.5.6.3 The fxch Instruction

The fxch instruction exchanges the value on the top of stack with one of the
other FPU registers. This instruction takes two forms: one with a single FPU
register as an operand and the second without any operands. The first form
exchanges the top of stack with the specified register. The second form of
fxch swaps the top of stack with ST(1).

Many FPU instructions (for example, fsqrt) operate only on the top of
the register stack. If you want to perform such an operation on a value that
is not on top, you can use the fxch instruction to swap that register with TOS,
perform the desired operation, and then use fxch to swap the TOS with the
original register. The following example takes the square root of ST(2):

fxch st(2)
fsqrt
fxch st(2)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

328 Chapter 6

The fxch instruction sets the stack exception bit if the stack is empty;
it sets the invalid operation bit if you specify an empty register as the oper-
and; and, it always clears the C1 condition code bit.

6.5.7 Conversions
The FPU performs all arithmetic operations on 80-bit real quantities. In a
sense, the fld and fst/fstp instructions are conversion instructions because
they automatically convert between the internal 80-bit real format and the
32- and 64-bit memory formats. Nonetheless, we’ll classify them as data
movement operations, rather than conversions, because they are moving
real values to and from memory. The FPU provides six other instructions
that convert to or from integer or BCD format when moving data. These
instructions are fild, fist, fistp, fisttp, fbld, and fbstp.

6.5.7.1 The fild Instruction

The fild (integer load) instruction converts a 16-, 32-, or 64-bit two’s comple-
ment integer to the 80-bit extended-precision format and pushes the result
onto the stack. This instruction always expects a single operand: the address
of a word, double-word, or quad-word integer variable. You cannot specify
one of the x86-64’s 16-, 32-, or 64-bit general-purpose registers. If you want
to push the value of an x86-64 general-purpose register onto the FPU stack,
you must first store it into a memory variable and then use fild to push that
memory variable.

The fild instruction sets the stack exception bit and C1 (accordingly)
if stack overflow occurs while pushing the converted value. Look at these
examples:

fild word_variable
fild dword_val[rcx * 4]
fild qword_variable
fild sqword ptr [rbx]

6.5.7.2 The fist, fistp, and fisttp Instructions

The fist, fistp, and fisttp instructions convert the 80-bit extended-preci-
sion variable on the top of stack to a 16-, 32-, or (fistp/fistpp only) 64-bit
integer and store the result away into the memory variable specified by the
single operand. The fist and fistp instructions convert the value on TOS
to an integer according to the rounding setting in the FPU control register
(bits 10 and 11). The fisttp instruction always does the conversion using the
truncation mode. As with the fild instruction, the fist, fistp, and fisttp
instructions will not let you specify one of the x86-64’s general-purpose 16-,
32-, or 64-bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer
and then stores the result; it does not otherwise affect the floating-point
register stack. The fistp and fisttp instructions pop the value off the floating-
point register stack after storing the converted value.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 329

These instructions set the stack exception bit if the floating-point regis-
ter stack is empty (this will also clear C1). They set the precision (imprecise
operation) and C1 bits if rounding occurs (that is, if the value in ST(0) has
any fractional component). These instructions set the underflow exception
bit if the result is too small (less than 1 but greater than 0, or less than 0 but
greater than –1). Here are some examples:

fist word_var[rbx * 2]
fist dword_var
fisttp dword_var
fistp qword_var

The fist and fistp instructions use the rounding control settings to
determine how they will convert the floating-point data to an integer during
the store operation. Be default, the rounding control is usually set to round
mode; yet most programmers expect fist/fistp to truncate the decimal
portion during conversion. If you want fist/fistp to truncate floating-point
values when converting them to an integer, you will need to set the rounding
control bits appropriately in the floating-point control register (or use the
fisttp instruction to truncate the result regardless of the rounding control
bits). Here’s an example:

 .data
fcw16 word ?
fcw16_2 word ?
IntResult sdword ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 or ax, 0c00h ; Rounding =%11 (truncate).
 mov fcw16_2, ax ; Store and reload the ctrl word.
 fldcw fcw16_2

 fistp IntResult ; Truncate ST(0) and store as int32.

 fldcw fcw16 ; Restore original rounding control.

6.5.7.3 The fbld and fbstp Instructions

The fbld and fbstp instructions load and store 80-bit BCD values. The fbld
instruction converts a BCD value to its 80-bit extended-precision equiva-
lent and pushes the result onto the stack. The fbstp instruction pops the
extended-precision real value on TOS, converts it to an 80-bit BCD value
(rounding according to the bits in the floating-point control register), and
stores the converted result at the address specified by the destination mem-
ory operand. There is no fbst instruction.

The fbld instruction sets the stack exception bit and C1 if stack overflow
occurs. The results are undefined if you attempt to load an invalid BCD

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

330 Chapter 6

value. The fbstp instruction sets the stack exception bit and clears C1 if
stack underflow occurs (the stack is empty). It sets the underflow flag under
the same conditions as fist and fistp. Look at these examples:

; Assuming fewer than eight items on the stack, the following
; code sequence is equivalent to an fbst instruction:

 fld st(0)
 fbstp tbyte_var

; The following example easily converts an 80-bit BCD value to
; a 64-bit integer:

 fbld tbyte_var
 fistp qword_var

These two instructions are especially useful for converting between
string and floating-point formats. Along with the fild and fist instructions,
you can use fbld and fbstp to convert between integer and string formats
(see “Unsigned Decimal to String Conversion” in Chapter 9).

6.5.8 Arithmetic Instructions
Arithmetic instructions make up a small but important subset of the FPU’s
instruction set. These instructions fall into two general categories: those
that operate on real values and those that operate on a real and an integer
value.

6.5.8.1 The fadd, faddp, and fiadd Instructions

The fadd, faddp, and fiadd instructions take the following forms:

fadd
faddp
fadd st(i), st(0)
fadd st(0), st(i)
faddp st(i), st(0)
fadd mem32
fadd mem64
fiadd mem16
fiadd mem32

The fadd instruction, with no operands, is a synonym for faddp. The
faddp instruction (also with no operands) pops the two values on the top of
stack, adds them, and pushes their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register
operands, behave like the x86-64’s add instruction. They add the value in
the source register operand to the value in the destination register oper-
and. One of the register operands must be ST(0).

The faddp instruction with two operands adds ST(0) (which must always
be the source operand) to the destination operand and then pops ST(0).
The destination operand must be one of the other FPU registers.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 331

The last two forms, fadd with a memory operand, adds a 32- or 64-bit
floating-point variable to the value in ST(0). This instruction will convert
the 32- or 64-bit operands to an 80-bit extended-precision value before
performing the addition. Note that this instruction does not allow an 80-bit
memory operand. There are also instructions for adding 16- and 32-bit inte-
gers in memory to ST(0): fiadd mem16 and fiadd mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or the
rounding direction (see Table 6-13).

Listing 6-1 demonstrates the various forms of the fadd instruction.

; Listing 6-1
;
; Demonstration of various forms of fadd

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-1", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtAdd1 byte "fadd: st0:%f", nl, 0
fmtAdd2 byte "faddp: st0:%f", nl, 0
fmtAdd3 byte "fadd st(1), st(0): st0:%f, st1:%f", nl, 0
fmtAdd4 byte "fadd st(0), st(1): st0:%f, st1:%f", nl, 0
fmtAdd5 byte "faddp st(1), st(0): st0:%f", nl, 0
fmtAdd6 byte "fadd mem: st0:%f", nl, 0

zero real8 0.0
one real8 1.0
two real8 2.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

332 Chapter 6

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fadd instructions:

 mov rax, qword ptr one
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fadd (same as faddp)

 fld one
 fld minusTwo
 fadd ;Pops st(0)!
 fstp st0

 lea rcx, fmtAdd1
 call printFP

; faddp:

 fld one
 fld minusTwo

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 333

 faddp ;Pops st(0)!
 fstp st0

 lea rcx, fmtAdd2
 call printFP

; fadd st(1), st(0)

 fld one
 fld minusTwo
 fadd st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtAdd3
 call printFP

; fadd st(0), st(1)

 fld one
 fld minusTwo
 fadd st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtAdd4
 call printFP

; faddp st(1), st(0)

 fld one
 fld minusTwo
 faddp st(1), st(0)
 fstp st0

 lea rcx, fmtAdd5
 call printFP

; faddp mem64

 fld one
 fadd two
 fstp st0

 lea rcx, fmtAdd6
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-1: Demonstration of fadd instructions

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

334 Chapter 6

Here’s the build command and output for the program in Listing 6-1:

C:\>build listing6-1

C:\>echo off
 Assembling: listing6-1.asm
c.cpp

C:\>listing6-1
Calling Listing 6-1:
st(0):-2.000000, st(1):1.000000
fadd: st0:-1.000000
faddp: st0:-1.000000
fadd st(1), st(0): st0:-2.000000, st1:-1.000000
fadd st(0), st(1): st0:-1.000000, st1:1.000000
faddp st(1), st(0): st0:-1.000000
fadd mem: st0:3.000000
Listing 6-1 terminated

6.5.8.2 The fsub, fsubp, fsubr, fsubrp, fisub, and fisubr Instructions

These six instructions take the following forms:

fsub
fsubp
fsubr
fsubrp

fsub st(i), st(0)
fsub st(0), st(i)
fsubp st(i), st(0)
fsub mem32
fsub mem64

fsubr st(i) , st(0)
fsubr st(0), st(i)
fsubrp st(i) , st(0)
fsubr mem32
fsubr mem64

fisub mem16
fisub mem32
fisubr mem16
fisubr mem32

With no operands, fsub is the same as fsubp (without operands). With
no operands, the fsubp instruction pops ST(0) and ST(1) from the register
stack, computes ST(1) – ST(0), and then pushes the difference back onto
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in
an identical fashion except they compute ST(0) – ST(1).

With two register operands (destination, source), the fsub instruction
computes destination = destination – source. One of the two registers must be

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 335

ST(0). With two registers as operands, the fsubp also computes destination =
destination – source, and then it pops ST(0) off the stack after computing the
difference. For the fsubp instruction, the source operand must be ST(0).

With two register operands, the fsubr and fsubrp instructions work in
a similar fashion to fsub and fsubp, except they compute destination = source
– destination.

The fsub mem32, fsub mem64, fsubr mem32, and fsubr mem64 instructions accept
a 32- or 64-bit memory operand. They convert the memory operand to
an 80-bit extended-precision value and subtract this from ST(0) (fsub) or
subtract ST(0) from this value (fsubr) and store the result back into ST(0).
There are also instructions for subtracting 16- and 32-bit integers in memory
from ST(0): fisub mem16 and fisub mem32 (also fisubr mem16 and fisubr mem32).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or indicates
the rounding direction (see Table 6-13).

Listing 6-2 demonstrates the fsub/fsubr instructions.

; Listing 6-2
;
; Demonstration of various forms of fsub/fsubrl

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-2", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtSub1 byte "fsub: st0:%f", nl, 0
fmtSub2 byte "fsubp: st0:%f", nl, 0
fmtSub3 byte "fsub st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub4 byte "fsub st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub5 byte "fsubp st(1), st(0): st0:%f", nl, 0
fmtSub6 byte "fsub mem: st0:%f", nl, 0
fmtSub7 byte "fsubr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub8 byte "fsubr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub9 byte "fsubrp st(1), st(0): st0:%f", nl, 0
fmtSub10 byte "fsubr mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

336 Chapter 6

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fsub instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fsub (same as fsubp)

 fld three
 fld minusTwo
 fsub ;Pops st(0)!
 fstp st0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 337

 lea rcx, fmtSub1
 call printFP

; fsubp:

 fld three
 fld minusTwo
 fsubp ;Pops st(0)!
 fstp st0

 lea rcx, fmtSub2
 call printFP

; fsub st(1), st(0)

 fld three
 fld minusTwo
 fsub st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub3
 call printFP

; fsub st(0), st(1)

 fld three
 fld minusTwo
 fsub st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub4
 call printFP

; fsubp st(1), st(0)

 fld three
 fld minusTwo
 fsubp st(1), st(0)
 fstp st0

 lea rcx, fmtSub5
 call printFP

; fsub mem64

 fld three
 fsub minusTwo
 fstp st0

 lea rcx, fmtSub6
 call printFP

; fsubr st(1), st(0)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

338 Chapter 6

 fld three
 fld minusTwo
 fsubr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub7
 call printFP

; fsubr st(0), st(1)

 fld three
 fld minusTwo
 fsubr st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub8
 call printFP

; fsubrp st(1), st(0)

 fld three
 fld minusTwo
 fsubrp st(1), st(0)
 fstp st0

 lea rcx, fmtSub9
 call printFP

; fsubr mem64

 fld three
 fsubr minusTwo
 fstp st0

 lea rcx, fmtSub10
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-2: Demonstration of the fsub instructions

Here’s the build command and output for Listing 6-2:

C:\>build listing6-2

C:\>echo off
 Assembling: listing6-2.asm
c.cpp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 339

C:\>listing6-2
Calling Listing 6-2:
st(0):-2.000000, st(1):3.000000
fsub: st0:5.000000
fsubp: st0:5.000000
fsub st(1), st(0): st0:-2.000000, st1:5.000000
fsub st(0), st(1): st0:-5.000000, st1:3.000000
fsubp st(1), st(0): st0:5.000000
fsub mem: st0:5.000000
fsubr st(1), st(0): st0:-2.000000, st1:-5.000000
fsubr st(0), st(1): st0:5.000000, st1:3.000000
fsubrp st(1), st(0): st0:-5.000000
fsubr mem: st0:-5.000000
Listing 6-2 terminated

6.5.8.3 The fmul, fmulp, and fimul Instructions

The fmul and fmulp instructions multiply two floating-point values. The fimul
instruction multiples an integer and a floating-point value. These instruc-
tions allow the following forms:

fmul
fmulp

fmul st(0), st(i)
fmul st(i), st(0)
fmul mem32
fmul mem64

fmulp st(i), st(0)

fimul mem16
fimul mem32

With no operands, fmul is a synonym for fmulp. The fmulp instruction,
with no operands, will pop ST(0) and ST(1), multiply these values, and push
their product back onto the stack. The fmul instructions with two register
operands compute destination = destination × source. One of the registers
(source or destination) must be ST(0).

The fmulp st(0), st(i) instruction computes ST(i) = ST(i) × ST(0) and
then pops ST(0). This instruction uses the value for i before popping ST(0).
The fmul mem32 and fmul mem64 instructions require a 32- or 64-bit memory
operand, respectively. They convert the specified memory variable to an
80-bit extended-precision value and then multiply ST(0) by this value.
There are also instructions for multiplying 16- and 32-bit integers in mem-
ory by ST(0): fimul mem16 and fimul mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If rounding
occurs during the computation, these instructions set the C1 condition code
bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

340 Chapter 6

Listing 6-3 demonstrates the various forms of the fmul instruction.

; Listing 6-3
;
; Demonstration of various forms of fmul

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-3", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtMul1 byte "fmul: st0:%f", nl, 0
fmtMul2 byte "fmulp: st0:%f", nl, 0
fmtMul3 byte "fmul st(1), st(0): st0:%f, st1:%f", nl, 0
fmtMul4 byte "fmul st(0), st(1): st0:%f, st1:%f", nl, 0
fmtMul5 byte "fmulp st(1), st(0): st0:%f", nl, 0
fmtMul6 byte "fmul mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 341

 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fmul instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fmul (same as fmulp)

 fld three
 fld minusTwo
 fmul ;Pops st(0)!
 fstp st0

 lea rcx, fmtMul1
 call printFP

; fmulp:

 fld three
 fld minusTwo
 fmulp ;Pops st(0)!
 fstp st0

 lea rcx, fmtMul2
 call printFP

; fmul st(1), st(0)

 fld three
 fld minusTwo
 fmul st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtMul3
 call printFP

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

342 Chapter 6

; fmul st(0), st(1)

 fld three
 fld minusTwo
 fmul st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtMul4
 call printFP

; fmulp st(1), st(0)

 fld three
 fld minusTwo
 fmulp st(1), st(0)
 fstp st0

 lea rcx, fmtMul5
 call printFP

; fmulp mem64

 fld three
 fmul minusTwo
 fstp st0

 lea rcx, fmtMul6
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-3: Demonstration of the fmul instruction

Here is the build command and output for Listing 6-3:

C:\>build listing6-3

C:\>echo off
 Assembling: listing6-3.asm
c.cpp

C:\>listing6-3
Calling Listing 6-3:
st(0):-2.000000, st(1):3.000000
fmul: st0:-6.000000
fmulp: st0:-6.000000
fmul st(1), st(0): st0:-2.000000, st1:-6.000000
fmul st(0), st(1): st0:-6.000000, st1:3.000000

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 343

fmulp st(1), st(0): st0:-6.000000
fmul mem: st0:-6.000000
Listing 6-3 terminated

6.5.8.4 The fdiv, fdivp, fdivr, fdivrp, fidiv, and fidivr Instructions

These four instructions allow the following forms:

fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(i)
fdiv st(i), st(0)
fdivp st(i), st(0)

fdivr st(0), st(i)
fdivr st(i), st(0)
fdivrp st(i), st(0)

fdiv mem32
fdiv mem64
fdivr mem32
fdivr mem64

fidiv mem16
fidiv mem32
fidivr mem16
fidivr mem32

With no operands, the fdiv instruction is a synonym for fdivp. The fdivp
instruction with no operands computes ST(1) = ST(1) / ST(0). The fdivr
and fdivrp instructions work in a similar fashion to fdiv and fdivp except
that they compute ST(0) / ST(1) rather than ST(1) / ST(0).

With two register operands, these instructions compute the following
quotients:

fdiv st(0), st(i) ; st(0) = st(0)/st(i)
fdiv st(i), st(0) ; st(i) = st(i)/st(0)
fdivp st(i), st(0) ; st(i) = st(i)/st(0) then pop st0
fdivr st(0), st(i) ; st(0) = st(i)/st(0)
fdivr st(i), st(0) ; st(i) = st(0)/st(i)
fdivrp st(i), st(0) ; st(i) = st(0)/st(i) then pop st0

The fdivp and fdivrp instructions also pop ST(0) after performing the
division operation. The value for i in these two instructions is computed
before popping ST(0).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, zero divide, and illegal operation exceptions, as appropriate.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

344 Chapter 6

If rounding occurs during the computation, these instructions set the C1
condition code bit. If a stack fault exception occurs, C1 denotes stack over-
flow or underflow.

Listing 6-4 provides a demonstration of the fdiv/fdivr instructions.

; Listing 6-4
;
; Demonstration of various forms of fsub/fsubrl

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-4", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtDiv1 byte "fdiv: st0:%f", nl, 0
fmtDiv2 byte "fdivp: st0:%f", nl, 0
fmtDiv3 byte "fdiv st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv4 byte "fdiv st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv5 byte "fdivp st(1), st(0): st0:%f", nl, 0
fmtDiv6 byte "fdiv mem: st0:%f", nl, 0
fmtDiv7 byte "fdivr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv8 byte "fdivr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv9 byte "fdivrp st(1), st(0): st0:%f", nl, 0
fmtDiv10 byte "fdivr mem: st0:%f", nl, 0

three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 345

; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; Demonstrate various fdiv instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fdiv (same as fdivp)

 fld three
 fld minusTwo
 fdiv ;Pops st(0)!
 fstp st0

 lea rcx, fmtDiv1
 call printFP

; fdivp:

 fld three
 fld minusTwo
 fdivp ;Pops st(0)!
 fstp st0

 lea rcx, fmtDiv2
 call printFP

; fdiv st(1), st(0)

 fld three

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

346 Chapter 6

 fld minusTwo
 fdiv st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv3
 call printFP

; fdiv st(0), st(1)

 fld three
 fld minusTwo
 fdiv st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtDiv4
 call printFP

; fdivp st(1), st(0)

 fld three
 fld minusTwo
 fdivp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv5
 call printFP

; fdiv mem64

 fld three
 fdiv minusTwo
 fstp st0

 lea rcx, fmtDiv6
 call printFP

; fdivr st(1), st(0)

 fld three
 fld minusTwo
 fdivr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv7
 call printFP

; fdivr st(0), st(1)

 fld three
 fld minusTwo
 fdivr st(0), st(1)
 fstp st0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 347

 fstp st1

 lea rcx, fmtDiv8
 call printFP

; fdivrp st(1), st(0)

 fld three
 fld minusTwo
 fdivrp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv9
 call printFP

; fdivr mem64

 fld three
 fdivr minusTwo
 fstp st0

 lea rcx, fmtDiv10
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-4: Demonstration of the fdiv/fdivr instructions

Here’s the build command and sample output for Listing 6-4:

C:\>build listing6-4

C:\>echo off
 Assembling: listing6-4.asm
c.cpp

C:\>listing6-4
Calling Listing 6-4:
st(0):-2.000000, st(1):3.000000
fdiv: st0:-1.500000
fdivp: st0:-1.500000
fdiv st(1), st(0): st0:-2.000000, st1:-1.500000
fdiv st(0), st(1): st0:-0.666667, st1:3.000000
fdivp st(1), st(0): st0:-1.500000
fdiv mem: st0:-1.500000
fdivr st(1), st(0): st0:-2.000000, st1:-0.666667
fdivr st(0), st(1): st0:-1.500000, st1:3.000000
fdivrp st(1), st(0): st0:-0.666667
fdivr mem: st0:-0.666667
Listing 6-4 terminated

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

348 Chapter 6

6.5.8.5 The fsqrt Instruction

The fsqrt routine does not allow any operands. It computes the square root
of the value on TOS and replaces ST(0) with this result. The value on TOS
must be 0 or positive; otherwise, fsqrt will generate an invalid operation
exception.

This instruction can raise the stack, precision, denormalized, and
invalid operation exceptions, as appropriate. If rounding occurs during the
computation, fsqrt sets the C1 condition code bit. If a stack fault exception
occurs, C1 denotes stack overflow or underflow.

Here’s an example:

; Compute z = sqrt(x**2 + y**2);

 fld x ; Load x.
 fld st(0) ; Duplicate x on TOS.
 fmulp ; Compute x**2.

 fld y ; Load y.
 fld st(0) ; Duplicate y.
 fmul ; Compute y**2.

 faddp ; Compute x**2 + y**2.
 fsqrt ; Compute sqrt(x**2 + y**2).
 fstp z ; Store result away into z.

6.5.8.6 The fprem and fprem1 Instructions

The fprem and fprem1 instructions compute a partial remainder (a value that
may require additional computation to produce the actual remainder).
Intel designed the fprem instruction before the IEEE finalized its floating-
point standard. In the final draft of that standard, the definition of fprem
was a little different from Intel’s original design. To maintain compatibility
with the existing software that used the fprem instruction, Intel designed a
new version to handle the IEEE partial remainder operation, fprem1. You
should always use fprem1 in new software; therefore, we will discuss only
fprem1 here, although you use fprem in an identical fashion.

fprem1 computes the partial remainder of ST(0) / ST(1). If the differ-
ence between the exponents of ST(0) and ST(1) is less than 64, fprem1 can
compute the exact remainder in one operation. Otherwise, you will have to
execute fprem1 two or more times to get the correct remainder value. The
C2 condition code bit determines when the computation is complete. Note
that fprem1 does not pop the two operands off the stack; it leaves the partial
remainder in ST(0) and the original divisor in ST(1) in case you need to
compute another partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two
values on the top of stack. It sets the underflow and denormal exception
bits if the result is too small. It sets the invalid operation bit if the values
on TOS are inappropriate for this operation. It sets the C2 condition code

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 349

bit if the partial remainder operation is not complete (or on stack under-
flow). Finally, it loads C1, C2, and C0 with bits 0, 1, and 2 of the quotient,
respectively.

An example follows:

; Compute z = x % y

 fld y
 fld x
repeatLp:

 fprem1
 fstsw ax ; Get condition code bits into AX.
 and ah, 1 ; See if C2 is set.
 jnz repeatLp ; Repeat until C2 is clear.
 fstp z ; Store away the remainder.
 fstp st(0) ; Pop old y value.

6.5.8.7 The frndint Instruction

The frndint instruction rounds the value on TOS to the nearest integer by
using the rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the
TOS (it will also clear C1 in this case). It sets the precision and denormal
exception bits if a loss of precision occurred. It sets the invalid operation
flag if the value on the TOS is not a valid number. Note that the result on
the TOS is still a floating-point value; it simply does not have a fractional
component.

6.5.8.8 The fabs Instruction

fabs computes the absolute value of ST(0) by clearing the mantissa sign bit
of ST(0). It sets the stack exception bit and invalid operation bits if the stack
is empty.

Here’s an example:

; Compute x = sqrt(abs(x));

 fld x
 fabs
 fsqrt
 fstp x

6.5.8.9 The fchs Instruction

fchs changes the sign of ST(0)’s value by inverting the mantissa sign bit (this
is the floating-point negation instruction). It sets the stack exception bit and
invalid operation bits if the stack is empty.

Look at this example:

; Compute x = -x if x is positive, x = x if x is negative.
; That is, force x to be a negative value.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

350 Chapter 6

 fld x
 fabs
 fchs
 fstp x

6.5.9 Comparison Instructions
The FPU provides several instructions for comparing real values. The fcom,
fcomp, and fcompp instructions compare the two values on the top of stack
and set the condition codes appropriately. The ftst instruction compares
the value on the top of stack with 0.

Generally, most programs test the condition code bits immediately after
a comparison. Unfortunately, no instructions test the FPU condition codes.
Instead, you use the fstsw instruction to copy the floating-point status reg-
ister into the AX register, then the sahf instruction to copy the AH register
into the x86-64’s condition code bits. Then you can test the standard x86-
64 flags to check for a condition. This technique copies C0 into the carry
flag, C2 into the parity flag, and C3 into the zero flag. The sahf instruction
does not copy C1 into any of the x86-64’s flag bits.

Because sahf does not copy any FPU status bits into the sign or overflow
flags, you cannot use signed comparison instructions. Instead, use unsigned
operations (for example, seta, setb, ja, jb) when testing the results of a float-
ing-point comparison. Yes, these instructions normally test unsigned values,
and floating-point numbers are signed values. However, use the unsigned opera-
tions anyway; the fstsw and sahf instructions set the x86-64 flags register as
though you had compared unsigned values with the cmp instruction.

The x86-64 processors provide an extra set of floating-point compari-
son instructions that directly affect the x86-64 condition code flags. These
instructions circumvent having to use fstsw and sahf to copy the FPU status
into the x86-64 condition codes. These instructions include fcomi and fcomip.
You use them just like the fcom and fcomp instructions, except, of course, you
do not have to manually copy the status bits to the FLAGS register.

6.5.9.1 The fcom, fcomp, and fcompp Instructions

The fcom, fcomp, and fcompp instructions compare ST(0) to the specified oper-
and and set the corresponding FPU condition code bits based on the result
of the comparison. The legal forms for these instructions are as follows:

fcom
fcomp
fcompp

fcom st(i)
fcomp st(i)

fcom mem32
fcom mem64
fcomp mem32
fcomp mem64

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 351

With no operands, fcom, fcomp, and fcompp compare ST(0) against ST(1)
and set the FPU flags accordingly. In addition, fcomp pops ST(0) off the
stack, and fcompp pops both ST(0) and ST(1) off the stack.

With a single-register operand, fcom and fcomp compare ST(0) against
the specified register. fcomp also pops ST(0) after the comparison.

With a 32- or 64-bit memory operand, the fcom and fcomp instructions
convert the memory variable to an 80-bit extended-precision value and then
compare ST(0) against this value, setting the condition code bits accord-
ingly. fcomp also pops ST(0) after the comparison.

These instructions set C2 (which winds up in the parity flag when using
sahf) if the two operands are not comparable (for example, NaN). If it is
possible for an illegal floating-point value to wind up in a comparison, you
should check the parity flag for an error before checking the desired condi-
tion (for example, with the setp/setnp or jp/jnp instructions).

These instructions set the stack fault bit if there aren’t two items on the
top of the register stack. They set the denormalized exception bit if either
or both operands are denormalized. They set the invalid operation flag if
either or both operands are NaNs. These instructions always clear the C1
condition code.

Let’s look at an example of a floating-point comparison:

 fcompp
 fstsw ax
 sahf
 setb al ; al = true if st(0) < st(1).
 .
 .
 .
 fcompp
 fstsw ax
 sahf
 jnb st1GEst0

 ; Code that executes if st(0) < st(1)

st1GEst0:

Because all x86-64 64-bit CPUs support the fcomi and fcomip instructions
(described in the next section), you should consider using those instructions
as they spare you from having to store the FPU status word into AX and then
copy AH into the flags register before testing the condition. On the other
hand, fcomi and fcomip support only a limited number of operand forms (the
fcom and fcomp instructions are more general).

Listing 6-5 is a sample program that demonstrates the use of the vari-
ous fcom instructions.

; Listing 6-5
;
; Demonstration of fcom instructions

 option casemap:none

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

352 Chapter 6

nl = 10

 .const
ttlStr byte "Listing 6-5", 0
fcomFmt byte "fcom %f < %f is %d", nl, 0
fcomFmt2 byte "fcom(2) %f < %f is %d", nl, 0
fcomFmt3 byte "fcom st(1) %f < %f is %d", nl, 0
fcomFmt4 byte "fcom st(1) (2) %f < %f is %d", nl, 0
fcomFmt5 byte "fcom mem %f < %f is %d", nl, 0
fcomFmt6 byte "fcom mem %f (2) < %f is %d", nl, 0
fcompFmt byte "fcomp %f < %f is %d", nl, 0
fcompFmt2 byte "fcomp (2) %f < %f is %d", nl, 0
fcompFmt3 byte "fcomp st(1) %f < %f is %d", nl, 0
fcompFmt4 byte "fcomp st(1) (2) %f < %f is %d", nl, 0
fcompFmt5 byte "fcomp mem %f < %f is %d", nl, 0
fcompFmt6 byte "fcomp mem (2) %f < %f is %d", nl, 0
fcomppFmt byte "fcompp %f < %f is %d", nl, 0
fcomppFmt2 byte "fcompp (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 353

 movzx r9, al
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

; fcom demo

 xor eax, eax
 fld three
 fld zero
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt
 call printFP

; fcom demo 2

 xor eax, eax
 fld zero
 fld three
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt2
 call printFP

; fcom st(i) demo

 xor eax, eax
 fld three
 fld zero
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

354 Chapter 6

 lea rcx, fcomFmt3
 call printFP

; fcom st(i) demo 2

 xor eax, eax
 fld zero
 fld three
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt4
 call printFP

; fcom mem64 demo

 xor eax, eax
 fld three ;Never on stack so
 fstp st1 ; copy for output
 fld zero
 fcom three
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt5
 call printFP

; fcom mem64 demo 2

 xor eax, eax
 fld zero ;Never on stack so
 fstp st1 ; copy for output
 fld three
 fcom zero
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt6
 call printFP

; fcomp demo

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 355

 fstp st1
 lea rcx, fcompFmt
 call printFP

; fcomp demo 2

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt2
 call printFP

; fcomp demo 3

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt3
 call printFP

; fcomp demo 4

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt4
 call printFP

; fcomp demo 5

 xor eax, eax
 fld three
 fstp st1
 fld zero
 fst st0 ; Because this gets popped
 fcomp three
 fstsw ax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

356 Chapter 6

 sahf
 setb al
 lea rcx, fcompFmt5
 call printFP

; fcomp demo 6

 xor eax, eax
 fld zero
 fstp st1
 fld three
 fst st0 ; Because this gets popped
 fcomp zero
 fstsw ax
 sahf
 setb al
 lea rcx, fcompFmt6
 call printFP

; fcompp demo

 xor eax, eax
 fld zero
 fst st1 ; Because this gets popped
 fld three
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt
 call printFP

; fcompp demo 2

 xor eax, eax
 fld three
 fst st1 ; Because this gets popped
 fld zero
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt2
 call printFP

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 6-5: Program that demonstrates the fcom instructions

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 357

Here’s the build command and output for the program in Listing 6-5:

C:\>build listing6-5

C:\>echo off
 Assembling: listing6-5.asm
c.cpp

C:\>listing6-5
Calling Listing 6-5:
fcom 0.000000 < 3.000000 is 1
fcom(2) 3.000000 < 0.000000 is 0
fcom st(1) 0.000000 < 3.000000 is 1
fcom st(1) (2) 3.000000 < 0.000000 is 0
fcom mem 0.000000 < 3.000000 is 1
fcom mem 3.000000 (2) < 0.000000 is 0
fcomp 3.000000 < 0.000000 is 0
fcomp (2) 0.000000 < 3.000000 is 1
fcomp st(1) 3.000000 < 0.000000 is 0
fcomp st(1) (2) 0.000000 < 3.000000 is 1
fcomp mem 0.000000 < 3.000000 is 1
fcomp mem (2) 3.000000 < 0.000000 is 0
fcompp 3.000000 < 0.000000 is 0
fcompp (2) 0.000000 < 3.000000 is 1
Listing 6-5 terminated

N O T E The x87 FPU also provides instructions that do unordered comparisons: fucom,
fucomp, and fucompp. These are functionally equivalent to fcom, fcomp, and fcompp
except they raise an exception under different conditions. See the Intel documentation
for more details.

6.5.9.2 The fcomi and fcomip Instructions

The fcomi and fcomip instructions compare ST(0) to the specified operand
and set the corresponding EFLAGS condition code bits based on the result
of the comparison. You use these instructions in a similar manner to fcom
and fcomp except you can test the CPU’s flag bits directly after the execu-
tion of these instructions without first moving the FPU status bits into the
EFLAGS register. The legal forms for these instructions are as follows:

fcomi st(0), st(i)
fcomip st(0), st(i)

Note that a pop-pop version (fcomipp) does not exist. If all you want to do
is compare the top two items on the FPU stack, you will have to explicitly
pop that item yourself (for example, by using the fstp st(0) instruction).

Listing 6-6 is a sample program that demonstrates the operation of the
fcomi and fcomip instructions.

; Listing 6-6
;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

358 Chapter 6

; Demonstration of fcomi and fcomip instructions

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-6", 0
fcomiFmt byte "fcomi %f < %f is %d", nl, 0
fcomiFmt2 byte "fcomi(2) %f < %f is %d", nl, 0
fcomipFmt byte "fcomip %f < %f is %d", nl, 0
fcomipFmt2 byte "fcomip (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP- Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 movzx r9, al
 call printf
 add rsp, 40
 ret

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 359

printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld three
 fld zero
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt
 call printFP

; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld zero
 fld three
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt2
 call printFP

; Test to see if 3 < 0
; Note: ST(0) contains 0, ST(1) contains 3

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt
 call printFP

; Test to see if 0 < 3
; Note: ST(0) contains 0, ST(1) contains 3

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

360 Chapter 6

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt2
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-6: Sample program demonstrating floating-point comparisons

Here’s the build command and output for the program in Listing 6-6:

C:\>build listing6-6

C:\>echo off
 Assembling: listing6-6.asm
c.cpp

C:\>listing6-6
Calling Listing 6-6:
fcomi 0.000000 < 3.000000 is 1
fcomi(2) 3.000000 < 0.000000 is 0
fcomip 3.000000 < 0.000000 is 0
fcomip (2) 0.000000 < 3.000000 is 1
Listing 6-6 terminated

N O T E The x87 FPU also provides two instructions that do unordered comparisons:
fucomi and fucomip. These are functionally equivalent to fcomi and fcomip except
they raise an exception under different conditions. See the Intel documentation for
more details.

6.5.9.3 The ftst Instruction

The ftst instruction compares the value in ST(0) against 0.0. It behaves just
like the fcom instruction would if ST(1) contained 0.0. This instruction does
not differentiate –0.0 from +0.0. If the value in ST(0) is either of these val-
ues, ftst will set C3 to denote equality (or unordered). This instruction does
not pop ST(0) off the stack.

Here’s an example:

ftst
fstsw ax
sahf
sete al ; Set al to 1 if TOS = 0.0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 361

6.5.10 Constant Instructions
The FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault,
invalid operation, and C1 flags if a stack overflow occurs; they do not other-
wise affect the FPU flags. The specific instructions in this category include
the following:

fldz ; Pushes +0.0.
fld1 ; Pushes +1.0.
fldpi ; Pushes pi (3.15159...)
fldl2t ; Pushes log2(10).
fldl2e ; Pushes log2(e).
fldlg2 ; Pushes log10(2).
fldln2 ; Pushes ln(2).

6.5.11 Transcendental Instructions
The FPU provides eight transcendental (logarithmic and trigonometric)
instructions to compute sine, cosine, partial tangent, partial arctangent,
2x – 1, y × log2(x), and y × log2(x + 1). Using various algebraic identities, it
is easy to compute most of the other common transcendental functions
by using these instructions.

6.5.11.1 The f2xm1 Instruction

f2xm1 computes 2ST(0) – 1. The value in ST(0) must be in the range –1.0 to
+1.0. If ST(0) is out of range, f2xm1 generates an undefined result but raises
no exceptions. The computed value replaces the value in ST(0).

Here’s an example computing 10i using the identity 10i = 2i×log2(10). This
is useful for only a small range of i that doesn’t put ST(0) outside the previ-
ously mentioned valid range:

fld i
fldl2t
fmul
f2xm1
fld1
fadd

Because f2xm1 computes 2x – 1, the preceding code adds 1.0 to the result
at the end of the computation.

6.5.11.2 The fsin, fcos, and fsincos Instructions

These instructions pop the value off the top of the register stack and com-
pute the sine, cosine, or both, and push the result(s) back onto the stack.
The fsincos instruction pushes the sine followed by the cosine of the origi-
nal operand; hence it leaves cos(ST(0)) in ST(0) and sin(ST(0)) in ST(1).

These instructions assume ST(0) specifies an angle in radians, and this
angle must be in the range –263 < ST(0) < +263. If the original operand is out

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

362 Chapter 6

of range, these instructions set the C2 flag and leave ST(0) unchanged. You
can use the fprem1 instruction, with a divisor of 2π, to reduce the operand to
a reasonable range.

These instructions set the stack fault (or rounding)/C1, precision,
underflow, denormalized, and invalid operation flags according to the
result of the computation.

6.5.11.3 The fptan Instruction

fptan computes the tangent of ST(0), replaces ST(0) with this value, and
then pushes 1.0 onto the stack. Like the fsin and fcos instructions, the value
of ST(0) must be in radians and in the range –263 < ST(0) < +263. If the
value is outside this range, fptan sets C2 to indicate that the conversion did
not take place. As with the fsin, fcos, and fsincos instructions, you can use
the fprem1 instruction to reduce this operand to a reasonable range by using
a divisor of 2π.

If the argument is invalid (that is, 0 or π radians, which causes a divi-
sion by 0), the result is undefined and this instruction raises no exceptions.
fptan will set the stack fault/rounding, precision, underflow, denormal,
invalid operation, C2, and C1 bits as required by the operation.

6.5.11.4 The fpatan Instruction

fpatan expects two values on the top of stack. It pops them and computes
ST(0) = tan-1(ST(1) / ST(0)). The resulting value is the arctangent of the
ratio on the stack expressed in radians. If you want to compute the arctan-
gent of a particular value, use fld1 to create the appropriate ratio and then
execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denor-
mal, and invalid operation bits if a problem occurs during the computation.
It sets the C1 condition code bit if it has to round the result.

6.5.11.5 The fyl2x Instruction

The fyl2x instruction computes ST(0) = ST(1) × log2(ST(0)). The instruction
itself has no operands, but expects two operands on the FPU stack in ST(1)
and ST(0), thus using the following syntax:

fyl2x

To compute the log of any other base, you can use the following arith-
metic identity:

logn(x) = log2(x) / log2(n)
So if you first compute log2(n) and put its reciprocal on the stack, then

push x onto the stack and execute fyl2x, you wind up with logn(x).
The fyl2x instruction sets the C1 condition code bit if it has to round

up the value. It clears C1 if no rounding occurs or if a stack overflow occurs.
The remaining floating-point condition codes are undefined after the exe-
cution of this instruction. fyl2x can raise the following floating-point excep-
tions: invalid operation, denormal result, overflow, underflow, and inexact

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 363

result. Note that the fldl2t and fldl2e instructions turn out to be quite
handy when using the fyl2x instruction (for computing log10 and ln).

6.5.11.6 The fyl2xp1 Instruction

fyl2xp1 computes ST(0) = ST(1) × log2(ST(0) + 1.0), from two operands on
the FPU stack. The syntax for this instruction is as follows:

fyl2xp1

Otherwise, the instruction is identical to fyl2x.

6.5.12 Miscellaneous Instructions
The FPU includes several additional instructions that control the FPU, syn-
chronize operations, and let you test or set various status bits: finit/fninit,
fldcw, fstcw, fclex/fnclex, and fstsw.

6.5.12.1 The finit and fninit Instructions

The finit and fninit instructions initialize the FPU for proper operation.
Your code should execute one of these instructions before executing any
other FPU instructions. They initialize the control register to 37Fh, the
status register to 0, and the tag word to 0FFFFh. The other registers are
unaffected.

Here are some examples:

finit
fninit

The difference between finit and fninit is that finit first checks for any
pending floating-point exceptions before initializing the FPU; fninit does not.

6.5.12.2 The fldcw and fstcw Instructions

The fldcw and fstcw instructions require a single 16-bit memory operand:

fldcw mem16
fstcw mem16

These two instructions load the control word from a memory location
(fldcw) or store the control word to a 16-bit memory location (fstcw).

When using fldcw to turn on one of the exceptions, if the corresponding
exception flag is set when you enable that exception, the FPU will gener-
ate an immediate interrupt before the CPU executes the next instruction.
Therefore, you should use fclex to clear any pending interrupts before
changing the FPU exception enable bits.

6.5.12.3 The fclex and fnclex Instructions

The fclex and fnclex instructions clear all exception bits, the stack fault bit,
and the busy flag in the FPU status register.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

364 Chapter 6

Here are examples:

fclex
fnclex

The difference between these instructions is the same as between finit
and fninit: fclex first checks for pending floating-point exceptions.

6.5.12.4 The fstsw and fnstsw Instructions

These instructions store the FPU status word into a 16-bit memory location
or the AX register:

fstsw ax
fnstsw ax
fstsw mem16
fnstsw mem16

These instructions are unusual in the sense that they can copy an FPU
value into one of the x86-64 general-purpose registers (specifically, AX).
The purpose is to allow the CPU to easily test the condition code register
with the sahf instruction. The difference between fstsw and fnstsw is the
same as for fclex and fnclex.

 6.6 Converting Floating-Point Expressions to Assembly
Language
Because the FPU register organization is different from the x86-64 integer
register set, translating arithmetic expressions involving floating-point oper-
ands is a little different from translating integer expressions. Therefore, it
makes sense to spend some time discussing how to manually translate float-
ing-point expressions into assembly language.

The FPU uses postfix notation (also called reverse Polish notation, or RPN),
for arithmetic operations. Once you get used to using postfix notation, it’s
actually a bit more convenient for translating expressions because you don’t
have to worry about allocating temporary variables—they always wind up on
the FPU stack. Postfix notation, as opposed to standard infix notation, places
the operands before the operator. Table 6-14 provides simple examples of
infix notation and the corresponding postfix notation.

Table 6-14: Infix-to-Postfix Translation

Infix notation Postfix notation

5 + 6 5 6 +

7 – 2 7 2 –

x × y x y ×

a / b a b /

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 365

A postfix expression like 5 6 + says, “Push 5 onto the stack, push 6 onto
the stack, and then pop the value off the top of stack (6) and add it to the new
top of stack.” Sound familiar? This is exactly what the fld and fadd instructions
do. In fact, you can calculate the result by using the following code:

fld five ; Declared somewhere as five real8 5.0 (or real4/real10)
fld six ; Declared somewhere as six real8 6.0 (or real4/real10)
fadd ; 11.0 is now on the top of the FPU stack.

As you can see, postfix is a convenient notation because it’s easy to
translate this code into FPU instructions.

Another advantage to postfix notation is that it doesn’t require any
parentheses. The examples in Table 6-15 demonstrate some slightly more
complex infix-to-postfix conversions.

Table 6-15: More-Complex Infix-to-Postfix
Translations

Infix notation Postfix notation

(x + y) × 2 x y + 2 ×

x × 2 – (a + b) x 2 × a b + –

(a + b) × (c + d) a b + c d + ×

The postfix expression x y + 2 × says, “Push x, then push y; next, add
those values on the stack (producing x + y on the stack). Next, push 2 and
then multiply the two values (2 and x + y) on the stack to produce two times
the quantity x + y.” Once again, we can translate these postfix expressions
directly into assembly language. The following code demonstrates the con-
version for each of the preceding expressions:

; x y + 2 *

 fld x
 fld y
 fadd
 fld const2 ;const2 real8 2.0 in .data section
 fmul

; x 2 * a b + -

 fld x
 fld const2 ;const2 real8 2.0 in .data section
 fmul
 fld a
 fld b
 fadd
 fsub

; a b + c d + *

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

366 Chapter 6

 fld a
 fld b
 fadd
 fld c
 fld d
 fadd
 fmul

6.6.2 Converting Arithmetic Expressions to Postfix Notation
For simple expressions, those involving two operands and a single expression,
the translation from infix to postfix notation is trivial: simply move the opera-
tor from the infix position to the postfix position (that is, move the operator
from between the operands to after the second operand). For example, 5 +
6 becomes 5 6 +. Other than separating your operands so you don’t confuse
them (that is, is it 5 and 6 or 56?), converting simple infix expressions into
postfix notation is straightforward.

For complex expressions, the idea is to convert the simple subexpres-
sions into postfix notation and then treat each converted subexpression as
a single operand in the remaining expression. The following discussion sur-
rounds completed conversions with square brackets so it is easy to see which
text needs to be treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the
innermost parenthetical subexpression and then work your way outward,
considering precedence, associativity, and other parenthetical subexpres-
sions. As a concrete working example, consider the following expression:

x = ((y – z) * a) – (a + b * c) / 3.14159

A possible first translation is to convert the subexpression (y - z) into
postfix notation:

x = ([y z -] * a) - (a + b * c) / 3.14159

Square brackets surround the converted postfix code just to separate it
from the infix code, for readability. Remember, for the purposes of conver-
sion, we will treat the text inside the square brackets as a single operand.
Therefore, you would treat [y z -] as though it were a single variable name
or constant.

The next step is to translate the subexpression ([y z -] * a) into post-
fix form. This yields the following:

x = [y z - a *] - (a + b * c) / 3.14159

Next, we work on the parenthetical expression (a + b * c). Because
multiplication has higher precedence than addition, we convert b * c first:

x = [y z - a *] - (a + [b c *]) / 3.14159

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 367

After converting b * c, we finish the parenthetical expression:

x = [y z - a *] - [a b c * +] / 3.14159

This leaves only two infix operators: subtraction and division. Because
division has the higher precedence, we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]

Finally, we convert the entire expression into postfix notation by deal-
ing with the last infix operation, subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets yields the following postfix expression:

x = y z - a * a b c * + 3.14159 / -

The following steps demonstrate another infix-to-postfix conversion for
this expression:

a = (x * y - z + t) / 2.0

1. Work inside the parentheses. Because multiplication has the highest
precedence, convert that first:

a = ([x y *] - z + t) / 2.0

2. Still working inside the parentheses, we note that addition and subtrac-
tion have the same precedence, so we rely on associativity to determine
what to do next. These operators are left-associative, so we must translate
the expressions from left to right. This means translate the subtraction
operator first:

a = ([x y * z -] + t) / 2.0

3. Now translate the addition operator inside the parentheses. Because
this finishes the parenthetical operators, we can drop the parentheses:

a = [x y * z - t +] / 2.0

4. Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 /]

5. Drop the square brackets and we’re done:

a = x y * z - t + 2.0 /

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

368 Chapter 6

6.6.3 Converting Postfix Notation to Assembly Language
Once you’ve translated an arithmetic expression into postfix notation,
finishing the conversion to assembly language is easy. All you have to do is
issue an fld instruction whenever you encounter an operand and issue an
appropriate arithmetic instruction when you encounter an operator. This
section uses the completed examples from the previous section to demon-
strate how little there is to this process.

x = y z - a * a b c * + 3.14159 / -

1. Convert y to fld y.

2. Convert z to fld z.

3. Convert - to fsub.

4. Convert a to fld a.

5. Convert * to fmul.

6. Continuing in a left-to-right fashion, generate the following code for
the expression:

fld y
fld z
fsub
fld a
fmul
fld a
fld b
fld c
fmul
fadd
fldpi ; Loads pi (3.14159)
fdiv
fsub

fstp x ; Store result away into x.

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /
 fld x
 fld y
 fmul
 fld z
 fsub
 fld t
 fadd
 fld const2 ;const2 real8 2.0 in .data section
 fdiv

 fstp a ; Store result away into a.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 369

As you can see, the translation is fairly simple once you’ve converted the
infix notation to postfix notation. Also note that, unlike integer expression
conversion, you don’t need any explicit temporaries. It turns out that the
FPU stack provides the temporaries for you.9 For these reasons, converting
floating-point expressions into assembly language is actually easier than
converting integer expressions.

 6.7 SSE Floating-Point Arithmetic
Although the x87 FPU is relatively easy to use, the stack-based design of
the FPU created performance bottlenecks as CPUs became more powerful.
After introducing the Streaming SIMD Extensions (SSE) in its Pentium III
CPUs (way back in 1999), Intel decided to resolve the FPU performance
bottleneck and added scalar (non-vector) floating-point instructions to
the SSE instruction set that could use the XMM registers. Most modern
programs favor the use of the SSE (and later) registers and instructions for
floating-point operations over the x87 FPU, using only those x87 operations
available exclusively on the x87.

The SSE instruction set supports two floating-point data types: 32-bit
single-precision (Intel calls these scalar single operations) and 64-bit dou-
ble-precision values (Intel calls these scalar double operations).10 The SSE
does not support the 80-bit extended-precision floating-point data types
of the x87 FPU. If you need the extended-precision format, you’ll have to
use the x87 FPU.

6.7.1 SSE MXCSR Register
The SSE MXCSR register is a 32-bit status and control register that controls
SSE floating-point operations. Bits 16 to 32 are reserved and currently have
no meaning. Table 6-16 lists the functions of the LO 16 bits.

Table 6-16: SSE MXCSR Register

Bit Name Function

0 IE Invalid operation exception flag. Set if an invalid operation was
attempted.

1 DE Denormal exception flag. Set if operations produced a denormalized
value.

2 ZE Zero exception flag. Set if an attempt to divide by 0 was made.

3 OE Overflow exception flag. Set if there was an overflow.

9. This assumes, of course, that your calculations aren’t so complex that you exceed the eight-
element limitation of the FPU stack.

10. This book has typically used scalar to denote atomic (noncomposite) data types that were
not floating-point (chars, Booleans, integers, and so forth). In fact, floating-point values
(that are not part of a larger composite data type) are also scalars. Intel uses scalar as
opposed to vector (the SSE also supports vector operations).

continued

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

370 Chapter 6

Bit Name Function

4 UE Underflow exception flag. Set if there was an underflow.

5 PE Precision exception flag. Set if there was a precision exception.

6 DAZ Denormals are 0. If set, treat denormalized values as 0.

7 IM Invalid operation mask. If set, ignore invalid operation exceptions.

8 DM Denormal mask. If set, ignore denormal exceptions.

9 ZM Divide-by-zero mask. If set, ignore division-by-zero exceptions.

10 OM Overflow mask. If set, ignore overflow exceptions.

11 UM Underflow mask. If set, ignore underflow exceptions.

12 PM Precision mask. If set, ignore precision exceptions.

13 Rounding
Control

00: Round to nearest 01: Round toward –infinity
10: Round toward +infinity 11: Round toward 0 (truncate)

14

15 FTZ Flush to zero. When set, all underflow conditions set the register to 0.

Access to the SSE MXCSR register is via the following two instructions:

ldmxcsr mem32
stmxcsr mem32

The ldmxcsr instruction loads the MXCSR register from the specified
32-bit memory location. The stmxcsr instruction stores the current contents
of the MXCSR register to the specified memory location.

By far, the most common use of these two instructions is to set the round-
ing mode. In typical programs using the SSE floating-point instructions, it
is common to switch between the round-to-nearest and round-to-zero (trun-
cate) modes.

6.7.2 SSE Floating-Point Move Instructions
The SSE instruction set provides two instructions to move floating-point
values between XMM registers and memory: movss (move scalar single) and
movsd (move scalar double). Here is their syntax:

movss xmmn, mem32
movss mem32, xmmn
movsd xmmn, mem64
movsd mem64, xmmn

As for the standard general-purpose registers, the movss and movsd
instructions move data between an appropriate memory location (contain-
ing a 32- or 64-bit floating-point value) and one of the 16 XMM registers
(XMM0 to XMM15).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 371

For maximum performance, movss memory operands should appear at a
double-word-aligned memory address, and movsd memory operands should
appear at a quad-word-aligned memory address. Though these instructions
will function properly if the memory operands are not properly aligned in
memory, there is a performance hit for misaligned accesses.

In addition to the movss and movsd instructions that move floating-point
values between XMM registers or XMM registers and memory, you’ll find a
couple of other SSE move instructions useful that move data between XMM
and general-purpose registers, movd and movq:

movd reg32, xmmn
movd xmmn, reg32
movq reg64, xmmn
movq xmmn, reg64

These instructions also have a form that allows a source memory oper-
and. However, you should use movss and movsd to move floating-point variables
into XMM registers.

The movq and movd instructions are especially useful for copying XMM
registers into 64-bit general-purpose registers prior to a call to printf()
(when printing floating-point values). As you’ll see in a few sections, these
instructions are also useful for floating-point comparisons on the SSE.

6.7.3 SSE Floating-Point Arithmetic Instructions
The Intel SSE instruction set adds the following floating-point arithmetic
instructions:

addss xmmn, xmmn
addss xmmn, mem32
addsd xmmn, xmmn
addsd xmmn, mem64

subss xmmn, xmmn
subss xmmn, mem32
subsd xmmn, xmmn
subsd xmmn, mem64

mulss xmmn, xmmn
mulss xmmn, mem32
mulsd xmmn, xmmn
mulsd xmmn, mem64

divss xmmn, xmmn
divss xmmn, mem32
divsd xmmn, xmmn
divsd xmmn, mem64

minss xmmn, xmmn
minss xmmn, mem32
minsd xmmn, xmmn
minsd xmmn, mem64

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

372 Chapter 6

maxss xmmn, xmmn
maxss xmmn, mem32
maxsd xmmn, xmmn
maxsd xmmn, mem64

sqrtss xmmn, xmmn
sqrtss xmmn, mem32
sqrtsd xmmn, xmmn
sqrtsd xmmn, mem64

rcpss xmmn, xmmn
rcpss xmmn, mem32

rsqrtss xmmn, xmmn
rsqrtss xmmn, mem32

The addsx, subsx, mulsx, and divsx instructions perform the expected
floating-point arithmetic operations. The minsx instructions compute the
minimum value of the two operands, storing the minimum value into
the destination (first) operand. The maxsx instructions do the same thing,
but compute the maximum of the two operands. The sqrtsx instructions
compute the square root of the source (second) operand and store the
result into the destination (first) operand. The rcpsx instructions compute
the reciprocal of the source, storing the result into the destination.11 The
rsqrtsx instructions compute the reciprocal of the square root.12

The operand syntax is somewhat limited for the SSE instructions (com-
pared with the generic integer instructions): the destination operand must
always be an XMM register.

6.7.4 SSE Floating-Point Comparisons
The SSE floating-point comparisons work quite a bit differently from the inte-
ger and x87 FPU compare instructions. Rather than having a single generic
instruction that sets flags (to be tested by setcc or jcc instructions), the SSE
provides a set of condition-specific comparison instructions that store true
(all 1 bits) or false (all 0 bits) into the destination operand. You can then test
the result value for true or false. Here are the instructions:

cmpss xmmn, xmmm/mem32, imm8
cmpsd xmmn, xmmm/mem64, imm8

cmpeqss xmmn, xmmm/mem32
cmpltss xmmn, xmmm/mem32
cmpless xmmn, xmmm/mem32
cmpunordss xmmn, xmmm/mem32
cmpne qss xmmn, xmmm/mem32

11. Intel’s documentation claims that the reciprocal operation is just an approximation.
Then again, by definition, the square root operation is also an approximation because it
produces irrational results.

12. Also an approximation.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 373

cmpnltss xmmn, xmmm/mem32
cmpnless xmmn, xmmm/mem32
cmpordss xmmn, xmmm/mem32

cmpeqsd xmmn, xmmm/mem64
cmpltsd xmmn, xmmm/mem64
cmplesd xmmn, xmmm/mem64
cmpunordsd xmmn, xmmm/mem64
cmpneqsd xmmn, xmmm/mem64
cmpnltsd xmmn, xmmm/mem64
cmpnlesd xmmn, xmmm/mem64
cmpordsd xmmn, xmmm/mem64

The immediate constant is a value in the range 0 to 7 and represents
one of the comparisons in Table 6-17.

Table 6-17: SSE Compare Immediate Operand

imm8 Comparison

0 First operand == second operand

1 First operand < second operand

2 First operand <= second operand

3 First operand unordered second operand

4 First operand != second operand

5 First operand not less than second operand (>=)

6 First operand not less than or equal to second operand (>)

7 First operand ordered second operand

The instructions without the third (immediate) operand are special
pseudo-ops MASM provides that automatically supply the appropriate third
operand. You can use the nlt form for ge and nle form for gt, assuming the
operands are ordered.

The unordered comparison returns true if either (or both) operands
are unordered (typically, NaN values). Likewise, the ordered comparison
returns true if both operands are ordered.

As noted, these instructions leave 0 or all 1 bits in the destination
register to represent false or true. If you want to branch based on these
conditions, you should move the destination XMM register into a general-
purpose register and test that register for zero/not zero. You can use the
movq or movd instructions to accomplish this:

 cmpeqsd xmm0, xmm1
 movd eax, xmm0 ;move true/false to EAX
 test eax, eax ;Test for true/false
 jnz xmm0EQxmm1 ;Branch if xmm0 == xmm1

; code to execute if xmm0 != xmm1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

374 Chapter 6

6.7.5 SSE Floating-Point Conversions
The x86-64 provides several floating-point conversion instructions that
convert between floating-point and integer formats. Table 6-18 lists these
instructions and their syntax.

Table 6-18: SSE Conversion Instructions

Instruction syntax Description

cvtsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to 32-, or 64-bit integer. Uses the
current rounding mode in the MXCSR to determine how to deal with
fractional components. Result is stored in a general-purpose 32- or
64-bit register.

cvtsd2ss xmmn, xmmn/mem64 Converts scalar double-precision FP (in an XMM register or memory)
to scalar single-precision FP and leaves the result in the destination
XMM register. Uses the current rounding mode in the MXCSR to deter-
mine how to deal with inexact conversions.

cvtsi2sd xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a double-precision floating-point value, leaving the result in an XMM
register.

cvtsi2ss xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a single-precision floating-point value, leaving the result in an XMM
register.

cvtss2sd xmmn, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to a double-precision value, leaving the result in the destina-
tion XMM register.

cvtss2si reg32/64, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to an integer and leaves the result in a general-purpose 32-
or 64-bit register. Uses the current rounding mode in the MXCSR to
determine how to deal with inexact conversions.

cvttsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to a 32-, or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

cvttss2si reg32/64, xmmn/mem32 Converts scalar single-precision FP to a 32-, or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

 6.8 For More Information
The Intel/AMD processor manuals fully describe the operation of each of
the integer and floating-point arithmetic instructions, including a detailed
description of how these instructions affect the condition code bits and
other flags in the RFLAGS and FPU status registers. To write the best pos-
sible assembly language code, you need to be intimately familiar with how
the arithmetic instructions affect the execution environment, so spending
time with the Intel/AMD manuals is a good idea.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Arithmetic 375

Chapter 8 discusses multiprecision integer arithmetic. See that chapter
for details on handling integer operands that are greater than 64 bits in size.

The x86-64 SSE instruction set found on later iterations of the CPU
provides support for floating-point arithmetic using the AVX register set.
Consult the Intel/AMD documentation for details concerning the AVX
floating-point instruction set.

 6.9 Test Yourself
1. What are the implied operands for the single-operand imul and mul

instructions?

2. What is the result size for an 8-bit mul operation? A 16-bit mul operation?
A 32-bit mul operation? A 64-bit mul operation? Where does the CPU put
the products?

3. What result(s) does an x86 div instruction produce?

4. When performing a signed 16-bit by 16-bit division using idiv, what
must you do before executing the idiv instruction?

5. When performing an unsigned 32-bit by 32-bit division using div, what
must you do before executing the div instruction?

6. What are the two conditions that will cause a div instruction to produce
an exception?

7. How do the mul and imul instructions indicate overflow?

8. How do the mul and imul instructions affect the zero flag?

9. What is the difference between the extended-precision (single operand)
imul instruction and the more generic (multi-operand) imul instruction?

10. What instructions would you normally use to sign-extend the accumula-
tor prior to executing an idiv instruction?

11. How do the div and idiv instructions affect the carry, zero, overflow,
and sign flags?

12. How does the cmp instruction affect the zero flag?

13. How does the cmp instruction affect the carry flag (with respect to an
unsigned comparison)?

14. How does the cmp instruction affect the sign and overflow flags (with
respect to a signed comparison)?

15. What operands do the setcc instructions take?

16. What do the setcc instructions do to their operand?

17. What is the difference between the test instruction and the and
instruction?

18. What are the similarities between the test instruction and the and
instruction?

19. Explain how you would use the test instruction to see if an individual
bit is 1 or 0 in an operand?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

376 Chapter 6

20. Convert the following expressions to assembly language (assume all
variables are signed 32-bit integers):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)
x = (y == z) && (t != 0)

21. Compute the following expressions without using an imul or mul instruc-
tion (assume all variables are signed 32-bit integers):

x = x * 2
x = y * 5
x = y * 8

22. Compute the following expressions without using a div or idiv instruc-
tion (assume all variables are unsigned 16-bit integers):

x = x / 2
x = y / 8
x = z / 10

23. Convert the following expressions to assembly language by using the
FPU (assume all variables are real8 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)

24. Convert the following expressions to assembly language by using SSE
instructions (assume all variables are real4 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t

25. Convert the following expressions to assembly language by using FPU
instructions; assume b is a one-byte Boolean variable and x, y, and z are
real8 floating-point variables:

b = x < y
b = x >= y && x < z

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

7
L O W - L E V E L C O N T R O L

S T R U C T U R E S

This chapter discusses how to convert
high-level-language control structures into

assembly language control statements. The
examples up to this point have created assem-

bly control structures in an ad hoc manner. Now it’s
time to formalize how to control the operation of your
assembly language programs. By the time you finish
this chapter, you should be able to convert HLL con-
trol structures into assembly language.

Control structures in assembly language consist of conditional branches
and indirect jumps. This chapter discusses those instructions and how to
emulate HLL control structures (such as if/else, switch, and loop statements).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

378 Chapter 7

This chapter also discusses labels (the targets of conditional branches and
jump statements) as well as the scope of labels in an assembly language
source file.

 7.1 Statement Labels
Before discussing the jump instructions and how to emulate control struc-
tures using them, an in-depth discussion of assembly language statement
labels is necessary. In an assembly language program, labels stand in as sym-
bolic names for addresses. It is far more convenient to refer to a position in
your code by using a name such as LoopEntry rather than a numeric address
such as 0AF1C002345B7901Eh. For this reason, assembly language low-level
control structures make extensive use of labels within source code (see “Brief
Detour: An Introduction to Control Transfer Instructions” in Chapter 2).

You can do three things with (code) labels: transfer control to a label
via a (conditional or unconditional) jump instruction, call a label via the
call instruction, and take the address of a label. Taking the address of a
label is useful when you want to indirectly transfer control to that address
at a later point in your program.

The following code sequence demonstrates two ways to take the address
of a label in your program (using the lea instruction and using the offset
operator):

stmtLbl:
 .
 .
 .
 mov rcx, offset stmtLbl2
 .
 .
 .
 lea rax, stmtLbl
 .
 .
 .
stmtLbl2:

Because addresses are 64-bit quantities, you’ll typically load an address
into a 64-bit general-purpose register by using the lea instruction. Because
that instruction uses a 32-bit relative displacement from the current instruc-
tion, the instruction encoding is significantly shorter than the mov instruction
(which encodes a full 8-byte constant in addition to the opcode bytes).

7.1.1 Using Local Symbols in Procedures
Statement labels you define within a proc/endp procedure are local to that
procedure, in the sense of lexical scope: the statement label is visible only
within that procedure; you cannot refer to that statement label outside
the procedure. Listing 7-1 demonstrates that you cannot refer to a symbol

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 379

inside another procedure (note that this program will not assemble because
of this error).

; Listing 7-1
;
; Demonstration of local symbols.
; Note that this program will not
; compile; it fails with an
; undefined symbol error.

 option casemap:none

 .code

hasLocalLbl proc

localStmLbl:
 ret
hasLocalLbl endp

; Here is the "asmMain" function.

asmMain proc

asmLocal: jmp asmLocal ; This is okay
 jmp localStmtLbl ; Undefined in asmMain
asmMain endp
 end

Listing 7-1: Demonstration of lexically scoped symbols

The command to assemble this file (and the corresponding diagnostic
message) is as follows:

C:\>ml64 /c listing7-1.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing7-1.asm
listing7-1.asm(26) : error A2006:undefined symbol : localStmtLbl

If you really want to access a statement (or any other) label outside a
procedure, you can use the option directive to turn off local scope within a
section of your program, as noted in Chapter 5:

option noscoped
option scoped

The first form tells MASM to stop making symbols (inside proc/endp)
local to the procedure containing them. The second form restores the lexical
scoping of symbols in procedures. Therefore, using these two directives, you
can turn scoping on or off for various sections of your source file (including

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

380 Chapter 7

as little as a single statement, if you like). Listing 7-2 demonstrates how to use
the option directive to make a single symbol global outside the procedure con-
taining it (note that this program still has compile errors).

; Listing 7-2
;
; Demonstration of local symbols #2.
; Note that this program will not
; compile; it fails with two
; undefined symbol errors.

 option casemap:none

 .code

hasLocalLbl proc

localStmLbl:
 option noscoped
notLocal:
 option scoped
isLocal:
 ret
hasLocalLbl endp

; Here is the "asmMain" function.

asmMain proc

 lea rcx, localStmtLbl ; Generates an error
 lea rcx, notLocal ; Assembles fine
 lea rcx, isLocal ; Generates an error
asmMain endp
 end

Listing 7-2: The option scoped and option noscoped directives

Here’s the build command (and diagnostic output) for Listing 7-2:

C:\>ml64 /c listing7-2.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing7-2.asm
listing7-2.asm(29) : error A2006:undefined symbol : localStmtLbl
listing7-2.asm(31) : error A2006:undefined symbol : isLocal

As you can see from MASM’s output, the notLocal symbol (appearing
after the option noscoped directive) did not generate an undefined symbol
error. However, the localStmtLbl and isLocal symbols, which are local to
hasLocalLbl, are undefined outside that procedure.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 381

7.1.2 Initializing Arrays with Label Addresses
MASM also allows you to initialize quad-word variables with the addresses
of statement labels. However, labels that appear in the initialization por-
tions of variable declarations have some restrictions. The most important
restriction is that the symbol must be in the same lexical scope as the data
declaration attempting to use it. So, either the qword directive must appear
inside the same procedure as the statement label, or you must use the option
noscoped directive to make the symbol(s) global to the procedure. Listing 7-3
demonstrates these two ways to initialize a qword variable with statement
label addresses.

; Listing 7-3
;
; Initializing qword values with the
; addresses of statement labels.

 option casemap:none

 .data
lblsInProc qword globalLbl1, globalLbl2 ;From procWLabels

 .code

;procWLabels-
; Just a procedure containing private (lexically scoped)
; and global symbols. This really isn't an executable
; procedure.

procWLabels proc
privateLbl:
 nop ;"No operation" just to consume space
 option noscoped
globalLbl1: jmp globalLbl2
globalLbl2: nop
 option scoped
privateLbl2:
 ret
dataInCode qword privateLbl, globalLbl1
 qword globalLbl2, privateLbl2
procWLabels endp

 end

Listing 7-3: Initializing qword variables with the address of statement labels

If you compile Listing 7-3 with the following command, you’ll get no
assembly errors:

ml64 /c /Fl listing7-3.asm

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

382 Chapter 7

If you look at the listing7-3.lst output file that MASM produces, you can
see that MASM properly initializes the qword declarations with the (sec-
tion-relative/relocatable) offsets of the statement labels:

00000000 .data
00000000 lblsInProc qword globalLbl1, globalLbl2
 0000000000000001 R
 0000000000000003 R
 .
 .
 .
 00000005 dataInCode qword privateLbl, globalLbl1
 0000000000000000 R
 0000000000000001 R
 00000015 0000000000000003 R qword globalLbl2, privateLbl2
 0000000000000004 R

Transferring control to a statement label inside a procedure is generally
considered bad programming practice. Unless you have a good reason to
do so, you probably shouldn’t.

As addresses on the x86-64 are 64-bit quantities, you will typically use
the qword directive (as in the previous examples) to initialize a data object
with the address of a statement label. However, if your program is (always
going to be) smaller than 2GB, and you set the LARGEADDRESSAWARE:NO flag
(using sbuild.bat), you can get away with using dword data declarations to
hold the address of a label. Of course, as this book has pointed out many
times, using 32-bit addresses in your 64-bit programs can lead to problems
if you ever exceed 2GB of storage for your program.

 7.2 Unconditional Transfer of Control (jmp)
The jmp (jump) instruction unconditionally transfers control to another
point in the program. This instruction has three forms: a direct jump and
two indirect jumps. These instructions take the following forms:

jmp label
jmp reg64
jmp mem64

The first instruction is a direct jump, which you’ve seen in various sample
programs up to this point. For direct jumps, you normally specify the target
address by using a statement label. The label appears either on the same
line as an executable machine instruction or by itself on a line preceding
an executable machine instruction. The direct jump is completely equiva-
lent to a goto statement in a high-level language.1

1. Unlike high-level languages, for which your instructors usually forbid you to use goto state-
ments, you will find that the use of the jmp instruction in assembly language is essential.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 383

Here’s an example:

 statements
 jmp laterInPgm
 .
 .
 .
laterInPgm:
 statements

7.2.1 Register-Indirect Jumps
The second form of the jmp instruction given earlier—jmp reg64—is a register-
indirect jump instruction that transfers control to the instruction whose
address appears in the specified 64-bit general-purpose register. To use this
form of the jmp instruction, you must load a 64-bit register with the address
of a machine instruction prior to the execution of the jmp. When several
paths, each loading the register with a different address, converge on the
same jmp instruction, control transfers to an appropriate location deter-
mined by the path up to that point.

Listing 7-4 reads a string of characters from the user that contain an
integer value. It uses the C Standard Library function strtol() to convert
that string to a binary integer value. The strtol() function doesn’t do the
greatest job of reporting an error, so this program tests the return results to
verify a correct input, and uses register-indirect jumps to transfer control to
different code paths based on the result.

The first part of Listing 7-4 contains constants, variables, external dec-
larations, and the (usual) getTitle() function.

; Listing 7-4
;
; Demonstration of register indirect jumps

 option casemap:none

nl = 10
maxLen = 256
EINVAL = 22 ; "Magic" C stdlib constant, invalid argument
ERANGE = 34 ; Value out of range

 .const
ttlStr byte "Listing 7-4", 0
fmtStr1 byte "Enter an integer value between "
 byte "1 and 10 (0 to quit): ", 0

badInpStr byte "There was an error in readLine "
 byte "(ctrl-Z pressed?)", nl, 0

invalidStr byte "The input string was not a proper number"
 byte nl, 0

rangeStr byte "The input value was outside the "

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

384 Chapter 7

 byte "range 1-10", nl, 0

unknownStr byte "The was a problem with strToInt "
 byte "(unknown error)", nl, 0

goodStr byte "The input value was %d", nl, 0

fmtStr byte "result:%d, errno:%d", nl, 0

 .data
 externdef _errno:dword ;Error return by C code
endStr qword ?
inputValue dword ?
buffer byte maxLen dup (?)

 .code
 externdef readLine:proc
 externdef strtol:proc
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The next section of Listing 7-4 is the strToInt() function, a wrapper
around the C Standard Library strtol() function that does a more thor-
ough job of handling erroneous inputs from the user. See the comments
for the function’s return values.

; strToInt-
;
; Converts a string to an integer, checking for errors.
;
; Argument:
; RCX- Pointer to string containing (only) decimal
; digits to convert to an integer.
;
; Returns:
; RAX- Integer value if conversion was successful.
; RCX- Conversion state. One of the following:
; 0- Conversion successful
; 1- Illegal characters at the beginning of the
; string (or empty string).
; 2- Illegal characters at the end of the string
; 3- Value too large for 32-bit signed integer.

strToInt proc
strToConv equ [rbp+16] ; Flush RCX here
endPtr equ [rbp-8] ; Save ptr to end of str.
 push rbp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 385

 mov rbp, rsp
 sub rsp, 32h ; Shadow + 16-byte alignment

 mov strToConv, rcx ; Save, so we can test later.

 ; RCX already contains string parameter for strtol

 lea rdx, endPtr ; Ptr to end of string goes here.
 mov r8d, 10 ; Decimal conversion
 call strtol

; On return:
;
; RAX- Contains converted value, if successful.
; endPtr-Pointer to 1 position beyond last char in string.
;
; If strtol returns with endPtr == strToConv, then there were no
; legal digits at the beginning of the string.

 mov ecx, 1 ; Assume bad conversion
 mov rdx, endPtr
 cmp rdx, strToConv
 je returnValue

; If endPtr is not pointing at a zero byte, then we've got
; junk at the end of the string.

 mov ecx, 2 ; Assume junk at end
 mov rdx, endPtr
 cmp byte ptr [rdx], 0
 jne returnValue

; If the return result is 7fff_ffffh or 8000_0000h (max long and
; min long, respectively), and the C global _errno variable
; contains ERANGE, then we've got a range error.

 mov ecx, 0 ; Assume good input
 cmp _errno, ERANGE
 jne returnValue
 mov ecx, 3 ; Assume out of range
 cmp eax, 7fffffffh
 je returnValue
 cmp eax, 80000000h
 je returnValue

; If we get to this point, it's a good number

 mov ecx, 0

returnValue:
 leave
 ret
strToInt endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

386 Chapter 7

The final section of Listing 7-4 is the main program. This is the part of
code most interesting to us. It loads the RBX register with the address of
code to execute based on the strToInt() return results. The strToInt() func-
tion returns one of the following states (see the comments in the previous
code for an explanation):

•	 Valid input

•	 Illegal characters at the beginning of the string

•	 Illegal characters at the end of the string

•	 Range error

The program then transfers control to different sections of asmMain() based
on the value held in RBX (which specifies the type of result strToInt()
returns).

; Here is the "asmMain" function.

 public asmMain
asmMain proc
saveRBX equ qword ptr [rbp-8] ; Must preserve RBX
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

 mov saveRBX, rbx ; Must preserve RBX

 ; Prompt the user to enter a value
 ; between 1 and 10:

repeatPgm: lea rcx, fmtStr1
 call printf

 ; Get user input:

 lea rcx, buffer
 mov edx, maxLen ; Zero-extends!
 call readLine
 lea rbx, badInput ; Initialize state machine
 test rax, rax ; RAX is -1 on bad input
 js hadError ; (only neg value readLine returns)

 ; Call strtoint to convert string to an integer and
 ; check for errors:

 lea rcx, buffer ; Ptr to string to convert
 call strToInt
 lea rbx, invalid
 cmp ecx, 1
 je hadError
 cmp ecx, 2

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 387

 je hadError

 lea rbx, range
 cmp ecx, 3
 je hadError

 lea rbx, unknown
 cmp ecx, 0
 jne hadError

; At this point, input is valid and is sitting in EAX.
;
; First, check to see if the user entered 0 (to quit
; the program).

 test eax, eax ;Test for zero
 je allDone

; However, we need to verify that the number is in the
; range 1-10.

 lea rbx, range
 cmp eax, 1
 jl hadError
 cmp eax, 10
 jg hadError

; Pretend a bunch of work happens here dealing with the
; input number.

 lea rbx, goodInput
 mov inputValue, eax

; The different code streams all merge together here to
; execute some common code (we'll pretend that happens;
; for brevity, no such code exists here).

hadError:

; At the end of the common code (which doesn't mess with
; RBX), separate into five different code streams based
; on the pointer value in RBX:

 jmp rbx

; Transfer here if readLine returned an error:

badInput: lea rcx, badInpStr
 call printf
 jmp repeatPgm

; Transfer here if there was a non-digit character:
; in the string:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

388 Chapter 7

invalid: lea rcx, invalidStr
 call printf
 jmp repeatPgm

; Transfer here if the input value was out of range:

range: lea rcx, rangeStr
 call printf
 jmp repeatPgm

; Shouldn't ever get here. Happens if strToInt returns
; a value outside the range 0-3.

unknown: lea rcx, unknownStr
 call printf
 jmp repeatPgm

; Transfer down here on a good user input.

goodInput: lea rcx, goodStr
 mov edx, inputValue ;Zero-extends!
 call printf
 jmp repeatPgm

; Branch here when the user selects "quit program" by
; entering the value zero:

allDone: mov rbx, saveRBX ;Must restore before returning
 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 7-4: Using register-indirect jmp instructions

Here’s the build command and a sample run of the program in
Listing 7-4:

C:\>build listing7-4

C:\>echo off
 Assembling: listing7-4.asm
c.cpp

C:\>listing7-4
Calling Listing 7-4:
Enter an integer value between 1 and 10 (0 to quit): ^Z
There was an error in readLine (ctrl-Z pressed?)
Enter an integer value between 1 and 10 (0 to quit): a123
The input string was not a proper number
Enter an integer value between 1 and 10 (0 to quit): 123a
The input string was not a proper number

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 389

Enter an integer value between 1 and 10 (0 to quit): 1234567890123
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): -1
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 11
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 5
The input value was 5
Enter an integer value between 1 and 10 (0 to quit): 0
Listing 7-4 terminated

7.2.2 Memory-Indirect Jumps
The third form of the jmp instruction is a memory-indirect jump, which
fetches the quad-word value from the memory location and jumps to that
address. This is similar to the register-indirect jmp except the address
appears in a memory location rather than in a register.

Listing 7-5 demonstrates a rather trivial use of this form of the jmp
instruction.

; Listing 7-5
;
; Demonstration of memory-indirect jumps

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 7-5", 0
fmtStr1 byte "Before indirect jump", nl, 0
fmtStr2 byte "After indirect jump", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

390 Chapter 7

 sub rsp, 48 ;Shadow storage

 lea rcx, fmtStr1
 call printf
 jmp memPtr

memPtr qword ExitPoint

ExitPoint: lea rcx, fmtStr2
 call printf

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 7-5: Using memory-indirect jmp instructions

Here’s the build command and output for Listing 7-5:

C:\>build listing7-5

C:\>echo off
 Assembling: listing7-5.asm
c.cpp

C:\>listing7-5
Calling Listing 7-5:
Before indirect jump
After indirect jump
Listing 7-5 terminated

Note that you can easily crash your system if you execute an indirect
jump with an invalid pointer value.

 7.3 Conditional Jump Instructions
Although Chapter 2 provided an overview of the conditional jump instruc-
tions, repeating that discussion and expanding upon it here is worthwhile,
as conditional jumps are the principal tool for creating control structures in
assembly language.

Unlike the unconditional jmp instruction, the conditional jump instruc-
tions do not provide an indirect form. They only allow a branch to a statement
label in your program.

Intel’s documentation defines various synonyms or instruction aliases
for many conditional jump instructions. Tables 7-1, 7-2, and 7-3 list all the
aliases for a particular instruction, as well as the opposite branches. You’ll
soon see the purpose of the opposite branches.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 391

Table 7-1: jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

jc Jump if carry Carry = 1 jb, jnae jnc

jnc Jump if no carry Carry = 0 jnb, jae jc

jz Jump if zero Zero = 1 je jnz

jnz Jump if not zero Zero = 0 jne jz

js Jump if sign Sign = 1 jns

jns Jump if no sign Sign = 0 js

jo Jump if overflow Overflow = 1 jno

jno Jump if no overflow Overflow = 0 jo

jp Jump if parity Parity = 1 jpe jnp

jpe Jump if parity even Parity = 1 jp jpo

jnp Jump if no parity Parity = 0 jpo jp

jpo Jump if parity odd Parity = 0 jnp jpe

Table 7-2: jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

ja Jump if above (>) Carry = 0,
Zero = 0

jnbe jna

jnbe Jump if not below or equal (not <=) Carry = 0,
Zero = 0

ja jbe

jae Jump if above or equal (>=) Carry = 0 jnc, jnb jnae

jnb Jump if not below (not <) Carry = 0 jnc, jae jb

jb Jump if below (<) Carry = 1 jc, jnae jnb

jnae Jump if not above or equal (not >=) Carry = 1 jc, jb jae

jbe Jump if below or equal (<=) Carry = 1
or Zero = 1

jna jnbe

jna Jump if not above
(not >)

Carry = 1
or Zero = 1

jbe ja

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (!=) Zero = 0 jnz je

Table 7-3: jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite

jg Jump if greater (>) Sign = Overflow or
Zero = 0

jnle jng

jnle Jump if not less than or
equal (not <=)

Sign = Overflow or
Zero = 0

jg jle

continued

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

392 Chapter 7

Instruction Description Condition Aliases Opposite

jge Jump if greater than or
equal (>=)

Sign = Overflow jnl jnge

jnl Jump if not less than
(not <)

Sign = Overflow jge jl

jl Jump if less than (<) Sign != Overflow jnge jnl

jnge Jump if not greater or
equal (not >=)

Sign != Overflow jl jge

jle Jump if less than or
equal (<=)

Sign != Overflow or
Zero = 1

jng jnle

jng Jump if not greater than
(not >)

Sign != Overflow or
Zero = 1

jle jg

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (!=) Zero = 0 jnz je

In many instances, you will need to generate the opposite of a specific
branch instruction (examples appear later in this section). With only two
exceptions, a simple rule describes how to generate an opposite branch:

•	 If the second letter of the jcc instruction is not an n, insert an n after
the j. For example, je becomes jne, and jl becomes jnl.

•	 If the second letter of the jcc instruction is an n, remove that n from the
instruction. For example, jng becomes jg, and jne becomes je.

The two exceptions to this rule are jpe (jump if parity is even) and jpo
(jump if parity is odd).2 However, you can use the aliases jp and jnp as syn-
onyms for jpe and jpo, and the N/No N rule applies to jp and jnp.

N O T E Though you know that jge is the opposite of jl, get in the habit of using jnl rather
than jge as the opposite jump instruction for jl. It’s too easy in an important situa-
tion to start thinking, “Greater is the opposite of less” and substitute jg instead. You
can avoid this confusion by always using the N/No N rule.

The x86-64 conditional jump instructions give you the ability to split
program flow into one of two paths depending on a certain condition.
Suppose you want to increment the AX register if BX is equal to CX. You
can accomplish this with the following code:

 cmp bx, cx
 jne SkipStmts;
 inc ax
SkipStmts:

2. Technically, this opposite branch rule doesn’t apply to the jcxz/jecxz/jrcxz instructions
either, in addition to the jpe/jpo instructions. So, arguably, the rule has five exceptions.
However, this section doesn’t mention the jcxz/jecxz/jrcxz instructions, so it mentions
only the two exceptions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 393

Instead of checking for equality directly and branching to code to handle
that condition, the common approach is to use the opposite branch to skip
over the instructions you want to execute if the condition is true. That is, if
BX is not equal to CX, jump over the increment instruction. Always use the
opposite branch (N/No N) rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops.
For example, the following code sequence reads a sequence of characters
from the user and stores each character in successive elements of an array
until the user presses ENTER (new line):

 mov edi, 0
RdLnLoop:
 call getchar ; Some function that reads a character
 ; into the AL register.
 mov Input[rdi], al ; Store away the character.
 inc rdi ; Move on to the next character.
 cmp al, nl ; See if the user pressed Enter.
 jne RdLnLoop

The conditional jump instructions only test the x86-64 flags; they do
not affect any of them.

From an efficiency point of view, it’s important to note that each condi-
tional jump has two machine code encodings: a 2-byte form and a 6-byte form.

The 2-byte form consists of the jcc opcode followed by a 1-byte
PC-relative displacement. The 1-byte displacement allows the instruction to
transfer control to a target instruction within about ±127 bytes around the
current instruction. Given that the average x86-64 instruction is probably
4 to 5 bytes long, the 2-byte form of jcc is capable of branching to a target
instruction within about 20 to 25 instructions.

Because a range of 20 to 25 instructions is insufficient for all condi-
tional jumps, the x86-64 provides a second (6-byte) form with a 2-byte
opcode and a 4-byte displacement. The 6-byte form gives you the ability to
jump to an instruction within approximately ±2GB of the current instruc-
tion, which is probably sufficient for any reasonable program out there.

If you have the opportunity to branch to a nearby label rather than one
that is far away (and still achieve the same result), branching to the nearby
label will make your code shorter and possibly faster.

 7.4 Trampolines
In the rare case you need to branch to a location beyond the range of the
6-byte jcc instructions, you can use an instruction sequence such as the
following:

 jncc skipJmp ;Opposite jump of the one you want to use
 jmp destPtr ;JMP PC-relative is also limited to ±2GB
destPtr qword destLbl ; so code must use indirect jump.
skipJmp:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

394 Chapter 7

The opposite conditional branch transfers control to the normal fall-
though point in the code (the code you’d normally fall through to if the
condition is false). If the condition is true, control transfers to a memory-
indirect jump that jumps to the original target location via a 64-bit pointer.

This sequence is known as a trampoline, because a program jumps to
this point to jump even further in the program (much like jumping on a
trampoline lets you jump higher and higher). Trampolines are useful for
call and unconditional jump instructions that use the PC-relative address-
ing mode (and, thus, are limited to a ±2GB range around the current
instruction).

You’ll rarely use trampolines to transfer to another location within
your program. However, trampolines are useful when transferring control
to a dynamically linked library or OS subroutine that could be far away in
memory.

 7.5 Conditional Move Instructions
Sometimes all you need to do after a comparison or other conditional test
is to load a value into a register (and, conversely, not load that value if the
test/comparison fails). Because branches can be somewhat expensive to
execute, the x86-64 CPUs support a set of conditional move instructions,
cmovcc. These instructions appear in Tables 7-4, 7-5, and 7-6; the generic
syntax for these instructions is as follows:

cmovcc reg16, reg16
cmovcc reg16, mem16
cmovcc reg32, reg32
cmovcc reg32, mem32
cmovcc reg64, reg64
cmovcc reg64, mem64

The destination is always a general-purpose register (16, 32, or 64 bits).
You can use these instructions only to load a register from memory or copy
data from one register to another; you cannot use them to conditionally
store data to memory.

Table 7-4: cmovcc Instructions That Test Flags

Instruction Description Condition Aliases

cmovc Move if carry Carry = 1 cmovb, cmovnae

cmovnc Move if no carry Carry = 0 cmovnb, cmovae

cmovz Move if zero Zero = 1 Cmove

cmovnz Move if not zero Zero = 0 Cmovne

cmovs Move if sign Sign = 1

cmovns Move if no sign Sign = 0

cmovo Move if overflow Overflow = 1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 395

Instruction Description Condition Aliases

cmovno Move if no overflow Overflow = 0

cmovp Move if parity Parity = 1 Cmovpe

cmovpe Move if parity even Parity = 1 Cmovp

cmovnp Move if no parity Parity = 0 Cmovpo

cmovpo Move if parity odd Parity = 0 Cmovnp

Table 7-5: cmovcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases

cmova Move if above (>) Carry = 0,
Zero = 0

cmovnbe

cmovnbe Move if not below or equal (not <=) Carry = 0,
Zero = 0

cmova

cmovae Move if above or equal (>=) Carry = 0 cmovnc, cmovnb

cmovnb Move if not below (not <) Carry = 0 cmovnc, cmovae

cmovb Move if below (<) Carry = 1 cmovc, cmovnae

cmovnae Move if not above or equal (not >=) Carry = 1 cmovc, cmovb

cmovbe Move if below or equal (<=) Carry = 1 or
Zero = 1

cmovna

cmovna Move if not above
(not >)

Carry = 1 or
Zero = 1

cmovbe

cmove Move if equal (=) Zero = 1 cmovz

cmovne Move if not equal (¦) Zero = 0 cmovnz

Table 7-6: cmovcc Instructions for Signed Comparisons

Instruction Description Condition Aliases

cmovg Move if greater (>) Sign = Overflow or
Zero = 0

cmovnle

cmovnle Move if not less than or equal (not <=) Sign = Overflow or
Zero = 0

cmovg

cmovge Move if greater than or equal (>=) Sign = Overflow cmovnl

cmovnl Move if not less than (not <) Sign = Overflow cmovge

cmovl Move if less than (<) Sign != Overflow cmovnge

cmovnge Move if not greater or equal (not >=) Sign != Overflow cmovl

cmovle Move if less than or equal (<=) Sign != Overflow or
Zero = 1

cmovng

cmovng Move if not greater than (not >) Sign != Overflow or
Zero = 1

cmovle

cmove Move if equal (=) Zero = 1 cmovz

cmovne Move if not equal (!=) Zero = 0 cmovnz

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

396 Chapter 7

In addition, a set of conditional floating-point move instructions
(fcmovcc) will move data between ST0 and one of the other FPU registers
on the FPU stack. Sadly, these instructions aren’t all that useful in modern
programs. See the Intel documentation for more details if you’re interested
in using them.

 7.6 Implementing Common Control Structures in
Assembly Language
This section shows you how to implement decisions, loops, and other con-
trol constructs using pure assembly language.

7.6.1 Decisions
In its most basic form, a decision is a branch within the code that switches
between two possible execution paths based on a certain condition. Normally
(though not always), conditional instruction sequences are implemented with
the conditional jump instructions. Conditional instructions correspond to
the if/then/endif statement in a HLL:

if(expression) then
 statements
endif;

To convert this to assembly language, you must write statements that
evaluate the expression and then branch around the statements if the result
is false. For example, if you had the C statements

if(a == b)
{
 printf("a is equal to b \ n");
}

you could translate this to assembly as follows:

 mov eax, a ;Assume a and b are 32-bit integers
 cmp eax, b
 jne aNEb
 lea rcx, aIsEqlBstr ;" a is equal to b \ n"
 call printf
aNEb:

In general, conditional statements may be broken into three basic
categories: if statements, switch/case statements, and indirect jumps. The
following sections describe these program structures, how to use them,
and how to write them in assembly language.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 397

7.6.2 if/then/else Sequences
The most common conditional statements are the if/then/endif and if/
then/else/endif statements. These two statements take the form shown in
Figure 7-1.

IF...THEN...ELSE...ENDIF IF...THEN...ENDIF

Test for a condition

False True False True

Test for a condition

Execute this block
of statements if the
condition is true

Execute this block
of statements if the
condition is false

Execute this block
of statements if the
condition is true

Continue execution
down here after the
completion of the
THEN or if skipping

the THEN block

Continue execution
down here after the
completion of the
THEN or ELSE blocks

Figure 7-1: if/then/else/endif and if/then/endif statement flow

The if/then/endif statement is just a special case of the if/then/else/
endif statement (with an empty else block). The basic implementation of an
if/then/else/endif statement in x86-64 assembly language looks something
like this:

 Sequence of statements to test a condition
 jcc ElseCode;
 Sequence of statements corresponding to the THEN block

 jmp EndOfIf

ElseCode:
 Sequence of statements corresponding to the ELSE block

EndOfIf:

where jcc represents a conditional jump instruction.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

398 Chapter 7

For example, to convert the C/C++ statement

if(a == b)
 c = d;
else
 b = b + 1;

to assembly language, you could use the following x86-64 code:

 mov eax, a
 cmp eax, b
 jne ElseBlk
 mov eax, d
 mov c, eax
 jmp EndOfIf;

ElseBlk:
 inc b

EndOfIf:

For simple expressions like (a == b), generating the proper code for an
if/then/else/endif statement is almost trivial. Should the expression become
more complex, the code complexity increases as well. Consider the follow-
ing C/C++ if statement presented earlier:

if(((x > y) && (z < t)) || (a != b))
 c = d;

To convert complex if statements such as this one, break it into a
sequence of three if statements as follows:

if(a != b) c = d;
else if(x > y)
 if(z < t)
 c = d;

This conversion comes from the following C/C++ equivalences:

if(expr1 && expr2) stmt;

is equivalent to

if(expr1) if(expr2) stmt;

and

if(expr1 || expr2) stmt;

is equivalent to

if(expr1) stmt;
else if(expr2) stmt;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 399

In assembly language, the former if statement becomes

; if(((x > y) && (z < t)) || (a != b))
; c = d;

 mov eax, a
 cmp eax, b
 jne DoIf;
 mov eax, x
 cmp eax, y
 jng EndOfIf;
 mov eax, z
 cmp eax, t
 jnl EndOfIf;
DoIf:
 mov eax, d
 mov c, eax
EndOfIf:

Probably the biggest problem with complex conditional statements in
assembly language is trying to figure out what you’ve done after you’ve writ-
ten the code. High-level language expressions are much easier to read and
comprehend. Well-written comments are essential for clear assembly language
implementations of if/then/else/endif statements. An elegant implementation
of the preceding example follows:

; if ((x > y) && (z < t)) or (a != b) c = d;
; Implemented as:
; if (a != b) then goto DoIf;

 mov eax, a
 cmp eax, b
 jne DoIf

; if not (x > y) then goto EndOfIf;

 mov eax, x
 cmp eax, y
 jng EndOfIf

; if not (z < t) then goto EndOfIf;

 mov eax, z
 cmp eax, t
 jnl EndOfIf

; then block:

DoIf:
 mov eax, d
 mov c, eax

; End of if statement

EndOfIf:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

400 Chapter 7

Admittedly, this goes overboard for such a simple example. The follow-
ing would probably suffice:

; if (((x > y) && (z < t)) || (a != b)) c = d;
; Test the Boolean expression:

 mov eax, a
 cmp eax, b
 jne DoIf
 mov eax, x
 cmp eax, y
 jng EndOfIf
 mov eax, z
 cmp eax, t
 jnl EndOfIf

; then block:

DoIf:
 mov eax, d
 mov c, eax

; End of if statement

EndOfIf:

However, as your if statements become complex, the density (and qual-
ity) of your comments become more and more important.

7.6.3 Complex if Statements Using Complete Boolean Evaluation
Many Boolean expressions involve conjunction (and) or disjunction (or)
operations. This section describes how to convert such Boolean expres-
sions into assembly language. We can do this in two ways: using complete
Boolean evaluation or using short-circuit Boolean evaluation. This section
discusses complete Boolean evaluation. The next section discusses short-
circuit Boolean evaluation.

Conversion via complete Boolean evaluation is almost identical to convert-
ing arithmetic expressions into assembly language, as covered in Chapter 6.
However, for Boolean evaluation, you do not need to store the result in a vari-
able; once the evaluation of the expression is complete, you check whether
you have a false (0) or true (1, or nonzero) result to take whatever action the
Boolean expression dictates. Usually, the last logical instruction (and/or) sets
the zero flag if the result is false and clears the zero flag if the result is true,
so you don’t have to explicitly test for the result. Consider the following if
statement and its conversion to assembly language using complete Boolean
evaluation:

; if(((x < y) && (z > t)) || (a != b))
; Stmt1 ;

 mov eax, x

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 401

 cmp eax, y
 setl bl ; Store x < y in BL.
 mov eax, z
 cmp eax, t
 setg bh ; Store z > t in BH.
 and bl, bh ; Put (x < y) && (z > t) into BL.
 mov eax, a
 cmp eax, b
 setne bh ; Store a != b into BH.
 or bl, bh ; Put (x < y) && (z > t) || (a != b) into BL.
 je SkipStmt1 ; Branch if result is false.

 Code for Stmt1 goes here.

SkipStmt1:

This code computes a Boolean result in the BL register and then, at the
end of the computation, tests this value to see whether it contains true or
false. If the result is false, this sequence skips over the code associated with
Stmt1. The important thing to note in this example is that the program will
execute each and every instruction that computes this Boolean result (up to
the je instruction).

7.6.4 Short-Circuit Boolean Evaluation
If you are willing to expend a little more effort, you can usually convert a
Boolean expression to a much shorter and faster sequence of assembly lan-
guage instructions by using short-circuit Boolean evaluation. This approach
attempts to determine whether an expression is true or false by executing
only some of the instructions that would compute the complete expression.

Consider the expression a && b. Once we determine that a is false, there
is no need to evaluate b because there is no way the expression can be true.
If b represents a complex subexpression rather than a single Boolean vari-
able, it should be clear that evaluating only a is more efficient.

As a concrete example, consider the subexpression ((x < y) && (z > t))
from the previous section. Once you determine that x is not less than y, there
is no need to check whether z is greater than t because the expression will
be false regardless of z’s and t’s values. The following code fragment shows
how you can implement short-circuit Boolean evaluation for this expression:

; if((x < y) && (z > t)) then ...

 mov eax, x
 cmp eax, y
 jnl TestFails
 mov eax, z
 cmp eax, t
 jng TestFails

 Code for THEN clause of IF statement

TestFails:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

402 Chapter 7

The code skips any further testing once it determines that x is not less
than y. Of course, if x is less than y, the program has to test z to see if it is
greater than t; if not, the program skips over the then clause. Only if the
program satisfies both conditions does the code fall through to the then
clause.

For the logical or operation, the technique is similar. If the first sub-
expression evaluates to true, there is no need to test the second operand.
Whatever the second operand’s value is at that point, the full expression still
evaluates to true. The following example demonstrates the use of short-circuit
evaluation with disjunction (or):

; if(ch < 'A' || ch > 'Z')
; then printf("Not an uppercase char");
; endif;

 cmp ch, 'A'
 jb ItsNotUC
 cmp ch, 'Z'
 jna ItWasUC

ItsNotUC:
 code to process ch if it's not an uppercase character

ItWasUC:

Because the conjunction and disjunction operators are commutative,
you can evaluate the left or right operand first if it is more convenient to do
so.3 As one last example in this section, consider the full Boolean expres-
sion from the previous section:

; if(((x < y) && (z > t)) || (a != b)) Stmt1 ;

 mov eax, a
 cmp eax, b
 jne DoStmt1
 mov eax, x
 cmp eax, y
 jnl SkipStmt1
 mov eax, z
 cmp eax, t
 jng SkipStmt1

DoStmt1:
 Code for Stmt1 goes here.

SkipStmt1:

3. However, be aware that some expressions depend on the leftmost subexpression evaluating
one way in order for the rightmost subexpression to be valid; for example, a common test
in C/C++ is if(x != NULL && x -> y)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 403

The code in this example evaluates a != b first, because it is shorter and
faster,4 and the remaining subexpression last. This is a common technique
assembly language programmers use to write better code.5

7.6.5 Short-Circuit vs. Complete Boolean Evaluation
When using complete Boolean evaluation, every statement in the sequence
for that expression will execute; short-circuit Boolean evaluation, on the
other hand, may not require the execution of every statement associated
with the Boolean expression. As you’ve seen in the previous two sections,
code based on short-circuit evaluation is usually shorter and faster.

However, short-circuit Boolean evaluation may not produce the cor-
rect result in some cases. Given an expression with side effects, short-circuit
Boolean evaluation will produce a different result than complete Boolean
evaluation. Consider the following C/C++ example:

if((x == y) && (++z != 0)) Stmt ;

Using complete Boolean evaluation, you might generate the following
code:

 mov eax, x ; See if x == y.
 cmp eax, y
 sete bl
 inc z ; ++z
 cmp z, 0 ; See if incremented z is 0.
 setne bh
 and bl, bh ; Test x == y && ++z != 0.
 jz SkipStmt

 Code for Stmt goes here.

SkipStmt:

Using short-circuit Boolean evaluation, you might generate this:

 mov eax, x ; See if x == y.
 cmp eax, y
 jne SkipStmt
 inc z ; ++z -- sets ZF if z becomes zero.
 je SkipStmt ; See if incremented z is 0.

 Code for Stmt goes here.

SkipStmt:

4. Of course, if you can predict that the subexpression a != b will be false the vast majority of
the time, it would be best to test that condition last.

5. This assumes, of course, that all comparisons are equally likely to be true or false.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

404 Chapter 7

Notice a subtle but important difference between these two conver-
sions: if x is equal to y, the first version still increments z and compares it to 0
before it executes the code associated with Stmt; the short-circuit version,
on the other hand, skips the code that increments z if it turns out that x is
equal to y. Therefore, the behavior of these two code fragments is different
if x is equal to y.

Neither implementation is particularly wrong; depending on the cir-
cumstances, you may or may not want the code to increment z if x is equal
to y. However, it is important to realize that these two schemes produce
different results, so you can choose an appropriate implementation if the
effect of this code on z matters to your program.

Many programs take advantage of short-circuit Boolean evaluation and
rely on the program not evaluating certain components of the expression.
The following C/C++ code fragment demonstrates perhaps the most com-
mon example that requires short-circuit Boolean evaluation:

if(pntr != NULL && *pntr == 'a') Stmt ;

If it turns out that pntr is NULL, the expression is false, and there is no
need to evaluate the remainder of the expression. This statement relies
on short-circuit Boolean evaluation for correct operation. Were C/C++ to
use complete Boolean evaluation, the second half of the expression would
attempt to dereference a NULL pointer, when pntr is NULL.

Consider the translation of this statement using complete Boolean
evaluation:

; Complete Boolean evaluation:

 mov rax, pntr
 test rax, rax ; Check to see if RAX is 0 (NULL is 0).
 setne bl
 mov al, [rax] ; Get *pntr into AL.
 cmp al, 'a'
 sete bh
 and bl, bh
 jz SkipStmt

 Code for Stmt goes here.

SkipStmt:

If pntr contains NULL (0), this program will attempt to access the data at
location 0 in memory via the mov al, [rax] instruction. Under most operat-
ing systems, this will cause a memory access fault (general protection fault).

Now consider the short-circuit Boolean conversion:

; Short-circuit Boolean evaluation

 mov rax, pntr ; See if pntr contains NULL (0) and
 test rax, rax ; immediately skip past Stmt if this
 jz SkipStmt ; is the case.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 405

 mov al, [rax] ; If we get to this point, pntr contains
 cmp al, 'a' ; a non-NULL value, so see if it points
 jne SkipStmt ; at the character 'a'.

 Code for Stmt goes here.

SkipStmt:

In this example, the problem with dereferencing the NULL pointer
doesn’t exist. If pntr contains NULL, this code skips over the statements that
attempt to access the memory address pntr contains.

7.6.6 Efficient Implementation of if Statements in Assembly Language
Encoding if statements efficiently in assembly language takes a bit more
thought than simply choosing short-circuit evaluation over complete
Boolean evaluation. To write code that executes as quickly as possible in
assembly language, you must carefully analyze the situation and generate
the code appropriately. The following paragraphs provide suggestions you
can apply to your programs to improve their performance.

7.6.6.1 Know Your Data!

Programmers often mistakenly assume that data is random. In reality, data
is rarely random, and if you know the types of values that your program
commonly uses, you can write better code. To see how, consider the follow-
ing C/C++ statement:

if((a == b) && (c < d)) ++i;

Because C/C++ uses short-circuit evaluation, this code will test whether
a is equal to b. If so, it will test whether c is less than d. If you expect a to be
equal to b most of the time but don’t expect c to be less than d most of the
time, this statement will execute slower than it should. Consider the follow-
ing MASM implementation of this code:

 mov eax, a
 cmp eax, b
 jne DontIncI

 mov eax, c
 cmp eax, d
 jnl DontIncI

 inc i

DontIncI:

As you can see, if a is equal to b most of the time and c is not less than
d most of the time, you will have to execute all six instructions nearly every
time in order to determine that the expression is false. Now consider the

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

406 Chapter 7

following implementation that takes advantage of this knowledge and the
fact that the && operator is commutative:

 mov eax, c
 cmp eax, d
 jnl DontIncI

 mov eax, a
 cmp eax, b
 jne DontIncI

 inc i

DontIncI:

The code first checks whether c is less than d. If most of the time c is
less than d, this code determines that it has to skip to the label DontIncI after
executing only three instructions in the typical case (compared with six
instructions in the previous example).

This fact is much more obvious in assembly language than in a high-
level language, one of the main reasons assembly programs are often faster
than their HLL counterparts: optimizations are more obvious in assembly
language than in a high-level language. Of course, the key here is to under-
stand the behavior of your data so you can make intelligent decisions such
as the preceding one.

7.6.6.2 Rearranging Expressions

Even if your data is random (or you can’t determine how the input val-
ues will affect your decisions), rearranging the terms in your expressions
may still be beneficial. Some calculations take far longer to compute than
others. For example, the div instruction is much slower than a simple cmp
instruction. Therefore, if you have a statement like the following, you may
want to rearrange the expression so that the cmp comes first:

if((x % 10 = 0) && (x != y) ++x;

Converted to assembly code, this if statement becomes the following:

 mov eax, x ; Compute X % 10.
 cdq ; Must sign-extend EAX -> EDX:EAX.
 idiv ten ; ten dword 10 in .const section
 test edx, edx ; Remainder is in EDX, test for 0
 jnz SkipIf

 mov eax, x
 cmp eax, y
 je SkipIf

 inc x

SkipIf:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 407

The idiv instruction is expensive (often 50 to 100 times slower than
most of the other instructions in this example). Unless it is 50 to 100 times
more likely that the remainder is 0 rather than x is equal to y, it would be
better to do the comparison first and the remainder calculation afterward:

 mov eax, x
 cmp eax, y
 je SkipIf

 mov eax, x ; Compute X % 10.
 cdq ; Must sign-extend EAX -> EDX:EAX.
 idiv ten ; ten dword 10 in .const section
 test edx, edx ; See if remainder (EDX) is 0.
 jnz SkipIf

 inc x

SkipIf:

Because the && and || operators are not commutative when short-circuit
evaluation occurs, do consider such transformations carefully when making
them. This example works fine because there are no side effects or possible
exceptions being shielded by the reordered evaluation of the && operator.

7.6.6.3 Destructuring Your Code

Structured code is sometimes less efficient than unstructured code because
it introduces code duplication or extra branches that might not be present
in unstructured code.6 Most of the time, this is tolerable because unstruc-
tured code is difficult to read and maintain; sacrificing some performance
in exchange for maintainable code is often acceptable. In certain instances,
however, you may need all the performance you can get and might choose
to compromise the readability of your code.

Taking previously written structured code and rewriting it in an unstruc-
tured fashion to improve performance is known is destructuring code. The
difference between unstructured code and destructured code is that unstruc-
tured code was written that way in the first place; destructured code started
out as structured code and was purposefully written in an unstructured
fashion to make it more efficient. Pure unstructured code is usually hard to
read and maintain. Destructured code isn’t quite as bad because you limit the
damage (unstructuring the code) to only those sections where it is absolutely
necessary.

One classic way to destructure code is to use code movement (physically
moving sections of code elsewhere in the program) to move code that your
program rarely uses out of the way of code that executes most of the time.
Code movement can improve the efficiency of a program two ways.

6. In high-level languages, you can often get away with this because the compiler will optimize
the code, producing unstructured machine code. Unfortunately, when writing in assembly
language, the machine code you get is exactly equivalent to the assembly code you write.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

408 Chapter 7

First, a branch that is taken is more expensive (time-consuming) than a
branch that is not taken.7 If you move the rarely used code to another spot
in the program and branch to it on the rare occasion the branch is taken,
most of the time you will fall straight through to the code that executes
most frequently.

Second, sequential machine instructions consume cache storage. If you
move rarely executed statements out of the normal code stream, to another
section of the program (that is rarely loaded into cache), this will improve
the cache performance of the system.

For example, consider the following pseudo C/C++ statement:

if(See_If_an_Error_Has_Occurred)
{
 Statements to execute if no error
}
else
{
 Error-handling statements
}

In normal code, we don’t expect errors to be frequent. Therefore, you
would normally expect the then section of the preceding if to execute far
more often than the else clause. The preceding code could translate into
the following assembly code:

 cmp See_If_an_Error_Has_Occurred, true
 je HandleTheError

 Statements to execute if no error

 jmp EndOfIf;

HandleTheError:
 Error-handling statements
EndOfIf:

If the expression is false, this code falls through to the normal state-
ments and then jumps over the error-handling statements. Instructions that
transfer control from one point in your program to another (for example,
jmp instructions) tend to be slow. It is much faster to execute a sequential
set of instructions rather than jump all over the place in your program.
Unfortunately, the preceding code doesn’t allow this.

One way to rectify this problem is to move the else clause of the code
somewhere else in your program. You could rewrite the code as follows:

 cmp See_If_an_Error_Has_Occurred, true
 je HandleTheError

7. Most of the time, this is true. On some architectures, special branch-prediction hardware
reduces the cost of branches.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 409

 Statements to execute if no error

EndOfIf:

At some other point in your program (typically after a jmp instruction),
you would insert the following code:

HandleTheError:
 Error-handling statements
 jmp EndOfIf;

The program isn’t any shorter. The jmp you removed from the original
sequence winds up at the end of the else clause. However, because the else
clause rarely executes, moving the jmp instruction from the then clause
(which executes frequently) to the else clause is a big performance win
because the then clause executes using only straight-line code. This tech-
nique is surprisingly effective in many time-critical code segments.

7.6.6.4 Calculation Rather Than Branching

On many processors in the x86-64 family, branches (jumps) are expensive
compared to many other instructions. For this reason, it is sometimes bet-
ter to execute more instructions in a sequence than fewer instructions that
involve branching.

For example, consider the simple assignment eax = abs(eax). Unfortunately,
no x86-64 instruction computes the absolute value of an integer. The obvious
way to handle this is with an instruction sequence that uses a conditional jump
to skip over the neg instruction (which creates a positive value in EAX if EAX
was negative):

 test eax, eax
 jns ItsPositive;

 neg eax

ItsPositive:

Now consider the following sequence that will also do the job:

; Set EDX to 0FFFF_FFFFh if EAX is negative, 0000_0000 if EAX is
; 0 or positive:

 cdq

; If EAX was negative, the following code inverts all the bits in
; EAX; otherwise, it has no effect on EAX.

 xor eax, edx

; If EAX was negative, the following code adds 1 to EAX;
; otherwise, it doesn't modify EAX's value.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

410 Chapter 7

 and edx, 1 ; edx = 0 or 1 (1 if eax was negative).
 add eax, edx

This code will invert all the bits in EAX and then add 1 to EAX if EAX
was negative prior to the sequence; that is, it negates the value in EAX. If
EAX was zero or positive, this code does not change the value in EAX.

Though this sequence takes four instructions rather than the three that
the previous example requires, there are no transfer-of-control instructions,
so it may execute faster on many CPUs in the x86-64 family. Of course, if
you use the cmovns instruction presented earlier, this can be done with the
following three instructions (with no transfer of control):

mov edx, eax
neg edx
cmovns eax, edx

This demonstrates why it’s good to know the instruction set!

7.6.7 switch/case Statements
The C/C++ switch statement takes the following form:

 switch(expression)
 {
 case const1:
 Stmts1: code to execute if
 expression equals const1

 case const2:
 Stmts2: code to execute if
 expression equals const2
 .
 .
 .
 case constn:
 Stmtsn: code to execute if
 expression equals constn

 default: ; Note that the default section is optional.
 Stmts_default: code to execute if expression
 does not equal any of the case values

 }

When this statement executes, it checks the value of the expression
against the constants const1 to constn. If it finds a match, the corresponding
statements execute.

C/C++ places a few restrictions on the switch statement. First, the switch
statement allows only an integer expression (or something whose underly-
ing type can be an integer). Second, all the constants in the case clauses
must be unique. The reason for these restrictions will become clear in a
moment.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 411

7.6.7.1 switch Statement Semantics

Most introductory programming texts introduce the switch/case statement
by explaining it as a sequence of if/then/elseif/else/endif statements. They
might claim that the following two pieces of C/C++ code are equivalent:

switch(expression)
{
 case 0: printf("i=0"); break;
 case 1: printf("i=1"); break;
 case 2: printf("i=2"); break;
}

if(eax == 0)
 printf("i=0");
else if(eax == 1)
 printf("i=1");
else if(eax == 2)
 printf("i=2");

While semantically these two code segments may be the same, their
implementation is usually different. Whereas the if/then/elseif/else/endif
chain does a comparison for each conditional statement in the sequence,
the switch statement normally uses an indirect jump to transfer control to
any one of several statements with a single computation.

7.6.7.2 if/else Implementation of switch

The switch (and if/else/else if) statements could be written in assembly
language with the following code:

; if/then/else/endif form:

 mov eax, i
 test eax, eax ; Check for 0.
 jnz Not0

 code to print "i = 0"
 jmp EndCase

Not0:
 cmp eax, 1
 jne Not1

 code to print "i = 1"
 jmp EndCase

Not1:
 cmp eax, 2
 jne EndCase;

 code to print "i = 2"
EndCase:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

412 Chapter 7

Probably the only thing worth noting about this code is that it takes
longer to determine the last case than it does to determine whether the first
case executes. This is because the if/else/else if version implements a lin-
ear search through the case values, checking them one at a time from first to
last until it finds a match.

7.6.7.3 Indirect Jump switch Implementation

A faster implementation of the switch statement is possible using an indirect
jump table. This implementation uses the switch expression as an index into
a table of addresses; each address points at the target case’s code to execute.
Consider the following example:

; Indirect Jump Version

 mov eax, i
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt0, Stmt1, Stmt2

Stmt0:
 code to print "i = 0"
 jmp EndCase;

Stmt1:
 code to print "i = 1"
 jmp EndCase;

Stmt2:
 code to print "i = 2"

EndCase:

To begin with, a switch statement requires that you create an array of
pointers with each element containing the address of a statement label in
your code (those labels must be attached to the sequence of instructions to
execute for each case in the switch statement). In the preceding example,
the JmpTbl array, initialized with the address of the statement labels Stmt0,
Stmt1, and Stmt2, serves this purpose. I’ve placed this array in the procedure
itself because the labels are local to the procedure. Note, however, that you
must place the array in a location that will never be executed as code (such
as immediately after a jmp instruction, as in this example).

The program loads the RAX register with i’s value (assuming i is a
32-bit integer, the mov instruction zero-extends EAX into RAX), then uses
this value as an index into the JmpTbl array (RCX holds the base address of
the JmpTbl array) and transfers control to the 8-byte address found at the
specified location. For example, if RAX contains 0, the jmp [rcx][rax * 8]
instruction will fetch the quad word at address JmpTbl+0 (RAX × 8 = 0).
Because the first quad word in the table contains the address of Stmt0, the
jmp instruction transfers control to the first instruction following the Stmt0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 413

label. Likewise, if i (and therefore, RAX) contains 1, then the indirect jmp
instruction fetches the quad word at offset 8 from the table and transfers
control to the first instruction following the Stmt1 label (because the
address of Stmt1 appears at offset eight in the table). Finally, if i / RAX
contains 2, then this code fragment transfers control to the statements fol-
lowing the Stmt2 label because it appears at offset 16 in the JmpTbl table.

As you add more (consecutive) cases, the jump table implementation
becomes more efficient (in terms of both space and speed) than the if/elseif
form. Except for simple cases, the switch statement is almost always faster,
and usually by a large margin. As long as the case values are consecutive, the
switch statement version is usually smaller as well.

7.6.7.4 Noncontiguous Jump Table Entries and Range Limiting

What happens if you need to include nonconsecutive case labels or can-
not be sure that the switch value doesn’t go out of range? With the C/C++
switch statement, such an occurrence will transfer control to the first state-
ment after the switch statement (or to a default case, if one is present in the
switch).

However, this doesn’t happen in the preceding example. If variable i
does not contain 0, 1, or 2, executing the previous code produces undefined
results. For example, if i contains 5 when you execute the code, the indirect
jmp instruction will fetch the qword at offset 40 (5 × 8) in JmpTbl and transfer
control to that address. Unfortunately, JmpTbl doesn’t have six entries; so the
program will fetch the value of the sixth quad word following JmpTbl and
use that as the target address, which will often crash your program or trans-
fer control to an unexpected location.

The solution is to place a few instructions before the indirect jmp to
verify that the switch selection value is within a reasonable range. In the
previous example, we’d probably want to verify that i’s value is in the range
0 to 2 before executing the jmp instruction. If i’s value is outside this range,
the program should simply jump to the endcase label (this corresponds to
dropping down to the first statement after the entire switch statement). The
following code provides this modification:

 mov eax, i
 cmp eax, 2
 ja EndCase
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt0, Stmt1, Stmt2

Stmt0:
 code to print "i = 0"
 jmp EndCase;

Stmt1:
 code to print "i = 1"
 jmp EndCase;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

414 Chapter 7

Stmt2:
 code to print "i = 2"

EndCase:

Although the preceding example handles the problem of selection
values being outside the range 0 to 2, it still suffers from a couple of severe
restrictions:

•	 The cases must start with the value 0. That is, the minimum case con-
stant has to be 0 in this example.

•	 The case values must be contiguous.

Solving the first problem is easy, and you deal with it in two steps. First,
you compare the case selection value against a lower and upper bound
before determining if the case value is legal. For example:

; SWITCH statement specifying cases 5, 6, and 7:
; WARNING: This code does *NOT* work.
; Keep reading to find out why.

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp.
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 code to print "i = 5"
 jmp EndCase;

Stmt6:
 code to print "i = 6"
 jmp EndCase;

Stmt7:
 code to print "i = 7"

EndCase:

This code adds a pair of extra instructions, cmp and jb, to test the selec-
tion value to ensure it is in the range 5 to 7. If not, control drops down to
the EndCase label; otherwise, control transfers via the indirect jmp instruc-
tion. Unfortunately, as the comments point out, this code is broken.

Consider what happens if variable i contains the value 5: the code will
verify that 5 is in the range 5 to 7 and then will fetch the dword at offset 40
(5 × 8) and jump to that address. As before, however, this loads 8 bytes outside
the bounds of the table and does not transfer control to a defined location.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 415

One solution is to subtract the smallest case selection value from EAX before
executing the jmp instruction, as shown in the following example:

; SWITCH statement specifying cases 5, 6, and 7:
; WARNING: There is a better way to do this; keep reading.

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp.
 sub eax, 5 ; 5 to 7 -> 0 to 2
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 code to print "i = 5"
 jmp EndCase;

Stmt6:
 code to print "i = 6"
 jmp EndCase;

Stmt7:
 code to print "i = 7"

EndCase:

By subtracting 5 from the value in EAX, we force EAX to take on the
value 0, 1, or 2 prior to the jmp instruction. Therefore, case-selection value
5 jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and case-
selection value 7 jumps to Stmt7.

To improve this code, you can eliminate the sub instruction by merging
it into the jmp instruction’s address expression. The following code does this:

; SWITCH statement specifying cases 5, 6, and 7:

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp.
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 5 * 8] ;5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 code to print "i = 5"
 jmp EndCase;

Stmt6:
 code to print "i = 6"

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

416 Chapter 7

 jmp EndCase;

Stmt7:
 code to print "i = 7"

EndCase:

The C/C++ switch statement provides a default clause that executes if
the case-selection value doesn’t match any of the case values. For example:

switch(expression)
{

 case 5: printf("ebx = 5"); break;
 case 6: printf("ebx = 6"); break;
 case 7: printf("ebx = 7"); break;
 default
 printf("ebx does not equal 5, 6, or 7");
}

Implementing the equivalent of the default clause in pure assembly lan-
guage is easy. Just use a different target label in the jb and ja instructions
at the beginning of the code. The following example implements a MASM
switch statement similar to the preceding one:

; SWITCH statement specifying cases 5, 6, and 7
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 5
 jb DefaultCase
 cmp eax, 7 ; Verify that i is in the range
 ja DefaultCase ; 5 to 7 before the indirect jmp.
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 5 * 8] ;5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 code to print "i = 5"
 jmp EndCase

Stmt6:
 code to print "i = 6"
 jmp EndCase

Stmt7:
 code to print "i = 7"
 jmp EndCase

DefaultCase:
 code to print "EBX does not equal 5, 6, or 7"

EndCase:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 417

The second restriction noted earlier, that the case values need to be
contiguous, is easy to handle by inserting extra entries into the jump table.
Consider the following C/C++ switch statement:

switch(i)
{
 case 1 printf("i = 1"); break;
 case 2 printf("i = 2"); break;
 case 4 printf("i = 4"); break;
 case 8 printf("i = 8"); break;
 default:
 printf("i is not 1, 2, 4, or 8");
}

The minimum switch value is 1, and the maximum value is 8. Therefore,
the code before the indirect jmp instruction needs to compare the value in i
against 1 and 8. If the value is between 1 and 8, it’s still possible that i might
not contain a legal case-selection value. However, because the jmp instruction
indexes into a table of quad words using the case-selection table, the table
must have eight quad-word entries.

To handle the values between 1 and 8 that are not case-selection values,
simply put the statement label of the default clause (or the label specifying
the first instruction after the endswitch if there is no default clause) in each
of the jump table entries that don’t have a corresponding case clause. The
following code demonstrates this technique:

; SWITCH statement specifying cases 1, 2, 4, and 8
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 1
 jb DefaultCase
 cmp eax, 8 ; Verify that i is in the range
 ja DefaultCase ; 1 to 8 before the indirect jmp.
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 1 * 8] ;1 * 8 compensates for zero index

JmpTbl qword Stmt1, Stmt2, DefaultCase, Stmt4
 qword DefaultCase, DefaultCase, DefaultCase, Stmt8

Stmt1:
 code to print "i = 1"
 jmp EndCase

Stmt2:
 code to print "i = 2"
 jmp EndCase

Stmt4:
 code to print "i = 4"
 jmp EndCase

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

418 Chapter 7

Stmt8:
 code to print "i = 8"
 jmp EndCase

DefaultCase:
 code to print "i does not equal 1, 2, 4, or 8"

EndCase:

7.6.7.5 Sparse Jump Tables

The current implementation of the switch statement has a problem. If the
case values contain nonconsecutive entries that are widely spaced, the jump
table could become exceedingly large. The following switch statement
would generate an extremely large code file:

switch(i)
{
 case 1: Stmt1 ;
 case 100: Stmt2 ;
 case 1000: Stmt3 ;
 case 10000: << Stmt4 >>;
 default: Stmt5 ;

}

In this situation, your program will be much smaller if you implement
the switch statement with a sequence of if statements rather than using an
indirect jump statement. However, keep one thing in mind: the size of the
jump table does not normally affect the execution speed of the program. If
the jump table contains two entries or two thousand, the switch statement
will execute the multiway branch in a constant amount of time. The if
statement implementation requires a linearly increasing amount of time for
each case label appearing in the case statement.

Probably the biggest advantage to using assembly language over an
HLL like Pascal or C/C++ is that you get to choose the actual implementa-
tion of statements like switch. In some instances, you can implement a switch
statement as a sequence of if/then/elseif statements, or you can implement
it as a jump table, or you can use a hybrid of the two:

switch(i)
{
 case 0: Stmt0 ;
 case 1: Stmt1 ;
 case 2: Stmt2 ;
 case 100: Stmt3 ;
 default: Stmt4 ;

}

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 419

That could become the following:

mov eax, i
cmp eax, 100
je DoStmt3;
cmp eax, 2
ja TheDefaultCase
lea rcx, JmpTbl
jmp qword ptr [rcx][rax * 8]
 .
 .
 .

If you are willing to live with programs that cannot exceed 2GB in size
(and use the LARGEADDRESSAWARE:NO command line option), you can improve
the implementation of the switch statement and save one instruction:

; SWITCH statement specifying cases 5, 6, and 7
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 5
 jb DefaultCase
 cmp eax, 7 ; Verify that i is in the range
 ja DefaultCase ; 5 to 7 before the indirect jmp.
 jmp JmpTbl[rax * 8 – 5 * 8];5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 code to print "i = 5"
 jmp EndCase

Stmt6:
 code to print "i = 6"
 jmp EndCase

Stmt7:
 code to print "i = 7"
 jmp EndCase

DefaultCase:
 code to print "EBX does not equal 5, 6, or 7"

EndCase:

This code removed the lea rcx, JmpTbl instruction and replaced jmp
[rcx][rax * 8 – 5 * 8] with jmp JmpTbl[rax * 8 – 5 * 8]. This is a small
improvement, but an improvement nonetheless (this sequence not only is
one instruction shorter, but also uses one fewer register). Of course, con-
stantly be aware of the danger of writing 64-bit programs that are not
large-address aware.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

420 Chapter 7

Some switch statements have sparse cases but with groups of contiguous
cases within the overall set of cases. Consider the following C/C++ switch
statement:

switch(expression)
{
 case 0:
 code for case 0
 break;

 case 1:
 code for case 1
 break;

 case 2:
 code for case 2
 break;

 case 10:
 code for case 10
 break;

 case 11:
 code for case 11
 break;

 case 100:
 code for case 100
 break;

 case 101:
 code for case 101
 break;

 case 103:
 code for case 101
 break;

 case 1000:
 code for case 1000
 break;

 case 1001:
 code for case 1001
 break;

 case 1003:
 code for case 1001
 break;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 421

 default:
 code for default case
 break;
} // end switch

You can convert a switch statement that consists of widely separated
groups of (nearly) contiguous cases to assembly language code using one
jump table implementation for each contiguous group, and then use com-
pare instructions to determine which jump table instruction sequence to
execute. Here’s one possible implementation of the previous C/C++ code:

; Assume expression has been computed and is sitting in EAX/RAX
; at this point...

 cmp eax, 100
 jb try0_11
 cmp eax, 103
 ja try1000_1003
 cmp eax, 100
 jb default
 lea rcx, jt100
 jmp qword ptr [rcx][rax * 8 – 100 * 8]
jt100 qword case100, case101, default, case103

try0_11: cmp ecx, 11 ;Handle cases 0-11 here
 ja defaultCase
 lea rcx, jt0_11
 jmp qword ptr [rcx][rax * 8]
jt0_11 qword case0, case1, case2, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword case10, case11

try1000_1003:
 cmp eax, 1000
 jb defaultCase
 cmp eax, 1003
 ja defaultCase
 lea rcx, jt1000
 jmp qword ptr [rcx][rax * 8 – 1000 * 8]
jt1000 qword case1000, case1001, defaultCase, case1003
 .
 .
 .
 code for the actual cases here

This code sequence combines groups 0 to 2 and 10 to 11 into a single
group (requiring seven additional jump table entries) in order to save hav-
ing to write an additional jump table sequence.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

422 Chapter 7

Of course, for a set of cases this simple, it’s probably easier to just use
compare-and-branch sequences. This example was simplified a bit just to
make a point.

7.6.7.6 Other switch Statement Alternatives

What happens if the cases are too sparse to do anything but compare the
expression’s value case by case? Is the code doomed to being translated
into the equivalent of an if/elseif/else/endif sequence? Not necessarily.
However, before considering other alternatives, it’s important to mention
that not all if/elseif/else/endif sequences are created equal. Look back at
the previous example. A straightforward implementation might have been
something like this:

if(unsignedExpression <= 11)
{
 switch for 0 to 11
}
else if(unsignedExpression >= 100 && unsignedExpression <= 101)
{
 switch for 100 to 101
}
else if(unsignedExpression >= 1000 && unsignedExpression <= 1001)
{
 switch for 1000 to 1001
}
else
{
 code for default case
}

Instead, the former implementation first tests against the value 100
and branches based on the comparison being less than (cases 0 to 11) or
greater than (cases 1000 to 1001), effectively creating a small binary search
that reduces the number of comparisons. It’s hard to see the savings in the
HLL code, but in assembly code you can count the number of instructions
that would be executed in the best and worst cases and see an improvement
over the standard linear search approach of simply comparing the values in
the cases in the order they appear in the switch statement.8

If your cases are too sparse (no meaningful groups at all), such as the
1, 10, 100, 1000, 10,000 example given earlier in this chapter, you’re not
going to be able to (reasonably) implement the switch statement by using
a jump table. Rather than devolving into a straight linear search (which
can be slow), a better solution is to sort your cases and test them using a
binary search.

With a binary search, you first compare the expression value against the
middle case value. If it’s less than the middle value, you repeat the search

8. Of course, if you have a large number of groups in a sparse switch statement, a binary
search will be much faster, on the average, than a linear search.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 423

on the first half of the list of values; if it’s greater than the middle value, you
repeat the test on the second half of the values; if it’s equal, obviously you
drop into the code to handle that test. Here’s the binary search version of
the 1, 10, 100, . . . example:

; Assume expression has been calculated into EAX

 cmp eax, 100
 jb try1_10
 ja try1000_10000

 code to handle case 100 goes here
 jmp AllDone

try1_10:
 cmp eax,1
 je case1
 cmp eax, 10
 jne defaultCase

 code to handle case 10 goes here
 jmp AllDone
case1:
 code to handle case 1 goes here
 jmp AllDone

try1000_10000:
 cmp eax, 1000
 je case1000
 cmp eax, 10000
 jne defaultCase

 code to handle case 10000 goes here
 jmp AllDone

case1000:
 code to handle case 1000 goes here
 jmp AllDone

defaultCase:
 code to handle defaultCase goes here

AllDone:

The techniques presented in this section have many possible alterna-
tives. For example, one common solution is to create a table containing a
set of records (structures), with each record entry a two-tuple containing a
case value and a jump address. Rather than having a long sequence of com-
pare instructions, a short loop can sequence through all the table elements,
searching for the case value and transferring control to the corresponding

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

424 Chapter 7

jump address if there is a match. This scheme is slower than the other
techniques in this section but can be much shorter than the traditional
if/elseif/else/endif implementation.9

Note, by the way, that the defaultCase label often appears in several jcc
instructions in a (non-jump-table) switch implementation. Since the condi-
tional jump instructions have two encodings, a 2-byte form and a 6-byte form,
you should try to place the defaultCase near these conditional jumps so you
can use the short form of the instruction as much as possible. Although the
examples in this section have typically put the jump tables (which consume a
large number of bytes) immediately after their corresponding indirect jump,
you could move these tables elsewhere in the procedure to help keep the
conditional jump instructions short. Here’s the earlier 1, 10, 100, . . . example
coded with this in mind:

; Assume expression has been computed and is sitting in EAX/RAX
; at this point...

 cmp eax, 100
 jb try0_13
 cmp eax, 103
 ja try1000_1003
 lea rcx, jt100
 jmp qword ptr [rcx][rax * 8 – 100 * 8]

try0_13: cmp ecx, 13 ;Handle cases 0 to13 here
 ja defaultCase
 lea rcx, jt0_13
 jmp qword ptr [rcx][rax * 8]

try1000_1003:
 cmp eax, 1000 ;Handle cases 1000 to 1003 here
 jb defaultCase
 cmp eax, 1003
 ja defaultCase
 lea rcx, jt1000
 jmp qword ptr [rcx][rax * 8 – 1000 * 8]

defaultCase:
 put defaultCase here to keep it near all the
 conditional jumps to defaultCase

 jmp AllDone

jt0_13 qword case0, case1, case2, case3
 qword defaultCase, defaultCase, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword case10, case11, case12, case13
jt100 qword case100, case101, case102, case103
jt1000 qword case1000, case1001, case1002, case1003

9. With a bit of effort, you could use a binary search if the table is sorted.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 425

 .
 .
 .
 code for the actual cases here

 7.7 State Machines and Indirect Jumps
Another control structure commonly found in assembly language programs
is the state machine. A state machine uses a state variable to control program
flow. The FORTRAN programming language provides this capability with
the assigned goto statement. Certain variants of C (for example, GNU’s GCC
from the Free Software Foundation) provide similar features. In assembly
language, the indirect jump can implement state machines.

So what is a state machine? In basic terms, it is a piece of code that keeps
track of its execution history by entering and leaving certain states. For the
purposes of this chapter, we’ll just assume that a state machine is a piece of
code that (somehow) remembers the history of its execution (its state) and
executes sections of code based on that history.

In a real sense, all programs are state machines. The CPU registers and
values in memory constitute the state of that machine. However, we’ll use a
much more constrained view. Indeed, for most purposes, only a single vari-
able (or the value in the RIP register) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure
and want to perform one operation the first time you call it, a different oper-
ation the second time you call it, yet something else the third time you call
it, and then something new again on the fourth call. After the fourth call, it
repeats these four operations in order.

For example, suppose you want the procedure to add EAX and EBX the
first time, subtract them on the second call, multiply them on the third, and
divide them on the fourth. You could implement this procedure as shown
in Listing 7-6.

; Listing 7-6
;
; A simple state machine example

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 7-6", 0
fmtStr0 byte "Calling StateMachine, "
 byte "state=%d, EAX=5, ECX=6", nl, 0

fmtStr0b byte "Calling StateMachine, "
 byte "state=%d, EAX=1, ECX=2", nl, 0

fmtStrx byte "Back from StateMachine, "
 byte "state=%d, EAX=%d", nl, 0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

426 Chapter 7

fmtStr1 byte "Calling StateMachine, "
 byte "state=%d, EAX=50, ECX=60", nl, 0

fmtStr2 byte "Calling StateMachine, "
 byte "state=%d, EAX=10, ECX=20", nl, 0

fmtStr3 byte "Calling StateMachine, "
 byte "state=%d, EAX=50, ECX=5", nl, 0

 .data
state byte 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

StateMachine proc
 cmp state, 0
 jne TryState1

; State 0: Add ECX to EAX and switch to state 1:

 add eax, ecx
 inc state ; State 0 becomes state 1
 jmp exit

TryState1:
 cmp state, 1
 jne TryState2

; State 1: Subtract ECX from EAX and switch to state 2:

 sub eax, ecx
 inc state ; State 1 becomes state 2.
 jmp exit

TryState2: cmp state, 2
 jne MustBeState3

; If this is State 2, multiply ECX by EAX and switch to state 3:

 imul eax, ecx
 inc state ; State 2 becomes state 3.
 jmp exit

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 427

; If it isn't one of the preceding states, we must be in State 3,
; so divide EAX by ECX and switch back to state 0.

MustBeState3:
 push rdx ; Preserve this 'cause it gets whacked by
div.
 xor edx, edx ; Zero-extend EAX into EDX.
 div ecx
 pop rdx ; Restore EDX's value preserved above.
 mov state, 0 ; Reset the state back to 0.

exit: ret

StateMachine endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

 mov state, 0 ;Just to be safe

; Demonstrate state 0:

 lea rcx, fmtStr0
 movzx rdx, state
 call printf

 mov eax, 5
 mov ecx, 6
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate state 1:

 lea rcx, fmtStr1
 movzx rdx, state
 call printf

 mov eax, 50
 mov ecx, 60
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

428 Chapter 7

 call printf

; Demonstrate state 2:

 lea rcx, fmtStr2
 movzx rdx, state
 call printf

 mov eax, 10
 mov ecx, 20
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate state 3:

 lea rcx, fmtStr3
 movzx rdx, state
 call printf

 mov eax, 50
 mov ecx, 5
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate back in state 0:

 lea rcx, fmtStr0b
 movzx rdx, state
 call printf

 mov eax, 1
 mov ecx, 2
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 7-6: A state machine example

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 429

Here’s the build command and program output:

C:\>build listing7-6

C:\>echo off
 Assembling: listing7-6.asm
c.cpp

C:\>listing7-6
Calling Listing 7-6:
Calling StateMachine, state=0, EAX=5, ECX=6
Back from StateMachine, state=1, EAX=11
Calling StateMachine, state=1, EAX=50, ECX=60
Back from StateMachine, state=2, EAX=-10
Calling StateMachine, state=2, EAX=10, ECX=20
Back from StateMachine, state=3, EAX=200
Calling StateMachine, state=3, EAX=50, ECX=5
Back from StateMachine, state=0, EAX=10
Calling StateMachine, state=0, EAX=1, ECX=2
Back from StateMachine, state=1, EAX=3
Listing 7-6 terminated

Technically, this procedure is not the state machine. Instead, the variable
state and the cmp/jne instructions constitute the state machine. The proce-
dure is little more than a switch statement implemented via the if/then/elseif
construct. The only unique thing is that it remembers how many times it has
been called,10 and behaves differently depending upon the number of calls.

While this is a correct implementation of the desired state machine, it
is not particularly efficient. The astute reader, of course, would recognize
that this code could be made a little faster using an actual switch statement
rather than the if/then/elseif/endif implementation. However, an even bet-
ter solution exists.

It’s common to use an indirect jump to implement a state machine
in assembly language. Rather than having a state variable that contains a
value like 0, 1, 2, or 3, we could load the state variable with the address of
the code to execute upon entry into the procedure. By simply jumping to
that address, the state machine could save the tests needed to select the
proper code fragment. Consider the implementation in Listing 7-7 using
the indirect jump.

; Listing 7-7
;
; An indirect jump state machine example

 option casemap:none

nl = 10

 .const

10. Actually, it remembers how many times, modulo 4, that it has been called.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

430 Chapter 7

ttlStr byte "Listing 7-7", 0
fmtStr0 byte "Calling StateMachine, "
 byte "state=0, EAX=5, ECX=6", nl, 0

fmtStr0b byte "Calling StateMachine, "
 byte "state=0, EAX=1, ECX=2", nl, 0

fmtStrx byte "Back from StateMachine, "
 byte "EAX=%d", nl, 0

fmtStr1 byte "Calling StateMachine, "
 byte "state=1, EAX=50, ECX=60", nl, 0

fmtStr2 byte "Calling StateMachine, "
 byte "state=2, EAX=10, ECX=20", nl, 0

fmtStr3 byte "Calling StateMachine, "
 byte "state=3, EAX=50, ECX=5", nl, 0

 .data
state qword state0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; StateMachine version 2.0- using an indirect jump.

 option noscoped ;statex labels must be global
StateMachine proc

 jmp state

; State 0: Add ECX to EAX and switch to state 1:

state0: add eax, ecx
 lea rcx, state1
 mov state, rcx
 ret

; State 1: Subtract ECX from EAX and switch to state 2:

state1: sub eax, ecx
 lea rcx, state2

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 431

 mov state, rcx
 ret

; If this is state 2, multiply ECX by EAX and switch to state 3:

state2: imul eax, ecx
 lea rcx, state3
 mov state, rcx
 ret

state3: push rdx ; Preserve this 'cause it
 ; gets whacked by div.
 xor edx, edx ; Zero-extend EAX into EDX.
 div ecx
 pop rdx ; Restore EDX's value preserved above.
 lea rcx, state0
 mov state, rcx
 ret

StateMachine endp
 option scoped

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ;Shadow storage

 lea rcx, state0
 mov state, rcx ;Just to be safe

; Demonstrate state 0:

 lea rcx, fmtStr0
 call printf

 mov eax, 5
 mov ecx, 6
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate state 1:

 lea rcx, fmtStr1
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

432 Chapter 7

 mov eax, 50
 mov ecx, 60
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate state 2:

 lea rcx, fmtStr2
 call printf

 mov eax, 10
 mov ecx, 20
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate state 3:

 lea rcx, fmtStr3
 call printf

 mov eax, 50
 mov ecx, 5
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate back in state 0:

 lea rcx, fmtStr0b
 call printf

 mov eax, 1
 mov ecx, 2
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 7-7: A state machine using an indirect jump

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 433

Here’s the build command and program output:

C:\>build listing7-7

C:\>echo off
 Assembling: listing7-7.asm
c.cpp

C:\>listing7-7
Calling Listing 7-7:
Calling StateMachine, state=0, EAX=5, ECX=6
Back from StateMachine, EAX=11
Calling StateMachine, state=1, EAX=50, ECX=60
Back from StateMachine, EAX=-10
Calling StateMachine, state=2, EAX=10, ECX=20
Back from StateMachine, EAX=200
Calling StateMachine, state=3, EAX=50, ECX=5
Back from StateMachine, EAX=10
Calling StateMachine, state=0, EAX=1, ECX=2
Back from StateMachine, EAX=3
Listing 7-7 terminated

The jmp instruction at the beginning of the StateMachine procedure trans-
fers control to the location pointed at by the state variable. The first time you
call StateMachine, it points at the State0 label. Thereafter, each subsection of
code sets the State variable to point at the appropriate successor code.

 7.8 Loops
Loops represent the final basic control structure (sequences, decisions, and
loops) that make up a typical program. As with so many other structures in
assembly language, you’ll find yourself using loops in places you’ve never
dreamed of using loops.

Most high-level languages have implied loop structures hidden away. For
example, consider the BASIC statement if A$ = B$ then 100. This if statement
compares two strings and jumps to statement 100 if they are equal. In assem-
bly language, you would need to write a loop to compare each character in A$
to the corresponding character in B$ and then jump to statement 100 if and
only if all the characters matched.11

Program loops consist of three components: an optional initialization
component, an optional loop-termination test, and the body of the loop. The order
in which you assemble these components can dramatically affect the loop’s
operation. Three permutations of these components appear frequently in
programs: while loops, repeat/until loops (do/while in C/C++), and infinite
loops (for example, for(;;) in C/C++).

11. Of course, the C Standard Library provides the strcmp routine that compares the strings
for you, effectively hiding the loop. However, if you were to write this function yourself,
the looping nature of the operation would be obvious.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

434 Chapter 7

7.8.1 while Loops
The most general loop is the while loop. In C/C++, it takes the following
form:

while(expression) statement(s);

In the while loop, the termination test appears at the beginning of the
loop. As a direct consequence of the position of the termination test, the
body of the loop may never execute if the Boolean expression is always false.

Consider the following C/C++ while loop:

i = 0;
while(i < 100)
{
 ++i;
}

The i = 0; statement is the initialization code for this loop. i is a loop-
control variable, because it controls the execution of the body of the loop. i
< 100 is the loop-termination condition: the loop will not terminate as long
as i is less than 100. The single statement ++i; (increment i) is the loop body
that executes on each loop iteration.

A C/C++ while loop can be easily synthesized using if and goto statements.
For example, you may replace the previous C while loop with the following
C code:

i = 0;
WhileLp:
if(i < 100)
{

 ++i;
 goto WhileLp;

}

More generally, you can construct any while loop as follows:

Optional initialization code

UniqueLabel:
if(not_termination_condition)
{
 Loop body
 goto UniqueLabel;

}

Therefore, you can use the techniques from earlier in this chapter to
convert if statements to assembly language and add a single jmp instruction

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 435

to produce a while loop. The example in this section translates to the follow-
ing pure x86-64 assembly code:12

 mov i, 0
WhileLp:
 cmp i, 100
 jnl WhileDone
 inc i
 jmp WhileLp;

WhileDone:

7.8.2 repeat/until Loops
The repeat/until (do/while) loop tests for the termination condition at the
end of the loop rather than at the beginning. In Pascal, the repeat/until
loop takes the following form:

Optional initialization code
repeat

 Loop body

until(termination_condition);

This is comparable to the following C/C++ do/while loop:

Optional initialization code
do
{
 Loop body

}while(not_termination_condition);

This sequence executes the initialization code, then executes the loop
body, and finally tests a condition to see whether the loop should repeat.
If the Boolean expression evaluates to false, the loop repeats; otherwise,
the loop terminates. The two things you should note about the repeat/until
loop are that the termination test appears at the end of the loop and, as a
direct consequence, the loop body always executes at least once.

Like the while loop, the repeat/until loop can be synthesized with an if
statement and a jmp. You could use the following:

Initialization code
SomeUniqueLabel:

12. MASM will actually convert most while statements to different x86-64 code than this
section presents. The reason for the difference appears in “Moving the Termination
Condition to the End of a Loop” on page XXX, when we explore how to write more-
efficient loop code.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

436 Chapter 7

 Loop body

if(not_the_termination_condition) goto SomeUniqueLabel;

Based on the material presented in the previous sections, you can eas-
ily synthesize repeat/until loops in assembly language. The following is a
simple example:

 repeat (* Pascal code *)

 write('Enter a number greater than 100:');
 readln(i);

 until(i > 100);

// This translates to the following if/jmp code:

 RepeatLabel:

 write('Enter a number greater than 100:');
 readln(i);

 if(i <= 100) then goto RepeatLabel;

// It also translates into the following assembly code:

RepeatLabel:

 call print
 byte "Enter a number greater than 100: ", 0
 call readInt ;Function to read integer from user

 cmp eax, 100 ;Assume readInt returns integer in EAX
 jng RepeatLabel

7.8.3 forever/endfor Loops
If while loops test for termination at the beginning of the loop and repeat/
until/do/while loops check for termination at the end of the loop, the only
place left to test for termination is in the middle of the loop. The C/C++
high-level for(;;) loop, combined with the break statement, provides this
capability. The C/C++ infinite loop takes the following form:

for(;;)
{
 Loop body

}

There is no explicit termination condition. Unless otherwise provided,
the for(;;) construct forms an infinite loop. A break statement usually

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 437

handles loop termination. Consider the following C++ code that employs a
for(;;) construct:

for(;;)
{
 cin >> character;
 if(character == '.') break;
 cout << character;

}

Converting a for (ever) loop to pure assembly language is easy. All you
need is a label and a jmp instruction. The break statement in this example is also
nothing more than a jmp instruction (or conditional jump). The pure assembly
language version of the preceding code looks something like the following:

foreverLabel:

 call getchar ;Assume it returns char in AL
 cmp al, '.'
 je ForIsDone

 mov cl, al ;Pass char read from getchar to putchar
 call putcchar ;Assume this prints the char in CL
 jmp foreverLabel

ForIsDone:

7.8.4 for Loops
The standard for loop is a special form of the while loop that repeats the
loop body a specific number of times (this is known as a definite loop). In
C/C++, the for loop takes the following form:

for(Initialization_Stmt; Termination_Expression; inc_Stmt)
{
 statements

}

which is equivalent to the following:

Initialization_Stmt;
while(Termination_Expression)
{
 statements

 inc_Stmt;

}

Traditionally, programs use the for loop to process arrays and other
objects accessed in sequential order. We normally initialize a loop-control

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

438 Chapter 7

variable with the initialization statement and then use the loop-control vari-
able as an index into the array (or other data type). For example:

for(i = 0; i < 7; ++i)
{
 printf("Array Element = %d \ n", SomeArray[i]);

}

To convert this to pure assembly language, begin by translating the for
loop into an equivalent while loop:

i = 0;
while(i < 7)
{
 printf("Array Element = %d \ n", SomeArray[i]);
 ++i;
}

Now, using the techniques from “while Loops” on page xx, translate
the code into pure assembly language:

 xor rbx, rbx ;Use RBX to hold loop index
WhileLp: cmp ebx, 7
 jnl EndWhileLp

 lea rcx, fmtStr ;fmtStr="Array Element = %d”, nl, 0
 lea rdx, SomeArray
 mov rdx, [rdx][rbx * 4] ;Assume SomeArray is 4-byte ints
 call printf

 inc rbx
 jmp WhileLp;

EndWhileLp:

7.8.5 The break and continue Statements
The C/C++ break and continue statements both translate into a single jmp
instruction. The break instruction exits the loop that immediately contains
the break statement; the continue statement restarts the loop that contains the
continue statement.

To convert a break statement to pure assembly language, just emit a
goto/jmp instruction that transfers control to the first statement following
the end of the loop to exit. You can do this by placing a label after the loop
body and jumping to that label. The following code fragments demonstrate
this technique for the various loops.

// Breaking out of a FOR(;;) loop:

for(;;)
{
 stmts

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 439

 // break;
 goto BreakFromForever;
 stmts
}
BreakFromForever:

// Breaking out of a FOR loop;
for(initStmt; expr; incStmt)
{
 stmts
 // break;
 goto BrkFromFor;
 stmts
}
BrkFromFor:

// Breaking out of a WHILE loop:

while(expr)
{
 stmts
 // break;
 goto BrkFromWhile;
 stmts
}
BrkFromWhile:

// Breaking out of a REPEAT/UNTIL loop (do/while is similar):

repeat
 stmts
 // break;
 goto BrkFromRpt;
 stmts
until(expr);
BrkFromRpt:

In pure assembly language, convert the appropriate control structures
to assembly and replace the goto with a jmp instruction.

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single jmp instruction; however, the target
label doesn’t wind up going in the same spot for each of the different loops.
Figures 7-2, 7-3, 7-4, and 7-5 show where the continue statement transfers con-
trol for each of the loops.

for(;;)
{
 stmts
 continue;
 stmts

}

Figure 7-2: continue destination for the for(;;) loop

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

440 Chapter 7

while(expr)
{
 stmts
 continue;
 stmts

}

Figure 7-3: continue destination and the while loop

for(initStmt; expr; incStmt)
{
 stmts
 continue;
 stmts

}

Note: CONTINUE forces the execution of the
incStmt clause and then transfers control
to the test for loop termination.

Figure 7-4: continue destination and the for loop

repeat

 stmts
 continue;
 stmts

until(<<expr>>);

Figure 7-5: continue destination and the repeat/until loop

The following code fragments demonstrate how to convert the continue
statement into an appropriate jmp instruction for each of these loop types:

for(;;)/continue/endfor

; Conversion of forever loop with continue
; to pure assembly:
;for(;;)
;{
; stmts
; continue;
; stmts
;}

; Converted code:

foreverLbl:
 stmts
 ; continue;
 jmp foreverLbl
 stmts
 jmp foreverLbl

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 441

while/continue/endwhile

; Conversion of while loop with continue
; into pure assembly:
;
;while(expr)
;{
; stmts
; continue;
; stmts
;}

; Converted code:

whlLabel:
 Code to evaluate expr
 jcc EndOfWhile ; Skip loop on expr failure.
 stmts
 // continue;
 jmp whlLabel ; Jump to start of loop on continue.
 stmts
 jmp whlLabel ; Repeat the code.
EndOfWhile:

for/Continue/endfor

; Conversion for a for loop with continue
; into pure assembly:
;
;for(initStmt; expr; incStmt)
;{
; stmts
; continue;
; stmts
;}

; Converted code:

 initStmt
ForLpLbl:
 Code to evaluate expr
 jcc EndOfFor ; Branch if expression fails.
 stmts

 ; continue;
 jmp ContFor ; Branch to incStmt on continue.

 stmts

ContFor:
 incStmt
 jmp ForLpLbl

EndOfFor:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

442 Chapter 7

repeat/continue/until

;repeat
; stmts
; continue;
; stmts
;until(expr);
;
;do
;{
; stmts
; continue;
; stmts

;}while(!expr);

; Converted code:

RptLpLbl:
 stmts
 ; continue;
 jmp ContRpt ; Continue branches to termination test.
 stmts
ContRpt:
 Code to test expr
 jcc RptLpLbl ; Jumps if expression evaluates false.

7.8.6 Register Usage and Loops
Given that the x86-64 accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially
for small loops). However, registers are a limited resource; there are only 16
general-purpose registers (and some, such as RSP and RBP, are reserved for
special purposes). Compared with memory, you cannot place much data in
the registers, despite them being more efficient to use than memory.

Loops present a special challenge for registers. Registers are perfect for
loop-control variables because they’re efficient to manipulate and can serve as
indexes into arrays and other data structures (a common use for loop-control
variables). However, the limited availability of registers often creates problems
when using registers in this fashion. Consider the following code that will not
work properly because it attempts to reuse a register (CX) that is already in
use (leading to the corruption of the outer loop’s loop-control variable):

 mov cx, 8
loop1:
 mov cx, 4
loop2:
 stmts
 dec cx
 jnz loop2

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 443

 dec cx
 jnz loop1

The intent here, of course, was to create a set of nested loops; that is,
one loop inside another. The inner loop (loop2) should repeat four times
for each of the eight executions of the outer loop (loop1). Unfortunately,
both loops use the same register as a loop-control variable. Therefore,
this will form an infinite loop. Because CX is always 0 upon encountering
the second dec instruction, control will always transfer to the loop1 label
(because decrementing 0 produces a nonzero result). The solution here is
to save and restore the CX register or to use a different register in place of
CX for the outer loop:

 mov cx, 8
loop1:
 push rcx
 mov cx, 4
loop2:
 stmts
 dec cx
 jnz loop2;

 pop rcx
 dec cx
 jnz loop1
or
 mov dx,8
loop1:
 mov cx, 4
loop2:
 stmts
 dec cx
 jnz loop2

 dec dx
 jnz loop1

Register corruption is one of the primary sources of bugs in loops in
assembly language programs, so always keep an eye out for this problem.

 7.9 Loop Performance Improvements
Because loops are the primary source of performance problems within
a program, they are the place to look when attempting to speed up your
software. While a treatise on how to write efficient programs is beyond the
scope of this chapter, you should be aware of the following concepts when
designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to
execute a single iteration of the loop.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

444 Chapter 7

7.9.1 Moving the Termination Condition to the End of a Loop
Consider the following flow graphs for the three types of loops presented
earlier:

repeat/until loop:
 Initialization code
 Loop body
 Test for termination
 Code following the loop

while loop:
 Initialization code
 Loop-termination test
 Loop body
 Jump back to test
 Code following the loop

forever/endfor loop:
 Initialization code
 Loop body part one
 Loop-termination test
 Loop body part two
 Jump back to Loop body part one
 Code following the loop

As you can see, the repeat/until loop is the simplest of the bunch. This is
reflected in the assembly language implementation of these loops. Consider
the following repeat/until and while loops that are semantically identical:

; Example involving a WHILE loop:

 mov esi, edi
 sub esi, 20

; while(esi <= edi)

whileLp: cmp esi, edi
 jnle endwhile

 stmts

 inc esi
 jmp whileLp
endwhile:

; Example involving a REPEAT/UNTIL loop:

 mov esi, edi
 sub esi, 20
repeatLp:

 stmts

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 445

 inc esi
 cmp esi, edi
 jng repeatLp

Testing for the termination condition at the end of the loop allows us to
remove a jmp instruction from the loop, which can be significant if the loop
is nested inside other loops. Given the definition of the loop, you can easily
see that the loop will execute exactly 20 times, which suggests that the con-
version to a repeat/until loop is trivial and always possible.

Unfortunately, it’s not always quite this easy. Consider the following C code:

while(esi <= edi)
{
 stmts
 ++esi;
}

In this particular example, we haven’t the slightest idea what ESI con-
tains upon entry into the loop. Therefore, we cannot assume that the loop
body will execute at least once. So, we must test for loop termination before
executing the body of the loop. The test can be placed at the end of the
loop with the inclusion of a single jmp instruction:

 jmp WhlTest
TopOfLoop:
 stmts
 inc esi
WhlTest: cmp esi, edi
 jle TopOfLoop

Although the code is as long as the original while loop, the jmp instruc-
tion executes only once rather than on each repetition of the loop. However,
the slight gain in efficiency is obtained via a slight loss in readability (so be
sure to comment it). The second code sequence is closer to spaghetti code
than the original implementation. Such is often the price of a small perfor-
mance gain. Therefore, you should carefully analyze your code to ensure
that the performance boost is worth the loss of clarity.

7.9.2 Executing the Loop Backward
Because of the nature of the flags on the x86-64, loops that repeat from
some number down to (or up to) 0 are more efficient than loops that exe-
cute from 0 to another value. Compare the following C/C++ for loop and
the comparable assembly language code:

for(j = 1; j <= 8; ++j)
{
 stmts
}

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

446 Chapter 7

; Conversion to pure assembly (as well as using a
; REPEAT/UNTIL form):

mov j, 1
ForLp:
 stmts
 inc j
 cmp j, 8
 jle ForLp

Now consider another loop that also has eight iterations but runs its
loop-control variable from 8 down to 1 rather than 1 up to 8, thereby saving
a comparison on each repetition of the loop:

 mov j, 8
LoopLbl:
 stmts
 dec j
 jnz LoopLbl

Saving the execution time of the cmp instruction on each iteration of the
loop may result in faster code. Unfortunately, you cannot force all loops to
run backward. However, with a little effort and some coercion, you should
be able to write many for loops so that they operate backward.

The preceding example worked out well because the loop ran from 8
down to 1. The loop terminated when the loop-control variable became 0.
What happens if you need to execute the loop when the loop-control variable
goes to 0? For example, suppose that the preceding loop needed to range
from 7 down to 0. As long as the lower bound is non-negative, you can substi-
tute the jns instruction in place of the jnz instruction in the earlier code:

 mov j, 7
LoopLbl:
 stmts
 dec j
 jns LoopLbl

This loop will repeat eight times, with j taking on the values 7 to 0.
When it decrements 0 to –1, it sets the sign flag and the loop terminates.

Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a byte, values in the range 128 to 255 are
negative in the two’s complement system. Therefore, initializing the loop-
control variable with any 8-bit value in the range 129 to 255 (or, of course,
0) terminates the loop after a single execution. This can get you into trou-
ble if you’re not careful.

7.9.3 Using Loop-Invariant Computations
A loop-invariant computation is a calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 447

loop. You can compute them outside the loop and reference the value of
the computations inside the loop. The following C code demonstrates an
invariant computation:

for(i = 0; i < n; ++i)
{
 k = (j - 2) + i
}

Because j never changes throughout the execution of this loop, the
subexpression j - 2 can be computed outside the loop:

jm2 = j - 2;
for(i = 0; i < n; ++i)
{

 k = jm2 + i;
}

Although we’ve eliminated a single instruction by computing the sub-
expression j - 2 outside the loop, there is still an invariant component to
this calculation: adding j - 2 to i n times. Because this invariant compo-
nent executes n times in the loop, we can translate the previous code to
the following:

k = (j - 2) * n;
for(i = 0; i < n; ++i)
{
 k = k + i;
}

This translates to the following assembly code:

 mov eax, j
 sub eax, 2
 imul eax, n
 mov ecx, 0
lp: cmp ecx, n
 jnl loopDone
 add eax, ecx ; Single instruction implements loop body!
 inc ecx
 jmp lp
loopDone:
 mov k, eax

For this particular loop, you can actually compute the result without
using a loop at all (a formula corresponds to the preceding iterative calcula-
tion). Still, this simple example demonstrates elimination of loop-invariant
calculations from a loop.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

448 Chapter 7

7.9.4 Unraveling Loops
For small loops—those whose body is only a few statements—the overhead
required to process a loop may constitute a significant percentage of the
total processing time. For example, look at the following Pascal code and its
associated x86-64 assembly language code:

 for i := 3 downto 0 do A[i] := 0;

 mov i, 3
 lea rcx, A
LoopLbl:
 mov ebx, i
 mov [rcx][rbx * 4], 0
 dec i
 jns LoopLbl

Four instructions execute on each repetition of the loop. Only one
instruction is doing the desired operation (moving a 0 into an element of
A). The remaining three instructions control the loop. Therefore, it takes
16 instructions to do the operation logically required by 4.

While we could make many improvements to this loop based on the
information presented thus far, consider carefully exactly what it is that this
loop is doing—it’s storing four 0s into A[0] through A[3]. A more efficient
approach is to use four mov instructions to accomplish the same task. For
example, if A is an array of double words, the following code initializes A
much faster than the preceding code:

mov A[0], 0
mov A[4], 0
mov A[8], 0
mov A[12], 0

Although this is a simple example, it shows the benefit of loop unraveling
(also known as loop unrolling). If this simple loop appeared buried inside a
set of nested loops, the 4:1 instruction reduction could possibly double the
performance of that section of your program.

Of course, you cannot unravel all loops. Loops that execute a variable
number of times are difficult to unravel because there is rarely a way to deter-
mine at assembly time the number of loop iterations. Therefore, unraveling a
loop is a process best applied to loops that execute a known number of times,
with the number of times known at assembly time.

Even if you repeat a loop a fixed number of iterations, it may not be a
good candidate for loop unraveling. Loop unraveling produces impressive
performance improvements when the number of instructions controlling
the loop (and handling other overhead operations) represents a significant
percentage of the total number of instructions in the loop. Had the previous
loop contained 36 instructions in the body (exclusive of the four overhead
instructions), the performance improvement would be, at best, only 10 per-
cent (compared with the 300 to 400 percent it now enjoys).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 449

Therefore, the costs of unraveling a loop—all the extra code that must
be inserted into your program—quickly reach a point of diminishing returns
as the body of the loop grows larger or as the number of iterations increases.
Furthermore, entering that code into your program can become quite a
chore. Therefore, loop unraveling is a technique best applied to small loops.

Note that the superscalar 80x86 chips (Pentium and later) have branch-
prediction hardware and uses other techniques to improve performance. Loop
unrolling on such systems may actually slow the code because these processors
are optimized to execute short loops. Whenever applying “improvements” to
speed up your code, it is always advisable to measure the performance before
and after to ensure there was sufficient gain to justify the change.

7.9.5 Using Induction Variables
Consider the following Pascal loop:

for i := 0 to 255 do csetVar[i] := [];

Here the program is initializing each element of an array of charac-
ter sets to the empty set. The straightforward code to achieve this is the
following:

 mov i, 0
 lea rcx, csetVar
FLp:

 ; Compute the index into the array (assume that each
 ; element of a csetVar array contains 16 bytes).

 mov ebx, i ;Zero-extends into RBX!
 shl ebx, 4

 ; Set this element to the empty set (all 0 bits).

 xor rax, rax
 mov qword ptr [rcx][rbx], rax
 mov qword ptr [rcx][rbx + 8], rax

 inc i
 cmp i, 256
 jb FLp;

Although unraveling this code will still improve performance, it will
take 1024 instructions to accomplish this task, too many for all but the most
time-critical applications. However, you can reduce the execution time of
the body of the loop by using induction variables. An induction variable is
one whose value depends entirely on the value of another variable.

In the preceding example, the index into the array csetVar tracks the
loop-control variable (it’s always equal to the value of the loop-control vari-
able times 16). Because i doesn’t appear anywhere else in the loop, there is

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

450 Chapter 7

no sense in performing the computations on i. Why not operate directly on
the array index value? The following code demonstrates this technique:

 xor rbx, rbx ; i * 16 in RBX
 xor rax, rax ; Loop invariant
 lea rcx, csetVar ; Base address of csetVar array.
FLp:
 mov qword ptr [rcx][rbx], rax
 mov qword ptr [rcx][rbx + 8], rax

 add ebx, 16
 cmp ebx, 256 * 16
 jb FLp
; mov ebx, 256 ; If you care to maintain same semantics as C code.

The induction that takes place in this example occurs when the code
increments the loop-control variable (moved into EBX for efficiency) by 16
on each iteration of the loop rather than by 1. Multiplying the loop-control
variable by 16 (and the final loop-termination constant value) allows the
code to eliminate multiplying the loop-control variable by 16 on each itera-
tion of the loop (that is, this allows us to remove the shl instruction from the
previous code). Further, because this code no longer refers to the original
loop-control variable (i), the code can maintain the loop-control variable
strictly in the EBX register.

 7.10 For More Information
Write Great Code, Volume 2 by this author (Second Edition, No Starch Press,
2020) provides a good discussion of the implementation of various HLL
control structures in low-level assembly language. It also discusses optimiza-
tions such as induction, unrolling, strength reduction, and so on, that apply
to optimizing loops.

 7.11 Test Yourself
1. What are the two typical mechanisms for obtaining the address of a

label appearing in a program?

2. What statement can you use to make all symbols global that appear
within a procedure?

3. What statement can you use to make all symbols local that appear
within a procedure?

4. What are the two forms of the indirect jmp instruction?

5. What is a state machine?

6. What is the general rule for converting a branch to its opposite branch?

7. What are the two exceptions to the rule for converting a branch to its
opposite branch?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Low-Level Control Structures 451

8. What is a trampoline?

9. What is the general syntax of the conditional move instruction?

10. What is the advantage of a conditional move instruction over a condi-
tional jump?

11. What are some disadvantages of conditional moves?

12. Explain the difference between short-circuit and complete Boolean
evaluation.

13. Convert the following if statements to assembly language sequences by
using complete Boolean evaluation (assume all variables are unsigned
32-bit integer values):

if(x == y || z > t)
{
 do something
}

if(x != y && z < t)
{
 then statements
}
else
{
 else statements
}

14. Convert the preceding statements to assembly language by using short-
circuit Boolean evaluation (assume all variables are signed 16-bit inte-
ger values).

15. Convert the following switch statements to assembly language (assume
all variables are unsigned 32-bit integers):

switch(s)
{
 case 0: case 0 code break;
 case 1: case 1 code break;
 case 2: case 2 code break;
 case 3: case 3 code break;
}

switch(t)
{
 case 2: case 0 code break;
 case 4: case 4 code break;
 case 5: case 5 code break;
 case 6: case 6 code break;
 default: default code
}

switch(u)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

452 Chapter 7

{
 case 10: case 10 code break;
 case 11: case 11 code break;
 case 12: case 12 code break;
 case 25: case 25 code break;
 case 26: case 26 code break;
 case 27: case 27 code break;
 default: default code
}

16. Convert the following while loops to assembly code (assume all variables
are signed 32-bit integers):

while(i < j)
{
 code for loop body
}

while(i < j && k != 0)
{
 code for loop body, part a
 if(m == 5) continue;
 << code for loop body, part b
 if(n < 6) break;
 code for loop body, part c
}

do
{
 code for loop body
} while(i != j);

do
{
 code for loop body, part a
 if(m != 5) continue;
 code for loop body, part b
 if(n == 6) break;
 code for loop body, part c
} while(i < j && k > j);

for(int i = 0; i < 10; ++i)
{
 code for loop body
}

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

8
A D V A N C E D A R I T H M E T I C

This chapter covers extended-precision
arithmetic, arithmetic on operands whose

sizes are different, and decimal arithme-
tic. By the conclusion of this chapter, you will

know how to apply arithmetic and logical operations
to integer operands of any size, including those larger
than 64 bits, and how to convert operands of differ-
ent sizes into a compatible format. Finally, you’ll learn
to perform decimal arithmetic by using the x86-64
BCD instructions on the x87 FPU, which lets you use
decimal arithmetic in those few applications that abso-
lutely require base-10 operations.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

454 Chapter 8

 8.1 Extended-Precision Operations
One big advantage of assembly language over high-level languages is that
assembly language does not limit the size of integer operations. For example,
the standard C programming language defines three integer sizes: short int,
int, and long int.1 On the PC, these are often 16- and 32-bit integers.

Although the x86-64 machine instructions limit you to processing 8-, 16-,
32-, or 64-bit integers with a single instruction, you can use multiple instruc-
tions to process integers of any size. If you want to add 256-bit integer values
together, it’s no problem. This section describes how to extend various arith-
metic and logical operations from 16, 32, or 64 bits to as many bits as you
please.

8.1.1 Extended-Precision Addition
The x86-64 add instruction adds two 8-, 16-, 32-, or 64-bit numbers. After
the execution of add, the x86-64 carry flag is set if you have an overflow out
of the HO bit of the sum. You can use this information to do extended-
precision addition operations.2 Consider the way you manually perform a
multiple-digit addition operation (as shown in Figure 8-1).

Step 1: Add the least significant digits together

 289
+ 456 produces

 289
+ 456

5 with carry 1

5

Step 2: Add the next significant digits plus carry

 1 (carry)
 289
+ 456 produces

(carry)

(carry)

 1
 289
+ 456

45 with carry 1

45

Step 3: Add the most significant digits together

 1 (carry)
 289
+ 456 produces

 1
 289
+ 456

745

Figure 8-1: Multi-digit addition

The x86-64 handles extended-precision arithmetic the same way, except
instead of adding the numbers a digit at a time, it adds them together a byte,
word, double, or quad word at a time. Consider the three-quad-word (192-bit)
addition operation in Figure 8-2.

1. Newer C standards also provide for a long long int, which is usually a 64-bit integer.

2. This book uses multi-digit and multi-byte as synonyms for extended precision.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 455

Step 1: Add the least significant qwords together

Step 2: Add the middle qwords together

(plus carry, if any)

(plus carry, if any)

C

CStep 3: Add the most significant qwords together

Figure 8-2: Adding two 192-bit objects together

As you can see, the idea is to break a larger operation into a sequence of
smaller ones. Since the x86 processor family is capable of adding together
at most 64 bits at a time (using general-purpose registers), the operation
must proceed in blocks of 64 bits or fewer. Here are the steps:

1. Add the two LO quad words together just as you would add the two LO
digits of a decimal number together in the manual algorithm, using the
add instruction. If there is a carry out of the LO addition, add sets the
carry flag to 1; otherwise, it clears the carry flag.

2. Add together the second pair of quad words in the two 192-bit values,
plus the carry out of the previous addition (if any), using the adc (add
with carry) instruction. The adc instruction uses the same syntax as add
and performs almost the same operation:

adc dest, source ; dest := dest + source + C

The only difference is that adc adds in the value of the carry flag along
with the source and destination operands. It sets the flags the same
way add does (including setting the carry flag if there is an unsigned
overflow). This is exactly what we need to add together the middle two
double words of our 192-bit sum.

3. Add the HO double words of the 192-bit value with the carry out of the
sum of the middle two quad words, once again using adc.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

456 Chapter 8

To summarize, the add instruction adds the LO quad words together,
and adc adds all other quad word pairs together. At the end of the extended-
precision addition sequence, the carry flag indicates unsigned overflow (if
set), a set overflow flag indicates signed overflow, and the sign flag indicates
the sign of the result. The zero flag doesn’t have any real meaning at the
end of the extended-precision addition (it simply means that the sum of the
two HO quad words is 0 and does not indicate that the whole result is 0).

For example, suppose that you have two 128-bit values you wish to add
together, defined as follows:

 .data
X oword ?
Y oword ?

Suppose also that you want to store the sum in a third variable, Z, which
is also an oword. The following x86-64 code will accomplish this task:

mov rax, qword ptr X ; Add together the LO 64 bits
add rax, qword ptr Y ; of the numbers and store the
mov qword ptr Z, rax ; result into the LO qword of Z.

mov rax, qword ptr X[8] ; Add together (with carry) the
adc rax, qword ptr Y[8] ; HO 64 bits and store the result
mov qword ptr Z[8], rax ; into the HO qword of Z.

The first three instructions add the LO quad words of X and Y together
and store the result into the LO quad word of Z. The last three instructions
add the HO quad words of X and Y together, along with the carry from the
LO word, and store the result in the HO quad word of Z.

Remember, X, Y, and Z are oword objects (128 bits), and an instruction
of the form mov rax, X would attempt to load a 128-bit value into a 64-bit
register. To load a 64-bit value, specifically the LO 64 bits, the qword ptr
operator coerces symbols X, Y, and Z to 64 bits. To load the HO qwords, you
use address expressions of the form X[8], along with the qword ptr operator,
because the x86 memory space addresses bytes, and it takes 8 consecutive
bytes to form a quad word.

You can extend this algorithm to any number of bits by using adc to
add in the higher-order values. For example, to add together two 256-bit
values declared as arrays of four quad words, you could use code like the
following:

 .data
BigVal1 qword 4 dup (?)
BigVal2 qword 4 dup (?)
BigVal3 qword 4 dup (?) ;Holds the sum.
 .
 .
 .

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 457

; Note that there is no need for “qword ptr”
; because the base type of BitValx is qword.

 mov rax, BigVal1[0]
 add rax, BigVal2[0]
 mov BigVal3[0], rax

 mov rax, BigVal1[8]
 adc rax, BigVal2[8]
 mov BigVal3[8], rax

 mov rax, BigVal1[16]
 adc rax, BigVal2[16]
 mov BigVal3[16], rax

 mov rax, BigVal1[24]
 adc rax, BigVal2[24]
 mov BigVal3[24], rax

8.1.2 Extended-Precision Subtraction
Just as it does addition, the x86-64 performs multi-byte subtraction the same
way you would manually, except it subtracts whole bytes, words, double, or
quad words at a time rather than decimal digits. You use the sub instruction
on the LO byte/word/double/quad word and the sbb (subtract with borrow)
instruction on the high-order values.

The following example demonstrates a 128-bit subtraction using the
64-bit registers on the x86-64:

 .data
Left oword ?
Right oword ?
Diff oword ?
 .
 .
 .
 mov rax, qword ptr Left
 sub rax, qword ptr Right
 mov qword ptr Diff, rax

 mov rax, qword ptr Left[8]
 sbb rax, qword ptr Right[8]
 mov qword ptr Diff[8], rax

The following example demonstrates a 256-bit subtraction:

 .data
BigVal1 qword 4 dup (?)
BigVal2 qword 4 dup (?)
BigVal3 qword 4 dup (?)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

458 Chapter 8

 .
 .
 .

; Compute BigVal3 := BigVal1 - BigVal2
;
; Note: don’t need to coerce types of
; BigVa1, BigVal2, or BigVal3 because
; their base types are already qword.

 mov rax, BigVal1[0]
 sub rax, BigVal2[0]
 mov BigVal3[0], rax

 mov rax, BigVal1[8]
 sbb rax, BigVal2[8]
 mov BigVal3[8], rax

 mov rax, BigVal1[16]
 sbb rax, BigVal2[16]
 mov BigVal3[16], rax

 mov rax, BigVal1[24]
 sbb rax, BigVal2[24]
 mov BigVal3[24], rax

8.1.3 Extended-Precision Comparisons
Unfortunately, there isn’t a “compare with borrow” instruction that you
can use to perform extended-precision comparisons. Fortunately, you can
compare extended-precision values by using just a cmp instruction, as you’ll
soon see.

Consider the two unsigned values 2157h and 1293h. The LO bytes of
these two values do not affect the outcome of the comparison. Simply com-
paring the HO bytes, 21h with 12h, tells us that the first value is greater
than the second.

You need to look at only both bytes of a pair of values if the HO bytes
are equal. In all other cases, comparing the HO bytes tells you everything
you need to know about the values. This is true for any number of bytes, not
just two. The following code compares two signed 128-bit integers by com-
paring their HO quad words first and comparing their LO quad words only
if the HO quad words are equal:

; This sequence transfers control to location “IsGreater” if
; QwordValue > QwordValue2. It transfers control to “IsLess” if
; QwordValue < QwordValue2. It falls through to the instruction
; following this sequence if QwordValue = QwordValue2.
; To test for inequality, change the “IsGreater” and “IsLess”
; operands to “NotEqual” in this code.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 459

 mov rax, qword ptr QWordValue[8] ; Get HO qword.
 cmp rax, qword ptr QWordValue2[8]
 jg IsGreater
 jl IsLess;

 mov rax, qword ptr QWordValue[0] ; If HO qwords equal,
 cmp rax, qword ptr QWordValue2[0] ;then we must compare
 jg IsGreater; ; the LO dwords.
 jl IsLess;

; Fall through to this point if the two values were equal.

To compare unsigned values, use the ja and jb instructions in place of
jg and jl.

You can synthesize any comparison from the preceding sequence, as
shown in the following examples that demonstrate signed comparisons;
just substitute ja, jae, jb, and jbe for jg, jge, jl, and jle (respectively) if you
want unsigned comparisons. Each of the following examples assumes these
declarations:

 .data
OW1 oword ?
OW2 oword ?

OW1q textequ <qword ptr OW1>
OW2q textequ <qword ptr OW2>

The following code implements a 128-bit test to see if OW1 < OW2 (signed).
Control transfers to the IsLess label if OW1 < OW2. Control falls through to the
next statement if this is not true:

 mov rax, OW1q[8] ; Get HO dword.
 cmp rax, OW2q[8]
 jg NotLess
 jl IsLess

 mov rax, OW1q[0] ; Fall through to here if the HO
 cmp rax, OW2q[0] ; qwords are equal.
 jl IsLess
NotLess:

Here is a 128-bit test to see if OW1 <= OW2 (signed). This code jumps to
IsLessEq if the condition is true:

 mov rax, OW1q[8] ; Get HO dword.
 cmp rax, OW2q[8]
 jg NotLessEQ
 jl IsLessEQ

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

460 Chapter 8

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal.
 jle IsLessEQ
NotLessEQ:

This is a 128-bit test to see if OW1 > OW2 (signed). It jumps to IsGtr if this
condition is true:

 mov rax, QW1q[8] ; Get HO dword.
 cmp rax, QW2q[8]
 jg IsGtr
 jl NotGtr

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal.
 jg IsGtr
NotGtr:

The following is a 128-bit test to see if OW1 >= OW2 (signed). This code
jumps to label IsGtrEQ if this is the case:

 mov rax, QW1q[8] ; Get HO dword.
 cmp rax, QW2q[8]
 jg IsGtrEQ
 jl NotGtrEQ

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal.
 jge IsGtrEQ
NotGtrEQ:

Here is a 128-bit test to see if OW1 == OW2 (signed or unsigned). This
code branches to the label IsEqual if OW1 == OW2. It falls through to the next
instruction if they are not equal:

 mov rax, QW1q[8] ; Get HO dword.
 cmp rax, QW2q[8]
 jne NotEqual

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal.
 je IsEqual
NotEqual:

The following is a128-bit test to see if OW1 != OW2 (signed or unsigned).
This code branches to the label IsNotEqual if OW1 != OW2. It falls through to
the next instruction if they are equal:

 mov rax, QW1q[8] ; Get HO dword.
 cmp rax, QW2q[8]
 jne IsNotEqual

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 461

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal.
 jne IsNotEqual

; Fall through to this point if they are equal.

To generalize the preceding code for objects larger than 128 bits, start
the comparison with the objects’ HO quad words and work your way down
to their LO quad words, as long as the corresponding double words are
equal. The following example compares two 256-bit values to see if the first
is less than or equal (unsigned) to the second:

 .data
Big1 qword 4 dup (?)
Big2 qword 4 dup (?)
 .
 .
 .
 mov rax, Big1[24]
 cmp rax, Big2[24]
 jb isLE
 ja notLE

 mov rax, Big1[16]
 cmp rax, Big2[16]
 jb isLE
 ja notLE

 mov rax, Big1[8]
 cmp rax, Big2[8]
 jb isLE
 ja notLE

 mov rax, Big1[0]
 cmp rax, Big2[0]
 jnbe notLE
isLE:
 Code to execute if Big1 <= Big2
 .
 .
 .
notLE:
 Code to execute if Big1 > Big2

8.1.4 Extended-Precision Multiplication
Although an 8×8-, 16×16-, 32×32-, or 64×64-bit multiplication is usually
sufficient, sometimes you may want to multiply larger values. You use the
x86-64 single-operand mul and imul instructions for extended-precision

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

462 Chapter 8

multiplication operations, using the same techniques that you employ when
manually multiplying two values. Consider the way you perform multi-digit
multiplication by hand (Figure 8-3).

15 (5×3)

(40×20)
(40×3)

(40×100)

5535

Step 1: Multiply 5×3

 123
× 45

15
100

Step 2: Multiply 5×2

 123
× 45

15
100
500

Step 3: Multiply 5×1

 123
× 45

(5×20)
(5×100)

15
100
500
120

Step 4: Multiply 4×3

 123
× 45

15
100
500
120
800

Step 5: Multiply 4×2

 123
× 45

15
100
500
120
800

4000

Step 6: Multiply 5×1

 123
× 45

15
100
500
120
800

+ 4000

Step 7: Add partial products together

 123
× 45

Figure 8-3: Multi-digit multiplication

The x86-64 does extended-precision multiplication in the same manner
except that it works with bytes, words, double words, and quad words rather
than digits, as shown in Figure 8-4.

Probably the most important thing to remember when performing
an extended-precision multiplication is that you must also perform an
extended-precision addition at the same time. Adding up all the partial
products requires several additions.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 463

Step 1: Multiply the LO words Step 2: Multiply D x A

Step 3: Multiply C x B

Step 5: Compute sum of partial products

Step 4: Multiply C x A

A B

C

D x B

D

A B

C

D x B

D x A

C x B

D x A

C x B

C x A

D x A

C x B

C x A

AB x CB

D

A B

C

D x B

D

A B

C

D x B

D

A B

C

D x B

D x A

D

Figure 8-4: Extended-precision multiplication

Listing 8-1 demonstrates how to multiply two 64-bit values (producing a
128-bit result) by using 32-bit instructions. Technically, you can do a 64-bit
multiplication with a single instruction, but this example demonstrates a
method you can easily extend to 128 bits by using the x86-64 64-bit regis-
ters rather than the 32-bit registers.

; Listing 8-1
;
; 128-bit multiplication

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 8-1”, 0
fmtStr1 byte “%d * %d = %I64d (verify:%I64d)”, nl, 0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

464 Chapter 8

 .data
op1 qword 123456789
op2 qword 234567890
product oword ?
product2 oword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; mul64-
;
; Multiplies two 64-bit values passed in RDX and RAX by
; doing a 64x64-bit multiplication, producing a 128-bit result.
; Algorithm is easily extended to 128x128 bits by switching the
; 32-bit registers for 64-bit registers.
;
; Stores result to location pointed at by R8.

mul64 proc
mp equ <dword ptr [rbp - 8]> ;Multiplier
mc equ <dword ptr [rbp - 16]> ;Multiplicand
prd equ <dword ptr [r8]> ;Result

 push rbp
 mov rbp, rsp
 sub rsp, 24

 push rbx ;Preserve these register values
 push rcx

; Save parameters passed in registers:

 mov qword ptr mp, rax
 mov qword ptr mc, rdx

; Multiply the LO dword of Multiplier times Multiplicand.

 mov eax, mp
 mul mc ; Multiply LO dwords.
 mov prd, eax ; Save LO dword of product.
 mov ecx, edx ; Save HO dword of partial product result.

 mov eax, mp
 mul mc[4] ; Multiply mp(LO) * mc(HO)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 465

 add eax, ecx ; Add to the partial product.
 adc edx, 0 ; Don’t forget the carry!
 mov ebx, eax ; Save partial product for now.
 mov ecx, edx

; Multiply the HO word of Multiplier with Multiplicand.

 mov eax, mp[4] ; Get HO dword of Multiplier.
 mul mc ; Multiply by LO word of Multiplicand.
 add eax, ebx ; Add to the partial product.
 mov prd[4], eax ; Save the partial product.
 adc ecx, edx ; Add in the carry!

 mov eax, mp[4] ; Multiply the two HO dwords together.
 mul mc[4]
 add eax, ecx ; Add in partial product.
 adc edx, 0 ; Don’t forget the carry!

 mov prd[8], eax ;Save HO qword of result
 mov prd[12], edx

; EDX:EAX contains 64-bit result at this point

 pop rcx ; Restore these registers
 pop rbx
 leave
 ret
mul64 endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ;Shadow storage

; Test the mul64 function:

 mov rax, op1
 mov rdx, op2
 lea r8, product
 call mul64

; Use a 64-bit multiply to test the result

 mov rax, op1
 mov rdx, op2
 imul rax, rdx
 mov qword ptr product2, rax

; Print the results:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

466 Chapter 8

 lea rcx, fmtStr1
 mov rdx, op1
 mov r8, op2
 mov r9, qword ptr product
 mov rax, qword ptr product2
 mov [rsp + 32], rax
 call printf

 leave
 ret ;Returns to caller

asmMain endp
 end

Listing 8-1: Extended-precision multiplication

The code works only for unsigned operands. To multiply two signed val-
ues, you must note the signs of the operands before the multiplication, take
the absolute value of the two operands, do an unsigned multiplication, and
then adjust the sign of the resulting product based on the signs of the origi-
nal operands. Multiplication of signed operands is left as an exercise for you.

The example in Listing 8-1 was fairly straightforward because it was
possible to keep the partial products in various registers. If you need to
multiply larger values together, you will need to maintain the partial prod-
ucts in temporary (memory) variables. Other than that, the algorithm that
Listing 8-1 uses generalizes to any number of double words.

8.1.5 Extended-Precision Division
You cannot synthesize a general n -bit / m -bit division operation by using
the div and idiv instructions—though a less-general operation, dividing
an n -bit quantity by a 64-bit quantity, can be done using the div instruc-
tion. A generic extended-precision division requires a sequence of shift and
subtract instructions (which takes quite a few instructions and runs much
slower). This section presents both methods (using div and shift/subtract)
for extended-precision division.

8.1.5.1 Special Case Form Using div Instruction

Dividing a 128-bit quantity by a 64-bit quantity is handled directly by the
div and idiv instructions, as long as the resulting quotient fits into 64 bits.
However, if the quotient does not fit into 64 bits, then you have to perform
extended-precision division.

For example, suppose you want to divide 0004_0000_0000_1234h by 2.
The naive approach would look something like the following (assuming the
value is held in a pair of qword variables named dividend, and divisor is a
quad word containing 2):

; This code does *NOT* work!

mov rax, qword ptr dividend[0] ; Get dividend into EDX:EAX

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 467

mov rdx, qword ptr dividend[8]
div divisor ; Divide RDX:RAX by divisor.

Although this code is syntactically correct and will compile, it will raise
a divide error exception when run. The quotient must fit into the RAX reg-
ister when using div, and 2_0000_091Ah will not fit, being a 66-bit quantity
(try dividing by 8 if you want to see it produce a result that will fit).

Instead, the trick is to divide the (zero- or sign-extended) HO double
word of the dividend by the divisor and then repeat the process with the
remainder and the LO dword of the dividend, as follows:

 .data
dividend qword 1234h, 4
divisor qword 2 ; dividend/divisor = 2_0000_091Ah
quotient qword 2 dup (?)
remainder qword ?
 .
 .
 .
 mov rax, dividend[8]
 xor edx, edx ; Zero-extend for unsigned division.
 div divisor
 mov quotient[8], rax ; Save HO qword of the quotient.
 mov rax, dividend[0] ; This code doesn’t zero-extend
 div divisor ; RAX into RDX before div instr.
 mov quotient[0], rax ; Save LO qword of the quotient (91ah).
 mov remainder, rdx ; Save the remainder.

The quotient variable is 128 bits because it’s possible for the result
to require as many bits as the dividend (for example, if you divide by 1).
Regardless of the size of the dividend and divisor operands, the remain-
der is never larger than 64 bits (in this case). Hence, the remainder vari-
able in this example is just a quad word.

To correctly compute the 128 / 64 quotient, begin by computing the
64 / 64 quotient of dividend[8] / divisor. The quotient from this first divi-
sion becomes the HO double word of the final quotient. The remainder
from this division becomes the extension in RDX for the second half of the
division operation. The second half of the code divides rdx:dividend[0] by
divisor to produce the LO quad word of the quotient and the remainder
from the division. The code does not zero-extend RAX into RDX prior to
the second div instruction, because RDX already contains valid bits that
must not be disturbed.

The preceding128 / 64 division operation is a special case of the gen-
eral division algorithm to divide an arbitrary-size value by a 64-bit divisor.
The general algorithm is as follows:

1. Move the HO quad word of the dividend into RAX and zero-extend it
into RDX.

2. Divide by the divisor.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

468 Chapter 8

3. Store the value in RAX into the corresponding qword position of the
quotient result variable (position of the dividend qword loaded into
RAX prior to the division).

4. Load RAX with the next-lower quad word in the dividend, without
modifying RDX.

5. Repeat steps 2 to 4 until you’ve processed all the quad words in the
dividend.

At the end, the RDX register will contain the remainder, and the quo-
tient will appear in the destination variable, where step 3 was storing the
results. Listing 8-2 demonstrates how to divide a 256-bit quantity by a 64-bit
divisor, producing a 256-bit quotient and a 64-bit remainder.

; Listing 8-2
;
; 256-bit by 64-bit division

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 8-2”, 0
fmtStr1 byte “quotient = “
 byte “%08x_%08x_%08x_%08x_%08x_%08x_%08x_%08x”
 byte nl, 0

fmtStr2 byte “remainder = %I64x”, nl, 0

 .data

; op1 is a 256-bit value. Initial values were chosen
; to make it easy to verify result.

op1 oword 2222eeeeccccaaaa8888666644440000h
 oword 2222eeeeccccaaaa8888666644440000h

op2 qword 2
result oword 2 dup (0) ;Also 256 bits
remain qword 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 469

; div256-
; Divides a 256-bit number by a 64-bit number.
;
; Dividend - passed by reference in RCX.
; Divisor - passed in RDX.
;
; Quotient - passed by reference in R8.
; Remainder - passed by reference in R9.

div256 proc
divisor equ <qword ptr [rbp - 8]>
dividend equ <qword ptr [rcx]>
quotient equ <qword ptr [r8]>
remainder equ <qword ptr [r9]>

 push rbp
 mov rbp, rsp
 sub rsp, 8

 mov divisor, rdx

 mov rax, dividend[24] ; Begin div with HO qword
 xor rdx, rdx ; Zero-extend into RDS
 div divisor ; Divide HO word
 mov quotient[24], rax ; Save HO result

 mov rax, dividend[16] ; Get dividend qword #2
 div divisor ; Continue with division
 mov quotient[16], rax ; Store away qword #2

 mov rax, dividend[8] ; Get dividend qword #1
 div divisor ; Continue with division
 mov quotient[8], rax ; Store away qword #1

 mov rax, dividend[0] ; Get LO dividend qword
 div divisor ; Continue with division
 mov quotient[0], rax ; Store away LO qword

 mov remainder, rdx ; Save remainder

 leave
 ret
div256 endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 80 ;Shadow storage

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

470 Chapter 8

; Test the div256 function:

 lea rcx, op1
 mov rdx, op2
 lea r8, result
 lea r9, remain
 call div256

; Print the results:

 lea rcx, fmtStr1
 mov edx, dword ptr result[28]
 mov r8d, dword ptr result[24]
 mov r9d, dword ptr result[20]
 mov eax, dword ptr result[16]
 mov [rsp + 32], rax
 mov eax, dword ptr result[12]
 mov [rsp + 40], rax
 mov eax, dword ptr result[8]
 mov [rsp + 48], rax
 mov eax, dword ptr result[4]
 mov [rsp + 56], rax
 mov eax, dword ptr result[0]
 mov [rsp + 64], rax
 call printf

 lea rcx, fmtStr2
 mov rdx, remain
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 8-2: Unsigned 128 / 32-bit extended-precision division

Here’s the build command and program output (note that you can ver-
ify that the division was correct by simply looking at the result, noting that
each digit is one-half the original value):

C:\>build listing8-2

C:\>echo off
 Assembling: listing8-2.asm
c.cpp

C:\>listing8-2
Calling Listing 8-2:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 471

quotient = 11117777_66665555_44443333_22220000_11117777_66665555_44443333_22
220000
remainder = 0
Listing 8-2 terminated

You can extend this code to any number of bits by adding additional
mov/div/mov instructions to the sequence. Like the extended-precision multi-
plication in the previous section, this extended-precision division algorithm
works only for unsigned operands. To divide two signed quantities, you
must note their signs, take their absolute values, do the unsigned division,
and then set the sign of the result based on the signs of the operands.

8.1.5.2 Generic N-bit by M-bit Division

To use a divisor larger than 64 bits, you have to implement the division by
using a shift-and-subtract strategy, which works but is very slow. As with mul-
tiplication, the best way to understand how the computer performs division
is to study how you were taught to do long division by hand. Consider the
operation 3456 / 12 and the steps you would take to manually perform this
operation, as shown in Figure 8-5.

12 Step 1: 12 goes into 34
two times

3456
24

12 Step 2: Subtract 24 from 35
to get 10 and drop down the 5

3456
22

24
105

12 Step 3: 12 goes into 105
eight times

3456
28

24
105
 96

105
 96

96

12 Step 4: Subtract 96 from 105
to get 9 and drop down the 6

3456
28

24

12 Step 5: 12 goes into 96
exactly eight times

3456
28

24
105
 96

96
96

105
 96

96
96

0

12 Step 6: Therefore, 12 goes
into 3456 exactly 288 times

3456
288

24

Figure 8-5: Manual digit-by-digit division operation

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

472 Chapter 8

This algorithm is actually easier in binary because at each step you do
not have to guess how many times 12 goes into the remainder, nor do you
have to multiply 12 by your guess to obtain the amount to subtract. At each
step in the binary algorithm, the divisor goes into the remainder exactly 0
or 1 time. As an example, consider the division of 27 (11011) by 3 (11) that
is shown in Figure 8-6.

11 Step 1: 11 goes into 11
one time

11011
11

11 Step 2: Subtract the 11
producing 0 and bring down
the 0

11011
11

11
00

11 Step 3: 11 goes into 00
zero times

11011
10

11
00
00

00
00

01

11 Step 4: Subtract out the 0
and bring down the 1

11011
10

11

11 Step 5: 11 goes into 01
zero times

11011
100

11
00
00

01
00

00
00

01
00

11

11 Step 6: Subtract out the zero
and bring down the 1

11011
100

11

11 Step 7: 11 goes into 11
exactly one time

11011
1001

11
00
00

01
00

11

00
00

01
00

11
11
00

11 Step 8: This produces the
final result of 1001

11011
1001

11

Figure 8-6: Longhand division in binary

The following algorithm implements this binary division operation in a
way that computes the quotient and the remainder at the same time:

Quotient := Dividend;
Remainder := 0;
for i := 1 to NumberBits do

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 473

 Remainder:Quotient := Remainder:Quotient SHL 1;
 if Remainder >= Divisor then

 Remainder := Remainder - Divisor;
 Quotient := Quotient + 1;

 endif
endfor

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and
Dividend variables. SHL is the left-shift operator. The Quotient := Quotient + 1;
statement sets the LO bit of Quotient to 1 because this algorithm previously
shifts Quotient 1 bit to the left. Listing 8-3 implements this algorithm.

; Listing 8-3
;
; 128-bit by 128-bit division

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 8-3”, 0
fmtStr1 byte “quotient = “
 byte “%08x_%08x_%08x_%08x”
 byte nl, 0

fmtStr2 byte “remainder = “
 byte “%08x_%08x_%08x_%08x”
 byte nl, 0

fmtStr3 byte “quotient (2) = “
 byte “%08x_%08x_%08x_%08x”
 byte nl, 0

 .data

; op1 is a 128-bit value. Initial values were chosen
; to make it easy to verify result.

op1 oword 2222eeeeccccaaaa8888666644440000h
op2 oword 2
op3 oword 11117777666655554444333322220000h
result oword ?
remain oword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

474 Chapter 8

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; div128-
;
; This procedure does a general 128 / 128 division operation
; using the following algorithm (all variables are assumed
; to be 128-bit objects):
;
; Quotient := Dividend;
; Remainder := 0;
; for i := 1 to NumberBits do
;
; Remainder:Quotient := Remainder:Quotient SHL 1;
; if Remainder >= Divisor then
;
; Remainder := Remainder - Divisor;
; Quotient := Quotient + 1;
;
; endif
; endfor
;
; Data passed:
;
; 128-bit dividend, by reference in RCX
; 128-bit divisor, by reference in RDX
;
; Data returned:
;
; Pointer to 128-bit quotient in R8
; Pointer to 128-bit remainder in R9

div128 proc
remainder equ <[rbp - 16]>
dividend equ <[rbp - 32]>
quotient equ <[rbp - 32]> ; Aliased to dividend
divisor equ <[rbp - 48]>

 push rbp
 mov rbp, rsp
 sub rsp, 48

 push rax
 push rcx

 xor rax, rax ; Initialize remainder to 0
 mov remainder, rax
 mov remainder[8], rax

; Copy the dividend to local storage

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 475

 mov rax, [rcx]
 mov dividend, rax
 mov rax, [rcx+8]
 mov dividend[8], rax

; Copy the divisor to local storage

 mov rax, [rdx]
 mov divisor, rax
 mov rax, [rdx + 8]
 mov divisor[8], rax

 mov cl, 128 ; Count off bits in cl

; Compute Remainder:Quotient := Remainder:Quotient SHL 1:

repeatLp: shl qword ptr dividend[0], 1 ;256-bit extended-
 rcl qword ptr dividend[8], 1 ; precision shift
 rcl qword ptr remainder[0], 1 ; through remainder
 rcl qword ptr remainder[8], 1

; Do a 128-bit comparison to see if the remainder
; is greater than or equal to the divisor.

 mov rax, remainder[8]
 cmp rax, divisor[8]
 ja isGE
 jb notGE

 mov rax, remainder
 cmp rax, divisor
 ja isGE
 jb notGE

; Remainder := Remainder - Divisor

isGE: mov rax, divisor
 sub remainder, rax
 mov rax, divisor[8]
 sbb remainder[8], rax

; Quotient := Quotient + 1;

 add qword ptr quotient, 1
 adc qword ptr quotient[8], 0

notGE: dec cl
 jnz repeatLp

; Okay, copy the quotient (left in the Dividend variable)
; and the remainder to their return locations.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

476 Chapter 8

 mov rax, quotient[0]
 mov [r8], rax
 mov rax, quotient[8]
 mov [r8][8], rax

 mov rax, remainder[0]
 mov [r9], rax
 mov rax, remainder[8]
 mov [r9][8], rax

 pop rcx
 pop rax
 leave
 ret

div128 endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test the div128 function:

 lea rcx, op1
 lea rdx, op2
 lea r8, result
 lea r9, remain
 call div128

; Print the results:

 lea rcx, fmtStr1
 mov edx, dword ptr result[12]
 mov r8d, dword ptr result[8]
 mov r9d, dword ptr result[4]
 mov eax, dword ptr result[0]
 mov [rsp + 32], rax
 call printf

 lea rcx, fmtStr2
 mov edx, dword ptr remain[12]
 mov r8d, dword ptr remain[8]
 mov r9d, dword ptr remain[4]
 mov eax, dword ptr remain[0]
 mov [rsp + 32], rax
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 477

; Test the div128 function:

 lea rcx, op1
 lea rdx, op3
 lea r8, result
 lea r9, remain
 call div128

; Print the results:

 lea rcx, fmtStr3
 mov edx, dword ptr result[12]
 mov r8d, dword ptr result[8]
 mov r9d, dword ptr result[4]
 mov eax, dword ptr result[0]
 mov [rsp + 32], rax
 call printf

 lea rcx, fmtStr2
 mov edx, dword ptr remain[12]
 mov r8d, dword ptr remain[8]
 mov r9d, dword ptr remain[4]
 mov eax, dword ptr remain[0]
 mov [rsp + 32], rax
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 8-3: Extended-precision division

Here’s the build command and program output:

C:\>build listing8-3

C:\>echo off
 Assembling: listing8-3.asm
c.cpp

C:\>listing8-3
Calling Listing 8-3:
quotient = 11117777_66665555_44443333_22220000
remainder = 00000000_00000000_00000000_00000000
quotient (2) = 00000000_00000000_00000000_00000002
remainder = 00000000_00000000_00000000_00000000
Listing 8-3 terminated

This code does not check for division by 0 (it will produce the value
0FFFF_FFFF_FFFF_FFFFh if you attempt to divide by 0); it handles only
unsigned values and is very slow (an order of magnitude or two worse

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

478 Chapter 8

than the div/idiv instructions). To handle division by 0, check the divisor
against 0 prior to running this code and return an appropriate error code
if the divisor is 0. Dealing with signed values is the same as the earlier divi-
sion algorithm: note the signs, take the operands’ absolute values, do the
unsigned division, and then fix the sign afterward.

You can use the following technique to boost the performance of this
division by a fair amount. Check to see if the divisor variable uses only 32
bits. Often, even though the divisor is a 128-bit variable, the value itself fits
into 32 bits (that is, the HO double words of Divisor are 0) and you can use
the div instruction, which is much faster. The improved algorithm is a bit
more complex because you have to first compare the HO quad words for 0,
but on average, it runs much faster while remaining capable of dividing any
two pairs of values.

8.1.6 Extended-Precision Negation Operations
The neg instruction doesn’t provide a generic extended-precision form.
However, a negation is equivalent to subtracting a value from 0, so we
can easily simulate an extended-precision negation by using the sub and sbb
instructions. The following code provides a simple way to negate a (320-bit)
value by subtracting that value from 0, using an extended-precision
subtraction:

 .data
Value qword 5 dup (?) ; 320-bit value.
 .
 .
 .
 xor rax, rax ;RAX = 0
 sub rax, Value
 mov Value, rax

 mov eax, 0 ;Cannot use XOR here:
 sbb rax , Value[8] ; must preserve carry!
 mov Value[8], rax

 mov eax, 0 ;Zero-extends!
 sbb rax, Value[16]
 mov Value[16], rax

 mov eax, 0
 sbb rax, Value[24]
 mov Value[24], rax

 mov rax, 0
 sbb rax, Value[32]
 mov Value[32], rax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 479

A slightly more efficient way to negate smaller values (128 bits) uses a
combination of neg and sbb instructions. This technique uses the fact that
neg subtracts its operand from 0. In particular, it sets the flags the same way
the sub instruction would if you subtracted the destination value from 0.
This code takes the following form (assuming you want to negate the 1
28-bit value in RDX:RAX):

neg rdx
neg rax
sbb rdx, 0

The first two instructions negate the HO and LO qwords of the 128-bit
result. However, if there is a borrow out of the LO negation (think of neg
rax as subtracting 0 from RAX, possibly producing a carry/borrow), that
borrow is not subtracted from the HO qword. The sbb instruction at the
end of this sequence subtracts nothing from RDX if no borrow occurs when
negating RAX; it subtracts 1 from RDX if a borrow was needed when sub-
tracting 0 from RAX.

With a lot of work, it is possible to extend this scheme to more than 128
bits. However, around 256 bits (and certainly, once you get beyond 256 bits)
it actually takes fewer instructions to use the general subtract-from-zero
scheme.

8.1.7 Extended-Precision AND Operations
Performing an n-byte AND operation is easy: simply AND the corresponding
bytes between the two operands, saving the result. For example, to perform
the AND operation with all operands 128 bits long, you could use the follow-
ing code:

mov rax, qword ptr source1
and rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
and rax, qword ptr source2[8]
mov qword ptr dest[8], rax

To extend this technique to any number of qwords, logically AND
the corresponding bytes, words, double, or qwords words together in the
operands.

This sequence sets the flags according to the value of the last and opera-
tion. If you AND the HO quad words last, this sets all but the zero flag
correctly. If you need to test the zero flag after this sequence, logically OR
the two resulting double words together (or otherwise compare them both
against 0).

N O T E You can also use the XMM/YMM registers to perform extended-precision logical
operations (up to 256 bits at a time). See Chapter 11 for more details.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

480 Chapter 8

8.1.8 Extended-Precision OR Operations
Multi-byte logical OR operations are performed in the same way as multi-
byte AND operations. You OR the corresponding bytes in the two operands
together. For example, to logically OR two 192-bit values, use the following
code:

mov rax, qword ptr source1
or rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
or rax, qword ptr source2[8]
mov qword ptr dest[8], rax

mov rax, qword ptr source1[16]
or rax, qword ptr source2[16]
mov qword ptr dest[16], rax

As in the previous example, this does not set the zero flag properly for the
entire operation. If you need to test the zero flag after an extended-precision
OR, you must logically or all the resulting double words together.

8.1.9 Extended-Precision XOR Operations
As with other logical operations, extended-precision XOR operations XOR
the corresponding bytes in the two operands to obtain the extended-precision
result. The following code sequence operates on two 64-bit operands, com-
putes their exclusive-or, and stores the result into a 64-bit variable:

mov rax, qword ptr source1
xor rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
xor rax, qword ptr source2[8]
mov qword ptr dest[8], rax

The comment about the zero flag in the previous two sections applies
here as well as the comment about XMM/YMM registers.

8.1.10 Extended-Precision NOT Operations
The not instruction inverts all the bits in the specified operand. An
extended-precision NOT is performed by executing the not instruction on
all the affected operands. For example, to perform a 128-bit NOT operation
on the value in RDX:RAX, execute the following instructions:

not rax
not rdx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 481

Keep in mind that if you execute the NOT instruction twice, you wind
up with the original value. Also, exclusive-ORing a value with all 1s (0FFh,
0FFFFh, 0FFFF_FFFFh, or 0FFFF_FFFF_FFFF_FFFFh) performs the same
operation as the not instruction.

8.1.11 Extended-Precision Shift Operations
Extended-precision shift operations require a shift and a rotate instruction.
This section describes how to construct these operations.

8.1.11.1 Extended-Precision Shift Left

A 128-bit shl (shift left) takes the form shown in Figure 8-7.

0

0

1234

6465666768

C

127

63

...

...

Figure 8-7: 128-bit shift-left operation

To accomplish this with machine instructions, we must first shift the
LO qword to the left (for example, using the shl instruction) and capture
the output from bit 63 (conveniently, the carry flag does this for us). We
must then shift this bit into the LO bit of the HO qword while simultane-
ously shifting all the other bits to the left (and capturing the output by
using the carry flag).

You can use the shl and rcl instructions to implement this 128-bit shift.
For example, to shift the 128-bit quantity in RDX:RAX one position to the
left, you’d use the following instructions:

shl rax, 1
rcl rdx, 1

The shl instruction shifts a 0 into bit 0 of the 128-bit operand and
shifts bit 63 into the carry flag. The rcl instruction then shifts the carry
flag into bit 64 and shifts bit 127 into the carry flag. The result is exactly
what we want.

Using this technique, you can shift an extended-precision value only 1
bit at a time. You cannot shift an extended-precision operand several bits by
using the CL register, nor can you specify a constant value greater than 1
when using this technique.

To perform a shift left on an operand larger than 128 bits, use addi-
tional rcl instructions. An extended-precision shift-left operation always
starts with the least-significant quad word, and each succeeding rcl

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

482 Chapter 8

instruction operates on the next-most-significant double word. For example,
to perform a 192-bit shift-left operation on a memory location, you could
use the following instructions:

shl qword ptr Operand[0], 1
rcl qword ptr Operand[8], 1
rcl qword ptr Operand[16], 1

If you need to shift your data by 2 or more bits, you can either repeat
the preceding sequence the desired number of times (for a constant num-
ber of shifts) or place the instructions in a loop to repeat them a certain
number of times. For example, the following code shifts the 192-bit value
Operand to the left by the number of bits specified in CL:

ShiftLoop:
 shl qword ptr Operand[0], 1
 rcl qword ptr Operand[8], 1
 rcl qword ptr Operand[16], 1
 dec cl
 jnz ShiftLoop

8.1.11.2 Extended-Precision Shift Right and Shift Arithmetic Right

You implement shr (shift right) and sar (shift arithmetic right) in a similar way,
except you must start at the HO word of the operand and work your way
down to the LO word:

; Extended-precision SAR:

 sar qword ptr Operand[16], 1
 rcr qword ptr Operand[8], 1
 rcr qword ptr Operand[0], 1

; Extended-precision SHR:

 shr qword ptr Operand[16], 1
 rcr qword ptr Operand[8], 1
 rcr qword ptr Operand[0], 1

The extended-precision shifts set the flags differently than their
8/16/32/64-bit counterparts, because the rotate instructions affect the flags
differently from the shift instructions. Fortunately, the carry flag is the one
you’ll test most often after a shift operation, and the extended-precision
shift operations (that is, rotate instructions) properly set this flag.

8.1.11.3 Efficient Multi-bit Extended-Precision Shifts

The shld and shrd instructions let you efficiently implement extended-precision
shifts of several bits. These instructions have the following syntax:

shld Operand1, Operand2, constant
shld Operand1, Operand2, cl

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 483

shrd Operand1, Operand2, constant
shrd Operand1, Operand2, cl

The shld instruction works as shown in Figure 8-8.

01234

01234

Operand1

C

Temporary copy of Operand2

HO bit

HO bit

...

...

Figure 8-8: shld operation

Operand2 must be a 16-, 32-, or 64-bit bit register. Operand1 can be a register
or a memory location. Both operands must be the same size. The third oper-
and, constant or cl, specifies the number of bits to shift, and may be a value
in the range 0 through n– 1, where n is the size of the first two operands.

The shld instruction shifts a copy of the bits in Operand2 to the left by the
number of bits specified by the third operand, storing the result into the
location specified by the first operand. The HO bits shift into the carry flag,
and the HO bits of Operand2 shift into the LO bits of Operand1. The third oper-
and specifies the number of bits to shift. If the count is n, then shld shifts bit
n – 1 into the carry flag (obviously, this instruction maintains only the last
bit shifted into the carry). The shld instruction sets the flag bits as follows:

•	 If the shift count is 0, shld doesn’t affect any flags.

•	 The carry flag contains the last bit shifted out of the HO bit of Operand1.

•	 If the shift count is 1, the overflow flag will contain 1 if the sign bit of
Operand1 changes during the shift. If the count is not 1, the overflow flag
is undefined.

•	 The zero flag will be 1 if the shift produces a 0 result.

•	 The sign flag will contain the HO bit of the result.

The shrd instruction is similar to shld except, of course, it shifts its bits
right rather than left. To get a clear picture of the shrd instruction, consider
Figure 8-9.

5 4 3 2 1 0

5 4 3 2 1 0HO bit
Operand1

C

Temporary copy of Operand2

HO bit

...

...

Figure 8-9: shrd operation

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

484 Chapter 8

The shrd instruction sets the flag bits as follows:

•	 If the shift count is 0, shrd doesn’t affect any flags.

•	 The carry flag contains the last bit shifted out of the LO bit of Operand1.

•	 If the shift count is 1, the overflow flag will contain 1 if the HO bit of
Operand1 changes. If the count is not 1, the overflow flag is undefined.

•	 The zero flag will be 1 if the shift produces a 0 result.

•	 The sign flag will contain the HO bit of the result.

Consider the following code sequence:

 .data
ShiftMe qword 012345678h, 90123456h, 78901234h
 .
 .
 .
 mov rax, ShiftMe[8]
 shld ShiftMe[16], rax, 6
 mov rax, ShiftMe[0]
 shld ShiftMe[8], rax, 6
 shl ShiftMe[0], 6

The first shld instruction shifts the bits from ShiftMe[8] into ShiftMe[16]
without affecting the value in ShiftMe[8]. The second shld instruction shifts
the bits from ShiftMe into ShiftMe[8]. Finally, the shl instruction shifts the
LO double word the appropriate amount.

There are two important things to note about this code. First, unlike
the other extended-precision shift-left operations, this sequence works from
the HO quad word down to the LO quad word. Second, the carry flag does
not contain the carry from the HO shift operation. If you need to preserve
the carry flag at that point, you will need to push the flags after the first
shld instruction and pop the flags after the shl instruction.

You can do an extended-precision shift-right operation by using the shrd
instruction. It works almost the same way as the preceding code sequence,
except you work from the LO quad word to the HO quad word. The solution
is left as an exercise for you.

8.1.12 Extended-Precision Rotate Operations
The rcl and rcr operations extend in a manner similar to shl and shr.
For example, to perform 192-bit rcl and rcr operations, use the following
instructions:

rcl qword ptr Operand[0], 1
rcl qword ptr Operand[8], 1
rcl qword ptr Operand[16], 1

rcr qword ptr Operand[16], 1
rcr qword ptr Operand[8], 1
rcr qword ptr Operand[0], 1

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 485

The only difference between this code and the code for the extended-
precision shift operations is that the first instruction is a rcl or rcr rather
than a shl or shr.

Performing an extended-precision rol or ror operation isn’t quite as
simple because of the way the incoming bit is processed. You can use the bt,
shld, and shrd instructions to implement an extended-precision rol or ror
instruction.3 The following code shows how to use the shld and bt instruc-
tions to do a 128-bit extended-precision rol:

; Compute rol RDX:RAX, 4

 mov rbx, rdx
 shld rdx, rax, 4
 shld rax, rbx, 4
 bt rbx, 28 ; Set carry flag, if desired.

An extended-precision ror instruction is similar; just keep in mind that
you work on the LO end of the object first, and the HO end last.

 8.2 Operating on Different-Size Operands
Occasionally, you may need to do a computation on a pair of operands
that are not the same size. For example, you may need to add a word and
a double word together or subtract a byte value from a word value. To do
so, extend the smaller operand to the size of the larger operand and then
operate on two same-size operands. For signed operands, you sign-extend
the smaller operand to the same size as the larger operand; for unsigned
values, you zero-extend the smaller operand. This works for any operation.

The following examples demonstrate adding a byte variable and a word
variable:

 .data
var1 byte ?
var2 word ?
 .
 .
 .
; Unsigned addition:

 movzx ax, var1
 add ax, var2

; Signed addition:

 movsx ax, var1
 add ax, var2

3. See Chapter 12 for a discussion of the bt (bit test) instruction.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

486 Chapter 8

In both cases, the byte variable was loaded into the AL register,
extended to 16 bits, and then added to the word operand. This code works
out really well if you can choose the order of the operations (for example,
adding the 8-bit value to the 16-bit value).

Sometimes you cannot specify the order of the operations. Perhaps the
16-bit value is already in the AX register, and you want to add an 8-bit value
to it. For unsigned addition, you could use the following code:

 mov ax, var2 ; Load 16-bit value into AX.
. ; Do some other operations leaving
. ; a 16-bit quantity in AX.
 add al, var1 ; Add in the 8-bit value.
 adc ah, 0 ; Add carry into the HO word.

The first add instruction adds the byte at var1 to the LO byte of the
value in the accumulator. The adc instruction adds the carry from the addi-
tion of the LO bytes into the HO byte of the accumulator. If you leave out
adc, you may not get the correct result.

Adding an 8-bit signed operand to a 16-bit signed value is a little more
difficult. Unfortunately, you cannot add an immediate value (as in the pre-
ceding example) to the HO word of AX, because the HO extension byte
can be either 0 or 0FFh. If a register is available, the best thing to do is the
following:

mov bx, ax ; BX is the available register.
movsx ax, var1
add ax, bx

If an extra register is not available, you might try the following code:

push ax ; Save word value.
movsx ax, var1 ; Sign extend 8-bit operand to 16 bits.
add ax, [rsp] ; Add in previous word value.
add rsp, 2 ; Pop junk from stack.

This works because the x86-64 can push 16-bit registers. One word
of advice: don’t leave the RSP register misaligned (not on an 8-byte
boundary) for very long. If you’re working with 32- or 64-bit registers,
you’ll have to push the full 64-bit register and add 8 to RSP when you’re
done with the stack.

Another alternative is to store the 16-bit value in the accumulator into a
memory location and then proceed as before:

mov temp, ax
movsx ax, var1
add ax, temp

All these examples add a byte value to a word value. By zero- or sign-
extending the smaller operand to the size of the larger operand, you can
easily add any two different-size variables together.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 487

As a last example, consider adding an 8-bit signed value to an oword
(128-bit) value:

 .data
OVal qword ?
BVal byte ?
 .
 .
 .
 movsx rax, BVal
 cqo
 add rax, qword ptr OVal
 adc rdx, qword ptr OVal[8]

 8.3 Decimal Arithmetic
The x86-64 CPUs use the binary numbering system for their native inter-
nal representation. In the early days of computing, designers thought that
decimal (base-10) arithmetic was more accurate for business calculations.
Mathematicians have shown that this is not the case; nevertheless, some algo-
rithms depend on decimal calculations to produce correct results. Therefore,
although decimal arithmetic is generally less efficient and less accurate than
using binary arithmetic, the need for decimal arithmetic persists.

To represent decimal numbers in the native binary format, the most
common technique is to use the binary-coded decimal (BCD), representation.
This uses 4 bits to represent the 10 possible decimal digits (see Table 8-1).
The binary value of those 4 bits is equal to the corresponding decimal value
in the range 0 to 9. Of course, with 4 bits we can actually represent 16 dif-
ferent values; the BCD format ignores the remaining six bit combinations.
Because each BCD digit requires 4 bits, we can represent a two-digit BCD
value with a single byte. This means that we can represent the decimal val-
ues in the range 0 to 99 by using a single byte (as opposed to 0 to 255 with a
byte in binary format).

Table 8-1: Binary-Coded Decimal Representation

BCD representation Decimal equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

continued

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

488 Chapter 8

BCD representation Decimal equivalent

1000 8

1001 9

1010 Illegal

1011 Illegal

1100 Illegal

1101 Illegal

1110 Illegal

1111 Illegal

8.3.2 Literal BCD Constants
MASM does not provide, nor do you need, a literal BCD constant. Because
BCD is just a form of hexadecimal notation that does not allow the values
0Ah to 0Fh, you can easily create BCD constants by using MASM’s hexadec-
imal notation. For example, the following mov instruction copies the BCD
value 99 into the AL register:

mov al, 99h

The important thing to keep in mind is that you must not use MASM
literal decimal constants for BCD values. That is, mov al, 95 does not load
the BCD representation for 95 into the AL register. Instead, it loads 5Fh
into AL, and that’s an illegal BCD value.

8.3.3 Packed Decimal Arithmetic Using the FPU
To improve the performance of applications that rely on decimal arithme-
tic, Intel incorporated support for decimal arithmetic directly into the FPU.
The FPU supports values with up to 18 decimal digits of precision, and
computation using all the arithmetic capabilities of the FPU, from addition
to transcendental operations. Assuming you can live with only 18 digits of
precision and a few other restrictions, decimal arithmetic on the FPU is the
right way to go.

The FPU supports only one BCD data type: a 10-byte 18-digit packed
decimal value. The packed decimal format uses the first 9 bytes to hold the
BCD value in a standard packed decimal format. The first byte contains
the two LO digits, and the 9th byte holds the two HO digits. The HO bit of
the 10th byte holds the sign bit, and the FPU ignores the remaining bits in
the 10th byte (as using those bits would create possible BCD values that the
FPU could not exactly represent in the native floating-point format).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Advanced Arithmetic 489

The FPU uses a one’s complement notation for negative BCD values.
The sign bit contains a 1 if the number is negative, and it contains a 0 if
the number is positive. If the number is 0, the sign bit may be either 0 or
1, because, like the binary one’s complement format, there are two distinct
representations for 0.

MASM’s tbyte type is the standard data type used to define packed
BCD variables. The fbld and fbstp instructions require a tbyte operand
(which you can initialize with a hexadecimal/BCD value).

Instead of fully supporting decimal arithmetic, the FPU provides two
instructions, fbld and fbstp, that convert between packed decimal and
binary floating-point formats when moving data to and from the FPU. The
fbld (float/BCD load) instruction loads an 80-bit packed BCD value onto the
top of the FPU stack after converting that BCD value to the binary floating-
point format. Likewise, the fbstp (float/BCD store and pop) instruction pops
the floating-point value off the top of stack, converts it to a packed BCD
value, and stores the BCD value into the destination memory location. This
means calculations are done using binary arithmetic. If you have an algo-
rithm that absolutely, positively depends on the use of decimal arithmetic,
it may fail if you use the FPU to implement it.4

The conversion between packed BCD and the floating-point format is
not a cheap operation. The fbld and fbstp instructions can be quite slow
(more than two orders of magnitude slower than fld and fstp, for example).
Therefore, these instructions can be costly if you’re doing simple additions
or subtractions.

Because the FPU converts packed decimal values to the internal float-
ing-point format, you can mix packed decimal, floating point, and (binary)
integer formats in the same calculation. The following code fragment dem-
onstrates how you might achieve this:

 .data
tb tbyte 654321h
two real8 2.0
one dword 1

 fbld tb
 fmul two
 fiadd one
 fbstp tb

; TB now contains: 1308643h

The FPU treats packed decimal values as integer values. Therefore, if
your calculations produce fractional results, the fbstp instruction will round
the result according to the current FPU rounding mode. If you need to
work with fractional values, you need to stick with floating-point results.

4. An example of such an algorithm might be a multiplication by 10 by shifting the number
one digit to the left. However, such operations are not possible within the FPU itself, so
algorithms that misbehave inside the FPU are rare.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

490 Chapter 8

 8.4 For More Information
Donald Knuth’s The Art of Computer Programming, Volume Two: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains a lot of useful
information about decimal arithmetic and extended-precision arithmetic,
though that text is generic and doesn’t describe how to do this in x86-64
assembly language. Additional information on BCD arithmetic can also be
found at the following websites:

•	 BCD Arithmetic, a Tutorial, http://homepage.divms.uiowa.edu/~jones/bcd/
bcd.html

•	 General Decimal Arithmetic, http://speleotrove.com/decimal/

•	 Intel Decimal Floating-Point Math Library, https://software.intel.com/
en-us/articles/intel-decimal-floating-point-math-library/

 8.5 Test Yourself
1. Provide the code to compute x = y + z, assuming the following:

a. x, y, and z are 128-bit integers

b. x and y are 96-bit integers, and z is a 64-bit integer

c. x, y, and z are 48-bit integers

2. Provide the code to compute x = y - z, assuming the following:

a. x, y, and z are 192-bit integers

b. x, y, and z are 96-bit integers

3. Provide the code to compute x = y × z, assuming x, y, and z are 128-bit
unsigned integers.

4. Provide the code to compute x = y / z, assuming x and y are 128-bit
signed integers, and z is a 64-bit signed integer.

5. Assuming x and y are unsigned 128-bit integers, convert the following to
assembly language:

a. if(x == y) then code

b. if(x < y) then code

c. if(x > y) then code

d. if(x != y) then code

6. Assuming x and y are signed 96-bit integers, convert the following to
assembly language:

a. if(x == y) then code

b. if(x < y) then code

c. if(x > y) then code

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

 http://homepage.divms.uiowa.edu/~jones/bcd/bcd.html
 http://homepage.divms.uiowa.edu/~jones/bcd/bcd.html
 http://speleotrove.com/decimal/
 https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library/
 https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library/

Advanced Arithmetic 491

7. Assuming x and y are signed 128-bit integers, provide two distinct ways
to convert the following to assembly language:

a. x = –x

b. x = –y

8. Assuming x, y, and z are all 128-bit integer values, convert the following
to assembly language:

a. x = y & z (bitwise logical AND)

b. x = y | z (bitwise logical OR)

c. x = y ^ z (bitwise logical XOR)

d. x = ~y (bitwise logical NOT)

e. x = y << 1 (bitwise shift left)

f. x = y >> 1 (bitwise shift right)

9. Assuming x and y are signed 128-bit values, convert x = y >> 1 to assem-
bly language (bitwise arithmetic shift right).

10. Provide the assembly code to rotate the 128-bit value in x through the
carry flag (left by 1 bit).

11. Provide the assembly code to rotate the 128-bit value in x through the
carry flag (right by 1 bit).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

9
N U M E R I C C O N V E R S I O N

This chapter discusses the conversion
between various numeric formats including

integer to decimal string, integer to hexadeci-
mal string, floating-point to string, hexadecimal

string to integer, decimal string to integer, and real string
to floating-point. In addition to the basic conversions, this
chapter discusses error handling (for string-to-numeric
conversions) and performance enhancements. This chapter discusses stan-
dard-precision conversions (for 8-, 16-, 32-, and 64-bit integer formats) as
well as extended-precision conversions (for example, 128-bit integer/string
conversions).

 9.1 Converting Numeric Values to Strings
Up to this point, this book has relied upon the C Standard Library to
perform numeric I/O (writing numeric data to the display and reading
numeric data from the user). However, the C Standard Library doesn’t

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

494 Chapter 9

provide extended-precision numeric I/O facilities (and even 64-bit numeric
I/O is questionable; this book has been using a Microsoft extension to
printf() to do 64-bit numeric output). Therefore, it’s time to break down
and discuss how to do numeric I/O in assembly language.

Because most operating systems support only character or string input and
output, we aren’t actually going to do numeric I/O. We’re going write functions
that convert between numeric values and strings, and then do string I/O.

The examples in this section work specifically with 64-bit (non-
extended-precision) and 128-bit values, but the algorithms are general
and extend to any number of bits.

9.1.1 Converting Numeric Values to Hexadecimal Strings
Converting a numeric value to a hexadecimal string is relatively straightfor-
ward. Just take each nibble (4 bits) in the binary representation and convert
that to one of the 16 characters 0 through 9 or A through F. Consider the
btoh function in Listing 9-1 that takes a byte in the AL register and returns
the two corresponding characters in AH (HO nibble) and AL (LO nibble).

N O T E For brevity, only the btoh function appears in Listing 9-1. The full program appears as
Listing9-1.asm in the software distribution at https://artofasm.randallhyde.com/.

; btoh-
;
; This procedure converts the binary value
; in the AL register to 2 hexadecimal
; characters and returns those characters
; in the AH (HO nibble) and AL (LO nibble)
; registers.

btoh proc

 mov ah, al ;Do HO nibble first
 shr ah, 4 ;Move HO nibble to LO
 or ah, ‘0’ ;Convert to char
 cmp ah, ‘9’ + 1 ;Is it ‘A’ through ‘F’?
 jb AHisGood

; Convert 3ah to 3fh to ‘A’ through ‘F’

 add ah, 7

; Process the LO nibble here

AHisGood: and al, 0Fh ;Strip away HO nibble
 or al, ‘0’ ;Convert to char
 cmp al, ‘9’ + 1 ;Is it ‘A’ through ‘F’?
 jb ALisGood

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

Numeric Conversion 495

; Convert 3ah to 3fh to ‘A’ through ‘F’

 add al, 7
ALisGood: ret
btoh endp

Listing 9-1: A function that converts a byte to two hexadecimal characters

You can convert any numeric value in the range 0 to 9 to its correspond-
ing ASCII character by ORing the numeric value with 0 (30h). Unfortunately,
this maps numeric values in the range 0ah through 0fh to 3ah through 3fh.
So, the code in Listing 9-1 checks to see it produces a value greater than 3ah
and adds 7 to produce a final character code in the range 41h to 46h (‘A’
through ‘F’).

Once we can convert a single byte to a pair of hexadecimal characters,
creating a string, output to the display is straightforward. We can call the
btoh (byte to hex) function for each byte in the number and store the corre-
sponding characters away in a string. Listing 9-2 provide examples of btoStr
(byte to string), wtoStr (word to string), dtoStr (double word to string), and qtoStr
(quad word to string) functions.

; Listing 9-2
;
; Numeric-to-hex string functions

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 9-2”, 0
fmtStr1 byte “btoStr: Value=%I64x, string=%s”
 byte nl, 0

fmtStr2 byte “wtoStr: Value=%I64x, string=%s”
 byte nl, 0

fmtStr3 byte “dtoStr: Value=%I64x, string=%s”
 byte nl, 0

fmtStr4 byte “qtoStr: Value=%I64x, string=%s”
 byte nl, 0

 .data
buffer byte 20 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

496 Chapter 9

getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; btoh-
;
; This procedure converts the binary value
; in the AL register to 2 hexadecimal
; characters and returns those characters
; in the AH (HO nibble) and AL (LO nibble)
; registers.

btoh proc

 mov ah, al ;Do HO nibble first
 shr ah, 4 ;Move HO nibble to LO
 or ah, ‘0’ ;Convert to char
 cmp ah, ‘9’ + 1 ;Is it ‘A’ to ‘F’?
 jb AHisGood

; Convert 3ah through 3fh to ‘A’ to ‘F’

 add ah, 7

; Process the LO nibble here

AHisGood: and al, 0Fh ;Strip away HO nibble
 or al, ‘0’ ;Convert to char
 cmp al, ‘9’ + 1 ;Is it ‘A’ to ‘F’?
 jb ALisGood

; Convert 3ah through 3fh to ‘A’ through ‘F’

 add al, 7
ALisGood: ret

btoh endp

; btoStr-
;
; Converts the byte in AL to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 3 bytes.
; This function zero-terminates the string.

btoStr proc
 push rax
 call btoh ; Do conversion here

; Create a zero-terminated string at [RDI] from the
; two characters we converted to hex format:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 497

 mov [rdi], ah
 mov [rdi + 1], al
 mov byte ptr [rdi + 2], 0
 pop rax
 ret
btoStr endp

; wtoStr-
;
; Converts the word in AX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 5 bytes.
; This function zero-terminates the string.

wtoStr proc
 push rdi
 push rax ;Note: leaves LO byte at [rsp]

; Use btoStr to convert HO byte to a string:

 mov al, ah
 call btoStr

 mov al, [rsp] ;Get LO byte
 add rdi, 2 ;Skip HO chars
 call btoStr

 pop rax
 pop rdi
 ret
wtoStr endp

; dtoStr-
;
; Converts the dword in EAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 9 bytes.
; This function zero-terminates the string.

dtoStr proc
 push rdi
 push rax ;Note: leaves LO word at [rsp]

; Use wtoStr to convert HO word to a string:

 shr eax, 16
 call wtoStr

 mov ax, [rsp] ;Get LO word
 add rdi, 4 ;Skip HO chars
 call wtoStr

 pop rax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

498 Chapter 9

 pop rdi
 ret
dtoStr endp

; qtoStr-
;
; Converts the qword in RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 17 bytes.
; This function zero-terminates the string.

qtoStr proc
 push rdi
 push rax ;Note: leaves LO dword at [rsp]

; Use dtoStr to convert HO dword to a string:

 shr rax, 32
 call dtoStr

 mov eax, [rsp] ;Get LO dword
 add rdi, 8 ;Skip HO chars
 call dtoStr

 pop rax
 pop rdi
 ret
qtoStr endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ;Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer

; Demonstrate call to btoStr:

 mov al, 0aah
 call btoStr

 lea rcx, fmtStr1
 mov edx, eax
 mov r8, rdi
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 499

; Demonstrate call to wtoStr:

 mov ax, 0a55ah
 call wtoStr

 lea rcx, fmtStr2
 mov edx, eax
 mov r8, rdi
 call printf

; Demonstrate call to dtoStr:

 mov eax, 0aa55FF00h
 call dtoStr

 lea rcx, fmtStr3
 mov edx, eax
 mov r8, rdi
 call printf

; Demonstrate call to qtoStr:

 mov rax, 1234567890abcdefh
 call qtoStr

 lea rcx, fmtStr4
 mov rdx, rax
 mov r8, rdi
 call printf

 leave
 pop rdi
 ret ;Returns to caller

asmMain endp
 end

Listing 9-2: btoStr, wtoStr, dtoStr, qtoStr functions

Here’s the build command and sample output:

C:\>build listing9-2

C:\>echo off
 Assembling: listing9-2.asm
c.cpp

C:\>listing9-2
Calling Listing 9-2:
btoStr: Value=aa, string=AA
wtoStr: Value=a55a, string=A55A
dtoStr: Value=aa55ff00, string=AA55FF00
qtoStr: Value=1234567890abcdef, string=1234567890ABCDEF
Listing 9-2 terminated

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

500 Chapter 9

Each successive function in Listing 9-2 builds on the work done in the pre-
vious functions. For example, wtoStr calls btoStr twice to convert the 2 bytes in
AX to a string of four hexadecimal characters. The code would be faster (but
a lot larger) if you were to inline-expand each of these functions wherever the
code calls them. If you needed only one of these functions, an inline expan-
sion of any calls it makes would be worth the extra effort.

Here’s a version of qtoStr with two improvements: inline expansion of the
calls to dtoStr, wtoStr, and btoStr, plus the use of a simple table lookup (array
access) to do the nibble-to-hex-character conversion (see “Table Lookups” in
Chapter 10 for more information on table lookups). The framework for this
faster version of qtoStr appears in Listing 9-3.

N O T E Because of the length and redundancy of Listing 9-3 a large part has been removed,
but the missing code is obvious; see https://artofasm.randallhyde.com/ for the
full listing).

; qtoStr-
;
; Converts the qword in RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 17 bytes.
; This function zero-terminates the string.

hexChar byte “0123456789ABCDEF”

qtoStr proc
 push rdi
 push rcx
 push rdx
 push rax ;Leaves LO dword at [rsp]

 lea rcx, hexChar

 xor edx, edx ;Zero-extends!
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1] ;Table lookup
 mov [rdi], dl

; Emit bits 56-59:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 1], dl

; Emit bits 52-55:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

Numeric Conversion 501

 mov dl, [rcx][rdx * 1]
 mov [rdi + 2], dl
 .
 .
 .
 Code to emit bits 8-51 was deleted for length reasons
 The code should be obvious by looking at the output
 for the other nibbles appearing here.
 .
 .
 .
; Emit bits 4-7:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 14], dl

; Emit bits 0-3:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 15], dl

; Zero-terminate string:

 mov byte ptr [rdi + 16], 0

 pop rax
 pop rdx
 pop rcx
 pop rdi
 ret
qtoStr endp

Listing 9-3: Faster implementation of qtoStr

Writing a short main program that contains the following loop

 lea rdi, buffer
 mov rax, 07fffffffh
loopit: call qtoStr
 dec eax
 jnz loopit

and then using a stopwatch on an old 2012-era 2.6 GHz Intel Core i7 processor,
I got the approximate timings for the inline and original versions of qtoStr:

•	 Inline version: 19 seconds

•	 Original version: 85 seconds

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

502 Chapter 9

As you can see, the inline version is significantly (four times) faster, but
you probably won’t convert 64-bit numbers to hexadecimal strings often
enough to justify the kludgy code of the inline version.

For what it’s worth, you could probably cut the time almost in half by using
a much larger table (256 16-bit entries) for the hex characters and convert a
whole byte at a time rather than a nibble. This would require half the instruc-
tions of the inline version (though the table would be 32 times bigger).

9.1.2 Converting Extended-Precision Hexadecimal Values to Strings
Extended-precision hexadecimal-to-string conversion is easy. It’s simply an
extension of the normal hexadecimal conversion routines from the previ-
ous section. For example, here’s a 128-bit hexadecimal conversion function:

; otoStr-
;
; Converts the oword in RDX:RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 33 bytes.
; This function zero-terminates the string.

otoStr proc
 push rdi
 push rax ;Note: leaves LO dword at [rsp]

; Use qtoStr to convert each qword to a string:

 mov rax, rdx
 call qtoStr

 mov rax, [rsp] ;Get LO qword
 add rdi, 16 ;Skip HO chars
 call qtoStr

 pop rax
 pop rdi
 ret
otoStr endp

9.1.3 Converting Unsigned Decimal Values to Strings
Decimal output is a little more complicated than hexadecimal output
because the HO bits of a binary number affect the LO digits of the deci-
mal representation (this was not true for hexadecimal values, which is
why hexadecimal output is so easy). Therefore, we will have to create the
decimal representation for a binary number by extracting one decimal
digit at a time from the number.

The most common solution for unsigned decimal output is to succes-
sively divide the value by 10 until the result becomes 0. The remainder after
the first division is a value in the range 0 to 9, and this value corresponds to
the LO digit of the decimal number. Successive divisions by 10 (and their
corresponding remainder) extract successive digits from the number.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 503

Iterative solutions to this problem generally allocate storage for a string
of characters large enough to hold the entire number. Then the code extracts
the decimal digits in a loop and places them in the string one by one. At the
end of the conversion process, the routine prints the characters in the string
in reverse order (remember, the divide algorithm extracts the LO digits first
and the HO digits last, the opposite of the way you need to print them).

This section employs a recursive solution because it is a little more elegant.
This solution begins by dividing the value by 10 and saving the remainder in
a local variable. If the quotient is not 0, the routine recursively calls itself to
output any leading digits first. On return from the recursive call (which
outputs all the leading digits), the recursive algorithm outputs the digit
associated with the remainder to complete the operation. Here’s how the
operation works when printing the decimal value 789:

1. Divide 789 by 10. The quotient is 78, and the remainder is 9.

2. Save the remainder (9) in a local variable and recursively call the rou-
tine with the quotient.

3. Recursive entry 1: Divide 78 by 10. The quotient is 7, and the remainder is 8.

4. Save the remainder (8) in a local variable and recursively call the rou-
tine with the quotient.

5. Recursive entry 2: Divide 7 by 10. The quotient is 0, and the remainder is 7.

6. Save the remainder (7) in a local variable. Because the quotient is 0,
don’t call the routine recursively.

7. Output the remainder value saved in the local variable (7). Return to
the caller (recursive entry 1).

8. Return to recursive entry 1: Output the remainder value saved in the local
variable in recursive entry 1 (8). Return to the caller (original invoca-
tion of the procedure).

9. Original invocation: Output the remainder value saved in the local variable
in the original call (9). Return to the original caller of the output routine.

Listing 9-4 implements the recursive algorithm.

; Listing 9-4
;
; Numeric unsigned integer-to-string function

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 9-4”, 0
fmtStr1 byte “utoStr: Value=%I64u, string=%s”
 byte nl, 0

 .data
buffer byte 24 dup (?)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

504 Chapter 9

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; utoStr-
;
; Unsigned integer to string.
;
; Inputs:
;
; RAX: Unsigned integer to convert
; RDI: Location to hold string.
;
; Note: for 64-bit integers, resulting
; string could be as long as 21 bytes
; (including the zero-terminating byte).

utoStr proc
 push rax
 push rdx
 push rdi

; Handle zero specially:

 test rax, rax
 jnz doConvert

 mov byte ptr [rdi], ‘0’
 inc rdi
 jmp allDone

doConvert: call rcrsvUtoStr

; Zero-terminate the string and return:

allDone: mov byte ptr [rdi], 0
 pop rdi
 pop rdx
 pop rax
 ret
utoStr endp

ten qword 10

; Here’s the recursive code that does the
; actual conversion:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 505

rcrsvUtoStr proc

 xor rdx, rdx ;Zero-extend RAX -> RDX
 div ten
 push rdx ;Save output value
 test eax, eax ;Quit when RAX is 0
 jz allDone

; Recursive call to handle value % 10:

 call rcrsvUtoStr

allDone: pop rax ;Retrieve char to print
 and al, 0Fh ;Convert to ‘0’ to ‘9’
 or al, ‘0’
 mov byte ptr [rdi], al ;Save in buffer
 inc rdi ;Next char position
 ret
rcrsvUtoStr endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ;Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer
 mov rax, 1234567890
 call utoStr

; Print the result

 lea rcx, fmtStr1
 mov rdx, rax
 mov r8, rdi
 call printf

 leave
 pop rdi
 ret ;Returns to caller

asmMain endp
 end

Listing 9-4: Unsigned integer-to-string function (recursive)

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

506 Chapter 9

Here’s the build command and program output:

C:\>build listing9-4

C:\>echo off
 Assembling: listing9-4.asm
c.cpp

C:\>listing9-4
Calling Listing 9-4:
utoStr: Value=1234567890, string=1234567890
Listing 9-4 terminated

Unlike hexadecimal output, there really is no need to provide a byte-size,
word-sized, or dword-sized numeric-to-decimal-string conversion function.
Simply zero-extending the smaller values to 64 bits is sufficient. Unlike the
hexadecimal conversions, there are no leading zeros emitted by the qtoStr
function, so the output is the same for all sizes of variables (64 bits and
smaller).

Unlike the hexadecimal conversion (which is very fast to begin with,
plus you don’t really call it that often), you will frequently call the integer-to-
string conversion function. Because it uses the div instruction, it can be fairly
slow. Fortunately, we can speed it up by using the fist and fbstp instructions.

The fbstp instruction converts the 80-bit floating-point value currently
sitting on the top of stack to an 18-digit packed BCD value (using the for-
mat appearing in Figure 6-7 in Chapter 6). The fist instruction allows you
to load a 64-bit integer onto the FPU stack. So, by using these two instruc-
tions, you can (mostly) convert a 64-bit integer to a packed BCD value,
which encodes a single decimal digit per 4 bits. Therefore, you can convert
the packed BCD result that fbstp produces to a character string by using the
same algorithm you use for converting hexadecimal numbers to a string.

There is only one catch with using fist and fbstp to convert an inte-
ger to a string: the Intel packed BCD format (see Figure 6-7 in Chapter 6)
supports only18 digits, whereas a 64-bit integer can have up to 19 digits.
Therefore, any fbstp-based utoStr function is going to have to handle that
19th digit as a special case. With all this in mind, Listing 9-5 provides this
new version of the utoStr function.

; Listing 9-5
;
; Fast unsigned integer-to-string function
; using fist/fbstp

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 9-5”, 0
fmtStr1 byte “utoStr: Value=%I64u, string=%s”
 byte nl, 0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 507

 .data
buffer byte 30 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; utoStr-
;
; Unsigned integer to string.
;
; Inputs:
;
; RAX: Unsigned integer to convert
; RDI: Location to hold string.
;
; Note: for 64-bit integers, resulting
; string could be as long as 21 bytes
; (including the zero-terminating byte).

bigNum qword 1000000000000000000
utoStr proc
 push rcx
 push rdx
 push rdi
 push rax
 sub rsp, 10

; Quick test for zero to handle that special case:

 test rax, rax
 jnz not0
 mov byte ptr [rdi], ‘0’
 jmp allDone

; The FBSTP instruction supports only 18 digits.
; 64-bit integers can have up to 19 digits.
; Handle that 19th possible digit here:

not0: cmp rax, bigNum
 jb lt19Digits

; The number has 19 digits (which can be 0-9).
; pull off the 19th digit:

 xor edx, edx
 div bigNum ;19th digit in AL

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

508 Chapter 9

 mov [rsp + 10], rdx ;Remainder
 or al, ‘0’
 mov [rdi], al
 inc rdi

; The number to convert is nonzero.
; Use BCD load and store to convert
; the integer to BCD:

lt19Digits: fild qword ptr [rsp + 10]
 fbstp tbyte ptr [rsp]

; Begin by skipping over leading zeros in
; the BCD value (max 19 digits, so the most
; significant digit will be in the LO nibble
; of DH).

 mov dx, [rsp + 8]
 mov rax, [rsp]
 mov ecx, 20
 jmp testFor0

Skip0s: shld rdx, rax, 4
 shl rax, 4
testFor0: dec ecx ;Count digits we’ve processed
 test dh, 0fh ;Because the number is not 0
 jz Skip0s ;this always terminates

; At this point the code has encountered
; the first nonzero digit. Convert the remaining
; digits to a string:

cnvrtStr: and dh, 0fh
 or dh, ‘0’
 mov [rdi], dh
 inc rdi
 mov dh, 0
 shld rdx, rax, 4
 shl rax, 4
 dec ecx
 jnz cnvrtStr

; Zero-terminate the string and return:

allDone: mov byte ptr [rdi], 0
 add rsp, 10
 pop rax
 pop rdi
 pop rdx
 pop rcx
 ret
utoStr endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 509

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ;Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer
 mov rax, 9123456789012345678
 call utoStr

 lea rcx, fmtStr1
 mov rdx, 9123456789012345678
 lea r8, buffer
 call printf

 leave
 ret ;Returns to caller
asmMain endp
 end

Listing 9-5: A fist/fbstp-based utoStr function

Here’s the build command and sample output from this program:

C:\>build listing9-5

C:\>echo off
 Assembling: listing9-5.asm
c.cpp

C:\>listing9-5
Calling Listing 9-5:
utoStr: Value=9123456789012345678, string=9123456789012345678
Listing 9-5 terminated

The program in Listing 9-5 does use a div instruction, but it executes
only once or twice, and only if there are 19 or 20 digits in the number.
Therefore, the execution time of this div instruction will have little overall
impact on the speed of the utoStr function (especially when you consider
how often you actually print 19-digit numbers).

I got the following execution times on a 2.6 GHz circa-2012 Core i7
processor:

•	 Original utoStr: 108 seconds

•	 fist/fbstp implementation: 11 seconds

Clearly, the fist/fbstp implementation is the winner.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

510 Chapter 9

9.1.4 Converting Signed Integer Values to Strings
To convert a signed integer value to a string, you first check to see if the
number is negative; if it is, you emit a hyphen (-) character and negate the
value. Then you call the utoStr function to finish the job. Listing 9-6 shows
the relevant code.

N O T E The full Listing 9-6 is available at https://artofasm.randallhyde.com/.

; itoStr - Signed integer-to-string conversion
;
; Inputs:
; RAX - Signed integer to convert
; RDI - Destination buffer address

itoStr proc
 push rdi
 push rax
 test rax, rax
 jns notNeg

; Number was negative, emit ‘-’ and negate
; value.

 mov byte ptr [rdi], ‘-’
 inc rdi
 neg rax

; Call utoStr to convert non-negative number:

notNeg: call utoStr
 pop rax
 pop rdi
 ret
itoStr endp

Listing 9-6: Signed integer-to-string conversion

9.1.5 Converting Extended-Precision Unsigned Integers to Strings
For extended-precision output, the only operation through the entire
string-conversion algorithm that requires extended-precision arithmetic is
the divide-by-10 operation. Because we are dividing an extended-precision
value by a value that easily fits into a quad word, we can use the fast (and
easy) extended-precision division algorithm that uses the div instruction
(see “Special Case Form Using div Instruction” in Chapter 8). Listing 9-7
implements a 128-bit decimal output routine utilizing this technique.

; Listing 9-7
;
; Extended-precision numeric unsigned integer-
; to-string function

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/.

Numeric Conversion 511

 option casemap:none

nl = 10

 .const
ttlStr byte “Listing 9-7”, 0
fmtStr1 byte “otoStr(0): string=%s”, nl, 0
fmtStr2 byte “otoStr(1234567890): string=%s”, nl, 0
fmtStr3 byte “otoStr(2147483648): string=%s”, nl, 0
fmtStr4 byte “otoStr(4294967296): string=%s”, nl, 0
fmtStr5 byte “otoStr(FFF...FFFF): string=%s”, nl, 0

 .data
buffer byte 40 dup (?)

b0 oword 0
b1 oword 1234567890
b2 oword 2147483648
b3 oword 4294967296

; Largest oword value
; (decimal=340,282,366,920,938,463,463,374,607,431,768,211,455):

b4 oword 0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFh

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; DivideBy10-
;
; Divides “divisor” by 10 using fast
; extended-precision division algorithm
; that employs the div instruction.
;
; Returns quotient in “quotient”.
; Returns remainder in RAX.
; Trashes RDX.
;
; RCX - points at oword dividend and location to
; receive quotient

ten qword 10

DivideBy10 proc
parm equ <[rcx]>

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

512 Chapter 9

 xor edx, edx ;Zero-extends!
 mov rax, parm[8]
 div ten
 mov parm[8], rax

 mov rax, parm
 div ten
 mov parm, rax
 mov eax, edx ;Remainder (always 0 to 9!)
 ret
DivideBy10 endp

; Recursive version of otoStr.
; A separate “shell” procedure calls this so that
; this code does not have to preserve all the registers
; it uses (and DivideBy10 uses) on each recursive call.
;
; On entry:
; Stack contains oword in/out parameter (dividend in/quotient out)
; RDI- contains location to place output string
;
; Note: this function must clean up stack (parameters)
; on return.

rcrsvOtoStr proc
value equ <[rbp + 16]>
remainder equ <[rbp - 8]>
 push rbp
 mov rbp, rsp
 sub rsp, 8
 lea rcx, value
 call DivideBy10
 mov remainder, al

; If the quotient (left in value) is not 0, recursively
; call this routine to output the HO digits.

 mov rax, value
 or rax, value[8]
 jz allDone

 mov rax, value[8]
 push rax
 mov rax, value
 push rax
 call rcrsvOtoStr

allDone: mov al, remainder
 or al, ‘0’
 mov [rdi], al
 inc rdi
 leave

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 513

 ret 16 ;Remove parms from stack
rcrsvOtoStr endp

; Nonrecursive shell to the above routine so we don’t bother
; saving all the registers on each recursive call.
;
; On entry:
;
; RDX:RAX- contains oword to print
; RDI- buffer to hold string (at least 40 bytes)

otostr proc

 push rax
 push rcx
 push rdx
 push rdi

; Special-case zero:

 test rax, rax
 jnz not0
 test rdx, rdx
 jnz not0
 mov byte ptr [rdi], ‘0’
 inc rdi
 jmp allDone

not0: push rdx
 push rax
 call rcrsvOtoStr

; Zero-terminate string before leaving

allDone: mov byte ptr [rdi], 0

 pop rdi
 pop rdx
 pop rcx
 pop rax
 ret

otostr endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ;Shadow storage

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

514 Chapter 9

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer

; Convert b0 to a string and print the result:

 mov rax, qword ptr b0
 mov rdx, qword ptr b0[8]
 call otostr

 lea rcx, fmtStr1
 lea rdx, buffer
 call printf

; Convert b1 to a string and print the result:

 mov rax, qword ptr b1
 mov rdx, qword ptr b1[8]
 call otostr

 lea rcx, fmtStr2
 lea rdx, buffer
 call printf

; Convert b2 to a string and print the result:

 mov rax, qword ptr b2
 mov rdx, qword ptr b2[8]
 call otostr

 lea rcx, fmtStr3
 lea rdx, buffer
 call printf

; Convert b3 to a string and print the result:

 mov rax, qword ptr b3
 mov rdx, qword ptr b3[8]
 call otostr

 lea rcx, fmtStr4
 lea rdx, buffer
 call printf

; Convert b4 to a string and print the result:

 mov rax, qword ptr b4
 mov rdx, qword ptr b4[8]
 call otostr

 lea rcx, fmtStr5
 lea rdx, buffer
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 515

 leave
 pop rdi
 ret ; Returns to caller

asmMain endp
 end

Listing 9-7: 128-bit extended-precision decimal output routine

Here’s the build command and program output:

C:\>build listing9-7

C:\>echo off
 Assembling: listing9-7.asm
c.cpp

C:\>listing9-7
Calling Listing 9-7:
otoStr(0): string=0
otoStr(1234567890): string=1234567890
otoStr(2147483648): string=2147483648
otoStr(4294967296): string=4294967296
otoStr(FFF...FFFF):
 string=340282366920938463463374607431768211455
Listing 9-7 terminated

Sadly, we cannot use the fbstp instruction to improve the performance
of this algorithm, as fbstp is limited to 80-bit BCD values.

9.1.6 Converting Extended-Precision Signed Decimal Values to Strings
Once you have an extended-precision unsigned decimal output routine,
writing an extended-precision signed decimal output routine is easy. The
basic algorithm is similar to that for 64-bit integers given earlier:

1. Check the sign of the number.

2. If it is positive, call the unsigned output routine to print it. If the num-
ber is negative, print a minus sign. Then negate the number and call
the unsigned output routine to print it.

To check the sign of an extended-precision integer, test the HO bit of
the number. To negate a large value, the best solution is probably to sub-
tract that value from 0. Listing 9-8 is a quick version of i128toStr that uses
the otoStr routine from the previous section.

N O T E Full source code for Listing 9-8 appears at https://artofasm.randallhyde.com/.

; i128toStr-
; Converts a 128-bit signed integer to a string
;
; Inputs;
; RDX:RAX- signed integer to convert

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

516 Chapter 9

; RDI- pointer to buffer to receive string

i128toStr proc
 push rax
 push rdx
 push rdi

 test rdx, rdx ; Is number negative?
 jns notNeg

 mov byte ptr [rdi], ‘-’
 inc rdi
 neg rdx ; 128-bit negation
 neg rax
 sbb rdx, 0

notNeg: call otostr
 pop rdi
 pop rdx
 pop rax
 ret
i128toStr endp

Listing 9-8: 128-bit signed integer-to-string conversion

9.1.7 Formatted Conversions
The code in the previous sections converted signed and unsigned integers
to strings by using the minimum number of necessary character positions.
To create nicely formatted tables of values, you will need to write functions
that provide appropriate padding in front of the string of digits, before
actually emitting the digits. Once you have the “unformatted” versions of
these routines, implementing the formatted versions is easy.

The first step is to write iSize and uSize routines that compute the
minimum number of character positions needed to display the value. One
algorithm to accomplish this is similar to the numeric string conversion
routines. In fact, the only difference is that you initialize a counter to 0
upon entry into the routine (for example, the nonrecursive shell routine),
and you increment this counter rather than outputting a digit on each
recursive call. (Don’t forget to increment the counter inside iSize if the
number is negative; you must allow for the output of the minus sign.) After
the calculation is complete, these routines should return the size of the
operand in the EAX register.

The only problem is that such a conversion scheme is slow (using recur-
sion and div is not very fast). As it turns out, a brute-force version that simply
compares the integer value against 1, 10, 100, 1000, and so on, works much
faster. Here’s the code that will do this:

; uSize-
; Determines how many character positions it will take
; to hold a 64-bit numeric-to-string conversion.
;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 517

; Input
; RAX- Number to check
;
; Returns-
; RAX- Number of character positions required.

dig2 qword 10
dig3 qword 100
dig4 qword 1000
dig5 qword 10000
dig6 qword 100000
dig7 qword 1000000
dig8 qword 10000000
dig9 qword 100000000
dig10 qword 1000000000
dig11 qword 10000000000
dig12 qword 100000000000
dig13 qword 1000000000000
dig14 qword 10000000000000
dig15 qword 100000000000000
dig16 qword 1000000000000000
dig17 qword 10000000000000000
dig18 qword 100000000000000000
dig19 qword 1000000000000000000
dig20 qword 10000000000000000000

uSize proc
 push rdx
 cmp rax, dig10
 jae ge10
 cmp rax, dig5
 jae ge5
 mov edx, 4
 cmp rax, dig4
 jae allDone
 dec edx
 cmp rax, dig3
 jae allDone
 dec edx
 cmp rax, dig2
 jae allDone
 dec edx
 jmp allDone

ge5: mov edx, 9
 cmp rax, dig9
 jae allDone
 dec edx
 cmp rax, dig8
 jae allDone
 dec edx
 cmp rax, dig7
 jae allDone
 dec edx
 cmp rax, dig6

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

518 Chapter 9

 jae allDone
 dec edx ; Must be 5
 jmp allDone

ge10: cmp rax, dig14
 jae ge14
 mov edx, 13
 cmp rax, dig13
 jae allDone
 dec edx
 cmp rax, dig12
 jae allDone
 dec edx
 cmp rax, dig11
 jae allDone
 dec edx ; Must be 10
 jmp allDone

ge14: mov edx, 20
 cmp rax, dig20
 jae allDone
 dec edx
 cmp rax, dig19
 jae allDone
 dec edx
 cmp rax, dig18
 jae allDone
 dec edx
 cmp rax, dig17
 jae allDone
 dec edx
 cmp rax, dig16
 jae allDone
 dec edx
 cmp rax, dig15
 jae allDone
 dec edx ; Must be 14

allDone: mov rax, rdx ; Return digit count
 pop rdx
 ret
uSize endp

For signed integers, you can use the following code:

; iSize-
; Determines the number of print positions required by
; a 64-bit signed integer.

iSize proc
 test rax, rax
 js isNeg

 jmp uSize ; Effectively a call and ret

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 519

; If the number is negative, negate it, call uSize,
; and then bump the size up by 1 (for the ‘-’ character)

isNeg: neg rax
 call uSize
 inc rax
 ret
iSize endp

For extended-precision size operations, the brute-force approach
quickly becomes unwieldy (64 bits is bad enough). The best solution is to
divide your extended-precision value by a power of 10 (say, 1e+18). This will
reduce the size of the number by 18 digits. Repeat this process as long as
the quotient is greater than 64 bits (keeping track of the number of times
you’ve divided the number by 1e+18). When the quotient fits into 64 bits
(19 or 20 digits), call the 64-bit uSize function and add in the number of
digits you eliminated with the division operation (18 for each division by
1e+18). The implementation is left to you on this one . . .

Once you have the iSize and uSize routines, writing the formatted out-
put routines, utoStrSize or itoStrSize, is easy. On initial entry, these routines
call the corresponding iSize/uSize routine to determine the number of
character positions for the number. If the value that the iSize/uSize routine
returns is greater than the value of the minimum size parameter (passed
into utoStrSize or itoStrSize), no other formatting is necessary. If the value
of the parameter size is greater than the value iSize/uSize returns, the
program must compute the difference between these two values and emit
that many spaces (or other filler characters) to the output string before the
numeric conversion. Listing 9-9 shows the utoStrSize/itoStrSize functions.

N O T E Full source code for Listing 9-9 appears at https://artofasm.randallhyde.com/.
The following listing omits everything exception the actual utoStrSize/itoStrSize
functions.

; utoStrSize-
; Converts an unsigned integer to a formatted string
; having at least “minDigits” character positions.
; If the actual number of digits is smaller than
; “minDigits,” then this procedure inserts enough
; “pad” characters to extend the size of the string.
;
; Inputs:
; RAX - Number to convert to string
; CL- minDigits (minimum print positions)
; CH- Padding character
; RDI - Buffer pointer for output string

utoStrSize proc
 push rcx
 push rdi
 push rax

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

520 Chapter 9

 call uSize ; Get actual number of digits
 sub cl, al ; >= the minimum size?
 jbe justConvert

; If the minimum size is greater than the number of actual
; digits, we need to emit padding characters here.
;
; Note that this code used “sub” rather than “cmp” above.
; As a result, CL now contains the number of padding
; characters to emit to the string (CL is always positive
; at this point, as negative and zero results would have
; branched to justConvert).

padLoop: mov [rdi], ch
 inc rdi
 dec cl
 jne padLoop

; Okay, any necessary padding characters have already been
; added to the string. Call utostr to convert the number
; to a string and append to the buffer:

justConvert:
 mov rax, [rsp] ;Retrieve original value
 call utoStr

 pop rax
 pop rdi
 pop rcx
 ret
utoStrSize endp

; itoStrSize-
; Converts a signed integer to a formatted string
; having at least “minDigits” character positions.
; If the actual number of digits is smaller than
; “minDigits,” then this procedure inserts enough
; “pad” characters to extend the size of the string.
;
; Inputs:
; RAX - Number to convert to string
; CL- minDigits (minimum print positions)
; CH- Padding character
; RDI - Buffer pointer for output string

itoStrSize proc
 push rcx
 push rdi
 push rax

 call iSize ;Get actual number of digits
 sub cl, al ;>= the minimum size?
 jbe justConvert

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 521

; If the minimum size is greater than the number of actual
; digits, we need to emit padding characters here.
;
; Note that this code used “sub” rather than “cmp” above.
; As a result, CL now contains the number of padding
; characters to emit to the string (CL is always positive
; at this point, as negative and zero results would have
; branched to justConvert).

padLoop: mov [rdi], ch
 inc rdi
 dec cl
 jne padLoop

; Okay, any necessary padding characters have already been
; added to the string. Call utostr to convert the number
; to a string and append to the buffer:

justConvert:
 mov rax, [rsp] ; Retrieve original value
 call itoStr

 pop rax
 pop rdi
 pop rcx
 ret
itoStrSize endp

Listing 9-9: Formatted integer-to-string conversion functions

9.1.8 Converting Floating-Point Values to Strings
The code appearing thus far in this chapter has dealt with converting inte-
ger numeric values to character strings (typically for output to the user).
Converting floating-point values to a string is just as important. This section
(and subservient subsections) covers that conversion.

Floating-point values can be converted to strings in one of two forms:

•	 Decimal notation conversion (for example, ± xxx.yyy format)

•	 Exponential (or scientific) notation conversion (for example, ± x.yyyyye ±
zz format)

Regardless of the final output format, two distinct operations are
needed to convert a value in floating-point form to a character string. First,
you must convert the mantissa to an appropriate string of digits. Second,
you must convert the exponent to a string of digits.

However, this isn’t a simple case of converting two integer values to
a decimal string and concatenating them (with an e between the man-
tissa and exponent). First of all, the mantissa is not an integer value: it is
a fixed-point fractional binary value. Simply treating it as an n-bit binary
value (where n is the number of mantissa bits) will almost always result in
an incorrect conversion. Second, while the exponent is, more or less, an

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

522 Chapter 9

integer value,1 it represents a power of 2, not a power of 10. Displaying that
power of 2 as an integer value is not appropriate for decimal floating-point
representation. Dealing with these two issues (fractional mantissa and
binary exponent) are the major complications associated with converting a
floating-point value to a string.

Though there are three floating-point formats on the x86-64—
single-precision (32-bit real4), double-precision (64-bit real8), and extended-
precision (80-bit real10) —the x87 FPU automatically converts the real4 and
real8 formats to real10 upon loading the value into the FPU. Therefore, by
using the x87 FPU for all floating-point arithmetic during the conversion, all
we need do is write code to convert real10 values into string form.

real10 floating-point values have a 64-bit mantissa. This is not a 64-bit inte-
ger. Instead, those 64 bits represent a value between 0 and slightly less than 2.
(See “IEEE Floating-Point Formats” in Chapter 2 for more details on the IEEE
80-bit floating-point format.) Bit 63 is usually 1. If bit 63 is 0, the mantissa is
denormalized, representing numbers between 0 and about 3.65 × 10-4951.

To output the mantissa in decimal form with approximately 18 digits
of precision, the trick is to successively multiply or divide the floating-point
value by 10 until the number is between 1e+18 and just less than 1e+19
(that is, 9.9999 . . . e+18). Once the exponent is in the appropriate range,
the mantissa bits form an 18-digit integer value (no fractional part), which
can be converted to a decimal string to obtain the 18 digits that make up
the mantissa value (using our friend, the fbstp instruction). In practice,
you would multiply or divide by large powers of 10 to get the value into the
range 1e+18 to 1e+19. This is faster (fewer floating-point operations) and
more accurate (also because there are fewer floating-point operations).

N O T E As discussed in “Unsigned Decimal-to-String Conversion” on page X, a 64-bit inte-
ger can produce slightly more than 18 significant digits (the maximum unsigned
64-bit value is 18,446,744,073,709,551,615, or 20 digits), but the fbstp instruction
produces only an 18-digit result. Also, the sequence of floating-point operations that
divide or multiply the value by 10 to get the number into the range 1e+18 to 1e+19
will introduce a small amount of error such that the LO digits produced by fbstp
won’t be completely accurate. Therefore, limiting the output to 18 significant digits is
reasonable.2

To convert the exponent to an appropriate decimal string, you need to
track the number of multiplications or divisions by 10. For each division by
10, add 1 to the decimal exponent value; for each multiplication by 10, sub-
tract 1 from the decimal exponent value. At the end of the process, subtract
18 from the decimal exponent value (as this process produces a value whose
exponent is 18) and convert the decimal exponent value to a string.

1. It’s actually a biased-exponent value. However, that’s easy to convert to a signed binary
integer.

2. Most programs deal with 64-bit double-precision floating-point values that have around
16 digits of precision, so the 18-digit limitation is more than sufficient when dealing with
double-precision values.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 523

9.1.8.1 Converting Floating-Point Exponents

To convert the exponent to a string of decimal digits, use the following
algorithm:

1. If the number is 0.0, directly produce the mantissa output string of
“ 000000000000000000” (notice the space at the beginning of the
string).

2. Initialize the decimal exponent to 0.

3. If the exponent is negative, emit a hyphen (-) character and negate the
value; if it is positive, emit a space character.

4. If the value of the (possibly negated) exponent is less than 1.0, go to
step 8.

5. Positive exponents: Compare the number against successively smaller pow-
ers of 10, starting with 10+4096, then 10+2048, then 10+1024, then . . . , then
100. After each comparison, if the current value is greater than the power
of 10, divide by that power of 10 and add the power of 10 exponent
(4096, 2048, . . . , 0) to the decimal exponent value.

6. Repeat step 5 until the exponent is 0 (that is, the value is in the range
1.0 <= value < 10.0).

7. Go to step 10.

8. Negative exponents: Compare the number against successful larger pow-
ers of 10 starting with 10-4096, then, 10-2048, then 10-1024, then . . . , then
100. After each comparison, if the current value is less than the power
of 10, divide by that power of 10 and subtract the power of 10 exponent
(4096, 2048, . . . , 0) from the decimal exponent value.

9. Repeat step 8 until the exponent is 0 (that is, the value is in the range
1.0 <= value < 10.0).

10. Certain legitimate floating-point values are too large to represent with
18 digits (for example, 9,223,372,036,854,775,807 fits into 63 bits, but
requires more than 18 significant digits to represent). Specifically, values
in the range 403a_de0b_6b3a_763f_ff01h to 403a_de0b_6b3a_763f_
ffffh are greater than 999,999,999,999,999,999 but still fit within a 64-bit
mantissa. The fbstp instruction will not be able to convert these values to
a packed BCD value.

To resolve this issue, the code should explicitly test for values in this range
and round them up to 1e+17 (and increment the decimal exponent value,
should this happen). In some cases, values could be greater than 1e+19. In
such instances, one last division by 10.0 will solve the problem.

11. At this point, the floating-point value is a reasonable number that the
fbstp instruction can convert to a packed BCD value, so the conversion
function uses fbstp to do this conversion.

12. Finally, convert the packed BCD value to a string of ASCII characters,
using an operation converting numeric values to hexadecimal (BCD)
to strings (see “Unsigned Decimal-to-String Conversion” on page xx
and Listing 9-5).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

524 Chapter 9

Listing 9-10 provides the (abbreviated) code and data to implement
the mantissa-to-string conversion function, FPDigits. FPDigits converts the
mantissa to a sequence of 18 digits and returns the decimal exponent value
in the EAX register. It doesn’t place a decimal point anywhere in the string,
nor does it process the exponent at all.

N O T E The full Listing 9-10 is available online at https://artofasm.randallhyde.com/.

 .data

 align 4

; TenTo17 - Holds the value 1.0e+17. Used to get a floating-
; point number to the range x.xxxxxxxxxxxxe+17

TenTo17 real10 1.0e+17

; PotTblN- Hold powers of ten raised to negative powers of two.

PotTblN real10 1.0,
 1.0e-1,
 1.0e-2,
 1.0e-4,
 1.0e-8,
 1.0e-16,
 1.0e-32,
 1.0e-64,
 1.0e-128,
 1.0e-256,
 1.0e-512,
 1.0e-1024,
 1.0e-2048,
 1.0e-4096

; PotTblP- Hold powers of ten raised to positive powers of two.

 align 4
PotTblP real10 1.0,
 1.0e+1,
 1.0e+2,
 1.0e+4,
 1.0e+8,
 1.0e+16,
 1.0e+32,
 1.0e+64,
 1.0e+128,
 1.0e+256,
 1.0e+512,
 1.0e+1024,
 1.0e+2048,
 1.0e+4096

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/.

Numeric Conversion 525

; ExpTbl- Integer equivalents to the powers in the tables
; above.

 align 4
ExpTab dword 0,
 1,
 2,
 4,
 8,
 16,
 32,
 64,
 128,
 256,
 512,
 1024,
 2048,
 4096
 .
 .
 .

;***
;
; FPDigits-
;
; Used to convert a floating-point number on the FPU
; stack (ST(0)) to a string of digits.
;
; Entry Conditions:
;
; ST(0)- 80-bit number to convert.
; Note: code requires two free FPU stack elements.
; RDI- Points at array of at least 18 bytes where
; FPDigits stores the output string.
;
; Exit Conditions:
;
; RDI- Converted digits are found here.
; RAX- Contains exponent of the number.
; CL- Contains the sign of the mantissa (“ “ or “-”).
; ST(0)- Popped from stack.
;
;***

P10TblN equ <real10 ptr [r8]>
P10TblP equ <real10 ptr [r9]>
xTab equ <dword ptr [r10]>

FPDigits proc
 push rbx
 push rdx
 push rsi
 push r8

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

526 Chapter 9

 push r9
 push r10

; Special case if the number is zero.

 ftst
 fstsw ax
 sahf
 jnz fpdNotZero

; The number is zero, output it as a special case.

 fstp tbyte ptr [rdi] ; Pop value off FPU stack.
 mov rax, “00000000”
 mov [rdi], rax
 mov [rdi + 8], rax
 mov [rdi + 16], ax
 add rdi, 18
 xor edx, edx ; Return an exponent of 0.
 mov bl, ‘ ‘ ; Sign is positive.
 jmp fpdDone

fpdNotZero:

; If the number is not zero, then fix the sign of the value.

 mov bl, ‘ ‘ ; Assume it’s positive.
 jnc WasPositive ; Flags set from sahf above.

 fabs ; Deal only with positive numbers.
 mov bl, ‘-’ ; Set the sign return result.

WasPositive:

; Get the number between one and ten so we can figure out
; what the exponent is. Begin by checking to see if we have
; a positive or negative exponent.

 xor edx, edx ; Initialize exponent to 0.
 fld1
 fcomip st(0), st(1)
 jbe PosExp

; We’ve got a value between zero and one, exclusive,
; at this point. That means this number has a negative
; exponent. Multiply the number by an appropriate power
; of ten until we get it in the range 1 through 10.

 mov esi, sizeof PotTblN ; After last element.
 mov ecx, sizeof ExpTab ; Ditto.
 lea r8, PotTblN
 lea r9, PotTblP
 lea r10, ExpTab

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 527

CmpNegExp:
 sub esi, 10 ; Move to previous element.
 sub ecx, 4 ; Zeros HO bytes
 jz test1

 fld P10TblN[rsi * 1] ; Get current power of 10.
 fcomip st(0), st(1) ; Compare against NOS.
 jbe CmpNegExp ; While Table >= value.

 mov eax, xTab[rcx * 1]
 test eax, eax
 jz didAllDigits

 sub edx, eax
 fld P10TblP[rsi * 1]
 fmulp
 jmp CmpNegExp

; If the remainder is *exactly* 1.0, then we can branch
; on to InRange1_10; otherwise, we still have to multiply
; by 10.0 because we’ve overshot the mark a bit.

test1:
 fld1
 fcomip st(0), st(1)
 je InRange1_10

didAllDigits:

; If we get to this point, then we’ve indexed through
; all the elements in the PotTblN and it’s time to stop.

 fld P10TblP[10] ; 10.0
 fmulp
 dec edx
 jmp InRange1_10

; At this point, we’ve got a number that is one or greater.
; Once again, our task is to get the value between 1 and 10.

PosExp:

 mov esi, sizeof PotTblP ; After last element.
 mov ecx, sizeof ExpTab ; Ditto.
 lea r9, PotTblP
 lea r10, ExpTab

CmpPosExp:
 sub esi, 10 ; Move back 1 element in
 sub ecx, 4 ; PotTblP and ExpTbl.
 fld P10TblP[rsi * 1]
 fcomip st(0), st(1)
 ja CmpPosExp;
 mov eax, xTab[rcx * 1]

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

528 Chapter 9

 test eax, eax
 jz InRange1_10

 add edx, eax
 fld P10TblP[rsi * 1]
 fdivp
 jmp CmpPosExp

InRange1_10:

; Okay, at this point the number is in the range 1 <= x < 10,
; Let’s multiply it by 1e+18 to put the most significant digit
; into the 18th print position. Then convert the result to
; a BCD value and store away in memory.

 sub rsp, 24 ; Make room for BCD result.
 fld TenTo17
 fmulp

; We need to check the floating-point result to make sure it
; is not outside the range we can legally convert to a BCD
; value.
;
; Illegal values will be in the range:
;
; >999,999,999,999,999,999 … <1,000,000,000,000,000,000
; $403a_de0b_6b3a_763f_ff01…$403a_de0b_6b3a_763f_ffff
;
; Should one of these values appear, round the result up to
;
; $403a_de0b_6b3a_7640_0000

 fstp real10 ptr [rsp]
 cmp word ptr [rsp + 8], 403ah
 jne noRounding

 cmp dword ptr [rsp + 4], 0de0b6b3ah
 jne noRounding

 mov eax, [rsp]
 cmp eax, 763fff01h
 jb noRounding;
 cmp eax, 76400000h
 jae TooBig

 fld TenTo17
 inc edx ; Inc exp as this is really 10^18.
 jmp didRound

; If we get down here, there were problems getting the
; value in the range 1 <= x <= 10 above and we’ve got a value
; that is 10e+18 or slightly larger. We need to compensate for
; that here.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 529

TooBig:
 lea r9, PotTblP
 fld real10 ptr [rsp]
 fld P10TblP[10] ; /10
 fdivp
 inc edx ; Adjust exp due to fdiv.
 jmp didRound

noRounding:
 fld real10 ptr [rsp]
didRound:
 fbstp tbyte ptr [rsp]

; The data on the stack contains 18 BCD digits. Convert these
; to ASCII characters and store them at the destination location
; pointed at by EDI.

 mov ecx, 8
repeatLp:
 mov al, byte ptr [rsp + rcx]
 shr al, 4 ; Always in the
 or al, ‘0’ ; range 0 to 9
 mov [rdi], al
 inc rdi

 mov al, byte ptr [rsp + rcx]
 and al, 0fh
 or al, ‘0’
 mov [rdi], al
 inc rdi

 dec ecx
 jns repeatLp

 add rsp, 24 ; Remove BCD data from stack.

fpdDone:

 mov eax, edx ; Return exponent in EAX.
 mov cl, bl ; Return sign in CL
 pop r10
 pop r9
 pop r8
 pop rsi
 pop rdx
 pop rbx
 ret

FPDigits endp

Listing 9-10: Floating-point mantissa-to-string conversion

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

530 Chapter 9

9.1.8.2 Converting a Floating-Point Value to a Decimal String

The FPDigits function does most of the work needed to convert a floating-
point value to a string in decimal notation: it converts the mantissa to
a string of digits and provides the exponent in a decimal integer form.
Although the decimal format does not explicitly display the exponent value,
a procedure that converts the floating-point value to a decimal string will
need the (decimal) exponent value to determine where to put the decimal
point. Along with a few additional arguments that the caller supplies, it’s
relatively easy to take the output from FPDigits and convert it to an appro-
priately formatted decimal string of digits.

The final function to write is r10ToStr, the main function to call when
converting a real10 value to a string. This is a formatted output function
that translates the binary floating-point value by using standard formatting
options to control the output width, the number of positions after the deci-
mal point, and any fill characters to write where digits don’t appear (usually,
this is a space). The r10ToStr function call will need the following arguments:

r10

The real10 value to convert to a string (if r10 is a real4 or real8 value, the
FPU will automatically convert it to a real10 value when loading it into
the FPU).

fWidth

The field width. This is the total number of character positions that the
string will consume. This count includes room for a sign (which could be
a space or a hyphen) but does not include space for a zero-terminating
byte for the string. The field width must be greater than 0 and less than
or equal to 1024.

decDigits

The number of digits to the right of the decimal point. This value must
be at least 3 less than fWidth because there must be room for a sign
character, at least one digit to the left of the decimal point, and the
decimal point. If this value is 0, the conversion routine will not emit a
decimal point to the string. This is an unsigned value; if the caller sup-
plies a negative number here, the procedure will treat it as a very large
positive value (and will return an error).

fill

The fill character. If the numeric string that r10ToStr produces uses fewer
characters than fWidth, the procedure will right-justify the numeric value
in the output string and fill the leftmost characters with this fill charac-
ter (which is usually a space character).

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 531

buffer

A buffer to receive the numeric string.

maxLength

The size of the buffer (including the zero-terminating byte). If the conver-
sion routine attempts to create a string larger than this value (meaning
fWidth is greater than or equal to this value), then it returns an error.

The string output operation has only three real tasks: properly position
the decimal point (if present), copy only those digits specified by the fWidth
value, and round the truncated digits into the output digits.

The rounding operation is the most interesting part of the procedure.
The r10ToStr function converts the real10 value to ASCII characters before
rounding because it’s easier to round the result after the conversion. So the
rounding operation consists of adding 5 to the (ASCII) digit just beyond the
least significant displayed digit. If this sum exceeds (the character) 9, the
rounding algorithm has to add 1 to the least significant displayed digit. If that
sum exceeds 9, the algorithm must subtract (the value) 10 from the character
and add 1 to the next least significant digit. This process repeats until reach-
ing the most significant digit or until there is no carry out of a given digit
(that is, the sum does not exceed 9). In the (rare) case that rounding bubbles
through all the digits (for example, the string is “999999 . . . 9”), then the
rounding algorithm has to replace the string with “10000 . . . 0” and incre-
ment the decimal exponent by 1.

The algorithm for emitting the string differs for values with negative
and non-negative exponents. Negative exponents are probably the easiest to
process. Here’s the algorithm for emitting values with a negative exponent:

1. The function begins by adding 3 to decDigits.

2. If decDigits is less than 4, the function sets it to 4 as a default value.3

3. If decDigits is greater than fWidth, the function emits fWidth ‘#’ charac-
ters to the string and returns.

4. If decDigits is less than fWidth, then output (fWidth - decDigits), padding
characters (fill) to the output string.

5. If r10 was negative, emit -0. to the string; otherwise, emit 0. to the
string (with a leading space in front of the 0 if non-negative).

6. Next, output the digits from the converted number. If the field width is
less than 21 (18 digits plus the 3 leading 0. or -0. characters), then the
function outputs the specified (fWidth) characters from the converted
digit string. If the width is greater than 21, the function emits all 18
digits from the converted digits and follows it by however many 0 char-
acters are necessary to fill out the field width.

7. Finally, the function zero-terminates the string and returns.

3. This is because fractional values (those with negative exponents) always have a leading - or
space character, a 0, a decimal point (.), and at least one digit, for a total of four digits.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

532 Chapter 9

If the exponent is positive or 0, the conversion is slightly more compli-
cated. First, the code has to determine the number of character positions
required by the result. This is computed as follows:

exponent + 2 + decDigits + (0 if decDigits is 0, 1 otherwise)

The exponent value is the number of digits to the left of the decimal
point (minus 1). The 2 component is present because there is always a posi-
tion for the sign character (space or hyphen) and there is always at least
one digit to the left of the decimal point. The decDigits component adds in
the number of digits to appear after the decimal point. Finally, this equa-
tion adds in 1 for the dot character if a decimal point is present (that is, if
decDigits is greater than 0).

Once the required width is computed, the function compares this
value against the fWidth value the caller supplies. If the computed value is
greater than fWidth, the function emits fWidth ‘#’ characters and returns.
Otherwise, it can emit the digits to the output string.

As happens with negative exponents, the code begins by determining
whether the number will consume all the character positions in the output
string. If not, it computes the difference between fWidth and the actual num-
ber of characters and outputs the fill character to pad the numeric string.
Next, it outputs a space or a hyphen character (depending on the sign of the
original value). Then the function outputs the digits to the left of the decimal
point (by counting down the exponent value). If the decDigits value is nonzero,
the function emits the dot character and any digits remaining in the digit
string that FPDigits produced. If the function ever exceeds the 18 digits that
FPDigits produces (either before or after the decimal point), then the func-
tion fills the remaining positions with the 0 character. Finally, the function
emits the zero-terminating byte for the string and returns to the caller.

Listing 9-11 provides the source code for the r10ToStr function.

N O T E The full Listing 9-11 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual r10ToStr function.

;***
;
; r10ToStr-
;
; Converts a REAL10 floating-point number to the
; corresponding string of digits. Note that this
; function always emits the string using decimal
; notation. For scientific notation, use the e10ToBuf
; routine.
;
; On Entry:
;
; r10- Real10 value to convert.
; Passed in ST(0).
;
; fWidth- Field width for the number (note that this
; is an *exact* field width, not a minimum

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

Numeric Conversion 533

; field width).
; Passed in EAX (RAX).
;
; decimalpts- # of digits to display after the decimal pt.
; Passed in EDX (RDX).
;
; fill- Padding character if the number is smaller
; than the specified field width.
; Passed in CL (RCX).
;
; buffer- tstores the resulting characters in
; this string.
; Address passed in RDI.
;
; maxLength- Maximum string length.
; Passed in R8d (R8).
;
; On Exit:
;
; Buffer contains the newly formatted string. If the
; formatted value does not fit in the width specified,
; r10ToStr will store “#” characters into this string.
;
; Carry- Clear if success; set if an exception occurs.
; If width is larger than the maximum length of
; the string specified by buffer, this routine
; will return with the carry set and RAX = -1,
; -2, or -3.
;
;***

r10ToStr proc

; Local variables:

fWidth equ <dword ptr [rbp - 8]> ; RAX: uns32
decDigits equ <dword ptr [rbp - 16]> ; RDX: uns32
fill equ <[rbp - 24]> ; CL: char
bufPtr equ <[rbp - 32]> ; RDI: pointer
exponent equ <dword ptr [rbp - 40]> ; uns32
sign equ <byte ptr [rbp - 48]> ; char
digits equ <byte ptr [rbp - 128]> ; char[80]
maxWidth = 64 ; Must be smaller than 80 - 2

 push rdi
 push rbx
 push rcx
 push rdx
 push rsi
 push rax
 push rbp
 mov rbp, rsp
 sub rsp, 128 ; 128 bytes of local vars

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

534 Chapter 9

; First, make sure the number will fit into the
; specified string.

 cmp eax, r8d ; r8d = max length
 jae strOverflow

; If the width is zero, raise an exception:

 test eax, eax
 jz voor ; Value out of range

 mov bufPtr, rdi
 mov qword ptr decDigits, rdx
 mov fill, rcx
 mov qword ptr fWidth, rax

; If the width is too big, raise an exception:

 cmp eax, maxWidth
 ja badWidth

; Okay, do the conversion.
; Begin by processing the mantissa digits:

 lea rdi, digits ; Store result here.
 call FPDigits ; Convert r80 to string.
 mov exponent, eax ; Save exp result.
 mov sign, cl ; Save mantissa sign char.

; Round the string of digits to the number of significant
; digits we want to display for this number:

 cmp eax, 17
 jl dontForceWidthZero

 xor rax, rax ; If the exp is negative or
 ; too large, set width to 0.
dontForceWidthZero:
 mov rbx, rax ; Really just 8 bits.
 add ebx, decDigits ; Compute rounding position.
 cmp ebx, 17
 jge dontRound ; Don’t bother if a big #.

; To round the value to the number of significant digits,
; go to the digit just beyond the last one we are considering
; (EAX currently contains the number of decimal positions)
; and add 5 to that digit. Propagate any overflow into the
; remaining digit positions.

 inc ebx ; Index + 1 of last sig digit.
 mov al, digits[rbx * 1] ; Get that digit.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 535

 add al, 5 ; Round (e.g., +0.5).
 cmp al, ‘9’
 jbe dontRound

 mov digits[rbx * 1], ‘0’ + 10 ; Force to zero
whileDigitGT9: ; (see sub 10 below).
 sub digits[rbx * 1], 10 ; Sub out overflow,
 dec ebx ; carry, into prev
 js hitFirstDigit; ; digit (until 1st
 ; digit in the #).
 inc digits[rbx * 1]
 cmp digits[rbx], ‘9’ ; Overflow if > ‘9’.
 ja whileDigitGT9
 jmp dontRound

hitFirstDigit:

; If we get to this point, then we’ve hit the first
; digit in the number. So we’ve got to shift all
; the characters down one position in the string of
; bytes and put a “1” in the first character position.

 mov ebx, 17
repeatUntilEBXeq0:

 mov al, digits[rbx * 1]
 mov digits[rbx * 1 + 1], al
 dec ebx
 jnz repeatUntilEBXeq0

 mov digits, ‘1’
 inc exponent ; Because we added a digit.

dontRound:

; Handle positive and negative exponents separately.

 mov rdi, bufPtr ; Store the output here.
 cmp exponent, 0
 jge positiveExponent

; Negative exponents:
; Handle values between 0 & 1.0 here (negative exponents
; imply negative powers of ten).
;
; Compute the number’s width. Since this value is between
; 0 & 1, the width calculation is easy: it’s just the
; number of decimal positions they’ve specified plus three
; (since we need to allow room for a leading “-0.”).

 mov ecx, decDigits
 add ecx, 3

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

536 Chapter 9

 cmp ecx, 4
 jae minimumWidthIs4

 mov ecx, 4 ; Minimum possible width is four.

minimumWidthIs4:
 cmp ecx, fWidth
 ja widthTooBig

; This number will fit in the specified field width,
; so output any necessary leading pad characters.

 mov al, fill
 mov edx, fWidth
 sub edx, ecx
 jmp testWhileECXltWidth

whileECXltWidth:
 mov [rdi], al
 inc rdi
 inc ecx
testWhileECXltWidth:
 cmp ecx, fWidth
 jb whileECXltWidth

; Output “ 0.” or “-0.”, depending on the sign of the number.

 mov al, sign
 cmp al, ‘-’
 je isMinus

 mov al, ‘ ‘

isMinus: mov [rdi], al
 inc rdi
 inc edx

 mov word ptr [rdi], ‘.0’
 add rdi, 2
 add edx, 2

; Now output the digits after the decimal point:

 xor ecx, ecx ; Count the digits in ECX.
 lea rbx, digits ; Pointer to data to output.

; If the exponent is currently negative, or if
; we’ve output more than 18 significant digits,
; just output a zero character.

repeatUntilEDXgeWidth:
 mov al, ‘0’

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 537

 inc exponent
 js noMoreOutput

 cmp ecx, 18
 jge noMoreOutput

 mov al, [rbx]
 inc ebx

noMoreOutput:
 mov [rdi], al
 inc rdi
 inc ecx
 inc edx
 cmp edx, fWidth
 jb repeatUntilEDXgeWidth
 jmp r10BufDone

; If the number’s actual width was bigger than the width
; specified by the caller, emit a sequence of ‘#’ characters
; to denote the error.

widthTooBig:

; The number won’t fit in the specified field width,
; so fill the string with the “#” character to indicate
; an error.

 mov ecx, fWidth
 mov al, ‘#’
fillPound: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillPound
 jmp r10BufDone

; Handle numbers with a positive exponent here.

positiveExponent:

; Compute # of digits to the left of the “.”.
; This is given by:
;
; Exponent ; # of digits to left of “.”
; + 2 ; Allow for sign and there
; ; is always 1 digit left of “.”
; + decimalpts ; Add in digits right of “.”
; + 1 ; If there is a decimal point.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

538 Chapter 9

 mov edx, exponent ; Digits to left of “.”
 add edx, 2 ; 1 digit + sign posn.
 cmp decDigits, 0
 je decPtsIs0

 add edx, decDigits ; Digits to right of “.”
 inc edx ; Make room for the “.”

decPtsIs0:

; Make sure the result will fit in the
; specified field width.

 cmp edx, fWidth
 ja widthTooBig

; If the actual number of print positions
; is fewer than the specified field width,
; output leading pad characters here.

 cmp edx, fWidth
 jae noFillChars

 mov ecx, fWidth
 sub ecx, edx
 jz noFillChars
 mov al, fill
fillChars: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillChars

noFillChars:

; Output the sign character.

 mov al, sign
 cmp al, ‘-’
 je outputMinus;

 mov al, ‘ ‘

outputMinus:
 mov [rdi], al
 inc rdi

; Okay, output the digits for the number here.

 xor ecx, ecx ; Counts # of output chars.
 lea rbx, digits ; Ptr to digits to output.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 539

; Calculate the number of digits to output
; before and after the decimal point.

 mov edx, decDigits ; Chars after “.”
 add edx, exponent ; # chars before “.”
 inc edx ; Always one digit before “.”

; If we’ve output fewer than 18 digits, go ahead
; and output the next digit. Beyond 18 digits,
; output zeros.

repeatUntilEDXeq0:
 mov al, ‘0’
 cmp ecx, 18
 jnb putChar

 mov al, [rbx]
 inc rbx

putChar: mov [rdi], al
 inc rdi

; If the exponent decrements down to zero,
; then output a decimal point.

 cmp exponent, 0
 jne noDecimalPt
 cmp decDigits, 0
 je noDecimalPt

 mov al, ‘.’
 mov [rdi], al
 inc rdi

noDecimalPt:
 dec exponent ; Count down to “.” output.
 inc ecx ; # of digits thus far.
 dec edx ; Total # of digits to output.
 jnz repeatUntilEDXeq0

; Zero-terminate string and leave:

r10BufDone: mov byte ptr [rdi], 0
 leave
 clc ; No error
 jmp popRet

badWidth: mov rax, -2 ; Illegal width
 jmp ErrorExit

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

540 Chapter 9

strOverflow:
 mov rax, -3 ; String overflow
 jmp ErrorExit

voor: or rax, -1 ; Range error
ErrorExit: leave
 stc ;Error
 mov [rsp], rax ; Change RAX on return

popRet: pop rax
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rdi
 ret

r10ToStr endp

Listing 9-11: r10ToStr conversion function

9.1.8.3 Converting a Floating-Point Value to Exponential Form

Converting a floating-point value to exponential (scientific) form is a bit
easier than converting it to decimal form. The mantissa always takes the
form sx.y where s is a hyphen or a space, x is exactly one decimal digit, and
y is one or more decimal digits. The FPDigits function does almost all the
work to create this string. The exponential conversion function needs to
output the mantissa string with sign and decimal point characters, and then
output the decimal exponent for the number. Converting the exponent
value (returned as a decimal integer in the EAX register by FPDigits) to a
string is just the numeric-to-decimal string conversion given earlier in this
chapter, using different output formatting.

The function this chapter presents allows you to specify the number of
digits for the exponent as 1, 2, 3, or 4. If the exponent requires more digits
than the caller specifies, the function returns a failure. If it requires fewer
digits than the caller specifies, the function pads the exponent with leading
0s. To emulate the typical floating-point conversion forms, specify an expo-
nent size of 2 for single-precision values, 3 for double-precision values, and
4 for extended-precision values.

Listing 9-12 provides a quick-and-dirty function that converts the decimal
exponent value to the appropriate string form and emits those characters to
a buffer. This function leaves RDI pointing beyond the last exponent digit
and doesn’t zero-terminate the string. It’s really just a helper function to out-
put characters for the e10ToStr function that will appear in the next listing.

N O T E The full Listing 9-12 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual expToBuf function.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/.

Numeric Conversion 541

;***
;
; expToBuf-
;
; Unsigned integer to buffer.
; Used to output up to 4-digit exponents.
;
; Inputs:
;
; EAX: Unsigned integer to convert
; ECX: Print width 1-4
; RDI: Points at buffer.
;
; FPU: Uses FPU stack.
;
; Returns:
;
; RDI: Points at end of buffer.
;

expToBuf proc

expWidth equ <[rbp + 16]>
exp equ <[rbp + 8]>
bcd equ <[rbp - 16]>

 push rdx
 push rcx ;At [RBP + 16]
 push rax ;At [RBP + 8]
 push rbp
 mov rbp, rsp
 sub rsp, 16

; Verify exponent digit count is in the range 1-4:

 cmp rcx, 1
 jb badExp
 cmp rcx, 4
 ja badExp
 mov rdx, rcx

; Verify the actual exponent will fit in the number of digits:

 cmp rcx, 2
 jb oneDigit
 je twoDigits
 cmp rcx, 3
 ja fillZeros ; 4 digits, no error
 cmp eax, 1000
 jae badExp
 jmp fillZeros

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

542 Chapter 9

oneDigit: cmp eax, 10
 jae badExp
 jmp fillZeros

twoDigits: cmp eax, 100
 jae badExp

; Fill in zeros for exponent:

fillZeros: mov byte ptr [rdi + rcx * 1 - 1], ‘0’
 dec ecx
 jnz fillZeros

; Point RDI at the end of the buffer:

 lea rdi, [rdi + rdx * 1 - 1]
 mov byte ptr [rdi + 1], 0
 push rdi ; Save pointer to end

; Quick test for zero to handle that special case:

 test eax, eax
 jz allDone

; The number to convert is nonzero.
; Use BCD load and store to convert
; the integer to BCD:

 fild dword ptr exp ; Get integer value
 fbstp tbyte ptr bcd ; Convert to BCD

; Begin by skipping over leading zeros in
; the BCD value (max 10 digits, so the most
; significant digit will be in the HO nibble
; of byte 4).

 mov eax, bcd ; Get exponent digits
 mov ecx, expWidth ; Number of total digits

OutputExp: mov dl, al
 and dl, 0fh
 or dl, ‘0’
 mov [rdi], dl
 dec rdi
 shr ax, 4
 jnz OutputExp

; Zero-terminate the string and return:

allDone: pop rdi
 leave
 pop rax
 pop rcx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 543

 pop rdx
 clc
 ret

badExp: leave
 pop rax
 pop rcx
 pop rdx
 stc
 ret

expToBuf endp

Listing 9-12: Exponent conversion function

The actual e10ToStr function in Listing 9-13 is similar to the r10ToStr
function. The output of the mantissa is less complex because the form is
fixed, but there is a little additional work at the end to output the exponent.
Refer back to “Converting a Floating-Point Value to a Decimal String” on
page xx for details on the operation of this code.

N O T E The full Listing 9-13 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual e10ToStr function.

;***
;
; eToStr-
;
; Converts a REAL10 floating-point number to the
; corresponding string of digits. Note that this
; function always emits the string using scientific
; notation; use the r10ToStr routine for decimal notation.
;
; On Entry:
;
; e10- Real10 value to convert.
; Passed in ST(0)
;
; width- Field width for the number (note that this
; is an *exact* field width, not a minimum
; field width).
; Passed in RAX (LO 32 bits).
;
; fill- Padding character if the number is smaller
; than the specified field width.
; Passed in RCX.
;
; buffer- e10ToStr stores the resulting characters in
; this buffer (passed in RDI).
;
; expDigs- Number of exponent digits (2 for real4,
; 3 for real8, and 4 for real10).
; Passed in RDX (LO 8 bits)
;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

544 Chapter 9

;
; maxLength- Maximum buffer size.
; Passed in R8.
; On Exit:
;
; RDI- Points at end of converted string.
;
; Buffer contains the newly formatted string. If the
; formatted value does not fit in the width specified,
; e10ToStr will store “#” characters into this string.
;
; If there was an error, EAX contains -1, -2, or -3
; denoting the error (value out of range, bad width,
; or string overflow, respectively).
;
;---
;
; Unlike the integer-to-string conversions, this routine
; always right-justifies the number in the specified
; string. Width must be a positive number; negative
; values are illegal (actually, they are treated as
; *really* big positive numbers that will always raise
; a string overflow exception.
;
;***

e10ToStr proc

fWidth equ <[rbp - 8]> ;RAX
buffer equ <[rbp - 16]> ;RDI
expDigs equ <[rbp - 24]> ;RDX
rbxSave equ <[rbp - 32]>
rcxSave equ <[rbp - 40]>
rsiSave equ <[rbp - 48]>
Exponent equ <dword ptr [rbp - 52]>
MantSize equ <dword ptr [rbp - 56]>
Sign equ <byte ptr [rbp - 60]>
Digits equ <byte ptr [rbp - 128]>

 push rbp
 mov rbp, rsp
 sub rsp, 128

 mov buffer, rdi
 mov rsiSave, rsi
 mov rcxSave, rcx
 mov rbxSave, rbx
 mov fWidth, rax
 mov expDigs, rdx

 cmp eax, r8d
 jae strOvfl
 mov byte ptr [rdi + rax * 1], 0 ; 0-terminate str

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 545

; First, make sure the width isn’t zero.

 test eax, eax
 jz voor

; Just to be on the safe side, don’t allow widths greater
; than 1024:

 cmp eax, 1024
 ja badWidth

; Okay, do the conversion.

 lea rdi, Digits ; Store result string here.
 call FPDigits ; Convert e80 to digit str.
 mov Exponent, eax ; Save away exponent result.
 mov Sign, cl ; Save mantissa sign char.

; Verify that there is sufficient room for the mantissa’s sign,
; the decimal point, two mantissa digits, the “E”,
; and the exponent’s sign. Also add in the number of digits
; required by the exponent (2 for real4, 3 for real8, 4 for
; real10).
;
; -1.2e+00 :real4
; -1.2e+000 :real8
; -1.2e+0000 :real10

 mov ecx, 6 ; Char posns for above chars.
 add ecx, expDigs ; # of digits for the exp.
 cmp ecx, fWidth
 jbe goodWidth

; Output a sequence of “#...#” chars (to the specified width)
; if the width value is not large enough to hold the
; conversion:

 mov ecx, fWidth
 mov al, ‘#’
 mov rdi, buffer
fillPound: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillPound
 jmp exit_eToBuf

; Okay, the width is sufficient to hold the number; do the
; conversion and output the string here:

goodWidth:

 mov ebx, fWidth ; Compute the # of mantissa
 sub ebx, ecx ; digits to display.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

546 Chapter 9

 add ebx, 2 ; ECX allows for 2 mant digs.
 mov MantSize,ebx

; Round the number to the specified number of print positions.
; (Note: since there are a maximum of 18 significant digits,
; don’t bother with the rounding if the field width is greater
; than 18 digits.)

 cmp ebx, 18
 jae noNeedToRound

; To round the value to the number of significant digits,
; go to the digit just beyond the last one we are considering
; (EBX currently contains the number of decimal positions)
; and add 5 to that digit. Propagate any overflow into the
; remaining digit positions.

 mov al, Digits[rbx * 1] ; Get least sig digit + 1.
 add al, 5 ; Round (e.g., +0.5).
 cmp al, ‘9’
 jbe noNeedToRound
 mov Digits[rbx * 1], ‘9’ + 1
 jmp whileDigitGT9Test
whileDigitGT9:

; Subtract out overflow and add the carry into the previous
; digit (unless we hit the first digit in the number).

 sub Digits[rbx * 1], 10
 dec ebx
 cmp ebx, 0
 jl firstDigitInNumber

 inc Digits[rbx * 1]
 jmp whileDigitGT9Test

firstDigitInNumber:

; If we get to this point, then we’ve hit the first
; digit in the number. So we’ve got to shift all
; the characters down one position in the string of
; bytes and put a “1” in the first character position.

 mov ebx, 17
repeatUntilEBXeq0:

 mov al, Digits[rbx * 1]
 mov Digits[rbx * 1 + 1], al
 dec ebx
 jnz repeatUntilEBXeq0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 547

 mov Digits, ‘1’
 inc Exponent ; Because we added a digit.
 jmp noNeedToRound

whileDigitGT9Test:
 cmp Digits[rbx], ‘9’ ; Overflow if char > ‘9’.
 ja whileDigitGT9

noNeedToRound:

; Okay, emit the string at this point. This is pretty easy
; since all we really need to do is copy data from the
; digits array and add an exponent (plus a few other simple chars).

 xor ecx, ecx ; Count output mantissa digits.
 mov rdi, buffer
 xor edx, edx ; Count output chars.
 mov al, Sign
 cmp al, ‘-’
 je noMinus

 mov al, ‘ ‘

noMinus: mov [rdi], al

; Output the first character and a following decimal point
; if there are more than two mantissa digits to output.

 mov al, Digits
 mov [rdi + 1], al
 add rdi, 2
 add edx, 2
 inc ecx
 cmp ecx, MantSize
 je noDecPt

 mov al, ‘.’
 mov [rdi], al
 inc rdi
 inc edx

noDecPt:

; Output any remaining mantissa digits here.
; Note that if the caller requests the output of
; more than 18 digits, this routine will output zeros
; for the additional digits.

 jmp whileECXltMantSizeTest

whileECXltMantSize:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

548 Chapter 9

 mov al, ‘0’
 cmp ecx, 18
 jae justPut0

 mov al, Digits[rcx * 1]

justPut0:
 mov [rdi], al
 inc rdi
 inc ecx
 inc edx

whileECXltMantSizeTest:
 cmp ecx, MantSize
 jb whileECXltMantSize

; Output the exponent:

 mov byte ptr [rdi], ‘e’
 inc rdi
 inc edx
 mov al, ‘+’
 cmp Exponent, 0
 jge noNegExp

 mov al, ‘-’
 neg Exponent

noNegExp:
 mov [rdi], al
 inc rdi
 inc edx

 mov eax, Exponent
 mov ecx, expDigs
 call expToBuf
 jc error

exit_eToBuf:
 mov rsi, rsiSave
 mov rcx, rcxSave
 mov rbx, rbxSave
 mov rax, fWidth
 mov rdx, expDigs
 leave
 clc
 ret

strOvfl: mov rax, -3
 jmp error

badWidth: mov rax, -2
 jmp error

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 549

voor: mov rax, -1
error: mov rsi, rsiSave
 mov rcx, rcxSave
 mov rbx, rbxSave
 mov rdx, expDigs
 leave
 stc
 ret

e10ToStr endp

Listing 9-13: e10ToStr conversion function

 9.2 String-to-Numeric Conversion Routines
The routines converting numeric values to strings, and strings to numeric val-
ues, have a couple of fundamental differences. First of all, numeric-to-string
conversions generally occur without possibility of error;4 string-to-numeric
conversion, on the other hand, must handle the real possibility of errors such
as illegal characters and numeric overflow.

A typical numeric input operation consists of reading a string of char-
acters from the user and then translating this string of characters into an
internal numeric representation. For example, in C++ a statement like cin
>> i32; reads a line of text from the user and converts a sequence of digits
appearing at the beginning of that line of text into a 32-bit signed integer
(assuming i32 is a 32-bit int object). The cin >> i32; statement skips over cer-
tain characters, like leading spaces, in the string that may appear before the
actual numeric characters. The input string may also contain additional data
beyond the end of the numeric input (for example, it is possible to read two
integer values from the same input line), and therefore the input conversion
routine must determine where the numeric data ends in the input stream.

Typically, C++ achieves this by looking for a character from a set of
delimiter characters. The delimiter character set could be something as
simple as “any character that is not a numeric digit” or the set of whitespace
characters (space, tab, and so on) and, perhaps a few other characters such
as a comma (,) or some other punctuation character. For the sake of exam-
ple, the code in this section will assume that any leading spaces or tab char-
acters (ASCII code 9) may precede any numeric digits, and the conversion
stops on the first nondigit character it encounters. Possible error conditions
are as follows:

•	 No numeric digits at all at the beginning of the string (following any
spaces or tabs).

•	 The string of digits is a value that would be too large for the intended
numeric size (for example, 64 bits).

4. Well, assuming you have allocated a sufficiently large buffer so that the conversion routines
don’t write data beyond the end of the buffer.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

550 Chapter 9

It will be up to the caller to determine if the numeric string ends with
an invalid character (upon return from the function call).

9.2.1 Converting Decimal Strings to Integers
The basic algorithm to convert a string containing decimal digits to a num-
ber is the following:

1. Initialize an accumulator variable to 0.

2. Skip any leading spaces or tabs in the string.

3. Fetch the first character after the spaces/tabs.

4. If the character is not a numeric digit, return an error. If the character
is a numeric digit, fall through to step 5.

5. Convert the numeric character to a numeric value (using AND 0fh).

6. Set the accumulator = (accumulator × 10) + current numeric value.

7. If overflow occurs, return and report an error. If no overflow occurs,
fall through to step 8.

8. Fetch the next character from the string.

9. If the character is a numeric digit, go back to step 5, else fall through to
step 10.

10. Return success, with accumulator containing the converted value.

For signed integer input, you use this same algorithm with the follow-
ing modifications:

•	 If the first non-space/tab character is a hyphen (-), set a flag denoting
that the number is negative and skip the ‘-’ character (if the first char-
acter is not -, then clear the flag).

•	 At the end of a successful conversion, if the flag is set, then negate the
integer result before return (must check for overflow on the negate
operation).

Listing 9-14 implements the conversion algorithm.

; Listing 9-14
;
; String-to-numeric conversion

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte “Listing 9-14”, 0
fmtStr1 byte “strtou: String=’%s’”, nl
 byte “ value=%I64u”, nl, 0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 551

fmtStr2 byte “Overflow: String=’%s’”, nl
 byte “ value=%I64x”, nl, 0

fmtStr3 byte “strtoi: String=’%s’”, nl
 byte “ value=%I64i”,nl, 0

unexError byte “Unexpected error in program”, nl, 0

value1 byte “ 1”, 0
value2 byte “12 “, 0
value3 byte “ 123 “, 0
value4 byte “1234”, 0
value5 byte “1234567890123456789”, 0
value6 byte “18446744073709551615”, 0
OFvalue byte “18446744073709551616”, 0
OFvalue2 byte “999999999999999999999”, 0

ivalue1 byte “ -1”, 0
ivalue2 byte “-12 “, 0
ivalue3 byte “ -123 “, 0
ivalue4 byte “-1234”, 0
ivalue5 byte “-1234567890123456789”, 0
ivalue6 byte “-9223372036854775807”, 0
OFivalue byte “-9223372036854775808”, 0
OFivalue2 byte “-999999999999999999999”, 0

 .data
buffer byte 30 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strtou-
; Converts string data to a 64-bit unsigned integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RAX- Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of numeric string.
; If error, RDI’s value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

552 Chapter 9

; the numeric digits is a legal numeric delimiter.
;
; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (overflow).

strtou proc
 push rdi ; In case we have to restore RDI
 push rdx ; Munged by mul
 push rcx ; Holds input char

 xor edx, edx ; Zero-extends!
 xor eax, eax ; Zero-extends!

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ;Because of inc below.
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If we don’t have a numeric digit at this point,
; return an error.

 cmp cl, ‘0’ ;Note: ‘0’ < ‘1’ < ... < ‘9’
 jb badNumber
 cmp cl, ‘9’
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ;Convert to numeric in RCX
 mul ten ;Accumulator *= 10
 jc overflow
 add rax, rcx ;Accumulator += digit
 jc overflow
 inc rdi ;Move on to next character
 mov cl, [rdi]
 cmp cl, ‘0’
 jb endOfNum
 cmp cl, ‘9’
 jbe convert

; If we get to this point, we’ve successfully converted
; the string to numeric form:

endOfNum: pop rcx
 pop rdx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 553

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don’t restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI’s saved value.

 add rsp, 8
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: mov rax, 0
 pop rcx
 pop rdx
 pop rdi
 stc ; Return error in carry flag
 ret

overflow: mov rax, -1 ; 0FFFFFFFFFFFFFFFFh
 pop rcx
 pop rdx
 pop rdi
 stc ; Return error in carry flag
 ret

ten qword 10

strtou endp

; strtoi-
; Converts string data to a 64-bit signed integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RAX- Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of numeric string.
; If error, RDI’s value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.
;
; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (-1, indicating overflow).

strtoi proc
negFlag equ <byte ptr [rsp]>

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

554 Chapter 9

 push rdi ; In case we have to restore RDI
 sub rsp, 8

; Assume we have a non-negative number.

 mov negFlag, false

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ; Because of inc below.
skipWS: inc rdi
 mov al, [rdi]
 cmp al, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If the first character we’ve encountered is ‘-’,
; then skip it, but remember that this is a negative
; number.

 cmp al, ‘-’
 jne notNeg
 mov negFlag, true
 inc rdi ; Skip ‘-’

notNeg: call strtou ; Convert string to integer
 jc hadError

; strtou returned success. Check the negative flag and
; negate the input if the flag contains true.

 cmp negFlag, true
 jne itsPosOr0

 cmp rax, tooBig ; number is too big
 ja overflow
 neg rax
itsPosOr0: add rsp, 16 ; Success, so don’t restore RDI
 clc ; Return success in carry flag
 ret

; If we have an error, we need to restore RDI from the stack

overflow: mov rax, -1 ; Indicate overflow
hadError: add rsp, 8 ; Remove locals
 pop rdi
 stc ; Return error in carry flag
 ret

tooBig qword 7fffffffffffffffh
strtoi endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 555

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test unsigned conversions:

 lea rdi, value1
 call strtou

jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value1
 mov r8, rax
 call printf

 lea rdi, value2
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value2
 mov r8, rax
 call printf

 lea rdi, value3
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value3
 mov r8, rax
 call printf

 lea rdi, value4
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value4
 mov r8, rax
 call printf

 lea rdi, value5
 call strtou

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

556 Chapter 9

 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value5
 mov r8, rax
 call printf

 lea rdi, value6
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value6
 mov r8, rax
 call printf

 lea rdi, OFvalue
 call strtou
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFvalue
 mov r8, rax
 call printf

 lea rdi, OFvalue2
 call strtou
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFvalue2
 mov r8, rax
 call printf

; Test signed conversions:

 lea rdi, ivalue1
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue1
 mov r8, rax
 call printf

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 557

 lea rdi, ivalue2
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue2
 mov r8, rax
 call printf

 lea rdi, ivalue3
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue3
 mov r8, rax
 call printf

 lea rdi, ivalue4
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue4
 mov r8, rax
 call printf

 lea rdi, ivalue5
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue5
 mov r8, rax
 call printf

 lea rdi, ivalue6
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue6
 mov r8, rax
 call printf

 lea rdi, OFivalue
 call strtoi
 jnc UnexpectedError

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

558 Chapter 9

 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFivalue
 mov r8, rax
 call printf

 lea rdi, OFivalue2
 call strtoi
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFivalue2
 mov r8, rax
 call printf

 jmp allDone

UnexpectedError:
 lea rcx, unexError
 call printf

allDone: leave
 ret ; Returns to caller
asmMain endp
 end

Listing 9-14: Numeric-to-string conversions

Here’s the build command and sample output for this program:

C:\>build listing9-14

C:\>echo off
 Assembling: listing9-14.asm
c.cpp

C:\>listing9-14
Calling Listing 9-14:
strtou: String=’ 1’
 value=1
strtou: String=’12 ‘
 value=12
strtou: String=’ 123 ‘
 value=123
strtou: String=’1234’
 value=1234
strtou: String=’1234567890123456789’

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 559

 value=1234567890123456789
strtou: String=’18446744073709551615’
 value=18446744073709551615
Overflow: String=’18446744073709551616’
 value=ffffffffffffffff
Overflow: String=’999999999999999999999’
 value=ffffffffffffffff
strtoi: String=’ -1’
 value=-1
strtoi: String=’-12 ‘
 value=-12
strtoi: String=’ -123 ‘
 value=-123
strtoi: String=’-1234’
 value=-1234
strtoi: String=’-1234567890123456789’
 value=-1234567890123456789
strtoi: String=’-9223372036854775807’
 value=-9223372036854775807
Overflow: String=’-9223372036854775808’
 value=ffffffffffffffff
Overflow: String=’-999999999999999999999’
 value=ffffffffffffffff
Listing 9-14 terminated

For an extended-precision string-to-numeric conversion, you simply
modify the strtou function to have an extend-precision accumulator and
then do an extended-precision multiplication by 10 (rather than a standard
multiplication).

9.2.2 Converting Hexadecimal Strings to Numeric Form
As was the case for numeric output, hexadecimal input is the easiest numeric
input routine to write. The basic algorithm for hexadecimal-string-to-numeric
conversion is the following:

1. Initialize an extended-precision accumulator value to 0.

2. For each input character that is a valid hexadecimal digit, repeat steps 3
through 6; drop down to step 7 when it is not a valid hexadecimal digit.

3. Convert the hexadecimal character to a value in the range 0 to 15
(0h to 0Fh).

4. If the HO 4 bits of the extended-precision accumulator value are non-
zero, raise an exception.

5. Multiply the current extended-precision value by 16 (that is, shift left
4 bits).

6. Add the converted hexadecimal digit value to the accumulator.

7. Check the current input character to ensure it is a valid delimiter. Raise
an exception if it is not.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

560 Chapter 9

Listing 9-15 implements this extended-precision hexadecimal input
routine for 64-bit values.

; Listing 9-15
;
; Hexadecimal string-to-numeric conversion

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte “Listing 9-15”, 0
fmtStr1 byte “strtoh: String=’%s’ “
 byte “value=%I64x”, nl, 0

fmtStr2 byte “Error, RAX=%I64x, str=’%s’”, nl, 0
fmtStr3 byte “Error, expected overflow: RAX=%I64x, “
 byte “str=’%s’”, nl, 0

fmtStr4 byte “Error, expected bad char: RAX=%I64x, “
 byte “str=’%s’”, nl, 0

hexStr byte “1234567890abcdef”, 0
hexStrOVFL byte “1234567890abcdef0”, 0
hexStrBAD byte “x123”, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strtoh-
; Converts string data to a 64-bit unsigned integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RAX- Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of hexadecimal string.
; If error, RDI’s value is restored to original value.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 561

; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.
;
; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (overflow).

strtoh proc
 push rcx ; Holds input char
 push rdx ; Special mask value
 push rdi ; In case we have to restore RDI

; This code will use the value in RDX to test and see if overflow
; will occur in RAX when shifting to the left 4 bits:

 mov rdx, 0F000000000000000h
 xor eax, eax ; Zero out accumulator.

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ; Because of inc below.
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If we don’t have a hexadecimal digit at this point,
; return an error.

 cmp cl, ‘0’ ; Note: ‘0’ < ‘1’ < ... < ‘9’
 jb badNumber
 cmp cl, ‘9’
 jbe convert
 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, ‘A’
 jb badNumber
 cmp cl, ‘F’
 ja badNumber
 sub cl, 7 ; Maps 41h to 46h -> 3ah to 3fh

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: test rdx, rax ; See if adding in the current
 jnz overflow ; digit will cause an overflow

 and ecx, 0fh ; Convert to numeric in RCX

; Multiply 64-bit accumulator by 16 and add in new digit:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

562 Chapter 9

 shl rax, 4
 add al, cl ; Never overflows outside LO 4 bits

;Move on to next character

 inc rdi
 mov cl, [rdi]
 cmp cl, ‘0’
 jb endOfNum
 cmp cl, ‘9’
 jbe convert

 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, ‘A’
 jb endOfNum
 cmp cl, ‘F’
 ja endOfNum
 sub cl, 7 ; Maps 41h to 46h -> 3ah to 3fh
 jmp convert

; If we get to this point, we’ve successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don’t restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI’s saved value; must also remove

 add rsp, 8 ; Remove original RDI value
 pop rdx ; Restore RDX
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: or rax, -1 ; Return -1 as error on overflow
errorExit: pop rdi ; Restore RDI if an error occurs
 pop rdx
 pop rcx
 stc ; Return error in carry flag
 ret

strtoh endp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 563

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test hexadecimal conversion:

 lea rdi, hexStr
 call strtoh
 jc error

 lea rcx, fmtStr1
 mov r8, rax
 lea rdx, hexStr
 call printf

; Test overflow conversion:

 lea rdi, hexStrOVFL
 call strtoh
 jnc unexpected

 lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf

; Test bad character:

 lea rdi, hexStrBAD
 call strtoh
 jnc unexp2

 lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

unexpected: lea rcx, fmtStr3
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

unexp2: lea rcx, fmtStr4
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

564 Chapter 9

error: lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf

allDone: leave
 ret ;Returns to caller
asmMain endp
 end

Listing 9-15: Hexadecimal string-to-numeric conversion

Here’s the build command and program output:

C:\>build listing9-15

C:\>echo off
 Assembling: listing9-15.asm
c.cpp

C:\>listing9-15
Calling Listing 9-15:
strtoh: String=’1234567890abcdef’ value=1234567890abcdef
Error, RAX=ffffffffffffffff, str=’1234567890abcdef0’
Error, RAX=0, str=’x123’
Listing 9-15 terminated

For hexadecimal string conversions that handle numbers greater
than 64 bits, you have to use an extended-precision shift left by 4 bits.
Listing 9-16 demonstrates the necessary modifications to the strtoh func-
tion for a 128-bit conversion.

N O T E Because of the length and redundancy of Listing 9-16 a large part of the uninterest-
ing code has been removed. See https://artofasm.randallhyde.com/ for the full
listing).

; strtoh128-
; Converts string data to a 128-bit unsigned integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RDX:RAX-Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of hex string.
; If error, RDI’s value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.
;

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

Numeric Conversion 565

; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (overflow).

strtoh128 proc
 push rbx ; Special mask value
 push rcx ; Input char to process
 push rdi ; In case we have to restore RDI

; This code will use the value in RDX to test and see if overflow
; will occur in RAX when shifting to the left 4 bits:

 mov rbx, 0F000000000000000h
 xor eax, eax ; Zero out accumulator.
 xor edx, edx

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ; Because of inc below.
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If we don’t have a hexadecimal digit at this point,
; return an error.

 cmp cl, ‘0’ ; Note: ‘0’ < ‘1’ < ... < ‘9’
 jb badNumber
 cmp cl, ‘9’
 jbe convert
 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, ‘A’
 jb badNumber
 cmp cl, ‘F’
 ja badNumber
 sub cl, 7 ; Maps 41h to 46h -> 3ah to 3fh

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: test rdx, rbx ; See if adding in the current
 jnz overflow ; digit will cause an overflow

 and ecx, 0fh ; Convert to numeric in RCX

; Multiply 64-bit accumulator by 16 and add in new digit:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

566 Chapter 9

 shld rdx, rax, 4
 shl rax, 4
 add al, cl ; Never overflows outside LO 4 bits

; Move on to next character

 inc rdi
 mov cl, [rdi]
 cmp cl, ‘0’
 jb endOfNum
 cmp cl, ‘9’
 jbe convert

 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, ‘A’
 jb endOfNum
 cmp cl, ‘F’
 ja endOfNum
 sub cl, 7 ; Maps 41h to 46h -> 3ah to 3fh
 jmp convert

; If we get to this point, we’ve successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don’t restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI’s saved value; must also remove

 add rsp, 8 ; Remove original RDI value
 pop rcx ; Restore RCX
 pop rbx ; Restore RBX
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: or rax, -1 ; Return -1 as error on overflow
errorExit: pop rdi ; Restore RDI if an error occurs
 pop rcx
 pop rbx
 stc ; Return error in carry flag
 ret

strtoh128 endp

Listing 9-16: 128-bit hexadecimal string-to-numeric conversion

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 567

9.2.3 Converting Unsigned Decimal Strings to Integers
The algorithm for unsigned decimal input is nearly identical to that for
hexadecimal input. In fact, the only difference (beyond accepting only dec-
imal digits) is that you multiply the accumulating value by 10 rather than 16
for each input character (in general, the algorithm is the same for any base;
just multiply the accumulating value by the input base). Listing 9-17 demon-
strates how to write a 64-bit unsigned decimal input routine.

; Listing 9-17
;
; 64-bit unsigned decimal string-to-numeric conversion

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte “Listing 9-17”, 0
fmtStr1 byte “strtou: String=’%s’ value=%I64u”, nl, 0
fmtStr2 byte “strtou: error, rax=%d”, nl, 0

qStr byte “12345678901234567”, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strtou-
; Converts string data to a 64-bit unsigned integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RAX- Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of numeric string.
; If error, RDI’s value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

568 Chapter 9

; the numeric digits is a legal numeric delimiter.
;
; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (overflow).

strtou proc
 push rcx ; Holds input char
 push rdx ; Save, used for multiplication
 push rdi ; In case we have to restore RDI

 xor rax, rax ; Zero out accumulator

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ; Because of inc below.
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If we don’t have a numeric digit at this point,
; return an error.

 cmp cl, ‘0’ ; Note: ‘0’ < ‘1’ < ... < ‘9’
 jb badNumber
 cmp cl, ‘9’
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ; Convert to numeric in RCX

; Multiple 64-bit accumulator by 10

 mul ten
 test rdx, rdx ; Test for overflow
 jnz overflow

 add rax, rcx
 jc overflow

; Move on to next character

 inc rdi
 mov cl, [rdi]
 cmp cl, ‘0’
 jb endOfNum

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 569

 cmp cl, ‘9’
 jbe convert

; If we get to this point, we’ve successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don’t restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI’s saved value; must also remove

 add rsp, 8 ; Remove original RDI value
 pop rdx
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: mov rax, -1 ;0FFFFFFFFFFFFFFFFh
errorExit: pop rdi
 pop rdx
 pop rcx
 stc ; Return error in carry flag
 ret

ten qword 10

strtou endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test hexadecimal conversion:

 lea rdi, qStr
 call strtou
 jc error

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

570 Chapter 9

 lea rcx, fmtStr1
 mov r8, rax
 lea rdx, qStr
 call printf
 jmp allDone

error: lea rcx, fmtStr2
 mov rdx, rax
 call printf

allDone: leave
 ret ;Returns to caller
asmMain endp
 end

Listing 9-17: Unsigned decimal string-to-numeric conversion

Here’s the build command and sample output for the program in
Listing 9-17:

C:\>build listing9-17

C:\>echo off
 Assembling: listing9-17.asm
c.cpp

C:\>listing9-17
Calling Listing 9-17:
strtou: String=’12345678901234567’ value=12345678901234567
Listing 9-17 terminated

Is it possible to create a faster function that uses the fbld (x87 FPU BCD
store) instruction? Probably not. The fbstp instruction was much faster for
integer conversions because the standard algorithm used multiple execu-
tions of the (very slow) div instruction. Decimal-to-numeric conversion uses
the mul instruction, which is much faster than div. Though I haven’t actually
tried it, I suspect using fbld won’t produce faster running code.

9.2.4 Conversion of Extended-Precision String to Unsigned Integer
The algorithm for (decimal) string-to-numeric conversion is the same regard-
less of integer size. You read a decimal character, convert it to an integer,
multiply the accumulating result by 10, and add in the converted character.
The only things that change for larger-than-64-bit values are the multiplica-
tion by 10 and addition operations. For example, to convert a string to a 128-bit
integer, you would need to be able to multiply a 128-bit value by 10 and add an
8-bit value (zero-extended to 128 bits) to a 128-bit value.

Listing 9-18 demonstrates how to write a 128-bit unsigned decimal
input routine. Other than the 128-bit multiplication by 10 and 128-bit addi-
tion operations, this code is functionally identical to the 64-bit string to
integer conversion.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 571

N O T E Because of the length and redundancy of Listing 9-18 a large part has been removed,
but the missing code is obvious; see https://artofasm.randallhyde.com/ for the
full listing).

; strtou128-
; Converts string data to a 128-bit unsigned integer.
;
; Input-
; RDI- Pointer to buffer containing string to convert
;
; Output-
; RDX:RAX-Contains converted string (if success), error code
; if an error occurs.
;
; RDI- Points at first char beyond end of numeric string.
; If error, RDI’s value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.
;
; C (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0ffffffffffffffffh (overflow).

strtou128 proc
accumulator equ <[rbp - 16]>
partial equ <[rbp - 24]>
 push rcx ; Holds input char
 push rdi ; In case we have to restore RDI
 push rbp
 mov rbp, rsp
 sub rsp, 24 ; Accumulate result here

 xor edx, edx ; Zero-extends!
 mov accumulator, rdx
 mov accumulator[8], rdx

; The following loop skips over any whitespace (spaces and
; tabs) that appear at the beginning of the string.

 dec rdi ; Because of inc below.
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ‘ ‘
 je skipWS
 cmp al, tab
 je skipWS

; If we don’t have a numeric digit at this point,
; return an error.

 cmp cl, ‘0’ ; Note: ‘0’ < ‘1’ < ... < ‘9’
 jb badNumber

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

https://artofasm.randallhyde.com/

572 Chapter 9

 cmp cl, ‘9’
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ; Convert to numeric in RCX

; Multiply 128-bit accumulator by 10

 mov rax, accumulator
 mul ten
 mov accumulator, rax
 mov partial, rdx ; Save partial product
 mov rax, accumulator[8]
 mul ten
 jc overflow1
 add rax, partial
 mov accumulator[8], rax
 jc overflow1

; Add in the current character to the 128-bit accumulator

 mov rax, accumulator
 add rax, rcx
 mov accumulator, rax
 mov rax, accumulator[8]
 adc rax, 0
 mov accumulator[8], rax
 jc overflow2

; Move on to next character

 inc rdi
 mov cl, [rdi]
 cmp cl, ‘0’
 jb endOfNum
 cmp cl, ‘9’
 jbe convert

; If we get to this point, we’ve successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don’t restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI’s saved value; must also remove

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 573

 mov rax, accumulator
 mov rdx, accumulator[8]
 leave
 add rsp, 8 ; Remove original RDI value
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 xor rdx, rdx
 jmp errorExit

overflow1: mov rax, -1
 cqo ; RDX = -1, too
 jmp errorExit

overflow2: mov rax, -2 ; 0FFFFFFFFFFFFFFFEh
 cqo ; Just to be consistent.
errorExit: leave ; Remove accumulator from stack
 pop rdi
 pop rcx
 stc ; Return error in carry flag
 ret

ten qword 10

strtou128 endp

Listing 9-18: Extended-precision unsigned decimal input

9.2.5 Conversion of Extended-Precision Signed Decimal String
to Integer

Once you have an unsigned decimal input routine, writing a signed decimal
input routine is easy, as described by the following algorithm:

1. Consume any delimiter characters at the beginning of the input stream.

2. If the next input character is a minus sign, consume this character and set
a flag noting that the number is negative, else just drop down to step 3.

3. Call the unsigned decimal input routine to convert the rest of the string
to an integer.

4. Check the return result to make sure its HO bit is clear. Raise a value
out of range exception if the HO bit of the result is set.

5. If the code encountered a minus sign in step 2, negate the result.

I’ll leave the actual code implementation as a programming exercise
for you.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

574 Chapter 9

9.2.6 Conversion of Real String to Floating-Point
Converting a string of characters representing a floating-point number to
the 80-bit real10 format is slightly easier than the real10-to-string conver-
sion appearing earlier in this chapter. Because decimal conversion (with
no exponent) is a subset of the more general scientific notation conversion,
if you can handle scientific notation, you get decimal conversion for free.
Beyond that, the basic algorithm is to convert the mantissa characters to a
packed BCD form (so the function can use the fbld instruction to do the
string-to-numeric conversion) and then read the (optional) exponent and
adjust the real10 exponent accordingly. The algorithm to do the conversion
is the following:

1. Begin by stripping away any leading space or tab characters (and any
other delimiters).

2. Check for a leading plus (+) or minus (-) sign character. Skip it if one
is present. Set a sign flag to true if the number is negative (false if
non-negative).

3. Initialize an exponent value to –18. The algorithm will create a left-
justified packed BCD value from the mantissa digits in the string to
provide to the fbld instruction, and left-justified packed BCD values are
always greater than or equal to 1018. Initializing the exponent to –18
accounts for this.

4. Initialize a significant-digit-counter variable that counts the number of
significant digits processed thus far to 18.

5. If the number begins with any leading zeros, skip over them (do not
change the exponent or significant digit counters for leading zeros to
the left of the decimal point).

6. If the scan encounters a decimal point after processing any leading
zeros, go to step 11, else fall through to step 7.

7. For each nonzero digit to the left of the decimal point, if the significant
digit counter is not zero, insert the nonzero digit into a “digit string” array
at the position specified by the significant digit counter (minus 1).5 Note
that this will insert the characters into the string in a reversed position.

8. For each digit to the left of the decimal point, increment the exponent
value (originally initialized to –18) by 1.

9. If the significant digit counter is not zero, decrement the significant
digit counter (this will also provide the index into the digit string
array).

10. If the first nondigit encountered is not a decimal point, skip to step 14.

11. Skip over the decimal point character.

5. If the significant digit counter is zero, the algorithm has already processed 18 significant
digits and it will ignore any additional digits as the real10 format cannot represent more
than 18 significant digits.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 575

12. For each digit encountered to the right of the decimal point, continue
adding the digits (in reverse order) to the digit string array as long as
the significant digit counter is not zero. If the significant digit counter
is greater than zero, decrement it. Also, decrement the exponent value.

13. If the algorithm hasn’t encountered at least one decimal digit by this point, report
an illegal character exception and return.

14. If the current character is not e or E, then go to step 20.6 Otherwise skip
over the e or E character and continue with step 15.

15. If the next character is + or -, skip over it. Set a flag to true if the sign
character is -, set it to false otherwise (not that this exponent sign flag
is different from the mantissa sign flag set earlier in this algorithm).

16. If the next character is not a decimal digit, report an error.

17. Convert the string of digits (starting with the current decimal digit
character) to an integer.

18. Add the converted integer to the exponent value (which was initialized
to –18 at the start of this algorithm).

19. If the exponent value is outside the range –4930 to +4930, report an
out-of-range exception.

20. Convert the digit string array of characters to an 18-digit (9-byte)
packed BCD value by stripping the HO 4 bits of each character, merg-
ing pairs of characters into a single byte (by shifting the odd-indexed
byte to the left 4 bits and logically ORing with the even-indexed byte of
each pair), and then setting the HO (10th) byte to 0.

21. Convert the packed BCD value to a real10 value (using the fbld
instruction).

22. Take the absolute value of the exponent (though preserve the sign of
the exponent). This value will be 13 bits or less (4096 has bit 12 set, so
4930 or less will have some combination of bits 0 to 13 set to 1, with all
other bits 0).

23. If the exponent was positive, then for each set bit in the exponent, mul-
tiply the current real10 value by 10 raised to the power specified by that
bit. For example, if bits 12, 10, and 1 are set, multiply the real10 value by
104096, 101024, and 102.

24. If the exponent was negative, then for each set bit in the exponent,
divide the current real10 value by 10 raised to the power specified by
that bit. For example, if bits 12, 10, and 1 are set, divide the real10 value
by 104096, 101024, and 102.

25. If the mantissa is negative (the first sign flag set at the beginning of the
algorithm), then negate the floating-point number.

6. Some string formats also allow d or D to denote a double-precision value. The choice is up
to you whether you wish to also allow this (and possibly check the range of the value if the
algorithm encounters e or E versus d or D.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

576 Chapter 9

Listing 9-19 provides an implementation of this algorithm.

; Listing 9-19
;
; Real string-to-floating-point conversion

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte “Listing 9-19”, 0
fmtStr1 byte “strToR10: str=’%s’, value=%e”, nl, 0

fStr1a byte “1.234e56”,0
fStr1b byte “-1.234e56”,0
fStr1c byte “1.234e-56”,0
fStr1d byte “-1.234e-56”,0
fStr2a byte “1.23”,0
fStr2b byte “-1.23”,0
fStr3a byte “1”,0
fStr3b byte “-1”,0
fStr4a byte “0.1”,0
fStr4b byte “-0.1”,0
fStr4c byte “0000000.1”,0
fStr4d byte “-0000000.1”,0
fStr4e byte “0.1000000”,0
fStr4f byte “-0.1000000”,0
fStr4g byte “0.0000001”,0
fStr4h byte “-0.0000001”,0
fStr4i byte “.1”,0
fStr4j byte “-.1”,0

values qword fStr1a, fStr1b, fStr1c, fStr1d,
 fStr2a, fStr2b,
 fStr3a, fStr3b,
 fStr4a, fStr4b, fStr4c, fStr4d,
 fStr4e, fStr4f, fStr4g, fStr4h,
 fStr4i, fStr4j,
 0

 align 4
PotTbl real10 1.0e+4096,
 1.0e+2048,
 1.0e+1024,
 1.0e+512,
 1.0e+256,
 1.0e+128,
 1.0e+64,
 1.0e+32,

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 577

 1.0e+16,
 1.0e+8,
 1.0e+4,
 1.0e+2,
 1.0e+1,
 1.0e+0

 .data
r8Val real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

;***
;
; strToR10-
;
; RSI points at a string of characters that represent a
; floating-point value. This routine converts that string
; to the corresponding FP value and leaves the result on
; the top of the FPU stack. On return, ESI points at the
; first character this routine couldn’t convert.
;
; Like the other ATOx routines, this routine raises an
; exception if there is a conversion error or if ESI
; contains NULL.
;
;***

strToR10 proc

sign equ <cl>
expSign equ <ch>

DigitStr equ <[rbp - 20]>
BCDValue equ <[rbp - 30]>
rsiSave equ <[rbp - 40]>

 push rbp
 mov rbp, rsp
 sub rsp, 40

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

578 Chapter 9

 push rbx
 push rcx
 push rdx
 push r8
 push rax

; Verify that RSI is not NULL.

 test rsi, rsi
 jz refNULL

; Zero out the DigitStr and BCDValue arrays.

 xor rax, rax
 mov qword ptr DigitStr, rax
 mov qword ptr DigitStr[8], rax
 mov dword ptr DigitStr[16], eax

 mov qword ptr BCDValue, rax
 mov word ptr BCDValue[8], ax

; Skip over any leading space or tab characters in the sequence.

 dec rsi
whileDelimLoop:
 inc rsi
 mov al, [rsi]
 cmp al, ‘ ‘
 je whileDelimLoop
 cmp al, tab
 je whileDelimLoop

; Check for + or -

 cmp al, ‘-’
 sete sign
 je doNextChar
 cmp al, ‘+’
 jne notPlus
doNextChar: inc rsi ; Skip the ‘+’ or ‘-’
 mov al, [rsi]

notPlus:

; Initialize EDX with -18 since we have to account
; for BCD conversion (which generates a number * 10^18 by
; default). EDX holds the value’s decimal exponent.

 mov rdx, -18

; Initialize EBX with 18, the number of significant
; digits left to process and also the index into the
; DigitStr array.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 579

 mov ebx, 18 ; Zero-extends!

; At this point we’re beyond any leading sign character.
; Therefore, the next character must be a decimal digit
; or a decimal point.

 mov rsiSave, rsi ; Save to look ahead 1 digit.
 cmp al, ‘.’
 jne notPeriod

; If the first character is a decimal point, then the
; second character needs to be a decimal digit.

 inc rsi
 mov al, [rsi]

notPeriod:
 cmp al, ‘0’
 jb convError
 cmp al, ‘9’
 ja convError
 mov rsi, rsiSave ; Go back to orig char
 mov al, [rsi]
 jmp testWhlAL0

; Eliminate any leading zeros (they do not affect the value or
; the number of significant digits).

whileAL0: inc rsi
 mov al, [rsi]
testWhlAL0: cmp al, ‘0’
 je whileAL0

; If we’re looking at a decimal point, we need to get rid of the
; zeros immediately after the decimal point since they don’t
; count as significant digits. Unlike zeros before the decimal
; point, however, these zeros do affect the number’s value as
; we must decrement the current exponent for each such zero.

 cmp al, ‘.’
 jne testDigit

 inc edx ; Counteract dec below
repeatUntilALnot0:
 dec edx
 inc rsi
 mov al, [rsi]
 cmp al, ‘0’
 je repeatUntilALnot0
 jmp testDigit2

; If we didn’t encounter a decimal point after removing leading
; zeros, then we’ve got a sequence of digits before a decimal

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

580 Chapter 9

; point. Process those digits here.
;
; Each digit to the left of the decimal point increases
; the number by an additional power of 10. Deal with
; that here.

whileADigit:
 inc edx

; Save all the significant digits, but ignore any digits
; beyond the 18th digit.

 test ebx, ebx
 jz Beyond18

 mov DigitStr[rbx * 1], al
 dec ebx

Beyond18: inc rsi
 mov al, [rsi]

testDigit:
 sub al, ‘0’
 cmp al, 10
 jb whileADigit

 cmp al, ‘.’-’0’
 jne testDigit2

 inc rsi ; Skip over decimal point.
 mov al, [rsi]
 jmp testDigit2

; Okay, process any digits to the right of the decimal point.

whileDigit2:
 test ebx, ebx
 jz Beyond18_2

 mov DigitStr[rbx * 1], al
 dec ebx

Beyond18_2: inc rsi
 mov al, [rsi]

testDigit2: sub al, ‘0’
 cmp al, 10
 jb whileDigit2

; At this point, we’ve finished processing the mantissa.
; Now see if there is an exponent we need to deal with.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 581

 mov al, [rsi]
 cmp al, ‘E’
 je hasExponent
 cmp al, ‘e’
 jne noExponent

hasExponent:
 inc rsi
 mov al, [rsi] ; Skip the “E”.
 cmp al, ‘-’
 sete expSign
 je doNextChar_2
 cmp al, ‘+’
 jne getExponent;

doNextChar_2:
 inc rsi ;Skip ‘+’ or ‘-’
 mov al, [rsi]

; Okay, we’re past the “E” and the optional sign at this
; point. We must have at least one decimal digit.

getExponent:
 sub al, ‘0’
 cmp al, 10
 jae convError

 xor ebx, ebx ; Compute exponent value in EBX.
ExpLoop: movzx eax, byte ptr [rsi] ;Zero-extends to RAX!
 sub al, ‘0’
 cmp al, 10
 jae ExpDone

 imul ebx, 10
 add ebx, eax
 inc rsi
 jmp ExpLoop

; If the exponent was negative, negate our computed result.

ExpDone:
 cmp expSign, false
 je noNegExp

 neg ebx

noNegExp:

; Add in the BCD adjustment (remember, values in DigitStr, when
; loaded into the FPU, are multiplied by 10^18 by default.
; The value in EDX adjusts for this).

 add edx, ebx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

582 Chapter 9

noExponent:

; verify that the exponent is between -4930 through +4930 (which
; is the maximum dynamic range for an 80-bit FP value).

 cmp edx, 4930
 jg voor ; Value out of range
 cmp edx, -4930
 jl voor

; Now convert the DigitStr variable (unpacked BCD) to a packed
; BCD value.

 mov r8, 8
for9: mov al, DigitStr[r8 * 2 + 2]
 shl al, 4
 or al, DigitStr[r8 * 2 +1]
 mov BCDValue[r8 * 1], al

 dec r8
 jns for9

 fbld tbyte ptr BCDValue

; Okay, we’ve got the mantissa into the FPU. Now multiply the
; Mantissa by 10 raised to the value of the computed exponent
; (currently in EDX).
;
; This code uses power of 10 tables to help make the
; computation a little more accurate.
;
; We want to determine which power of ten is just less than the
; value of our exponent. The powers of ten we are checking are
; 10**4096, 10**2048, 10**1024, 10**512, etc. A slick way to
; do this check is by shifting the bits in the exponent
; to the left. Bit #12 is the 4096 bit. So if this bit is set,
; our exponent is >= 10**4096. If not, check the next bit down
; to see if our exponent >= 10**2048, etc.

 mov ebx, -10 ; Initial index into power of ten table.
 test edx, edx
 jns positiveExponent

; Handle negative exponents here.

 neg edx
 shl edx, 19 ; Bits 0 through 12 -> 19 through 31
 lea r8, PotTbl
whileEDXne0:
 add ebx, 10
 shl edx, 1
 jnc testEDX0

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 583

 fld real10 ptr [r8][rbx * 1]
 fdivp

testEDX0: test edx, edx
 jnz whileEDXne0
 jmp doMantissaSign

; Handle positive exponents here.

positiveExponent:
 lea r8, PotTbl
 shl edx, 19 ; Bits 0 through 12 -> 19 to 31.
 jmp testEDX0_2

whileEDXne0_2:
 add ebx, 10
 shl edx, 1
 jnc testEDX0_2

 fld real10 ptr [r8][rbx * 1]
 fmulp

testEDX0_2: test edx, edx
 jnz whileEDXne0_2

; If the mantissa was negative, negate the result down here.

doMantissaSign:
 cmp sign, false
 je mantNotNegative

 fchs

mantNotNegative:
 clc ; Indicate Success
 jmp Exit

refNULL: mov rax, -3
 jmp ErrorExit

convError: mov rax, -2
 jmp ErrorExit

voor: mov rax, -1 ; Value out of range
 jmp ErrorExit

illChar: mov rax, -4

ErrorExit: stc ; Indicate failure
 mov [rsp], rax ; Save error code
Exit: pop rax
 pop r8
 pop rdx

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

584 Chapter 9

 pop rcx
 pop rbx
 leave
 ret

strToR10 endp

; Here is the “asmMain” function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test floating-point conversion:

 lea rbx, values
ValuesLp: cmp qword ptr [rbx], 0
 je allDone

 mov rsi, [rbx]
 call strToR10
 fstp r8Val

 lea rcx, fmtStr1
 mov rdx, [rbx]
 mov r8, qword ptr r8Val
 call printf
 add rbx, 8
 jmp ValuesLp

allDone: leave
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 9-19: A strToR10 function

Here’s the build command and sample output for Listing 9-19.

C:\>build listing9-19

C:\>echo off
 Assembling: listing9-19.asm
c.cpp

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Numeric Conversion 585

C:\>listing9-19
Calling Listing 9-19:
strToR10: str=’1.234e56’, value=1.234000e+56
strToR10: str=’-1.234e56’, value=-1.234000e+56
strToR10: str=’1.234e-56’, value=1.234000e-56
strToR10: str=’-1.234e-56’, value=-1.234000e-56
strToR10: str=’1.23’, value=1.230000e+00
strToR10: str=’-1.23’, value=-1.230000e+00
strToR10: str=’1’, value=1.000000e+00
strToR10: str=’-1’, value=-1.000000e+00
strToR10: str=’0.1’, value=1.000000e-01
strToR10: str=’-0.1’, value=-1.000000e-01
strToR10: str=’0000000.1’, value=1.000000e-01
strToR10: str=’-0000000.1’, value=-1.000000e-01
strToR10: str=’0.1000000’, value=1.000000e-01
strToR10: str=’-0.1000000’, value=-1.000000e-01
strToR10: str=’0.0000001’, value=1.000000e-07
strToR10: str=’-0.0000001’, value=-1.000000e-07
strToR10: str=’.1’, value=1.000000e-01
strToR10: str=’-.1’, value=-1.000000e-01
Listing 9-19 terminated

 9.3 For More Information
Donald Knuth’s The Art of Computer Programming, Volume Two: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains a lot of useful
information about decimal arithmetic and extended-precision arithme-
tic, though that text is generic and doesn’t describe how to do this in x86
assembly language.

 9.4 Test Yourself
1. What is the code that will convert an 8-bit hexadecimal value in AL into

two hexadecimal digits (in AH/AL)?

2. How many hexadecimal digits will dToStr produce?

3. Explain how to use qToStr to write a 128-bit hexadecimal output routine.

4. What instruction should you use to produce the fastest 64-bit decimal-
to-string conversion function?

5. How do you write a signed decimal-to-string conversion if you’re given a
function that does an unsigned decimal-to-string conversion?

6. What are the parameters for the utoStrSize function?

7. What string will uSizeToStr produce if the number requires more print
positions than specified by the minDigits parameter?

8. What are the parameters for the r10ToStr function?

9. What string will r10ToStr produce if the output won’t fit in the string size
specified by the fWidth argument?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

586 Chapter 9

10. What are the arguments to the e10ToStr function?

11. What is a delimiter character?

12. What are two possible errors that could occur during a string-to-
numeric conversion?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

10
T A B L E L O O K U P S

This chapter discusses how to speed up
or reduce the complexity of computations

by using table lookups. Back in the early
days of x86 programming, replacing expensive

computations with table lookups was a common way
to improve program performance. Today, memory
speeds in modern systems limit performance gains
that can be obtained by using table lookups. However, for complex calcu-
lations, this is still a viable technique for writing high-performance code.
This chapter demonstrates the space/speed trade-offs when using table
lookups.

 10.1 Tables
To an assembly language programmer, a table is an array containing initial-
ized values that do not change once created. In assembly language, you
can use tables for a variety of purposes: computing functions, controlling

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

588 Chapter 10

program flow, or simply looking things up. In general, tables provide a fast
mechanism for performing an operation at the expense of space in your
program (the extra space holds the tabular data). In this section, we’ll
explore some of the many possible uses of tables in an assembly language
program.

N O T E Because tables typically contain initialized data that does not change during program
execution, the .const section is a good place to put your table objects.

10.1.1 Function Computation via Table Lookup
A simple-looking high-level-language arithmetic expression can be equivalent
to a considerable amount of x86-64 assembly language code and, therefore,
could be expensive to compute. Assembly language programmers often
precompute many values and use a table lookup of those values to speed up
their programs. This has the advantage of being easier, and it’s often more
efficient as well.

Consider the following Pascal statement:

if (character >= 'a') and (character <= 'z') then
 character := chr(ord(character) - 32);

This Pascal if statement converts the character variable’s value from
lowercase to uppercase if character is in the range a to z. The MASM code
that does the same thing requires a total of seven machine instructions, as
follows:

mov al, character
cmp al, 'a'
jb notLower
cmp al, 'z'
ja notLower

and al, 5fh ; Same as sub(32, al) in this code.
mov character, al

Using a table lookup, however, allows you to reduce this sequence to
just four instructions:

mov al, character
lea rbx, CnvrtLower
xlat
mov character, al

The xlat, or translate, instruction does the following:

mov al, [rbx + al * 1]

This instruction uses the current value of the AL register as an index
into the array whose base address is found in RBX. It fetches the byte at
that index in the array and copies that byte into the AL register. Intel calls

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Table Lookups 589

this instruction translate because programmers typically use it to translate
characters from one form to another by using a lookup table, exactly the
way we are using it here.

In the previous example, CnvrtLower is a 256-byte table that contains the
values 0 to 60h at indices 0 to 60h, 41h to 5Ah at indices 61h to 7Ah, and
7Bh to 0FFh at indices 7Bh to 0FFh. Therefore, if AL contains a value in
the range 0 to 60h or 7Ah to 0FFh, the xlat instruction returns the same
value, effectively leaving AL unchanged. However, if AL contains a value in
the range 61h to 7Ah (the ASCII codes for a to z), then the xlat instruction
replaces the value in AL with a value in the range 41h to 5Ah (the ASCII
codes for A to Z), thereby converting lowercase to uppercase.

As the complexity of a function increases, the performance benefits of
the table-lookup method increase dramatically. While you would almost
never use a lookup table to convert lowercase to uppercase, consider what
happens if you want to swap cases; for example, via computation:

 mov al, character
 cmp al, 'a'
 jb notLower
 cmp al, 'z'
 ja allDone

 and al, 5fh
 jmp allDone

notLower:
 cmp al, 'A'
 jb allDone
 cmp al, 'Z'
 ja allDone

 or al, 20h
allDone:
 mov character, al

This code has 13 machine instructions.
The table-lookup code to compute this same function is as follows:

mov al, character
lea rbx, SwapUL
xlat
mov character, al

As you can see, when using a table lookup to compute a function, only
the table changes; the code remains the same.

10.1.1.1 Function Domains and Range

Functions computed via table lookup have a limited domain (the set of pos-
sible input values they accept), because each element in the domain of a
function requires an entry in the lookup table. For example, our previous

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

590 Chapter 10

uppercase/lowercase conversion functions have the 256-character extended
ASCII character set as their domain. A function such as sin or cos accepts
the (infinite) set of real numbers as possible input values. You won’t find it
very practical to implement a function via table lookup whose domain is the
set of real numbers, because you must limit the domain to a small set.

Most lookup tables are quite small, usually 10 to 256 entries. Rarely do
lookup tables grow beyond 1000 entries. Most programmers don’t have the
patience to create (and verify the correctness) of a 1000-entry table (though
see “Generating Tables” on page xx for a discussion of generating tables
programmatically).

Another limitation of functions based on lookup tables is that the ele-
ments in the domain must be fairly contiguous. Table lookups use the input
value to a function as an index into the table, and return the value at that
entry in the table. A function that accepts values 0, 100, 1000, and 10,000
would require 10,001 different elements in the lookup table because of the
range of input values. Therefore, you cannot efficiently create such a func-
tion via a table lookup. Throughout this section on tables, we’ll assume that
the domain of the function is a fairly contiguous set of values.

The range of a function is the set of possible output values it produces.
From the perspective of a table lookup, a function’s range determines the
size of each table entry. For example, if a function’s range is the integer val-
ues 0 through 255, then each table entry requires a single byte; if the range
is 0 through 65,535, each table entry requires 2 bytes, and so on.

The best functions you can implement via table lookups are those whose
domain and range are always 0 to 255 (or a subset of this range). Any such
function can be computed using the same two instructions: lea rbx, table and
xlat. The only thing that ever changes is the lookup table. The uppercase/
lowercase conversion routines presented earlier are good examples of such a
function.

You cannot (conveniently) use the xlat instruction to compute a func-
tion value once the range or domain of the function takes on values outside
0 to 255. There are three situations to consider:

•	 The domain is outside 0 to 255, but the range is within 0 to 255.

•	 The domain is inside 0 to 255, but the range is outside 0 to 255.

•	 Both the domain and range of the function take on values outside
0 to 255.

We will consider these cases in the following sections.

10.1.1.2 Domain Outside 0 to 255, Range Within 0 to 255

If the domain of a function is outside 0 to 255, but the range of the func-
tion falls within this set of values, our lookup table will require more than
256 entries, but we can represent each entry with a single byte. Therefore,
the lookup table can be an array of bytes. Other than those lookups that
can use the xlat instruction, functions falling into this class are the most
efficient. The following Pascal function invocation

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Table Lookups 591

B := Func(X);

where Func is

function Func(X:dword):byte;

is easily converted to the following MASM code:

mov edx, X ;Zero-extends into RDX!
lea rbx, FuncTable
mov al, [rbx][rdx * 1]
mov B, al

This code loads the function parameter into RDX, uses this value (in
the range 0 to ??) as an index into the FuncTable table, fetches the byte at
that location, and stores the result into B. Obviously, the table must contain
a valid entry for each possible value of X. For example, suppose you wanted
to map a cursor position on an 80×25 text-based video display in the range
0 to 1,999 (there are 2,000 character positions on an 80×25 video display)
to its X (0 to 79) or Y (0 to 24) coordinate on the screen. You could compute
the X coordinate via the function

X = Posn % 80;

and the Y coordinate with the formula

Y = Posn / 80;

(where Posn is the cursor position on the screen). This can be computed
using this x86-64 code:

mov ax, Posn
mov cl, 80
div cl

; X is now in AH, Y is now in AL

However, the div instruction on the x86-64 is very slow. If you need to
do this computation for every character you write to the screen, you will
seriously degrade the speed of your video-display code. The following code,
which realizes these two functions via table lookup, may improve the per-
formance of your code considerably:

lea rbx, yCoord
movzx ecx, Posn ; Use a plain mov instr if Posn
mov al, [rbx][rcx * 1] ; is uns32 rather than an
lea rbx, xCoord ; uns16 value.
mov ah, [rbx][rcx * 1]

Keep in mind that loading a value into ECX automatically zero-extends
that value into RCX. Therefore, the movzx instruction in this code sequence
actually zero-extends Posn into RCX, not just ECX.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

592 Chapter 10

If you’re willing to live with the limitations of the LARGEADDRESSAWARE:NO
linking option (see “Large Address Unaware Applications” in Chapter 3),
you can simplify this code somewhat:

movzx ecx, Posn ;Use a plain mov instr if Posn
mov al, yCoord[rcx * 1] ; is uns32 rather than an
mov ah, xCoord[rcx * 1] ; uns16 value.

10.1.1.3 Domain in 0 to 255 and Range Outside 0 to 255, or Both Outside 0 to 255

If the domain of a function is within 0 to 255, but the range is outside this
set, the lookup table will contain 256 or fewer entries, but each entry will
require 2 or more bytes. If both the range and domains of the function are
outside 0 to 255, each entry will require 2 or more bytes and the table will
contain more than 256 entries.

Recall from Chapter 4 that the formula for indexing into a single-
dimensional array (of which a table is a special case) is as follows:

Element_Address = Base + Index × Element_Size

If elements in the range of the function require 2 bytes, you must mul-
tiply the index by 2 before indexing into the table. Likewise, if each entry
requires 3, 4, or more bytes, the index must be multiplied by the size of
each table entry before being used as an index into the table. For example,
suppose you have a function, F(x), defined by the following (pseudo) Pascal
declaration:

function F(x:dword):word;

You can create this function by using the following x86-64 code (and,
of course, the appropriate table named F):

movzx ebx, x
lea r8, F
mov ax, [r8][rbx * 2]

If you can live with the limitations of LARGEADDRESSAWARE:NO, you can
reduce this as follows:

movzx ebx, x
mov ax, F[rbx * 2]

Any function whose domain is small and mostly contiguous is a good
candidate for computation via table lookup. In some cases, noncontiguous
domains are acceptable as well, as long as the domain can be coerced into
an appropriate set of values (an example you’ve already seen is processing
switch statement expressions). Such operations, called conditioning, are the
subject of the next section.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Table Lookups 593

10.1.1.4 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and
massaging them so that they are more acceptable as inputs to that function.
Consider the following function:

sin x = sin x|(x∈[–2π,2π])
This says that the (computer) function sin(x) is equivalent to the (math-

ematical) function sin x where
–2π <= x <= 2π
As we know, sine is a circular function, which will accept any real-value

input. The formula used to compute sine, however, accepts only a small set
of these values.

This range limitation doesn’t present any real problems; by simply
computing sin(X mod (2 * pi)), we can compute the sine of any input
value. Modifying an input value so that we can easily compute a function
is called conditioning the input. In the preceding example, we computed X
mod 2 * pi and used the result as the input to the sin function. This trun-
cates X to the domain sin needs without affecting the result. We can apply
input conditioning to table lookups as well. In fact, scaling the index to
handle word entries is a form of input conditioning. Consider the follow-
ing Pascal function:

function val(x:word):word; begin
 case x of
 0: val := 1;
 1: val := 1;
 2: val := 4;
 3: val := 27;
 4: val := 256;
 otherwise val := 0;
 end;
end;

This function computes a value for x in the range 0 to 4 and returns 0
if x is outside this range. Since x can take on 65,536 different values (being
a 16-bit word), creating a table containing 65,536 words where only the first
five entries are nonzero seems to be quite wasteful. However, we can still
compute this function by using a table lookup if we use input conditioning.
The following assembly language code presents this principle:

 mov ax, 0 ; AX = 0, assume x > 4.
 movzx ebx, x ; Note that HO bits of RBX must be 0!
 lea r8, val
 cmp bx, 4
 ja defaultResult

 mov ax, [r8][rbx * 2]

defaultResult:

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

594 Chapter 10

This code checks to see if x is outside the range 0 to 4. If so, it manually
sets AX to 0; otherwise, it looks up the function value through the val table.
With input conditioning, you can implement several functions that would
otherwise be impractical to do via table lookup.

10.1.2 Generating Tables
One big problem with using table lookups is creating the table in the first
place. This is particularly true if the table has many entries. Figuring out the
data to place in the table, then laboriously entering the data, and, finally,
checking that data to make sure it is valid is very time-consuming and bor-
ing. For many tables, there is no way around this process. For other tables,
there is a better way: using the computer to generate the table for you.

An example is probably the best way to describe this. Consider the fol-
lowing modification to the sine function:

This states that x is an integer in the range 0 to 359 and r must be an
integer. The computer can easily compute this with the following code:

Thousand dword 1000
 .
 .
 .
lea r8, Sines
movzx ebx, x
mov eax, [r8][rbx * 2] ; Get sin(X) * 1000
imul r ; Note that this extends EAX into EDX.
idiv Thousand ; Compute (r *(sin(X) * 1000)) / 1000

(This provides the usual improvement if you can live with the limita-
tions of LARGEADDRESSAWARE:NO.)

Note that integer multiplication and division are not associative. You
cannot remove the multiplication by 1000 and the division by 1000 because
they appear to cancel each other out. Furthermore, this code must compute
this function in exactly this order.

All that we need to complete this function is Sines, a table containing
360 different values corresponding to the sine of the angle (in degrees)
times 1000. The C/C++ program in Listing 10-1 generates this table for you.

// Listing 10-1: GenerateSines
//
// A C program that generates a table of sine values for
// an assembly language lookup table.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Table Lookups 595

int main(int argc, char **argv)
{
 FILE *outFile;
 int angle;
 int r;

 // Open the file:

 outFile = fopen("sines.asm", "w");

 // Emit the initial part of the declaration to
 // the output file:

 fprintf
 (
 outFile,
 "Sines:" // sin(0) = 0
);

 // Emit the sines table:

 for(angle = 0; angle <= 359; ++angle)
 {
 // Convert angle in degrees to an angle in
 // radians using:
 //
 // radians = angle * 2.0 * pi / 360.0;
 //
 // Multiply by 1000 and store the rounded
 // result into the integer variable r.

 double theSine =
 sin
 (
 angle * 2.0 *
 3.14159265358979323846 /
 360.0
);
 r = (int) (theSine * 1000.0);

 // Write out the integers eight per line to the
 // source file.
 // Note: If (angle AND %111) is 0, then angle
 // is divisible by 8 and we should output a
 // newline first.

 if((angle & 7) == 0)
 {
 fprintf(outFile, "\n\tword\t");
 }
 fprintf(outFile, "%5d", r);

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

596 Chapter 10

 if ((angle & 7) != 7)
 {
 fprintf(outFile, ",");
 }

 } // endfor
 fprintf(outFile, "\n");

 fclose(outFile);
 return 0;

} // end main

Listing 10-1: A C program that generates a table of sines

This program produces the following output (truncated for brevity):

Sines:
 word 0, 17, 34, 52, 69, 87, 104, 121
 word 139, 156, 173, 190, 207, 224, 241, 258
 word 275, 292, 309, 325, 342, 358, 374, 390
 word 406, 422, 438, 453, 469, 484, 499, 515
 word 529, 544, 559, 573, 587, 601, 615, 629
 word 642, 656, 669, 681, 694, 707, 719, 731
 word 743, 754, 766, 777, 788, 798, 809, 819
 word 829, 838, 848, 857, 866, 874, 882, 891
 word 898, 906, 913, 920, 927, 933, 939, 945
 word 951, 956, 961, 965, 970, 974, 978, 981
 word 984, 987, 990, 992, 994, 996, 997, 998
 word 999, 999, 1000, 999, 999, 998, 997, 996
 word 994, 992, 990, 987, 984, 981, 978, 974
 word 970, 965, 961, 956, 951, 945, 939, 933
 word 927, 920, 913, 906, 898, 891, 882, 874
 .
 .
 .
 word -898, -891, -882, -874, -866, -857, -848, -838
 word -829, -819, -809, -798, -788, -777, -766, -754
 word -743, -731, -719, -707, -694, -681, -669, -656
 word -642, -629, -615, -601, -587, -573, -559, -544
 word -529, -515, -500, -484, -469, -453, -438, -422
 word -406, -390, -374, -358, -342, -325, -309, -292
 word -275, -258, -241, -224, -207, -190, -173, -156
 word -139, -121, -104, -87, -69, -52, -34, -17

Obviously, it’s much easier to write the C program that generated this
data than to enter (and verify) this data by hand. Of course, you don’t even
have to write the table-generation program in C (or Pascal/Delphi, Java, C#,
Swift, or another high-level language). Because the program will execute
only once, the performance of the table-generation program is not an issue.

Once you run your table-generation program, all that remains to be
done is to cut and paste the table from the file (sines.asm in this example)
into the program that will actually use the table.

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

Table Lookups 597

10.1.3 Table-Lookup Performance
In the early days of PCs, table lookups were a preferred way to do high-
performance computations. Today, it is not uncommon for a CPU to be 10
to 100 times faster than main memory. As a result, using a table lookup may
not be faster than doing the same calculation with machine instructions.
However, the on-chip CPU cache memory subsystems operate at near CPU
speeds. Therefore, table lookups can be cost-effective if your table resides
in cache memory on the CPU. This means that the way to get good perfor-
mance using table lookups is to use small tables (because there’s only so
much room on the cache) and use tables whose entries you reference fre-
quently (so the tables stay in the cache).

See Write Great Code, Volume 1 (No Starch Press, 2020) or the electronic
version of The Art of Assembly Language at https://www.randallhyde.com/ for
details concerning the operation of cache memory and how you can opti-
mize your use of cache memory.

 10.2 For More Information
Donald Knuth’s The Art of Computer Programming, Volume 3: Searching and
Sorting (Addison-Wesley Professional, 1998) contains a lot of useful informa-
tion about searching for data in tables. Searching for data is an alternative
when a straight array access won’t work in a given situation.

 10.3 Test Yourself
1. What is the domain of a function?

2. What is the range of a function?

3. What does the xlat instruction do?

4. Which domain and range values allow you to use the xlat instruction?

5. Provide the code that implements the following functions (using
pseudo-C prototypes and f as the table name):

a. byte f(byte input)

b. word f(byte input)

c. byte f(word input)

d. word f(word input)

6. What is domain conditioning?

7. Why might not table lookups be effective on modern processors?

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

The Art of 64-Bit Assembly (Early Access) © 2022 by Randall Hyde

EarlyAccessTemplate_Hyde501089.indd 5EarlyAccessTemplate_Hyde501089.indd 5 6/14/21 4:43 PM6/14/21 4:43 PM

	Part I: Machine Organization
	Chapter 1: Hello, World of Assembly Language
	Chapter 2: Computer Data Representation and Operations
	Chapter 3: Memory Access and Organization
	Chapter 4: Constants, Variables, and Data Types

	Part II: Assembly Language Programming
	Chapter 5: Procedures
	Chapter 6: Arithmetic
	Chapter 7: Low-Level Control Structures
	Chapter 8: Advanced Arithmetic
	Chapter 9: Numeric Conversion
	Chapter 10: Table Lookups

