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Preface 

The PHYSTAT05 Conference was held in Oxford on September 12th to 15th, 2005. Its theme was "Statis
tical Problems in Particle Physics, Astrophysics and Cosmology." It was the fifth meeting in a sequence that 
started with the Confidence Limits Workshops held at CERN and Fermilab in 2000, followed by Conferences 
in 2002 at the Institute for Particle Physics Phenomenology in Durham, UK, and in 2003 at SLAC. While 
the first 3 meetings had been attended largely by Particle Physicists, at SLAC and at Oxford there was also 
involvement of Astrophysicists and Cosmologists. The SLAC and Oxford meetings really benefited from a 
strong presence of statisticians. They enhanced the usefulness of the Conferences in many ways: they were 
involved in the planning of the meeting, gave invited and contributed talks, and were simply available to 
discuss statistical issues with Physicists either during or in the breaks between the sessions. 

We were delighted to have the Keynote Address given by Sir David Cox. Other invited talks were divided 
almost equally between Statisticians and Physicists, and there were parallel sessions for the contributed talks. 
There was also time for a poster session. A Panel Session was devoted to discussion of questions submitted 
in advance by PHYSTAT05 participants, and the meeting ended with summary talks given by a Statistician, 
an Astrophysicist and a Particle Physicist. The transparencies of most of these talks are available at the 
Conference web-site: http://www.physics.ox.ac.uk/phystat05 . 

The Conference would not have been possible without the considerable help and effort of many people. 
Some of these are acknowledged in the Conference after-Dinner talk, extracts of which appear below. We 
would also like to thank Beverly Roger: the fact that the Panel Discussion appears in these Proceedings is 
due to her amazing ability to interpret and give meaning to the audio recording of that session. 

We hope that these Proceedings will provide a useful record of most of the talks at the Conference. Thanks 
are due to members of the international Scientific Committee who reviewed the articles appearing here. In 
several cases this involved very active participation in the production of the final text. 

Final thanks go to all the participants in PHYSTAT05 for keeping the speakers and Panel members on 
their toes, and helping to make it such a productive and interactive meeting. 

Louis Lyons and Mtige Karagoz Unel 

Par t of talk by Louis Lyons at the Conference Dinner 
in the Jesus College Dining Hall 

First I would like to welcome you all to Jesus. The College was founded by Queen Elizabeth I in 1571, 
just a few years before the publication of his first paper by our keynote speaker, Sir David Cox. 

The Hall is adorned by the portraits of Founders, Benefactors and famous old members. The actual 
work of founding the College was performed by Hugh Price, whose small portrait is below the very large one 
of Elizabeth. The Queen however insisted on being 'the first author' on the publication of the foundation 
document of the College. Her portrait is by Nicholas Hilyard, who was a famous miniature painter. This was 
his largest miniature portrait. 

A famous old member depicted here is Sir Harold Wilson. He was well-known in being a predecessor of 
Sir David as President of the Royal Statistical Society. He also found time to be Prime Minister. 

I feel that on an occasion like this it is appropriate to quote from "The Good Book". For those of you 
with a different background or education, I should explain that by "The Good Book" I of course mean the 
one that I wrote on "Statistics for Particle and Nuclear Physicists". On the inside cover, there is a quote 
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overheard at an international conference: "This experiment was inconclusive so we had to use statistics." I 
didn't hear anyone say this at PHYSTAT05, but we did have some very enlightening talks. 

So I really want to thank all our invited speakers, who put so much effort into their talks. The success or 
otherwise of the Conference is largely due to them. Especial thanks go to Nancy Reid, Andrew Jaffe and Gary 
Feldman who are undertaking the task of summarising the Conference in the concluding talks tomorrow. We 
are also very grateful to the Statisticians who devoted time, effort and patience to explain statistical issues to 
physicists, both in their talks and in the numerous discussions that took place between the sessions. 

I would also like to thank the speakers of the contributed talks and those who produced posters. We 
attracted so many presentations that it was necessary to have parallel sessions. I think we were all sorry that 
we could not be in more than one place at a time. Thanks are due in advance to all speakers who will send in 
their contributions for the Proceedings by the deadline. The Chairpersons of all the sessions did an admirable 
job in keeping speakers and discussions within the time constraints imposed by a very tight programme. 

The International Committee (whose members are listed at the end of these Proceedings) was very helpful 
in the planning of this meeting. I feel very fortunate to have had access to this source of advice. An enormous 
amount of work was undertaken by the local Committee of Andy Carslaw, John Cobb, Sue Geddes and Pete 
Gronbech. Especial thanks go to Sue. Apart from taking on the bulk of the organisation, she also dealt with 
the numerous requests from the Conference participants. I think she had an average of about i~l e-mails per 
person. She coped with all this with great efficiency and good humour. Many thanks Sue! 

I would also like to mention Emily Down who undertook the work of arranging that the talks were ready 
for presentation at all the sessions. With a tight time schedule it was important that this was efficiently done, 
and Emily certainly did that. 

The Conference would not have been possible without the financial support of PPARC, the Institute of 
Physics, the Royal Statistical Society, the Oxford Statistics Department and the Astor Fund - we appreciate 
their help. Oxford Particle Physics provided great logistic support. Thanks are especially due to Professors 
Brian Foster and Susan Cooper, who were very encouraging and supportive of the idea of having this Conference 
here in Oxford. Brian was also responsible for arranging for the musicians for the excellent Concert in the 
Holywell Music Room. 

I am deeply grateful to my wife Elaine for her ideas of the visit to Bletchley Park and of having a concert 
in the Holywell Music Room, and even more so for putting up with me during the period when I was arranging 
the Conference. I promise her not to arrange another Conference, at least in the period until I retire. 

Finally I thank all of you for attending the Conference and contributing to its success. I hope you are 
finding it stimulating and productive. 
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FREQUENTIST AND BAYESIAN STATISTICS: A CRITIQUE (KEYNOTE ADDRESS) 

D.R. COX 

Nuffield College, Oxford 0X1 INF, UK 

E-mail: david.cox@nuf.ox.ac.uk 

The broad distinctions between the frequentist and Bayesian approaches to statistical inference are outlined and some 
brief historical background given. The advantages and disadvantages of the frequentist discussion are sketched and 
then two contrasting Bayesian views given. The difficulties with the notion of a flat or uninformative prior distribution 
are discussed. 

1. Introduction 

There are two broad approaches to formal statistical 
inference taken as concerned with the development 
of methods for analysing noisy empirical data and 
in particular as the attaching of measures of uncer
tainty to conclusions. The object of this paper is to 
summarize what is involved. 

The issue is this. We have data represented col
lectively by y and taken to be the observed value 
of a vector random variable Y having a distribu
tion determined by unknown parameters 9 = {ip, A). 
Here ip is a parameter of interest, often correspond
ing to a signal whereas A represents such features as 
aspects of the data-capture procedure, background 
noise and so on. In this, probability is an (idealized) 
representation of the stability of long-run frequen
cies, whereas tp aims to encapsulate important un
derlying physical parameters that are free from the 
accidents of the specific data under analysis. 

How should we estimate ip and how should we 
express our uncertainties about ipl 

In the following discussion we assume that the 
probability model correctly represents the underly
ing physics. This means that issues of model criti
cism and possible model reformulation that arise in 
many other applications of statistical methods can 
be disregarded. 

2. Two Broad Avenues 

There are two broad routes to an answer, both with 
variants. 

In the first, the so-called frequentist approach, we 
continue to use probability as representing a long-run 
frequency. Because ip is typically an unknown con
stant, it is not in this setting meaningful to consider 
a probability distribution for ip. Instead we mea

sure uncertainty via procedures such as confidence 
limits and significance levels (p-values), whose be
haviour is calibrated by their appealing properties 
under hypothetical repetition. In that the procedure 
is calibrated by what happens when it is used, it is 
no different from other measuring devices. 

In the second approach, we do aim to attach a 
probability distribution to the unknown I/J. For this 
it is essential to extend or change the notion of prob
ability so that it is concerned with uncertainty of 
knowledge rather than with variability of outcome. 
Such an approach involves what used to be termed 
one of inverse probability; it is now generally termed 
Bayesian. 

Note that even in those situations where there 
is a collection of similar parameters that can be re
garded as having a probability distribution in the 
frequency sense it is virtually always necessary to 
specify their distribution in terms of hyperparame-
ters and a part of the problem of inference is trans
ferred to that for the hyperparameters. 

3. A Simple Preliminary 

The essence of the Bayesian argument is as follows. 
Suppose that the possible sets of data that might 
arise are X>i,X>2,- • • and that the possible explana
tions are £\,£i, • •., and that all events listed have 
meaningful probabilities. Then 

P{£k\Vj) = P{£knVj)/P{Vj) 

= P(D j | £k)P(£k)/P(Vj) 

ex P(Vj | £k)P(£k). 

The proportionality is taken as the explanations vary 
for specified data and the relation has the normaliz
ing constant l/P(£j). The words used for the three 
terms in this last equation, which has the form of an 
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inversion equation, are respectively posterior proba
bility, likelihood and prior probability. 

Essentially the same relation holds for probabil
ity distributions and parameters in the form 

fe\Y(6\v)<xfY\e{v\9)fe(0). 

To obtain the posterior density of the parameter of 
interest we integrate out with respect to A. 

4. A Brief History 

These issues have a long history. Laplace used what 
are now called Bayesian arguments with a flat prior, 
whereas Gauss, especially in his work on the op
timally properties of the method of least squares, 
used frequentist concepts. The Irish algebraist Boole 
strongly criticized flat priors as representations of ig
norance or indifference and similar points were made 
later in the 19th century by Venn. By the end of the 
19th century inverse probability was widely regarded 
as unsatisfactory for inferential purposes. 

Pioneering papers on the formulation of sta
tistical inference by the geneticist and statistician 
R.A.Fisher, especially a major paper in 1922, laid 
the foundations for a frequentist theory. Some years 
later Neyman, then in Warsaw, and E.S.Pearson in 
London began a systematic development designed 
originally to clarify Fisher's ideas. Later, only partly 
because of personal friction between Fisher and Ney
man, the differences became accentuated and two 
broad but rather ill-defined schools of frequentist in
ference can be discerned. 

The view that probability is rational degree of 
belief following on from Laplace was studied in detail 
in a thesis by the economist John Maynard Keynes. 
The main work on this theme was done over the 
late 1920's and 1930's by the geophysicist H. Jef
freys and set out, in particular in a highly influential 
book The theory of probability in 1939. Discussion 
of how prior distributions might be determined in 
the absence of evidence have continued, the most 
notable work being that of J.M.Bernardo. A con
trasting view of probability as a degree of belief em
phasizes its personalistic character, in particular its 
link with personal decision making. An early influen
tial contribution was by F.P. Ramsey. Independent 
major systematic developments were by de Finetti 
and L.J. Savage. 

5. Outline of Frequentist Approach 

A summary of the frequentist approach is as follows. 
In most situations a directly frequency-based concept 
of probability cannot be applied directly to the un
known of interest, ip. Instead we introduce measures 
of security, p-values and confidence limits, whose in
terpretation is calibrated, as are other measuring in
struments, by their properties when used. In this 
particular context, use is assessed by considering hy-
pothetically how they perform when used repeatedly 
under the same conditions. The performance may be 
studied analytically or by computer simulation. 

In particular a confidence set specifies all those 
values of ip reasonably consistent with the data up 
to a specified level. In extreme cases, such sets may 
be the whole space or null, as when the data appear 
inconsistent with any possible value of ip. 

6. Critique of Frequentist Approach 

Major advantages of the approach are that it pro
vides a systematic approach to a wide range of statis
tical methods and one not requiring additional spec
ification beyond that of the probabilistic representa
tion of the data-generating process. It also gives a 
route to assessing methods that may have been sug
gested on relatively informal grounds. 

A key problem in principle in frequentist formu
lations is that of ensuring that the long-run used in 
calibration is relevant to the analysis of the specific 
data being analysed. A more immediate issue in ap
plying the ideas is that technically exact solutions 
are available only for a relatively limited class of sit
uations. Usually, approximations have to be used 
based on asymptotic analysis and often implemented 
by computer simulation. 

As an example of the last point, suppose that 
Y has a Poisson distribution with mean (7 + X)ts 
and that independently YB has a Poisson distribu
tion with mean MB, correspondingly to observation 
of first signal plus background and secondly to back
ground alone. Then if interest lies in ip = 7/A exact 
efficient estimation is possible based on the binomial 
distribution of Y given Y + YB which is a binomial 
distribution with parameter 

*s(l + ^) 
ts(l+il>)+tB' 

But if interest lies in ip* = 7 itself no formally exact 
solution is available and we have to use an approxi-
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mation, typically based on an asymptotic expansion. 
As with asymptotic expansions in other areas, some 
care is needed to ensure that the expansions yield 
good answers in the specific instance. 

For example, if the amount of information on 
background is relatively large, that is the correspond
ing errors in estimating A relatively small, the follow
ing approximate argument can be used. 

For given y, let p(y, ipo; A) be the p-value for test
ing ip = ipo, assuming A is known. Let A be an un
biased estimate for A with small variance v(X), all 
conditionally on y. Then a close approximation to 
the significance level adjusted for errors of estima
tion of A is p(y, ipo', A*), where 

~ v(\o)d2p/d\z 
2dp/d\ ' 

The final term has a direct generalization if A is a 
vector and may be evaluated at A = A. 

In particular for the above application with y = 
0, the p-value for testing ip = ip0 leading to an upper 
confidence limit for ip is 

exp{-ipQ - VBJtB + W ( 2 * B ) } -

7. Critique of Bayesian Methods 

To use Bayesian methods we have to extend the no
tion of probability so that we can specify a prior 
distribution for the unknown constant 6. That is we 
regard probability as measuring a degree of belief in 
an uncertain event or proposition. There are two 
radically different ways of doing this. 

The first approach is personalistic in which 
P(£ 11) denotes the degree of belief in £ held by 
a specific individual, conventionally denoted by You, 
given information X. There is no suggestion that two 
different people with the same background informa
tion will have the same probability. The emphasis 
is on trying to achieve self-consistency, so-called co
herency, in Your probability assessments. The sec
ond approach involves a notion of rational degree of 
belief and, commonly although not necessarily, an 
attempt, following Laplace, to address the question 
of assessing the evidence in a specific set of data by 
using a prior expressing a notion of indifference or 
ignorance in order to focus attention on the data. 

These are to be regarded as two very different ap
proaches and the following comments address them 
separately. 

8. Personalistic Theory 

This approach has the ambitious aim, in particular, 
of introducing into the quantitative discussion uncer
tain information of a more general kind than is rep
resented by statistical data in the narrow sense. In 
theoretical discussion it is usually set out as part of a 
theory of personal decision making. Suppose, in or
der to simplify the discussion, that there is available 
a source able to produce events with any specified 
probability p. Then Your probability of £ is a value 
of p such that you are indifferent as between 

• a valuable prize if £ is true and zero if £ is 
false 

• the same prize if an event with agreed prob
ability p occurs and zero otherwise 

A certain kind of consistency of behaviour can 
be shown to imply that the laws of probability the
ory hold. Note though that this is not a theory of 
empirical behaviour based on what people actually 
do but rather a specification of how they would have 
to behave to be self-consistent. 

A very major difficulty with this as a basis for 
the public discussion of scientific evidence is that 
it treats personal intuition as on the same basis as 
evidence from hard data. More explicitly it treats 
all probabilities of, say, 0.5 as on an equal footing, 
whether they are based on careful stable measure
ments of frequency or on the most transitory of per
sonal judgements. In some situations prior distribu
tions based on a careful summary of expert judge
ment may be used quantitatively, but then scrutiny 
of their evidence-base is crucial. 

This is not to deny the relevance of personal 
judgement for the individual decision-maker. 

9. Probability as Rational Degree of 
Belief 

While the notion of rational degree of belief can cer
tainly be taken more broadly, for the most part it 
is associated with the use of priors that are in some 
sense flat, which aim to represent little or no prior in
formation and which therefore induce posterior dis
tributions having the same objective as frequentist 
methods, i.e. of summarizing what it is reasonable 
to learn from data plus assumptions about the struc
ture of the data-generating process. 
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It is generally accepted from various philosophi
cal standpoints that the notion of representing igno
rance as such by a flat prior is treacherous, although 
in some fields the use of relatively flat priors as non
committal is quite widespread. The following points 
arise 

• if 6 has a flat, i.e. effectively uniform, prior 
then ee has an exponential distribution, so 
that choice of functional form of parameters 
would be important 

• for a one dimensional parameter the Jeffreys 
prior, essentially uniform in a parameteriza
tion for which the Fisher information is con
stant, leads to a posterior distribution hav
ing very good frequentist properties 

• flat priors for parameters with a large num
ber of dimensions may give clearly unaccept
able answers. 

J.M. Bernardo has developed a systematic the
ory of reference priors. This is based on the notion 
of finding a prior weighting function that maximizes 
the expected discrepancy between prior knowledge 
and prefect knowledge obtained by a specified type 
of replication of the system. When the parameter 
space is finite it produces the maximum entropy prior 
of E.T. Jaynes and for a one-dimensional parameter 
the Jeffreys prior. Some difficulties are that when 
there are nuisance parameters 

• finding the prior weight is often complicated 
• the nuisance parameters have to be arranged 

in sequence of importance, even though none 
of them is of intrinsic interest 

• if the parameter of interest changes the 
whole prior structure may change 

• if the sampling rule or design changes the 
prior will in general change 

• it is emphasized that the prior weights are 
not to be thought of as prior probabilities, 
raising a question-mark over the interpreta
tion of the posterior 

• many of the formal simplifications arising 
from all calculations being probabilistic are 
lost. 

In general reference priors have some good fre
quentist properties but except in one-dimensional 
problems it is unclear that they have any special 
merit in that regard. 

10. Concluding Remarks 

In conclusion, the following points arise: 

• formal inferential aspects are often a rela
tively small part of statistical analysis 

• carefully used, the frequentist approach 
yields broadly applicable if sometimes 
clumsy answers 

• in simple problems specially chosen prior 
distributions yield essentially the same an
swer 

• in multiparameter problems flat priors can 
yield very bad answers 

• injection of further information quantita
tively through an informative prior may be 
helpful but scrutiny of the evidence base is 
essential. 

These issues have a very extensive literature. 
Traditional accounts of the two frequentist view
points are by Fisher1 and Neyman and Pearson2 

and of the two Bayesian approaches by Jeffreys3 and 
Savage4. An introductory comparative account is by 
Barnett5 and a systematic discussion by Cox and 
Hinkley6 and Cox7. The notion of reference priors is 
developed in detail by Bernardo8. 
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GENERALIZED FREQUENTIST METHODS FOR CALCULATING p-VALUES A N D 
CONFIDENCE INTERVALS 

LUC DEMORTIER 

The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA 
E-mail: luc@fnal.gov 

Generalized frequentism addresses problems that are not exactly solvable using conventional frequentism. Such prob
lems include the calculation of p-values and confidence intervals when nuisance parameters are present, or when 
interest is focused on a complicated function of the parameters of the model under consideration. Although gener
alized frequentist methods are based on exact probability statements, they do not necessarily yield coverage in the 
conventional sense. However, simulation studies indicate that these methods tend to overcover, and often surpass 
other available methods in terms of test power or interval length. 

1 Introduction 

An often challenging component of frequentist cal
culations is the elimination of nuisance parameters. 
There seems to be no method that is generally ap
plicable and at the same time theoretically guaran
teed to preserve exact coverage in all cases. However, 
a couple of likelihood-based methods are known to 
behave reasonably well in many situations. In the 
first method, called profiling, the likelihood is maxi
mized with respect to the nuisance parameters. The 
second method, marginalization, integrates the like
lihood over these parameters. Whichever technique 
is chosen, its coverage properties for the problem at 
hand must then be verified a posteriori. 

This paper aims to present a third approach, 
known as generalized frequentism.1,2 Its strategy is 
to extend the conventional definitions of p-values 
and confidence intervals in such a way that statis
tical problems involving nuisance parameters can be 
solved "exactly", i.e. using exact probability state
ments. The resulting generalized p-values and confi
dence intervals tend to behave well with respect to 
the usual frequentist definitions, hence their interest. 

2 Generalized p-Values 

Let X be a random variable with density f(x \ 6, v), 
where 9 is the parameter of interest and v is a nui
sance parameter. We are interested in testing: 

Ho : 0 < 90 versus Hx : 9 > 00. 

The usual way of solving this problem is to find a 
test statistic T{X), defined as a function of the data 
X which does not depend on unknown parameters, 
whose distribution is free of unknown nuisance pa

rameters, and which is stochastically increasing with 
9, i.e. such that the probability Pr (T(X) > t \ 9) 
increases with 9 for all t. One then calculates the 
p-value: 

p = Pr [T(X) > T(x)\H0], 

where x is the observed value of X. A small p-value 
indicates that the observed x does not support Ho. 

There are many problems for which test statis
tics as defined above simply do not exist. In these 
cases a solution can be found by extending the def
inition of test statistic to that of a generalized test 
variable, which is a function T(X, x, 9, v) of the ran
dom variable X, its observed value x (treated as a 
constant), and the parameters 9 and v, such that the 
following requirements are satisfied: 

1. T(x, x,9, v) does not depend on 9 or v\ 
2. The distribution of T(X, x, QQ,V) under Ho is 

free of v; 
3. Given x and v, Wr[T(X,x,0, v) > t\G] is a 

monotonic function of 9. 

The generalized p-value based on T(X, x, 6, v) is de
fined similarly to a conventional p-value: 

p = P r [T(X, x, 9, v) > T(x,x,9,u)\H0]. 

We emphasize that in this probability statement, 
only X is considered as a random variable, whereas 
the observed value x is held constant. Because of 
the way T(X, x, 9, v) is defined, this p-value is free 
of unknown parameters and allows the desired inter
pretation that small p corresponds to lack of sup
port for Ho- However, although p is based on an 
exact probability statement, the coverage probabil
ity Pr(p < a) may depend on nuisance parameters 
and needs to be checked explicitly. 
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There exists no general method that will system
atically yield all possible generalized test variables 
for a given problem. However, an easy and useful 
recipe is available.3'4 To formulate it we consider a 
slightly more general problem involving k unknown 
parameters ai,ct2, • • •, afc, and where the parameter 
of interest 9 is a function of the a*. We make the 
following assumptions: 

1. There exists a set of observable statistics, 
(Xi, X2, • • •, Xk), that is equal in number to the 
number of unknown parameters a*. 

2. There exists a set of invertible pivotsa, 
(Vii V2, • • •, Vfc), relating the statistics (Xi) to 
the unknown parameters (OJJ). 

The recipe is then as follows: 

1. By writing the parameter of interest, 6, in terms 
of the parameters a*, express 6 in terms of the 
statistics Xi and the pivots V*. 

2. Replace the Xi by their observed values Xi and 
subtract the result from 9. 

For a simple application of this recipe, consider a 
sample {Yi,V"2,. • •, Yn} drawn from Gauss(^,a), a 
Gaussian distribution with mean fi and width c, 
both unknown. We are interested in the ratio 9 = 
cr/fi. The sample mean and standard deviation are 
a set of minimal sufficient statistics for /z and en 

Xi 
1 " 

and X2 
\ 

±it,P<-x>Y 
The random variables 

and V2 = 

i = i 

nX? 
a/y/n 

relate the statistics (X\, X2) to (//, a), and have dis
tributions free of unknown parameters: 

Vi ~ Gauss(0,1) and V2 ~ Xn-i-

Applying the recipe yields a generalized test variable, 
which can be written in terms of (Vi, V2) or (Xi, X2): 

,_ . Jnx2 n a 
Xiy/V2~-X2V1 X1X2/X2 + H~X1' 

The first expression for T shows that its distribution 
under Ho is free of unknown parameters (the ob
served values xi and X2 being treated as constants), 
whereas the second expression shows that the ob
served value of T is zero. The property of stochastic 
monotonicity is somewhat harder to verify. 

2.1 Application to Poisson Significance Tests 

For a slightly more complex application we turn to 
a common problem in high-energy physics. Consider 
a Poisson process consisting of a background with 
strength b superimposed on a signal with strength s: 

fN(n;b + s) = Mi)2 e->-*. 
TV. 

The nuisance parameter b is determined from a Gaus
sian measurement x: 

fx(x;b) = 
1 (x~b\2 

/2^Ab 

It is assumed that b > 0 but that, due to resolution 
effects, x can take both positive and negative val
ues. We are interested in testing HQ : s = 0 versus 
H\ : s > 0. This problem has two parameters, 6 and 
s, two statistics, N and X, and two pivots: 

V = 
X-b 

Ab 
and V2 = FN(N;b+s), 

where FN(N; b + S) is the cumulative Poisson distri
bution with mean b + s. The pivot V\ has a Gaussian 
distribution with mean 0 and width 1. Due to the 
discreteness of the Poisson distribution however, V2 
is only an approximate pivot. This can be remedied 
by introducing a uniform random variable U between 
0 and 1, and replacing N by Y = N + U for the pur
pose of applying the recipe of section 2. This is noth
ing more than a mathematical artifice that provides 
us with an invertible pivot involving N. Indeed, the 
cumulative distribution of Y, say Fy(y, b + s), is an 
invertible pivot with a uniform distribution between 
0 and 1. Let G+(Y, V) be the inverse of that pivot, 
i.e. G+(y,V) = \i if and only if V = F+(y,fi). The 
generalized test variable is then: 

T = s + (x - ViAb) - G+(n,V2), 

and the generalized p-value is: 

p = F r ( r > 0 I s = 0). 

From the definition of T it can be seen that this p-
value is simply the probability for the difference be
tween a Gauss(x, Ab) and a Gamma(n, 1) random 
variable to be positive. Analytically, the p-value 
equals the tail area of a convolution between these 

"Pivots are random variables Vj that depend on the data Xj and the parameters a^, but whose joint distribution is free of 
unknown parameters. They are called invertible if, for fixed values of the Xj, the mapping (a^) —> (Vi) is invertible. 
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Figure 1. Comparative coverage of p-values. The dotted line 
represents exact coverage. In the top plot, the coverage of the 
prior-predictive p-value is indistinguishable from that of the 
generalized frequentist p-value. In the bottom plot, the cover
age of the generalized frequentist p-value is indistinguishable 
from exact coverage. 

random variables; for n > 0 it is given by: 

f+oc tn-ie-t l + e r f ( ^ ) 

and we define p to be 1 when n = 0. It is instruc
tive to compare this p-value with two other methods. 
The first one is quite popular in high-energy physics, 
and consists in calculating the p-value assuming a 
fixed value for the nuisance parameter b, and then 
to average this p-value over fx(x;b), considered as 
a prior distribution for b. This yields the so-called 
"prior-predictive p-value" ppp, which, for n > 0, is: 

PPP~ Jo W 1 + e r f ^ r 

The second method starts from the likelihood ratio 
statistic: 

sup fN(n;b + s)fx(x\b) 
a=0, 6>0 

X = = 
sup fN{n;b + s)fx(x;b) 

s>0, 6>0 

For large values of b, the distribution of —2 In A under 
#o is |Xo + |x?) i-e- it assigns half a unit of probabil
ity to the singleton {—2 In A = 0}, whereas the other 
half is distributed as a chisquared with one degree 
of freedom over 0 < — 2 In A < +oo. We then define 
the likelihood ratio p-value as the appropriate tail 
area of this distribution. For small values of b this 
is obviously an approximation, but not a bad one, in 

the sense that the frequentist validity of the p-value 
appears to be maintained: Pr (p < a) < a. Fig
ure 1 compares the coverage probability Pr(p < a) 
of the three p-values just discussed, as a function of 
the significance level a, for a simple numerical exam
ple. The coverage calculation fluctuates both n and 
x. For small values of the background uncertainty 
A6, the likelihood ratio p-value is somewhat better 
than the other two, but for large A6 the generalized 
frequentist p-value is clearly superior. 

3 Generalized Confidence Intervals 

A standard method for constructing confidence in
tervals is based on pivots. Let Q(X, 9) be a pivot for 
a random variable X with distribution F\{x; 9), and 
let Sa be a subset of the sample space of Q such that 

Pr(Q(X,0) eSa) = a. 

Note that the probability in this equation is unam
biguously determined since the distribution of Q does 
not depend on unknown parameters. Given an ob
served value x for X, a 100a% confidence interval for 
9 is then: 

Ca = {9: Q(x,9)eSa} 

In problems for which a conventional pivot is 
not available, one can try to construct a general
ized pivot, i.e. a function Q(X, x, 9, v) of the random 
variable X, its observed value x, the parameter of in
terest 9, and the nuisance parameter u, such that the 
following requirements are satisfied: 

1. Q(x,x,9,u) does not depend on v\ 

2. The distribution of Q(X, x, 9, v) is free of (9, v). 

Generalized confidence intervals can then be de
fined similarly to conventional ones, but using 
Q(X,x,e,v) instead of Q(X,9). 

As with p-values, there is no systematic method 
for generating all possible generalized pivots for a 
problem, but a simple recipe is available.3,4 It is 
based on the same assumptions as those listed in sec
tion 2, and the recipe itself is almost identical to the 
one used to obtain generalized test variables. The 
only difference is step 2, which becomes: 

2. Replace the Xi by their observed values Xj. 

In other words, given a generalized test variable 
T(X,x,9,v), the corresponding generalized pivot is 
obtained as Q(X, x,6,i>)=6- T(X, x, 9, v). 
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3.1 Application to Poisson Upper Limits 4 Summary 

Suppose that we observe a Poisson event count X\ 
with mean b + ea, where b is a background, e a sen
sitivity factor, and a a cross section of interest: 

X\ ~ Poisson(6 + ea). 

Information about b and e are assumed to come from 
two auxiliary measurements: 

X2 ~ Poisson(c6), X3 ~ Poisson(re), 

where c and r are known constants. Applying the 
above recipe yields the following generalized pivot 
for a: 

T [ G - ( S I , V I ) - G-(x2,V2)/c] 

^ G-(x3,V3) 

where, similarly to the G+ introduced in section 2.1, 
G~ is the inverse of the pivot denned by the cumula
tive distribution of X — U, X being a Poisson variate 
and U a uniform one.6 The Vi quantities are inde
pendent uniform random variables, and the Xi a r e 
the observed values of the corresponding Xi. 

Suppose now that we wish to calculate upper 
limits on a. It is straightforward to verify that the 
"observed" value of Q is the parameter of interest a. 
Therefore, upper limits on a are obtained by calcu
lating the corresponding quantiles of the distribution 
of Q. A numerical example of the coverage of these 
upper limits is shown in Figure 2, together with a 
reference Bayes calculation. There is slight under-
coverage at high a values. 

. , : 

-
0.95-

0.85-

\ 

J t j fe-afcrrr 

Generalized Frequentist 

Reference Bayes 

III! 9 •• 

a=0.9, b=c=2, C = T = 5 0 

0 10 20 30 40 50 60 70 80 SO 100 

True signal cross section a 

Figure 2. Coverage of upper limits U on the cross section of a 
signal process, as a function of the true value a of that cross 
section. The nominal uncertainties on the background b and 
the efficiency e are 10%. Solid: generalized frequentist; dashes: 
reference Bayes. 

Generalized frequentist methods allow one to calcu
late significances and confidence intervals in a wide 
variety of situations involving nuisance parameters. 

In problems with continuous sample spaces, 
these methods are based on exact probability state
ments but do not have a conventional frequency in
terpretation. Nevertheless, their conventional fre
quentist properties appear to be very good. In fact, 
Hannig et al.A have shown that under some general 
conditions, generalized confidence intervals for scalar 
or vector parameters have proper frequentist cover
age, at least asymptotically. 

Although the current literature on generalized 
frequentism does not appear to treat problems with 
discrete sample spaces, we have described how 
these can be solved by introducing a randomization 
scheme. 

Using a simple Poisson example, we have shown 
that generalized frequentist methods compare favor
ably to other methods of eliminating nuisance pa
rameters, such as likelihood ratio and Bayes. 
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As a carefully thought-out attempt to develop the objective side of Bayesian inference, reference analysis provides 
procedures for point and interval estimation, hypothesis testing, and the construction of objective posterior distribu
tions. For physicists, the interest of these procedures lies in their very general applicability, their invariance under 
reparametrization, their coherence, and their good performance under repeated sampling. 

1 Introduction 

One aspect that distinguishes experimental inference 
in physics from that in other sciences is the objec
tive randomness of quantum processes. As a result, 
statistical models for quantum phenomena are exact, 
supporting a strict frequentist analysis of their mea
surement. Nevertheless, Caves et al.1 have brilliantly 
motivated a subjective Bayesian interpretation of 
quantum probabilities, whose form depends on the 
information available to the observer but is other
wise fully prescribed by a fundamental law. When 
dealing with actual measurements however, no fun
damental law constrains their analysis, summary and 
report, so that some other objective method must be 
found. 

Ideally, such a method should be very general, 
applicable to all kinds of measurements regardless 
of the number and type of parameters and data in
volved. It should make use of all available informa
tion, and coherently so, in the sense that if there is 
more than one way to extract all relevant informa
tion from data, the final result will not depend on the 
chosen way. The desiderata of generality, exhaustive-
ness and coherence are satisfied by Bayesian proce
dures, but that of objectivity is more problematic 
due to the Bayesian requirement of specifying prior 
probabilities in terms of degrees of belief. Reference 
analysis2, an objective Bayesian method developed 
over the past twenty-five years, solves this problem 
by replacing the question "what is our prior degree 
of belief?" by "what would our posterior degree of 
belief be, if our prior knowledge had a minimal effect, 
relative to the data, on the final inference?" 

In addition to an objective method for specify
ing priors, reference analysis provides techniques to 
summarize posterior distributions in terms of point 
estimates and intervals, and to test precise hypothe

ses against vague alternatives, a notoriously subtle 
problem. All these techniques are based on informa
tion theory, and in particular on the central concept 
of intrinsic discrepancy between two probability dis
tributions. This concept is introduced in section 2 
and applied to the definition of reference priors in 
section 3. Section 4 describes the extraction of in
trinsic point and interval estimates from posterior 
distributions. 

Due to space limitations, the development of the 
paper is rather conceptual, with few details in the 
calculations. The interested reader is encouraged to 
consult the references, especially Bernardo2. 

2 Intrinsic Discrepancy and Missing 
Information 

The intrinsic discrepancy between two probability 
densities pi and p2 is defined as: 

6{Pi,P2} = mm{K{pi\p2}, n{p2\pi}}, (1) 

/

%) • (x\ 
dx Pj (x) In J (2) 

Pi[X) 
is the Kullback-Leibler divergence between pi and 
Pj. The intrinsic discrepancy 6{pi,p2} is symmet
ric, non-negative, and vanishes if and only if Pi(x) = 
P2(x) almost everywhere. It is invariant under one-
to-one transformations of x, and is information-
additive: the discrepancy for a set of n independent 
observations is n times the discrepancy for one ob
servation. A simple interpretation of 6{pi,p2} is as 
a measure, in natural information units, of the min
imum amount of information that one observation 
may be expected to provide in order to discriminate 
between p\ and p2. Another interpretation is as the 
minimum expected log-likelihood ratio in favor of the 
probability model that generates the data. 

Suppose now that we have a parametric model 
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for some data x: 

M = {p{x\6), x£X,9ee}, 

and consider the joint probability density of x and 
9, p{x,9) — p(x\9) p{0), where p(6) is a prior for 
9. Relative to the product of marginals p(x)p(9), 
the joint density captures in some sense the infor
mation carried by x about 9. This suggests defining 
the expected intrinsic information l{p(0) | -M}, from 
one observation of M. about the value of 9 when the 
prior density is p(9), as: 

I{p{9)\M) = S{p(x,9),p(x)p(9)}, (3) 

where p(x) = Jd6 p(x \ 9) p{9). According to this def
inition, the stronger the prior knowledge described 
by p{9), the smaller the information the data may 
be expected to provide, and vice-versa. In the limit 
where p{9) is a delta function, I{p(9) | M} = 0 

Next, consider the intrinsic information about 9, 
I{p(9),Mk}, which could be expected from making 
k independent observations from M.. As k increases, 
the true value of 9 would become precisely known. 
Thus, as k —> oo, I{p(9),Mk} measures the amount 
of missing information about 9 which corresponds to 
the prior p{9). 

3 Reference Priors 

Let V be a class of sufficiently regular priors that 
are compatible with whatever initial information is 
available about the value of 9. The reference prior is 
defined to be that prior function n(9) = ir(9 \ M,V) 
which maximizes the missing information about the 
value of 9 within the class V. The limiting proce
dure used to define the missing information requires 
some care in the calculation of 7r(#). Formally, one 
introduces an increasing sequence of subsets 0 j of 
the parameter space G, such that lim.j_0O 0^ = 6 
and JQ ir(9) d9 < oo. The reference prior n(9) is 
then defined as satisfying: 

lim \l{Trl\M
k}-I{pl\M

k}} > 0 
k—>oo 

for all Qu for all p G V, (4) 

where 7r,(#) and Pi{9) are the renormalized restric
tions of n(9) and p(9) to 0, . 

If the parameter space is finite and dis
crete, 0 = {0i,... ,0m}, the missing information 
is simply the entropy of the prior distribution, 

— Y^iLi P(@i) mP(^i)j a n d one recovers the prior pro
posed by Jaynes for this case. If the parameter is 
continuous and one-dimensional, and regularity con
ditions that guarantee asymptotic normality are sat
isfied, then the reference prior is Jeffreys' prior: 

TT(0) OC i(9)1/2, 

f d2 

where i(9) = - / dx p{x \ 9) -^]np(x\ 9). (5) 
Jx ov 

Note that in the definition of reference priors, 
the limit k —> oo is not an approximation, but an 
essential part of the definition, since the reference 
prior maximizes the missing information, which is 
the expected discrepancy between prior knowledge 
and perfect knowledge. A practical advantage of this 
limiting procedure is that it ensures that reference 
priors only depend on the asymptotic behavior of the 
model, thereby greatly simplifying their derivation. 

It can be shown that reference priors are inde
pendent of sample size, compatible with sufficient 
statistics (meaning that their form does not de
pend on whether the model is or is not expressed in 
terms of sufficient statistics), and consistent under 
reparametrization (i.e. if <f> is a one-to-one transfor
mation of 9, then their reference posterior densities 
are related by ir(<fr | x) = n(9 \ x) \d9/d(f>\). 

Finally, it is important to emphasize that ref
erence priors do not represent subjective belief and 
should not be interpreted as prior probability distri
butions (in fact, they are often improper). Only ref
erence posteriors have a probability interpretation. 

3.1 Treatment of Nuisance Parameters 

Suppose the statistical model is p(x\9, A), with 9 
the parameter of interest and A a nuisance parame
ter. We now need a joint reference prior n(9, A). The 
algorithm is sequential: 

1. Hold 9 constant and apply the one-parameter 
reference algorithm to obtain the conditional 
reference prior 7r(A | 9). 

2. Derive the one-parameter integrated model: 

p{x\6) = fd\p(x\9,\)ir{\\9), 
JA 

where A is the parameter space for A. 
3. Apply the one-parameter reference algorithm 

again, this time to p(x\9), and obtain the 
marginal reference prior TT(9). 

4. Set7r(M) = TT(X\9) TT{9). 
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Note that step 2 will not work if ir(\ | 9) is improper 
(p(x\8) will not be normalizable). The solution is 
to introduce a sequence {Aj}^x of subsets of A that 
converges to A and such that n(X \ 6) is integrable 
over each Aj. The integration at step 2 is then per
formed over Aj instead of A. This procedure results 
in a sequence of posteriors {^(0 | x)}'^1 which con
verges to the desired reference posterior. 

The above algorithm is easily generalized to any 
number of parameters. However, its sequential char
acter requires that the parameters be ordered. In 
most applications the order does not affect the re
sult, but there are exceptions. Different orderings 
may then be used as part of a robustness analysis. 

Within a single model it is in principle possible 
to have as many reference priors as there are poten
tial parameters of interest. Indeed, there is no reason 
for a setup that maximizes the missing information 
about a parameter 8 to be identical to a setup that 
maximizes the missing information about a parame
ter T], unless 77 is a one-to-one function of 9. 

3.2 Example: a Cross Section Measurement 

We illustrate the construction of reference priors with 
a common problem in high energy physics, that of ex
tracting a cross section a from an observed number 
of events n. The latter is assumed to have a Poisson 
distribution with a mean of the form b + ea, where 
the sensitivity factor e and the background b are nui
sance parameters. The model is: 

(b+ea)" _b_ea 
p{n\a,e,b) = (6) 

Note that a, e, and b are not identifiable from a given 
n. This problem is usually addressed by using infor
mation from calibration data or simulation studies 
to form a proper, subjective prior for e and b, say 
7r(e, 6). We must therefore find the conditional refer
ence prior 7T(<T | e, b). If e and b were exactly known, 
the reference prior for a would simply be Jeffreys' 
prior. From the Fisher information for a: 

E 
d2 

-—^\np(n\a,e,b) 
b + ea' 

this Jeffreys' prior is calculated to be: 

nj(<r\e,b) oc 

(7) 

(8) 
\/b + ea 

However, this is not the reference prior for this prob
lem, i.e. the prior that would be obtained by strict 

application of equation (4). Although the a depen
dence of irj is correct, its e dependence is not, and 
this matters because nj is improper and e is an un
known parameter. As shown in Sun and Berger3, the 
correct reference prior is obtained by renormalizing 
the above prior using a sequence of nested compact 
sets for a. A natural choice for these sets is [0, u], 
with u > 0. Normalizing the above prior over such a 
set yields: 

wu(a\e,b) 
l(u>a) 

Vb+ea 2^/b + eu - 2\Zb' 

where l (u > a) is 1 if u > a and 0 otherwise. The 
correct conditional reference prior is then: 

7r(o-|e,b) 
Tru(a\e,b) 

hm —; r 7—r oc 
u-»oo 7ru(<7o I £o,fro) "Sjb + ea' 

with (co,eo>fro) a n y fixed point. Although this prior 
is still improper, its e dependence is different from 
that of equation (8). 

We can now write down the reference posterior 
when a is the parameter of interest: 

(b + eo-)ne-b-™ y/eir(e,b) 
7r(a I n) oc / de db 

Jo Jo Vb + ea 
(9) 

An important aspect of reference posteriors is their 
behavior under repeated sampling. To test this, we 
calculate an upper limit U on a, assuming a product 
of gamma densities for the subjective prior n(e, b): 

r ( r e ) * - l / 2 e - r e c ( c b ) y - l / 2 &-cb 
w(e,b) (10) 

r(:r + l /2) T(y +1/2) 

As we are dealing with a mixture of subjective and 
objective priors, some care is needed in specifying 
the ensemble with respect to which the coverage of 
U is to be calculated. Datta and Sweeting4 suggest 
to average the coverage with respect to the subjective 
components of the prior. An example of calculation 
based on this prescription is shown in Figure 1. 

i!i!l!ill!i0ii[!li[0dMfflbtiWM¥l/!/'i,WJ^ 

a=0.9, x=y=100, c=T=50 
1 — , — i — i — i — | — 1 — i — 1 — 

0 20 40 60 
True signal cross section a 

Figure 1. Coverage of 90% credibility level reference Bayes 
upper limits on a signal cross section IT, as a function of the 
true value of that cross section. 
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The coverage appears to converge asymptotically to
wards the credibility level. Although this behaviour 
is typical of all sufficiently regular priors, in many 
cases the convergence is faster when a reference prior 
is used. 

4 Intr insic Est imat ion and Testing 

It is well known that the Bayesian outcome of a prob
lem of inference is precisely the full posterior distri
bution for the parameter of interest. However, it is 
often useful and sometimes even necessary to sum
marize the posterior distribution by providing a mea
sure of location and quoting regions of given poste
rior probability content. 

The typical Bayesian approach formulates point 
and interval estimation as decision problems. Sup
pose that 9 is an estimate of the parameter 6, whose 
true value 9t is unknown. One specifies a loss func
tion 1(9,9t), which measures the consequence of us
ing the model p(x 19) instead of the true model 
p(x | 9t). The Bayes estimator 9b of 9 minimizes the 
corresponding posterior loss: 

9b{x) = arg min [d9 1(9,9) p{6\x). 
See JQ 

In physics, interest usually focuses on the actual 
mechanism that governs the data. Therefore we 
need point and interval estimates that are invari
ant under one-to-one transformations of the param
eter and the data (including reduction to sufficient 
statistics). A loss function that will deliver such 
an estimate is the intrinsic discrepancy: £(9,9t) = 
5{p(x\9),p(x\9t)}. Its reference posterior expecta
tion is: 

d{9\x) = [d9 6{p(x\e),p(x\9)}7r5(9\x), (11) 

where TTS (9 \ x) is the reference posterior when the 
intrinsic discrepancy is the parameter of interest. 

The intrinsic estimator of 9 minimizes d(9 \ x): 

9*(x) = arg min d(9\x), (12) 
eeB 

and an intrinsic a-credible region for 9 is a subset 
R*a of the parameter space 9 such that: 

/ d9 n(9 \x) = a, and 

for all 9 e R*a, 9' £ R*a : d{9 | a;) < d{9' | x). (13) 

Although the concepts of intrinsic estimator and 
credible region have been defined here for reference 

problems, they can also be used in situations where 
proper, subjective prior information is available. 

Finally, in hypothesis testing, a typical problem 
is to decide whether a precise value 9$ may be used 
as a "proxy" for the unknown value of 9. The refer
ence approach is to use d(9o \ x) from equation (11), 
with #o replacing 9, as an intrinsic test statistic. Its 
magnitude is a direct measure of the evidence against 
the null hypothesis 9 = 9Q-

5 Summary 

Noninformative priors have been studied for a long 
time and most of them have been found defective in 
more than one way. Reference analysis arose from 
this study as the only general method that produces 
priors that have the required invariance properties, 
deal successfully with the marginalization paradoxes, 
and have consistent sampling properties. 

Reference priors should not be interpreted as 
probability distributions expressing subjective de
gree of belief; instead, they help answer the question 
of what could be said about the quantity of interest 
if one's prior knowledge were dominated by the data. 

Reference analysis also provides methods for 
summarizing the posterior density of a measurement. 
Intrinsic point estimates, credible intervals, and hy
pothesis tests have invariance properties that are es
sential for scientific inference. 
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Bayesian model comparison can be used to decide whether the introduction of a new parameter is warranted by data. I 
focus on the Savage-Dickey density ratio as a method to compute the Bayes factor of nested models without carrying 
out a computationally demanding multi-dimensional integration. I present a new procedure (called "PPOD") to 
forecast the Bayes factor of a future observation. As an illustration, I consider a few central quantities in the current 
cosmological concordance model. 

1. Introduction 

After a decade of intense observational efforts, cos-
mologists have now at their disposal a wealth of data 
to guide them in their quest for a cosmological stan
dard model. One important problem which is often 
encountered is deciding whether or not cosmologi
cal data support the introduction of a new quan
tity in our model. It is generally agreed that a core 
of 6 parameters is sufficient to describe and in rea
sonable agreement with most of current cosmologi
cal observations1. These parameters are the baryon, 
the cold dark matter and cosmological constant den
sities, the Hubble parameter, the optical depth to 
reionization, the scalar spectral index and the am
plitude of the primordial (adiabatic) density fluctu
ations. The status of additional parameters is less 
certain, as often sampling (frequentist) statistics sig
nificance tests do not allow them to be ruled out 
with high confidence. A wide literature2 addresses 
the difficulties arising from the use of p-values (sig
nificance level) in assessing the need for a new pa
rameter. Many weaknesses of significance tests are 
clarified, and some even overcome, by adopting a 
Bayesian approach to testing. In this work, we take 
the viewpoint of Bayesian model selection to deter
mine whether a parameter is needed in the light of 
the data at hand. 

The key quantity for Bayesian model compar
ison is the marginal likelihood, or evidence, whose 
calculation and interpretation is attracting increas
ing attention in cosmology and astrophysics3. The 
marginal likelihood has proved useful in other con
texts, as well, for instance consistency checks be
tween data sets4, the detection of galaxy clusters 
via the Sunayev-Zel'dovich effect5 and neutrino emis
sions from type II supernovae6. In this paper we 

use the Savage-Dickey density ratio for an efficient 
computation of marginal likelihoods ratios (Bayes 
factor), and we present a new method to forecast 
the Bayes factor probability distribution of a future 
observation, called PPOD (for "Predictive Posterior 
Odds Distribution"). We then illustrate applications 
to some important parameters of current cosmologi
cal model building. 

2. Bayesian model comparison 

Bayesian inference (see e.g. Refs. 7) is based on 
Bayes' theorem, which is a consequence of the prod
uct rule of probability theory: 

p(0|d, M) = p(d|0, M)ir{fi\M)lp{d\M). (I) 

On the left-hand side, the posterior probability for 
the parameters 6 given the data d under a model M 
is proportional to the likelihood p(d\9,M), which 
we will denote in the following by C(6), times 
the prior probability distribution function (pdf), 
•K(9\M), which encodes our state of knowledge before 
seeing the data. In the context of model comparison 
it is more useful to think of ir(9\M) as defining the 
prior available parameter space under the model M. 
The normalization constant, independent of the pa
rameters, is the marginal likelihood for the model M 
(sometimes also called the "evidence") given by 

p ( d | M ) = [ C(d)ir{d\M)dd (2) 
Jn 

where Q, designates the parameter space under model 
M. 

Consider two competing models Mo and Mi 
and ask what is the posterior probability of each 
model given the data d. By Bayes' theorem we have 

p(Mi\d)<xp{d\MMMi) (1 = 0,1), (3) 
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wherep(d|.M;) is the marginal likelihood for Mi and 
ir(Mi) is the prior probability of the zth model before 
we see the data. The ratio of the likelihoods for the 
two competing models is called the Bayes factor. 

_ p(d\M0) 
p(d\Mi) 

which is the same as the ratio of the posterior prob
abilities of the two models in the usual case when 
the prior is presumed to be noncommittal about the 
alternatives and therefore IT (Mo) = n(Mi) = 1/2. 
The Bayes factor can be interpreted as an automatic 
Occam's razor, which disfavors complex models in
volving many parameters (see e.g. [8] for details). 
A Bayes factor Boi > 1 favors model Mo and in 
terms of betting odds it would prefer Mo over Mi 
with odds of £?oi against 1. It is usual to con
sider the logarithm of the Bayes factor, for which 
the rule of thumb9 is that a positive (strong) pref
erence for one of the competing models requires at 
least | l n B o i | ^ l ( £ 3 ) . 

Evaluating the marginal likelihood integral (2) 
is in general a computationally demanding task for 
multi-dimensional parameter spaces. Here we focus 
instead on the Savage-Dickey density ratio (SDDR, 
see [10] for references), whose estimation is very 
promising in terms of reducing the computational 
effort needed to calculate the Bayes factor of two 
nested models. Suppose we wish to compare a two-
parameter model .Mi with a restricted submodel Mo 
with only one free parameter, ip, and with fixed 
UJ = w* (for simplicity of notation we take a two-
parameter case, but the calculations carry over triv
ially in the multi-dimensional case). Assume further 
that the prior is separable (which is usually the case 
in cosmology), i.e. that 

TT(W, ip\Mi) = n(u>\Mi)n(iP\Mo). (5) 

Then the Bayes factor Boi of Eq. (4) can be written 
as 

p(w*|d,A^i 
Boi = (SDDR). (6) 

7T(w*|.Ml) 

Thus the evaluation of the Bayes factor of two nested 
models only requires the properly normalized value 
of the marginal posterior at w = « 4 under the ex
tended model M\, which is a by-product of parame
ter inference. From (6) it is also clear that the prior 
available range for u> under Mi must be carefully 
assessed, since it is a central ingredient of the model 
comparison result. 

3. Applications to cosmological 
parameters 

We now apply the Bayesian model selection approach 
outlined above to a few important parameters of the 
current cosmological concordance model. The first 
quantity is the scale dependence of primordial den
sity fluctuations, as described by the spectral tilt ns-
Many inflationary models predict a scale-invariant 
spectrum, i.e. that ns = 1. The second parame
ter is the spatial curvature of the Universe, QK; in
flation generically predicts that the Universe is fiat 
and thus QK = 1. According to single-field infla
tion, the initial conditions for primordial fluctuations 
are adiabatic, but some models (e.g., the curvaton 
model) allow for the presence of correlated isocurva-
ture modes, as well. We therefore compare a purely 
adiabatic model, where the isocurvature fraction is 
/iso = 0, to a less restrictive mixture of adiabatic 
and totally (anti) correlated isocurvature initial con
ditions. It should be noted that the model com
parison result in this case is strongly dependent on 
how one parameterizes the isocurvature fraction, i.e. 
which variable one assigns a flat prior to. Finally, we 
compare a model where the cosmic neutrino back
ground presents primordial anisotropics as predicted 
by the standard Big Bang theory, parameterized by 
c^is = 1/3, to a generic model of non-zero neutrino 
coupling11. We combine cosmic microwave back
ground anisotropics data, observations of the galaxy 
distribution, the measurement of the Hubble param
eter and supernovae type la data. For more details 
on the data used and the priors on the models, see 
[10, 11]. 

Table 1 summarizes our results for the Bayes fac
tor, along with the information content of the data 
/ , defined as 

J = logio(ov/0p), (7) 

where an, ap are the standard deviations of the prior 
and posterior on u>, respectively (both taken to be 
Gaussians). Thus the quantity / describes the or
der of magnitude by which our prior knowledge on u> 
has improved after the arrival of the data. Another 
characterizing quantity is A = |w*— u>\/ap, which rep
resents the "number of sigmas" discrepancy between 
the predicted value under Mo, w*, and the posterior 
mean, Q. 

Figure 1 is a useful way of visualizing the 
outcome of the model comparison procedure for 
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£ ^ >10:1 ' Non-informative 
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Information content I 

Fig. 1. Informative regions (shaded) where one of the com
peting models has posterior odds larger than 10 (light shaded 
regions) or 100 (dark shaded region) against 1. The white re
gion corresponds to a non-informative limbo. The informative 
regions are computed using the SDDR, Eq. (6), and assuming 
a Gaussian posterior for the parameter of interest and a Gaus
sian, separable prior. The location of the parameters discussed 
in the text is shown by crosses. 

Gaussian prior and likelihood, by plotting the status 
of the parameters under consideration in the I — X 
plane. For large values of A, the usual result of sam
pling theory is recovered, namely that Mo is highly 
disfavored. However, as the information content of 
the data increases (larger / ) for moderate values of 
A, say A ^ 3, then the simpler model is favored by the 
Occam's razor argument implicit in the Bayes factor. 
As the data becomes better and better, strongly dis
favoring a simpler model requires a larger discrep
ancy between the parameter's measurement and the 
prediction of the simpler model. In particular, a 2—a 
discrepancy (so frequent in cosmology) from the pre
dicted value w* is by no means sufficient to strongly 
disfavor M.Q\ on the contrary, for high quality data 
this result does support the view that the extra com
plexity of the extended model is not justified. 

4. Bayes factor forecast 

In designing a new observation, it is interesting to 
assess its potential in terms of its power to address 
model comparison questions (for a survey optimiza
tion approach, see e.g. [12]). To this end, we in
troduce a new technique which combines a Fisher 
information matrix forecast with the SDDR formula 

to obtain a forecast for the Bayes factor of a future 
observation. The result is a PPOD (for "Predictive 
Posterior Odds Distribution") for the future model 
comparison results. 

Given the posterior pdf from present-day data, 
we draw a series of N independent samples (for in
stance using Markov Chain Monte Carlo techniques). 
At each sample value 6i,i = 1,...,JV we perform 
a Fisher Matrix analysis assuming 9i as a fiducial 
model, which yields a forecast for the likelihood func
tion of the future measurement in the form of its co-
variance matrix C, in parameter space. Writing as 
before 6 = (ui,^), the forecasted marginalized pos
terior for the parameter of interest, w, is a Gaussian 
pdf centered on Wj of width &i = y /(Cj)1 1 , which 
we denote by N{u,uji,o-i). This holds for separable, 
flat priors along all directions, and assuming that 
the prior range is much larger than the width of the 
posterior. Using the SDDR, Eq. (6), we obtain the 
corresponding Bayes factor comparing the two mod
els Mo : w = w* against M\ : u) ̂  w*, 

(B0i)i=Af{u)*,u)i,(7i)/TT(uir\Mi), (8) 

This is a forecast for the Bayes factor assuming 
that Ui is the correct value for w, as implicit in 
the fact that we have taken 6i as a fiducial model 
for the Fisher matrix forecast. In order to obtain 
p(B0i\d,e), the probability of obtaining Boi from a 
future measurement with observational parameters e 
(encoding e.g. the sensitivity and sky coverage of the 
experiment) we need to weight the expected Bayes 
factor by our present posterior belief that 0i is the 
true value, obtaining 

p(B0i |d,e) = [p(Boi\9,d,e)p(9\d)d9. (9) 

Since the O^s are samples from p(6\d), the proba
bility distribution (9) can be obtained by plotting a 
histogram of the values of (-Boi)j ,i — 1 , . . . , N as 
given by Eq. (8). This derivation assumes that the 
marginalized posterior for u> from future data is ac
curately described by a Gaussian, which is likely to 
break down in the tails of the distribution. Neverthe
less, we can still conclude that fiducial models which 
have |w* — Wj|/o"j ;§> 1 strongly disfavor Mo under 
future data, even though we cannot attach a precise 
value to the expected odds. This is why we present 
PPOD results in five broad bins only (as in Fig. 2), 
since a finer discrimination would require a better 
approximation for the forecasted posterior. 
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Table 1. Summary of model comparison results for the four quantities described in the text. 

Quantity Mo Mi lnSoi Odds, Mo vs Mi Evidence 

ns 

nK 

/ i so 

c2. 

ns = 1.0 

QK = 1.0 

/iso = 0.0 

<&. = 1/3 

0.8 < ns < 1.2 

-1 .0 <UK < 1.0 

- 1 0 0 < / i s o < 100 

0 < c2is < 1/3 

1.0 

2.0 

3.3 

0.5 

2.0 

1.0 

0.5 

0.0 

~ 0 . 0 

~ 2 . 6 

~ 7 . 5 

~ 0 . 7 

~ 1 : 1 

~ 14: 1 

~ 1800 : 1 

~ 2 : 1 

undecided 

positive 

strong 

undecided 

-1:1 
Expected Odds 

>10:1 >100:1 

Fig. 2. PPOD for the Planck satellite, comparing a model 
with (ns # 1) and without (ns = 1) a spectral tilt. There is 
about 90% probability that temperature (TT), E-polarization 
(EE) and TE-correlation measurements together (All) will 
strongly disfavor ns = 1 (with odds larger than 1 : 100). 

As an example, Fig. 2 shows the P P O D for the 

cosmic microwave background anisotropies measure

ments of the Planck satellite, in view of discrimi

nating between a scale invariant n s = 1.0 spectrum 

versus a more general model with a Gaussian prior 

distribution with a width Ans = 0.2. We find tha t 

there is about 90% probability tha t the combined 

temperature and polarisation data will yield a strong 

preference (with odds larger than 100 : 1) for the 

non-scale invariant model. 

5. C o n c l u s i o n s 

Bayesian model comparison tools offer valuable in

sight into the plausibility of theoretical speculations 

regarding cosmological parameters in view of the 

data at hand. Bayes factor forecast techniques can 

assess the power of future experiments in terms of 

their ability to deliver high-odds model selection re

sults, thus providing useful guidance in the quest of 

a cosmological concordance model. 
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A theory of quantitative inference about the parameters of sampling distributions is constructed deductively by 
following very general rules, referred to as the Cox-Polya-Jaynes Desiderata. The inferences are made in terms of 
probability distributions that are assigned to the parameters. The Desiderata, focusing primarily on consistency of 
plausible reasoning, lead to unique assignments of these probabilities in the case of sampling distributions that are 
invariant under Lie groups. In the scalar cases, e.g. in the case of inferring a single location or scale parameter, 
the requirement for logical consistency is equivalent to the requirement for calibration: the consistent probability 
distributions are automatically also the ones with the exact calibration and vice versa. This equivalence speaks in 
favour of reconciliation between the Bayesian and the frequentist schools of reasoning. 

1. Introduction 

A theory of quantitative inference about the parame
ters of sampling distributions is formulated with spe
cial attention being paid to the consistency of the 
theory and to its ability to make verifiable predic
tions. In the present article only basic concepts of 
the theory and their most important applications are 
presented while details can be found elsewhere1. 

Let p(xi\6I) be the probability for a random 
variate x to take the value x\ (to take a value in 
an interval {x\, x\ + dx) in the case of a continuous 
variate), given the family / of sampling distributions, 
and the value 6 of the parameter that specifies a 
unique distribution within the family (for example, a 
sampling distribution from the exponential family I, 
T~1 exp {—X/T}, is uniquely determined by the value 
of the parameter T) . An inference about the param
eter is made by specifying a real number, called (de
gree of) plausibility, {9\x\X2-. -I), to represent our 
degree of belief in the value of the (continuous) pa
rameter to be within an interval {0,8 + d$). Every 
such plausibility is conditioned upon the information 
that consists of measured value(s) x\, X2, • • • of the 
sampling variate and of the specified family I of sam
pling distributions. 

We assume all considered plausibilities to be sub
jects to very general requirements, referred to as 
the Cox-Polya-Jaynes (CPJ) Desiderata1' 2, focusing 
primarily on consistency of the plausible reasoning. 
The requirement of consistency can be regarded as 
the first of the requirements to be satisfied by every 
theoretical system, be it empirical or non-empirical. 

As for an empirical system, however, besides being 
consistent, it must also be falsifiable3. We therefore 
added a Desideratum to CPJ Desiderata, requiring 
that the predictions of the theory must be verifiable 
so that, in principle, they may be refuted. 

It should be stressed that in this way the list of 
basic rules is completed. That is, the entire theory of 
inference about the parameters is built deductively 
from the aforementioned Desiderata: in order not to 
jeopardize the consistency of the theory no additional 
ad hoc principles are invoked. 

2. Cox's and Bayes ' Theorems 

Richard Cox showed4 that a system for manipulat
ing plausibilities is either isomorphic to the proba
bility system or inconsistent (i.e., in contradiction 
with CPJ Desiderata). Without any loss of gener
ality, we therefore once and for all choose probabili
ties p{6\x\I) among all possible plausibility functions 
(6\x\I) to represent our degree of belief in particu
lar values of inferred parameters. In this way the 
so-called inverse probabilities, p(6\xil), and the so-
called direct (or sampling) probabilitiesp(x\\6I), be
come subjects to identical rules. 

Transformations of probability distributions that 
are induced by variate transformations are also 
uniquely determined by the Desiderata. Let f(x\9I) 
be the probability density function (pdf) for a con
tinuous random variate x so that its probability dis
tribution is expressible as 

p{x\6I) = f{x\6I)dx . 
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Then, if the variate x is subject to a one-to-one trans 
formation x —> y — g(x), the pdf for y reads: 

dy - i 
f(y\ei') = f(x\ei) dx (1) 

(by using the symbol I' instead of I on the left-hand 
side of (1) it is stressed that the above transforma
tions may in general alter the form of the sampling 
distribution). Since the direct and the inverse prob
abilities are subjects to the same rules, the transfor
mation of the pdf for the inferred parameter, f(9\xl), 
under a one-to-one transformation 9 —> v = g{9) is 
analogous to the transformation of the sampling pdf: 

f(u\xl) = f(9\xl) du 

d9 
(2) 

Once the probabilities are chosen, the usual 
product and sum rules2 become the fundamental 
equations for manipulating the probabilities, while 
many other equations follow from the repeated appli
cations of the two. In this way, for example, Bayes' 
Theorem for updating the probabilities can be ob
tained: 

f(9\x1I)p(x2\9x1I) 
f{9\x1x2I) (3) 

Jf(6>\x1I)p(x2\9>x1I)d9> 

Here f(9\xil) denotes the pdf for 9 based on x\ and 
/ only (i.e., prior to taking datum x2 into account), 
p{x2\9x\I) is the probability for x2 (the so-called 
likelihood) given values 9 and xi, while the inte
gral in the denominator on the right-hand side en
sures appropriate normalization of the updated pdf 
f(9\xix2I) for 9 (i.e., the pdf for 9 posterior to taking 
x2 into account). 

Bayes' Theorem (3) allows only for updating 
pdf's f(9\xil) that were already assigned prior to 
their updating. Consequently, the existing applica
tions of our basic rules must be extended in order to 
allow for assignment of probability distributions to 
the parameters, with such assignments representing 
natural and indispensable starting points in every 
sequential updating of probability distributions. 

3. Consistency Theorem 

According to the CPJ Desiderata, the pdf for 9 
should be invariant under reversing the order of tak
ing into account two independent measurements of 
the sampling variate x. This is true if and only if 
the pdf that is assigned to 9 on the basis of a sin
gle measurement of x, is directly proportional to the 

likelihood for that measurement, 

TT(0)P(X|0J) 
f{9\xl) (4) 

fn(6')p(x\6>I)dS' ' 

where ir(9) is the consistency factor while the inte
gral in the denominator on the right-hand side of (4) 
again ensures correct normalization of f(9\xl). 

There is a remarkable similarity between the 
Bayes' Theorem (3), applicable for updating the 
probabilities, and the Consistency Theorem (4), ap
plicable for assigning the probability distributions 
to the values of the inferred parameters, but there 
is also a fundamental and very important difference 
between the two. While f{9\x\I) in the former rep
resents the pdf for 9 prior to taking datum x2 into 
account, ir(9) in the latter is (by construction of the 
Consistency Theorem1) just a proportionality coeffi
cient between the pdf for 9 and the appropriate like
lihood p(x\9I), so that no probabilistic inference is 
ever to be made on the consistency factor alone, nor 
can ir(9) be subject to the normalization requirement 
that is otherwise perfectly legitimate in the case of 
prior pdf's. 

The form of the consistency factor depends on 
the only relevant information that we posses before 
the first datum is collected, i.e., it depends on the 
specified sampling model. Consequently, when as
signing probability distributions to the parameters of 
the sampling distributions from the same family / , 
this must be made according to the Consistency The
orem by using the consistency factors of the forms 
that are identical up to (irrelevant) multiplication 
constants. 

4. Consistency Factor 

According to (2) and (4) combined, the consistency 
factors n(9) for 9 and Tf(g(9)) for the transformed 
parameter g{9) are related as 

*{g{9))=k*{0)\g'{0)\ \ (5) 

where k is an arbitrary constant (i.e., its value is 
independent of either x or 9), while g'(9) denotes the 
derivative of g{9) with respect to 9. However, for the 
parameters of sampling distributions with the form / 
that is invariant under simultaneous transformations 
ga(x) and ga(9) of the sample and the parameter 
space, 

f{ga(x)\ga(9)I')=f(x\9I)\gc:(x)\-1=f{ga(x)\ga(9)l) 
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(i.e., when I' — I), if and IT must be identical func
tions up to a multiplication constant, so that (5) 
reads: 

*(s«(«O)=fc(«M0)|s,«(0)r1- (6) 

Index a in the above expressions indicates param
eters of the transformations and k, in general, can 
be a function of a. In the case of multi-parametric 
transformation groups the derivative g'a(0) is to be 
substituted by the appropriate Jacobian. 

The above functional equation has a unique so
lution for the transformations ga(6) with the con
tinuous range of admissible values a, i.e., if the 
set of admissible transformations ga{8) forms a Lie 
group. If a sampling distribution for x is invari
ant under a Lie group, then it is necessarily re
ducible (by separate one-to-one transformations of 
the sampling variate x —> y and of the parame
ter 9 —> n) to a sampling distribution that can be 
expressed as a function of a single variable y — fj,, 
f(y\fil) = (f>{y — fi). Sampling distributions of the 
form a~lij}{x/a) are examples of such distributions: 
by substitutions y = In a; and fi = In cr they trans
form into 4>{y—fi) = exp {y — fi}ip(exp {y — /i}) (the 
scale parameters a are reduced to location parame
ters n). 

It is therefore sufficient to determine the form of 
consistency factors for the location parameter JJ, since 
we can always make use of (5) to transform TT^/J, = 
g(0)) into the appropriate consistency factor ir(9) for 
the original parameter 6. Sampling distributions of 
the form <p(x — fj,) are invariant under simultaneous 
translations x —> x+a and ^ —• [i+a; Va G (—oo, co), 
and the functional equation (6) in the case of the 
translation group reads 

ir(H + a) = k{a) n(n) , 

implying the consistency factor for the location pa
rameters to be 7r(|U) OC exp{—g/i}, with q being an 
arbitrary constant. Accordingly, n(a) oc o-(q+V is 
the appropriate form of the consistency factor for the 
scale parameters. 

The value of q is then uniquely determined by 
recognizing the fact that sampling distributions of 
the forms <j){x — n) and a~1ip(x/a) are just special 
cases of two-parametric sampling distributions 

/ ( z | M a / ) = % ( ^ ± ) , (7) 

with a being fixed to unity and with \i being fixed to 
zero, respectively. The consistency factor 7T(/LX) there
fore corresponds to assigning pdf's f(n\crxl) while 
7r(cr) is to be used when assigning f{a\fxxl). When 
neither a nor /x is fixed, however, the pdf (7) is in
variant under a two-parametric group of transfor
mations, x —> ax + b, /i —> a\i + b and a —> aa; 
Va € (0, oo) and V6 G (—00,00), and the functional 
equation (6) for the consistency factor 7r(/x, a) for as
signing f(/j,cr\xl) reads 

. , k(a,b) 
7r(ajtx + 0, aa) = =— ir{/i, a) , 

a"* 

so that 7r(/U,(j) is to be proportional to c - r , r being 
an arbitrary constant. According to the product rule, 
f(l^a\xl) can be factorized as 

f(na\xI)=f{ii\oxI)f{o\xI) 

= f((7\fJ,xI) f{fl\xl) , 

where f(a\xl) and f(fi\xl) are the marginal pdf's, 
e.g. 

f(a\xl) = J f(fi'<T\xI) dp' . (9) 

The equalities (8) are achieved if and only if q = 
0 and r = 1, i.e., if the three consistency factors, 
determined uniquely up to arbitrary multiplication 
constants, read: 

7r(/x) = 1 and 7r(cr) = 7r(^, a) = a'1 . (10) 

5. Calibration 

In order to exceed the level of a mere speculation, the 
theory of probabilistic inference about the parame
ters must be able to make predictions that can be 
verified (or falsified) by experiments. Therefore, let 
a random variate x be subject to a family of sampling 
distributions / and let several independent values :r, 
of the variate be recorded. The predictions of the 
theory are made in probabilities 

P(0 G ( f l u - M M = f "2f(6'\XiI)d0' = 6 (11) 
J0i,1. 

that given measured value Xi of the sampling variate, 
an interval (01,1, ̂ ,2) contains the actual value of the 
parameter 8 of the sampling distribution. For the 
sake of simplicity, the intervals are chosen in such a 
way that the probabilities S are equal in each of the 
assignments. The predictions are then verifiable at 
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long term relative frequencies: our probability judg
ments (11) are said to be calibrated if the fraction of 
inferences with the specified intervals containing the 
actual value of the parameter, coincides with 5. 

An exact calibration of an inference about a 
parameter 9 is ensured if the assigned pdf f{9\xl) 
is related to the (cumulative) distribution function 
F(x, 9) of the sampling variate as 

d 
f(0\xl) 

89 
F(x,9) (12) 

and the consistency factors 7r(/i) and n(cr) (10) do 
meet the above requirement. Furthermore, if besides 
being calibrated (12), the pdf for 9 is to be assigned 
according to the Consistency Theorem (4), the dis
tribution of the sampling variate x is necessarily re
ducible to a distribution of the form <f>(y — fi) 5. But 
exactly the same necessary condition was obtained 
by requiring invariance of the sampling distribution 
under a Lie group, with such an invariance being in
dispensable for determination of consistency factors 
solely by imposing consistency to the assignment of 
pdf's. Imposing logical consistency to the theory is 
thus equivalent to imposing calibration to its predic
tions: every probabilistic inference about a param
eter of a sampling distribution that we are sure is 
consistent will thus at the same time also be cal
ibrated and, vice versa, every calibrated inference, 
based on a posterior pdf that is factorized accord
ing to (4), will simultaneously be logically consistent, 
too. The equivalence of the two requirements speaks 
in favour of reconciliation between the (objective) 
Bayesian and the frequentist schools of reasoning, 
the former paying attention primarily to logical con
sistency and the latter stressing the importance of 
verifiable predictions. 

6. Consistency Lost and Regained 

Numerous examples can be found with the sampling 
distributions lacking invariance under Lie groups: 
there are sampling distributions for continuous ran
dom variates (e.g. the Weibull distribution) that are 
not invariant under continuous groups of transforma
tions, the symmetry can be broken by imposing con
straints to parameter spaces of otherwise invariant 
sampling distributions, or the sampling space may be 
discrete (e.g. in counting experiments), just to name 
three of the most common ones. No consistent qual
itative parameter inference is possible in such cases, 

but under very general conditions the remedy is just 
to collect more data relevant to the estimated param
eters. Then, according to the Central Limit The
orem, the discrete sampling distributions approach 
their dense (Gaussian) limits, the constraints of the 
parameter spaces become more and more irrelevant, 
and the sampling distributions of the maximum like
lihood estimates of the inferred parameter 9 gain 
Gaussian shapes with 9 being the location parame
ters of the latter, so the ability of making consistent 
inferences is regained. 

7. Consistency Preserved 

Consistency factors are determined exclusively by 
utilizing the tools such as the product rule (8) and 
marginalization (9), that are deducible directly from 
the basic Desiderata: in order to preserve consis
tency of inference it is crucial to refrain from using 
ad hoc shortcuts on the course of inference. For re
gardless how close to our intuitive reasoning these ad 
hoc procedures may be, how well they may have per
formed in some other previous inferences, and how 
respectable their names may sound (e.g. the princi
ple of insufficient reason or its sophisticated version 
- the principle of maximum entropy, the principle 
of group invariance, the principle of maximum like
lihood, and the principle of reduction), they are all 
found in general to lead to inferences that are neither 
consistent nor calibrated. 
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1. Significance testing 

1.1. General issues 

Significance testing is a well-trodden area of theoret
ical statistics and it seems just about impossible to 
say anything about this topic which has not been said 
many times before. For an excellent discussion of al
most every corner, see for example Ref. 1 or Ref. 2, 
Still, significance testing is causing much controversy 
between statisticians and it can be hard to find two 
statisticians who would be in complete agreement. 

In the present article we give some brief remarks 
which primarily serve to set the scene and identify 
which corner is to be explored. It also briefly indi
cates the multitudes of issues involved, thus explain
ing why it may not even be helpful to treat these dif
ferent situations in a completely unified way, hence 
giving some rationale for the persistence of disagree
ment. 

Decision vs. evidence There are two related but 
different types of situation which may be approached 
by significance testing. 

In the first of these, procedures for accepting or 
rejecting a hypothesis are established with the pur
pose of using them automatically and repeatedly in a 
number of similar if not virtually identical situations. 
Such cases occur for example in industrial quality 
control. A decision-theoretic framework3, 4 describes 
this situation well, the formal Neyman-Pearson the
ory of significance testing is both appropriate and 
convincing. Within this theory a linear combination 
of the probabilities of taking an incorrect decision 
(type I and II errors) is minimized, often by holding 

one of these fixed at a given level of significance. 
The second situation, which forms the basis of 

this article, pertains to the case where a scientific 
theory needs to be examined in the light of a sin
gle or few related but different experimental results. 
The decision-theoretic approach seems here less ap
propriate as the acceptance or rejection of a scientific 
theory rarely will be a consequence of the experi
ment under study, but will involve numerous other 
ways of gaining and incorporating scientific knowl
edge about the phenomenon. This situation is closer 
to the Fisherian way of thinking about significance 
tests and would rather lead to an attempt to quantify 
the evidence in the experimental result for or against 
the validity of a specific theory, typically in the form 
of a so-called p-value or significance probability. 

Much of the controversy5' 6 between Fisher and 
Neyman on issues of significance testing was centered 
around these contrasting situations. The difference 
has probably been exaggerated in the sometimes very 
heated debate between the two. Most researchers 
would agree that it would be untenable to quantify 
the evidence in a given, unique situation in a way 
that would not have reasonable properties if used re
peatedly in conceptual or similar situations. Indeed, 
the approaches of Neyman and Fisher appear to be 
less different than what first meets the eye7. 

In any case, the point of view adopted here to 
analyse problems of goodness of fit is closest to the 
Fisherian as this seems to have more direct bearing 
on the context under discussion. 

Exploration vs. confirmation The way a signif
icance test is used depends very much on the stage 
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of scientific investigation. In an exploratory phase 
of a scientific enquiry, significance tests can play an 
important role in searching for abnormalities in an 
experimental result, the primary aim being to iden
tify potentially interesting phenomena for future ex
ploration and the planning of further experiments. 
Such cases seem to need a treatment quite different 
from those in a confirmatory phase, where the issue 
is to establish conclusive evidence for a given theory 
which is also convincing to others. 

Refutation vs. validation Significance tests are 
used for a variety of different purposes. In some 
cases they are used in a Popperian quest for refut
ing a scientific theory, thereby paving the way for 
establishing alternative and improved theories. In 
other cases, the objective of the significance test is 
to validate a certain aspect of a model, to justify 
assumptions needed for further analysis. 

1.2. Paradigm 

The (largely Fisherian) paradigm of significance test
ing used in the present article is outlined below: 

• A null hypothesis HQ or theory is entertained or 
proposed and data X collected; 

• A test statistic T = t(X) is constructed (possibly 
with an alternative theory in mind) in such a way 
that large values of T indicate deviations from Ho; 

• The p-value p = P(T > t0bs \ HQ) is calculated, 
approximately or exactly; 

• The p-value is interpreted by the fundamental 
principle: 

Events of small probability do not happen. 

This fundamental principle for relating probabilities 
to the real world has been termed Cournot 's princi
ple8' 9. Hence, ifp is sufficiently small, s&yp < e, Ho 
is untenable. Emile Borel10' n used the term "the 
single law of chance" for Cournot's principle and set 
the following scales for probabilities to be small: 

• l'echelle humaine: e ~ 10 - 6 

• l'echelle terrestre: e ~ 10 - 1 5 

• l'echelle cosmique: e ~ 10 - 5 0 

Modern statistical practice tends to use e ~ 10_ 1 , 
but Particle Physics may well need different scales to 
allow for scientific progress and simultaneously pre
vent too many false discoveries. 

Although the general issue of significance test
ing has a strong frequentist flavour, rules such as 
Cournot's principle are also needed for subjectivist 
Bayesian probability to make a bridge to observable 
phenomena in the real world12. 

1.3. Goodness of Fit 

This term is used to describe particular types of sig
nificance tests, but it is used in many different ways 
and contexts13' 14, for example: 

• Is a given distribution of a specified type? 
• Any significance test without explicit specification 

of an alternative hypothesis; 
• Any significance test used to validate, justify, or 

refute a postulated model. 

To avoid the discussion to be too narrow, we will 
mostly adopt the latter, which conforms well with 
the application of Cournot's principle. 

2. Basic example 

To avoid discussing the problems out of context, 
we will focus on variants of the following problem 
and setup, describing problems of detection of sig
nal events in the presence of noise in the form of 
background events. More precisely, we consider the 
following: 

'binned' counts of inde
pendent Poisson events, the i-th bin corresponding 
to events of mass or energy around m*. 

• The Poisson intensity Vi in bin i is given as 

„i=„i{9)=0i+%(^i^.y (i) 
where <j> denotes the standard Gaussian density. 

Here /?, is the intensity of background events whereas 
the second term is the intensity of the interesting 
signal events. The background intensity may depend 
on one or several unknown parameters rj so Pi = 
0{r]i) and 9 = (n, a, /x, a) denotes the vector of all of 
these parameters. The signal intensity may well be 
absent, corresponding to a = 0 and often the main 
issue of interest is to infer whether apparent signal 
events are just random artifacts. 

It is quite critical what the exact status is con
cerning prior knowledge about the background in
tensity. Can the background intensity be assumed 
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known from other experiments and theory or must it 
be estimated? How can the background reasonably 
be modelled? Can the measurement error a be con
sidered as known or unknown? Is the position of the 
signal peak /J, known? The complexity of problems 
vary greatly according to circumstance as outlined 
above. 

2.1. Standard practice 

Standard practice15 for tackling the situation can be 
briefly described as follows: 

• Fit model to background intensity; 
• Calculate goodness of fit statistics using either the 

likelihood ratio statistic G2 

G2 = -21ogL(0) 

or its approximation, known as Pearson's x2 

In some cases the latter is substituted with the 
Wald statistic 

T y 2 _ y M f l ) - * i } 2 

^ Xi 

which can be computationally more convenient. 
• Calculate p-values approximately or by Monte-

Carlo methods. 

3. Issues to be considered 

The setup described raises a number of issues: 

• Is one of the test statistics to be preferred? 
• When is the x2 distribution appropriate for calcu

lating p- values? 
• When calculating p-values using a x2-distribution, 

what is the appropriate number of degrees of free
dom? 

• If one fits the model with or without the signal 
component, can the difference between the two test 
statistics be used and what is its distribution? 

Partial answers to these and other questions will be 
attempted in the following. 

3.1. Power divergence statistics 

It can be helpful to consider the one-parameter fam
ily of power-divergence statistics16 given by 

A(A + 1) 
i=l MO) 

for —oo < A < oo. Provided ^ Xi 
follows that 

Ei"iO?). it 

h(X) = C2 \imh(X) = G2 

so the commonly used statistics mentioned above are 
special cases. Ref. 14 recommends A = 2/3, which is 
'between' C2 and G2. 

For A = —1/2, I\ becomes the Freeman-Tukey 
statistic F2 

F2 = 4YJ{Vxl-y/M§'i 

The Freeman-Tukey statistic17 is obviously based on 
the idea that for a Poisson variable with large mean 
v, \fX is approximately normally distributed: 

X~Af(y/v,l/4). 

These statistics all have the same asymptotic 
X2 distribution under the null hypothesis, and each 
is optimal in some sense. My personal preference 
would be the likelihood ratio statistic G2, as it is con
structed to have maximal power at the most likely 
alternative, but it may well be a matter of taste. 

For important issues it could be reasonable to 
calculate I\ and the associated p-value for a range 
of different values of A. It would not be desirable 
if the interpretation of an experiment depends crit
ically on A, so if the p-value is on different sides of 
the threshold for small probabilities as A varies, the 
experiment may be considered inconclusive. 

The use of W2 is mostly motivated by the con
venience of computation, because its minimization 
is a direct weighted least squares, whereas the oth
ers might be computationally less easy to minimize. 
The statistic W2 is potentially less powerful than 
C2 against large deviations from the hypothesis, as 
a large and explicit signal with Xi > Vi{6) will yield 

2 _ {Vi{9) - Xi}2 ^ {Vi(6)-Xi}2 

W? = X,. < 
MO) = c2 

There is some ambiguity about which of the 
above statistics is 'best'. Much effort has been used 
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to discuss which of them has a distribution closest to 
the x2-distribution. Much of this depends both on 
the specific circumstances considered and how close
ness is measured. Personally I would be less worried 
about getting an accurate calculation of the p-value 
than not detecting a signal because the test statistic 
is less powerful. Also, because effective Monte-Carlo 
methods are rapidly being developed, the use of the 
^-approximation is losing importance. 

3.2. Is the x2 distribution appropriate? 

The derivation of the x2 distribution is based on the 
following two elements: 

• For i/j large, Xi are approximately Gaussian 

• For Vi large, the model for the intensity Vi(9) is 
approximately linear in the unknown parameters 
within the likely area of variation of Xi. In partic
ular, the fitting of 9 is approximately a linear least 
squares problem. 

In the following some cases where there is trouble 
will be discussed. 

3.2.1. Unbinned fit 

If k unknown parameters have been fitted based on 
unbinned data and G2 is calculated from binned 
data, the asymptotic distribution of G2 (or any of 
the other statistics) is not x2 with n — k — 1 degrees 
of freedom. 

Fortunately, its correct asymptotic distribution 
is well understood. It approximately holds18 that 

G2 = A2 + J2(jB
2, 

where A2 is x2(.n~ k— 1) and independent of B2, j = 
1 , . . . , fc, with each B? distributed as x2(l) and 0 < 
( j < 1. In particular it holds (approximately) that 

A2<G2<A2 + J2B], 
3 = 1 

where the lower bound is X2(n~ k — 1) and the upper 
bound is x2(n — 1). 

This yields a simple practical way of guarding 
against problems of this kind: Asymptotically the 
correct p-value is between those based on x2{n ~~ 1) 
andx2(n—k—1). One can just calculate each of them 

and this will usually be precise enough to identify 
whether the correct p-value is extremely small. 

This result also holds for the other test statistics 
in the power divergence family14 and for W2. 

3.2.2. Parameter singularity 

One specific example where the difficulty in using the 
X2 approximation is due to intrinsic non-linearity of 
the testing problem is exactly in the case of signal 
with background noise, as in (1). If the location /j. of 
the peak or the measurement uncertainty a are not 
known, a singularity arises because under the null 
hypothesis a = 0, \i and a do not make sense. 

The following method to tackle this problem has 
been developed by Ref. 19. First proceed as if /i and 
a were known, and calculate the usual test statistic 
for the hypothesis a = 0. When /j, and a are known, 
the hypothesis is a simple, linear hypothesis. Denote 
the corresponding test statistic as 

Each of these follows a x2 distribution under the null 
hypothesis. We now use the test statistic 

T* = sup T^a 
(/i,<r)6« 

where R is a plausible region for (/U,CT). 

The approximate distribution of T* is that of the 
maximum of related x2 statistics. The correspond
ing p-value is not known exactly, but approximate 
Monte-Carlo methods using the x2 distribution for 
the individual statistics have been developed19. 

The method is somewhat involved, but not unus
able, in particular because in many cases, /i is known 
and a is approximately known, so the plausible re
gion R can be quite small. 

Recently, Ref. 20 has extended and refined the 
method so that it becomes more accurate and more 
generally usable. It seems worthwhile to explore the 
possibility of exploiting this method. 

3.3. Validating the model 

The x2-distribution used in the case just discussed 
would typically be the difference between G2 assum
ing only background and G2 when also the peak is 
fitted. 

For the x2 distribution to be valid it is important 
that the model is properly established, in particular 
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t ha t the background intensity is not incorrectly spec

ified. 

Thus it must at least have a non-significant G2 

value when the peak is fitted, to document that the 

da ta indeed can be explained in terms of background 

plus peak. 

In addition a careful residual analysis should be 

made to detect systematic or too large deviations 

from the model (1). 

4 . C o m p a r i n g w e i g h t e d and u n w e i g h t e d 
h i s tograms 

In some cases the information about the background 

intensity Pi is obtained from an independent exper

iment with Poisson counts Yi with intensities cpiPi, 

where pi are known factors and c is a constant deter

mining the total intensity of events in the auxiliary 

experiments. In other words, the auxiliary experi

ment has only background events, but may not have 

the same background rates. 

It is then common to form a weighted histogram 

with weights Wi in the zth bin, where 

Wi = Yi/pi, l , . . . , n 

and compare the histogram so obtained with the his

togram based on Xi, containing a potential signal 

peak. 

The exact distribution of associated test statis

tics, calculated as if the weighted events were indeed 

proper events, cannot be described in simple terms 

and the asymptotic results cannot be immediately 

applied to this more complex situation. An alter

native would be to compare the histograms with a 

proper significance test as follows. 

Under the null hypothesis Ho : a = 0, the like

lihood function in terms of the original observations 

Xi and Yi is 

L{c,p) oc j j # " +"*<*<e-ftU+<* • i ) 

i = l 

where we have let (3 = (Pi,..., Pn) be the unknown 

background intensities and Zj = Xi + Yi the com

bined number of events in bin i. 

Under Ho, Zi and the total number of events 

T = ^2 Yi in the auxiliary experiment are sufficient 

statistics and the likelihood function is maximized by 

solving the system of equations which equate their 

observed values to their expectations: 

* = 5Z y»= c H Pifo 
»=1 t = l 

zt = Pi(l +cpi), i = l,...n. 

These equations can be solved iteratively, for exam

ple by using start ing values c = P\ = • • • = f3n = 1 

and repeating 

n 

Pi 

l^pipi/t 
i = l 

(1 + CPi)/Zi, 1 , . . . 7 1 . 

This iteration is convergent as it can be seen to be a 

special instance of the algorithm known as Iterative 

Proportional Scaling or Iterative Proportional Fit

ting21. It provides maximum likelihood estimates c 

and pi under the null hypothesis. T h e log-likelihood 

ratio statistic becomes 

D -2 log 
L(cJ) 

L(i>) 

where v = (z>i, . . . , i>n) is the maximum likelihood 

estimate under an alternative hypothesis, but many 

other reasonable test statistics could be used, for ex

ample the analogue of C2 

^ = E (Xj - Pi)2 

Pi 
+ £ JVi - cpiPif 

CPiPi 

or any other statistic from the power-divergence fam

ily. The p-value associated with any of these or other 

statistics can be calculated on the basis of the con

ditional distribution of the number of events, given 

the statistic which is sufficient under Ho, as the un

known parameters c and Pi do not enter into tha t 

distribution. 

This distribution is very easy to simulate us

ing the following Monte-Carlo procedure, which is 

a variant of Patefield's algorithm for simulating two-

way contingency tables, conditional on the marginal 

tota ls 2 2 . 

A simple argument shows t h a t the conditional 

distribution of (Xk,Yk), given Zt,i = l , . . . , n , 

J2tYi = t, and {Xi,Yi) = (xi,yi),i = l...,k - 1 

is given as 

P{xk,Vk) = hk{pk)py
k
k- — 

( C ' ) ( Vk ^ 
( H - t - E i 
\ Xk+Vk 
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for xk + yk = zk, where s = J2iXi = YJi
Zi~t 

and the expressions in brackets are binomial coeffi

cients. This yields an obvious recursion for simulat

ing from the correct distribution of any test-statistic 

in cases where the number of events in each bin is 

limited. For large event numbers, it may be easier to 

use asymptotic results. 

5. S i m u l t a n e o u s conf idence intervals 

An alternative approach to the problem of assessing 

whether a peak is indeed present in the model (1) 

uses the idea of simultaneous inference2^. This ap

proach initially avoids fitting a model altogether and 

calculates a band within which the true Poisson in

tensity with high probability must be. If the band is 

sufficiently narrow, and displays an explicit peak, it 

might be immediately obvious tha t the da t a are in

consistent with any reasonably smooth background 

model. 

Using the fact tha t the counts in separate bins 

are independent, it is possible to produce a simulta

neous confidence band for the Poisson intensity, using 

tha t if 

P{\Xi - Vi\ > c) = (3 

for every bin i, then it follows tha t 

P ( m a x \Xt - Vi\ > c) = 1 - (1 - /?)". 

Hence, if a 1 — a confidence band is desired, we must 

just choose 

/ 3 = l - ( l - a ) 1 / n . 

This now yields a band around the observed his

togram within which the proposed background in

tensity should fit. If this is not possible, then this 

can be taken as evidence either against the model 

for background or against absence of the peak. 
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GOODNESS-OF-FIT FOR SPARSE DISTRIBUTIONS IN HIGH E N E R G Y PHYSICS 
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We consider Pearson's chi-square X2, the likelihood ratio G2, and Zelterman's D2 as goodness-of-fit statistics for 
high energy physics problems in several dimensions, where the data are sparse. There is a fundamental obstacle in 
the "ultrasparse" case where all bins have at most one entry (rij = 0,1 Vi). A condition for avoiding this regime is 
derived; the allowed number of bins k rises faster than the total number of events n: fcmax = 0.4 x n 1 ' 4 . Reasonable 
binning in many dimensions may thus be possible for modest datasets n > 0(100), although special treatment is 
required to derive p-values. Results for an initial trial problem are encouraging; further studies are underway. 

1. Motivation/Historical note 

The talk of the Durham meeting was Heinrich's 
demonstration1 that the likelihood cannot be used 
to test goodness-of-fit (g.o.f.) for unbinned maximum 
likelihood fits (see also Refs 2 and 3). This presents 
a problem for high energy physics, where the data 
are often characterised by several variables, leading 
to the use of unbinned fits to small samples. Due to 
the importance of such fits at the B-factories, Kay 
Kinoshita and I both pursued the matter in the fol
lowing year, considering binning-free tests based on 
the random walk4 and the energy test,5 with incon
clusive results. During discussion at PHYSTAT2003, 
an alternative approach was suggested:6 

Conventional binned g.o.f. tests rely on results 
from the asymptotic limit where the number of bins 
k is fixed, and the number of events n —» oo. This is 
one reason behind the conventional wisdom that fits 
should have n, > 5 events in each bin. However an al
ternative limit, where k —> oo but the ratio of events 
to bins n/k remains finite, has been studied: see for 
example Ref. 7. There is considerable statistical lit
erature on g.o.f. in this regime, mostly considering 
problems in the social sciences (for example, Ref. 8). 
Here I report the status of an attempt to appropriate 
this work for use in high energy physics. 

2. Adapting a social science example 

As a starting point, Zelterman9 considers a 2D his
togram from an employment survey,10 with n = 129 
events and k = 899 cells: well outside the conven
tional regime (Fig. 1). The null hypothesis is "inde
pendence of the rows [monthly salary] and columns 
[years since first degree] by using multinomial sam-
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Fig. 1. The sparse histogram used as an example by 
Zelterman,9 plotting salary vs. years of experience; the small
est squares show one event/bin. The data are taken from an 
employment survey in Ref. 10. 

pling, conditional on the marginal totals";9 the al
ternative hypothesis is that a correlation exists. By 
inspection, confirmed by linear regression, the data 
of course are correlated. Tests based on 

X2 = X>< ~ ^)2/A», (1) 
i 

G2 = 22_\nil°E>ni/^ii a n d (2) 
i 

D2 = E [(n i - A * ) 2 - n<] /A< <3) 
i 

where rn is the actual and \ the predicted number 
of events in bin i, find various results: X2 (Pear
son's x2) fails to reject the null hypothesis; the like
lihood ratio statistic G2 and D2 both reject it at 
extreme signficance. D2, which is outside the family 
of Cressie and Read,11 was introduced by Zelterman 
for use in the case of sparse data.9 Both this and G2 

seem suitable to our purpose, based on this example. 
No exact mathematical relationship between the 

quantities in Fig. 1 is expected; they can thus be 
grouped into categories — binned — according to 
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convenience. Typical high energy physics data are 
different: the variables are invariant masses, mo
menta, angles, etc., and the underlying processes are 
intrinsically simple. Formulae relating various quan
tities can be derived for some hypotheses, such as de
cay of a particle with given properties, and for others 
(e.g. combinatorial backgrounds) functions with few 
parameters are found to fit the data well. It would 
thus be attractive to choose bins fine enough to dis
tinguish different (possibly correlated) distributions 
in each quantity: in many dimensions this can lead 
to arbitrarily small numbers of events-per-bin. 

This approach will fail in the limit where n* = 
0,1 V bins i: a test statistic I = JZi/(n*'^*) can
not in general distinguish between regions of low and 
high event density. D2 collapses to a unique value 
in this case, for any {Aj}; all statistics J collapse to 
the unique value n • / ( l , A) + (k - n) • / (0 , A) if the 
distribution is flat, A» = A Vi. (Note that the form 
given for / is general, including the family of Cressie 
and Read,11 D2, and other statistics.) Since we will 
typically fit data with floating shape parameters, the 
limitation is fatal. 

To avoid this "ultrasparse" regime, consider the 
following condition: Let rrij be the number of bins 
i where rii = j (so that there are rri\ bins with one 
entry, etc.), and find the number of bins k = kmax 

such that 

P (m2 < ^ n ; rrij = 0 Vj > 2 J < 0.01 (4) 

in the case where the expected bin populations are 
equal, Aj = n/k. If this condition is met, then the 
majority of datasets will have a significant number 
of bins with n, = 2, 3, . . . , even though the aver
age bin population may be low: at most 1% will be 
dominated by bins with one entry, n» = 1. (We con
sider datasets with only a small number of nj = 2 
bins m,2 < n/10, and no bins with rn > 2, to be 
dominated by their single-entry bins.) 

For given n and k, the probability of any partic
ular set of counts (mo,mi,m2,T7i3...) is 

P(WI"-t, = r p W ' n 7 b •(*)"• (5) 

based on multinomial statistics and simple counting. 
Using (5) and an arbitrary-precision calculator, it is 
straightforward to solve (4) for fcmax. Results are 
shown in Fig. 2, together with a fit to the power law 

fcmax = 0.4 X n1A. (6) 

2 3 4 
10 10 10 
number of data points n 

Fig. 2. The largest number of bins femax satisfying the condi
tion (4), as a function of the number of events n. The results 
of a fit to the power-law fcmax = PI • n?2 are also shown. 

This suggests that binnings with n/k <S 1 may be 
possible for moderate n > 0(100), enabling bins to 
be chosen in each of many dimensions, as required. 

3. Example: X(3872) —• n+ir-J/ip 

As an example, we consider angular analysis of de
cays X(3872) —> •K+Tr~J/ip, to determine the quan
tum numbers JPC of the state; the sample was 58 
events including « 11 background.12 Various hy
potheses were tested using ID histograms chosen 
with typical n^ > 5, but regions where A* < 1 on 
the null hypothesis: see Fig. 2 of Ref. 12. Event 
counts rii ^> 1 in these bins disfavour the null. 

Using toy Monte Carlo (MC) experiments with 
n = 50 and neglecting background, we study the 
power of tests on (l)-(3) to discriminate against 
Jpc = 0 *" using binning in an increasing number of 
dimensions. Events are generated following Ref. 13, 
using a complete set of angles (0, <fr, ip, X> 4>K)- (Here 
(9,(j),ip) are as defined in Ref. 13 for the 0 _ + case; 
X is as defined for 0 + + ; and 4>K is the azimuthal 
angle of the kaon from B —> KX(3872) decay, in 
the system used to define <fi.) To bin efficiently, we 
use non-equidistant bins [0.0,0.3], [0.3,0.6], [0.6,0.9], 
[0.9,1.0] in | cos#|, where a sin2 0=1 — cos2 9 distri
bution is expected on the null hypothesis (preserving 
the small expected population in the last bin,12 but 
using fewer bins overall). Fig. 3 shows the value of 
such binning for discriminating between hypotheses. 

Fig. 4 shows the power to reject the null, based 
on p-values taken from distributions of toy MC ex
periments. The X2 and G2 tests improve noticeably 
as more dimensions are added, up to case (e) with 
k = 128 bins, comparable to A;max w 95 (from (6)) 
for n = 50. All tests lose power for binning (f), in the 
ultrasparse regime (k = 512), and inspection of test-
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Fig. 3. Data from a single toy MC dataset, n = 50, for each of 
J P C (X(3872) ) = 0 - + (upper plots) and 1++ (lower). Dotted 
lines show 4 x 4 binning in (| cos#|, |cosi/>|); left and right plots 
show | cos x | < 0.5 and > 0.5 bins respectively. For Jpc = 
0 •", we expect sin2 9 sin2 ij> dependence and no dependence 
on cosx- For Jpc = 1 + + , the distribution oc sin2 x; the 
dependence on the remaining angles (9, <j>, tp, <J>K) is nontrivial. 

statistic and p-value distributions shows pathologies 
such as domination by discrete values. X2 gener
ally shows higher power than G2, but loses power as 
(1 — a) —> 1.0, where a is the significance: the mech
anism needs to be studied. D2 performs poorly in all 
cases, in marked contrast to the example of section 2. 

Also shown is a test based on Y^i ' n £i > where Ci 
is the likelihood for the Ith event: oc sin2 9 sin2 ip for 
JPC = 0 _ + . In this case, this test is discriminat
ing, and more powerful than all of the binning-based 
tests shown. (This result is unlikely to be general, as 
there are known to be cases where Ci -based tests fail 
to discriminate against certain alternative hypothe
ses, even where the null hypothesis is simple; the 
limitation is related to the failure of these tests to 
discriminate in the case of unbinned maximum like
lihood fits. See Ref. 3.) Since Ci is a function of 
cos# and cos'0 only, it is insensitive to variation in 
0,cosx or <fipc, not expected for JPC — 0 *" but ex
pected for some other hypotheses, in particular 1 + + 

(see Fig. 3). Thus a test combining ^ l n £ ; with 
appropriate binning in (<f>,cosx,<I>K) is presumably 
more powerful still: this remains to be studied. 

4. Further work 

In addition to further study of the results presented 
here, the following extensions are planned: 

(1.) Varying n in the X(3872) case, to see if Eq. (6) 
is a reliable guide to the breakdown of tests. 

(2.) Application to a basic compound-hypothesis 
problem: fitting for a possible signal in the 
presence of background (which may be mismod-
elled). The prototypical problem of this kind at 
the B-factories is a search for a rare B-decay.14 

(3.) A difficult compound-hypothesis problem: an
gular analysis of B —> (j>K* or similar decays15 

to determine helicity amplitudes. This is a 3D 
problem with a few hundred events, and thus 
combines features of cases (1.) and (2.). 

It would be desirable to also apply this method to 
the analysis in Ref. 16, with (2(100) events and the 
sensitivity due to fine structure in two dimensions. 
Unfortunately, based on Eq. (6), this is unrealistic. 

5. Conclusion 

Binned goodness-of-fit tests have been considered for 
sparse data, where typical bin populations m <C 5. 
Such tests will fail in the "ultrasparse" case where 
all bins have 7ij = 0,1 only; the condition fcmax = 
0.4 x n1 '4 defines a number of bins kmax that avoids 
this regime, for a given number of events n. For 
modest sample sizes, kmax is large enough to allow 
binning in many dimensions. For an angular anal
ysis problem with n = 50, substantial improvement 
in the power of tests is found for careful binning in 
four dimensions, up to the expected limit k w 100. 
Further study using different n, and compound hy
potheses, is underway. The (non-x2) distribution of 
test statistics in this regime remains to be studied. 
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Fig. 4. Angular analysis of X(3872) —• TX+-K~ J/tp (simulated): Power to reject the null hypothesis Jpc = 0 _ + , in the case 
of 1++ data, for hypothesis tests based on D2 (solid line), G2 (dashed), X2 (dotted), and the unbinned log-likelihood 5D( In/2; 
(dot-dashed). The fraction of 1++ datasets that survive (i.e. (1-/3) where 0 is the power) is plotted against (1 — a), where a is the 
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Data analysis in low counting rate experiments require non-standard statistical methods mainly because with a poor data 
sample the Gaussian approximation is not appropriate. In this paper an example of analysis applied to a sample of data 
from a low counting rate experiment is presented. Emphasis is put on how to determine uncertainties of physical 
parameters, on goodness-of-fit and on the application of the Monte Carlo method. 

1. Introduction 

In experiments with low counting rate, often one has to 
deal with the problem of how to determine an upper 
limit or on how to define uncertainties. A complication 
is that the Gaussian approximation is not valid for a 
poor data sample, and binning of data can be difficult. 
Moreover, histograms may have one or more bins 
without entries. In these cases the very well known %2 

method should not be used. The maximum likelihood 
method is best suited for parameter calculation. As far as 
upper bounds and uncertainties are concerned, there is 
no well established method (see discussion by G. 
Feldman in these proceedings). 

In this paper we present an example of analysis to 
determine the activity of 85Rr in a low counting rate 
detector. In particular, we will consider data from the 
Counting Test Facility, CTF, of the Borexino solar 
neutrino detector [1]. The CTF is a 4 ton un-segmented 
liquid scintillator detector designed to study the 
radiopurity of organic scintillators in the energy range 
below 1 MeV. Radioactive contaminants below 1 MeV 
are 238U, 232Th, 85Kr, 39Ar and 210Pb. In particular, for U 
and Th the CTF reaches a sensitivity at the level of 10'16 

g(U,Th)/g. The CTF is equipped with one hundred 
photomultipliers, an active muon veto and 103 m3 of 
high purity shielding water. The CTF is located at the 
underground Gran Sasso Laboratory, Italy. A detailed 
description of the CTF can be found in [2]. As 
mentioned above, in the following we will focus on the 
measurement of 85Kr in the liquid scintillator of the CTF 
to illustrate statistical methods to be used with a small 
data sample. 

The 85Kr is anthropogenic and it is a beta emitter 
with an end-point energy equal to 0.687 MeV. With a 

very small branching ratio (0.43%), it decays (Qp=0.173 
MeV) to 85mRb which decays to the ground state with 
T=1.46us emitting a photon of 0.514 MeV. This 
sequence of beta-gamma decays provide a strong 
signature for the detection of 85Kr. Unfortunately, given 
the small branching ratio and the low counting rate 
feature of the detector, the set of collected candidate 
events is expected to be small in spite of the exposure. 
In the following, first we will present a sample of data 
selected in about 555 days. Then we will discuss an 
analysis method to determine the 85Kr activity, the 
uncertainty on the measurement and the goodness-of-fit. 
In particular, we will compare the uncertainties and 
the goodness-of-fit calculated using the maximum 
likelihood and a Monte Carlo method, respectively. 

' 1 ' 1 ' 1 ' 1 ' 

coincidence times 

I l l II 

binned data 

IT-Tnh.U . • 
Coincidence time (^s) 

Figure 1. Selected 85Kr events 

Data 

Selected data are reported in Figure 1. In particular, we 
show the coincidence times, "vertical bars", and a 
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histogram of the data (10 bins). In the whole detector 
mass (3.73 tons of C9H12) we found 48 candidates. We 
expect a fraction of these counts to come from 232Th 
through the correlated (in space and time) decay 
sequence: 212Bi(P)->212Po(a,x=0.435us). 

3. Analysis method 

3.1. Maximum likelihood for parameters 
estimation 

The method of analysis is based on the so-called un-
binned extended maximum likelihood [3]. The data can 
be described with the following distribution function: 

p(t;aKr,aTh ,b) = b + ̂ e-"*> + ̂ e~'^ (1) 
'Kr 'Th 

where we have taken into account two sources of 
background, namely, the 212Bi-212Po decay sequence and 
a constant contribution from electronics noise. Using 
Eq. (1), the likelihood function is written: 

««»•«»,» = ft,_**'»-<',">) * 
\p(t;aKr,an,b)dt 

i=l 

(tm 

\p(t;aKr,aTh,b)dt 
. min 

'max 

- \p(f,aKr,an,b)dt 

'max 

- \p('^Kr,«Th,l>)dl 

xe = (2) 

*Ylp(tt>aKr>an>b) 
/=1 

where N=48 is the number of selected events, and a^, 
aTh and b are unknown parameters. In Eq. (2) t^ =0.5us 
and tmax =6us. In particular, a^ is proportional to the 
85Kr activity. By searching for the maximum of InL from 
Eq. (2), we have determined the best-fit values for the 
unknown parameters. In the analysis we use implicitly 
the hypothesis that the decay trend shown by the data in 
Figure 1 is due to the mean life of Kr and that of Th, as 
described above. This hypothesis needs to be tested as 
done below. 

Once the best-fit values have been calculated, one 
needs to determine the uncertainties. A common method 
is to use the following equation [3,4]: 

AlnZ = lnZ(0 ) - ln i : m a x =- | , (3) 

where lnL(9) is the profile log-likelihood and Q defines 
the likelihood ratio error interval (Q=l for standard 
interval). We have applied this method: first we have 
determined the profile log-likelihood for aKr by 
maximizing with respect to the other two parameters. 
Then, we have used Eq. (3) to calculate the standard 
error interval. It turns out that 3KT = 30+11.10. Using the 
selection cuts efficiency (35%), the Kr activity is 
calculated to be 36+14.i2 counts/day in 3.73 tons. We 
notice that Eq. (3) gives the correct confidence limits if 
the Gaussian approximation is justified. For the present 
data sample the log-likelihood is not a Gaussian as can 
be seen in Figure 2. 

We have used a second method in order to 
determine the "error interval" for aKr- In particular, using 
the best-fit values for the parameters as inputs for 
sampling the distribution in Eq. (1), we have simulated 
2000 data sets. For each set we have used Eq. (2) to 
determine aKr and the other parameters. The distribution 
of aKr is shown in Figure 3. From this distribution we 
have calculated an interval around the mean value which 
contains 68.3% of the whole data. It turns out that: 
aKr=29.5+9 7.7 5 and the Kr activity is 35+12.9 counts/day in 
3.73 tons. 

Once the parameters and uncertainties have been 
determined, one has to calculate the p-value in order to 
test the assumed hypothesis. For the data sample 
considered, we have used two methods: an unbinned test 
and a chi-squared test combined with Monte Carlo 
simulation. As un-binned hypothesis test we have 
considered the Smirnov-Cramer-Von Mises method [5]. 
In this method a measure of the difference between the 
data and the model is: 

w = \[F^x)-Fth(x)?f{x)dx (4) 
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Figure 2. Profile log-likelihood for the parameter aicr. The horizontal 
line is used to determine the standard likelihood ratio error interval on 
the parameter. See text for details. 

By writing the data in an ordered form (see Figure 4), 
Eq. (4) can be written: 

w 

In 

> 

Eq 

1 
UN 

(4) 

N 

+2; 
/=1 

^expt. 

^ ( * , ) -
2/-1 
2N 

(5) 

(x) is the experimental cumulative 
distribution, FA(x) is the model cumulative distribution 
and f(x) is the model pdf (Eq. (1) defines the pdf of the 
example presented in the paper). F,h(x) is given as a 
function of the parameters, aKr,aTh,b. Best-fit values are 
used for the parameters in F^x). 

Figure 3. Distribution of the parameter aKr from the Monte Carlo 
Method. See text for details. 

In Figure 4 we show the experimental cumulative 
distribution (solid line), and the model cumulative 
distribution (dashed line). The value determined using 
Eq. (5) (see Figure 4) corresponds to a p-value of 81% 

[4]. 
A second method used to determine the p-value 

uses binned data and simulates the distribution of the 
test statistic. In this case the difference between the data 
and the model is given by: 

JV 

i=\ 

N exp •N. 
a>\ 

4W (6) 

where Niexp is the number of counts in the bin i* in the 
histogram shown in Figure 1, and Ni* is the 
corresponding expected number of counts. We have 
used the Monte Carlo method to determine the 
distribution of the XP

2 in Eq. (6) starting from the best-fit 
values. In Figure 5 we show the result of the simulation. 
We notice that the distribution of Eq. (6) does not match 
a %2 distribution. This is a general result when one deals 
with small samples. 

3 

e 
3 

o 

I I ' - t ^ S = 

w =0.06 (significance = 81%) 

2 3 4 5 6 

coincidence time ((is) 

Figure 4. Goodness-of-fit using 
method. See text for details. 

the Smirnov-Cramer-Von Mises 

The p-value turns out to be equal to 82%. 

4. Conclusions 

In the paper we have presented a method of analysis to 
deal with low statistic samples. We have shown how, 
once the physical parameters are determined with an un-
binned maximum likelihood fit, uncertainties and 
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goodness-of-fit can be determined by the Monte Carlo 
method. However, the methods we used for determining 
confidence intervals may not give the correct coverage. 
Un-binned hypothesis tests, such as the Smirnov-
Cramer-Von Mises should be used with small data 
samples to avoid problems with low or zero entries/bin 
in applying the well-known %2 goodness-of-fit method. 
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Experimental data are rarely, if ever, distributed as a normal (Gaussian) distribution, in real world applications. A 
large set of data—such as the cross sections for particle scattering as a function of energy contained in the archives of 
the Particle Data Group1—is a compendium of all published data, and hence, unscreened. For many reasons, these 
data sets have many outliers—points well beyond what is expected from a normal distribution—thus ruling out the 
use of conventional x 2 techniques. We suggest an adaptive algorithm that applies to the data sample a sieve whose 
mesh is coarse enough to let the background fall through, but fine enough to retain the preponderance of the signal, 
thus sifting the data. The "Sieve" algorithm gives a robust estimate of the best-fit model parameters in the presence 
of a noisy background, together with a robust estimate of the model parameter errors, as well as a determination 
of the goodness-of-fit of the data to the theoretical hypothesis. Computer simulations were carried out to test the 
algorithm for both its accuracy and stability under varying background conditions. 

1. In t roduct ion 

Our major assumptions about the experimental data 
are: 

(1) The experimental data can be fitted by a model 
which successfully describes the data. 

(2) The signal data are Gaussianly distributed, with 
Gaussian errors. 

(3) That we have "outliers" only, so that the back
ground consists only of points "far away" from 
the true signal. 

(4) The noise data, i.e. the outliers, do not com
pletely swamp the signal data. 

2. The Adapt ive Sieve Algor i thm 

2.1 . Algorithmic steps 

We now outline our adaptive Sieve algorithm: 

(1) Make a robust fit of all of the data (presumed 
outliers and all) by minimizing A2,, the tuned 
Lorentzian squared, defined as 

N 

A2
0(a;s) = £ l n {1 + 0.179Ax2(zi; a ) } , (1) 

described in detail in Block2. The M-
dimensional parameter space of the fit is given 
by a = {an,...,CUM}, x = {xi,...,xN} repre
sents the abscissas of the JV experimental mea
surements y = {yi,... ,VN} that are being fit 

and A X
2 (x i ; a ) = (ittrKJHiiSl)2, where y(Xi;a) 

is the theoretical value at x* and o\ is the experi
mental error. As discussed in Block2, minimizing 
A2, gives the same total x m i n = E i l i A x f 0*;«) 
from eq. (1) as that found in a x 2 fit, as well 
as rms widths (errors) for the parameters—for 
Gaussianly distributed data—that are almost 
the same as those found in a x 2 fit. The quan
titative measure of "far away" from the true 
signal, i.e., point i is an outlier correspond
ing to Assumption (3), is the magnitude of its 

Ax2(^;a)=(^f^)2 . 
If Xmin *s satisfactory, make a conventional 

X2 fit to get the errors and you are finished. If 
Xm^ is not satisfactory, proceed to step 2. 

(2) Using the above robust A2, fit as the initial 
estimator for the theoretical curve, evaluate 
Ax2(£i; a ) , for the N experimental points. 

(3) A largest cut, Ax2(^i;a)max, must now be se
lected. For example, we might start the process 
with Ax 2 (x i ; a ) m a x = 9. If any of the points 
have Ax2(xi; a) > Ax2(zi; a ) m a x , reject them— 
they fell through the "Sieve". The choice of 
Ax2(x i ;a)max is an attempt to pick the largest 
"Sieve" size (largest Ax 2 (^ i ;a) m a x) that rejects 
all of the outliers, while minimizing the number 
of signal points rejected. 

(4) Next, make a conventional x 2 fit to the sifted 
set—these data points are the ones that have 
been retained in the "Sieve". This fit is used 
to estimate Xmin- Since the data set has 
been truncated by eliminating the points with 
Axf(xi;a) > A x 2 ( ^ ; a ) m a x , we must slightly 
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renormalize the Xmin found to take this into ac
count, by the factor 7Z, whose inverse is shown 
in Fig. 9a of Block2. 

If the renormalized xLia>
 Le-> K x Xmin i s 

acceptable—in the conventional sense, using the 
X2 distribution probability function—we con
sider the fit of the data to the model to be 
satisfactory and proceed to the next step. If 
the renormalized Xmin is n o t acceptable and 
&Xiixi i a)max is not too small, we pick a smaller 
Ax?{xi\ a)max and go back to step 3. The small
est value of Ax2(xi; a ) m a x that makes much 
sense, in our opinion, is Ax2(xi',a)ma,x = 2. Af
ter all, one of our primary assumptions is that 
the noise doesn't swamp the signal. If it does, 
then we must discard the model—we can do 
nothing further with this model and data set! 

(5) From the x 2 fit that was made to the "sifted" 
data in the preceding step, evaluate the param
eters a. Next, evaluate the M x M covariance 
(squared error) matrix of the parameter space 
which was found in the x2 fit. We find the new 
squared error matrix for the A2 fit by multiply
ing the covariance matrix by the square of the 
factor rx2 (for example2, rx2 ~ 1.02,1.05, 1.11 
and 1.14 for Ax?(a;*; a ) m a x = 9, 6, 4 and 2, re
spectively ), shown in Fig. 9b of Block2. The 
values of rx2 > 1 reflect the fact that a x 2 fit 
to the truncated Gaussian distribution that we 
obtain—after first making a robust fit—has a 
rms (root mean square) width which is some
what greater than the rms width of the x 2 fit 
to the same untruncated distribution. Extensive 
computer simulations2 demonstrate that this ro
bust method of error estimation yields accurate 
error estimates and error correlations, even in 
the presence of large backgrounds. 

You are now finished. The initial robust A2, fit 
has been used to allow the phenomenologist to find 
a sifted data set. The subsequent application of a 
X2 fit to the sifted set gives stable estimates of the 
model parameters a, as well as a goodness-of-fit of 
the data to the model when Xmin is renormalized for 
the effect of truncation due to the cut Ax2(xi\ a ) m a x . 
Model parameter errors are found when the covari
ance (squared error) matrix of the x2 fit is multi
plied by the appropriate factor (rx2)2 for the cut 
Ax2(^;a)max-

It is the combination of using both A2 (robust) 
fitting and x2 fitting techniques on the sifted set that 
gives the Sieve algorithm its power to make both a 
robust estimate of the parameters a as well as a ro
bust estimate of their errors, along with an estimate 
of the goodness-of-fit. 

Using this same sifted data set, you might then 
try to fit to a different theoretical model and find 
Xmin f° r this second model. Now one can compare 
the probability of each model in a meaningful way, 
by using the x2 probability distribution function of 
the numbers of degrees of freedom for each of the 
models. If the second model had a very unlikely Xmin' 
it could now be eliminated. In any event, the model 
maker would now have an objective comparison of 
the probabilities of the two models. 

3. Evaluating the Sieve Algorithm 

We will give two separate types of examples which 
illustrate the Sieve algorithm. In the first type, we 
use computer-generated data, normally distributed 
about 

• a constant, along with random noise to pro
vide outliers. The advantage here, of course, is 
that we know which points are signal and which 
points are noise. 

For our real world example, we took eight types of 
experimental data for elementary particle scattering 
from the archives of the Particle Data Group1. For 
all energies above 6 GeV, we took total cross sections 
and /9-values and made a fit to these data. These 
were all published data points and the entire sample 
was used in our fit. We then made separate fits to 

• pp and pp total cross sections and p-values, 
• n~p and TT+p total cross sections a and p-values, 

using eqns. (2) and (3) below. 

4. Real World Data—pp and pp 

We will illustrate the Sieve algorithm by simultane
ously fitting all of the published experimental data 
above -y/s > 6 GeV for both the total cross sections 
a and p values for pp and pp scattering, as well as 
for n~p and ir+p scattering. The p value is the ratio 
of the real to the imaginary forward scattering am
plitude and y/s is the cms energy Ecms. The data 
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sets used have been taken from the Web site of the 
Particle Data Group1 and have not been modified. 

4.1. Testing the Froissart Bound 
Hypothesis 

Testing the hypothesis that the cross sections rise 
asymptotically as In2 s, as s —> oo, the four functions 
cr± and p^- that we will simultaneously fit for yfs > 6 
GeV are: 

CT± = c0 4- ci In (—) + c2 In
2 (—) 

/ V \ M - l / V \a—l 

+(3V, ( - ) ± S(-) , 2 

where the upper sign is for pp {TT+P) and the lower 
sign is for pp (TT~P) scattering3. The laboratory en
ergy is given by u and m is the proton (pion) mass. 
The exponents p, and a are real, as are the 6 con
stants Co, ci, C2, /3-p', 5 and the dispersion relation 
subtraction constant /+(0). We set p = 0.5, appro
priate for a Regge-descending trajectory, leaving us 
7 parameters. We then require the fit to be anchored 
by the experimental values of app and app {av~p and 
cr^p), as well as their slopes, ĵfeg-, at y/s = 4 GeV 
for nucleon scattering and -Js = 2.6 GeV for pion 
scattering. This in turn imposes 4 conditions on the 
above equations and we thus have three free param
eters to fit: C\, C2 and /+(0). 

4.2. pp and pp raw scattering data 

The raw experimental data for pp and pp scattering 
for E c m s > 6 GeV were taken from the Particle Data 
Group1. There are a total of 218 points in these 
4 data sets. We fit these 4 data sets simultaneously 
using eq. (2) and eq. (3). Before we applied the Sieve, 
we obtained Xmin = 1185.6, whereas we expected 
215. Clearly, either the model doesn't work or there 
are a substantial number of outliers giving very large 
Ax? contributions. The Sieve technique shows the 
latter to be the case. 

4.3. The results of the Sieve algorithm 

We now study the effectiveness and stability of the 
Sieve. Table 1 contains the fitted results for pp and 
pp scattering using 2 different choices of the cut-off, 
Ax?m a x = 4 and 6. It tabulates the fitted parameters 
from the x2 fit together with the errors found in the 
X2 fit, the total Xmim vi t n e number of degrees of 
freedom (d.f.) after the data have been sifted by the 
indicated Ax2 cut-off and the renormalized x2/d-f-

To get robust errors, the errors quoted in Table 
1 for each parameter should be multiplied by the 
common factor 7̂ 2 =1.05, using the cut A = 6. See 
Block2 for details. 

Table 1. The results for a 3-parameter fit to Eqns. 2 and 3. 

The renormalized Xmin/y> taking into account the effects of the 

Axfmax cut, is given in the row labeled V, X Xmin/"-

Fitted 

Parameters 

ci (mb) 

C2 (mb) 

/(0) (mbGeV) 

y 2 -

V (d.f). 

rc X Xmin/" 

AY? 
A ! max 4 

-1.452 ± 0.066 

0.2828 ± 0.0061 

-0.065 ± 0.56 

142.8 

182 

1.014 

6 

-1.448 ± 0.066 

0.2825 ± 0.0060 

-0.020 ± 0.56 

182.8 

190 

1.040 

We note that for A x 2
m a x = 6, the number of 

retained data points is 193, whereas we started with 
218, giving a background of ~ 13%. We have rejected 
25 outlier points (5 app, 5 crpp, 15 ppp and no pPV 

points) with x^in changing from 1185.6 to 182.8. We 
find Xmin/1' = 0.96, which when renormalized for 
A = 6 becomes 1Z x Xmin/1' = 1-04, a very likely 
value with a probability of 0-34. 

Obviously, we have cleaned up the sample—we 
have rejected 25 datum points which had an aver
age Ax2 ~ 40! We have demonstrated that the 
goodness-of-fit of the model is excellent and that we 
had very large Ax? contributions from the outliers 
that we were able to Sieve out. These outliers, in ad
dition to giving a huge Xmin/^i severely distort the 
parameters found in a x 2 minimization, whereas they 
were easily handled by a robust fit which minimized 
A2,, followed by a x2 fit to the sifted data. Inspec
tion of Table 1 shows that the parameter values C\, 
C2 and /+(0) effectively do not depend on Ax? m a x , 
our cut-off choice, having only very small changes 
compared to the predicted parameter errors. Figure 
1 shows the result of the fit of eq. (2) to the sieved 
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data sample of pp and pp cross sections. Clearly, 
this is an excellent fit. Its prediction at the LHC is 
app = 107.6 ±0 .1 mb. 

100 I I I I | | J I I I i i i i I I I I I I I I i i I 

95 -

10 100 1000 

E c m s > i n G e V 

Fig. 1. A plot of app and app, in mb vs. ECms, the center 
of mass system energy , in GeV. The data points shown are 
the result of screening all of the cross section points for those 
points with A\f < 6. The open circles are cpp and the squares 
are (Jpp. The solid line is the theoretical fit to cpp and the 
dashed line is the theoretical fit to app. 

Due to space limitations, similarly good fits to 
the p values using eq. (3), as well fits, 
are not shown—see ref. 2 for complete details. 

5. Comments and Conclusions 

Computer simulations2 have shown the Sieve algo
rithm works well in the case of backgrounds in the 
range of 0 to ~ 40%. Extensive computer data were 
generated about a straight line, as well as about 
a constant. It also works well for the ~ 13% to 
19% contamination for the eight real-world data sets 
taken from the Particle Data Group1. However, the 
Sieve algorithm is clearly inapplicable in the situa
tion where the outliers (noise) swamp the signal. In 
that case, nothing can be done. See ref. 2 for com
puter simulation results. 

Our particular choice of minimizing the 
Lorentzian squared in order to extract the robust pa
rameters needed to apply our Sieve technique seems 
to be a sensible one for both artificial computer-
generated noisy distributions, as well as for real-
world experimental data. The choice of filtering out 
all points with A*2 > Ax,2

m a x-where Ax 2
m a x is as 

large as possible—is optimal in both minimizing the 

loss of good data and maximizing the loss of outliers. 
The utilization of the "Sieved" sample with 

Ax? < Ax 2
m a x allows one to: 

(1) use the unbiased parameter values found in a 
X2 fit to the truncated sample for the cut 
Axf (xi'iOc)max, even in the presence of consid
erable background. 

(2) find the renormalized Xmin/^ i.e., K x Xmin/^-
(3) use the renormalized Xmin/^ to estimate the 

goodness-of-fit of the model employing the stan
dard x2 probability distribution function. We 
thus estimate the probability that the data set 
fits the model, allowing one to decide whether to 
accept or reject the model. 

(4) make a robust evaluation of the parameter er
rors and their correlations, by multiplying the 
standard covariance matrix C found in the x 2 

fit by the appropriate value of (rx2)2 for the cut 
Ax2 • 

A-i max 

In conclusion, the " Sieve" algorithm gains its 
strength from the combination of making first a A2, 
fit to get rid of the outliers and then a x 2 fit to the 
sifted data set. By varying the Ax? (a:*; a ) m a x to suit 
the data set needs, we easily adapt to the different 
contaminations of outliers that can be present in real-
world experimental data samples. Not only do we 
now have a robust goodness-of-fit estimate, but we 
also have also a robust estimate of the parameters 
and, equally important, a robust estimate of their 
errors and correlations. The phenomenologist can 
now eliminate the use of possible personal bias and 
guesswork in "cleaning up" a large data set. 
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X2 TEST FOR THE COMPARISON OF WEIGHTED A N D U N W E I G H T E D HISTOGRAMS 
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The widely used x 2 homogeneity test for comparing histograms(unweighted) is modified for cases involving unweighted 
and weighted histograms. Numerical examples illustrate an application of the method for the case of histograms with 
a small statistics of events and also for large statistics of events. This method can be used for the comparison of 
simulated data histograms against experimental data histograms. 

1 In t roduct ion 

The x2 criteria of homogeneity 1 which is used to 
compare two or more histograms is well established. 
Without limiting the general nature of the discus
sion, we consider two experimental histograms with 
the same binning and the number of bins equal to r. 
Let us denote the number of events in the ith bin in 
the first histogram as n* and as m; in the second one. 
The total number of events in the first histogram is 
equal to N — 5^[=1^i, and M = YH=i mi m the 
second histogram. 

The hypothesis of homogeneity is that the two 
histograms represent random values with identical 
distributions. This is equivalent to there existing r 
constants p\,...,pr, such that Yll^iPi = 1> an(^ the 
probability of belonging to the ith bin for some mea
sured value in both experiments is equal to pi. If 
the hypothesis of homogeneity is valid, then Pi,i = 
1,..., r, can be estimated from the data as 

n» + rrii 

(2) 

and then 

X2 __ ^ (ni 

i= l 

yi N + M ' 

Npi 

has approximately a xfr-

2 The tes t 

: - Mpif 
Mpi 

x •. distribution l. 

A simple modification of the ideas described above 
can be used for the comparison of unweighted and 
weighted histograms. Let us formulate the hypoth
esis of identity of an unweighted histogram to a 
weighted histogram so that there exist r constants 
pi,...,pr, such that Y^i=iPi = 1> a n d f° r anY *th bin 
the following equations are valid: 

Here Wj is the weight of the contents of an ith bin, 
W = Yli wi is the common weight of the weighted 
histogram; 6(rii), d(wi),i = l,. . . ,r, are the ran
dom residuals with expectation values E<5(rij) = 
E8(wi) = 0 and variances Var5(m) = Erii, 
Va,i6(iVi) = a2. If we replace the variance Var(5(rii) 
with the estimate rij, the variance Var5(wj) with es
timate s2 (sum of squares of weights of events in the 
ith bin) and the hypothesis of identity is valid, then 
Pi,i = 1,..., r, can be estimated from the data by the 
Least Squares Method 2 

. N + WjW/s2 

Pi ~ N2/m + w2/s2' (4) 

We may then use the test statistic 

X2 = sp(jh_ Npi) £ . \ 2 

+E 
(Wi - Wpif 

(5) 
i = l 

and it is plausible that this has approximately a 
X?r-i) distribution. 

This method, as well as the original one 1 , has a 
restriction on the number of events in a bin. The 
number of events recommended for the proposed 
method is more than 25. In the case of a weighted 
histogram if the number of events is unknown, then 
we can apply this recommendation for the equivalent 
number of events as n^quiv = w2/s2 . 

The studentised residuals 

Ri — 
rii Npi 

•nly/l - 1 / ( 1 + W2ni/N
2s2) 

(6) 

Npi + S(m), Wi WPi + S(Wi). (3) 

have approximately a normal distribution with mean 
equal to 0 and standard deviation equal to 1 2. Anal
ysis of the residuals can be useful for the identifica
tion of bins that are outliers, or bins that have a big 
influence on X2. 
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3 Numerical example 

The method described herein is now illustrated with 
an example. We take a distribution 

2 1 
<K*) + (7) ( z - 1 0 ) 2 + l (x - 1 4 ) 2 + 1 

defined on the interval [4,16]. Events distributed ac
cording to the formula (7) are simulated to create 
the unweighted histogram. Uniformly distributed 
events are simulated for the weighted histogram 
with weights calculated by formula (7). Each his
togram has 20 bins. Fig. 1 shows the result of 
comparison of the unweighted histogram with 2500 
events and the weighted one with 500 events. 
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Figure 1. An example of comparison of the unweighted his
togram with 2500 events and the weighted histogram with 
500 events: a) unweighted histogram; b) weighted histogram; 
c) studentised residuals plot; c) normal Q-Q plot of residuals. 

The value of test statistic X2 is equal to 21.36 
with p-value equal to 0.31, so the hypothesis of iden
tity of the two distributions can be accepted. The 
behavior of the studentised residuals plot (see Fig. 
lc) and the normal Q-Q plot (see Fig. Id) of resid
uals are regular and we cannot identify the outliers 
or bins with a big influence on X2. 

To investigate the dependence of the distribu
tion of the test statistics on the number of events, 
three cases were considered. The first case is the un
weighted histogram with 1000 events and weighted 

with 200 events; the second case is 2500 events in 
unweighted histogram and 500 events in weighted; 
and the third case has 10000 and 2000 events respec
tively. In each case 10000 pairs of histograms were 
simulated with calculation of X2 statistics for the 
each pair. Fig. 2 shows the Chi-square Q-Q plots 
and the histograms of X2 statistics. As we can see 
the real distribution of test statistics obtained for low 
number of events has a heavier tail than the theoret
ical X19 distribution. It means that the p-value cal
culated with the theoretical X19 distribution is lower 
than the real p-value and any decision about reject
ing the hypothesis of identity of the two distributions 
is conservative. The distribution of test statistics for 
the second case is close to the theoretical distribu
tion and confirms that the greater than 25 entries in 
a bin is reasonable for the application of the method. 
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Figure 2. Chi-square Q-Q plots and histograms of X2 statis
tics for: a),b) unweighted histograms with 1000 events and 
weighted with 200; c),d) unweighted histograms with 2500 
events and weighted with 500; e),f) unweighted histograms 
with 10000 events and weighted with 2000. 
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REDUCTION OF THE N U M B E R OF VARIABLES IN PARAMETER INFERENCE 

G. ZECH 
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Whenever acceptance losses and measurement uncertainties are to be corrected by Monte Carlo simulation, simple 
parameter inference with the Maximum Likelihood method suffers from statistical difficulties. MLE is especially 
problematic when the p.d.f. is a function of several variables. We present two methods to solve the problem. Method 
1 reduces the number of variables by an optimized variable transformation. It is efficient if the number of parameters 
is lower than the number of variables. Method 2 fits the data to an analytic distribution which approximates the 
distorted distribution. The corresponding approximate likelihood estimates and their errors are then corrected by 
a Monte Carlo simulation. In cases where resolution and acceptance effects are very large, a crude correction is 
implemented to avoid a loss of precision. 

Introduction 

Experiments in particle physics determine interest
ing parameters usually through a comparison of ex
perimental histograms to a theoretical prediction. 
This is problematic if the number of observed events 
is small and the p.d.f. depends on several variables 
leading to multidimensional histograms with few en
tries per bin. The obvious solution is to construct 
the likelihood function of individual events and to 
compute the MLE. However, the need to take into 
account acceptance and resolution effects prohibits 
this approach in most cases. The data have to be 
compared to a Monte Carlo simulation. 

A typical historical example for this kind of prob
lem is the determination of the vector versus axial 
vector coupling in the decay of the T particle ob
served at the e+e~ storage rings around 1975. At the 
PLUTO experiment at DESY a few dozen events of 
the type e+e~ —> T+T~ —> l+l~{vTvTvivi) had been 
observed. The p.d.f. is a function of the momentum 
vectors of the leptons and depends linearly on the 
parameter of interest. One of the six variables can 
easily be eliminated using symmetry arguments but 
the five remaining variables are still too many for a 
comparison of an experimental five dimensional his
togram to the theoretical prediction which is only 
available in the form of a Monte Carlo simulation. 

In the following section we show how in many 
cases the number of variables can be reduced to 
a single variable without loss of precision. The 
method has been described partially in a previous 
publication1. It was re-invented later2 and called the 
optimal observable method. In Section 2 we present 
another more general method which is preferable 

when the p.d.f. depends on several parameters or 
when its function of a parameter is very non-linear. 

1. Reduction of variables by variable 
transformation 

We start with the simple case where the p.d.f. de
pends linearly on one parameter and two variables: 

f(x,y,\9) = f1(x,y)+9f2(x,y). 

With the substitution v = fi(x,y), u = 
f2(x,y)/fi(x,y) we obtain the new distribution 

where inference of 9 requires only the distribution of 
the single variable u as becomes obvious when we 
write down the likelihood as a function of 9, 

In L{9) = Y^ M 1 + Out) + const. (1) 
i 

where the sum runs over all events Ui(xi,yi). Note 
that for a likelihood fit based on the very simple like
lihood function (1) we would not need to know the 
analytic form of g(u, v\9) which usually is a compli
cated function of u and v. 

In most cases we have to take into account ac
ceptance losses and resolution effects and cannot 
use (1) directly to fit 9. We have to simulate the 
marginal distribution g'u(u'\ff) of the observed vari
able u'(x','y') and fit 9 to the observed data set u'obs. 
Again we do not need the analytic form of gu(u'\9). 
The Monte Carlo simulation based on f(x, y, \9) pro
vides events (x',y') and consequently distributions of 
u'(x',y'). 
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g(u) 

1 e = -i 

jf=--:*****.. 
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u 

Fig. 1. Distribution of the optimum variable tt. 

The method is easily generalized to more than 

two variables. W e illustrate it in a simple example. 

For the p.d.f. 

/(x, y, zl<?) = - (x' + 2/2 + zT/2 + (x + 3/')<? 
7T L 

X̂  + ̂  + ̂ 2 ̂  ̂  

the interesting variable is 

x + y3 

(x^+y2 +^2)1/2 
< V2. 

Figure 1 shows Monte Carlo simulations for # = ±1. 

Experimental data would have to be compared to 

a superposition of those two distributions. For low 

event numbers a likelihood fit could be applied. 

Often, p.d.f.s will not depend linearly on a sin

gle parameter. W e solve the problem by expanding 

the p.d.f. in a Taylor series at first rough estimates 

#io 1020; - of the components of the parameter vector 

/(x]<?) = /(x]Po) + 
^ 

<7o A<?2 + 

1 3/ 

/(x[3o) dP, "° 

W e determine the deviations A # of the parameters 

from the initial estimates. If necessary the procedure 

can be iterated. 

Now, one new variable is required for each pa

rameter. Thus our method reduces the number of 

components of our variable vector x only if this num

ber is larger than the number of parameters which 

have to be determined. But independent of the fit

ting procedure it will be instructive to investigate the 

individual marginal u-distributions. 

The variable transformation not only simplifies 

fitting but also helps to visualize the parameter de

pendence and to apply goodness-of-fit tests to sensi

ble variables. 

2. Monte Carlo correction of 

approximate estimators 

W e can reduce the experimental information even 

further to a single constant per parameter. A simple 

example illustrates our approach. Let us consider a 

lifetime distribution which suffers from acceptance 

losses and resolution effects. In an ideal experiment 

the mean value of the observed times is a sufficient 

statistic. (This is even true when the time interval 

is restricted.) 
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100 
mean values 
true measured 

1.4 

Fig. 2. Monte Carlo correction of mean life. The insert shows the correction function. 

Now, the mean value i0bserved of the lifetimes 
observed in the real experiment still contains most 
of the relevant information. The estimate f is ob
tained by a Monte Carlo simulation which provides 
the relation between Ttrue and iobserved- A schematic 
example where a bias due to resolution effects is cor
rected is shown in Figure 2. 

In the general case, we compute the maximum 
likelihood estimate 9 observed of the parameters using 
the undistorted p.d.f. /(x' |0) with the experimental 
variables x'. The relation 9(0observed) is obtained by 
a Monte Carlo simulation. The simulation of the 
experiment is performed with a fixed parameter set 
#o. By re-weighting the events by /(x|#)//(x|#o) the 
full function 9(8observed) is generated. 

When the experimental resolution is extremely 
poor, it might happen that /(x' |#) is undefined for 
some values of the measured variable vector x' . Then 
we either have to exclude the corresponding events 
or better to scale the variables in such a way that all 
events are within the physically allowed range. 

The methods described in Section 1 and so far in 
Section 2 work well whenever acceptance and resolu
tion effects are not too large. Then the loss in preci
sion due to the applied approximations is negligible. 

We now consider large acceptance and resolution ef
fects. We first include acceptance losses a(x) . The 
modified p.d.f. is 

ft(x,0) = 
a(x)/(x|fl) 

/ a ( x ) / ( x | 0 ) d x 

With the abbreviation A(9) = / a ( x ) / ( x , 0 ) d x , the 
log-likelihood function for N events is 

N 

lnL(0|x) = 5^1n/(x,-|0) - N\nA(9) + iVlna(x) 
i = i 

(2) 

where we can drop the last term. The function A(9) 
is proportional to the event rate for a given lumi
nosity. Whenever it does not depend on 9 it can be 
neglected and the problem is reduced to the previ
ous case. Usually A(9) will depend only weakly on 9. 
We obtain it either from a Monte Carlo simulation 
or approximate it by an analytic estimate. The MLE 
from eqn. 2 and the observed data provide 9observed-
The transition to 9 is performed as described above. 
Since the simulation takes care of all experimental 
effects including the estimation method, all approx
imations are corrected. Therefore, a crude estimate 
of A(6) is sufficient. 
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In the rare cases where resolution effects strongly 

depend on the parameters, we have also to correct 

for the convolution. Standard unfolding methods 

require histogramming of events and thus are not 

applicable since the ML method requires individual 

events. Binning free unfolding3 can be used but this 

is a rather involved approach. Usually, it will be 

simpler to convolute the p.d.f. Since the convoluted 

p.d.f. is used in the likelihood fit where it has to 

be repeated with each parameter change, the convo

lution cannot be performed in an elaborate Monte 

Carlo simulation but has to be approximated by a 

simple smearing algorithm. Again, a crude approx

imation is sufficient since all approximations will be 

corrected automatically. 
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ERRORS FROM THE LIKELIHOOD FUNCTION 
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The 'errors' on a result are often evaluated by finding the points at which the log likelihood falls by | from its peak 
value. This is examined for two cases: a lifetime measurement and a Poisson measurement. Results are compared 
with the exact central Neyman construction and with the Bartlett approximation. It is shown that the agreement of 
the log likelihood method with the central Neyman construction is poor, and the Bartlett approach explains why. 

1. Errors from the Likelihood 

The 'errors' on a result are generally interpreted as 
the 68% confidence interval about the central value1. 
If the number of measurements N is large, the quoted 
error era of the maximum likelihood estimator a of a 
parameter a is read off the parabolic log likelihood 
curve from the points at which In L(a) falls by \ from 
its peak value InL(a): A l n L = — | . For experiments 
with finite N, which give non-Gaussian results, the 
statistical error is evaluated by a similar procedure. 
The values a± below and above a for which A In L — 
In L(a±) - lnL(a) = — | are found, and the 68% 
(more accurately, 68.27%) interval quoted as [a_, a+] 
or [a — a-,a + <r+}. 

A non-rigorous argument for doing so is that, 
whatever the shape of the likelihood function, it can 
(unless it has multiple peaks) be made Gaussian by a 
suitable transformation of the variable a. The stan
dard procedure applied to this transformed variable 
will give the AlnL = — | points, which would then 
be transformed back into those of the original vari
able. This is convenient, but not justified. Even if 
a finite-iV likelihood function has, by chance or de
sign, a Gaussian form so that the log likelihood has 
a parabolic shape entirely described by the second 
derivative, d^L, the value of that second deriva
tive will in general, because N is finite, differ from 
the expectation value ( d^L ), which gives the vari
ance of the estimate. It is now being increasingly 
questioned2-5 and an examination of how well it 
works in practice is needed to inform the discussion. 

We examine two cases: the determination of the 
lifetime of an unstable state decaying according to 
the radioactive decay law, and the determination of 
the number of events produced by a Poisson process, 
typical cases in particle physics. We use the 68% 
central region, but the techniques can be applied to 

central or one-sided regions with any probability con
tent. A version of this note is already published6. 

Bayesian statistics can also be used to give con
fidence intervals. This is not considered here: we 
compare the exact Neyman confidence intervals with 
two other frequentist-motivated methods. 

2. An Exact Interval 

If a is continuous the central Neyman confidence in
terval can be found7 from the values satisfying: 

pa /»oo 

/ P(a';a+)da'= 0.16 / P(a';a^)da' = 0.16 
JO Ja 

(depicted graphically in Figure 1) where P(a;a) is 
the probability density for a true value a giving an 
estimate a. These equations define the confidence 
belt such that the probability of a measurement lying 
within the region is, by construction, 68%, and the 
probability of an under- or over-estimate is 16%. If 
a is discrete then the integrals become sums and the 
equations are inequalities, so that the central prob
ability is at least 68% and each tail at most 16%. 

3. The Bartlett Approximation 

An alternative approximation technique is due to 
Bartlett8-10 . If a is unbiassed then for any N 

dlnL 
da 

N 

= E d\nP(xi;a) 
da 

is distributed with mean zero and variance 
- ( ^ r ^ ) - For large N the Central Limit Theorem 
states that its distribution is Gaussian. 

Within the limits of this Gaussian approxima
tion (refinements can correct for the non-Gaussian 
finite AT behaviour, but these lie outside our scope) 
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Fig. 1. I f the t rue value is a+ then the probability of getting 
a result a or less is at most 16%, and similarly for a_ 

this gives probability regions for dl£a
L • If this quan

tity can be expressed in terms of a — a then these can 
be interpreted as confidence regions for a. This will 
be illustrated in the two examples. 

4. Example 1: Measuring a Lifetime 

The probability for a state with mean lifetime r to 
decay after an observed time t is given by 

1 -t/r P(t;r) 
i 

The log likelihood for N measurements t\.. .t^ is 

.t 
InL -N- ATlnr 

where t = jj^ti. Differentiation to find the maxi
mum gives T = t and lnL(f) = —N(l + In I). 

The probability distribution for t is given3 by 
convoluting the P{t) with itself N — 1 times: 

P(i;r) = NNV -Nt/r 
TN(N-l)\ 

For the exact Neyman region we require the in
tegral of this from zero to the measured value, which 
is to be 16% for the upper limit r + = t + a+ and 84% 
for the lower limit r_ = t — a-. This is given by 

f P(t;r)dt' = l-e-N^Yl 
J° j=0 

"-1
 VN* 

jWi 

Thus for a given N and t one has to adjust the 
value of T until the desired probability content (here 
0.84 or 0.16 for lower or upper limits) is achieved. 

The region obtained, expressed as differences from 
the measured t, is shown in the columns 2 and 3 of 
Table 1, for various values of N. (Everything scales 
with t, so the errors are given in terms of that value.) 

Table 1. Error bars for 68% confidence regions obtained by 
the 3 methods for a Lifetime measurement 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
50 
100 
250 
500 
1000 

Exact 
a-/t 
0.457 
0.394 
0.353 
0.324 
0.302 
0.284 
0.270 
0.257 
0.247 
0.237 
0.203 
0.182 
0.166 
0.124 

0.0908 
0.0594 
0.0428 
0.0306 

a+/t 
4.787 
1.824 
1.194 
0.918 
0.760 
0.657 
0.584 
0.529 
0.486 
0.451 
0.343 
0.285 
0.248 
0.164 
0.1109 
0.0675 
0.0468 
0.0326 

A l n L 
a-/t 
0.576 
0.469 
0.410 
0.370 
0.340 
0.318 
0.299 
0.284 
0.271 
0.260 
0.219 
0.194 
0.176 
0.129 

0.0937 
0.0607 
0.0434 
0.0310 

_ l 
2 

a+ft 
2.314 
1.228 
0.894 
0.725 
0.621 
0.550 
0.497 
0.456 
0.423 
0.396 
0.310 
0.261 
0.230 
0.156 

0.1070 
0.0660 
0.0461 
0.0323 

Bartlett 
a-It 
0.500 
0.414 
0.366 
0.333 
0.309 
0.290 
0.274 
0.261 
0.250 
0.240 
0.205 
0.183 
0.167 
0.124 

0.0909 
0.0595 
0.0428 
0.0307 

< T + / 4 

oo 
2.414 
1.366 
1.000 
0.809 
0.690 
0.608 
0.547 
0.500 
0.463 
0.348 
0.288 
0.250 
0.165 

0.1111 
0.0675 
0.0468 
0.0327 

The A l n L points are found by interpo-

N r-
•r) 

lating to find the values of r for which N — N/T — 
Nlnr = — | , and shown in columns 4 and 5. 

For the Bartlett approximation, we have 
dlnL _ 

dr T2 

which clearly has a mean of zero: differentiating 
again and taking the expectation value gives its vari
ance as T-. So, for any r , t has mean r and standard 
deviation T/\/~N. This is exact. We then - this is the 
approximation - take this as being Gaussian and use 
it in the Neyman prescription, accordingly requiring 
that t lie one standard deviation above r_ = I — <r_ 
and one standard deviation below T+ =i + a+ 

T-
t = T+- -±= 

and cr+ = 

t + N 

These are shown in the final two columns of Ta
ble 1. The results are also presented in Figure 2. 

The Bartlett error bars are surprisingly close to 
the central Neyman ones. The A l n L = — | error 
bars are surprisingly different: about ten events are 
needed for them to be within 10%, and hundreds for 
agreement at the few per cent level. 
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Table 2. Error bars for 68% confidence regions obtained by 
the 3 methods for a Poisson measurement 

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 

Fig. 2. Upper and lower limits on the 68% central confi
dence interval for a lifetime measurement with various num
bers of data values, showing the exact construction (solid), 
the Bartlett approximation (dotted) and the A In L approxi
mation (dashed). The limits are shown as fractions, a ft. 

5. Example 2: A Poisson Counting 
Experiment 

If N events are seen from a Poisson process of true 
mean A, the maximum likelihood estimate A is just 
TV. The Neyman limits are found from 

N -,T JV-i * r 

X! e~A + - f = °-16 Yl e~x~ ~f = 0M-
r = 0 r! r = 0 

The resulting a values are shown in columns 2 and 3 
of Table 2. The A In L = —\ errors are read off from 
TV — A + TV In (A/TV). These are shown in columns 4 
and 5. 

The Bartlett method gives the familiar fact that 
the variance of N — A is just A. This suggests that 

N - A_ = VX_ A+ - TV = y/\+. 

However P(N; A) is defined for integer TV only. To 
use this set of discrete spikes as a function requires 
us to replace it by a histogram defined as e~xXN/TV! 
for values of the continuous variable between TV — ^ 
and TV + \. This requires us to add \ to each of the 

ranges, giving 

TV-
1 
4 v+ = \lN+l 1 

These are shown in columns 6 and 7 of Table 2. The 
data are shown graphically in Figure 3. 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
50 
100 
250 
500 
1000 

Exact 
<T_ 

0.827 
1.292 
1.633 
1.914 
2.159 
2.380 
2.581 
2.768 
2.943 
3.108 
3.829 
4.434 
4.966 
7.046 
9.982 
15.80 
22.35 
31.61 

0 > 

2.299 
2.637 
2.918 
3.162 
3.382 
3.583 
3.770 
3.944 
4.110 
4.266 
4.958 
5.546 
6.066 
8.117 
11.03 
16.83 
23.37 
32.63 

A l n L 
O-

0.698 
1.102 
1.416 
1.682 
1.916 
2.128 
2.323 
2.505 
2.676 
2.838 
3.547 
4.145 
4.672 
6.742 
9.669 
15.48 
22.03 
31.29 

_ l 
2 

CT+ 

1.358 
1.765 
2.080 
2.346 
2.581 
2.794 
2.989 
3.171 
3.342 
3.504 
4.213 
4.811 
5.339 
7.408 
10.34 
16.15 
22.70 
31.96 

Bartlett 
<T_ 

1.118 
1.500 
1.803 
2.062 
2.291 
2.500 
2.693 
2.872 
3.041 
3.202 
3.905 
4.500 
5.025 
7.089 
10.01 
15.82 
22.37 
31.63 

" • + 

2.118 
2.500 
2.803 
3.062 
3.291 
3.500 
3.693 
3.872 
4.041 
4.202 
4.905 
5.500 
6.025 
8.089 
11.01 
16.82 
23.37 
32.63 

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 

Fig. 3. Upper and lower a values on the 68% central con
fidence interval for a Poisson measurement, as a function of 
the measured value N, showing the exact construction (solid), 
the Bartlett approximation (dotted) and the A In L approxi
mation (dashed) 

Again, the Bartlett error bars are close to the 
central Neyman ones, and the InL error bars very 
different, with tens of events required for 'fair' and 
hundreds for 'good' agreement. Furthermore, in this 
case it underestimates both errors. Adding 0.5 to 
each limit, to account for the discrete binning, would 
improve the agreement though, unlike the Bartlett 
case where this is forced on us, this is an ad hoc 
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adjustment not done in practice. Anyway inspection 
of the table shows that even after adjusting in this 
way, agreement with the exact values would still be 
worse than that from the Bartlett approximation. 

6. Coverage 

• - " 
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Upper Complementary Coverage 
Prob(T>t+a.) 

Fig. 4. Coverage for the Lifetime measurement with different 
N, for the exact method (solid), the A l n L approximation 
(dashed) and the Bartlett approximation (dotted) 

The probability integrals of section 4 scale with 
t/r, so the coverage - the probability that a partic
ular value T will generate a value of t such that the 
interval [t(l — a-/t),t(l + o"+/t)] encloses it - is, for 
any chosen pair of values {a-ft, (T+/t), independent 
of r , although it does depend on N. 

The top plot of Figure 4 shows the coverage 
for the three methods. The exact method, by con
struction, has 68% coverage for all N. The Bartlett 
method (dotted line) overcovers slightly and the 
AlnL method (dashed line) undercovers slightly. 
For the strict frequentist overcoverage is, though to 
be avoided if possible, permissible, whereas any un-
dercoverage invalidates the method. Even so, this 
small undercoverage is probably admissible. 

The figure also shows the probabilities that the 
interval lie above the true value (second plot) or be

low it (third plot). Again, the exact method gives 
16% for all N. The Bartlett method's overcoverage 
(in these plots a point below the 16% line shows a low 
probability of true value lying outside the interval, 
i.e. overcoverage) is similar above and below. But 
the A In L method overcovers in the lower region and 
undercovers in the upper region. (Its values of <r_ in 
Table 1 are greater than the exact values whereas its 
values of <J+ are less.) The 'admissible' coverage in 
the top plot is achieved through a cancellation in the 
lower two. Although the A l n L interval is a good 
approximation to a 68% confidence interval, it is not 
nearly so good an approximation to a central 68% 
interval. 
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Fig. 5. Coverage for the Poisson measurement with the exact 
method (solid), the A l n L approximation (dashed) and the 
Bartlett approximation (dotted) 

For the Poisson measurement we do have to con
sider coverage as a function of A. For the exact inter
val this is shown by the solid line in the top plot of 
Figure 5. N (unlike t) is discrete so the probability 
content cannot in general be adjusted to 68%, and 
one has settle for a larger value. The interval over-
covers. The overcoverage effect for a central interval 
is greater than for a single-sided upper limit, as the 
excess comes from both upper and lower ends. This 
is shown by the solid line in the lower plots, which 
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again display the probabilities of the lower edge of 

the interval being greater than the t rue value, and 

the upper edge being less. As A increases the prob

ability of the lower limit exceeding it increases un

til i t gets to 16%, at which point the allowed range 

of N increases by 1, removing this probability from 

the sum. At the upper limit, increasing A lowers the 

probability of a result in the lower tail, until the low

est N value in the allowed range can be removed from 

it, giving a step increase in probability. The combi

nation of the two sawtooth plots gives the crenellated 

effect in the total. 

The coverage from the Bart le t t method (dotted 

line) is, as would be expected from Table 2, a very 

close match to t ha t of the exact interval. The A In L 

interval (dashed line) overcovers for some A and un-

dercovers for others, with the upper value typically 

undercovering and the lower typically overcovering, 

to give a combined result within 10% of what it pur

ports to be. It can be argued1 1 ' 12 tha t overcover-

age is undesirable, and the A In L approximation is 

preferable as averaging over many cases the over- and 

under-coverage tend to cancel each other out. But if 

this is done it should be a conscious decision, not an 

unintentional consequence of the method. A discus

sion of coverage in Poisson measurements, for various 

approximations, can be found in1 3 . 

7. D i s c u s s i o n 

If reported errors obtained by A In L = — \ method 

are regarded, by an author or a reader, as an ap

proximation to the central Neyman interval, then 

the inaccurary is appreciable. Even for values of N 

of order 100, generally considered 'large', it is typi

cally wrong in the second significant figure, and of

ten grossly wrong. And yet values obtained by this 

method are frequently quoted to considerable preci

sion by experiments. 

Only two measurements have been considered. 

Yet they are typical in particle physics and (in more 

complicated form) cover a wide range of practice. 

As used here the Bar t le t t method is just like the 

familiar Gaussian. The probability is 

p(o;a) = -7=i e-(a-a)>/2a(af 
\/2ira(a) 

where the a dependence of a is writ ten in explic

itly. Confidence regions are read off as usual (68% 

is la, 95% is 2a, and so on) except that a is a func

tion of the parameter being investigated. The 68% 

limits thus correspond to a fall of \ in the log like

lihood from the exponential. B u t the total log like

lihood also changes due t o the denominator. The 

A l n L = — ^ method includes this — lncr(a) te rm, 

thereby making it differ from the remarkably accu

rate Bar t le t t approximation. 

The A l n L = — i method is widespread and 

there is no prospect tha t people will abandon it. In

deed, it does convey basic properties of the Likeli

hood function in a compact way, and the coverage 

is generally fair. This s tudy does not advocate t ha t 

practitioners stop using it. Bu t discretion must be 

exercised in using its results by interpreting t h e m as 

equivalent t o a central Neyman confidence interval. 
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ASYMMETRIC STATISTICAL ERRORS 
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We investigate ways of parametrising non-Gaussian likelihood functions when the only information given is the location 
of the peak and the errors a— and <T-|_. We show that the traditional method leads to bias, and improvement is possible. 

1. Introduction: Likelihood Functions 

In general the likelihood function is not symmetric 
about its maximum, and the quoted errors <r_ and 
c+, estimated using the AlnL = — ̂  method1, are 
different. For simple (large N) results this difference 
is small and the log likelihood can be treated as a 
parabola. For a complex result (and a conscientious 
investigator) the full likelihood function is reported 
explicitly. But for many results the only information 
on the likelihood is the peak location a and the points 
a + <7+, a — a-, at which InL falls by \. 

The combination of statistical errors and the 
combination of results require the complete likeli
hood functions2. So these have to be modelled. We 
examine some models and their performance in typ
ical cases, and apply them to some toy experiments. 

2. Drawing a Curve Through 3 Points 

We seek to parametrise F(a) = lnL(x;a) given 
F'(a) = 0 F(a + <r+)=F(a-a-)=F{a)-± 

The function has 3 parameters, obtained from 
the 3 input values a, a- and o~+. (A 4th parame
ter corresponding to the actual value of InL (a) is 
of no interest.) This is not a well-formed problem. 
There are infinitely many curves that go through the 
3 points and satisfy these equations. But it has to be 
asked, as combination of asymmetric errors is going 
on in many experiments. We cannot hope to find 
the 'correct' answer as there is none: instead we seek 
something sensible and consistent and easy to use We 
illustrate this with two examples. One is a Poisson 
measurement with n = 5. The likelihood function 
is L(5;a) = e~aa5/5\. Its peak is at a = 5 and 
CT+ = 2.581, <x_ = 1.916. We take these values and 
see how well the parametrisations reproduce L(5;a). 
The second is a Gaussian measurement of mean 8.0 
and standard deviation 3.0, for which the logarithm 
is taken, a = ln{8) = 2.0744, o~+ = Zn(ll) - ln(8) = 

0.3184, CT_ = ln(8)-ln(5) = 0.4700. (This is not the 
logNormal distribution, just the equivalent of plot
ting a normal distribution on log-linear graph pa
per.) We investigate how well the parametrisations 
reproduce L(8;a) = 3^o~exP{~ is )• 

2.1. Traditional Method 

Fig. 1. Traditional Method. For explanation see text. 

The usual way of combining asymmetric errors is 
to add the positive and negative errors separately in 
quadrature. This amounts to using a split Gaussian 
with <r+ above the peak, <r_ below. 

This is shown in Fig. 1. In all 4 plots the solid 
lines show the true likelihood function, dashed lines 
the parametrisation. The upper plots show this for 
the first (Poisson) example, the lower plots for the 
second (log-linear Gaussian). The right hand plots 
are close-ups of the central region. The horizontal 
line is \ below the peak. All the fits agree, by con
struction, with the true curves where they cross this 
line. Plots for later methods use the same system. 

For this method, the agreement in the central re
gion appears to be fair in both cases, whereas further 
away it is not very good. 
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2.2. PDG Method 2.4. Restricted Quartic 
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Fig. 2. PDG Method. For explanation see text of 2.1. Fig. 4. Quartic Method. For explanation see text of 2.1. 

The PDG3, in combining results from different 
experiments, adapts this method to avoid the step 
in the second derivative. Between [a — <x_, a + a+] it 
uses a Gaussian interpolation between a — &- and 
a = <j+. Agreement (Fig. 2) within the central region 
is improved, but the model outside is unchanged. 

A quartic F{a) = - ( ^ + ^f- + ^f) has a 
single peak as the second derivative is negative defi
nite. 0 and a are found exactly, with expressions too 
complicated to be given here. Agreement (Fig. 4) is 
good in the central region, and outside for the second 
example but not the first. 

2.3. Cubic 2.5. Logarithmic 

Fig. 3. Cubic Method. For explanation see text of 2.1. Fig. 5. Logarithmic Method. For explanation see text of 2.1. 

A small cubic term gives F(a) = aa2 + /3a3 with 

and P -5-7—;—r a-iiu u = — TJ —j—5-7—7—7 (Here 
and later we take a = 0 for simplicity.) But a small 
term does not stay small, and although the central 
region is fine, it rapidly becomes bad outside (see 
Fig. 3). F(a) tends to +00 rather than —00 for either 
large a or large —a. This approach is unworkable. 

Another method for an asymmetry is to scale 
the cc-axis proportionately to the distance from the 

peak. This leads to F(a) = - \ ( ' "^n^" 0) w i t h 

P = a+/a-,7 = t7+_~g
CT~. Agreement (Fig. 5) is rea

sonable. However the form is badly behaved when 
1 + 7a goes negative, and does not give a parabola 
for cr_ = CT+. 
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2.6. Generalised Poisson 

Fig. 6. Poisson Method. For explanation see text of 2.1. 

The Poisson likelihood for a true mean a and 
N observed events is (apart from a constant term) 
lnL(a) = Nina —a. We can use this as a function of 
a with TV as a real (as opposed to integer) parameter 
- denote it v to indicate this. Increasing v increases 
the location of the peak, increases the width, and 
decreases the skew. The first two can be accounted 
for by introducing separate location and scale pa
rameters, giving a form F(a) = —aa + vln{l + sa) 
Determining a and v requires numerical solution of 
an equation (again, details are complicated). Perfor
mance (Fig. 6) is perfect for the Poisson, as expected. 
It is poor for the second example, on the upper side. 

2.7. Gaussian - Linear Sigma 

suggests1 a Gaussian-like form, with the standard 
deviation a function of the variable being deter
mined F(a) = -a2/2a(a)2. The simplest vari
ation is linear, giving F(a) = —\{a l^^)2 with 
CT° = J r ^ T " ' = f ^ f r - This performs (Fig 7) 
excellently on the second example, and quite accept
ably on the first. 

2.8. Gaussian - Linear Variance 
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Fig. 8. Linear V Method. For explanation see text. 

A modification of this is to make it linear for the 
variance rather than the standard deviation, giving 
F(a) = ~\v0+Va w n e r e Vo = <T-<r+, and V = 
a+ —a-. This performs (Fig 8) even better for the 
first example (which is understandable, as with the 
Poisson the Variance is proportional to the mean) 
and quite acceptably for the second. 

D 1 2 3 1.6 1.8 2 2.2 2.4 

Fig. 7. Linear a Method. For explanation see text of 2.1. 

Consideration of the Bartlett approximation 

2.9. Model 9: Edgeworth 

The distribution for samples from a finite number /Y 
of sources, where the Gaussian is not yet attained, 
can be described by the Edgeworth expansion4 

1 e - x 2 / 2 
V27T 

where the H, 

1 + ^ F 3 ( z ) + i ( . . . ) 
This are the Hermite polynomials, 

suggests a parametrisation 
W = - ! £ + M l + C ( (a /a ) 3 - 3(0/(7))) 
Solution for the 3 parameters can be reduced to 

two simultaneous equations which have to be solved 
numerically. However there are no solutions if the 
asymmetry is above about 14%. Above this, increas
ing C merely increases the size of the second part 
of the expression, which dominates and produces a 
fairly symmetric peak at an increasing offset. 
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3. Toy Experiments 

We investigate how the 8 parametrisations perform 
in realistic model experiments in which two values 
are combined. We have (privileged) knowledge of 
the full likelihoods and know what the result should 
be, and compare it with results obtained from quot
ing the asymmetric errors of the two results, finding 
the model parameters, combining the parametrised 
likelihoods and maximising. 

In the first model a Poisson measurement is per
formed twice, under identical conditions. The cor
rect procedure is a simple average, but only as we 
know the experiments are identical. We simulate 
this 10,000 times, comparing this average with the 
results obtained using the parametrisations. 
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Fig. 9. Deviations for Model 1 

Fig. 9 shows the deviation between the privileged 
answer and those from the models. Methods 1 and 2 
spread to smaller values. Methods 3 and 4 do better. 
Model 5 is awful, 7 is good, 6 and 8 are excellent. One 
would expect 6 to do well as a Poisson is modelling 
a Poisson, but 8 is virtually as good. 

In the second model one Poisson has a true mean 
of 10.0 and the other (representing an experiment 
that ran for half the time) has a mean 5.0 and is 
scaled up by 2. The performances (Fig. 10) are sim
ilar. Methods 1 and 2 are even worse! 

Given two measurements of a lifetime, each 
based on 5 events, the correct (privileged) answer 
is again the simple average. For a particular result i 
the errors1 a+ = 0.621t, <r_ = 0.340i were used in the 
models. The logarithmic model had technical prob
lems so we omit it and the cubic. Again (Fig. 11) 
the Poisson and linear Variance Gaussian do best. 
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Fig. 10. Deviations for Model 2 
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4. Conclusions 

More study is needed, but provisionally it appears 
that we can do better than traditional or PDG meth
ods. The Generalised Poisson and Gaussian - linear 
V methods perform similarly well, but the latter's 
parameters are much easier to determine. Its use 
should be recommended. This may be acceptable to 
the community as it is just the PDG method, but 
continuing the interpolation outside the [—a-, a+\ 
region, and using a2 rather than a. 
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The possibility of strong biases in a multicomponent Maximum Likelihood fits with component-dependent templates 
has been demonstrated in some toy problems. We discuss here in detail a problem of practical interest, particle 
identification based on time-of-flight or dE/dx information. We show that large biases can occur in estimating 
particle fractions in a sample if differences between the momentum spectra of particles are ignored, and we present a 
more robust fit technique, allowing bias-free estimation even when the particle spectra in the sample are unknown. 

1. Introduction 

It has been shown in some toy problems1 that strong 
biases may occur in a multicomponent Maximum 
Likelihood fit whenever the templates, i.e. the func
tions, used to parameterize the probability distribu
tions used in the fit are not fixed but depend on 
event observables. An interesting example of such 
a problem in the practice of experimental High En
ergy Physics is the statistical separation of different 
kinds of particles on the basis of limited-precision 
measurements of particle-dependent quantities, like 
Time-of-Flight or energy loss (dE/dx). 

2. Particle Fractions Estimation 

Consider a sample of particles generated by a cer
tain physical process in our experiment. We know 
that the given sample is a mixture of known particle 
types, for example Pions, Kaons and Protons, but 
unfortunately we don't know the fractions of each 
type, respectively indicated by f„, JK, fp- Let's 
assume that our experimental apparatus includes a 
Particle Identification (PID) device, providing the 
measurement of some quantities whose distribution 
depends on the particle type. Using this PID infor
mation we want to estimate f„, /#• and fp, by means 
of an Unbinned Maximum Likelihood fit of our data 
sample. 

The above problem is very common in particle 
physics, for example it occurs in separating different 

decay modes of a given particle3 (same final state 
multiplicity and topology but different final state 
particle types), in studies of fragmentation of heavy 
quarks2, or in optimizing the performances of algo
rithms for tagging the flavor of B mesons2. 

We will consider two common methods for par
ticle identification: one is based on the measurement 
of energy loss of charged particles due to the ion
ization of a gas or of a semiconductor (often the 
same device used to measure particle momentum), 
the so called dE/dx measurement; the other is based 
on the measurement of the Time-of-Flight (TOF) 
of the particle. A common feature of PID devices 
based on the above principles is that the separation 
power between different particles is not a constant, 
but strongly depends on the momentum of the given, 
unknown, particle. A clear example of this feature is 
shown in Fig 1 where the dE/dx mean response of 
different particles is plotted as a function of momen
tum in the drift chamber of a typical High-Energy 
Physics experiment. Assuming that the resolution of 
the measurement is constant, the separation power 
dramatical changes in a short momentum range. As 
a consequence of the dependence of the mean value 
of the PID response on the particle momentum, the 
templates describing the PID variable's p.d.f. are 
not fixed but depend, on an event-by-event base, on 
the momentum of the particle: we clearly are in the 
situation described in1 where the templates of the fit 
depend on a component of the fit itself. 
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Momentum [Q*V/c] 

Fig. 1. The mean value of the energy loss of charged particles 
as a function of the momentum in a typical experiment. 

2.1. The Likelihood expression 

Consider, for simplicity, only the PID information 
provided by a dE/dx measurement. Our observables 
are then the dE/dx (pid) and the momentum of the 
track (mom).We will indicate as type the particular 
particle hypothesis. Unfortunately, we cannot simply 
write the Likelihood function as: 

L(fj) = Y[( Y2 fiP{pidi\momi,typej)). (1) 
i j=v,K,P 

Using expression (1) may give a strongly biased re
sult if our additional variable, the momentum, has 
different distributions depending on the particle type 
(see next section). As discussed in1, whenever the 
templates used in a multi-component fit depend on 
additional observables, to avoid the bias it is nec
essary to use the correct, complete Likelihood ex
pression, including the explicit distributions of all 
observables for all classes of events. In our case, the 
above implies that we need to include in our Like
lihood the momentum distributions of each particle 
type. We should also notice that in practice those 
distributions are almost always different. 

We then write the correct Likelihood function as: 

L(fj) = Y\( ^2 fjP(pidi,momi\typej) (2) 
i j=v,K,P 

= Y\( J Z fjP{jAdi\morni,typej) 
i j=TT,K,P 

xP(momi\typej)), 

with the condition: 

£ /J = 1- (3) 
j=ir,K,P 

3. A Toy Study 

We generated a sample of different particle types 
with known composition as follow: 

• PID variable is distributed, for each particle, ac
cording to a typical resolution function (i.e. the 
template used in the fit) defined as: 

PLD m easured ~ PIDexpecteli(mom) (4 ) 

Note the dependence on momentum of the ex
pected PID. 

It is important to note that we have chosen 
typical realistic values for all needed parameters. 

This distribution represents: 

P (pidi | morrii, type j) (5) 

inEq. (2). 
• Momenta of the particles are distributed according 

a Gaussian N(fj,j, <jj), where j = n,K,P and: 

\xv = 1.00, \iK = 1-25, )ip = 1.25, 

0V = VK = &P = 0.50. 

Those distributions obviously represent: 

P(momi\typej) (6) 

of equation 2. 
• Particle fractions where fixed to: 

U = 50%, fK = 35%, fP = 15%. 

We then used an unbinned Maximum Likelihood fit 
to estimate the particle fractions of the sample using 
the Likelihood function described in Eq. (2) where: 

P(momi\typej) = N(nj,aj). (7) 

In Fig. 2 (upper plot) the distribution of the estima
tors for /jr and fp are shown for thirty toy samples of 
ten thousand particles each. As expected, the frac
tions returned by the fit are well centered on the true 
values given by the input. 

Conversely, the same distributions obtained with 
the incomplete Likelihood function of Eq. (1) (Fig. 
2, lower plot) are affected by a bias much larger than 
the nominal statistical uncertainty of those measure
ments, due to the difference in the momentum distri
bution of each particle type. This demonstrates that 
the effect predicted in 1 is actually very significant 
in reaHife problems of Particle Identification. 
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Pion and Proton Fraction Estimators 
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Pion and Proton Fraction Estimators 

Fig. 2. The Pion and Proton fraction estimator distributions 
when the complete (top) and incomplete (bottom) Likelihood 
expression is used. 

3.1. The case of unknown momentum 
distributions 

Writing the complete Likelihood function consider
ing the distribution of all the observables used in the 
fit is relatively straightforward in principle. 

On the other hand, in practice, we often have 
poor information about those distributions; some
times they are completely unknown. It is the case, 
for example, of the particle fractions produced during 
the fragmentation of heavy quarks where the corre
sponding momentum distributions are unknown and 
no functional hypothesis can be made. 

Considering what was shown in the previous sec
tion, we now wonder how to avoid the bias and write 
the complete Likelihood if the additional observable 
distributions are unknown. 

If no specific functional form can be assumed, 
we may want to use a general one, e.g. we could 
consider a Series Expansion as a description of the 
distributions with the expansion coefficients left as 
free parameters to be determined by the fit. 

We then write the momentum term of the Like
lihood function (2): 

P(momi,typej) = yamjUm(momi) (8) 
m 

where m is the order and Um are the basis vectors 
used for the series expansion. 

Coming back to our toy sample, we considered 
Orthogonal Polynomials as a basis for the expansion. 
Amongst a number of possibilities, we selected Sec
ond Type Chebyshev Polynomials (denoted by Um)-

We then replaced in expression (2) the term Eq. 
(7) with Eq. (8) and we performed again the un-
binned Maximum Likelihood Fit, this time by fitting 
also the parameters of the polynomial expansion. As 
shown in Fig. 3, now the bias is brought back to 
zero, as it was when we assumed perfect knowledge of 
the individual momentum distributions of each par
ticle type. We have been able to avoid the bias in 

pion and Proton Fraction Estimators 
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Fig. 3. The Pion and Proton fraction estimator distributions 
using a Series Expansion as a parameterization of the momen
tum distribution. 

the fraction fit, without any particular assumption 
on the functional form of the momentum distribu
tions. In such a way we simulated the practical case 
where no information is known about the additional 
observable distributions. Please notice also that just 
the first seven terms of the Second Type Chebyshev 
Expansion were needed in order to parametrize each 
particle type momentum distribution. Another in
teresting aspect is that comparing Fig. 3 to Fig. 2 
no significant degradation in the resolution of the 
estimator is observed, although the number of pa
rameters is increased. In Fig. 4 the projections of 
the fit to the toy sample are shown. 

3.2. A more complicated case: Time of 
flight 

Suppose that our PID information is obtained by 
the measurement of the Time of Flight. The ex
pression of the expected TOF is a function of two 
observables: 

L/c 
TOFexpectedimom, L) 

\J1 + (mj/mom) 
(9) 
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Fig. 4. The momentum projections for each particle type su
perimposed on the corresponding generated distributions. 
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Fig. 5. The Pion and Proton fraction estimator distributions 
using two Series Expansions as a parameterization of the mo
mentum and the arclength distributions. 

where L is the length travelled by the particle during 
its time measurement (arclength) and it is a func-
ton of the production angle of the particle (in the 
cylindrical geometry of the TOF detector), c is the 
speed of light, rrij is the mass of the particle hypoth
esis j and mom is again the momentum. Both the 
momentum and the arclength distributions could be 
different for each particle type, i.e., both observables 
could be source of bias in the particle fractions esti
mation. Assuming no correlations between the mo
mentum and the arclength, we have to modify the 
expression (2) to be: 

1 1 • Total 
- f - -^—^- T -f" • Pions 

^T~- f - A Kaons 
» Protons 

100 110 120 130 140 150 
Arclength [cm] 

Fig. 6. The arclength projections for each particle type su
perimposed on the corresponding generated distributions. 

£(/ j) = I J ( 5 Z fjP(pidimomi,arci\typej) (10) 4. Conclusions 
i j=n,K,P 

n< 
=w,K,P 

fjP(pidi \morrii, typej) 

xP(mom,i\typej) 

xP(arCi\typej)). 

We then added the simulation of the arclength in 
our toy sample according to a normal distribution 
N(/j,j,aj) using the values: 

90, jjK = 100, fip = 110, MTT 

°~-n — 0~K = 0~p = 25 . 

Considering again the case where no information 
is available about the distributions of each particle 
type, we used the same technique of the Series Ex
pansion for both variables. We repeated our fit on 
thirty toy samples and also in this case, as shown in 
Fig. 5, no bias was observed for our estimator. It 
is also interesting to observe that we used just three 
terms of the Chebyshev Expansion for the arclength 
parameterization, that results in an approximate de
scription of data (see arclength projections in Fig. 6) 
but it doesn't affect the results of the fit. 

In this short paper we focused on a practical and 
common problem of particle physics: the estimation 
of the particle type fractions using Particle Identifica
tion information. We showed that a significant bias 
can arise from the use of an incomplete expression 
of the Likelihood under realistic conditions. We also 
considered a practical problem where no information 
was assumed about an observable. We eliminated the 
bias by using Series Expansions of the unknown dis
tributions in orthogonal polynomials, where the co
efficients of the expansions are free parameters deter
mined by the fit. We also considered a more compli
cated example where two relevant observables have 
unknown distributions, and also in this case the Se
ries Expansion was successful in avoiding biases in 
determining the fractions of each component. 
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A least squares method to solve a generic alignment problem of a high granularity tracking system is presented. The 
algorithm is based on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common 
vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose 
constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset 
of the ATLAS silicon tracking system. The ultimate goal is to determine «35,000 degrees of freedom (DoF's). We 
present a limited scale exercise exploring various aspects of the solution. 

1 Introduction 
The ultimate alignment precision of the modern HEP 
tracking systems can be achieved by means of a 
global x2 fit of the alignment parameters to trajec
tories of real particles reconstructed in the detec
tor. The advantage of the method is that it uses all 
the available information, and potentially can cor
rect all possible misalignments without the need for 
iteration. However, in common with any algorithm 
based on reconstructed tracks, there are certain dis
tortions of the detector which are difficult to correct. 
These arise from distortions which displace detector 
hits such that they still lie on helices. Among the 
most common ones are well known sagitta distor
tions (global: R6(j) = a + /3R + "fR2, (j> dependent: 
SX = a+bR+cR2 and 6 dependent: S(f> = Ki2cot(0)), 
so-called "telescope" (SZ = e + fR) and various ra
dial deformations (e.g. elliptical). These global dis
tortions of the detector geometry, so called "weak 
modes", can lead to significant biases in the recon
structed track parameters. In this paper, we present 
the generic formalism to solve the least squares align
ment problem as well as discuss various extensions 
leading to better control of the weak modes. 

2 The Formalism 
The alignment algorithm is based on the minimisa
tion of the "global x2" defined as: 

X2 = 2^, TTV~1r where r̂  = {rhi —e^Tr,a)).k 
tracks 

(1) 

Here <% denotes the t'th intersection point of the ex
trapolated track with a sensor plane and m, is the 
position of the associated detector hit. k is the unit 
vector defining the measurement direction for the 
sensor planea. The intersection point depends on 
the track parameters (it) as well as on the subset 
of alignment parameters related to the intersected 
module (a). V is the covariance matrix of hit posi
tion measurements. 

2.1 The Basic Least Squares Linear Expansion 
The minimisation condition requires: 

^=0 =* V ^ V ^ O (2) 
da *-*> da K ' 

tracks 

The assumption about the corrections being small 
allows us to use a linear expansion throughout. In 
particular, all second order derivatives are neglected. 
The expansion reads: 

T ^ V 1 fro + ±6a) = 0 (3) 
ttks^ V da0 J 

from which the generic solution can be obtained: 

\track,8 / tracks 

A ( 4 ) 

where ro is the initial residual and -^~ = 

^£1 m a=on- Because r is a function of TT and a 
a Recall that for a pixel detector, each physical hit corresponds 
to two distinct measurements (2D) and therefore gives rise to 
two residuals along the two measurement directions. 
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the full derivative from Eq. 4 can be written as: 
dr _ dr dr dn 
da da dir da 

where ^ is obtained by differentiating the solution 
from a single track fit. In exact analogy to 4, we get: 

where we used the relation: 

SIT = — 
drT

 1 dr 
dn0 d-K0 

drT 

dno 
V-V^o.o) (6) 

Combining 4, 5 and 6 yields the solutions for the 
alignment parameters alone: 

Sa = - £ 
^tracks 

drT
 TTT dr 

W 
da0 dao 

- l 

£ l-Wr^ao) 
tracks 

dao 

M 

where 

W = V~l V-1EJ-lBTV-1, 

(7) 

(8) 
_ dr 

E = — | ^ w o 

M. is a symmetric nxn matrix and V a vector of size 
n, where n is the number of alignment DoF's. For
mula 7 can be shown to be equivalent to the one ob
tained using purely matrix manipulation methods 1 . 

2.2 Fitting a Common Event Vertex 
In order to include a vertex fit into the formal
ism, we have to redefine the track parameterisa-
tion. Only three perigee parameters survive (n = 
7r(</>, cot#, Q/pr))- Impact parameters are replaced 
by the common vertex for the event (b = (xb,yb, Zb)). 
Definition of the residuals (Eq. 1) takes the new form: 

7-j = (m,i — ei(ir,b,a)).k (9) 
The generic solution from Eq. 4 still holds, however, 
the full derivative takes a more complicated form: 

dr dr ^d-K ^db 
— = — + E h F — 
da da da da 

da da da 
(10) 

/ ev dh = - ( Y, FT 

da 
WF 

\tracks 

£ F 7 V 
Ktracks 

dr 
da 

Mh 

where we additionally denned F = | | . Despite the 
above complexity, the final solution can be written 
in a compact form: 

^ = - ( E £ ^ ) E~XrM0,a0) 
Xtracks / tracks 

M 
( i i ) 

da oa 
• WFMb~

l ]T FTW 
\tracks 

(14) 

(12) 

2.3 Adding External Constraints 
Consider an example of constraints on track param
eters. In general, they may be non-linear, however 
they have to be linearised before they can enter the 
formalism. Constraints appear as extra bi-linear 
terms in the expression for x2'-

X
2= J2 {^V-'r + iTr-xfS-'iTr-x)) (13) 

tracks 

where vector x and covariance matrix S define the 
constraint on ir. The solution for the track parame
ters is given by: 

6n = -J'1 (ETV-1r(TT0,a)+S-1^o - x)) 
J = ETV-1E + S~1 

The solution for the alignment parameters can be 
derived in the usual way and yields: 

6a = -M-1 (15) 

E (^Wr0-^V-lEJ-lS-\no-x) 
tricks \da° 9a° 

where M is as in Eq. 11, but with J as in Eq. 14. 

3 Example Tests 
The above formalism was implemented in prototype 
code in order to test the alignment of the ATLAS 
Silicon Tracking System 2 . The entire system con
sists of 1744 pixel modules (2D readout, 14 x 115/im 
resolution) and 4088 double-layer strip detector mod
ules with two sides rotated by 40 mrad stereo angle 
(16 x 580/im resolution). Given 6 DoF's of every 
module, there are 34,992 parameters to be deter
mined. Solution for the entire system presents a sub
stantial numerical challenge and as such is beyond 
the scope of this report. Here we present results from 
a test setup consisting of a region of 0 < n < 1. The 
selected subset of the system contains 1030 silicon 
modules (both pixel and strip) and corresponds to 
over 1/6 of the entire tracking system (6180 DoF's). 
Only a limited data sample of 450,000 muon tracks 
(2 < pr < 20 GeV/c) was used, so the results do not 
represent the ultimate precision. 

3.1 The Baseline Algorithm 
Diagonalisation of the matrix M. obtained from Eq. 7 
yields in the eigenvalue spectrum shown in Figure 1. 

file:///tracks
file:///tracks
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First four values are zero (up to the numerical accu
racy) and correspond to unresolved translations and 
rotation w.r.t. the Z axis of the entire system.6 To 
obtain meaningful results reciprocals of these four 
eigenvalues are set to zero which is equivalent to 
freezing these modes. The "weak modes" corre-

10" I- ^ 
1 0 3 

10 2 

10 I" s1^ 
1 ' r ^ ^ 1 0 - 2 p ^ 

10 
-3 

-4 

r, . , i , , , i , , , i 

Figure 1. Eigen-spectrum of the matrix M- Left plot zooms 
on the 100 weakest modes. 

spond to the lowest (finite) eigenvalues and conse
quently dominate the overall error on the alignment 
parameters.0 More importantly, these global shape 
deformations lead directly to biases on fitted track 
parameters. Figure 2 shows pulls of the alignment 
corrections as determined from the perfectly aligned 
detector. The distribution is nicely Gaussian, cen
tred at zero and the scatter plot does not reveal any 
suspicious structures. To further test the algorithm 
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Figure 2. Pulls of the alignment parameters in the diagonal 
space as determined for the perfectly aligned detector. 

we collectively shifted all pixel detectors by AX = 
200yum, A F = 100/wn, AZ = 400/mi in the ATLAS 
global frame (Z axis is parallel to the beam line). 
Tracks were refitted to the modified geometry and 
the alignment algorithm run. We observed no out
standing deformations to cylinders. In order to make 
the discussion more quantitative, we projected align
ment parameters on rigid cylinders using the Jaco-
bian transformation: dr/dAi = (dr/da^ida^/dAi), 
with Ai being the 7 x 6 DoF's of the seven rigid cylin-

6The other two rotations do not result in singular modes due 
to the defined and fixed direction of the magnetic field. 
c Recall that the error is proportional to square root of the 
reciprocal of the eigenvalue. 

ders. Note that this simple technique may prove very 
useful as a day-0 solution or a genuine method to 
reduce number of DoF's. Results are given in Ta
ble 1. The solution settled on a minor "telescope" 
mode which is one of the weakest and most difficult 
to control. Otherwise, corrections in the orthogonal 
plane are consistent with the imposed misalignment 
within the statistical error. 

Table 1. Corrections (/jm) to rigid cylinders. 

cylinder 
PIX 6-layer 
PIX layer 1 
PIX layer 2 
SCT barrel 3 
SCT barrel 4 
SCT barrel 5 
SCT barrel 6 

AX 
-198 ± 5 
-199 ± 4 
-200 ± 3 

- 2 ± 3 
- 2 ± 2 
- 1 ± 1 

0 ± 0 

A y 
-105 ± 5 
-102 ± 4 
- 1 0 1 ± 3 

0 ± 3 
0 ± 2 
O i l 
0 ± 0 

AZ 
-450 ± 29 
-445 ± 27 
- 4 4 0 ± 25 

- 2 2 ± 1 5 
- 1 6 ± 1 0 

- 2 ± 5 
0 ± 0 

3.2 The Common Vertex Constraint 

Applying the common vertex constraint fit of Eq. 11 
(there are «10 muons per event in our data sample) 
yielded qualitatively similar results but the absolute 
error on the pixel module positions (close to the in
teraction point) was reduced by a factor of two. Fig
ure Aa shows the difference in the eigenvalues of the 
weak modes (first 100) after applying the vertex fit. 

3.3 Constraints on Track Parameters 
Starting from a perfect detector we imposed specific 
constraints on all track parameters: cot#' =cot# — 
0.001, a = 0.0001 and Q/p'T = Q/pr - 0.01, a = 
0.001 (GeV/c) - 1 . These particular constraints were 
chosen as they directly correspond to well known 
weak modes, namely the "telescope" mode and the 
"sagitta" distortion. Alignment solution of Eq. 15 
was determined with the above constraints imposed. 
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Figure 3. Change to track parameters after the refit to dis
torted detector geometry. See section 3.3 for more details. 

Then, an independent track sample was refitted to 
the modified detector geometry. Figure 3 shows the 
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resulting shifts to the track parameters. The defor
mation to the detector geometry led precisely to the 
required change of track parameters. 

3-4 Constraint on the Mass of a Resonance 
The idea of the constraints on track parameters can 
be extended to the constraint on the mass of a known 
resonance (e.g. Z -> n+n~, J / * -* ju+M-)- All that 
is needed is an extra term in the \ 2 expression: 

x'2 = x2 + (m - M)T\{mi - M) (16) 

where M is the known mass of the resonance and CTJ 
its assumed width accounting for experimental res
olution. The solution for the constrained fit is ob
tained using dm I da = (dm/dTr)(dir/da): 

T/ T dmT 1 dm ... , , dmj 1 . 0 , , . 
dir a\ d-n da <r?v 

(17) 
The idea was tested in a very naive way using the 
muon event sample. Tracks with pr > 5 GeV/c 
were combined into pseudo-resonances if the result
ing mass was 5 GeV/c2 or larger. The initial mass 
of the pair was used for the M value in each case. 
a was set to 0.1 GeV/c2 for all pairs. The improve
ment of the sensitivity to weak modes is shown in 
Figure 4b. Results are encouraging but the method 
clearly deserves proper validation using true Z and 
J/\I> samples. 

Figure 4. Eigen-spectrum for the baseline algorithm (shaded 
histogram) with (a) the vertex constraint and (6) mass con
straint superimposed. Only 100 weakest modes shown. 

3.5 External Constraints on the Geometry 
External constraints may result from various me
chanical considerations, actual hardware monitoring 
of the deformations of the support structure, etc. 
Whatever the source, they rarely determine posi
tions of the individual modules. Instead, they give 
constraints in terms of arbitrary shape functions Fk. 
The extra term takes the form: 

X12 = X2+Pk-oPk with pk = Fkia
{ -Ak (18) 

where Ak is the requested amplitude of the fc'th 
shape function and ak is the corresponding error. 

The constraint results in the following extra contri
butions to the final big matrix M. and vector V: 

M' = M + \{FkFl), V = V-\AkFk (19) 
ak " " ^ — ' ak 

tensor 

We tested the idea using directly two known weak 
modes, namely an "elliptical" and a "telescope" dis
tortion. Table 2 shows the imposed constraint and 
the resulting amplitude of the corresponding mode 
after realignment. It was found that all other modes 
were unchanged relative to the unconstrained solu
tion of section 3.1. 

Table 2. Imposed vs reconstructed constraints on the geome
try (arbitrary units.) 

mode 
constrained A 
constrained cr(A) 
reconstructed A 
reconstructed <T(J4) 

"elliptical" 
1.0000 
0.0100 
0.9870 
0.0099 

"telescope" 
0.00000 
0.00100 
0.00007 
0.00100 

4 S u m m a r y 
The least squares solution to the alignment of large 
HEP tracking systems has been presented. It has the 
potential to incorporate various extra constraints to 
improve its sensitivity to weak modes. Preliminary 
tests of the proposed extensions using the ATLAS 
silicon tracking system have been presented. 
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The determination of the particle momentum in HEP experiments requires a fit of a parametrization to the points 
measured in a tracking chamber. A new non-recursive track-fit algorithm based on broken lines allows the reconstruc
tion of the particle trajectory taking into account details of the multiple scattering. It provides optimal parameters 
and their covariance matrices at track start and end, and optimal values at each measured point along the trajectory 
including the variances. The parametrization of the trajectory allows the use of sparse-matrix techniques with a total 
execution time 0(n), and the new algorithm is, under test conditions, a factor six faster than the Kalman filter. 

1. Track measurement in particle 
physics 

For a HEP tracking detector with a homogeneous 
magnetic field Bz (in z-direction) the ideal track 
parametrization is a helix with five parameters: the 
curvature K (inverse radius, signed), the distance dca 

and the angle <j>o at the point of closest approach to 
the axis, the intercept ZQ and the slope parameter 
tan A = coti9. Various effects can result in devia
tions to the ideal helix curve, and the track fit with a 
pure helix parametrization is not optimal. Multiple 
scattering deflections will influence all downstream 
measurement in a correlated way, and delimit the ac
curacy of momentum measurement at low momenta. 
There are effects of the field inhomogeneity and con
tinuous energy loss along the trajectory (radiation in 
case of electrons). 

Different methods of track fitting2 exist which 
are able to take the effects mentioned above into ac
count. In global methods with a computing time 
oc n3 , where n is the number of data points, the track 
parameters are determined in a single step. In the 
matrix method all effects of multiple scattering are 
included in the covariance matrix of the measured 
points, which becomes non-diagonal; in the break
point method a certain number of scattering planes is 
defined, increasing the number of parameters, while 
the covariance matrix of the measured points remains 
diagonal. In the progressive method^ the track is fol
lowed by incorporating measurement after measure
ment with update of the parameter vector and covari
ance matrix, starting from the outer detector. The 
method is equivalent to the Kalman filter, which be
came the standard method of track fitting; multiple 
scattering is introduced as process noise and optimal 
track parameters are determined at both ends of the 

track by smoothing in the direction opposite to the 
filter. These methods have a computing time oc n 
and are faster by a large factor compared with the 
global methods mentioned before. 

The method proposed here can be considered 
as a global method too. First approximate track 
parameters are determined from simple 2D fits of a 
circle 

^(xf+yf + d^) 

- (1 + ndca) (xi sin <f>0 - yi cos (f>0) + dca = 0 

and of a straight line Zi = ZQ + (tan A) • si to the data. 
Then residuals w.r.t. the circle and the straight line 
are calculated as a function of the track length s, (in 
the r0-plane); a detailed fit to the residuals taking 
into account multiple scattering (and perhaps other 
effects) is made, where corrections to the track pa
rameters like AK are determined. Due to the spe
cial parametrization of the trajectory in the residual 
fit the computing time is oc n and the method is, 
under test conditions, faster by a factor of six, com
pared with the Kalman filter and smoothing. Results 
for the track parameters are almost identical for the 
global and Kalman methods. An example for a track 
fit is shown in Figure 3. A circle fit is shown on the 
left, and the residuals to the circle are shown on the 
right as a function of the track length; the fit of the 
residuals is discussed in later sections. 

2. Multiple scattering 
A charged particle traversing material will make a 
large number of small angle collisions, called multiple 
scattering, which is dominated by Coulomb scatter
ing off the nuclei. Multiple scattering is parametrized 
by two mutually orthogonal, uncorrelated angles. 
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The Review of Particle Properties PDG1 quotes the 
formula 

V[0\=% = ( ^ ^ y M l + O . O S S l n f (1) 

for the variance of the deflection angle 6 of a singly 
charged particle with momentum p and velocity f3. 
The quantity t is the thickness of the material in 
units of the radiation length Xo, thus t = AS/XQ. 

The trajectory of a charged particle traversing a 
homogeneous medium of thickness As between two 
detector planes is shown in Figure 1. The effect of 
multiple scattering after traversal of a homogeneous 
medium of thickness As can be described by two pa
rameters, e.g. the deflection angle #piane, or just 6, 
and the angle x/j, which is the angle between the orig
inal particle direction and the straight line between 
the two intersection points (circles). The two an
gles are statistically correlated. In an ideal detector 

Fig. 1. Quantities used to describe multiple scattering. 

the intersections could be measured with high preci
sion and the straight line between the two intersec
tions gives the complete information on the particle 
trajectory, which is available from the measurement. 
The angle between the direction of this line and the 
true particle direction is ipieft = ip on the left and 
bright = 0 — ip on the right of the medium. Expec
tation and variance of these two angles are identical 
with 

E Ipleft 

bright. 
V 01 (2) 

' tf-left 1 = A /3 1/6 
.bright] V1/6 V 3 

for a homogeneous medium between the two detec
tor planes. Usually the material distribution between 
two detector planes is inhomogeneous and the covari-
ance matrix has to be calculated from the geometry 
of the material distribution within the layer i: 

(3) 
^left _ / VL,i VLR 
bright] i \VLR,i VR,. 

where the matrix elements are proportional to the 
value of 0%, calculated from t by the formula (1). 

3. Tracking in the sz-plane 
The approximate value of the momentum p deter
mined in the simple 2D fits allows the calculation 
of the multiple scattering variances V [9]. In the fit 
of the residuals in the sz-plane corrections to the 
parameters ZQ and tan A are determined, taking mul
tiple scattering into account. 

Figure 2 shows the trajectory of a charged par
ticle with multiple scattering, and the intersection 
points of the trajectory with the detector planes. 
The coordinates j/j, with standard deviation ai: rep
resent the residuals of the measurements at the de
tector planes with coordinates s;, for i — 1, 2 , . . . n; 
they are transverse to the average track, and are 
uncorrelated. For an improved fit taking into ac-

• ± 
; ; yi ± °t 

: : K M ± "i+i 
J/i+2 ± CTt+ 

Fig. 2. Particle trajectory and measured residuals yi. 

count the multiple scattering effects, the new track-
fit method developed here uses two phases in the 
track reconstruction: 

Reconstruction of the trajectory: The trajec
tory, represented by the intersection points 
of the trajectory with the detector planes, 
is determined in a least squares fit; the esti
mates of the intersection points are denoted 
by ut. 

Track parameter determination: From the fit
ted upvalues the two track parameters in
tercept and slope, required for the physics 
analysis, are determined at both sides of the 
track. 

The least squares fit thus has n parameters Ui to be 
determined, one for each measured value ?/,. The 
sum of squares to be minimized includes the sum of 
(Vi — Ui)2/of. The intersection points «j to be fitted 
are shown in Figure 4. Each pair of adjacent points 
are connected by a straight line, and due to multiple 
scattering there is a kink angle, 

Pi = bright, i-1 — V'left.i 
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Fig. 3. A 200 MeV/c track in a detector, similar to the HI detector. On the left the hits in the r0-plane (perpendicular to the 
magnetic-field direction) are show together with the result of a circle fit. The residuals of the hits w.r.t. the circle fit are shown 
on the right as a function of the track length. The lines and the band representing the result of the broken-line fit are explained 
in section 4. 

Fig. 4. Particle trajectory with fitted residuals Ui and kink 
angles ft. 

between the straight line segments. Expectation 
values E[f3i\ are zero and the variances V[(3i] are the 
sum of the variances of the angles Vieft a n d VVight of 
the layers between detector planes (eq. (3)): 

V\Pi] = VfotoghM-l] + V[VlrfM] • 

The approximation of the true trajectory is given by 
the points (SJ,UJ). There are (n — 2) kink angles /%, 
which are (to good approximation) linear functions 
of the values Uj_i, Uj and «i+i, 

Pi = [ui-i h-i - in (Si-i +Si)+ui+i Si] (4) 

with the definition 6i = l/(s»+i — s*). The angles 
j3i, which all have an expectation value of zero and a 
variance given by the multiple scattering theory, can 
be considered as (n — 2) measurements in addition 

to the n measurements yi, and these total (2n — 2) 
measurements allow the determination of estimates 
of the n true points u, in a linear least squares fit by 
minimizing the function 

(5) 

with respect to the values m; no explicit 
parametrization of the trajectory is defined. 

The vector u that minimizes the sum-expression 
S(u) is given by the solution of the standard normal 
equations 

(C\\ Ci2 C13 \ 
C21 C22 C23 C24 
C3I C32 C*33 C34 C35 

Cuu = r; Cu= CA2 C 4 3 CA4 C 4 B _ (6) 

C53 C54 C55 • • • 

V '•/ 
of linear least squares. The matrix Cu is a sym
metric band matrix, where all elements outside the 
narrow band (bandwidth m = 2) vanish. A fast 
solution with computing time a n is based on the 
(Cholesky) decomposition of the matrix Cu accord
ing to Cu = LDL , where the matrix L is a left 
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unit triangular matrix (diagonal elements are 1) and 
D is a diagonal matrix; the band structure is kept 
in this decomposition. The vector u is determined 
in the steps 

decompose Cu = LDLT (6n) 

solve Lv = ru (2n) 

solve LTu = D~lv (3n) . 

The number of operations (multiplication, division) 
per step is indicated in the equations; in total l l n 
operations are needed. 

After the reconstruction of the trajectory the 
corrections Azo and A (tan A) at track start are cal
culated from the two first u-values u\ and u-x from 
the fitted trajectory and added to the initial approx
imations. In order to calculate the covariance ma
trix of the track parameters a few elements of the 
covariance matrix Vu = C~ are required. A spe
cial method4 can be used to calculate those elements 
of the inverse matrix which are in the band of the 
original matrix, in a computation time linear in n, 
using the decomposition LDL ; for the bandwidth 
of m = 2 there are only Qn operations. 

4. Tracking in the rdt-plane 
Corrections to the parameters K, dc& and </>o are de
termined in a fit of the residuals in the r</>-plane; 
in addition to the parameters of section 3 there is 
a curvature correction AK. Corrections Adca and 
A<̂ o are calculated from the first two u-values u\ 
and U2- The mean value of the kink angle fa, as de
fined in equation (4), is now different from zero, due 
to the magnetic deflection. The magnetic deflection 
is taken into account by the re-definition of the kink 
angle 

& = [•••] + (oi_i + 04) • AK/2 (7) 

(compare equation (4); a* is the distance between the 
points i and i + 1) in the expression of equation (5), 
with E [Pi] = 0, and this has to be used in the func
tion S (u, A«) to be minimized, which now depends 
on the additional parameter A«. The solution of the 
minimization problem is only slightly more compli
cated. The linear least squares expression S (u, AK) 
is minimized by the solution of the matrix equation: 

cK 

c 

C T 

where Cu is as before in section 3, CK is a scalar and 
c is a vector. The solution with the steps 

Cu = LDLT 

Cuz = c 

BK = {CK-£z)-1 

AK = BK (rK - zTru) 

Cuu = ru 

u = u — ZAK 

(6n) 

(5n) 

(n + 1) 

(n + 1) 

(5n) 

(n) 

requires again a number of operations with is pro
portional to n. The submatrix Vu at the position of 
the matrix Cu in the inverse matrix is C „ 1 +zBKzT, 
which again allows the calculation of the covariance 
matrix of the parameters in a number of operations 
proportional to n. Figure 3 shows on the right the 
true simulated and the fitted trajectory, together 
with the ±1<T band around the fitted trajectory. 

Summary 
The proposed algorithm allows fast track fits, fully 
taking into account multiple scattering; extensions to 
include energy loss and magnetic-field inhomogeneity 
are possible. The algorithm gives the full informa
tion on every measured point: the fitted value with 
propagated error, and pulls of position and kink an
gle. The new algorithm is faster by a factor of six in 
comparison with the Kalman filter (under test con
ditions), and gives the result without iterations or 
recursion. 
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whose usefulness could still be explored, especially in higher-dimensional problems. 
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1. Introduction 

Nuisance parameters appear in virtually every 
physics measurement of interest because the mea
suring apparatus must be calibrated, and for all but 
the simplest apparatus, the calibration technique in
volves unknowns that are not directly of physical in
terest. In high energy physics (HEP), the primary 
measurement nearly always involves counting parti
cle physics interactions of interest known as "events". 
The numbers of events with various characteristics 
are used to make inferences about underlying pro
cesses, typically Poisson. For example, suppose that 
n events from a Poisson interaction process are ob
served during a measured time interval t, and one 
wishes to make inferences about the mean interac
tion rate per unit time, T. By a variety of methods 
discussed in the next section, an interval pertain
ing to the unknown Poisson mean p, from which n is 
sampled can be constructed. If the time interval t is 
known with negligible uncertainty, then an interval 
pertaining to T is obtained by dividing the endpoints 
of the interval for fj, by t. 

If the measurement of t itself has non-negligible 
uncertainty, then t (or some surrogate) becomes a 
nuisance parameter, and the question arises as to 
how to incorporate the uncertainty in t into the in
terval for r . Already in this simple example, there 
is much food for thought. When one adds the 
common complication of "background" events that 
mimic the "signal" events of interest, any uncertainty 
in the mean rate of background events adds another 
nuisance parameter, and the possibilities proliferate 
further. 

The uncertainties in nuisance parameters often 
correspond to what we call "systematic uncertain
ties" in HEP. At the last PhyStat, Sinervo52 pre
sented a more careful discussion of this correspon
dence while advocating a more precise set of defini
tions of three classes of systematic errors. 

In this paper, I survey some representative lit
erature from both the high energy physics and pro
fessional statistical communities, and compare and 
contrast the respective approaches for dealing with 
nuisance parameters. The ease with which one can 
follow citations and download papers on the Web re
sulted in a collection that has a lot of stimulating ar
ticles. But while I have taken at least a cursory look 
at all papers cited and have read a number of them, 
my study was tightly constrained by the decreasing 
time I find available to devote to my statistics hobby. 
Therefore, much of this paper is an annotated bibli
ography, and I hope that others will be able to pursue 
these leads. 

For context and definiteness, I use the construc
tion of an interval used to characterize the uncer
tainty in a single unknown parameter of interest. 
Such intervals are nearly always quoted in exper
imental HEP papers. (On the other hand, to go 
beyond intervals, e.g., to explicit decision theory, is 
rarely if ever done in a formal manner in HEP pub
lications.) I emphasize to statisticians that physi
cists do not interpret confidence intervals rigidly 
according to the caricature of "rejecting" or "ac
cepting" the hypothesis, but generally find confi
dence intervals useful as a way of conveying the 
results of experiments. 
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Table 1. 68% C.L. intervals for the mean n of a Poisson dis
tribution, based on the single observation no = 3, calculated 
by various methods. Only the frequentist intervals avoid un-
der-coverage for all values of p. The boldface numbers highlight 
the fact that the frequentist central interval shares the right end-
point with the Bayesian interval with uniform prior, and the left 
endpoint with the Bayesian interval with 1/fi prior, explaining 
why neither set of Bayesian intervals covers for all values of /J,. 

Method 
rms deviation 
Bayesian central 
Bayesian shortest 
Bayesian central 
Bayesian shortest 
Likelihood ratio 
Frequentist central 
Frequentist shortest 
Frequentist LR ordering 

Prior 

-
1 
1 

1/fi 
1/M 
-

-

Interval 
(1.27, 4.73) 
(2.09, 5.92) 
(1.55, 5.15) 
(1.37, 4.64) 
(0.86, 3.85) 
(1.58, 5.08) 

(1.37, 5.92) 
(1.29, 5.25) 
(1.10, 5.30) 

Length 
3.46 
3.83 
3.60 
3.27 
2.99 
3.50 
4.55 
3.96 
4.20 

In Sec. 2, I start with a simple problem with no 
nuisance parameters in order to foreshadow the pro
liferation of methods and illustrate the first corre
spondence between frequentist and Bayesian meth
ods. In Sec. 3, I discuss the role of condition
ing, which is a concept that I believe deserves more 
awareness within HEP. In Sees. 4, 5 and 6,1 describe 
methods for incorporating nuisance parameters in, 
respectively, Bayesian credible intervals, likelihood 
intervals, and explicitly constructed confidence in
tervals. I conclude in Sec. 7 with some recommenda
tions given existing tools, and some areas yet to be 
explored. 

2. Intervals for a Poisson Mean 

To set the stage, we first recall some ways to con
struct an interval corresponding to a confidence level 
(or analog) of 68.27% for an unknown Poisson mean 
fi after a single observation of n events. We take 
n = 3 for definiteness. Table 1, taken from Refs. 21 
and 25, gives intervals that we can identify as: 

(1) estimate of mean and rms deviation: n ± y/n. 
This is just a crude estimate at small n, and I 
do not consider it further. 

(2) credible intervals constructed by assigning the 
indicated prior P(/J.) and constructing a Bayesian 
credible interval, using an auxiliary condition as 
noted. 

(3) likelihood intervals constructed from likelihood 
ratios, with no integration or other reference to 
a metric on \i. 

(4) confidence intervals constructed from Neyman's 

construction, with auxiliary conditions specified 
as noted. 

The frequentist coverage probability of these 
types of intervals as a function of n can be easily 
studied; only the confidence intervals give exact or 
higher coverage for all values of \x. (Ref. 62 exam
ines the coverage of likelihood intervals.) As noted 
in Ref. 21, traditionally high energy physicists are 
rather strict about coverage, in contrast to the atti
tude expressed by statisticians in Refs. 42 and 63. 

By far the most common Bayesian prior for a 
Poisson mean in HEP is the uniform prior, for which 
the right endpoint of a central credible interval co
incides with that of a frequentist central confidence 
interval; this makes upper limits identical. On the 
other hand, left endpoints, and hence lower lim
its, are identical for the l/fi prior that actually has 
some motivation in terms of scale invariance. It was 
advocated by Jeffreys, although the rule for "Jef
freys' Priors" yields the prior 1/y/fl. See Refs. 21 
and Reid's respondent's talk72 for further discussion. 
Reid draws attention to the l/^/JI prior as the more 
fundamental "matching prior", and regards the exact 
matching of the endpoints in Table 1 as essentially 
an artifact of discreteness. 

To such a diverse set of starting points, we add 
a variety of techniques for coping with nuisance pa
rameters. The recent professional statistics litera
ture seems to be mainly concerned with likelihood 
and Bayesian methods, while at least some of us in 
HEP are still interested in confidence intervals that 
give correct coverage by construction. The various 
points of view inform each other. The further con
fidence intervals stray from conditioning or its ex
treme, the likelihood principle, the more suscepti
ble they are to being deemed irrelevant to the data 
set at hand; likewise, credible intervals with poor 
frequentist behavior place the prior under increased 
scrutiny. In both HEP and some professional statis
tics literature, performing a Bayesian-style integra
tion over nuisance parameters in an otherwise non-
Bayesian method is considered a reasonable thing to 
try; I think that the ultimate justification (or lack 
thereof) comes from studying the frequentist prop
erties of the results (although this interpretation can 
be problematic for some uncertainties). This is the 
point of view taken by Linnemann in his interest
ing study51 of various measures of significance at the 
previous PhyStat. 
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3. The Role of Conditioning (or 
Absence thereof) in HEP 

In HEP, it is common to calculate coverage prob
abilities for confidence intervals (or Type I and II 
error probabilities) by Monte Carlo simulation us
ing an ensemble of pseudo-experiments that includes 
all possible data sets that might be obtained accord
ing to the experimental procedure. Since our usual 
procedure is to take data for an amount of "live 
time" that is well defined (though usually not exactly 
specified in advance), the number of events obtained 
in each pseudo-experiment fluctuates according to a 
Poisson distribution. Consider, however, a situation 
in which the intrinsic uncertainty on the measure
ment of a parameter 8 depends on the total number 
of events, but in which the number of events itself 
carries no information about 9. One can argue that 
the result of a particular experiment should be a con
fidence interval in which the ensemble used to calcu
late coverage should consist of pseudo-experiments 
that all have the same number of events as was ac
tually observed. The argument goes back to Fisher 
and conditioning on an ancillary statistic. 

As reviewed by Reid20 and references therein (in
cluding notable work by Cox, also speaking at this 
conference), conditioning on some aspect of the data 
actually observed has a variety of justifications, in
cluding elimination of nuisance parameters. In HEP, 
conscious conditioning seems to be considered only 
rarely. To the extent that Bayesian-inspired tech
niques observe the likelihood principle (as in the case 
for pure subjective Bayesians), the extreme of condi
tioning on the actual set of data observed is built in, 
but I do not know how widespread this is recognized 
in HEP. Although I have attempted to read some 
fraction of the vast statistical literature on this topic 
(including the reviews by Reid in 199520, by Eraser 
in 200464, and the discussion in Ref. 30) I still find 
myself in the state of "a little knowledge is a dan
gerous thing". Therefore I will confine my remarks 
to examples of personal interest, and some pointers 
to the literature; see also Sec. 5 below. Demortier50, 
another high energy physicist, gave his perspective 
at the last PhysStat. 

3 .1 . Ratio of Poisson Means 

In an example from HEP, an experiment observes x 
events of one type from Poisson X with unknown 

mean fi, and observes y events of another type from 
(independent) Poisson Y with unknown mean v. 
Suppose the physics of interest is in the ratio of Pois
son means, the single parameter A = /J/ZA Then 
either of the individual means, or the sum, can be 
taken as a nuisance parameter, and we wish to ob
tain a confidence interval for A from the data (x, y) 
in the presence of unknown nuisance parameter. The 
product of Poisson probabilities can be rewritten as 
the product of a single Poisson probability with mean 
T = n + v for the total number of events Z = X + Y, 
and the binomial probability that this total is divided 
as such with the binomial parameter p = A/(l + A): 

~ V z~\ ) 

X(s(rb)i^^-^"X ))- <x> 
That is, rewriting in terms of observables (X, Z) and 
parameters (A,T) : 

P{x,y\n,v) = P{z\n + v)P{x\z\p) (2) 

P(x,z- x; Ar/(A + 1), r/(A + 1)) 

= P(z;r)P(x\z;X/(l + X)). (3) 

In this form, all the information about A is in the con
ditional binomial probability for the observed "suc
cesses" x, given the observed total number of events 
z. In the words of Reid20, ".. .it is intuitively ob
vious that there is no information on the ratio of 
rates from the total count. . ." . The same conclu
sion was reached in our community by James and 
Roos5. Therefore one simply uses x and z to look up 
a standard confidence interval for p, and rewrites it 
in terms of A. 

3.1.1. Inference about the Total Mean: 
Marginalization 

Suppose that the parameter of interest and the nui
sance parameter are reversed: one desires inference 
about sum of means r = p, + u, and the ratio A is the 
nuisance parameter! As discussed by Reid20, it is no 
longer conditioning that is appropriate, but rather 
marginalization, i.e., integrating over a sub-space of 
the sample space. This can be seen from Eq. 2; if 
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we sum over observed x, then the inference on r is 
made from the resulting Poisson P(Z;T). 

Thus, this example illustrates the use of both 
conditioning and marginalization. Both these con
cepts return repeatedly in modifications to the pro
file likelihood discussed in Sec. 5. I find it hard to 
understand, however, how one would be able to de
velop a general algorithm based on one concept or the 
other, when this simple example alternates between 
concepts depending on the parameter of interest. 

3.1.2. Epilogue on the Ratio of Poisson Means 

Many years ago while teaching a seminar on data 
analysis, I studied the coverage of the confidence in
tervals in Ref. 5, and found that they not only typ
ically over-covered (as do confidence intervals for a 
Poisson mean), but that they always over-covered 
by a finite amount! There were no combinations 
of /j, and v for which the set of confidence inter
vals had coverage even close to the nominal confi
dence level. This convinced me that there must exist 
proper subsets of the James/Roos intervals that still 
covered. A literature search revealed that ratio-of-
Poisson-means intervals were derived in an astound
ing variety of contexts, but that everyone obtained 
the same intervals, and there was even a theorem 
by Lehmann and Scheffe to justify the intuitive use 
of the above factorization. Nonetheless, after play
ing around with Neyman-like constructions, I found 
some "improved" intervals, and wrote up the story 
with all the references26. It was clear that the dis
creteness of the problem evaded the theorem (as 
Lehmann had warned). 

A problem with some aspects in common ( 2 x 2 
contingency tables) has been argued about for over 
50 years in the statistics literature, with most people 
coming down on the side of enforcing strict condi
tioning. Whether or not my intervals (which still 
over-cover and are shorter by any metric since they 
are proper subsets of the standard ones) are "im
proved" or not is a matter of some debate. I tend 
to conclude that using the statistical fluctuations in 
the total number of events is a natural and effec
tive way to average out the discreteness, especially 
in light of the willingness of statisticians to average 
over discreteness in what seems to me to be a more 
arbitrary way42, 63. I come back to the construction 
I used in Sec. 6 below. 

3.2. Non-Standard Conditioning in HEP 
on the Observed Constraint on the 
Number of Background Events 

In HEP, it has become common in one context to use 
non-standard conditioning that, as far as I know, has 
no foundation in the statistics literature. While not 
requiring a nuisance parameter, I mention it here for 
completeness, and because the generalization com
mon in HEP does have a nuisance parameter. X 
and Y are random Poisson variables for (experimen
tally indistinguishable) signal and background, re
spectively, and one observes z = x + y from the sum 
Z = X + Y. The mean b of the background Y is 
known, and one desires a confidence interval on the 
unknown mean /x of X. This problem has a long his
tory including the paper by Feldman and myself25 

that constructs frequentist confidence intervals us
ing the likelihood-ratio ordering in Ref. 30. These 
intervals cover by construction for the ensemble of all 
experiments, but they have been criticized for badly 
violating the likelihood principle34. The most bla
tant case is when z = 0 is observed, in which case 
one knows that for the experiment at hand, there are 
no background events (y = 0). In general, whenever 
z is observed, one knows that y < z. 

In 1989, Zech12 calculated upper limits on fj, 
by calculating probabilities conditioned on y < z; 
this has been commonly used and extended in other 
contexts22' 29. (For further perspective on the evolv
ing point of view of Zech on this and other methods, 
see Ref. 47.) This conditioning on a inequality was 
proposed independently in 1999 in a modification to 
Ref. 25 by Roe and Woodroofe (RW)28. However, 
Zech's original paper was criticized by Highland23, 
and RW was criticized by me39. (Subsequently RW 
advocated a different technique41.) That Zech and 
RW were using the same conditioning escaped me for 
some time, but I have explained it in detail in Ref. 37, 
along with Highland's objections, with which I tend 
to agree. The conditioning has properties that some 
find desirable, in particular for upper limits. But for 
two-sided intervals it leads to a situation in which 
the intervals cover for the restricted ensemble but 
not for the unconditional ensemble39. 

Read, one of the advocates of a generalized ver
sion of this conditioning22, recommended using it for 
upper limits46, and using Ref. 25 when there is a clear 
signal and there is no issue of interpretation. 
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It is notable that while most of the vast litera
ture on conditioning seems not to have found its way 
into HEP, a non-standard way with no apparent for
mal justification was invented in HEP and gained a 
large following in HEP. Given the shaky foundation, 
caution should be used in any new application. 

3.3. Conditioning in Comparing Simple 
Hypotheses 

Berger et al.18 showed that for testing a simple hy
pothesis against a simple alternative, the Bayesian 
posterior for equal prior probabilities has a nice fre-
quentist interpretation in terms of error probabili
ties conditioned on the value of the likelihood ratio 
statistic actually observed in the data. Dass and 
Berger58 generalized this to certain composite hy
potheses. Neither paper seems to be cited much in 
the statistical literature (except by Berger himself), 
and a recent review in Ref. 57 is accompanied by 
spirited and on the whole rather unsympathetic com
mentary from statisticians. 

I actually found Ref. 18 to be somewhat appeal
ing (in the admittedly rare special cases in which we 
have simple hypotheses), and Ref. 58 to be intrigu
ing. Given the apparent usefulness of conditioning, 
and the apparent difficulties of conditioning in many 
of our frequentist techniques in HEP, it would be 
interesting to see if Berger's point of view could pro
vide some useful inspiration. I note, however, that 
Reid, the respondent to the present paper, cautions 
me that part of what I find attractive depends on a 
certain type of "fiat" prior and so may not have good 
properties in general. 

4. Nuisance Parameters in Bayesian 
Intervals 

In the Bayesian world, all the difficulties with nui
sance parameters are pushed (where else?) into the 
prior pdfs for the nuisance parameters. It could be 
that HEP, with its nearly universal usage of uniform 
priors, has something substantial to gain from the 
professional literature, in particular by investigat
ing the so-called reference priors of Bernardo and 
collaborators14. 

As Bayesians are fond of pointing out, once the 
priors are specified, turning the crank is intuitive and 
straightforward: one constructs the posterior pdf as 
usual and integrates out the nuisance parameters to 
obtain the marginal posterior pdf for the unknown 

parameter of interest, and proceeds as from there as 
if there had been no nuisance parameters. 

Liseo17 compares a Bayesian analysis based on 
reference priors (Berger and Bernardo) with the pro
file likelihood and its modifications (Sec. 5 below), 
and concludes that "the frequentist coverage prop
erties of the credible sets derived from the refer
ence priors are shown to be better than those com
puted from the likelihood approach." (A more ex
tensive update is in Ref. 67.) In the Response to the 
present paper, Reid informs us that "Liseo's com
parison of Bayesian analysis methods is somewhat 
misleading... as it does not use the more accepted 
likelihood approach...", with reference to her arti
cle on this topic. 

Berger, Liseo, and Wolpert27 review integrating 
out nuisance parameters from a point of view some
what detached from the Bayesian motivation, simply 
studying the performance and practical issues. Their 
point of view is unambiguous: in response to a sug
gestion in the discussion that profile likelihoods be 
compared to integrated likelihoods as a form of sen
sitivity analysis, the authors respond that it might 
provide some assurance if they agree, but if they dis
agree badly the authors would "simply suspect that 
it is a situation with a 'bad' profile likelihood." 

As advocated by Prosper10' 24, the DO experi
ment at Fermilab78 has been using Bayesian methods 
for some time, integrating out the nuisance param
eters. This practice has now spread to other col
laborations. The statistics committee of the CDF79 

collaboration at Fermilab has performed a study59 

of Bayesian elimination of nuisance parameters in 
upper limit calculations; the associated software is 
available. Conway, a member of this committee, has 
separately released a program70 for combining differ
ent experiments, including correlations. Demortier, 
another member of this committee, has separately 
studied 45 ' 60 Bayesian techniques, and gives quite an 
interesting discussion of the prior pdf and the dan
gers of improper priors, and his recommended solu
tion. At this conference, he has given a nice overview 
of reference priors, with much food for thought74. 
Also at this conference, Heinrich76 has presented an 
important study of the dangers of uniform priors for 
multiple background processes. 

D'Agostini35 has also been forcefully advocating 
a Bayesian approach for some time, with less empha
sis on frequentist properties. 
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5. Nuisance Parameters in Likelihood 
Intervals 

A widely used and appreciated parameter-fitting 
package in high energy physics is MINTJIT2, written 
and maintained for several decades by CERN physi
cist James. The MINUIT manual and the accompa
nying published paper6 describe its method of MI
NOS for obtaining confidence intervals and regions 
from likelihood ratios (increments in the negative 
log-likelihood). It uses Wilks's theorem1 as applied 
to the profile likelihood, although until recently40, 
the name profile likelihood was used rarely in HEP. 
The profile likelihood maximizes the likelihood over 
the nuisance parameters, separately for each value of 
the parameter(s) of interest. 

Rolke and Lopez40 have studied in detail the 
method of the profile likelihood as applied to the 
Poisson signal plus background problem in which the 
background is determined (with some uncertainty). 
I believe there was some confusion regarding the re
lationship of this work to MINUIT, that has now 
been resolved. The paper begins with the formal
ism of the likelihood ratio test as in Refs. 30, 25, 
but implements a rather conventional profile likeli
hood as in the method of MINOS, with an additional 
patch to improve the performance. Rolke, Lopez, 
and Conrad68 have further studied the performance 
of the profile likelihood in some of HEP's prototype 
problems, with encouraging results. 

Since MINUIT was first written, there has been 
quite a bit of study in the professional statistics com
munity of cases in which the simple profile likelihood 
runs into difficulties, and of ways to overcome them. 
I am not aware of any of this research being applied 
routinely in HEP. Already in 1970, Kalbfleisch and 
Sprott3 surveyed a variety of methods for eliminating 
parameters from the likelihood function: integrated 
likelihoods, maximum relative likelihoods, marginal 
likelihoods, and conditional likelihoods. (The accom
panying discussion by a number of luminaries of the 
day includes this gem from A.W.F. Edwards: "Let 
me say at once that I can see no reason why it should 
always be possible to eliminate nuisance parameters. 
Indeed, one of the many objections to Bayesian in
ference is that is always permits this elimination.") 
In 1977, Basu4 presented an even longer list and re
viewed in detail the marginalizing and conditioning 

methods, and worked on a proper definition of 
nuisance parameter including the Bayesian view. 

Barndorff-Nielson, in 19837 and 1986 8, seems to 
have triggered a renewed look a the problem from 
the point of view of speed of asymptotic conver
gence by studying a "modified profile likelihood" 
"...with, generally, better inferential properties than 
the ordinary profile likelihood", and related con
cepts. He constructed approximate confidence in
tervals for the parameter of interest that are correct 
to order 0(n~ 3 / 2 ) . 

In 1987, Cox and Reid9 proposed transforming 
the nuisance parameters into a set that is (at least 
locally) orthogonal to the parameters of interest, in 
the sense that off-diagonal elements of the informa
tion matrix vanish. Then the idea is to condition 
on the observed values of the nuisance parameters. 
The result is a formula similar to that of Barndorff-
Nielson but able to neglect a term due to the orthogo-
nalization (although thereby losing parameterization 
invariance). In the discussion, G.A. Barnard also 
takes the point of view (as did Edwards above) that 
one should not eliminate nuisance parameters "if the 
data do not permit it." Given that these methods are 
quite complex, for me the most interesting question 
was posed by F. Critchley: "Which values of n are 
sufficiently sub-asymptotic to make the more elabo
rate procedures worthwhile and yet sufficiently large 
to retain enough accuracy in the crucial approxima
tion on which rests the key advantage of parameter 
orthogonality?" The answer to this question affects 
whether or not it is worth it to us in HEP to attempt 
to implement something like this in MINUIT, for ex
ample. My concern is that, for very small n that we 
frequently have in HEP, the asymptotic advantages 
are not yet apparent. 

In the ensuing years, Fraser and Reid11 added 
additional commentary; McCullagh and Tibshirani13 

proposed yet another "adjustment" to the profile 
likelihood; and Cox and Reid15 added further clari
fication regarding when the "modifications" gives a 
real improvement over the vanilla profile likelihood. 
Severini31 also discusses the relationships among the 
various modified likelihoods and Bayesian methods. 
At the last PhysStat, Reid and Eraser49 provided 
a useful introduction for non-statisticians, with de
tailed explanations of examples relevant to HEP. 
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6. Nuisance Parameters in Frequentist 
Neyman-like Construction of 
Confidence Intervals 

Traditionally many high energy physicists, includ
ing myself, have found confidence intervals to be ap
pealing because probability P is defined in a way we 
understand and can simulate, and because Neyman 
taught us how to construct intervals that have the 
stated coverage (or greater) by construction. There 
is indeed the issue of educating people that confi
dence intervals are not the answer to the subjec
tive questions that people want answered, e.g., "How 
much should I believe the hot new theory given the 
data in hand, and should I change what I do when I 
get up in the morning?" I remain optimistic33 that 
we can teach people in HEP that P (data] theory) dif
fers from P(theory|data), and that decisions require 
further subjective input about risk tolerance. 

In HEP, central confidence intervals and upper 
confidence limits were for a long time the norm, with 
the choice of which one to use typically based on the 
data. It was only in the last decade or so that it be
came common knowledge in HEP that confidence in
tervals in general correspond to inverting a hypothe
sis tests on a parameter, and that the likelihood ratio 
test is an obvious default test to invert30. The appli
cation to prototype cases of interest in the absence 
of nuisance parameters was worked out by Feldman 
and myself in 1997-9825, and then we investigated 
the extension to nuisance parameters, guided by the 
terse prescription (for an approximate method) in 
Ref. 30. Except for Feldman's talk at the Fermilab 
CLW36, neither this work nor some follow-up work 
by Feldman has been written up. The initial de
lay was caused by the realization that one obtains a 
different answer in the limit the uncertainty on the 
nuisance parameter goes to zero than that obtained 
in the absence of a nuisance parameter; this is due to 
inserting a continuous variable into a discrete prob
lem. Feldman described a patch for this in Ref. 36. 
As discussed below, for large n where this patch is 
irrelevant, others have continued and extended this 
approach. 

Fraser, Reid, and Wong61 argue that the whole 
approach of confidence intervals is decision-theoretic, 
and that likelihood-based inference, with ranges of p-
values, is a preferred option. 

6.1. Full Multi-Dimensional Neyman 
Construction 

In principle, a brute-force technique is to consider a 
fine grid in the entire multi-dimensional parameter 
space, including nuisance parameters, and for each 
grid point construct an acceptance region of the de
sired confidence level in the data space. For this one 
needs an algorithm for ordering the data. Then, for 
a particular value of the parameter of interest, one 
takes the union of all the acceptance regions for that 
value and all values of the nuisance parameters, and 
proceeds to find confidence regions as usual. This 
typically leads to confidence intervals or regions that 
badly over-cover for any particular set of true values 
of the parameters, in order to cover for all sets. 

In practice, I am aware of only a few cases in 
HEP where this has been attempted26 ' 53> 4 4 . In the 
ratio of Poisson means problem described above26, 
I played around with the ordering and managed to 
build acceptance regions that were subsets of the 
standard acceptance regions based on conditioning. 
But this is a tough (although fun) game that be
comes increasingly harder as the number of nuisance 
parameters increases. I think that practically speak
ing, using an approximate method and checking the 
coverage is generally more productive than using the 
brute-force construction (in which case one will still 
probably want to check the coverage, to see how 
badly it over-covers). 

In the previous PhyStat, Cranmer48 presented a 
full construction for dealing with the background un
certainty in frequentist hypothesis testing, similar in 
concept to that in Ref. 26, but using the full gener
alization of the likelihood ratio ordering in Refs. 25, 
30. At this conference73, he compares this method 
with other methods. This is important work that 
should be "required reading" for those working on 
these issues at CERN's Large Hadron Collider and 
elsewhere. Related work by Punzi77 adds further 
valuable insight into the full Neyman construction. 

6.2. Integrating Nuisance Parameters 

While participating in a number of experiments look
ing for "new physics" that we did not find, I encoun
tered the simplest example of the problem discussed 
in the introduction, namely no event found (n = 0), 
and thus needing an upper confidence limit on T in 
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the presence of uncertainty in t. (The symbols T and 
t are typically replaced by more general symbols such 
as those for cross section and luminosity.) In 1990, 
it was common either to ignore the uncertainty in t 
or to adjust the upper limit on T by adjusting i by 
some factor times at-

Using intuition that would make a Bayesian 
smile, Highland and I averaged upper limits over 
the pdf for t centered on the measured i and ob
tained well-behaved results16. F. James explained to 
us that this was Bayesian averaging grafted on to a 
frequentist upper limit, but we stayed with it, since a 
purely frequentist solution had behavior that seemed 
unlikely to be accepted16' 21. Indeed, such intuitive 
averaging had already been used in the CDF exper
iment and elsewhere16. The important qualitative 
result was that, for uncertainties of 10% or so in t 
that were common in that day, the practice of ig
noring the uncertainty was a better approximation 
than adjusting the upper limit by 10% or more. A 
fully Bayesian treatment with a uniform prior for the 
Poisson mean /x gave the same upper limit (if one did 
a sensible thing when the denominator neared zero), 
and in the cases we tested, the method over-covered 
for reasons that made sense to us. 

More comprehensive coverage tests have been 
done internally in some collaborations and seem al
ways to find that the method yields upper limits 
that over-cover (except for an incorrect study that 
found under-coverage). Blocker and the CDF statis
tics committee69 find the performance of the algo
rithm in Ref. 16 to be essentially identical to a fully 
Bayesian technique for setting upper limits, and pre
fer the latter. 

Barlow43 has made available a calculator pro
gram with which one can explore results calculated 
in the spirit of Ref. 16 from n, T, t, and in addition 
the background estimate and its uncertainty. 

Conrad et al.54, and Tegenfeldt and Conrad71, 
studied the properties of integrating out nuisance 
parameters for background uncertainty as well as lu
minosity uncertainty in the context of the intervals 
of likelihood-ratio ordering construction of Ref. 25. 
The program for performing the calculation is also 
published65 and since updated, including the treat
ment recommended by Hill56 for a pathology in 
the case of fewer than expected background events. 
Their conclusions are consistent with the observation 
in other contexts that such a treatment of nuisance 

parameters leads to over-coverage for any particular 
value of nuisance parameters. 

Lista66 has integrated out a Gaussian uncer
tainty on the background in the context of the upper 
limits from non-standard conditioning described in 
Sec. 3.2. 

Cranmer73 has explored what happens if one in
tegrates nuisance parameters out to ha significance 
(!). He finds severe undercoverage. At that level, 
knowing the form of the pdf for the nuisance param
eter becomes a real issue. 

7. Conclusions 

From the extensive and continuing literature on this 
topic in both the high energy and statistical com
munities, it seems clear that more work is necessary 
before a consensus is attained for even a "conven
tion" that everyone agrees on. As the HEP commu
nity seems to be increasingly fond of 5<r significance, 
this places rather extreme demands on any approxi
mate methods. Regarding what can be tried today, 
I believe it is worth emphasizing the following. 

• As the quotes from Edwards and Barnard above 
indicate, it may not always be fruitful to eliminate 
nuisance parameters. In cases where the inference 
depends strongly on the value of the nuisance pa
rameter, the clearest presentation may be simply 
to enumerate cases. 

• In a completely Bayesian analysis, "turning the 
crank" within the methodology may be straight
forward, but specification of priors is fraught with 
pitfalls (especially in high dimensions), and inter
pretation of probability "P" can be a challenge if 
P is not consistently subjective degree of belief in 
all the inputs. 

• It seems to me that the widespread availability of 
MINUIT, our long tradition of using it in HEP, 
and the reasonable frequentist performance of its 
output combine to make it mandatory that one 
use the method of MINOS (differences in log of 
the profile likelihood) on one's likelihood function 
while trying out various options. The contours 
provided by MINUIT give insight into how sensible 
it is to eliminate the nuisance parameters. 

• Already in 2000, Feldman36 outlined the way we 
interpreted Ref. 30's prescription to include nui
sance parameters in likelihood-ordered Neyman 
construction, but with the paucity of examples 
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outside of our NOMAD collaboration, this did not 
become widely known. Now that Cranmer48, 73 

and Punzi77 have discussed the prescription and its 
more exact generalization (another way to inter
pret Ref. 30) in more detail, this situation is much 
improved. Feldman75 and I believe that the Ney-
man construction using the approximation he pre
sented in 2000 is a scalable, reasonable approach 
that deserves more study. 

• No matter what method is used, the common prac
tice of exploring the frequentist properties of the 
result should be strongly encouraged. 

In addition, from the references and the talks at this 
conference, some next steps seem to be apparent for 
further development: 

• The performance of reference priors14, as discussed 
by Demortier74 at this conference, should be ex
plored by those in HEP who advocate a Bayesian 
approach. 

• Conditioning when appropriate should become a 
part of our conscious thinking, and the pros and 
cons of restricted and global ensembles should be 
better understood in our community. 

• It would be interesting to explore the consequences 
of modern modifications to the profile likelihood 
beyond the examples shown by Reid and Fraser49 

at the previous PhyStat. 

Finally, I end on a note of caution that has its roots 
in recent work in my current collaboration. If the un
derlying sources of the nuisance parameters are sys
tematic uncertainties that become quite large, one 
becomes very sensitive to the details of the pdfs for 
the nuisance parameters, which can be much more 
poorly specified than the Poisson process that un
derlies our statistical uncertainties. In that case, one 
must be vigilant against blind use of a high-powered 
algorithm that in the end is not robust in this con
text, especially when one is applying it in extreme 
tails such as 5<r significance. 
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The paper by Cousins has provided an excel
lent overview of many of the problems arising with 
nuisance parameters. In my view it is easier and 
clearer to think about confidence limits from the 
approach using p-values, which is fairly common in 
the statistical literature but perhaps less so in the 
physics literature. Assume we have data x from a 
model X ~ f(x;8) where the unknown parameters 
6 = (ip, v) are partititoned into parameters of in
terest ip and nuisance parameters v. A p-value for 
testing H0 : ip = ipo is given by Pr(T > t(x);tpo), 
where T = t(X), and Pr is computed under model / 
for x. 

Confidence intervals are easily obtained from p-
values, by considering the function p(ip) = Pr(T > 
tobs;ip): a (1 — a) interval is obtained by finding 
{ip : a/2 < p(ip) < 1 — a /2} , and a confidence 
bound can be obtained using {-0 : p(ip) > a} or 
{ip : p(ip) < 1 — a}. The conversion from the 
function p(tp) to limits for ip can be done exactly, 
approximately, or by simulation. For example, if 
x ~ N(n,l), the p-value function for /x is p(fi) = 
1 — ${y/n(x — /i)}, and the confidence interval is 
x ± ^Jnza/2 • If the p-value is obtained by using the 
approximation — 2 lnL ~ x1, then the confidence in
terval is computed by interpolation, and is sometimes 
summarized as ip — <7_, ip + <r+. 

There are two aspects to the definition of p-
values: the choice of the summary statistic t(X) to 
be used in assessing the consistency of the data with 
HQ, and the calculation of p which may be carried out 
exactly, by some approximation, or by simulation. I 
think it is helpful to separate these two aspects. For 
example we might be able to find a statistic t(X) 
whose distribution is free of v. While this distribu
tion might be complicated, basing confidence inter
vals on it would guarantee coverage for all values of 
the nuisance parameter. The comparison in Cousins' 
Table 1 uses approximate calculation of the limits 

for the likelihood ratio, but exact calculation for the 
frequentist limits. However the likelihood ratio in
tervals could be inverted exactly and would then be 
identical to the frequentist shortest intervals. 

There is considerable interest in the statistical 
literature on so-called 'matching' priors, which are 
priors for which the Bayesian posterior limit has good 
coverage. Defining the posterior limit B^~°^(x) by 
Pr{# > 9^l~°^(x) | x} = a, the matching condition 
is Prie^-^iX) < 6 | 9} = a + e, where e = 1/y/n or 
1/n, etc. Matching to 0(l/y/n) turns out to be too 
weak; all priors achieve this. Matching to 0{l/n) is 
uniquely achieved for models with just one parameter 
by Jeffreys' prior ir(6) oc il/2(6). For the Poisson 
mean this gives 7r(/i) oc yT1^, and the corresponding 
interval for Cousins' Table 1 is (1.72, 5.27). This 
actually does match the frequentist interval, but the 
latter must be defined using the mid p-value Pr(T > 
tobs) + (1/2) *~Pi(T = tobs). 

For the ratio of Poisson means, we have a com
plete factorization of the likelihood L(X, v; x, y) = 
L\{T)LI2(X), where r = A(l + v), and L2 is the bino
mial likelihood for x 'successes' out of x + y events, 
and probability of 'success' A/(A + 1). Using Li is 
equivalent to choosing T to be X given X + Y, and 
has the advantage that distribution is free of r . It 
also has the interpretation, perhaps more important, 
that it directly measures A. Although it will not usu
ally be the case, in this model the profile likelihood is 
identical to Li- However the conditional distribution 
has fewer points of support than full distribution so it 
is less likely that we will be able to observe a p-value 
of exactly 0.05, and it is this discreteness that leads 
to overcoverage. This is a different phenomenon than 
the separation of the parameter of interest from the 
nuisance parameter. 

Finally, I appreciate the uncertainty over the 
'correct' form of adjustment to profile likelihood. 
The statistical literature is full of suggestions, but 
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there is no magic bullet here either. One version that 
seems to improve the usual approximations involves 
a correction related to the observed information, and 
is described in my summary paper. Experience with 
the correction in many examples indicates that it is 
worth the effort to incorporate it, especially in small 
n situations. Liseo's1 comparison of Bayesian analy
sis to methods based on modified likelihoods is some

what misleading, as it does not use the more widely 
accepted likelihood approach based on higher order 
asymptotic theory.2 
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We discuss some issues arising in the evaluation of confidence intervals in the presence of nuisance parameters (system
atic uncertainties) by means of direct Neyman construction in multi-dimensional space. While this kind of procedure 
provides rigorous coverage, it may be affected by large overcoverage, and/or produce results with counterintuitive 
behavior with respect to the uncertainty on the nuisance parameters, or other undesirable properties. We describe 
a choice of ordering algorithm that provides results with good general properties, the correct behavior for small 
uncertainties, and limited overcoverage. 

1. Introduction 

A conceptually straightforward method to incorpo
rate systematics into Confidence Limits is to apply 
the usual Neyman construction directly on the com
plete pdf of the problem, including the set of addi
tional parameters v describing the systematic effects, 
and then project the solution on the space of parame
ters of interest fi. Systematic uncertainties may take 
the form of an allowed range for the z/s, or may be 
defined by the observables of the problem. Although 
the method can be applied to a more general situa
tion, we will assume in the following discussion that 
measurements are available of some ("subsidiary") 
observable(s) y, whose only purpose is to provide in
formation on the systematic parameters, through the 
dependence of their pdf on v. In this case, one will 
consider the overall pdf. 

p((x,y)\fa,v)) (1) 

that gives the joint probability of observing the value 
of the "physics observables" x plus all "systematic 
measurements" y, given all unknown parameters, 
physics and systematics. One starts by deriving Con
fidence Limits in the larger (fi, v) space from the ob
served values of (x, y) with the same procedure that 
could have been used in absence of systematics to 
derive limits on fi: one simply needs to sample a 
number of points inside the parameter space and re
quire coverage for each of them. Then, in order to get 
results containing only the physical parameters, one 
needs to project the confidence region in (/j,, v) onto 
the fi space, so as to get rid of unwanted information 
on the nuisance parameters. 

Although the above procedure is general, con

ceptually simple, and rigorous, other methods have 
been preferred in the vast majority of problems in 
physics. This can be ascribed to a few important 
difficulties with this method. To begin with, the 
problem of numerical calculation of Confidence Re
gions (CRs) in multi-dimensional spaces is often 
quite complex and CPU-consuming. Then there is 
a non-trivial question of what ordering algorithm to 
use in the Neyman construction. There is an issue of 
"efficiency", or power, of the solution, because pro
jecting the band on the /i space effectively means to 
inflate a limited region in (/u, v) to an unlimited band 
in the v direction, thereby increasing the coverage 
for all additional points (fi, v) included. This means 
that the final limits quoted on \i will almost always 
overcover, and sometimes badly, especially when v 
has many dimensions; this is indeed the case with 
standard choices of ordering1. A related additional 
problem is that the behavior of the limits when the 
systematic uncertainty approaches zero is in many 
cases unsatisfying. It often happens that the limit 
for small systematics is quite different from the re
sult one would quote in absence of that systematic; 
this problem, however, is not unique to the projec
tion method. 

If the above problems could be alleviated, this 
methodology could find greater use in HEP. 

2. A Benchmark problem 

Our discussion, although general, will be centered on 
a specific problem that has been the initial motiva
tion for this work: a Poisson distributed signal in 
presence of a known background, with a systematic 
uncertainty on the signal normalization (efficiency). 
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We have: 

x ~ Pois(en + b) , e~G(e,<j) (2) 

where e is the result of a subsidiary measurement 
with resolution a of the unknown efficiency e, which 
is intended to be a generic "normalization factor", 
not necessarily smaller than one. In the follow
ing we will mostly assume a normal distribution 
for G for simplicity; the possibility of negative val
ues of the efficiency estimate does not pose any 
problems to the algorithms discussed in this docu
ment. This can actually occur, for instance, when 
the efficiency measurement implies some sort of 
background-subtraction procedure*1. 

3. Looking for an optimal band 

What one would like to accomplish is to find a clever 
enough rule for constructing the initial Confidence 
Band, to minimize the amount of unnecessary cover
age added when the band is projected onto the "in
teresting parameters" space. It is not obvious what 
the minimum is for a particular problem, because 
the frequentist requirement of minimum coverage for 
every possible true value of the parameters may im
ply some minimum amount of over cover age, which is 
unavoidable regardless of the algorithm used in the 
construction, much in the way overcoverage occurs 
in discrete problems. Therefore, there is no reason 
for being a-priori discouraged about the capability of 
the projection method to provide powerful solutions 
(that is, narrow intervals). A striking demonstra
tion of this is provided by the use of the projection 
method, with an appropriately designed algorithm 
for band construction, in producing a more efficient 
solution to a classical, well-explored problem like the 
ratio of Poisson means3. 

It is intuitively obvious that in order to obtain 
an efficient solution, the initial confidence band must 
extend as far as possible along the direction of the 
nuisance parameter. This is not trivial to achieve, 
since the band needs to be built in the (x, e) space, 
while the objective is to produce a desired shape in 

aThis simple and common example has been selected by the 
CDF statistics committee as a benchmark in performing com
parisons between a number of different methods. A minor dif
ference from the current example is that a positive, Poisson-
like distribution is assumed for the subsidiary measurement in
stead of a Gaussian, in order to avoid problems with Bayesian 
treatment2 . 

the (fx, e) space. A good general requirement to im
pose is that, given any two sections of the band at 
two fixed values of the nuisance parameter e, one 
must be completely included in the other. It is in
tuitive that a band cannot be optimal if it does not 
satisfy this requirement, because if one had to take 
one of the two sections and expand it to completely 
include the other, the projected confidence region in 
/u would be unaffected, and conversely one could ex
ploit the coverage gained in this way to trim a part 
of the exceeding part of the chosen section, thus cre
ating the conditions for a tightening of the projected 
confidence region. 

4. Ordering algorithm 

One way to define how to construct the confidence 
band in the complete space is to derive it from 
an ordering function f(x,e;/j,,e), so that the confi
dence band is defined by the inequality f(x, e; [i, e) > 
c(fj,,e), where the threshold c is determined for each 
value of the parameters from the usual Neyman's re
quirement of coverage: 

/ p(x, e\fi, e)dxde > CL (3) 
Jf(x,e\n,ti)>c(n,e) 

where CL is the desired Confidence Level. It is 
worth noting that this is not the only conceivable way 
to define a band satisfying the coverage condition3, 
but it is attractive for reasons of simplicity. A sim
ple way to implement in an ordering algorithm the 
requirement of inclusion formulated in the previous 
section is to impose that f{x,e;^,e) is independent 
of e: / (x ,e ; jU,€i) = f(x,e; /i, £2)- In this way, sec
tions taken at different e for the same value of [i will 
only differ in the value of c(/j.,e), and will therefore 
be included in one another. This requirement is also 
very convenient from the point of view of computing, 
as it implies that the ordering function / need only 
be calculated once for every /j,. 

As an additional requirement, we want the pro
jected confidence regions to converge to the results 
in absence of systematic uncertainty when the size of 
the uncertainty goes to zero. We do not restrict to a 
specific ordering (one may want to be able to choose, 
for instance, between central and upper limits), so we 
start from a given generic ordering function /o(z; /x) 
in the restricted space. This defines the behavior of 
the ordering function along the direction of observ
able x, but careless extension of any such rule to the 
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whole (x,e) space will not work. As an example, 
extending the trivial ordering used to achieve upper 
limits (fo{x; /i) = x) results in substantial overcover-
age (see fig. la). We need additional criteria to ensure 
proper behavior in the subsidiary observable e. We 
don't want to give special preference to any values, 
because this will amount to attempting to extract in
formation on the nuisance parameter, while we want 
to maximize information on the physical parameter 
JJ,. We do this by choosing the following ordering 
function: 

f(x,e;fj,)= p(x'\e;fi,i(e))dx' (4) 
•>/o(x')</o(x) 

where e(e) is the maximum-Likelihood estimate 
of e for the given e. That implies that the same 
integrated conditional probability will be contained 
in the band for each value of e. 

We make an exception to the rule of being in
different to the value of e, e for very unlikely values: 
we select an interval of values [emin,emax] such that 
the probability for a measurement to fall outside is 
C l - CL, and assign lowest rank to all points ly
ing outside this interval. From the above conditions, 
they will never be reached by the ordering procedure, 
so they can simply be ignored, which saves computa
tion. This clipping technique has already been advo
cated as a help in keeping the projections small4; in 
our context however it seemed to have no significant 
effects beyond saving computation. 

5. Results 

We have applied the ordering rule of equation (4) 
to our problem of choice (sec. 2), with an order
ing /o corresponding to upper limits. Fig. lb shows 
that this time very little overcoverage is obtained, ex
cept from some discretization-related "ripples". It 
is interesting to note that these limits are tighter 
than the limits obtained with other popular meth
ods (compare, for instance, the coverage obtained 
for the same problem with Bayesian2 or Cousins-
Highland methods5' 6 ) , although guaranteed by con
struction to cover for every possible value of both /i 
and e. This confirms the capability of the projection 
method to produce powerful results, when used in 
conjunction with an appropriate ordering algorithm, 
as per Eq. (4). 

The procedure we have described can be used 
with any other desired ordering. If we apply it to 

Unified Intervals7, we find an interesting fact: be
cause of the Likelihood Ratio theorem, ensuring the 
independence of the distribution from true parame
ter values, the ordering algorithm defined by Eq. (4) 
is approximately equivalent to ordering based on the 
ratio of profile Likelihoods. That quantity has been 
suggested as a good intuitive ordering to use in han
dling systematics since 8, and has been used in neu
trino experiments1' 9 (with a conditional frequentist 
motivation), and in a problem very similar to ours, 
the Poisson with uncertainty on background4. It 
reappears here as an approximation of the more gen
eral rule defined by Eq. (4). Fig 2 shows that cover
age plot for our benchmark problem, which is close 
to the nominal constant 0.9, indicating that there is 
very little to be further gained. 

6. Continuity 

One of our initial goals was to obtain a continuous 
behavior when <jayst —> 0. In previous examples, al
though the limit is approximated much better than 
with other frequentist methods (see for instance10), 
there is still a slight difference. For instance, the 
upper limit with the Unified method at 90% for 
n = 4, b = 3 is7 5.6 , while our results approach 
~ 5.47 when a —» 0. More annoyingly, the limit 
found with systematics is lower. This is a well known 
problem, tied to the transition between discrete and 
continuous regime11, and is pretty much independent 
of the specific algorithm. However, our method for 
evaluating limits allows a very simple fix, requiring 
no alterations to the ordering: all that is needed is 
to keep the size of the grid used in the numerical 
calculations from becoming too small in the direc
tion of the nuisance observable. This has a natural 
justification under the same principles that guided 
the general design of our algorithm: we are trying to 
disregard detailed information on the the subsidiary 
observable, in favor of information on the physics pa
rameter ji. In our problem, by choosing a minimum 
step Ae = 0.1 we obtain perfect continuity at zero 
(fig. 3). A side effect of this limitation is to save some 
computing time. 

7. Systematic uncertainties given as 
ranges 

The approach we have described has wider applica
tion than the examples mentioned above. For in-
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stance, it can handle in a natural way the impor
tant situations in which no subsidiary measurement 
in available to provide information on the nuisance 
parameter. This often occurs in real life: the system
atic uncertainty may be due to a physical constraint, 
or related to a choice within a range (discrete or con
tinuous) of theoretical predictions or assumptions, or 
can otherwise be specified in a way that is not de
tailed enough to uniquely identify a probability dis
tribution. In these cases, usually the only available 
information on e is represented by a range of admis
sible values. 

This situation is automatically handled by our 
approach: one simply has one less observable to 
worry about, but the rest of the construction works 
exactly in the same way. In fact, calculations are 
much faster with the lack of a subsidiary measure
ment, so that when dealing with small systematics it 
is actually more convenient to transform any possi
ble nuisance measurement into an appropriate range 
for the nuisance parameter, and simply use that in
formation as input, in order to save computing time. 
Again, our tests yielded very limited overcoverage, 
compatible with what was required simply by the 
discrete nature of the problem. 

It is worth noting that a range of values is not 
at all equivalent to a uniform distribution, which im
plies more precise knowledge. For instance, by com
paring the limits obtained in the two cases, it is seen 
that the limits for the range case are looser then in 
the uniform distribution case, as intuitively expected 
due to the smaller information content in a statement 
about a range (see Table 1). This is in contrast with 
what happens in a Bayesian approach, where a prior 
function is always required, and a uniform distribu
tion is often chosen to represent lack of information. 

In general, treating systematic uncertainties as 
ranges is a good candidate approach to problems 
with many nuisance parameters, as it allows big sav
ings in CPU time, in addition to avoiding the trouble 
of having to worry about the accuracy of the distri
butions assumed to represent the systematic uncer
tainties. 

8. Conclusions 

We have presented a general method to incorporate 
systematic uncertainties in a limit calculation in a 
rigorous frequentist way, which is powerful (does not 

Fig. 1. Coverage plots for upper limits with a naive ordering 
(a), and with the ordering of eq.(4) (b). The efficiency is 
measured with a Gaussian uncertainty, a = 0.1. 

produce large overcoverage), has the right limit for 
small uncertainties, can be used even with uncer
tainties given as ranges, and can easily be calculated 
in practice. This is based on projection of a tra
ditional Neyman construction with an ordering al
gorithm specified by Eq. (4). We have applied it to 
the specific problem of Poisson measurement with an 
uncertainty on the efficiency. 
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Table 1. Confidence Limits for Poisson+background with sys
tematic uncertainty on the efficiency, obtained by extending 
Unified Limits through Eq.(4). Results are given for 6 = 3, 
e = 1.0, and various models of uncertainty on e (see text). 

nobs 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Without 
systematica 

0.00 , 1.08 
0.00 , 1.88 
0.00 , 3.04 
0.00 , 4.42 
0.00 , 5.60 
0.00 , 6.99 
0.15 , 8.47 
0.89 , 9.53 
1.51 , 10.99 
1.88 , 12.30 

Gaussian 
(7 = 0.1 

0.0 , 1.1 
0,0 , 1.9 
0.0 , 3.0 
0.0 , 4.4 
0.0 , 5.9 
0.0 , 7.4 
0.0 , 8.9 
0.9 , 10.3 
1.4 , 11.7 
2.0 , 13.1 

Uniform 
±0.15 

0.0 , 0.9 
0.0 , 1.7 
0.0 , 2.7 
0.0 , 4.0 
0.0 , 5.4 
0.0 , 6.9 
0.2 , 8.2 
1.0 , 9.6 
1.5 , 10.9 
2.1 , 12.3 

Range 
±0.15 

0.0 , 1.0 
0.0 , 1.9 
0.0 , 3.0 
0.0 , 4.5 
0.0 , 6.0 
0.0 , 7.4 
0.1 , 8.9 
0.8 , 10.4 
1.3 , 11.8 
1.9 , 13.1 

Fig. 2. Coverage plot for Unified limits, Gaussian uncer
tainty, 6 = 3, a — 0.1. 
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In this note we present studies of coverage and power for confidence intervals for a Poisson process with known 
background calculated using the Likelihood ratio (aka Feldman k. Cousins) ordering with Bayesian treatment of 
uncertainties in nuisance parameters. We consider the variant where the Bayesian integration is performed in both 
the numerator and the denominator, and also the modification where the integration is done only in the numerator 
whereas in the denominator the likelihood is taken at the maximum likelihood estimate of the parameters. Furthermore 
we discuss how measurements can be combined in this framework and give an illustration with limits on the branching 
ratio of a rare B-meson decay recently presented by CDF/DO. A set of C + + classes has been developed which can 
be used to calculate confidence intervals for single or combining multiple experiments using the above algorithms and 
considering a variety of parameterizations to describe the uncertainties. 

1. Introduction 

A popular technique to calculate confidence inter
vals in recent years is the one suggested by Feldman 
& Cousins1. The method consists of constructing 
an acceptance region for each possible hypothesis (in 
the way proposed by Neyman2) and fixing the lim
its of the region by including experimental outcomes 
according to rank which is given by the likelihood 
ratioa: 

where s is the hypothesis, n the experimental out
come, b the expected background, Sbest is the hy
pothesis most compatible with n and C the Like
lihood function. The expected background b is an 
example of a so-called nuisance parameter, i.e. a pa
rameter which is not of primary interest but which 
still affects the calculated confidence interval. An
other example of such a nuisance parameter could 
be the signal efficiency. In the originally proposed 
method by Feldman & Cousins, only the presence of 
background was considered and it was assumed to be 

aThroughout this note we consider Poisson distributions with 
experimental outcome n, hypothesis parameter s and (possi
bly not exactly) known background 6. 

exactly known. The question on how to treat uncer
tainties in nuisance parameters in confidence interval 
calculation, in particular in context of the frequentist 
construction, has drawn considerable attention in the 
recent years. In 1992 Cousins & Highland3 proposed 
a method which is based on a Bayesian treatment of 
the nuisance parameters. The main idea is to use a 
probability density function (pdf) in which the aver
age is taken over the nuisance parameter: 

P(n\s,e) —> J P(n\s,e')P(e'\e)de' :=q(n\s,e) 

(2) 
where e' is the true value of the nuisance parame
ter, e denotes its estimate and s and n symbolize 
the signal hypothesis and the experimental outcome 
respectively. 

Cousins & Highland only treated the case of 
Gaussian uncertainties in the signal efficiency. The 
method has since been generalized by Conrad et 
al.4 to operate with the Feldman & Cousins order
ing scheme and taking into account both efficiency 
and background uncertainties as well as correlations. 
This generalized method has already been used in 
a number of particle and astroparticle physics ex
periments (see references in Tegenfeldt & Conrad5). 
FHC2 denotes this generalized method in the remain-
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der of this note. If there are significantly less events 
than expected background, FHC2 tends to result in 
confidence intervals which become smaller with in
creasing uncertainties. Hill6 therefore proposed a 
modification where the ordering of the likelihood ra
tio is defined as: 

£(max (0, n0bs — b)+b) 

here b is the maximum likelihood estimate of b given 
the subsidiary observation of b. MBT ("Modified 
Bayesian Treatment") denotes this modification in 
the remainder of this note. 

In this contribution, we discuss coverage and 
power of FHC2 and MBT as well as the combina
tion of different experiments with and without cor
relations. We start by introducing the C++ library 
which has been developed to be able to do the nec
essary calculations. 

2. P O L E + + 

For the coverage studies presented in this paper, a 
reasonably fast and efficient code is required. Hence, 
a user-friendly and flexible C + + library of classes 
was developed based on the FORTRAN routine pre
sented by Conrad7. The library is independent of ex
ternal libraries and consists of two main classes, Pole 
and Coverage. The first class takes as input the num
ber of observed events, the efficiency and background 
with uncertainties and calculates the limits using the 
method described in this paper. The integrals are 
solved analytically. Coverage generates user-defined 
pseudo-experiments and calculates the coverage us
ing Pole. Presently the library supports Gauss, log-
Normal and flat pdf for description of the nuisance 
parameters. Several experiments with correlated or 
uncorrelated uncertainties in the nuisance parame
ters can be combined. The pole++ library can be 
obtained from http://cern.ch/tegen/statistics.html 

3. Coverage and Power 

The most crucial property of methods for confidence 
interval construction is the coverage, which states 
that a fraction (1-a) of infinitely many repeated ex
periments should yield confidence intervals that in
clude the true hypothesis irrespective of what the 
true hypothesis is. For confidence interval construc
tion (according to Neyman) without uncertainties 

in nuisance parameters this property is fulfilled by 
construction. In the present case however, we have 
to test the coverage employing Monte Carlo experi
ments. 

Power on the other hand is a concept which is de
fined in the context of hypothesis testing: the power 
of a hypothesis testing method is the probability that 
it will reject the null hypothesis, so, given that the 
alternative hypothesis s i r u e is true. This concept is 
rather difficult to generalize to confidence intervals 
since the alternative hypothesis is not uniquely de
fined. We use the following definition for power: 

Struct 

<0 (4) 
n^Acc(so) 

and view power as a function of StrUe- ACC(SQ) here 
denotes the acceptance region of so- This seems 
an intuitively appealing measure: given the choice 
between different methods, the method which has 
minimally overlapping acceptance regions should be 
taken. 

Typical examples of the coverage as a function 
of signal hypothesis are shown in Figure 1. It can 
be seen that the introduction of a continuous vari
able leads to a considerable smoothing of the cov
erage plot. A modest amount of over-coverage is 
introduced, similarly for the MBT method and the 
FHC2 method. For high Gaussian uncertainties in 
efficiency (~ 40%) the over-coverage of MBT is less 
pronounced than that for FHC2 . More detailed cov
erage studies of the FHC2 method have been pre
sented by Tegenfeldt & Conrad5. The power of the 
FHC2 and MBT methods is compared in Figure 1 
for 40% uncertainties in the efficiency. FHC2 has 
higher power for hypotheses rather far away from 
the null hypotheses. This is true only for large sig
nals and comparably large uncertainties (and for not 
too large differences between so a n d strue), otherwise 
differences are negligible. 

4. Combining Different Experiments 

Combination of experiments can be divided into two 
cases. The simpler case is the one of completely un
correlated experiments: in this case the pdf used in 
the construction is given by a multiplication of the 
pdfs of the single experiments: 

q(n\s) = Y{ q(rii\s,€i) (5) 
i = l 

http://cern.ch/tegen/statistics.html
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'true 
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"true 
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Fig. 1. Examples for the coverage and power of the discussed methods. Uppermost figure: coverage of the FHC 2 method 
assuming 5% and 40% Gaussian uncertainties in efficiency. Middle figure: the coverage for the FHC 2 method compared to the 
MBT method for 40% Gaussian efficiency uncertainties. Lowest figure: the power of the two methods compared for 40% Gaussian 
uncertainties in efficiency. 



96 

If correlations between uncertainties in nuisance pa

rameters have to be considered, multivariate pdfs 

have t o be employed: 

q(n\s,e) = / ... / J ] P(n\s,^)P(^ ] \ dej 

(6) 

We illustrate the effect of combining different exper

iments with the example of the CDF limit on the 

branching ratio for B° —> /x+/x~, see Table 1. In 

this case, two CDF data sets are combined with an 

uncor rec ted uncertainty in the background expecta

t ion and an uncertainty in the efficiency which can be 

factorized into a correlated and uncorrelated par t 8 . 

Bernhard et al.8 presented a fully Bayesian combina

tion, which is included in the table for comparison. 

The limit obtained using the F H C 2 method is slightly 

smaller than the fully Bayesian upper limit. 

The CDF single and combined limits on 
fi+fi- calculated by FHC2. CDF1 and CDF2 

Table 1 
B°s 

denote the two different data sets used for single lim
its. The quoted uncertainties are for the single ex
periments, the efficiency uncertainties change to 13.1 
and 11.1% for the uncorrelated part if experiments 
are combined. The number in the parentheses is the 
result of the purely Bayesian calculation7. 

background uncertainty [%] 

eff. uncertainty [%] 

corr. efF. uncertainty. [%] 

95% CL [10~7] 

95% combined [10 - 7] 

CDF 1 CDF 2 

14.8 19.7 

10.4 11.3 

15.5 

2.5 4.3 

1.7 (2.0) 

5. D i s c u s s i o n &: Conc lus ion 

There are two main caveats when interpreting the 

presented results: first of all, the methods (more or 

less implicitly) assume a flat prior probability for the 

t rue nuisance parameter. Thus, conclusions on the 

coverage and power are true only for tha t prior. This 

assumption seems particularly harmful in the case 

of combined experiments, a case for which we did 

not calculate the coverage. Results presented at this 

conference by Heinrich9 indicate tha t the assump

tion of a flat prior for nuisance parameters in each 

channel leads to significant under-coverage for fully 

Bayesian confidence intervals. Heinrich also shows 

tha t this behavior can be remedied with an appro

priate choice of prior (in his part icular example: 1/e). 

For the methods presented here this might imply t h a t 

there is under-coverage in the case of several com

bined experiments. A second caveat is t ha t we test 

the coverage only for 90% confidence level. At this 

conference Cranmer 1 0 presented results t h a t indicate 

under-coverage for very high confidence levels (> 5 

a) if uncertainties in t h e background are t reated in 

the Bayesian way. Tests of coverage for high confi

dence levels and combined experiments are currently 

under way. 

Wi th these caveats in mind, we conclude t ha t 

the Bayesian t rea tment of nuisance parameters in

troduces a moderate amount of over-coverage. The 

MBT method has less over-coverage for t h e case with 

large Gaussian uncertainties in the signal efficien

cies. We also compared the power of t h e two sug

gested methods. For large uncertainties and large 

true signals, the F H C 2 method has higher power for 

hypotheses relatively far away from the null hypoth

esis. 
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We study the frequentist properties of confidence intervals computed by the method known to statisticians as the 
profile likelihood. It is seen that the coverage of these intervals is surprisingly good over a wide range of possible 
parameter values for important classes of problems, in particular whenever there are additional nuisance parameters 
with statistical or systematic errors. Programs are available for calculating these intervals. 

We consider the problem of setting confidence 
limits for the signal rate in the presence of back
ground which is estimated from data sidebands or 
Monte Carlo. Specifically we study the situation 
where the signal can be modeled by a Poisson dis
tribution, a background with either a Poisson or a 
Gaussian distribution and an efficiency with either 
a Binomial or a Gaussian distribution. We estab
lish the domain of validity, enabling comparison with 
other methods. We show that this method, together 
with some minor adjustments, has very good cover
age even in cases when the parameters lie close to or 
at the physical boundaries. 

Although this paper, and the corresponding rou
tines, only deal with the specific problems outlined 
above, the results show that the method of profile 
likelihood is a viable technique for dealing with nui
sance parameters, and it should be useful for other 
problems as well. 

A stand-alone FORTRAN routine for calcu
lating the limits discussed here is available at 
http://charma.uprm.edu/~rolke/publications.htm. 
It is also available as TRolke which is part of the 
ROOT system. Both routines also allow the cal
culation of the experimental sensitivity. Finally, 
at least for the cases where there are more events 

in the signal region than are expected from back
ground, one could use MINUIT/MINOS to carry 
out the calculations, though in this case care needs 
to be taken to set the limits on the parameters 
correctly. 

It is to be hoped that the profile likelihood 
method yields good results also in situations other 
than the ones discussed here. Because it is already 
available as part of MINUIT, its implementation for 
different problems should be quite straightforward. 
It needs to be emphasized, though, that the pro
file likelihood method can not be assumed to yield 
good results in all cases and that it might require 
some adjustments to the general method as we have 
done here. It is therefore strongly recommended that 
a thorough check of its performance be done when
ever it is applied to a new problem. In the case of 
setting limits, this means a coverage study as de
scribed above, at least for the range of likely param
eter values. 

This work has previously been published in 
"Limits and Confidence Intervals in the Presence 
of Nuisance Parameters", W.A. Rolke, A.M. Lopez 
and J.Conrad, Nuclear Instruments and Methods A, 
551/2-3, 2005, pp. 493-503. It is available for down
loading at http://xxx.lanl.gov/abs/physics/0403059. 
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THE BAYESIAN APPROACH TO SETTING LIMITS: W H A T TO AVOID 
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The task of setting limits in situations involving nuisance parameters with uncertainties has proved a difficult one 
in practice. CDF's Statistics Committee has recently recommended a Bayesian approach to setting limits. While 
investigating the performance of that approach, one rather restricted scenario was found to result in poor coverage 
behavior. The scenario is described, the resulting poor coverage behavior is illustrated, and solutions are proposed. 

1. Introduction 

The CDF Statistics Committee's web site1 gives 
recommendations for setting limits2 that promote 
a Bayesian method and advocate checking the 
method's frequentist coverage properties. Following 
those recommendations, we show in Sec. 2 that fiat 
priors are adequate for the Bayesian method of set
ting upper limits in the single channel Poisson case. 
We consider multiple channels in Sec. 3, and find that 
flat subsidiary priors lead to poor coverage behavior 
in certain cases. Coverage is restored in Sec. 4 by 
replacing the flat subsidiary priors. 

2. First Test Case: Single Channel 

We observe n events from a process with Pois
son rate es + b, where s is cross section, e is 
acceptancexluminosity, b is background, and obtain 
the Bayesian posterior for s. Nuisance parameters e 
and b are determined via Poisson subsidiary measure
ments, whose posteriors serve as the priors for e and 
b in the main measurement. The specified Bayesian 
priors are 

• flat prior for s > 0 
• flat (subsidiary) prior for e > 0 
• flat (subsidiary) prior for b > 0 

We obtain the joint posterior p(s, e,b\n), and 
marginalize over e and b. An upper limit for s is 
obtained by integrating the posterior p(s\n) with re
spect to s from s = 0 to the value of s that yields 
credibility level p. 

The subsidiary measurement for e observes m 
events with Poisson rate ne, where K is a known con
stant. The subsidiary posterior, 

P ( e | m ) = m\ ( 1 ) 

becomes the prior for e in the main measurement. 
The mean of p(e\m) is (m+ 1)/K. (This is a calibra
tion measurement of e.) 

The subsidiary measurement for b observes r 
events with Poisson rate uib, where w is a known 
constant. The subsidiary posterior, 

p(b\r) = - i — i j (2) 

becomes the prior for b in the main measurement. 
The mean of p(b\r) is (r + l)/w. (This is a sideband 
determination of b.) 

The posterior p{s\n) is calculated analytically, 
given in Refs. 3, 4. Figure 1 shows a typical posterior 
p.d.f. 

«=5 e=1.0±0.1 b=3 

0 5 20 

Fig. 1. An example p(s\n) with b fixed (re = 100 and m = 99). 

We employ an objective Bayesian methodology. 
The priors, which are improper (and not related to 
personal belief), are evaluated using a frequentist 
technique. See Ref. 5 for a discussion of this ap
proach. 

The frequentist coverage probability C is used 
as a diagnostic to check the performance of the limit 
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setting scheme. For upper limits on s, C is the prob
ability that, for fixed (true) values of the parameter 
of interest s and nuisance parameters e and b, the 
resulting upper limit will be larger than Strue- The 
coverage is calculated by summing over all possible 
outcomes of the main and subsidiary measurements. 

For this single channel case, C > /3 for every 
combination of strUe, etrue, and 6true tested, with this 
choice of priors, even when uncertainties on e and b 
are very large (illustrated in Figs. 2-4). Although 
opinions differ on whether any undercoverage is ac
ceptable, large undercoverage is considered bad. The 
single channel test case passes this test. 

1.00 

C 

P=0.9 e,rue=l K=100 b=3 

«"-«i>~«iti~«tfr~*~,tfft^,^Wf 

0.90, 
0 

^trui 
20 

Fig. 2. Typical single channel case. Coverage for 90% credi
bility level upper limits, acceptance uncertainty = 10%, back
ground uncertainty = zero. 

I 00ft=0-9 £true=l K=25 btme=3 C0=16 

0.90, 
0 

Stn 
20 

Fig. 3. Typical single channel case. Coverage for 90% credi
bility level upper limits, acceptance uncertainty = 20%, back
ground uncertainty = 15%. This example is divided into JV 
channels in Sec. 3. 

I Q()fe?-9 £true=1 K=4 fotrue=3 (i3=4 

0.90, 
0 

•Stn 
20 

Fig. 4. Extreme single channel case. Coverage for 90% credi
bility level upper limits, acceptance uncertainty = 50%, back
ground uncertainty = 29%. Larger e and b uncertainties lead 
to slightly larger C here than in Fig. 3. 

3. Second Test Case: Multiple Channels 

Given N channels, and rife observed events in the feth 
channel, k = 1,2,..., N, the Poisson probability of 
obtaining the observed result is 

N 

n 
fe=i 

e-(sek+bk)(sek + bkjnk 

nk 

where s the cross section, and ek and bk are the ac
ceptance and expected background for the &th chan
nel, respectively. One multiplies by the prior for s, 
the 2N nuisance priors, and marginalizes. 

Reference 6 describes a MC integration approach 
to calculating the Bayesian posterior for s, given a 
prior flat in s, but no restrictions on the nuisance 
priors. 

For our test case, we specify that the data of the 
first test case (both the main measurement and the 
subsidiary measurements) are divided into N sam
ples that are treated independently, to derive an up
per limit on the common parameter s. Flat priors 
are specified for the 2N subsidiary measurements, 
leading to 2N subsidiary posteriors that become the 
nuisance priors for the main measurement. The prior 
for s remains flat. 

For this Poisson example, we find that, when the 
size of the initial subsidiary data sets is not large, 
dividing into N independent channels drives C pro
gressively further down as N increases. A typical 
example is shown in Figs. 5-7. The coverage of the 
2-channel case (Fig. 5) is close to the nominal 90%; 
it drops to ~87% in the 3-channel case (Fig. 6), and 
down to ~84% in the 4-channel case (Fig. 7). One 
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can drive the coverage arbitrarily low by simply in
creasing N. 

1 A n (3=0.9 etrue=0.5 0.5 K=25 25 fotrue=1.5 1.5 co=16 16 
1 .UU , 

1.00 

c 

§=0.9 etrue=0.25... K = 2 5 . . . Atrue=0.75... co=l( 

C 

0.90„ 
^true 

20 

0.90, 
0 

Stn 
20 

Fig. 5. 2 independent channels. Coverage for 90% credibil
ity level upper limits, acceptance uncertainty = 29%/channel, 
background uncertainty = 20%/channel. 

l Q0P=0-9 e,rue=l/3... K = 2 5 . . . fctrue=l 1 1 co=16 16 16 

C 

0.90„ 
^true 

20 

Fig. 7. 4 independent channels. Coverage for 90% credibil
ity level upper limits, acceptance uncertainty = 40%/channel, 
Background uncertainty = 29%/channel. 

since an overestimate of e or b leads to an under
estimate for s. In our test case, using a flat prior 
is "conservative" for s, but "anticonservative" for e 
and 6. When N = 1, they roughly balance. When 
N > 2, the subsidiary priors dominate. 

For our test case, a "perfect" solution is avail
able: Use 1/gfc and 1/6*, priors7, 8 for the subsidiary 
measurements. This is illustrated in Fig. 8 for the 
4-channel case. 

1.00 
P=0.9 etrue=0.25... K=25.. . btnje=0.75... co=16. 

Fig. 6. 3 independent channels. Coverage for 90% credibil
ity level upper limits, acceptance uncertainty = 34%/channel, 
background uncertainty = 25%/channel. 

c 

4. The Solution 

The fault is in our choice of priors for the Poisson 
subsidiary measurements. For example, a fiat prior 
for each channel's efc subsidiary measurement yields 
an e ^ - 1 prior for the total acceptance, creating a 
large bias when N > 2. (Same bias problem for b.) 

With respect to upper limits, a flat prior for s 
leads to a bias producing overcoverage in simple Pois
son cases. This bias in the subsidiary measurements 
leads to undercoverage in the main measurement, 

0.90, 0 
Stn 

20 

Fig. 8. 4 independent channels. Coverage for 90% credibil
ity level upper limits, acceptance uncertainty = 40%/channel, 
background uncertainty = 29%/channel. Use of 1/ejt and l/b*, 
subsidiary priors here restores coverage, compared with Fig. 7. 

With this choice of subsidiary priors, the nui-
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sance priors for the fcth channel become 

p(ek\mk) = 
«fc(«fc€fc) mk-\p~Kkck 

(mfc - 1)! 

and 

P(h\rk) 
LJk(^>kh) rk-~Lp-ukbk 

(n -1)! 
These have the same gamma distribution form as 

Eqs. 1 and 2, bu t are shifted downward. The means 

are rrik/Kk and r/t/wfe, respectively, eliminating the 

bias: 

(mfc/Kfc) = etrue,fe (ffc/Wfe) = fetrue,fc 

Tha t is, the mean of the nuisance prior is now an 

unbiased estimator of the true value of the nuisance 

parameter . 

5. C o n c l u s i o n s 

• The multichannel case involves a multidimensional 

nuisance prior. In hindsight, this should have led 

us to distrust a prior flat in multiple dimensions, 

since this is well known9 to lead to problems. 

• Our example is not entirely realistic, as it specifies 

unusually low precision calibrations. Also, corre

lations among the efc and bk, which would effec

tively reduce the dimensionality, are absent. But 

extreme cases are useful for testing the method. 

• Marginalization over nuisance parameters using 

Bayesian priors is a common feature of many meth

ods for setting limits (e.g. Ref. 10). Using unbiased 

priors will help avoid pathologies. 

• The 1/efc and 1/6^ subsidiary priors are matched 

to this Poisson case. Other cases will require dif

ferent solutions. 

• In the objective Bayesian approach, the choice of 

subsidiary priors is just as important as the choice 

of prior for the parameter of interest in the main 

measurement. Switching to 1/ejt and l/6fe sub

sidiary priors to remove the bias in the nuisance 

priors raised the coverage significantly, and may 

make use of a l/\/s prior in the main measure

ment more appealing. (Reference 3 shows t ha t a 

1/s prior yields an unnormalizable posterior in the 

presence of background, while a 1/y/s prior com

bined with a flat subsidiary prior for e leads to a 

slight undercoverage in the single channel case.) 

Coverage calculations are useful in revealing poor 

choices of prior in the objective Bayesian approach. 

A c k n o w l e d g m e n t s 

I would like to thank the members of the C D F Statis

tics Committee for helpful discussions, and the or

ganizers of PHYSTAT05 for arranging an excellent 

conference. 

References 

1. CDF Statistics Committee, www-cdf.fnal.gov/ 
p h y s i c s / s t a t i s t i c s / . 

2. CDF Statistics Committee, C. Blocker et al., Recom
mendations Concerning Limits, CDF Internal Note 
7739, Fermilab (2005), 
www-cdf.fn.al.gov/publications/cdf7739_liinit_ 
recommendation_2.pdf. 

3. J. Heinrich et al, Interval estimation in the 
presence of nuisance parameters. 1. Bayesian 
approach., CDF Internal Note 7117, Fermi
lab (2004), physics/0409129, www-cdf.fnal.gov/ 
publicat ions/cdf7117_bayesianl imlt .pdf . 

4. J. Heinrich, User Guide to Bayesian-Limit Soft
ware Package, CDF Internal Note 7232, Fer
milab (2004), www-cdf.fnal .gov/publicat ions/ 
cdf 7232_blimitguide.pdf. 

5. M. J. Bayarri and J. O. Berger, Statistical Science 
19, p. 58 (2004), p ro jec teuc l id .o rg /Diens t /UI / 
1.O/Summarize/euclid.ss/1089808273, www.isds. 
duke.edu/~berger /papers / in terplay .h tml . 

6. J. Heinrich, Bayesian limit software: multi-channel 
with correlated backgrounds and efficiencies, CDF 
Internal Note 7587, Fermilab (2005), www- cdf. f n a l . 
gov/publications/cdf7587_genlimit .pdf. 

7. H. Jeffreys, Theory of Probability, 3rd edn. (Oxford 
University Press, 1961), ch. 3, p. 120. 

8. R. D. Cousins, these proceedings. 
9. D. R. Cox, these proceedings. 

10. J. Conrad and F. Tegenfeldt, these proceedings. 

http://www-cdf.fnal.gov/
http://www-cdf.fn.al.gov/publications/cdf7739_liinit_
http://www-cdf.fnal.gov/
http://www-cdf.fnal.gov/publications/
http://projecteuclid.org/Dienst/UI/
http://www.isds
http://duke.edu/~berger/papers/interplay.html


STATISTICALLY DUAL DISTRIBUTIONS IN STATISTICAL 
INFERENCE 

S. I. BITYUKOV and V. V. SMIRNOVA 

Institute for high energy physics, 142281 Protvino, Russia 
E-mail: Serguei.Bitioukov@cern.ch, vera@cub.ihep.su 

N. V. KRASNIKOV 

Institute for nuclear research RAS, 117312 Moscow, Russia 
E-mail: krasniko@ms2.inr.ac.ru 

V. A. TAPERECHKINA 

Moscow State Academy of Instrument Engineering and Computer Science, Moscow, Russia 

The estimation of a parameter of a model by the measurement of a random variable whose distribution depends on 
this parameter is one of the main tasks of statistics. In this paper the notion of the statistically dual distributions is 
introduced. An approach, based on the properties of the statistically dual distributions, to resolve the given task is 
proposed. 

1. Introduction 

As shown in refs. *• 2, in the framework of frequen-
tist approach we can construct the probability dis
tribution of the possible magnitudes of the Poisson 
distribution parameter to give the observed number 
of events h in a Poisson stream of events. This dis
tribution, which can be called a confidence density 
function of a parameter, is described by a Gamma-
distribution with the probability density function 
which looks like a Poisson distribution of probabili
ties. This is the reason for naming this pair of dis
tributions as statistically dual distributions. Also, 
the interrelation between the Poisson and Gamma 
distributions was used in these papers to reconstruct 
the confidence density of the Poisson distribution pa
rameter by a unique way and, correspondingly, to 
construct any confidence interval for the parameter. 

According to B. Efron 3 the confidence density 
is the fiducial 4 distribution of the parameter. This 
distribution is considered as a genuine a posteriori 
density for the parameter without prior assumptions. 

The same relation 5~~7, which allows one to re
construct the confidence density of a parameter in 
a unique way, exists between several pairs of sta
tistically self-dual distributions (normal and normal, 
Laplace and Laplace and, as is shown below, Cauchy 
and Cauchy). 

Note that the posterior distribution of the pa
rameter also is used for the definition of conjugate 

families in the Bayesian approach. The interrelation 
between the statistically dual distributions and con
jugate families is discussed in ref. 7. 

2. Statistically dual distributions 

Let us define statistically dual distributions. 
Definition 1: Let (p(x, 8) be a function of two 

variables. If the same function can be considered 
both as a family of the probability density functions 
(pdf) f(x\6) of the random variable x with parameter 
6 and as another family of pdf's f(9\x) of the random 
variable 6 with parameter x (i.e. 4>{x,9) = f(x\8) = 
f(8\x)), then this pair of families of distributions can 
be named as statistically dual distributions. 

The statistical duality of Poisson and Gamma-
distributions follows from simple discourse. 

Let us consider the Gamma-distribution with 
probability density 

9x{p'a) = T^W' (1) 

Changing the s tandard designations of the 

Gamma-distr ibution —, a and x for a, n + 1 and 

/j,, we get the following formula for the probability 

density of Gamma-distr ibut ion 

gn(a,») = f ^ - e - a ^ n , (2) 
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where a is a scale parameter and n+1 > 0 is a shape 
parameter. Suppose a = 1, then the formula of the 
probability density of Gamma-distribution r i i n + i is 

5„(A*) = ^ j -e -" , M > 0 , n > - l . (3) 

It is a common supposition that the probability 
of observing n events in the experiment is described 
by a Poisson distribution with parameter (/,, i.e. 

f(n\n) 
n! 

e"M, ^ > 0 , n > 0 . (4) 

One can see that if the parameter and variable in 
Eq. (3) and Eq. (4) are exchanged, in other respects 
the formulae are identical. As a result these distribu
tions (Gamma and Poisson) are statistically dual 
distributions. These distributions are connected 
by the identity * (see, also, this identity in another 
form in refs. 8 ' 9 ' 10) 

oo . ^ n 

] T / ( i | M i ) + / flft(/i)dM + X;/(*lM2) = l. (5) 
i=n+l ^Vi i=o 

i.e. 

i = n + l 

for any real /xi > 0 and ^2 > 0 and non-negative 
integer h. 

The definition of the confidence interval (^1,^2) 
for the Poisson distribution parameter /x using 1' 5 

Another example of statistically dual distribu
tion is the Cauchy distribution with unknown pa
rameter 9 and known parameter b. Here we also can 
exchange the parameter 9 and variable x while con
serving the same formula of the probability density. 

The probability density of the Cauchy distribu
tion is 

C{x\9) = (7) 
TT(62 + (x ~ 6>)2)' 

The probability density of its statistically dual dis

tribution is also the Cauchy distribution: 

C{9\x) = (8) 
7r(62 + ( : r - 6 0 2 ) ' 

In such a way the Cauchy distribution can be named 
as statistically self-dual distribution. An iden
tity like Eq. (5) also holds, 

/•OO r6l r-X 

I C(x\0x)dx+ C(9\x)d9+ C(x\92)dx=l, 
Jx J Q\ «/—00 

(9) 
where x is the observed value of random variable x 
and C{9\x) is the confidence density. 

3. Statistical duality and estimation of 
the parameter of a distribution 

It is easy to show that the reconstruction of the con
fidence density is unique if Eqs. (5) or (9) holds 5—7. 

As a result we have the Transform (both for 
Poisson-Gamma pair of families of distributions and 
for statistically self-dual distributions) 

/•OO n$2 PX 

P{Hi<V<V2\n)=P(i<h\n1)-P{i<n\Li2), / f(x\9l)dx + f(9\x)d9 + f{x\e2)dx = 
(c\ Jx J9i J-00 

where P(i < n|/x) = ^ —-—, allows one to show 
i=o *' 

that a Gamma-distribution Titi+a is the probabil
ity distribution of different values of /x parameter of 
Poisson distribution on condition that the observed 
value of the number of events is equal to h, i.e. 
IYi+ft is the confidence density of the parameter \x. 
This definition is consistent with the identity Eq. (5). 
Note, if we suppose in Eq. (5) that m = fj,2 we have 
a conservation of probability. The right-hand side 
of Eq. (6) determines the frequentist sense of this 
definition. 

(10) 
between the space of the realizations x of random 
variable x and the space of the possible values of the 
parameter 0, i.e. 

f{e\i) = rcdx, (11) 

where Tcd is the operator of the Transform. Here 
9\ and #2 are the bounds of the confidence interval 
for location parameter 9. As is shown above in the 
case of Gamma- and Poisson distributions, the two 
integrals are replaced by sums and —00 is replaced 
byO. 
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The Transform Eq. (10) allows one to use statis
tical inferences about the random variable for esti
mation of an unknown parameter. 

The simplest examples of this are given by sev
eral infinitely divisible distributions. 

Definition 2: A distribution F is infinitely di
visible if for each n there exist a distribution func
tion Fn such that F is the n-fold convolution of Fn. 

As known the Poisson, Gamma-, normal and 
Cauchy distributions are infinitely divisible distribu
tions. The sum of independent and identically dis
tributed random variables, which obey one of the 
above families of distributions, also obeys the distri
bution from the same family. Applying the Trans
form Eq. (10) to this sum allows one to reconstruct 
the confidence density of the parameter in the case 
of several observation of the same random variable. 
It means that we construct the relation 

f(n9\x1+x2+- • •+£„) = Tcd(x1+x2 + - • •+£„), (12) 

where Tcd is the operator of the Transform Eq. (10), 
the set x\, x2,..., xn are the observed values. There
after we reconstruct the confidence density of 9, i.e. 
f(0\xi,x2,-..,xn). 

The method for construction of the confidence 
density of the mean value of several random vari
ables which obey the Poisson distribution (sample 
with size > 1) and the way how to take into account 
the statistical uncertainty is shown in refs. 2. 

The use of the confidence density also can be for
mulated in Bayesian framework. Let us consider, as 
an example, the Cauchy distribution. We suppose 
in our approach that the parameter 9 is not a ran
dom value and before the measurement we do not 
prefer any values of this parameter, i.e. possible val
ues of the parameter have equal probability and a 
prior distribution of 9 is TT(8) = const. Suppose we 
observe x i and update our prior via the Transform 
Eq. (10) to obtain C{9\x\), which is the pdf of the 
Cauchy distribution. This becomes our new prior be
fore observing X2- It is easy to show that in the case 
of observing x2 the reconstructed confidence density 
C(29\x\ + £2) also is the pdf of the Cauchy distri
bution and, correspondingly, C(9\x\,X2) is our next 
new prior. By induction this argument extends to 
sequences of any number of observations, i.e. we use 
the iterative procedure 

C{9\x1,x2,...,xn-1,xn) = 

Tpd(C(9\xi,x2, •••, z„_i) , £„), (13) 

where Tpd is the operator of the Transform between 
a priori density and a posteriori density of the pa
rameter. 

4. Conclusions 

We have formulated the notion of statistically dual 
distributions in the framework of probabilistic (and, 
in this sense, frequentist) approach. 

We have shown that the statistical duality al
lows one to connect the estimation of the parameter 
with the measurement of the random variable of the 
distribution due to the Transform Eq. (10). 

All considered cases of statistically dual distri
butions belong to conjugate families (which are de
fined in the framework of Bayesian approach). For 
example n , the distributions conjugate to Poisson 
distributions were built by a Monte Carlo method 
(i.e. in the frequentist approach). Hypothesis test
ing confirms that these distributions are Gamma-
distributions as expected in this case. 

This means that statistical duality gives a clear 
frequentist sense to the confidence density of the pa
rameter and allows one to construct confidence in
tervals in an easy way. 
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We propose a program which allows one to estimate significance, confidence intervals and limits, taking into account 
systematics and statistical uncertainties of variables described by Poisson distributions. The given program can be 
used for combining searches. The motivation of the direct probabilities calculations is determined by two reasons. 
Firstly, the tail of a Poisson distribution is heavier than that of a normal distribution. In the case of small probabilities 
the Gaussian approximation gives the wrong values of estimators. Secondly, the estimators which are constructed on 
the basis of the likelihood ratio often have poor statistical properties. 

1. Introduction 

In searches for new particles in high energy physics 
the tasks of the comparison of the possibilities of dif
ferent planned experiments and of the setting and 
combining of the results of running experiments are 
vitally important. The determination of the signif
icance of the results and the setting of confidence 
limits are related to these tasks. 

There are many reviews about using of the no
tion of a significance in various areas of physics (for 
example, 1 _ 3 ) . According to ref. 4 "Common prac
tice is to express the significance of an enhancement 
by quoting the number of standard deviations". In 
the case of asymmetric distributions this statement 
is not clear. Then the significance can be quoted in 
terms of equivalent standard deviations of the nor
mal distribution. 

The definition chosen for significance depends on 
the goal. The simplest significance S\ = —i= (or Zsb 

Vb 
in the notation of refs. 2) takes into account only the 
fluctuation of the background with the assumption 
that the background obeys the normal distribution 
with mean and variance equals to b. The Si cor
responds the case when we observed s + b events. 
The significance 52 = — 7 = takes into account the 

Vs + b 

fluctuation of the normal distributed random value 
signal+background with the expected background b. 
The significance Si 2 = V$ + b — Vb 5 takes into ac
count the fluctuations of the signal and of the back
ground with the assumption that the signal and the 
background obey the normal distribution with mean 
and variance which equal s for signal and b for back
ground. 

In the case of the asymmetrically distributed sig
nal and background these significances can be used 
only as approximations 6 . Thus for Poisson distri
butions, the significance Scp

 7 was proposed as the 
analogy of Si. The significance Scp is determined by 
direct calculations of probabilities. 

The correct choice of the confidence interval for 
the parameter of the distribution under study also is 
a hot problem of data analysis. This matter was dis
cussed in many Workshops and Conferences 8 . There 
are many methods of constructing intervals: credible, 
tolerant, fiducial. Physicists 9 formulated the prob
lem of the specialist in data analysis "the only re
maining problem: make a choice . . . chosen method 
should be as simple as possible, but not wrong". 
In many cases the reconstruction of the confidence 
density 10 of the parameter (by direct calculation of 
probabilities) is the solution of this problem. The 
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knowledge of the confidence density allows to deter
mine any confidence intervals (central interval, short
est interval, interval with optimal coverage and so 
on) by the unique way and to take into account the 
systematics and statistical uncertainties. 

2. Significance 

The significance Scp is the probability from Poisson 
distribution with mean b to observe b + s or more 
events, converted to the equivalent number of sigmas 
of a Gaussian distribution, i.e. 

1 f°° - £ , a ^ bie~b 

p — —== I e 2 dx where a = > —-—. 

(1) 
The program ScP allows one to calculate the signifi
cance defined in a such way. The background uncer
tainties are incorporated into the program. The pro
gram takes into account two types of uncertainties: 
the systematic uncertainty with statistical properties 
(the normal distribution with mean which equals 0 
and the variance - of) and the uncertainty without 
statistical properties 5 (theoretical uncertainty with 
bias in the background b + 8b and conserving the 
scale, i.e. s + b without bias). Also, the program 
allows one to combine several observed values of sig
nificance. The values of Scp by definition have the 
irregular behavior for non-integer s + b. The pro
gram has the option which allows the smoothing of 
the result by the using of "the continuous Poisson 
distribution" n . 

3. Conndence Limits 

The knowledge of the confidence density allows one 
to determine any confidence limits for the parame
ter of the distribution. The program Limsb is the 
realization of this idea. The Gamma-distributions 
r^ft+i is statistically dual to the Poisson distribution 
in the case of h observed events from the Poisson flow 
of events 10' u . It means that the direct calculations 
of the probability density of the Gamma-distribution 
ri.ft+i are the reconstruction of the confidence den
sity of the unknown parameter of the Poisson dis
tribution. The confidence intervals produced by the 
program Limsb coincide with the corresponding con
fidence intervals calculated in the framework of the 
Bayesian approach with a uniform prior. 

4. Conclusions 

All significances described in Sec. 1 relate to the 
measurement of a random variable. However, sig
nificance Scp can be generalized for the determina
tion of the significance of the estimated parameter by 
the use of confidence densities. We plan to include 
the presented approach for determination of the sig
nificance and confidence limits into the ROOT sys
tem 12. The programs ScP and Limsb can be found 
in Web page http://cmsdoc.cern.ch/~bityukov. 
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The question of how to perform an unbiased optimisation of the final event selection (via cuts on the event observables) 
in a counting experiment is discussed. We wish to balance the desire to make a discovery, i.e. see a highly significant 
excess if a real signal is present, with the desire to have a high sensitivity, i.e. set the best upper limit if no real signal 
is present. In an astrophysical setting, the search usually involves a signal hypothesis where the model parameters 
denning the shape of the source flux spectrum are assumed known and we seek to find a confidence interval on the 
normalisation constant of the model. To optimise for best sensitivity in this type of analysis, the model rejection 
potential method1 has been widely used in the high energy neutrino detector field (AMANDA, IceCube, ANTARES). 
In this approach, the final event selection region in the observable space is chosen so that the average upper limit 
on the source flux normalisation at a given confidence level 1 — a is minimised. To assess the discovery potential, 
we suggest an analogous approach, where we choose to minimise the source flux normalisation, which if truly non
zero, would lead to the rejection of the background only hypothesis at a required significance level ex with some high 
probability (= power = 1 - /3 ) . For example, we might decide to optimise the event selection region by minimising 
the source strength needed to see a highly significant discovery (e.g. 5 sigma) with a high probability (e.g. 90%). 
By comparing the resulting fluxes as a function of the event selection region, we can examine the trade off between 
retaining a region based on sensitivity to that based on discovery, and make a choice that balances these desires. 
This discovery/sensitivity optimisation has been used in the AMANDA search for neutrinos in coincidence with the 
gamma-ray burst GRB030329 observed in 2003 by the HETE-II satellite2. 

1. Introduction 

In this paper we define ways of assessing and optimis
ing the limit setting ("model rejection potential"1) 
and discovery ("model discovery potential"3) capa
bilities of an experiment. We examine the tradeoff 
between choosing cuts based on either criteria us
ing an example of an astrophysical search for a point 
source of neutrinos or gamma rays and compare the 
results to those following a traditional approach to 
this problem4. 

2. Optimising for best limit setting 
sensitivity 

The model rejection potential technique1 (MRP) has 
seen widespread use in the high-energy neutrino tele
scope community as a method of unbiased sensitiv
ity (best limit) optimisation of an analysis. This 
method optimises the event cuts to minimise the ex
pected upper limit5 from the experiment, assuming 
there is no true signal present. For a Poisson count
ing experiment, suppose one chose a selection cut, 
leaving an expected background rate of fib and an 
expected number of signal events /is. We are search
ing for a signal we believe to be described by a flux 
model A $(£"), where E is the true energy of the 

incident particle. The shape of the signal flux as a 
function of the particle energy E is $(E), and the 
total rate of expected events is given by the constant 
A. We will assume the shape of &(E) and place a 
limit on the scale factor A. After averaging the flux 
over the detector response e(E) we find the num
ber of expected signal events ns = f A$(E)e(E)dE. 
The data are then unblinded and n0bs events are 
seen. The limit on the normalisation factor A is 
then Aum = A /J.(n0bs,Hb)/^s, where n(nobs,nb) 
is the event upper limit (e.g. the upper bound
ary of a Feldman-Cousins5 interval). The quantity 
fj,(n0bs,^b)/^s is called the model rejection factor 
(MRF), as it shows how much the initial assumed 
normalisation is rescaled to reach the limit Aum. 
Note also that the final Aum is independent of the 
initially assumed A. The optimal choice of cut would 
be one that minimises the MRF and thus minimises 
Aum, however the MRF depends on the experimen
tally observed number of events n0bs- Prior to un
winding the data, we can replace n(n0bs,Hb) with the 
averagea upper limit5 expected from an ensemble of 
events with no real signal, to assess the sensitivity of 

a The average upper limit is however not independent of the 
metric used for the parameter and should in future be replaced 
by the median upper limit6. 
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the experiment in an unbiased fashion. The cut that 
minimises the average MRF is the one that would 
produce the lowest average limit over an ensemble of 
repeated experiments. 

3. Optimising for discovery 

How is a discovery defined? If we are using frequen-
tist statistics, then we usually say we have "discov
ered" a real effect when the probability of the obser
vation, or a more extreme one, under the assumption 
of the background only hypothesis is very smallb. In 
our counting experiment from section 2, we calculate 
the p-value, P(> nobs | fib) and if it is very small, e.g. 
P(> n0bs | fib) < & where a = 5.73 x 10~7 (area in 
the two-sided 5<r Gaussian tails), we might claim to 
have seen something interesting. For a given a, we 
can calculate a critical number of events, ncrit, where 
P ( > ncrit | fib) < cc. This is the minimum number 
of events needed to be observed in order that a p-
value less than alpha is reported. If a real signal 
of strength fis is also present, then the probability 
(statistical power 1-/3) that we would observe ncrit 

or more events is 1 — /J = P(> ncrit | m, 4- fis)- We 
define the "least detectable signal" fHds as the value 
of fis where this equality is satisfied for a given value 
of 1 - /?. This strength of signal would produce an 
observation n0bs leading to a p-value less than a in 
a fraction of 1 — /3 experiments. As an example, take 
fib = 3.0, require a = 5.73 x 10~7 and 1 - (3 = 0.9. 
Then ncrit = 16 (P(> 16 | 3.0) = 1.24 x 10"7), 
Mds + Mb = 2 1-3 (P(> 16 | 21.3) = 0.90), leading 
to fiids = 18.3. We can calculate fiids as a function 
of fib for various values of a and 1 — (3. The results 
are shown in figure 1. Now, if we replace the average 
upper limit in the model rejection factor calculation 
with the least detectable signal, we can then min
imise the "model discovery potential" of the exper
iment. Choosing the cut corresponding to the min
imum MDP minimises the true signal flux required 
to obtain an observation at significance level a with 

bOf course, a small probability of the observation, or a more 
extreme one, under one hypothesis does not imply the truth 
of some alternative explanation (one needs to know priors 
in order to get to posterior probabilities of the hypotheses). 
This commonly used definition of discovery is not consis
tent with Bayesian decision making and this should always 
be kept in mind when intepreting results that use frequentist 
statistics. 

0 2 4 6 8 10 12 14 16 18 20 

Fig. 1. Least detectable signal and average upper limits for 
various confidence levels, a. The LDS values are all calculated 
for power (1 - /?) 90%. 

probability 1— (3. As for the model rejection potential 
case, the minimised true signal flux is independent of 
any original assumption of the signal scale. This dis
covery/sensitivity optimisation has been used in the 
AMANDA search for neutrinos in coincidence with 
the gamma-ray burst GRB030329 observed in 2003 
by the HETE-II satellite2. Upon completion of this 
work, we learned that Giovanni Punzi had defined 
the same "discovery" criterion3. During refereeing 
of this paper, it was suggested that the model dis
covery optimisation does in fact also optimise a limit 
setting criterion7. The least detectable signal, fiids, 
for power 1 — (3 is also the standard Neyman upper 
limit with confidence level 1 — f3 that would be re
ported if exactly ncrit — 1 events were observed, the 
largest number of events for which a discovery can
not be claimed (i.e. largest number of events where 
the p-value is still greater than a). This turns out to 
be the same conclusion drawn by Punzi. Thus op
timising the MRP using the Neyman upper limit at 
1 — f3 c.l. that would be reported when just failing 
to reject the background-only hypothesis would lead 
to the same optimal cut as the MDP method with 
power 1 — (3. 
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4. Model discovery/rejection potential 
optimisation for an astrophysical 
point source search 

As an example, we examine the optimisation of a 
search for events from a point-like source in the sky. 
This could correspond to a search for gamma rays 
or neutrinos from an astrophysical object such as an 
active galaxy or gamma-ray burst. The observing 
telescope reconstructs the arrival directions of the 
events to an accuracy characterised by the detector 
point spread function. This describes the probabil
ity of observing a reconstructed event at an angu
lar position away from the true direction. Typically, 
this function is a two-dimensional Gaussian, peaked 
along the correct direction, and uniform in azimuth. 
We wish to find the optimal angular cut value us
ing the criteria developed in sections 2 and 3. For 
a given angular separation, the solid angle in an an-
nulus at an angle ip from the source location and 
with width dip goes as sinV> dtp. Figure 2 shows the 
solid angle weighted functions, weighted with sinip 
to account for the increasing solid angle, with the 
azimuthal dependence projected out. Next, we in-

signal p.s.f. 
weighted with sin(\|/) 

background 
weighted with sin(v|/) 

Fig. 2. Reconstruction point spread function weighted with 
solid angle. >P is in degrees. 

tegrate these functions from zero up to ip and show 
the result in figure 3. The level of background has 
been chosen such that there is a total of one event 
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Fig. 3. Integrated signal and background functions, 90% c.l. 
average upper limit and 5cr, 90% power least detectable signal 
as a function of angular cut in a point source search. 

inside a source bin of size one degree, correspond
ing to the width of the signal point spread function. 
Also shown are the 5<r, 90% power least detectable 
signal and 90% c.l. average upper limit as a function 
of ip. The choice of best cut for MDP and MRP 
will come from minimising the ratios of least de
tectable signal and average upper limit divided by 
the integrated signal, as shown by the curves in fig
ure 4. Here, we see the positions of the optimal cut 
for each case shown - the dotted line indicates the 
MDP minimum, the dashed line the MRP minimum 
and the solid line shows the minimum of square-
root background divided by signal, a commonly used 
measure of optimisation. The y/b/s minimum corre
sponds to a cut at an angle of 1.58<r, a well known 
result for point source searches with Gaussian point 
spread functions4. In figure 5 we compare the opti
mal MRP and MDP values of the angular cut as a 
function of the background, where the background is 
again taken as the total expected events in an angu
lar window of size equal to the signal point spread 
function resolution (a = 1°). The discrete nature of 
the Poisson distribution accounts for the discontinu
ities seen in the MDP curve. For larger background 
values both the MRP and MDP cut approach the 
optimum (ip = 1.58<r) based on the vb/s minimi
sation. Next we examine the balance between opti-
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Fig. 4. MDF, MRF and v/fc/s optimisation curves. Fig. 5. Optimal MDF and MRF cut value as a function of 
total background contained within 1° of the source location. 

misation for limit setting and discovery. We do this 

by looking at what would happen to the limit set

t ing potential if we optimised for discovery, and vice 

versa, i.e. what the discovery potential would be if 

we had optimised for limit setting. For the limit case, 

we calculate the M R F evaluated at the best M D F 

cut (MRFbestMDFcut) and take the ratio to the M R F 

evaluated at the best M R F cut (MRFbestMRFcut)-

For the discovery case, we calculate the M D F evalu

ated at the best M R F cut (MDFbestMRFcut) and take 

the ratio to the MDF evaluated at the best M D F cut 

(MDFbestMDFcut)- For the smallest background rate 

considered, we find tha t both the M R F and M D F are 

about 40% higher when one uses the optimised cut 

from the other method. As the background increases, 

these differences steadily decrease to about 5% at the 

highest background considered here. For the higher 

backgrounds (fib ~ 1 or greater), neither optimisa

tion criterion (MDF, MRF) is thus badly affected by 

choosing the cut based on the optimisation of the 

other criterion (MRF, MDF) . Of course, only one 

case (point spread function resolution a = 1°) has 

been examined in detail here. Further work would 

include examining the balance between M R P and 

M D P for different resolutions, statistical powers and 

significances. The relation to the similar method of 

Punzi 3 should also be investigated further. 
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Because the emphasis of the LHC is on 5<7 discoveries and the LHC environment induces high systematic errors, many 
of the common statistical procedures used in High Energy Physics are not adequate. I review the basic ingredients 
of LHC searches, the sources of systematics, and the performance of several methods. Finally, I indicate the methods 
that seem most promising for the LHC and areas that are in need of further study. 

1. In t roduct ion 

The Large Hadron Collider (LHC) at CERN and the 
two multipurpose detectors, ATLAS and CMS, have 
been built in order to discover the Higgs boson, if 
it exists, and explore the theoretical landscape be
yond the Standard Model.1, 2 The LHC will collide 
protons with unprecedented center-of-mass energy 
(y/s = 14 TeV) and luminosity (1034 cm- 2 s _ 1 ) ; the 
ATLAS and CMS detectors will record these interac
tions with ~ 108 individual electronic readouts per 
event. Because the emphasis of the physics program 
is on discovery and the experimental environment is 
so complex, the LHC poses new challenges to our 
statistical methods - challenges we must meet with 
the same vigor that led to the theoretical and exper
imental advancements of the last decade. 

In the remainder of this Section, I introduce the 
physics goals of the LHC and most pertinent factors 
that complicate data analysis. I also review the for
mal link and the practical differences between confi
dence intervals and hypothesis testing. 

In Sec. 2, the primary ingredients to new particle 
searches are discussed. Practical and toy examples 
are presented in Sec. 3, which will be used to assess 
the most common methods in Sec. 4. The remainder 
of this paper is devoted to discussion on the most 
promising methods for the LHC. 

1.1. Physics Goals of the LHC 

Currently, our best experimentally justified model 
for fundamental particles and their interactions is 
the standard model. In short, the physics goals of 
the LHC come in two types: those that improve our 
understanding of the standard model, and those that 
go beyond it. 

The only particle of the standard model that has 
not been observed is the Higgs boson, which is key for 
the standard model's description of the electroweak 
interactions. The mass of the Higgs boson, m # , is 
a free parameter in the standard model, but there 
exist direct experimental lower bounds and more in
direct upper bounds. Once m # is fixed, the standard 
model is a completely predictive theory. There are 
numerous particle-level Monte Carlo generators that 
can be interfaced with simulations of the detectors 
to predict the rate and distribution of all experimen
tal observables. Because of this predictive power, 
searches for the Higgs boson are highly tuned and of
ten employ multivariate discrimination methods like 
neural networks, boosted decision trees, support vec
tor machines, and genetic programming.3-5 

While the Higgs boson is key to understand
ing the electroweak interactions, it introduces a new 
problem: the hierarchy problem. There are several 
proposed solutions to the problem, one of which is 
to introduce a new symmetry, called supersymmetry 
(SUSY), between bosons and fermions. In practice, 
the minimal supersymmetric extension to the stan
dard model (MSSM), with its 105 parameters, is not 
so much a theory as a theoretical framework. 

They key difference between SUSY and Higgs 
searches is that, in most cases, discovering SUSY 
will not be the difficult part. Searches for SUSY 
often rely on robust signatures that will show a devi
ation from the standard model for most regions of the 
SUSY parameter space. It will be much more chal
lenging to demonstrate that the deviation from the 
standard model is SUSY and to measure the funda
mental parameters of the theory6 In order to restrict 
the scope of these proceedings, I shall focus on LHC 
Higgs searches, where the issues of hypothesis testing 
are more relevant. 
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1.2. Challenges of LHC Environment 

The challenges of the LHC environment are mani
fold. The first and most obvious challenge is due 
to the enormous rate of uninteresting background 
events from QCD processes. The total interaction 
rate for the LHC is of order 109 interactions per sec
ond; the rate of Higgs production is about ten orders 
of magnitude smaller. Thus, to understand the back
ground of a Higgs search, one must understand the 
extreme tails of the QCD processes. 

Compounding the difficulties due to the extreme 
rate is the complexity of the detectors. The full-
fledged simulation of the detectors is extremely com
putationally intensive, with samples of 107 events 
taking about a month to produce with computing 
resources distributed around the globe. This compu
tational limitation constrains the problems that can 
been addressed with Monte Carlo techniques. 

Theoretical uncertainties also contribute to the 
challenge. The background to many searches re
quires calculations at, or just beyond, the state-of-
the-art in particle physics. The most common situa
tion requires a final state with several well-separated 
high transverse momentum objects (e.g. tijj —> 
blvbjjjj), in which the regions of physical interest 
are not reliably described by leading-order pertur-
bative calculations (due to infra-red and collinear di
vergences) , are too complex for the requisite next-to-
next-to-leading order calculations, and are not prop
erly described by the parton-shower models alone. 
Enormous effort has gone into improving the sit
uation with next-to-leading order calculations and 
matrix-element-parton-shower matching.7' 8 While 
these new tools are a vast improvement, the resid
ual uncertainties are still often dominant. 

Uncertainties from non-perturbative effects are 
also important. For some processes, the relevant 
regions of the parton distribution functions are not 
well-measured (and probably will not be in the first 
few years of LHC running), which lead to uncertain
ties in rate as well as the shape of distributions. Fur
thermore, the various underlying-event and multiple-
interaction models used to describe data from pre
vious colliders show large deviations when extrap
olated to the LHC.9 This soft physics has a large 
impact on the performance of observables such as 
missing transverse energy. 

In order to augment the simulated data chain, 
most searches introduce auxiliary measurements to 

estimate their backgrounds from the data itself. In 
some cases, the background estimation is a simple 
sideband, but in others the link between the auxiliary 
measurement to the quantity of interest is based on 
simulation. This hybrid approach is of particular 
importance at the LHC. 

While many of the issues discussed above are not 
unique to the LHC, they are often more severe. At 
LEP, it was possible to generate Monte Carlo sam
ples of larger size than the collected data, QCD back
grounds were more tame, and most searches were not 
systematics-limited. The Tevatron has much more in 
common with the LHC; however, at this point dis
covery is less likely, and most of the emphasis is on 
measurements and limit setting. 

1.3. Confidence Intervals & Hypothesis 
Tests 

The last several conferences in the vein of PhyS-
tat2005 have concentrated heavily on confidence in
tervals. In particular, 95% confidence intervals for 
some physics parameter in an experiment that typi
cally has few events. More recently, there has been 
a large effort in understanding how to include sys
tematic errors and nuisance parameters into these 
calculations. 

LHC searches, in contrast, are primarily inter
ested in 5er discovery. The 5<r discovery criterion is 
somewhat vague, but usually interpreted in a fre-
quentist sense as a hypothesis test with a rate of 
Type I error a = 2.85 • 1(T7. 

There is a formal link between confidence inter
vals and hypothesis testing: frequentist confidence 
intervals from the Neyman construction are formally 
inverted hypothesis tests. It is this equivalence that 
links the Neyman-Pearson lemma* to the ordering 
rule used in the unified method of Feldman and 
Cousins.10 Furthermore, this equivalence will be very 
useful in translating our understanding of confidence 
intervals to the searches at the LHC. 

In some cases, this formal link can be mislead
ing. In particular, there is not always a continuous 
parameter that links the fully specified null hypoth-

*The lemma states that, for a simple hypothesis test of size 
a between a null Ho and an alternate H±, the most powerful 
critical region in the observable x is given by a contour of the 
likelihood ratio L(X\HQ)/L(X\HI). 
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esis HQ to the fully specified alternate Hi in any 
physically interesting or justified way. Furthermore, 
the performance of a method for a 95% confidence 
interval and a 5a discovery can be quite different. 

2. The Ingredients of an LHC Search 

In order to assess the statistical methods that are 
available and develop new ones suited for the LHC, it 
is necessary to be familiar with the basic ingredients 
of the search. In this section, the basic ingredients, 
terminology, and nomenclature are established. 

aS (no K-factors) A H -> ZZ(*' -^ 41 

.§> ATLAS ; H -» w w n -> lvlv 
J2 10 2 - » qqH -» qq WW*' 
§ A qqH -^ qq XX 

Total significance 

100 120 140 160 180 200 
m H (GeV/c

2) 

Fig. 1. Expected significance as a function of Higgs mass for 
the Atlas detector with 30 f b _ 1 of data. 

2.1. Multiple Channels & Processes 

Almost all new particle searches do not observe the 
particle directly, but through the signatures left by 
the decay products of the particle. For instance, the 
Higgs boson will decay long before it interacts with 
the detector, but its decay products will be detected. 
In many cases, the particle can be produced and de
cay in many different configurations, each of which is 
called a search channel (see Tab. 1). There may be 
multiple signal and background processes which con
tribute to each channel. For example, in if —> 77, 
the signal could come from any Higgs production 
mechanism and the background from either contin
uum 77 production or QCD backgrounds where jets 
fake photons. Each of these processes have their own 
rates, distributions for observables, and uncertain

ties. Furthermore, the uncertainties between pro
cesses may be correlated. 

In general the theoretical model for a new parti
cle has some free parameters. In the case of the stan
dard model Higgs, only the mass ran is unknown. 
For SUSY scenarios, the Higgs model is parametrized 
by two parameters: TUA and tan/3. Typically, the un
known variables are scanned and a hypothesis test is 
performed for each value of these parameters. The 
results from each of the search channels can be com
bined to enhance the power of the search, but one 
must take care of correlations among channels and 
ensure consistency. 

The fact that one scans over the parameters and 
performs many hypothesis tests increases the chance 
that one finds at least one large fluctuation from the 
null-hypothesis. Some approaches incorporate the 
number of trials explicitly,11 some approaches only 
focus on the most interesting fluctuation,12 and some 
see this heightened rate of Type I error as the moti
vation for the stringent 5<r requirement.13 

2.2. Discriminating Variables & Test 
Statistics 

Typically, new particles are known to decay with cer
tain characteristics that distinguish the signal events 
from those produced by background processes. Much 
of the work of a search is to identify those observ
ables and to construct new discriminating variables 
(generically denoted as m). Examples include an
gles between particles, invariant masses, and parti
cle identification criterion. Discriminating variables 
are used in two different ways: to define a signal-like 
region and to weight events. 

The usage of discriminating variables is related 
to the test statistic: the real-valued quantity used 
to summarize the experiment. The test statistic is 
thought of as being ordered such that either large or 
small values indicate growing disagreement with the 
null hypothesis. 

A simple "cut analysis" consists of defining a 
signal-like region bounded by upper- and lower-
values of these discriminating variables and counting 
events in that region. In that case, the test statistic 
is simply the number of events observed in the signal 
like region. One expects b background events and s 
signal events, so the experimental sensitivity is op
timized by adjusting the cut values. More sophisti-
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cated techniques use multivariate algorithms, such as 
neural networks, to define more complicated signal
like regions, but the test statistic remains unchanged. 
In these number counting analyses, the likelihood of 
observing n events is simply given by the Poisson 
model. 

There are extensions to this number-counting 
technique. In particular, if one knows the dis
tribution of the discriminating variable m for 
the background-only (null) hypothesis, fb{m), and 
the signal-plus-background (alternate) hypothesis, 
fs+b(m) = [sfs(m) + bfb(m)]/(s + b), then there is 
a more powerful test statistic than simply counting 
events. This is intuitive, a well measured 'golden 
event' is often more convincing than a few messy 
ones. Following the Neyman-Pearson lemma, the 
most powerful test statistic is 

L(m|JTi) 
Q 

L(m\H0) 
(1) 

nf0""" Poisimlsi + bi) UT '''-<"'*>+»;'»("**> 

P* chart Wi 

\nQ = -stot+ J2 J2ln(1 + 

(n* denotes events in ith channel) or equivalently 

Sifsjmjj) 

bifb(mij) 
J 

(2) 
The test statistic in Eq. 2 was used by the LEP 

Higgs Working Group (LHWG) in their final results 
on the search for the Standard Model Higgs.14 

At this point, there are two loose ends: how does 
one determine the distribution of the discriminating 
variables f{m), and how does one go from Eq. 2 to 
the distribution of q for HQ and H\! These are the 
topics of the next subsections. 

2.3. Parametric & Non-Parametric 
Methods 

In some cases, the distribution of a discriminat
ing variable f(m) can be parametrized and this 
parametrization can be justified either by physics ar
guments or by goodness-of-fit. However, there are 
many cases in which f(m) has a complicated shape 
not easily parametrized. For instance, Fig. 2 shows 
the distribution of a neural network output for signal 
events. In that case kernel estimation techniques can 
be used to estimate f{m) in a non-parametric way 
from a sample of events {rrii}.15 The technique that 

0.94 0.95 0.96 0.97 0.98 0.99 1 
Neural Network Output 

Fig. 2. The distribution of a neural network output for signal 
events. The histogram is shown together with / i ( m ) . 

was used by the LHWG14 was based on an adaptive 
kernel estimation given by: 

A M - E S ^ C m — rrii 
h{rrii) 

where 

h(m,i 
1/5 

a 
-n 

-1/5 

(3) 

(4) 
fo(mi) 

a is the standard deviation of {xi}, K(x) is some ker
nel function (usually the normal distribution), and 
fo(x) is the fixed kernel estimate given by the same 
equation but with a fixed h(rrii) 

1/5 

h* = i -VS (5) 

The solid line in Fig. 2 shows that the method 
(with modified-boundary kernels) works very well for 
shapes with complicated structure at many scales. 

2.4. Numerical Evaluation of 
Significance 

Given, fs{m) and fb{m) the distribution of q(x) can 
be constructed. For the background-only hypothe
sis, fb{m) provides the probability of corresponding 
values of q needed to define the single-event pdf p\J 

Pi,b(lo) = / fbirn) 5{q{rn) - qQ)dm (6) 

For multiple events, the distribution of the log-
likelihood ratio must be obtained from repeated con
volutions of the single event distribution. This con
volution can either be performed implicitly with ap
proximate Monte Carlo techniques,16 or analytically 

^The integral is necessary because the map q(m) : m —> q may 
be many-to-one. 
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with a Fourier transform technique.17 In the Fourier 
domain, denoted with a bar, the distribution of the 
log-likelihood for n events is 

K = Pi" (7) 

Thus the expected log-likelihood distribution for 
background with Poisson fluctuations in the number 
of events takes the form 

~ e-bbn 

n=0 

which in the Fourier domain is simply 

Mq) = eb^^~1l (9) 

For the signal-plus-background hypothesis we expect 
s events from the pi<s distribution and b events from 
the pi,b distribution, which leads to the expression 
for ps+b in the Fourier domain* 

ps+b{q) = eMPi,6(9)- i]+s[Pi ,3(?)-i] . ( 1 0 ) 

This equation generalizes, in a somewhat obvious 
way, to include many processes and channels. 

Numerically these computations are carried out 
with the Fast Fourier Transform (FFT). The FFT 
is performed on a finite and discrete array, beyond 
which the function is considered to be periodic. Thus 
the range of the pi distributions must be sufficiently 
large to hold the resulting pb and ps+b distributions. 
If they are not, the "spill over" beyond the maxi
mum log-likelihood ratio qmax will "wrap around" 
leading to unphysical p distributions. Because the 
range of pb is much larger than p\tb it requires a 
very large number of samples to describe both distri
butions simultaneously. The implementation of this 
method requires some approximate asymptotic tech
niques that describe the scaling from pij, to pb-18 

The nature of the FFT results in a number of 
round-off errors and limits the numerical precision 
to about 10 - 1 6 - which limits the method to signif
icance levels below about 8er. Extrapolation tech
niques and arbitrary precision calculations can over
come these difficulties,18 but such small p-values are 
of little practical interest. 

t Perhaps it is worth noting that p(q) is a complex valued 
function of the Fourier conjugate variable of q. Thus nu
merically the exponentiation in Eq. 9 requires Euler's formula 
e*e = cos 0 + i s in#. 

From the log-likelihood distribution of the two 
hypotheses we can calculate a number of useful quan
tities. Given some experiment with an observed log-
likelihood ratio, q*, we can calculate the background-
only confidence level, CLb : 

/ • O C 

CLb(q*) = / Pb(q')dq' (11) 

In the absence of an observation we can calculate the 
expected CLb given the signal-plus-background hy
pothesis is true. To do this we first must find the me
dian of the signal-plus-background distribution qs+b-
From these we can calculate the expected CLb by 
using Eq. 11 evaluated at q* = qs+b-

Finally, we can convert the expected background 
confidence level into an expected Gaussian signifi
cance, Za, by finding the value of Z which satisfies 

ci6(5<+6). - - - W S ) . (12) 

where eri(Z) = (2/n) JQ exp(—y2)dy is a function 
readily available in most numerical libraries. For Z > 
1.5, the relationship can be approximated19 as 

Z « Vu-\nu with u = -21n(CL6\/27r) (13) 

2.5. Systematic Errors, Nuisance 
Parameters & Auxiliary 
Measurements 

Sections 2.3 and 2.4 represent the state of the art for 
HEP in frequentist hypothesis testing in the absence 
of uncertainties on rates and shapes of distributions. 
In practice, the true rate of background is not known 
exactly, and the shapes of distributions are sensitive 
to experimental quantities, such as calibration coef
ficients and particle identification efficiencies (which 
are also not known exactly). What one would call a 
systematic error in HEP, usually corresponds to what 
a statistician would refer to as a nuisance parameter. 

Dealing with nuisance parameters in searches is 
not a new problem, but perhaps it has never been as 
essential as it is for the LHC. In these proceedings, 
Cousins reviews the different approaches to nuisance 
parameters in HEP and the professional statistical 
literature.20 Also of interest is the classification of 
systematic errors provided by Sinervo.21 In Sec. 4, a 
few techniques for incorporating nuisance parameters 
are reviewed. 

From an experimental point of view, the miss
ing ingredient is some set of auxiliary measurements 
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Fig. 3. The signal-like region and sideband for H —> 7 7 in 
which T is correlated to 6 via the model parameter a. 

that will constrain the value of the nuisance param
eters. The most common example would be a side
band measurement to fix the background rate, or 
some control sample used to assess particle identi
fication efficiency. Previously, I used the variable 
M to denote this auxiliary measurement22; while 
Linnemann,19 Cousins,20 and Rolke, Lopez, and 
Conrad23, 24 used y. Additionally, one needs to know 
the likelihood function that provides the connection 
between the nuisance parameter(s) and the auxiliary 
measurements. 

The most common choices for the likelihood of 
the auxiliary measurement are L(y\b) = Pois(y\rb) 
and L{y\b) = G(y\rb, ay), where r is a constant that 
specifies the ratio of the number of events one expects 
in the sideband region to the number expected in the 
signal-like region. § 

A constant r is appropriate when one simply 
counts the number of events y in an "off-source" mea
surement. In a more typical case, one uses the distri
bution of some other variable, call it m, to estimate 
the number of background events inside a range of 
m (see Fig. 3). In special cases the ratio r is inde
pendent of the model parameters. However, in many 
cases (e.g. /(TO) oc e~am), the ratio r depends on the 
model parameters. Moreover, sometimes the side
band is contaminated with signal events, thus the 
background and signal estimates can be correlated. 
These complications are not a problem as long as 
they are incorporated into the likelihood. 

The number of nuisance parameters and aux
iliary measurements can grow quite large. For in
stance, the standard practice at BaBar is to form 
very large likelihood functions that incorporate ev
erything from the parameters of the unitarity tri
angle to branching fractions and detector response. 
These likelihoods are typically factorized into multi
ple pieces, which are studied independently at first 
and later combined to assess correlations. The fac
torization of the likelihood and the number of nui
sance parameters included impact the difficulty of 
implementing the various scenarios considered below. 

3. Practical and Toy Examples 

In this Section, a few practical and toy examples are 
introduced. The toy examples are meant to provide 
simple scenarios where results for different methods 
can be easily obtained in order to expedite their 
comparison. The practical examples are meant to 
exclude methods that provide nice solutions to the 
toy examples, but do not generalize to the realistic 
situation. 

3.1. The Canonical Example 

Consider a number-counting experiment that mea
sures x events in the signal-like region and y events 
in some sideband. For a given background rate b in 
the signal-like region, say one can expect rb events 
in the sideband. Additionally, let the rate of signal 
events in the signal-like regions - the parameter of in
terest - be denoted \x. The corresponding likelihood 
function is 

Lp(x, y\fj., b) = Pois(x\fi + b) • Pois(y\rb). (14) 

This is the same case that was considered in 
Refs. 20> 22"24 for x,y = 0(10) and a = 5%. For 
LHC searches, we will be more interested in x,y = 
0(100) and a = 2.85 • 10~7. Furthermore, the aux
iliary measurement will rarely be a pure number 
counting sideband measurement, but instead the re
sult of some fit. So let us also consider the likelihood 
function 

§Note that Linnemann19 used a = 1 /T instead, but in this 
paper a is reserved for the rate of Type I error. 

LG(x, y\fi, b) = Pois(x\fj, + b) • G{y\rb, Vrb). (15) 

As a concrete example in the remaining sections, 
let us consider the case b = 100 and r = 1. Opera
tionally, one would measure y and then find the value 

(y) necessary for discovery. In the language of 
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confidence intervals, xcrit(y) is the value of x nec
essary for the 100(1 — a)% confidence interval in /x 
to exclude /io = 0. In Sec. 4 we check the coverage 
(Type I error or false-discovery rate) for both Lp and 
LG. 

Linnemann reviewed thirteen methods and 
eleven published examples of this scenario.19 Of the 
published examples, only three (the one from his ref
erence 18 and the two from 19) are near the range of 
x,y, and a relevant for LHC searches. Linnemann's 
review asks an equivalent question posed in this pa
per, but in a different way: what is the significance 
(Z in Eq. 12) of a given observation x, y. 

: 
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Fig. 5. Two plausible shapes for the continuum 77 mass spec
trum at the LHC. 

3.2. Standard Model Higgs Searches 

The search for the standard model Higgs boson is 
by no means the only interesting search to be per
formed at the LHC, but it is one of the most studied 
and offers a particularly challenging set of channels 
to combine with a single method. Figure 1 shows 
the expected significance versus the Higgs mass, mn, 
for several channels individually and in combination 
for the ATLAS experiment.25 Two mass points are 
considered in more detail in Tab. 1, including re
sults from Refs.1, 25' 26. Some of these channels will 
most likely use a discriminating variable distribu
tion, / (m) , to improve the sensitivity as described 
in Sec. 2.3. I have indicated the channels that I sus
pect will use this technique. Rough estimates on the 
uncertainty in the background rate have also been 
tabulated, without regard to the classification pro
posed by Sinervo. 
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Fig. 4. The 66 invariant mass spectrum for ttH signal and 
background processes at ATLAS. 

The background uncertainties for the ttH chan
nel have been studied in some detail and separated 
into various sources.26 Figure 4 shows the my, mass 
spectrum for this channel." Clearly, the shape of 
the background-only distribution is quite similar to 
the shape of the signal-plus-background distribution. 
Furthermore, theoretical uncertainties and 6-tagging 
uncertainties affect the shape of the background-only 
spectrum. In this case the incorporation of system
atic error on the background rate most likely pre
cludes the expected significance of this channel from 
ever reaching 5cr. 

Similarly, the H —> 77 channel has uncertainty 
in the shape of the rn7 7 spectrum from background 
processes. One contribution to this uncertainty 
comes from the electromagnetic energy scale of the 
calorimeter (an experimental nuisance parameter), 
while another contribution comes from the theoreti
cal uncertainty in the continuum 77 production. Fig
ure 5 shows two plausible shapes for the m 7 7 spec
trum from "Born" and "Box" predictions. 

4. Review of M e t h o d s 

Based on the practical example of the standard 
model Higgs search at the LHC and the discussion 
in Sec. 2, the list of admissible methods is quite 
short. Of the thirteen methods reviewed by Linne
mann, only five are considered as reasonable or rec
ommended. These can be divided into three classes: 
hybrid Bayesian-frequentist methods, methods based 
on the Likelihood Principle, and frequentist methods 
based on the Neyman construction. 

^It is not clear if this result is in agreement with the equivalent 
CMS result.27 
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Table 1. Number of signal and background events for representative Higgs search channels for two values of 
Higgs mass, run, with 30 f b - 1 of data. A rough uncertainty on the background rate is denoted as Sb/b, without 
reference to the type of systematic uncertainty. The table also indicates if the channels are expected to use a 
weight / ( m ) as in Eq. 2. 

channel 
tiH -> ttbb 

H —* 77 
qqH —• qqrr —• qqlllpT 
qqH —* qqrr —> qqlhlpT 

qqH -> qqWW* -> qqllfir 
qqH -> qqWW* -> qqllfir 

H -* ZZ ->4l 
H -> WW -> ll$T 

s 
42 

357 
17 
16 

28.5 
262.5 

7.6 
337 

b 
219 

11820 
14 
8 

47.4 
89.1 

3.1 
484 

Sb/b 
- 1 0 % 

~ 0.1% 
- 1 0 % 
- 1 0 % 
- 1 0 % 
- 1 0 % 
- 1 % 
- 5 % 

dominant backgrounds 
ttjj, ttbb 

11, 31,33 
Z -> TT, tt 
Z —• TT, tt 

tt,ww 
tt,ww 
ZZ -> 41 

Z -* TT, tt 

use / ( m ) 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
No 
Yes 

mH (GeV) 
120 
120 
120 
120 
120 
170 
170 
170 

4.1. Hybrid Bayesian-Frequentist 
Methods 

The class of methods frequently used in HEP and 
commonly referred to as the Cousins-Highland tech
nique (or secondarily Bayes in statistical literature) 
are based on a Bayesian average of frequentist p-
values as found in the first equation of Ref.28. The 
Bayesian average is over the nuisance parameters and 
weighted by the posterior P{b\y). Thus the p-value 
of the observation (xo, yo) evaluated at /x is given by 

/•CO 

p(x0,yo\fj.) = dbp(x0\n,b)P{b\y0) (16) 
Jo 

(17) 
/>oo 

/ dxP(x\n,y0) 
Jx0 

w h e r e 

, 0 

P{x\n,y0) = 
Jo 

dbP{x\n,b) 
P(yo\b) P(b) 

P(Vo) 
(18) 

The form in Eq. 16, an average over p-values, is simi
lar to the form written in Cousins & Highland's arti
cle; and it is re-written in Eq. 17 to the form that is 
more familiar to those from LEP Higgs searches.16' 1T 

Actually, the dependence on yo and the Bayesian 
prior P(b) shown explicitly in Eq. 18 is often not 
appreciated by those that use this method. 

The specific methods that Linnemann considers 
correspond to different choices of Bayesian priors. 
The most common in HEP is to ignore the prior and 
use a truncated Gaussian for the posterior P(b\yo), 
which Linnemann calls Zjy. For the case in which 
the likelihood L{y\b) is known to be Poisson, Linne-
man prefers to use a flat prior, which gives rise to a 
Gamma-distributed posterior and Linnemann's sec
ond preferred method Zr, which is identical to the 
ratio of Poisson means ZBI and can be written in 

terms of (in) complete beta functions as19 

Pr=PBi = B{l/(l + r),x,y + l)/B{x,y + l). (19) 

The method Linnemann calls Z§> can be seen as an 
approximation of Z/v for large signals and is what 
ATLAS used to assess its physics potential.1 The 
method was not recommended by Linnemann and 
was critically reviewed in Ref.29. 

4nt (V) =y/r + Z y/y/T(l + 1/r) (20) 

4.2. Likelihood Intervals 

As Cousins points out, the professional statistics 
literature seems less concerned with providing cor
rect coverage by construction, in favor of likelihood-
based and Bayesian methods. The likelihood princi
ple states that given a measurement x all inference 
about fi should be based on the likelihood function 
L{x\[i). When nuisance parameters are included, 
things get considerably more complicated. 

The profile likelihood function is an attempt to 
eliminate the nuisance parameters from the likeli
hood function by replacing them with their condi
tional maximum likelihood estimates (denoted, for 

example, b ). The profile likelihood for Lp in Eq. 14 

is given by L(x,y\no,b(na)), with 

x + y- (1 +T)/i0 b(no) = 
2 ( 1 + T) 

(21) 

+ 
y/(x + y-(l + r ) / i0)2 + 4(1 + T)y/i0 

2(1 + T) 

The relevant likelihood ratio is then 

A p ( / J o | z , y ) = 
L(x,y\fj,0,b(fiQ)) 

L(x,y\p,,b) 
(22) 

where p, and b are the unconditional maximum like
lihood estimates. 
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One of the standard results from statistics is that 
the distribution of —2 In A converges to the x2 dis
tribution with k degrees of freedom, where k is the 
number of parameters of interest. In our example 
k = 1, so a 5<r confidence interval is defined by the 
set of // with — 2\n\(n\x,y) < 25. Figure 6 shows 
the graph of — 2ln\(fi\x,y) for y = 100 at the criti
cal value of x for a 5a discovery. 

At PhyStat2003, Nancy Reid presented var
ious adjustments and improvements to the pro
file likelihood which speed asymptotic convergence 
properties.30 Cousins considers these methods in 
more detail from a physicist's perspective.20 

Only recently was it generally appreciated that 
the method of MINUIT 3 1 commonly used in HEP cor
responds to the profile likelihood intervals. The cov
erage of these methods is not guaranteed, but has 
been studied in simple cases.23' 24 These likelihood-
based techniques are quite promising for searches at 
the LHC, but their coverage properties must be as
sessed in the more complicated context of the LHC 
with weighted events and several channels. In par
ticular, the distribution of q in Eq. 10 is often highly 
non-Gaussian. 

4.3. The Neyman Construction with 
Systematics 

Linnemann's preferred method, ZBI, is related to 
the familiar result on the ratio of Poisson means.32 

Unfortunately, the form of Zst is tightly coupled 
to the form of Eq. 14, and can not be directly ap
plied to the more complicated cases described above. 
However, the standard result on the ratio of Pois
son means32 and Cousins' improvement33 are actu
ally special cases of the Neyman construction with 
nuisance parameters (with and without conditioning, 
respectively). 

Of course, the Neyman construction does gener
alize to the more complicated cases discussed above. 
Two particular types of constructions have been pre
sented, both of which are related to the profile like
lihood ratio discussed in Kendall's chapter on likeli
hood ratio tests & test efficiency.34 This relationship 
often leads to confusion with the profile likelihood 
intervals discussed in Sec. 4.2. 

The first method is a full Neyman construction 
over both the parameters of interest and the nui
sance parameters, using the profile likelihood ratio 

Fig. 6. The profile likelihood ratio —2 In A versus the signal 
strength fi for y = 100, r = 1, and x = xcrit(y) = 185. 

as an ordering rule. Using this method, the nuisance 
parameter is "projected out", leaving only an inter
val in the parameters of interest. I presented this 
method at PhyStat2003 in the context of hypothesis 
testing, II and similar work was presented by Punzi 
at this conference.22, 35 This method provides cov
erage by construction, independent of the ordering 
rule used. 

The motivation for using the profile likelihood 
ratio as a test statistic is twofold. First, it is inspired 
by the Neyman-Pearson lemma in the same way as 
the Feldman-Cousins ordering rule. Secondly, it is 
independent of the nuisance parameters; providing 
some hope of obtaining similar tests.** Both Punzi 
and myself found a need to perform some "clipping" 
to the acceptance regions to protect from irrelevant 
values of the nuisance parameters spoiling the pro
jection. For this technique to be broadly applica
ble, some generalization of this clipping procedure is 
needed and the scalability with the number of pa
rameters must be addressed. ^ 

The second method, presented by Feldman at 
the Fermilab workshop in 2000, involves a Neyman 
construction over the parameters of interest, but 

ll In simple hypothesis testing n is not a continuous parameter, 
but only takes on the values no = 0 or fii = s. 
**Similar tests are those in which the critical regions of size a 
are independent of the nuisance parameters. Similar tests do 
not exist in general. 
t tA Monte Carlo sampling of the nuisance parameter space 
could be used to curb the curse of dimensionality.22 
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the nuisance parameters are fixed to the conditional 
maximum likelihood estimate: a method I will call 
the profile construction. The profile construction is 
an approximation of the full construction, that does 
not necessarily cover. To the extent that the use of 
the profile likelihood ratio as a test statistic provides 
similar tests, the profile construction has good cover
age properties. The main motivation for the profile 
construction is that it scales well with the number 
of nuisance parameters and that the "clipping" is 
built in (only one value of the nuisance parameters is 
considered). 

It appears that the CHOOZ experiment actually 
performed both the full construction (called "FC cor
rect syst.") and the profile construction (called "FC 
profile") in order to compare with the strong confi
dence technique.36 

Another perceived problem with the full con
struction is that bad over-coverage can result from 
the projection onto the parameters of interest. It 
should be made very clear that the coverage proba
bility is a function of both the parameters of interest 
and the nuisance parameters. If the data are con
sistent with the null hypothesis for any value of the 
nuisance parameters, then one should probably not 
reject it. This argument is stronger for nuisance pa
rameters directly related to the background hypoth
esis, and less strong for those that account for instru
mentation effects. In fact, there is a family of meth
ods that lie between the full construction and the 
profile construction. Perhaps we should pursue a hy
brid approach in which the construction is formed for 
those parameters directly linked to the background 
hypothesis, the additional nuisance parameters take 
on their profile values, and the final interval is pro
jected onto the parameters of interest. 

5. Results with the Canonical Example 

Consider the case btrue = 100, r = 1 (i.e. 10% sys
tematic uncertainty). For each of the methods we 
find the critical boundary, xcrit(y), which is neces
sary to reject the null hypothesis /io = 0 at 5<r when 
y is measured in the auxiliary measurement. Figure 7 
shows the contours of LQ, from Eq. 15, and the criti
cal boundary for several methods. The far left curve 
shows the simple s/\fb curve neglecting systematics. 
The far right curve shows a critical region with the 
correct coverage. With the exception of the profile 

contours for btrue=100, critical regions for x = 1 

Fig. 7. A comparison of the various methods critical bound
ary xcrit(y) (see text). The concentric ovals represent con
tours of LQ from Eq. 15. 

likelihood, Xp, all of the other methods lie between 
these two curves (ie. all of them under-cover). The 
rate of Type I error for these methods was evaluated 
for LQ and Lp and presented in Table 2. 

The result of the full Neyman construction and 
the profile construction are not presented. The full 
Neyman technique covers by construction, and it was 
previously demonstrated for a similar case (b = 100, 
T = 4) that the profile construction gives similar 
results.22 Furthermore, if the Xp were used as an or
dering rule in the full construction, the critical region 
for b = 100 would be identical to the curve labeled 
"Ap profile" (since Xp actually covers). 

It should be noted that if one knows the likeli
hood is given by LG(X, y\fi, b), then one should use 
the corresponding profile likelihood ratio, XG(X, J/|/X), 

for the hypothesis test. However, knowledge of the 
correct likelihood is not always available (Sinervo's 
Class II systematic), so it is informative to check 
the coverage of tests based on both Xa(x,y\iJ.) and 
Xp(x,y\fi) by generating Monte Carlo according to 
LQ(X, y\n, b) and Lp(x, y|/z, b). In a similar way, this 
decoupling of true likelihood and the assumed likeli
hood (used to find the critical region) can break the 
"guaranteed" coverage of the Neyman construction. 

It is quite significant that the Z^ method under-
covers, since it is so commonly used in HEP. The 
degree to which the method under-covers depends 
on the truncation of the Gaussian posterior P(b\y). 
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Linnemann's table also shows significant under-
coverage (over estimate of the significance Z). In 
order to obtain a critical region with the correct 
coverage, the author modified the region xcrit{y) = 
xcri.t(y) + C a n d found C = 16 provided the correct 
coverage. A discrepancy of 16 events is not trivial! 

Table 2. Rate of Type I error interpreted as equivalent Za 
for various methods designed for a 5<r test. Monte Carlo 
events are generated via either LQ or Lp. The critical x for 
y = 100 is also listed for easy comparison. 

Method 
No Syst 

Zv 
ZN (Sec. 4.1) 
ad hoc 
Zr — ZBi 

profile Xp 
profile AG 

La (Zc) 
3.0 
4.1 
4.2 
4.6 
4.9 
5.0 
4.7 

LP (Za) 
3.1 
4.1 
4.2 
4.7 
5.0 
5.0 
4.7 

xCrit(y= 100) 
150 
171 
178 
188 
185 
185 

~182 

Notice that for large x,y the Bayesian-
frequentist hybrid Z^ approaches Zy, where the the 
critical region is of the form xcru(y) = y/T+ny/y/r. 
Because the boundary is very nearly linear around 
2/o, one can find the value of n that gives the proper 
coverage with a little geometry. In particular, the 
number n needed to get a Za test gives 

Xcritiv) = y/r + Z V l + l / r m 2 V y A (23) 

where 

TO = [ 1 + — = = ] (24) 

The TO2 factor can be seen as a correction to the Z& 
and ZN results. Notice that the correction is larger 
for higher significance tests. As an ad hoc method, I 
experimented with the Z^ method replacing r with 
TTO2 in the posterior P(b\y). The coverage of this ad 
hoc method is better than ZN , but not exact because 
x, y are not sufficiently large. 

6. Conclusions 

I have presented the statistical challenges of searches 
at the LHC and the current state of the statistical 
methods commonly used in HEP. I have attempted 
to accurately portray the complexity of the searches, 
explain their key ingredients, and provide a practi
cal example for future studies. Three classes of meth
ods, which are able to incorporate all the ingredients, 

have been identified: hybrid Bayesian-frequentist 
methods, methods based on the Likelihood Princi
ple, and frequentist methods based on the Neyman 
construction. 

The Bayesian-frequentist hybrid method, Z^, 
shows significant under-coverage in the toy example 
considered when pushed to the 5a regime. While 
Bayesian might not care about coverage, significant 
under-coverage is undesirable in HEP. Further study 
is needed to determine if a more careful choice of 
prior distributions can remedy this situation - es
pecially in more complex situations. The improved 
coverage of Zr may give some guidance. 

The methods based on the likelihood principle 
have gained a great deal of attention from HEP in 
recent years. While the methods appear to do well in 
the toy example, it requires further study to deter
mine their properties in the more realistic situation 
with weighted events. 

Slowly, the HEP community is coming to grips 
with how to incorporate nuisance parameters into the 
Neyman construction. Several ideas for reducing the 
over-coverage induced by projecting out the nuisance 
parameters and reducing the computational burden 
have been presented. A hybrid approach between the 
full construction and the profile construction should 
be investigated in more detail. 

Finally, it seems that the HEP community is 
approaching a point where we appreciate the fun
damental statistical issues, the limitations of some 
methods, and the benefits of others. Clearly, the 
philosophical debate has not ended, but there seems 
to be more emphasis on practical solutions to our 
very challenging problems. 

Acknowledgments 

I would like to thank the many people that helped 
in preparing this review. In particular, Bob Cousins, 
Jim Linnemann, Gary Feldman, Jan Conrad, Fredrik 
Tegenfeldt, Wolfgang Rolke, Nancy Reid, Gary Hill, 
and Stathes Paganis. I would also like to thank 
Louis Lyons for his continuing advice and the invi
tation to speak at such an enjoyable and productive 
conference. 

This manuscript has been authored by 
Brookhaven Science Associates under Contract No. 
DE-AC02-98CH1-886 with the U.S. DOE. The U.S. 
Government retains, and the publisher, by accepting 



123 

the article for publication, acknowledges, a world

wide license to publish or reproduce the published 

form of this manuscript, or allow others to do so, for 

the U.S. Government purposes. 

R e f e r e n c e s 

1. ATLAS Collaboration, Detector and physics perfor
mance technical design report (volume ii) CERN-
LHCC/99-15 (1999). 

2. CMS Collaboration, Technical proposal CERN-
LHCC/94-38 (1994). 

3. H. B. Prosper Advanced Statistical Techniques in 
Particle Physics, Durham, England, 18-22 Mar 2002. 

4. J. H. Friedman, Recent advances in predictive (ma
chine) learning PhyStat2003 (2003). 

5. K. Cranmer and R. S. Bowman, Comp. Phys. Com-
mun. 167, 165 (2005). 

6. I. Hinchliffe, F . E. Paige, M. D. Shapiro, 
J. Soderqvist and W. Yao, Phys. Rev. D55, 5520 
(1997). 

7. S. Frixione and B. R. Webber, The mc@nlo event 
generator hep-ph/0207182, (2002). 

8. A. Schalicke and F. Krauss, JEEP 07, p. 018 (2005). 
9. C. Buttar, D. Clements, I. Dawson and A. Moraes, 

Acta Phys. Polon. B35, p. 433 (2004). 
10. G. J. Feldman and R. D. Cousins, Phys. Rev. D57, 

3873 (1998). 
11. B. Abbott et al., Phys. Rev. D62, p. 092004 (2000). 
12. Y. Gao, L. Lu and X. Wang, Significance calcula

tion and a new analysis method in searching for new 
physics at the LHC physics/0509174, (2005). 

13. G. Feldman, Concluding talk PhyStat05. These pro
ceedings. 

14. LEP Higgs Working Group, Phys. Lett. B565, 61 
(2003). 

15. K. Cranmer, Comput. Phys. Commun. 136, 198 
(2001). 

16. T. Junk, Nucl. Instrum. Meth. A434, 435 (1999). 
17. H. Hu and J. Nielsen, Analytic Confidence Level 

Calculations Using the Likelihood Ratio and Fourier 
Transform CERN 2000-005 physics/9906010, (2000). 

18. K. Cranmer, B. Mellado, W. Quayle and Sau Lan 
Wu, Challenges of Moving the LEP Higgs Statistics 
to the LHC. PhyStat2003 physics/0312050 (2003). 

19. J. Linnemann, Measures of significance in HEP and 
astrophysics. PhyStat2003 physics/0312059, (2003). 

20. R. Cousins, Treatment of nuisance parameters in 
high energy physics, and possible justifications and 
improvements in the statistical literature. PhyS-
tat05. These proceedings. 

21. P. Sinervo, Definition and treatment of systematic 
uncertainties in high energy physics and astrophysics 
PhyStat2003, (2003). 

22. K. Cranmer, Frequentist hypothesis testing 
with background uncertainty. PhyStat2003 physics/ 
0310108 (2003). 

23. W. A. Rolke and A. M. Lopez, Nucl. Instrum. Meth. 
A458, 745 (2001). 

24. W. A. Rolke, A. M. Lopez and J. Conrad, Nucl. In
strum. Meth. A551, 493 (2005). 

25. S. Asai et a l , Eur. Phys. J. C3252, 19 (2004). 
26. J. Cammin and M. Schumacher, The ATLAS discov

ery potential for the channel ttH, (H —• bb) ATLAS 
Note ATL-PHYS-2003-024 (2003). 

27. V. Drollinger, Th. Miiller, and D. Denegri, Search
ing for Higgs Bosons in Association with Top Quark 
Pairs in the H -* bb Decay Mode CMS NOTE-
2001/054 (2001). 

28. R. Cousins and V. Highland, Nucl. Instrum. Meth. 
A320, 331 (1992). 

29. K. Cranmer, P. McNamara, B. Mellado, W. Quayle, 
and Sau Lan Wu, Confidence level calculations for 
H — W+W~ -> l+rrfT for 115 < MH < 130 
GeV using vector boson fusion ATL-PHYS-2003-008 
(2002). 

30. N. Reid, Likelihood inference in the presence of nui
sance parameters PhyStat2003, (2003). 

31. F.James and M. Roos, Comput.Phys.Commun. 10, 
343 (1975). 

32. F. James and M. Roos, Nucl Phys. B 172, 475 
(1980). 

33. R. Cousins, Nucl. Instrum. and Meth. in Phys. Res. 
A 417, 391 (1998). 

34. J. Stuart, A. Ord and S. Arnold, Kendall's Advanced 
Theory of Statistics, Vol 2A (6th Ed.) (Oxford Uni
versity Press, New York, 1994). 

35. G. Punzi, Ordering algorithms and confidence inter
vals in the presence of nuisance parameters PhyS-
tat05 physics/0511202 (2005). 

36. D. Nicolo and G. Signorelli Proceedings of Advanced 
Statistical Techniques in Particle Physics, Durham, 
England, (2002). 





MACHINE LEARNING 





SEPARATING SIGNAL FROM BACKGROUND USING ENSEMBLES OF RULES 

J E R O M E H. F R I E D M A N 

Department of Statistics and Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305 

E-mail: jhf@stanford. edu 

Machine learning has emerged as a important tool for separating signal events from associated background in high 
energy particle physics experiments. This paper describes a new machine learning method based on ensembles of rules. 
Each rule consists of a conjuction of a small number of simple statements ("cuts") concerning the values of individual 
input variables. These rule ensembles produce predictive accuracy comparable to the best methods. However their 
principal advantage lies in interpretation. Because of its simple form, each rule is easy to understand, as is its influence 
on the predictive model. Similarly, the degree of relevance of each of the respective input variables can be assessed. 
Graphical representations are presented that can be used to ascertain the dependence of the model jointly on the 
variables used for prediction. 

1. Introduction 

Predictive learning is a common application in data 
mining, machine learning and pattern recognition. 
The purpose is to predict the unknown value of an 
attribute y of a system under study, using the known 
joint values of other attributes x = (xi,a;2, • • -,xn) 
associated with that system. The prediction takes 
the form y = F(x), where the function F(x) maps 
a set of joint values of the "input" variables x to a 
value y for the "output" variable y. The goal is to 
produce an accurate mapping. Lack of accuracy is 
denned by the prediction "risk" 

R(F) = ExvL(y,FW) (1) 

where L(y, y) represents a loss or cost for predicting a 
value y when the actual value is y, and the expected 
(average) value is over the joint distribution of all 
variables (x, y) for the data to be predicted. 

As an example consider the problem of sepa
rating signal from background events in a high en
ergy particle physics experiment. Here the outcome 
attribute y for each event has one of two values 
y S {signal, back ground}. The attributes x used 
for prediction are the variables measured from each 
event, perhaps augmented with various quantities 
constructed from these measurements. The pre
diction y also realizes one of the two values y € 
{signal, background}. A natural loss function for 
this two-class classification problem would be 

, „. _ J Ls if y = signal & y = background 
\ LB if y = background &; y = signal 

(2) 
with L(y, y) = 0 for correct predictions. Here Ls and 
LB are the respective user specified costs for misclas-

sifying signal and background events for the partic
ular problem. The goal is to construct a mapping 
function F(x) that given (2) minimizes the predic
tion risk (1). 

Although the loss function (2) characterizes the 
actual goal, it cannot be directly used to con
struct classification functions -F^x) with most ma
chine learning procedures. The problem is that with 
this loss criterion the associated risk (1) is not a con
tinuous function of the parameters associated with 
the predicting function F(x) . This excludes the ap
plication of numerical optimization techniques in the 
search for a good solution, requiring instead far more 
costly combinatorial optimization methods. 

In order to apply numerical optimization tech
niques one must approximate the discrete loss (2) 
with a smooth continuous one that produces the 
same solution, at least in the limit of infinite amount 
of data. For finite data sets the hope is that the 
solutions will be similar enough to be useful. One 
scores the signal events with the numerical value 
y = 1 and the background with y = — 1. In this 
case the predicting function F(x) produces a nu
merical score that estimates a monotone function 
of the probability that y = 1 (signal event) given 
the joint values of the predictor variables x; that is, 
F(x) = m(Pi[y = 11 x]) where m(n) is a monotoni-
cally increasing function of its argument n. Classifi
cation is accomplished by thresholding this score at 
an appropriate value t 

F(x) > t => signal , . 
F(x) < t =>• background. 

The value chosen for the threshold t is the one 
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that minimizes the prediction risk (1) using (2) and 
thereby depends on the values chosen for Ls and LB-

Within this framework a variety of smooth surro
gate loss functions have been proposed in the statis
tics and machine learning literatures. A commonly 
used criterion is squared-error loss L(y, y) = (y—y)2. 
In this case the predicting score function approxi
mates F(x) = 2 • Pv[y = 11 x] — 1. Other popular 
choices include L(y, y) = log(l+e_y 'y) used by logis
tic regression in statistics, and L(y, y) = e~y'y used 
by the AdaBoost boosting procedure (Preund and 
Schapire 1996) from machine learning. For these lat
ter two loss functions the numerical score estimates 
the log-odds 

Given a particular smooth surrogate L(y, y), the 
optimal mapping ("target") function F*(x) is de
fined as the one that minimizes the prediction risk 
(1) over all possible functions 

F*(x)=argmin£ x y L( j / ,F (x) ) . (4) 
F(x) 

This optimal predicting function is unknown because 
the distribution of the joint values of the variables 
(x, y), p(x, y), is unknown. 

With the machine learning approach one has 
a data base of previously solved cases T = 
{x.i,yi,Wi}^, called a training sample, containing 
known signal and background events. Here Xj rep
resents the measurement variables associated with 
the iih event. Each signal event is assigned the 
value J/, = 1 and the background events are assigned 
yi — — 1. Each event also has a weight u>, that de
pends on its type; signal events are assigned weights 

Wi = Ls ITS I Ns 

where Ls is the cost for misclassifying a signal event 
(2), ITS is the fraction of signal events in future data 
to be predicted, and Ns is the total number of sig
nal events in the training data T. Each background 
event receives a weight 

Wi = LB 7TB / NB 

where LB , TTB , and NB are the corresponding quan
tities for the background. With this weighting the 
classification threshold (3) that minimizes prediction 
risk is t = 0. 

These weighted training data are presumed to 
represent a random sample drawn from the distri
bution of future data to be predicted. A machine 
learning procedure is then applied to these training 
data to derive an approximation F(x) to F*(x) (4). 
This approximation will be used to score and then 
classify (3) future events given only their measured 
variables x. The extent to which this F(x) so de
rived provides a useful approximation to F*(x) will 
depend on the nature of F*(x), the training sample 
size N, and the particular machine learning proce
dure employed. Different procedures are appropriate 
for different target functions and/or different sample 
sizes. 

2. Ensemble learning 

Learning ensembles have emerged as being among 
the most powerful machine learning methods (see 
Breiman 1996 & 2001, Preund and Schapire 1996, 
Friedman 2001). Their structural model takes the 
form 

M 

F(x) = ao+^2 amfm(x) (5) 
m = l 

where M is the size of the ensemble and each en
semble member ("base learner") / m (x ) is a different 
function of the input variables x derived from the 
training data. Ensemble predictions F(x) are taken 
to be a linear combination of the predictions of each 
of the ensemble members, with {am}(f being the cor
responding parameters specifying the particular lin
ear combination. Ensemble methods differ in choice 
of particular base learners (function class), how they 
are derived from the data, and the prescription for 
obtaining the linear combination parameters {am}^. 

All popular ensemble methods use variants of 
the following generic procedure to generate the base 
learners used in (5). Each base learner is taken to be 
a simple function of the predictor variables charac
terized by a set of parameters p = (pi,P2, • • •)• That 
is, 

/ m (x ) = / ( x ; P m ) (6) 

where p m represents a specific set of joint parameter 
values indexing a specific function / m (x ) from the 
parameterized class / ( x ; p ) . Particular choices for 
such parameterized function classes are discussed be
low. Given a function class the individual members 
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of the ensemble are generated using the prescription 
presented in Algorithm 1. 

Algor i thm 1 

Ensemble generation 

l F 0 ( x ) = 0 
2 For m = 1 to M { 
3 p m = 

argmin P X\ G S m W £(yi , -Fm-i(xi ) + /(Xi;p)) 

4 /m(x) = / ( x ; p m ) 
5 Fm(x) = F m _ i ( x ) + i / - / m ( x ) 

6 } 
7 ensemble = {/m(x)}f 

In line 3, Sm(r]) represents a different subsample 
of size T) < N randomly drawn without replacement 
from the original training data, Sm(rj) C { X J , ^ } ^ . 

As discussed in Friedman and Popescu 2003, smaller 
values of r) encourage increased dispersion (less corre
lation) among the ensemble members {/mMlf* by 
training them on more diverse subsamples. Smaller 
values also reduce computation by a factor of N/r]. 

At each step m, the "memory" function 

771—1 

J F m _ 1 (x )=F 0 (x ) + i/- ^ / * ( x ) 
fc=i 

contains partial information concerning the previ
ously induced ensemble members {/fc(x)}™~ as con
trolled by the value of the "shrinkage" parameter 
0 < v < 1. At one extreme, setting v = 0 causes 
each base learner / m (x ) to be generated without 
reference to those previously induced, whereas the 
other extreme v = 1 maximizes their influence. In
termediate values 0 < v < 1 vary the degree to which 
previously chosen base learners effect the generation 
of each successive one in the sequence. 

Several popular ensemble methods represent spe
cial cases of Algorithm 1. A "bagged" ensemble 
(Breiman 1996) is obtained by using squared-error 
loss, L(y,y) = {y — y)2, and setting v = 0, and 
•q = N/2 or equivalently choosing Sm (line 3) to 
be a bootstrap sample (Friedman and Hall 1999). 
Random forests (Breiman 2001) introduce increased 
ensemble dispersion by additionally randomizing the 
algorithm ("arg min", line 3) used to solve for the 
ensemble members (large decision trees). In both 
cases the coefficients in (5) are set to ao = y, 
{am = l/M}^ so that predictions are a simple av

erage of those of the ensemble members. AdaBoost 
(Freund and Schapire 1996) uses exponential loss, 
L(y, y) = exp(—y • y) for y € { — 1,1}, and is equiva
lent to setting v = 1 and r\ = N in Algorithm 1. Pre
dictions are taken to be the sign of the final memory 
function _FM(x). MART (Friedman 2001) allows a 
variety of loss criteria L(y,y) for arbitrary y, and in 
default mode sets v = 0.1 and rj = N/2. Predictions 
are given by F M ( X ) . 

Friedman and Popescu 2003 experimented with 
a variety of joint (v, rf) values for generating ensem
bles of small decision trees, followed by a regular
ized regression to estimate the linear combination 
parameters {a,j}(f (5). Given a set of base learners 
{/TTIXX)}]1* the parameters of the linear combination 
are obtained by a regularized linear regression on the 
training data {xi,yi,Wi}^ 

N I M \ 
{am}if = arg mm^^WjL lyi,a0+ ^ a m / m ( x i ) 

f , m } » 7 = 1 \ 777 = 1 / 

M 

+ A - ^ | o m | . (7) 
777 = 1 

The first term in (7) measures the prediction risk (1) 
on the training sample, and the second (regulariza-
tion) term penalizes large values for the coefficients 
of the base learners. The influence of this penalty is 
regulated by the value of A > 0. It is well known that 
for this ("lasso") penalty, larger values of A produce 
more overall shrinkage as well as increased dispersion 
among the values {| am tyf1, often with many being 
set to zero (see Tibshirani 1996, Donoho et al. 1995). 
Its value is taken to be that which minimizes an esti
mate of future prediction risk (1) based on a separate 
sample not used in training, or by full (multi-fold) 
cross-validation. Fast algorithms for solving (7) for 
all values of A > 0, using a variety of loss functions 
L(y, y), are presented in Friedman and Popescu 2004. 
Empirical results presented in Friedman and Popescu 
2003 indicated that small but nonzero values of v 
{u ~ 0.01) performed best in this context. Results 
were seen to be fairly insensitive to the value chosen 
for 77 provided it was small (77 < N/2) and grew less 
rapidly than the total sample size N (77 ~ y/N) as TV 
becomes large (N > 500). 

Although in principle most of these procedures 
can be used with other base learners, they have al
most exclusively been applied with decision trees 
(Breiman, et al 1983, Quinlan 1993). This is due 
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to the attractive properties of trees in data mining 
applications, and the existence of fast algorithms for 
inducing decision tree ensembles. 

3. Rule based ensembles 

The base learners considered here are simple rules. 
Let Sj be the set of all possible values for input vari
able Xj, Xj G Sj, and Sjm be a specified subset of 
those values, Sjm C Sj. Then each base learner takes 
the form of a conjunctive rule 

n 

rm(x) = Y[I(XJ € Sjm) (8) 

i= i 

where 1(6) is an indicator of the truth of its logical 
argument; 1(6) = 1 if 6 is true and 1(6) = 0 if 6 is 
false. Each such base learner (8) assumes two values 
r m (x) e {0,1}. It is nonzero when all of the in
put variables realize values that are simultaneously 
within their respective subsets {XJ £ s j m } " . For 
variables that assume orderable values the subsets 
are taken to be contiguous intervals 

Sjm ~ [tjmi'Ujml 

defined by a lower and upper limit, tjm < Xj < Ujm. 
For categorical variables assuming unorderable val
ues (names) the subsets are explicitly enumerated. 
Such rules (8) can be regarded as parameterized 
functions of x (6) where the parameters p m are the 
quantities that define the respective subsets {sjm}. 

Note that for the case in which the subset of val
ues Sjm (real or categorical) appearing in a factor of 
(8) is in fact the entire set Sjm = Sj, the correspond
ing factor can be omitted from the product. In this 
case the rule can be expressed in the simpler form 

*"m(x) = Y[ ^xi G s^)- (9) 

The particular input variables Xj for which Sjm ^ Sj 
are said to be those that "define" the rule r m (x) . As 
an example, the rule 

' 7(18 < age < 34) 
. . __ -/(marital status G {single, 

living together-not married}) 

v -/(householder status = rent) 

is defined by three variables, and a nonzero value in
creases the odds of frequenting bars and night clubs. 
In high energy physics applications each rule (9) can 

be interpreted as an intersection of "cuts" on the 
variables that define the rule. 

3.1. Rule generation 

One way to attempt to generate a rule ensemble is to 
let the base learner / (x ; p) appearing in Algorithm 
1 take the form of a rule (8) and then try to solve 
the optimization problem on line 3 for the respective 
variable subsets {sjm}. Such a (combinatorial) op
timization is generally infeasible for more that a few 
predictor variables although fast approximate algo
rithms might be derived. The approach used here 
is to view a decision tree as defining a collection of 
rules and take advantage of existing fast algorithms 
for producing decision tree ensembles. That is, de
cision trees are used as the base learner / (x ; p) in 
Algorithm 1. Each node (interior and terminal) of 
each resulting tree / m (x ) produces a rule of the form 
(9). 

Fig. 1. A typical decision tree with five terminal nodes as 
described in the text. 

This is illustrated in Fig. 1 which shows a typi
cal decision tree with five terminal nodes that could 
result from using a decision tree algorithm in con
junction with Algorithm 1. Associated with each in
terior node is one of the input variables Xj. For vari
ables that realize orderable values a particular value 
of that variable ("split point") is also associated with 
the node. For variables that assume unorderable cat
egorical values, a specified subset of those values re
places the split point. For the tree displayed in Fig. 1 



131 

nodes 0 and 4 are associated with orderable variable 
X14 with split points u and t respectively, node 1 is 
associated with categorical variable variable £32 with 
subset values {a, b, c}, and node 2 is associated with 
categorical variable x-j with the single value {z}. 

Each edge of the tree connecting a "parent" node 
to one of its two "daughter" nodes represents a fac
tor in (9) contributing to the rules corresponding to 
all descendent nodes of the parent. These factors are 
shown in Fig. 1 for each such edge. The rule cor
responding to any node in the tree is given by the 
product of the factors associated with all of the edges 
on the path from the root to that node. Note that 
there is no rule corresponding to the root node. As 
examples, in Fig. 1 the rules corresponding to nodes 
1, 4, 6, and 7 are respectively: 

r i(x) = I{xi4 < u) 
r4(x) = I(xi4 < u) • 7(2:32 i {a,b,c}) 
r6(x) = I(t < xu < u) • I{x32 <£ {a,b,c}) 
r7(x) = / ( i n > u) • I(x7 = z). 

3.2. Rule fitting 

The collection of all such rules derived from all of the 
trees {/m(x)}i* produced by Algorithm 1 constitute 
the rule ensemble {rfc(x)}f\ The total number of 
rules is 

M 

K = Y, 2(*m - 1) (10) 
m = l 

where tm is the number of terminal nodes for the 
rath tree. The predictive model is 

K 

F{x) =a0 + ^2akrk(x) (11) 

with 
N / K \ 

{ak}o = arg min V ] wt L j / j , a0 4- ^Z a fcnb (x*) 

K 

+A-£>fcl- (12) 
fc=i 

Fast algorithms for solving (12) for all values of 
A > 0, and procedures for choosing a value for A, 
are discussed in Friedman and Popescu 2004. 

4. Rule based interpretation 

The most important aspect of any predictive func
tion F(x) is its accuracy on future data as reflected 

by its prediction risk (1). Results from Friedman 
and Popescu 2005 suggest that rule based ensem
bles (11) (12) provide accuracy competitive with the 
best methods. However, accuracy is not the only de
sirable property of a predictive model. Often it is 
useful to be able to interpret the model to gain an 
understanding of how the respective input variables 
x = {x\,X2,-m "ixn) are being used to formulate pre
dictions. This information can be used to perform 
"sanity checks" to see if the model is consistent with 
one's a priori domain knowledge, and to gain an a 
posteriori understanding of the system that produced 
the data. Such information can be used to refine the 
model to improve its properties. 

Most ensemble as well as other machine learn
ing methods produce "black-box" models. They are 
represented in an incomprehensible form making it 
difficult to impossible to understand how the input 
variables are being used for prediction. One of the 
primary benefits that distinguish rule based ensem
bles is the ability to intepret the resulting model to 
gain such information. 

Rules of the form (9) represent easily under
standable functions of the input variables x. Al
though a large number of such rules participate in the 
initial ensemble, the fitting procedure (12) generally 
sets the vast majority (~ 80% to 90%) of the cor
responding coefficient estimates {ak}^ to zero and 
their corresponding rules are not used for predic
tion. As noted above, this selection property is a 
well known aspect of the lasso penalty in (12). The 
remaining rules will have varying coefficient values 
depending on their estimated predictive relevance. 
The most relevant rules can then be examined for 
interpretation. 

A commonly used measure of relevance or im
portance Ik of any predictor in a linear model such 
as (11) is the absolute value of the coefficient of the 
corresponding standardized predictor. For rules this 
becomes 

h = I ak I • \/sk{l - sk) (13) 

where sk is the rule support 

N IN 

sk= ^Wirfc(xi) / ^ t m . (14) 
i=\ I i=\ 

Those rules with the largest values for (13) are the 
most influential for prediction based on the predic-
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tive equation (11). These can then be selected and 
examined for interpretation. 

4 .1 . Input variable importance 

In predictive learning a descriptive statistic that 
is almost always of interest is the relative impor
tance or relevance of the respective input variables 
{x\ ,X2,---,xn)to the predictive model; that is, which 
of the variables are most influential in making pre
dictions and which in retrospect need not have been 
included. For the models (11) considered here, the 
most relevant input variables are those that prefer
entially define the most influential rules appearing 
in the model. Input variables that frequently appear 
in important rules are judged to be more relevant 
than those that tend to appear only in less influen
tial rules. 

This concept can be captured by a measure of 
importance Jj of input variable Xj 

Jj = ^2 Ik/mk. (15) 

This measure sums the importances (13) of those 
rules (9) that contain Xj (XJ € rk) each divided by 
the total number of input variables mk that define 
the rule. In this sense the input variables that define 
a rule equally share its importance, and rules with 
more variables do not receive exaggerated influence 
by virtue of appearing in multiple input variable im
portance measures. The distribution of {Jj}" (15) 
can be examined to ascertain the relative influence of 
each of the respective input variables on the model's 
predictions. Illustrations are provided in the exam
ple below. 

4.2. Partial dependence functions 

Visualization is one of the most powerful interpre-
tational tools. Graphical renderings of the value of 
F(x) as a function of its arguments provides a com
prehensive summary of its dependence on the joint 
values of the input variables. Unfortunately, such vi
sualization is limited to low dimensional arguments. 
Viewing functions of higher dimensional arguments is 
more difficult. It is therefore useful to be able to view 
the partial dependence of the approximation F(x) 
on selected small subsets of the input variables. Al
though a collection of such plots can seldom provide 

a comprehensive depiction of the approximation, it 
can often produce helpful clues. 

Let z; be a chosen "target" subset, of size I, of 
the input variables x 

z; = {zi,- • -,zi} C {xi,- • -,x„}, 

and z\i be the complement subset 

z\i U zx = x. 

The approximation F(x) in principle depends on 
variables in both subsets 

F(x) = F (z , , z v ) . 

If one conditions on specific values for the variables 
in z\i, then F(x) can be considered as a function 
only of the variables in the chosen subset z; 

F. s l(z,) = F ( z , | z v ) . (16) 

In general, the functional form of F z . , (z/) will depend 
on the particular values chosen for z\j. If however, 
this dependence is not too strong then the averaged 
function 

F,(zz) = EzJF(x)] = J F (z , , z v ) p v ( z v ) d z v 

(17) 
can represent a useful summary of the "partial de
pendence" of F(x) on the chosen variable subset z; 
(Friedman 2001). Here p\/(zy) is the marginal prob
ability density of zy 

P\i(z\i) = p(x)dzt, (18) 

where p(x) is the joint probability density of all of 
the inputs x. This complement marginal density (18) 
can be estimated from the training data, so that (17) 
becomes 

TV IN 

Fl{zl)=Y,WiF(zl,zi\l) Y,wi- (19) 
i=l / i=l 

where z$\j are the data values of zy. 
Partial dependence functions (19) can be used 

to help interpret models produced by any "black 
box" prediction method, such as neural networks, 
support vector machines, nearest-neighbors, radial 
basis functions, etc. They only require the value of 
F(x) for specified values of x. However, when there 
are a large number of predictor variables, it is very 
useful to have an measure of relevance (Section 4.1) 
to reduce the potentially large number variables, and 
variable combinations, to be considered. 



5. I l lustrat ion 

In this section we apply the RuleFit procedure to a 
signal/background separation problem from a high 
energy particle physics experiment and illustrate the 
various interpretational tools described in Section 4. 
The training data consists of 50000 Monte Carlo sim
ulated events, half of which are signal and half are 
background. Details concerning the specific appli
cation and the nature of the 50 input variables are 
withheld at the request of the experimenters. An ad
ditional 23000 events were generated (half signal and 
half background) to evaluate performance. These 
latter ("test") events were not used to train the pre
dictive model. 

All parameters of the RuleFit procedure were 
set to their default values: v = 0.01 and rj = 
min(iV/2,100 + 6y/N) ~ 1450 events in Algorithm 
1, four terminal nodes for each tree, and 3500 gen
erated rules in the initial ensemble (585 trees). It 
is possible that performance could be improved by 
tuning some of these parameters for this specific ap
plication. 

Applying RuleFit to the training data produced 
a model (11) with 410 rules having nonzero coeffi
cients from (12). The corresponding error rate on 
the test data was 6.97%. Another measure of pre
diction quality, area under the ROC curve ("AUC"), 
was 0.977. Perfect prediction would have zero error 
rate and AUC = 1. 

Figure 2 displays a graphical representation of 
prediction quality. The upper frame shows the dis
tribution of the model scores F(x) (11) for the 11500 
signal events in the test sample; the lower frame 
shows the corresponding plot for the 11500 back
ground events. One sees that signal events tend 
to have predominately higher scores than the back
ground. Using a threshold of t = 0 (3) gives rise to 
the minimal error rate of 6.97%, with slightly more 
background being classified as signal than signal clas
sified as background. Increasing the threshold value 
(t > 0) would reduce background errors leading to 
a purer sample of signal events at the expense of 
classifying more of the signal as background. Low
ering the threshold (t < 0) would capture more of the 
signal at the expense of increased background con
tamination. In this context modifying the threshold 
can be viewed as changing the relative values of the 
misclassification costs Ls and LB in (2). 
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Fig. 2. Distribution of RuleFit prediction scores for signal 
(upper) and background (lower) test events. 

This signal/background trade—off is more di
rectly captured by the corresponding ROC curve 
shown in Fig. 3. Here the fraction of captured signal 
events (true positives) is plotted against the fraction 
of background contamination (false positives) as the 
threshold t is varied. One sees that permitting 5% 
background contamination allowed 90% of the sig
nal events to be captured, whereas 10% background 
captures approximately 95% of the signal. 

Table 1 illustrates some typical rules by display
ing the five most important using (13). The first 
column shows the rules' relative importance nor
malized so that the maximum value over all rules is 
100. The second column gives the coefficient a,k (11) 
of the corresponding rule rfc(x). Positive coefficient 
values indicate that satisfying the rule (r-fe(x) = 1) 
increases the odds of being a signal event, where as 
negative values decrease the odds. The third col
umn shows the rule's support (14). The last column 
shows the variables and cut values that define the 
corresponding rules. One sees that here all of these 
relatively important rules are fairly simple, typically 
involving two to three variables. Knowing the mean
ing of the variables for each of the rules could lead to 
insights concerning what aspects of the experiment 
lead to separating signal from background. 

Figure 4 plots the relative importances (15) of 
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Table 1. The five most important rules for differentiating signal from background events. 

Importance Coefficient Support Rule 

100 -0.16 0.45 x6 < 0.31 & n 6 < 1117 & x32 < 1.31 
83 0.13 0.41 0.025 < x i 4 < 0.53 & x2r <82.4 
82 0.22 0.093 -500 < x 3 < 92.6 & x2i < -0.022 & x 3 9 > 1.18 
75 0.12 0.32 xi < 5.2 k -500< x3 <92.6 & x21 > -0.022 
73 -0.12 0.41 xi >4.37 & x 2 3 < 160.1 & x 3 2 < 1.41 

Signal / Background ROC curve 

T 

0.05 0.10 0.15 

Background contamination 

Fig. 3. ROC curve for RuleFit test predictions. 
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Fig. 4. Relative importances of the 50 input variables to the 
RuleFit predictive model. 

each of the 50 input variables in (inverse) order of 
their importance values. Here some variables are 
clearly far more relevant than others to the predictive 
model (11). Knowing which variables are the impor
tant ones for separating signal from background can 
lead to insights concerning the experimental setup. 

Table 2. Error rate and one minus area under the 
ROC curve for RuleFit models based on subsets of 
the most important predictor variables. 

Variables 

50 
25 
20 
15 

1-AUC 

0.0230 
0.0232 
0.0237 
0.0264 

Error 

6.97 
7.06 
7.06 
7.60 

This information can also be used to simplify the 
actual predictive model. This is illustrated in Table 
2. Each row shows the test error rate (third column) 

and 1 — AUC (second column) for RuleFit models 
using subsets of the input variables. The first column 
shows the number of (most important - see Fig. 4) 
variables used out of the total of 50. One sees that 
training the model using only the 20 most important 
variables results in no significant decrease in model 
quality. Using only the top 15 variables degrades 
performance only by about 8%. Predictive models 
with fewer variables might be preferred if some of 
those variables deemed to be unimportant and thus 
expendable were especially difficult or expensive to 
measure. 

Figure 5 shows plots of the single variable par
tial dependence of -F(x) (11) on the nine most im
portant variables. One sees that, for example, the 
odds of being a signal event decrease monotonically 
with increasing values of the most important variable 
xi$. For the next most important variable X3, pre
dicted signal odds are lowest for 95 < £3 < 170 and 
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Fig. 5. Single-variable partial dependence plots of the odd 
of a signal event as a function of the nine most important 
predictor variables. 

the lower right frame that for large values of a^ the 
odds of being a signal event are low and at most de
pend weakly on X3, whereas for small values of x\ 
the odds strongly depend on the value of £3. This 
is an example of an interaction (correlation) effect 
between these two variables. 
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become higher for values outside this range. In gen
eral, examination of such partial dependences on the 
important variables provides information on how the 
values of the corresponding variables are being used 
for prediction. 

More detailed information can be obtained from 
two-variable partial dependence plots. Figure 6 
shows the partial dependence of F(x) (11) on the 
joint values of selected variable pairs using several 
plotting formats. The upper left frame shows the 
partial dependence on (xi,a;i3) using a perspective 
mesh representation. One sees that signal odds in
crease as either of the two variables become larger. 
The upper right frame shows a contour plot of the 
partial dependence on (xn, X13). Here the signal 
odds are highest for xi7 ~ 0.4 and £13 c* —0.4, and 
decrease in all directions from that point. The lower 
two frames of Fig. 6 use a "heat map" to represent 
the respective two-variable partial dependence plots. 
Lowest values are shown darker while higher ones are 
lighter, and the highest values are white (surrounded 
by the lighter pixels). As an example, one sees from 

Fig. 6. Two-variable partial dependence plots of the odds 
of a signal event as a function of the joint values of selected 
variable pairs. Upper left: perspective mesh plot, upper right: 
contour plot, lower: heat map representation. 

6. Conclusion 

This paper has outlined the RuleFit technique for 
predictive learning and illustrated some of its fea
tures on a signal/background separation problem 
in high energy particle physics. A more complete 
description of the procedure along with its other 
features can be found in Friedman and Popescu 
2005. A software interface to the R statisti
cal package can be obtained from http://www-
stat.stanford.edu/~jhf/RuleFit.html. 
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COMMENT ON "SEPARATING SIGNAL FROM B A C K G R O U N D USING ENSEMBLES 
OF RULES" 

HARRISON B. PROSPER 

Florida State University, Tallahassee, Florida, USA 

Friedman and Popescu have introduced a novel machine learning algorithm, based on rules, that performs very well 
relative to other methods. We make a few general remarks about ensemble methods and comment on their particular 
method. 

1. Introduction 3. RuleFit 

It is often instructive to view things from a general 
perspective. This is true, in particular, of machine 
learning algorithms, if only because a general per
spective clarifies the relationship between different 
algorithms, and, makes it easier to discern whether or 
not a "new" method is truly new. By embedding al
gorithms, such as AdaBoost1, Bagging and Random 
Forests 2, into the framework of ensemble learning, 
Friedman and Popescu 3 have clarified the nature of 
these algorithms. Moreover, having understood that 
boosting and bagging are "merely" interesting vari
ations on a theme, many other interesting variations 
spring to mind, for example, the one described by 
Jerry Friedman at this meeting. 

2. Ensemble Learning 

The idea of ensemble learning is to construct a 
mapping y = F(x), based on some training data 
{(xi,yi),--- ,(xn,yn)}, where 

M 

F{x) = a0 + Y^ amfm(x), 
m=l 

and {fm(x)} is an ensemble of functions called base 
learners. The base learners are chosen from a func
tion class, each of whose elements is labeled by the 
values of a set of parameters p = (pi,P2, • • • )• Given 
a class of parameterized functions f(x;p), an algo
rithmic procedure is specified to pick functions from 
the class, typically, by minimizing some loss function 
L. The ensemble method is very general: any func
tion class may be used, along with any mechanism 
to choose from it. 

As noted by Jerry Friedman, one anticipates that 
different procedures might be required for different 
data sets. The rule-based method of Friedman and 
Popescu, however, seems broadly applicable. 

In the RuleFit method 3, the function class used is 
the class of all conjunctions 

fm(x)=rm(x)=AkBkC--- , 

where A, B, etc., are simple statements with truth 
value 0 or 1. The function rm(x) is called a rule. 
For example, A = ET > 25 GeV/c and B = 85 < 
Mee < 95 GeV/c2 might be statements typical of 
a signal/background classification problem in parti
cle physics, in which one requires a jet of particles 
to have transverse energy exceeding 25 GeV AND 
the mass of an electron-positron pair be consistent 
with that of the Z boson. In practice, the class of 
rules is defined by the leaves of a forest of decision 
trees. One arrives at a leaf, appropriately, by follow
ing branches, starting at the root. Having found a 
set of rules, the coefficients am are found by mini
mizing the lasso loss function, a principal virtue of 
which is that, at its minimum, a large fraction of the 
coefficients are typically zero. Therefore, the number 
of rules that remain is generally far fewer than the 
number in the original set. 

The RuleFit method has been shown to perform 
very well. Moreover, since its function class is based 
on decision trees, the method is fast. Its other ad
vantage is that the meaning of each function fm{x), 
being a simple rule, is readily apparent. That being 
said, the function F{x) is a linear sum of rules; there
fore, even though each rule is easy to understand, it 
is less clear that F(x) itself can be as readily inter
preted. 

An important benefit of the RuleFit method is 
that it provides a way to assess the importance of 
a variable. This is extremely useful because one 
can rank variables according to their importance and 
keep only those that are judged significantly more 
important than the rest. Thus can one reduce the di-
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mensionality of the problem, and therefore the com
putational burden. The importance measure sug
gested by Friedman and Popescu is an intuitively 
plausible one that might be expected to work well 
most of the time. It is not clear, however, that it 
will always rank variables the same way as would a 
method in which all possible combinations of vari
ables were tried and the subsets ranked accordingly. 

4. Let a Thousand Flowers Bloom 

The generality of the ensemble method invites the ex
ploration of potentially interesting variations on that 
theme. One possibility, might be to use a function 
class defined by 

N 

f{x;p) = tanh(p0 + ^PiXt), 
i = l 

together with any one of the standard loss func
tions. Given the ensemble of functions fm(x) = 
tanh(pmo + ^Zi=iPmiXi), and coefficients am - ob
tained, perhaps, by lasso regression - one would then 

have 
M N 

F(x) =a0+^2am tanh(pm 0 + J^,pmjXi)-
m = l i = l 

This function is typical of the kind that appears in a 
neural network with N inputs, a single hidden layer 
of M nodes and a single output. 
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BOOSTED DECISION TREES, A POWERFUL EVENT CLASSIFIER 

BYRON P. ROE-4, HAI-JUN YANGA , AND JI ZHUB 

Department of Physics, Department of Statistics, University of Michigan, 
450 Church St., Ann Arbor, MI, 48109-1040 

e-mail: byronroe@umich.edu 

Boosted decision trees are compared with neural nets and various decision tree methods using the MiniBooNE exper
iment as a test bed. A discussion of methods for pruning variables and for increasing the speed of convergence are 
given. 

1. Decision Trees and Boosting 

Consider the problem of classification of events be
tween signal and background, given a number of par
ticle identification (PID) variables. A decision tree 
is a sequence of binary splits of the data. To train 
the tree a set of known training events is used. The 
results are measured using a separate set of known 
testing events. Consider all of the data to be on 
one node. The best PID variable and best place on 
that variable to split the data into separate signal 
and background is found. There are then two nodes. 
The process is repeated on these new nodes and is 
continued until a given number of final nodes (called 
"leaves") are obtained, or until all leaves are pure or 
until a node has too few events. 

There are several popular criteria to determine 
the best PID variable and best place on which to split 
a node. The gini criterion is used here. Suppose 
that event i has weight W*. The purity P of a node 
is defined as the weight of signal events on the node 
divided by the total weight of events on that node. 
For a given node: gini = P ( l — P) ^ Wj. gini is 
zero for P = 1 or P = 0. The best split is chosen 
as the one which minimizes giniieft + giniright- The 
next node to split is chosen by finding that node 
whose splitting maximizes the change in gini. In this 
way a decision tree is built. Leaves with P > 0.5 are 
signal leaves and the rest are background leaves. 

Decision trees are powerful, but unstable. A 
small change in the training data can produce a 
large change in the tree. This is remedied by the 
use of boosting. For boosting, the training events 
which were misclassified (a signal event fell on a 
background leaf or vice versa) have their weights in
creased (boosted), and a new tree is formed. This 
procedure is then repeated for the new tree. In this 
way many trees are built up. The score from the mth 

individual tree Tm is taken as +1 if the event falls on 
a signal leaf and — 1 if the event falls on a background 
leaf. The final score is taken as a weighted sum of 
the scores of the individual leaves. 

Two methods for boosting are considered here. 
The first is called AdaBoost. Define errm — weight 
misclassified/total weight for tree m. Let am = 
/?log [(1 — errm)/errm], where 0 is a constant. In 
the statistical literature /? has been taken as one, 
but for the MiniBooNE experiment, /3 = 0.5 has 
been found to be the optimum value. The misclassi
fied events have their weight multiplied by eam. The 
weights are then renormalized so the sum of all of 
the training event weights is one. The final score is 
T — IpNtr -ee rp 

The second method of boosting considered here 
is called e-boost or, sometimes, shrinkage. Misclassi
fied events have their weight multiplied by e2e, where 
e is a constant. For the MiniBooNE experiment, 
e = 0.03 has been optimum. (The results vary only 
mildly as (3 or e are changed a bit.) The final score 

e-boost changes weights a little at a time, while 
AdaBoost can be shown to try to optimize each 
change in weights to minimize e~yT where T is 
the score and y is +1 for a signal event and — 1 
for a background event. The optimum value is 
T = logprob/(l —prob), where prob is the proba
bility that y = 1, given the observed PID variables. 
In practice, for MiniBooNE, the two boosting meth
ods have performed almost equally well. Boosting is 
described as using many weak classifiers to build a 
strong classifier. This is seen in Figure 1. After the 
first few trees, the misclassification fraction for an 
individual tree is above 40%. 

In the MiniBooNE experiment some hundreds 
of possible PID variables have been suggested. The 
most powerful of these have been selected by accept-
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Fig. 1. The unweighted, weighted misclassified event rate 
(errm), and am versus the number of tree iterations for Ad-
aBoost with j3 = 0.5 and signal purity threshold value of 50%. 

ing those which are used most often as splitting vari
ables. Some care needs to be taken as sometimes 
a variable will appear unimportant for the first few 
trees, but then become important for later trees. 
Current MiniBooNE boosting trees have 80-100 PID 
variables. Use of more variables tends to slightly de
grade the performance, probably because all of the 
useful information is already in the previous vari
ables and noise without additional signal is being 
added. The performance has been examined varying 
the number of trees and the number of leaves/tree. 
This is shown in Figures 2. Here, relative ratio is con
stant x fraction of background kept/fraction of signal 
kept for a given signal efficiency. (Smaller is better!) 
Optimum results are obtained for MiniBooNE with 
about 1000 trees and with 45 leaves/tree. Different 
experiments should optimize these values for their 
particular data sets. 

1.8 -, 

1.6 : 

1.4 -

AdaBoost(P=0.5, 1000 trees) / 

• 8 leaves / 

* 20 leaves 

30 40 50 60 

Signal Efficiency (%) 

2.2 -, 

2 

1.8 

1.6 

a 1.4 

AdaBoost(P=0.5, 45 leaves) 

• 100 trees 

» 200 trees 

* 800 trees 

- 1000 trees 

80 

0.2 -l-r-
20 30 40 50 60 70 

Signal Efficiency (%) 

80 

Fig. 2. Top: tuning the number of leaves when using 1000 
trees. Bottom: tuning the number of trees when using 45 
leaves. 

2. Tests of Boosting with Other 
Classification Methods 

Boosting was compared with artificial neural nets 
(ANN), which the MiniBooNE collaboration had 
used previously. For Figure 3 only, the relative ra
tio is redefined as the fraction of background kept 
by ANN to that for boosting for a given fraction of 
signal events being kept. (Larger is better for boost
ing!) It is seen that boosting is better than ANN by 
a factor of 1.2-2 for MiniBooNE data. 

AdaBoost and e-boost were compared with var
ious other similar methods. Space does not permit a 
description of these methods; Table 1 will be of most 
use to those already familiar with them. 

It is seen that Adaboost, e-boost, e-LogitBoost, 

Table 1. Relative error ratio versus signal efficiency for var
ious boosting algorithms using MiniBooNE data. Differ
ences up to about 0.03 are largely statistical. b=0.5 means 
the smooth scoring function described in Section 3. 

Boosting 
Algorithms 

AdaBoost 
AdaBoost 

e- Boost 
AdaBoost (b=0.5) 

e-Boost (b=0.5) 
e-LogitBoost 
e-HingeBoost 

LogitBoost 
Real AdaBoost 

Gentle AdaBoost 
Random Forests(RF) 

AdaBoosted RF 

Parameters 
P,e(Nlv,Ntr) 
0.5 (45,1000) 
0.8 (45,1000) 
0.03 (45,1000) 
0.5 (45,1000) 

0.03 (45,1000) 
0.01 (45,1000) 
0.01 (30,1000) 

0.1 (45,150) 
(45,1000) 
(45,1000) 

(400,1000) 
0.5 (100,1000) 

Rel. ratios 
50% sig. eff. 

0.62 
0.62 
0.58 
0.60 
0.58 
0.61 
0.86 
0.62 
0.69 
0.67 
0.85 
0.66 
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Fig. 3. Comparison of ANN and AdaBoost performance for 
test samples. Relative ratio (defined as the number of back
ground events kept for ANN divided by the number of back
ground events kept for AdaBoost) versus the intrinsic i/e 

charged current quasi-elastic event selection efficiency, a) All 
kinds of backgrounds are combined for the training against the 
signal. Dots show the relative ratios for 21 training variables 
and boxes show them for 52 training variables, b) AdaBoost 
trained by signal and neutral current 7r° background. Dots 
show the relative ratios for 22 training variables and boxes 
show them for 52 training variables. All error bars shown in 
the figures are for Monte Carlo statistical errors only. 

and LogitBoost performed similarly. The Random 
Forest method uses no boosting, but uses a random 
fraction of the training events, chosen with replace
ment, for each tree and a random fraction of the PID 
variables for each node. For the tests in Table 1, all 
of the PID variables were used in each node. This op
tion is also known as "bagging". Bagging did poorly 
compared with AdaBoost, but had performance close 
to AdaBoost if boosting was added. 

Post-Fitting is an attempt to reweight the trees 
when summing tree scores after all the trees are 
made. Two post-fitting attempts were made. They 
produced only a very modest (few percent), if any, 
gain. 

For any of these methods, robustness, the resis
tance to small inaccuracies between data and train
ing events, is important. In MiniBooNE this is being 
done by generating several dozen Monte Carlo event 
samples, each with some parameter varied by about 
one standard deviation. Individual PID variables 

which are strongly sensitive to variation are elimi
nated from the boosting variables. This procedure is 
not yet complete, but the initial results indicate that 
the boosting output is then quite robust. 

In March 2005, a large change in the detector 
optical model was made requiring retuning of the 
reconstructions. The networks trained on the old 
model were tested on the new versions of the same 
variables. For a fixed background contamination of 
7T° events, the fraction of signal kept dropped by 8.3% 
for boosting and by 21.4% for ANN. 

ANN's tend, in practice, to be quite sensitive 
to a number of parameters. The temperature, hid
den layer(s) size, the learning rate, feedback func
tion, • • •, must be chosen. If one multiplies one of 
the PID variables by two, or interchanges the order 
of two variables, or puts a variable in twice, the result 
is likely to change. For more than twenty-thirty PID 
variables, tuning is quite difficult and improvement 
in performance problematic. 

For boosting many variables (wlOO) can be used. 
There are only a few parameters to optimize. The 
MiniBooNE experience is that once 8, number of 
leaves, and number of trees are set, they remain 
about the same for all uses of boosting within the 
experiment. If a transformation of the PID variables 
x is made, y = f(x), such that if X2 > xi, then 
J/2 > J/i) then the results remain identical, as they 
depend only on ordering. Interchanging variables or 
putting the same one in twice has no effect on the 
results. 

3. Convergence Speed of Modifications 
to the Basic Boosting Algorithm 

From Table 1, it is seen that none of the tested op
tions for boosting proved superior to AdaBoost or 
e-Boost for the MiniBooNE experiment. It is still 
possible to examine modifications to see if the com
puter time for convergence using the training set can 
be reduced. Empirically, reducing the correlations 
between variables has been found to speed conver
gence for the MiniBooNE experiment. As seen in 
Table 1, Random Forests with boosting does not do 
badly and, if optimized further, may become compet
itive with AdaBoost, while speeding up convergence. 

In the method so far described, the score is taken 
as +1 if an event falls on a signal leaf and —1 if the 
event falls on a background leaf. This means that if 
the event falls on a leaf with purity P = 0.51 it gets 
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Fig. 4. Performance of AdaBoost with 6 = 0 (step function) 
and 6 = 0.5 (smooth square root function), /3 = 0.5, 45 leaves 
per tree, versus tree iterations. 

the same score as if it fell on a leaf with purity 0.91. A 

"soft scoring" method can be tried using some func

tion of the purity. Empirically it was found tha t if 

d = 2P - 1, then Tm = sign(d)\d\b, with b = 0.5 

worked reasonably well. The results are shown in 

Figure 4. It is seen tha t the convergence is faster 

for soft scoring although the end result is about the 

same as the s tandard method. From testing a num

ber of samples it appears tha t , on the average, the 

final result is about the same for AdaBoost. There 

is a hint tha t soft scoring might be slightly better 

for e-Boost. Since there seems no disadvantage to 

using soft scoring, it should be considered when one 

is using boosting in an analysis. 

4. C o n c l u s i o n s 

Boosting seems very robust. Given enough itera

tions, AdaBoost or e-Boost reach an optimum level 

of classification which is not bettered by any vari

ant tried. For the MiniBooNE Monte Carlo samples, 

boosting was bet ter t han ANN's in our tes ts by fac

tors between 1.2-2. There are ways, such as smooth 

scoring, to increase the ra te of convergence of the 

algorithm. 

Several techniques were tried for reducing the 

number of variables. Selecting the variables which 

were most used as split t ing variables seemed to work 

as well as any of the other methods tried. 

Downloads in F O R T R A N or C + + are available 

from: 

ht tp: / /www.gal la t in .physics . lsa .umich.edu/ - r o e / 
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An algorithm for optimization of signal significance or any other classification figure of merit (FOM) suited for analysis 
of HEP data is described. This algorithm trains decision trees on many bootstrap replicas of training data with each 
tree required to optimize the signal significance or any other chosen FOM. New data are then classified by a simple 
majority vote of the built trees. The performance of the algorithm has been studied using a search for the radiative 
leptonic decay B —• flv at BABAR and shown to be superior to that of all other attempted classifiers including such 
powerful methods as boosted decision trees. In the B —» feu channel, the described algorithm increases the expected 
signal significance from 2.4<r obtained by an original method designed for the B —• -ylu analysis to 3.OCT. 

1. Introduction 

Various pattern classification tools have been em
ployed in analysis of HEP data to separate signal 
from background. One of the problems faced by 
HEP analysts is the indirect nature of available clas
sifiers. In HEP analysis, one typically wants to opti
mize a FOM expressed as a function of signal and 
background, S and B, expected in the signal re
gion. An example of such FOM is signal significance, 
S/y/S + B, often used by physicists to express the 
cleanliness of the signal in the presence of statisti
cal fluctuations of observed signal and background. 
None of the available popular classifiers optimizes 
this FOM directly. Commercial implementations of 
decision trees, such as CART1, split training data 
into signal- and background-dominated rectangular 
regions using the Gini index, Q = 2p(l — p), as 
the optimization criterion, where p is the correctly 
classified fraction of events in a tree node. Neural 
networks2 typically minimize a quadratic classifica
tion error, ^2n=1(yn - f(xn))

2, where yn is the true 
class of an event, -1 for background and 1 for sig
nal, f(xn) is the continuous value of the neural net
work prediction in the range [—1,1], and the sum is 
over N events in the training data set. Similarly, 
AdaBoost3 minimizes an exponential classification 
error, 5Zn=i exP(~Vnf{xn))- These optimization cri
teria are not necessarily optimal for maximization 
of the signal significance. The usual solution is to 
build a neural net or an AdaBoost classifier and then 
find an optimal cut on the continuous output of the 
classifier to maximize the signal significance. Alter

natively, one could construct a decision tree with 
many terminal nodes and then combine these nodes 
to maximize the signal significance. 

Decision trees in StatPatternRecognition4' 5 al
low the user to optimize any FOM supplied as an im
plementation of an abstract C + + interface included 
in the package. A default implementation of the de
cision tree includes both standard figures of merit 
used for conventional decision trees such as the Gini 
index and HEP-specific figures of merit such as the 
signal significance or the signal purity, S/(S + B). 

A decision tree, even if it directly optimizes the 
desired FOM, is rarely powerful enough to achieve 
a good separation between signal and background. 
The mediocre predictive power of a single decision 
tree can be greatly enhanced by one of the two pop
ular methods for combining classifiers — boosting3 

and bagging6; the latter approach can be used in con
junction with the random forest technology7. This 
note compares predictive power of several classi
fiers using a search for the radiative leptonic decay 
B —•> ^lv at BABAR. It is shown that the greatest sig
nal significance is obtained by bagging an ensemble 
of decision trees, with each member of the ensemble 
optimizing the signal significance. This study is de
scribed in more detail in two notes4' 5 posted at the 
physics archive. 

2. Decision Trees in 
StatPatternRecognition 

A decision tree recursively splits training data into 
rectangular regions (nodes). For each node, the tree 
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examines all possible binary splits in each dimension 
and selects the one with the highest FOM. This pro
cedure is repeated until a stopping criterion, speci
fied as the minimal number of events per tree node, is 
satisfied. The tree continues making new nodes until 
it is composed of leaves only — nodes that cannot be 
split without a decrease in the FOM and nodes that 
cannot be split because they have too few events. 

As mentioned above, a conventional decision tree 
often uses the Gini index, Q(p,q) = —2pq, for split 
optimization, where p and q = 1 — p are fractions of 
correctly classified and misclassified events in a given 
node. If a parent node with the total event weight 
W is split into two daughter nodes with weights W\ 
and W2 = W — W\, the best decision split is chosen 
to maximize Q spiit ~ (W1Q1 + W2<?2)/W, where 
Qi and Qi are figures of merit computed for the two 
daughter nodes. Note that a conventional decision 
tree treats the two categories, signal and background, 
symmetrically. In HEP analysis, one usually wishes 
to optimize an asymmetric FOM. StatPatternRecog-
nition offers a modified splitting algorithm for this 
purpose. The best decision split is now chosen to 
maximize Qspiit = max(Q 1,^2)1 where Q\ and Q2 
are the asymmetric figures of merit for the daughter 
nodes. In case of the signal significance, the FOM is 
given by Q(s,b) = s/yfs + b, where s and b are sig
nal and background weights in a given node. After 
the tree is grown, the terminal nodes are merged to 
optimize the overall asymmetric FOM. The merging 
algorithm sorts all terminal nodes by signal purity 
in descending order and computes the overall FOM 
for the n first nodes in the sorted list with n tak
ing consecutive values from 1 to the full length of 
the list. The optimal combination of the terminal 
nodes is given by the highest FOM computed in this 
manner. 

This algorithm for optimization of an asymmet
ric FOM is nothing but an empirical solution. It is 
not guaranteed that this algorithm will produce a 
higher asymmetric FOM than the one obtained by 
a conventional decision tree using the Gini index or 
any other symmetric expression as a split criterion. 
It has been shown experimentally that this algorithm 
tends to produce higher values of the signal signifi
cance when applied to physics data sets. This note 
is an example of such an application. 

3. Bagging Decision Trees 

The predictive power of a single classifier can be en
hanced by boosting3 or bagging6. Both these meth
ods work by training many classifiers, e.g., decision 
trees, on variants of the original training data set. 
A boosting algorithm enhances weights of misclassi
fied events and reduces weights of correctly classified 
events and trains a new classifier on the reweighted 
sample. In contrast, bagging algorithms do not 
reweight events. Instead, they train new classifiers 
on bootstrap replicas of the training set. After train
ing is completed, events are classified by the majority 
vote of the trained classifiers. For successful applica
tion of the bagging algorithm, the underlying classi
fier must be sensitive to small changes in the training 
data. Otherwise all trained classifiers will be simi
lar, and the performance of the single classifier will 
not be improved. This condition is satisfied by a 
decision tree with fine terminal nodes. Because of 
the small node size each decision tree is significantly 
overtrained; if the tree were used just by itself, its 
predictive power on a test data set would be quite 
poor. However, because the final decision is made 
by the majority vote of all the trees, the algorithm 
delivers a high predictive power. 

Random forest7, typically used in conjunction 
with bagging, is a technique that randomly selects a 
subset of input variables for each decision split. This 
approach can make individual trees more indepen
dent of each other and increase the overall predictive 
power. 

Boosting and bagging algorithms offer competi
tive predictive power. It is really hard, if possible, to 
predict outright which algorithm will perform bet
ter in any classification problem. For optimization 
of the signal significance, however, bagging is the 
choice favored by intuition. Reweighting events has 
an unclear impact on the effectiveness of the opti
mization routine with respect to the chosen asym
metric FOM. While it may be possible to design a 
reweighting algorithm efficient for optimization of a 
specific FOM, at present such reweighting algorithms 
are not known. Bagging, on the other hand, offers 
an obvious solution. If the base classifier directly 
optimizes the chosen FOM, bagging is equivalent to 
optimization of this FOM integrated over bootstrap 
replicas. 
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4. Separation of Signal and Background 
in a Search for the Radiative 
Leptonic Decay B —• 'flu at BABAR 

A search for the radiative leptonic decay B —> jlv is 
currently in progress at BABAR; results of this anal
ysis will be made available to the public in the near 
future. The analysis focuses on measuring the B 
meson decay constant, / B , which has not been pre
viously measured. 

Several samples of simulated Monte Carlo (MC) 
events are used to study signal and background sig
natures in this analysis: B —> jlv signal samples 
with about 1.2M events in each channel, large sam
ples of generic B+B~, B°B°, cc, uds and T+T~ 
MC events, as well as several exclusive semileptonic 
modes generated separately with a typical sample 
size of several hundred thousand events. 

Various preliminary requirements have been im
posed to enhance the signal purity and at the same 
time reduce the MC samples to a manageable size. 
After these preliminary requirements have been im
posed, eleven variables are included in the final opti
mization procedure. Distributions of these variables 
and more details on applied selection requirements 
can be found elsewhere4. 

The signal and combined background MC sam
ples are used by various optimization algorithms to 
maximize the signal significance expected in 210 fb - 1 

of data. The training samples used for this opti
mization consist of roughly half a million signal and 
background MC events in both electron and muon 
channels, appropriately weighted according to the in
tegrated luminosity observed in the data. The train-
ing:validation:test ratio for the sample sizes is 2:1:1. 
Signal MC samples are weighted assuming a branch
ing fraction of 3 x 10~6 for each channel. 

The authors of this analysis deploy an original 
cut optimization routine4 for separation of signal and 
background. This procedure divides the available 
range for each variable into intervals of preselected 
length and finds an optimal set among all possible 
combinations of orthogonal cuts. Besides the original 
method designed by the analysts, several classifiers 
have been used: 

• Decision tree optimizing the signal signifi
cance S/VS + B. 

• Bump hunter8 optimizing the signal signifi
cance. 

• 700 boosted binary splits. 
• 50 boosted decision trees with minimal node 

size 100 events. 
• Combiner of subclassifiers trained on in

dividual background components using 
boosted binary splits. 

• 100 bagged decision trees with each tree op
timizing the signal significance; the minimal 
node size has been set to 100 events. 

Parameters of all classifiers have been optimized by 
comparing values of the statistical significance ob
tained for the validation samples. 

Results are shown in Table 1. The output of 
the described bagging algorithm for the B —> "feu 
test data is shown in Fig. 1. The bagging algorithm 
provides the best value of the signal significance. It 
gives a 24% improvement over the original method 
developed by the analysts, and a 14% improvement 
over boosted decision trees; both numbers are quoted 
for the B —> feu channel. 
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Fig. 1. Output of the bagging algorithm with 100 trained de
cision trees for the B —> 'yev test sample. The cut maximizing 
the signal significance, obtained using the validation sample, 
is shown with a vertical line. 

The bagging algorithm with decision trees opti
mizing the Gini index showed an 8% improvement 
in the B —» feu signal significance compared to 
the boosted decision trees. But the signal signifi-
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Table 1. Signal significances, «S t r am , Sv^y, and <Stest, for the B —> flu training, validation, and test samples obtained with various 
classification methods. The signal significance computed for the test sample should be used to judge the predictive power of the 
included classifiers. W\ and Wo represent the signal and background, respectively, expected in the signal region after the classification 
criteria have been applied; these two numbers have been estimated using the test samples. All numbers have been normalized to the 
integrated luminosity of 210 fb - 1 . The best value of the expected signal significance is shown in boldface. 

Method 

Original method 
Decision tree 

Bump hunter with one bump 
Boosted binary splits 
Boosted decision trees 

Combiner of background subclassifiers 
Bagged decision trees 

B —» feu 

•Strain 
2.66 
3.28 
2.72 
2.53 
13.63 
3.03 
9.20 

5valiH 

2.72 
2.54 
2.65 
2.99 
2.88 
3.25 

•St est 
2.42 
2.16 
2.31 
2.25 
2.62 
2.49 
2.99 

Wi 
37.5 
20.3 
47.5 
76.4 
58.0 
83.2 
69.1 

W0 

202.2 
68.1 

376.6 
1077.3 
432.8 
1037.2 
465.8 

B —> 7/if 
c 
" t rain 

1.75 
1.74 
1.76 
1.66 

11.87 
1.84 
8.09 

•Svaliri 

1.63 
1.54 
1.71 
1.97 
1.90 
2.07 

•Stest 
1.62 
1.54 
1.54 
1.44 
1.75 
1.66 
1.98 

Wi 
25.8 
29.0 
31.7 
45.2 
41.6 
55.2 
49.4 

Wo 
227.4 
325.9 
393.8 
935.6 
523.0 
1057.1 
571.1 

cance obtained with this method was 9% worse than 

tha t obtained by the bagging algorithm with decision 

trees optimizing the signal significance. The 14% im

provement of the proposed bagging algorithm over 

the boosted decision trees therefore originated from 

two sources: 1) using bagging instead of boosting, 

and 2) using the signal significance instead of the 

Gini index as a FOM for the decision tree optimiza

tion. 

In an a t tempt to improve the signal significance 

even further, the random forest approach has been 

a t tempted with the number of randomly sampled 

(with replacement) input variables taking values 1,6, 

and 11. No significant improvement over the bagging 

algorithm has been found. 

This note describes a somewhat unusual appli

cation of boosted and bagged decision trees to da ta 

analysis with the ult imate goal of classification de

fined as maximization of the signal significance. The 

classifier performance in this case is driven by a small 

fraction of the da ta set included in the signal re

gion. In a typical application of boosted decision 

trees, one minimizes the exponential loss averaged 

over the whole da ta set. The optimal node size for 

boosted decision trees is typically much larger than 

the optimal node size for bagged decision trees. In 

this analysis, the optimal node sizes for both boosted 

and bagged decision trees are comparable. 
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5. S u m m a r y 

A bagging algorithm suitable for optimization of an 

asymmetric FOM for HEP analyses has been de

scribed. This algorithm has been shown to give a 

significant improvement of the signal significance in 

the search for the radiative leptonic decay B —> jlu 

at BABAR. 
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The kernel discriminant (a nonparametric Bayesian classifier) is appropriate for many scientific tasks because it is 
highly accurate (it approaches Bayes optimality as you get more data), distribution-free (works for arbitrary data 
distributions), and it is easy to inject prior domain knowledge into it and interpret what it 's doing. Unfortunately, 
like other highly accurate classifiers, it is computationally infeasible for massive datasets. We present a fast algorithm 
for performing classification with the kernel discriminant exactly (i.e. without introducing any approximation error). 
We demonstrate its use for quasar discovery, a problem central to cosmology and astrophysics, tractably using 500K 
training data and 800K testing data from the Sloan Digital Sky Survey. The resulting catalog of 100K quasars 
significantly exceeds existing quasar catalogs in both size and quality, opening a number of new scientific possibilities, 
including the recent empirical confirmation of cosmic magnification which has received wide attention. 

1. Introduction and Approach 

Quasars are star-like objects which are not very well 
understood yet play a critical role in cosmology. As 
the most luminous (and thus the most distant) ob
jects in the universe, they can be used as markers of 
the mass in the distant (early) universe. With the 
very recent advent of massive sky surveys such as the 
Sloan Digital Sky Survey (SDSS), it is now conceiv
able in principle to obtain a catalog of the locations 
of quasars which is more comprehensive than ever be
fore, both in sky coverage and depth (distance). Such 
a catalog would open the door to numerous power
ful analyses of the early/distant universe which were 
never before possible. A central challenge of this ac
tivity is the question of how to use the limited infor
mation we have in hand (a tiny set of known, nearby 

quasars) to extract a massive amount of more subtle 
information from the SDSS dataset (a large set of 
faint quasar candidates). In this paper we describe 
a method which has yielded the most comprehensive 
and accurate quasar catalog to date. The catalog and 
data methodology have been previously described *; 
here we describe the algorithm for the first time. 

Nonparametric Bayesian classification. We 
wish to classify a set of unlabeled objects (the test 
set, or query points) as either stars or quasars. We 
first create samples of "stars" and "quasars" that 
will serve as training sets or reference points. The 
probability that an object producing data x (repre
sented by four color measurements) is a star is pro
portional to the probability that x would be pro
duced by a star, p{x\C\); this is the likelihood under 
the probability density function (pdf), which must be 
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estimated, describing the star class C\. 
To incorporate prior or subjective information, 

in our case the fraction of an unseen set of objects 
which the user roughly expects to be stars, we use a 
simple application of Bayes' Rule: 

P(Ci\x) 
pixlCJPid) 

p(x|Ci)P(Ci)+p(o: |C2)P(C2)-

Objects with P{C\\x) > 0.5 are classified as stars, 
which we denote by assigning class label c(x) = C\, 
otherwise as quasars. 

Kernel density estimator. For the likelihood 
of each class we will use the nonparametric kernel 
density estimate (KDE) 2 of the pdf, a mature sta
tistical method which can be thought of as a gener
alization of the histogram, having the form 

N 

P(x\C) = —J2Kh(x,Xi) 

where the kernel is for example, the Gaussian 
Kh{x, Xi) = K(h, \\x - Xi\\) = ^ y exp ||a; - Xi\\2/h2 

where C(h) is a normalizing constant which depends 
on h. h, called the bandwidth, is the critical pa
rameter which controls the smoothness of the esti
mate. In our method we use a slight generalization 
in which each point may be given different weights: 
p{x\C) = -^YH'WiKh(x,Xi) where W = £ ) f wt, 
in order to possibly allow for measurement uncer
tainty or other prior knowledge. In the algorithm 
we'll work with unnormalized sums such as $(x\C) = 
Y,"WiKh{x,Xi) so that p{x\C) = &*{x\C). We'll 
compress the notation by referring to p(Ci\x) and 
$(x|Ci) as p\{x) and $>i(x). We refer to the Bayes 
classifier using KDE estimates as the kernel discrim
inant and such classification as kernel discriminant 
analysis (KDA). 

Computational challenge. Training the ker
nel discriminant consists of finding the parameters 
{hi,ti2} which will maximize its performance at pre
dicting the class labels of data drawn from the same 
distribution as the training data. We use as an es
timator of this performance the leave-one-out cross-
validated accuracy score. This form of classifier is 
highly accurate in practice. The main reason it is 
not commonly used is that it comes with a severe 
quadratic computational cost. The main problem 
treated in this paper is that of computing KDA clas
sifications tractably. 

2. Algorithm 

We developed an algorithm which computes for each 
query point xq its class label c(xq) as if the sums 
$i(a;) and $2(^c) had been computed exactly, though 
in many cases they need not be. 

First, a space-partitioning tree data structure 
such as a kd-tree 3 is constructed on the query (test
ing) dataset, and another is created on the reference 
(training) dataset. 

The idea is to maintain bounds on pi(x) and 
P2{x) and successively tighten them in a multi-
resolution manner, as nodes at increasingly finer lev
els of the trees are considered, until we can show that 
the bounds determine that one of these class prob
abilities must dominate the other. This is true if 
one is definitely greater than 0.5, definitely less than 
0.5, or definitely greater than the other. Initially the 
class label for each query point c(xq) is recorded as 
"?" (unknown), and is updated to C\ or C2 when 
the bounds determine it. Efficiency over the naive 
algorithm is obtained to the extent that we are able 
to determine the label for large chunks of the query 
points simultaneously. 

Bounds. We'll maintain various bounds during 
the run of the algorithm, including bounds on $i(x) 
and $2{x), e.g. $i(x) < $>i(x) and $Y(X) > $i(x) , 
and bounds on pi(x) and p2{x), e.g. P\{x) < pi(x) 
and p¥(x) > Pi(x). 

We'll also maintain bounds which hold for var
ious subsets X of the points, which correspond to 
tree nodes, e.g. Vx e X: $ f ( X ) < ^(x), $ f ( X ) > 
$i(x) , p[{X) < pi(x), and p%(X) > pi(x). We can 
utilize bounds on the class-conditional likelihoods to 
obtain simple bounds on the final class probability: 

pfc) := ($f(x)Tn) / (*f(z)7n + $%(x)n2) 

pY(x) := K O r W ) / (*f(x)7n + *£(s)7r2) . 

Within each node X, in an efficient bottom-up 
(dynamic programming) fashion, we compute and 
store certain properties of the class 1 points (if any) 
and the class 2 points (if any) which reside in the 
node: for each class, the bounding box of the points 
in that class and the sum of the weights of the points 
in that class, W\(X) and W2(X). Note that ex
pressions like Wi(X) are generally implemented as 
X.Wi, to use a C-like notation. 

We can use these bounding boxes to compute 
simple lower and upper bounds on the distance be-
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tween any point in a node Q and any point (of a cer
tain class) in a node R, e.g.: Va;g G Q,Vxr £ R such 
that c(xr) = C±: S^(Q,R) < 5qr and S^(Q,R) > 
6gr, where 5qr = \\xq — xr\\. 

Bound tightening. Let KL and Ku be con
stants such that V:r, y: KL < K(x, y) and Ku > 
K(x,y) - for most kernels of interest such as the 
Gaussian, which are probability density functions, 
the lower bound is 0 and upper bound is 1. At the 
beginning of a run of the algorithm, the bounds are 
initialized using these values, e.g.: Vxq: $i(xq) = 
WiKL and &i(xq) = WiKu. For each query xq, the 
bounds $f(x) and $Yix) hare accounted for each 
reference point's potential contribution to the sum 
in a worst-case manner. 

Nodes are examined in pairs {Q, R] - one node 
Q from the query tree and one node R from the refer
ence tree. The idea is that when we see a new refer
ence node R, we can tighten our bounds on the con
tribution of the reference points in R to the sum for 
each query point. When doing so, we must also undo 
the previous contribution of the points in R to each of 
our bounds. For example the new contribution of R 
to $ f (Q) is W1{R)K(h1,6^(Q,R)) whereas the old 
contribution was implicitly Wi(R)KL. So we update 
®\{Q) by adding to it 

A^(Q,R) :^W1(R)Khl(SY(Q,R))-W1(R)KL. 

Similarly, we change ^ ( Q ) by adding to it 

A^(Q,R):=W1(R)Khl(5k(Q,R))-W1(R)Ku. 

Because we always move downward in the tree, these 
updates are always improvements to the bounds or 
at worst leave them unchanged. 

Control flow. The order in which nodes are ex
amined is determined by a min-priority queue which 
stores node-pair objects {Q,R}. Note that values 
such as A$i({Q,R}) (A$f for short) are often im
plemented as {Q, i?}.A$f. A node-pair object stores 
the change values that are computed for it, the pre
vious such values (denoted by apostrophes), and its 
priority. 

Node-pair {Q, R} is assigned priority 

f(Q, R) := | (A$? - A $ f ) + (A$2
U - A^') 

- ( A $ f - A$f ' ) - (A*£ - A$£') | , 

the difference in improvement (i.e. current values 
minus previous values) of the upper bounds and 
the lower bounds. A procedure makePair(Q, R,...) 

creates the node-pair structure {Q, R} and stores the 
other arguments in its slots for A<&f , A $ ^ , A $ £ > 
A<b% , respectively. computeBounds(Q, R) com
putes the A values and the priority for node-pair 
{Q,R}. Node-pairs are expanded further by placing 
every pairwise combination of their respective chil
dren on the queue. Each node-pair also stores an 
"undo" flag undo(<2, R) which determines whether 
it should be expanded. Whenever improvements are 
made to the bounds of a query node, they are up
dated in all the children of the query node with 
a simple recursive routine passDown(Q, . . . ) . For 
each node Q in the query tree we store M(Q), the 
number of points in the tree which have known class 
labels (definitely C\ or C-i). If we encounter a node 
for which all N(Q) of the query points have known 
labels, we can stop recursing on it. 

When both Q and R are leaf nodes, this cor
responds to the base case of the recursion. In this 
case we compute the contribution of each point in R 
to each point in Q exhaustively. Because this direct 
type of contribution is exact and thus unchangeable, 
while other contributions tighten bounds which can 
change, it is useful to record it separately - we denote 
it by (j>(xq) for each query point. 

In the pseudocode, for brevity, we use the con
vention that children of leaves point to themselves, 
and redundant node pairs are not placed on the prior
ity queue. In the pseudocode, following a C-like no
tation for compactness, the a += b denotes a = a + b 
and a != b denotes (a = b). The pseudocode shows 
a version of the algorithm which only computes and 
uses the bounds for one of the classes. 

3. Results 

Using the algorithm described, we were able 
tractably to estimate (find optimal parameters for) 
a classifer based on a large training set consisting 
of 500K star-labeled objects and 16K quasar-labeled 
objects, and predict the label for 800K faint (up to 
g = 21) query objects from 2099 deg2 of the SDSS 
DR1 imaging dataset. Of these, 100K were predicted 
to be quasars, forming our catalog of quasar candi
dates. This significantly exceeds the size, faintness, 
and sky coverage of the largest quasar catalogs to 
date. Based on spectroscopic hand-validation of- a 
subset of the candidates, we estimate that 95.0% are 
truly quasars, and that we have identified 94.7% of 
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the actual quasars. These efficiency and complete

ness numbers far exceed those any previous catalog, 

making our catalog both the most comprehensive 

and most accurate to date. The recent empirical con

firmation of cosmic magnification 4 using our catalog 

is an example of the scientific possibilities opened up 

by this work. In ongoing efforts we are exploring 

ways to make the method both more computation

ally and statistically efficient, with the goal of ob

taining all 1.6M quasars we estimate are detectable 

in principle from the entire SDSS dataset. 
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kdaBase(<2,.R) 
forall xq € Q, 

ifc(xq) = "?", 
forall xr G R, 

if c{xq) = C\, 4>i{xq) += wrKhl(Sqr). 
if c(xq) = C2, (f>2(xq) += wrKhl(Sqr). 

$f(*9) 
H{xq) 

= C(hi)(fcf(Q)+ tfi(s,) • 
= C(h2)($hQ) + 4>2(Xq) 
= C(fei)(3F(Q)+ &(*, ) 
= C(/ i 2 ) (*£(Q)+ &(*,) 

WX{R)KL). 
W2(R)KL). 

-Wx{R)Kd). 
- W2{R)KU). 

pf(Xq) : = * f (a;,)wi/(*f (s,)iri + ^(xq)n2). 
p^(Xq) := *?(xg)*l/W(xg)7Cl+*Z(xg)*2). 

tfpf(xq) >0.5 , c{xq) :=C*i. 
ifpilxq) <0.5 , c(xq) :=C2. 
if c(xq) | _ «?: ", M{Q) +--

4>iiQ) :=minXgSQ<^i(a;9). 

4>2{Q) := minXqeQ4>2(xq). 

4>Y(Q) := maxXgeQ4>i(xq). 

<f>2(.Q) •= m a x x , e Q 4>2(xq). 

*f (Q) -= Wi(R)KL, $£(<?) -= W2{R)Kl 

*?(Q) "= Wr{R)Ku, *f(Q) -= W2{R)K 

kda(Q r o 0( , Rroot) 
{Qroot,Rroot} ~ makePair(<3 roo t ,R roo t ,0,0,0,0). 
comp\iteBounds({Q root, Rroot})-
inser tHeap(i / , {Qroot, Rroot})-

while H is not empty, 
{Q,R} := extractMin(.ff). 
if M(Q) = N(Q), skip. 
if !leaf(Q), 

* f (Q) := min(*f (chi(Q)),*f(ch2(Q))). 
7 a i **(Q) := min(^(ch1(Q)),$2

J(ch2(Q))) . 
mQ) ~ min(^f(ch1(Q)),^f(ch2(Q))). 
4 ( Q ) := min(^(ch 1 (Q)) ,^ (ch 2 (Q)) ) . 
(similar for upper bounds) 
M(Q) := M(chi(Q)) + M(ch2(Q)). 

A*f:=A*f({0,f l}) , . . . . 
if undo(Q, R), passDown(Q, A$f - A$f ' , 

A $ ^ - A$f ' , A$£ - A&%', A $ £ - A - ^ ' ) . 
else, passDown(Q, A*f, A * ^ , A*^ , A * ^ ) -

fcf :=C(hi)($f(Q) + 
*9.:=C(h2)($4'(0) + 
*V :=C(hi)(*£(Q) + #(Q)) . 

f(0))-

f : = C ( h i ) ( * $ \ w - r , , , 
* ? : = C ( f c a ) ( * 2 ( Q ) + 0 2 ( G ) ) 

if pf(Q)> 0.5, c(Q):=d. 
if p?(Q)< 0.5, c(Q)~C2. 
if c(Q) != "?", 

M{Q):=N{Q). skip. 

if leaf(Q) and leaf(fl), 
passDown(Q, A*f, A*f, A S ^ , A3>^). 
kdaBase(Q,fl). 

else, 
{chi(Q),chi(fl)} := makePair(chi(Q), 

chi(fl), A$f, A$f, A*2 , A*V)-
{ch1(Q),ch2(ii)} := makePair(chi(Q), 

ch2(fl), A*f, A*f, A<&f,A$V)-
computeBounds({chi(Q),chi(fl)}). 
computeBounds({chi (Q) ,ch2 (i?)}). 
if p({ch1(Q),ch1(JR)}) < ^({chi(Q),ch2(i?)}) 

undo({chi(Q),chi(ii)}) := true, 
else, undo({chi(Q),ch2(i?)}) := true. 
inser tHeap(i / , {chi (Q), chi (R)}). 
inser tHeap(/ / , {chi(Q),ch2(fl)}). 

{ch2(Q),chi(fl)} := makePair(ch2(Q), 
chi(fl), A$f , A ^ . A ^ . A ^ ) -

{ch2(Q),ch2(fl)} := makePair(ch2(Q), 
ch2(fl), A$f , A$y , A$£ , A$£ 

computeBounds({ch2 (Q) ,chi (i?)}). 
computeBounds({ch2 (Q) ,ch2 (R)}). 
if p({ch2(Q),chi(fl)}) < p({ch2(Q),ch2(JR)}) 

undo({ch2(<5),chi(fl)}) := true, 
else, undo({ch2(Q),ch2(.R)}) := true. 
insertHeap(fl", {ch2(Q), chi (R)})• 
insertHeap(fl", {ch2(Q), ch2(R)}). 
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The training of neural networks can be viewed as a problem of inference, which can be addressed from a Bayesian 
viewpoint. This perspective leads to a method, new to the field of particle physics, called Bayesian neural networks 
(BNN). After a brief overview of the method we illustrate how it can be usefully deployed in particle physics research. 

1. Introduction 

Neural networks (NN) 1 are non-linear functions 
that, in principle, can model any (smooth) map of 
a set of one or more real input variables to a set 
of one or more outputs 2. In this paper, we con
sider neural networks for binary classification. The 
typical application in particle physics is to separate 
signal from background. We also make some brief re
marks on networks for regression, that is, for fitting 
functions. We end with an example of classification 
from particle physics. 

2. Classification 

If a network is trained with events, described by a 
vector of variables x, such that signal events are la
beled by t = 1 and background events by t = 0, 
then the network output y approximates the poste
rior probability 3 

that is, the probability that an event defined by the 
variables x belongs to the signal class t = 1. p(a;|l) 
and p(x\0) are the probability density functions for 
the signal and background classes, respectively, and 
p(l) and p(0) are the corresponding class prior prob
abilities. Typically, one trains with equal numbers 
of signal and background events, in which case the 
priors cancel out. The label t is referred to as the 
target. 

The idea behind Bayesian neural networks 
(BNN) is to cast the task of training a network as 
a problem of inference, which is solved using Bayes' 
theorem. The latter is used to assign a probability 
density to each point w in the parameter space of 
the neural network. Each point w corresponds to a 
network defined by a specific set of parameter val

ues. In the standard methods for training neural 
networks, one finds a single point WQ in the parame
ter space, that is, a single network. In the Bayesian 
approach, one performs a weighted average over all 
points, that is, all networks. As with the standard 
methods, the BNN methods make use of training 
data {(t\,xi),- • • ,{tN,XN)}, where i, is the known 
label associated with data a:,. The probability den
sity assigned to point w, that is, to a network, is 
given by Bayes' theorem 

p(t,x\w)p(w) 
P { W M = p(t,x) ' 

p(t\x, w)p(x\w)p(w) 

p(t\x)p(x) 

p(t\x,w)p(w) 
_ P(t\x) ' [2) 

where we have assumed that the data x do not de
pend on w, in which case p(x\w) = p(x). Thus, in 
order to assign a probability density to a network, de
fined by the point w, we need the likelihood p(t\x, w) 
and the prior density p{w). 

Consider a class of neural networks defined by 
the functional form 

y(x,w) = — j — j - — r r , (3) 
l + exp[-/(a;,iu)] 

where 
H P 

f(x, w) = b + V j Vj tanh(aj + Y j u^ Xi), (4) 
j=i »=i 

having P inputs, a single hidden layer of H hidden 
nodes and a single output. In the particular BNN 
method described here, every network has the same 
structure. However, as noted below, the effective 
number of hidden nodes could be fewer than H, if 
there are hidden nodes with associated weights near 
zero and if such networks are assigned higher prob
ability than those with a greater number of active 
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nodes. The parameters u,j and Vj are called weights 
and cij and b are called biases. Both sets of param
eters are usually referred to collectively as weights, 
w. 

Since, for a correctly trained network, the prob
ability that t = 1 is y(x, w), and 1 — y for t = 0, the 
probability of the set of targets t = (ti, ti, • • • , £;v), 
given the data x — {x\,X2, • • • , ajjv), is 

N 

p(t\x,w) = l[yti(l-y)1-ti, (5) 
»=i 

in which we have assumed the events to be indepen
dent. Given an event with data reasonable esti
mate of the probability that it belongs to the signal 
class (assuming p(0) = p(l)) is given by the weighted 
average 

y(x'\t,x) = y(x',w)p(w\t,x)dw, (6) 

where the posterior density p(w\t,x), given by Eq. 
(2), is computed using the likelihood, Eq. (5), and 
some prior p(w), to be discussed shortly. 

Currently, the only feasible way to perform the 
high-dimensional integral in Eq. (6) is to sample the 
density p(w\t,x), in some appropriate way, and to 
approximate the integral using the average 

1 K 

y(x'\t,x) « — ^2y(x',wk), (7) 
fc=i 

where K is the number of points w sampled from 
p(w\t,x). We note, again, that each point w corre
sponds to a different neural network function in the 
class of networks with P inputs and H hidden nodes. 
The average is therefore an average over networks. 

It may happen that some of the points w corre
spond to networks that are tightly fit to the training 
data. Such networks will typically perform poorly on 
an independent set of events. However, if one aver
ages over many networks, one expects to produce an 
estimate of the signal class probability, y = p(l\x), 
that is less likely to be affected by "over training." 
Moreover, in the Bayesian approach, there is less 
need to limit, severely, the number of hidden nodes 
because a low probability density will be assigned 
to points w that correspond to unnecessarily large 
networks, in effect, pruning them away. Indeed, net
works have been trained 4, successfully, that contain 
more weights than the number of training data! In 
this Bayesian approach, the network should be as 

large as is computationally feasible so that the class 
of functions denned by the network parameter space 
includes a subset that are good approximations to 
the true mapping. 

3. Regression 

In a regression problem, the targets t are usually 
sampled from a continuous set. For example, we 
may wish to model a function t = f(x) that maps an 
uncorrected measurement of the transverse momen
tum of a jet of particles, to a corrected measurement. 
In this case, the target t would be the known "cor
rect" value of the transverse momentum of the jet— 
perhaps, taken to be the transverse momentum of a 
Z boson recoiling against the jet, while x would be 
the measured jet transverse momentum, along with 
any other measured quantities believed to be rele
vant. If we wish to fit a function to these data, the 
form given in Eq. (5) for the likelihood of the targets 
is inappropriate. A better model, assuming that the 
noise in the targets can be modeled by a Gaussian— 
at least approximately, is 

JV 

p(t\x,w) = J J e x p [ - ( £ j - f(xi,w))2/2<T2], 
i = l 

N 

= exp[-Y,(U-f(xi,w))2/2a% (8) 
i= l 

with f(xi,w) given in Eq. (4). Even if the noise in 
the target is not Gaussian, Eq. (8) may still yield 
reasonable results, provided that the value of a is 
chosen to match the noise level in the targets. 

One advantage of modeling such mappings with 
neural networks is that the functional form Eq. (4) is 
flexible enough to model functions t = f(x) in which 
x is multi-dimensional, and, in which one or more 
components of x may be statistically dependent. 

4. Computing the Posterior Density 

In order to compute the average in Eq. (6), it is nec
essary to generate a sample of points w from the pos
terior density, Eq. (2). Unfortunately, sampling from 
the posterior density is not feasible using simple nu
merical methods. In practice, a sample is generated 
using Markov Chain Monte Carlo (MCMC) meth
ods 4. In the MCMC method, one steps through a 
parameter space in such a way that points are visited 
with a probability proportional to the density one 
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wishes to sample, here the posterior density p(w\t, x). 
Points where p{w\t, x) is large will be visited more of
ten than points where p{w\t,x) is small. The meth
ods of choice for sampling complex densities, such as 
p(w\t,x), originate in the field of computational sta
tistical physics. The problem of moving through the 
network parameter space is re-cast as a problem of 
statistical mechanics, specifically, of a single particle 
moving through a (rather complicated) potential. 

The posterior density is written as 

p(w\t,x)=exp[-V(q)], (9) 

where V(q) = — lnp(u>\t,x) (with q = w) is inter
preted as a spatially varying "potential" through 
which the "particle" moves. One adds a "kinetic 
energy" term T(p) = \p2, where p is a vector of 
dimensionality equal to that of the network param
eter space. The "mass" of the "particle" can be 
taken to be unity by appropriate re-scaling. The mo
tion of the particle is governed by its "Hamiltonian" 
H = T + V. For a Hamiltonian system, the particle 
will, eventually, visit every phase space point (q,p) 
arbitrarily closely in such a way that the density of 
points in phase space is proportional to exp(—H). By 
randomly (and appropriately) injecting or removing 
"energy" from the system, different constant energy 
regions of phase space {(p, q)} can be explored. A 
Markov chain q\, q%,... qN is thereby created, which 
converges (eventually) to a sequence of points that 
constitute a sample from the density p(w\t, x). Since 
the correlation between adjacent points is very high, 
typically 0.9 or higher, one usually saves a point, that 
is, a network, after every L steps, to lessen the corre
lation between the saved points. It is also necessary 
to discard the initial part of the Markov chain be
cause, in general, it will not be a faithful sample of 
the required density. 

4 .1 . Prior 

Every Bayesian inference requires the specification of 
a prior. Unfortunately, for this problem, the choice 
of prior is not obvious. However, experience suggests 
that a reasonable class to choose from is the class 
of Gaussian priors centered at zero, which favors 
smaller rather than larger weights. Smaller weights 
yield smoother fits to data. In the example described 
next, which uses the BNN package of Radford Neal4, 
a Gaussian prior is specified for each weight. How
ever, the variance for weights belonging to a given 

group (either input-to-hidden weights (uij), hidden-
biases (<2j), hidden-to-output weights (VJ) or output-
bias (b)) is chosen to be the same: a\, a\, a2, or 
of, respectively. However, since we do not know, a 
priori, what these variances should be, their values 
are allowed to vary over a large range, while favor
ing small variances. This is done by assigning each 
variance a gamma prior 

where z — cr~2, and with the mean fj, and shape 
parameter a set to some fixed plausible values. The 
inverse of the variance z = a~2 is sometimes referred 
to as the precision. The gamma prior is referred to as 
a hyperprior and the parameter (here the precision) 
for which it is a prior is called a hyperparameter. 

5. An Example: Single Top Search 

The electroweak production of single top quarks, 
which has not been observed so far, is an impor
tant prediction of the Standard Model. Moreover, 
it is potentially a sensitive probe of new physics. 
The observation of this process at the Fermilab Teva-
tron is much more challenging than the observation 
of top-antitop pairs 5 , because of the much smaller 
signal to background ratio involved. We have stud
ied the discrimination of the signal, in the channel 
pp —» tqb —> Wbqb, from the dominant background 
process, pp —• Wbb, for the case in which the W 
boson decays into a muon (/z) and a neutrino {v). 
The final state, therefore, contains a high transverse 
momentum muon, two 6-quark jets and significant 
missing transverse energy due to the neutrino from 
the W boson. 

We considered eleven kinematic variables that 
involve the transverse energies, spatial separation 
and invariant masses of the measured final state ob
jects. All eleven variables were used as inputs to the 
neural networks, each with thirty hidden nodes and a 
single output. A Markov chain of networks was gen
erated using the BNN software package noted above, 
with a training sample consisting of 1000 events each 
of signal and background. Five hundred iterations, 
of twenty MCMC steps each, were used. Neural 
network parameters were stored after each iteration. 
The results of the training are shown in Fig. 1. For 
both the signal and background samples, the net
work outputs, averaged over the last 100 networks, 
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Fig. 1. The output distributions of an ensemble of neural networks, generated using a MCMC method, for Monte Carlo signal 
(single top - tqb channel) and background (Wbb) events. The thick histogram is the distribution of the network output averaged 
over the last 100 of a sequence of 500 networks, sampled from the posterior density p(w\t, x). 

are shown superposed on the output distributions of 

each of the individual networks. As one might have 

expected, the distributions of the 100 networks show 

some scatter. One expects, however, the Bayesian 

average to be a more robust estimate of the t rue sig

nal class probability. 

6. C o n c l u s i o n s 

Bayesian learning of neural networks could take us 

another step closer to realizing optimal and robust 

results in classification problems. It also allows a 

fully probabilistic approach with proper t reatment 

of uncertainties. But , of course, the key question is: 

does the averaging help? The answer, in principle, is 

yes. More to the point, we have found the answer to 

be yes, in practice. Figure 1 is, in effect, a compari

son of 100 single neural networks with the Bayesian 

average over all of them. A study of these distri

butions reveals tha t the area under the ROC curve 

(the plot of the signal efficiency vs. background effi

ciency) is larger for the "Bayesian-averaged network" 

than for any one of the individual networks, which is 

an indication tha t the averaging helps. 

The BNN method, however, is computationally 

demanding. In the example described above, 10 

hours were required to sample 10,000 points, t ha t is, 

networks, from the posterior density. A large number 

of points is needed so tha t one can abstract a subset 

of (several hundred) networks tha t are approximately 

statistically independent. 

We have s tar ted exploring the application of the 

BNN method to the analysis of particle physics data . 

The initial results, as illustrated by the example of 

the single top quark search by the D 0 Collaboration, 

at Fermilab, are very promising. 
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We report on an empirical comparison of several multivariate classification techniques (e.g., random forests, Bayesian 
classification, support vector machines) for signal identification; our experiments use K* mass as a test case. We show 
1) the effect of using different cost matrices in generalization performance and 2) how information about physical 
constraints obtained from kinematic fitting procedures can be used to enrich the original feature representation. The 
latter step is done through a derivation of A particle parameters (e.g., momentum, energy, and mass) using kinematic 
fitting; the degree of fit using a x2 statistic is used as a new feature. Overall, our goal is to investigate how to 
incorporate physical constraints to improve classification performance. 

1. Introduction 

The purpose of this analysis is to gain insight on 
how to exploit multivariate techniques and physi
cal constraints for signal classification and enhance
ment. Traditional techniques that exploit physical 
constraints use "kinematic fitting" to improve mea
sured quantities and to provide a means to cut back
ground. We propose an additional step where a mul
tivariate classification technique is invoked on Monte 
Carlo data to generate a predictive model. The 
model is used to separate signal events from back
ground events. Applying the model to real data re
sults in a (predicted) signal distribution where ev
idence for the existence of a particle of interest is 
enhanced. 

1.1. The Physical Experiment 

We begin by describing the physical experiment. A 
broad band energetic photon beam (7) hits a liq
uid hydrogen target, the proton (p). The photon 
interacts and produces a number of charged and un
charged particles. We will look for the following re
action: 

7 P - AJT+ (1) 

7P -> AK+TT° (2) 

7 P -> i f + pTT-TT0 (3) 

Our data set contains information about the in
cident photon (7), and three charged particles, K+, 
p, and 7T~. While the charged particles are detected, 
the uncharged ones are not seen, and must be in
ferred from the missing mass (e.g., n°). 

For each detected charged particle we measure 
the momentum p and the polar angle 8 and azimuthal 
angle (p. From these quantities we can construct the 
three vector, p = \px + jpy + kpz where i, j and k 
are the unit vectors. We also measure the Time-of-
Flight (TOF). From the TOF and momentum we can 
calculate the mass m of the particle. Finally, for each 
particle, we are able to construct a 4-vector, (E,p), 
where E = y/p2 + m2. 

In this particular paper we focus on identifying 
the presence of K*+ after the photon-proton interac
tion (7P). This is in practice not of real interest, but 
stands as a convenient test case to assess the value 
behind multivariate classification techniques. Invok
ing these techniques is justified by the inherent dif
ficulty in separating signal events from background 
events (many background reactions produce similar 
measured particles). 
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1.2. Using Kinematic Fitting and 
Physical Constraints 

At first we applied the technique of kinematic 
fitting1. This technique takes advantage of con
straints such as energy and momentum conserva
tion to improve measured quantities and to provide 
a means to cut background. We have chosen to use 
the Lagrange multiplier method. First, the unknown 
variables are divided into a set of measured variables 
(77) and a set of unmeasured variables (£) such as 
the missing momentum or the 4-vector for a decay 
particle. For each constraint equation a new variable 
Xi is introduced. These variables are the Lagrange 
multipliers. To find the best fit we minimize 

X2 (??, £ A) = (fh - vfV-'iffo -ff)+ 2XTf (4) 

by differentiating \ 2 with respect to all the vari
ables, linearizing the constraint equations and iterat
ing. Here 770 is a vector containing the initial guesses 
for the measured quantities, V is the covariance ma
trix comprising the estimated errors on the measured 
quantities, and / represents the constraints such as 
energy and momentum conservation. 

1.3. Generating Confidence Levels 

For our purposes, we are interested in using kine
matic fitting to obtain a confidence level (goodness 
of fit to the data). As an example, let's look into the 
fitting procedure as applied to the proton (p) and pi-
minus (n~) tracks with the A hypothesis. Explicitly, 
the constraint equations are as follows: 

Ep + Ev — E\ 

Pp+Pn- PA 

f= (y - y*)pl - (z - Z*)PI =K /CN 
1 (x - xjpl -(z- z„)pl U' l > 

{y - yP)pp -(z- zp)py 
_ (x - xp)p

z
p -{z- zp)p

x
p _ 

The x2 distribution for this fit is the result of a 
fit to the histogram using the functional form of a \ 2 

distribution with two degrees of freedom plus a flat 
background term. Explicitly, 

f(x2) = Ye~P2x2/2 + p^ (6) 

P2 is a measure of how close the distribution in the 
histogram is to an ideal \2 distribution, for which 
P2 = 1. The Confidence Level (CL) is the primary 

measure of the goodness of fit to the data and is given 
by the equation 

/>0O 

CL= f(z;n)dz (7) 

where f(z : n) is the \ 2 probability density function 
with n degrees of freedom (where we have assumed 
normally distributed errors). 

2. Using Multivariate Classification 
Techniques 

In addition to the traditional approach of kinematic 
fitting, we suggest using multivariate classification 
techniques for signal identification and enhancement. 
Our approach consists of using the confidence levels 
(goodness of fit to the data described above) as new 
features into a classification problem. The resulting 
model implicitly uses the kinematic fitting results to 
further enhance the signal of interest (e.g., to en
hance K*+). 

2.1 . The Classification Problem 

We begin by giving a brief overview of the clas
sification problem 2' 3. A classifier receives as in
put a set of training examples T = {(x, y)}, where 
x = (01,02, • • • i an) is a vector or point in the input 
space {x € X), and y is a point in the output space 
{y £ y)- We assume T consists of independently 
and identically distributed (i.i.d.) examples obtained 
according to a fixed but unknown joint probability 
distribution. The outcome of the classifier is a func
tion h (or hypothesis) mapping the input space to 
the output space, h : X —> y. Function h can then 
be used to predict the class of previously unseen at
tribute vectors. 

2.2. Data for Analysis 

In our study, the output variable for each event indi
cates if the photon-proton interaction resulted in the 
production of K*+ (positive event) or not (negative 
event). Each feature vector x is made of 45 features. 
The first 4 features are confidence level numbers de
rived from the kinematic fits (Section 1.3). The next 
feature corresponds to the total energy. The last 40 
features characterize 8 particles (3 of them detected 
and 5 inferred). Each particle is represented by en
ergy E, momentum p, polar angle 0, azimuthal angle 
cp, and mass squared m2. 
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Table 1. Columns 2-3: Mean accuracy performance (Ace.) with different misclassification costs. Numbers en
closed in parentheses represent standard deviations. Columns 4-5: Mean false positive rates (FPR) with different 
misclassification costs. 

Analysis Technique Ace. Equal Costs Ace. Unequal Costs FPR Equal Costs F P R Unequal Costs 

Naive Bayes 85.59 (0.86) 86.79* (0.78) 20.1 6.8 
Support Vector Machines 87.69 (0.70) 88.29 (0.51) 18.7 1.6 

Multilayer Perceptron 88.57 (0.85) 90.58 (0.73) 14.3 3.0 
ADTree 88.90 (1.14) 90.81* (0.96) 11.5 3.7 

Decision Tree 89.23 (0.93) 91.97* (0.87) 12.7 4.7 
Random Forest 90.02 (1.12) 92.34* (0.95) 11.6 4.3 

Our data set is derived using the CEBAF 
large angle spectrometer (CLAS). We gathered 1000 
Monte Carlo signal events and 6000 Monte Carlo 
background events. The real data comprised about 
13,500 events. 

2.3. Using Monte Carlo Data and 
Variable Misclassification Costs 

Our first set of experiments was limited to Monte 
Carlo data for which the value of the output vari
able of each event is known. Our study compared 
the performance of several classification algorithms 
in terms of predictive accuracy. We employed several 
algorithms including decision trees, support-vector 
machines, random forests, etc. 

First we reduced the original size of the input 
space through a feature selection process, using in
formation gain as the evaluation metric 3. For each 
algorithm we varied the amount of misclassification 
costs. Table 1 shows our results. The first column de
scribes the multivariate classification techniques used 
for our experiments. The second column shows accu
racy estimations with equal misclassifications costs; 
the third column shows accuracy estimations where 
the cost of a false positive is 3 times more expen
sive than the cost of a false negative. Each result 
is the average of 5 trials of 10-fold cross validation 
each 3. An asterisk at the top right of a number 
implies the difference is significant at the p = 0.01 
level (assuming a two-tailed t-student distribution). 
Overall there is a significant increase in performance 
by adding a penalty when mislabelling background 
events as target events. In addition, Table 1 shows 
how for this particular domain, varying misclassifi
cation costs can yield a significant reduction in the 
false positive rate (FPR %, columns 4-5). 

Our results denote a preference for the strategy 

behind "random forests". We have observed similar 
results in other experiments. Random forests have 
the ability to reduce the variance and bias compo
nents of error by voting over multiple decision trees 
using on each tree a random selection of features 4. 
They exhibit robust behavior against problems with 
multiple systematic errors as is common to problems 
in particle physics. 

2.4. Signal Enhancement on Real Data 

Our next set of experiments used real data for which 
the value of the output variable of an event is un
known. In this case the problem is not to maximize 
accuracy performance (i.e., minimize a risk func
tional such as zero-one loss) but instead to provide 
enough evidence to believe that the signal event oc
curred multiple times during the photon-proton in
teraction. The goal is to find a technique able to 
enhance the signal distribution over the background 
distribution. 

Our approach to deal with the signal enhance
ment problem is as follows. Applying a multivariate 
technique M on Monte Carlo data yields a predictive 
model \IM- One can then apply KM on the real data 
to generate a histogram for the predicted signal dis
tribution. If model HM exhibits good performance, 
we expect the histogram generated through / IM to 
provide evidence for the occurrence of the desired 
signal. 

To illustrate our approach Figure 1 (left) shows 
a histogram generated with all real data; the a;-axis 
corresponds to the squared mass (TO2) of the sig
nal particle (K*+). Figure 1 (middle) shows a his
togram generated by taking only those events pre
dicted as signal on the real data by a classifica
tion model. Kinematic fitting variables were part 
of the feature vectors. We employed random forests 
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Raw Real Data Kinematic Fitting + Classification Kinematic Fitting + Cost Classification 

mass2 

Fig. 1. Histograms using (left) real data (middle) predicted signals on real data by random forests, and (right) predicted signals 
on real data by random forests using cost-sensitive information. The x-axis corresponds to K+* squared mass (units are in :)-

as the classification technique; the derived informa
tion helps isolate and enhance the signal distribution. 
Figure 1 (right) shows the corresponding histogram 
using random forests with cost sensitive classifica
tion and kinematic fitting variables. The resulting 
histogram shows an even larger enhancement over 
the signal distribution. 

To quantify the difference between Figure 1 
(middle) and Figure 1 (right), we computed the dis
tance between each of these empirical distributions. 
We used relative entropy 5 if (/1II/2) to compute the 
distance between probability distributions /1 and /2, 
where 

K(h\\f2) si (8) 

and index i varies along the values of the ran
dom variable. In our case, let fr be the distribu
tion for the real data (Figure 1 left), fkc be the 
distribution for kinematic fitting and classification 
(Figure 1 middle), and fkcs be the distribution 
for kinematic fitting and cost sensitive classification 
(Figure 1 right). We found empirically the following 
results: K(fr\\fkc) = 0.2798; K(fr\\fkcs) = 0.4048. 
This indicates the distribution obtained by combin
ing kinematic fitting with cost-sensitive classification 
yields a new signal distribution that has a larger 
separation from the original real data (in terms of 
relative-entropy). 

3. Conclusions 

Our study suggests generating a predictive model 
over Monte Carlo data to produce a distribution over 

real data where a signal of interest is enhanced. Our 
model integrates information about physical con
straints using kinematic fitting. 

Our current work adds confidence levels derived 
from kinematic fitting as new features for classifica
tion. One unexplored area is to determine the de
gree to which multivariate classification techniques 
contribute to signal enhancement without any infor
mation derived from kinematic fitting. It is impor
tant to understand how current classification tech
niques can exploit information derived from physical 
constraints. 
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I discuss two workshops held in 2004 and 2005 relevant to the software environment for statistical analysis in physics 
and astrophysics. The first largely explored the R environment used by statisticians and the Root environment widely 
used in particle physics and related fields. The second was a step towards starting a repository for software useful in 
statistical analyses for these fields. I also discuss some of the statistical software resources on the web of relevance to 
physicists. 

1. Introduction 

The work behind this talk grew out of the PHYS-
TAT2003 conference, where Louis Lyons invited pro
posals for focused PHYSTAT workshops. After my 
interactions with statisticians at PHYSTAT2003, the 
first thing I wanted was to improve the environment 
for doing particle and cosmic ray physics analysis 
using statistical tools. I particularly wanted to en
hance what I already had available in Root1, which is 
our everyday working environment. I clearly suffered 
from R envy. The R language and environment2 

is heavily used by statisticians. The second thing 
I missed was a web page for physicists of pointers 
to implementations of statistical methods. And the 
third thing I felt we lacked was a web site to col
lect new statistical software oriented to the needs of 
physics. The first and the third of these were sub
jects of workshops, and the second I started work on 
myself. I'll discuss each in turn. 

I must apologize if I didn't invite you personally 
to these workshops. Each workshop had a limited 
goal: to try to do work in a day or two (or at least 
to start). To me, the right way to do that is to get 
at least some of the right people in a room. Thus, 
the workshops were designed with small attendance, 
to concentrate on discussion rather than hearing a 
parade of presentations. I'll leave you to judge how 
successful we were. 

2. R and Root 

In 2004 I organized a PHYSTAT workshop3 at MSU 
on statistical software, concentrating mainly, be

cause of those able to attend, on Root and R. Two 
developers of major software systems attended: Luc 
Tierney of the R core development team (thanks to 
valuable contacts by Jerry Friedman, Nancy Reid), 
and Rene Brun, lead developer of the Root sys
tem. Astronomers also attended: Eric Feigelson, 
who developed the StatCodes4 web site and who is 
working on the virtual observatory statistics project 
VOStat5, and Tim Beers who developed the Rostat6 

robust statistics package. Physicist/developers in
cluded Harrison Prosper, Scott Snyder, Sherry Tow
ers (TerraFerMa7), and three physicist R users from 
Fermilab: Adam Lyon, Jim Kowalkowski, and Marc 
Paterno. 

For those not familiar with Root, I would de
scribe its key features as follows. It provides a GUI 
for publication-quality graphics and for making the 
cuts (data sub-region selections) we physicists are 
so fond of. It also provides I/O which scales to 
petabytes data sets consisting of collections of files 
containing event data (with each event individu
ally tree-structured). Root uses a histogram as its 
base metaphor. Its primary interface is a command 
prompt, which accepts C++ as a language for in
terpreted and compiled macros. Root is extensible, 
though most might not say "easily." Root contains 
sophisticated nonlinear fitting and reporting of mul
tidimensional parameter errors. Its collection of sta
tistical algorithms is small, but growing. For exam
ple, robust (to outliers) curve fitting was recently 
added. Anna Kreshuk's talk at this conference gives 
more information on recent developments in Root. 

For those not familiar with R, it is an elegant 

161 

mailto:linnemann@pa.msu.edu


162 

data manipulation language (R is a gnu implemen
tation of the S language8), embedded in an environ
ment rich in statistical functionality. The user sees 
a command prompt. Macros in R are interpreted, 
but heading toward byte-compilation. R is not GUI-
oriented, though hooks are being built: most users 
are satisfied with the command line. However, S+, a 
commercial9 implementation of the S language, does 
provide a rich GUI interface. Most S or S+ code runs 
happily in the R environment. 

R is described by statisticians as a quick and 
easy interactive analysis tool, and is indeed the stan
dard tool of professional research statisticians. So if 
a statistician suggests a method to you (for example 
bootstrapping, the lasso, bagging, boosting, cross-
validation etc.), it's probably implemented in R. The 
R environment has as built in functions a large range 
of sophisticated statistical tests and graphics, many 
of which are not in common physics usage. 

R has links to further multidimensional graph
ics (Ggobi), and a broad package library10, with 
trivial download mechanism. R allows straight
forward extensibility to new packages in R or C 
code. Functions and packages are often very fast 
if they are R-wrapped C code. R keeps data in 
virtual memory Data Frames, and uses vectors as 
its basic metaphor. R has interfaces to postgres, 
mysql, and other databases, and has parallel com
putation under development. While both Root and 
R are used outside their home communities, R and 
S documentation2, 8 is commercially published and 
available at Amazon. 

Susan Holmes' talk at this conference discusses 
data visualization largely using R tools, and Marc 
Paterno's talk provides further detail on R use from 
a physicist's perspective. Also useful is Adam Lyon's 
talk11 at the MSU workshop. 

There were three main results of the workshop. 
Eric Feigelson was confirmed in his initial inclination 
to use R for the basis of the VOStat project. Adam 
Lyon, encouraged by discussions with Luc Tierney, 
wrote a fairly general Root Tree reader for R. Rene 
Brun was perhaps further interested in R, encour
aged on his existing path of adding statistical func
tionality to Root, and, I hope, inspired by R's elegant 
package mechanism10. Rene and I at this conference 
celebrated (?) a quarter century of my encouraging 
Rene to do even better than he has in providing an 
everyday environment for particle physicists. 

3. Statist ical Resources on t h e Web for 
Physicists 

My second topic grew out of preparation for the 
software workshop just described. I wanted to sur
vey what statistical resources were available on the 
web for physicists. Having a few lazy bones in 
my body, I wanted to know where I might find 
useful statistical software without having to write 
it all from scratch. In the process I developed a 
page of links at ht tp: / /www.pa.msu.edu/people/ 
l innemann/s ta t_resources .h tml . 

I definitely don't want to claim there had been 
no effort in particle physics before mine. But to my 
shock, this is now the largest such page I know of. 
Others who had preceded me in HEP included Glen 
Cowan, and the CDF statistics committee. But the 
reason for the lack of pointer pages is, I believe, the 
lack of actual web statistics-oriented resources spe
cific to physics. 

Here again I suffer envy of other fields. In par
ticular, astrophysicist Eric Feigelson has done an ex
cellent job of surveying statistical resources at his 
StatCodes site4. Its point of view is quite gen
eral in fact - physicists should most certainly look 
there - though of course he is particularly interested 
in items relevant to astronomy and astrophysics, a 
few of which have found less application in particle 
physics. Tom Loredo12 also has a very useful collec
tion of links. Not surprisingly, there are many useful 
sites from statistics, particularly StatLib13. There 
are also quite a number of useful resources on mul
tidimensional analysis which I included on my page. 
I'm sure many of you have your own favorite links to 
software, and I would be delighted for you to send 
them to me. I have avoided most references to com
mercial software, mainly because I have seldom seen 
my physicist colleagues use (i.e. pay for) commer
cial analysis software. Astrophysicists, however, find 
their productivity gains well worth the cost of the 
commercial IDL 14 package for analysis, interpola
tion and manipulation of 2 and 3D image data; it 
contains substantial statistical functionality as well. 

4. Towards a Repos i to ry for Stat is t ical 
Software for Physicists 

One conclusion I drew after searching for physics-
oriented statistical resources was that I was also suf
fering from a serious case of repository envy. As-
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tronomy has a number of user-contributed reposito
ries under way for analysis and statistical codes, for 
example those maintained by the Astronomical Soft
ware Directory Service15 and NASA's HEASARC16. 
Even biology has bioconductor17, a large collection of 
R software for bioinformatics. There are a few HEP 
repositories18, but there is little physics-oriented 
analysis or statistical software on the web at present. 
In some ways this is surprising, as the web was in
vented for HEP. Assessing user interest in such a 
repository was the motivation for a 2005 workshop19 

Mark Fishier and I organized at Fermilab. 
Behind the archive is Mark Twain's notion that 

if you make it sufficiently attractive for someone to 
write statistical code, they might actually do it for 
you20. Louis Lyons advised me that in giving this 
talk, I was coming to the right place to find software 
writers. And when I asked who in the audience had 
written statistical software of use to someone else, a 
goodly majority indeed raised their hands. I know I 
would find it useful to have access to the programs 
used to produce results for many of the talks at this 
conference. 

The basic motivation for a software repository 
is sharing: don't reinvent the wheel; improve it. 
A repository requires some implied longevity which 
seems best met by having an organization rather 
than an individual as sponsor. Fermilab is poten
tially interested in such a role. Clearly a web inter
face is needed for upload, search, retrieval. One can 
envision a hierarchy of purposes, ranging from an 
archive for source code of software associated with 
physics or conference papers, through a download
able package library (either of stand-alone packages, 
or packages adapted to particular frameworks), to 
a component library with various language or web 
interfaces, possibly with distribution of binaries for 
various platforms. 

A Statistical Software Archive. The sim
plest repository function discussed at the work
shop was an open archive (roughly analogous to 
arxiv.org). If you publish a statistical calculation 
in refereed physics papers or at statistical confer
ences such as this one, you could put the code in the 
archive, and reference it. With an archival reposi
tory available, one could hope that this becomes as 
much a part of the culture as submitting preprints to 
arxiv.org has become. Archiving offers the potential 
of substantial benefit for a modest effort. 

The "guarantee" for users would be intention
ally weak: once, the code compiled and ran on some 
machine and produced useful results. To allow reuse 
of code with credit to authors, the minimal infor
mation supplied would be the author, title, and a 
one-line explanation of purpose. Keywords and pos
sibly the experiment to which it was relevant would 
make it easier to locate. Your grad student could 
start a project here, rather than from scratch, and 
possibly compare methods used by different exper
iments. Documentation would be encouraged (but 
not quite required). Version tracking would need to 
be supported by the system even at this basic level. 

There are many candidates for software in such 
an archive: calculations of significance, limit setting 
programs, and goodness of fit tests come to mind, as 
does software for studying the behavior of statistical 
methods. In these areas, competing procedures exist: 
some are published, some not. Actual programs are 
very hard to find: you have to know of the method, 
and ask its author personally; at best, you might find 
some such code in your physics collaboration's CVS 
repository. Only a few such programs have public 
web interfaces (DO or Babar have some). 

A Package Download Site. A more sophis
ticated use of a repository would be software writ
ten explicitly for re-use (rather than archived for the 
historical record). Packages of this kind might be 
stand-alone programs, or packages for frameworks 
such as R or Root. Here there is a real need for 
well-designed conventions to support portability and 
simplify building and upload. Documentation now 
also becomes a vital issue, including of course any 
published references for the methods used. In this 
context, R's package mechanism is particularly ad
mirable. Attaining the same level of simplicity for 
user and author for Root add-ons would be a real 
achievement. A repository sponsor can add real 
value by providing proper repository design to help 
authors reach users simply and effectively. Further 
value could be added by choosing packages (possibly 
even those originally submitted only for archiving) 
which are of sufficient interest to maintain for reuse 
at this level, and by providing assistance to authors 
on issues of portability, numerical techniques, base 
library choice, or other coding practices. 

Candidates for packages of this type also spring 
readily to mind: multidimensional analysis pack
ages such as Sherry Towers' TerraFerMa7 and Ilya 
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Narsky's StatPatternRecognition (described at this 
conference). Both are currently stand-alone pro
grams rather than framework packages. 

A Linkable Toolkit. An even higher level of 
functionality is also conceivable, by working from the 
basis of such a repository. One could imagine pro
viding a toolkit library. One might aim to support 
writing "toy Monte Carlo" or ensemble test writing 
by providing a coherent library, perhaps building on 
the gsl (Gnu Scientific Library), or on the mathcore 
or mathmore libraries envisioned within Root. This 
would involve interacting with users to assess exist
ing tools and designing and supplying missing ones. 
One might repackage existing programs as frame
work packages to enhance usability. Quality control 
(robustness, accuracy, etc) become critical at this 
level of ambition. Personnel for design, coding, and 
maintenance would be required. One might also pro
vide a computation service for some of the simpler 
algorithms, with web data entry via forms or ASCII 
data files. 

Plans. The main outcome of this workshop 
was a consensus statement (included here as an Ap
pendix). Based on this consensus, we had further 
negotiations with the Fermilab computing division 
and carried forward discussion to this conference. 
Marc Paterno of Fermilab attended this conference 
in large part to assess the interest of a wider com
munity in the repository. At this PHYSTAT20O5 
conference, Marc Paterno, Louis Lyons, and I have 
discussed these ideas with many people. These con
sultations uncovered potentially interesting synergies 
with Root and the Cedar physics archive in the UK. 
We also found that considerable interest was ex
pressed for the archive, and were strongly encouraged 
to get started and see how things evolve once contri
butions begin arriving. Thus, we are in the process of 
preparing a proposal to the Fermilab Computing Di
vision to support some version of an archive. Let us 
know if you think its worthwhile, and pass along any 
advice you might have. We are currently thinking 
about the level of manpower required to get started, 
and working through computer security, copyright, 
and license issues associated with such a venture. 

In the end, it is hardly our vision of the repos
itory and how it might be used that matter. What 
counts is how the community chooses to use it, and 
our main motivation is to provide a forum for un
leashing the creativity of that community. Whether 

it houses mathematica, mathcad, or matlab software 
for producing statistical figures for conference pa
pers; C+-1- or Fortran routines used in Physical Re
view or Physics Letters or NIM articles; mass fitters, 
deconvolvers, goodness of fit or significance or limit 
calculators, or cunning ways of telling signal from 
background; whether submissions are programs or 
packages for R or Root; whether written in Java, C, 
C++ , perl, ruby, or python; or entirely other things, 
depends on what the community finds most useful. 

5. The Reproducible Research Ideal 

Reproducible Research21 is an interesting concept in 
some ways related to the repository. The ideal is that 
when you write a paper, you save (in a tar archive, 
say) the entire environment necessary for creating 
the paper through scripts, and the whole paper and 
its figures and tables are generated by executing a 
single high-level script. This tar archive would of 
course be an excellent submission to the software 
repository we have discussed. 

We all know the kind of problems that led to 
these thoughts: you ask a graduate student to pick 
up a project and suggest one of your papers as a 
starting point, but the student finds it remarkably 
difficult to actually reproduce the plot you suggested. 
To do so requires having the same data set you used 
several years ago, and to use the programs with all 
the same settings. To achieve a reasonable approxi
mation to this ideal requires as a minimum a power
ful script-oriented method of producing figures and 
tables (such as R or Root) and all the data used in 
the paper. It also implicitly implies a data set of 
rather modest size, and a stable set of tools. Other
wise you'd have to save the entire contents of your 
computer each time. 

More is required, however: directory conven
tions, makefiles, and many other details should be 
conventional and stable. Arxiv.org provides a subset 
of such an environment: you know that you will be 
able to rebuild a pdf file from the latex source and 
eps files if you meet arxiv's requirements. This ideal 
is achievable for most (not all) plots shown at this 
conference, and for most significance and limit cal
culations in our physics papers. It is problematic for 
large HEP data sets, which are not publicly avail
able and not necessarily permanently archived with 
full version control. It is also problematic for analy-

http://Arxiv.org


165 

ses which are long in duration (months to years, not 
hours to days). This is exacerbated when multiple 
analyses are combined into a single publication, as is 
often the case in large physics collaborations. 

Still, the reproducible research ideal is well worth 
striving toward. Those who have created a research 
environment fully supporting the ideal describe it as 
a discipline with more benefits to authors than to 
readers wishing to build on the published research. 

6. Conclusions 

To summarize, I'd like you to take away three main 
points. First, R has many intrinsic attractions, and 
is a window to the statistics community. It should be 
better known in physics and astrophysics, and it is 
now possible to read Root trees in R. I would person
ally be delighted if everything in R appeared in Root, 
my everyday environment. Second, I started a page 
of web links to statistical software resources relevant 
to physicists and astrophysicists. If you find it useful, 
tell your colleagues, link to it, and more importantly, 
help me improve it. Third, we are trying to start a 
repository for statistics-oriented software of use to 
physicists and astrophysicists. I'd appreciate your 
discussing this repository within your collaboration, 
and encourage us (and the Fermilab Computing Di
vision) if you think it should be pursued. And we 
hope you will also contribute software to the reposi
tory. 

Appendix: Consensus Statement from 
the 2005 Fermilab Workshop 

Following is a slightly abbreviated version of the con
sensus statement resulting from the workshop: 

Currently, statistical tools are in use by individ
ual physicists, and within collaborations. Their ulti
mate purpose is to make the best use of the data col
lected by collaborations. However, their effectiveness 
is limited by the lack of a straightforward mechanism 
for the community to share software on a wider ba
sis, learn best practice from one another, and avoid 
unnecessary re-development of similar tools. Some 
tools are of general use (for example event classi
fiers, or limit calculation programs). These codes 
often embody standard practices within a collabo
ration, recent progress of understanding within our 
field, or implementation of important ideas devel
oped by statisticians or within the machine learn

ing communities. Other programs encode hard-won 
expertise in handing particular situations. Sharing 
such codes across research groups and collaborations 
contributes directly to the diffusion of such knowl
edge, and indirectly to improvement of our under
standing of our data and the training of students 
by facilitating comparison of methods. A repository 
could provide, as objects of study and understanding, 
working codes which have been tested under realistic 
conditions. Such codes would also provide a point of 
departure for improvements, rather than having to 
first re-implement present ideas for lack of publicly-
accessible code. 

What sort of repository would support such ef
forts? We suggest a phased approach. The first 
and perhaps most important step would be a very 
open archival repository, where essentially anyone 
could upload code felt to be useful for statisti
cal tasks in physics experiments. The repository 
should make it straightforward to store software used 
to perform calculations for a paper, and refer to 
those calculations in the publications: "we calcu
lated the upper limit using a Bayesian technique as
suming a flat prior in the cross section [17]", and 
reference [17] might read "C. Calvin & H. Hobbes, 
www.phystat.org/05/07/23/0013/, version 3". The 
repository would provide some basic expectations on 
what a submitting author should provide, but the 
absolute requirements would be purposely minimal, 
in order to encourage submission. 

A submission should minimally include authors, 
an email contact address, a tar archive with code and 
a brief text description of what the submission does. 
There would be a possibility to provide keywords and 
an experiment of origin, but not a requirement. A 
read-me file would be encouraged to include docu
mentation and the platform(s) on which the code 
had run. Overall, the effort required for submission 
should be less than or comparable to submitting a 
paper to arxiv.org. 

Downloading code from the archive should be 
similarly straightforward. Search facilities from the 
web might start with a simple web listing of entries 
with a one line description, but could become more 
sophisticated as more entries became available. At
taching user feedback is another possible evolution 
path. 

Fermilab would be a natural sponsor of such a 
repository, assuming that it could provide the desired 
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degree of openness. The lab hosts experiments which 

are currently producing much innovative statistical 

software, and the lab intends to be a center for on

going research in particle and astro-particle physics. 

This is an important activity supporting da ta analy

sis, which does not require proximity to the physical 

location of the experiment. And there are members 

of the computing division with professional interests 

in this area. 

A longer term vision of the repository goes be

yond passively archiving code. One value-added ac

tivity would be to classify the submissions to distin

guish archival entries from actively maintained pack

ages. Capture of user assessment of such packages 

might be particularly useful. Packages could also 

benefit from expertise by improving the efficiency or 

portability of the submit ted code. Design expertise 

might provide s tandards for packages which would 

make them more readily usable. A particular ex

ample of interest is the elegant R package mecha

nism: it would be a real achievement to have de

sign s tandards which would allow a similar ease of 

package creation and import within the Root frame

work. Standards might include naming conventions, 

package directory structure, allowed base libraries, 

or build tools. Other activities might include mining 

the submissions for likely contributions to a linkable 

library (for example mathmore packages), identify

ing and writing code for missing functionality, inte

grating related packages, soliciting and supporting 

extensions of existing code (justifiable by a broader 

use base than a single experiment), or actively look

ing for interesting software produced by the statisti

cal software community and providing web interfaces 

or language translation wrappers to support use by 

the physics community. Another possibility is main

tenance of a list of such software, perhaps building on 

the software link web site developed by J im Linne-

mann. Such value-added activities would best evolve 

over t ime as the use of the repository grows. 

We intend to submit soon a more formal request 

to Fermilab management, and to approach large col

laborations to solicit their support for such an en

deavor. 

A c k n o w l e d g m e n t s 
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A w o r d o n r e f e r e n c e s 

I have omit ted the initial h t t p : / / in all the 

web references. Many more links are available 

at: h t t p : / / w w w . p a . m s u . e d u / p e o p l e / l i n n e m a n n / 

s t a t _ r e s o u r c e s . h t m l . 

R e f e r e n c e s 

1. roo t . cern. ch. This site contains links to source 
code, online documentation and tutorials. 

2. www.r-project.org; Venables and Smith, An In
troduction to R, Network Theory Limited (2001); 
Dalgaard, Introductory Statistics with R, Springer 
(2002); Everitt, An R and S-Plus Companion to Mul
tivariate Analysis, Springer (2005); zoonek2.free. 
fr/UNIX/48_R/all.html (R tutorial). 

3. user.pa.msu.edu/linnemann/public/workshop 

4. astrostatistics.psu.edu/statcodes 

5. astrostatistics.psu.edu/vostat 

6. Beers, T.C., Flynn, K., Gebhardt, K., "Measures 
of Location and Scale in Clusters of Galaxies. I. 
A Robust Approach," 1990, Astronomical Journal, 
100, 32; see also Hoaglin, Mosteller, Tukey, Un
derstanding Robust and Exploratory Data Analysis, 
Wiley(2000). There is no Rostat web site. 

7. www-dO.fnal.gov/$\sim$smjt/multiv.html 
8. Becker, Chambers, and Wilks, The New S Language, 

Chapman and Hall (1988); Chambers and Hastie, 
Statistical Models in S, Chapman and Hall (1992); 
Venables and Ripley, S Programming, Spring (2000); 
Chambers, Programming with Data: A Guide to the 
S Language, Springer (2004). 

9. www.insightful.com 

10. cran.us.r-project.org 

11. user.pa.msu.edu/linnemann/public/workshop/ 

rlnHep.ppt 

12. www.astro.Cornell.edu/staff/loredo/statpy 

13. lib.stat.cmu.edu 

14. www.rsinc.com/idl/ 

15. asds.stsci.edu/packages.html 

16. heasarc.gsf c.nasa.gov/docs/software. html 

17. www.bioconductor.org 
18. ph - s f t .web .ce rn .ch /ph-s f t , 

www.freehep.org, cepa.fnal.gov/CPD, www.cedar, 
ac.uk, www2.slac.Stanford.edu/computing/top_ 
pages/software.htm 

19. whcdf 03.fnal.gov/PHYSTATworkshop, 
user.pa.msu.edu/l innemann/public/workshop/ 
Fermi_Program.htm 

20. Mark Twain, Adventures of Tom Sawyer (1876); see 
how Tom handles the chore of painting the fence 
around his house. 

21. www. s ta t .Washington.edu/ j aw/j aw.research. 
reproduc ib le .h tml 
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We outline our first steps towards marrying two new and emerging technologies; the Virtual Observatory (e.g, Astro-
Grid) and the computational grid. We discuss the construction of VOTechBroker, which is a modular software tool 
designed to abstract the tasks of submission and management of a large number of computational jobs to a distributed 
computer system. The broker will also interact with the AstroGrid workflow and MySpace environments. We present 
our planned usage of the VOTechBroker in computing a huge number of n-point correlation functions from the SDSS, 
as well as fitting over a million CMBfast models to the WMAP data. 

1. Introduction 

Over a petabyte of raw astronomical data is expected 
to be collected in the next decade (see Szalay & Gray 
2001). This explosion of data also extends to the 
volume of parameters measured from these data in
cluding their errors, quality flags, weights and mask 
information. Furthermore, these massive datasets fa
cilitate more complex analyses, e.g. nonparametric 
statistics, which are computationally intensive. A 
key question therefore is: Can existing statistical 
software scale-up to cope with such large datasets 
and massive calculations? We address this question 
here. 

We focus here on two exciting new technologies, 
namely the Virtual Observatory (VO) and computa
tional grids. However, we point the reader to Jim 
Linnemann's paper in these proceedings for an ex
cellent summary of existing statistical software pack
ages in physics and astrophysics. We also direct the 
reader to the recent ADASS conference proceedings 
and the "Mining the Sky" proceedings (www.mpa-
garching.mpg.de/cosmo/). 

2. N—point Correlation Functions 

As a case study of the types of massive calcula
tions planned for the next generation of astronom
ical surveys and analyses, we discuss here the galaxy 
n-point correlation functions. These have a long 
history in cosmology and are used to statistically 
quantify the degree of spatial clustering of a set of 
data points (e.g. galaxies). There is a hierarchy of 
correlation functions, starting with the 2-point cor
relation function, which measures the joint proba
bility of a data pair, as a function of their sepa
ration r, compared to a Poisson distribution, i.e., 
dP12 = N2dVi dV2(l + £(r)), where dP12 is the joint 
probability of an object being located in both search 
volumes dv\ Sz dV2, and N is the space density of 
objects. £(r) is the 2-point correlation function and 
is zero for a Poisson distribution. If £(r) is positive, 
then the objects are more clustered on scales of r 
than expected, and vice versa for negative values. 

The next in the series is the 3-point cor
relation function, which is defined as dPi23 = 
N*dVi dV2dV3(l + £12(7-12) + £23^23) + £13(7-13) + 
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623(^12, r23,ns)), where £12, £12, £12 are the 2-point 
functions for the three sides (ri2, r23, 7-13) of the tri
angle and £123 is the 3-point function. Likewise, one 
can define a 4-point, 5-point etc., correlation func
tion. The reader is referred to Peebles (1980) for a 
full discussion of these n-point correlation functions 
including their importance to cosmology (see also the 
recent lecture notes of Szapudi 2005). We also refer 
the reader to Landy & Szalay (1993) and Szapudi & 
Szalay (1998) for a discussion of the practical details 
of computing the N-point functions. 

Naively, the computation of the n-point cor
relation functions scale as 0(Rn), where R is the 
number of data-points in the sample. As one can 
see, even with existing galaxy surveys from the 
Sloan Digital Sky Survey (SDSS), where R ~ 106-
107, such correlation functions quickly become un-
tractable to compute. In recent years, there has 
been a number of more efficient algorithms de
veloped to beat this naive scaling. For exam
ple, the International Computational Astrostatis-
tics (inCA; www.incagroup.org) group has developed 
a new algorithm based on the use of the multi-
resolutional KD-tree data structure (mrKDtrees). 
This software, known as npt, is publicly available 
(www.autonlab.org/autonweb/software/10378.html), 
and has been discussed previously in Gray et al. 
(2003),JMicholet al. (2001) and Moore et al. (2000). 
Briefly, mrKDtrees represent a condensed data struc
ture in memory, which is used to efficiently answer 
as much of any data query as possible, i.e., pruning 
the tree in memory. The key advance of our npt al
gorithm is the use of "n" trees in memory together to 
compute an n-point function. See also Alex Gray's 
contribution in this volume. 

3. Computing Correlation Functions 

Even with an efficient algorithm, the computation of 
higher-order correlation functions is intensive. In 
detail, the n-point correlation functions require a 
large number of sequential calls to the npt code. 
These include computing the cross-correlation be
tween the real data (called D) and a random dataset 
(called R), which is used to mimic the edge effects 
in the real data. As outlined in Szapudi & Sza
lay (1998), each estimation of a 3-point correlation 
functions, for a given bin of triangular shape (i.e., 
r J2 ± A r i 2 , r23 ± A r23, rX3 ± A r i 3 , requires seven sep
arate source counts over the whole dataset, namely 
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Fig. 1. The architecture of the VOTechBroker and how it in
teracts with the Grid, VO and our statistical algorithms. The 
npt algorithm is a "Client" (at the bottom) and interacts with 
the "Broker" via a web—form (HTML) to define the basic pa
rameters needed to run the algorithm and define the resources 
needed. Eventually we plan to interact with the "Broker" via 
the AstroGrid workflow environment, allowing the submission 
of jobs as well as the storage of the input data and results in 
MySpace. There can be multiple "Clients" to the "Broker". 

DDD, DDR, DRR, RRR, DD, RR, DR. Therefore, 
if one wished to probe ~ 102 triangle configuration, 
then ~ 103 sequential npt jobs are required. This can 
rise rapidly if one wishes to estimate errors on the 
n-point functions using either jack-knife resampling 
(i.e., removing subregions of the data and then re
computing the correlation functions), or a large en
semble of mock catalogs (derived from simulations). 
Such computations are well-suited to large clusters 
or grid of computers. 

In recent years, we have used computational re
sources like TeraGrid (www.teragrid.org) and COS
MOS (www.damtp.cam.ac.uk/cosmos/) to perform 
the computation of the n-point correlation functions 
for the SDSS main galaxy sample and the SDSS Lu
minous Red Galaxy (LRG) sample. Our experience 
shows that the management and scheduling of such 
a large number of jobs on these massive machines 
is laborious and tedious. To ease this problem, we 
are working on VOTechBroker, which is a tool that 
joins two new and emerging technologies; the VO 
and computational grids. 

http://www.incagroup.org
http://www.autonlab.org/autonweb/software/10378.html
http://www.teragrid.org
http://www.damtp.cam.ac.uk/cosmos/
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4. VOTechBroker 

AstroGrid (www.astrogrid.org) is a PPARC-funded 
project to create a working Virtual Observatory for 
UK and international astronomers. AstroGrid works 
closely with other VO initiatives around the world 
(via the International Virtual Observatory Alliance; 
IVOA) and is part of the Euro-VO initiative in Eu
rope. In particular, the work outlined here has been 
performed as part of the EU-funded VOTech project, 
which aims to complete the technical preparation 
work for the construction of a European Virtual Ob
servatory. Specifically, VOTech is undertaking R&D 
into data-mining and visualization tools, which can 
be integrated into the emerging VO and computa
tional grid infrastructure. Therefore, VOTech will 
build upon existing or emerging standards and in
frastructure (e.g. IVOA standards and AstroGrid 
middleware), as well as looking at standards from 
W3C and GGF. 

As part of the VOTech research, we are engaged 
in developing the VOTechBroker. The key design 
goals of the broker are to: i) Remove the execu
tion and management of a large number of jobs (like 
npt) from the user in a transparent and reusable way; 
ii) Accommodate different grid infrastructures (e.g. 
condor, globus etc.); Hi) Locate suitable resources 
on the grid and optimize the submission of jobs; iv) 
Monitor the status and success of jobs; v) Combine 
with AstroGrid MySpace and workflow environments 
to allow easy management of job submission and final 
results (as well as utilizing other algorithms within 
the VO). In Figure 1, we show the schematic design 
of the broker architecture which illustrates the modu
lar and "plug-in" design philosophy we have adopted. 
This is required as one of the key requirements of 
VOTechBroker is that it should be straightforward to 
add new algorithms, resources and middleware (e.g. 
a different job submission tool or protocol). 

We have implemented the core functionality of 
VOTechBroker and are presently testing it by sub
mitting ~ 104 npt jobs on both the UK National Grid 
Service (www.ngs.ac.uk), COSMOS supercomputer 
and a local condor pool of machines. The key ingredi
ents of the present VOTechBroker include GridSAM 
(an open-source job submission and monitoring web 
service from the London e-Science Centre), the UK 
e-Science X.509 certificates, MyProxy (a repository 
for X.509 Public Key Infrastructure security creden-

0 200 400 300 800 

Multipole / 

Fig. 2. Using CMBfast, we have varied Qj (baryon fraction) 
and determined which models lie within the 95% confidence 
ball around f(Xi). For this illustration, we have kept all other 
parameters in these CMBfast models fixed at their fiducial 
values. The gray models are within the confidence ball, while 
the others are outside the ball indicating they are "bad fits" 
to the data (at the 95% confidence). We get an allowed range 
of 0.0169 < n 6 < 0.0287. 

tials), and the Job Submission Description Language 
(JSDL; a standard description of job execution re
quirements to a range of resource managers from the 
Global Grid Forum). At present, the VOTechBroker 
provides a web-form interface to just the npt algo
rithm discussed above but is modular in design so 
other algorithms can be easily added via other web-
forms. Results from the VOTechBroker will soon be 
placed in a user's AstroGrid MySpace. In the near 
future, we will interface the broker with other com
putational resources, e.g., TeraGrid (see below), and 
the AstroGrid workflow. 

5. Nonparamet r i c Stat is t ics 

In addition to the need for new statistical software 
that scales-up to petabyte datasets, we also require 
new algorithms and computational resources that ex
ploit the emerging power of nonparametric statistics. 
As discussed in Wasserman et al. (2001), such non
parametric methods are statistical techniques that 
make as few assumptions as possible about the pro
cess that generated the data. Such methods are more 
flexible than more traditional parametric methods 
that impose rigid and often unrealistic assumptions. 
With large sample sizes, nonparametric methods 
make it possible to find subtle effects which might 
otherwise be obscured by the assumptions built into 
parametric methods. 

http://www.astrogrid.org
http://www.ngs.ac.uk
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In Genovese et al. (2004), we discuss the appli
cation of nonparametric techniques to the analysis of 
the power spectrum of anisotropics in the Cosmic Mi
crowave Background (CMB). For example, one can 
ask the simple question: How many peaks are de
tected in the WMAP CMB power spectrum? This 
question is hard to answer using parametric models 
for the CMB (e.g. CMBfast models) as these mod
els possess multiple peaks and troughs, which could 
potentially be fit to noise rather than real peaks in 
the data. To solve this, we have performed a non-
parametric analysis of the WMAP power spectrum 
(Miller et al. 2003), which involves explaining the 
observed data (Y$) as Yi = f(Xi) +Ci where f(Xi) is 
an orthogonal function (expanded as a cosine basis 
(3iCos(iirXi)) and Cj is the covariance matrix. The 
challenge is to "shrink" f(Xi) to keep the number of 
coefficients (/%) to a minimum. We achieve this using 
the method of Beran (2000), where the number of co
efficients kept is equal to the number of data points. 
This is optimal for all smooth functions and pro
vides valid confidence intervals. We also use mono-
tonic shrinkage of ft, specifically the nested subset 
selection (NSS). The main advantage of this method
ology is that it provides a "confidence ball" (in N 
dimensions) around f(Xi), allowing non-parametric 
interferences like: Is the second peak in the WMAP 
power spectrum detected? In addition, we can test 
parametric models against the "confidence ball" thus 
quickly assessing the validity of such models in N di
mensions. This is illustrated in Figure 2. 

6. Massive Model Testing 

We are embarked on a major effort to jointly search 
the 7-dimensional cosmological parameter-space of 
ilm, £IDE, ^b, T, neutrino fraction, spectral index and 
Ho using parametric models created by CMBfast and 
thus determine which of these models fit within the 
confidence ball around our f(Xi) at the 95% confi
dence limit. Traditionally, this is done by marginal
ising over the other parameters to gain confidence 
intervals on each parameter separately. This is 
a problem in high-dimensions where the likelihood 
function can be degenerate, ill-defined and under-
identified. Unfortunately, the nonparametric ap
proach is computationally intense as millions of mod
els need to searched, each of which takes ~ 3 minute 
to run. 

To mitigate this problem, we have developed an 
intelligent method for searching for the surface of the 
confidence ball in high-dimensions based on Krig-
ing. Briefly, kriging is a method of interpolation 
which predicts unknown values from data observed 
at known locations (also known as Gaussian process 
regression, which is a form of Bayesian inference in 
Statistics). There are many different metrics for eval
uating the kriging success; we use here the "Strad
dle" method which picks new test points based both 
on the overall distance from previous searched points, 
as well as being predicted to be close to the bound
ary of the confidence ball. We have also developed a 
heuristic algorithm for searching for "missed peaks" 
in the likelihood space by searching models along the 
path joining previously detected peaks. We find no 
"missed peaks", which illustrates our kriging algo
rithm is effective in finding the surface of the confi
dence ball in this high dimensional space. 

We have distributed the CMBfast model com
putations over a local condor pool of computers. 
In Figure 3, we show preliminary results from this 
high-dimension search for the surface of the confi
dence ball and present joint 2D confidence limits on 
pairs of the aforementioned cosmological parameters. 
These calculations represent 6.8 years of CPU time 
to calculate over one million CMBfast models. In 
the near future, we will move this analysis to Tera-
Grid, using VOTechBroker, and plan 10 million mod
els to fully map the surface of the confidence ball. We 
will also make available a Java-based web service for 
accessing these models, and the WMAP confidence 
ball, thus allowing other users to rapidly combine 
their data with our WMAP constraints e.g., doing a 
joint constraint from LSS and CMB data. We are 
also working on possible convergence tests, and vi
sualization tools within VOTech, to access this high-
dimensional data. 

7. Summary 

The two examples given here - massive model test
ing of the WMAP data using nonparametric statis
tics and higher-order correlation functions of SDSS 
galaxies - represent a growing trend in astrophysics 
and cosmology for massive statistical computations. 
Our plan is to develop the VOTechBroker to provide 
a power framework within which such massive astro
nomical analyses can be performed. As discussed, 
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Fig. 3. The results of our 7-dimensional parameter search using 1.2 million models from CMBfast. The lightest shading are 
models excluded at the 34% level. The mid-scale shading are models excluded by the 68% ball and the darkest is the 95% 
confidence ball. 

the main goals of the VOTechBroker are to abstract the complexities of job submission and management 
from the user (either a person or another program) on computational grids, as well as being a, modu-



172 

lar "plug-in" design so other algorithms and soft
ware can be easily added. Finally, we plan to in
tegrate VOTechBroker into the AstroGrid workflow 
and My Space environments, so it becomes a natu
ral repository for a host of advanced statistical al
gorithms that scale-up in preparation for petabyte-
scale datasets and analyses. 
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The paper advocates the use of a statistical tool dedicated to the exploration of data samples populated by several 
sources of events. This new technique, called aVlot, is able to unfold the contributions of the different sources to the 
distribution of a data sample in a given variable. The sVlot tool applies in the context of a Likelihood fit which is 
performed on the data sample to determine the yields of the various sources. 

1 Introduction 

This paper describes a new technique to explore 
a data sample when the latter consists of several 
sources of events merged into a single sample of 
events. The events are assumed to be characterized 
by a set of variables which can be split into two com
ponents. The first component is a set of variables for 
which the distributions of all the sources of events are 
known: below, these variables are referred to as the 
discriminating variable. The second component is a 
set of variables for which the distributions of some 
sources of events are either truly unknown or consid
ered as such: below, these variables are referred to 
as the control variables. 

The new technique, termed 3Vlot °, allows one 
to reconstruct the distributions for the control vari
able, independently for each of the various sources of 
events, without making use of any a priori knowledge 
on this variable. The aim is thus to use the knowl
edge available for the discriminating variables to be 
able to infer the behavior of the individual sources 
of events with respect to the control variable. An es
sential assumption for the sVlot technique to apply 
is that the control variable is uncorrelated with the 
discriminating variables. 

The sVlot technique is developed in the context 
of a maximum Likelihood method making use of the 
discriminating variables. Section 2 is dedicated to 
the definition of fundamental objects necessary for 
the following. Section 3 presents an intermediate 
technique, simpler but inadequate, which is a first 
step towards the sVlot technique. The sVlot formal
ism is then developed in Section 4 and its properties 
explained in Section 5. An example of sVlot at work 
is provided in Section 6 and some applications are 

described in Section 7. Finally, the case where the 
control variable is correlated with the discriminating 
ones is discussed in Section 8. 

2 Basics and definitions 

One considers an unbinned extended maximum Like
lihood analysis of a data sample in which are merged 
several species (signal and background) of events. 
The log-Likelihood is expressed as: 

N N s N s 

e = l i = l 

where 

• N is the total number of events considered, 

• Ns is the number of species of events populating 
the data sample, 

• Ni is the (non-integral) number of events ex
pected on the average for the ith species, 

• y represents the set of discriminating variables, 
which can be correlated with each other, 

• fj(ye) is the value of the Probability Density 
Function (pdf) of y for the i t h species and for 
event e. 

The log-Likelihood £ is a function of the Ns yields Ni 
and, possibly, of implicit free parameters designed to 
tune the pdfs on the data sample. These parameters 
as well as the yields Ni are determined by maximiz
ing the above log-Likelihood. 

The crucial point for the reliability of such an 
analysis is to use an exhaustive list of sources of 
events combined with an accurate description of all 
the pdfs fj. If the distributions of the control vari
ables are known (resp. unknown) for a particular 

"The sVlot technique is the subject of a publication l where details of the calculations and more examples can be found. 
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source of events, one would like to compare the ex
pected distribution for this source to the one ex
tracted from the data sample (resp. determine the 
distribution for this source) b. 

The control variable x which, by definition, does 
not explicitly appear in the expression of C, can be: 

1. totally correlated with the discriminating vari
ables y (x belongs to the set y for example). 
This is the case treated in Section 3. 

2. uncorrelated with y. This is the subject of Sec
tion 4. 

3. partly correlated with y. This case is discussed 
Section 8. 

In an attempt to have access to the distributions of 
control variables, a common method consists of ap
plying cuts which are designed to enhance the con
tributions to the data sample of particular sources of 
events. However, the result is frequently unsatisfac
tory: firstly because it can be used only if the signal 
has prominent features to be distinguished from the 
background, and secondly because of the cuts ap
plied, a sizeable fraction of signal events can be lost, 
while a large fraction of background events may re
main. 

The aim of the sVlot formalism developed in this 
paper is to unfold the true distribution (denoted in 
boldface Mn(x)) of a control variable x for events 
of the n th species (any one of the Ns species), from 
the sole knowledge of the pdfs of the discriminat
ing variables f,, the first step being to proceed to 
the maximum Likelihood fit to extract the yields Ni. 
The statistical technique sTlot allows to build his
tograms in x keeping all signal events while getting 
rid of all background events, and keeping track of the 
statistical uncertainties per bin in x. 

3 First step towards sVlot: mVlot 

In this Section, as a means of introduction, one con
siders a variable x assumed to be totally correlated 
with y: x is a function of y. A fit having been per
formed to determine the yields Ni for all species, one 
can define naively, for all events, the weight 

J > ( V ) - N J M (2) 

'Removing one of the discriminating variables from the set y 
consider the removed variable as a control variable x, provided 

which can be used to build an estimate, denoted Mn, 
of the x-distribution of the species labelled n (signal 
or background): 

NnMn(x)6x = J2 P"(^) ' (3) 
eCSx 

where the sum runs over the events for which the x 
value lies in the bin centered on x and of total 
width 5x. 

In other words, AfnMn(x)<5x is the x-distribution 
obtained by histogramming events, using the weight 
of Eq. (2). To obtain the expectation value of Mn, 
one should replace the sum in Eq. (3) by the integral 

( £ ) -+ / dy £ NA iv)5«y) - *)fa • (4) 
\eC6xl J j=l 

Similarly, identifying the number of events Ni as de
termined by the fit to the expected number of events, 
one readily obtains: 

(NnMn{x)) = NnMn(x) . (5) 

Therefore, the sum over events of the naive weight Vn 

reproduces, on average, the true distribution M n (x) . 
Plots obtained that way are referred to as mVlots: 
they provide a correct means to reconstruct M n (x) 
only insofar as the variable considered is in the set 
of discriminating variables y. These inVlots suffer 
from a major drawback: x being fully correlated to 
y, the pdfs of x enter implicitly in the definition of the 
naive weight, and as a result, the Mn distributions 
cannot be used easily to assess the quality of the fit, 
because these distributions are biased in a way diffi
cult to grasp, when the pdfs U(y) a r e n ° t accurate. 
For example, let us consider a situation where, in the 
data sample, some events from the n t h species show 
up far in the tail of the Mn(x) distribution which 
is implicitly used in the fit. The presence of such 
events implies that the true distribution Mn(x) must 
exhibit a tail which is not accounted for by Mn(x). 
These events would enter in the reconstructed mVlot 
Mn with a very small weight, and they would thus 
escape detection by the above procedure: Mn would 
be close to Mn, the distribution assumed for x. Only 
a mismatch in the core of the x-distribution can be 
revealed with mVlots. Stated differently, the error 
bars which can be attached to each individual bin of 

before performing again the maximum Likelihood fit, one can 
t is uncorrelated with the others. 

file:///eC6xl
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Mn cannot account for the systematical bias inherent 
to the mVlots. 

4 The sVlot formalism 

In this Section one considers the more interesting 
case where the two sets of variables x and y are un
corrected. Hence, the total pdfs fj(x, y) all factorize 
into products M,(2)^(2/). While performing the fit, 
which relies only on y, no a priori knowledge of the 
^-distributions is used. 

One may still consider the above distribution Mn 

(Eq. (3)), using the naive weight of Eq. (2). However 
in that case, the expectation value of Mn is a biased 
estimator of M n : 

f N5 

NnMn(x)j = I dydxY,NjMj(x){j(y)S(x-x)Vn 

J = I 

Nn^MjWNj j dy 

± Nn Mn(x) 

Uy)fj(y) 

Here, the naive weight is no longer satisfactory 
because, when summing over the events, the x-
pdfs Mj(:r) appear now on the right hand side of 
Eq. (4), while they are absent in the weight. How
ever, one observes that the correction term in the 
right hand side of Eq. (6) is related to the inverse of 
the covariance matrix, given by the second deriva
tives of —£: 

N 

, _ d\-c) _ ^ UveMye) In] 

n, gNndN. ^ ( E « i l A T f e f f c ( J / e ) ) 2 

On average, one gets: 

\ V nj / J Uy y^Ns 

• (7) 

(8) 
NkHv) 

Therefore, Eq. (6) can be rewritten: 

jMn(x))=^M,(x)7Vj(V-1) . (9) 

Inverting this matrix equation, one recovers the dis
tribution of interest: 

NnMn(x) = J2 (Vni> (Mj(S)) • (10) 

Hence, when x is uncorrelated with the set y, the 
appropriate weight is not given by Eq. (2), but is 

the covariance-weighted quantity (thereafter called 
sWeight) defined by: 

sVn(ye) (11) 

With this sWeight, the distribution of the control 
variable x can be obtained from the sVlot histogram: 

sVn(ye) , (12) Nn 3Mn(x)Sx = J2 
eCSx 

which reproduces, on average, the true binned dis
tribution: 

NnsMn(x)) = NnMn(x) (13) 

The fact that the covariance matrix V y enters in the 
definition of the sWeights is enlightening: in particu
lar, the sWeight can be positive or negative, and the 
estimators of the true pdfs are not constrained to be 
strictly positive. 

(6) 5 $Vlot properties 

Beside satisfying the essential asymptotic property 
Eq. (13), sVlots bear properties which hold for finite 
statistics. 

The distribution s M n denned by Eq. (12) is guar
anteed to be normalized to unity and the sum over 
the species of the sVlots reproduces the data sample 
distribution of the control variable. These properties 
rely on maximizing the Likelihood: 

• Each ^-distribution is properly normalized. The 
sum over the x-bins of Nn sMndx is equal to Nn: 

N 

E 
e = l 

VAVe) = ^n (14) 

• In each bin, the sum over all species of the ex
pected numbers of events equals to the number 
of events actually observed. In effect, for any 
event: 

Y,sVi{ye) (15) 
1=1 

Therefore, an sVlot provides a consistent represen
tation of how all events from the various species are 
distributed in the control variable x. Summing up 
the Ns sVlots, one recovers the data sample distri
bution in x, and summing up the number of events 
entering in a sVlot for a given species, one recovers 
the yield of the species, as it is provided by the fit. 
For instance, if one observes an excess of events for a 
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particular n t h species, in a given x-bin, this excess is 
effectively accounted for in the number of events Nn 

resulting from the fit. To remove these events implies 
a corresponding decrease in Nn. It remains to gauge 
how significant is an anomaly in the x-distribution 
of the n th species. 

The statistical uncertainty on Nn sMn(x)6x can 
be defined in each bin by 

(16) a[Nn sMn(x)dx] = ^2(sPn)2 

y eC<5x 

The above properties Eqs. (13)-(15) are completed 
by the fact that the sum in quadrature of the un
certainties Eq. (16) reproduces the statistical uncer
tainty on the yield iVn, as it is provided by the fit. 
In effect, the sum over the x-bins reads: 

J> 2 [W„ sMn6x] = V n n . (17) 
[Sx] 

Therefore, for the expected number of events per x-
bin indicated by the sVlots, the statistical uncertain
ties are straightforward to compute using Eq. (16). 
The latter expression is asymptotically correct, and 
it provides a consistent representation of how the 
overall uncertainty on Nn is distributed in x among 
the events of the n t h species. Because of Eq. (17), 
and since the determination of the yields is optimal 
when obtained using a Likelihood fit, one can con
clude that the sVlot technique is itself an optimal 
method to reconstruct distributions of control vari
ables. 

6 Illustrations 

An example of sVlot at work is taken from the anal
ysis where the method was first used 2 '3. One deals 
with a data sample in which three species are present: 
i?0—>7r+7r_ and B°—>K+w~ are signals and the main 
background comes from e+e~—>qq. The variable 
which is not incorporated in the fit is called AE and 
is used here as the control variable x. The detailed 
description of the variables can be found in Refs. 2 '3. 

The left plot of Fig. 1 shows the distribution 
of AE after applying a cut on the Likelihood ratio. 
Therefore, the resulting data distribution concerns a 
reduced subsample for which statistical fluctuations 
cannot be attributed unambiguously to signal or to 
background. For example, the excess of events ap
pearing on the left of the peak is likely to be at
tributed to a harmless background fluctuation. 

o.i 
GeV AE (GcV) 

Figure 1. Signal distribution of the AE variable. The left 
figure is obtained applying a cut on the Likelihood ratio to 
enrich the data sample in signal events (about 60% of signal 
is kept). The right figure shows the sVlot for signal (all events 
are kept). 

Looking at the right plot of Fig. 1, which is a 
signal sVlot, one can see that these events are sig
nal events, not background events. The pdf of AE 
which is used in the conventional fit for the whole 
analysis is superimposed on the sVlot. When this 
pdf is used, the events in excess are interpreted as 
background events while performing the fit. Further 
studies have shown 2 that these events are in fact ra
diative events, i.e. B°—>7r+7T_7. When ignored in the 
analysis they lead to underestimates of the branching 
ratios by about 10%. The updated results 4 for the 
B°—>7r+7r~, K+ir~ analysis, now taking into account 
the contribution of radiative events, show agreement 
with the estimate made in Ref. 2. 

7 Applications 

Beside providing a convenient and optimal tool to 
cross-check the analysis by allowing distributions of 
control variables to be reconstructed and then com
pared with expectations, the sVlot formalism can be 
applied also to extract physics results, which would 
otherwise be difficult to obtain. For example, one 
may be willing to explore some unknown physics 
involved in the distribution of a variable x. Or, 
one may be interested to correct a particular yield 
provided by the Likelihood fit from a selection effi
ciency which is known to depend on a variable x, for 
which the pdf is unknown. Provided one can demon
strate (e.g. through Monte-Carlo simulations) that 
the variable x exhibits weak correlation with the dis
criminating variables y. 

To be specific, one can take the example of a 
three body decay analysis of a species, the signal, 
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polluted by background. The signal pdf inside the 
two-dimensional Dalitz plot is assumed to be not 
known, because of unknown contributions of reso
nances, continuum and of interference pattern. Since 
the x-dependence of the selection efficiency e(x) can 
be computed without a priori knowledge of the x-
distributions, one can build the efficiency corrected 
two-dimensional sVlots (cf. Eq. (12)): 

-}—Nn sMn(x)6x= J2 -T^sVn(ye) , (18) 
e[x) ecsxe[Xe) 

and compute the efficiency corrected yields: 

«:-f:w- (19) 

Analyses can then use the sVlot formalism for valida
tion purposes, but also, using Eq. (18) and Eq. (19), 
to probe for resonance structures and to measure 
branching ratios 5. 

8 Correlation between variables 

Correlations between variables, if not trivial, are usu
ally assessed by Monte-Carlo simulations. In case 
significant correlations are observed, one may still 
use the sVlot weight of Eq. (11), but then there is 
a caveat. The distribution obtained with sVlot can
not be compared directly with the marginal distri
bution of x. In that case, one must rely on Monte-
Carlo simulation, and apply the sVlot technique to 
the simulated events, in order to obtain Monte-Carlo 

sVlots. It is these Monte-Carlo sVlots which are 
to be compared to the sVlot obtained with the real 
data. Stated differently, the sVlot can still be ap
plied to compare the behaviour of the data with the 
Monte-Carlo expected behavior, but it loses its sim
plicity. 

9 Conclusion 

The technique presented in this paper applies when 

• one examines a data sample originating from dif
ferent sources of events, 

• a Likelihood fit is performed on the data sample 
to determine the yields of the sources, 

• this Likelihood uses a set y of discriminating 
variables, 

• keeping aside a control variable x which is sta
tistically uncorrected to the set y. 

By building sVlots, one can reconstruct the distri
butions of the control variable x, separately for each 
source present in the data sample. Although no cut 
is applied (hence, the sVlot of a given species repre
sents the whole statistics of this species) the distri
butions obtained are pure in a statistical sense: they 
are free from the potential background arising from 
the other species. The more discriminating the vari
ables y, the clearer the /Plot is. The technique is 
straightforward to implement; it is available in the 
ROOT framework under the class TSPlot6. It fea
tures several nice properties: both the normaliza
tions and the statistical uncertainties of the sVlots 
reflect the fit ouputs. 
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E A S Y D A T A A N A L Y S I S U S I N G R 
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The R system is a mature, freely available, and widely used "language and environment for statistical computing and 
graphics", based upon the award-winning S language developed by John Chambers. It combines modern graphical 
displays of data, a convenient and easy to learn programming language, and an extremely wide variety of statistical 
tools, to provide a tool that is both easy to use and powerful. Unfortunately, R is relatively little-known in the physics 
community. In this paper, I will present some of the features of R that have proved useful in the everyday work I 
have been involved with at Fermilab. 

1. Introduction 

The exploration of data is an intensive intellectual 
task. It is the job of data analysis software to support 
the process of learning from data, by providing tools 
to visualize and analyze data. To be successful, a 
software system should be both powerful and easy 
to use. 

The award-winning1 S system2 and its free-
software implementation R 3 are perhaps the most 
widely-used data analysis systems available. As de
scribed on the R Project's web page, "R is a lan
guage and environment for statistical computing and 
graphics." R has been successful because it provides 
excellent graphical tools, a convenient and powerful 
language for data manipulation, and many modern 
data analysis techniques. 

In this paper, I describe some of the features of 
R that have made it the preferred analysis environ
ment for many. In each of the following sections, I 
concentrate on one of the advantages provided by R. 

2. High Quality Graphics 

R provides plots we commonly use: e.g., histograms 
and (x, y) plots. In addition to the data themselves, 
such plots can include fits to the data (performed 
with a wide variety of fitting methods), error bars, 
textual and mathematic annotations, and color, over 
all of which the user has fine-grained programmatic 
control. The default values of the graphical parame
ters of R have been carefully chosen to match the 
strengths and weaknesses of human perception (see 
the books by Cleveland4' 5 and references therein). 

R also provides a variety of useful plot types 
which are not widely known to the physics com
munity. These include (among others): dot plots, 

splom (scatter plot matrix), box-and-whisker plots, 
and quantile and QQ plots. R provides additional 
special-purpose plots. Many statistical tools come 
with dedicated plot styles, e.g. clustering techniques 
with associated dendrogram plots. 

2.1. The dot plot 

Previously-mentioned studies indicate that human 
perception is poor at interpreting the pie chart, be
cause the eye is not good at comparing relative areas. 
The dot plot allows much clearer presentation of such 
data. Figure 1, showing the leptonic branching frac
tions of the Z boson, compares a pie chart and a dot 
plot. Unlike a pie chart, the dot plot can show both 
numeric values and uncertainties. 

, i - ? 7 . . . " tautauH ' ' —»— ' -
V ' . " . A •..••;••. a> 
\ * . • , -a \:-.. - \ o mu mu - • 

m u m u J \ : . ^ 
1 i e e ^ , »—— , , 1-

0.03355 0.03365 0.03375 
- v _ - < u , a u branching fraction 

Fig. 1. A comparison between a pie chart (left) and a dot plot 
(right), showing the measured leptonic branching fractions of 
the Z boson (PDG 2004). 

2.2. The scatter plot matrix 

The scatter plot matrix, or splom, (figure 2) is a use
ful tool for quickly identifying pairs of quantities with 
interesting relationships. It shows all pairwise asso
ciations between observations of a set of measured 
quantities. Each measured quantity appears in one 
column, and also in one row, of the matrix of scat
ter plots. Interesting correlations are easily visible. 
It is important to note that the scatter plots are 
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unbinned—so that no features in the correlations are 
lost, due to unfortunate binning. 
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Fig. 2. A sample splom, showing correlations between "mea
sured" features of simulated jets in a toy simulation. 

2.3. The box-and-whisker plot 

The box-and-whisker plot, or box plot, (figure 3) pro
vides a concise summary of many of the interesting 
features of a 1-d distribution. For a distribution with 
long tails, or a distribution that is asymmetric, the 
mean and standard deviation are sometimes mislead
ing. Unless the symmetry of a distribution is known, 
more "robust" statistics (e.g. median, quartiles) may 
be more informative. The box plot summarizes these 
statistics, and others. 

The box plot shows the median, first and third 
quartiles, and "hinges" of the data, as well as "out
liers". Let r be the interquartile range. The upper 
hinge is defined by the value of the data closest to, 
but not within, a distance of 1.5r from the upper 
quartile. The lower hinge is defined similarly, with 
respect to the first quartile. Outliers are those data 
still further from the median than the hinges; each 
is shown individually on the box plot. 

In high energy physics, the "profile histogram" 
is often used to summarize a 2-d distribution. The 
"profile histogram" displays, for each bin in x, the 

20 

Fig. 3. A sample histogram and a box plot showing the same 
data. 

mean and standard deviation of y. But if the dis
tribution in one or more bins is not symmetric, or 
has outliers, a multi-way box plot (which presents a 
box plot of y for each bin in x) can be much more 
informative; figure 4 shows an example. 
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Fig. 4. A sample multi-way box plot, showing the variation of 
data transfer speed with the size of the data block transferred 
for a prototype database server. The bulk of each distribution 
is contained in a very small box; the wide range of the outliers 
would have yielded a misleading profile histogram. 

2.4. The quantile and QQ plots 

The previously-mentioned studies show human per
ception is poor at comparing similar histograms. 
Quantile plots (cumulative distributions) are some
what easier to distinguish, and can be drawn un
binned, thus alleviating the troubles caused by bin
ning. Quantile-quantile (QQ) plots are still easier to 
compare, and allow identification of even small dif
ferences between similar distributions. The QQ plot 
(figure 5) shows a comparison of the distributions of 
x and y formed by plotting the quantiles of x against 
the quantiles of y. 
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Fig. 5. Left: quantile plots of the number of cells comprising 
the leading and second jets in a simulated event sample from 
the CMS experiment. Right: a QQ plot comparing the same 
quantities. 

3. Convenient Environment 

Convenience and ease-of-use are crucial aspects of a 
data exploration system. This is especially impor
tant for those of us who analyze data only sporadi
cally, or who must come back to a particular analysis 
after a period engaged in other pursuits. An environ
ment which serves as a platform for learning from 
data should not itself be a barrier. R provides a 
number of conveniences. 

An R session can be saved to disk, in a plat
form neutral format, allowing the application state 
to be recovered at a later time. Use of a different 
directory to save each different "analysis" (session 
files, data files, and R scripts) provides a clear and 
convenient organization capable of supporting many 
ongoing analyses. 

R can read data from many sources: tabular 
data files (either local or remote, via HTTP), com
mon spreadsheet formats (e.g. Excel), and a variety 
of databases (Oracle, MySQL, SQLite, PostgreSQL, 
or any ODBC database). It is not very hard to ex
tend this ability to read additional file formats. For 
example, local development at Fermilab6 has pro
vided the ability for R to read ROOT7 trees, such as 
those of the CMS experiment's reconstruction frame
work. 

The R core software comes with a significant 
amount of functionality. Additional functionality 
is available through packages. Distributed package 
management is integrated into the system, with an 
ease of use similar to other successful products, such 
as Perl's CPAN and Linux's yum utility. A uniform 
documentation model is observed, in part helped by 
enforcement by the package building system. Users 
have all the tools to create (and even distribute) 

their own packages, and to contribute them to the 
R user community. Discovery and installation of 
new packages is extremely easy; one can visit h t t p : 
/ / c r a n . r - p r o j e c t . o rg / to see what is available, 
or use the i n s t a l l . packages or update.packages 
functions in an R session. 

4. An Abbreviated Example of Use 

In working on the data acquisition system for the 
(late) BTeV experiment8, we needed to analyze a 
simulation of the pixel detector, to determine how 
the expected data rate varied with beam luminos
ity. The proposed BTeV pixel detector contained 32 
independent detector panels, called "stations". The 
simulated data consisted of a record of the number 
clusters ("triplets") of activated pixels in each sta
tion for each simulated event. Simulation output was 
converted with a simple Python program to a text 
file, and read with R: 

> s t a t i o n s = r e a d . t a b l e C b t e v . d a t " ) 

This creates a data frame, here named "stations", 
which behaves in many ways like a table. We can 
discover the number of rows, and the names of the 
columns, in the data frame "stations", and print a 
few rows: 

> nrow(s ta t ions) 
[1] 554218 
> stat ions[1:3,] 
nint idx station ntrip 

1 1 1 0 0 
2 1 1 1 0 
3 1 1 2 24 

Plots can be created from a data frame using a 
wide variety of functions. To view set of histograms, 
one uses: 

> histogram(~ntripI station, 
data=stations, 
subset = ( stat ion 7,in7, 2:10 & 

nint==6)) 

The above command produces a set of histograms, 
each showing the distribution of n t r i p (the number 
of triplets); this creates one histogram for each sta
tion, using data from the data frame "stations", but 
showing only those stations numbered 2 through 10, 
and furthermore only showing those data for which 
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the simulated number of interactions ("nint") is 6. 
This example shows the conciseness and power of 
R's data manipulation language. Once a few basic 
constructions are learned, they can be applied con
sistently in many other contexts. For example, to 
create a multi-way box plot, showing the distribu
tion of the number of triplets for all stations, still 
limited to those data with 6 simulated interactions, 
one would use: 

> b w p l o t ( s t a t i o n ~ n t r i p , 
data=stations, subset=(nint==6)) 

Next we wanted to group data: to sum n t r i p 
over all stations for each event, i.e. for rows with 
equal idx and n in t . This can be done with the func
tion aggregate: 

> events=aggregate(stations.ntrip, 
by=list(idx=station$idx, 

nint=station$nint), sum) 

aggregate is one of many high-level data manipula
tion functions provided by R; the rich supply of such 
functions provides much of the expressiveness of the 
R language. 

And after a little fixing of names, we can print 
some results: 

> s t r ( e v e n t s ) 
' d a t a . f r a m e ' : 17878 obs. of 3 v a r i a b l e s : 
$ idx: num 1 2 3 4 5 6 7 8 9 11 . . . 
$ n i n t : Ord.factor w/ 11 l e v e l s 
$ n t r i p : i n t 26 86 15 8 70 11 3 64 7 17 

s t r shows the structure of its argument, and is useful 
for a short summary. 

Finally, we looked at the distributions of total 
number of triplets in each event. We tested, using 
QQ plots, our suspicion that these could be described 
by the Weibull distribution. The plots show that 
only at the extreme (1-2%) high tail do the data differ 
from the Weibull fit. Figure 6 shows two of these 
plots, for those events with 5 and 10 interactions. 

5. M a n y Useful Add-on Packages 

R makes available an enormous variety of analy
sis tools, including neural networks, decision trees, 
many types of curve fitting, bootstrapping, cluster
ing, Markov chain Monte Carlo, and genetic algo
rithms. The S language (and so also R) is, more 
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Fig. 6. Sample QQ plots, comparing the distribution of num
ber of triplets to the fitted Weibull distribution. 

than any other language, the "common tongue" of 
statistical research. It is used for reference imple
mentations of many analysis techniques, and often 
provides the earliest (or only) implementation of new 
statistical techniques. 

As of the time of this writing, there were 590 
packages and bundles available in the main R repos
itory, and 122 more at the next largest site. Many of 
these packages present not just one tool, but a large 
family of tools. 

6. Conclusion 

The ease with which one can explore and understand 
data is important. My colleagues and I have found 
R to provide excellent graphical tools, an easy to 
learn, powerful, and convenient language for data 
manipulation, and a host of modern data analysis 
techniques. R allows us to concentrate on our data, 
not on our tools. 
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STATISTICS IN ROOT 
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The ROOT 1 system is an Object Oriented framework for large scale data handling applications. Advanced statistical 
analysis tools constitute an important part of the system. This paper describes ROOT'S mathematical and statistical 
libraries. A general overview of the system is given, with special attention payed to recently added methods. 

1. Organization of mathematical and 
statistical libraries in ROOT 
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Fig. 1. New ROOT Math Components 

The ROOT project includes a MATH work pack
age that provides and supports a coherent set of 
mathematical and statistical libraries. The Exist
ing Mathematical library provided by ROOT and by 
the SEAL2 project are being reorganized into new 
libraries with the aim to avoid duplication and to fa
cilitate support in the long term. The new structure, 
shown in figure 1, consists of these main components: 

« MathCore: self-consistent minimal set of 
mathematical functions and C + + classes for 
the basic needs of HEP numerical comput
ing. It is released as an independent library. 

• MathMore: package incorporating func
tionality which might be needed for an ad
vanced user (as opposed to MathCore which 
addresses the primary needs of users). 

• Linear Algebra: library containing classes 
describing vector and matrix operations in 
arbitrary dimensions and of various types, 

such as symmetric or sparse matrix, and 
completed with linear algebra algorithms. 

• Fitting and minimization: classes imple
menting various types of fitting methods, in
cluding the newly added linear and robust 
fitters and a set of libraries for different func
tion minimization algorithms like MINUIT 5 

and FUMILI 6 , which can be loaded at run 
time by using the plug-in manager system. 

• Histogram library: library containing the 
classes for one, two and three dimensional 
histograms and profiles. 

• statistical library: package grouping the 
various statistical algorithms of ROOT like 
neural networks for multivariate analysis or 
classes for computing confidence levels. The 
algorithms are presently spread out in var
ious ROOT libraries, but we expect in the 
future to group them together in a single 
package. 

The detailed description of the above compo
nents is given in the following sections. 

2. MathCore 

MathCore provides the basic and most used mathe
matical functionality. It consists up to now of: 

• commonly used special functions like the 
Gamma, Beta and Error function 

• mathematical functions used in statistics 
such as probability density functions for the 
major distributions (normal, Poisson, bino
mial, Breit-Wigner, etc..) 

• the physics and geometry vector package 
containing classes for specialized vectors in 
3D and 4D and their operations. 

The special functions in MathCore (and MathMore) 
are implemented following the same naming scheme 
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as proposed in the next C + + Standard Library (see 
C + + extension proposal 3 ) . Extensive tests of these 
newly introduced mathematical functions have been 
performed by comparing the numerical results ob
tained with the functions from other packages like 
Mathematica or NagC. Often an accuracy at the level 
of 10 - 1 6 (double numerical accuracy) is reached for 
functions such as the Gamma and the Error func
tion, improved with respect to the functions previ
ously present in ROOT TMath. In future we expect 
to include in MathCore a random number generator 
package, which combined with the statistical func
tions, will provide functionality to generate random 
numbers according to common used statistical dis
tributions. MathCore is a self-consistent component 
which can be released as an independent library and 
used outside the ROOT framework. 

3. M a t h M o r e 

This package incorporates more advanced mathe
matical functionality to extend MathCore. The need 
for separating the functionality is twofold. In order 
to keep the size of the core of ROOT reasonable, only 
the most used mathematical functionality is included 
in it. Secondly, there are licensing issues concerning 
some of the more advanced functionality which uses 
the GNU Scientific Library (GSL) 4, as the GSL is 
distributed under the GPL license, while ROOT is 
under LGPL. One of the design goals is to hide the 
implementation. Presently the mathematical func
tionality from GSL is used underneath. It would 
be very easy to shift to use another numerical pack
age and be completely transparent to the user and 
straightforward for the developer. At present Math-
More is composed of the following parts: 

• special functions like Bess el functions of var
ious types and fractional order, elliptic in
tegrals, Laguerre and Legendre polynomials, 
hypergeometric functions 

• cumulative distribution functions and their 
inverse for Chi-Squared, Gamma, F and 
Student's distributions and their inverses. 
There are also the inverses of the CDF's 
of the Brett- Wigner, Exponential, Gaussian, 
Lognormal and Uniform distributions. 

• classes for numerical algorithms like differen
tiation, various types of adaptive and non-
adaptive numerical integration, interpola

tion and root finding algorithms for one di
mensional functions 

4. Minimizat ion and fitting 

ROOT contains two general purpose minimization 
packages - Minuit5 and Fumili6 and a smaller class 
TLinearFi t te r specific for fitting functions linear 
in parameters. Unlike Minuit, Fumili is a special
ized method for minimizing least squares and log-
likelihood functions, so it makes some approxima
tions to the second derivatives, which are not valid 
for a general minimization method. This allows it to 
converge faster. When the packages are used directly, 
the user has to provide the objective function to min
imize. Otherwise, the Fit(...) interface methods are 
provided, which perform following operations: 

• For histograms (classes TH1, TH2, TH3): 

— x2 method 
— Log likelihood method 

• For graphs 

— Unweighted (class TGraph) 
— Weighted (class TGraphErrors) 
— Taking into account asymmetry of er

rors (class TGraphAsymmErrors) 

• For TTrees 

— Same as for histograms 
— Unbinned log likelihood method 

4 .1 . Linear fitting 

In ROOT v4.03/04, a special class T L i n e a r F i t t e r 
was introduced to separate fitting of linear and non
linear models. Now linear fitting requires only one 
pass over the data, and this data is not copied 
anywhere, which makes it very convenient for large 
datasets. Also, the computation time decreased sub
stantially and the user doesn't have to set initial pa
rameter values any more. 

4.2. Robust fitting 

The classical least squares fitting procedures are 
known to be very sensitive to bad observations. Even 
one very bad outlier can make it produce results ar
bitrarily far from the true parameter values. To fit 
such "contaminated" datasets, an extension for ro
bust fitting was added to the TLinea rF i t t e r class. 
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Least Trimmed Squares (LTS) regression was intro
duced by Rousseeuw and Leroy in 7, and the approxi
mate Fast-LTS algorithm for large data sets was pro
posed in 8 . This algorithm tries to find a subset of 
h points (out of n) that have the smallest sum of 
squared residuals. The parameter h - the number 
of good points in the dataset is set by the user and 
should lie between n/2 and n; the default value is 
around n/2. The algorithm is highly robust, with 
breakdown point (n-h)/n. In ROOT, the robust fit
ter can be called either by specifying option "rob" in 
the Fit(...) interface function of histograms, graphs 
and trees, or by using the extended linear fitter 
directly. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

Fig. 2. LTS fit compared to ordinary least squares 

4.3. New version of Minuit 

Other recent developments include the new version 
of MINUIT which has been re-designed and re-
implemented in the C + + language. The new pack
age enhances all the functionality of the original For
tran version. The improvements from basing on 
an object oriented design are an increased flexibil
ity, easy maintainability in the long term and open
ing to extensions such as integration of new algo
rithms, new functionality, or changes in user inter
faces. Various extensive tests have been performed 
to study and validate the numerical quality, conver
gence power and computational performances of the 
new version. We are expecting to integrate the new 
version inside ROOT in one of the next development 
releases. In this process we also plan to redesign the 
current interface in ROOT to integrate in a coherent 

way all the new developments related to fitting and 
minimization. 

4.4. RooFit 

Starting from version 5.02/00 (June 2005), the 
RooFit package9, developed by W. Verkerke and D. 
Kirkby, is distributed together with ROOT. This 
toolkit contains a collection of "standard" probabil
ity distribution functions and allows easy construc
tion of new complex models. It also provides auto
matic normalization of PDFs. 

5. Smoothing and peak finding 

5.1. TSpectrvm 

Class TSpectrum, written by M. Morhac 10 is used 
for 1-dimensional background estimation, deconvolu-
tion, smoothing, orthogonal transforms, peak search 
and fitting. Extensions to 2 and 3 dimensions are 
being developed now. 

5.2. Smoothing 

Various methods for smoothing graphs are available 
in the class TGraphSmooth. It includes Friedman's 
"super smoother", kernel smoother and lowess. 

6. Multidimensional methods 

6.1. MCD 

When data contains outliers, classical estimates of 
location and covariance are no longer reliable. In 
the multivariate case, outliers cannot be detected vi
sually, and, when many outliers are present, Maha-
lanobis distance-based approaches are also not suffi
cient. In this case, it's better to use more resistant 
techniques. The Minimum Covariance Determinant 
estimator is a highly robust estimator of multivari
ate location and scatter u . In ROOT it is imple
mented in the class TRobustEstimator. Like the 
LTS regression algorithm, it tries to find a subset of 
h points (out of n) which has the covariance matrix 
with the lowest determinant. Then the mean of this 
subset is taken as the MCD location estimate and 
the subset classical covariance matrix as the MCD 
scatter estimate. As with LTS, the breakdown point 
of this estimator is (n-h)/n, where h is the number of 
good points in the dataset and should lie between n/2 
and n. 
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6.2 . Principal components analysis 

Principal components analysis is a classical statis

tical technique for reducing dimensionality of da ta 

while still keeping as much information as possible. 

It is implemented in R O O T ' s class T P r i n c i p a l . 

6 .3 . Multidimensional fit 

Class TMult iDimFit approximates a multidimen

sional function with monomials, Chebyshev or Leg-

endre polynomials. 

6 .4 . Neural networks 

Class T M u l t i L a y e r P e r c e p t r o n describes a multi

layer perceptron neural network. Six learning meth

ods are available: stochastic minimization, steepest 

descent, steepest descent with fixed step size, conju

gate gradients with Polak-Ribiere or Fletcher-Reeves 

updat ing formula and BFGS method 1 2 . 

7. Conf idence intervals 

7 .1 . TLimit 

Class TLimit computes 95% C.L. limits using the 

Likelihood ratio semi-Bayesian method 1 3 

7.2 . TRolke 

Class TRolke computes confidence intervals for the 

rate of Poisson in the presence of background and 

efficiency uncertainties. The method seems to have 

satisfactory frequentist properties1 4 . 

7 .3 . TFeldmanCousins 

Class TFeldmanCousins computes the C.L. upper 

limit using the Feldman-Cousins method 1 5 . 

8. Future p lans 

Our short to medium term plans include a new ran

dom number package, improvement of the fitting 

interface, statistical plots (quantile-quantile plot, 

boxplot and spiderplot), sPlot 1 6 , Fast Fourier Trans

forms and the Loess local polynomial regression fit

ting algorithm. 
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RooFit is a library of C + + classes that facilitate data modeling in the ROOT environment. Mathematical concepts 
such as variables, (probability density) functions and integrals are represented as C + + objects. The package provides 
a flexible framework for building complex fit models through classes that mimic math operators, and is straightforward 
to extend. For all constructed models RooFit provides a concise yet powerful interface for fitting (binned and unbinned 
likelihood, x2)> plotting and toy Monte Carlo generation as well as sophisticated tools to manage large scale projects. 
RooFit has matured into an industrial strength tool capable of running the BABAR experiment's most complicated 
fits and is now available to all users on SourceForge1. 

1. Introduction 

One of the central challenges in performing a physics 
analysis is to accurately model the distributions of 
observable quantities x in terms of the physical pa
rameters of interest p as well as other parameters 
q needed to describe detector effects such as resolu
tion and efficiency. The resulting model consists of a 
"probability density function" (PDF) F(x;p,q) that 
is normalized over the allowed range of the observ-
ables x with respect to the parameters p and q. 

Experience in the BaBar experiment has demon
strated that the development of a suitable model, 
together with the tools needed to exploit it, is a fre
quent bottleneck of a physics analysis. For example, 
some analyses initially used binned fits to small sam
ples to avoid the cost of developing an unbinned fit 
from scratch. To address this problem, a general-
purpose toolkit for physics analysis modeling was 
started in 1999. This project fills a gap in the parti
cle physicists' tool kit that had not previously been 
addressed. 

A common observation is that once physicists are 
freed from the constraints of developing their model 
from scratch, they often use many observables simul
taneously and introduce large numbers of parameters 
in order to optimally use the available data and con
trol samples. 

2. Overview 

The final stages of most particle physics analysis 
are performed in an interactive data analysis frame
work such as PAW2 or ROOT3. These applica

tions provide an interactive environment that is pro
grammable via interpreted macros and have access to 
a graphical toolkit designed for visualization of par
ticle physics data. The RooFit toolkit extends the 
ROOT analysis environment by providing, in addi
tion to basics visualization and data processing tools, 
a language to describe data models. The core fea
tures of RooFit are: 

• A natural and self-documenting vocabulary to build 
a model in terms of its building blocks (e.g., expo
nential decay, Argus function, Gaussian resolution) 
and how they are assembled (e.g., addition, composi
tion, convolution). A template is provided for users 
to add new PDFs specific to their problem domain. 

• A data description language to specify the observ
able quantities being modeled using descriptive ti
tles, units, and any cut ranges. Various data types 
are supported including real valued and discrete val
ued (e.g. decay mode). Data can be read from ASCII 
files or ROOT ntuples. 

• Generic support for fitting any model to a dataset 
using a (weighted) unbinned or binned maximum 
likelihood, or x2 approach 
• Tools for plotting data with correctly calculated er
rors, Poisson or binomial, and superimposing cor
rectly normalized projections of a multidimensional 
model, or its components. 
• Tools for creating event samples from any model 
with Monte Carlo techniques, with some variables 
possibly taken from a prototype dataset, e.g. to more 
accurately model the statistical fluctuations in a par
ticular sample. 

186 
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• Computational efficiency. Models coded in RooFit 
should be as fast or faster than hand coded models. 
An array of automated optimization techniques is 
applied to any model without explicit need for user 
support. 
• Bookkeeping tools for configuration management, 
automated PDF creation and automation of routine 
tasks such as goodness-of-flt studies. 

3. Object-Oriented Mathematics 

To keep the distance between a physicists' mathe
matical description of a data model and its imple
mentation as small as possible, the RooFit interface 
is styled after the language of mathematics. The 
object-oriented ROOT environment is ideally suited 
for this approach: each mathematical object is repre
sented by a C++ software object. Table 1 illustrates 
the correspondence between some basic mathemati
cal concepts and RooFit classes. 

Table 1. Correspondence between mathematical concepts 
and RooFit classes. 

Concept Math Symbol RooFit class name 

Variable x,p RooRealVar 

Function f(x) RooAbsReal* 

P D F F(x;p,q) RooAbsPdf* 

Space point x RooArgSet 

Integral fSmax f(x)dx RooReallntegal 

List of points x"k RooAbsData* 

• Abstract base classes 

Composite objects are built by creating all their 
components first. For example, a Gaussian probabil
ity density function with its variables is created as 
follows: 

RooRealVar x ( " x " , " x " , - 1 0 , 1 0 ) ; 

RooRealVar m("m"."mean" ,0) ; 

RooRealVar s ( " s " . " s i g m a " , 3 ) ; 

RooGaussian g ( " g " , " g a u s s ( x , m , s ) " , x , m , s ) ; 

Each object has a name, the first argument, and a ti
tle, the second argument. The name serves as unique 
identifier of each object, the title can hold a more 
elaborate description of each object and only serves 
documentation purposes. 

Function objects are linked to their ingredients: 
the function object g always reflects the values of 
its input variables x,m, and s. The absence of any 

explicit invocation of calculation methods allows for 
true symbolic manipulation in mathematical style. 

RooFit implements its data models in terms of 
probability density functions. The normalization of 
probability density functions, traditionally one of the 
most difficult aspects to implement, is handled in
ternally by RooFit: all PDF objects are automat
ically normalized to unity. If a specific PDF class 
doesn't provide its normalization internally, a vari
ety of numerical techniques are used to calculate the 
normalization. 

Composition of complex models from elementary 
PDFs is straightforward: a sum of two PDFs is a 
PDF, the product of two PDFs is a PDF. The RooFit 
toolkit provides a set of 'operator' PDF classes that 
represent the sum of any number of PDFs, the prod
uct of any number of PDFs and the convolution of 
two PDFs. 

Existing PDF building blocks can be tailored us
ing standard mathematical techniques by substitut
ing a variable with a formula expression. Free-form 
interpreted C + + function and PDF objects are avail
able to glue together larger building blocks. The uni
versally applicable composition operators and free
style interpreted functions make it possible to write 
probability density functions of arbitrary complexity 
in a straightforward mathematical form. 

4. Composing and Using Data Models 

We illustrate the process of building a model and its 
various uses with a simple one-dimensional yield fit 
example. 

The RooFit models library provides more than 
20 basic probability density functions that are com
monly used in high energy physics applications, in
cluding basic PDFs such Gaussian, exponential and 
polynomial shapes, physics inspired PDFs, e.g. de
cay functions, Breit-Wigner, Voigtian, Argus shape, 
Crystal Ball shape, and non-parametric PDFs (his
togram and KEYS4). 

In the example below we use two such PDFs: a 
Gaussian and an ARGUS background function: 

// Observable 

RooRealVar mes("mes","mass_ES",-10,10) ; 

// Signal model and parameters 

RooRealVar mBC'mB", "m(B0)" ,0) ; 

RooRealVar w("w","Width of m(B0)",3) ; 

RooGaussian G("G","G(meas,mB,width)",mes,mB,w) ; 
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/ / Background model and parameters 
RooRealVar mOO'mO" /'Beam energy / 2",-10,10) ; 
RooRealVar k("k","ARGUS slope parameter",3) ; 
RooArgusBG A("A","A(mes,mO,k)",mes,mO,k) ; 

/ / Composite model and parameter 
RooRealVar f("f","signal fraction",0,1) ; 
RooAddPdf M("M","G+A",RooArgList(G,A),f) ; 

The RooAddPdf operator class M combines the signal 
and background component PDFs with two parame
ters each into a composite PDF with five parameters: 

M(mEs;mB,w,m0,k,f) = f • G{mEs\w,g) 

+ (1 - / ) • A(mEs\rn0,k). 

Once the model M is constructed, a maximum like
lihood fit can be performed with a single function 
call: 

M.fitTo(*data) ; 

Fits performed this way can be unbinned, binned 
and/or weighted, depending on the type of dataset 
provided. The result of the fit, the new parameter 
values and their errors, are immediately reflected in 
the RooRealVar objects that represent the parame
ters of the PDF, mB,w,mO,k and f. Parameters can 
be fixed in a fit or bounded by modifying attributes 
of the parameter objects prior to the fit: 

mO.setConstant(kTRUE) ; 

f.setRange(0.5,0.9) ; 

Visualization of the fit result is equally straight
forward: 

RooPlot* frame = mes.frameO ; 
data->plotOn (frame) ; 
M.plotOn(frame) ; 
M.plotOn(frame,Components("A"), 

LineStyle(kDashed)) ; 
frame->Draw() 

A RooPlot object represents a one-dimensional 
view of a given observable. Attributes of the 
RooRealVar object mes provide default values for the 
properties of this view (range, binning, axis labels). 
Figure 1 shows the result of the frame->Draw() op
eration in the above code fragment. 

The default error bars drawn for a dataset are 
asymmetric and correspond to a Poisson confidence 
interval equivalent to lcr for each bin content. The 
curve of the PDF is automatically normalized to 
the number of events of the dataset last plotted in 
the same frame. The points of the curve are chosen 

by an adaptive resolution-based technique: the devi
ation between the function value and the curve will 
not exceed a given tolerance regardless of the binning 
of the plotted dataset. 

5.28 5.3 
mES (GeV/c) 

Fig. 1. One dimensional plot with histogram of a dataset, 
overlaid by a projection of the PDF H. The histogram errors 
are asymmetric, reflecting the Poisson confidence interval cor
responding to a lcr deviation. The PDF projection curve is 
automatically scaled to the size of the plotted dataset. 

The plot On 0 methods of datasets and functions 
accept optional arguments that modify the style and 
contents of what is drawn. The second M.plotOnO 
call in the preceding example illustrates some of the 
possibilities for functions: only the A component of 
the composite model M is drawn and the line style is 
changed to a dashed style. Similarly, the presenta
tion of datasets can be changed, for example a sum-
of-weights error (^/Y<iw'f) can optionally be selected 
for use with weighted datasets. 

5. Efficiency and Optimal Function 
Calculation 

As the complexity of fits increases, efficient use of 
computing resources becomes increasingly impor
tant. To speed up the evaluation of probability den
sity functions, optimization techniques such as value 
caching and factorized calculations can be used. 

Traditionally such optimizations require a sub
stantial programming effort due to the large amount 
of bookkeeping involved, and often result in incom
plete use of available optimization techniques due to 
lack of time or expertise. Ultimately such optimiza
tions represent a compromise between development 
cost, speed and flexibility. 
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RooFit radically changes this equation as the 
object-oriented structure of its PDFs allows centrally 
provided algorithms to analyze any PDFs structure 
and to apply generic optimization techniques to it. 
Examples of the various optimization techniques are: 
• Precalculation of constant terms. In a fit, parts of 
a PDF may depend exclusively on constant param
eters. These components can be precalculated once 
and used throughout the fit session. 
• Caching and lazy evaluation. Functions are only 
recalculated if any of their input has changed. The 
actual calculation is deferred to the moment that the 
function value is requested. 
• Factorization. Objects representing a sum, product 
or convolution of other PDFs can often be factorized 
from a single N-dimensional problem to a product of 
N easier-to-solve 1-dimensional problems. 
• Parallelization. Calculation of likelihoods and 
other goodness-of-fit quantities can, due to their 
repetitive nature, easily be partitioned into set of 
partial results that can be combined a posteriori. 
RooFit automates this process and can calculate par
tial results in separate processes, exploiting all avail
able CPU power on multi-CPU hosts. 

Optimizations are performed automatically and 
tailored to each potentially CPU intensive operation. 
This realizes the maximum available optimization 
potential for every operation at no cost for the user. 

6. Data and Project Management Tools 

As analysis projects grow in complexity, users are 
often confronted with an increasing number of lo
gistical issues and bookkeeping tasks that may ulti
mately limit the complexity of their analysis. RooFit 
provides a variety of tools to ease the creation and 
management of large numbers of datasets and prob
ability density functions such as: 
• Discrete variables. A discrete variable in RooFit 
is a variable with a finite set of named states. The 
naming of states, instead of enumerating them, facil
itates symbolic notation and manipulation. 
• Automated PDF building. A common analysis tech
nique is to classify the events of a dataset D into sub
sets Di, and simultaneously fit a set of PDFs Pi(x,pi) 
to these subsets Dj. In cases where individually ad
justed PDFs Pi(x,pi) can describe the data better 
than a single global PDF P(x,p), a better statistical 
sensitivity can be obtained in the fit. Often, such 

PDFs do not differ in structure, just in the value of 
their parameters. RooFit offers a utility class to au
tomate the creation of the PDFs Pj(f,p,): given a 
prototype PDF P(x,p) and a set of rules that ex
plain how the prototype should be altered for use in 
each subset (e.g. "Each subset should have its own 
copy of parameter f oo") this utility builds the entire 
set of PDFs Pi(x,pi). 
• Project configuration management. Advanced data 
analysis projects often need to store and retrieve the 
projection configuration, such as initial parameters 
values, names of input files and other parameters 
that control the flow of execution. RooFit provides 
tools to store such information in a standardized way 
in easy-to-read ASCII files. The use of standardized 
project management tools promotes structural simi
larity between analyses and increases a user's ability 
to understand other RooFit projects and to exchange 
ideas and code. 

7. Development Status 

RooFit was initially released as RooFitTools in 
1999 in the BaBar collaboration and has over the 
years been adopted by virtually all BaBar physics 
analyses. Analysis topics include searches for rare 
B decays, measurements of B branching fractions 
and CP-violating rate asymmetries, time-dependent 
analyses of B and D decays to measure lifetime, mix
ing, and symmetry properties, and Dalitz analyses 
of B decays to determine form factors. Since Oc
tober 2002 RooFit is available to the entire HEP 
community: the code and documentation reposi
tory has been moved from BaBar to SourceForge, 
an OpenSource development platform, which pro
vides easy and equal access to all HEP users. 
( h t t p : / / r o o f i t . s o u r c e f o r g e . n e t ) . Since July 
2005 RooFit is also bundled with ROOT releases, 
starting with ROOT version 5.02-00. 
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The present project aims to develop an open-source and object-oriented software Toolkit for statistical data analy
sis. Its statistical testing component (the Goodness-of-Fit Statistical Toolkit) contains a variety of one dimensional 
Goodness-of-Fit tests, from Chi-squared to Kolmogorov-Smirnov, to less known, but generally much more powerful 
tests such as Anderson-Darling, Cramer-von Mises, Kuiper, Watson, . . . The GoF Statistical Toolkit is open-source 
and downloadable from the web, with its user and software documentation. 
The component-based design allowed an extension of the GoF Statistical Toolkit: less known, but generally more 
powerful GoF tests based on EDF-statistics have been recently added to the toolkit. A much more complete variety 
of GoF inferences is now offered the user, and "standard" GoF tests have been complemented by more "exotic" ones. 
The weighted formulations of some GoF tests (Kolmogorov-Smirnov and Cramer-von Mises) have been implemented. 
Approximations of the distribution of some of the existing GoF tests t o the Chi-squared one (Kolmogorov-Smirnov, 
Cramer-von Mises, and Watson approximations) are now available in the GoF Statistical Toolkit. 
Moreover, a layer for user input from ROOT objects has been easily added recently, thanks to the component-based 
architecture. 
We present the recent improvements and extensions of the GoF Statistical Toolkit, describing the new statistics 
methods implemented, and an outlook towards future developments. 

1. Introduction 

Data comparison is an essential part of all physics ex
periments. Classical statistical inference techniques 
are based on fairly specific assumptions regarding the 
nature of the underlying distribution. Usually both 
its form and some parameter values must be explic
itly stated in the null hypothesis, and this requires 
a certain level of knowledge about what is going to 
be compared. When we have no information on the 
distribution of the data, a variety of statistical tech
niques is available in literature: distribution-free or 
non-parametric procedures. Non-parametric testing, 
in fact, allows the formulation of a hypothesis which 
is not a statement about parameter values. Non-
parametric statistics include Goodness-of-Fit (GoF) 
testing. These tests measure the compatibility of a 
random sample with a theoretical probability distri
bution function (the one-sample problem) or between 
the empirical distributions of two different popula
tions perhaps coming from the same theoretical dis
tribution (the two-sample problem). 

A project is in progress, aiming at the develop
ment of an object-oriented software toolkit for sta
tistical data analysis. The GoF Statistical Compari
son component of the toolkit provides algorithms to 
solve the two-sample problem in a variety of use cases 
typical of physics experiments. The GoF Statistical 
Toolkit1 is an easy to use, up-to-date and versatile 
tool for data distribution comparison in physics anal
ysis. The GoF Statistical Toolkit has been released, 
it is downloadable from the web together with user 
and software process documentation2. 

Thanks to its flexible design the GoF Statistical 
Toolkit has recently been extended, providing to the 
user additional "less known" GoF tests among which 
he/she can choose. 

We present the recent improvements and exten
sions of the GoF Statistical Toolkit, describing the 
architecture of the extended system, the new statis
tical methods implemented, and an outlook towards 
future developments. 
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2. The GoF Statistical Toolkit 

2.1. GoF tests 

The GoF Statistical Toolkit offers a variety of GoF 
tests to solve the two-sample problem, and attention 
will be focused on this topic. We will deal with one-
dimensional tests only. 

Many inferences are available to solve the two-
sample problem, testing the null hypothesis that the 
distributions F, G underlying the two samples are 
equal 

H0 : F = G 

without specifying the common distribution func
tion. For this reason, these tests are distribution-
free under the null hypothesis when the observations 
are independent and identically distributed. In most 
application of GoF techniques, the alternative hy
pothesis is composite (i.e. it depends on unspecified 
parameters), as it gives little or no information on 
the distribution of the data, and simply states that 
the null hypothesis is false: 

# i : F ^ G. 

Non-parametric statistics provides a variety of 
GoF tests to solve the two-sample problem. These 
tests can be roughly divided into two major groups: 

(1) tests of Chi-squared type: the test statistic com
putation is based on the weighted squared differ
ence in the number of categorical observations3, 

(2) tests based on empirical distribution function 
(EDF) statistics: the test statistic measures the 
distance between the two EDFs F and G3. 

The first class of tests is used to assess the fit of 
models for binned data. The Chi-squared test can be 
useful also in case of unbinned data; in this case the 
researcher is compelled to group events into classes, 
converting the distribution from unbinned to binned, 
and sacrificing in this way a good deal of the infor
mation conveyed by the distribution itself. 

The second class can be applied to both binned 
and unbinned data; it evaluates the difference be
tween F and G, and the value of the corresponding 
test statistic is computed as a mathematical func
tion of the vertical differences between the two EDFs. 
These tests can be classified according to the mathe
matical form used to evaluate the difference between 
the two EDFs: 

• tests based on uniform distance, in which the 
test statistic involves the maximum difference 
between the two EDFs at one point (the Kol-
mogorov family of tests), 

• tests based on quadratic distance, in which the 
test statistic measures the sum of the weighted 
squared distance between F and G (the Cramer-
von Mises family of tests). 

A wide set of algorithms aimed at testing the 
compatibility of the distributions of two variables 
have been gathered together in the GoF Statisti
cal Toolkit1. The first release of the GoF Statisti
cal Toolkit provided the user with a variety of two-
sample GoF tests, from Chi-squared test to tests 
based on the maximum distance between the two 
EDFs (Kolmogorov-Smirnov, Kuiper, Goodman), to 
tests based on the weighted quadratic distance be
tween the two EDFs (Cramer-von Mises, Anderson-
Darling). 

Thanks to its flexible design, the GoF Statisti
cal Toolkit has recently been extended, implementing 
other less known GoF tests. The component-based 
design allowed new GoF tests to be added, without 
the need to change the code of the already existing 
tests. The user is therefore allowed to choose among 
a wider set of tests, including: 

• modifications of Kolmogorov-Smirnov and 
Cramer-von Mises tests, introducing appropriate 
non-negative weight functions (documented in 
the statistical literature) in order to give various 
weights to the differences |F — G\ and (F - G)2 

respectively; 
• modifications of Kolmogorov-Smirnov, Cramer-

von Mises, and Watson tests, approximating the 
test statistics to a x 2 (i-e- the modified test 
statistics follow a Chi-square distribution). 

Therefore, the up-dated GoF Statistical Toolkit 
juxtaposes the well known Chi-squared test with a 
wide variety of GoF tests based on EDF statistics, 
covering all the tests we could find in the statistical 
literature to solve the two-sample problem by means 
of EDF statistics. 

2.2. User layer 

The component-based design uses object-oriented 
techniques together with generic programming. The 
adoption of AIDA4 for the user layer decouples the 
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usage of the GoF Toolkit from any concrete anal
ysis system the user may have adopted in his/her 
analysis. 

The user is shielded from the complexity of both 
the core component design of the GoF Statistical 
Toolkit and the computational aspects of the mathe
matical algorithms implemented. All the user has to 
do is to provide the two distributions he/she wants 
to compare, to choose the most appropriate GoF test 
(in practice writing one line of code) and to run the 
comparison. The comparison returns the user a sta
tistical comparison result object, giving access to the 
computed value of the test statistics, the number of 
degrees of freedom and the quality of the copmpari-
son (p-value). 

A layer for user input from ROOT5 objects has 
recently been added, thanks to the component-based 
architecture. 

3. Power of GoF Tests 

A test is considered powerful if the probability of ac
cepting the null hypothesis when it is wrong is low. 
It must be stressed that with a set of non-parametric 
tests, power evaluation can be quantified only speci
fying the alternatives in detail. 

A quantitative comparative study to evaluate 
the power of the GoF tests contained in the GoF 

Statistical Toolkit is in progress. The aim is to 
provide the users of the GoF Statistical Toolkit a 
guideline for the practical choice of the most suitable 
two-sample GoF test under general non-parametric 
conditions. 

4. Conclusions 

The GoF Statistical Toolkit represents an up-to-date 
and versatile tool for data comparison in physics 
analysis. 

Nowadays the GoF Statistical Toolkit represents 
one of the most complete system available to face 
the two-sample EDF GoF hypothesis testing, both 
in the physics and in the statistical data analysis do
mains. It is the first statistical software system pro
viding such a variety of sophisticated and powerful 
Goodness-of-Fit algorithms in high energy physics. 
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The CEDAR collaboration is developing a set of tools for tuning and validating models of high-energy physics processes 
by comparing the predictions of Monte Carlo event generators with data from experiments. The core CEDAR 
program is to interface the Durham HepData database of experimental measurements and the UCL Jet Web system 
for automated event generator validation: eventually Jet Web will use HepData records for its comparisons with Monte 
Carlo predictions. Other aspects of the project include defining XML data formats, building a software development 
environment for high-energy physics projects and providing an archive of HEP computation software. 

1. Introduction 

Although the Standard Model is extraordinarily-
successful in describing a wide range of phenom
ena, processes involving non-perturbative QCD can
not be calculated explicitly and require some phe-
nomenological modelling. This is particularly true 
of hadronic collisions, since the final state is influ
enced by the parton distribution functions (PDFs) 
of the colliding beams, by multiple soft interactions 
between partons (the "underlying event") and by the 
hadronisation of the out-going partons. Accurate 
modelling of such hadronic processes is crucial for 
robust interpretation of data from the LHC. 

The non-perturbative aspects of high-energy 
processes are typically simulated by Monte Carlo 
event generators, which typically introduce several 
free or nearly free parameters. These can only be 
constrained by fitting the model predictions to the 
experimental data. However, this is far from a triv
ial task as the experimental conditions vary widely, 
involving different beam particles, different regions 
of phase space and complicated observables. The 
variables may be highly correlated, and tuning to 
a limited set of data may result in non-physical 
predictions in an un-fitted region of the parameter 
space. 

The CEDAR project1, 2 exists to provide a stan
dard, robust and simple system for performing simul
taneous data vs. model comparisons. Its main focus 
is the integration of the HepData3 and JetWeb4 ser
vices, improving JetWeb's ability to constrain Monte 
Carlo simulation parameters. The rest of this article 
will describe the projects comprising CEDAR and 
how this goal can be achieved. 

2. HepData Upgrade 

The existing HepData system is based on a hierar
chical database, which is accessed via legacy FOR
TRAN routines and suffers from a lack of maintain
ability or support. To make HepData more flexi
ble and suitable for remote access by JetWeb, Hep
Data is being migrated to a relational database sys
tem with a re-designed data model. Rather than 
query the database directly, Web users will query 
a Java-based front-end which will present the data 
records in a choice of formats. These are foreseen 
to include HTML-formatted data tables, plain text, 
HepML records (see Section 5) and AIDA XML12. 

3. JetWeb Upgrade 

The JetWeb system is also undergoing a substan
tial update as part of the CEDAR programme. In 
its present incarnation, JetWeb consists of a MySQL 
database of data from experiments and Monte Carlo 
simulations, and a Java servlet engine which per
forms comparisons between these. A typical use 
of JetWeb is to specify a number of generator pa
rameters and a number of events via a Web in
terface; JetWeb then determines if sufficient Monte 
Carlo data is already available and distributes sim
ulation jobs if not. The comparisons between data 
and Monte Carlo predictions are obtained using the 
FORTRAN "HZTool" library5. 

HZTool is maintained by CEDAR with sub
routines for specific measurements being contributed 
by various authors both inside and outside the 
CEDAR group. Under CEDAR, a new version of 
HZTool (v4.0) has been released: in this the genera
tor "steering" components required for JetWeb inte-
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gration have been extracted into an external package 

called HZSteer6 . 

Work has begun in CEDAR to develop an object-

oriented replacement for HZTool, to be called "Ro

bust Independent Validation of Experiment and The

ory" (Rivet)7 . Guiding design principles of Rivet 

include the implementation in 0 0 C + + and com

patibility with existing s tandard da ta formats such 

as HepMC 1 1 and AIDA 1 2 . Rivet aims to minimise 

dependence on generator-specific features: this will 

make it easier to incorporate new Monte Carlo gen

erators than is currently the case with HZTool. 

4. C o n n e c t i n g J e t W e b a n d H e p D a t a 

The next version of Jet Web will communicate with 

HepData to get the experimental data used for its 

comparisons to MC data, rather than maintaining 

its own separate database. The details of the data 

exchange are still to be decided, but it is likely that 

the da ta models used by HepData and JetWeb will 

be partially unified. This allows the HepData objects 

to be "serialised", sent to JetWeb and used directly, 

rather than involving an intermediate format. 

5. H e p M L 

Since interoperability is a major concern for CEDAR, 

a family of XML-based da ta formats is being de

veloped to describe HepData records and generator 

configurations. The formats are defined by a set of 

XML schemas, and the family as a whole is referred 

to as HepML8 . These can be easily translated into 

other representations such as AIDA XML, plain text, 

XHTML or many others, which makes flexible out

put modes for HepData possible. 

CEDAR's XML schemas are separate from the 

HepML developed within the MCDB project9 , which 

is primarily a format for event records. Eventually, 

the two formats may be incorporated into a more 

general family of HEP schemas. 

6. H e p F o r g e and H e p C o d e 

CEDAR provides a centralised development environ

ment for high energy physics software projects, called 

HepForge1 0 . This currently hosts the core CEDAR 

projects (HZTool, HZSteer, JetWeb & HepML) 

and also Herwig++ 1 4 , T h e P E G 1 5 , LHAPDF 1 6 , 

J immy 1 7 , fastNLO1 8 , K t Je t 1 9 and RunMC 2 0 . Other 

H E P projects are encouraged to use HepForge. 

The facilities currently offered by HepForge in

clude the Subversion and CVS code management 

systems with Web-based viewers, a bug tracker, a 

wiki for documentat ion and communication between 

developers and mailing lists for developer contact, 

project announcements and discussion. 

HepForge will eventually be used to provide a 

final portion of CEDAR, named HepCode 1 3 . This is 

a project to provide access t o well-defined versions 

of Monte Carlo generator programs, par ton distribu

tion functions and other high-energy physics calcu

lation codes. In its current s ta te , HepCode is sim

ply a list of programs with links to where they can 

be downloaded and some information on which pro

cesses they calculate, implementation language, and 

so-on. The aim is for HepForge to be used to main

tain this list and to store each released version of the 

code: this will be most readily achieved if projects 

who wish their code to be in HepCode register a Hep

Forge project and archive their releases there. 
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Keeping as much information about data as possible allows for exploration of possible structure without apriori 
knowledge. We will show examples of this Exploratory Data Analysis approach championed by Tukey and developed 
at AT&T and Bell labs. The labs and follow-up developers such as R. Gentleman and R. Ihaka 1 have made high 
quality software available (S,R,xgobi,ggobi) that makes even visualisation of high dimensional data highly effective. 
We finish the presentation with a small example of how visualisation has helped us improve a method for estimating 
the bias in coin tossing. 

1. Statistics is not just statistics 

Often outsiders think of statistics as the boiling down 
of large data sets to one or two number summaries. 
Such compression rarely works unless the data are 
distributed according to a simple parametric family 
such as a normal, gamma or Poisson. In real exper
iments the data come in the form of large matrices. 
Often we need to look at the data to understand 
what information the matrix contains and how to 
compress it. We will show examples of such data-
mapping setups. This presentation can only be con
sidered a brief introduction into a well developed field 
that has filled entire books (Wilkinson2, Chambers 
et al.3, Cleveland4- 5 ) . 

2. One dimensional data 

As stated previously, if the data come from a nice 
parametric family, a few numbers suffice to capture 
all the information in the vector, but evaluating how 
well the data fit the parametric model is a prelimi
nary hurdle. As was shown in Lauritzen6 there are 
good summary statistics for such evaluation. How
ever visual inspection of the fit conveys more details 
on the data. 

2.1. Distribution evaluation 

Histograms are not very useful as they do not provide 
us with a good visual evaluation of a distribution. It 
is hard to differentiate between a bell shaped curve 
and a symmetric heavy tailed distribution. We will 
show in an example how more sophisticated plots 
enable immediate recognition of departures from the 
distributional forms under study. 

2.2. Random matrix data 

We chose a simple random matrix type of data for 
this illustration. Take the QR decompostion of a 
matrix filled with uniform, independent, identically 
distributed entries, the decomposition is performed 
through a simple Grahm-Schmidt algorithm. We fill 
a 1000 x 1000 data matrix with random numbers from 
a Uniform(-l,l). We then find the QR decomposition 
of the matrix and multiply Q by \/l000, as we follow 
the columns the data become more and more normal. 
Histograms rarely show normality although they can 
be used for detecting multimodalities. A more so
phisticated plot is a qqplot that plots the quantiles 
of the observed distribution versus the theoretical 
quantiles of a target distribution. In our comparisons 
below, we use the Normal as our reference distribu
tion. If the data are normal as in the bottom of Fig
ure 1, we can see that the points follow the diagonal 
line perfectly. In general considering residuals from 
the theoretical or expected values allows for more 
precise visual evaluations. These pictures were gen
erated with the qqnorm command in R, which is the 
best software for visualising data. R has a large Ex
ploratory Data Analysis (EDA) component provided 
by the AT&T labs under the guidance of the mas
ter of data visualization, John Tukey, who invented 
the term EDA, stem and leaf plots, boxplots, projec
tion pursuit, and many more brilliant visualisation 
wonders7. 

3. Bivariate data 

3.1. Two continuous variables: scatterplots 

As soon as the size of the data sets exceed a hundred 
or so points, the overlay of points hides the actual 
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Figure 1: Histograms, qqplots of random matrix data. 
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(X, X'X/2 * Y) where X,V - rnorm(IOOOO) (X, X'X/2 * V) where X,Y - rnorm(IOOOO) (X, X*X/2 + Y) where X,Y - rnorm(IOOOO) 
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Figure 2: A variety of scatterplots of data. 

distributional density of a bivariate distribution, the 
upper part of Figure 2 shows on the left the over
lay that occurs with an ordinary scatterplot and two 
ways of avoiding it, the first using a sunflower plot 
which adds petals to the points according to how 
many overlaid instances occur(sunflowerplot). In 
the case of this data the improvement only occurs on 
the outer layer of the cloud, a better plot is provided 
by hexagonal binning (hexbin) which provides a two 

dimensional equivalent to a histogram with hexago
nal bins. Usually we are interested in the relation 
between the two variables that are plotted. The 
lower part of Figure 2 shows multivariate scatter
plots of several variables measured on three groups 
of diabetes patients and healthy subjects. This ma
trix of plots was generated by the p a i r s command 
in R, with the upper right hand panels showing a 
smooth curve fit to the data as well, and the lower 
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left hand plots showing the symmetric plots with the 
points labeled according to their diabetic phenotype. 
The variables are named along the relevant diagonal, 
thus the third plot in the second row shows a scat-
terplot with steady on the horizontal axis and glu-
fast (glucose after fasting) on the vertical axis. We 
see the smooth curve shows us that after the initial 
drop glufast stays constant. The symmetric plot 
shows us that the patients with low glufast are all 
in group 1 (overt diabetic). 

3.2. Boxplots 

When comparing a continuous variable and a cate
gorical variable, the most useful visualisation tech
nique is the boxplot. Here we will show an exam
ples where we summarize measurements on genes 
that are differentially expressed in T-cells of three 
different kinds; see the details of the study done 
using microarrays in Holmes et al.8 We ranked 
the genes by their adjusted p-value. We find 
about 160 interesting genes (continuous variables) 
which differentiate between three groups of T-cells 
(categorical variable with 3 levels: Effector, Memory 
and Naive). For biologists working with microarrays 
this is The dreaded laundry list: we need to vi
sualise the information contained in this table of 160 
genes. Here are boxplots of three such genes, but as 
we cannot look at all 160 boxplots, it is better to use 
the angles between the medians in the three classes 
and plot them around a circle. Here we didn't stan
dardise the data by reducing all the measurements 
to have variance 1 as we would have if they had been 
measured on very different scales. 

I 

X 
Figure 4-' Building an angular summary of a boxplot. 

1) Consider the medians of the gene expression patterns 
for effector, memory, and naive cells, in that order. 
2) Take x = median (memory) - median(effector) and y 
= median(naive) - median(memory) ('effective slopes'). 
3) Combine into the coordinate (x,y), and normalize 
to length 1, i.e. multiply by a constant c so that 
(ex)2 + {cyf = 1 
4) Map the point onto the unit circle. 
5) An angle is attached to each point with (1,0) being 
angle 0 and rotating counter-clockwise. 
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Figure 5: Angular Representation and its histogram. 

We see very clearly the gap in the angles showing 
clearly that there are no genes that are downregu-
lated in the Memory cell types compared to the other 
two. 
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Figure 3: Boxplots of three genes for 3 types of 
T cells. 

4. More than two dimensions 

When a scatterplot is not possible because the data 
have too many variables, we have to choose clever 
ways of creating 'maps' of the data that will show up 
the features that we are most interested in. Some
times these features are known ahead of time as in 
the case of the diabetes data where there is a natural 
grouping of the patients. We want to find a mapping 
that separates out the three groups of patients. In 
the second study, we have categorical data we want 
to seriate, and we need to discover an underlying 
hidden gradient. 
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4.1. Choosing axes that explain a 
categorical variable 

One can take linear combinations of the original vari
ables such as those in the diabetes data set shown 
above that maximize an intergroup variance, when 
the groups are given - this is called Linear Dis
criminant Analysis. The first and second discrim
inant axes are linear combinations of the the original 
variables with coefficients: 

relwt glufast g lutest steady insul in 
axis 1: -0 .17 2.03 -3.87 0.00 -0 .41 
axis 2: -0 .49 2.29 -2.11 -0 .72 0.06 

7 -

LD1 

Figure 6: Linear Discriminant Variables. 

(l='Overt Diabet.' 2='Chem. Diabet.' 3='Normal') 

use of correspondence analysis on the table of fre
quencies of sentence endings (for a detailed analysis 
see Charnomordic and Holmes11). 

The first 10 profiles (as percentages) look as 
follows: 
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The eigenvalue decomposition (called the scree 
plot) of the chisquare distance matrix (see n ) shows 
that two axes out of a possible 6 (the matrix is of rank 
6) will provide a summary of 85% of the departure 
from independence. This justifies the use of a planar 
representation to provide a good visual summary of 
the data. 
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Figure 6 shows the display for the diabetes data, we 
can see that the groups are well separated in this 
planar map. 

4.2. Counts and categorical variables 

Contingency table data containing cross-tabulated 
counts of categorical variables can be visualised 
by using the chisquare distances between rows or 
columns and a generalized singular value decom
position called correspondence analysis9 which has 
proved invaluable for finding hidden rankings (called 
ordinations) or clusters of multicategory count data. 
As an example we take data analysed by Cox and 
Brandwood 10 who wanted to seriate Plato's works 
using the proportion of sentence endings in a given 
book, with a given stress pattern. We propose the 
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Figure 7: Correspondence Analysis of Plato's Works. 

We can see from the plot that there is a seriation that 
in most cases follows a parabola or arch12 from Laws 
on one extreme being the latest work and Republica 
being the earliest among those studied. 
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4.3. Multidimensional scaling 

A common situation is outlined in the mapping of 
observations for which we have a natural distance. 
We need to create a planar or three dimensional rep
resentation that represents these distances with the 
least distortion. This is well fulfilled by what is called 
multidimensional scaling. 

Multidimensional Scaling 13^14.1s p r 0 p 0 s e s to 
make the best low dimensional map of the obser
vations given by a distance matrix. 
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Figure 8: Multidimensional Scaling Plane 
of Distances. 

Some consider correspondence analysis to be a spe
cial case of MDS where the distances approximated 
are the Chisquare distances. 

4.4. Data projection methods 

We have already seen three projection methods. The 
reason for trying to find low dimensional projections 
of the data that contain most of the relevant infor
mation comes from what is commonly known as the 

curse of dimensionality which makes nonparametric 
multivariate density estimation16 impossible. Each 
small multivariate window will contain too few points 
to be useful in estimating the density. This is why 
dimension reduction techniques are so essential. Pro
jecting data to detect structure can also be done by 
choosing an axis that maximizes the variance along 
a direction17; this is Principal Components Analysis 
(PCA). 

An innovative extension to this idea was to 
change the optimization criteria to capture direc
tions in which the data appear far from Normal. 
This was introduced to solve visualisation problems 
in particle physics by Friedman, Tukey and Kruskal 
who invented Projection Pursuit18, 19. Xgobi20 and 
ggobi21 provide implementations of these methods, 
where instead of rotating the data manually one 
follows the computer's suggestion of projections in 
the 'most interesting' direction, sometimes exhibit
ing clusters in the data. These methods find lin
ear combinations of the original variables onto which 
the data either project into clumps or multimodal 
distributions or have skewed or long tailed distribu
tions. A very high quality but complicated multivari
ate R package for linear multivariate visualisations is 
ade422 with which some of the presented graphics 
were made. 

However what if the data show non linear struc
ture that no linear combination of the original vari
ables will capture? Then we have to use more re
cent generalizations of these methods that look for 
lower dimensional manifolds to which the data lie 
abnormally close. These new nonparametric meth
ods include Local linear Embedding LLE 2 3 which 
use local distances to find structure, and ISOMAP 24: 
which 'unfolds the data' if it follows a manifold. 

4.5. Detecting hidden categorical 
variables: clustering 

When trying to detect hidden hierarchical structure 
as between genes for instance, a hierarchical rep
resentation can be quite useful. Figure 9 shows a 
heatmap of the gene expression intensities with hi
erarchical clustering of the rows and columns. See 
Gordon25 for more details as to the construction of 
clustering trees. Each measurement is coded on a 
grayscale and both the genes and the patients are 
clustered using the heatmap command in R. 
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Eigenvalues of MDS for bootstrapped trees 
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Figure 9: Hierarchical Clustering Heatmap. 

Clustering can be particularly useful in the vi
sual evaluation of a model. By clustering both the 
observed data and the simulated data we can try to 
detect their differences. If the observed data appear 
on the fringe of the data simulated according to the 
model, the chances are the model is wrong. 

4.6. Visualisation of tree stability 

We can often use these visualisation techniques in a 
confirmatory context. For instance, the bootstrap26 

is a popular nonparametric resampling scheme that 
provides useful approximations to sampling distri
butions of estimators, even multivariate ones. In the 
clustering study shown in Figure 9, we estimated the 
hierarchical clustering of the patients given a set of 
relevant genes. We can resample the genes many 
times, say 100 times in this example, and compare 
the bootstrap trees to the original tree using a dis
tance between trees27. We have 101 by 101 matrix 
of distances between the bootstrapped tree and the 
original one that can tell us what small perturbations 
of the data would do to the estimated trees. 

As in the case of European cities above, we use 
the matrix of distances and search for a low dimen
sional space in which to embed the objects in such 
a way as to reproduce as faithfully as possible the 
distances between objects using MDS28. In order to 
appreciate the quality of the approximation, we con
sider the plot of eigenvalues of the distance matrix. 
This is called a screeplot17 and is always a necessary 
preliminary precaution as the main reason of insta
bility in all these techniques based on eigendecom-
position comes from choosing to split two very close 
eigenvalues, retaining one and rejecting the other. 

20000 40000 S0O0O BO0GO 

Figure 10: Screeplot of Eigenvalues. 

In this case we can see that retaining either 2 or 
3 axes would be reasonable, cutting off at 4 dimen
sions would not. Here is the planar representation 
obtained with the first two eigenvectors representing 
85% of the information in the distance matrix. 

Bootstrapped trees 

-40 -20 0 20 40 

Figure 11: Structured Groups of Resampled Trees. 

This is the first plane provided by the MDS al
gorithm. A histogram of these distances would have 
just shown a bimodality in the distances, those that 
are near to the original tree (that is in the upper left-
hand group) and those that are far. Here we see the 
structure of the groupings of the trees into a distinc
tive pattern. We followed up on this map of the data 
by characterising the groups by which genes were ab
sent in these resamples. 

5. Dynamical bias in the coin toss: 
visualisation gives the answer 

Here we will give an example of an analysis of a phys
ical experiment where visualisation proved the key 
to improving the data analysis and estimation of the 
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fundamental parameter of interest. Coin-tossing is a 
basic example of a random phenomenon. Naturally 
tossed coins obey the laws of mechanics (we neglect 
air resistance) and their flight is determined by their 
initial conditions. 

Joe Keller carried out a study 29 of the physics 
assuming that the coin spins about an axis through 
its plane. Then, the initial upward velocity and the 
rate of spin determine the final outcome. Keller 
showed that in the limit of large initial velocity and 
large rate of spin, a vigorous flip, caught in the hand 
without bouncing, lands heads half the time. 

Diaconis, Holmes and Montgomery (2004) 30 

(DHM) take precession into account: the fact that 
real flips often precess a fair amount changes the con
clusions of Keller's work. 

Consider first a coin starting heads up and hit 
exactly in the center so it goes up without turning 
like a pizza. We call such a flip a "total cheat coin", 
because it always comes up the way it started. 

For such a toss, the angular momentum vector 

M lies along the normal to the coin. 

<JL>2 

Figure 12: Coordinates of Precessing Coin. 

DHM prove that the angle ip between M and 
the normal to the coin stays constant. If this an
gle is less than 45°, the coin never turns over. It 
wobbles around and always comes up the way it 
started. Magicians and gamblers can carry out such 
controlled flips which appear visually indistinguish
able from normal flips. For Keller's analysis, M is 
assumed to lie in the plane of the coin making angle 
90° with the normal to the coin. 

Theorem 1. (DHM) For a coin tossed starting 
heads up at time 0, the cosine of the angle between 
the normal to the coin at time t and the up direction 

is 

(1) f(t) =A + B cos(uNt) 

with A = cos2ip,B = sin2^, uN = | |Af | | / / i , i i = 
\mR2 + \mh2 for coins with radius R, thickness h 
and mass m. Here ip is the angle between the angular 
momentum vector M and the normal at time t = 0. 

Theorem 2. (DHM) For all smooth, compactly sup
ported densities g, the limiting probability of heads 
p(ip) with ip fixed, given that heads starts up, is given 
by 

M ) = / \ + W 1 ( c o t 2 ( V 0 ) if | < i> < 37T/4 
PW> \ 1 if 0 < ip < TT/4 or ^ < V < TT 

We wanted to use Theorems 1 and 2 to find out what 
is the empirical distribution of ip when real people 
toss coins. Thus we could be able to decide whether 
coin tossing is fair. Our empirical study used a high
speed slow motion camera. The projection of a cir
cle onto the plane of the camera is an ellipse. Using 
image analysis techniques we fit the ellipses to the 
images of the tossed coin. A simple function of the 
lengths of the major and minor axes gives the nor
mal to the coin in three-space. As explained, these 
normals spin in a circle about the angular momen
tum vector which stays fixed during the coin's flight. 
This gives an estimate of ip. 

Slow Motion Photography 
We used a high-speed slow motion camera to record 
fifty coin flips. We found it best to film at about 
600 frames per second. In contrast, the slow 
motion feature on standard camcorders shoot at 
about 60 frames per second. This is much too 
slow to give any useful data. A circular disc pro
jected onto a plane results in an ellipse. From 
each ellipse the major and minor axis were deter
mined. From these, as described below, the nor
mal to the coin in three dimensions can be esti
mated. The sequence of (a) coin images (b) coins 
with fitted ellipses can be viewed by the reader at 
h t tp : / /www-s ta t .S tanford .edu/~susan/co ins / . 

At this stage, for each flip, we have a sequence of 
fitted normal vectors in three dimensions, centered at 
the coin's center of gravity. According to the theory, 
these normals lie on a circle centered at the fixed 
angular momentum vector. The radius of this circle 
thus gives an estimate of the angle ip associated to 
the flip. Of course, the circles can be fit from just a 

http://www-stat.Stanford.edu/~susan/coins/
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few points. We used about 20 points/flip and again 
checked visually to see if these looked as if they lay 
on a circle. 

The plane of the camera is fixed throughout. 
In spatial coordinates (Xi,X2,Xs), the (X\,X2,0) 
plane will be identified with the camera plane and 
the line (0, 0, X3) is the orthogonal to the camera 
plane. At a fixed time, the coin is in a fixed po
sition in 3-space. We observe, and can accurately 
estimate, the major and minor axes of the elliptical 
projection of the coin on the plane. Without loss 
of generality we assume the coin has radius 1. Let 

A = (Ai, A2,0) be a unit vector in the plane of the 

camera centered at the ellipse center along the ma

jor axis. Let B = (£?i, B2,0) be an orthogonal vector 

along the minor axis. Thus |A| = 1 and \B\ = cos# 
for some angle 6, 0 < 9 < -n/2. This description of 

A, B involves a choice of ± sign which we will deal 
with in a moment. Throughout, we assume that the 
coin has been parallel translated so that its center 
lines up with the center of the ellipse. 

Let U, V be the unit vectors on the coin, which 

project to A,B respectively so that in fact A = U. 

Let K= (0,0,1) be the direction orthogonal to the 

camera plane. 

Figure 13: The disk shaped coin is projected onto 
an ellipse in the camera plane. 

Lemma With notation as above the normal N to 
the coin is 

N=(e1A2Jl-(Bf + Bi), 

for some choice of signs e, = ±1 . Once the normals 
are obtained we can visualize them in three dimen
sions using ggobi21 . 

library(Rggobi) 

load('n27s.save') 

ggobi(n27s) 

load('n27u.save') 

ggobi(n27u) 

When the normals were represented in three di
mensional space with ggobi, we obtained a very dis
appointing picture. The indeterminacy in the signs 
introduced into the normal coordinates leads to data 
that does not lie nicely on a circle as it should. We 
used the interactive feature of ggobi to explore the 
projections but they did not lie in a plane, let alone 
lie on a circle. 
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Figure 14-' The normals originally have a scrambled 

sign pattern. 

The visualisation of the data enabled us to test 
various fixes to the sign indeterminacy which scram
bled the coordinates. The solution was found once 
we had the idea of incorporating the time ordering in 
the labelling of the points. Then we found the choice 
of signs by continuity, choosing (at each time frame) 
the choice of eight sign patterns that makes the inner 
product of the current normal and previous normal 
as close as possible to a constant, while keeping the 
curvature continuous. 
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Figure 15: How the normal vectors sit around a 
circle in 3-D. 

Unscrambled by appropriate choice of signs, all 
lie clearly around the circle. Our theory implies that 
these points lie in a plane in three dimensional space. 
We fit the plane using least squares. The distance 
between the plane and the origin gives us d from 
which we can find if> = cos_1(d). 

Visualisation suggests a better method 
of estimation 

However we also noted that once unscrambled, the 
data gave us a revelation as to another method of 
measuring angular momentum. We note that there 
are several visible triplets of points, (88,121,137) and 
(86,119,135) for instance, which actually correspond 
to images that are exactly a flip apart and thus are 
in Berry phase31. We will explain how this provides 
another estimation method for the angular momen
tum. We can see that points are coupled together 
after they have completed a rotation. By comparing 
these images we will be able to measure the preces
sion even better. 

Theorem 3. Each time the normal vector completes 
one full cycle around the angular momentum vector, 
the coin has precessed by the angle: 

A ^ = E^2ir wcos{i>) as ft, J. 0. 

Remark: When tp ~ 0 so that M is nearly aligned 

with the vertical, we have AA ~ ir. In other words, 
every time the normal vector precesses around once, 
the coin rotates approximately 180°. 

We now have two methods for estimating ip from 
photographs: using this 'Berry phase' from Theorem 
3, or reconstructing the normal's time evolution and 
figuring out the radius of the resulting circle on the 
sphere. We have used four such tosses to check the 
two methods. For instance for toss No 27, we have an 
estimate of •$ = 1.48 with the Berry phase method 
and for Tosses No 30: tp = 1-47 and for Toss No 32: 
i> = 1.40, and for Toss No 33: i> = 1.36. 

Figure 16: Berry Phase. These images are 
separated by exactly one coin flip. 

5.1. The results 

Of our 50 flips, 27 gave useful final results. From 
the measured values of ip, the probability p(ip) was 
calculated from Theorem 2. The estimated probabil
i t ies range from 0.500 to 0.545. The 27 probabilities 
are displayed in a stem and leaf plot. The first row 
of this plot shows the values 0.500,0.500,0.501,... in
dicating occurrences of flips for which p(ip) took on 
these value. The next-to-last row shows no occur
rences between 0.540 and 0.545. The last row shows 
the single outlying value 0.545. Following this are 
the five number summary, the mean and the stan
dard deviation. 
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Figure 11: Stem and leaf plot of estimates for p(?p). 

The stem and leaf visualisation is the one used by all 
statisticians when deciding on how to grade students 
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(A+, A, A-, B+, . . . ) because it shows clearly any 

na tura l groupings. 

Five number summary of p r o b a b i b l i t i e s : 
Min. 1st Qu. Median 3rd Qu. Max. 

0.5001 0.5011 0.5027 0.5052 0.5448 
Mean= 0.5083 sd =0 .0125 

The mean of the probabilities is 0.508. We have 

rounded this up to the 0.51 quoted in DHM. 
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Unprecedented data sizes in astronomy are creating a new challenge for statistical analysis. In these large datasets statisti
cal errors are typically much smaller that the systematic errors. Due to the exponential growth of data volume, optimal al
gorithms with poor scaling behavior are becoming untenable. New approaches with suboptimal but fast algorithms are 
required. 

1. Introduction 

1.1. Evolving Science 

Computational Science is an emerging new branch of 
most scientific disciplines. A thousand years ago, sci
ence was primarily empirical. Over the last 500 years 
each discipline has grown a theoretical component. 
Theoretical models often motivate experiments and 
generalize our understanding. Today most disciplines 
have both empirical and theoretical branches. In the last 
50 years, most disciplines have grown a third, computa
tional branch (e.g. empirical, theoretical and computa
tional ecology, or physics, or linguistics). 

Computational Science has meant simulation. It grew 
out of our inability to find closed form solutions for 
complex mathematical models. Computers can simulate 
these complex models. 

Computational Science has been evolving to include 
information management. Scientists are faced with 
mountains of data that stem from four converging 
trends: (1) the flood of data from new scientific instru
ments driven by Moore's Law - doubling their data 
output every year or so; (2) the flood of data from simu
lations; (3) the ability to economically store petabytes of 
data online; and (4) the Internet and computing Grid 
that makes all these archives accessible to anyone 
anywhere. 

Acquisition, organization, query, and visualization tasks 
scale almost linearly with data volumes. By using paral
lelism, these problems can be solved within fixed times 
(minutes or hours). 

1.2. Emerging New Paradigms 

As a result of this data explosion, there are new emerg
ing paradigms not only in the way how we collect our 
data, but also in how we publish and analyze them. The 
traditional method of science consisted of the data col
lection as its first step, followed by the analysis, then 
publication. 

With today's terabyte size data sets, collected by large 
collaborative teams, the data need to be first properly 
organized, usually into on-line databases, before their 
analysis can even begin. Since these large, data intensive 
projects take at least 5-6 years, most of their data will 
only migrate from the project databases to a central 
repository at the end of the project, i.e. most of the data 
in central archives will be at least 3 years old. When 
data sizes are doubling each year, this means that cen
tralized data sets will never exceed 12% of all data 
available for science. 

Since these large projects are scattered over the world, 
most of the world's scientific data can only be accessed 
by successfully federating these diverse resources. 

1.3. Living in an Exponential World 

Detector sizes of our astronomical survey instruments 
are improving exponentially, since they are based on the 
same technology as computer CPUs. Consequently, 
astronomy data volumes are approximately doubling 
every year. This even exceeds the rate of Moore's law, 
describing the speedup of CPUs and growth of storage. 
This trend results from the emergence of large-scale 
surveys, like 2MASS, SDSS or 2dFGRS. Soon there 
will be almost all-sky data in more than ten wavebands. 
These large-scale surveys have another important char
acteristic: they are each obtained by a single group, with 
sound statistical plans and well-controlled systematics. 
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As a result, the data are becoming increasingly more 
homogeneous, and approach a fair sample of the Uni
verse. This trend has brought a lot of advances in the 
analysis of the large-scale galaxy distribution. Our goal 
today is to reach an unheard-of level of accuracy in 
measuring both the global cosmological parameters and 
the shape of the power spectrum of primordial fluctua
tions. The emerging huge data sets from wide field sky 
surveys pose interesting issues, both statistical and com
putational. One needs to reconsider the notion of opti
mal statistics. 

These large, homogenous datasets are also changing the 
way we approach their analysis. Traditionally, statistics 
in cosmology has primarily dealt with how to extract the 
most information from the small samples of galaxies we 
had. This is no longer the case: there are redshift surveys 
of 300,000 objects today; soon there will be a million 
measured galaxy redshifts. Angular catalogs today have 
samples in excess of 50 million galaxies; soon they will 
have 10 billion (LSST). In the observations of the CMB, 
COBE had a few thousand pixels on the sky, MAP will 
have a million, PLANCK will have more than 10 mil
lion. Thus, shot noise and sample size is no longer an 
issue. The limiting factors in these data sets are the 
systematic uncertainties, like photometric zero points, 
effects of seeing, uniformity of filters, etc. 

The statistical issues are changing accordingly: it is 
increasingly important to find techniques that can be de
sensitized to systematic uncertainties. Many traditional 
statistical techniques in astronomy focused on 'optimal' 
techniques. It was generally understood, that these 
minimized the statistical noise in the result, but they are 
quite sensitive to various systematics. Also, they as
sumed infinite computational resources. This was not an 
issue when sample sizes were in the thousands. But, 
many of these techniques involve matrix diagonaliza-
tions or inversions and so the computational cost scales 
as the 3rd power of matrix size. Samples a thousand 
times larger have computational costs a billion times 
higher. Even if the speedup of our computers keeps up 
with the growth of our data, it cannot keep pace with 
such powers. We need to find algorithms that scale more 
gently. In the near future we hypothesize that only algo
rithms with NlogN scaling will remain feasible. 

As the statistical noise decreases with larger samples, 
another effect emerges: cosmic variance. This error term 
reflects the fact that our observing position is fixed at 
the Earth, and at any time we can only study a fixed -
albeit ever increasing - region of the Universe. This 

provides an ultimate bound on the accuracy of any as
tronomical measurement. We should carefully keep this 
effect in mind when designing new experiments. 

2. Astrophysical Motivation 

2.1. Precision Cosmology 

We are entering the era of precision cosmology. The 
large new surveys with their well-defined systematics 
are key to this transition. There are many different 
measurements we can make that each constrain combi
nations of the cosmological parameters. For example, 
the fluctuations in the cosmic Microwave Background 
(CMB) around the multipole / of a few hundred are very 
sensitive to the overall curvature of the Universe, deter
mined by both dark matter and dark energy (deBernardis 
et al 2000, Netterfield et al 2002). 

Due to the expansion of the Universe, we can use red-
shifts to measure distances of galaxies. Since galaxies 
are not at rest in the frame of the expanding Universe, 
their motions cause an additional distortion in the line-
of-sight coordinate. This property can be used to study 
the dynamics of galaxies, inferring the underlying mass 
density. Local redshift surveys can measure the amount 
of gravitating dark matter, but they are insensitive to the 
dark energy. Combining these different measurements 
(CMB + redshift surveys), each with their own degener
acy can yield considerably tighter constraints than either 
of them independently. We know most cosmological 
parameters to an accuracy of about 10% or somewhat 
better today. Soon we will be able to reach the regime of 
2-5% relative errors, through both better data but also 
better statistical techniques. 

The relevant parameters include the age of the Universe, 
t0, the expansion rate of the Universe, also called Hub-
ble's constant H0, the deceleration parameter q0, the 
density parameter Q, and its components, the dark en
ergy, or cosmological constant QA, the baryonic+dark 
matter Qm, the baryon fraction/^, and the curvature Q^. 
These are not independent from one another, of course. 
Together, they determine the dynamic evolution of the 
Universe, assumed to be homogeneous and isotropic, 
described by a single scale factor aft). For a Euclidian 
(flat) Universe QA

+&m =1-

One can use both the dynamics, luminosities and angular 
sizes to constrain the cosmological parameters. Distant 
supernovae have been used as standard candles to get 
the first hints about a large cosmological constant. The 
angular size of the Doppler-peaks in the CMB fluctua-
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tions gave the first conclusive evidence for a flat uni
verse, using the angular diameter-distance relation. The 
gravitational infall manifested in redshift-space distor
tions of galaxy surveys has been used to constrain the 
amount of dark matter. 

These add up to a remarkably consistent picture today: a 
flat Universe, with /2/)=0.65±0.05, /3m=0.35±0.05. It 
would be nice to have several independent measure
ments for the above quantities. Recently, new possibili
ties have arisen about the nature of the cosmological 
constant - it appears that there are many possibilities, 
like quintessence, that can be the dark energy. Now we 
are facing the challenge of coming up with measure
ments and statistical techniques to distinguish among 
these alternative models. 

There are several parameters used to specify the shape 
of the fluctuation spectrum. These include the amplitude 
a8, the root-mean-square value of the density fluctua
tions in a sphere of 8 Mpc radius, the shape parameter 
r, the redshift-distortion parameter fi, the bias parameter 
b, and the baryon fraction fB=i2^Qm. Other quantities, 
like the neutrino mass also affect the shape of the fluc
tuation spectrum, although in more subtle ways than the 
ones above (Seljak and Zaldarriega 1996). 

The shape of the fluctuation spectrum is another sensi
tive measure of the Big Bang at early times. Galaxy 
surveys have traditionally measured the fluctuations 
over much smaller scales (below 100 Mpc), where the 
fluctuations are nonlinear, and even the shape of the 
spectrum has been altered by gravitational infall and the 
dynamics of the Universe. The expected spectrum on 
very large spatial scales (over 200 Mpc) was shown by 
COBE to be scale-invariant, reflecting the primordial 
initial conditions, remarkably close to the predicted 
Zeldovich-Harrison shape. 

There are several interesting physical effects that will 
leave an imprint on the fluctuations: the scale of the 
horizon at recombination, the horizon at matter-radiation 
equality, and the sound-horizon—all between 100-200 
Mpc (Eisenstein and Hu 1998). These scales have been 
rather difficult to measure: they used to be too small for 
CMB, too large for redshift surveys. This is rapidly 
changing. New, higher resolution CMB experiments are 
now covering sub-degree scales, corresponding to less 
than 100 Mpc comoving, and redshift surveys like 2dF 
and SDSS are reaching scales well above 300 Mpc. 

We have yet to measure the overall contribution of 
baryons to the mass content of the Universe. We expect 
to find the counterparts of the CMB Doppler bumps in 
galaxy surveys as well, since these are the remnants of 
horizon scale fluctuations in the baryons at the time of 
recombination. The Universe behaved like a resonant 
cavity at the time. Due to the dominance of the dark 
matter over baryons the amplitude of these fluctuations 
is suppressed, but with high precision measurements 
they should be detectable. 

A small neutrino mass of a few electron volts is well 
within the realm of possibilities. Due to the very large 
cosmic abundance of relic neutrinos, even such a small 
mass would have an observable effect on the shape of 
the power spectrum of fluctuations. It is likely that the 
sensitivity of current redshift surveys will enable us to 
make a meaningful test of such a hypothesis. One can 
also use large angular catalogs, projections of a 3-
dimensional random field to the sphere of the sky, to 
measure the projected power spectrum. This technique 
has the advantage that dynamical distortions due to the 
peculiar motions of the galaxies do not affect the pro
jected distribution. The first such analyses show 
promise. 

2.2. Large Surveys 

As mentioned in the introduction, some of the issues 
related to the statistical analysis of large redshift sur
veys, like 2dF (Percival et al 2002), or SDSS (York et al 
2000, Pope et al. 2005) with nearly a billion objects are 
quite different from their predecessors with only a few 
thousand galaxies. The foremost difference is that shot-
noise, the usual hurdle of the past, is irrelevant. Astron
omy is different from laboratory science because we 
cannot change the position of the observer at will. Our 
experiments in studying the Universe will never ap
proach an ensemble average; there will always be an 
unavoidable cosmic variance in our analysis. By study
ing a larger region of the Universe (going deeper and/or 
wider) can decrease this term, but it will always be pre
sent in our statistics. 

Systematic errors are the dominant source of uncertain
ties in large redshift surveys today. For example photo
metric calibrations, or various instrumental and natural 
foregrounds and backgrounds contribute bias to the 
observations. Sample selection is also becoming increas
ingly important. Multicolor surveys enable us to invert 
the observations into physical quantities, like redshift, 
luminosity and spectral type. Using these broadly de
fined 'photometric redshifts\ we can select statistical 
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subsamples based upon approximately rest-frame quan
tities, for the first time allowing meaningful comparisons 
between samples at low and high redshifts. 

Various effects, like small-scale nonlinearities, or red-
shift space distortions, will turn an otherwise homoge
neous and isotropic random process into a non-isotropic 
one. As a result, it is increasingly important to find sta
tistical techniques, which can reject or incorporate some 
of these effects into the analysis. Some of these cannot 
be modeled analytically; we need to perform Monte-
Carlo simulations to understand the impact of these 
systematic effects on the final results. The simulations 
themselves are also best performed using databases. 

Data are organized into databases, instead of the flat 
files of the past. These databases contain several well-
designed and efficient indices that make searches and 
counting much faster than brute-force methods. No 
matter which statistical analyses we seek to perform, 
much of the analysis consists of data filtering and count
ing. Up to now most of this has been performed off-line. 
Given the large samples in today's sky surveys, offline 
analysis is becoming increasingly inefficient - scientists 
want to be able to interact with the data. Here we would 
like to describe our first efforts to integrate large-scale 
statistical analyses with the database. Our analysis 
would have been very much harder, if not entirely infea-
sible, to perform on flat files. 

3. Statistical Techniques 

3.1. The Two-point Correlation Function 

The most frequent techniques used in analyzing data 
about spatial clustering are the two-point correlation 
functions and various power spectrum estimators. There 
is an extensive literature about the relative merits of 
each of the techniques. For an infinitely large data set in 
principle both techniques are equivalent. 

In practice, however, there are subtle differences: finite 
sample size affects the two estimators somewhat differ
ently, edge effects show up in a slightly different fashion 
and there are also practical issues about computability 
and hypothesis testing, which are different for the two 
techniques. 

The two point correlations are most often computed via 
the LS estimator (Landy and Szalay 1992) 

£(') = 
DD-2DR + RR 

RR 
which has a minimal variance for a Poisson process. 
DD, DR and RR describe the respective normalized pair 
counts in a given distance range. For this estimator and 
for correlation functions in general, hypothesis testing is 
somewhat cumbersome. If the correlation function is 
evaluated over a set of differential distance bins, these 
values are not independent, and their correlation matrix 
also depends on the three and four-point correlation 
functions, less familiar than the two-point function itself. 
The brute-force technique involves the computation of 
all pairs and binning them up, so it scales as 0(N2). In 
terms of modeling systematic effects, it is very easy to 
compute the two-point correlation function between two 
points. 

Another popular second order statistic is the power 
spectrum P(k), usually measured by using the FKP esti
mator (Feldman et al 1994). This is the Fourier-space 
equivalent of the LS estimator for correlation functions. 
It has both advantages and disadvantages over correla
tion functions. Hypothesis testing is much easier, since 
in Fourier space the power spectrum at two different 
wavenumbers are correlated, but the correlation among 
modes is localised. It is determined by the window-
function, the Fourier transform of the sample volume, 
usually very well understood. For most realistic surveys 
the window function is rather anisotropic, making angu
lar averaging of the three-dimensional power spectrum 

ittf&ii 

Figure 1. The layout of a single 'stripe' of galaxy data in the SDSS angular catalog, with the mask overlay. The stave-like shape of the stripe is 
due to stripe layout over the sphere. The vertical direction is stretched considerably. The narrow white boxes represent areas around bright 
stars that need to be 'masked' out from the survey. This illustrates the complex geometry and the edge effects we have to consider. 
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estimator somewhat complicated. During hypothesis 
testing one is using the estimated values of P(k), either 
directly in 3D Fourier space, or compressed into quad
ratic sums binned by bands. Again, the 3rd and 4th order 
terms appear in the correlation matrix. The effects of 
systematic errors are much harder to estimate. 

3.2. Hypothesis Testing 

Hypothesis testing is usually performed in a parametric 
fashion, with the assumption that the underlying random 
process is Gaussian. We evaluate the log likelihood as 

lnl(n) = --xTC-'x--\n\C\ 

where x is the data vector, and C is its correlation ma
trix, dependent on the parameter vector n . There is a 
fundamental lower bound on the statistical error, given 
by the Fisher matrix, easily computed. This is a common 
tool used these days to evaluate the sensitivity of a given 
experiment to measure various cosmological parameters. 
For more detailed comparisons of these techniques see 
Tegmark et al (1998). This algorithm requires the inver
sion of C, usually an N3 operation, where N is the di
mension of the matrix. 

What would an ideal method be? It would be useful to 
retain much of the advantages of the 2-point correlations 
so that the systematics are easy to model, and those of 
the power spectra so that the modes are only weakly 
correlated. We would like to have a hypothesis testing 
correlation matrix without 3rd and 4th order quantities. 
Interestingly, there is such a method, given by the Kar-
hunen-Loeve transform. In the following subsection we 
describe the method, and show why it is a useful frame
work for the analysis of the galaxy distribution. Then 
we discuss some of the detailed issues we had to deal 
with over the years to turn this into a practical tool. 

One can also argue about parametric and non-parametric 
techniques, like using bandpowers to characterize the 
shape of the fluctuation spectrum. We postulate, that for 
the specific case of redshift surveys it is not possible to 
have a purely non-parametric analysis. While the shape 
of the power spectrum itself can be described in a non-
parametric way, the distortions along the redshift direc
tion are dependent on a physical model (gravitational 
infall). Thus, without an explicit parameterization or 
ignoring this effect no analysis is possible. 

3.3. Karhunen-Loeve Analysis of Redshift Surveys 

The Karhunen-Loeve (KL) eigenfunctions (Karhunen 
1947, Loeve 1948) provide a basis set in which the 
distribution of galaxies can be expanded. These eigen
functions are computed for a given survey geometry and 
fiducial model of the power spectrum. For a Gaussian 
galaxy distribution, the KL eigenfunctions provide op
timal estimates of model parameters, i.e. the resulting 
error bars are given by the inverse of the Fisher matrix 
for the parameters (Vogeley & Szalay 1996). This is 
achieved by finding the orthonormal set of eigenfunc
tions that optimally balance the ideal of Fourier modes 
with the finite and peculiar geometry and selection func
tion of a real survey. The KL method has been applied 
to the Las Campanas redshift survey by Matsubara, 
Szalay & Landy (2000) and to the PSCz survey by 
Hamilton, Tegmark & Padmanabhan (2001). 

The KL transform is often called optimal subspace 
filtering (Therrien 1992), describing the fact that during 
the analysis some of the modes are discarded. This of
fers distinct advantages. If the measurement is com
posed of a signal that we want to measure (gravitational 
clustering) superposed on various backgrounds (shot-
noise, selection effects, photometric errors, etc) which 
have slightly different statistical properties, the diago-
nalization of the correlation matrix can potentially seg
regate these different types of processes into their own 
subspaces. If we select our subspace carefully, we can 
actually improve on the signal to noise of our analysis. 

The biggest advantage is that hypothesis testing is very 
easy and elegant. First of all, all KL modes are orthogo
nal to one another, even if the survey geometry is ex
tremely anisotropic. Of course, none of the KL modes 
can be narrower than the survey window, and their shape 
is clearly affected by the survey geometry. The orthogo
nality of the modes represents repulsion between the 
modes, they cannot get too close; otherwise they could 
not be orthogonal. As a result the KL modes are dense-
packed into Fourier-space, thus optimally representing 
the information enabled by the survey geometry. 

Secondly, the KL transform is a linear transformation. If 
we do our likelihood testing over the KL-transform of 
the data, the likelihood correlation matrix contains only 
second order quantities. This avoids problems with 3 
and 4-point functions. All these advantages became very 
apparent when we applied the KL method to real data. 
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4. Working with a Database 

4.1. Why use a Database ? 

The sheer size of the data involved makes it necessary to 
store the data in a database - there are just too many 
objects to organize into directories of files. We origi
nally started to use databases solely for this reason. 
Astronomers in general use databases only to store their 
data, but when they do science, they generate a flat file, 
usually in a simple table. Then they use their own code 
for the scientific analysis. Mostly the databases are 
remote. One has to enter queries into a web form, and 
retrieve the data as either an ASCII or binary table. 

We have been working on creating the Science Archive 
for the Sloan Digital Sky Survey. We are now using a 
relational database, Microsoft's SQL Server, as the 
back-end database. 

The database contains much more than just the basic 
photometric or spectroscopic properties of the individ
ual objects. We have computed, as an add-on, the in
version of the photometric observations into physical, 
rest-frame parameters, like luminosity, spectral type, and 
of course a photometric redshift. Much of the training 
for this technique was obtained from the spectroscopic 
observations. These are stored in the database as an 
ancillary table. Information about the geometry of the 
survey, how it is organized into stripes, strips, runs, 
camera columns and fields, is also stored in the data
base. The value of seeing (the blur of images caused by 
the atmosphere) is monitored and saved in the Field 
table. The 'blind' pixels of the survey, caused by a 
bright star, satellite, meteorite or a ghost in the camera 
are also saved in the database as an extended object, 
with their convex hull, a bounding circle and a bounding 
rectangle. 

We are using this database for subsequent scientific 
analysis. We have a local copy of the data at Johns 
Hopkins, stored in a relatively high performance, yet 
inexpensive database server. While building our applica
tions to study the correlation properties of galaxies, we 
have discovered that many of the patterns in our statisti
cal analysis involve tasks that are much better performed 
inside the database than outside, on flat files. The data
base gives high-speed sequential search of complex 
predicates using multiple CPUs, multiple disks, and 
large main memories. It also has sophisticated indexing 
and data combination algorithms that compete favorably 
with hand-written programs against flat files. Indeed, 

we see cases where multi-day batch file runs are re
placed with database queries that run in minutes. 

4.2. Going Spatial 

In order to efficiently perform queries that involve spa
tial boundaries, we have developed a class library based 
upon a hierarchical triangulation of the sky (Kunszt et al 
2001) to handle searches over spherical polygons. We 
added the class library as an extension to SQL Server, so 
its functions can be called directly inside the database. 

In order to generate meaningful results for the cluster
ing, we need to create a well-defined, statistically fair 
sample of galaxies. We have to censor objects that are in 
areas of decreased sensitivity or bad seeing. We also 
have to be aware of the geometry of the censored areas. 
We created these 'masks' using plain database queries 
for fields of bad seeing, rectangles around bright stars 
and other trouble spots. In the current release of the 
database these regions are derived by processing images 
that contain flag information about every pixel on the 
sky. 

We have also implemented a library of database proce
dures that perform the necessary computational geome
try operations inside the database, and they also perform 
logarithmic-time search procedures over the whole data
base (Szalay et al 2005), fully integrated with our previ
ous approach, based on the Hierarchical Triangular 
Mesh. 

4.3. Building Statistical Samples 

We analyzed a large sample of galaxies from the photo
metric observations of the Sloan Digital Sky Survey. 
The data extend over an area of about 3000 square de
grees, organized in long, 2.5 degree wide 'stripes'. The 
stripes are organized into 12 'camcols', corresponding 
to the detector camera columns, and those are broken up 
into 'fields' that are pipeline processing units. We 
downloaded about 50 million galaxies from the project 
database at Fermilab, and created a custom database of 
this downloaded data, using Microsoft SQL Server. 
Each galaxy in the database had a five-color photome
try, and an angular position, plus a description of which 
stripe, camcol, and field it belongs to. Next, we com
puted the photometric redshifts, absolute luminosities, 
rest-frame types, and their covariances for each of the 50 
million galaxies. These derived data were also inserted 
into the database. Using this database, we can write SQL 
queries that generate a list of objects that satisfy a given 
selection criterion and that are in the angular statistical 
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sample of galaxies. We can also write SQL to get a list 
of masks, with their rectangular boundaries. 

The selection criteria for the redshift survey were much 
more complex: they involve observing objects selected 
in 2.5 degree stripes, then observed spectroscopically 
with a plug-plate of 3 degrees diameter. The centers of 
the plates were selected to overlap in higher density 
areas, since optical fibers cannot be placed closer than 
55" in a given observation. This complex pattern of 
intersections and our sampling efficiency in each of the 
resulting 'sectors' was calculated using our spherical 
polygon library. 

Subsequently we created a separate database for the 
redshift-space analysis that has both our statistical sam
ple and a Monte-Carlo simulation of randomly distri
buted objects that were generated per our angular sam
pling rate. The size of this latter data set is about 100 
million points. 

Figure 2. An example of the complex spatial geometry required to 
describe the statistical completeness of the Sloan Digital Sky Survey 
data. The regions of uniform sampling rate are formed by the homo
geneous intersections of the circular 'tiles', and the elongated 
'camcols'. 

5. Next Generation Data Analysis 

5.1. Scaling of Optimal Algorithms 

Exponentially growing astronomy data volumes pose 
serious new problems. Most statistical techniques la
beled as 'optimal' are based on several assumptions that 
were correct in the past, but are no longer valid. 
Namely, the dominant contribution to the variance is no 
longer statistical - it is systematics, computational re

sources cannot handle N2 and N3 algorithms — N has 
grown from 103 to 109, and cosmic variance can no 
longer be ignored. 

5.2. Advanced Data Structures 

What are the possibilities? We believe one answer lies 
in clever data structures, borrowed from computer sci
ence to pre-organize our data into a tree-hierarchy, and 
having the computational cost dominated by the cost of 
sorting, an NlogN process. This is the approach taken by 
A. Moore and collaborators in their tree-code (Moore 
et al. 2001). 

5.3. Approximate but Fast Heuristic Algorithms 

Another approach is to use approximate statistics, as 
advocated by Szapudi et al (2001). In the presence of a 
cosmic variance, an algorithm that spends an enormous 
amount of CPU time to minimize the statistical variance 
to a level substantially below the cosmic variance can be 
very wasteful. One can define a cost function that in
cludes all terms in the variance and a computational 
cost, as a function of the accuracy of the estimator. 
Minimizing this cost-function will give the best possible 
results, given the nature of the data and our finite com
putational resources. We expect to see more and more of 
these algorithms emerging. One nice example of these 
ideas is the fast CMB analysis developed by Szapudi 
et al (2002), which reduces the computations for a sur
vey of the size of Planck from 10 million years to 
approximately 1 day! 

5.4. Challenges 

We have discussed several of the issues arising in spatial 
statistics. These include the need of fast (NlogN) algo
rithms for correlation and power spectrum analyses. 
These also need to be extended to cross-correlations 
among different surveys, like galaxies and CMB to look 
for the Integrated Sachs-Wolfe (ISW) effect. These 
require an efficient sky pixelization and fast harmonic 
transforms of all relevant data sets. Higher order cluster
ing methods are becoming increasingly more relevant 
and of discriminating value. Their scaling properties are 
increasingly worse. 

Time-domain astronomy is coming of age. With 
new surveys like PanStarrs and LSST we will have 
billions of objects with multiple epoch observations, 
sampled over a large dynamic range of time intervals. 
Their real-time classification into transients, periodic 
variable stars, moving asteroids will be a formidable 
challenge. 
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With large all-sky surveys reaching billions of objects, 
each having hundreds of attributes in the database, creat
ing fast outlier detection with discovery value will be 
one of the most interesting applications, that will con
nect the large surveys to the new large telescopes that 
can do the individual object follow-up. 

We need to develop techniques which are robust with 
respect to the systematic errors. Hypothesis testing will 
soon involve millions of different models in very high 
dimensional spaces. Visualization of complex models is 
going to be a major part of the statistical comparisons. 

Summary 

Several important new trends are apparent in modern 
cosmology and astrophysics: data volume is doubling 
every year, the data is well understood, and much of the 
low level processing is already done by the time the data 
is published. This makes it much easier to perform addi
tional statistical analyses. At the same time many of the 
outstanding problems in cosmology are inherently statis
tical, either studying the distributions of typical objects 
(in parametric or non-parametric fashion) or finding the 
atypical objects: extremes and/or outliers. Many of 
traditional statistical algorithms are infeasible because 
they scale as polynomials of the size of the data. Today, 
we find that more and more statistical tools use ad
vanced data structures and/or approximate techniques to 
achieve fast computability. 

In both applications we presented, the databases and the 
computations performed inside were an essential com
ponent of the analysis and enabled us to deal with much 
larger datasets. We also integrated some of our tools 
with the database itself: like generating plots of galaxy 
surface densities or the whole angular correlation code 
itself. 

In the not too distant future, when our data sets grow 
another order of magnitude, only NlogN algorithms 
will remain feasible—the cost of computation will be
come a very important ingredient of an optimal algo
rithm. Such an evolution in our approach to astrostatis-
tics can only be accomplished with an active and intense 
collaboration of astronomers, statisticians and computer 
scientists. 
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In order to investigate the recent discovery of a discrepancy between the 2DF data and the A CDM simulations, we 
have applied a Multiscale Geometric Analysis (MGA) on the 2DF data. We report in this paper the results of this 
study. 

1 Introduction 

The distribution of galaxies seen in the available 
galaxy redshift catalogues shows complex structures 
such as voids, filaments, walls, or clusters. In order 
to compare the data with the simulations resulting 
from the cosmological models, we need to extract sta
tistical or morphological information from the data. 
The two-point correlation (2CF), extensively used by 
Peebles 1, is certainly the most popular indicator to 
describe the spatial clustering of the galaxy distri
bution. Many different 2CF estimators have been 
proposed in the past 2 '3 '4. A detailed description of 
these estimators may be found in refs. 5 '6 and they 
are compared in refs. 7 '8. The two-point correlation 
function can been generalized to the N-point correla
tion function 9 '10. Other statistical measures to char
acterize the spatial distribution of points have also 
been developed, such as the void probability func
tion n , the multifractal approach 12, the Minkowski 
functional 13>14, the J function 15>16, the minimal 
spanning tree i7*18.19, or the wavelet 20,21,22,23,24 
The Sloan Digital Sky Survey (Early Data Release) 
has recently been analyzed using a 3D Genus Statis
tics 25 and results were consistent with that predicted 
by simulations of a A-dominated spatially-flat cold 
dark matter model. The Genus is calculated by (i) 
convolving the data by a kernel, generally a Gaus

sian, (ii) setting to zero all values under a thresh
old v in the obtained distribution, and (iii) taking 
the difference D between the number of holes and 
the number of isolated regions. The Genus curve 
G{u) is obtained by varying the threshold level v. 
The first step of the algorithm, the convolution by 
a Gaussian, may be dramatic for the description 
of filaments, which are spread out along all direc
tions 26. It has been shown that replacing the Gaus
sian smoothing by a wavelet denoising leads to much 
more reliable results 26. The wavelet-Genus method 
has been applied to both the 2DF data and a set 
of 22 A CDM simulations and the 2DF genus curve 
is clearly not compatible with the simulations 26 . 
Figure 1 shows the wavelet genus function of the 2DF 
data. The solid line is the genus for the 2DF data 
and the crosses are the mean genus for 22 realizations 
of the A-CDM simulations with the 3c error bars. 

Question: How to explain the discrep
ancy ? In 26, the discrepancy was attributed to the 
presence of a super cluster in the data, which was 
not in the simulation. Therefore, even if there is a 
discrepancy, the A-CDM model is still considered as 
a good model for representing the 2DF data. In or
der to better investigate this difference between the 
2DF and the A-CDM simulations, we have achieved a 
Multiscale Geometric Analysis (MGA) 27 of the 2DF 
data. Section 2 presents the MGA approach and the 
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Figure 1. Wavelet Denoising+Genus: 2DF and Lambda-CDM Sim. The solid line is the genus for the wavelet denoised 2DF data 
and the crosses are the mean genus for 22 wavelet denoised realizations of the A-CDM simulations with the 3<r error bars. 

data (simulations and 2DF data) are described in 
section 3. Results are given in section 4. 

2 Multiscale Geometric Analysis 

As the data contain clusters, filaments and sheets, it 
has recently been proposed to analyze the data with 
three multiscale transforms, each of them being well 
adapted for representing only one kind of feature 27. 
Wavelets represent well isotropic features (i.e. clus
ters in 3D), while more recent geometric multiscale 
methods such the beamlet and the ridgelet repre
sent well data containing respectively filaments and 
sheets. 

For each a > 0, ^1,62,63 e R 3 , the wavelet is 
denned by 

XI 

^0,61,62,63 : R- —• R 

IpaM, b2,b3(
Xl' X2> X 3 ) = a _ 3 / 2 "*( 

The ridgelet function is defined by: 

6l X2 — bi 23 — f)3 

^a,b,91,92 : R -» R 

i>a,b,e1,62{
xl,x2,X3) = a~X/' • ?/>((:ZiCOs6>iCOs6>2 + 

X2 sin 6\ cos #2 + ^3 sin O2 — b)/a) 

1/2 

and the beamlet function is defined by: 

V ,a )61 ,62 ,e1 ,92
 : ^ —• R 

i'a,b1,bi,el,e2(
xi<x2ix3) = a ~ 1 / / 2 -V>((-xi sin0i + 1 2 cos0i 

+ bx)/a, (x\ cos#1 cos62 + %2 sin#i cos #2 — £3 sin62 + b2)/a) 

Figure 2 shows an example of a 3D wavelet func
tion and Figure 3 shows respectively examples of 
a ridgelet function (left) and a beamlet function 
(right). The ridgelet function is a wavelet function 
in the direction defined by the line (0i,#2), and it is 
constant along the orthogonal plane to this line. The 
beamlet function is constant along lines of direction 
(#1, #2), and a 2D wavelet function along the plane 
orthogonal to this direction. More details about the 
implementation of these 3D multiscale transforms 
can be found in ref 27. 

Local 3D Ridgelet and Beamlet Transform 

The ridgelet (resp. beamlet) transform is optimal to 
find sheets (resp. filaments) of the size of the cube. 
To detect smaller sheets (resp. filaments), a parti
tioning must be introduced 28. The cube c is decom
posed into blocks of lower side-length b so that for a 
N x N x N cube, we count N/b blocks in each direc
tion. After the block partitioning, the transform is 
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Figure 2. Example of wavelet function. 

tuned for sheets (resp. filaments) of size 6 x 6 (resp. 
6) and of thickness cij, a,j corresponding to the dif
ferent dyadic scales used in the transformation. 

MGA statistic 

Hence, we have three different multiscale transforms, 
and for the beamlet and the ridgelet transform, we 
can also use several block sizes when analyzing the 
data. In the following, we will use the following seven 
decompositions: 

1. 3D Isotropic Wavelet Transform with 4 dyadic 
scales. 

2. 3D Ridgelet Transform using a block size of 8 
Mpc and two scales. Here the scale is related 
to the width of the ridgelet function, its length 
being fixed by the block size. 

3. 3D Ridgelet Transform using a block size of 16 
Mpc and three scales. 

4. 3D Ridgelet Transform using a block size of 32 
Mpc and three scales. 

5. 3D Beamlet Transform using a block size of 8 
Mpc and two scales. Here the scale is related 

to the width of the beamlet function, its length 
being fixed by the block size. 

6. 3D Beamlet Transform using a block size of 16 
Mpc and three scales. 

7. 3D Beamlet Transform using a block size of 32 
Mpc and three scales. 

For each scale of each transform, we calculate 
the Kurtosis value (i.e. K = j ^ ^2k (xk — x)4 — 3 = 
\{x4 — ixx3 + 6x2 x2 — 3x4) — 3). Positive K implies 
a higher peak and larger wings than the Gaussian 
distribution with the same mean and variance. Neg
ative K means a wider peak and shorter wings. 

3 2DF Data 

The best available redshift catalog to study mor
phology of the galaxy distribution at present is the 
2dF Galaxy Redshift Survey (2dFGRS) 29. It fills 
large compact volume (s) in space and includes more 
than a quarter of million of galaxies. This is a flux-
limited catalog and therefore the density of galaxies 
decreases with distance. For statistical analysis of 
such of surveys, a weighting scheme that compen
sates for the missing galaxies at large distances has 
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Figure 3. Examples of ridgelet function (left) and beamlet function (right). 

to be used. Usually, each galaxy is weighted by the 
inverse of the selection function 6. However, the re
sulting densities will have different resolution at dif
ferent locations, and will not be suitable for morpho
logical studies. 

At the cost of discarding many surveyed galax
ies, one can alternatively use volume-limited sam
ples. In this case, the variation in density at dif
ferent locations depends only on the fluctuations of 
the galaxy distribution itself. We have used the 
volume-limited samples prepared by the 2dF team 
for scaling studies 30>31, and kindly sent to us by 
Darren Croton. As our basic sample, we chose 
the catalog with absolute luminosities in the range 
- 1 9 > MBj - 51og10/i > - 2 0 (the type dependent 
k + e correction 32 has been applied to the magni
tudes). This sample contains galaxies with luminos
ity* around L». This catalog is the largest of the 
2dF volume-limited catalogs, and as 33 point out, it 
provides optimal balance between the surveyed vol
ume and the number density of galaxies. Although 
the catalog does not suffer from luminosity incom
pleteness, it is slightly spectroscopically incomplete, 
mainly due to missing galaxies because of fiber col
lisions. The incompleteness parameter has been de

termined by every galaxy by the 2dF team; when 
calculating densities, each galaxy can be weighted 
by the inverse of this parameter. 

We split the volume-limited sample into the 
Northern and Southern subsamples, and cut off the 
numerous whiskers in the plane of the sky to obtain 
compact volumes. The geometry of the Northern 
sample is similar to a flat slice, while the South
ern sample is enclosed between two cones of open
ing angles of 64.5° and 55.5°. When we tried to cut 
cuboidal volumes (bricks) from the Southern sample 
cone, we ended up with small brick volumes. We re
port in this paper only the analysis of the Northern 
subsamples. 

In order to obtain a compact volume, we choose 
the angular limits for the Northern sample as 
-4.5° < S < 2.5° and 149.0° < a < 209.0°. The 
slice lies between two cones defined by the 5 limits. 
The right ascension limits cut the cones by planes 
from both sides, and there are two additional cuts 
by two spheres. The radii of the spheres are fixed 
by the original data, and depend only on the chosen 
absolute magnitude limits (and on the cosmological 
model). For our sample they are: R\ = 61.1 h~1 

Mpc, R2 = 375.6 h-1 Mpc. 



223 

Figure 4. The volume-limited cuboidal sample analyzed in this paper drawn from the Northern slice of the 2dFGRS (top) and 
from a mock realization. 

As this sample is pretty flat, we cut from it a 
maximal volume cuboidal window, a "brick" with 
dimensions of 254.0 x 133.1 x 31.1 h~l Mpc, with 
8487 galaxies (see Fig. 4). This gives for the per-
particle-volume size d = 5.0 h~l Mpc. 

3.1 Mock catalogs 

In order to estimate sample errors of the Minkowski 
functionals, we use mock catalogs, provided by the 
2dF team. 32 created 22 mock catalogs for the 2dF-
GRS that have been used by the 2dfGRS team to 
measure the influence of cosmic variance of differ
ent statistics, such as correlation functions, counts-
in-cells, the void probability function, clustering of 

groups, etc. 30,31,33,34 The mock catalogs were ex
tracted from the Virgo Consortium ACDM Hubble 
volume simulation, and a biasing scheme described 
in 35 was used to populate the dark matter distri
bution with galaxies. The catalogs were created by 
placing observers in the Hubble volume, applying 
the radial and angular selection functions of the 
2dFGRS, and translating the positions and velocities 

of galaxies into redshift space. No luminosity clus
tering dependence is present in the mock catalogs. 

The mock catalogs represent typical volumes 
of space. The real 2dF catalog, however, includes 
two superclusters, one in the Northern, another in 
the Southern subsample (see a thorough discussion 
in 3 1 ) . The Northern supercluster is especially 
prominent in our M G [—19,-20] catalog; all mock 
samples for this catalog have less galaxies than the 
2dF sample, as the mocks were normalized by the to
tal number of galaxies in both subsamples. We cut 
mock bricks from the mock samples, too, as we did 
for the real 2dF data; the mean number of galaxies 
in the mock bricks is 1.36 times smaller than in the 
2dF brick. 

4 MGA and the 2DF 

We have applied the seven decompositions to the 
2DF data and the 22 mock catalogs. 

Figure 5 shows the Kurtosis for each scale of the 
wavelet transform. Crosses with the 2<r (continu
ous line) and 3<r (dotted line) error bars represent 
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the mean kurtosis for the 22 simulation and the tri
angle represents the kurtosis relative to the wavelet 
scale of the 2DF data. Figure 7 shows the kurtosis 
for the three beamlet transforms and Figure 6 shows 
the kurtosis for the three ridgelet transforms. 

We can see that a strong discrepancy between 
the data and the simulations appears at the finest 
scale of the wavelet transform. It is also visible at 
the finest scale of the beamlet transform (block size 
8). The last scale of the ridgelet transform (block 
size =32) shows also a difference, however not at a 3<7 
level. The main difference between the data and the 
simulations is clearly related to the smallest scales. 
As it is the wavelets which detect this difference, it 

is certainly the distribution of clusters (and not the 
distribution of filaments and walls) which is different. 

A kurtosis exess in the simulated data can be 
due to a larger number of clusters and/or a few clus
ters with a larger amplitude. The first possibility 
would be in contradiction with the genus curve (see 
Figure 1) which indicates that the real high-density 
haloes (galaxy groups) are more concentrated than 
the mock galaxy groups. The second hypothesis, 
also supported by a visual inspection of the first and 
second wavelet scales, seems more adequate. If the 
real data contains more faint clusters, the simula
tions contain a few more prominent clusters which 
create a kurtosis exess. 
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Figure 7. Beamlet Kurtosis. The x-axis is the beamlet scale, and corresponds to the analysis of structures of size 8 x 2X x 2X 

Mpc (left), 16 x 2X x 2X Mpc (middle) and 32 x 2X x 2X Mpc (right). 

The supercluster has been suspected to be re
sponsible of the genus curve difference between the 
simulation and the data in 26, but the MGA analy
sis leads to the conclusion that the problem is more 
likely related to the non-linear regime in the sim
ulation which does not reflect the observations. It 
is probably due to individual simulated dark-matter 
haloes badly populated with galaxies, but it could 
also be due to some departure from the simplest 
models of primordial fluctuations of dark energy. 

4.1 MGA.-EARLY-LATE Type Galaxies 

In this section, we have separated the 2DF data set 
into two parts, the early type galaxies (ETG) (3826 
galaxies) and the late type galaxies (3913 galaxies) 
(LTG). It is well known that ETG are more clustered 
than LTG and this has also already be seen in the 
2DF data 31. However, we can wonder if the ELT-
LTG clustering property is dependent on the type 
of structure. For instance, is this ELT-LTG prop
erty more important in cluster than in filaments or 
walls ? 

In order to answer this question, we have per
formed a separate MGA analysis of the two cata
logs, i.e. we have applied the seven transformations 
to both catalogs and calculated the kurtosis in the 
different scales. In order to normalize all values, we 
have also computed the kurtosis for 100 simulated 
cubes which contains each around 3870 galaxies ran
domly distributed (Poisson noise). A mean kurto
sis and a standard deviation has been calculated for 

each transform and for each scales. The kurtosis de
rived from the two catalogs have been normalized 
using the mean values and the standard deviation 
values. 

Figures 8, 9 and 10 shows the kurtosis for the 
two catalogs and the different transforms. The solid 
lines correspond to the ETG kurtosis and the dashed 
line to the LTG kurtosis. It is clear that for all trans
forms and all scales, the ETG presents a higher kur
tosis than the LTG. This suggests that in all types of 
structures (filaments, clusters, walls), the ETG are 
more concentrated than the LTG. Both the ridgelet 
kurtosis and the beamlet kurtosis increase when the 
block size increases. This suggest that filaments and 
walls of the size of at least 32 Mpc exists in the data. 
Filaments with a width between 2 and 4 Mpc dom
inate (second scale of the beamlet transform) while 
walls seem to be thinner (1 or 2 Mpc) as the first scale 
of the ridgelet transform always presents a higher 
kurtosis. 

In order to evaluate if a difference in the respec
tive concentration exits between the three kind of 
features, we keep for each of the seven transforma
tions only the higher normalized kurtosis along the 
scales. Hence, we built the variable Kmax (t), t be
ing the transform number (i.e. t = 1, ..7 for respec
tively the wavelet transform, the ridgelet transform 
for a block size equals to 8,16,32, and the beamlet 
transform for a block size equals to 8,16,32). Fig-
ure 11 shows the ratio i?/c(t) = ..'ft'-iW • For all 

K 
(LTG), s 
max \L) 

the transforms, the ratio RK{^) is between two and 
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three, which shows a remarkable stability in the clus
tering properties. It seems that the rates of ETG and 
LTG are relatively the same in all kinds of structures 
(i.e. filaments, walls and clusters). 
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Zhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over 
other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on 
thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of 
source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of 
astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope 
(LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source 
detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, 
the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at 
~30 MeV to 0.1° at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits 
immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are 
typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring 
properties of newly-detected sources. 

1. Introduction 

The high-energy gamma-ray sky will be studied with 

unprecedented sensitivity by the Large Area Tele

scope (LAT) to be launched by NASA on the GLAST 

mission in late 2007. The catalog of gamma-ray 

sources from the previous mission in this energy 

range, EGRET on the Compton Gamma-Ray Ob

servatory, has approximately 270 sources 1. For the 

LAT, several thousand gamma-ray sources are ex

pected to be detected, with much more accurately 

determined locations, spectra, and light curves. 

We would like to reliably detect as many ce

lestial sources of gamma rays as possible, and to 

recognize when a known source is varying or when 

a faint, previously unknown source flares up to a 

detectable level. The time scales of flares can be 

minutes to weeks. In general we will not know in 

advance where on the sky the sources are that we 

will detect; projections are that the LAT will detect 

several times more blazars (a class of active galaxy) 

than are currently known from observations at other 

wavelengths. 
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The fluxes of celestial gamma rays are low, re
quiring long exposure times for the ~1 m2 effec
tive area of the LAT (by far the largest effective 
collecting area ever in the GeV range). An addi
tional complicating factor is that diffuse, celestial 
background from the Milky Way itself (which origi
nates in cosmic-ray interactions with interstellar gas 
and radiation) makes a relatively intense, structured 
background emission, on which the point sources of 
interest are superposed. Point sources are so called 
because they are spatially unresolved. The few very 
brightest gamma-ray sources will provide approxi
mately 1 detected gamma ray per minute when they 
are in the field of view of the LAT. The celestial 
background of the Milky Way will provide about 2 
gamma rays per second, distributed over the ~2 sr 
field of view. 

For previous high-energy gamma-ray missions, 
the standard method of source detection has been 
model fitting — maximizing the likelihood function 
while moving trial point sources around in the re
gion of the sky being analyzed. This approach has 
been driven by the limited photon counts and the rel
atively limited resolution of gamma-ray telescopes. 
However, at the sensitivity of the LAT even a rela
tively 'quiet' part of the sky may have 10 or more 
point sources close enough together to need to be 
modeled simultaneously when maximizing the (com
putationally expensive) likelihood function. For this 
reason, and because we would like to be able to de
tect spatially resolved sources that do not necessar
ily have simple shapes (such as a supernova remnant 
interacting with a gas cloud), non-parametric algo
rithms for detecting sources are being investigated. 

The new wavelet denoising procedure by Zhang, 
Fadili, & Starck2 and its application to simulated 
LAT data are described in the sections that follow. 

2. Characteristics of the Data 

The LAT (Fig. 1) is a photon-counting detector, con
verting gamma rays into positron-electron pairs for 
detection. The trajectories of the pair are tracked 
and their energies measured in order to reconstruct 
the direction and energy of the gamma ray. 

The energy range of the LAT is very broad, ap
proximately 20 MeV - 300 GeV. At energies below 
a few hundred MeV, the reconstruction and track
ing efficiencies are lower, and the angular resolution 
is poorer, than at higher energies. The PSF width 

varies from about 3.5° at 100 MeV to better than 
0.1° (68% containment) at 10 GeV and above. Ow
ing to large-angle multiple scattering in the tracker, 
the PSF has broad tails; the 95%/68% containment 
ratio may be as large as 3. 

Fig. 1. Cutaway view of the LAT. The LAT is modular; one 
of the 16 towers is shown with its tracking planes revealed. 
High-energy gamma rays convert to electron-positron pairs 
on tungsten foils in the tracking layers. Their trajectories 
are measured very precisely using silicon strip tracking layers 
and the energies are determined with the Csl calorimeter at 
the bottom. The array of plastic scintillators that cover the 
towers provides an anticoincidence signal for cosmic rays. The 
outermost layers are a thermal blanket and micrometeoroid 
shield. The overall dimensions are 1.8 X 1.8 x 0.75 m. 

3. Wavelet Poisson Intensity 
Estimation: Overview 

Wavelet denoising of LAT data has application as 
part of an algorithm for quickly detecting celestial 
sources of gamma rays. The fundamental inputs 
to high-level analysis of LAT data will be energies, 
directions, and times of the detected gamma rays. 
(Pointing history and instrument live times are also 
inputs for exposure calculations.) For the analy
sis presented here, we consider the LAT data for 
some range of time to have been binned into 'cubes' 
v(x, y, E) of spatial coordinates and energy, because, 
as we shall see, the wavelet denoising can be applied 
in multiple dimensions, and so permits estimation of 
counts spectra. The motivations for filtering data 
with Poisson noise in the wavelet domain are well 
known — sources of small angular size are localized 
in wavelet space. 
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Fig. 2. Example of application of the wavelet denoising algorithm for detecting sources in simulated LAT data. An array of point 
sources, spaced by 4° was superimposed against the bright celestial background of the inner Milky Way and the exposure from 
a one-month sky was survey simulated. The point sources are identical, with flux 5 x 10~ 8 c m - 2 s " 1 (>100 MeV) and photon 
spectral index -2. (left) Before denoising; counts summed over energy >100 MeV. (center) After application of the denoising 
algorithm without providing a model for the celestial background. In this case, the algorithm estimates the background intensity 
from the data, (right) After application of the denoising algorithm, which was given a model of the background. 

Many wavelet filtering methods have been devel
oped based, e.g., on transformations (including vari
ance stabilizing), direct filtering (like Wiener filtering 
in the wavelet domain), and Bayesian approaches; 
see Zhang et al.2 for a review. The recent results 
of Zhang et al. on wavelet filtering of Poisson data 
extend the work of Kolaczyk3 on filtering via hy
pothesis testing. The appeal of hypothesis testing 
methods is that they allow quantitative control of 
significance. 

4. Denoising via Wavelet Domain 
Hypothes is Testing 

4 .1 . Formulation of the Method 

The background intensity, if not known a priori, is 
assumed to be constant over the region of the sky be
ing analyzed. The background can be estimated from 
the approximation coefficients at a coarser scale. 

For each wavelet coefficient w, the null hypoth
esis is HQ: W is consistent with the background; 
and the alternative hypothesis is H\: w is inconsis
tent with the background. In the filtering, the Ho 
coefficients, which correspond to consistency with 
the background within statistical fluctuations, are 
zeroed. The Hi coefficients, representing regions 
of wavelet space with significant change from the 
background, are retained. This is a controlled (via 
the user-specified p-value) hard thresholding scheme. 

The coefficients are tested separately. The probabil
ity of false detection, i.e., false passing of .Hi, is upper 
bounded by p 

Nreject 

E{^—)<p, 
N> Ho 

(1) 

where N^ect is the number of coefficients satisfying 
HQ but rejected by the corresponding hypothesis test 
and NH0 is the total number of coefficients satisfying 
H0. 

For computational tractability, Zhang et al. use 
the Haar wavelet, because the pdf of the wavelet co
efficient conditioning on Ho of a Poisson process is 
known in closed form, a non-central Chi-Square dis
tribution. Zhang et al. also show that the same 
distributions and thresholds apply to the coefficients 
of biorthogonal Haar (BH) wavelets, which relatively 
speaking provide good preservation of regularity. 

Using the Fisher normal approximation (see 
Zhang et al.), a threshold can be derived for ev
ery Gaussian significance level. This thresholding 
method has a greater detection power than Ko-
laczyk's method3 and Zhang et al.2 have extended it 
to non-constant, or unknown a priori, backgrounds. 

4.2. Extension to the Energy Dimension 

The hypothesis testing approach can be extended 
straightforwardly to a third dimension. A 2-
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Fig. 3. Solid curve: Latitude profile, averaged over the cen
tral 1° of longitude, for the left-hand panel of Fig. 2, i.e., 
the simulated point sources and celestial background before 
denoising. Dashed curve: The same profile showing the point
like sources remaining after denoising with a model for the 
background, corresponding to the right-hand panel of Fig. 2. 
This profile has been scaled up by a factor of 10 for clarity. 
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Fig. 4. Example of denoised spectrum from a source in Fig. 2. 
The distribution of photon counts has approximately the E~x 

slope expected in counts per band for a differential E~2 

spectrum. 

dimensional BH transform is applied to each image 
(one per energy band). To each BH spatial coeffi
cient, a 1-dimensional BH transform is applied along 
the energy axis, and the hypothesis testing estima
tor is applied. Then the inverse transformations are 
applied along the energy axis and spatially to obtain 
the denoised multi-spectral data. 

5. Application to Simulated LAT Data 

Figure 2 illustrates the application of the wavelet de
noising algorithm for source detection against the 
bright, structured celestial emission of the Milky 
Way. This is literally just an illustration with an arti

ficial arrangement of point sources, but the intensity 
of the celestial background and the flux of the sources 
are realistic. The region used is in fact more or less 
a worst case, having the brightest and most strongly 
varying background of any place on the sky. The 
center panel of Fig. 2 is the result of requiring the 
algorithm to estimate the background itself and the 
right-hand panel shows the result when a background 
model is provided. The profiles in Fig. 3 show that 
the bright, structured emission of the Milky Way can 
totally mask the faint sources; this is why the denois
ing without a prior background model failed to find 
the sources. However, the result is quite promising 
when the denoising is made with a good model for 
the celestial background gamma-ray emission. 

Figure 4 shows a denoised counts spectrum for 
one of these sources. The spectral characteristics of 
the denoising have not been studied in detail, but 
the figure illustrates that the spectral slope is ap
proximately what would be expected for the power-
law spectra (photon index -2) of the input sources. 
Some roll-over is expected owing to the decline of the 
effective area of the LAT below ~300 MeV. 

6. Summary 

We have described the motivations for identifying 
a reliable nonparametric source detection algorithm 
to apply to GLAST LAT data. For the relatively 
short time ranges over which we will want to study 
sources, the data will be squarely in the low counts 
regime with widely varying response functions and 
significant celestial backgrounds. We are exploring 
the hypothesis-testing wavelet denoising algorithm of 
Zhang et al. It can use a model for the background 
for increased sensitivity. The algorithm also can be 
applied in the energy dimension and so allows spectra 
to be recovered. 
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HIGHER CRITICISM STATISTIC: THEORY A N D APPLICATIONS IN 
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Higher Criticism is a statistic recently proposed by Donoho and Jin5 . It has been shown to be effective in resolving a 
very subtle testing problem: whether n normal means are all zero versus a small fraction is nonzero. Higher Criticism 
is also useful for non-Gaussian detection in Cosmic Microwave Background (CMB) data. In this report, we review 
the theory developed in Donoho and Jin5 and discuss the use of Higher Criticism for two settings: detecting the 
non-Gaussian component in a superposed image of CMB and cosmic strings (CS), and detecting non-Gaussianity in 
the WMAP first year data. 

1. Introduction 

The Cosmic Microwave Background (CMB) is the 
relic radiation emitted when the universe was about 
380,000 years old. It is an almost perfect black 
body at a temperature of « 2.726 Kelvin. The 
Standard Inflation model predicts that temperature 
anisotropics of the CMB (i.e. small angular fluc
tuations of the temperature) are the imprint of 
the initial density perturbations which gave rise 
to the large scale galaxies we see today. The study of 
the CMB is expected to improve our understanding 
of the very early universe, and it is of great interest 
to cosmologists. 

The standard Inflationary model predicts that 
temperature anisotropics in the CMB have a Gaus
sian distribution. However, many other models (e.g. 
multi-field inflation2, super string and topological 
defects6' 7' 10) as well as secondary effects (inverse 
Compton scattering etc.) predict deviations from 
a Gaussian distribution. The goal of non-Gaussian 
detection is to disentangle different non-Gaussian 
sources from one another. 

The wavelet transformation is a powerful ap
proach for non-Gaussian detection, and many 
wavelet-based methods have been investigated (see 
page 3 in Jin8 for references to these works). Par
ticularly, it was shown in Aghanim et o/.1 and P. 
Vielva et al.13 that the excess kurtosis of the wavelet 
coefficients outperformed all other methods. 

However, the effectiveness of a detection tool de
pends highly on the underlying non-Gaussianities: a 
detection tool can be sensitive to some types of non-
Gaussianities, but totally immune to other types. It 
is thus of interest to introduce more statistical tools 

to this field, and to compare their strengths as well 
as weaknesses. Higher Criticism is one of these 
new tools. 

2. Higher Criticism 

Higher Criticism (HC) was first proposed in Donoho 
and Jin5 for a multiple comparison setting, where it 
was shown to be effective in resolving a very subtle 
testing problem: whether n normal means are all 
zero versus a small fraction of them being nonzero. 
Higher Criticism can also be viewed as a goodness-of-
fit measure, and a tool for non-Gaussian detection. 

Consider a setting in which we have n obser
vations {Xi}2~i- The problem of non-Gaussian de
tection is to test the following hypothesis: HQ : 
Xi ~ iV(0,1), where for simplicity we assumed that 
the data are standardized. To implement Higher 
Criticism5' 8> 3, we first obtain individual p-values: 
Pi = P{N(0,1) > Xi}, we then sort them in ascend
ing order p^ < p(2) < . . . < P(„), and calculate the 
normalized ^-scores: 

HCn<i = Vn-[\i/n-p{i)\\/{yjp{i){l ~P(i))}-

The Higher Criticism statistic is then defined as 
HC*n = max.{i<i<n}HCn>i. 

The rationale behind the normalization is that, 
when the hypothesis HQ is indeed true, then for 
almost all i (except when i is close to 1 or n), 
HCn<i « 7V(0,1), and moreover HC*n « V2 log log n. 
Thus a large HC* value implies non-Gaussianity. 
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2.1. Sensitive to Unusually Large 
Amount of Moderate Significances 

In a data set, the extreme value refers to the data 
point which is largest in absolute value. It is a well-
known result in statistics that out of n samples from 
the standard Gaussian the extreme value « \/2 log n. 
In contrast, moderate significances refer to the tiny 
portion of the data points that are slightly smaller 
(in absolute values) than the extreme value, e.g. data 
points « \/log n. The proportion of moderate sig
nificances is very small, e.g. P{N(0,1) > ^flogn}, 
the proportion of samples > ^/logn, approximately 
equals to n~xl2. 

In Donoho and Jin5, the authors have considered 
a sparse normal mean problem: we have n observa
tions from Xi ~ N(fii, 1), with all yn = 0 except a 
possible tiny fraction e„ of them satisfying fii = yn, 
where en and fin depend on n but not on i. The goal 
is to test whether the sparse mean effect is present 
or not, or equivalently to test whether en = 0 or 
en > 0. They considered a range of (en,/Un) which 
concerns the situation of "very sparse signal with 
moderate significant amplitude": on one hand, en 

is too small so that the sparse mean effect can't be 
detected by statistics based on moments (cumulants, 
kurtosis, etc.); on the other hand, as the signals are 
only moderately significant, the sparse mean effect 
can't be detected by merely looking at the extreme 
values. 

It was proved in Donoho and Jin5 that the 
Higher Criticism statistic is optimally adaptive in de
tecting the sparse normal mean effect. Roughly put, 
for fixed en, whenever fin is large enough so that it 
is possible to reliably tell that tn > 0, the Higher 
Criticism statistic is able to do so. 

We now take a heuristic approach for under
standing the mechanism of Higher Criticism. The 
sparse mean effect can be thought of as the situation 
in which one has n samples from the standard Gaus
sian, and now you want to sneak in a bunch of / in by 
the following two steps: (a) randomly select a tiny 
portion of the samples, leave others untouched, and 
(b) add jin to each selected samples. The problem 
is then to tell whether such a process has occured or 
not. Higher Criticism works by picking a sequence of 
significance levels and asking whether there are too 
many samples found above each significance level. 
If the answers are all "no", the Higher Criticism 
claims Gaussian and nothing is found, but claims 

non-Gaussian otherwise. Higher Criticism uses the 
normalized z-score for deciding whether there are 
too many samples found above each significance 
level or not: HCn,a = -ynflFraction at Level a} — 
a]/^/a(l — a); when all samples are truly from the 
standard Gaussian, HCntQ « -/V"(0,1) and should 
be relatively small, so a large HCn,a implies non-
Gaussianity. Thus Higher Criticism works across the 
full range of significance levels, looking for evidence 
against possible types of "sneak-in" we mentioned 
above. 

We now come back to the sparse normal mean 
problem. The strongest evidence for the presence 
of the sparse mean effect is that when you look at 
the portion of data points of moderate significance, 
there are too many moderate significances than there 
would be if the null hypothesis is true (i.e. all sam
ples are truly from the standard Gaussian). Higher 
Criticism immediately reports a very large normal
ized z-score and rejects the null. This property of 
Higher Criticism is sensitive to an unusually large 
amount of moderate significances. 

2.2. Useful for Locating NonGaussianity 

The previous section pointed out that Higher Crit
icism is useful for locating the non-Gaussianity. To 
illustrate this point, suppose Higher Criticism picks 
all levels from 0 to 1 with 1% increment. Suppose 
the answers at levels a = 10% and a = 9% are "yes", 
while those at other levels are "no". Then on the one 
hand we are told that too many samples are observed 
at Level 10%. On the other hand we are told that 
not too many samples are observed at Level 8%. We 
then conclude that there are too many samples that 
fall between Level 8% and Level 10%, and this slice 
of data is suspected of non-Gaussianity. Notice here 
that the extreme values don't have to be more "non-
Gaussian" . 

3. Detecting Cosmic Strings 

We have considered using the Higher Criticism statis
tic for detecting cosmic strings (CS). Refer to Jin8 

for detailed discussion of the following results. 
We consider a setting in which we have a super

posed image of a simulated map of CMB and CS: 
Y = VT^XCMB + y/XCS, and we are interested in 
testing whether A = 0 or not. The simulated map of 
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CS was kindly provided by F. Bouchet. Though the 
real map of the CMB exists (from WMAP), we used 
simulated CMB maps instead in order to ensure that 
there is no non-Gaussianity in the maps. 

Since the pixel values of the simulated CMB 
are correlated, working in the frequency domain is 
more convenient than in the space domain. Let 
{Xj}"=1 be the wavelet coefficients of Y, then Xi = 
\ / l — Xzi + y/Xwt, where z% ~ N(0,1) are the trans
form coefficients of CMB and Wi ~ W are the co
efficients of the CS map. The distribution of W 
is unknown, but is symmetrical and has a heavy-
tail. Without loss of generality, both {^i}"=i and 
{wi}Z=i have been standardized with standard devi
ations equal to 1. The testing problem is then equiv
alent to testing a null hypothesis Ho under which 
Xi ~ N{0,1) versus an alternative hypothesis H^ ' 
under which Xi = y/\ — Xzi + y/Xwi. We are inter
ested in which pair (X,W) do the two hypotheses 
asymptotically merge together so that no test can 
separate them, versus which pair of (A, W) the two 
hypotheses asymptotically separate from each other. 
By saying asymptotically, we mean n tends to co. 

Clearly, if we fix A > 0, then when n gets larger 
and larger, the difference between the two hypothe
ses becomes increasingly large, and eventually it is 
trivial to tell one from another. Thus the interesting 
range for A is that it tends to 0 as n tends to co, 
so we set A = An = n~r, 0 < r < 1. At the same 
time, motivated by the heavy-tailed behavior of W, 
we assume that the tail probability of W decays al
gebraically: 

lim xaP{\W\>x} = Ca, 
x—*oo 

where Ca is a constant. 
Intuitively, as An is algebraically small, we ex

pect that the majority of relatively smaller samples 
from W will not have much influence on testing. In
stead, a tiny fraction of very large samples from W 
would play the decisive role. This turns out to be 
true, and there is a threshold effect for the testing 
problem. We call the curve r = p*(a) in the a-
r plane the detection boundary: if (r, a) falls below 
the detection boundary, then the null and the alter
native hypothesis separate asymptotically; if (r,a) 
falls above the detection boundary, the null and the 
alternative merge asymptotically. It turns out that 
p*(a) = 2/a when a < 8 and 1/4 otherwise. 

We now compare the asymptotical performance 
of the excess kurtosis and Higher Criticism. If a > 8 
or the 8-th moment of W exists, then the excess kur
tosis is better than Higher Criticism. When (r, a) 
falls into the region that {{r,a) : a > 8 , - < 
r < 1/4}, then asymptotically the excess kurto
sis has full power for detection, while the power of 
Higher Criticism tends to 0. If on the other hand 
a < 8, then Higher Criticism is better than the 
excess kurtosis. When (r, a) falls into the region 
{(r,a) : a < 8,1/4 < r < -}, then asymptoti
cally Higher Criticism will have full power, while the 
power of the excess kurtosis tends to 0. 

The phenomenon can be explained as follows. 
Take a = 5 for example. When you look at the data, 
before you notice any difference in the excess kurto
sis, the largest sample from W is quite apparent, so 
detectors concentrated on the tail are more sensitive. 
However, when a ranges between 5 and oo, the tail 
is gradually thinned out, and at some point, it will 
not tell you anything by merely looking at the data 
tail. You need to shift your attention to relatively 
smaller samples, or the bulk of the data, for which 
the excess kurtosis is more sensitive. It is interesting 
to study the a parameter corresponding to the tail 
behavior of W. Our study8 supports the assumption 
that W has a power law tail: implementing the Hill 
estimator9 gives a « 6.1, where the standard error 
of this estimate approximately equals to 0.9. 

Finally, the above result is highly asymptoti
cal. It would be interesting to investigate the per
formances for moderately large n. Reports in this 
direction are included in Jin8. 

4. W M A P First Year Data 

We have implemented Higher Criticism to analyze 
the WMAP first year data. The detailed study is in 
Cayon et al.3. We work with the WMAP data from 
the LAMBDA website (lambda.gsfc.nasa.gov). We 
construct a weighted combination of released fore
ground cleaned Intensity Maps at bands Q, V, and 
W (refer to Cayon et af for details). We then gener
ated 5,000 Gaussian simulations of CMB maps (in
cluding observational constraints imposed by noise 
and beam profiles), and take the wavelet transforms 
for each simulated map as well as the WMAP map. 
Finally, we carry out the statistical analysis on the 
wavelet coefficients. 

http://lambda.gsfc.nasa.gov
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The wavelet basis we used is the Spherical Mex
ican Hat. The wavelet coefficients we obtained do 
not fit very well with iid Gaussian samples. One 
reason is that the wavelet basis is not orthogonal. 
Despite this, Higher Criticism can still be used as 
a criterion for non-Gaussianity: it can be thought 
that the larger the Higher Criticism value, the larger 
the deviation from Gaussianity. We thus take the 
approach in which we compare the Higher Criticism 
values of the 5, 000 simulated maps with that of the 
WMAP data, and claim non-Gaussianity if 99% of 
the simulated CMB maps have a smaller Higher Crit
icism value than that corresponding to the WMAP. 
It would be interesting to try the analysis with some 
orthogonal basis; we leave this for future study. 

In addition to Higher Criticism, we have also im
plemented the excess kurtosis to the above setting. 
The Higher Criticism reports non-Gaussian detec
tion at 99.46%. In comparison, the excess kurtosis is 
slightly better by reporting non- Gaussian detection 
at 99.7%. 

However, Higher Criticism has more to offer. We 
pointed out earlier in the report that Higher Criti
cism can be used to automatically identify a tiny 
fraction of data as suspected of non-Gaussianity. We 
isolated 490 wavelet coefficients, at the scale of 5 
degrees of the WMAP data. In detail, we set a 
threshold to as the 1%-upper percentile of the 5,000 
Higher Criticism values (-ffC*) based on simulated 
CMB maps. Then out of all wavelet coefficients of 
the WMAP, we select those with an associated nor
malized z-score (HCnti) larger than to-

Last, we map these 490 wavelet coefficients back 
to pixels in the WMAP. There are two ways to do 
the mapping. In the first approach, we map each co
efficient back to all pixels involving the coefficients, 
i.e. all pixels convoluted with the wavelet basis when 
calculating this coefficient. Notice that each of the 
coefficients naturally maps back to a cluster of pixels. 
It is interesting to note that the 490 pixels, and those 
correlated with them by the wavelet convolution, are 
at the cold spot found by Vielva et al.13 and Cruz et 
al.4. In the second approach, we map each coefficient 
back to only one pixel: the one at the center of the 
pixel-cluster mentioned above. This way of mapping 
has the advantage of visualization. By the second 
approach, the selected 490 coefficients map back to 
a ring on the outer part of the cold spot. Interest
ingly, the "coldest" wavelet coefficient (i.e. largest in 

absolute value but is negative) maps back to a pixel 
in the center part of the cold spot, which is not in the 
ring. We clarify here that, both in this report and in 
Cayon et al3, our result doesn't attempt to conclude 
that there is a ring structure in the WMAP map. 
Instead, the ring visualizes the position of pixels cor
responding to the 490 moderately significant wavelet 
coefficients we extracted. 

5. Conclusions 

We introduced the Higher Criticism statistic for non-
Gaussian detection. We have studied the application 
of Higher Criticism to the detection of cosmic strings 
and to the WMAP first year data. Higher Criticism 
is useful in applications by adding discussions to the 
field of non-Gaussian detection. 
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We implement and test an approach for measuring the primordial power spectrum of density perturbations given 
observations of the cosmic microwave background anisotropy spectrum. The method depends on exploiting the fact 
that the linear response of the CMB anisotropy spectrum with respect to the primordial power spectrum model 
parameters is well understood, as well as the noise properties of the CMB detectors. This puts us in the luxurious 
position of being able to precompute an accurate and useful representation of a Fisher matrix, from which a set of 
orthonormal power spectrum modes can be obtained. The full power spectrum mode plus nuisance parameter space 
can be integrated out using Markov chain Monte Carlo, and all the information concerning the primordial power 
spectrum is compressed onto a series of mode amplitudes which can then be easily compared with theoretical models. 

1 Introduction 

High signal to noise, high resolution, multifrequency 
observations of the Cosmic Microwave Background 
(CMB) are providing us with a fascinating opportu
nity to probe many diverse sectors of astrophysics 
and of our cosmological model. In the near term 
future an ensemble of ground-based, balloon-borne 
and satellite observations of CMB temperature and 
polarization anisotropies will provide us with a win
dow on the basic model of linear perturbations to 
a photon-baryon fluid coupled to dark matter po
tentials via gravity, on the reionization epoch, on 
re-scattering of CMB photons by hot cluster gas 
(the Sunyaev-Zel'dovich effect), and on gravitational 
lensing of the CMB by the intervening dark matter 
distribution. Each of these phenomena poses inter
esting challenges for data analysis, the most funda
mental of which is the fact that CMB data is corre
lated, and hence a global analysis of the entire data 
set must be attempted in order to fully exploit the 
science—see the monologue by Dodelson1 for a re
cent treatment of the physics and data analysis of 
the CMB. 

Here our focus is on measuring the primordial 
power spectrum which seeds both the oscillations in 
the photon-baryon fluid and gravitational instabil
ity in the dark matter sector, leading to structure 
formation. The basic hope is that the details of the 
primordial power spectrum (its shape, its Gaussian-
ity or otherwise) will shed light on whatever mecha
nism in the early universe is responsible for actually 
generating the primordial power spectrum itself. At 
present the dominant early universe paradigm that 

emerged back in the late 1970's and early 1980's, and 
is by now not without many observational successes, 
is the celebrated inflation model. 

2 The basic problem 

The desired primordial power spectrum V (k) is re
lated to the observed anisotropy spectrum of the sur
face of last scattering Ce via 

lit r 
Ct = jp-^JdhLkP(k)T?(k;{u>i}) + Nt, (1) 

where the dependence of the numerically calculable 
CMB transfer functions Tg (fc) on a set of cosmologi
cal parameters {u)i} has been written in explicitly as 
well a Gaussian isotropic noise term, N(. Amongst 
the main science goals of all recent CMB observations 
has been the determination of these cosmological pa
rameters, which is made possible by assuming some 
reasonable form for V (k) such as a smooth power-
law. What kind of approaches are possible if we drop 
these model-motivated assumptions? 

There is in fact a satisfactory solution to this 
rather generic data analysis problem given by Hu and 
Okamoto2 in which a Fisher matrix principal com
ponent analysis (PCA) approach can be taken. We 
have implemented this method3, a reference which 
also contains more of the details as well as an entry 
point to the literature for other approaches to the 
same reconstruction problem that have been investi
gated. 

The essence of the method at hand is to con-
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Figure 1. Illustrating the window of sensitivity to the primordial power spectrum for a Planch-\ike instrument. Here ap gives the 
approximate la error on measurements of the primordial power spectrum using bandpowers with S In k ~ 0.05. The vertical lines 
indicate the position of the temperature acoustic peaks. The cosmological parameters have been fixed, so some degrading of the 
sensitivity is expected. 

struct an orthonormal power spectrum model 

V(k) 

V0 

which is 
(mamb) = 

= m 0 + ^ maSa(k), (2) 
a=i 

designed to satisfy the expectation 
CTa«5afc. Which orthonormal basis should 

we choose? Clearly the variation in the power spec
trum modes Sa(k) should reflect our expectations of 
where observations are at their most sensitive, and 
hence there is a link with the Fisher information ma
trix, which is often associated with forecasting the 
expected sensitivity of a given instrumental specifi
cation. 

Before sketching the details of the method how
ever, we state the broader working assumptions that 
we rely on, which may be relevant when trying to 
implement this method in other contexts outside the 
realm of CMB anisotropics: 

1. The initial perturbations are pure Gaussian adi-
abatic modes entering in Eq. (1) via a single 
physical component V (k). 

2. The transfer functions T( (k) can be accurately 
calculated and are fast to evaluate. We make 
use of the CMB anisotropy code CAMB4 . 

3. The noise model Nt is known, and hence the 
Fisher matrix Fjj (to be described below) for a 
given instrument can be calculated. Tegmark, 

Taylor and Heavens5 give an exposition of the 
Fisher matrix formalism in the context of cos
mology. 

4. A method for exploring a 20-50 dimensional 
posterior parameter space is available. Here 
we make use of the Markov Chain Monte Carlo 
method, as implemented in the state-of-the-art 
C O S M O M C " code by Lewis and Bridle6. 

5. The main science driver behind the PCA anal
ysis, however, is the prospect of the large data 
set being gathered over the next five years or so. 

Going more into the details, there is a basic 
pre-processing step which involves constructing the 
Fisher matrix 

^ 2 ? OP 4_ 1 
P« = £ ^PTrlD^D^C,-1], (3) 

where 
dCe, 
dPi

 lfid 

2TT 

(4) 

fd\akV0Tf{k)Wi{\nk), 

which is evaluated for some fixed fiducial values for 
the cosmological parameters. We can take our power 
spectrum test function Wi to be the triangle window 

In k — In h 
WiQiik) = max 1 

Alnfc 
,0 (5) 

"publicly available at: 
http://cosmologist.info/cosmomc 

http://cosmologist.info/cosmomc
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Figure 2. Illustrating PCA modes, <Sa(fc), 1-8 which have been generated assuming a Planck-like noise model. The vertical lines 
indicate the position of the temperature acoustic peaks. 

The Fisher matrix Eq. (3) thus encodes the trans
fer of power from fc-space to £-space via the func
tions D«, and the signal plus noise model via C~[ = 
(St + Ne)_1- As usual the Cramer-Rao bound, given 
by the diagonal component of the inverse Fisher ma
trix, gives a useful handle on the best-case scenario 
for the sensitivity to the observables, and in this con
text reveals the possible observable range of scales, 
which we display in Figure 1. 

The desired PCA modes Sa(k) are simply the 
(suitably normalised) orthonormal eigenvectors of 
the inverse Fisher matrix F " 1 , and in Figure 2 we 
show the first eight PCA modes which resemble 
Fourier modes localised in the acoustic peak region 
0.01 < A; < 0.2 Mpc - 1 , displaying rapid oscillations 
at the acoustic peak scales. As a brief aside, the 
Fisher matrix pre-processing step was implemented 
using the R environment7, which allows for matrix 
manipulations using the LAPACK linear algebra li
brary. 

The PCA mode amplitudes ma can then be ap
pended to the usual list of cosmological parameters 
to be integrated out using the now fairly standard 
and accessible MCMC technique. By construction 
the posterior distribution will be close to an uncor-
related Gaussian, which can then be used as a new 
likelihood function with respect to model-motivated 
power spectrum parametrisations. The model pre
dictions for the PCA mode amplitudes are simply a 
convolution of the theoretical power spectrum over 
the PCA modes 

Incidentally, the likelihood evaluations over this com
pressed data set will be fast which opens up the pos
sibility of performing thorough model selection stud

io = / dlnkSa(k) — (k). (6) 

les. 

3 Tests with simulated data 

We have tested this method using simulated Planck-
like data generated using various primordial power 
spectra including scale-invariant as well as a some
what contrived Gaussian bump power spectra. Here 
we will present results assuming a scale-free input 
power spectrum with spectral slope ns — 1 = —0.03. 
We integrated out the parameter space consisting of 
five basic cosmological parameters and a further 20 
PCA mode parameters, and the results are displayed 
in the first panel of Figure 3. The basic result here 
is that this kind of analysis is indeed feasible, requir
ing a total of around 106 MCMC likelihood evalua
tions to relax to a good representation of the poste
rior peak. We exploit the fact that C O S M O M C can 
be executed across multiple CPUs with near perfect 
parallelisation. In addition, C O S M O M C stores the 
cosmological parameter transfer functions during the 
movement through the power spectrum parameter 
space, meaning that movement in the "bulk" power 
spectrum parameter space is fast. 

Finally, the measured PCA mode amplitudes can 
be used to constrain the power-law slope of the initial 
power spectrum and we recover to within one stan
dard deviation the input power-law slope, shown in 
the second panel of Figure 3. 
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Fig. 3. Illustrating the recovery of the first 20 principal component amplitudes from simulated Planck data with an input 
ng = 0.97 spectrum (left panel). The models (dashed lines) correspond to power-law spectra with ns(fcrj = 005 Mpc - 1 ) = 
{0.970,0.985} (bottom to top, mode 3). The PCA mode amplitudes can then be used to constrain more traditional power-law 
power spectra (right panel). 

4. Final comments 

The method has various extensions. For instance 
the PCA modes can be orthogonalised to the cos-
mological parameters in order to compensate for the 
fact that cosmological parameters degeneracies will 
break the desired statistical orthogonality of the re
covered PCA mode amplitudes. In addition the PCA 
modes can be modified in order to search for devia
tions from scale-free spectra, not just deviations from 
scale-invariant spectra2. 

If one does require a (correlated) representation 
of the initial power spectrum and its covariance ma
trix in fc-space given the measured PCA mode am
plitudes, then an approach similiar to the "minimum 
variance map making" solution of Eq. (6) should be 
possible. 

A detailed empirical approach such as the PCA 
method will always be an option for reconstruct
ing some unknown function, particularly when the 
physics model underlying the data is thought to be 
basically well understood. The fact that it is derived 
from a Fisher matrix calculation also acts as a use
ful check on the consistency and scope of the final 
results. 
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ON-LINE INFERENCE FOR DATA STREAMS 
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Rapid accumulation of substantial datasets is now common in many data processing applications. For example 
in monitoring and examining Internet traffic; analysing high-frequency financial data in market trading; voice and 
video capture; data logging in numerous areas of scientific enquiry. Markov Chain Monte Carlo (MCMC) methods 
revolutionised statistical analysis in the 1990s by providing practical, computationally-feasible access to the flexible and 
coherent framework of Bayesian inference. However, massive datasets have produced difficulties for these methods 
since, with a few simple exceptions, MCMC implementations require a complete scan of what might be several 
gigabytes of data at each iteration of the algorithm. For time-series data, progress is possible using modern sequential 
Monte Carlo methods (known as particle filters). With suitable modifications the techniques can be adapted to deal 
with more general data catalogues. 

1. Bayesian Analysis 

The basic components in the Bayesian analysis of a 
statistical problem are: 

• Data: y 
• Parameters: 9, functions of interest: g(6) 
• Likelihood: L(9;y) 
• Prior density: n(9) 

The prior density and the likelihood are used to cal
culate integrals of the form 

/ g(6)ir(6)L(6;y)d9 

fir(9)L(9;y)d9 
Jg(6)ir(9\y)de 

= E{g(6)\y} (posterior expectation), 

where ir(9\y) is the posterior density of the param
eter 9 given the data y. Markov chain Monte Carlo 
(MCMC) methods can be used to construct a chain 
with successive values, 91,92,... ,9n, simulated from 
the equilibrium density ir(9\y) oc ir(9)L(9;y), esti
mating E{g{9)\y] by 

n 

If {91} are independent then Var(^) = cr^/n. Typ
ically Var(g) = T(Tg/n with 'correlation time', r, 
greater than 1 and 'effective sample size' n/r. 

Suppose now that the observational framework 
expands, giving additional data and an expanded pa
rameter set. 

9 

• Data: y, y+ 

• Parameters: 
9(0,0+) 

9,9+, functions of interest 

• Likelihood: L(9,9+;y,y+) 
• Joint prior density: •K(9)/K(9+\9) 

Question: Can we use the simulations from ir(9\y) 
to simulate from ir(9,9+\y, y+) or do we have to start 
completely afresh using MCMC, for example, on the 
expanded problem? 

2. Time-Series (Signal Processing) 

In many applications, time-series data are noisy ob
servations of an unobserved underlying process of in
terest (the signal). The data, (j/i,.. .,2/t) = yi:t, 
expand with time, and the parameters (the history 
of the underlying process) expand correspondingly, 

(9u...,9t)-
In on-line analysis, a basic objective is to main

tain knowledge about the current state 9t, for ex
ample to allow estimation of E{g(9t)\yi-.t}- In sig
nal processing terms, this is the filtering problem. 
Applications include: medical monitoring, robotics, 
finance. 

For simplicity structural assumptions are made 
about the evolving data set. 

. n{0i,...,9t) = n(6iMe2\0i)M6t\9t-i) 
(underlying state is Markov) 

. L(0i , . . . )0t;yi : t ) = IIJLiMMfc|0fc) 
(current observations depend only on the 
current state). 

In general, the underlying state process will depend 
on unknown (hyper)parameters that must be incor
porated into a full Bayesian model. The Markov as-
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sumption is not severely restrictive and the observa
tional assumptions can be relaxed. 

With these assumptions, the current state of 
knowledge can be updated by 

T(0t+i |yi: t) 
/ ' 

(9t+i\9tMOt\yi:t)d0t (1) 

n(0t+i\yi:t+i) = -r r—-r (2) 
v{yt+i\y\:t) 

where 

p(yt+i\yv.t) = / / i(yt+i |St+i)7r(^+i |yi: ' )d0 t+1-

(3) 
The first integral is crucial. If 9t is high-

dimensional, evaluation of this integral at each stage 
will present problems. 

When there is a linear Gaussian model for the 
evolution of the underlying state and when the noise 
is additive and Gaussian, the integrals can be eval
uated explicitly. The posterior distributions then 
turn out to be Gaussian too. This is the basis of 
the Kalman filter (which basically just updates the 
means and covariances of the state 8t). Since the pos
terior distributions can be obtained explicitly in the 
linear Gaussian model, it is comparatively straight
forward to draw inferences about any unknown pa
rameters involved in the underlying state process and 
the error model. 

In many practical applications, these assump
tions are implausible. In particular, the observa
tion process will often be non-linear. An alterna
tive approach in such cases is the extended Kalman 
filter (EKF), in which the updated measurements 
are linearised about the predicted state, permitting 
the Kalman filter to be applied approximately. This 
algorithm and its refinements have proved popular, 
particularly in the field of object tracking. However, 
the Gaussian approximation to the density of the un
derlying state, inherent in the EKF, will often prove 
to be inadequate, causing the update procedure to 
become unstable. 

Other methods involve approximating distribu
tions by mixtures of Gaussians (the Gaussian sum 
filter); approximating the first two moments of the 
density; evaluating the required probability density 
function over a grid in the state space. However, 
each of these techniques has to be extensively mod
ified to tackle the particular problem in hand. For 

example, methods that evaluate the probability den
sity over a grid in the state space first require the 
grid to be specified, which is a non-trivial problem 
in a multi-dimensional space. To avoid misleading 
results, a large number of grid points will in general 
be necessary. In addition, a non-trivial computation 
must be performed at each point. 

2.1. Sequential Monte Carlo 
(Particle Filters) 

Recall that the current state of knowledge is updated 
via equations 1, 2 and 3. We need a way of carrying 
out these integrals successively for t = 1, 2, 

Poor Man's Bayes: Rubin15 devised a simple way 
of obtaining an approximate sample from a Bayesian 
posterior distribution. 

• Simulate a sample 91,92,..., 8n from it(6). 
• Calculate weights qi oc L(9l; y); Y2li = 1 
• Sample n times (with replacement) from the 

discrete ^-distribution with 

P(0 = &) = qi. 

The resulting sample 81,62,..., 9n is an "approxi
mate" sample from n(9\y). The sample obtained is 
approximate in the sense that n~l YUi=i 9{9l) con
verges in probability to TL{g(9)\y}, as n —• oo. 

The Sampling Importance Resampling (SIR/ 
particle filter)10' 6 is based on Rubin's sampler. It 
proceeds as follows. Assume that you have a sample 
(0t)i=i,..-,n from 7r(0t|yi:t): 

(a) Sampling: Independently simulate 9\+1, using 
the state transition density n(9t+i\9l), f° r e a c n 

i = l,...,n, 
(b) Importance: Upon receipt of observation yt+i, 

for each value 9l
t+l calculate the correspond

ing likelihood h{yt+i\9\+1). Denote the set of 
likelihood values, normalised to sum to 1, by 

(9t+l)»=l,••-,"• 
(c) Resampling: Draw a random sample of size 

n from the discrete distribution taking values 
(0t+i)i=i,...,n with probabilities (ql+i)i=i,...,n-
This is an approximation to a sample from 
7T(0t+l|yi:t+l)-

The algorithm can be thought of as propagating a 
swarm of particles in the underlying state space. At 
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time t the particles are assumed to be an approx
imate sample from the posterior distribution of 9t, 
given the observations so far. At time t+1 each par
ticle moves to a new location in the state space. The 
likelihood of this location given xt+i is evaluated and 
a multinomial sample of particles is then drawn from 
the discrete distribution with support points given by 
the particle locations and probabilities proportional 
to the likelihoods. The process is a form of Genetic 
Algorithm where the 'fitness' of a speculative param
eter value is proportional to its likelihood. In its 
simplest form the SIR filter has various weaknesses. 

Outliers: The effect of an outlying observation is 
to produce a likelihood which is centered in the tail 
of the prior distribution. Since this tail is repre
sented only sparsely by sample points in the SIR fil
ter, an exceptionally large sample from the prior will 
be needed to yield a good support for the posterior 
distribution. 

Sample Impoverishment: Lack of diversity: par
ticles may be highly correlated, localised into a re
stricted region of parameter space, acting as one. 
The particle system may collapse to a singleton (ex
treme lack of diversity). 

Track Loss: Particles become trapped in 'impossi
ble' regions of state space (evolutionary dead-ends). 

Jittering: There are various ad hoc fixes for these 
problems. In order to alleviate the problem of sample 
impoverishment, Gordonet a/.10 suggested adding a 
small amount of Gaussian noise, or jitter, to each 
sample point at each time step. If one point is repli
cated in the posterior r times, it is now replaced by r 
closely adjacent points. Jittering therefore smooths 
out the posterior density, using a Gaussian kernel. 
Choosing the jitter variance is thus equivalent to 
choosing the smoothing parameter in density esti
mation, and there is a corresponding variance/bias 
trade-off to be made. Standard rules of thumb can 
be used to choose the degree of smoothing. 

Prior Boosting: This approach to sample deple
tion was originally proposed by Rubin15. At the 
prediction stage of the SIR filter, instead of gener
ating the usual n points, we generate nn points. The 
likelihood of each of these is calculated, and then n 

are resampled in the update step in the usual way. 
Typically K = 10. 

3. Fundamentals 

Particle filters work by providing a discrete approx
imation to the PDF which can be easily updated to 
incorporate new information as it arrives. More gen
erally our interest will be in approximations which 
consist of a set of random locations in the state space 
(s')»=i,•••,"> termed the support, and a set of associ
ated weights (»nl)j=i)..,]„ summing to 1. The support 
and the weights together form a random measure. 

The objective is to choose measures so that 

£ > 0 . V « f g{e)A0)dn{9) (4) 

for typical functions g of the state space, in the sense 
that the left-hand side converges (in probability) to 
the right-hand side as n —> oo. 

The simplest example of a random mea
sure is obtained by sampling (s!)i=!,...,« indepen
dently from 7r(0), and giving equal weights ml = 
n _ 1 ; i = 1 , . . . , n. The estimate of the expected value 
of g{6) is then the sample average Y^i=i9(s%)ln- ^m~ 
portance sampling provides a more general example 
by sampling (sl)i=i „ from another PDF f(y) and 
attaching importance weights ml = An(sl)/f(st), 

where A'1 = E i U ^ ' ) / / ^ ) -
Before attempting to improve the SIR algorithm, 

it is worth emphasing that our fundamental objective 
is to produce accurate Monte Carlo approximations 
to the succession of integrals that arise in Bayesian 
calculations. For accurate Monte Carlo integration, 
it is essential to eliminate unnecessary randomness 
and to make careful choices for proposals in impor
tance sampling. 

For example, the purpose of resampling is to pro
duce a set of points with a histogram that approx
imates a particular probability mass function. The 
standard SIR algorithm achieves this with a multi
nomial sample (./Vi)j=i,...,„. But with the following 
algorithm the variables TV, never differ from their re
quired expected value by more than 1. 

Algorithm: Randomised circular sampling. 

T = unif{Q,n-l);j = l ;Q = 0;i = 0 
do while T < 1 

ifQ>T then 
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T = T + 1/n; output sl 

else 
pick k in {j, ...,£} 
i = sk 

Q = Q + mi 

switch (sk, mk) with (s^mi) 

3 = 3 + 1 
end if 

end do 

The algorithm treats the weights as contiguous inter
vals of (0,1). These intervals are randomly ordered, 
and the number of grid points {T + k/n} in each 
interval is then counted. It randomly translates a 
'comb' with equally spaced teeth as follows: 

0 

The objective of the previous sampler is to en
sure that Ni has expected value nrrn for i = 1 , . . . , £, 
while ensuring that the variances of the Ni are as 
small a possible. Crisan and Lyons5 proposed that 
each Ni should be chosen to be the integer part of 
nrrii plus a Bernoulli variable with probability equal 
to the fractional remainder. Liu and Chen12 have a 
similar method where each Ni is again chosen to be 
the integer part of nm,i but with the addition of a 
multinomial variable based on the fractional remain
ders. They call their method residual sampling. In 
practice, these methods produce similar effects on 
sampling efficiency. 

Since resampling introduces noise, this raises the 
question, when should we resample, and when should 
we carry forward the weights? The question has been 
addressed by Liu and Chen12 who propose an ad hoc 
rule based on the variance of the weights (mj)i=i)...)„. 
In general, if the weights are roughly even, and the 
system noise is small compared to the variance of the 
posterior at the previous time step, then it is better 
not to resample. In particular, if there is no system 
noise, resampling is always inefficient. 

3.1. Assessing Sample Depletion 

To compare refinements of the SIR algorithm, it is 
helpful to have a measure of the effective sample size 

(ESS). This is the sample size that would be required 
for a simple random sample from the target poste
rior density to achieve the same estimating preci
sion as the random measure provided by the particle 
filter. 

Liu12 has suggested using ESS = n / ( l +• V), 
where V is the variance of the importance weights. 
The result should be used with caution, since in prac
tice some properties of the state distribution may be 
estimated well, and some poorly. In general, the ef
fective sample size will depend on the quantity being 
estimated and not just the weight distribution. 

In principle, a Bayesian filter should be assessed 
by looking at its performance averaged over the 
population of trajectories generated by the system 
model. However, for non-linear problems it may hap
pen that most of the trajectories are simple to filter 
and only a few are 'difficult cases'. It is therefore 
helpful to see how the filter performs for typical ex
amples of these difficult cases. The integrated cor
relation time in MCMC calculations in non-dynamic 
problems and the ESS play similar roles. Neither of 
these diagnostics is designed to check for convergence 
to the right distribution. A noisy biased filter may 
have a large ESS but the sample will not have come 
from the correct distribution. To check for bias, the 
proposed particle filter will need to be compared with 
filters which are known to perform correctly. 

We should note that there is intermediate 
ground between resampling and carrying forward the 
weights. Resampling can be carried out using mod
ified weights: for example, using modified weights 
proportional to the square root of the original, i.e. 
w\ oc yfm\. The resampled points are then carried 
forward with weights proportional to m\/w\. Similar 
techniques have been proposed in MCMC sampling 
to avoid problems in sampling from highly peaked 
densities. 

Although it is unrealistic to use MCMC to sam
ple the posterior distribution of the complete state 
history, under certain circumstances MCMC moves 
can be introduced in particle filtering. These moves 
may be successful in preventing sample impoverish
ment. In general, to accommodate arbitrary tran
sitions it is necessary to store the whole history of 
the process up to time t. As we shall see in the next 
example, this can be avoided if the transition kernel 
only depends on a fixed set of summary statistics, or 
only upon the last T time points. 
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3.2. Example: Bearings Only Tracking 

A classic example of non-linear filtering is bearings 
only tracking. An observer (either fixed or moving) 
observes the bearing of a moving ship. The bearing 
is the angle of the observation relative to a fixed di
rection. The crucial problem is that we are trying to 
reconstruct the two-dimensional coordinates of the 
ship from a single non-linear observation. This type 
of non-linearity in tracking problems usually causes 
difficulties for the Extended Kalman Filter. 

Start position V ' • • . . . 

0.61 y....'•.... 

- ^ . " • - . Prior mean of start 
0 4 ^ - - position distribution 

0.2 j S l " ' .. • - . 

0 { . . : . S : f ^ - X : / 0 0 ' : Observer 

-0.2 ^ < _ 

-0.06 -0.04 -0.02 0 

Fig. 1. Typical simulated trajectory. Dotted lines show ob
served bearings 

We want to reconstruct the trajectory given the 
system model, observed bearings and a prior distri
bution on the initial position and velocity. In par
ticular, suppose we observe t bearings. Notice that 
scaling the track toward the observer by a constant A 
does not affect the likelihood since none of the angles 
change. It affects some of the parameters in a simple 
way. These factors can be incorporated into the fil
ter by extending the signature of each particle. The 
MCMC scale move, when it is made, is a Gibbs move 
sampling from a truncated Gamma distribution. 

3.3. Hidden Markov Models 

By way of illustration we will work through a specific 
example. The problem is typical in the sense that 
the observation process is driven by a hidden Markov 
process. 

Well-logs are records of the physical and min-
eralogical characteristics of underground rocks ob
tained by drilling in a region of geological interest. 
In traditional applications, a probe (called a sonde) 
is lowered into an existing well-bore by a cable, and 

acoustical, electrical, nuclear-magnetic or thermal 
properties of the surrounding rock types are recorded 
as the sonde descends. In this example, the measure
ments are of nuclear magnetic response taken at 4500 
time points. The underlying signal is piecewise con
stant; each constant segment relating to a stratum of 
a single rock type with constant physical properties. 
The jump discontinuities in the signal occur at times 
when a new rock stratum is first met. 

0 1000 2000 3000 4000 

Time 

Fig. 2. The measurements of nuclear magnetic response 
taken at 4500 time points. 

There is increasing interest in the possibility 
of 'measurement-while-drilling' (MWD) rather than 
the retrospective measurement of rock characteris
tics in existing boreholes. To detect changes in rock 
strata as drilling proceeds, data need to be collected 
from the vicinity of the drill-head. There are severe 
technical difficulties both in obtaining useful mea
surements and in the transmission of these data to 
the surface. Progress is currently been made with 
these problems in the gas and oil drilling industry. 
Other areas in which the use of traditional sondes is 
inadequate include the exploration of leakage below 
buried waste. These investigations are carried out 
by horizontal drilling making it impossible to lower 
a sonde into the borehole. Attachment of record
ing devices to the drill head may be the only way in 
which data can be collected - thus enabling drilling 
to be steered towards areas of high contamination. 

3.3.1. Batch processing 

The well-log data of Figure 2 have been analysed 
previously13. The whole dataset was batch-processed 
using a Gibbs (MCMC) sampler. Outliers were re
moved by hand and the number of change-points was 
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fixed prior to the analysis. It only remained to locate 
the change-points as accurately as possible. 

When scanning the data as a whole (by eye) 
the detection of change-points appears straightfor
ward. However when the data are only available 
incrementally, differentiating between outliers and 
true change-points is difficult. Successive MCMC 
sampling, even when outliers have been eliminated 
and number of change-points is known, is too time-
consuming for real-time inference. By contrast, as 
we shall see, particle filter methods are computation
ally efficient and enable uncertainty about the num
ber of change-points and outliers to be incorporated 
automatically. 

3.3.2. On-line analysis 

We use a hidden Markov model to model regime 
switching in the well-log data. The (underlying) 
state is the expected nuclear magnetic response for 
the current rock strata. The hidden Markov chain 
allows for both changes in the rock strata, and the 
possibility that the current measurements are out
liers. The conjugacy in the assumed model means 
that conditional on knowing the history of the hid
den Markov chain, the posterior distribution of the 
history of the measurable state can be calculated an
alytically using the Kalman filter. 

The posterior distribution can be written as a 
mixture distribution, with each term in the mixture 
referring to a single possible value of the history of 
the hidden Markov chain. Liu and Chen12 show that 
for such problems, the efficiency of the particle filter 
can be greatly improved if, instead of each particle 
representing a possible value of the history of the 
state, each particle represents a possible history of 
the hidden Markov chain (or a suitable summary of 
that history). This technique is called marginalisa-
tion or collapsing. 

With such an approach, the posterior can be 
calculated exactly using a finite number of parti
cles. Unfortunately, the number of particles needs 
to increase exponentially with the number of mea
surements, and becomes unfeasibly large for even 
small data sets (let alone the data set shown in Fig
ure 2, where there are 4050 measurements). To re
strict the number of particles used by the particle 
filter, resampling must be used. At each time stage a 
smaller, but hopefully representative, sample of par

ticles are chosen from the large number of current 
particles16' 12, 7. 

We assume a two-dimensional Hidden Markov 
Model, with states It = (St,Ot), where St and Ot 

both taking values in {1,2}. Conditional on It, the 
underlying state (the expected nuclear magnetic re
sponse) satisfies 

J 9t-i if St = 1, . . 

and the measurements satisfy 

(9t + T1z;xot = i, 
Yt-\v + T2z;\iot = 2. (6) 

The error terms {Zt,Z^}t=i,... a r e uncorre
cted, standard Gaussian random variables, and 
[i,v,a,T\,T2 are suitably chosen hyperparameters. 
The system equation (5) allows for jumps in the un
derlying signal, while the measurement equation (6) 
allows for clusters of outliers. Such a model produces 
the step function form for the underlying signal that 
is evident from the data. 

A number of outliers below the main body of 
data are apparent. This motivated the model that 
we have used (see Equation 6). When the Markov 
chain, Ot, is in state 1, the observations will be mod
elled as the true state corrupted by additive noise. 
State 2 will represent an outlier state, and, for sim
plicity, the observation will be modelled as a draw 
from a Gaussian random variable whose parame
ters are independent of the true state. There are 
around 70 observations that appear to be outlying. 
These occur in 16 clusters. This suggests that suit
able values of the transition probabilities would be 
approximately P(Ot = 2\Ot-i = 1) = 0.004 and 
P{Ot = 2\Ot-i = 2) = 0.75. The outlier distribu
tion was taken to have a mean, v, of 85000 and a 
standard deviation, T2, of 12500. The standard de
viation T\ of non-outlying observations was taken to 
be 2500. 

Previous analyses13 have assumed additive 
Laplacian noise for the data. The analysis of the 
well-log data by a particle filter under such a model 
can be found in Fearnhead's thesis. More compli
cated models, which include more detailed modelling 
of the outliers, and allowing for correlated noise, were 
also considered there. For all these models the pos
terior distribution of the history of the state, Qt, con
ditional on the history of the hidden state, It, could 
be calculated analytically. 
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Results: The main aim of analysing the well-log 
data is to detect the change-points in the signal 
on-line. So after processing each measurement, the 
probability of a jump having occurred during the last 
k time points was estimated. The results we present 
are for k = 5, but similar results were obtained with 
slightly different values of k. 

I 

Fig. 3. Results of on-line analysis of the well-log data (top) 
by the new particle filter. The particle filter used 100 particles. 
The estimates of the probabilities of a recent change-point 
(middle), and the probability of the measurement being an 
outlier (bottom) are both shown. 

The filter appears to have performed well, with 
all obvious change-points being given a posterior 
probability close to one. In a few cases, the filter ap
pears to have misclassified outliers as change-points. 
An easier evaluation of the performance of the fil
ter can be gained from looking at an estimate of the 
underlying signal (see Figure 4). 

1000 2000 

Time 

3000 4000 

Fig. 4. 
data. 

An estimate of the underlying signal for the well-log 

The estimate was obtained from the output of 
the particle filter. The change-points were fixed to 
be at times where the posterior probability of a re
cent jump was greater that 0.9, of which there were 
16. The value of the state between each pair of adja
cent change-points was estimated by the mean of all 

measurements in that time period which had negli
gible probability of being an outlier. 

4. Using Particle Filters to Analyse 
Large Datasets 

In Bayesian statistical analysis, our aim is to find the 
posterior density 7r(0|yi:jv) of the parameter given 
the data yi-.N = {yi, • • •, VN}- The parameter 9 may 
be of high dimension 9. In a standard non-dynamic 
(static) problem all the data yi-.N are available at 
once, and we know that 

7r(%i:iv) oc -K{9)L(9; VV.N) 

where L(6; yi-.j^) is the likelihood. Markov chain 
Monte Carlo is one method of analysis. 

To use MCMC we need to construct a Markov 
chain (9^\9^2\ . . . ) on the space of possible 6 val
ues with 7r(0|j/i;jv) as its equilibrium. By running 
the chain for a long period of time, values from the 
equilibrium can be harvested and used to summarise 
the target distribution. 

Problems: Suppose for example that the Metropo
lis sampler is used. At each step r in the Markov 
chain the current value of 9^ is modified by propos
ing a new value, 9, sampled from a proposal density 
g(9\9^). The new value 9 is accepted and becomes 
0(r+!) w i th acceptance probability 

A(9^,9;yi..N)=mm\l, 
g(9(r)\9)ir(9\yi..N) 

g{9\9^))*{e(r)\yl:N) } 
The problem is that that A(9^r\ 9; J/I:JV) depends on 
the whole of yi-.N- When the data set is massive, 
computing the acceptance probability is a non-trivial 
calculation, since it involves scanning through the 
whole dataset. When N is of the order of millions 
this can be a very time-consuming task, and further
more the task has to be repeated until the MCMC al
gorithm has converged, which may take several thou
sand steps. 

There have been various attempts to use par
ticle filters for the Bayesian analysis of large 
datasets. The papers by Ridgeway and Madigan14 

and Fearnhead8 provide a simple introduction. 

4.1. Simple Use of Sub-Sampling 

The basic idea is to use a sub-sample of the data j / i : n 

where n <C N. If n is small enough then MCMC can 
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be run on the subsample, to yield {#*}, i= 1 , . . . , M, 
a sample of values from 7r(0|yi:„). Each of these val
ues then receives an importance weight u>i from the 
rest of the sample, given by 

^ 7T(fli|yi:Jv) 

n(6i\yi:n) ' 

A simplification occurs when observations are inde
pendent, since 

*(%!:*) *(6)L(e,yv.N) 
7r(%l:n) 7r(0)L(fl, y1:n) 

Similar simplifications occur when the observations 
have Markov dependence. The practical impact is 
that the remainder of the dataset only needs to be 
scanned once. 

4.2. Successive Sub-Samples 

Unfortunately, the set of weights produced by this 
procedure may be highly skewed and concentrated 
on only a few of the values in the set {0i}. To rem
edy this Ridgeway and Madigan14 consider a suc
cession of values of n, say n\, ri2, •. • N and apply a 
modified particle filter to the successively augmented 
datasets, proceeding as if these form a time series. 
The modified particle filter has two components, 
sampling/resampling and refreshment. MCMC tran
sitions are introduced to refresh the particle support 
set. The decision on when to refresh is based on the 
distribution of particle weights. If the distribution is 
highly skewed then refreshment is carried out. 

Unless the statistical model has special structure 
that can be exploited, these MCMC steps are com
putationally expensive. However, we expect that as 
the data are successively augmented, the distribu
tion of particle weights will become less skewed, so 
moves are made less often. In Ridgeway and Madi
gan we see that the refresh times occur frequently at 
the beginning and less so toward the end of the data 
reading process. 

4.3. Model-Based Clustering 

Fearnhead's paper8 is about model-based clustering. 
The data are assumed to come from a mixture distri
bution where the distributions of the mixture com
ponents have some known parametric form. For ex
ample, it could be assumed that each observation is 
from one of K possible multivariate normal distribu
tions. We don't know the means and covariances of 

the distributions, how many different distributions 
there are or which distribution each observation is 
from. 

The data are yi-n — {y\,..., yn}. Under the 
model each j/j comes from one of the mixture com
ponents. For any given component the observations 
are considered to be independent. An assignment 
zv.n — {zi, • • •, zn} is a vector of component labels 
and k is the number of components identified, so 
Zi £ {1, . . . ,&}. The component distributions have 
densities f(y; 8) where 9 is different for each compo
nent. The joint density of these variables is 

k n 

PiVl-.n, Zl-n, 01:k) OC 7r(^i:„) J J 7T(0J) J J /(l/ij 0Zi). 
j=l s = l 

The Dirichlet prior 7r(zi:„) is parametrised by a, with 
a recursive definition: 

7I"(Z»+1 = J\Z\:i) 
rij/(i + a) for j = l , . . . , /c i 

a/(i + a) j = hi + 1 

where ki is the number of clusters in the assign
ment z\-i and rij is the number of observations that 
z\;i assigns to cluster j . With classical conjugate 
prior distributions for the parameters of a multivari
ate normal density some special simplications occur. 
In particular and most importantly, once the assign
ment vector z\.n is known, it is possible to evaluate 
the posterior distribution of the parameters explic
itly. The special form of the Dirichlet prior also leads 
to simplications enabling the posterior probabilities 
of the mixture weights to be assessed when z\:n is 
known. So we can use a particle filter where each 
particle is tagged with its own assignment vector z\..i 
at stage i. See Fearnhead8 for further details. 

5. Data Sketching for Large Datasets 

The purpose of using sequential statistical meth
ods (particle filters) on static datasets is to reduce 
demands on data access. An entirely independent 
approach to related problems has been developed 
in the computer science literature. Key authors 
are Indyk11, Cormode and Muthukrishnan4 and 
Flagolet9. The first three authors exploit an inge
nious combination of random projections (using sta
ble law distributions) and universal hashing3 to pro
duce sketches of large datasets that enable questions 
concerning the distributional properties of the val
ues in the dataset to be answered rapidly. Flagolet9 
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develops an ingenious way of counting large num
bers with a tiny amount of memory. This is related 
to the Additive-increase multiplicative-decrease pro
cesses studied by Bertoin-Biane-Yor1. 

5.1. Projection Methods 

The data come in a stream (no particular order), 
(CLI,WI), (02,1^2), • • • where en € A is the type of the 
ith item in the stream and Wi is the multiplicity. 
The problem is that the amount of data can be vast. 
How can you answer questions about the stream, 
for example, to find out how many different types 
there are? How many different users are there on 
the Internet? 

We suppose that there is a pseudo-random map
ping h : A —> R such that 

P{h(a) <x) = Fp(x), 

where Fp is the distribution function of a symmetric 
stable distribution with parameter p, and where 

P(\h{a) - h(b)\ < e) = 0(e), a^b. 

(universal hash function) 
Now calculate 

n m m 

S = 22 Hai)wi — Yl xi z2 Wi = /2 xici' 
t = l j = l i:h(a.i)=Xj j = l 

and note that, using the property of stable distribu
tions, 

( m \ 1^P 

f>n . 
where X has a symmetric stable distribution with 
parameter p. 

The projection sketch consists of R independent 
replicates of S. The median (for example) of the 
S values is then used to estimate the scaling term 
Y^jLi \cj\P- When p is small this gives an estimate 
of the number of distinct items. 
5.2. Other Types of Data Sketches 

Sketches based on small p projections enable us to 
assess whether the profile of occurrences in two data 
streams is the same — just subtract the sketches. 
They also allow for removal of items (stock control). 
Techniques for maintaining histogram sketches are of 
particular interest for statistical applications. 

6. Concluding Remarks 

The Bayesian analysis of massive datasets remains a 
challenging problem. MCMC methods are not feasi
ble for these datasets. Particle filters are promising. 
They are particularly effective when 

• distributional conjugacy can be exploited (c.f. 
Section 3.3.2), 

• sufficient statistics are available, permitting oc
casional MCMC moves to be made at low com
putational cost (c.f. Section 3.2). 

For complex problems, particles need to be 
tagged with extensive information. The design of ef
ficient database management systems for these data 
is an open problem. 

Data sketches have the potential for summaris
ing both the data and the particle systems that rep
resent the posterior distribution. 
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A review is provided of some ways in which statistical ideas have influenced research into image analysis, in particular 
the problems involved in making inferences about the true scene and any parameters in the underlying model. The 
emphasis will be on the application of general statistical paradigms such as maximum likelihood, implemented using 
tools such as the EM algorithm, and Bayes' Theorem. The resulting procedures can be regarded as particular recipes 
for regularisation or deconvolution, according to the context. 

1. Introduction 

Statisticians have made a substantial impact on im
age modelling and analysis. The purpose of this pa
per is to give a quick overview of some of these con
tributions, to emphasise the key statistical issues, to 
highlight some points of contact with Physics and 
to mention a few applications, including one or two 
from contexts within Physics. The account cannot 
claim to cover all methodological approaches or all 
application areas, and there is a strong element of 
selectivity in the reference list! For instance, a large 
body of recent work in shape analysis (Dryden and 
Mardia 1) is largely overlooked. 

Much of the paper will concern pixellated im
ages, and the associated notation is as follows: the 
true scene is denoted by x, the observed image by 
y, and each can be written as a vector of length TV, 
where N denotes the number of pixels. However, it 
is also natural to regard the elements of both x and y 
as being originally arrayed as R x C matrices, where 
R and C denote the numbers of rows and columns of 
pixels and N = RC. 

The essence of the statistical approach is to in
troduce probabilistic models that might plausibly 
represent the relationship between x and y, and pos
sibly also the structure of x itself, and to use 'stan
dard' statistical paradigms to make inference about 
the unknown x. In Section 2, we concentrate on a 
particularly simple model for the way in which y is 
created as a distorted version of x, and a notional 
model for x appears almost incidentally. Section 
3 reviews some now-classical material in which the 
model for x is proposed from the outset. Section 4 
returns to a starting point similar to that of Section 
2 and reviews some material under the heading of 
'deconvolution'. 

2. A Regularization Approach to Image 
Restoration 

The simplest and most usual model that underlies 
the regularization approach is that, for some square 
matrix H, 

y = Hx + t. (1) 

According to this model, the true scene is deter-
ministically blurred by H and subjected to additive 
noise e, often assumed to be white noise, so that 
e ~ iV(0,<72J), in which a1 is a variance parameter 
and I denotes the identity matrix. The model makes 
sense only if the true scene and the observed image 
can be regarded as continuous intensities; this might 
be a reasonable approximation for grey-level images, 
but obviously not if, for example, the true scene is 
binary. If H, which is a characteristic of the observ
ing instrument, is known, then the natural estimator 
of the true intensities is 

x := H~ly = x + H~lt, 

which corresponds to the least-squares estimator of 
x, the minimiser of 

A(x,y):=\\y-Hx\\2. 

Since Ex = x, x is what is called an unbiased estima
tor of the true scene. The matrix H might be fairly 
sparse, if the amount of blurring is small. However, 
the high dimensionality of the problem, in imaging 
contexts, can lead to x being a very unstable estima
tor of high variability, and a common solution is to 
minimise instead 

£(x,y)+03>(x), (2) 

where $ is a measure that is intended to pe
nalise 'roughness' in x, and (3 is usually a pos
itive scalar, although a version involving a high-
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dimensional j3 is described by MacKay2 under the 
nomenclature of automatic relevance determination. 
In a computationally-convenient simplest version of 
this method, $(x) = xTCx, in which C is typically 
positive-definite, and the 'optimum' restoration is 
given explicitly by 

x0:=(HJH + (lC)-lHTy. (3) 

Such an estimator is biased, in that Exp ^ x, for any 
(3 7̂  0, but its instability, as measured by variance, 
is greatly reduced. A key decision is to choose f3 
appropriately, and a variety of rationales have been 
investigated. The choice of C reflects the type of 
smoothness imposed, and is usually designed to pe
nalise differences between intensities on neighbouring 
pixels or simply, with C = I, to penalise 'large' x. 

Some of the approaches to the choice of /3 seek 
to compromise between low bias and low variance, 
and a natural criterion for choice is a 'minimum risk' 
criterion of the form 

mmpEyix6(x,x0), 

where 6 is a measure of distance. If S(x, x') = 
\\x — it'll2 then this amounts to a minimum total 
mean squared error criterion. The operational diffi
culty with this is that the criterion and therefore the 
minimising /? are functions of the true x, which of 
course is unknown! One possibility is to substitute a 
preliminary estimate x for a; at this point, or to apply 
a method of crossvalidation (CV), which leads to the 
use of a criterion that measures the ability to predict 
individual (pixel) observations, given the data on all 
other pixels. For example, one might define 

N 

CVW^N-^fa-Eivilxf)}2, 
i = i 

in which yi is the ith element of y and Sri' is the 
restoration computed from all observations except 
for yi, and choose /3 to minimise CV{(3). A slight 
modification of this which has been very popular in 
practice is the generalised crossvalidation function 
of Golub et al.3 When 5 is a simple quadratic loss 
function this crossvalidation function is given by 

GCV(J3) := RSS(J3)/[ti{I - K(J3)}% 

in which K{/3) = H(HTH + /3C)-1
Jtf

T, K{(3)y = 
E(y\xp) denotes the set of 'fitted values', and 
RSSffi) := \\{I- K((3)}y\\2 is the residual sum of 
squares. Generalised crossvalidatory choice selects 

P = PGCV to minimise GCV((3). Other methods ex
ist, including the so-called 'empirical degrees of free
dom' choice, PEDFI defined as the solution of the 
equation 

RSS((3)/tv{I - K(P)} = a2, 

that is, 

RSS{/3) = {n-trK(0)}a2, 

provided a2 is known or can be estimated reliably ex
ternally. The quantity n — tiK(/3) is called the equiv
alent degrees of freedom for error, by analogy with 
the corresponding version in ordinary linear models. 
One justification for this is that Wahba4 recommends 
RSS(J3Gcv)/tr{I—K0GCV)} as an estimator of a2. 

So far as the non-statistical regularisation liter
ature is concerned, a traditional way of choosing j3 
is to solve 

RSS(/3) = na2, 

justified on the grounds that the true RSS((3) has ex
pectation na2. This method will clearly oversmooth 
relative to PEDF-

In its most basic form the above methodol
ogy corresponds to ridge-regression, in general it 
amounts to an approach to solving potentially ill-
posed inverse problems, and the structure appears 
in the development of smoothing splines as well as in 
the image-analysis context. My own involvement has 
included investigation of the various form of choos
ing f3 in the contexts of smoothing splines (Hall and 
Titterington5) and images (Hall and Titterington6; 
Thompson et al.7). 

3. Bayesian Image Analysis 

The foundations of what became known as Bayesian 
image analysis are the seminal papers by Geman 
and Geman8 and Besag9. In these papers, a 'prior' 
(marginal) model, p(x\fi), was assumed for the true 
scene, x, and a model was also assumed for the ob
served image, y, conditional on x, to represent the 
noise and/or blurring process; this model will be de
noted by p(y\x, 6). Thus, for example, for the model 
defined in (1) p{y\x, 6) is the multivariate Gaussian 
density with mean vector Hx and covariance matrix 
a21, and 9 = (H,a2). (Note that we are using lp' 
generically to denote a probability density function.) 
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The marginal model chosen for x typically re
flects local spatial correlation, and usually corre
sponds to a Markov random field. The simplest sce
nario is that of a binary (black/white) image, with 
each X{ = —1 or +1 . In this case a possible choice is 
to take p(x\(3) to correspond to the Ising model: 

in which the sum is over neighbouring pairs of pixels 
and (3 > 0. This corresponds to a so-called first-order 
Markov random field, and the observed image to a 
hidden Markov random field. The quantity C((3) is a 
normalising constant for p(x\j3), also called a parti
tion function. Its calculation is at best a complicated 
computational problem and leads to difficulties in in
ference, as mentioned later. 

The quantities /? and 6 represent parameters 
and, for brevity, we shall denote the complete set 
of parameters by ip = (/?, 0). (In practice part or 
all of 9 may be known from the specification of the 
observing instrument.) 

There are two other probability distributions 
of interest, which we shall denote by p(x\y,ip) and 
p(y\ip). Both of these can be expressed in terms of 
the joint probability function for x and y, which is 
given by the product oip(y\x,6) and p(x\/3): 

p{x\y, ip) oc p(x, y\ip) = p(y\x, 0)p(x\(3) (4) 

and 

P{y\i>) = / p{y\x,6)p(x\P)dx, (5) 

where, in (5), the integration is over x and represents 
a summation if x is discrete. 

Relationship (4) is the source of 'Bayesian' in
ference about the underlying (hidden) true scene, 
whereas (5) is the likelihood function corresponding 
to the observed data, and is important in making in
ferences about the underlying, and usually unknown, 
parameters ip. I have put 'Bayesian' in inverted com
mas in the previous sentence because it is arguably 
in conflict with what Bayesian inference means in 
statistical science. The Bayesian paradigm is char
acterised by the assignment of probability distribu
tions to parameters, which are fixed but unknown, 
as well as to random variables, realised values of 
which represent a major component of the experi
mental data. Pre-experiment ideas about the param
eters are summarised by the 'prior' distributions and 

Bayes' Theorem is used to combine the prior infor
mation with that provided by the experimental data 
to give the 'posterior' distribution of the parameters. 
In what has become known as 'Bayesian image anal
ysis', the key unknowns are not really parameters 
but are the true scene, x, which are perhaps better 
referred to as hidden or missing values. Bayes' The
orem is used to construct the conditional distribu
tion p(x\y) from the reverse conditional distribution 
p(y\x), corresponding to the distortion/noise model, 
together with the marginal model p(x) for x. Of 
course, Bayesian inference, as statisticians know it, 
is one way of dealing with any unknown parameters 
within ip. 

If for the time being the parameters ip are as
sumed known, then, ideally, one should make infer
ences about the true scene on the basis of p(x\y,ip). 
Early work concentrated on obtaining point esti
mates, such as the mode, using simulated anneal
ing techniques (Geman and Geman8), or mode-like 
quantities (Besag9), but in principle the whole joint 
posterior distribution of x is available for exploita
tion. Just what is feasible in practice depends to 
some extent on what is meant by x. In low-level, 
pixel-based modelling, which was the case considered 
by Geman and Geman8 and Besag9 and which we are 
dealing with in this paper, x contained values, such 
as colours or intensities, associated with all individ
ual pixels, possibly supplemented by inter-pixel edge 
indicators. Thus x is of extremely high dimension 
and it is not feasible to look at complicated features 
oip(x\y, ip). Modelling at a higher level is typified by 
the deformable-templates approach, originally con
ceived of by Grenander (Grenander et a/.10; Grenan-
der and Miller11), in which features in images are 
represented by skeletal frameworks summarised by a 
comparatively small (at least relative to the number 
of pixels!) number of quantities. One would also 
like to obtain interval estimates concerning impor
tant features of the true scene. Typically, p(x\y,ip) 
is not of a form that is amenable to exact analy
sis, but, in principle but still a daunting prospect in 
practice, Markov chain Monte Carlo methods allow 
realisations to be simulated from the distribution to 
be generated and quantities of interest to be esti
mated by empirical counterparts. 

There are clear links between this formulation 
and Physics. As mentioned earlier, it is natural for 
the 'prior' p(x\/3) to reflect local association and, for 
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a pixellated binary scene, the Ising model from statis
tical physics is often used as the prior; if the underly
ing scene is denned in terms of a known finite number 
of colours or land-types then a Potts model might be 
used. Furthermore many of the Markov chain Monte 
Carlo methods have their origins in physics; for ex
ample, what statisticians know as the Gibbs sampler 
is the same as the heat-bath method. 

If the parameters ip are unknown, then they have 
to be estimated from the available data, namely y. 
Various ad hoc methods have been used in the image-
analysis context, but the statistician would prefer 
to implement a general paradigm, either likelihood-
based or Bayesian. 

In the likelihood approach, the appropriate esti
mator of ip is the maximiser of p(y\ip), and the inter
pretation of the problem as a missing-data problem, 
with the true scene x being missing, makes avail
able the general iterative EM algorithm of Dempster 
et al.12 Let L(x,y\ip) denote the complete-data log-
likelihood, given by 

L(x, y\ip) = log{p(y|a;, 0)p(x\/3)}. 

Then the EM algorithm is as follows, if we envisage 
an iteration at stage m, with ^( m _ 1 ) as the current 
approximation to the maximum likelihood estimate. 

(1) E-step: calculate Q(ip) = EmL{x,y\ip), where 
the expectation is with respect to the conditional 
distribution represented by p(x\y, i/>(m_1)). 

(2) M-step: find ip = ip1^ to maximise Q(ip). 

In the E-step, therefore, we evaluate the expectation 
of the complete-data log-likelihood, conditional on 
the observed data and using the model based on the 
current estimates of the parameters to do the aver
aging, and then in the M-step we maximise that ex
pected log-likelihood in order to obtain the next set 
of estimates. One hopes that the sequence {ip^} 
converges to the maximiser of p(y\ip); it is generally 
true that the sequence of likelihoods {p{y\^m>>)} is 
monotonically increasing. As a result, convergence 
to at least a local maximum is ensured, except in 
very pathological circumstances. 

For the EM algorithm to be easy, both the E-
step and the M-step have to be straightforward, and 
unfortunately in the case of a hidden Markov ran
dom field this is true of neither step. It is not possi
ble to obtain an explicit formula for the expectation 
in the E-step. One approximating alternative is to 

use a sample average, based on a number of reali
sations from the relevant distribution, but genera
tion of each of these realisations requires a Markov 
chain Monte Carlo procedure. Another approach 
is to use an approximating measure based on so-
called mean-field approximations. Here, the aver
aging measure is a suitably chosen fully-factorised 
independence model for the individual elements in 
x. (The mean-field approximation is another tool 
with its origins in Physics.) Although the use of 
an independence model might seem to represent a 
gross approximation to a typically highly complex 
multivariate distribution, its performance within the 
E-step of the EM Algorithm can be uncannily effec
tive; see, for instance, Zhang13 '14. 

Difficulties also arise in the M-step, although, 
maximisation with respect to 0, the parameters 
within the noise model, is often easy. However, this 
is not the case for /?, the prior parameters, because 
p(x\/3) of the normally intractable /3-dependent nor
malisation constant or partition function present in 
p(x\(3). Zhang suggests using mean-field approxima
tions at this stage too. Other possibilities are to ap
proximate the normalisation constant by an empiri
cal average, as explained by Geyer and Thompson15, 
or to replace p(x\/3) by Besag's16 pseudo-likelihood, 
which is defined as 

PPL(X\P) = Y[p(xi\xdi<0)> 
i 

where XQI denotes values associated with the neigh
bouring pixels to pixel i, according to the neigh
bourhood system defined by the Gibbs distribution 
p(x\(3). Thus, ppi is defined by the product of the 
full conditional distributions of the individual Xi's, 
and the problem of the intractable partition func
tion disappears. Maximum pseudo-likelihood esti
mators are often consistent, in that for large lattices 
the estimator is likely to be close to the true /?, but 
may have rather low efficiencies. One application of 
the pseudo-likelihood is to use it in the M-step of 
the EM-algorithm as a replacement for the correct 
but intractable p(x\(3); see Qian and Titterington17 

for this and other ways of making the EM-algorithm 
practicable. 

At this point we mention a few practical appli
cations. 

Qian and Titterington17 considered four-band 
satellite image data of a view of the Lake of Menteith 
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in Perthshire, the only substantial body of water 
in Scotland referred to as a 'Lake' rather than a 
'Loch'! A six-state Potts model was assumed for 
the true scene and additive Gaussian noise was as
sumed. An ad hoc initial six-state segmentation was 
constructed, based on the band-3 data alone, this 
led to a more refined restoration, again based only 
on the band-3 data, and then to a number of restora
tions based on all the data, obtained using various 
versions of the above EM-type methodology. 

Qian and Titterington18 analysed magnetic in
duction data corresponding to cobalt-nickel evapo
rated tape, a high-density magnetic recording mate
rial. The image included a transition boundary and 
it is important to identify the boundary as precisely 
as possible. Altogether three 'restorations' were cre
ated, based on different ways of modelling the sur
faces on either side of the boundary, with the esti
mated boundary identified. 

Data from a transmission electron microscopy 
image were also examined in Qian et al.19 The im
age depicted a magnetic domain, the ideal shape of 
which would be that of a tilted circle, that is, an 
ellipse. In the paper a number of models were pro
posed, and restorations were obtained. A key feature 
of the 'prior' model reflected the notion that there 
was local radial association in the true scene, bear
ing in mind the knowledge that the image was indeed 
that of a noisy ellipse. 

Mean-field-like approximations have also been 
used in a somewhat different approach to the max
imisation of a complicated likelihood such as p(y\ip), 
exploiting the fact that 

log p(y\ip) = l o g { ^ p ( z , y\ip)} (6) 
X 

> Y, l(x) log{p{x, y\1>)/q{x)}, (7) 
X 

by Jensen's inequality, where q(x) is any probability 
distribution for x. In practice q is chosen to have 
a form that facilitates computation, with a fully-
factorised independence model being the simplest 
option, and 'hyperparameters' within that form are 
chosen so as to maximise the lower bound to the log-
likelihood given in (7). For details of this approach 
see Jordan et al.20 Note that, so far as choice of q 
or its hyperparameters is concerned, maximisation 
of the lower bound is equivalent to minimisation of 
the Kullback-Leibler directed divergence between q 

and the 'target', p(x\y, ip), defined by 

KL{q,p) := ^ g ( x ) log{q(x)/p(x\y,ip)}. 
X 

For a fully Bayesian analysis, (hyper) priors must 
be imposed on ip = (0,(3), and inference about 9, f) 
and x should be made on the basis of p(x,Q,/3\y), 
and the associated marginal distributions. Needless 
to say, in most image-analysis contexts, and certainly 
in the familiar pixel-based models, there is no prac
tically useful closed form for p(x,6,f3\y) : 

p(x, 9,/%) oc p(y\x, e)p{x\d)p{6)p{(3), 

where we are assuming that 6 and j3 are independent, 
a priori, with prior densities p(9) and p(/3). 

What has become the standard statistical ap
proach is to use Markov chain Monte Carlo methods 
to generate a set of realisations from the above joint 
distribution and to make inferences about the un
known quantities, both parameters (ip) and missing 
values (a;), on the basis of empirical summaries of 
the simulated quantities. However, in the case of 
hidden Markov random fields, the intractable parti
tion function within p(x\f3) once more causes prob
lems, in that the first step in the simulation cycle 
is not straightforward. As a result, approximate 
methods have been tried. One such approach, men
tioned by Heikkinen and Hogmander21 and investi
gated in some detail by Ryden and Titterington22, 
is to replace p(x\(3) by the pseudo-likelihood func
tion when generating the next value of (3. Ryden 
and Titterington22 comment that the 'Gibbs' sam
pling scheme that results does converge, but that it 
is not clear how to characterise the limiting distribu
tion. Ryden and Titterington also report some sim
ulation experiments involving realisations from the 
Ising model, corrupted by Gaussian noise. The pa
rameters of the noise model are estimated quite well 
by the resulting marginal means of the simulated 
sample from the posterior distribution, but there can 
be small but perceptible biases in the corresponding 
estimates of the Ising parameter, /3. On the other 
hand, their attempts at alternative ways of dealing 
with the partition function, in the spirit of Geyer and 
Thompson15, were distinctly unsuccessful because of 
computational difficulties. 

As in the likelihood approach, there is a tech
nique involving deterministic variational approxima
tions for use in the fully-Bayesian context. In this 
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case an approximation q(x,6,(3) to p(x, 8,(l\y) is 
sought to minimise KL(q,p) subject to q having 
some special structure that simplifies the analysis. 
Generally, q is taken to have the factorised form 
q(x,ip) = qx(x)q^,(ijj). In many specific implemen
tations q^{4>) then takes the same parametric form 
as is obtained in the case in which the true x is 
given. Since the correct, if inaccessible, p(ifi\y) cer
tainly does not take the same form, these varia
tional approximations inevitably lead to error, but 
in some cases it is at least possible to show that the 
modes of the correct and approximate distributions 
are asymptotically the same; see for example Wang 
and Titterington23. For more review and references 
on variational Bayesian approximations see Jordan24 

and Titterington25. 
Before leaving this section about the Bayesian 

approach, it is appropriate to return to the models 
discussed in Section 2 and to note that the regu
larised estimator has an obvious Bayesian interpreta
tion for grey-level images. If the noise model is given 
by (1), with e ~ N(Q,a2I), and if the prior/marginal 
distribution for x is that of N(0,a2(3~lC~1), then 
the negative of the logarithm of p(x\y) is, apart from 
additive and multiplicative constants, given by 

\\y-Hx\\2 + f3xTCx, 

so that the mode is given by x@ as defined in (3). 
This interpretation then stimulates other ways of 
choosing the regularisation parameter /3, such as 
maximum likelihood, in which (3 is chosen to max
imise 

p(y\P) = / p(y\x)p(x\(3)dx, 

under the assumption that H and a2 are known from 
the specification of the observing instrument. The 
integration can be done explicitly and the resulting 
p(y\(3) can be maximised numerically. 

4. Deconvolution 

If the noise vector is omitted from equation (1) then 
we are left with the problem of solving the inverse 
problem 

y = Hx, (8) 

which can be thought of as a discrete deconvolution 
problem. With pixellated images the discreteness is 
achieved automatically, but it might be imposed as a 

way of dealing with more general scenarios governed 
by the integral equation 

y(t) = I h(s,t)x(s)ds, 

for t and s ranging over specified domains. This cor
responds to deconvolution, especially if h(s, t) is a 
function of s — t. For simplicity we shall concen
trate on the discrete form of the problem, although 
ways of dealing with the integral-equation version 
are covered in many of the referenced papers. If H 
is square and nonsingular, then the formal solution 
is x = H~1y, but this may be impracticable if the 
original problem is ill-posed, as discussed already. 
Furthermore, x is likely to have to satisfy nonnega-
tivity constraints, a fact we have not yet recognised 
in this paper, and typically y and H will also consist 
of nonnegative elements. 

This type of problem is of course very well re
searched, and here we concentrate on just a few ap
proaches from the statistical literature. A key source 
is the discussion paper of Vardi and Lee26. They note 
that, by a scaling argument, without loss of general
ity it can be assumed that y and x sum to 1, as do 
the columns of H. They derive the following itera
tive algorithm for obtaining a nonnegative solution 
for (8), starting from a positive-valued x^ that sat
isfies the unit-sum constraint: for m = 1 , . . . , and for 
each ith element of x, obtain 

x(m) = x(m-X) ^ { h i j / ^ x ^ h k j ) y j . (9) 

3 k 

Clearly, for all m, the elements of x^m^ are non-
negative and sum to 1. Then the algorithm con
verges to the probability measure x* that maximises 
J2iyi l°g z»> where Zi — (£,j h^Xj). This is equiva
lent to minimising 

^yi \og{yi/zi) = KL(y,z). 
i 

When equation (8) has a nonnegative solution then 
the algorithm converges to a solution of that nature. 
Otherwise, it converges to the closest approximation 
in the above KL sense. 

To statisticians, the algorithm has the appealing 
interpretation as a limiting version of the EM algo
rithm. In the context of this example, the E-step 
and the M-step are as follows. 
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• E-step: for each i and j calculate 

(m— 1) 3Jj n,jj 
Zij ~ ^ (m-1), y J ' 

• M-step: for each i, calculate 

(m) _ V"^ _(m-l) 

The combination of these two formulae clearly 
amounts to equation (9). Informally, the E-step 'dis
tributes' each yj over the individual pixel sites and 
the M-step accumulates all the contributions corre
sponding to pixel i. That this discrete form of the 
algorithm was an EM algorithm was noted by Tit-
terington and Rossi27, stimulated by the algorithm's 
appearance as an ad hoc procedure in Di Gesu and 
Maccarone28. 

Vardi and Lee26 list a number of disparate man
ifestations of the general structure, including emis
sion tomography image reconstruction, in which x 
denotes pixelwise emission intensities, elements of 
y are event counts at a set of detectors, emis
sions are assumed to follow Poisson distributions 
and hij is the probability that a particle emitted 
from pixel j is picked up by detector i. The case 
of Poisson emissions is of course familiar in Par
ticle Physics, although the 'image' there is typi
cally one-dimensional, not two-dimensional, and the 
number of 'pixels', or rather bins, is 100 or fewer; 
nevertheless, the same principles are relevant. An
other image-based special case is that of motion de-
blurring. Given the EM interpretation of the algo
rithm and the knowledge that unregularised maxi
mum likelihood estimates might be ill-conditioned, 
it is not surprising that modified versions have been 
developed that involve some sort of smoothing, espe
cially in the context of emission tomography. Such 
modifications include the smoothed EM algorithm of 
Silverman et a/.29, in which the {x\m'} obtained in 
the M-step are locally smoothed before being fed into 
the next E-step, and the modified EM algorithm of 
Green30, in which a roughness penalty on the {XJ} is 
included when the M-step is carried out. Hudson and 
Larkin31 provide another variation of EM, applied 
to tomography. The papers by Green30 and Hudson 
and Larkin31 both won IEEE awards for their high 
levels of citation. 

The algorithm in equation (9) is essentially the 
same as the iterative scheme described in Section 3 

of the paper by D'Agostini32. In that paper the al
gorithm is not iterated till convergence, but stops 
early on the basis of a goodness-of-fit criterion which 
is somewhat arbitrary but does have a potentially 
helpful regularising effect. 

A different algorithm for the same purpose is 
the so-called Iterative Image Space Restoration Al
gorithm, for which the iteration is 

x™ =x\m-1\^hiivMEI*(Lx?~1)hkJ)}, 
3 3 k 

for each i. This algorithm was introduced by Daube-
Witherspoon and Muehllehner33 and convergence 
properties were investigated by De Pierro34 and 
Titterington35, the latter of whom noted that the 
algorithm could be interpreted as an iterative ap
proach to the calculation of least squares estimates of 
x. Further references and illustrations in the context 
of motion-blur, together with extensions to incorpo
rate roughness penalties, thereby obtaining minimis-
ers of (2), are available in Archer and Titterington36. 
Key references from the non-statistical literature in
clude Byrne37 and Eggermont38. 

Vardi and Lee26 present a number of illustra
tions, one of which concerns a motion-blurred mov
ing toy cart. Part of the image was also treated 
by Archer and Titterington36. They implemented 
both the EM and ISRA algorithms, running each of 
them for totals of 40 and 106 iterations. The restora
tion obtained after 40 iterations was arguably better 
denned, which suggests that the underlying inverse 
problem is somewhat ill-posed; stopping the algo
rithm early is one way of avoiding an ill-posed solu
tion. 

Although much of the research discussed in this 
section is somewhat dated, statistical research into 
deconvolution, with applications relevant to this 
Conference, is certainly continuing. For example, 
Hall and Yin39 consider a model, for a signal y ob
served at n time-points, given by 

r 

y% = g{ti) + ti = 1^ + ^2,9 AU) +e», 
.3 = 1 

for i = 1 , . . . ,n, where the gj are periodic compo
nents with minimal periods 0 < 9\ < ... < 0r. 
The objective is to estimate the unknown periods 
6 = {8j} and the unknown functions {gj}, without 
imposing simple parametric forms on the latter. To 
estimate the {#•,}, Hall and Yin use the minimiser 6 
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of the residual sum of squares function 

S(0) = y52{vi-g(ti\0)}2, 
i 

in which g(t\6) is a (preliminary) nonparametric es

t imator of g(t). In particular, Hall and Yin use 

9(t\0) = {£>#(«,*<)}/£ #(*,**), 
i i 

in which K(t,t') is a kernel function, defined as a 

function of 8: the kernel function is defined in such 

a way tha t g(t\9) is a weighted average of the {yi}, 

with weights that are monotonic decreasing functions 

of \t — ti\. Given the {# ,} , the {gj} are estimated us

ing orthogonal series methods. The overall response 

function is writ ten as 
r m 

g(t) = n + Y^2a3k$k{t/dj), 

in which the {a,jk} are generalised Fourier coeffi

cients, \i is a constant, the {ipk} are orthonormal 

functions and m is a truncation point. Least squares 

is again used, this t ime to estimate /x and the {a,jk}-

Hall and Yin3 9 discuss ways of choosing the {# ,} , m 

and smoothing parameters within the kernel func

tion, they investigate theoretical properties, and they 

fit the model to radiation measurements from the 

slowly-pulsating B-star HD 123515, showing tha t a 

multiperiodic function with r = 4 periods gives a 

good fit. 
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In this paper we discuss general regularization estimators. This class includes Tikhonov type and spectral cut-off 
estimators as well as iterative methods, such as ^-methods and the Landweber iteration. The latter estimators 
achieve the same (optimal) convergence rates as spectral cut-off, but do not require explicit spectral information on 
the operator and are often much faster to compute than Tikhonov regularization. We demonstrate application of a 
i/-method by an example involving the backwards heat equation. 

1. Introduction 

In this paper we are concerned with Inverse Prob
lems. Here we aim to estimate some quantity of in
terest, which cannot be observed directly. In more 
detail, suppose we want to estimate a quantity de
scribed by an element / in a Hilbert space Hi from 
indirect noisy measurements 

Y = {Kf){X) + <T-£, (1) 

where K is a known operator K : Hi —> H2 mapping 
Hi to another Hilbert space Efe. The observations Y 
and H2 are Hilbert-space-valued processes described 
below in more detail, and a is the variance of the 
noise. We assume that K is linear, bounded and 
injective, but not necessarily compact. 

Inverse problems are prevalent in science. Typ
ical examples include parameter identification prob
lems in partial differential equations, e.g. the 
backwards heat equation. Here K is the so-
called "parameter-to-solution" operator, which sim
ply means solving the partial differential equation for 
the parameter / . Another typical class of problems 
emerges if K is an integral operator, whence (1) may 
be an inverse regression or an inverse density esti
mation problem, e.g. estimation of the density of 
globular cluster luminosities in the Antennae galax
ies from noisy observations1' 2. 

The organization of this paper is as follows. In 
section 2 we show how model (1) relates to inverse 
regression and inverse density (quasi-)deconvolution 
problems, and briefly discuss Tikhonov and spec
tral cut-off estimators for / , which are the most 
frequently used spectral regularization estimators in 
practical applications. Moreover, we introduce it
erative spectral regularization methods, which are 
often computationally more feasible than the afore

mentioned. In section 3 we apply ^-methods to the 
backwards heat equation. 

It is beyond the scope of this paper to discuss 
in detail the technical assumptions required for the 
results presented. Instead, we refer to Bissantz, Ho-
hage, Munk & Ruymgaart1. 

2. Methodology 

2.1. The noise model 

In this section we discuss how model (1) is related to 
practically relevant statistical models. We assume 
that the noise £ is a Hilbert-space valued process, 
which is centered and has variance 1. Important ap
plications of model (1) are the following. 
Error-in-variables, deconvolution: Suppose 
that the following observations are at our disposal 

Xir--,Xn~X = F + W, 

where F, W are stochastically independent, with 
densities / , w € L2 and w known. Our aim is to 
estimate / . In this case the density g of X is related 
to / by the convolution operator 

g = Kf = w*f. 

It will be shown below that estimation of / by spec
tral regularization methods can be achieved by esti
mating q := K*g = K*Kf from the observations in 
the first step. In the density deconvolution or error-
in-variables problem, an unbiased, -y/n-consistent es
timator of q is 

* » ( • ) = ; : ! > ( * * • " • ) . ( 2 ) 

1=1 

and the noise process £ is given by 

K*Z = (qn ~ q)/a, 
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I ley 

where a= (\\g\\L~ + \\g\\2
L2) /y/n. 

Inverse regression, Predholm equation: Next 
we consider the regression setting, where we want to 
estimate the input function / from n discrete, noisy 
i.i.d. observations 

Yi = Kf(Xi) + Ci, i = l,--- ,n, 

where (Xi,£j) are stochastically independent design 
variables Xi and noise terms £,, and 

E[Y\X] = Kf(X) 

for a linear integral operator K. Similarly as in the 
deconvolution case the generalized empirical process 

9n(0 = -JTYiKiXi,-) 
t=i 

estimates q = (K*K)f in an unbiased and y/n-
consistent manner. Moreover, the noise process £ 
can again be defined as 

K*i = («n " q)/o, 

where a = (Var£l + \\Kf Wl^ + \\Kf\\l2)
1/2 / > • 

Quasi-deconvolution: Reconsider the deconvolu
tion case, but now assume that the density g of X is 
given by 

g = J M- - y\y)f(y)dy =•• KJ, 

where h(-\y) is the conditional density of W given 
Y = y. Note that K is a convolution operator if Y 
and W would be stochastically independent. How
ever, in many practical applications the variance of 
the noise term W depends on F. For a typical ex
ample consider observations of the brightness of a 
globular cluster belonging to some remote galaxy. 
Here the measurement gets increasingly difficult with 
fainter cluster brightness, and the measurement noise 
increases. For quasi-deconvolution we replace the es
timator (2) of q := K*g by 

1 " 

^ • - t 

2.2. Inverse estimators 

We assume that the operator K : Hi —» H2 is 
bounded and injective. Therefore its generalized 
(Moore-Penrose) inverse 

K* = {K*K)~lK* : R(K) 0 R(K)"L -» Hi 

is in general unbounded, and noise in the mea
surements Y is blown up by the inversion / := 
(K*K)~xqn, which, in general, yields useless results 
/ . A possible solution to this problem consists in 
regularization, i.e. to replace K^ by a sequence of 
bounded operators Ra with regularization parame
ter a, such that Ra —> K^ for a \ 0 (pointwise). 

How can we construct such regularization esti
mators for general inverse problems? The fundamen
tal tool is Halmos' spectral theorem^: Let A : H —> H 
be a bounded, self-adjoint operator defined on a sepa
rable Hilbert space H. Then there exists a cr-compact 
space S, a Borel measure E on S, a unitary oper
ator U : H —•> L2(E), and a measurable function 
p : § —> K. such that 

UAf = p • Uf, £ — almost everywhere, 

for all / £ l . The spectral theorem justifies the func
tional calculus, which will be used to define general 
spectral regularization estimators. Let $ : a(A) —> R 
a bounded function on the spectrum cr(A) of A Then 

9(A) = U*MHp)U, 

where M$(p) is the operator given by multiplication 
with 9(p), and U* the adjoint of U. For example, 
if K is the operator generated by convolution with 
some (known) density w on R, K* its adjoint and 
A := K*K, then the unitary transform U which ap
pears in the spectral theorem and in functional cal
culus are the Fourier transformation T, and p is the 
Fourier transform of w. 

We now define the regularized inverse of K^ as 

9a(K*K)K\ (3) 

where <3>a : a(A) —> R, a > 0 are bounded functions 
which satisfy 

lim $Q(i) = - , for all t G cr(^4), 
a\0 t 

in particular. The (generalized) spectral regulariza
tion estimator for / is given by 

fa,n := ®a(K*K)qn. 

For a detailed discussion on admissible collections of 
functions $ Q , and the necessary regularity proper
ties, we refer to Engl, Hanke & Neubauer4 and Bis-
santz, Hohage, Munk & Ruymgaart1. 

In practical applications, Tikhonov regulariza
tion type methods and spectral cut-off are the most 
frequently used methods. Tikhonov regularization 
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results if {K*K)~l is replaced by {K*K + a / ) " 1 , 
and can therefore be computed without refering to 
the spectral information a(A),U. However, it can 
also be defined as the regularization estimator (3) 
for $Qlk(£) := l/(t + a). In the case of spectral cut
off methods we have 

To provide a specific example, consider density de-
convolution on M (cf. Section 2.1). Then the spectral 
cut-off estimator of / reads 

i -r--i f -T^nM , ,.. 
fa,n = ? \ r \ ^ W > (4) 

where p = \J-iv\ . Note from eq. (4) that the regu
larization property of spectral cut-off is achieved by 
neglecting the high-frequency information in the ob
servations qn. This is because p(w) \ 0 for CJ —» oo, 
and division by p would blow up the measurement 
noise by an arbitrarily large amount for increasing 
frequency |u>| if no regularization is performed. 

Both Tikhonov regularization and spectral cut
off methods require setting up a matrix represent
ing the operator K, and moreover a matrix inversion 
or eigenvalue decomposition. This can be compu
tationally very costly, e.g. in the case of parameter 
identification problems in partial differential equa
tions. Another reason can be that estimates /Qj„ 
are computed for many different values of the reg
ularization parameter a in the case of data-driven 
regularization parameter selection methods such as 
cross-validation. 

On the other hand, iterative methods can be de
fined for suitable collections of functions 3>a, which 
require for their computation only to apply the ma
trix representing the operator K and its transpose 
to a solution vector. This is an important advantage 
since for many problems there exist algorithms to 
apply the matrix to a given vector at a much smaller 
computational cost than the cost of setting up the 
matrix. 

Important iterative spectral regularization 
methods are Landweber iterations and ^-methods. 
For these methods the regularization parameter a is 
given by the stopping index k of the iterations. The 
more iterations are performed, the less regularization 
is imposed on the solution. 

For Landweber iterations we have $i/(fc+i)(i) := 

IZj=o(l ~ *)J'i D u t the method can be implemented 
by the recursion formula 

/o,a = 0, fk+i,* = fk,*-Afk,a+K*Y, fc = 0, l 

i.e. we do not require the spectral information U, p of 
A = K*K. Here, the regularization parameter can 
be identified a s a = l/(fc + 1), and the norms on Hi 
and H2 have to be scaled such that ||A|| < 1. 

Better numerical convergence than for Landwe
ber iterations can be achieved by v—methods3. For 
a given parameter v > 0, the estimator fk,a can be 
computed by the three-term recursion 

fk,a = /fc-l,o- + Ok (/fc-l,CT — fk-2,a) 

+ukK* (Y - Kfk-i,*) , k>2, 

with starting values /oitr := 0, /i>(7 = UJ\K*Y, coeffi
cients 6>! = 0, wi = (4i/ -I- 2)/(4i/ + 1) and 

(A;-l)(2fc-3)(2fc + 2 t / - l ) 
h ~ (k + 2v - l)(2fc + Av - l)(2fc + 2v - 3 ) ' 

{2k + 2v-\){h + v-l) 
Wk~ (k + 2v-l)(2k + 4v-l)' 

for k > 2. Now the regularization parameter can 
be identified by a = (1 + k)~2, which implies that 
the number of iterations required for i^-methods typ
ically are of order square root the number of required 
Landweber iterations. 

Bissantz, Hohage, Munk & Ruymgaart1 ana
lyzed the convergence of general spectral regulariza
tion methods of the form (3), and determined their 
rates of convergence, which depend on the smooth
ness properties of the input function / . It turns out 
that all methods denned in (3) converge with the 
same rates of convergence as spectral cut-off, which 
are in many cases optimal (cf. Mair & Ruymgaart6). 
However, this only holds true as long as the smooth
ness of / is within the qualification of the respective 
method. Spectral cut-off and Landweber iterations 
have infinite qualification, and f—methods are avail
able for arbitrary qualification, but Tikhonov regu
larization has small qualification 1. This implies that 
in many cases Tikhonov methods cannot converge 
with optimal order. For details we refer to Engl, 
Hanke & Neubauer4 and Bissantz, Hohage, Munk & 
Ruymgaart1. 
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3 . T h e b a c k w a r d s h e a t equat ion 

Finally, we briefly discuss an application of v-

methods to the backwards heat equation. To this 

end consider the inverse problem of reconstructing 

the tempera ture distribution at t ime t = 0 on some 

compact domain ff C R 2 from discrete, noisy obser

vations 

Yi = g(Xi) + £i 

of the tempera ture distribution at t ime t — T, where 

the design points Xi form a regular mesh on H, and 

£t is a centered, i.i.d. noise term with s tandard de

viation a. 

For the backwards heat equation, the forward 

"parameter-to-solution" problem is described by the 

part ial differential equation of parabolic type 

dtu(x, t) = A u ( i , t), x G H, t G (0, T) 

u{x,t) = 0, x£dH,t£(0,T} 

u(x,0) = f(x), x G H, 
(5) 

with an initial tempera ture distribution / G L2(H) 

and the final temperature distribution g(x) := 

u(x,T),x£ H. 
We have implemented the backwards heat equa

tion for a two-dimensional, approximately heart-

shaped, smooth domain H and defined the operator 

K as the evolution of the heat equation from time 

i = 0 t o T = 0.001. For the observations the sample 

size is n = 200 and a = 0.001. Moreover, the Laplace 

operator on the domain H was discretized by a finite 

difference scheme using 16038 unknowns. The ma

tr ix representing the forward solution operator K is 

therefore a dense 16038 x 16038 matrix, which would 

require a huge amount of computation t ime to be 

set up. However, the application of the operator K 

to a vector / can be implemented efficiently by t ime 

stepping methods. We have used a BDF multistep 

method. 

To apply a ^-method to this problem we first 

have to estimate q = K*g. To this end we first esti

mate g := Kf with a locally linear estimator g from 

the observations Yj. In the second step we compute 

q := K*g. This estimator of q is not unbiased be

cause the local polynomial estimator g used in the 

first step is not either. However, in numerical sim

ulations this approach turned out to be very stable. 

For a discussion of local polynomial estimators cf. 

Wand & Jones 7 . 

02 0.4 0.6 O.fi 0.2 0.4 0.6 0,8 

Fig. 1. A typical simulation of the backwards heat equation. 
Upper row (from left to right): True q and estimate q from 
n = 200 observations Yj. Contour levels are 0.1,0.2,0.3,... 
Lower row (from left to right): True / and estimate / . Here 
the contour levels are 0.1,0.3, 0.5,.. . The outer, heart-shaped 
contour indicates the boundary of the domain under consid
eration. 

Fig. 1 shows a typical example of a simulation, 

where a ^-method was used wi th u = 1 and 8 itera

tions, which amounts to approximately 5 minutes of 

C P U time on a Pent ium IV 1.7 Ghz processor. 
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A procedure for unfolding the true distribution from experimental data is presented. Methods of system identification 
are applied for the creation of a model of a transformation of the true distribution to the experimentally measured 
distribution. A priori information about the t rue distribution which is known from theory or previous experiments is 
used. The stability of the result of the unfolding is obtained by a sensible binning and by application of D-optimization. 
In this paper it is shown how to decrease the bias of the unfolded distribution by introducing the X2 selection criteria 
for distributions used for system identification. Application of the D-optimization and the Least Squares Method 
allow us to minimize the statistical errors of the unfolded distribution. The unfolding procedure may be applied 
for detectors with a linear or nonlinear transformation of a true distribution into the experimentally measured one. 
The dimensionality of the solved problem can be arbitrary. The procedure can be applied for solving the unfolding 
problem with both smooth and non-smooth solutions. This method does not require a large amount of Monte-Carlo 
simulations of the experiment. 

1. Introduction 

An experimentally measured distribution differs 
from the true physical distribution due to limited 
acceptance and finite resolution of a set-up. To ob
tain a physical distribution an unfolding procedure is 
applied l 2 3 4. The unfolding problem is an under-
specified problem. Any approach to solve the prob
lem requires a priori information about the solution. 
Different methods of unfolding differ, directly or in
directly, through the use of this a priori information. 

In 5 an approach to an unfolding problem related 
to methods of system identification is presented. To 
obtain a stable solution of an unfolding problem, in
formation about the shape of the distribution to be 
measured is used for system identification. This pa
per further develops the ideas presented in 5. D-
optimization which is used in the theory of experi
mental design is applied to minimize the statistical 
errors of the unfolded distribution. The X2 selection 
criterion is introduced for a set of distributions used 
for system identification; this criteria minimizes the 
bias of the solution. 

2. Main equation 

In this work we will use the linear model for a trans
formation of a true distribution to the measured one 

/ = P0 + e, (1) 

where / is an m-component column vector of an ex
perimentally measured histogram content, P is an 
m x n matrix, with m > n, </> is an n-component 

vector of some true histogram content and e is an 
m-component vector of random residuals with expec
tation value E e = 0 and a diagonal variance matrix 
Z = Vare = diag(cr2, • • • , 0"™), where cr, is the sta
tistical error of the measured distribution for the ith 
bin. The linear model (1) is reasonable for the major
ity of set-ups. It is only an approximate model for 
set-ups with non-linear transformation from a true 
distribution into the measured distribution. 

A Least Squares Method can give an estimator 
for the true distribution <p, 

4> == (P'z-1?)-1?'^-1 f (2) 

where </>, the estimator, is the unfolded distribution, 
and the full matrix of errors of the unfolded distri
bution is given by 

Var<^ = ( P ' I - 1 P ) - 1 . (3) 

3. System identification and 
regularization 

To realize the scheme described in the previous sec
tion, the matrix P must be defined. This problem 
can be solved using system identification methods 7. 
System identification may be denned as the process 
of determining a model of a dynamic system using 
observed input-output data. In our case it is the 
model of transformation of a true physical distribu
tion into the experimentally measured distribution, 
represented by the matrix P. The Monte-Carlo sim
ulation of a set-up can be used to get input-output 
data. Control input signals are used for system iden-
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tification. The most popular choice is to use impulse 
control signals. 

An impulse input control signal is a generated 
distribution in which the histogram has only one bin 
with non-zero content. For the model (1) there are 
n different impulse inputs that can be presented as 
the diagonal matrix 4>c = diag(<^f1, ...,</>£„), where 
each row contains the content from a generated his
togram. Let us denote corresponding values of ith 
component of the reconstructed vector (output) as 
fi = (fnfi2 • • • fim)'- Each element of the ith row 
of the matrix 

/ P n P12 - - -P in \ 

Pil Pi2 ••• Pir, 

\ P m l Pm2 ••• PmnJ 

can be found from the equation 

ft = <*>cPi, (4) 

where pi = {pa Pi2 • • • Pin)', and p ^ = fij/<f>jj-
Equation (2), with the matrix P calculated this way, 
gives a highly fluctuating unfolded function with 
large statistical errors. Also, it is possible that the 
matrix P'Z_1P is singular, in which case a solution 
does not exist. 

To regularize the solution of the unfolding prob
lem, let us use for system identification not an im
pulse control distribution, but rather a priori dis
tributions that may be known from theory, or from 
some other experimental data. 

Assume we have q control generated distribu
tions, and now present them as a q x n matrix 

$ c 

/< 

V< 

^11 V12 
621 022 

l n \ 

u 2n 

where each row represents a generated histogram 
content. For each ith row of the matrix P we can 
write the equation 

Fi =4>CPi+Zi: (5) 

where p , = {pn Pi2 • • • Pin)' , ff i s a ^-component 
vector of reconstructed ith bin content for differ
ent generated control distributions, and £i is a q-
component vector of random residuals with expecta
tion value E£j = 0 and a diagonal variance matrix 

statistical error of the reconstructed distribution for 
the ith bin and the jth. control generated distribu
tion. A Least Squares Method gives an estimator for 
Pi,i = l,...,m 

Pi = (VA-r1*0)- <*> &; fi (6) 

Columns of the matrix <t>c can correlate with each 
other. This means that transformation of the control 
generated distribution to the ith bin of reconstructed 
distribution can be parametrized by the subset of ele
ments of the row pi. Elements of the row that do not 
belong to the subset are set to 0. Moreover, there can 
be more than one subset that describes this transfor
mation in a sufficiently good manner. Thus for each 
ith reconstructed bin we will have the set of Ni can
didate rows, and for all reconstructed bins the set of 
Ni x 7V2 x • • • x Nm candidate matrices P. We need to 
choose a matrix P that is good, or optimal, in some 
sense. The most convenient criterion in our case is 
D-optimality 8 that is related to the minimization of 

d e t ( P T - 1 P ) - 1 = det(Var(0)). (7) 

Varfc diag(<^,-. ,Sf), where 6ij is the 

There are many algorithms and programs of mini
mization (7). The matrix P that minimizes function 
(7) gives us a stable solution of the unfolding problem 
(2) with minimal volume of the confidence ellipsoid. 
Further improvement of the quality of the solution 
can be achieved by introducing the selection criteria 
described below. 

A control generated distribution has a corre
sponding reconstructed control distribution that can 
be compared with the experimentally measured dis
tribution using a x2 test 6. Let us take for identi
fication a generated control distribution that has a 
corresponding reconstructed distribution satisfying a 
X2 < a selection criteria. The statistic X2 is calcu
lated to test the compatibility of the experimental 
distribution with the reconstructed control distribu
tion 6. The parameter a defines how close the set 
of reconstructed control distributions is to the ex
perimental distribution. A decrease in parameter a 
represents a decrease in systematic and statistical er
rors of the solution. 

4. The unfolding procedure 

In this section a description of the complete unfold
ing procedure is presented. The procedure can be 
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divided into four parts: initialization, system iden
tification, solution of the basic equation, and test of 
goodness-of-fit. 
Initialization 

Define the binning for the experimental data. 
The strategy in selecting the size of the bins is to 
start with large bin sizes, then increase the number 
of bins incrementally and stop the process when the 
value of the determinant of the complete matrix of 
errors of unfolded distribution stops decreasing. 

Define the binning for the unfolded distribution. 
The way to choose the bin size is to pick a reasonably 
large size of bin for the first step, then decrease the 
size of bins on further steps and stop this process be
fore the correlation between adjusted bins becomes 
too big. The number of bins of an unfolded distribu
tion, n, must be lower then the number of bins for 
the experimentally measured distribution, m, due to 
the fact that we use the Least Squares Method for 
the solution of the main equation. 
System identification 

Choose a set of control generated distributions. 
Control generated distributions for the set must be 
chosen with lowest possible values of the X2 statis
tics. A second iteration can be made to find a better 
set of control distributions. The method of the re-
weighting of events can be used in this case. The 
number of generated distributions must be greater 
than the expected number of non-zero elements in 
any row of matrix P (for reasons related to the use 
of the Least Squares Method). 

Calculate the set of candidates for the matrix P. 
A stepwise regression algorithm can be used for this 
calculation 9. The first element in the stepwise al
gorithm can define a candidate row. To obtain as 
many variants as possible of each row, each element 
of the matrix is used as a first element in the stepwise 
algorithm. 

Calculate the D-optimal matrix P. On the first 
step, matrix P is chosen randomly from the set of 
candidates. After this, optimization can be done by 
Fedorov's reliable EA algorithm 8. In the majority of 
cases this algorithm finds a matrix that has a global 
minimum for de t (P 'E - 1 P) _ 1 . The optimization pro
cedure can be repeated with another randomly cho
sen matrix to be sure that the minimum is global. 
Solution of the basic equation 

Calculate the unfolded distribution Eq. (2) with 
the full matrix of errors Eq. (3). The correlation 

matrix calculated from the full matrix of errors can 
give hints for an improved binning of the unfolding 
distribution. For example, if the correlation between 
two adjacent bins is high, they should be combined. 
Test of goodness-of-fit 

Fit unfolded distribution, and then use the fit to 
generate a new 'experimental' distribution (includ
ing effects of resolution and acceptance), to compare 
with the real data. This is the only objective test 
of goodness-of-fit of the unfolding procedure and it 
should be done with an analysis of the studentised 
residuals 6. 

5. A numerical example 

The method described above is now illustrated with 
an example taken from l. We take a true distribution 

^x)=A\x-B% + C?+A\x-B% + Cl ( 8 ) 

with parameters A\ = 2,A2 = 1, J3i = 10,£?2 = 
14, Ci = C2 = 1; x is defined on the interval [4,16]. 
An experimentally measured distribution is defined 
as 

/•16 

f(x) = (f>(x')A(x')R(x,x')dx' (9) 

where the acceptance function A(x) is 

„(., = !_ <£^2>i (10) 

and 

R(x, x') = - ^ e x P ( - ( ^ ^ ) ) (11) 

is the detector resolution function with a = 1.5. The 
true distribution, acceptance and the resolution func
tions are shown in Fig. la. A histogram of the mea
sured distribution / was obtained by simulating 104 

events with m = 90 bins, and is shown in Fig. lb . 
For the true distribution histogram we choose 

thirty equal size bins, i.e. n = 30. We use for the 
detector identification 100 distributions defined by 
formula (8) with parameters simulated according to 
uniform distributions on the intervals : 
[1,3] for Ax; [8,12] for Bj ; [0.5,1.5] for d; 
[0.5,1.5] for A2; [10,18] for B2; [0.5,1.5] for C2. 

Each distribution is represented by a histogram 
with 104 events. The first example is calculated 
without X2 selection cut. Fig. 2a shows 30 
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of the 100 control distributions used for identifi
cation, and Fig. 2b shows the unfolded distri
bution and the true distribution as a solid line. 

Fig. 1. An example of the true distribution <j>(x), the accep
tance function A(x), the resolution function R(x, 10) and of 
the measured distribution / (number of events per bin). 

Fig. 2. The first 30 control distribution generated for system 
identification and an unfolded distribution a),b) without X2 

cut; c),d) with X2 < 200 cut; e),f) with X2 < 124 cut. 

Two other examples are calculated with X2 < 200 
selection criteria (significance level p = 2.5 • 10~10) 
(see Figs. 2c,d) and with X2 < 124 cut (significance 
level p = 10 - 2) (see Figs. 2e,f). The D-optimal de
terminant in the first case is equal to 2117 - 1 /3 0 , in 
the second case equal to 4445 - 1 / 3 0 and in the third 
one 4719~1//3°. The average number of non-zero ele
ments in the rows of matrix P in the last two cases is 
4 and for first case 5. Notice that for a lower values 
of the X2 cut we have a lower values of the deter
minant of the full matrix of errors and a lower sys
tematic deviation of the unfolded distribution from 
true one. The errors seem a bit large in comparison 
with fluctuations of the unfolded distribution. The 
reason for these errors is the positive correlation be
tween adjacent bins. 

6. Conclusion 

The main idea of the method presented in this pa
per is the use of a set of a priori distributions for 
system identification, i.e. the construction of the 
transformation matrix. For this set of distribu
tions, we introduce a X2 selection criteria, which 
permits us to decrease the possible bias of the pro
cedure. D-optimization and the application of the 
Least Squares Method gives the stable solution with 
minimal statistical errors. The method of identifica
tion provides a linear approximation of the trans
formation of the true distribution into the mea
sured distribution in case this transformation is non
linear. The method does not require a large amount 
of Monte-Carlo simulation of the experiment, be
cause of the relatively low number of non-zero el
ements in the transformation matrix and because a 
re-weighting technique is used. The procedure has no 
restrictions due to the dimensionality of the problem. 
The method can be applied for solving the unfolding 
problem with a non-smooth solution. Based only on 
a statistical approach, the method has a good statis
tical interpretation. 
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STATISTICS IN ASTROPHYSICS A N D COSMOLOGY: PHYSTAT05 

A N D R E W H. J A F F E 

Blackett Laboratory, Imperial College London 

E-mail: a.jaffe@imperial.ac.uk 

In this conference summary on Astrophysics talks at PhyStat05, I will discuss the various philosophical and pragmatic 
approaches to problems of statistics in astrophysics (and cosmology in particular), and their application to a few 
modern problems discussed at this meeting. In particular, I will develop a Bayesian formalism for the analysis of data 
from Cosmic Microwave Background (CMB) experiments. 

In his PhyStat talk on the Transit of Venus, 
Johnston said "Precision astronomy depends on an 
individual's judgment" and that remains as true to
day as in the Enlightenment. 

1. Philosophy 

One remarkable difference between the members of 
the astrophysics and particle physics communities 
present at this meeting was the relative prevalence of 
Bayesian and Frequentist methods in the two com
munities. In particle physics, the prevailing methods 
are strictly frequentist, while astrophysics (and espe
cially cosmology) has become increasingly Bayesian 
in its outlook in recent years. This philosophical 
distinction is grounded in the very different practi
cal realities of the two fields: particle physicists can 
usually run their experiments for longer and longer, 
"building up statistics", and making the underly
ing asymptotic assumptions of a frequentist approach 
more valid. In cosmology, on the other hand, "there 
is only one Universe" and there are some experiments 
that can never be re-run. Moreover, as we will see 
below in the discussion of CMB data analysis, many 
of the predictions of cosmological theory are inher
ently statistical, so we must infer the properties of a 
correlated multivariate probability distribution from 
a single realization. 

2. Case Study: The Cosmic Microwave 
Background 

The Cosmic Microwave Background provides per
haps a rich example of data analysis in a cosmological 
setting. (Let me emphasize several points at the out
set. First, this is a personal view of the CMB data 
analysis process. Second, this has become quite a 
large sub-field of cosmology, and I have been quite 

spare in my use of references, for which I apologize to 
my many colleagues whose work has not been cited 
herein despite important contributions to the field.) 

The raw data - voltages output by some sort 
of antenna or temperature sensor - bear no simple 
relationship to the ultimate parameters to be mea
sured, cosmological parameters such as the curvature 
of the Universe and the spectrum of primordial per
turbations. Moreover, those raw voltage data are 
dominated by the noise properties of the measuring 
instrument. Yet somehow we must find an algorithm 
to "radically compress"2 the millions or billions or 
more of raw data to just a few cosmological param
eters. We start by writing down a simple model for 
the data from a single detector (the generalization to 
multiple detectors is straightforward; the data can 
just be appended as a single very long vector): 

dt = AtpSp + nt = As + n (1) 

where dt is the data taken at time t, sp is the signal 
in pixel p (i.e., the CMB map), nt is the noise, and 
the "pointing matrix", Atp gives the response of the 
instrument at time t to pixelp = 1.. .#p. Note that 
pixel here refers to a finite area of sky. For simplicity, 
we can assume that the signal already contains the 
action of the experimental beam and any pixelization 
scheme we impose on the sky, in which 
1 when pixel p is being observed at time t, and 0 
otherwise. Finally, in the first equality we assume the 
Einstein summation convention, and in the second 
use matrix notation, so As = Atpsp = ^2pAtpsp. In 
general there will also be terms representing various 
other effects that may be present in the data, such as 
foreground contamination, instrumental systematics, 
etc. By a suitable generalization of the pixel domain 
and the pointing matrix, we can in fact estimate (and 
marginalize over) such effects.19 
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To proceed further, we need a model for the 
noise. We will assume that it can be represented 
by a stationary zero-mean Gaussian process, with 
correlations given by 

(ntrH')=NT,tf=NT(t-t'). (2) 

More generally, we may subdivide the timestream 
into individual "stationary periods" within which 
this equation holds, and between which we assume 
zero correlation. This assignment is conservative, at 
least in the sense that the Gaussian is the maximum-
entropy distribution with a given correlation struc
ture. (This fact will have further implications later 
on when we discuss the correlations of the underlying 
signal, that is, the power spectrum, Cg..) 

2.1. Mapmaking 

The first step, then, is to estimate the map, sp given 
Eq. 1. This is a fairly standard inverse problem, but 
we choose to address it from a Bayesian standpoint. 
For these purposes, Bayes' theorem states 

P{sp\dtI) oc P(sp\I) x P(dt\spI) , (3) 

where the left hand side is the posterior probability, 
the first factor on the right is the prior probability for 
the signal, and the final factor is the likelihood, the 
probability of the data given the signal. We write all 
probabilities as conditional upon some background 
information, / ; in this case / encodes our knowledge 
of the noise correlation function, N(t), the fact that 
we are imposing a Gaussian distribution upon the 
noise, etc. With this setup, the likelihood is just a 
multivariate Gaussian: 

P{dt\spI) = — e x p - - ( d - A 5 ) t ^ 1 ( d - A s ) , 
|27rAT| ' ^ 

(4) 
where the superscript | means matrix transpose. Fi
nally, we impose a uniform (albeit improper) prior on 
the signal P(sp\I) oc const. As we shall see, this prior 
is actually irrelevant to the ultimate determination 
of power spectra and cosmological parameters. 

By completing the square in the exponential (or 
taking derivatives, etc.) we see that the likelihood 
(and the posterior with our constant prior) is pro
portional to a Gaussian distribution in sp = sp + np 

with 

sp = (A^N^A)'1 A^N^d (5) 

(the overbar denotes a generalization of the mean 
over all observations of a single pixel for correlated 
noise) and variance 

(npnp,) = NP,PP, = (A^N^A)^, (6) 

which is just the usual Generalized Least Squares 
(GLS) solution. 

[In fact with complex data like that expected 
from the Planck Surveyor, we cannot always calcu
late the full Bayesian map, Eq. 5 because of the com
plicated matrix manipulations involved. However, 
even in the case of some more general approxima
tion to the map, we can still calculate its full noise 
correlation structure, replacing Eq. 6, as long as the 
operations are linear in the data and unbiased — a 
word not usually associated with Bayesian methods! 
— with respect to the signal.] 

The output of this procedure is represented by 
the quantities sp and NptPP', our estimate of the map 
and its noise correlation structure. Specifically, sp 

is an estimate of the beam-smoothed and pixelized 
sky in the pixels labelled by p. We take the beam 
to be circularly symmetric, with spherical harmonic 
transform, Be. 

2.2. Power Spectrum Estimation 

Next we must estimate the power spectrum which, by 
hypothesis, is responsible for realizing the map. Con
ventionally, we assume a zero-mean Gaussian process 
with covariance given by 

0/4-1 
(spsp>) = Sp,pp>(Ce) = ^2 ~~l—CtBJPe{xp • xp>) , 

t 
(7) 

where C( is the cosmological power spectrum, xp-xpi 
is the cosine of the angular distance between the pix
els p and p', and the Pe are the Legendre polynomi
als. Now, the parameter we wish to estimate is Cf, 
we can use the posterior of the previous step as the 
effective likelihood for the signal, so the model for 
the data, now just the map sp, is simply 

sp = sp + np , (8) 

where pixel noise correlations are given by Eq. 6. Al
ternately, we can start with the full likelihood, Eq. 4, 
and jointly estimate sp and Ce, with prior 

P(sp,Ce\I) = P(Ce\I)P(sp\CeI) 

= P ( Q | 7 ) T 7 ^ e x p 4 s + 5 " l s - W 
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We can then marginalize over sp giving us the poste
rior for Ct alone. It turns out that these approaches 
are mathematically equivalent, showing that indeed 
the mean and variance of Eqns. 5-6 are sufficient 
statistics for any further calculations. At this point, 
then, we have the following likelihood function: 

P(dt\CtI) = P(sp\CtI) 

= e x p - ^ g p + JVp)-1! 

|2TT(SP + NP)\1/2 

where now the parameter of interest, Ce, appears 
in the covariance matrix, Sp{Ce) + Np. Because of 
this, there is no simple analytic description of the 
posterior probability, or indeed for the shape of the 
likelihood considered as a function of Ce- However, 
we can relatively easily use techniques like Newton-
Raphson iteration to find the peak of the likelihood 
and calculate its curvature about the maximum1. 

Unfortunately, these techniques are prohibitively 
expensive for data from upcoming experiments such 
as the Planck Surveyor, scaling as 0 ( # 3 ) in time and 
0(#p) in storage; indeed the latter implies that, for 
coming megapixel experiments, the covariance ma
trix is likely too large to store, much less calculate 
in full generality. There have also been efforts to 
develop so-called Gibbs Sampler Monte Carlo tech
niques to calculate the full posterior for the power 
spectrum.6 

Thus, we must be practical. Even if we are philo
sophically disposed to Bayesianism (as are many in 
the cosmology community), we may need to consider 
other techniques, although I, in particular, take the 
rather unorthodox view that these methods are use
ful as approximations to the Bayesian result. This 
stands in contrast to many of the Bayesian ap
proaches in particle physics discussed at this meet
ing, in which the analysts try to find Bayesian tech
niques which give the same answer as the orthodox 
frequentist techniques already in use. 

The most common of these techniques for es
timating Ct are the so-called unbiased pseudo-C^ 
quadratic estimators, in which some approximation 
to the spherical harmonic transform of the full sky 
is calculated, and squared to give the "pseudo-CV 
spectrum, Ce, which is then corrected to give an un
biased estimate of the true spectrum by inverting the 
relation 

(Ce)=J2MU'Ci'+Nt (11) 

where the ensemble average is taken over Gaussian 
realizations of the signal and noise with the variances 
given above. We know that in the limit of a full 
sky and uniform noise the estimator thus derived is 
exactly the same as the Bayesian maximum likeli
hood, with the variance the same as the curvature 
about the maximum, and indeed the usual relations 
from the theory of probability and statistics state 
that these hold "asymptotically", which is usually 
understood to mean that they will hold for high £, 
where very many modes contribute to the measure
ment. (We do know from experience that the results 
do differ in detail for realistic experiments, such as 
BOOMERANG18.) 

2.3. Cosmological Parameter 
Estimation 

Finally, we must use these Ce to determine the un
derlying parameters, #,, (e.g., the densities, Clt; the 
Hubble Constant, #0, etc.). Unlike in previous steps, 
there is a direct relationship between the parameters 
and the power spectrum, simply Ce. = Ce(9), i.e., we 
have a delta-function prior P(Ce,9i) = P(8i)6[Ce — 
Ce(0)]. So the likelihood function remains as before, 
but we wish to determine its parameters as we vary 6. 
The calculation of Ce(0) for standard models requires 
the solution of coupled Einstein-Boltzmann linear 
differential equations describing the distribution of 
matter and radiation in the expanding universe, and 
has been in implemented in publicly available codes 
such as CMBFAST20 and CAMB14. For realistic 
models, this is straightforward but relatively time-
consuming, and moreover the general exploration of 
a multi-parameter space is a difficult task. In recent 
years, the favored technique for this exploration has 
been Markov Chain Monte Carlo (MCMC).3' 15 

In this meeting, MCMC in a cosmological con
text was discussed in the talks of Leach, Nicholls and 
Trotta (this volume). 

A very different way of exploring CMB power 
spectra was discussed by Nichol at this meeting: he 
used a (very non-Bayesian!) non-parametric smooth
ing technique to examine the overall shape of the 
spectrum, and answer some very basic questions: 
does the data in Figure 1 show a series of defi
nite peaks? He then extended these methods to 
the Cosmological Parameter Estimation problem it
self: do the parameters predict the correct over-
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all smoothed shape? Qualitatively his results agree 
largely with the consensus discussed in the following, 
although there are detailed — and not unexpected — 
differences. 

3. Results: Cosmology in 2005 

In Figure 1 we show the results of various calcula
tions of Ci along these lines, each from a different 
dataset; the results are in quite good agreement over
all. In general, these results are either the frequentist 
mean and variance, or the maximum likelihood and 
curvature; as emphasized above, the prior does not 
really matter at this point. 

Where the prior does enter, however, is in 
the calculation of the cosmological parameters from 
these spectra. As was emphasized at this meeting 
by Cox and Le Diberder, flat priors are dangerous. 
Indeed, in cosmology, there is no one set of natu
ral parameters on which to impose flat priors. For 
example, would we want a flat prior on the den
sity relative to the critical density, f2? However, 
that critical density itself depends on the a priori 
unknown Hubble Constant, H0 = 100ft. km/s/Mpc, 
so perhaps a more physical quantity would be Qh2? 
There is no "correct" answer to this question; rather 
we take the advice of Cousins at this meeting: we 
must perform sensivity analyses to determine the 
effect of our priors upon the analysis. In effect, 
by comparing the work of different authors, we can 
do just this sort of meta-analysis. If we estimate 
the cosmological parameters from the data of Fig
ure 1 (from WMAP10 , ACBAR11, BOOMERANG 
(B03)9- 16, CBI17, DASI7, MAXIMA13 and VSA5) 
in various combinations, we see that many features 
are robust to these changes, and we can highlight a 
few here: 

• The Universe is flat: fitot = 1; 
• The primordial perturbations are well de

scribed by a nearly scale-invariant power 
spectrum {ns ~ 1); and 

• The Hubble Constant is approximately 
H0 = 72 km/s/Mpc. 

Perhaps startlingly, the first two are just the predic
tions of the inflationary theory of the early Universe! 
So finally, the discussion of statistics leads us, as it 
should, to the underlying physics. 
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Fig. 1. Recent CMB Power spectrum data; publications are 
cited in the text. 

4. Complications: Non-Gaussianity 

The model for CMB data in the previous section be
comes more restrictive in each step of the process. 
When making the map, we first assume a model for 
the noise, that it is stationary over some period of 
time, and a Gaussian of the noise power spectrum. 
When calculating the power spectrum, we assume 
that the signal is isotropic on the sky, and a Gaussian 
realization from the cosmological power spectrum, 
Ce- Finally, we assume the cosmological parameters 
directly determine the power spectrum. Much effort 
has been put into going beyond these assumptions, 
specifically the Gaussianity of the signal. As the say
ing goes, "non-Gaussian distributions" are like "non-
elephant animals", and it is very hard to describe an 
arbitrary distribution without just giving all possi
ble detailed information (e.g., the functional form 
of the distribution or its moments). Methods must 
be tuned to find specific "sorts" of non-Gaussianity, 
such as the existence of higher-order connected mo
ments of the data. Even there, of course, the task im
mediately becomes very difficult: are the higher mo
ments best described in Fourier (spherical harmonic) 
space, or spatially on the sky? Which moments are 
we searching for? What counts as a detection (if you 
look hard enough, you will always find something!)? 
For a Bayesian, these problems seem even worse: how 
do you even write down the distribution in the ab
sence of a very concrete and calculable model? 

With the actual WMAP data, we also may 
be encountering a related problem: There is some 
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evidence that, on the largest scales, the WMAP data 
do not seem to obey statistical isotropy. That is, sta
tistical quantities may not just be functions of the 
distance between points, but may depend on where 
you are on the sky, as has been discussed in a num
ber of recent works4' 8- 12 (and others). This could 
be evidence of foreground contamination, or, more 
excitingly, of some underlying misunderstanding of 
the physics of the universe on large scales. In the 
absence of a physical model, it is prima facie impos
sible to distinguish a non- Gaussian distribution from 
an anisotropic distribution or from a combination of 
the two effects. 

Nonetheless, various techniques have been pro
posed and applied to tease out non-Gaussianities 
from current data. At this meeting, they were dis
cussed by Jin and Starck (and by Digel and by 
Bissantz in more traditional astronomical contexts). 
But a word of caution is in order: most of these meth
ods are derived assuming some sort of independent 
and identically distributed (iid) random variable is 
responsible for the non-Gaussianity, but in real-world 
astrophysics, nothing is ever iid! 

5. Other Problems 

I have concentrated on my speciality, cosmology in 
general and the CMB in particular, but of course 
statistics plays a paramount role throughout astro
physics. Indeed, as emphasized in the presentations 
of Cox and Johnston, astronomy has played a leading 
role in the development of statistics since the begin
ning. Other exciting developments discussed at the 
Conference include: 

• Time-series analysis [Clifford]; 
• Image processing/reconstruction/restora

tion [Titterington]. For some applications, 
it is crucial to be able get full error informa
tion (i.e., the posterior distribution) of the 
reconstructed image, and this restricts the 
possible algorithms; 

• Classification problems [e.g., Gray]: finding 
unusual objects (or usual ones: photometric 
redshift; galaxy classification from pictures). 
Note that these tasks usually have vastly dif
ferent kinds of prior information: physics vs. 
training sets vs. "experience". 

5.1. Virtual Observatories 

As discussed at this meeting by Alex Szalay, we in 
cosmology and astrophysics are beginning to deal 
with the massive, heterogeneous datasets covering a 
variety of instruments, wavebands, areas of the sky, 
etc. The community is attempting to build tools 
for uniform and distributed access to and analysis of 
these data under the rubric of Virtual Observatories. 
Bob Nichol discussed searching through massive as
tronomical datasets using KD-trees and the plans to 
finally move large-scale astronomical data-processing 
from the desktop to the grid. 

6. Conclusions 

In his opening talk at this meeting, Sir David Cox 
said that "We're eclectic"; this perfectly captures 
the pragmatism of astronomers and astrophysicists 
confronting our data, the need to find tools to han
dle its complexity and volume. Indeed, astronomers 
have always had to deal with data just beyond the 
ability of obvious current techniques, and therefore 
have always been avid consumers — if not develop
ers — of cutting-edge statistical techniques. As we 
saw throughout this meeting, this fruitful confluence 
of fields continues to this day. 
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SUMMARY OF SOME STATISTICAL ISSUES 
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A brief summary of some statistical issues that arose during the conference is presented. 

In terms of statistical ideas, I would make a 
very broad distinction between two prominent sets 
of problems at this conference. First there are a 
number of problems in which the main feature is a 
very large amount of data, requiring new methods 
and considerable computing power. An example that 
has already been used with success in astronomy is 
the use of false discovery rates in problems involving 
a great number of tests, and we heard here about 
new adaptations of wavelet and ridgelet techniques 
for identifying structure in images, about smoothing 
methods in multi-dimensional image processing, and 
new methods for on-line data mining. I won't at
tempt to summarize this class of problems, although 
it is clearly very important, not only in physics and 
astronomy but in a number of scientific problems, es
pecially including genomics, where there is very ac
tive development of statistical techniques. 

Another class of problems seems simpler (to a 
statistician) on a first reading. An example is in
dependent Poisson counts from background events 
and possible signal events. We should not forget, 
though, that elaborate experimental techniques and 
considerable ingenuity in data processing, have pre
ceded the presentation of a small amount of data. 
For this setting one would expect that standard sta
tistical methods would provide a simple, and even a 
best, answer, but as we have seen even in this context 
this is not always the case. Certainly inference about 
the ratio of Poisson mean parameters is satisfactorily 
solved using the binomial likelihood. Statistical in
ference for the difference between two Poisson means 
is somewhat more difficult, as we have to rely on 
some approximate argument, and with small counts 
the usual normal approximations will not be reliable. 
As Sir David Cox stressed in the panel discussion, 
the science of statistics develops most fruitfully in 
close collaboration with applications, and this prob
lem is a good example of something that is indeed 
sufficiently specialized to the HEP context that it 

is not in the repertoire of 'off-the-shelf statistical 
methods. 

Some general ideas which should inform the so
lution include the very important notion that con
fidence intervals, however developed, should have 
good properties in repeated observation of the same 
experimental system, even if these repetitions are 
hypothetical. In my view the definition of 'same 
experimental system' heeds great care, in order to 
avoid difficulties similar to, but more subtle than, 
the problem of two measuring instruments discussed 
in Cox1 and mentioned in Cousins2. Unfortunately 
it seems extremely difficult to 'mathematize' this no
tion; statisticians have spent many years of effort on 
the topic, and a single widely accepted solution has 
not emerged. At this time the best we can advise is 
to look at problems on a case by case basis. 

Likelihood methods are well accepted in the 
HEP community, but not always used in quite the 
same manner as used by statisticians. To clarify, sup
pose we have a single parameter model f(x; 6) and 
observe a sample x = (x\,..., xn) of independent ob
servations from this model. The log-likelihood func
tion £(6;x) = logn/(:r;; 6) is a sum of n terms, and 
we can apply the central limit theorem to d£(6; x)/d9 
to derive the following approximations: 

(§-6)i1/2(6) ~ JV(0,1) 

t'(6)i-1/2{6) ~ W(0,1) 

±y/[2{e0) -1(6)}] ~ JV(0,1) 

where 6 is the maximum likelihood estimate and 
i{9) = E{-d2£(9)/d62} is the expected information. 
Barlow3 described the second of these as Bartlett's 
statistic and the third as — 21nL (although I have 
here taken the square root, since the parameter is 
scalar). Each approximation provides a different way 
to compare the expected value to the observed value, 
but each is a so-called 'first order approximation', 
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because the error in the approximation is 0 ( n - 1 / 2 ) . 
In the limit when the log-likelihood function becomes 
quadratic, with second derivative equal in the limit 
to its expectation, they all lead to the same measure. 
To these three approximations we can further con
fuse things by adding standardization by observed 
information: 

{e-e)jl'2{6) ~ AT(O,I) 

^'(0)r1/2(<?) ~ w(o,i) 
where j(0) = —£"(9) is the curvature of the log-
likelihood function at the maximum. 

A very natural question is which of these ap
proximations is to be preferred in finite samples, and 
some reasons for expecting the log-likelihood ratio to 
be preferred are that it is invariant to reparametriza-
tion, and that it preserves the asymmetry in the log-
likelihood function. It is also the leading term in a 
higher order expansion, the correction term of which 
uses one or other of the two j-standardized statis
tics. Indeed the statistical literature has since Efron 
& Hinkley4 preferred the ^-standardization for 8, and 
later somewhat technical development of improved 
approximations to the distribution of 6 have con
firmed this preference. It is related to conditioning 
on ancillary statistics, i.e. functions of the data that 
have a distribution exactly or approximately free 
otO. 

Unfortunately however there are no general re
sults on rates of convergence or other properties that 
could lead to a definitive conclusion about which de
parture measure to use, and case by case studies are 
thus needed. Barlow3 showed that for the exponen
tial mean, Bartlett's statistic, i.e. the score function 
using the ^-standardization (which coincidentally is 
the same in this example as the i-standardized max
imum likelihood estimate), is better approximated 
by a standard normal than the log-likelihood ratio. 
This I found quite surprising, given my 'prior belief 
in the log-likelihood ratio statistic. The explanation 
is that Bartlett's statistic has exact mean 0 and ex
act variance 1, these moments coinciding with those 
of the normal approximation, which is therefore rea
sonably accurate for moderate deviations. However 
if we move out to the tails, the likelihood ratio statis
tic is more accurately approximated by a standard 
normal than Bartlett's statistic. Figure 1 compares 
the p-values, as functions of the mean parameter, 
to the exact p-value based on the gamma distribu

tion, for a sample of size 5 and an observed sample 
mean of 1, first in the '1-sigma' range and then in 
the '4-sigma' range. This example is also treated in 
Barndorff-Nielsen k Cox5. 

It does seem very difficult to draw any general 
conclusions about the first order approximations, al
though for most examples I have looked at the nor
mal approximation to the square root of the likeli
hood ratio has been the most accurate in the tails. 
A relatively simple combination of this with the 
Bartlett score statistic, as outlined in Reid & Fraser6 

gives essentially exact results for the exponential 
example. 

As has been mentioned several times during this 
workshop, adding nuisance parameters further com
plicates the issues. There are a number of somewhat 
different lines of argument in the statistical litera
ture leading to the idea of improving the profile like
lihood by adding a term to allow for the estimation 
of the nuisance parameters. The simplest motivation 
is from a Bayesian argument. We can get an approx
imation for the marginal posterior distribution of the 
parameter of interest as follows: 

^m(ip I x) = / niip,!/ \x)dv 

oc / exp{£(il>, u)}ir(i^,i>)di> 

= / exp{ (̂V>, v)}it(y I ip)du-!r(tp) 

^ e x p l ^ V ^ v O l l J ^ O M v O r 1 7 2 • 

7T(̂  I VOvW^TrWO 

where 9 — (tp,^) has been partitioned into a param
eter of interest ip and a k — 1-dimensional nuisance 
parameter v, and jvv{^>, #v) = —d2(.{tp,v)/dvduT is 
the portion of the observed information matrix re
lated to the nuisance parameter. The last approxi
mation comes from a Laplace approximation of the 
integral denning the marginal posterior. 

Now it can be shown that if ip and v are orthog
onal parameters, in the sense that the (ip, v) com
ponents of the expected Fisher information matrix 
are 0, then 0^=0 + Op(l/n); in the absence of pa
rameter orthogonality the error would be Op(l/y/n). 
Sweeting7 in the discussion of Cox & Reid8 argued 
that if ip and v are orthogonal then it would make 
sense to assign independent priors to them, in which 
case the term involving the prior on v vanishes 
(to 0 ( n - 1 ) ) and the log of the posterior marginal 
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Fig. 1. Plots of p-value functions for exponential mean parameter r , computed using the exact distribution (solid), the normal 
approximation to the square root of the log-likelihood difference (dashed), and the normal approximation to the standardized 
score (dot-dash). Horizontal lines show the 0.10 and 0.90 limits (left), as well as the 0.0001 and 0.9999 limits (right). The sample 
size n is 5 and the sample mean is 1. Very similar results are obtained for both smaller and larger values of n. 

density is 

log7rm(V> | x) =e(ip,i>^)--log\jul/(tp,i>)\+logTT(ilj); 

this is one way to motivate the so-called "adjusted" 
or "modified" profile log-likelihood 

L{i>) =l{ip,i>iJ) - -log|j„„0/>,i>)|. 

If ip is scalar then a transformation from some orig
inal parameterization (ip,(j>) to (V',J/) where v is or
thogonal to ip can always be found; Cox k Reid9 

indicate how to compute the adjusted profile with
out explicitly reparameterizing the model. The term 
"modified profile likelihood" is usually used for one 
of a family of adjusted profile log-likelihoods of the 
form 

£(ip, UJ,) - - log |j„ .(^,u)\ + B^) 

where B(ip) is to be specified, but is always 0(1), i.e. 
the same order as the log j term, and serves among 

other things to make the result parameterization in
variant, which the simple version £a is not. 

Although motivated by higher order asymptotic 
arguments, only first order asymptotics apply to £a 

and its variants. In particular we have, in analogy to 
the results for a scalar parameter 

taMi-t'atia)}-1'2 
JV(0,1) 

JV(0,1) 

AT (0,1) 

where i/>a is the maximum likelihood estimate from 
£a{ip)- These approximations are no more accurate 
in asymptotic theory than those based on the profile 
likelihood but in practice the adjustment for nuisance 
parameters seems to lead to better approximations, 
especially when the number of nuisance parameters 
is large. 

There are two classes of models where, at least 
for some of their parametrizations, exact elimina
tion of nuisance parameters is possible: exponential 
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family models and non-normal linear regression mod
els. Some examples are given in Reid & Fraser6. In 
these two classes the adjusted profile likelihood la 

arises quite naturally as a kind of 'leading term'. 
In models with a single scalar parameter, there 

is a uniquely determined, albeit improper, prior for 
which Bayesian posterior upper limits are guaranteed 
to have frequentist coverage to high accuracy: more 
precisely we have 

Pr(0 < 9{-x~a\x) | x) = Pig(9^-a)(X_) > 6)+0(l/n) 

if and only if the prior is proportional to il/2(0); 
the first probability above is calculated under the 
posterior distribution, and defines 9^~a\x) by the 
requirement that this probability equal a, and the 
second probability is calculated under the sampling 
model f(x;6). In multiparameter problems, match
ing priors do not exist in general, but there is an 
important exception. In statistical models whose 
mathematical structure is generated by a group of 
transformations, then it is possible to obtain the 
exact distribution of the maximum likelihood esti
mator by conditioning, and this is identical to the 
Bayesian posterior distribution for a special choice 
of prior measure related to the group structure; see 
Eraser10, Barndorff-Nielsen11 and also Podobnik & 
Zivko12. These arguments do not apply however to 
models for discrete data. 

A recurring theme in this meeting has been the 
possible dangers in using flat priors in multiparam
eter problems. An early and compelling example 
is described in Example 10.6 of Cox & Hinkley13. 
Suppose X\,..., Xn are independent normal random 
variables with mean /u* and variance a2, and that 

Hi = EXi = 7 + PpX0+ia, 0<p<l 

where XQ and a are known, and 9 = (7,/3, p, <r). In 
a linear regression model, the matching prior and 
most usual prior is proportional to dpda/a, so a very 
natural 'flat' extension of this is to choose the prior 

7r(0) OC d<yd/3da/adp, 0 < p < 1; 

however the marginal posterior for p concentrates on 
the points p = 0 and p = 1. I don't know if this 

phenomenon is widespread or not, but the fact that 
one can so easily get into trouble in a relatively sim
ple model with a seemingly vague choice of prior is 
somewhat worrying. Heinrich14 also raises several 
issues with flat priors. There is an active research 
effort in the statistics community to investigate what 
have come to be called 'objective' priors; the most 
recent conference was 'OBayes5', held in June, 2005. 

Speaking as a statistician who has been largely 
involved with theoretical issues, it is exciting to dis
cuss these issues in the context of applications to 
high energy physics, and I look forward to further 
fruitful collaborations between the two disciplines. 
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This concluding talk by a particle physicist reviews two topics, event classification and nuisance parameters. 

1. Introduction 

I will just cover two topics in this talk, both of which 
I am interested in and which have received a fair 
amount of attention at this conference, event clas
sification and nuisance parameters. I apologize to 
other speakers whose work I will not have time to 
cover. 

2. Event Classification 

2.1. Introduction 

The general problem that we wish to solve is given 
a measurement of an event X = (xi,X2,---xn), find 
the function F(X) which returns 1 if the event is 
signal (s) and 0 if the event is background (b) to 
optimize a figure of merit, say s/Vb for a discovery 
or s/y/s + b for an established signal. 

In principle the solution is straightforward. Use 
a Monte Carlo simulation to calculate the likelihood 
ratio LS(X)/L(,(X) and derive F(X) from it. This 
just amounts to counting the number of signal and 
background at each point in the parameter space. 
Then F can be calculated by ordering the likelihood 
ratios and accepting them in decreasing order until 
the figure of merit starts to decrease. Further, by 
the Neyman-Pearson Theorem, this is the optimum 
solution. Of course, this does not work due to the 
"curse of dimensionality." In a high-dimension space, 
even the largest data set is sparse, with the distance 
between neighboring events comparable to the ra
dius of the space. Thus, we are forced to substitute 
cleverness for brute force. In recent years, physicists 
have come to learn that computers may be cleverer 
than they are; they have turned to machine learning. 
One gives the computer samples of signal and back
ground events and lets the computer figure out what 
F(X) is. 

2.2. Artificial Neural Networks 

Originally most of the machine learning effort was 
in artificial neural networks (ANN). Although used 
successfully in many experiments, ANNs tend to be 
finicky and often require real cleverness from their 
creators. At this conference, there was an advance in 
ANNs reported by Harrison Prosper.1 The technique 
is to average over a collection of networks. Each net
work is constructed by sampling the weight proba
bility density constructed from the training sample. 
Prosper notes that this Bayesian technique "takes 
us another step closer to realizing optimal results in 
classification (or density estimation) problems. It al
lows a fully probabilistic approach with proper treat
ment of uncertainties." He states that the "the initial 
results are promising, though computationally chal
lenging." 

2.3. Rules and Trees 

In the past couple of years, interest has started to 
shift to other techniques, such as decision trees, at 
least partially sparked by Jerry Friedman's talk at 
PHYSTAT2003.2 A cartoon of a decision tree is 
shown in Fig. 1. The best variable and value to sepa
rate signal and background are chosen and the sam
ple is divided into two branches. For each branch, the 
process is repeated until a leaf is found with a pre
set minimum of either signal or background events. 
Each leaf is then labeled as either signal or back
ground. 

A single decision tree has limited power, but its 
power can be increased by techniques that effectively 
sum many trees. Several approaches were presented 
at this conference. Jerry Friedman discussed a tech
nique based on rules, which effectively combines a 
series of trees.4 

Harrison Prosper presented a talk for Ilya 
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Fig. 1. A cartoon of a decision tree. From Ref. 3. 

Narsky on bagging decision trees.5 "Bagging" stands 
for Bootstrap AGGregatlNG. In this technique, one 
builds a collection of trees by selecting a sample of 
the training data and, optionally, a subset of the 
variables. Although boosted trees (to be discussed 
next) are generally more sensitive than bagging trees, 
Narsky reported the use of bagging trees in the study 
of the decay B —-> jev, in which bagging trees gave 
the most significant results. A single decision tree 
gave a 2.16 a significance; boosted decision trees gave 
a 2.62 a significance; and bagging decison trees gave 
a 2.99 <7 significance. However, about half of the dif
ference between the bagging and boosted trees was 
not fully optimizing the boosted trees. 

Byron Roe gave a talk on the use of boosted 
trees in MiniBooNE.3 The boosted tree technique is 
to give misclassified events in one tree a higher weight 
in the generation of a new tree. In the MiniBooNE 
analysis, this process is repeated to generate 1000 
trees. The final classifier is a weighted sum of all 
of the trees. Roe found that the boosted trees are 
about a factor of 1.8 more sensitive than an ANN 
technique and that it is more robust. 

Other talks on the subject of event classification 
were given by Puneet Sarda6 and Alex Gray.7 Unfor

tunately, I was unable to attend these talks as I was 
chairing another session at the time. 

3. Nuisance Parameters 

3.1. Introduction 

Nuisance parameters are parameters with unknown 
true values for which coverage is required in a fre-
quentist analysis. They may be statistical, such as 
number of background events in a sideband used for 
estimating the background under a peak. Or they 
may be systematic, such as the shape of the back
ground under the peak, or the error caused by the 
uncertainty of the hadronic fragmentation model in 
the Monte Carlo. Most experiments have a large 
number of systematic uncertainties, so having an ef
ficient way of dealing with them is an important issue 
in the statistical analysis of the results. The single 
statistical issue that I have been asked most about is 
probably the proper treatment of these uncertainties. 

In his talk, Kyle Cranmer has pointed out that 
these issues will be even more important at the 
LHC.8 Cranmer's argument has to do with the size 
of the systematic uncertainties. For example, a typi
cal negative search at LEP might have had no signal 
events. In this case the statistical error is of order 
1 and the systematic error might have been of order 
0.1. The contribution of the systematic error would 
then have been of order 0.01, and the details of its 
treatment would have been largely irrelevant. How
ever, Cranmer expects that at the LHC it might be 
typical to have a signal of 100 events and systematic 
uncertainties of 10%. And to make the issue more 
critical, Cranmer notes that the standard for discov
ery in bump hunting has come to be five standard 
deviations. (See Appendix A for an aside on this 
issue.) 

At this meeting we have seen a wide series of 
techniques discussed for constructing confidence in
tervals in the presence of nuisance parameters. The 
one unifying aspect of these techniques is that ev
eryone has expressed a concern that their methods 
cover, at least approximately. This appears to be 
important for LHC physics in the light of Cranmer's 
concerns. 

3.2. Bayesian Treatment 

Joel Heinrich presented a recommendation for the 
CDF collaboration to do Bayesian analyses with the 
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Fig. 2. Examples of coverage for various Bayesian priors on the nuisance parameters. See the text for parameters. 

requirement that non-subjective priors are chosen 
to provide coverage.9 The perceived advantage is 
Bayesian conditioning with frequentist coverage. 

Figure 2 shows some examples of coverage stud
ies from Heinrich's talk. Figure 2(a) shows the case 
of a single Poisson signal distribution with flat priors 
on the signal (s), the background (b), and the nor
malization (e). There is modest overcoverage. Fig
ure 2(b) shows the case of four independent Poisson 
signal distributions with flat priors, as in (a). There 
is now substantial undercover age. Coverage is recov
ered by switching to 1/6 and 1/e priors, shown in 
Fig. 2(c). 

This example illustrates that the choice of priors 
for nuisance parameters is important and that flat 
priors, particularly in multiple dimensions, are likely 
to lead to undesirable results. The problem here is 
that the volume of a hypersphere is increasingly con
centrated at large radius as the dimension of the hy
persphere increases. Thus, the nuisance parameters 
are pushed to unreasonably large values, depressing 
the signal and causing undercoverage. 

3.3. Frequentist-Bayesian Hybrids 

Fredrik Tegenfeldt presented a likelihood-ratio or
dered Neyman construction10 after integrating out 
the nuisance parameters with flat priors.11 In a sin
gle channel test, there was no undercoverage. 

What would happen for a multi-channel case? 
Would it fall prey to the same difficulties illustrated 
in Heinrich's talk?9 I am not sure. It is likely that 
the confidence belt will be distorted by the use of 
flat priors, but it is possible that the method will 
still cover due to the Neyman construction. 

Cranmer considered a similar technique, as used 

for LEP Higgs searches.8 Both techniques are re
ferred to as Cousins-Highland, from their 1992 paper 
which used essentially the same technique.12 

3.4. Profile Likelihood 

Forty-four years ago, Kendall and Stuart suggested 
how to eliminate nuisance parameters in a likelihood-
ratio ordered Neyman construction.13 They first de
fined 

x 

0s 

6r, 9S 

I 

the vector of measurements, 
the vector of unknown parameters with 9ro 

representing the parameters of the null 
hypothesis Ho, 
the vector of nuisance parameters, 
the values which unconditionally maximize 
L(x\6r,9s), and 

the values which conditionally maximize 

L(x\ero,es), 

and then defined the likelihood ratio I, 

1 = 
L{x\ero,es) 

L(x\9r,6s) 

They then presented a charmingly simple argu
ment for this approach for eliminating nuisance pa
rameters, which we now refer to as "profile likeli
hood": "Intuitively, / is a reasonable test statistic 
for Ho: it is the maximum likelihood under Ho as a 
fraction of its largest possible value, and large values 
of I signify that Ho is reasonably acceptable." 

They concluded with the prescription for the 
Neyman construction: "The critical region for the 
test statistic is therefore 

I < ca, 
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where ca is determined from the distribution g(l) of 
I to give a size-a test, i.e. 

(a) 

Jo 
g(l)dl = a." 

These terse passages from Kendall and Stuart 
contain the full content of what is commonly known 
as "Feldman-Cousins"10 with the addition of the sug
gestion of how to eliminate the nuisance parameters. 

Coverage is not guaranteed with this technique 
since the treatment of the nuisance parameters in
volves an approximation. However, coverage is ex
cellent in all cases which have been studied. This is 
pointed out in Giovanni Punzi's talk14 and it agrees 
with my experience. 

There is, however, a minor problem with this 
technique when used with a Poisson distribution. 
This is illustrated in Fig. 3, which comes from 
Punzi's talk. As the nuisance parameter is better 
and better known, the confidence intervals do not 
converge to the limit of the nuisance parameter be
ing perfectly known. The reason is that the introduc
tion of a nuisance parameter breaks the discreteness 
of the Poisson distribution. 
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Fig. 3. The upper limit from a Poisson distribution as a func
tion of the normalization error a. As a approaches 0, the 
upper limit falls below the value for a = 0, shown by the 
horizontal line. From Ref. 14. 

I discussed this problem and its solution at 
the 2000 Confidence Level Workshop at Fermilab.15 

However, since two plenary speakers8' 16 indicated 
that the explanation was incomprehensible from 
those slides, I will try again here. (Also see Punzi's 
talk14 for another solution.) 

Consider the case of a Poisson signal of mean 
[i where n events have been measured for the sum 
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Fig. 4. Diagrams showing the reason for the confidence limits 
for a very well known background not approaching the limit 
of a perfectly known background for a likelihood-ratio ordered 
Neyman construction, and the solution to this problem. See 
the text for the explanation. Redrawn from Ref. 15 for black 
and white printing. 

of the signal and background. The background is 
estimated by a measurement of b events from a side
band of T times the size of the signal region. Fig
ure 4 shows a fragment of the construction of the 
confidence belt for the value of fi that is the upper 
limit for the measurement of no and 6n, which are 
shown by the diagonally-lined box. The confidence 
belt consists of this box and the black boxes. Fig
ure 4(a) shows the case for an equal size sideband 
and signal region, r = 1. The confidence belt in
cludes the region in the n-b space that is bounded by 
a 45° line since each unit of b reduces n by one unit 
for constant \i. Figure 4(b) shows the case for a very 
large sideband compared to the signal region. The 
angle becomes very shallow, but even in the limit of 
a very well known background only the lower 6 values 
are included in the confidence belt for n — nO. The 
probability for the diagonally lined square always ex
ceeds those to its right, even if only by an infinites
imal amount. This gives greater granularity in the 
probabilities that can be achieved by the confidence 
belt construction, compared to the case of a perfectly 
known background, shown in Fig. 4(c). Here all the 
squares for n = nO have the same probability and 
must all be included. Less integrated probability is 
included in Fig. 4(b) than in Fig. 4(c), allowing a 
lower upper limit for ji. 
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A solution is shown in the right half of Fig. 4. 
To restore the overcoverage due to the discreteness 
of the Poisson distribution it is necessary to add the 
boxes shown in gray shading. Figures 4(b') and 4(c') 
are now identical and Fig. 4(a') will approach the 
limit smoothly. 

The Cousins-Highland paper12 indicated that it 
was using the hybrid frequentist-Bayesian technique 
discussed earlier because the pure frequentist tech
nique gave a lower upper bound with a small normal
ization uncertainty than with no uncertainty. The 
reason for this is the same as shown above, and the 
same solution yields a reasonable frequentist upper 
limit. 

3.5. Hill Climbing 

Wolfgang Rolke presented a talk on eliminating the 
nuisance parameters via profile likelihood, but with 
the Neyman construction replaced by the — AlnX 
hill-climbing approximation.17 This is also what the 
popular MINUIT program does.18 The coverage is 
good with some minor undercover age. Cranmer8 also 
discusses this method in his talk. 

3.6. Full Neyman Constructions 

In principle a frequentist should provide coverage for 
nuisance parameters by doing a full Neyman con
struction for both signal and nuisance parameters. 
Both Punzi14 and Cranmer8 attempt this in their 
talks. I do not recommend this procedure for a num
ber of reasons. 

(1) The ordering principle is not unique. Both Punzi 
and Cranmer ran into some problems. 

(2) Unless great care is taken, they are likely to sub
stantially overcover.16 

(3) The technique is not feasible for more than a few 
nuisance parameters. 

(4) It is unnecessary since removing the nuisance pa
rameters through profile likelihood works quite 
well. 

Appendix A. Why 5 al 

We noted above that the standard for discovery in 
bump hunting has been established at five standard 
deviations. Given that the probability of a statistical 

fluctuation giving a 5 cr effect is 3 x 10~7, is this a 
reasonable requirement? 

There are two major high energy experiments at 
the LHC, but let us first consider this requirement 
if there were only one experiment. A reasonable ex
pectation is that in the analysis of the experiment, 
there may 500 searches, each of which has 100 reso
lution elements (mass, angle bins, etc.), which yields 
5 x 104 chances to find something. Thus, the chance 
of a false positive would be (5 x 104)(3 x 10~7) = 
0.015, an acceptably low number. 

Now consider the situation with two experi
ments. First, we need to consider the number of 
allowable false positives in either experiment. False 
positives have some cost — they generate unneces
sary experimental and theoretical activity (often a 
hundred or so theoretical papers) and if they are too 
frequent, they give the impression that results in the 
field cannot be relied on. I would guess that perhaps 
ten false positives over the course of the LHC would 
be acceptable. Then, we can solve for the significance 
level E that would yield ten events: 

2(5 x 104)P(E) = 10 =*• P(E) = 1 x HT 4 =>- E = 3.7cr 

If we take 0.01 as the acceptable probability of a false 
positive after verification by the other experiment, 
then the required significance level E ' is given by 

10P(E') = 0.01 => P(E') = 0.001 =*• S ' = 3.1(7 

Thus, it would appear from this analysis that 
a 3.7CT discovery by one experiment followed by a 
3.1c conformation by the other would be satisfactory. 
However, great care needs to be taken to consider 
to what extent common systematic uncertainties ex
ist. For example, both experiments are likely to rely 
on common hadronic production and fragmentation 
models. 
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APPENDICES 





QUESTIONS FOR PANEL DISCUSSION 

The following questions were submitted by PHYSTAT2005 participants for the Panel Discussion session. 

1. GENERAL : Do the statisticians on the Panel consider there are any techniques we should be using, but 
currently we are not? 

2. PARAMETER INTERVALS : What are the properties that confidence intervals should respect? e.g. 
Frequentist coverage? Short but not too short? No empty intervals? Invariance with respect to 
reparametrisation? Robustness? Consistent approach to incorporating nuisance parameters? 

3. FREQUENTIST PARAMETER DETERMINATION : Particle Physicists like to use frequentist 
approaches. Is it practically possible to use a Neyman construction in several dimensions i.e. of data 
and/or parameters? And if only one of the parameters is a physics parameter and the rest are nuisance 
parameters, so that it is necessary to project the multi-parameter confidence region in order to obtain 
that for the single physics parameter, what ordering rule will give optimal behaviour for the resulting 
one-dimensional intervals? 

4. P-VALUES WITH NUISANCE PARAMETERS : An experiment is looking for some rare or per
haps non-existent process. It involves simply counting events. There is an uninteresting background 
b which also contributes to the counting rate. The number of observed events N is expected to be 
Poisson distributed with mean b, which has been measured in a subsidiary experiment as &o ± &b-
(This can be thought of as being determined as c/r, where c is the number of events in a situation 
which is sensitive only to the background, and r is a scale factor which typically could be 5, and is 
accurately specified with zero uncertainty. Larger r results in a smaller error <Tb). We want to calculate 
the p-value for the null hypothesis (only background), for observing at least N events. To be specific, 
we could take N = 9 and b = 3.1 ±0.4. What is the recommended statistical technique? It is desirable 
that it could easily be extended to a larger number of nuisance parameters. 

5. PROFILE LIKELIHOOD A N D BAYES PRIORS : If I understand correctly, eliminating a nui
sance parameter by using the profile likelihood is equivalent to using a delta function prior for the 
nuisance parameter in the Bayesian philosophy. More refined likelihood methods can probably also 
be interpreted in the Bayesian way. If this is correct, why doesn't one use directly Bayesian methods? 

6. BAYESIAN TREATMENT OF SYSTEMATIC UNCERTAINTIES : In a Bayesian approach to 
parameter estimation, it is straightforward to include nuisance parameters in a Monte Carlo Markov 
Chain, then marginalize over them in order to recover high probability regions for the parameters 
of interest which include the effect of our imperfect knowledge of the nuisance parameters. I am 
uncertain about the proper way to treat systematical errors in this context: an example could be 
the uncertainty associated with numerical inaccuracies of the code used, or the error induced by the 
fact that some second-order physical processes have been neglected in the code. This results in an 
uncertainty associated with the output of the code itself (which I'd classify as "systematical"), rather 
than a statistical uncertainty, associated with the data used. A common way to deal with this is to 
add the statistical and the estimated systematical errors in quadrature (or linearly if one wants to be 
conservative), then use this new artificial error on the data at hand. I would like to know whether 
there are more satisfactory ways of dealing with systematical errors of the kind described above, and 
in particular methods which recognise the different nature of the statistical and systematical errors. 
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7. M A X I M U M ENTROPY PRIORS : Setting the prior correctly by making use of all available infor
mation is a central problem of Bayesian model selection, where the result is strongly dependent on the 
prior scale and does not disappear with better data (as it is the case for parameter estimation). I am 
getting interested in ways of setting the prior by maximum entropy arguments. I would like to hear 
the opinion of the Panel regarding this method, and in particular whether this way of determining 
priors is now well accepted in the Bayesian community. I would be interested in comments about 
the applicability and limitations of maximum entropy priors, if possible with examples illustrating 
situations where that kind of argument has been proven successful (or has failed for a clear reason). 

8. PARAMETER DETERMINATION/HYPOTHESIS TESTING : To what extent are hypothesis 
testing and parameter determination equivalent? Are there simple examples to illustrate when they 
are equivalent and when they are not? 

9. MULTI-DIMENSIONAL CLASSIFICATION WITH VERY M A N Y VARIABLES : 
Analyzing HEP data, physicists more and more often deploy multivariate classification methods. 
We have seen a bunch of HEP publications where analysts separate signal and background by training 
a neural net on 10 or more input variables. Byron Roe and his associates in their recent work on PID 
at MiniBoone used 100 input variables for classification by boosted decision trees; this seems to set a 
record on the dimensionality used in HEP analysis. At the same time, there is a number of conservative 
physicists who refuse to adopt such multivariate methods with many input dimensions. They argue 
that it is very hard to assess how well Monte Carlo models data in so many dimensions, especially if 
one needs to take various systematic effects into account. Is there a generic prescription that relates 
the maximal reasonable dimensionality to the size of available Monte Carlo and data samples, in the 
context of a specific classification method? Can professional statisticians recommend good literature 
on variable selection, perhaps for two different problems: a) statistics- and b) systematics-dominated 
analysis? Should we attempt multidimensional analysis with dozens of input variables only when 
systematic effects do not matter much - for example, in rare signal searches - and stick to more robust 
and simple-minded techniques when systematics are important? 

10. MULTI-DIMENSIONAL CLASSIFICATION WITH VERY M A N Y VARIABLES : I have 
a data set where each entry is described by 18 variables. I want to reduce the dimensionality from 18 
to, say, 4. Are there well-understood techniques for doing this, so that some measure of information 
loss is minimised? 

11. N U M B E R OF VARIABLES IN MULTIVARIATE PROBLEMS : I assume we have 11 vari
ables per event. The reason this is of interest is the observation that the DO experiment obtained its 
most precise measurement of the top quark mass using the so-called matrix element method, a method 
that CDF is working on also. In the matrix element method one writes an explicit formula for the 
N-dimensional differential density, based on one's knowledge of the matrix element squared and the 
mapping from partons to observed objects. The premise is that, if one knew this N-dimensional den
sity, one need look no further in terms of the search for new variables - one would just use the density 
directly. So the question is this: Given p(x) where x is N-dimensional and given q(y) where y is M-
dimensional and y = f(x) (and perhaps M > N\), can the use of q(y) yield better signal/background 
discrimination than the use of p{x)1 We spend a lot of time constructing y = f(x), by hand! Is this 
necessary, if we have p(x)7 

12. KOLMOGOROV-SMIRNOV : Is there a good method of using the Kolmogorov-Smirnov goodness 
of fit test with multi-dimensional data? 
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13. BLIND ANALYSES : What do you do when you unblind your analysis and find something in there 
that wasn't predicted by either the background or signal estimates? This is usually the case where 
there's no data off source region to estimate the background and the background estimate is purely 
simulation based. You predict the background, open the box and find a big excess but then see that 
the excess lies in an event-observable region that doesn't look like either signal or background predic
tions. You guess it's an unsimulated background, but then what? I would have thought that maybe 
you could possibly cut it away and recalculate. But then I learned from Kath Rawlins that LIGO saw 
a similar thing in their analysis and she had showed that coverage got all screwed up if one removes 
events post-unblinding, even if one could tell for sure that the extra events were a background from 
some source you hadn't considered and that, had you known about this class in the first place, you 
would have designed cuts to never allow them into the final analysis. 

14. PULLS : If we have a complicated parameter-estimation technique, we may want to use Monte Carlo 
simulation to check whether the procedure is behaving sensibly. One way to do this is to look at the 
distribution of 

pull = (pf -pt)/af
2 

where pf is the fitted parameter, pt is its true value, and 07 is the estimated error in pf. The distribu
tion is calculated for repeated simulations. Asymptotically and if all is well, we expect the distribution 
of pull to be Gaussian centered on zero with unit width. However there are simple non-asymptotic 
examples where this is not so. How do I know for small sample simulations whether deviations from 
standard Gaussianity is a cause for worry or not? 

15. A S Y M M E T R I C E R R O R S : Are there recognised methods for dealing with asymmetric errors? These 
often arise when estimating parameters in low statistics experiments? For example, we may measure 
a lifetime as 1.6i2"J picoseconds. Then we might be interested in comparing it with another mea
surement (e.g. taking the ratio of it with another lifetime); incorporating another contribution to the 
error, possibly also with asymmetric errors; or combining this result with another to obtain a weighted 
average. 

16. A S Y M P T O T I C S : Can there be or has there been progress to improve asymptotic techniques' con
vergence in the tails? In particular the modified and adjusted profile likelihood techniques attempt 
to improve convergence of the first and second moments, but for a 5u test we are more interested in 
describing the tails. 

17. I M P R O V E D LIKELIHOOD T E C H N I Q U E S : Under what circumstances do improved profile like
lihood methods help? We have a range of N from 10-10,000 events, we have a range of likelihoods 
from Gaussian to highly-non Gaussian, and we are interested in a range of significance levels from 
2 — 5er. Under the circumstances that they do help, how much do we stand to gain? 

18. J A M E S - S T E I N E S T I M A T O R : There exist other shrinkage estimators that could be helpful for 
high-dimensional problems like Supersymmetry. The estimators are biased, which will alarm most 
physicists and provide an obstacle for the methods to be accepted; however, these estimators can 
significantly improve the mean-squared error. Do you have any words of wisdom regarding these 
estimators: when are they a good idea when are they a bad idea? 



PANEL DISCUSSION 

Panel Members: Bernard Silverman, David Cox, Jerry Friedman and Bob Cousins 
Chairman: Louis Lyons 

Louis Lyons I think members of the panel need no introduction whatsoever: Bernard Silverman, David 
Cox, Jerry Friedman and Bob Cousins. 

What I was going to do was to ask the members of the panel if there are any of the questions they would 
particularly like to talk about. I told David I would give him the first go, so David let's start with you. 

David Cox My impression is that most advances in the use of statistical methods come not from looking 
through a library of techniques which are available but by those with a primary interest in statistics and with 
some knowledge of the subject matter sitting down over a period with a group in the subject field who have 
some knowledge of statistics. Issues of formulation are crucial. Eventually, one hopes, new ideas will emerge 
that both address the subject-matter questions at issue and which maybe will be more widely useful. 

Most of the really interesting and important developments in statistical methods have come that way. Direct 
transplantation of ideas from one field into another are less commonly totally successful. Now collaboration 
with physicists and statisticians is going to be particularly difficult for statisticians because you know so much 
already and also of course you have an enormously strong tradition of independent mathematical thought. 

To address Question 11 feel it is helpful to think of statistical methods in four chapters and two of the chapters 
have been quite strongly represented in this meeting, which incidentally I have highly enjoyed; it has been 
much more interesting than most statistics meetings. 

The four chapters, not in any particular order, are first of all likelihood, Bayes, Neyman, Fisher, confidence 
interval calculations and so forth; clearly there is a lot of interest in that. It may be there are things in the 
statistical literature, and matters that could be absorbed into the thinking, perhaps particularly the notion 
of taking profile likelihoods and modifying them to make them perform better, particularly when there are a 
large number of nuisance parameters which is the critical issue in many contexts. 

In a sense at the other extreme, there's the enormous collection of particular statistical methods that had 
been found useful somewhere or other, some highly exploratory, some partially exploratory, some graphical, 
some numerical. You might say that that's statistics as covered or potentially covered by R. 

But I mentioned there are two chapters that have been hardly represented here. Now one would be what we 
call roughly applied stochastic processes. I know in some contexts this might not be regarded as a part of 
statistics at all. I mean constructing particular probabilistic models often dynamic, but not necessarily so, and 
studying their properties as issues in applied mathematics rather than in the pure mathematics of probability 
theory. It may be you regard all that as part of theoretical physics anyway and not part of statistics. So 
there is the issue of constructing new models that incorporate the physics and the probability, not quantum 
probability, but the physics of observational probability into new models. 

Now the fourth chapter that is scarcely represented is the issue of the design of investigations and there are two 
major sections of statistical theory here, one to do with sampling and I point out that includes stereology. The 
other aspect is the design of experiments and I think this particularly relevant here to the design of computer 
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experiments, including systematic sensitivity studies of models with many adjustable input features. Notions 
of Latin hypercube sampling and fractional replication which come originally largely out of technological in
dustrial statistics could be useful. 

Louis Lyons What exactly is stereology? 

David Cox The study of the properties of objects in three dimensions by two or one dimensional probes or 
in general k dimensions, by appropriately sampling in lower numbers of dimensions. 

Louis Lyons Well I'm sure that your first remark, about getting statisticians involved in analyses, will be 
welcome news to members of the physics department here and we'll be knocking at your door with problems 
that we would like to have you help us solve. Do any other members of the panel want to add anything to 
this? 

Jerry Friedman In terms of the machine learning component, you seem to be coming up to speed rather 
fast. If you want to see if there are some things you have overlooked that might be useful, I'll shamelessly 
recommend our book. Get it from the library and go over the table of contents and see if you find some things 
in there that look a little strange that you haven't seen before and go to the relevant chapter. But as I said, 
I think that in the machine learning area you have got up to speed rather fast. 

Bernard Silverman A very interesting aspect of this Conference is that the main impetus for the devel
opment of statistics in the twentieth century was its relevance to agriculture and biological and later medical 
applications. To see it in a physics context is fascinating because one of the things you seem to be doing, quite 
reasonably, is to recapitulate a lot of the discussions that went on in statistics in other contexts previously 
and to appropriate those discussions to the physics context. I suspect you need to think more about Bayesian 
methods, and to be more comfortable about using Bayesian techniques. While not everyone on the panel 
would necessarily approve, that has been a major shift in statistics in recent decades. There are many issues 
in these questions where essentially frequentist methods are more problematic, and the Bayesian approach 
might be more natural. 

But I would really like to stress what David Cox said, which is that you should not think that statistics is 
about techniques. You would never think physics was about techniques, would you? Physics is about ideas 
and understanding and intuition and so on, and the techniques are just on top of that. Astronomy is not about 
techniques, is it? It's not, because it is about ideas, and the techniques are just a way through to the ideas. 
It's the same with statistics. Statistics is a developed scientific field and it is not a collection of techniques. 
It's a way of thinking which then gives rise to techniques and it is important to get into that way of thinking, 
rather than to say "Wouldn't such and such a technique be more appropriate for this problem?" 

Louis Lyons Let's move on to Bernard on Question 4. 

Bernard Silverman Now you'll probably discover when we do this that when you have two statisticians 
you have three opinions. I was fascinated by Question 4 in a way because the real issue to Question 4 is to 
try and formulate the problem in such a way that you can actually see what's going on. This problem seems 
to have arisen from someone saying : "I've got an experiment and I have observed the data point x which has 
a Poisson distribution with parameter A and I want to know if A is bigger than Ao" • Then they said "By the 
way I know something about A, I know that A is bo ± crj,." Then you realise that that's not what they know 
at all; in the question we were posed we were told it could be thought of as being determined in a subsidiary 
experiment. So what I actually had to do on reading this was to re-work out the original experiment. There 
seems to be another experiment going on where there is another data point y which has Poisson distribution 
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with parameter rXo. So it isn't only the main experiment that is conducted, but this other one as well, and 
really you just need to make sure you have written both of them down. Once you do that, you can see that 
to do any inference at all you want to know what the distribution of a; is, conditional on y. 

One way to approach this is to take a Bayesian viewpoint, putting a prior on A and then calculating 
p(x\y) = p(x\X) *p(\\y), using Bayes theorem to find the latter conditional probability. 

The key point, however, is not the use of a Bayesian vs frequentist approach, but the need to go right back to 
the experiment that was conducted, to look at all the experiments at once and write everything down about 
it. That's better than saying that b has been measured in a subsidiary experiment as something or other. 

Louis Lyons We've got two more statisticians here so I expect four more opinions! Jerry, David do either 
of you want to say something about that? 

David Cox And the audience could have opinions too, maybe an infinite number! 

Jerry Friedman I'm going to disappoint you, I don't have another opinion. 

David Cox You have to write down the likelihood. It's the key and then the issue is what do you do with 
the likelihood. If you have a prior that is evidence-based, I don't think anyone would dispute that you should 
use it. If you've not got such a prior, you're into this issue of reference priors and flat priors, and there's been 
a lot of work about that, in a way for two hundred years, and certainly for the last two days. It's a minefield 
and done properly the reference prior would give a beautiful answer that we are all satisfied with, but what 
does a beautiful answer mean? Well if I wanted to be argumentative, and I'm totally not argumentative, I 
would say if it gives something that has at least tolerable frequentist properties. If it gives an answer that has 
very bad frequentist properties, I can't think anyone would defend it. So in the end I would be very happy to 
use the Bayesian formalism as a way of getting an answer. I have done so and have no qualms - if that's the 
way to get an answer, I'll do it. But in the last analysis, I have to say, "I doing something that is going to 
produce answers close to the right answer most of the time, in other words is it calibrated properly?" which 
is much about what that means. In some sense I would see it as a hypothetical frequentist interpretation. 

Steffen Lauritzen Just to keep things down to earth, in this example when you formulated it the way that 
Bernard did, if r is known, then x + y is sufficient for A and it becomes a straightforward simple hypothesis 
in the conditional binomial, just with the scale factor 1 + r entering, whether you are Bayesian or not. 

Louis Lyons Bob do you want to say anything? 

Bob Cousins Well I had my 40 minutes on exactly this problem so I won't repeat too much. I'll just say 
what Sir David said, that at the end of the day you want to say that some probability P equals some number. 
If a student asks "How do you define probability P in that statement?" you would like to be able to give them 
an answer. I think that in our field the frequentist answer is the easiest one to explain, but I'm also perfectly 
happy with the subjective answer. What I'm unhappy with are the ones in between, those priors which are 
used in a Bayesian machinery but unless the probability P comes out with the right frequency I don't know 
how to interpret it. Since this particular problem is so interesting in our field, it's been studied a lot and for 
the variety of methods that I talked about, their frequentist coverage has been studied. I refer, for example, 
to the papers by Conrad and collaborators on integrating out the nuisance parameter formally and seeing how 
it works. What we call the MINUIT MINOS method is profile likelihood, and is discussed in a recent paper 
by Rolke, Conrad and Lopez. Those papers contain a lot of information, and they also tell you what sort of 
study you can do with whatever technique you use. Then if you're really up to it you can do a full-blown 
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frequentist construction the way Kyle Cranmer and Giovanni Punzi talked about. Then you don't have to 
check if it covers because it does so by construction, but it likely overcovers. So that is interesting to study as 
well. 

Luc Demortier I just thought it would be useful to clarify that when statisticians say flat priors they 
don't mean uniform priors, they just mean objective priors. Am I correct in that because there might be some 
confusion? We try to discourage the use of flat uniform priors but not necessarily the use of objective priors 
or reference priors. But the statisticians sometimes use the terminology flat prior to mean objective prior in 
general. 

David Cox I certainly had in mind either the Jeffreys prior in simple cases or something like Bernardo's 
reference priors in more complicated ones. 

Bob Cousins Well it's OK because you did not say in what metric your prior was flat! It will be flat in 
some metric! 

Tomi Zivko I would like to give a short comment about priors. Yesterday I gave a talk in which I presented 
work of my colleague and myself. In the talk I claimed that we started from Jaynes, Polya and Cox's desider
ata. That means that we started from a purely Bayesian point of view, and using only those assumptions 
which are found in the desiderata, we obtained calibrated solutions, which is a purely frequentist result. But 
there were no comments after the talk, no objections. 

Louis Lyons OK so I guess people need to have a chance to read it and absorb the ideas there. 

Maybe we should move on to another question. I think Bob hasn't had a chance to choose anything yet. 

Bob Cousins So I've thrown out all the ones about nuisance parameters and Bayesian analysis, and I've 
instead chosen the one about blind analysis (Question 13). I have been involved in three experiments that 
performed blind analyses, including the BNL E791 rare kaon decay experiment, where the blind analysis led 
by Bill Molzen seems to have led to widespread use of blind analyses in HEP, and also one including Josh 
Klein, who has recently written a review with Aaron Roodman [Ann. Rev. Nucl. Sci. 55 (2005) 141]. So the 
question is "What do you do if you open the box and despite of all your due diligence, you see that you've 
been stupid and there is an obvious background that you did not anticipate?" This actually happened to me. 
We opened up the box and looked at the events in the signal region, and found that two events had all their 
ADC (analogue-to-digital converter) readouts zero - not even at the pedestal value, but really zero. So we 
came up with the criterion that it is OK to throw away an event after you open the box, if you would look 
foolish by not throwing it away. You should feel free to throw away an event, rather than go to a conference 
and stand up and say "I'm going to stick to my principle of blind analysis and keep this event, even though 
my read-out was not working." 

In our case, the effect on acceptance was completely negligible when we added the 'ADC read-out was working' 
cut to all events, and it was such a clear-cut case that we did not take any further action. If this was not 
the case, however, as the question points out, this can introduce a bias in a subtle way. Suppose there are 
twelve possible backgrounds that you haven't thought about, and if you cut on them each would introduce a 
5% inefficiency. Then you open up your box you find there is only one of them that actually appears that you 
haven't thought about. You add this one cut and take a 5% hit on efficiency. But if you had really thought 
about all your backgrounds in advance and decided to eliminate them, you would have had twelve hits on 
efficiency, each of 5%. So this is a source of bias one is left with, but probably it is even worse for an unblind 
analysis. In practice I have found that people doing blind analyses are very good about thinking hard about 
potential background sources precisely because they want no surprises when they open the box. 
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There is another principle I'm convinced of from seeing all these blind analyses. You should freely look at 10% 
of the data inside the blind box, especially if it's a new experiment and it's not the third data set or what 
not. If you are going to tune your cuts on 10% of data, even if you do a bad job, the bias is not very strong. 
So I would first of all try to prevent this problem of unexpected backgrounds by looking at 10% of the data; 
and second of all I think if you really can improve your analysis after you open the box (for example by better 
calibration), then go ahead and improve the analysis. 

Louis Lyons You are assuming you keep that 10% in the final analysis? 

Bob Cousins Yes, keep the 10%. There are plenty of people in the world who think you can tune on 100% 
of the data and still have valid answers, so I'm perfectly happy to tune on 10% of the data and keeping that 
10% in the final sample. 

Gary Feldman I just wanted to add to Bob's comment that Josh Klein and Aaron Roodman have recently 
written a very nice paper on blind analysis and in it they have a great line which says "Doing a blind analysis 
is not an excuse for publishing a wrong result." Their recommendation is if you find a problem once you've 
opened the box, fix it and then just explain in your paper what you did. 

Louis Lyons There's one blind analysis that I recently heard about and that's from the TWIST experiment 
at TRIUMF. They are doing a precision measurement to determine the value of a parameter by comparing 
their data with Monte Carlo simulations with different values of the parameter. They blind the value of the 
parameter used in the Monte Carlo experiment. So they can look at their data as much as they like and see 
if there any problems there because it's the Monte Carlo parameter that's blind. That seems quite a nice 
technique. 

Bangalore Sathyaprakash I'm part of the LIGO scientific collaboration looking for rare events in our 
gravitational wave detector. To cut down the background, we look for coincidences within a certain time 
window - when there is an event in one of the instruments, we look for an event in the other instrument. After 
opening the box, we later discovered that one particular event was associated with an aeroplane flying over 
the instrument. Now, who could have thought an aeroplane-veto beforehand? So it was very hard. So I'm 
very heartened to hear that the advice that we should not just do blind analysis blindly. When you open the 
box, if you find something funny, just go ahead and allow for it in your further analysis. 

Rajendran Raja The dangers of a blind analysis far outweigh its benefits since while you are blinded you 
are not monitoring the data in the blind box. Any loss in objectivity in an unblind analysis can be overcome 
by having simulators that model the data well and using the simulators to set the cuts. If DO had been looking 
for the top quark blindly, we'd still be looking for a 65 GeV top quark. 

Byron Roe I agree with Raja that one should be cautious about using blind analyses. I know that we have 
a minority opinion on this, but to me blind analyses are very useful when you don't know what to do with 
the data to give you a positive result for the parameters of interest. That is, an unconscious bias will not be 
able to bias the data to give you a positive result. The blind experiment I'm in is MiniBooNe, and in that 
experiment, you do know what to do. I think that diminishes greatly the value of blindness. 

Now at breakfast Gary Feldman was pointing out there is a second problem called the stopping problem where 
you keep going until you've got an answer you like and then you stop looking for corrections. That certainly 
is a point to be worried about but you have to balance against that the problems that you introduce in your 
analysis by having things blind. Surely you can always correct it afterwards, but it certainly is not such a 
great idea if you can do the analyses correctly in the first place. 
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Louis Lyons OK, so maybe we move on to another question. Jerry would you like to choose a topic? 

Jerry Friedman I guess the message I get from this discussion of blind analysis that it's good to think 
outside the box! 

There were a number of questions about machine learning, mainly about variable selection that can be dealt 
with rather quickly so I'll just try to give short answers to many of them, and some of them were the same. 
There were a couple of questions about variable selection and whether there are well understood techniques 
for selecting subsets of variables. The answer to that question is 'yes' but the question should be whether 
there are good techniques for variable selection. Variable selection techniques fall into two categories of niters 
and integral. With niters, before you apply whatever machine learning procedure you are going to use, you 
apply a different procedure to filter out bad variables before you run the machine learning procedure. This 
is often fast, but the problem is that the criterion you are using to select the variables is not the machine 
learning procedure that's going to use them, and so you may filter out useful variables. An example I have 
seen here is where you look at the power of each variable one at a time and filter out those appearing to be 
weakly related to the outcome variable. The problem is that a variable may not be strongly related by itself, 
but in combination with others it may have quite an effect. So the best way to do variable selection is in the 
context of the procedure that is going to be using the variables. I discussed this a bit in the techniques that 
I talked about during my talk where you actually get the relevance of the variables as used by the procedure 
that was trying to do the learning. Then you could filter out the ones that the algorithm said it didn't need. 

There was another question about using many variables when you are suspicious that your Monte Carlo may in 
fact not describe the experiment; so maybe you should use less variables rather than try to use more variables 
that attempt to capture more features to do the discrimination between signal and background. I'm certainly 
sympathetic to the fact that the Monte Carlo may not be exactly correct. This is a common problem even 
when you have actual data. We call it non-stationarity in statistics and concept drift in the machine-learning 
literature. You take data at some time, you build a model that can describe that data rather well and you can 
cross-validate it. But then you apply it in the future and it doesn't work very well because the relationship 
between the variables has simply changed - you don't have the same system any more. There's been some 
work on that, but it's very hard and nothing is really satisfactory. In all these machine learning techniques, the 
presumption is that your training data is a random sample from the population of the future predictions. If 
that's not the case there's really not a lot you can do. You can try and over-regularise, because regularisation 
implies not fitting your data as well as you can. There are two reasons for doing this. One is because the data 
is random and randomness can lead you astray. That's the kind of thing statisticians deal with. Then there 
is the situation where the data has simply changed and again a solution to that is not to trust it too much, 
don't fit it quite so strongly. But systematic ways of doing that in the presence of concept drift are really not 
well developed in the machinery described in the literature. 

There was one question on the Kolmogorov-Smirnov method for the goodness of fit test for multi-dimensional 
data. I was amused by that, well actually nostalgic, because as a young physicist it was that problem that 
got me interested in statistics. I realised back then that it was an important problem so I started to try and 
solve it. That led me into the statistics literature and I said "Hey this is pretty interesting". So that's how I 
got into statistics and I never left. At the last meeting I talked about general multi-variable goodness of fit 
testing and a procedure for doing that based on machine learning procedures. That's in the PHYSTAT2003 
proceedings. Actually, the first statistics paper I ever wrote came out of this problem. It is published in the 
Annals of Statistics, and had in its title "Kolmogorov-Smirnov test in high dimensional data". It's around 
1989-1990 Annals and if you look plus or minus a year in those you'll find a multi-variable generalisation of 
the K-S test and multi-variable generalisations for other goodness of fit tests like the Wald-Wolfowitz. You 
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cannot straightforwardly extend K-S tests in high dimensions in the obvious way using the multi dimensional 
CDF. That doesn't work at all because of the curse of dimensionality. The CDF of the joint variables would 
tend to realise only two values (either 0 or 1) because it's the number of observations that are dominated 
by whatever point you are considering in the high dimensional space. You tend to dominate very few points 
simultaneously in all of the dimensions. 

Are there any other machine learning questions? I thought Question 11 was kind of interesting. You have a 
system where you know that the target function can only be a function of a certain set of variables, like the 
matrix element technique talked about in the question. Since you know all of the variables that the target 
function could possibly depend upon, is there any value in constructing new variables that are functions of 
those variables and extending the variable set? The answer is 'yes'. The reason for this is that all machine 
learning procedures have some functions that they are good at learning and some functions that they are 
bad at learning. When you add the new variables, you change the function. I tend to try and understand 
things sometimes by considering extreme cases. As an example, suppose that the background was on a two-
dimensional ball and the signal is on a larger ball surrounding it. It's only a function of those two variables. 
Given a perfect procedure those two variables would separate perfectly. But given finite data and an imperfect 
procedure (and all procedures are imperfect), if you added the variable which is just the sum of the squares of 
the two and put that into your machine learning algorithm you'd do a whole lot better. It would ignore x\ and 
x<i and just use x\ + x\. So the answer to that is 'yes' and the best way to do it is to use knowledge about the 
problem. If you use a technique based on trees that are not sensitive to lots of irrelevant variables, then you 
can feel free to add many derived variables if you have any suspicion at all that they might be useful. Then 
the natural variable selection technique of tree-based procedures will weed them out if they are not good, but 
include them if they are. 

Finally, concerning the question on the James-Stein estimator. I guess I would answer that with a question: 
"What on earth is wrong with biased estimators?" Accuracy is an important thing, and if the lack of accuracy 
comes not so much from bias but from the variance, it is still lack of accuracy. If you can get a much more 
accurate answer by allowing a little bit of bias, I just don't see the downside. 

Louis Lyons I was just going to say, maybe not every member of the audience knows about James-Stein 
estimators. So could somebody provide us with a two sentence explanation of James-Stein estimators? 

Bernard Silverman James-Stein simply says this: If you are estimating a parameter of a large number of 
dimensions, then shrinking it back towards zero will give you a more accurate estimate than simply making it 
equal to the data. James-Stein in fact works with about four or more dimensions, but if you had thousands 
of observations - suppose you had a vector of a thousand parameters and you had one observation on each 
parameter - it's pretty obvious that it's much better to shrink the observations than simply to let them be 
equal to the parameters. 

I want to add something to what Jerry said about Question 18 which is very interesting. It is not about 
James-Stein estimators as such, but to note that the discussion around this question is an example of reca
pitulating discussions that have gone on in statistics before. The objections raised in Question 18 are what 
people said when the James-Stein estimator was originally suggested, and so don't be surprised or worried if 
you're alarmed by issues which statisticians have been alarmed at before. The thing to bear in mind is that 
we may have thought through some of them already. 

Jerry Friedman There are lots of other shrinkage estimators that you can probably use, such as ridge 
regression, and lasso regression that I mentioned in my talk. Those are all shrinkage estimators and in gen
eral for prediction as opposed to estimation, shrinking is almost always a lot better than selecting variables. 
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Variable selection is also a shrinkage estimator by the way; you just shrink some of the coefficients of the 
variables to zero. 

David Cox The mathematically peculiar thing about the James-Stein estimator is that there is an apparent 
gain if you shrink towards anywhere. You've talked about shrinking towards the origin, which is natural, or 
generally to some linear space represented by a regression. If you shrink towards that, you can view that as a 
kind of empirical Bayes, even though it is not explicitly formulated in that way. The mathematical paradox 
or semi-paradox about it is that you may shrink towards anywhere you like, but you won't gain very much. 

Going to the unbiased estimates, I can see only one situation in which unbiased estimates are particularly 
compelling. That would be if you had a lot of data in sections and you had a parameter that you were 
interested in for each section. You analyse each section of data separately and you get an estimate of that 
parameter and then you put those estimates into some linear representation. Then biasing the estimates would 
be a systematic error that persisted through the whole analysis. 

Jerry Friedman But could you combine the data and do a general analysis with the shrinkage? 

David Cox Yes, but in some contexts it is both easier but also I think more insightful to proceed stage by 
stage and you can see, as it were, what's happening in each bit of the data first before you put it into some 
big system. 

Bob Cousins I'll just make one point that the way bias is usually expressed is in terms of a mean, and that 
is a metric-dependent statement. The most common bias we learn about in freshman's physics class is to take 
a sample variance and correct by n/(n — 1), which is to correct for the known bias in the maximum likelihood 
estimate. This gives a non-biased estimate for the variance but the RMS is biased. I think that for historic 
reasons it was probably defined that way. Fred James has suggested that if you are going to worry about bias, 
you should consider trying the median instead of the mean, because the median is independent of metric. 

Jerry Friedman One last thing is that Bayesian techniques seem to be popular in Particle Physics, and all 
Bayesian estimates are shrinkage estimates. 

Steffen Lauritzen Just to add to the number of opinions, what would worry me about the James-Stein 
estimate is certainly not the bias (and in that sense I agree completely with the rest of the statisticians) but 
rather the lack of invariance on changes of units and scale. I think that if I was a physicist, this would send a 
chill down my spine. 

Kyle Cranmer I'd like to address this question and the physical context in which I looked at it, and I ran 
into exactly these changes of scale issues and funny things like that. We are looking at super-symmetry and 
what we would do in that case is that we'd measure masses of 10 or 12 particles, something like that, and the 
idea that we'd then shift all the masses from what we actually measured to stick into some other calculation 
seems really bizarre at first. 

I'd like to briefly extend the question as if what we have really is some fundamental theory that might have a 
lot of parameters like a super-symmetry with 105 parameters and they predict the masses of these particles. 
Then we'd measure the masses of those particles. We'd be using the James-Stein part to try and improve our 
estimator of the masses but then back propagate that to try and get the parameters of the more fundamental 
theory. I'm wondering in that more extended context - if that made any sense - are there any more things to 
worry about? It's a sort of two step procedure. 
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Jerry Friedman There are always plenty of things to worry about. 

David Cox Could I make a couple of comments about the bias issue? One is the issue of n — 1. Of course it 
doesn't matter in one set of data but if you have variance being built up from various different sources which 
you think have about the same variability, then it would matter for the same reason that I indicated before. 

The other point is that empirical Bayes estimates are typically shrinkage estimates, but not necessarily. If you 
do empirical Bayes and allow priors with very long tails, highly non-Gaussian, then under some circumstances 
empirical Bayes can be anti-shrinkage. It can take relatively extreme observations and push them further out 
rather than pull them closer in. One doesn't often see that, but certainly mathematically that's the situation. 

Harrison Prosper I think our obsession with bias is really historical. In the old days it was much simpler 
to have each experiment do their analysis internally and then provide some summaries of what they have done. 
In that circumstance of course you'd like to have the summaries be such that you can combine them linearly 
and have an unbiased answer. Today we have 2, 3 Gigahertz machines and thousands and thousands of CPUs 
all over the planet. If ever we got to the point where we'd be willing to publish our data in some form that 
could be usable by other people, we could then do what Jerry suggests, which is that you do a large analysis 
of all these data and the whole issue of whether the thing should be unbiased becomes moot. 

David Cox There's also of course the connection indirectly with Question 6. It seems to me a particularly 
important question and that's headed "Bayesian treatment of systematic uncertainties" because the terminol
ogy bias tends to suggest that a biased estimate is the same as one with a systematic error and that in some 
sense is misleading. Systematic errors are surely very important and there is a lot of concern in many fields 
that conventional statistical analyses, largely whether they are Bayesian or frequentist, deal with the errors 
that arise out of the random variations in the data, not out of any systematic errors in measurement. Bias 
from them is assumed eliminated by design. It is a strength of the Bayesian treatment that if you can put a 
reasonable prior on these systematic errors, then of course they can be incorporated into a fuller assessment 
of error. One danger there concerns independence assumptions. 

Louis Lyons In particle physics some of the systematic errors come from trying to correct for biases and 
then the contribution to the systematic error will be how uncertain we were that we have allowed for this bias 
correctly. 

Bernard Silverman The question posed is quite interesting. It uses the words 'systematical errors' but 
it's trying to get at some other kind of error which is an error which is in some sense unknown. But we know 
roughly what it might be and so if I were the prophet Dennis Lindley I would say the problem with the way 
the question is posed is that the last line isn't particularly correct. It says "I'd like to know whether there 
are methods that recognise the different nature of the statistical and systematical errors". Within a pure 
Bayesian way of thinking there is no different nature between the systematical and statistical errors. That's 
the whole point. For a Bayesian there is only one kind of randomness. Errors do not have different natures, 
they may have different origins physically, but in terms of how you model them they do not have different 
natures. That's the strength and weakness if you like of the Bayesian approach. 

Geoff Nicholls I agree that in the Bayesian inference there is just one kind of error — the modelled error, 
errors that you've accommodated correctly, the statistical error from the fluctuations, that is to say uncertain
ties due to randomness in the realisation of the data. Our Bayesian error bars measure this error very well. 
The focus in Bayesian inference is on fitting a parametric model — so model misspecification errors, biases 
caused by fitting the wrong model, are not expressed in the error bars we report. One of the things I've found 
interesting about the physicists' contribution to systematic errors is that they attempt to report them in a 



303 

rather explicit way. I like the way you often see in physics papers ±x followed by ±y, the second being an 
attempt to quantify uncertainty due to variation in the model. You can formalise this model-error by fitting 
a larger class of models, but that often isn't computationally feasible. So the physicists' approach of simply 
having a go - considering at least the obvious and physically important modes of model variation - is a lot 
better than simply ignoring the problem. 

Rajendran Raja I would like to speak about the distinction between the systematic errors and the statisti
cal errors. In an experiment there are quantities which have a certain frequency of occurrence. Some of them 
are longer lived than others. So depending on how long the experiment lasts, some things will be systematic. 
For example, if CDF lasted a hundred years the luminosity error will be statistical because the luminosity 
errors would change many times during that time, but if it lasted a few years the error on the luminosity will 
be systematic because it will have one value during that interval of time. That's something that I haven't 
seen discussed, as to when errors become systematic as opposed to statistical, depending on the timescales 
involved. 

Louis Lyons Can I encourage members of the panel to express a view on Question 2, about parameter 
intervals? When we estimate some parameter and get some range for the parameter, what properties would 
we like these intervals to have? Has anybody got an opinion on that? 

Bernard Silverman They should have the properties they are claimed to have! If they are confidence 
intervals, they should have frequentist coverage. 

Louis Lyons OK but we could widen the question a little bit so it didn't necessary say confidence intervals 
but rather any intervals. Is coverage an overriding feature? How unhappy would we be about the method 
that gave empty intervals or sometimes very very short intervals? What should we aim to do when we are 
investigating methods for producing confidence intervals? 

David Cox Assuming you are using a reasonably high level of confidence or posterior probability or what
ever, any true value should lie within the interval most of the time - that would be my answer. Secondly there 
is the issue that in most cases, I think one wants not intervals but upper limits and lower limits separately. 
For instance the Poisson problem is very clearly a situation where you can formally do a good job for the 
upper limit, but perhaps all you could possibly say about a lower limit is that it could perfectly well be zero. 
So there's that aspect. 

No empty intervals? Well think one must accept empty intervals, in certain situations, because if the confi
dence interval, or a posterior interval, is a list of those parameter points that are reasonably consistent with 
the data and the model, the answer may be that no value is consistent with the data. 

Then there is a complementary problem where the confidence set is the whole space, and any parameter value 
is consistent with the data. Again you are making a statement that's trivially true. I don't see the difficulty 
with that as a formalization of what the data imply. 

Bernard Silverman Would you be worried by a very short interval? There is a danger here; you could 
have a very short interval because the model didn't really work and there was only a very small parameter set 
that fitted, so it's a sort of limiting case of the empty interval. That's scary because people would interpret 
that to mean we have estimated this parameter with very great accuracy, where what we've actually said is 
the model doesn't realty fit but there is a very small range where it just about OK. 

David Cox Yes but there's qualitative prior knowledge involved in judging what is small and that prior 
knowledge has to be used, if only informally. 
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Nancy Reid I think there's been a little bit more emphasis than necessary in the physics literature on 
exact coverage, that seemed to be bordering on an obsession! Coverage refers to this property in the long run 
over a whole lot of experiments and something that's been argued about in statistics over many many years is 
how many of those conceptual experiments are relevant to the one you have. That was laid out most clearly 
by David in 1958 with the two measuring instruments problem. I think that, in some cases, you are almost 
duplicating the two measuring instruments problem, by using the Neyman construction to get intervals that 
are guaranteed to cover in such a wide variety of situations that you're losing for the particular situation that 
you are going to use it. There's lots and lots of literature on this and it's not an easy literature to study but 
I think you'd be well advised to consider a little bit more the more pragmatic view that's been expressed by 
David and Bernard. It came up in the question on blinding: "If I look at the data then I'm going to ruin my 
coverage." But that coverage refers to a whole lot of perfectly carried out experiments where nothing weird 
happened, and you have a different experiment where something weird has happened, so that coverage is not 
really relevant in that situation. There's obviously a tension because every experiment is in some sense unique 
but we are talking about statistics so we have to average over something. So there is a tension between the 
two and it's not easy to resolve, but I don't think the right resolution is to average over everything. 

Sergei Bityukov I want to express my opinion about confidence intervals. If we have a procedure 
which allows us to construct intervals, we can also construct the confidence density, and that contains more 
information. 

Bruce Yabsley Just on the question of empty intervals and why we might be concerned about them: It's 
my impression part of our problem with statistical methods is that we use them for non-statistical purposes as 
well as for statistical purposes. You put a statement in a paper, and rather than just saying "Our confidence 
interval is such and such" or "Our upper limit is such and such", it tends to be overloaded with what I'm 
going to call (in a non-technical sense) sociological claims like "We have observed something" or "It's not 
there". This creates a serious problem with upper limits [in the case where there's a small excess over the 
expectation for background only] because if we are not absolutely confident that we've seen a signal, people 
want to quote an upper limit, even if they're quoting that limit at 90% confidence, which is the convention 
in the field. So you might have a weak signal (where a 90% interval in a unified approach excludes zero, 
but (say) a 99.7% interval includes it) but still want to quote a 90% upper limit: we return to this business 
of flip-flopping that Gary Feldman and Bob Cousins fixed. People throw away the solution, i.e. a unified 
approach to interval-setting, because they're nervous about what a two-sided interval would imply. And so 
you get a situation where something has a perfectly clear statistical meaning — 90% of the time the real value 
will be in the interval and 10% of the time it won't — but people aren't willing to stop there. So returning 
to the case of an empty interval, it will be taken as saying "We're confused, maybe our model was wrong or 
maybe the data is discrepant or we just don't know." I think it's very hard to imagine a physics collaboration 
actually writing that in a paper, even though it might be perfectly valid as it stands. 

Bob Cousins I think my opinions are pretty well advertised on most of these so I'll just comment on the 
shortness issue. For two-sided intervals, 'shortness' of course is a metric-dependent statement. I think the 
way you want to look at it is that the coverage of confidence intervals is just a statement about one type of 
error and you do need to worry about the other type of error. So you want the most powerful intervals against 
alternative hypotheses. People know that this is not generally possible for all alternative hypotheses. 

For a discrete observable you can make the acceptance region shortest in the construction direction, but that 
is not necessarily the same as in the parameter direction. Crow and Gardner did this many years ago, but it 
seems not to be popular. 
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Louis Lyons I think that actually points to a difficulty if you are trying to decide between which of two 
methods you are going to use, before you look at the data of course, and you want a method that gives intervals 
which are not too long but not too short. It's not quite obvious what criterion you would use to optimise the 
choice of interval. 

David Cox In the case of empty intervals the data are sending the message that something is wrong and 
of course if at all possible the source of the confusion must be identified. 

Bob Cousins I'll just repeat something I said at the first Confidence Limits Workshop at CERN in 2000. 
I am not sure that statisticians are aware of it, but in Particle Physics we have a sort of thing that goes 
under the name of robustness. The Particle Data Group does lots of averaging of several measurements of 
the same parameter. When these are inconsistent with each other and have a large \2: then the error on 
the weighted average is not determined simply by error propagation, but is scaled until the x 2 P e r degree of 
freedom becomes something reasonable like unity. Of course it's like all robustness things in that it's kind of a 
black box that may or may not fix the actual problem, because you don't know what the actual problem is, or 
otherwise you'd fix it. In a 1999 paper Mike Chanowitz wrote on Higgs mass constraints, the input data from 
LEP and SLAC had some discrepancies, so he suggested blowing up the errors in an analogous way before 
producing a combined constraint on the Higgs mass. 

One thing I thought was at least worth exploring five years ago, and I don't know it has ever been done, 
is to take that error on the background we were talking about and blow it up until there is a reasonable 
probability that you got the data you got. Then you quote an upper limit, including that larger error on the 
background. As with the PDG method, you don't really know if this is solving the problem, but I think it is 
worth exploring. 

Louis Lyons Maybe at this stage we could ask members of the audience if any of them wanted to comment 
on any of the issues here. 

Bangalore Sathyaprakash This is really a question rather than a comment. We are looking for signals 
that are weak and rare. When you're really not expecting very strong signals there is probably not much 
point in debating about which methods we follow; frequentist or Bayesian, does it really matter? We would 
certainly learn a lot from particle physicists who have had this experience for generations so I would like to 
see some discussion of that. 

What I'm asking is this: let's suppose we are looking for a specific type of signal in a time series. We could 
follow either a frequentist approach and do an analysis wherein we try to evaluate the likelihood and either 
claim a detection or set an upper limit. Alternatively, you could follow a Bayesian approach and assume a 
prior - we know nothing about the prior - and then follow that procedure and get an upper limit. These two 
upper limits are different but does it really matter? Should we really quarrel about it? Should we not worry 
about detecting rather than setting upper limits? 

Bob Cousins I've been talking about this with my colleagues at the Large Hadron Collider. There has been 
an enormous amount of interest over the last fifteen years or so, including the Confidence Limits Workshops, 
on how we measure upper limits. I do look forward to having signals to worry about. We can take as one 
example the statistics issues at the TeVatron with the discovery of the top quark, and how CDF and DO 
measure its mass. I'll also just mention that Gary Hill gave a talk here on the difference between optimising 
for upper limits and for discovery. 

Louis Lyons I wanted to add that at the Fermilab conference in 2000, Ilya Narsky investigated what you get 
for upper limits by analysing the same data, using the number of events seen and the expected background, 
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with a whole series of different methods. He's got an interesting plot that compares all these different methods. 
What becomes clear is that you can get very different upper limits by varying your technique and in some 
cases you can get variations by a factor of 10 or more, especially when the number of observed events is less 
than the estimated background. So it's a very good idea to choose your method before you look at the data, 
rather than tuning up the method that gives you the tightest or the weakest upper limit, depending on your 
feelings about things. 

Harrison Prosper I'm one physicist who is not quite so obsessed with coverage. Certainly I'm very happy, 
and I also insist, that if one invents a method one should at least see whether it works well on average in 
some ensemble. But the crucial thing to realise is that this is a hypothetical ensemble. Our real experiment 
presumably is embedded in some ensemble, but we don't know what it is. We make some assumptions, for ex
ample we assume that things are perfectly Poisson, but presumably that's not exactly true; things are Poisson 
to some degree. So I'm happy to have approximate coverage in an ensemble, which is, after all, hypothetical. 
In fact such a situation arose in a collaboration of which I'm a member. We had two analyses measuring the 
top quark mass. The question arose as to whether it was sensible to choose the better of the two answers. We 
looked at the error that was computed for each analysis and asked whether or not we should use the analysis 
that gave the smaller error. As I noted then, that means inventing some ensemble in which we decide to toss 
a coin and choose which answer to report. The point is that you can invent any number of ensembles that are 
plausible and for each of these you'll get different coverage. This is why I'm not quite so obsessed with exact 
coverage. 

Jeremy Lys We're missing out a lot here on the sociology as Bruce referred to before, when Harrison asks 
whether it is better to use one method rather than the other. You can ask "Better in what sense?" Many of 
us are experimental physicists, we know we are in competition with other people with other groups, we are in 
competition for our livelihoods in a sense, we are in competition for grants and so on and it's essential that 
we appear to be doing good physics and hence it's better to get what we call an accurate answer rather than 
an inaccurate one, so it's clearly tempting for us to change the way we define coverage for example. If you 
release the conditions of coverage and get a better answer then you might say that you should publish that 
result, maybe not. There are sociology points that arise here, that's all. 

Rajendran Raja I would like to harp back to the Durham conference which was what got me into this 
whole thing. It's not just coverage that's important, but the stability of the limit in an ensemble of similar 
experiments is also important. The degree of fluctuation of a one-sided limit is important to compute and 
quote. We had this problem when we were looking for the top quark, with CDF publishing one limit and DO 
was publishing another limit. The question was which was better. They were within 20 GeV of each other, 
but if you change the accepted sample by one event by changing the cuts slightly, the limit fluctuates by about 
20 GeV. So it's important not only what the actual value of the limit is but also what the band of fluctuation 
is. Until we see an analysis along those directions, we'll be preoccupied with the coverage, and we won't get 
the full picture. 

Bob Cousins Back to these criteria for parameter intervals, maybe I've said it 20 times but I think it's 
important that, when an interval is associated with some probability P, there exists a definition of what P is. 
For confidence intervals P is defined as frequentist coverage. Harrison's point is that you need a well-defined 
ensemble in order to define frequentist coverage, and that brings us back to points both of us made at the first 
Confidence Limits Workshop. Professional statisticians seem to go in the direction of conditioning, and that 
is something we should look at. 

The other way of defining P which I think is quite useful is subjective degree of belief. Real Bayesians, like 
Michael Goldstein at the Durham Conference, are comfortable with that P. What I have trouble with are 
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intervals in between which come out of so-called objective Bayes, where you don't know what the P is: it's not 
subjective degree of belief and it's not necessarily frequentist coverage. Therefore I think that when we use 
the machinery of objective Bayes, the P we want to teach our students to apply is the frequentist P, and then 
check that it works. Joel Heinrich gave an outstanding talk on this in one of the parallel sessions yesterday, 
using the Bayesian machinery to obtain intervals which undercovered by the criterion of frequentist P, and he 
figured out how to change priors so that the result was more consistent with frequentist expectations. This 
is quite useful, but we should make sure that our students understand that the result of all this Bayesian 
machinery is not a P which is subjective degree of belief. 

Byron Roe Improbable events do happen and sometimes your empty interval or almost empty interval tells 
you have an improbable event, even if you are confident in your parameterization. There are certainly famous 
examples, as Bob well knows. My question is really for the statisticians. Suppose you have an improbable 
distribution and by various means you really know it's an improbable distribution. Do you have any general 
ideas for what should be done to set limits on parameters? 

For example, suppose you are measuring signal plus background and you know the mean value of your back
ground well, and you get an observation which is much lower than the background. You know something 
strange has happened to you. My question is: "In this kind of situation can you make suggestions as to what 
one might want to do?" 

Unknown Get a better estimate of your background! 

Bernard Silverman This is a bit like the story about Mendel and the beans, and counting number of 
plants of different kinds in one particular experiment. If the theory is true, then you expect three of one sort 
to one of the other. Mendel's published data is at the wrong end of the x 2 distribution. In other words it 
fits far better than you would expect at random. So you could then, I suppose, reject random selection. The 
interesting thing is that you get results which appear to challenge the very randomness assumption sometimes. 
There was an explanation: it was suggested that Mendel had a gardener who was adjusting the results to 
what his boss wanted to get! Fortunately, the experiment was correct anyway but there was a little fiddling 
going on. But I think that you might look for some reason for that low value. In other words, interact with 
your data intelligently and say "Maybe we're spotting something that we weren't expecting to see, perhaps 
it's some other phenomenon". I don't think you can get a statistical answer to the question; you just need to 
know it will happen sometimes. 

Louis Lyons That brings us to coffee time, so let's close the session. Thanks to all of you who contributed 
to this session, and especially to our Panel members: David, Bob, Jerry and Bernard. 
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