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1. INTRODUCTION

A graph is described by its adjacency matrix and hence it is provided
with a spectrum. It is a general problem to confront the properties of
a graph with the properties of its spectrum (cf. Hoffman [9]). In the
present paper we consider ordinary graphs of finite order v with (— 1, 1, 0)
adjacency matrix A satisfying

A—p)(A—=p) = —=1+pip))],  p1>pa (1)
A] =poJ. (2)

The only eigenvalues are p,, p;, ps, With certain multiplicities. The
numbers p; and p, turn out to be odd integers unless p;, + p, = 0. Our
main result will be that all such graphs are obtained for which p, = 3.
These are the following:

(i) the graphs H(n), the complements of the ladder graphs (cf. (9,
11]),

(i) the lattice graphs Ly(n), which Shrikhande (13] proved to be
characterized by their parameters for # +# 4,

(iii) the triangular graphs T'(n), which Chang [2] and Hoffman [8]
proved to be characterized by their parameters for # # 8,

(iv) the exceptional graphs to the parameters of L,(4) and to the
parameters of 7'(8), due to Shrikhande [13] and Chang {3], respectively,

(v) the Petersen graph,

(vi) the Clebsch graph, which corresponds to the 16 lines on the
Clebsch quartic surface (cf. Clebsch [14], Coxeter [5], Gewirtz [6]),
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(vii) the Schlifli graph, which corresponds to the 27 lines on a general
cubic surface (cf. Coxeter [4]).

The graphs satisfying (1) and (2) are the strongly regular graphs of
Bose [1]. Condition (2) means regularity. Graphs satisfying condition
(1) dre introduced in Section 2 under the name of strong graphs. They
include ‘graphs whose (— 1, 1, 0) adjacency matrix is orthogonal
(cf. [7]). In Section 3 it is proved that strong graphs withv — 1 + p,pa 7% 0
are regular.

Strong graphs with (4 — 3I)(4 — pyI) = 0 have been classified in
[12]. In Section 4, as a consequence of a more general theorem on complete
bipartite induced subgraphs, it is proved that most of the strongly regular
graphs with p;, = 3 contain no 3-claw. With this tool the proof of the
standard form for the adjacency matrix of such graphs in Section 5, and
of the final theorems in Section 6, mainly is a matter of elementary
matrix multipiication.

As concepts of discrete mathematics strongly regular and strong graphs
appear in geometry, engineering, statistics, and algebra; cf. [7, 11, i2]
and the references cited therein.

2. STRONG GRAPHS

We consider undirected graphs of finite order » without loops and
without multiple edges. A graph is described by the pair {V, A} of the
set V of its vertices and its adjacency matrix 4 defined by A(x, y) =
—1if xeV and ye V are adjacent, A(x,y) =1if xe V and ye V are
nonadjacent, A(x, x) = O for all xe V. There is an equivalence relation,
generated by the operation of complementation, on the set of all graphs
on v vertices. Here complementation with respect to any x € V' means
canceling all existing adjacencies for ¥ and adding all nonexisting adja-
cencies for x, the effect on the adjacency matrix being multiplication
by — 1 of the row and the column corresponding to x (cf. [11, 12]).

For any vertices x and y with A(x, y) = (— 1)* the integers

nix) = {z:2€V, A(%,2) = (—1)}}|, =12,
Pz'(x'y) = ]{Z:ZE V,A(x,z) = ('— l)i' A(y,Z) = (-‘ 1)’}|: 1’»7 =1,2,

are defined. So, for x and y adjacent (% = 1) and nonadjacent (h = 2),
respectively, p,(¥, ¥) is the number of vertices adjacent to x and non-
adjacent to y, and $%,(x, y) is the number of vertices nonadjacent to
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and adjacent to y. We shall be concerned with graphs with the property
that both

Pr=171L(%y) +pulxy) and  p%=pl(x,y) + pi(x, )

are the same-for all %, y, adjacent and nonadjacent, respectively.

DEFINITION. A graph {V, A} is strong ¢f it is not void and not complete
and if, for every h = 1,2, there exists an integer p* such that

VzeV,VyeV,  ((A(x3)=(—1" = (b, y) + pu(s ) = p").

A graph is regular if, for every i = 1, 2, the integer n,(x) is the same for all
x€V. A graph is strongly regular [1] #f it is not void and not complete
and if, for every h, 1,7 = 1, 2, the integer pfj(x, y) is the same for all x€ V,
yeV with A(x,y) = (— )~

Trivially we have

THEOREM 1. A graph is strongly regular if and only if it is strong and
regular.

The complete bipartite graph K(a, B), « + f =v, « >0, f > 0, is the
graph whose set of vertices V' consists of two nonvoid disjoint subsets
of orders « and B, each without adjacencies, whereas vertices belonging
to different subsets are adjacent.

THEOREM 2. For any strong graph, which is not K(k,v — k), k =
1,...,v— 1, or its complement, the integers p' and p? are even.

Proof. Let {V, A} be nonvoid and noncomplete. Take 4 =1 or
h=2. ForanyxeV,yeV,x # y,it follows from p},(x, ¥) + ph(x, y) =
g(mod 2) that #,(x) = n,(y) + ¢(mod 2), for ¢ = 0 and for ¢ = 1. Now
suppose that {V, A} is strong with p! odd and p2 even; then A(x, v) =
(— 1)° implies #,(x) = n,(y) + &(mod 2) for ¢ = 0 and for ¢ = 1. Then
A(x, y) = A(y, z2) = (— 1)°® implies A(x,2) = 1 for ¢ = 0 and for ¢ = 1.
Hence {V, A} is complete bipartite, which is excluded. Analogously,
pl =0 (mod2) and p%2 =1 (mod2) lead to the complement of some
K(k, v — k). The case that both p! and p? are odd only occurs for v = 2
and is excluded. This proves the theorem.

The following theorems, the first of which is trivial, describe regular
graphs and strong graphs in terms of their adjacency matrix. The next
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section will provide more details on the numbers p,, p;, py to be introduced
in these theorems.

: l‘HEOREM 3 A graph {V A} is regular zf and only z/ there emsts an
i mteger Po such that A ] =poJ.

THEOREM 4. A‘ nonvoid and noncomplete graph {V, A} is strong if and
only if there exist real numbers p, and py such that p, > p, and

(4 — pud)(A — pal) = (0 — 1 + pypy) .

Proof. Let {V, A} be nonvoid and noncomplete. Take xeV, yeV
with A(x,y) = (— 1) with A =1 or 4 = 2. The element with indices
x and y of the matrix (4 — p,J)(4 — p,I) is the inner product of the rows

— P (-1)" —ere— —eei— et e of A—p,l,
(__l)" —py —rrr— e —eee— oo g of A—p,l,
and equals

— (= Doy + po) + A11(%,9) — Plal®. 9) — B2a(%, 9) + Plal%, 9)
=v—1— (= 1)(p; + p) — 2p15(x, ) — 2p5(%,3) — L.
Now let {V, A} be strong. Take p, and p, such that
pr+ pe=p' — P2 —l—ppo=p"+p%  p>p,

Then the inner product calculated above is independent of %, x, ¥ and
equals v — 1 + p,p,. Conversely, suppose we have

Ad—pD)Ad—pl)=@—1+4pip))], p1>ps
for real p;, p,. Then from
v —1— (= 1py + p) — 2p0a(%, ) — 205(%, ) — 1 =v — 1+ pyp,,
for s =1,2 and for all x, y, it follows that
2(p1a(%, 3) + P3(%, 3) = (o — V(1 — p),
2(432(%. ¥) + £a(%, 3) = (py + D)(— 1 — py)
are independent of x and y, hence that the graph is strong.
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3. CLASSIFICATION AND EXAMPLES
'TH"F.OR’EM’ 5. ,E-yvery :s'trpng'g'raphk. {V, A} with
(4 — p)(A — pul) = (v — 1 + pypg] #0

is regular, with A] = poJ and (py — py)(pp — po) = v(v — 1 + pypg). The
spectrum of A consisls of py, p,, and py, which are odd integers and integer
~ unless py = — p, = Vv, po = 0.

Proof. ] is a linear combination of A2, 4, I. Hence these four matrices
are simultaneously diagonalizable. j = (1,1,...,1) is an eigenvector of
J belonging to the eigenvalue v, and hence of 4 belonging to the eigenvalue
Po, say. This implies

AJ =po], 1l —v<py,<v—1, po integer.

Combination with the defining equation yields

(Po — P1)(po — po) = v(v — 1 + pypy)

and proves that the only eigenvalues of 4 are pg, py, ps. Let pg, gy, 2 be
their multiplicities; then g, = 1 and from tr 4 = 0 it follows that

2py + (v — 1)(py + pg) + (g — po)(py — po) = O.

For p, = p, we have p, =0, p; = — p, = V; If uy #+ u, then p; and
p. are rational, hence integral and odd.

THEOREM 6. The spectrum of any strong graph {V, A} with
(A4 — pd)(A — poI) = O comsists of p, and py. If {V, A} is not K(x, v — «)
or its complement then p, and p, are odd integers unless p, = — py = (v — 1)~

Proof. The first statement is trivial. Let y; be the multiplicity of
pi» ¢ =1,2; then from tr 4 = 0 it follows that

v(py + pa) + (11 — pa)(p1 — po) = 0.

Foru, = puy = Juwehavep, = — p, = (v — 1) fromv — 1 4- p;p, = 0.
If u, # p, then p, and p, are rational, hence integral and, by Theorem 2,
odd. :

For the state of affairs concerning the existence and nonexistence of
strong graphs {V, 4} with 42 = (v — 1)I and with 4% = oI — ] we refer
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to [7]. Concerning the other strong graphs we first state some examples
and a theorem, taken from [12].

o Example 1. H(n), n > 3, the com;blemeht of the :ladder.gmph of order
n, is the graph obtained from the complete graph on 2x vertices by
deleting a 1-factor. This H(n) is strongly regular with

v = 2n, po =3 —2n, p1 =3, pe= — L.

Example 2. Ly(n), n > 1, the lattice graph of order n, is the line graph
of the compleie bipartite graph K(n, #). This Ly(#) is strongly regular with
v=n% p=m—1)r—3), p=3  p=3-—2n

and satisfies v — 1 4 p;p, = 0 only for # = 2 and for # = 4.

Example 3. T(n), n > 3, the triangular graph of order n, is the line
graph of the complete graph on # vertices. This T(») is strongly regular
with

v=dnln—1), p=3m—(—T), p=3 p=T—2n

and satisfies v — 1 4 p;p, = 0 only for n =5 and »n = 8.

Example 4. The Petersen graph is the graph whose vertices are the
ten unordered pairs out of five symbols, adjacency between any two pairs
being defined if and only if they have no common symbol. The Petersen

graph, whose complement is the Desargues graph T'(5), is strongly regular
with

v =10, P1= pp = 3, p2=—3.
Example 5. L,'(4), the pseudolattice graph, is the graph obtained from
L,(4) by complementation with respect to the vertices of any subgraph
which is an 8-circuit. In addition, L,'(4) may be defined as the complement

of the net (4, 3) which corresponds to a nonextendable latin square of
order 4. This L,’(4) is strongly regular with

v=16, p=py=3  pp=—35,

and was proved by Shrikhande [13] to be the only such graph apart from
L,(4).
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- Example 6. T'(8), T"(8), T''(8), the three pseudotriangular graphs,
are defined as follows.
T’(8) is obtained from T(8) by complementation with respect to any
four independent vertices.
T"(8) is obtained from 7'(8) by complementation with respect to the

eight vertices of any subgraph consisting of a 3-circuit and a 5-circuit
without adjacencies between them.

-

T''(8) is obtained from 7'(8) by complementation with respect to
the 12 vertices of any subgraph which is the line graph of the 8-circuit
with four antipodal adjacencies

These T'(8), T''(8), T'"'(8) are strongly regular with
v=28, p=p=3  p=—9
and were proved by Chang [3] to be the only such graphs apart from
T(8).

THEOREM 7. Strong graphs with (A — 3I)(A — pyI) =: 0 only exist
for pp = — 1, — 3, — 5, — 9. Any such graph is equivalent to L,(2), T(5),
L,(4), T(8), respectively.

For the proof of this theorem we refer to [12]. The following theorem
is a consequence of the results of Shrikhande and of Chang. It also could
be proved on the basis of Theorem 7.

THEOREM 8. The only strongly regular graphs with (A — 3I)(A — p,I) =
0, AJ = 3], are L,(4), T(8), the Petersen graph, L, (4), T'(8), T"'(8), T""'(8).

All 7raphs mentioned in Theorem 8, except for L,(4), 7(8), have 3-
claws K(3,1). It will be proved in the following section that these five
are the only strongly regular graphs with p, = 3 having this property.

4. COMPLETE BIPARTITE INDUCED SUBGRAPHS

Let {V, A} be a strong graph with defining equation

(A — pud){A — poI) = (v — 1 + pypa)J.-

Let K(«, 8) be an induced subgraph of {V, A}. For g =1 this is an
a-claw.
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THEOREM 9. A necessary condition for the existence of a sub-K(a, f) in
a strong graph {V, A} is

at B<Hp—HB—p)+4
~ Proof. "~kTakeJ"x € K(x, #) and y € K(, £) with A(x, 'y) = -1 Suppdsé

* a > 1. Arrange the elements of V in such a way that the first « + 1 rows
of 4 are '

0 — oo e e e e e
S | i T
-7 J-1 =] B 9 D E,

where

L 1L, a—1, =1, py—a+l, po—BF+L pi P

are the consecutive numbers of columns. We apply the defining equation
to the third (block) row with the first and with the second column:

—po] +J+ U —I—pD] + JJ + B] — C] —DJ + EJ
=(—1+pp))J,
~J+pd —J—I—pD)] = J] = BJ +CJ —DJ +EJ
= (@ —1+4pp))J.
Hence
J(—’Pl""Pz—2+d+/f)=C.’_Bj
and |
—p—pe—24+a+B<tp— Dl —p) +2—a— 4

since the right-hand side is the total number of columns of the matrix
(B C). From this the inequality follows.
Remark. In the theorem the equality sign

a+f=1p —3)B —p) + 4
holds if and only if B= — J and C = J.
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THEOREM 10. A4 necessary condition for the existence of a sub-K(o, f)
with
wn a strongly regular graph {V, A} is
1+ po+ 28— 20| <v—1+ pyp,.
Proof. Referring to the proof of and the remark to Theorem 9, we

consider any pair of vertices x’, x'’ of the block. By A(x’, ¥') =1, B =
— J, C = J we have

B—oat+1+py<ph,  a—F—1+ph<th

From this the inequality follows.

THEOREM 11. The only strong graphs with p, =3, py = — 1 are
K(3,1), Ly(2), T(4), Hn), n = 3,4,....

Proof. Let {V, A} be strong with p, = 3, p, = — 1. For v == 4 only
K(3, 1) and K(2, 2) = L,(2) apply. Forv > 4 we havev — 1 + p;p, # 0;
hence, by Theorem 5, {V, A} is strongly regular with

(o= 3o+ 1) =vlv—4), 1—v<py<v—L
This implies

v=3—py Pa=l  Fa=ta=0,
which, as the only possibility, leaves 7(4) and H(n).

THEOREM 12. Strongly regular graphs with p, = 3, py % 3 contain no
3-claws.

Proof. Application of Theorems 9 and 10 in the case p; = 3 yields
« < 3 for the order of any a-claw K(«, 1), whereas for «a = 3

lpo— 3| <v—1+3p,
is necessary. Combination with
(Po — 3)(po — p2) = v(v — 1 + 3p,)
yields, by p, # 3, as a necessary condition for a = 3
lpo — 3| < |pr — pef — 1+ 3p2,
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whence p, = — 1. However, by Theorem 11, this admits only graphs
which have no 3-claws. Therefore, « = 3 is not possible.

5. THE STANDARD ADJACENCY MATRIX FOR p, = 3, p; # 3

We shall deﬁve a standard form for the adjacency matrix 4 of a
strongly regular graph {V, A} with defining equations

(A—3D)A—p)=(w—1+3p)], AJ=pJ, po#3.

By Theorem 12 we know that there are no 3-claws. We shall divide V
into eleven disjoint subsets, four of which consist of solely one vertex:

V={p}U{g}U{AAU{s}UX'UX"UY'UY"UZ'UZ"UT.

Takeanyge V,re V with A(g, 7) = — 1. Take ahyp e VwithAd(p,q) =
1, A(p,7) = — 1. Define

Z2={zeV:A(z,p) = A(z,9) = - 1},
Z={zeV:A(z,p) = A(z,9) = A(z,7) = — 1},
T={teV: Al p) = Alt.q) = 1}.

Since {V, A} has no 3-claws there are no adjacencies of 7 to the vertices
of T. Considering p and 7 we learn that 7 is adjacent to p}, — |Z| vertices
which are adjacent to p and nonadjacent to ¢. Again, from ¢ and » we
see that 7 is adjacent to p}, — |Z] vertices which are nonadjacent to p
and adjacent to ¢. We conclude that 7 is adjacent to

n =2+ |Z| + 2p;, — 2/Z|

other vertices. Expressing #, and p}, in v and the eigenvalues (cf. [12,
p. 190]) we obtain |Z| = }(v — py + 20, — 3). By |Z| =#}, = v —
po + 2p; + 1) we have |Z| = |Z| + 2. Hence 7 is nonadjacent to only
one vertex of Z, s say. By application of the above reasoning to the other
vertices of Z it follows that any 2’ € Z is nonadjacent to only one 2" € Z,
that Z = Z U {r} U {s}, and that Z can be split into two subsets Z’, Z" of
equal order such that

I— 2I — f
e, 4))
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Wé define the following subsets & V':
X' ={xeV:A(x,p) = — 1, A(x, 7} = I\ {s},
X”k= {xeV:A@x, p) =1, A7 =—1) {q}
Y ={yeV:Apq =1, Ap.7)=— 1N}
Y'={yeV:A(y,q) = — 1, A(v,7) = I}\{s}.

These sets all have order p}, —1 = — }(1 + p,) and are mutually disjoint.
From the regularity of A and from the absence of 3-claws the rest of the
adjacencies of p, g, 7, s with the vertices of X', X", Y', Y, 2", 2", T is
readily found. From their orders it may be seen that these eleven disjoint
subsets fill up V completely. Now it will be shown that the adjacency
matrix 4 may be given the following form:

0 + — — T jT T it L
+ 0 — — T =T T T T
—_— - 0 + ,T —'jl ___}l ]r _~]l _]l ’1
- - 4+ 0 - i I A S S &

-7 j i =7 I—-J JjJ—-2 Ay Ay Ay —dy Ay

I —1 —1 joJ—2 I—-] Ay, Ay, Ay —A Ay

—i i =i i An  Ap I—=J J=21 Ay —dyn dy

=7 i =i AL A J-2A I-] Ay —Ay Ay

-7 =7 =7 —i Ajfs Ags Az Ay I—J 2—] ]
—f =i —i —i —dAf —Af —Ay —Ay AqA—] I-] ]
/A N | Al Al A3 an J" JT Ay
The corresponding sets and their orders are

P q 7, s, X', X", Y’, Y”, Z', z", T,

1, 1, 1, 1, — M1 + p,) each, and
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1Z'| = |2"| = Hv — pp + 2p, — 3), |T|= }v+ po+ 20, — 1).

In order to prove this we first remark that from the absence of 3-claws
it foilows that e

A(X', X’) = A(X”, XII) S A(Y’, Y') ;’A(Y”,‘ Y,I) = J — j.
The defi]ningrequati‘on‘, written for » and » with X’ and with X", yields
JAX', X") = JAT(X', X") = ] (— 5 — py).

Since A(X’, X”') has order — }(1 + p,), each of its rows and columns
has only one element — 1. Suitable arrangement of the vertices of X"’
yields A(X’, X"') = J — 2I. Analogously we obtain 4A(Y’, Y"') = J — 2I.
Second, we wish to prove

AX,YYUY"UZ'UZ"UT)=AX",YUY"UZ'UZ"UT).
Denote the left-hand side by 4, and the right-hand side by A,. The
defining equation, written for X’ with X", yields

A 4,7 = —2(1 + p)I + (v — 1 + 3p)) .

Since both the diagonal elements of 4,4,” and the number of columns
of A, and of 4, equal v + p, — 3, it follows that 4, = 4,. Analogously
we have

AY',X'UX"UZ'UZ"UT)=A(Y", X'UX"UZ'UZ"UT).
Third, we prove
AZ', X'UX"UY'UY")=—AZ", X’UX"UY'UY").

Denote the left-hand side by 44 and the right-hand side by — 4,. The
defining equation, written for Z’ with Z”, yields

Azd," =201 + py)l,

which implies 4; = — 4,. Now we may conclude that the adjacency
matrix 4 of {V, A} has the form announced above.

Finally some relations between the submatrices of A are listed in the
order of their application in the following section. The defining equation,
written for p with X’, and the regularity condition 4] =: p,J, written
for X', yield

Linear Algebra and Its Applications 1, 281--298 (1968)
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Ay =@—143p,)], Ay = ¥—v+2—3p,+ py)J.
Analogously we have

ApJ =@ —1+3p)], ALJ=3—v+2—3p,+p)J.
The regularity condition, written for Z’, yields

JAsz+ JAyp=0.
The defining equation, written for X’ with Z’, yields
2415403 = (6 + pa)dy3
and, written for p with 7,
JA4 = 380 — py + 10p, + 3)J.

From the defining equation, written for X’ with X’, Y" with Y’, 2" with Z,
X’ with Y’, respectively, we obtain

243041, + 2413415 + Ay Ay = — 2(pa + DI + (v — 1 + 3py)/,
247,415 + 245A5 4 Agdzy = — 2(pa + DI + (v — 1 1+ 3p5) ],
Afydss + Az = — (pp + DI,

— (6 + po)Aye + 245345 + Ay, = J(v — 1 + 3py).
6. STRONGLY REGULAR GRAPHS WITH p, = 3

From Theorem 8 we know all strongly regular graphs with p; = p, = 3.
Now let {V, A} be strongly regular with p, = 3, py #3. We use the
standard form for A derived in the preceding section.

1. If p, = — 1 then, by Theorem 11, we have L,(2), T(4), H(n).
From now on we assume p, % — L.
2. If v — py+ 2p, — 3 =0, that is, if Z' = 2" = ¢, then
(Po — 3)(po — p2) = ¥(v — 1 + 3py) = (pp — 2pz + 3)(po + P2 + 2),
whence 4p, = py% + 2p, — 3. Put
po=3—2n, n>=3; then py=n*—4n+3, v=n? ni4
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In addition we have
IX”— X\ =[Y|=Y"|=n—-2  |T|=(n—-2? A =J.

It readxly follows that in this case {V, 4} is preasely the lattice graph
Ly(n), n + 2,4. Shrikhande [13], by other methods, was the first to
prove this result, that is, to characterize Ly(n) for # # 4 in terms of its
parameters. »

3. If v — gy + Zp, — 3 = 4, that is, if |Z'| = |Z"”] =1, then

— 3)(po — p2) = (po — 2P + T)(po + P2 + 6),
whence 8p, = p,% + 4p, — 21. Put
po=T—2n, n=5;
then py=3(n%--9n + 14), v=1in(n —1), #n+#8.
In addition we have
X' = [X"|=|¥"[-=|[Y"|=n—4, |I|=3}n—4)(»—85),
Adyp=J—1, Ap=AH4yuy="—j.

It readily follows that in this case {V, A} is precisely the triangular graph
T(n), n # 4,8. Chang [2] and Hoffman (8], in partial results preceded
by others, were the first to prove this result, that is, to characterize 7'(n)
for n % 8 in terms of its parameters.

4. From now ¢n we assume |Z'| = |Z"”| > 2, that is,

v — 1+ 3py 2 py + pp -+ 10.

Under this assumption the formulas

JAp=H—v+2—3p,+p)J, 24345 =56+ p)dy,

JAp+ Jdu =0,
which were obtained in Section 5, imply
JAg=JAyx=0.

We shall prove J4,, < 0 and then p, < p,< 3. Takeany z'€Z’,2" €Z"
with A(2’, 2’) = 1. Arrange the vertices of X’ and of Y’ in such a way
that
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A X) =A@ Y) = (" — i,
A X) = AEY) = (=7 ),

with j7 = (1,..., 1) of length — }(1 4 p,). From the absence of 3-claws
originating from p we infer that

—_ B
A12=( C] __])

for certain square 3 and C of order — }(1 + p,), whence

JA1a=3(—v+2—3p, + pg)J <O.

In view of the order of 4,, this implies
—v+2—=3p,+ pp <0,

<
Po—pPa=?—1+3py=py+12>py—3,
=

whence p, < py < 3. Indeed, from p, < p, and the first inequality it
would follow that v < p, — 3, and from p, > 3 and the second inequality
that v < py — p,. However, both conclusions contradict —v + 3 —

3p; + pp < 0.

5. lipy, = ppthenv =1 — 3p,and J4,, = (1 + p,).J, whence 4,5 =
— J. As a consequence, from JA,3 =0, 24,453 = (5 + py) A3, We have
ps = pp = — b, v =16 and

X = X" = |V = ¥ = 2| = z"|=2, |T|=0.
From the last formulas of Section 5 we obtain

These equations are satisfied by

el ) )

The resulting graph {V, 4} is unique* since interchange of X', X" and

* S, S. Shrikhande informed the author about his (independent) proof, to be
published in Sankhya, of the uniqueness of this graph and of the nonexistence of
such graphs with v = 28, p, =3, py =py= — 9.
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Y’, Y” has the effect of interchanging 4,5 and A4, within 4. The com-
plement {V, — A} of the resulting graph consists of two subgraphs, a
5-claw and a Petersen graph on 5 symbols, whose adjacencies are described
by inclusion, if the end vertices of the 5-claw are taken as the symbols
“of the Petersen graph (cf. Gewirtz [6]). In terms of polytopes the 16
vertices and 80 adjacencies of the graph {V, A} can be identified with
the 16 vertices and 80 edges of the polytope Ay;, also denoted by 1
(cf. [4, pp- 158, 201]). This remark is due to H. S. M. Coxeter, who also
points out the relation of thic polytope to the 16 lines (and 80 pairs of
skew lines) on Clebsch’s quartic surface (cf. Clebsch [14]). Therefore,
{V, A} will be called the Clebsch graph.

€. From now on we assume p, % p,. Then p, < py<3,v —1+
3p, <0, T/ >0. From

2J A4 = (3v — pp + 10p, + 3) ],
_v—Po—2P2“+‘3<37"‘P0+10P2+3
we have — 1 <v — 14 3p,, whence v+ 3p, =0, dyy=1—]. py=
3 + py is, since p, = 0 contradicts 4,,] < 0, a consequence of
v(v — 1 4 3pp) = (pg — 3)(po -— pa)-

Now we are able to combine the formulas (4 — 3I)(4 — p,I) = — ],
AJ = (3 + p)] into

(RPN (e R
i A—38I/\ j A—pI/ \0 0/

Application of Theorem 7 yields pp= — 1, — 3, — 5, — 9. However,
in view of our earlier assumptions, only p, = — 9 is relevant. Therefore,
we have v =27, p, =3, pp= -9, py= — 6,

X=X =|V|=|Y"|=4, |Z|=|2"|=3, |T|=1

From [12, p. 194], it follows that the resulting graph {V, 4} is unique.
Now there is a well-known graph which meets our conditions and which,
therefore, is the final {V, 4} we are looking for. This is the graph whose
vertices are the 27 lines on a general cubic surface, adjacencies being
defined if and only if two lines do not intersect. We shall refer to this
graph as the Schlifli graph after its earliest describer (cf. Coxeter [4,
p- 211]). This graph also may be defined by the 27 vertices and the
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edges of Gosset’s six-dimensional polytope 2,,. The Schlifli graph mzy
" be obtained from 7'(8) by complementation with respect to the 12 vertices
which are adjacent to any one vertex, and then suppression of that vertex.
Notice that the graph has as its subgrapha H(5) onpUgqUrUsUZ'UZ"
‘and a pseudolattice graph on X'UX”UY’'UY"”. Hoffman and Ray-
Chaudhuri (cf. [7]) observed the Schlifli graph to be the example of
the greatest valency (n; = 16) for a regular connected graph G with

AG) = — 2, G # H(n), to be not a line graph. Here A(G) = — 2 is the
least eigenvalue of tne (1,0) adjacency matrix of G, corresponding to
our p, = 3.

Summarizing the results of the present section we have

THEOREM 13. The only strongly regular graphs with p; = 3, py #* 3
are H(n), Ly(=2) for n 5= 4, T(n) for n =~ 8, the Clebsch, and the Schlifli graph.

Combination of Theorems 8 and 13 yields

THEOREM 14. The only strongly regular graphs with p, == 3 are the
complements of the ladder graphs, the lattice graphs, the triangular graphs,
the pseudolattice graph, the pseudotriangular graphs, and the graphs of
Petersen, Clebsch, and Schiifli.

REFERENCES

1 R. C. Bose, Strongly regular graphs, partial geometries and partially balanced
designs, Pacific J. Math. 13(1963), 389-419.

2 L C. Chang, The uniqueness and nonuniqueness of the triangular association
< 1eme, Sci. Recovd 3(1959), 604-613.

3 ;.. C. Chang, Association schemes of partially balanced block designs with
parameters v = 28, %, = 12, n, = 15 and p,,®> = 4, Sci. Record 4(1960), 12-18.

& H. S. M, Coxeter, Regular Polytopes, 2nd ed., Macmillan, New York, 1963.

5 H. S. M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math.
Soc. 56(1250), 413-455.

6 A. Gewirtz, Graphs with maximal even girth, Thesis, City University of New York,
1967.

7 J. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal, Canad.
J- Math. 19(1967), 1001-1010.

8 A. J. Hoffman, On the uniqueness of the triangular association scheme, Ann.
Math. Statist. 31(1960), 492-457.

9 A. J. Hoffman, The eigenvalues of the adjacency matrix of a graph, Research
Note N.C. 689, Thomas ]J. Watson Research Center, Yorktown Heights, New
York, 1967.

Linear Algebra and Iis Applications 1, 281—248 (1968)



208 : S SRS 1. ]. SEIDEL
10 A. J. Hoffman and D. K. Ray-Chaudhuri, On ke line graph of a symmetric
balanced incomplete block design, Trans. Amer. Mati. Soc. 1168(1965), 238-252.
11 J. H. van Lint and J. J. Seidel, Equilateral point sets in elliptic geometry,
Koninkl. Akad Wetenschap. Proc. Ser. A. 69(1966), 336-348.
1215 Seldel Strongly regular graphs of L,—type and of tnangular type, Koninkl.
~ Ned. Akad Welenschap Amst. Proc. Ser. A. 70(1967), 188-196.

- 13 8. 8. Shnkhande, The uniqueness of the L, assoc:atmn scheme, Ann. Maﬂ'
Sums: 30(1959), 781-798.

i4 A, ue‘nsch, Ueber die Fidchen vierter Ordnung, weiche eine Doppeicurve zweiten
Grades besitzen, ] fiir: Math 69(1868), 142-184.

Received Ociobey 4, 1967

Linear Algebra and Its Applications 1, 281—298 (1968)



