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Gabriel introduced the notion of a stable torsion radical in [6]. Recall that the 
torsion radical T is stable if any essential extension of a r-torsion module is s-torsion:. 

Equivalently, r is stable if the topology it defines on any submodule N c M coincides 
with the subspace topology induced from M. Damiano and Papp [5] have shown 
that T is stable if and only if the quotient functor Q, : R-Mod -+-Mod/T preserves 

essential monomorphisms. It is well known that the Goldie torsion radica\ defined 
in terms of the singular submodule is always stable. Gabriel showed that Jn ideal 
I of the ring R has the left Artin-Rees property if and only if the torsion radical 
defined by powers of I is stable. In addition, he showed that aily torsion radical over 

a commutative Noetherian ring is stable. 
One application of this theory is to the study of essential extensions of Artinian 

modules, and more generally, to the study of essential extensions of modules of 
Krull dimension a. The torsion theoretic methods provide a strong connection 
between the class of torsion modules (generated in the first case by all modules of 
finite length) and the associated filter of left ideals. Gabriel used the theory of stable 
torsion radicals to show that if R is left Noetherian and finitely generated (as a 
module) over its center, then any finitely glenerated essential extension of an 
Artinian module is again Artinian. Chamarie and Hudry [4] extended this result to 
left Noetherian rings integral over their centers. They also showed more generally 
that for this class of rings a finitely generated essential extension of a module with 
Krull dimension a again has Krull dimension cy. This result holds for any left and 
right fully bounded Noetherian ring, as shown previously in the fundamental paper 
of Jategaonkar [Ill, using different techniques. These results were extended in [l] 
by giving necessary and sufficient conditions under which a torsion radical of a left 

fully bounded left Noetherian ring is stable. 
Brown [2] studied the following weaker condition: if ,+ is an essential sub- 

module of the finitely generated module RM (and R/Ann(Nj has Krull dimension 
cy, then so does R/Ann(M). His work motivates the introduction in this paper of 
the notion of a stably bounded torsion radical. This notion can be used to charac- 
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terize a certain class of rings which has been studied by Jategaonkar [ 131. A ring 
will be called left fully stably bounded if it satisfies Jategaonkar’s condition (x). For 

this class 01 rings ths characterization of stability given in [I ] can be extended to 
characterize stably bounded torsion radicals. (For left FBN rings a torsion radical 
is stable if and only if it is stably bounded.) 

After establishing some basic torsion theoretic results, a number of” applications 
will be given. For Noetheria.. m fully stably bounded rings, a semiprime ideal is 
localizable if and only if the associated torsion radicals are stably bounded (both 
on the left and the right). This and other conditions equivalent to localitability are 
given in Theorem 8. Specializing to the torsion radicals defined by Krull dimension, 
Theorem 9 characterizes left N-oetherian rings which are smooth in the sense of 
Brown [2] (i.e. if HN is an essential submodule of the finitely generated module 
*A.4 and R/Ann(N) has Mrull dii*tlension CT, then so does R/Ann(M).) In particular, 
any left smooth left Noetherian ring is left fully stably bounded. The theorem can 
be applied easily to give Brown’s sufficient condition for smoothness [2, Theorem 
3.21. It is shown in Theorem 10 that a Noetherian, weakly K-symmetric ring is 
smooth if and only if it is K-symmetric and fully stably bounded. It should be noted 
that there are still no examples of Noetherian rings which fail to be K-symmetric, 
so it may be reasonable to conjecture that the hypotheses involving symmetry of 
Krull dimension can be dropped. 

Throughotit the paper, R will be assumed to be an associative ring with identity 
element. Furthermore, it will be assumed to be left Noetherian. The categories of 
unital left R-modules and unital right R-modules will be denoted by R-Mod and 
Mod-R, respectively. The injective envelope of a module ,$V will be denoted by 

E(M). 
The book by Stenstrom [I 5) will be used as a basic reference for facts regarding 

torsion radicals. If r is a torsion radical (equivalently, 7 is the torsion functor 
defined by an hereditary torsion theory), then a module RM is said to be r-torsion 
if r(M) = M and r-torsionfree if 7(M) = (0); a submodule N c M is said to be r-dense 
if M/N is r-torsion, and r-closed if M/N is r-torsionfree. The associated filter of 
r-dense left ideals determines 7, since r(M) = (m E M 1 Dm = (0) for some r-dense left 
ideal D}. Using this characterization of 7, it is easy to see tha a prime ideal of R 

must be either r-closed or r-dense. 
Stenstrom [ 15, p. 1501 calls a torsion radical 7 bounded if the associated topology 

has a basis of two-sided ideals. This is equivalent to the condition that if HM 

is finitely generated and r-torsion, then R/Ann(M) is r-torsion, since if M= 

Ey_) Rm;, then nl_, Ann(m,) must contain a r-dense ideal, which implies that 
Ann(M) is r-dense. It can be shown that a left Noetherian ring is left fully bounded 
if and only if every torsion radical of R is bounded. Recall that R is said to be left 
fully bounded (abbreviated FBN when R is left Noetherian) if for each prime ideal 
R of R, each essential left ideal of R/P contains a nonzero ideal. It is important to 
note [15, Chapter WI, Proposition 3.51 that a bounded torsion radical T of a left 
Noetherian ring is completely determined by the set of r-dense prime ideals, since 



a left ideal is r-dense if and only if it contains a (finite) product of r-dense prime 
ideals. 

Given a torsion radical T, there is an associated bounded torsion radical f with 
its filter defined as follows: a left idea1 D c R is f-dense if D contains a r-dense ideal. 
Thus every f-dense left ideal is r-dense, and so ?< T since f(M) C_ r(M) for any 
module HM. Note that a finitely generated module KM is f-torsion if and only if 

Ann(M) is r-dense. Thus, in the following definition, 5 is stably bounded if and only 

if f is a stable torsion radical. 

Definition. Let T be a torsion radical of R-mod. Then T is said to be stabry bounded 

if R/Ann(M) is r-torsion for any finitely generated module KM which has an 
essential submodule NC A4 such that R/Ann(N) is r-torsion. 

An ideal Ic_ R is said to have the left Artin-Rees property if for each left 

idea1 A of R there exists a positive integer yl such that I”nA c IA. Since R is 
left Noetherian, the powers of I generate a torsion radical T by defining 7(M) - 

{m EM 1 I’%= (0) for some n>O} for any module RM. As observed by’ Gabriei 
[a), the ideal I has the left AR-property if and only if the associated torsion radical 
T, which coincides with 9 since it is bounded, is stable. It follows immediately that 
every torsion radical of R-Mod is stably bounded if and only if every idtzal of R 

satisfies the left AR-property, since [ 15, Chapter VII, Theorem 4.41 shows !hat 
every bounded torsion radical of R-Mod is stable if and only if R has the left AR- 

property. 
The following theorem characterizes stably bounded torsion radicals viz1 condi- 

tions on the prime ideals of R. If t is a torsion radical of R-Mod, then for any ideal 

I of R the ‘restriction’ z* of T to R/I-Mod is defined in the obvious way by letting 

r*(M) = s(M) for any R/Z-module M. 

Theorem 1. Let R be a left Noetherian ring, and let T be a torsion radical qf R-Mod. 
Then T is stably bounded if and only if for each T-closed prime ideal P the restriction 
of 7 to R/P-Mod is stably bounded and for each T-dense prime ideal Q there exists 
a r-dense ideal D such that PD c QP. 

Proof. If 7 is stably bounded, then it is clear that the restriction of 7 to RSMod 

is stably bounded for any idea1 I of R. Given an!/ ideal T and any r-dense idea1 i, 

let A bea left ideal maximal in the set {X~RIXflT=lT}. Then Ann(iT+14)8.-l) 

is r-dense since it contains I, and so by assumption D= Ann(Rld-l) is r-dense since 
R/A is an essential extension of (T+ A)/A. Thus Dn Tc A f7 T= IT, and so 
TO c IT. 

Conversely, assume that RM is a finitely generated essential extension of :1; and 
Ann(N) is a r-dense ideal. If Ann(M) is not r-dense, then since R is left Noetherian 

there exists an ideal I maxima1 in the set 

{Ann(Y) i Y is a submodule of M and Ann(Y) is not r-dense), 



246 J. A. Beachy 

with I = Ann(X) for some submodule X of M. The crux of the proof is to show that 
I is a prime ideal, and this follows exactly as in the proof of [ 1, Theorem I. I]. Thus 
X 2 X fl N is an essential extension of R/I-modules such that Ann(X n hr) is r-dense 
and I = Ann(X) is r-closed. This contradicts the assumption that T is stably bounded 
on R/I-Mod, and so Ann(M) must be r-dense. 0 

It is desirable to find a general class of rings in which it is not necessary to verify 
the condition on relative stability over certain prime factor rings. This is provided 
by a class of rings introduced by Jategaonker [ 13). In that paper a left Noetherian 
ring R is said to satisfy condition (r) on the left if for any prime ideal P and any 
finitely generated module RM with PC_ Ann(M), P# Ann(M) if there exists an 
essential submodule N c M with P# Ann(N). 

If R is a prime left Goldie ring, let y denote the Goldie torsion radical, defined 
for any module KM by y(M) = {m E M 1 cm = 0 for some regular element c E R ) = 

{m E M 1.4nn(m) is essential in R } . Since a two-sided ideal is essential as a left ideal 
if and only if it is nonzero, y is stably bounded if and only if Ann(M) #O for any 
finitely generated module RM which has an essential submodule NC M such that 
Ann(N) #(O). It seems reasonable to give the following definition, which is 
equivalent to Jategaonkar’s condition (z). 

Definition. The left Noetherian ring R is said to be left fully stably bounded if for 
each prime factor ring R/P the Goldie torsion radical of R/P-Mod is stably 
bounded. 

Since a left Noetherian ring is left fully bounded if and only if for each prime fac- 
tor ring R/P the Goldie torsion radical is bounded, it follows that any left FBN is 
left fully stably bounded, since the Goldie torsion radical 1s always stable. 
Jategaonkar [13] has shown that HNP rings with enough invertible ideals, envelop- 
ing algebras of solvable Lie algebras, and group rings of polycyclic-by-finite groups 
over commutative rings are fully stably bounded. 

If R is left Noetherian, then the torsion radical T is stably bounded if for each 
r-dense prime ideal P there exists a stably bounded torsion radical a such that a~ T 
and P is a-dense. To show this it is sufficient to consider a finitely generated 
uniform module R U which contains a submodule M such that Ann(N) is r-dense. 
If P is an associated prime ideal of N, then P is r-dense since Ann(N) s P. By 
assumption, P is o-dense for a stably bounded torsion radical f~ such that as7. 

Since 0 is stably bounded, Ann(U) must be a-dense, and this implies that Ann(U) 
is r-dense since 0 5 T. 

The left Noetherian ring R is said to be a left poly-AR ring if for any pair of prime 
ideals Q $ P there exists an ideal I, with Q$ IS P, scch that I/Q has the left AR- 
property in R/Q. If y is the Goldie torsion radical of R/Q-Mod, then for any y- 
dense prime ideal P the ideal I given by the definition defines a stably bounded tor- 
sion radical of R,‘Q-Mod for which P is dense. It then follows from the general 



remark in the previous paragraph that y is stably bounded. This provide\; another 

proof of [ 13, Proposition 4. I], which shows thar a left Noctherian, left poly-AR ring 

is left fully stably bounded. 

Theorem 2. If R is left Noetherian and left fullv stably bounded, then the for’lowing 
conditions are equivalent for any torsion radical T of R-Mod: 

(I) The torsion radical f is stably bounded. 
(2) For any ideal T and anv r-dense ideal I sf’ R, there exists II r-dense ideul D . 

such that TD C_ IT. 
(3) For unv r-closed prime ideal P and an Y 

r-dense idea; D such that PD C_ QP. _ 

T-dense prime ideal Q, there txists a 

Proof. The proof differs from that of Theorem 1 only in the last step, in obtaining 

a contradiction from the following: HX is a finitely generated faithful module over 
the prime ring R/I, the submodule Xn N is essential, Ann(Xn N) is r-dense and 

I is r-closed. By assumption R is left fully stably bounded, which forces 

Ann(X nh’) = I, a contradiction since no proper ideal can be both r-closed and T- 

dense. III 

In practice condition (3) of Theorem 2 is often easy to verify. The follow ing cor- 

ollary is an extension of a result of Brown and Lenagan [3], who obtained ttie result 

for left fully bounded rings. Note that a more general result holds. Assume that N 

is left fully stably bounded and that every left primitive factor ring is Artinian. Then 

every finitely generated essential extension of a simple left R-module has finite 

length if and only if for each maximal ideal Q and each non-maximal prim{? ideal 

P there exists an ideal D such that R/D is left Artinian and PD c QP. The Jacobson 

radical of R will be denoted by J(R). 

Corollary 3. If R is left fuh’y stably bounded and each simple feft R-module is 
finitely generated over a central subring of R, then nT_, J(R)” = (0). 

Proof. It is well known that nF_, J(R)” = (0) if every finitely generated es!sential 

extension of a simple left R-module has finite length. This is equivalent to the ;ondi- 

tion that T is stable, where r is the torsion radical generated by all modules ot’ finite 

length. (By definition a left ideal D is r-dense if and only if R/D has finite length.) 

1 f HS is a simple module generated by x1, . . . , . Y, over a central subring of w’. then 

Ann(S) = n;_ , Ann@;), and from this it follows that if KM has finite length then 

SO does R/Ann(M). This observation shows that T is bounded, and so verifying con- 

dition (3) of Theorem 2 will imply that 5 is staible. 
Let P and Q be prime ideals such that R/Q is Artinian, and consider the ideal 

P/QP. This is Artinian as a left ideal of R/QP, and so it follows from Lemma 3 

of [3] that R/D is Artinian for D = r(P/QP) = (a E R 1 Pa c QP). Then PD c QP and 

the required condition holds. i_l 
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Corollary 4. Let R be left Noetherian and left fully stably bounded, and let I be an 
ideal of R. Then I has the left A R-property if and oniy if for each prime ideal P 
with Pp I there exists an integer n > 0 such that PI” c IP. 

Proof. It‘ I has the left AR-property, then for some rz we have PI” c I’?3 PCIP. 
Conversely, let T denote the torsion radical defined by powers of I. Then a pr;me 

ideal P is r-closed if and only if Pg I and r-dense if and only if I c P. If the stated 

condition holds, then Theorem 2 shows that T is stably bounded, and so I has the 
left AR-property. D 

The torsion radical T of R-Mod will be called symmetric if there exists a torsion 

radical 0 of Mod-R such that +B/A) = a(B/&) for any ideals A G Bc R. In this 

case the pair (7,~) will be c.llled a symmetric pair. This notion was introduced by 

Jategaonkar in [9], where the term ‘biradical’ was used. The term ‘symmetric’ is 

consistent with the terminology which has since been adopted for Krull dimension. 

Jategaonkar observed that over any Noetherian ring, a left and right Ore set defines 

a symmetric pair of torsion radicals. It should be noted that over a left Noetherian 
left fully stably bounded ring any symmetric torsion radical is stably bounded, since 

[I, Proposition I.41 shows that the conditions of Theorem 2 are satisfied. 

The pair of torsion radicals (r, a) of R-Mod and Mod-R, respectively, will be 

called weakly symmetric if the set of r-dense prime ideals coincides with the set of 

o-dense prime ideals. For a left Noetherian ring this occurs if and only if the set of 

all r-dense ideals coincides with the set of all o-dense ideals. For any ideal I the tor- 

sion radicals on the left and right defined by powers of I form a weakly symmetric 

pair, which need not be symmetric. In addition, if S is a semiprime ideal of R and 

‘d (S) denotes the set of regular elements of R, then the torsion radicals defined by 

‘d(S) are weakly symmetric since an ideal is ‘{@)-dense if and only if it contains 
an element of l,:(S). 

Finally, let T be an ideal of R, The torsion radical T of R-Mod is said to be in- 

variant under T if for each r-dense left ideal D, the left ideal TD is r-dense in T. 
If T is invariant under every ideal of R, then it is said to be ideal invariant. This 

definition, together with some comments, can be found in [I]. 

Lemma 5. Let R be a Noerherian ring, and let 7 and CT be torsion radicals of R-Mod 

and Mod-R, respectively. Then (T, o) is a symmetric pair if and only if (T, CT) is a 
weakly symmetric pair and both 2 and 6 are ideal in variant. 

roof. First, assume that (r, a) is a weakly symmetric pair such that r^ and 6 are ideal 
invariant. Let A c B be ideals of R such that R B/.4 is r-torsion, and let 

D= Ann(@/A). Since B/A is finitely generated as a right R-module, the 

generators can be used to embed RR/D in a finite direct sum of copies of H B/A, 
which shows that D is r-dense. By assumption, D is a-dense, but then B/DBR must 

be &torsion since 6 is ideal invariant. It follows that B/AH must be o-torsion since 



it is a homomorphic image of B/DBK and 6fr CJ. Similarly, it can ba: shown that if 
B/A is a-torsion, then @/A is r-torsion. 

Conversely, assume that (T, a) is a symmetric pair. Let D be is, f-dense ieft ideal, 
and let T be any ideal of R. Then D contains a r-dense ideal D‘, and to show that 
f is ideal invariant it suffices to show that RT/TD’ is ?-torsion. By assumption D’ 
is o-dense, and this implies that T/TDi is a-torsion, SO by assumption K T/TD’ is 
r-torsion. As in the first part of the proof, T/TD” is -f-torsion since T/TD’ is finitely 
generated on the right. Similarly, it can be shown that 6 is ideal invariant. I-i 

Proposition 6. Let R be a Noetherian, fully stably bounded ring, and let (T, CT) be 
a weakly symmetric pair of torsion radicals. Then the following conditions are eqrti- 
valen t: 

(1) Both T and o are stably bounded. 
(2) Both f and 6 are ideal invariant. 
(3) The pair (T, o) is symulletric. 

Proof. Let T be any idea1 of R and let I be a r-dense ideal. Since T/TI k finit& 
generated on the right, it follows as in the previlous lemma that TI is T-c’.ense in T 
if and only if Ann(,T/TI) is r-dense. Using the fact that (5, a) is a weakly symetric 

pair, this shows that ? is ideal invariant if and only if 0 is stably bounded. It follows 
easily that (1) e (2), and then (2)e (3) by the preceding lemma. L? 

If S is a semiprime ideal of the left Noetherian ring R, then the set 1 (S ) of 

elements regular module S defines a torsion radical T of R-Mod as follo\ys: 
T(M) = {m E A4 1 for each r-E R there exists CE r:(S) such that crm = O), for an> 
module RM. It is well-known that T is the largest torsion radical for which R/S is 
torsionfree, and so it coincides with the torsion radical cogenerated by E(R/S). A 
r-torsion module will be said to be ‘d’(S)-torsion, etc. The idea1 S is said to be left 
localizable if ‘6 (S) is a left Ore set. The followi:Jg lemma holds in a more general 
setting than stated. The proof requires only th&t S is finitely generated as a right 
idea1 and that the second layer of E(R/S) is tame (see [13] for the necessary 
definitions). 

Lemma 7. Let R be a Noetherian, fully stably bounded ring, and let S be a serrii- 
prime ideal of R. Then S is left localizable if and onlv if for each / (S )-dense yrirne 
ideal P there exists a / @)-dense ideal D such thar DS C_ SP. 

Proof. Assume that S is left localizable. As noted in [l] this is equivalent to thl: con- 
dition that S is invariant under the torsion radical defined by / (S). Thus if I is ;I 

‘l(S)-dense ideal, then SI is z(S)-dense in S. Since R is Noetherian, S is finit& 
generated as a right ideal, and it follows that D = Ann(S./SI) must be / (S)-6cIlsc. 

Conversely, assume that the given condition holds. Using the localization 
criterion in [IO], to show that S is left localizable it suffices to show that Q = 
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(XE E(R/S) (Sx=(O)) is a ‘d (S)-closed submodule of E = E(R/S). Suppose not, and 

assume that W is a finitely generated submodule of E such that U/Q is Y W-torsion. 
By choosing a maximal annihilator ideal of U/Q it is possible to assume without 
loss of generality that U/Q is a uniform module and P = Ann( U/Q) is a prime ideal. 
It follows from [13, Lemma 2.41 that WQ is isomorphic to a submodule of E(R/P), 
and therefore P must be x(S)-dense. By assumption there exists a (6 (S)-dense ideal 
D sucn that DS C, SP. Thus DSU C, SPUc SQC (0), and so SU = (0) since E is 
‘h’(S)-torsionfree. This shows that U c Q, a contradiction, so E/Q is % (S)-torsion- 
free. C 

Theorem 8. Let R be a Noetherian, fully stably bounded ring, and let S be a semi- 
prime ideal of R. Then the following conditions are equivalent for the torsion 
radicals T 

(1) The 
(2) The 
(3) The 
(4) The 

in R-Mod and T’ in Mod-R defined b_v ‘6(S): 
ideal S is localizable. 
torsion radicals T and if are stably bounded. 
bounded torsion radicals f and 7 are ideal invariant. 
pair (7, T’) is symmetric. 

Proof. It follows from Proposition 6 that conditions (2), (3) and (4) are equivalent. 
Since the conditions hold on both sides, condition (3) is equivalent to the conditions 
necessary in Lemma 7 to show that S is left and right localizable. Thus condition 
(1) is equivalent to condition (3). Kl 

The Krull dimension of a module RM will be denoted by JM I. It is defined 
recursively, as follows: if M is Artinian, then (M) =O; if (r is an ordinal and 
1 M 1 K a, then 1 M I= cx if there is no infinite descending chain M = MO 2 MI 2 l . . of 
submodules Mi such that 1 Mi_ I /MiI 4:a for i= 1,2, . . . . Further details can be 
found in [8]. it can be shown that any Noetherian module has Krull dimension. For 
a given ordinal ar, the set of left ideals DE R such that I R/D I <a defines a topology, 
and the associated torsion radical of R-Mod will be denoted by r,. 

Using standard terminology (see [7], for example), a Noetherian ring R is called 
K-symmetric if ( R B/A I = ) B/AH I for any ideals A c B of R. Equivalently, for each 
ordinal cy, the corresponding torsion radicals T, of R-Mod and ri of Mod-R form 
a symmetric pair. Similarly, R is called weakly K-symmetric if 1 RR/PI = ) R/PH ( 
for all prime ideals P of R, that is, if for each CI the pair (ru, 7;) is weakly sym- 
metric. The ring R is said to be ideal invariant on the left if for any ideals T and 
I of R, 1 It R/Z 1 <a implies 1 H T/TI j <GC. This is just the condition that fu is ideal 
invariant for each cy. Finally, Brown [2] calls the ring R left smooth if 7, is stably 
bounded, for each a. 

Theorem 9. Let R be a left Noetherian ring. Then R is left smooth if and only if 
R is left fully stably bounded and for each pair of ideals I, T such that 1 H R/I I< CI 

there exists an ideal D such that I RR/D I< a and TD c IT. 



Proof. Since R is left smooth if and only if T,, is stably bounded for each ordinal 
CT, the theorem will follow from Theorem 2 after it is shown that a left smooth ring 

is left fully stably bounded. Given a prime ideal P and a finitely generated module 
RM with P=Ann(M), let 1 RR/PI =cy. If N is an essential submodule of M, Iret Q 
be an associated prime ideal of N. If Pq Q, then 1 K R/Q 1 <u, and so Q is r*-dense. 
By assumption r, is stably bounded, and so this gives a contradiction. It r‘ol’[ows 
that P= Ann(N) for any essential submodule of M, and so R is left fully stably 
bounded. 0 

Theorem 10. Let R be a Noptherian ring. Then R is smooth and weakly K-symmetric 
if and only if R is fuii_v stably bounded and K-symnletric. 

Proof. If R is smooth, then it is fully stably bounded. It then follows from Proposi- 
tion 6 that R is K-symmetric. 

Conversely, Proposition 6 shows that if R is fully stably bounded and h’- 
symmetric, then R is smooth. Cl 
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