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1. INTRODUCTION 

A graph is described by its adjacency matrix and hence it is provided 

with a spectrum. It is a general problem to confront the properties of 
a graph with the properties of its spectrum (cf. Hoffman [9]). In the 

present paper we consider ordinary graphs of finite order v with (- 1, 1,O) 

adjacency matrix A satisfying 

(A - PlMA - P24 = (3 - 1 + PlP2)Js Pl > P2, 

AJ = POJ 
. (2) 

The only eigenvalues are po, pl, p2, with certain multiplicities. The 

numbers p1 and p2 turn out to be odd integers unless p1 + p2 = 0. Our 

main result will be that all such graphs are obtained for which pi = 3. 
These are the following: , 

(i) the graphs H(@, the complements of the ladder graphs (cf. 19, 

W 
(ii) the lattice graphs L,(a), which Shrikhande [13] proved to be 

characterized by their parameters for B # 4, 

(iii) the triangular graphs T(n), which Chang [2 ] and Hoffman [S j 
- proved to be characterized by their parameters for n # 8, 

(iv) the exceptional graphs to the parameters of L,(4) and to the 

parameters of T(8), due to Shrikhande [13] and Chang C3], respectively, 

(v) the Petersen graph, 
(vi) the Clebsch graph, which corresponds to the 16 lines on the 

Clebsch quartic surface (cf. Clebsch [14], Coxeter [5], Gewirtz [S]), 
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(vii) the Schkifli graph, which corresponds to the 27 lines on a general 

cubic surface (cf. Coxeter [4]). 
The graphs satisfying (1) and (2) are the strongly regular graphs of 

Bose [l]. Condition (2) means regularity. Graphs satisfying condition 
(1) #re introduced in Section 2 under the name of strong graphs. They 
include graphs whose (- 1, 1, 0) adjacency matrix is orthogonal 
(cf. 173). In Section 3 it is proved that strong graphs with v - 1 + plpa # 0 

are regular. 
Strong graphs with (A - 31)(A - p,l) = 0 have been classified in 

[12]. In Section 4, as a consequence of a more general theorem on complete 
bipartite induced subgraphs, it is proved that most of the strongly regular 
graphs with pl = 3 contain no 3-claw. With this tool the proof of the 
standard form for the adjacency matrix of such graphs in Section 5, and 
of the final theorems in Section 6, mainly is a matter of elementary 
matrix multiplication. 

As concepts of discrete mathematics strongly regular and strong graphs 
appear in geometry, engineering, statistics, and algebra; cf. f7, 11, 121 
and the references cited therein. 

2. STRONG GRAPHS 

We consider undirected graphs of finite order v without loops and 
without multiple edges. A graph is described by the pair (V, A} of the 
set V of its vertices and its adjacency matrix A defined by A (x, y) = 
-lifx~Vandy~Vareadjacent,A(x,y)=lifx~Vandy~:Vare 
nonadjacent, A(x, X) = 0 for all x E V. There is an equivalence relation, 
generated by the operation of complementation, on the set of all graphs 
on v vertices. Here complementation with respect to any x E V means 
canceling all existing adjacencies for x and adding all nonexisting adja- 
cencies for x, the effect on the adjacency matrix being multiplication 

bY - 1 of the row and the column corresponding to x (cf. [ll, 121). 
For any vertices x and y with A@, y) = (- 1)” the integers 

92&V) = I(z:zEV, A&z) = (- l)‘}l, i= 1,2, 

&%Y) = l{z: ZE Ir, A@, z) = (- l)“, A(y, z) = (- l)j}/, i, j = 1,2, 

are defined. So, for x and y adjacent (h = 1) and nonadjacent (A = 2), 
respectively, &(x, y) is the number of vertices adjacent to x and non- 
adjacent to y, and #J&(X, y) is the number of vertices nonadjacent to x 
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and adjacent to y. We shall be concerned with graphs with the property 

that both 

P1 = P:2(% Y) + P;,(% Y) 

are the same* for all x, y, adjacent and nonadjacent, respectively. 

DEFINITION. A graph {V, A} is strong if it is Not void and not comfilete 
and if, for every h = 1, 2, there exists an integer ph such tlhat 

VxEv,vyEV, (@WY) = k l,“> * (&(x, y) + p;@,y) = P”)). 

&4 graph is regular if, for every i = 1, 2, the integer q(x) is the same for all 
x E V. A graph is strongly regular [l} if it is not iroid and not complete 
and if, for every 12, i, j = I, 2, the integer &(x, y) is the same for all x E V, 
y E V with A@, y) = (- 1)‘“. 

Trivially we have 

THEOREM 1. A graph is strongly regular if and only if it is strong and 
reg&ar . 

The complete bipartite graph K(oc, p), a + /? = v, a > 0, ,Ci > 0, is the 

graph whose set of vertices V consists of two nonvoid disjoint subsets . 

of orders a and /?, each without adjacencies, whereas vertices belonging 

to different subsets are adjacent. 

THEOREM 2. For any strong graph, which is not K(Ic, v - K), K = 

1 , l l 0, v - 1, OY its complement, the integers p1 and p2 are even. 

Proof. Let (V, A) be nonvoid and noncomplete. Take Jz = 1 or 

/z = 2. For any x E V, y E V, x # y, it follows from&,(x, y) + &(x, y) E 

&(mod 2) that nl(x) s n,(y) + &(mod 2), for E = 0 and for E = ‘1. Now 

suppose that {V, A} is strong with pr odd and p2 even; then A (x, y) = 

(- 1)” implies nI(x) s n,(y) + e(mod 2) for E = 0 and for t: = 1. Then 

4(x, Y) = A(y, z) = (- 1)’ implies A&, x) = 1 for E = 0 and for E = 1. 

Hence {V, A} is complete bipartite, which is excluded. .Analogously, 

P1 E 0 (mod 2) and pa ZE 1 (mod 2) lead to the complement of some 

K(K, v - K). The case that both p1 and p2 are,odd only occurs for v = 2 

and is excluded. This proves the theorem. _ 

The following theorems, the first of which is trivial, describe regular 

graphs and strong graphs in terms of their adjacency matrix. The next 
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section will provide more details on the numbers po, pl, pa to be introduced 

in these theorems. 

jl ’ iHEoRaM 3, . A graph {V, A) is reg&ar if and only if there exists a% 
ittteger p. stick that A J = poJ. 

THEOREM 4. A nonvoid and noncomplete graph {V, A} is strong if and 
only if there exist real nambers pl and p8 such that p1 > p2 and 

(A - PIUA - P24 = @ - 1 + PIP2W 

Proof. Let {V, A} b e nonvoid and noncomplete. Take x E V, y E I’ 

with A&, y) = (- 1)” with ?z = 1 or h = 2. The element with indices 

x and y of the matrix (A - p,l)(A - p21) is the inner product of the rows 

- pr (- 1)” - l l l _ _ . . . - + l l s + + . . . + of A _ pll, 

(_ 1)” -p2 _ .a. _ + gee + - l .s - + . . . + of A -p&, 

and equals 

xow 

Then, 

- c- v(PI+ P2) + P:,(XJ Y) - Pf2(% Y) - Plh, Y) + l$2c% Y) 

= v - 1 - (- v(pl+ p2) - q&(~J) - 2p&(x,y) - 1. 

let {V, A} be strong. Take p1 and p2 such that 

Pl + P2 = P1 - P2t - 1 - p1p2 = p1 + p2, PI > P2* 

the inner product calculated above is independent of h, x, y and 
equals v - 1 + prp2. Conversely, suppose we have 

(A - P&V - ~20 = (v - 1+ P~P~)J, 

for real pl, p2. Then from 

PI > P2 

v - 1 - (- V(p1+ p2) - 2P:,(% y) - 2&(x, y) - 1 = v - 1 + p1p2, 

for /t = 1,2 and for all x, y, it follows that 

W,(XJY) + P:,(XJY)) = (PI - w - P2L 

2(Pt2(% Y) + P&(x, Y)) = (PI + w- 1 - Pa) 

are independent of x and y, hence that the graph is strong. 

/hew Algebra and Its Applications 1, 281- 298 (1968) 



STRONGLY REGULAR GRAYHS 285 

3. CLASSIFICATION AND EXAMPLES 

THEOREM 5. Every strong graph. (V, A} with 

(A - p,l)(A - pal) = (v - 1 + PlPZ)J St= 0 

is mgulm~, with A J = p,, J and (pO - pl)(pO - pz) = v(v - 1 + pIpa). The 
spectrum of A consists of pl, p2, and pO, which are odd integers and integer 

unless p1 = - p2 = v- v, p. = 0. 

Proof. J is a linear combination of A2, A, I. Hence these four matrices 

are simultaneously diagonalizable. j = (1, 1, . . . , 1) is an eigenvector of 
J belonging to the eigenvalue v, and hence of A belonging to the eigenvalue 

POJ saY* This implies 

AJ = poJ# I--v<po<v-1, pO integer. 

Combination with the defining equation yields 

(PO - PlNPO - P2) = v(v - 1 + PlP2) 

and. proves that the only eigenvalues of A are po, pl, p2. Let poJ pl, p2 be 

their multiplicities ; then EC, = 1 and from tr A = 0 it follows that 

2Po + (v - UP1 + P2) + (Fc1-!42)h - P2) =a 

For pi = p2 we have p. = 0, p1 = - p2 = VV. If pl #pa then p1 and 
pa are rational, hence integral and odd. 

THEOREM 6. The spectrum of any strong graph {V, A) with 

(A - PlW - P20 = 0 consists of p1 and p2. If {V, A} is not K(tc, v I- K) 

or its complement then p1 and p2 are odd integers unless p1 = - p2 = (v - 1)“‘. 

Proof. The first statement is trivial, Let pi be the multiplicity of 

pi, i = 1,2; then from tr A = 0 it follows that 

v(Pl+ P2) + bl - P2)h - P2) = 0. 

For ,ul = J.L~ = #v we have p1 = - p2 = (v - 1)“’ from v - 1 $- plp2 = 0. 

If J+ # h then p1 and p2 are rational, hence integral and, by Theorem 2, 
odd. 

For the state of affairs concerning the esistence and nonexistence of 

strong graphs {V, A} with A2 = (v - 1)I and with A2 = VI - J we refer 
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to [7]. Concerning the other strong graphs we first state some examples 

and a theorem, taken from [12]. a 

Exam.le 1. H(n), n > 3, the com+metit of the ladder graph of order 

n, is the graph obtained from the complete graph on 2n vertices by 

deleting a l-factor. This H(n) is strongly regular with 

V =Zti, p,=3-2212, pr=3,, pz= -1. 

Example 2. L&n), n > 1, the lattice graph of order n, is the line graph 

of the comple:e bipartite graph K(n, n). This L,(N) is strongly regular with 

V = n2, po= (n- l)(n-3), pl=3, p2 = 3 - 2n, 

and satisfies zr - 1 + plp2 = 0 only for n = 2 :tnd for n = 4. 

Exam@ 3. T(n), 92 > 3, the triaqydlar gra@ of order n, is the line 

graph of the complete graph on n vertices. This T(n) is strongly regular 

with 

V = fi f2 - I), a( p. = ij(n - 2)(w - 7), p1 = 3, pa = 7 - 2n, 

and satisfies v - 1 + plpz = 0 only for n = 5 #and n = $. 

Example 4. The Petersen graph is the graph whose vertices are the 

ten unordered pairs out of five symbols, adjacency between any two pairs 

being defined if and only if they have no common symbol. The Petersen 

graph, whose complement is the Desargues graph T(5), is strongly regular 

with 

v = 10, p1 = p() = 3, p2 = - 3. 

Example 5. LJ4), the pseudolattice graph, is the graph obtained from 

L&4) by complementation with respect to the vertices of any subgraph 

which is an &circuit. In addition, La’(4) may be defined as the complement 

of the net (4,3) which corresponds to a nonextendable la&n square of 
order 4. This L,‘(4) is strongly regular with 

V = 16, p1 = p. = 3, p2 == - 5, 

and was proved by Shrikhande [13] to be the only such graph apart from 

L,(4) l 
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Examfile 6. T’(8), T”(8), T”‘(8), the three pseudotrimzgular graphs, 
are defined as follows. 

T’(8) is obtained from T(8) by complementation with respect to any 
four independent vertices. 

T”(8) is obtained from T(8) by complementation with respect to the 
eight vertices of any subgraph consisting of a 3-circuit and a &circuit 
without adjacencies between them. 

T”‘(8) is obtained from T(8) by complementation with respect to 
the 12 vertices of any subgraph which is the line graph 01 the 8-circuit 
with four antipodal adjacencies 

These T’(8), T”(8), T”‘(8) are strongly regular with 

‘II = 28, pr = pa = 3, p2 = - 0, 

and were proved by Chang [3] to be the only such graphs apart from 

T(8) l 

THEOREM 7. Strong graphs witA (A - 3I)(A - p21) == 0 only exist 

f P or g=-l,-3,-5, - 9. Any szzh graph is eqtiivalent to L,(2), T(5), 
L,(4), T(8), respectively. 

For the proof of this theorem we refer to [12]. The following theorem 
is a consequence of the results of Shrikhande and of Chang. It also could 
be proved on the basis of Theorem 7. 

THEOREM 8. The only strongly regadar graphs with (A - 3I) (A - p21) = 
0, AJ = 3_/, are L,(4), T(8), the Petersen graph, I,‘(4), T’(8), T”(8) p T”‘(8). 

All yaphs mentioned in Theorem 8, except for L,(4), T(8), have 3- 
claws K(3, 1). It will be proved in the following section that these five 
are the only strongly regular graphs with pn = 3 having ,this property. 

4. COMPLETE BIPARTITE INDUCED SUBGRAPHS 

Let {V, A} be a strong graph with defining equation 

(A - PIW - p24 = (v - 1 + p1p2)J. 

Let K(oc, /?) b e an induced subgraph of {V, A}. For p = 1 this is an 

a-claw. 
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THEOREM 9. A necessary condition fey the existertce of a sub-K(a, ,8) in 

a strong graph (V, A) is 

a + P G HP1 - w -- P2) + 4. 

Proof. , Take x E K(a, j?) and y E K(a, b) with A( x, y) = - 1. Suppose 

a > 1. Arrange the elements of V in such a way that the first a + 1 rows 

of A are 

0 - +**+ - . . _ +-+ -..- 

i -j J-I -J B c D E, 

where 

1, 1, -4 P- 1, &--a+l, P:2-P+L Pi,, Pi2 

are the consecutive numbers of columns. We apply the defining equation 

to the third (block) row with the first and wl.th the second column: 

--%J+J+(J-I- plr)J+JJ+BJ--J--DJ+EJ 

= ( v - 1 + plp2) J, 

Hence 

and 

= ( v - 1 + /w&J* 

- Pl - P2 - 

since the right-hand 

(B C). From this 

Remark. In the 

holds if and only if 

Lineur AZgebvn a+ld Ifs 

2 + a + P < $(pl - l)(l - pa) + 2 - a - P, 

side is the total number of columns of the matrix 

the inequality follows. 

theorem the equality sign 

Q + P = $(Pr - 3)(3 - p2) + 4 

B = - J and C = J. 
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THEOREM 10. A necessary condition for the existence of a szub-K(gl, p) 
with 

a > 3, P> 19 a+P= i(pl-33)(3-ppz) +4 

in a strongly regular graph (V, A) is 

11 + pO + 2P - 2a1< v - 1 + plp2. 

Proof. Referring to the proof of and the remark to Theorem 9, we 

consider any pair of vertices x’, x” of the block. By A (x’, x”) = 1, B = 

- J, C = J we have 

p- a + 1 +I& <&,, a - P - 1 + pi.) < p&. 

From this the inequality follows. 

THEOREM 11. The only strong graphs with p1 = 3, p2 = - 1 are 

K(3, l), L,(2), T(4), H(n), n = 3,4, . . . . 

Proof. Let {V, A} be strong with p1 = 3, p2 = - 1. For ‘I) -= 4 only 

K(3, 1) and K(2, 2) = L,(2) apply. For v > 4 we have v -. 1 + plp2 # 0; 

hence, by Theorem 5, {V, A} is strongly regular with 

(P 0 - 3)(p(J + 1) = qv - 4)# I--v<po<v-1. 

This implies 

v 3-p@ = p:,= 1, p$&=p&=o, 

which, as the only possibility, leaves T(4) and H(n). 

THEOREM 12. Strongly regular graphs with pr = 3, p. # 3 contain no 
S-claws. 

Proof. Application of Theorems 9 and 10 in the case p1 = 3 +lds 
a < 3 for the order of any a-claw K(a, l), whereas for a = 3 

/PO - 31 < v - 1 + 3p., 

is necessary. Combination with 

(P 0 - 3NPo - P2) = VbJ - 1 + 3P2) 

yields, by p. # 3, as a necessary condition for bc = 3 

IPO - 31 G IPr - P2l - 1 + 3P2, 

Linear Algebra and Its Applications 1, 281-2208 (lsas) 
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whence p2 = - 1. However, by Theorem 11, this admits only graphs 

which have no 3-claws. Therefore, dc = 3 is not possible. 

3. THE STANDARD ADJACENCY MATRIX FOR P,~ = 3, p. # 3 

We shah derive a standard form for the adjacency matrix A of a 

strongly regular graph {V, A) with defining equations 

(A - 31)(A - p& = (8 - 1 +.3p&J, 4I = poJ, Po#3* 

By Theorem 12 we know that there are no S-claws. We shall divide V 

into eleven disjoint subsets, four of which consist of solely one vertex: 

V = {p}U{q}U{r}U{s)UX’UX”U Y’U Y’WZ’UZ” U T. 

TakeanyqfzV,rEVwithA(q,r) = - 1. TakeanypEVwithA(p,@ = 
1, A(+, sr) = - 1. Define 

Z={z~v:A(z,p) =A(z,q) = -- I>, 

z- {zEv:A(z,p) = A(a,q) = A(z,r) = - l}, 

T={&V:A(t,p)=A(t,q)=:l}. 

Since (V, A} has no 3-claws there are no adjacencies of Y to the vertices 

of T. Considering p and Y we learn that r is adjacent to &, - 121 vertices 

which are adjacent to ~5 and nonadjacent to q. Again, from 4 and r we 
see that Y is adjacent to pi, - 121 vertices which are nonadjacent to p 
and adjacent to 4. We conclude that Y is adjacent to 

other vertices. Expressing aI and pi, in ZI and the eigenvalues (cf. 112, 

p. MO]) we obtain 121 = Q(v - p. + 2pz -- 3). By 121 = piI = +(v - 
pO + 2p2 + 1) we have (Zl = 121 + 2. Hence Y is nonadjacent to only 
one vertex of z, s say. By application of the above reasoning to the other 

vertices of 2 it follows that any z’ E ,? is nonadjacent to only one z” r~ 2, 

that 2 = 2 U {Y) U {s}, and that 2 can be split into two subsets Z’, 2” of 

equal order such that 

A(Z’, Z”) = 
I-J 

21-J 
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We define the following subsets 4. V: 

X’ = {x E v: A(x,p) = -- 1, A(x, I) = l)\{s}, 

‘X” = {XE v: A(x,P) = 1, A+r, Y) = - l}‘,{q}, 

Y’ = IYE v: 4% q) = 1, A(y, r) = - I}‘&}, 

Y”={yEV:A(y,q) = - 1, A(y,r) = l}‘\(s). 

These sets all have order &, - 1 = - &(l + pz) and are mutually disjoint. 
From the regularity of A and from the absence of 3-claws the rest of the 

adjacencies of p, q, r, s with the vertices of X’, X”, Y’, Y”, Z’, ,Z”, T is 

readily found. From their orders it may be seen that these eleven disjoint 
subsets fill up V completely. Now it will be shown that the adjacency 

matrix A may be given the following form: 

0 

+ 

- 

- 

-4 

i 
-, i 

i 

-i 

-i 

i 

+ 

0 

- 

- 

i 

-i 

i 

-i 

-i 

-i 

i 

- 

- 

0 

+ 

i 

-i 

-i 

i 

-i 

-i 

i 

+ 

0 

-i 

i 

-‘ 

i 

-. i 

-4 

i 

- i’ ST 
3 - jT 8 T 

1 

VT 
I - jT j’ _ i’ 

*T 
I - i” - i” ST 

I 

- iT *T 
I 

.I 

I - ?’ 

I-J J-21 AI, AI, 

J - 21 I-J A,, A,, 

AT, A:; I-J J-21 

A; A;, J-21 I-J 

G 4-3 A& Ai& Y 

‘1T _AT -AT -AT -‘ 13 13 23 23 

AT, AT, A& AL 

The corresponding sets and their orders are 

p, q, 7, s, X’, X”, Y’, 
y’f , 

1, 1, 1, 1, - .$(l + pz) each, 

- i’ 
- i’ 

- i” 

- i’ 

A 13 

A 83 

A !a 

A23 

1-J 

:!I - J 

J 1’ 

z 

- i’ i” 

-i’ 7 

- i” i” 
*‘I’ 

-_ I i’ 

-43 44 

-* 4 13 4, 

-4423 A24 

-43 A24 

21-J J 

I--J J 

J T A 44 

Z”, T, 

and 
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1” order to prove this we first remark that from the absence of 3-claws 

it follows t,hat 

A (X’, X’) = A(X”, X”) = A(Y’, Y’) = A (Y“, Y”) = I - J. 

The defining equation, written for $ and Y with X’ and with X”, yields 

= , JA (X’, X”) = JAT(X’, X”) = #J(- 5 - p2). 

Since A (X’, X”) has order 

has only one element - 1. 

X”) = J - 21. 
wish to prove 

yields A(X’, 
Second, we 

A (X” 

Denote the 

Y’U Y”UZ’Uz”U T) = A(X”, Y’U Y”UZ’UZ”U T). 

left-hand side by A, and the right-hand side by A,. The 

- 40 + P2L each of its rows and columns 

Suitable arrangement of the vertices of X” 

Analogously we obtain A(Y’, Y”) = J - 21. 

, 

defining equation, written for X’ with X”, yields 

A,ABT = - 2(1 + /‘*)I -t- (27 - 1 --j- 3p2) J. 

Since both the diagonal elements of A,AgT and the number of columns 

of A, and of A, equal v + p2 - 3, it follows that A, = A,. _4nalogously 
we have 

A(Y’,X’UX”UZ’uz”u T) = A(Y”, Xfi.jX”uz’uz”u T). 

Third, we prove 

A&Z’, X’ U X” U Y’ ii Y”) = -. A (Z”, X’ u X” u Y’ U Y”). 

Denote the left-hand side by A, and the right-hand side by - A,. The 

defining equation, written for 2 with Z”, yields 

ABA,“ = 2(1 + p2)C 

which implies A, = - A,. Kow we may conclude that the adjacency 
matrix A of {V, A} has the form announced above. 

Finallv some relations between the submatrices of A are listed in the 

application in the following section. The defining equation, 

with X’, and the regularity condition A J =z p,, J, written 

order of their 

written for # 

for X’, yield 

Ihtcar Algebra and Iis Applicafious 1, 231--295 (1968) 
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44J = (v - 1 + 3pg)J, A,,J = i(- v + 2 - 3p, + p&J 

Analogously we have 

Au_7 = (v - I + 3p&J, &J = #(- v + 2 - 3p, -!- p&L 

The regularity condition, written for Z’, yields 

JA,, + JAB = 0. 

The defining equation, written for X’ with Z’, yields 

24243 = (5 + P2)4, 

and, written for p with T, 

JA 44 = &(3v - p. + lop2 + 3) J. 

From the defining equation, written for X’ with X’, Y” with Y’, %’ with Z’, 

X’ with Y’, respectively, we obtain 

2&4&. + 2&A,‘, + A,,A;f; = - 2(pz + l)I + (v - 1 + 3p&J, 

2A;&4,, + 2&A;.; + A,,A.T, = - 2(p, + 1)1 + (2) - 1 + 3~~) Js 

&A,, + A,‘,A, = - (pz + 1% 

- (5 + p&& + 24343 + A,,& = J(v - 1 + $4. 

6. STRONGLY REGULAR GRAPHS WITH p1 = :< 

From Theorem 8 we know all strongly regular graphs with pi = p. = 3. 

Now let {V, A} be strongly regular with pr = 3, p. # 3. We use the 

standard form for A derived in the preceding section. 

1. Ifp,=- 1 then, by Theorem 11, we have L,(2), T(4), H(n). 
From now on we assume p2 # - 1. 

2. If v - p. + 2p, - 3 = 0, tiiZt is, if 2’ = 2” = 4, then 

(P () - 3) (PO - p2) = v(v - I + 3p2) I= (p() - 2p, + 3)(po + p2 -I- 2) * 

whence 4p, = p22 + 2p, - 3. But 

P2 =3--n, 9223; then p. = n2 - 4n + 3, v = N*, a # 4. 

Listear Algebra and Ifs Applicatims i, 281- 298 (196X) 
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In addition we have 

IX’i=lX”l=lY’l=lY”l=~-2, /TI==(fl-2)“, A,s=J. 

It readily follows that in this case {V, A} is precisely the lattice graph 
L,(n), vz # 2‘4. Shrikhande [13], by other methods, was the first to 
prove this result, that is, to characterize L,(N) for +z # 4 in terms of its 
parameters. 

3. If v - go + 2ps - 3 = 4, that is, if /Z’l = IZ”l = 1, then 

(P 0 - 3) (PO - p2) = (PO - 2P2 -I- 7) (PO + Pe + 6), 

whence 8p. = p22 + 4p2 - 21. Put 

p2=7-%a, n>5; 

then p. = &(n2 -- Dn + 14), v = $n(n - l), H # 8. 

In addition we have 

IX’1 = IX”1 = IY’j r= IY”I = fl - 4, ITI = #(n - 4)(12 - 6), 

A 12 = J - I, A,, = Al, = .- i, 

It readily follows that in this case {V, A} is precisely the triangular graph. 
T(H), N # 4,8. Chang [2] and Hoffman [S], in partial results preceded 
by others, were the first to prove this result, that is, to characterize T(n) 
for n # 8 in terms of its parameters. 

4. From now cp1 we assume 12’1 = lZ”I >, 2, that is, 

v - 1 + 3p, ‘>r PO + Pa -I- 10. 

Under this assumption the formulas 

JA 12 = i&-v + 2 - 3~2 t- po)J, %a43 = (5 + P2b4,2* 

JA,, + JAB = 0, 

which were obtained in Section 5, imply 

JA x3= 23= IA 0. 

We shall prove JA,, < 0 and then pz < p. < 3. Take any z’ E Z’, x“ E Z” 
with A (z’, 2”) = 1,. Arrange the vertices of X’ and of Y’ in such a way 
that 
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A (z’, X’) = A (z’, Y’) = (jT - j’>‘ 

A@“, X’) = A($‘, Y') = (- j” jT), 

with jT = (1,. . . , 1) of length - i(l + pa). From the absence of 3-claws 
originating from fi we infer that 

A2=(,” _“J) 
for certain square i3 and C of order - $(l + pz), whence 

J42 = &(-v+2- 3pz + p&J < 0. 

In view of the order of A,, this implies 

1 + p2 < - v + 2 - 3p2 + po < 0, 

Po- ’ Pfa I v - 1 + 3pg >, po + 1> PO - 3, 

v(po - p2) >, (PO - 3) (PO - P2) > V(P0 - 3)) 

whence pz < p. < 3. Indeed, from p. < p2 and the first inequality it 
would follow that v < p. - 3, and from p. > 3 and the second inequality 

that v < p. - p2. However, both conclusions contradict - v + 3 - 

3p2 + p’o < 0. 
5. li p. = p2 then v = 1 - 3p2 and JA,, = &(l + p2) J, whence A,, = 

- J. As a consequence, from JAB = 0, 2A,&, = (5 + p2)A,,, we have 

P2 = PO = - 6, v = 16 and 

IX’1 = IX”1 = ly’l = jY”l = IZ’[ = p”i = 2, p-l = 0. 

From the last formulas of Section 5 we obtain 

AlaA,“, = A,A,T, = 4’ - 21, ALA,, + A&A, = 41, A,,A& = 0. 

These equations are satisfied by 

A,,=(+ ‘)# &=(’ J. 
The resulting graph {V, A} is unique* since interchange of X’, X” and 

---__ _ - 
* S. S. Shrikhande informed the author about his (independent) proof, to be 

published in SanRkya, of the uniqueness of this graph and of the nonexistence of 
such graphs with v = 28, p1 = 3, pg = p. = - 9. 
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Y’, Y” has the effect of interchanging A,, and A, within A. The com- 

plement {V, - A} of the resulting graph consists of two subgraphs, a 

5-claw and a Petersen graph on 5 symbols, whose adjacencies are described 

by inclusion, if the end vertices of the S-claw are taken as the symbols 

of the Petersen graph (cf. Gewirtz [(i]). In terms of polytopes the 16 
vertices au3 80 adjacencies of the graph {V, A} can be identified with 

the 16 vertices and 80 edges of the polystope hys, also denoted by l,, 

(cf. [4, pp. 158, 2013). This remark is due to H. S. M. Coxeter, who also 

points out the relation of thiq Polytope to the 16 lines (and 80 pairs of 

skew lines) on Clebsch’s quartic surface (cf. Clebsch [14]). Therefore, 

{I’, A} will be called the CZebsch graph. 

& Fforn now on we assume p. # p2. Then p2 < p. < 3,7~ - 1 + 

3pz < 0, j’J-\ > 0. From 

2JA, = (32J - po + lOp2 + 3)J, 

-v-PO - 2ps + 3 < 3v - pa + lops + 3 

we have -l@U--- 1 -l-- 3p2, whence v + 3p2 = 0, A, = I -J. p. = 

3 + p2 is, since p. = 0 contradicts AlzJ < 0, a! consequence of 

dv - 1 + 3P2) = (PO - 3HPo -- P2L 

Now we are able to combine the formulas (A - 3I)(A - p21) = - J, 

A J = (3 + p2)J into 

-3 - p2 
== 

l 9 A 

il’ )( 

-- 31 i A 

iT H) 0 0 

- p21 0 0 

Application of Theorem 7 yields p2 = - 1, - 3, - 5, - 9. However, 
in view of our earlier assumptions, only p2 = - 9 is relevant. Therefore, 

we have v = 27, p1 = 3, p2 = -- 9, p. = - 6, 

i 
IX’1 = lx”1 = IY’I = IY”I - 4, IZ’l = (Z”I = 3, ITI = 1. 

From [12, p. 1941, it follows that the resulting graph {V, A) is unique. 

Now there is a well-known graph which meets our conditions and which, 

therefore, is the final {V, A} we are looking for. This is the graph whose 

vertices are the 27 lines on a general cubic surface, adjacencies being 

defined if and only if two lines do not intersect. We shall refer to this 

graph as the Schliifli graph after its earliest describer (cf. Coxeter [4, 

p. 211. j). This graph also may be defined by the 27 vertices and the 
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edges of Gosset’s six-dimensional polytope 2,,. The Schlgfli graph rnh.y 
be obtained from lir(8) by complementation with respect to the 12 vertices 
which are adjacent to any one vertex, and then suppression of that. vertex, 
Notice that the graph has as its subgraph a H(5) on $ U q U r U s U 2’ U 2” 
and a pseudolattice graph on x’ U X” U Y’ U Y”. Hoffman and Ray- 
Chaudhuri (cf. [7]) b o served the Schkfli graph to be the example of 
the greatest valency (ut, = 16) for a regular connected graph G with 
1(G) = - 2, G # H@), to be not a line graph. Here 1(G) = - 2 is the 
least eigenvalue of the (1,O) adjacency matrix of G, corresponding to 
our pl = 3. 

Summarizing the results of the present section we have 

THEOREM 13. The only stroq$y regular graphs with p1 = 3, pO # 3 
aye H(n), L&a) for n # 4, T(n) for n sfs 8, the Clebsch, and the Schlli’#li graph. 

Combination of Theorems 8 and 13 yields 

THEOREM 14. The only strongly regular graphs with p1 =.= 3 are the 
complements of the ladder graphs, the lattice graphs, the trkngaclar graphs, 
the pseudolattice graph, the pseudotriangular graphs, and the graphs of 
Petersen, Clebsch, and SchlZfli. 
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