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S-domains and strong S-rings are studied extensively with special emphasis on integral and
polynomial ring extensions. The main theorem of this paper is that for a Priifer domain R, the
polynomial ring R[X},..., X,] in finitely many indeterminates is a strong S-domain. We also
prove that any Priifer v-multiplication domain is an S-dormnain.

1. Introduction and terminology

All rings under consideration are commutative rings with unity. The concepts of
S-domain and strong S-domain are crucial ones and were introduced by Kaplansky
[11, p. 26]. Let us recall their definitions. An integral domain R is an S-domain if
for each prime ideal P of R of height one the extension PR[X] to the polynomial
ring in one variable is also of height one. Call a ring R a strong S-ring if the residue
class ring R/P is an S-domain for each prime P of R.

The present paper deals with several elementary properties of strong S-domains
and the behaviour of the strong S-property under integral and polynomial ring
extensions.

In Section 2 we first prove that the strong S-property is a local property. Then
using this result and Theorem 68 of [11] we see immediately that a Priifer domain
is a strong S-domain. One reason that Kaplansky introduced the notion of strong
S-domain was to treat the classes of Noetherian domains and Priifer domains in a
unified manner - for if R is either a Noetherian or a Priifer domain then R is a
strong S-domain. Moreover, if R is in either of the two classes of domains, then the
following dimension formula holds: dim R[X,..., X,]=n+dim R. Kaplansky
observed that for n=1 and for R a strong S-domain then dim R[X,]=1+dim R.
Had the strong S-property been stable under polynomial ring extensions, the above
dimension formula could have been obtained by induction for all strong S-domains.
However, the strong S-property is not stable, in general, and thus by itself is not
the cause for the dimension formula. Nevertheless, we show in Theorem 3.5 that
if R is a Priifer domain, then R[X,, X,,..., X,] is a strong S-domain. Hilbert’s
Basis Theorem and connected results give the corresponding result for Noetherian
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domains. Thus we define a ring R to satisfy the stably strong S-property, if for each
n, R[X,, X, ..., X,] is a strong S-ring. Thus, Noetherian rings and Priifer domains
are better unified under the concept of stably strong S-property, and the stably
strong S-property does in fact imply the above dimension formula.

Using a theorem of Nagata [14] we also prove that if R is a Priifer domain, then
for any prime ideal P of R{X,, X», ..., X,] of finite height, ht P=little rank P and
R[X,. X5, ..., X,] satisfies the saturated chain condition [11, p. 99].

In view of above conclusions we then ask what properties common to Noetherian
domains and Priifer domains cause the stability of strong S-property under
polynomial ring extensions. One property that these domains have in common is
that their integral closures are Priifer v-multiplication domains (Priifer domains are
already integrally closed and the integral closure of a Noetherian domain is a Krull
domain). Then the natural question arises: Couid the stably strong S-property be
caused by the property that the integral closure of a domain R is a Priifer
v-multiplication domain? The answer is no in general for we give an example of
Kruill domain that is not a strong S-domain. Nevertheless we show in Theorem 4.16
that such a domain at least must be an S-domain. We then use this theorem to con-
clude in Proposition 4.19 and 4.21 that if R is either Noetherian or Priifer then the
integral closure of R is a stably strong S-domain. Thus the two classes are further
unified by this observation.

The ultimate effect of this last observation is to focus the study of stably strong
S-property onto the class of Krull domains, a subject we leave for future research.

In Section 5 we study the ‘D + M’ construction [9] and other related constructions
that inherit the strong S-property from D.

2. Elementary properties

We now give some elementary properties of S-domain and strong S-rings. Note
that it is immediate that the direct sum of any finite number of rings is a strong
S-ring if and only if each summand is.

Proposition 2.1. A domain R is an S-domain if and only if R, is an S-domain for
each maximal ideal M of R.

Proof. Lei R be an S-domain. For any maximal ideal M of R, let P°=PR,, be a
height 1 prime of R,,. Clearly P is a height 1 prime ideal of R. But then R is an
S-domain, hence PR[X]=P* is a height 1 prime of R[X]. Now

P(RIX g\ v = PRy X]=P*Ry[X]=(PRy)RyIX1=P°Ry[X],

se. PPRy[X] is a height 1 prime of Ry,[X] and R,, is an S-domain.
Conversely, let Ry, be an S-domain for each maximal ideal M of R and let P be
a height | prime of R contained in a maximal ideal M. Then PR,, is a height 1
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prime of R,,. But then R,, is an S-domain, hence P°Ry/[X]=(PR))Ry[X]=
PRy[X] is a height 1 prime of Ry[X] and by taking intersections with R[X] we
have PR[X] is a height 1 prime of R[X] and hence by definition R is an S-domain.

Corollary 2.2. The following are equivalent in a domain R:
(i) R is an S-domain.
(ii) Rg is an S-domain for each multiplicative system S of R.
(iii) Rp is an S-domain for each prime ideal P of R.
(iv) Ry, is an S-domain for each maximal ideal M of R.

Proof. We prove (i) implies (ii), (ii) implies (iii), (iii) implies (iv) and (iv) implies (i).
So let Pg=PRg be a prime ideal of Rg of height 1 then P is a prime ideal of R of
height 1 such that PNS=@. Since R is an S-domain it follows PR[X] is a height 1
prime ideal of R[X]. Therefore PsRs[X]=(PR[X])s is also a prime ideal of height
1 in (R[X])s= Rs[X]. So Rg is an S-domain proving thereby (i) implies (ii).

To prove (ii) implies (iii) take S=R\ P where P is any prime ideal of R.

Clearly (iii) implies (iv) since each maximal ideal is a prime ideal and (iv) implies
(i) follows from Proposition 2.1.

Proposition 2.3. A ring R is a strong S-ring if and only if Ry, is a strong S-ring for
each maximal ideal M of R.

Proof. Since R,,/PR,;=(R/P)y where M=(R\ M)+ P/P, P being a prime ideal
of R coniained in M, it is enough to prove that R is an S-domain if and only if R,,
is an S-domain for each maximal ideal M of R but then Proposition 2.1 completes
the proof.

Corollary 2.4. The following are equivalent for any ring R:
(1) R is a strong S-ring
(ii) Ry is a strong S-ring for each multiplicative system S of R
(iii) Rp is a strong S-ring for each prime P of R
(iv) Ry, is a strong S-ring for each maximal ideal M of R.

In view of above corollary and Thecrem 68 [11] the following proposition is
immediate.

Proposition 2.5. A Priifer domain is a strong S-ring.

Proposition 2.6. Let R be a domain, then R is a strong S-ring if and only if each
flat overring of R is strong S-ring.

Proof. Let T be a flat overring of R and suppose that R is a strong S-ring. For each
maximal ideal M of T, Ty = Ryng [16]. Since R is a strong S-ring, Ry is also
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a strong S-ring so Ty, is a strong S-ring. But then by Proposition 2.3 T is a strong
S-ring.
The converse follows by Corollary 2.4.

Proposition 2.7. Let R be ¢ domain. Suppose R is a strong S-ring, and Ry, ..., R,
are quasi-semi-local flat overrings of R contained in the quotient field of R; then
R'= ﬂ:’z, R, is a strong S-ring.

Proof. Since each R, is a flat overring of R, by Proposition 2.6 R; is a strong S-
ring. Also RC R'C R; ¢ K and since R; are flat overrings of R, it follows that R; are
flat overrings of R’. Now every nonunit of R’is a nonunit in some R;. Thus the set
of nonunits of R’ is exactly the union of the finite set of contracted maximal ideals
of R, for 1<i<n. If M is any maximal ideal of R and x€ M then x ¢ M; for some
maximal ideal M, of some R;. Hence xe M;(\R’ so M¢C U(MikﬂR'); but R; are
semi-local, the union U(M,—,\,ﬂR’) is a finite union so that M C M; NR’ for some
ir. But then M was maximal so M=M,; NR’, showing that each maximal ideal of
R’ is a contraction of soine maximal ideal of R;. Let M be any maximal ideal of
R. If M=M,NR’, M; being a maximal ideal of R;, then R;, = Ry;nr=Ry as R; is
a flat overring of R’. Therefore, as each R; is a strong S-ring, R;, is a strong
S-ring and Ry, is a strong S-ring. The conclusion now is immediate from Pro-
position 2.3.

The proofs of Proposition 2.8 and Corollary 2.9 are easy applications of Proposi-
tion 1.1 of [2] and Propositions 2.3 and 2.7.

Proposition 2.8. If R is a non-quasi-local domain, then R is a strong S-ring if and
onlv if T(x), the integral transform of (x) for each nonunit x of R, is a strong S-ring.

Corollary 2.9. Let R be a domain and A be a finitely generated ideal of R. Then
if R is a strong S-ring the integral transform T(A) is also a strong S-ring.
3. Strong S-rings and polynomial extensions

In this section we prove necessary and sufficient conditions for the polynomial
ring R[X), ..., X,] to inherit the S-property or the strong S-property. In particular,
we prove that if R is a Priifer domain, then R[X,,..., X,] is a strong S-domain.
Theorem 3.1. Let R be an S-domain and X = {X,, X>, ..., X, } be a finite set of in-
determinates over R. Then R|X) is an S-domain if and only Rp|{X] is an S-domain

Jor each prime ideal P of R.

Proof. Let R[X] be an S-domain, then Rp[X]=(R[X]g\p for each prime ideal P
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of R is a quotient ring of R[X], hence, is an S-domain.

Conversely, let Rp[X] be an S-domain for each prime ideal P of R and Q be a
height 1 prime of R[X]. If QN R =P two cases arise according as P is nonzero or
zero. Suppose first P#(0), then R[X]px)2 R[X]g\p=RplX]. As P[X]CQ and
height of Q is 1, so P[X]=Q. Therefore R[X]p= R[X]px) is a quotient ring of
Rp[X] and hence an S-domain. Thus QR[X]o[Y]=QR[X, Y], is a prime ideal of
R[X, Y]g of height 1. Consequently, Q[Y]=QRI[X, Y]oNR[X, Y] is a prime ideal
of R[X, Y] of height 1 and R[X, Y] is an S-domain. If P=(0) then Rp[X]=: K[X],
where K is a quotient field of R, is Noetherian and hence an S-domain. Also QK[.X]
is a prime ideal of K[.X] of height 1. Thus QKI[X, Y] is also of height 1 in K{X, Y).
It now follows that Q[Y]=0[X, YINRLX, Y] is a height 1 prime of R[X, Y].

Theorem 3.2. Let R be a strong S-domain and X=4{X,, X5, ..., X,} a finite set of
indeterminates over R. Then R[X] is a strong S-ring iff RplX) is a strong S-ring
for each prime ideal P of R.

Proof. If R[X] is a strong S-ring, then for each prime ideal P of R,
RplX]=R[X]g\p is a quotient ring of R[X] and hence a strong S-ring.

Conversely, suppose that Rp[X] is a strong S-ring for each prime ideal P of R
arnd Q, C Q, be a pair of adjacent primes of R[X]. Also let Q;NR=P, fori=1 and
2; then Q,N(R\P,)=0 and Q) Rp,[X]C O, Rp,[X] is a pair of adjacent primes of
Rp,1X]. But Rp,[X] is a strong S-ring so that Q| Rp [X][YIC O, R, [X][Y] is a
pair of adjacent primes of Rp,{X]{Y]. Once again we obtain ¢,[Y]CQ,[Y] are
adjacent primes of R[X, Y]. Hence R[X] is a strong S-ring.

Theorem 3.3. Suppose that R is an integral domain and X ={X,, X,,..., X,,} a
finite set of indeterminates over R. Then R[X] is an S-domain if and only if
R[X]rmix) is an S-domain for each maximal ideal M of R (that is, if and only if
R(X) is an S-domain).

Proof. Since R[X]yqx; is a quotient ring of R[X], if R[X] is an S-domain,
R[X1aqx) is an S-domain. Conversely, let Q be a prime ideal of height 1 in R[X].
If QN R =(0) then QK[X] is a height 1 prime of K[X], where K is the quotient field
of R[X]. But K[X] is a Noetherian domain, hence an S-domain. Thus QK[X][Y]
is a height 1 prime ideal of K[X][Y]. But then QK[X][Y]INR[X,Y]=Q[Y] is a
height 1 prime of R[X, Y]. If QNR =P, then PC M for some maximal ideal M of
R. Now since Q is a height 1 prime Q= P[X] and PR[X] ¢ M[X], it follows that
OR[X]px; is a height 1 prime ideal of R[X]yqx; which is an S-domain, so
QR[X1aqx;[Y] is a height 1 prime of R[X]yqx,[i’]. But then OR[X1ygx)1Y1N
R[X, Y]=Q[Y]=QlY] is also a height 1 prime of R[X, Y]. So R[X] is an S-domain.

The last conclusion follows immediately from the fact that the maximal ideal of
R(X) are of the form M(X) when M is a maximal ideal of P and also that

R{XTaxy = R(X)mx)-
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Corollary 3.4. Let R be a Priifer domain, then R[X] is an S-domain.

Proof. Since R is a Priifer domain, R(X) is a Priifer domain by Proposition 33.4
of [7]. Now for each maximal ideal M of R (R(X)rx)= R[X]ax) 50 R[X]ax 18
a strong S-demain and hence an S-domain, but then by Theorem 3.3 the conclusion
follows.

One sees readily that R(X) is a strong S-domain if and only if R[X]yqyx; is a
strong S-domain for each maximal ideal M of R. But then the following question
comes to mind: Is R[X] a strong S-domain if and only if R(X) is a strong S-domain?

It is very clear that if R[X] is a strong S-ring, R(X) is a strong S-ring but it is
in other direction that deep waters run. For any pair Q,C O, of adjacent primes of
R[X] we are unable to prove that Q;[Y]C Q,[Y] are adjacent primes of R[X, Y]
without any condition on R. In fact we show that the condition that R is a Priifer
domain is sufficient.

Theorem 3.5. Ler R be a Priifer domain and let X={X,, ..., X,,} be a finite set of
indeterminates over R. Then R[X] is a strong S-domain.

Proof. Let Q;CQ, be a adjacent primes in R[X] and let P,=Q,NR. Let R=R/P,,
P,=P,/P,, S=R\P,, T=R\ P and V=R;/P,R.

Then (R[X])s = (R)s[X]=V[X].

Now V' is a valuation ring since R is a Priifer domain. But, more than that, we
claim  that dim V’<1. This follows since Q,/Q,NR=P, and the pair
(R Py, R[X]'Q,) has the going down property because R/P, is a Priifer domain.
Therefore, ht(P,. P)) <1 since ht(Q,/Q,) = 1.

Next, if we know that V[X] is a strong S-domain, the proof ot the theorem would
be complete. For the prime ideals Q;=Q;/P,[X] in R[X]/P,[X]1=R[X] lift to
adjacent prime ideals in V[X] since Q-NT=0. But V[X] a strong S-domain im-
plies that Q,V[X, Y]C O, V[X, Y] are adjacent primes in V[X, Y]. But then it is
immediate that Q; R[X, Y]C Q,R[X, Y] must be adjacent primes of R[X, Y].

Therefore, let us show that if V is a valuation ring of rank 1 (that is, dim V'=1)
then F[X] is a strong S-domain (note the 0-dimensional case is obvious).

Let Q,CQ be adjacent primes of V[X] and P,=Q,NV. We may assume
Q, #(0) for otherwise ht Q> =1 and, since V'[X] is an S-domain by Corollary 2.13,
ht Q:iY]=1in V[X, Y]. Moreover, we may assuine P, # (0) since otherwise Q, and
Q> would lift 10 adjacent primes in the strong S-domain K{X] and, in turn,
O ALY, Y] and Q.A[X, Y] are adjacent primes in K[X, Y]. But then Q,V[X, Y]
and Q- VX, Y] must be adjacent primes in V[X, Y].

Thus, we have reduced to proving the theorem in the case that V is valuation ring
ot dimension one, Q,C Q, are adjacent primes of V[X] such that Q;N V=(0) and
Q.11 =M, the maximal ideal of V.

A\ vonsequence of Nagata’s theorem [14] is that all saturated chains of prime



Strong S-domains 255

ideals of V[X, Y] between Q,[Y] and (0) have the same length. Thus, Q,[Y] and
Q,[Y] will be adjacent primes if and only if ht Q,[Y]=1+ht Q,[Y]. Let us use
Nagata’s theorem to determine each height:

ht Q,[Y]=ht M +trdegy VIX, Y] —trdegy, VIX, Y1/ 1 Y]
=14+ (n+1)-(trdegy,p VIX1/Q,+ 1)
=n+1-trdeg, VIX1/0Q,,
ht Q,[Y]=trdeg, V[X, Y] -trdegy, VIX, Y1/Q,[Y]
=n-trdegy, V[X)/Q,.
Thus, we see that Q,[Y] and Q,[Y] are adjacent primes if and only if
trdeg, V[X)/Q,=trdeg,,y VIX1/0;.

To prove this equality we apply Nagata’s theorem again. Let A= V[X]/Q, and
P=0Q,/Q,. Since Q;NV=(0), V can be embedded in A and PN V=M. Since Q,
and Q, are adjacent primes of V[X],

ht P=1
=ht M+trdeg, A—-trdeg, yA/P
=1+1trdeg, V[X1/Q,—trdeg, » V[X]/0:.

In other words, the two transcendence degrees are equal, Q,[Y] and Q,[Y] are
adiacent primes in V[X, Y], and the proof is complete.

Corollary 3.6. Suppose that R is a Priifer domain. Then any finitely generated ex-
tension Rla,,...,a,] is a strong S-ring.

Proof. The ring R[a,, ...,a,] is a homomorphic image of R[X),..., X,].

Definition 3.7. The little rank of a prime ideal P of a ring R is the length of the
shortest saturated chain descending from P to a minimal prime of R.

Let us extend Nagata's theorem [14] slightly.

Theorem 3.8. Let R be a Priifer domain and Q be a prime ideal of R[X,, ..., X,]
of finite height, then little rank Q =ht Q.
Proof. Let QN R =P, then ht P is also finite, since
ht O=ht PLX|, ..., X,] + ht(Q/P[X,,..., X,]) by Theorem 1 [3]
>ht P[X,,..., X,]=ht P.
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Now to prove that little rank Q=ht Q it is enough to prove
little rank QRp[X,, ..., X,]=ht QRp[X), ..., X,].

Hence we may assume R is a valuation ring of finite rank. But now by Nagata’s
theorem we get the desired conclusion.

Corollary 3.9. Under the hypothesis of Theorem 3.8 all saturated chains of prime
ideals of R{X,,..., X,] descending from D to (0) have the same length.

Consequently, if R is Priifer domain in which each prime ideals has finite height,
then R[X,,..., X,] satisfies the saturated chain condition, that is, if PCQ are
prime ideals of R[Xj,..., X,], then all saturated chains of prime ideals between ¥’
and Q have the same length.

Definiiion 3.10. If R is a domain and k is a nonnegative integer such that for each
valuation overring V of R dim V <k and there exists at least one valuation overring
whose dimension is exactly equal to k, then we say that R has valuative dimension
k and write dim;- R = k. If no such & exists, then we say that dim, R = oo.

It is well known that dim R<dimy R. Moreover, if R[X|,..., X,] is a strong
S-ring for each positive integer n then dim R =dim, R provided dim, R<o. The
converse in general is false for there exist domains R for which dim R=dimy R
but R is not a strong S-domain. We give the following example.

Example 3.11. If R has finite dimension 5, and for each positive integer m,n,,
denotes the dimensions of R[X|,..., X,], then the sequence (n,)i~ is called the
dimension sequence of R and the sequence {d;};2, where d;=n;,—n_, is called the
difference sequence for R. Denote by .7 the set of sequences s={n;}>, of non-
negative integers such that the associated difference sequence {d;}/~, satisfies
i<d,.;<d<ny+1.Fors,,...,s,€ 7. 5;={n"}?,, sup{s,, ..., s} is defined to be
the sequence s={n;} 7, where n;=sup{n'",...,n{"} for each j=0.

In [1], it is proved that given a dimension sequence s and field K there is a domain
R with quotient field K and dimension sequence s. A method to construct a semi-
quasi-local domain that has s as its dimension sequence is also given. Following this
we construct the sequences {1,3,4,5,...} and {3,4,5,6,...} in .». By Lemma
+.7 and Proposition 4.8 ir: [1], there exist domains J,=R,+ M, and J,=R,+ M,
with respective dimension sequence {*,3,4,5,...} and {3,4,5,6,...}. Set R=J,NJ,
then by Theorem 4.10 in [!], J, and J; are quotient rings of R and s={3,4,5,6,...}
is the dimension sequence of R. Here dim R =3 and dim R[.X|, X;, X3] =6 so that
dim, R =3 [7]. As J, is a quotient ring of R and not a strong S-ring, R cannot be
a strong S-ring. The reason why J, fails to be a strong S-ring is because
draJ[X,} =3 and if J, were to be a strong S-ring dim J,[X,] would have to be 2.
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4. Strong S-rings and integral extensions

Here we study various conditions on the domain R or on its integral extension
T to study ascent and descent of the strong S-property. The proof of our next
lemma is an easy application of the incomparability property of integral extensions
and is therefore omitted.

Lemma 4.1. Let T be an integral extension of a domain R and P, C P, be a pair ¢f
adjacent primes of R. If Q; is a prime ideal of T such that Q;N\R=P;, i=1and 2,
then Q,C Q, is a pair of adjacent primes of T.

Theorem 4.2. Let T be an integral extension of a domain R. Suppose R is a
1-dimensional strong S-ring. Then T is a strong S-ring.

Proof. Since T is a integral over R, dim T=dim R =1, therefore it is enough to
prove T is an S-domain. Let Q be a height 1 prime of 7 and P=QNR, then P#(()
and ht P=1. But R is l1-dimensional so ht P must be exactly 1. Now R is an
S-domain hence PR[X] is a height 1 prime of R[X]. Also T integral over R implies
T[X]is integral over R[X]. Moreover, QT[X] lies over PR[X] so that ht OT[X]=1.
But 1<ht QT[X]=<2 always holds so that ht QT[X]=1; consequently, 7T is an
S-domain.

Corollary 4.3. Let R be a strong S-domain, P a prime ideal of R of depth <1. If
T is an integral extension of R and Q is a prime ideal of T such that QNR =P, then
T/Q is a strong S-domain.

Proof. R/P is a 1-dimemsional strong S-domain and 7/Q is an integral extension
of R/P, therefore by Theorem 4.2 T/Q is a strong S-ring.

Corollary 4.4. Let R be a strong S-domain of dimension 2 and P be a prime ideal
of height 1. If T is an integral extension of R and Q is a prime ideal of T such that
QONR=P, then T/Q is a strong S-ring.

Proof. Since R/P is a domain of dimension =< and 7/Q is integral over R/P,
Corollary 4.3 gives 7/Q is a strong S-ring.

Theorem 4.5. Let R be a 2-dimensional integral domain and T an integral extension
of R such that T is an S-domain. Then if R is a strong S-ring, T is a strong S-ring.

Proof. Let Q,CQ, be a pair of adjacent primes of T and Q;NR=P;, i=1,2.
Without loss of generality we may assume Q, #(0), since if Q;=(0), then Q, is 2
height 1 prime of T and by hypothesis T is an S-domain, therefore (0)C Q,[X] arz
adjacent primes in T[X]. Now ht P;=ht Q; and 0+ Q, CQ, are adjacent primes,
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hence ht Q, =i for i=1,2. But then ht P,<2 since dim R=2, it follows ht P,=2.
As P,CP,, ht P, has to be 1. Thus P,C P, are adjacent primes of R. But R is a
strong S-ring implies P;{X]C P,[X] are adjacent primes of R[X]. Since Q,[X ]
R[X]=P,[X], i=1,2, by Lemma 4.1 Q,[X]CQ,[X] are adjacent primes of T[X].
Thus T is a strong S-ring.

Theorem 4.6. Let R be a domain and T an integral extension of R. Then if T is a
strong S-domain, R is a strong S-domain.

Proof. By passage to homorphic images, it is enough to prove the following:

If T is integral over R and T is an S-domain, then R is an S-domain.

So, let P be a prime ideal of R of height 1. Then by Theorem 38 [10],
l1<ht P[X]=<2. If ht P[X] <2, then ht P[X]=1 and we are through. If ht P[X]=2
then, as T[X] is integral over R[.X] is integral over R[X], there exists a prime ideal
Q* of T{X] such that ht O9*=2 and Q*NR[X] = P[X]. Let Q=Q*NT in T then
Q@) and ht Q<1, Q*NR=Q*NR[X]NR=P{X]NR=P, QNR =P, and P#(0).
It now follows that ht Q=1. As T is an S-domain, bt Q[X] is 1. Hence Q[X]C O*.
But then P[X]C QIX]NR[X]C Q*NR[X]. Therefore P[X]C QIX]NR[X]C P[X]
implies Q[X]NR[X]=P[X]. Thus Q[X] and Q* both lie over P[X] which is not
possible by INC. Thus R is an S-domain.

Corollary 4.7. If the integral closure R of a domain R in its quotient field K is a
strong S-domain, then R is a strong S-domain.

Corollary 4.8. Ler R be a 1-dimensional strong S-domain and suppose that

XXy, .... X,,} is a finite set of indeterminates over R. Then R[X] is a strong
S-domain.

Proof. Since R is a 1-dimensional strong S-domain, dim R[X,]=2 so that the
integral closure of R is a Priifer domain by Theorem 30.14 of [7]. Thus,
RIX,,..., X,] is a strong S-domain by Theorem 3.5 and Theorem 4.6.

Theorem 4.9. Let R be an S-domain and T an integral extgension of R. Then, if
(R. Ty satisfv the GD-propertyv [S), T is also an S-domain.

Proof. Suppose Q is a height 1 prime of 7 and QNR =P then ht P=1 by GD and
LO. Now R is an S-domain, thus ht P[X]in R[X]is also 1. As T[X] is integral over

R[X]and Q[X]NR[X]=P[X], ht Q[X]=<1. As OlX]1#0,ht Q[X]=1.Thus T is an
S-domain.

Corollary 4.10. If R is un integrally closed S-domain and T is integral extension of
R. then T is an S-domiain.
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Corollary 4.11. If R is an S-domain and T is a flat R-module such that T is integral
over R, then T is also an S-domain.

Proof. The GD-property holds.

Proposition 4.12. If R is a GD-strong S-domain and T is integral over R then T is
a strong S-ring.

Proof. Let Q be any prime ideal of T and QN R = P, then T/Q is integral over R/P
and R/P is GD [5]. Therefore 7/Q is an S-domain by Theorem 4.6. Since O was
any prime ideal of T it follows T is a strong S-ring.

Theorem 4.13. Let R be a strong S-domain, T an integral extension of R such that
(R, T) satisfy the GB-property [15). Then T is a strong S-ring.

Proof. Let P*C Q* be a pair of adjacent primes of T and P*NR=P, Q*NR=0.
Then by definition of the GB-property PC Q is a pair of adjacent primes of R. But
R is a strong S-ring so that P[X] C Q[X] is a pair of adjacent primes of R[X]. hence
by Lemma 4.1 P*[X]C Q*[X] are adjacent primes in 7[X]. Thus T is a strong
S-ring.

Corollary 4.14. Suppose that R is a strong S-domain. Moreover, suppose R is a
GB-ring. Then R is a strong S-ring, where R denotes the integral closure of R.

Theorem 4.15. Let R be a domain with quotient field K and R its integral closure
in K. If R is a PYMD and T any integral extension of R then T is an S-domain.

Proof. Let Q be a height 1 prime of 7. To prove Q[X] is a height 1 prime of T[X],
we use the following result of Seidenberg [17]: QT[X] is a height 1 prime if each
prime Q of T the integral closure of T in the quotient field L of T such that
QNT=0Q, is such that Ty is a valuation ring. So let Q be a prime ideal of T such
that ONT=Q. Since ht 0=1, ht O =1 also. Furthermore, ht(QNR) =1, since the
GD-property holds for (R, T). Thus QNR is a t-ideal of R and R is a PVMD. It
follows that Rg\(gng, is a valuation ring of rank 1. If S=Tg\ ong), then S in in-
tegral closure of Rgz\(gng) in L and QS is a maximal ideal of S. Moreover, S is a
Priifer domain being the integral closure of a valuation ring and therefore Sy is a
valuation ring of rank 1. But

Sos =Trv@nmloTryonn = To
so that TQ is a valuation ring. Hence Q[.X] is a height 1 prime of 7[X] and T is an.

S-domain.

Remark 4.16. The proof of Theorem 4.15 only required R to be a P-domain in th:
terminology of [13].
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We have seen in Theorem 4.15 that if the integral closure of a domain R is a
PMVD, then any integral extension of R is an S-domain, in particular R itself is an
S-domain. In fact, if R were a PVMD to begin with and P a height 1 prime, then
Rp is a valuation ring of rank 1 and PRp[X] is also a height 1 prime of Rp[X] as
Rp is a strong S-domain so an S-domain. Hence PRp[X]NR[X]=PR[X] is also a
height 1 prime in R[X]. Thus a PVMD is an S-domain. We show by an example
that a PVMD may not be a strong S-ring. The construction of this example is due
to G. Evans.

Example 4.17. Let R be a domain which is not a strong S-ring. Consider T=Z/(p)
or T=Z according as the characteristic of R is a nonzero prime integer p or zero.
If { X }q¢r is the set of indeterminates over R, indexed by elements of R then con-
sider T[{X,} 4 g} =S. There is a homomorphism f: 5—22% R so S/ker f=R. Now
S is a PVMD (in fact a Krull domain), but its homomorphic image S/ker r is not
a strong S-ring. Thus, S cannot be a strong S-ring.

Proposition 4.18. Suppose that T is an integral domain integral over a Priifer
domain R. Then T and T|X,, ..., X,) are strong S-domains.

Proof. Let R be the integral closure of R in the quotient field of 7. Then R is a

Priifer domain integral over T. The conclusion follows immediately from Theorems
3.5 and 4.6.

The following corollary is also immediate.

Corollary 4.19. Suppose that R is a domain with quotient field K and that R, the
integral closure of R in K, is a Priifer domain. Then R and each domain integral
over R is a strong S-domain.

Proposition 4.20. Suppose that R is a Noetherian dom.in, and that T is a domain
integral over R. Then T and T{X,,..., X,] are strong 3-domains.

Proof. We need only show that T is a strong S-domain for 7[X] is integral over
the Noetherian domain R[X]. If Q is any prime ideal of T and P=QNR, then 7/Q
is integral over R/P and R/P is Noetherian. Hence it is enough to prove T is an
S-domain. Now R Noetherian implies that the integral closure R in the quotient field
of R is a Krull domain by the theorem of Mori and Nagata [6]. Then Theorem 4.15
implies that T is an S-domain.

Corollary 4.21. Suppose that R is a Noetherian domain and that R is the integral
closure of R in the quotient field of R. Then R is a strong S-domain.

Note that the ring R in Corollary 4.21 is in fact a Krull domain [6] but Example
4.17 show that an arbitrary Krull domain may not be a strong S-domain.
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Proposition 4.22. Suppose that R is a coherent domain and that T an integral
extension of R. Then, if R, the integral closure of R, is e finite R module, then T
is an S-domain and consequently R is an S-domain.

Proof. Since R is coherent and R=R|[a,, ..., a,] is a finite R-module, it follows by
Corollary 1.4 [10] that R is coherent. Thus R is an integrally closed coherent domain
and hence a PVMD. It follows by Theorem 4.16 that T is an S-domain and by Pro-
position 4.6 R is an S-domain.

The following example shows that a strong S-domain may not be coherent.

Example 4.23. Let V be a nontrivial valuation ring with quotient field L and V is
of the form V=K + M, K being a subfield of L and M the maximal ideal of V. Let
R be a subring of K which is a Priifer domain and k its quotient field. Also suppose
that K/k is an algebraic extension but [K : k], the degree of K over &, is not finite,
then R, =R+ M cannot be coherent. (Or else we may suppose that M is a non-
finitely generated ideal of R, then also R, is not coherent.) We shall prove in the
next section that R, is a strong S-ring.

5. Strong S-rings and D+ M construction [9]

Let V be a nontrivial valuation ring with quotient field L, and assume that V is
of the form K+ M, where K is a field and M is the maximal ideal of V. Let R be
a domain that is a proper subring of K, and let R, =R + M. Also suppose that & is
the quotient field of R.

Theorem 5.1. R, is a strong S-ring if and only if R is a strong S-ring and K/k is
an algebraic extension of k.

Proof. Let R, be a strong S-domain. Since R=R,/M, R is a strong S-ring for
homomorphic images of strong S-rings are themselves strong S-rings. By Theorem
5.41in [9], dim R, [X] =dim R[X]+dimn: V +inf(d, 1) where d denotes the transcend-
ence degree of K/k. But R, and R are both strong S-rings, it follows that

dimR,[X]=dimR,+1 and dim R[X]=dimR+]1.

Hence dim R, +1=dim R+ 1+dim V+inf(d,1), but dimR,=dimR=dim V' by
the Theorem 2.1 [9]. So dimR;+1=dim R+ 1+inf(d,1). This implies that
inf(d, 1)=0 and therefore d=0. Therefore K/k is algebraic.

Conversely, suppose R is a strong S-ring and K/k is an algebraic extension. Let
Q,C Q, be adjacent primes of R;. Then three different cases may arise.
Case 1. If MC Q,,Q, then Q;=P;+ M, where P; are prime ideals of R. Clearly
P, C P, are adjacent primes of R, for if P,C PC P,, then Q=P+ M is a prime ideal
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of R, and Q,C QCQ,. But then Q,CQ, are adjacent primes of R,, either Q;=Q
or Q,=0Q; consequently P=P, or P=P,. Now R is a strong S-ring sc that
P,[X]C P;[X] are adjacent primes of R,[X] because Q,[X]NR[X]=P;[X].

Case 2. 1f Q,C M and M C Q,, then as Q,C (, is a pair of adjacent primes of R,
either Q, =M or Q, =M. In either case the argument in case 1 completes the proof.
Case 3. If Q,, Q, are both contained in M, then they are both prime ideals of V,
but V is a valuation ring and hence a strong S-ring. Therefore Q,[X]C Q,[X] are
adjacent primes.

Theorem 5.2. Let R be a domain with quotient field K and R, =R + XK[X]. Then
R, is a strong S-ring if and only if R is a strong S-ring.

Proof. Let R, be a strong S-ring. Then, as R, yxx;=R it follows that R is a
strong S-ring.

Cenversely, let R be a strong S-ring and Q; C Q, be adjacent primes of R,. We
consider the following two cases:
Case 1. If Q, and Q- are not both principal, then Q,=P;+ XK[X], where P; are
prime ideals of R. Clearly P,C P, is a pair of adjacent primes of R. But R is a
strong S-ring, so P,[Y]CP,[Y] are adjacent primes in R[Y]. As Q,[Y]NR[Y]=
PIY]. Q,[Y]CQ,[Y] are adjacent primes in R,[Y].
Case 2. If Q, is not a principal ideal but Q, is a principal ideal then Q, is a height
I maximal ideal of R, such that Q-N R =(0), hence Q;NR =:0) forcing Q, =(0). If
Q. =R, where f(x) is irreducible in K[X] and f(0)=1, then Q,=f(x)R, =
O-K[XINR, and Q- is a height 1 prime ideal of K[X]. d ow K[X] is a strong
S-ring, so that Q.[Y] must be of height 1 hence (0)C O-[Y; are adjacent primes.

We now examine the behaviour of the strong S-property in two other construc-
tions, which are similar to the previous ‘R + M’ constructicn. The details of these
constructions are given in [8] and [12].

Let L be a field and K a subfield of L and { ¥}, a finite collection of nontrivial
valuation rings of L such that (i) V, ¢V, for i#/; and (ii) each V, is of the form
K+ M, M, the maximal ideal of V.. Le. D; be subrings of K with quotient fields
koand set J,=D+ M, J={  Jand V=[", V.. It N,=VNM,, then H,=M,NJ
and M= ﬂ M, and then

M=) (JﬂM,):Jn(ﬁ M,) (M,
[ SR i1

Also M = ﬂ . V,. Denote by C) the set of all primes that are contained properly
in some H, and C, the set of all primes of J that contain some H,.

Theorem 5.3. J is a strong S-ring if and only if each D, is a strong S-ring, and K/k,
s an algebraic extension of k, for each i.
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Proof. Suppose first that J is a strong S-ring. To prove that each D, is a strong
S-ring, we first note that by Theorem 4.10 of [1} J,/M;=D;=J/H;. Moreover, J,
is a quotient ring of J. Now since J is a strong S-ring, it follows J; is a strong
S-ring. But then D; is a homomorphic image of J;, hence D; is a strong S-ring and
by Theorem 4.1 K/k; is a algebraic over k;.

Conversely, let D; be a strong S-ring and K/k; be algebraic over k;, then by
Theorem 5.1 J; is a strong S-ring for each i. Moreover, for each maximal ideal M
of J, M contains a unique H; and there is a prime ideal P; of J; such that
P;NJ =M. Moreover, each J; is a quotient ring of J and Jy;=(J;)p,. Thus, Jy, is a
strong S-domain for each maximal ideal M of J and by Proposition 2.3, J is a strong
S-domain.

Remark 5.4. Observe that in [3] Example 3 shows that if D[X] is a strong S-ring,
(D + M)[X] need not be a strong s-ring.

Let V; be independent valuation domains with quotient field L and K; be the
residue field of ¥, for all i, 1 <i<n. Let K be embedded in ¥ _, K; via the diagonal
map and D a subring of K. Set J;=D+M,, J={\"_,J, V=, V;. Then

J= ﬂ J,' = D+ n Mi
1=1 1=1
is a domain with quotient field L. Assume & is quotient field of D. Then we have:

Theorem 5.5. J is a strong S-domain if and only if D is a strong S-domain and K/k
is algebraic.

Proof. Let D be a strong S-ring and K/k an algebraic extension. Suppose P,C P,
are adjacent primes of J. Now each prime ideal of J compares with /= ﬂ,"_,, M,
[12]. Once again three cases arise.

Case 1. If ICP,CP,, thenl= ﬂMi C P, implies there exists an / such that M, C P,.
Therefore M;C P,C P, and there exist prime ideals Q;, and Q, of D such that
P,=0Q,+1I, P,=0Q,+1. Since P,CP, are adjacent primes, Q,CQ, are also
adjacent primes of D, it then follows for each fixed i that Q+ M, CQ,+ M, are
adjacent primes in J;. But Q;+ M, C P,as M;CP;, j=1,2,and P;=Q;+ICQ;+ M,.
Therefore P;=Q,+M,. Now J, is a strong S-ring implies (Q,+M)[X]C
(Q,+M,))[X] are adjacent primes of J)[X]. As (Q,+M)[X]=P,[X] therefore
P.[X)C P>[X] are adjacent primes of J[.X].

Case 2. If PCIC P,, then I C P, implies there exists an integer / such that M, C P,.
Therefore P, C M;S P,, it now follows that P,c M,N([),.,Ji)C P>. But P,CP-
are adjacent primes of J, therefore either

P,:M,n(ﬂ JA) or PzzM,ﬂ(ﬂ jk)
Az ) Y,

Az
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If P,=M;N(),.,Jo), then as ICMN([),..; /i), I=P,. Hence P =M, If
P,=M;N((,., /i), then as M,CP,=M,N([),,,J)CM;, P,=M,. Thus either
P,=M; or P,=M; and case 1 occurs. Therefore P,{X]1CP,[X] are adjacent
primes.
Case 3: If P,CP,cI=()", M;, then P, and P, are 1deals in each J; and prime
ideals of V; for each i. Because if y€ V; and x P; choose m; e M;\ P;, then xy e J;
and m; € J; implies xym; = x(ym;) € P; but m; ¢ P; implies xy € P; thus P; and P, are
primne ideals of ¥;. But then V; is a valuation ring anc hence a strong S-ring. Thus
P,[X]C P,[X] are adjacent primes of J[X].

Conversely, let J be a strong S-ring, then since D is homomorphic image of J,
D is a strong S-ring. Now by invoking Theorem 5.1 for each fixed i, J; is a strong
S-ring and K/k is an algebraic extension of k.
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