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PREFACE TO THE 2011 EDITION 

0.1 WHY WE CREATED A NEW EDITION 

Technology moves at a dizzying pace; however, progress can actually seem quite slow in 
any area that we are deeply involved in. Conference proceedings are filled with incremental 
advances over previous methods, and entirely novel (and successful) approaches to speech 
and audio processing are rare. But a lot can happen in a decade, and it has. In addition to 
quite new methods, there are also many ideas that had not really been refined enough to 
show progress in the 1990s, but which now are in common use. For instance, Maximum 
Mutual Information methods, which were developed for ASR many years ago and were 
briefly described in the previous edition of this book, was significantly refined in the last 
decade, and the newer versions of this approach are now widely used. Consequently, we 
devoted new sections of this revision to MMI (and related methods like MPE). 

These advances might have been sufficient to warrant an update of our textbook, but 
there were other reasons as well. A decade of teaching with the book has revealed a number 
of bugs and deficiencies, and a new edition affords us the opportunity to correct them. For 
instance, the previous version had nothing about sound source separation, an area that has 
received considerable attention in the last decade. Approaches to the coding, transcription, 
and retrieval of music are also now significant areas of audio signal processing, and were 
not originally covered in the book. 

Last, and not least, the new edition has the benefit of a fresh look at the overall subject 
from our new co-author, Professor Dan Ellis from Columbia University. This hand-off is a 
key step in keeping the text current. 

As with the previous edition, we've attempted to keep the overall style consistent, 
focusing on what we think is essential, and leaving many details for other publications. We 
hope that this choice has helped to make the text useful for many readers. 

0.2 WHAT IS NEW 

As noted above, we have edited and modified many of the chapters, but we also have added 
entirely new ones. These are: 

• Acoustic model training: further topics - MAP and MLLR adaptation methods, and 
on MMI and MPE discriminant training (Chapter 28, by new contributor Steven 
Wegmann of Cisco and ICSI). 

xxi 
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• Perceptual Audio Coding - MPEG audio and the related psychoacoustics (Chapter 
35, by Dan Ellis). 

• Music Signal Analysis - automatic transcription of music (Chapter 37, by Dan Ellis). 

• Music Retrieval - music retrieval, including cover song detection (Chapter 38, by 
Dan Ellis). 

• Source Separation - methods to separate different signals, including CASA and 
multi-microphone methods (Chapter 39, by Dan Ellis, with a section on microphone 
arrays by Michael Seltzer of Microsoft Research). 

• Speaker Diarization - determining who spoke when (Chapter 42, by new contributor 
Gerald Friedland of ICSI). 

Two other chapters have essentially been entirely rewritten: Speech Synthesis (Chap-
ter 30, by Simon King from Edinburgh University), and Speaker Verification (Chapter 
41, by David van Leeuwen from TNO). Also, Eric Fosler (of Ohio State University) has 
extensively revised his chapter on Linguistic Categories for Speech Recognition (Chapter 
23). 

Many other chapters have also undergone significant revisions; for instance, there 
are a number of significant updates to the chapters on ASR history (Chapter 4) and on 
feature extraction for ASR (Chapter 22), and a brief description of the Support Vector 
Machine (SVM) has been added to the deterministic pattern classification chapter (Chapter 
8) in recognition of its increased importance. Finally, the Introduction has been modified 
to reflect the new distribution of chapters. 

0.3 A FINAL THOUGHT 

Ben Gold was the key inspiration and co-author for the first edition; there clearly would 
have been no book without him. He also was an inspiration and role model for me (Morgan) 
personally. It saddens me that he cannot be here for the new edition, but I know that his 
generous spirit would have welcomed the new contributions from Dan Ellis and others. 



CHAPTER f 

INTRODUCTION 

We are confronted with insurmountable opportunities. 

-Walt Kelly 

1.1 WHY WE WROTE THIS BOOK 

Speech and music are the most basic means of adult human communication. As technology 
advances and increasingly sophisticated tools become available to use with speech and 
music signals, scientists can study these sounds more effectively and invent new ways of 
applying them for the benefit of humankind. Such research has led to the development of 
speech and music synthesizers, speech transmission systems, and automatic speech recog-
nition (ASR) systems. Hand in hand with this progress has come an enhanced understanding 
of how people produce and perceive speech and music. In fact, the processing of speech and 
music by devices and the perception of these sounds by humans are areas that inherently 
interact with and enhance each other. 

Despite significant progress in this field, there is still much that is not well un-
derstood. Speech and music technology could be greatly improved. For instance, in the 
presence of unexpected acoustic variability, ASR systems often perform much worse than 
human listeners (still!). Speech that is synthesized from arbitrary text still sounds artificial. 
Speech-coding techniques remain far from optimal, and the goal of transparent transmis-
sion of speech and music with minimal bandwidth is still distant. All fields associated with 
the processing and perception of speech and music stand to benefit greatly from continued 
research efforts. Finally, the growing availability of computer applications incorporating 
audio (particularly over the Internet and in portable devices) has increased the need for an 
ever-wider group of engineers and computer scientists to understand audio signal process-
ing. For all of these reasons, as well as our own need to standardize a text for our graduate 
course at UC Berkeley, we wrote this book; and for the reasons noted in the Preface, we 
have updated it for the current edition. 

The notes on which this book is based proved beneficial to graduate students for 
close to a decade; during this time, of course, the material evolved, including a problem 
set for each chapter. The material includes coverage of the physiology and psychoacoustics 
of hearing as well as the results from research on pitch and speech perception, vocoding 
methods, and information on many aspects of ASR. To this end, the authors have made 
use of their own research in these fields, as well as the methods and results of many other 
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contributors. And as noted in the Preface, this edition includes contributions from new 
authors as well, in order to broaden the coverage and bring it up to date. 

In many chapters, the material is written in a historical framework. In some cases, 
this is done for motivation's sake; the material is part of the historical record, and we hope 
that the reader will be interested. In other cases, the historical methods provide a convenient 
introduction to a topic, since they often are simpler versions of more current approaches. 
Overall, we have tried to take a long-term perspective on technology developments, which 
in our view requires incorporating a historical context. The fact that otherwise excellent 
books on this topic have typically avoided this perspective was one of our major motivations 
for writing this book. 

1.2 HOW TO USE THIS BOOK 

This text covers a large number of topics in speech and audio signal processing. While we 
felt that such a wide range was necessary, we also needed to present a level of detail that is 
appropriate for a graduate text. Therefore, we have elected to focus on basic material with 
advanced discussion in selected subtopics. We have assumed that readers have prior expe-
rience with core mathematical concepts such as difference equations or probability density 
functions, but we do not assume that the reader is an expert in their use. Consequently, we 
will often provide a brief and selected introduction to these concepts to refresh the mem-
ories of students who have studied the background material at one time but who have not 
used it recently. The background topics are selected with a particular focus, namely, to be 
useful to both students and working professionals in the fields of ASR and speaker recog-
nition, speech bandwidth compression, speech analysis and synthesis, and music analysis 
and synthesis. Topics from the areas of digital signal processing, pattern recognition, and 
ear physiology and psychoacoustics are chosen so as to be helpful in understanding the 
basic approaches for speech and audio applications. 

The remainder of this book comprises 41 chapters, grouped into eight sections. Each 
section or part consists of three to seven chapters that are conceptually linked. Each part 
begins with a short description of its contents and purpose. These parts are as follows: 

I. Historical Background. In Chapters 2 through 5 we lay the groundwork for key 
concepts to be explored later in the book, providing a top-level summary of speech 
and music processing from a historical perspective. Topics include speech and music 
analysis, synthesis, and speech recognition. 

II. Mathematical Background. The basic elements of digital signal processing 
(Chapters 6 and 7) and pattern recognition (Chapters 8 and 9) comprise the core 
engineering mathematics needed to understand the application areas described in 
this book. 

III. Acoustics. The topics in this section (Chapters 10-13) range from acoustic wave 
theory to simple models for acoustics in human vocal tracts, tubes, strings, and 
rooms. All of these aspects of acoustics are significant for an understanding of 
speech and audio signal processing. 



HOW TO USE THIS BOOK 3 

IV. Auditory Perception. This section (Chapters 14-18) begins with descriptions of 
how the outer ear, middle ear, and inner ear work; most of the available information 
comes from experiments on small mammals, such as cats. Insights into human 
hearing are derived from experimental psychoacoustics. These fundamentals then 
lead to the study of human pitch perception as applied to speech and music, as well 
as to studies of human speech perception and recognition. Some of these topics are 
further developed in Chapters 34 and 35 in the context of perceptual audio coding. 

V. Speech Features. Systems for ASR and vocoding have nearly always incorporated 
filter banks, cepstral analysis, linear predictive coding, or some combination of these 
basic methods. Each of these approaches has been given a full chapter (19-21). 

VI. Automatic Speech Recognition. Eight chapters (22-29) are devoted to this study 
of ASR. Topics range from feature extraction to statistical and deterministic se-
quence analysis, with coverage of both standard and discriminant training of hidden 
Markov models (including neural network approaches). A new chapter (Chapter 28) 
updates the book to include now-standard adaptation techniques, as well as further 
explanation of discriminant training techniques that are commonly used. Part VI 
concludes with an overview of a complete ASR system. 

VII. Synthesis and Coding. Speech synthesis (culminating in text-to-speech systems) is 
first presented in Chapter 30, a chapter that has largely been rewritten to emphasize 
concatenative and HMM-based techniques that have become dominant in recent 
years. Chapter 31 is devoted to pitch detection, which applies to both speech and 
music devices. Many aspects of vocoding systems are then described in Chapters 
32-34, ranging from very-high-quality systems working at relatively high bit rates to 
extremely low-rate systems. Finally, Chapter 35 provides a description of perceptual 
audio coding, now used for consumer music systems. 

VIII. Other Applications. In Chapters 36-42 we present several application areas that 
were not covered in the bulk of the book. Chapter 36 is a review of major issues in 
music synthesis. Chapter 37 introduces the transcription of music through several 
kinds of signal analysis. Chapter 38 is focused on methods for identifying and 
selecting musical selections. Chapter 39 introduces the topic of source separation, 
which ultimately could be the critical step in bringing many other applications to 
a human level of performance, since most desired sounds in the real world exist 
in the context of other sounds occurring simultaneously. Modifications of the time 
scale, pitch, and spectral envelope can transform speech and music in ways that are 
increasingly finding common applications (Chapter 40). 

Chapter 41 is an overview of speaker recognition, with an emphasis on speaker 
verification. With increasing access to electronic information and expansion of elec-
tronic commerce, verification of the identity of a system user is becoming increas-
ingly important. This chapter has largely been rewritten to reflect the signficant 
progress that has occurred in this field since 1999. A related area, speaker diariza-
tion, is the topic of the final chapter (42). An area of significant commercial and 
public interest is the labeling of multiparty conversations (such as a technical meet-
ing) with what is sometimes called a rich transcription, which includes not only the 
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sequence of words, but also other automatic annotations such as the attribution of 
which speaker is speaking when; this latter capability is often referred to as speaker 
diarization. 

Readers with sufficient background may choose to focus on the application areas 
described in Parts V-VIII, as the first four parts primarily give preparatory material. 
However, in our experience, readers at a graduate or senior undergraduate level in electrical 
engineering or computer science will benefit from the earlier parts as well. In teaching this 
course, we have also found the problem sets to be helpful in clarifying understanding, and 
we suspect that they would have similar value for industrial researchers. Another useful 
study aid is provided by a collection of audio examples that we have used in our course. 
These examples have been made freely available via the book's World-Wide Web site 
which can be found at http://catalog.wiley.com/. This Web site may also be augmented 
over time to include links to errata and addenda for the book. 

Other books on a similar topic but with a different emphasis can also be used to 
complement the material here; in particular, we recommend [9] or [11]; a more recent book 
with significant detail on current methods is [4]. 

Additionally, a more complete exposition on the background material introduced in 
Parts II—IV can be found in such texts as the following: 

• [8] for digital signal processing 

• [1] or [3] for pattern recognition (note that this is the revised edition of the classic 
[2]) 

• [6] for acoustics 

• [10] for auditory physiology 

• [7] for psychoacoustics 

Finally, an excellent book already in its second edition is [5], which focuses much 
more on the language-related aspects of speech processing. 

1.3 A CONFESSION 

The authors have chosen to spend much of their lives studying speech and audio signals 
and systems. Although we would like to say that we have done this to benefit society, much 
of the reason for our vocational path is a combination of happenstance and hedonism; in 
other words, dumb luck and a desire to have fun. We have enjoyed ourselves in this work, 
and we continue to do so. Speech and audio processing has become a fulfilling obsession 
for us, and we hope that some of our readers will adopt and enjoy this obsession too. 
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8 HISTORICAL BACKGROUND 

The future is a lot like the present, only it's longer. 

—Dan Quisenberry 

F\N UNDERSTANDING of the goals and methods of the past can help us to envision 
the advances of the future. Ideas are often rediscovered or reinvented many times. Often the 
new form has much greater impact, though sometimes for fairly mundane reasons, such as 
greater accessibility to larger computational capabilities. It would be obvious to most that 
a study of the social sciences would be incomplete without inclusion of the methods and 
beliefs of the past. In our view, a study of current methods in speech and audio engineering 
without any historical context would be similarly inadequate. 

For these reasons, we introduce the basic concepts of speech analysis, synthesis, and 
recognition in Part I, using a historical frame of reference. Later parts will provide greater 
technical detail in each of these areas. We begin in Chapter 2 with a brief history of synthetic 
audio, starting with 18th Century mechanical devices and proceeding through speech and 
music machines from the first half of the 20th Century. The discussion continues in Chapter 
3 with a discussion of systems for analysis and synthesis, including a brief introduction 
to the concept of source-filter separation. Speech recognition is a 20th Century invention, 
and the Chapter 4 discussion of the history of research in this area is largely confined to 
the past 50 years. Finally, Chapter 5 introduces speech recognition technology, discussing 
such topics as the major components of a recognizer and the sources of difficulty in this 
problem. Overall, Part I is intended to provide a light overview that will give the reader 
motivation for the more detailed material that follows. 



CHAPTER 

SYNTHETIC AUDIO: 
A BRIEF HISTORY 

2.1 VON KEMPELEN 

Many years ago, von Kempelen demonstrated that the speech-production system of the 
human being could be modeled. He showed this by building a mechanical contrivance that 
"talked." The paper by Dudley and Tarnoczy [2] relates the history of von Kempelen's 
speaking machine. This device was built about 1780, at a time when the notion of building 
automata was quite popular. Von Kempelen also wrote a book [7] that dealt with the origin 
of speech, the human speech-production system, and his speaking machine. Thus, for over 
a century, an existence proof was established that one could indeed build a machine that 
spoke. (Von Kempelen's work brings to mind that of another great innovator, Babbage, 
who also labored for many years with mechanical contrivances to try to build a computing 
machine.) 

Figure 2.1 shows the speaking machine built by Wheatstone that was based on von 
Kempelen's work. The resonator of leather was manipulated by the operator to try to 
copy the acoustic configuration of the vocal tract during the sonorant sounds (vowels, 
semivowels, glides, and nasals); the bellows provided the air stream; the vibrating reed 
produced the periodic pressure wave; and the various small whistles and levers shown con-
trolled most of the consonants. (Much later, Riesz [6] built a mechanical speaking machine 
that was more precisely modeled after the human speech-producing mechanism. This is 
depicted in Fig. 2.2, shown here for comparison to the von Kempelen-Wheatstone model of 
Fig. 2.1). 

2.2 THE VODER 

Modern methods of speech processing really began in the U.S. with the development of 
two devices. Homer Dudley pioneered the development of the channel vocoder (voice 
coder) and the Voder (voice-operated demonstrator) [1]. We know from numerous news-
paper articles that the appearance of the Voder at the 1939 World's Fair in San Francisco 
and New York City was an item of intense curiosity. Figure 2.3 is a collage of some 
clippings from that period and reflects some of the wonder of people at the robot that 
spoke. 

It is important to realize that the Voder did not speak without a great deal of help 
from a human being. The operator controls the Voder through a console, which can be 
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FIGURE 2.1 Wheatstone's speaking machine. From [2]. 

compared to a piano keyboard. In the background is the electronic device that does the 
speaking. Operator training proved to be a major problem. Many candidates for this job 
were unable to learn it, and the successful ones required training for periods of 6 months 
to 1 year. Figure 2.4 shows an original sketch by S. W. Watkins of the Voder console. 

The keys were used to produce the various sounds; the wrist bar was a switch that 
determined whether the excitation function would be voiced or unvoiced, and the pitch pedal 
supplied intonation information. Figure 2.5 is a close-up of the controls in the console and 
shows how these relate to the articulators of a human vocal tract. 

The keys marked 1 through 10 control the connection of the corresponding bandpass 
filters into the system. If two or three of the keys were depressed and the wrist bar was set 

FIGURE 2.2 Riesz's speaking machine. From [3]. 
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FIGURE 2.3 News clippings on the Voder. 

to the buzz (voicing) condition, vowels and nasals were produced. If the wrist bar were set 
to hiss (voiceless), sounds such as the voiceless fricatives (e.g., f ) were generated. Special 
keys were used to produce the plosive sounds (such as p or d) and the affricate sounds (ch 
as in cheese; j as in jaw). 

2.3 TEACHING THE OPERATOR TO MAKE THE VODER "TALK" 

The Voder was marvelous, not only because it "talked" but also because a person could 
be trained to "play" it. Speech synthesis today is done by real-time computer programs or 
specialized hardware, and the emphasis is either on voice answer-back systems, in which 
the synthesizer derives information from a stored vocabulary, or on text-to-speech systems, 
in which text that is either typed or electronically scanned is used to control the synthesizer 
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Operating Testing equipt. 
control* ar)d clock 

Microphone 

Design for a Voder 

FIGURE 2.4 Sketch of the Voder. 

-Mouth-radiator 

Amplifier -

I Wrist bar 
"Stops" e 

Pitch 
control 
peda 

FIGURE 2.5 Voder controls. From [2]. 
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WORDS 

Sounds 

S 

Sh 

M 

ё(seen) 

aw (dawn) 

She saw me. 

See me seesaw. 

Think of how they 

Wrist Bar 

up 

up 

down 

down 

down 

are pronounced, 

Keys 

9. 

7.8. Light & Smooth 

1. 

1.8. 

3. 

not how they are 

wntten. 

Cease Sauce See She 

Me Saw Seesaw 

FIGURE 2.6 Lesson 1 of the Voder instructions. 

parameters. It is a pity that further work on real-time control by a human operator has not 
been seriously pursued. 

Figures 2.6, 2.7, and 2.8 describe Lessons 1, 9, and 37 of the Voder Instruction 
Manual. 

Relatively few of the candidate operators were successful, but one young woman 
(Mrs. Helen Harper) was very proficient. She performed at the 1939 New York World'sFair. 
Many years later (in the 1960s) a highlight of Dudley's retirement party was the Voder's 
speaking to Mr. Dudley, with the help of Mrs. Harper. 

2.4 SPEECH SYNTHESIS AFTER THE VODER 

Many speech-synthesis devices were built in the decades following the invention of the 
Voder, but the underlying principle, as captured in Fig. 2.5, has remained quite fixed. For 
many cases, there is a separation of source and filter followed by the parameterization of 
each. As we shall see in the following sections, the same underlying principles control the 
design of most music synthesizers. In later chapters, the field of speech synthesis from the 
past to the present is explored in some detail, including advanced systems that transform 
printed text into reasonable-sounding speech. 

2.5 MUSIC MACHINES 

Figure 2.9 shows a 17th Century drawing of a water-powered barrel organ. Spring-powered 
barrel organs may have existed as long ago as the 12th Century. Barrel organs work on 



CHAPTER 2 SYNTHETIC AUDIO: A BRIEF HISTORY 

Sounds 

Initial R 

Initial R 

a (take) 

Wrist Bar 

down 

down 

down 

Keys 

2.5. before 6. 

2.5.6. before every-

thing else 

3.7.-2.8. This is 

a dipthong (e-i) 

WORDS 

spelt. 

Chase 

Chases 

Error 

Errors 

Face 

Faces 

Make 

Makes 

May 

Nature 

Nearer 

Make it safer. 
She's sorry for me. 

Think of how they 

Nearest 

Raise 

Raises 

Rate 

Rates 

Raw 

Ray 

Reach 

Reaches 

Rest 

Rests 

PRACTICE SENTENCES 

Your chef makes rich sauces. 

Shake it off. 

Is nature fair? 

She wrote to Rose. 
FIGURE 2.7 Lesson 9. 

are pronounced, not how 

Rich 

Richer 

Riches 

Richest 

Rose 

Safe 

Safer 

Safest 

Sake 

Say 

Shake 

Shakes 

Sorrier 

Sorriest 

Sorry 

Wrote 

the same concepts as present-day music boxes; that is, once the positions of the pins are 
chosen, the same music will be played for each complete rotation. Keys can be depressed 
or strings can be plucked, depending on the overall design of the automatic instrument. 

The barrel organ is a form of read-only memory, and not a very compact form at that. 
Furthermore, barrel organs could not record music played by a performer. In the late 18th 
Century, both of these problems were overcome by melography, which allowed music to 
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Sounds Wrist Bar Keys 

Initial Bl 

Final -si up—down 9—2 

Final -tl up—down 6.8.-2. Very light tap on 6.8. 

WORDS Think of how they are pronounced, not how they are 

spelt. 

Ably Blow Mental Whistle 

Black Blue Metal 

Blade Establish Pestle 

Blood Little Total 

PRACTICE SENTENCES 

The wind blows cold tonight. 

Her hair is quite black. 

Whistle and I'll come to you. 

Make a mental note of it. 

What a little dog it is. 

How much is the total amount? 

FIGURE 2.8 Lesson 37. 

be both recorded and played back, using the medium of punched paper tape or cards. The 
idea originated for the automation of weaving and was developed fully by Joseph Marie 
Jacquard, who designed a device that could advance and register cards. (Punched cards 
were used by Babbage in the design of his computing machine and, in our time, were used 
by many computer manufacturers such as IBM.) Card-driven street organs made use of this 
technology. Card stacks were easy to duplicate; also, different stacks contained different 
music, so that music machines became very marketable. By the beginning of the 20th 
century, the concept had been applied to the player piano. A roll of paper tape could be 
made and the holes punched automatically while a master pianist (such as Rachmaninoff or 
Gershwin) played. This paper roll could then actuate the playback mechanism to produce 
the recorded version. Since the piano keys were air driven, extra perforations in the paper 
roll allowed variable amounts of air into the system, thus changing volume and attack in a 
way comparable to that of the human performer. Until the development of the high-fidelity 
microphone, player pianos offered greater reproduction fidelity than the gramophone— 
but of course they could only record the piano, whereas the gramophone recorded all 
sounds. 

A modern example of a player piano is the solenoid-controlled Bosendorfer at the 
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FIGURE 2.9 17th Century drawing of a water-powered barrel organ. 

MIT Media Laboratory. Using this system, Fu [4] synthesized a Bosendorfer version from 
an old piano roll by Rachmaninoff. 

At the beginning of the 20th century, a mighty device called the telharmonium was 
constructed by Thaddeus Cahill. Remember that this was built before the development 
of electronics; nevertheless, Cahill had the ingenuity to realize that any sound could be 
synthesized by the summation of suitably weighted sinusoids. He implemented each si-
nusoid by actuating a generator. To create interesting music, many such generators (plus 
much additional equipment) were needed, so the result was a monster, weighing many 
tons. Cahill's concept of additive synthesis is still an important feature of much of the 
work in electronic music synthesis. This is in contrast to many later music synthesizers that 
employ subtractive synthesis, in which adaptive filtering of a wideband excitation function 
generates the sound. (The additive synthesis concept was used by McCaulay and Quatieri 
[5] to design and build a speech-analysis-synthesis system; we discuss this device in later 
chapters.) 

The player piano is only partially a music machine, since it requires a real piano to be 
part of the system. The telharmonium, by contrast, is a complete synthesizer, since music 
is made from an abstract model, that is, sine generators. Another, although totally different, 
complete synthesizer is the theremin, named after its inventor, the Russian Lev Termin. 
In this system, an antenna is a component of an electronic oscillator circuit; moving one's 
arm near the antenna changes the oscillator frequency by changing the capacitance of the 
circuit, and this variable frequency is mixed with a fixed-frequency oscillator to produce 
an audio tone whose frequency can be varied by arm motion. Thus the theremin generates 
a nearly sinusoidal sound but with a variable frequency that can produce pitch perceptions 
that don't exist in any standard musical scale. In the hands of a trained performer, the 
theremin produces rather unearthly sounds that are nevertheless identifiable as some sort 
of (strange) music. A trained performer could play recognizable music (e.g., Schubert's 
Ave Maria). Figure 2.10 shows Clara Rockmore at a theremin. Her right hand controls the 
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frequency of the straight antenna while her left hand controls the amplitude by changing 
the capacitance of a different circuit. 

The theremin continues to fascinate. In 1994 a film called "Theremin: An Elec-
tronic Odyssey" was released, leading to the sale of more than one thousand instruments 
the following year. In 2004, Moog Music, the doyen of the electronic music industry, re-
leased the Etherwave Theremin Pro. This is but the latest in a long line of theremins they 
have marketed, and is a consistent favorite for live performances. 

2.6 EXERCISES 

2.1 The Voder was which of the following: 
(a) a physical model of the human vocal apparatus, 
(b) an early example of subtractive synthesis, 
(c) an early example of additive synthesis, or 
(d) a member of the electorate with a head cold. 

2.2 Shown in Fig. 2.11 is Dudley's speech-sound classification for use with Voder training. Find the Voder 
sequence for any of the practice sentences of Fig. 2.8 (Lesson 37). Break the sentence into a phoneme 
sequence, using the notation of Fig. 2.11. Note that the BK1, BK2, and BK3 keys in Fig. 2.11 are the k-
g, p-b, and t-d keys of Fig. 2.5. A sample is shown below for the sentence "The Voder can speak well." 

FIGURE 2.10 Clara Rockmore at the theremin. 
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Classification of the Speech Sounds 

1. Vowels 
(2) (tool) Ü 

(2)(shorter){book! и 

(3-2) (tone) e 

(3){awl) έ , 

(4) (not) ö 

è (tee) i l 8) 

i (it! (28) 

JS (apeH37"28) 
e ' (tenJ(37) 

à ' (at) (457) 

(3488) (nut) G j / 

(458) a (far) (458! 

2. Combinational and Transitional Sounds 
* r y »ou »T'h-i (pay!*ii*(woei 

3. Semi Vowels Initial 1 (258! final 1 (23 
Initia 

4. Stop Consonants 
Voiced 

!6K2) 

(BK3) 

(789) 

{8KIJ 

b 

d 

t 

3 

Unvoiced 

(BK21 p 

(8K3Ì t 

(789) ch 

(SKI! к 

5. Fricative Consonants 
Voiced 

(S7Q) 

m 
tlOQ) 

(789) 

V 

1 

th (then) 

zh (aiu e! 

Unvoiced 

f(67Q) 

8(3) 

ih (thin) (1 

sh (78) 

r(256) final r (36) 

Nasal ized 

m ü i 

n ( l ) 

~ 
nft l8«l) 

GO) 

Formation of Stop 

lip against !ip 

tongue against teeth 

tongue against hard palate 

tongu against soft palate 

Format ton of Air Outlet 

lip to teeth 

teeth to teeth 

tongue to teeth 

tongue to hard palate 
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FIGURE 2.11 Classification of speech sounds for Voder use. 

FIGURE 2.12 Spectrogram of "greetings everybody" by an announcer. 
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FIGURE 2.13 Spectrogram of "greetings everybody" by the Voder. 
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Voder example: "The Voder can speak well." 

2.3 Compare von Kempelen's speaking machine with Dudley's Voder. 

(a) What are the chief differences? 

(b) What are the chief similarities? 

(c) How would you build a von Kempelen machine today? 

2.4 Figures 2.12 and 2.13 show spectrograms of the saying "greetings everybody" by the announcer and 
the Voder. 

(a) What do you perceive to be the main difference between the natural and the synthetic utterances? 

(b) Estimate the instants when the operator changes the Voder configuration. 

2.5 Synthesizers can be classified as articulatory based or auditory based. The former type works by 
generating sounds that are based on a model of how the sound is produced. The latter type relies on 
the properties of the ear to perceive sounds that are synthesized by different methods than the natural 
sounds that they imitate. 

Categorize each of the following as an articulatory-based or auditory-based synthesizer: 
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(a) telharmonium, 

(b) Wheatstone-von Kempelen speaking machine, 

(c) Voder, 

(d) theremin; and 

(e) player piano. 
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SPEECH ANALYSIS AND 
SYNTHESIS OVERVIEW 

"If I could determine what there is in the very rapidly changing complex speech wave that 
corresponds to the simple motion of the lips and tongue, if I could then analyze speech for 
these quantities, I would have a set of speech defining signals that could be handled as 
low frequency telegraph currents with resulting advantages of secrecy, and more 
telephone channels in the same frequency space as well as a basic understanding of the 
carrier nature of speech by which the lip reader interprets speech from simple motions." 

-Homer Dudley, 1935 

3.1 BACKGROUND 

If we think, for the moment, of speech as being a mode of transmitting word messages, 
and telegraphy as simply another mode of performing the same action, this immediately 
allows us to conclude that the intrinsic information rate of speech is exactly the same 
as that of a telegraph signal generating words at the same average rate. Speech, however, 
conveys emphasis, emotion, personality, etc., and we still don't know how much bandwidth 
is needed to transmit these kinds of information. 

In the following sections, we begin with some further historical background on speech 
communication. 

3.1.1 Transmission of Acoustic Signals 

Perhaps the earliest network for speech communication at long distances was a system that 
we'll call the "stentorian network," which was used by the ancient Greeks. It consisted 
of towers and men with very loud voices. The following excerpts were found in Homer 
Dudley's archives: 

Homer has written that the warrior Stentor, who was at the siege of Troy, had such a 
loud voice that it made more noise than fifty men all shouting at once. Alexander the 
Great (356-325 B.C.) seems to have had a method whereby a stentor's voice could be 
heard by the whole army. Did it consist of acoustical signals which were repeated from 
one soldier crier to another, organized as a transmitting group ? 

We quote the following from Caesar's commentaries: when extraordinary events 
happened, the Gauls relayed the information by shouting from one place to another: 
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for example, the massacre of the Romans which took place at Orleans at sunrise was 
known at nine o'clock the same evening at Auvergne, forty miles away. 

Diodorus of Sicily, a Greek historian living in the age of Augustus, said that at the 
order of the King of Persia, sentinels, who shouted the news which they wished to 
transmit to distant places were stationed at intervals throughout the land. The 
transmission time was 48 hours from Athens to Susa, over 1500 miles apart. 

We also note that, in addition to speech, flare signals were used as a communications 
medium. The Appendix to this chapter illustrates this with an excerpt from the Greek play 
Agamemnon (by Aeschylus) that describes the transmission of information about the fall 
of Troy (also see Fig. 3.13 in the Appendix). 

3.1.2 Acoustical Telegraphy before Morse Code 
The Dudley archives provide some fascinating examples of pre-Morse code communica-
tions: 

Later a group of inventors, among whom we find Kircher( 1601-1680), Scheventer 
(1636) and the two Bernoulli brothers, sought to transmit news long distances by 
means of musical instruments each note representing a letter. One of the Bernoullis 
devised an instrument, composed of five bells, which permitted the principal letters of 
the alphabet to be transmitted. 

It is told that the King of England was able to hear news transmitted 1.5 English 
miles to him by means of a trumpet. He had this trumpet taken to Deal Castle, whose 
commander said that this instrument permitted a person to make himself understood 
over a distance of three nautical miles. It was invented by the "genial mechanic" of 
Hammersmith, Sir Samuel Morland (1626-1696). It's [sic] mouthpiece was designed 
so that no sound could escape from either end. Morland published a treatise on this 
instrument entitled "Tube Stentorophonica" and in 1666 he wrote a report on "a new 
cryptographic process. " 

In 1762 Benjamin Franklin experimented with transmitting sound under water. In 
1785 Gauthoy and Biot transmitted words through pipes for a distance of 395 meters. 
But at a distance of 951 meters speech was no longer intelligible. 

We can also regard the ringing of bells as acoustical telegraphy or telephony, if we 
consider that in certain Swiss villages the inhabitants recognize from their tone 
whether the person who has just died is a man or a woman, a member of a religious 
order, etc. Moreover, every Sunday the inhabitants of these villages follow the principal 
passages of the divine service with the aid of the pealing of the different bells. We have 
seen old people, prevented from attending the service because of their infirmities, with 
prayer book in hand, follow at a distance the priest's various movements. 

Our story would be incomplete if we did not mention the African tom-tom, which 
some people consider a sort of acoustical telegraphy. The African explorer, Dr. A. R. 
Lindt, has written a short report on the tom-tom. We quote the following from his work: 
"There is no key to the acoustical telegraphy of the Africans. Since they have no 
written language, they are unable to divide their words into letters. The tom-tom 
therefore does not translate letter by letter or even word by word, but translates a 
series of well-defined thoughts into signals. There are different signals for all acts 
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interesting to the tribe: mobilization, death of the chief, and summons to a judicial 
convocation. However, the tom-tom also serves to transmit an order to a definite 
person. Thus, when a young man enters the warrior class, he receives a kind of call 
signal which introduces him and enables him to be recognized at a distance. 

As yet, explorers have not been able to discover how intelligible the same signals 
are to different tribes. It is certain, however, that friendly tribes use the same signals. A 
settlement receiving a signal transmits it to the next village, so that in a few minutes a 
communication can be sent several hundred kilometers. 

Acoustical telegraphy is still used today by certain enterprises such as railroads, 
boats, automobiles, fire fighting services and alarm services. 

This completes our quotations from the Dudley archives. We see that the concept of 
long-distance communication has a long history and that there is some evidence that speech 
communication at a distance was practiced by the ancients. 

3.1.3 The Telephone 
Proceeding more or less chronologically, we come to that most important development, 
the invention of the telephone by Alexander Graham Bell. There is no need to chronicle 
the well-known events leading to this invention and the enormous consequent effect on 
human communication; we restrict ourselves to several comments. It is interesting that 
Bell's primary profession was that of a speech scientist who had a keen understanding 
of how the human vocal apparatus worked, and, in fact, Flanagan [5] describes Bell's 
"harp telephone," which showed that Bell understood the rudiments of the speech spectral 
envelope. Nevertheless, telephone technology has been mostly concerned with transmission 
methods. Recently, however, with the growing use of cellular phones in which transmission 
rate is limited by nature, efficient methods of speech coding have become an increasingly 
important component of speech research at many laboratories. 

3.1.4 The Channel Vocoder 
and Bandwidth Compression 
In a National Geographic magazine article [2], Colton gives an engrossing account of the 
history of telephone transmission. Figure 3.1, taken from that article, shows the telephone 
wires on lower Broadway in New York City in the year 1887. It is clear that progress 
in telephony could easily have been brought to a halt if not for improvements, such 
as underground cables, multiplexing techniques, and fiber-optical transmission. Dudley 
pondered this traffic problem in a different way, that is, through coding to reduce the 
intrinsic bandwidth of the source, rather than increasing the capacity of the transmission 
medium. 

Just as the Voder was the first electronic synthesizer, so the channel vocoder [3] was 
the first analysis-synthesis system. The vocoder analyzer derived slowly varying parame-
ters for both the excitation function and the spectral envelope. To quote Dudley, this device 
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FIGURE 3.1 Lower Broadway in 1887. 

could lead to the advantages of "secrecy, and more telephone channels in the same fre-
quency space." Both of these predictions were correct, but the precise ways in which they 
came to pass (or are coming to pass) probably differ somewhat from how Dudley imagined 
them. In 1929, there was no digital communications. When digitization became feasible, 
it was realized that the least-vulnerable method of secrecy was by means of digitization. 
However, digitization also meant the need for wider-transmission bandwidths. For exam-
ple, a 3-kHz path from a local telephone cannot transmit a pulse-coded modulation (PCM) 
speech signal coded to 64 kbits/s (the present telephone standard). The channel vocoder 
was thus quickly recognized as a means of reducing the speech bit rate to some number 
that could be handled through the average telephone channel, and this led eventually to a 
standard rate of 2.4 kbits/s. 

With respect to the second prediction, given that the science of bandwidth compres-
sion is now approximately 50 years old, one might assume that "more telephone channels 
in the same frequency space" would by now be a completely realized concept within the 
public telephone system. Such, however, is not the case. Although it is our opinion that 
Dudley's second prediction will eventually come true, it is fair to ask why it is taking so 
long. With the recent boom in wireless telephony, the bandwidth is now an issue of even 
greater importance. 

We conclude this section with a reference to an informative and entertaining paper 
by Bennett [1]. This paper is a historical survey of the X-System of secret telephony that 
was used during World War II. Now totally declassified, the X-System turns out to be 
a quite sophisticated version of Dudley's channel vocoder! It included such features as 
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PCM transmission, logarithmic encoding of the channel signal, and, of course, enciphered 
speech. Bennett has many interesting anecdotes concerning the use of the X-System during 
the war. 

3.2 VOICE-CODING CONCEPTS 

To understand why a device such as a vocoder reduces the information content of speech, we 
need to know enough about human speech production to be able to model it approximately. 
Then we must convince ourselves that the parameters of the model vary sufficiently slowly 
to permit efficient transmission. Finally, we must be able to separate the parameters so 
that each one is coded optimally. The implementation of these concepts is captured by 
the phrase "analysis-synthesis system." The analysis establishes the parameters of the 
model; these parameters are transmitted to the receiving end of the system and used to 
control a synthesizer with the goal of reproducing the original utterance as faithfully as 
possible. 

A convenient way to understand vocoders is to begin with the synthesizer. A concise 
statement that helps define a model of speech is given by Fant [4]: "The speech wave 
is the response of the vocal tract to one or more excitation signals." This concept leads 
directly to engineering methods to separate the source (the excitation signal) from the filter 
(the time-varying vocal tract). The procedures (and there are many) for implementing this 
separation can be called deconvolution, thus implying that the speech wave is a linear 
convolution of source and filter.1 In spectral terms, this means that the speech spectrum 
can be treated as the product of an excitation spectrum and a vocal tract spectrum. Figure 
3.2 is a simplified illustration of the spectral cross section for sustained vowels. Numerous 
experiments have shown that such waveforms are quite periodic; this is represented in the 
figures by the lines. In (a) the lines are farther apart, representing a higher pitched sound; 
in (b) and (c) the fundamental frequency is lower. 
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FIGURE 3.2 Fine structure and spectral envelope of sustained vowels. 

1 Acoustic speech or music production often involves varying degrees of nonlinear behavior, usually at the interface 
between excitation and filter. New research is now being directed at this subject. In many cases we expect that the 
resulting effects will be minor, but there could be surprises. 
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The spectral envelope determines the relative magnitudes of the different harmonics, 
and it, in turn, is determined from the specific shape of the vocal tract during the phonation 
of that vowel. Deconvolution is the process of physically separating the spectral envelope 
from the spectral fine structure, and in later chapters we describe methods of implementing 
such a process. Once this separation is accomplished, we can hypothesize, with some 
confidence, that both the spectral envelope and spectral fine structure can be efficiently 
parameterized, with consequent bandwidth savings during transmission. 

The parameters, if appropriately obtained, must vary relatively slowly because ulti-
mately they depend on the articulator motions of the speech-producing mechanisms. Since 
these are human motions they obey the mechanical constraints imposed by the flesh-and-
blood properties of the pertinent human organs, which move relatively slowly compared to 
typical speech bandwidths of 5 kHz. 

The human vocal tract has been represented as a time-variable filter excited by one 
or more sources. The mechanism for this production varies according to the type of speech 
sound. Air pressure is supplied by the lungs. For vowel production, the cyclic opening and 
closing of the glottis creates a sequence of pressure pulses that excite resonant modes of 
the vocal tract and nasal tract: the energy created is radiated from the mouth and nose to 
the listener. 

For voiceless fricatives (e.g., s, sh, f, and th), the vocal cords are kept open and the air 
stream is forced through a narrow orifice in the vocal tract to produce a turbulent, noiselike 
excitation. For example, the constriction for "th" is between tongue and teeth; for "f" it is 
between lips and teeth. 

For voiceless plosives (e.g., p, t, and k), there is a cross section of complete closure 
in the vocal tract, causing a pressure buildup. The sudden release creates a transient burst 
followed by a lengthier period of aspiration. 

A more extensive categorization of speech sounds is given in Chapter 23, including 
some additional material about the articulator positions (tongue, lips, jaw, etc.) correspond-
ing to these categories. 

Several basic methods of source-filter separation and subsequent parameterization 
of each have been developed over the past half-century or so. We limit our discussion to 
four such methods: (a) the channel vocoder, (b) linear prediction, (c) cepstral analysis, 
and (d) formant vocoding. Details of these methods will be examined in later chapters; 
for now we discuss the general problem of source-filter separation and the coding of the 
parameters. 

One way to obtain an approximation of the spectral envelope is by means of a care-
fully chosen bank of bandpass filters. Looking at Fig. 3.2, we see that the complete spectrum 
envelope is not available; only the samples of this envelope at frequencies determined by 
the vertical lines are available. We assume that the fundamental frequency is not known 
so that we have no a priori knowledge of the sample positions. However, by passing the 
signal through a filter bank, where each filter straddles several harmonics, one can obtain a 
reasonable approximation to the spectral envelope. If the filter bandwidths are wide enough 
to encompass several harmonics, the resulting intensity measurements from all filters will 
not change appreciably as the fundamental frequency varies, as long as the envelope re-
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mains constant. This is the method employed for spectral analysis in Dudley's channel 
vocoder. The array of (slowly varying) intensities from the filter bank can now be coded 
and transmitted. 

Linear prediction is a totally different way to approximate the spectral envelope. We 
hypothesize that a reasonable estimate of the nth sample of a sequence of speech samples 
is given by 

*(") = Y,aks(n-k). (3.1) 

In Eq. 3.1, the a^'s must be computed so that the error signal 

e(n) = s(n) — s(n) (3.2) 

is as small as possible. As we will show in the Chapter 21, Eq. 3.1 and the minimizing 
computational structure used lead to an all-pole digital synthesizer network with a spectrum 
that is a good approximation to the spectral envelope of speech. 

Source-filter separation can also be implemented by cepstral analysis, as illustrated 
in Figure 3.3. Figure 3.3(a) shows a section of a speech signal, Fig. 3.3(b) shows the spec-
tram of that section, and Fig. 3.3(c) shows the logarithm of the spectrum. The logarithm 
transforms the multiplicative relation between the envelope and fine structure into an ad-
ditive relation. By performing a Fourier transform on Fig. 3.3(c), one separates the slowly 
varying log spectral envelope from the more rapidly varying (in the frequency domain) 
spectral fine structure, as shown in Fig. 3.3(d). Source and filter may now be separately 
coded and transmitted. 
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FIGURE 3.3 Illustration of source-filter separation by cepstral analysis. 
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FIGURE 3.4 Wideband spectrogram. 

Finally, formant analysis can be used for source-filter separation. In Chapters 10 and 
11 (Wave Basics and Speech Production), the theory of vocal-tract resonance modes is 
developed. However, we can to some extent anticipate the result by studying the speech 
spectrograms of Figs. 3.4 and 3.5. These figures are three-dimensional representations of 
time (abscissa), frequency (ordinate), and intensity (darkness). Much can be said about 
the interpretation of spectrograms; here we restrict our discussion to the highly visible 
resonances or formants and to the difference between Fig. 3.4 (wideband spectrogram) and 
Fig. 3.5 (narrow-band spectrogram). 

We see from Fig. 3.4 that during the vowel sounds, most of the energy is concentrated 
in three or four formants. Thus, for vowel sounds, an analysis could entail tracking of the 
frequency regions of these formants as they change with time. Many devices have been 
invented to perform this operation and also to parameterize the speech for other sounds, 
such as fricatives (s, th, sh, f) or plosives (p, k, t); again we defer detailed descriptions for 
later. 

Formant tracks are also visible in Fig. 3.5, but there is a significant difference between 
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the two figures. Whereas Fig. 3.4 displays the periodicity of the signal during vowels as 
vertical striations, Fig. 3.5 displays the periodicity horizontally. An explanation of this 
difference is left as an exercise. 

3.3 HOMER DUDLEY (1898-1981) 

Homer Dudley's inventions of the channel vocoder and Voder triggered a scientific and 
engineering effort that is still in progress. On my first visit to the Bell Laboratories in 
19612 I was hosted by Dr. Ed David, who then managed the speech-processing group. 
As we passed an office, David whispered to me, "that's Homer Dudley." I was not intro-
duced to Mr. Dudley and on subsequent visits did not see him. At that time he was near 
retirement age and, I suppose, not in the mainstream of Bell Laboratories' work. Quite 
a few years later (the late 1960s), Lincoln Laboratory was privileged to have the then-
retired inventor as a consultant. We mention several items of interest from his brief stay 
there. 

Dudley had a strong feeling that we should study speech waveforms as much, and 
perhaps more, than speech spectrograms. He felt that with practice, one could learn to 
read these waveforms. Dudley's speculation remains unproven. However, in an effort to 
augment his claim, Dudley, with the help of Everett Aho, produced photographs that are 
very informative and aesthetically pleasing. They are reproduced here as Figs. 3.6-3.11. 
Observing these waveforms, one develops a good feeling for the relative duration and 
amplitude of the vowels versus the consonants. In addition, we see the precise timing of the 
burst and voice-onset time of the voiced plosive sounds, b, d, and g. An inspection of the 
vowel sound I as in "thin" or "fish" illustrates the high frequency of the second resonance 
and the low frequency of the first resonance. We also note that the energy of the sh sound 
in "fish" is much stronger than the "f" sound in fish. Many other relationships among the 
acoustic properties of the phonemes can be found by careful observation of good-quality 
speech waveforms. 

In 1967, a vocoder conference was organized under the auspices of the U.S. Air Force 
Cambridge Research Laboratory (AFCRL). Dudley was honored at this conference. Figure 
3.12 shows Dudley displaying the plaque to the audience. 

In 1969, when Dudley discontinued his consultancy at Lincoln Laboratory, he en-
trusted one of the authors (Gold) with two boxes filled with various technical information, 
plus a large number of newspaper clippings on his inventions. These have been used freely 
in this chapter, and they have been donated to the archives of the Massachusetts Institute 
of Technology. 

In 1981, we received the news of his death at age 83. Tributes to him were written by 
Manfred Schroeder and James L. Flanagan, who worked with Dudley at Bell Laboratories 
and appreciated his monumental contributions. 

2Of course this is Gold speaking here. Morgan was 12 at the time, and Ellis had yet to be born. 
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FIGURE 3.6 Dudley's waveform display. 
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FIGURE 3.12 Dudley receiving an award. 

3.4 EXERCISES 

3.1 Explain why wideband spectrograms show periodicity in time whereas narrow-band spectrograms 
show periodicity in frequency. 

3.2 Invent a display that shows periodicity in both time and frequency. 

3.3 Can you think of a reason why spectrograms are preferable visual displays to direct oscillographic 
waveforms? 

3.4 Which sounds are more likely to be better understood from waveforms? From spectrograms? 

3.5 Construct a table for the phonemes of the phrase "we pledge you some heavy treasure." The leftmost 
column should list the phonemes alternating with the transition regions; the next column should list 
your best estimate of the beginning; and the third column should list the end of the speech section. 
Base your estimates on Figs. 3.4 and 3.5. 

3.6 Construct a syllable table in the same manner as in the previous exercise. 

3.7 During World War II, Roosevelt and Churchill conversed by telephone between London and 
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Washington, using a channel vocoder. Explain why the vocoder was an important component of 
the communications link. 

3.8 The phrase "carrier nature of speech" was proposed by Dudley as a way of explaining how a vocoder 
could represent speech with fewer bits (or less bandwidth). Explain how channel vocoders, linear 
predictive vocoders, and cepstral vocoders implement this concept and, as a result, represent the 
speech signal more efficiently than a standard telephone or PCM system. 

3.5 APPENDIX: HEARING OF THE FALL OF TROY 

LEADER OF CHORUS: 
I come to do you reverence, Clytemnestra. 
For it is right to give the king's wife honor, 
A woman on a throne a man left empty 
But if you know of good or only hope 
to hear of good and so do sacrifice, 
I pray you speak. Yet if you will, keep silence. 
CLYTEMNESTRA: 
With glad good tidings, so the proverb runs, 
may dawn arise from the kind mother night. 
For you shall learn a joy beyond all hope: 
the Trojan town has fallen to the Greeks. 
LEADER: 
You say? I cannot hear-I cannot trust— 
CLYTEMNESTRA: 
I say the Greeks hold Troy. Do I speak clear? 
LEADER: 
Joy that is close to tears steals over me. 
CLYTEMNESTRA: 
Quite right. Such tears give proof of loyalty. 
LEADER: 
What warrant for mese words? Some surety have you? 
CLYTEMNESTRA: 
I have. How not-unless the gods play tricks. 
LEADER: 
A fair persuasive dream has won your credence? 
CLYTEMNESTRA: 
I am not one to trust a mind asleep. 
LEADER: 
A wingless rumor then has fed your fancy? 
CLYTEMNESTRA: 
Am I some little child that you would mock at? 
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LEADER: 
But when, when, tell us, was the city sacked? 
CLYTEMNESTRA: 
This night, I say, that now gives birth to dawn. 
LEADER: 
And what the messenger that came so swift? 
CLYTEMNESTRA: 
A god! The fire-god flashing from Mount Ida. 
Beacon sped beacon on, couriers of flame. 
First, Ida signaled to the island peak 
of Lemnos, Hermes' rock, and swift from there 
Athos, God's mountain, fired the great torch. 
It leaped, it skimmed the sea, a might of moving light. 
joy-bringing, golden shining, like a sun, 
and sent the fiery message to Macistus. 
Whose towers, then, in haste, not heedlessly 
or like some drowsy watchman caught by sleep, 
sped on the herald's task and flashed the beacon 
afar, beyond the waters of Euripus 
to sentinels high on Messapius' hillside, 
who fired in turn and sent the tidings onward, 
touching with flame a heap of withered heather. 
So, never dimmed but gathering strength, the splendor 
over the levels of Asopus sprang, 
lighting Cithaeron like the shining moon, 
rousing a relay there of travelling flame. 
Brighter beyond their orders given, the guards 
kindled a blaze and flung afar the light. 
It shot across the mere of Gorgopis. 
It shone on Aegiplanctus' mountain height, 
swift speeding on the ordinance of fire, 
where watchers, heaping high the tinder wood, 
sent darting onward a great beard of flame 
that passed the steeps of the Saronic Gulf 
and blazing leaped aloft to Arachnaeus, 
the point of lookout neighbor to our town. 
Whence it was flashed here to the palace roof, 
a fire fathered by the flame on Ida. 
Thus did the they hand the torch on, one to other, 
in swift succession finishing the course. 
And he who ran both first and last is victor. 
Such is my warrant and my proof to you: 
my lord himself has sent me word from Troy. 

30 
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FIGURE 3.13 Map, showing the communications path described in Agamemnon. 
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BRIEF HISTORY 
OF AUTOMATIC 
SPEECH RECOGNITION 

^ C O N C E P T U A L L Y , the development of speech recognition is closely tied with 

other developments in speech science and engineering, and as such can be viewed as 

having roots in studies going back to the Greeks (as with synthesis). However, the history 

of speech recognition1 per se in the 20th Century began with the invention of a small toy, 

Radio Rex. 

4.1 RADIO REX 

The first machine to recognize speech to any significant degree may have been a commercial 
toy named Radio Rex, which was manufactured in the 1920s. Here is a description from a 
1962 review paper [18]: 

It consisted of a celluloid dog with an iron base held within its house by an 
electromagnet against the force of a spring. Current energizing the magnet flowed 
through a metal bar which was arranged to form a bridge with 2 supporting members. 
This bridge was sensitive to 500 cps acoustic energy which vibrated it, interrupting the 
current and releasing the dog. The energy around 500 cps contained in the vowel of 
the word Rex was sufficient to trigger the device when the dog's name was called. 

It is likely that the toy responded to many words other than "Rex," or even to many 
nonspeech sounds that had sufficient 500-Hz energy. However, this inability to reject out-of-
vocabulary sounds is a weakness shared by most recognizers that followed it. Furthermore, 
the toy was in some sense useful, since it fulfilled a practical purpose (amusing a child or 
playful adult), which was not often accomplished by many of the laboratory systems that 
followed. Although quite simple, it embodied a fundamental principle of speech recognizers 
for many years: store some representation of a distinguishing characteristic of the desired 
sound and implement a mechanism to match this characteristic to incoming speech. 

'As with any such brief historical review, we have been limited to discussing a small fraction of the many 
contributions and contributors to this extremely active field. 
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FIGURE 4.1 Schematic for 1952 Bell Labs digit recognizer [19]. 

Radio Rex was later referred to in a famous letter to the Acoustical Society by John 
Pierce of Bell Labs [57], in which he strongly criticized the speech recognition research of 
that time (1969): 

What about the possibility of directing a machine by spoken instructions? In any 
practical way, this art seems to have gone downhill ever since the limited commercial 
success of Radio Rex. 

Although much of the work in vocoding and related speech analysis in the 1930s and 
1940s was relevant to speech recognition, the next complete system of any significance 
was developed at Bell Labs in the early 1950s. 
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4.2 DIGIT RECOGNITION 

A system built at Bell Labs and described in [19] may have been the first true word 
recognizer, as it could be trained to recognize digits from a single speaker. It measured a 
simple function of the spectral energy over time in two wide bands, roughly approximating 
the first two resonances of the vocal tract (i.e., formants). Although the system's analysis 
was crude, its estimate of a word-long spectral quantity may well have been more robust to 
speech variability than some of the later common approaches to estimating the time-varying 
speech spectrum. It tracked a rough estimate of formant positions instead of the spectrum 
itself. This is potentially resistant to irrelevant modifications of the overall speech spectrum. 
For instance, a simple turn of the talker's head away from a direct path to the listener often 
produces marked changes in the spectrum of the received speech (in particular, a relative 
reduction in the amplitude of the higher spectral components). The Bell Labs system's 
spectral estimation technique was, however, quite crude, histogramming low- and high-
frequency spectral moments over an entire utterance, and thus timing information was lost. 
Although the idea was good, there was insufficient technology to develop it very far by 
modern standards; it used analog electrical components and must have been difficult to 
modify. Still, the inventors claimed that it worked very well, achieving a 2% error for a 
single speaker uttering digits that were isolated by pauses [19]. 

The system (see Fig. 4.1 ) worked generally as follows: incoming speech was filtered 
into low- and high-frequency components and each component strongly saturated so that 
its amplitude was roughly independent of signal strength. The cutoff frequency in each case 
was roughly 900 Hz, which is a reasonable boundary between first and second formants 
for adult males.2 Zero crossings were counted for each of the two bands, and the system 
used this value to estimate a central frequency for each band. The low-frequency number 
was quantized to one of six 100-Hz subbands (between 200 and 800 Hz), and the high-
frequency number was quantized to be one of five 500-Hz subbands, beginning at 500 Hz. 
Together, these two quantized values correspond to one of 30 possible frequency pairs (in 
practice, only 28 were used, as the other two were rarely applicable). During a training 
period, capacitors were used to store charges associated with the time that the signal was 
mapped to a particular pair of frequencies. This distribution was learned for each digit. 
The resulting distributions were then used to choose conductances for RC circuits that 
would be used during recognition. When a new digit was uttered, a new distribution was 
determined in a similar way and compared to the stored distributions by switching between 
RC circuits corresponding to all possible digits (where the conductance corresponded to the 
template, the capacitances and charge time were all equal, and where the charging voltage 
for each frequency pair was determined by the new utterance). This procedure essentially 
implemented correlations between each stored distribution and the new distribution. The 
digits had distinguishable frequency-pair distributions and so could usually be discriminated 
from one another (See [19], Fig. 2, p. 639). 

2Children and adult women often have first formants above this frequency, and speakers of either gender can have 
second formants that are below 900 Hz for some sounds. Still, 900 Hz is a reasonable dividing point between 
major energy components in speech. 
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Note that even in 1952, researchers were reporting a speech recognizer that was 
98% accurate! An examination of modern press releases suggests that this figure may be a 
constant for speech-recognition systems (those that are reported, anyway). 

4.3 SPEECH RECOGNITION IN THE 1950s 

In 1958, Dudley made a classifier that continuously evaluated spectra, rather than approx-
imations to formants. This new paradigm was commonly used afterward; in fact, broadly 
speaking, the current dominant paradigm for speech recognition uses some function of a 
local spectral estimate varying over time as the representation of the incoming speech. 

In 1959, Denes, from the College of London, added grammar probabilities in addition 
to acoustic information. In other words, he pointed out that the probability of a particular 
linguistic unit being uttered can also be dependent on the previous linguistic unit, so that 
the probability of a word need not be solely dependent on the acoustic input. 

In 1962, David and Selfridge put together Table 4.1, which compared a number of 
speech-recognition experiments in the preceding decade [18] including the two recognizers 
mentioned above. In general, researchers performed spectral tracking, detected a few words 
and sounds, and performed tests on a small number of people. 

4.4 THE 1960S 

Throughout much of the 1960s, automatic speech-recognition research continued along 
similar lines. Martin deployed neural networks for phoneme recognition in 1964. Digit 
recognizers became better in the 1960s, achieving good accuracy for multiple speakers. 
Widrow trained neural networks to recognize digits in 1963 [81]. Phonetic features were 
also explored by a number of researchers. However, as noted earlier, in 1969 John Pierce 
wrote a caustic letter entitled "Whither Speech Recognition?" In it he argued that scientists 
were wasting time with simple signal-processing experiments because people did not do 
speech recognition, but rather speech understanding. He also pointed out the lack of scien-
tific rigor in the experimentation at that time and he suggested that arbitrary manipulation 
of recognizer parameters to find the best performance was like the work of a "mad scientist," 
rather than that of a serious researcher. At the time, Pierce headed the Communications 
Sciences Division at Bell Labs, and his remarks were quite influential. 

Although there may have been much that was correct about Pierce's criticism, there 
were a number of major breakthroughs in the 1960s that became important for speech-
recognition research in the 1970s. First, as noted previously, prior to this period the pri-
mary approach to estimating the short-term spectrum was a filter bank. In the 1960s, 
three spectralestimation techniques were developed that were later of great significance 
for recognition, although their early applications to speech were for vocoding: the Fast 
Fourier transform (FFT), cepstral (or homomorphic) analysis, and linear predictive coding 
(LPC). Additionally, new methods for the pattern matching of sequences were developed: 
a deterministic approach called dynamic time warp (DTW), and a statistical one called the 
hidden Markov model (HMM). 



TABLE 4.1 Pre-1962 Speech-Recognition Systems' 

Investigators 

Kersta 

Davis, 
Biddulph, 
and 
Balashek 

Fry and 
Denes 

Olson and 
Belar 

Dudley and 
Balashek 

Mathews 
and 
Denes 

Hughes 

Shultz 

Petrick and 
Willett 

Forgie and 
Forgie 

Keith-Smith 
and Klem 

Sebestyen 
Suzuki and 

Nakata 

Speech 
representation 

Selected entries 
from Δ/-Δί 
matrix 
(200 cps x 67 ms) 

Formants 1 and 2 
as a function of 
time 

Selected entries 
from Af-At matrix 

Af-At matrix 

Af-At matrix 

Af-At matrix 

Spectral features 

Spectral features 

Af-At matrix 

Spectral features 

Δ/-Δ? matrix 

Af-At matrix 
Formants 1 and 2 

Vocabulary 

10 digits 

10 digits 

14 speech 
sounds 
in 139 
words 

10 words or 
syllables 

10 digits 

10 digits 

11 sound 
categories 
in 100 
words 

10 digits 

10 digits 

10 vowels 

10 vowels 

10 digits 
5 vowels in 

consonant 
contexts 

No. of 
talkers 
tested 

9 men, 
5 women 

1 talker 

1 talker 

1 talker 

2 men 

6 men 

4 men, 
3 women 

25 men, 
25 women 

1 talker 

11 men, 
10 women 

11 men, 
10 women 

10 speakers 
5 speakers 

Appox. 
error 
rate 
(%) 

0.2 

2.0 

28.0 
(sounds) 
56.0 
(words) 

2.0 

5 

6 

30 

3 

<1.0 

7 

6 

<1 
Ä;20 

Additional facts 
and comments 

Spectrograms 
quantized into 
2 levels 

Correlation 
metric 

Phoneme 
digram 
frequencies 
used to 
supplement 
primitive 
recognition 
from acoustics 

Temporal 
sequence 
disregarded 

Spectral pattern 
time and 
amplitude 
normalized 

Feature-selection-
based linguistic 
analysis 

Spectral patterns 
time normalized 

Statistical decision 
procedure 
used to select 
relevant spectral 
features 

Additional 
experiments on 
vowels in 
bisyllable words 
and short 
sentences yield 
higher error rates 

From [18]. 
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4.4.1 Short-Term Spectral Analysis 

As discussed in Chapter 7, Cooley and Tukey introduced the FFT [17]. This is a com-
putationally efficient form of the discrete Fourier transform (DFT), which in turn can be 
interpreted as a filter bank. However, its efficiency was important for speech-recognition 
research, as it was for many other disciplines. 

An alternative to filter banks and their equivalent FFT implementation was cepstral 
processing, which was originally developed by Bogert for seismic analysis [10] and applied 
later to speech and audio signals by Oppenheim, Schafer, and Stockham [53]. Cepstral pro-
cessing will be discussed later (primarily in Chapter 20), but its significance for speech 
recognition is primarily as an approach to estimating a smooth spectral envelope. It ulti-
mately became widely used for recognition, particularly in combination with other analysis 
techniques (see Chapter 22). 

LPC is a mathematical approach to speech modeling that has a strong relation to 
the acoustic tube model for the vocal tract. Fundamentally, it refers to the use of an 
autoregressive (pole only) model to represent the generation of speech; each time point in 
sampled speech is predicted by a weighted linear sum of a fixed number of previous samples. 
In Chapter 21 we will provide a more rigorous definition, but for now the significance of LPC 
is that it provides an efficient way of finding a short-term spectral envelope estimate that 
has many desirable properties for the representation of speech, in particular the emphasis 
on the peak spectral values that characterize voiced sounds. Some of the early writings 
on this topic include [32], [2], and [44]. An excellent tutorial on the topic was written by 
Makhoul [42]. 

4.4.2 Pattern Matching 

Dynamic programming is a sequential optimization scheme that has been applied to many 
problems [9]. In the case of speech analysis for recognition, it was proposed as a method of 
time normalization - different utterances of the same word or sentence will have differing 
durations for the sounds, and this will lead to a potential mismatch with the stored represen-
tations that are developed from training materials. DTW applies dynamic programming to 
this problem. It was proposed by Sakoe around 1970 (but published in an English-language 
journal in 1978 [66]). Vintsyuk was among the first to develop the theory, and he also 
applied it to continuous speech [75]. DTW for connected word recognition was described 
by Bridle [13] and Ney [51]. Excellent review articles on the subject were written by White 
[80] and by Rabiner and Levinson [62]. 

DTW is a deterministic approach to the matching of the time sequence of short-
term spectral estimates to stored patterns that are representative of the words that are being 
modeled [50]. Alternatively, one could imagine a statistical approach, in which the incoming 
time sequence is used to assess the likelihood of probabilistic models rather than speech 
examples or prototypes. The mathematic foundations for such an approach were developed 
in the 1960s, and they were built on the statistical characterization of the noisy commu-
nications channel as described in 1948 by Shannon [69]. Most notably, the work of Baum 
and colleagues at the Institute for Defense Analysis established many of the basic concepts, 
such as the forward-backward algorithm to compute the model parameters iteratively [8] 
(see Chapter 26). Briefly, hidden Markov modeling is a statistical approach that models an 
observed sequence as being generated by an unknown sequence of variables. 
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Towards the end of the 1960s, a number of researchers became interested in devel-
oping these ideas further for the case of a naturally occurring sequence, and in particular 
for speech recognition. Many of these ultimately joined a research group at IBM, which 
pioneered many aspects of HMM-based speech recognition in the 1970s. An early IBM re-
port that influenced this work was [74], and a range of other publications followed through 
the early to mid-1970s, for example, [7], [3], [35], and [34]. The group developed an early 
HMM-based automatic speech-recognition system that was used for a continuous speech-
recognition task referred to as New Raleigh Language. Baker independently developed 
an HMM-based system called Dragon while still a graduate student at Carnegie Mellon 
University (CMU) [4]. Many other researchers were working with this class of approaches 
by the mid-1980s (e.g., [67]). 

4.5 1971-1976 ARPA PROJECT 

As noted earlier, one of Pierce's criticisms of earlier efforts was that there was insufficient 
attention given to the study of speech understanding, as opposed to recognition. In the 1970s 
the Advanced Research Projects Agency (ARPA)3 funded a large speech-understanding 
project. The main work was done at three sites: System Development Corporation, CMU, 
and Bolt, Beranek & Newman (BBN). Other work was done at Lincoln, SRI International, 
and University of California at Berkeley. The goal was to perform 1000-word automatic 
speech recognition by using a few speakers, connected speech, and constrained grammar 
with less than a 10% semantic error. The funding was reported to be $15 million. According 
to Klatt, who wrote an interesting critique of this program [36], only a system called 
Harpy, built by a CMU graduate student (Bruce Lowerre), fulfilled the goals. He used 
LPC segments, incorporated high-level knowledge, and modified techniques from Baker's 
Dragon system, as well as from another CMU system, Hearsay. 

4.6 ACHIEVED BY 1976 

By 1976, researchers were using spectral feature vectors, LPC, and phonetic features in 
their recognizers. They were incorporating syntax and semantic information. Approaches 
incorporating neural networks, DTW, and HMMs were developed. A number of systems 
were built. Efforts on reducing search cost were explored. Techniques from artificial intelli-
gence were often used, particularly for the ARPA program. HMM theory had been applied 
to automatic speech recognition, and HMM-based systems had been built. In short, many 
of the fundamentals were in place for the systems that followed. 

3This U.S. government agency was originally known as ARPA but later became known as DARPA (the D standing 
for Defense), but after a few years it reverted back to ARPA; as of this writing it is DARPA again. 
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4.7 THE 1980S IN AUTOMATIC SPEECH RECOGNITION 

In the 1980s, most efforts were concentrated in scaling existing techniques (e.g., LPC and 
HMMs) to more difficult problems. New front-end processing techniques were also devel-
oped in this time period. For the most part, however, the structure of speech-recognition 
systems did not change; they were trained on a larger quantity of data and extended to 
more difficult tasks. This extension did require extensive engineering developments, which 
were made possible by a concerted effort in the community. In particular, there was a major 
effort to develop standard research corpora. 

4.7.1 Large Corpora Collection 
Prior to 1986 or so, the speech-recognition community did not have any widely accepted 
common databases for training recognition systems. This made comparisons between labs 
difficult, since few researchers trained or tested on the same acoustic data. Many speech 
researchers were concerned with this problem. Industrial scientists (e.g., those with Texas 
Instruments and Dragon Systems) worked with NIST (National Institute of Standards and 
Technology)4 and compiled large standard corpora. 

In 1986, collection began on the TIMIT5 corpus [52], which was to become the 
first widely used standard corpus. A 61-phone alphabet was chosen to represent phonetic 
distinctions. The sentences in TIMIT were chosen to be phonetically balanced, meaning that 
a good representation of each phone was available within the training set. There were 630 
speakers that each said 10 sentences, including two that were the same for each speaker. 
The data were recorded at Texas Instruments and phonetically segmented at MIT, first 
by use of an automatic segmenter [40], followed by manual inspection and repair of the 
alignments by graduate students. This resulted in a database in which the time boundaries 
of the phone in the speech signal are marked for every phone uttered by a speaker. Even 
though errors still undoubtedly exist in the TIMIT database, it remains one of the largest 
and most widely used hand-labeled phonetic corpora. 

With the advent of the second major ARPA speech program in the mid-1980s, a new 
task called Resource Management (RM) was defined, with a new database [60] of speech. 
RM had much in common with the task from the first ARPA program in the 1970s. The 
major differences were that the grammar had a greater perplexity,6 and the recordings were 
made of read speech. Sentences were constructed from a 1000-word language model, so 
that no out-of-vocabulary words were encountered during testing. The corpus contained 
21,000 utterances from 160 speakers. One important characteristic of the RM task was that 
it included speaker-independent recognition; that is, some systems were trained on many 
speakers, and they were tested on speakers not in the training set. 

Later on in the program, the focus shifted to the Wall Street Journal Task - rec-

4Formerly called the National Bureau of Standards (NBS). 
5 So called because the data were collected at Texas Instruments (TI) and annotated at MIT. 
6Roughly speaking, perplexity is a measure of the uncertainty about the next word given a word history; a more 
precise definition will be given in Chapter 5. 
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ognizing read speech from the Wall Street Journal.7 The first test was constrained to 
be a 5000-word vocabulary test with no out-of-vocabulary words; later, a 20,000-word 
task with out-of-vocabulary words was developed. More recent tests used an essentially 
unlimited vocabulary, and researchers often used 60,000-word decoders for system evalu-
ations. 

Another task that was developed in parallel with the read speech program was 
Air Travel Information System (ATIS), which was based on spontaneous query in the 
airline-reservation domain. ATIS is a speech-understanding task (as opposed to a speech-
recognition task). Systems not only had to produce word strings, but they also had to attempt 
to derive some semantic meaning from these word strings and perform an appropriate 
function. For instance, if the user said "show me the flights from Boston to San Francisco," 
the system should respond by showing a list of flights. Interaction continued with the system 
in order to reach some goal; in this case, ordering airline tickets. This domain was more 
practical than the Wall Street Journal task, but the vocabulary size was smaller. Systems 
today are now quite good at this task. 

DARPA funded the collections of these corpora, and the collection processes were 
managed by NIST. NIST subcontracted much of the collection work to sites such as SRI 
and Texas Instruments. These and other corpora are now distributed through the Linguistic 
Data Consortium (LDC), which is based at the University of Pennsylvania in Philadelphia. 

4.7.2 Front Ends 

A number of new front ends, that is, subsystems that extract features from the speech 
signal, were developed in the 1980s. Of particular note are mei cepstrum [20], perceptual 
linear prediction [29], delta cepstral coefficients [22], and other work in auditory-inspired 
signal-processing techniques, for example, [68] and [27]. (See Chapter 22 for a discussion 
of many of these approaches.) 

4.7.3 Hidden Markov Models 

As noted previously, the fundamentals of HMM methodology were developed in the late 
1960s, with applications to speech recognition in the 1970s. In the 1980s, interest in these 
approaches spread to the larger community. Research and development in this area led to 
system enhancements from researchers in many laboratories, for example, BBN [67] and 
Philips [12]. By the mid-late 1980s, HMMs became the dominant recognition paradigm, 
with, for example, systems at SRI [48], MIT-Lincoln [55], and CMU. The CMU system 
was quite representative of the others developed at this time, and [38] provides an extended 
description. 

Much of this activity focused on tasks defined in a new ARPA program. As in the 
1970s, IBM researchers primarily worked with their own internal tasks, although ultimately 
they too participated in DARPA evaluations. See [61] for descriptions of the wide range 

7The task was later called CSRNAB (Continuous Speech Recognition of North American Business News), which 
included data from other news sources. 
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of work done at Bell on HMMs for telephone speech, as well as on many other aspects of 
automatic speech recognition. 

4.7.4 The Second (D)ARPA 
Speech-Recognition Program 

In 1984, ARPA began funding a second program. The first major speech-recognition task 
in this program was the Resource Management task mentioned earlier. This task involved 
reading sentences derived from a 1000-word vocabulary. The sentences were questions and 
commands designed to manipulate a naval information database, although the systems did 
not actually have to interface with any database; ratings were based on word recognition. 
Sample sentences from the corpus [60] include the following: 

• Is Dixon's length greater than that of Ranger? 

• What is the date and hour of arrival in port for Gitaro? 

• Find Independence's alerts. 

• Nevermind. 

Evaluations of participating systems were held one to two times per year. Sites 
would receive a CD-ROM with test data, and send NIST the sentences produced by their 
recognizer, where the results would be officially evaluated. 

The competition tended to make systems converge on good, similar systems, with 
each lab attempting to incorporate improvements that had been noted by the others. Al-
though this led to a rapid set of improvements, this also led to a convergence of approaches 
for many systems. 

The ARPA project fueled many engineering advances. As of 1998, many research 
systems can recognize read speech from new speakers (without speaker-specific train-
ing) with a 60,000-word vocabulary in real time, with less than a 10% word error.8 The 
competition also inspired other sites that were not funded by the project, including lab-
oratories in Europe. For example, Cambridge University in England participated in the 
evaluations, and developed НТК or HMM ToolKit, which has been widely distributed 
[82]. It is now possible to use НТК to get large vocabulary-recognition results close to 
those achieved by the major sites. 

It could be argued that the fundamentals of speech-recognition science have not 
greatly changed in many years; at least it is not clear that any major mechanisms (of the 
significance of dynamic programming, HMMs, or LPC) were developed during the last 
decade or two. However, there have been many developments that may ultimately prove to 
have been important, particularly in the 1990s - examples include front-end developments 
(mei or bark-scaled cepstral estimates, delta features, channel normalization schemes, and 
vocal tract normalization) and probabilistic estimation (e.g., maximum likelihood linear 

8The reader should keep in mind that this impressive performance is for read speech (that is, read from a page) in 
a limited domain with extensive language materials for training and relatively well-behaved acoustic input. The 
1998 performance on tasks that are less constrained can be much worse. 
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regression (MLLR) - see Chapter 28) to adapt to new speakers or acoustics, schemes 
to improve discrimination with neural networks, or training paradigms to maximize the 
mutual information between the data and the models). Still, it is fair to say that the field has 
matured to the point that the efforts of many workers in the field are more oriented toward 
improving the engineering effectiveness of existing ideas rather than generating radically 
different ones. It is a matter of current controversy as to whether such an engineering 
orientation is sufficient to make major progress in the future, or whether radically different 
approaches will actually be required [11]. 

4.7.5 The Return of Neural Nets 

The field of neural networks suffered a large blow when Minsky and Papert wrote their 1969 
book Perceptrons, proving that the perceptron, which was one of the popular net architec-
tures of the time,9 could not even represent the simple exclusive or (XOR) function.10 With 
the advent of backpropagation, a training technique for multilayer perceptrons (MLPs), in 
the early 1980s, the neural network field experienced a resurgence. 

One application of neural networks to speech classification in the early 1980s was the 
use of a committee machine to judge whether a section of speech was voiced or unvoiced 
[26]. In 1983 Makino reported using a simple time-delayed neural network (a close cousin 
to a MLP in which the input layer includes a delayed version of itself in order to provide 
a simple context-delay mechanism) to perform consonant recognition [43]. This technique 
was later expanded by other researchers to add these delayed versions at multiple layers in 
the net [78]. Other researchers in the mid-1980s used Hopfield nets to classify both vowels 
and consonants [41]. 

By the late 1980s, many labs were experimenting with neural networks, both in 
isolated and continuous contexts. Only a few labs attacked large problems in automatic 
speech recognition with neural networks during this period; discrete probability estimators 
and mixtures of Gaussians were used in HMM recognizers for the majority of systems. 
Some sites have been using hybrid HMM-artificial neural network techniques, in which 
the neural network is used as a phonetic probability estimator, and the HMM is used to 
search through the possible space of word strings comprising the phones from the artificial 
neural network [46], [64]. In recent years, neural networks have also been used for feature 
transformation as part of a discriminatively trained front end for use in a Gaussian-mixture-
based recognition system [30]. 

4.7.6 Knowledge-Based Approaches 

As noted previously, much of the work in the first ARPA speech project was strongly 
influenced by an artificial intelligence perspective. In the late 1970s and early 1980s, ap-

9Although other network architectures were (and still are) available, including the perceptron's cousin, the MLP, 
the perceptron had properties that made it relatively easy to train. 
10The XOR is a two-input logic function that returns true for inputs that are different (only one or the other is true) 
and false if the inputs are the same (either both true or both false). 
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proaches based on the codification of human knowledge, typically in the form of rales, 
became widely used in a number of disciplines. Some speech researchers developed recog-
nition systems that used acoustic-phonetic knowledge to develop classification rules for 
speech sounds; for instance, in [79], the consonants "k" and "g" following a vowel were 
discriminanted on the basis of the proximity of the second and third resonances at the end of 
the vowel. This style of recognition was explained very well in [84]. One of the potential 
advantages of such an approach was that the speech characteristics used for discrimination 
were not limited to the acoustics of a single frame. Some of these points were explained 
in [16]. This reference, which is reprinted in [77], is also interesting because it includes a 
commentary from two BBN researchers (Makhoul and Schwartz), who took issue with the 
idea of focusing on the weak knowledge that we have about the utility of features chosen 
by experts. In this commentary, they suggested that systems should instead be focused on 
representing the ignorance that we have. In this case, they were really pointing to HMM-
based approaches.11 This dialog, and the personal interactions surrounding it at various 
meetings around this time, were extremely influential. By 1988 nearly every research site 
had turned to statistical methods. In the long term, however, the dichotomy might be viewed 
as elusive, since all of the researchers employing statistical methods continued to search 
for ways to include different knowledge sources, and the systems that attempted to use 
knowledge-based approaches also used statistical models. 

4.8 MORE RECENT WORK 

Since the early 1990s, there have been many events and advances in the field of speech 
recognition, though, arguably, few have had the fundamental impact of such things as 
the use of common databases and evaluations, and the core statistical modeling approach. 
However, the cumulative effect of these more recent efforts has been considerable. Here is 
a sampling of what we view to be the more significant components of work in ASR since 
the early 1990s. 

1. The DARPA program continued, and moved on to tasks such as Broadcast News. 
This is a significantly more realistic task than the Wall Street Journal transcription, since it 
includes a range of speaking styles (from read to spontaneous) and acoustic conditions (e.g., 
quiet studio to noisy street). It also is a real task, in the sense that the automatic transcription 
of broadcast data is closely related to several potential commercial applications. 

2. The U.S. Defense Department also funded an effort to transcribe conversational 
speech. Two databases collected for this work were Switchboard and Call Home; in the first 
case, talkers were asked to converse on the telephone on a selected topic (e.g., credit cards). 
In the second, callers were asked to telephone family members and discuss anything they 
wanted. These were, and are, extremely difficult tasks, though by 2005 the best systems 
achieved word error rates on Switchboard (and Fisher, a related task) in the low 'teens 

1 ' An earlier paper that made similar philosophical points, but that was not specifically concerned with speech 
recognition orHMMs, was [26]. 
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(Call Home test sets remained very challenging, possibly due to the extremely relaxed and 
informal conversational style used in talking to family members). 

3. Beginning in the mid to late 1990s, there was an increased effort by a number of 
American and European laboratories to study conversational speech in meetings [45] [1]. 
This extended both the technical problem set and the potential utility of successful systems 
by including scenarios with distant microphones (thus generating noisy and reverberant 
speech signals) and extremely natural conversational phenomena. Data sets were collected 
and made available from the U.S. [33] and Europe [14]. For a number of years NIST 
conducted evaluations of ASR and speaker diarization for such test sets. 

4. Beginning in 1993, there has been an annual 6-week summer workshop that is 
focused on recognizing conversational speech. It was held for 2 years at Rutgers, and then 
each summer at Johns Hopkins, although the latter workshop has since broadened its scope, 
looking at many problems in speech and natural language processing. 

5. Many of the first speech recognizers were segment based; that is, the recognizer 
hypothesized the boundaries of phone segments in the speech signal and then tried to 
do recognition based on this segmented speech. By the 1970s, most researchers turned 
to a more frame-based system, in which the base acoustic analysis regions were small, 
constant-duration sections, or frames, of speech. However, some researchers continue 
to work with segment-based systems, e.g., the MIT SUMMIT system [85], [56]. These 
systems developed ways of using statistical models [28], much as the frame-oriented 
systems had. Additionally, a number of researchers developed ways of extending HMM-
based approaches to include segment statistics; see, for example, [54]. More recently, 
there has been increased experimentation with hybrids of HMM-based and memory-based 
(episodic) approaches, such as in [76]. 

6. Discriminative training methods are now widely used, particularly in large re-
search systems that are trained with many hours (often more than 1000) of speech. The 
availability of these very large data sets also permitted much more detailed models, which 
were a major factor in the reduction in word error rates since the early 1990s. Discriminative 
approaches to model training such as those developed in [58] will be discussed in Chapters 
27 and 28; similar methods have been developed for feature transformation, as described in 
[59][30][47], and different discriminative methods have also been successfully combined, 
for instance as reported in [83]. 

7. Through the 1980s, essentially every recognition system was extremely suscep-
tible to a linear filtering operation (as one might experience from a telephone channel 
with a different frequency response than the one that was used to collect training data). 
In the 1990s there was significant work to improve recognition robustness to different 
channels, as well as to variability in the microphone, and to acoustic noise [31], [72], [25], 
[37]. This was continued in the following decade with work on the Aurora task, based on 
speech recognition with additive noise, and developed by a working group for the Euro-
pean Telecommunications Standards Institute (ETSI) as part of the selection process for a 
standard front end for "Distributed Speech Recognition" (DSR), which is discussed further 
in Chapter 22. 

8. Language models have been extended by using many billions of words from 
available text, including incorporating language from the Web. Additionally, while n-gram 
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remain predominant, additional methods that incorporate more language structure have 
increasingly been incorporated as a supplement. 

9. The use of multiple systems or subsystems became widespread for large research 
systems, with combination at the feature, model, or system output levels, as described 
in[21],[71],[70], and [73]. 

10. There has been an increased emphasis on issues of pronunciation [63], dialog 
modeling [15], model adaptation schemes [39], and long-distance dependencies within 
word sequences [65], to mention just a few major topics. 

11. There has been a rapid expansion of research in other classification tasks related 
to automatic speech recognition. For instance, methods and systems were developed for 
speaker identification and verification ([23], [24] and Chapter 41), as well as for language 
identification [49]. Speaker diarization (determining who spoke when) has also become a 
significant topic. 

Some additional topics are discussed in a 2009 review paper, published in two parts 
[5][6]. 

4.9 SOME LESSONS 

Researchers often return to the same themes decade after decade - frame-based measures 
versus segment-based ones, statistical estimation of acoustic and language probabilities, 
incorporation of speech knowledge, and so on. With each return, the technology is more 
sophisticated. For instance, consumers can now purchase a dictation system that can rec-
ognize tens of thousands of words in continuous speech with a moderate error rate (after 
adaptation to the speaker), and the computers that can accomplish this are widely avail-
able. 

However, the problems in speech recognition remain deep. Even five-word rec-
ognizers operate with significant errors under common natural conditions (e.g., mod-
erate background noise and room reverberation, accent, and out-of-vocabulary words). 
In contrast, human performance is often far more stable under the same conditions, as 
discussed further in Chapter 18. We expect the general problem of the recognition and 
interpretation of spoken language to remain a challenging problem for some time to 
come. 
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4.10 EXERCISES 

4.1 How was the 1952 Bell Labs automatic-speech recognition system limited in comparison with a 
modern system? Is there any way in which it could potentially be better, while keeping the same 
basic structure? 

4.2 A new speech-recognition company is advertising their wonderful product. What percentage accuracy 
would you expect them to ascribe to their system? Describe some ways in which performance could 
be benchmarked in more realistic ways. 

4.3 Find a newspaper, magazine, or Web announcement about some speech-recognition system, either 
commercial or academic. Can you conclude anything about the structure and capabilities of these 
systems? If there is any content in the release information, try to associate your best guesses about 
the systems with any of the historical developments described in this chapter. 

4.4 In what way could Radio Rex be a better system than a recognizer trained to understand read versions 
of the Wall Street Journal? 

BIBLIOGRAPHY 

1. www.amiproject.org 
2. Atal, В., and Hanauer, S., "Speech analysis and synthesis by prediction of the speech wave," J. 

Acoust. Soc. Am. 50: 637-655, 1971. 
3. Bahl, L., and Jelinek, F., "Decoding for channels with insertions, deletions, and substitutions 

with applications to speech recognition," IEEE Trans. Inform. Theory IT-21: 404-411, 1975. 
4. Baker, J., "The DRAGON system - an overview," IEEE Trans. Acoust. Speech, Signal Process. 

23: 24-29, 1975. 
5. Baker, J., Deng, L., Glass, J., Khudanpur, S., Lee, C.H., Morgan, N., and O'Shaughnessy, D. 

"Developments and directions in speech recognition and understanding, Part 1," IEEE Signal 
Process. Mag. 26(3): 75-80, May 2009. 

6. Baker, J., Deng, L., Khudanpur, S., Lee, C.H., Glass, J., Morgan, N., and O'Shaughnessy, D. 
"Updated MINDS report on speech recognition and understanding, Part 2," IEEE Signal Process. 
Mag. 26(4): 78-85, July 2009. 

7. Bakis, R., "Continuous-speech word spotting via centisecond acoustic states," IBM Res. Rep. 
RC 4788, Yorktown Heights, New York, 1974; abstract in J. Acoust. Soc. Am. 59 (Supp. 1): S 
97, 1976. 

8. Baum, L. E., and Petrie, Т., "Statistical inference for probabilistic functions of finite state Markov 
chains," Аил. Mathemat. Stat. 37: 1554-1563, 1966. 

9. Bellman, R., "On the theory of dynamic programming," Proc. Nat. Acad. Sci. 38:716-719,1952. 
10. Bogert, В., Healy, M., and Tukey, J., "The quefrency analysis of time series for echos," in M. 

Rosenblatt, ed., Proc. Symp. on Time Series Analysis, Chap. 15, Wiley, New York, pp. 209-243, 
1963. 

11. Bourlard, H., Hermansky, H., and Morgan, N., "Towards increasing speech recognition error 
rates," Speech Commun. 18: 205-231, 1996. 

12. Bourlard, H., Kamp, Y, Ney, H., and Wellekens, С. J., "Speaker-dependent connected speech 
recognition via dynamic programming and statistical methods," in M. R. Schroeder, ed., Speech 
and Speaker Recognition, Karger, Basel, 1985. 



BIBLIOGRAPHY 55 

13. Bridle, J., Chamberlain, R., and Brown, M., "An algorithm for connected word recognition," in 
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Paris, pp. 899-902, 1982. 

14. Cadetta, J. "Announcing the AMI Meeting Corpus.," The ELRA Newsletter 11(1): 3-5, 
January-March 2006. 

15. Cohen, P., "Dialogue modeling," in R. Cole, J. Mariani, H. Uszkoreit, G. B. Varile, A. Zaenen, 
A. Zampoli, and V. Zue, eds. Survey of the State of the Art in Human Language Technology, 
Cambridge Univ. Press, London/New York, 1997. 

16. Cole, R., Stern, R., and Lasry, M., "Performing fine phonetic distinctions: templates versus 
features," in J. S. Perkell and D. M. Klatt, eds., Variability and Invariance in Speech Processes, 
Erlbaum, Hillsdale, N.J., 1986. 

17. Cooley, J. W., and Tukey, J. W., "An algorithm for the machine computation of complex Fourier 
series," Math. Comput. 19: 297-301, 1965. 

18. David, E., and Selfridge, O., "Eyes and ears for computers," Proc. IRE 50: 1093-1101, 1962. 
19. Davis, K., Biddulph, R., and Balashek, S., "Automatic recognition of spoken digits," J. Acoust. 

Soc. Am. 24: 637-642, 1952. 
20. Davis, S., and Mermelstein, P., "Comparison of parametric representations for monosyllabic 

word recognition in continuously spoken sentences," IEEE Trans. Acoust. Speech Signal 
Process. 28: 357-366, 1980. 

21. Fiscus, J. G., "A post-processing system to yield reduced word error rates: Recognizer output 
voting error reduction (ROVER)," in Proc. Auto. Speech Recog. linderst., Santa Barbara, pp. 
347-354, 1997. 

22. Furui, S., "Speaker independent isolated word recognizer using dynamic features of speech 
spectrum," IEEE Trans. Acoust. Speech Signal Process. 34: 52-59, 1986. 

23. Furui, S., "An overview of speaker recognition technology," in C. H. Lee, F. K. Soong, and K. 
K. Paliwal, eds., Automatic Speech and Speaker Recognition, Kluwer, Boston, Mass., 1996. 

24. Furui, S., "40 Years of Progress in Automatic Speaker Recognition," in Adv. Biometrics, pp. 
1050-1059, 2009. 

25. Gales, M., and Young, S., "Robust speech recognition in additive and convolutional noise using 
parallel model combination," Comput. Speech Lang. 9: 289-307, 1995. 

26. Gevins, A., and Morgan, N., "Ignorance-based systems," in Proc. IEEE Int. Conf. Acoust. 
Speech Signal Process., San Diego, pp. 39A.5.1-39A.5.4., 1984. 

27. Ghitza, O., "Temporal non-place information in the auditory-nerve firing patterns as a front end 
for speech recognition in a noisy environment," J. Phonet. 16: 109-124, 1988. 

28. Glass, J.R., "A probabilistic framework for segment- based speech recognition," Comput, 
Speech Lang. 17(2-3): 137-152,2003. 

29. Hermansky, H., "Perceptual linear predictive (PLP) analysis of speech," J. Acoust. Soc. Am. 87: 
1738-52, 1990. 

30. Hermansky, H., Ellis, D., and Sharma, S., "Tandem connectionist feature stream extraction for 
conventional HMM systems," in Proc. IEEE Int. Confi Acoust. Speech Signal Process., Istanbul, 
pp. Ill-1635-1638, 2000. 

31. Hermansky, H., and Morgan, N., "RASTA processing of speech," IEEE Trans. Speech Audio 
Process. 2: 578-589, 1994. 

32. Itakura, F., and Saito, S., "Analysis-synthesis telephone based on the maximum-likelihood 
method," in Y. Konasi, ed., Proc. 6th Int. Cong. Acoust., Tokyo, Japan, 1968. 

33. Janin, A., Baron, D., Edwards, Ellis, D., J., Gelbart, D., Morgan, N., Peskin, В., Pfau, Т., 
Shriberg, E., Stolcke, A., and Wooters, C , "The ICSI Meeting Corpus," in Proc. IEEE Int. Confi 
Acoust. Speech Signal Process., Hong Kong, pp. I 364—367, 2003. 

34. Jelinek, F., "Continuous recognition by statistical methods," Proc. IEEE 64: 532-555, 1976. 



5 6 CHAPTER 4 BRIEF HISTORY OF AUTOMATIC SPEECH RECOGNITION 

35. Jelinek, F., Bahl, L., and Mercer, R., "The design of a linguistic statistical decoder for the 
recognition of continuous speech," IEEE Trans. Inform. Theory IT-21: 250-256, 1975. 

36. Klatt, D., "Review of the ARPA speech understanding project," J. Acoust. Soc. Am. 62: 
1345-1366, 1977. 

37. Lee, C.-H., "On stochastic feature and model compensation approaches to robust speech 
recognition," Speech Commun. 25: 29-48, 1998. 

38. Lee, K.-R, Automatic Speech Recognition - the Development of the Sphinx System, Kluwer, 
Norwell, Mass., 1989. 

39. Leggetter, C , and Woodland, P., "Maximum likelihood linear regression for speaker adaptation 
of continuous density hidden Markov models," Comput. Speech Lang. 9: 171-185, 1995. 

40. Leung, H., and Zue, V., "A procedure for automatic alignment of phonetic transcriptions with 
continuous speech," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., San Diego, pp. 
2.7.1-2.7.4, 1984. 

41. Lippmann, R., and Gold, В., "Neural classifiers useful for speech recognition," in Proc. IEEE 
First Int. Conf. Neural Net., San Diego, pp. 417^22, 1987. 

42. Makhoul, J., "Linear prediction: a tutorial review," Proc. IEEE 63: 561-580, 1975. 
43. Makino, S., Kawabata, Т., and Kido, K., "Recognition of consonants based on the perceptron 

model," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Boston, Mass., pp. 738-741, 
1983. 

44. Markel, J., and Gray, A., Linear Prediction of Speech, Springer-Verlag, New York/Berlin, 1976. 
45. Morgan, N., Baron, D., Bhagat, S. Carvey, H., Dhillon, R., Edwards, J., Gelbart, D., Janin, A., 

Krupski, A., Peskin, В., Pfau, Т., Shriberg, E., Stolcke, A., and Wooters, C, "Meetings about 
meetings: research at ICSI on speech in multiparty conversations," in Proc. IEEE Int. Conf. 
Acoust. Speech Signal Process., Hong Kong, pp. IV 740-743, 2003. 

46. Morgan, N., and Bourlard, H., "Continuous speech recognition: an introduction to the hybrid 
HMM/connectionist approach," IEEE Signal Process. Mag. 12: 25^12, 1995. 

47. Morgan, N., Zhu, Q., Stolcke, A., Sonmez, K., Sivadas, S., Shinozaki, Т., Ostendorf, M., Jain, 
P., Hermansky, H., Ellis, D., Doddington, G., Chen, В., Cetin, O., Bourlard, H., and Athineos, 
M., "Pushing the envelope-aside," IEEE Signal Process. Mag. 22(5): 81-88, 2005. 

48. Murveit, H., Cohen, M., Price, P., Baldwin, G., Weintraub, M., and Bernstein, J., "SRI's DECI-
PHER system," in Proc. Speech Natural Lang. Workshop, Philadelphia, pp. 238-242, 1989. 

49. Muthusamy, Y. K., Barnard, E., and Cole, R. A., "Reviewing automatic language identification," 
IEEE Signal Process. Mag. 11: 33^11, 1994. 

50. Myers, C , Rabiner, L., and Rosenberg, L., "Performance tradeoffs in dynamic time warping 
algorithms for isolated word recognition," IEEE Trans. Acoust. Speech Signal Process. 28: 
623-635, 1980. 

51. Ney, H., "The use of a one stage dynamic programming algorithm for connected word 
recognition," IEEE Trans. Acoust. Speech Signal Process. 32: 263-271, 1984. 

52. National Institute of Standards and Technology, TIMIT Acoustic-Phonetic Continuous Speech 
Corpus, Speech Disc 1-1.1, NIST Order No. PB91-505065, 1990. 

53. Oppenheim, A. V, Schäfer, R. W., and Stockham, T. G. Jr., "Nonlinear filtering of multiplied 
and convolved signals," Proc. IEEE 56: 1264-1291, 1968. 

54. Ostendorf, M., Bechwati, I., and Kimball, O., "Context modeling with the stochastic segment 
model," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., San Francisco, pp. 389-392, 
1992. 

55. Paul, D., "The Lincoln continuous speech recognition system: recent developments and 
results," in Proc. Speech Natural Lang. Workshop, Philadelphia, pp. 160-165, 1989. 

56. Phillips, M., Glass, J., and Zue, V., "Automatic learning of lexical representations for sub-word 
unit based speech recognition systems," Proc. Eurospeech, Genova, pp. 577-580, 1991. 



BIBLIOGRAPHY 57 

57. Pierce, J., "Whither speech recognition," J. Acoust. Soc. Am. 46: 1049-1051, 1969. 
58. Povey, D., Discriminative Training for Large Vocabulary Speech Recognition, Ph. D. Thesis, 

Cambridge University, 2004. 
59. Povey, D., Kingsbury, В., Mangu, L., Saon, G., Soltau, H., and Zweig, G., NFMPE: Discrimina-

tively trained features for speech recognition,Ó in Proc. IEEE Int. Conf. Acoust. Speech Signal 
Process. Philadelphia, pp. 96le 964, 2005. 

60. Price, P., Fisher, W., Bernstein, J., and Pallett, D., "The DARPA 1000-word resource management 
database for continuous speech recognition," in Proc. IEEE Int. Conf. Acoust. Speech Signal 
Process., New York, S.13.21, pp. 651-654, 1988. 

61. Rabiner, L., and Juang, B.-H., Fundamentals of Speech Recognition, Prentice-Hall, Englewood 
Cliffs, N.J., 1993. 

62. Rabiner, L., and Levinson, S., "Isolated and connected word recognition: theory and selected 
applications," IEEE Trans. Commun. 29: 621-659, 1981. 

63. Riley, M., and Ljolje, A., "Automatic generation of detailed pronunciation lexicons," in С. Н. 
Lee, F. K. Soong, and К. К. Paliwal, eds., Automatic Speech and Speaker Recognition, Kluwer, 
Boston, Mass., 1996. 

64. Robinson, Т., Hochberg, M., and Renals, S., "The use of recurrent neural networks in continuous 
speech recognition," in C. H. Lee, F. K. Soong, and К. К. Paliwal, eds., Automatic Speech and 
Speaker Recognition, Kluwer, Boston, Mass., 1996. 

65. Rosenfeld, R., "A maximum entropy approach to adaptive statistical language modeling," 
Comput. Speech Lang. 10: 187-228, 1996. 

66. Sakoe, H., and Chiba, S., "Dynamic programming algorithm optimization for spoken word 
recognition," IEEE Trans. Acoust. Speech Signal Process. 26: 43^49, 1978. 

67. Schwartz, R., Chow, Y, Kimball, O., Roucos S., Krasner, M., and Makhoul, J., "Context-
dependent modeling for acoustic-phonetic recognition of continuous speech," in Proc. IEEE Int. 
Conf. Acoust. Speech Signal Process., Tampa, pp. 1205-1208, 1985. 

68. Seneff, S., "A joint synchrony/mean-rate model of auditory speech processing," J. Phonet. 16: 
55-76, 1988. 

69. Shannon, C , "A mathematical theory of communication," Bell Sys. Tech. J. 27: 379^123, 
623-656, 1948. 

70. Sinha, R., Gales, M., Kim, D. Y., Liu, X. A., Sim, K. C, Woodland, P. C , "The CU-HTK 
Mandarin Broadcast News Transcription System," in Proc. IEEE Int. Confi Acoust. Speech 
Signal Process., Toulouse, pp. 1-1077-1080, 2006. 

71. Siohan, O., Ramabhadran, В., and Kingsbury, В., "Constructing Ensembles of ASR Systems 
Using Randomized Decision Trees," in Proc. IEEE Int. Confi Acoust. Speech Signal Process., 
Philadelphia, pp. 1-197-200, 2005. 

72. Stern, R., Acero, A., Liu, F.-H., and Ohshima, Y, "Signal processing for robust speech 
recognition," in C. H. Lee, F. K. Soong, and К. К. Paliwal, eds., Automatic Speech and Speaker 
Recognition, Kluwer, Boston, Mass., 1996. 

73. Stolcke, A., Chen, В., Franco, H., Gadde, V.R.R., Graciarena, M., Hwang, M.-Y, Kirchhoff, 
К., Morgan, N., Lin, X., Ng, Т., Ostendorf, M., SÄnmez, К., Venkataraman, A., Vergyri, D., 
Wang, W, Zheng, J., and Zhu, Q., "Recent Innovations in Speech-to-Text Transcription at 
SRI-ICSI-UW" IEEE Trans. Audio Speech Lang. Process., 14(5): 1729-1744, 2006. 

74. Tappert, C , Dixon, N., Rabinowitz, A., and Chapman, W., "Automatic recognition of continuous 
speech utilizing dynamic segmentation, dual classification, sequential decoding, and error 
recovery," IBM Tech. Rep. RADC-TR-71-146, Yorktown Heights, NY, 1971. 

75. Vintsyuk, T, "Element-wise recognition of continuous speech composed of words from a 
specified dictionary," Kibernetika 7: 133-143, 1971. 

76. Wächter, M., Demuynck, K., Van Compernolle, D., and Wambacq, P., "Data-driven example 



5 8 CHAPTER 4 BRIEF HISTORY OF AUTOMATIC SPEECH RECOGNITION 

based continuous speech recognition," in Proc. Eurospeech, Geneva, pp. 1133-1136, 2003. 
77. Waibel, A., and Lee, K., eds., Readings in Speech Recognition, Morgan Kaufmann, San Mateo, 

Calif., 1990. 
78. Waibel, A., Hanazawa, Т., Hinton, G., Shikano, K., and Lang, K., "Phoneme recognition: 

neural networks vs. hidden Markov models," in Proc. IEEE Int. Conf. Acoust. Speech Signal 
Process., New York, pp. 107-110, 1988. 

79. Weinstein, С , McCandless, S., Mondshein, L., and Zue, V., "A system for acoustic-phonetic 
analysis of continuous speech," IEEE Trans. Acoust. Speech Signal Process. 23: 54—67, 1975. 

80. White, G., "Speech classification using linear time stretching or dynamic programming," IEEE 
Trans. Acoust. Speech Signal Process. 24(2): 183-188, 1976. 

81. Widrow, В., Personal Communication, Phoenix, Az., 1999. 
82. Woodland, P., Odell, J., Valtchev, V., and Young, S., "Large vocabulary continuous speech 

recognition using НТК," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Adelaide, 
pp. 11-125-128, 1994. 

83. Zheng,, J., Cetin, O., Huang, M.-Y, Lei, X., Stolcke, A., and Morgan, N., "Combining Discrim-
inative Feature, Transform, and Model Training for Large Vocabulary Speech Recognition" in 
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Honolulu, pp. 633-636, 2007. 

84. Zue, V., "The use of speech knowledge in automatic speech recognition," Proc. IEEE 73: 
1602-1615, 1985. 

85. Zue, V., Glass, J., Phillips, M., and Seneff, S., "The MIT SUMMIT speech recognition system: 
a progress report," in Proc. Speech Natural Lang. Workshop, Philadelphia, pp. 179-189, 1989. 



SPEECH-RECOGNITION 
OVERVIEW 

5.1 WHY STUDY AUTOMATIC SPEECH RECOGNITION? 

Why do we study automatic speech recognition (ASR)? For one thing, there is a lot of 
money at stake: speech recognition is potentially a multi-billion-dollar industry in the 
near future. As of 2011, earnings (and savings) from simple telephone applications are 
reputed to be billions of dollars per year. 

There are many aspects of speech recognition that are already well understood. 
However, it is also clear that there is much that we still don't know. We don't have human-
quality speech recognition; performance degrades rapidly when small changes are made to 
the speech signal, such as those that can be caused from switching microphones. 

Speech recognition is potentially very useful. Sample applications include the 
following. 

Telephone applications: For many current voice-mail systems, one has to follow 
a series of touch-tone button presses to navigate through a hierarchical menu. Speech 
recognition has the potential to cut through the menu hierarchy, although simple "press or 
say one" speech applications do not do this. Many "smart phones" now also incorporate 
speech recognition, for instance to simplify dialing a number in the phone's contact list. 

Hands-free operation: There are many situations in which hands are not available 
to issue commands to a device. Using a car phone and controlling the microscope position 
in an operating room are two examples for which some limited vocabulary systems already 
exist. 

Applications for the physically handicapped: Speech recognition is a natural alter-
native interface to computers for people with limited mobility in their arms and hands, or 
for those with sight limitations. 

For some aspects of computer applications, speech may be a more natural interface 
than a keyboard or mouse. 

Dictation: General dictation is an advanced application, requiring a much larger 
vocabulary than, for instance, replacing a menu system. Dictation systems currently accept 
continuous, large vocabulary input, and work well for may people when trained specifically 
for that person. 

Translation: Another advanced application is translation from one language to 
another. The Verbmobil project in Germany was both a collaborative and competitive 
effort to provide language-to-language translation. The goal was to facilitate a conversa-
tion between native speakers of German and Japanese, using English as an intermediate 
language; the system was to act as an assistant to the German participant, translating words 
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and phrases as needed from German into English (the speaker is assumed to be moderately 
competent in English). A number of U.S. projects such as Transtac are also have attempted 
to provide two-way spoken translation. 

5.2 WHY IS AUTOMATIC SPEECH RECOGNITION HARD? 

There are many reasons why speech recognition is often quite difficult. 
First, natural speech is continuous; it often doesn't have pauses between the words. 

This makes it difficult to determine where the word boundaries are, among other things. 
Also, natural speech contains disfluencies. Speakers change their mind in midsentence 
about what they want to say, will often accidentally switch phones (as in the phrase "teep 
а каре," which means "keep a tape"), and utter filled pauses (e.g., "uh" and "urn") while 
they are thinking of their next message. 

Second, natural speech can also change with differences in global or local rates of 
speech, pronunciations of words within and across speakers, and phonemes in different 
contexts. As a result, we can't just say that X is the spectral representation that corresponds 
to "uh." The spectrum will change, often quite dramatically, if any of these conditions are 
changed. 

Third, large vocabularies are often confusable. A 20,000-word vocabulary is more 
likely to have more words that sound like each other than a 10-word vocabulary. There is 
also the issue of out-of-vocabulary words; for some tasks, no matter what words are in a 
vocabulary, recognition will always encounter words that have not been seen before. How 
to model these unknown words is an important unsolved problem. 

Fourth, as noted previously, recorded speech is variable over room acoustics, channel 
characteristics, microphone characteristics, and background noise. In telephone speech, the 
channel used by the telephone company on any particular call (especially for analog seg-
ments) will have spectral and temporal effects on the transmitted speech signal. Background 
noise and acoustics in the environment that a telephone speaker is in will also have tangible 
effects on the signal. Different handsets, or in general different microphones, have different 
frequency responses; tilting a microphone at different angles will also change the frequency 
response. Nonlinear effects are particularly significant in carbon-granule microphones, but 
in general they can complicate the effects of using a particular handset. Some effects will 
be phone dependent; for instance, nasal sounds may be louder if the microphone is closer 
to the nose. 

All of these factors can change the characteristics of the speech signal - a difference 
that humans can often compensate for, but that current recognition systems often cannot. 

The algorithms for training recognition systems must be chosen carefully, for large 
training times are not practical for research purposes. Algorithms that take a year to run 
on available hardware may be of great theoretical interest, but since most programs have 
bugs, such a choice does not really permit the development of an experimental approach. 

To replace other input modes with speech recognition, a high level of performance 
must be obtained. This does not necessarily mean near-perfect accuracy (although certainly 
too many errors can be very frustrating); perhaps it is just as important that recognition 



WHY IS AUTOMATIC SPEECH RECOGNITION HARD? 61 

systems know when they are working well and when they are not, requiring some kind of 
confidence factor in designing a response to an input. This is difficult to do well when the 
recognition technology is known to be imperfect. 

Another phenomenon that makes natural speech difficult to recognize is the effect of 
coarticulation. The physical realization of a phone can vary significantly depending on its 
phonetic context. For instance, consider the phone /t/ in the following words: 

• take 

• stake 

• tray 

• straight 

• butter 

• Kate 

In the case of take, the /t/ is aspirated (i.e., there is a period of unvoiced sound after the 
release), whereas in stake it is not. The influence of r in tray and straight make /t/ come 
out more like a combination of t and ch. In butter, the /t/ is realized as a quick touch of the 
tongue against the alveolar ridge, also known as a flap. Finally, in Kate the /t/ is sometimes 
not released (especially in fast speech), so there is no large burst of noise at the end of the 
word (cf. take). 

Besides differences in pronunciations of words within and between speakers, phono-
logical variation often happens at the phrase level. For instance, the phrase "What are you 
doing?" often comes out sounding like "Whatcha dune?" In the same way, "Juwana eat?" 
is often the realization of "Do you want to eat?" In continuous speech, different strings of 
words can often sound like each other. Consider the following extreme examples: 

• It's not easy to wreck a nice beach. 
It's not easy to recognize speech. 
It's not easy to wreck an ice beach. 

• Moes beaches am big you us. 
Most speech is ambiguous. 

• sly drool 
slide rule 

• say s 
say yes 

In addition, even if the word recognition is accurate, the semantic content may still not be 
clear. Consider these newspaper headlines ' : 

• Carter Plans Swell Deficit 

• Farmer Bill Dies In House 

'Courtesy of Ron Cole of the Oregon Graduate Institute. 
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• Nixon To Stand Pat On Watergate Tapes 

• Stud Tires Out 

We find most of these headlines funny because there is an alternate semantic interpretation 
one would not expect to see in the news (and sometimes it's the first interpretation we get). 

5.3 AUTOMATIC SPEECH RECOGNITION DIMENSIONS 

Given this general description of the difficulty of speech recognition, some dimensions of 
this difficulty can be defined. Claims of 98% accuracy in ASR are meaningless without the 
specification of these task characteristics. 

5.3.1 Task Parameters 
One qualifier of an ASR task is whether it is speaker dependent (SD) or speaker independent 
(SI). An SD system is one that has been trained on one particular speaker and tested on 
the same speaker. An SI system is trained on many speakers and tested on a disjoint set 
of speakers. The Bell Labs digit recognizer discussed in [5], for instance, was trained and 
used in a SD manner, since it had to be adjusted for every speaker. The large ASR tasks 
that have been tackled under the U.S. ARPA program in the 1987-1995 period (Resource 
Management and Wall Street Journal dictation tasks) have both SD and SI components. 
Large vocabulary systems for use on personal computers have tended to be SD for greater 
accuracy. Although many systems have been ostensibly SI (at least they have been trained 
on many speakers and tested on others), many of them will perform quite poorly on speakers 
who are not native speakers of the target language. 

Another descriptor is whether the task is to recognize isolated speech, recognize 
continuous speech, or spot keywords. The first type of task is to recognize words in isolation 
(demarcated by silence) and is in general less difficult than recognizing continuous speech, 
in which the word boundaries are not so apparent. A third type of task, which falls between 
the two earlier types, is keyword spotting. In this case the recognizer has a list of words that 
it tries to spot in the continuous speech input. The system must have a confidence factor 
about the match to prevent the false matching of words not in the keyword list. In general 
there is a trade-off between reducing the number of keyword occurrences that are missed 
and reducing the number of times that a non-keyword falsely triggers a keyword detection, 
and the cost of each of these kinds of errors must be considered in system optimization. 

The lexicon (vocabulary) size also introduces another parameter. In general, a 20,000-
word task is going to be much harder than a 10-word task. This is partly because there is 
a greater variability in the acoustics associated with each type of speech sound, but also 
because the larger task has many more words that are confusable with one another. However, 
even some small tasks have extremely confusable words. For instance, recognizing the E 
set of the alphabet (i.e., the letters b, c, d, e, g, p, t, v, z) may be harder than some tasks with 
a much larger vocabulary. 

There is another reason why vocabulary size is not typically a reliable measure of 
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task difficulty, which may also be strongly affected by constraints placed on the task. 
Systems that operate on the blocks world domain2 will have a more constrained grammar 
than systems that attempt to understand radio news broadcasts. As noted previously, the 
perplexity of a grammar is a measure of how constrained it is. Perplexity is essentially the 
geometric mean of the branching factor (i.e., how many words can follow another word) of 
the grammar. More formally, it is 2 я , where H is the entropy3 associated with each word 
in the recognition grammar (i.e., the amount of uncertainty about the next word given the 
constraints and predictions of the grammar). 

Speaking style has a strong effect on the difficulty of speech recognition. For instance, 
conversational speech is extremely difficult to transcribe. Speech that is carefully read from 
pre-existing text is comparatively easy. Fluent, goal-directed speech for a human-machine 
dialog is typically intermediate in difficulty; a motivated user will tend to speak more clearly, 
but the use of fluent speech will still be more difficult to recognize than read speech. Some 
of the characteristics of a more natural speaking style include a wider variability in speaking 
rate, an increase in disfluencies such as filled pauses or false starts, and a greater variability 
in vocal effort. 

The recording conditions also play a part in determining the difficulty of an ASR 
task. The recording may range from wideband high-quality microphones to cellular phones 
in a moving car. The telephone channel typically has a bandwidth of less than 4 kHz, which 
means that it is more difficult to distinguish high-frequency consonants, such as If I and /si. 
For example, Fig. 5.1 shows spectrograms of recordings of the words "foo" and "sue" at a 
4-kHz (telephone) bandwidth and a 8-kHz bandwidth (high-quality microphone). Here HI 
and Is/ appear as the noise before the relatively straight lines, which represent the vowel. 
Note that it is more difficult to distinguish If/ and /s/ in the 4-kHz spectral pictures than in 
the 8-kHz pictures. This is because most of the energy in If/ and Is/ is above 4 kHz. 

Telephone speech also introduces other challenges. The range of speakers that have 
access to telephone speech have a greater variability than is typically observed in labora-
tory databases (although this is also true for realistic data in many other cases as well). 
There is also a larger variability in background noise, and one must account for channel 
distortion from echo, cross talk, different spectral characteristics of the handset, and the 
communications channel in general. These sources of variability are particularly a problem 
for cellular and cordless telephones. 

5.3.2 Sample Domain: Letters of the Alphabet 
As an example of a speech-recognition task, we present a classification of letters of the 
alphabet. This task has a vocabulary of 26 words, but many of them are confusable. For 
example, there are four major sets of letters that sound alike: 

2The blocks world domain has been a favorite domain in artificial intelligence, in which objects are geometric 
solids such as blocks and are to be manipulated by a robot arm. 
3The information of a random variable is just the negative log of its probability (conventionally in base 2 so that 
the result is in bits), and the entropy is the expectation of this quantity over the probability distribution. 
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FIGURE 5.1 Spectrograms of foo (top) and sue (bottom) sampled with 4-kHz and 8-kHz 
bandwidth restrictions. Courtesy of Eric Fosler-Lussier. 

• E set: B C D E P T G V Z 
• A set: J К 

• EH set: M N F S 

• AH set: I Y R 

Recognition results from the Oregon Graduate Institute report an accuracy of 89% on 
letters of the alphabet and an accuracy of 87% when spelled names are dealt with from a 
telephone speech system trained on 800 speakers (12,500 letters) and tested on 400 speakers 
(4200 letters) [3]. A perceptual experiment was run in which 10 listeners identified 3200 
letters from 100 alphabets and 100 spelled names. Human accuracy on the telephone 
speech database was approximately 90-95%, with the average at approximately 93%. 
When the experiment was run with high-quality microphone speech, human accuracy jumps 
to approximately 99%. As noted previously, even small tasks can be relatively difficult, 
particularly if they involve typical users from the general public, and also particularly if the 
system is operating over the public-switched telephone network. Recognition can be even 
harder for cellular handsets and speakerphones. 

5.4 COMPONENTS OF AUTOMATIC SPEECH RECOGNITION 

Later in this book we will describe the characteristics and technological choices involved in 
systems for ASR. However, here we provide a preview, in which we describe very briefly 
the major components of these systems. 

An ASR system may be described as consisting of five distinct subsystems (see 
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Automatic Speech Recognition 

Local match 

Global decoder 

Hypotheses 

Language model 

Speaker, room acoustics, 
noise, microphone 

Signal processing and 
feature extraction 

Probability 
estimation 

Time align, pattern 
match utterance 

Can include semantics 

Word string 

FIGURE 5.2 Block diagram of a speech-recognition system. 

Fig. 5.2): input acquisition, front end, local match, global decoder, and language model. 
This division is, of course, somewhat arbitrary. In particular, the first two subsystems are 
frequently described as one system that produces features for the classification stages. 
4 Here the first two functions are shown explicitly to emphasize their great significance 
(despite their relatively humble function). For instance, the microphone might seem to be 
a minor detail, one that is necessary but unworthy of discussion. However, as suggested 
earlier, some of the best ASR systems have been brought to their knees, so to speak, by 
a change in microphone. It is important to understand, then, the dependence of an ASR 
system on the choice and position of the microphone (which can affect the overall spectral 
slope of the transduced speech, as well as the overall noise level and influence of room 
acoustics, with the latter being more pronounced for larger microphone-talker distances). 
Simple preprocessing may be used to partially offset such problems (e.g., adaptively filter 
to flatten the spectral slope, using a time constant much longer than a speech frame). 

Feature extraction consists of computing representations of the speech signal that 
are robust to acoustic variation but sensitive to linguistic content. More simply, we wish 

4The components are also sometimes shown in greater detail; for instance the local match makes use of an acoustic 
model of some kind, and the decoder block also makes use of a pronunciation dictionary; the language model, the 
pronunciations, and the acoustic model could all be seen as prior information that is used by the decoder. 
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to determine from speech some values that do not vary much when the same words are 
spoken many times (or by different talkers, for the speaker-independent case), but that 
change significantly when different things are said. One could argue that this is the entire 
problem, since finding separable speech representations would clearly mean that recognition 
could be accomplished. However, the correct speech representation can differ depending on 
the classification technique. Nonetheless, very simple data-examination techniques (e.g., 
scatter plots) can often be useful for screening features that are particularly bad or good for 
the discrimination of similar speech sounds. 

Typically, speech analysis is done over a fixed length frame, or analysis window. For 
instance, suppose speech is sampled at 16 kHz after being low-pass filtered with a corner 
frequency lower than 8 kHz (e.g., 6.4 kHz) to prevent spectral aliasing. A window of length 
32 ms (512 points) might be used as the input to a spectral analysis module, with one 
analysis performed every 10 ms (160 points). Since the analysis windows are not chosen 
to be synchronous with any acoustic landmark, the resultant features will be smeared over 
transition regions. However, methods that rely on presegmentation to establish analysis 
windows are difficult to do well (although in some instances they have worked well on 
specific tasks). 

The local match module may either produce a label for a speech segment (e.g., 
word), or some measure of the similarity between a speech fragment and a reference 
speech fragment. This reference can be an explicit prototype of the same features that are 
extracted from speech during the recognition process (e.g., spectra). Alternatively, the input 
can be fit with statistical models, yielding probabilistic measures of the uncertainty of the 
fit. 

Whatever the measure of similarity, one can imagine a matrix of distances between 
input features (the horizontal axis representing time), and the reference models or prototypes 
(the vertical axis representing a sequence of speech sounds within a reference utterance). 
Some form of temporal integration must be incorporated in order to find the utterance that 
in some sense is the minimum distance choice for what was said. This is the job of the 
global decoder. 

It is generally insufficient to find a simple distance (e.g., Euclidean) between the 
reference model or prototype and the new speech features. One of the most obvious 
variations among multiple occurrences of the same utterance is the speed of the speech. A 
first-order solution for this is a linear normalization by utterance length. However, this does 
not compensate for the varying amount of time expansion and compression for different 
sounds. For instance, stop consonants such as "k" or "g" typically do not change their length 
much, whereas the length of sonorant sounds such as vowels tends to vary significantly 
with the speed of the speech. 

These considerations led to the major algorithmic innovation (as noted in Chapter 4) 
known as dynamic time warp (DTW) [7]. For an isolated word example, for instance, given 
a local distance between each input frame and each reference frame, one would use the 
dynamic programming algorithm of Bellman [2] to determine the minimum cost match 
(defined as the match with the minimum sum of local distances plus any cost for permitted 
transitions). Pointers are retained at each step, so that the optimal path through the matrix 
can be backtraced once the best match is found. This path represents the best warping of 
the models to match the data. 
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The preceding section primarily addressed the case of deterministic distances between 
features such as spectra for reference sounds and those that are being recognized. However, 
a similar approach can be used for a statistical reference model. If one can estimate the 
probability of an observed spectrum for each hypothetical speech sound, as well as the 
probability of each permissible transition, the same procedure can be followed using a 
statistical distance measure (e.g., negative log probability). These distances are used in 
practical recognition systems based on hidden Markov models (HMMs). The use of these 
models was another fundamental advance in speech-recognition systems [1], [4], as noted 
in Chapter 4. 

For isolated word recognition, a HMM for each vocabulary word can be used in 
place of the deterministic representation of a reference template for each word. For contin-
uous speech recognition, each word may still be represented by its own HMM, but more 
commonly phonemic HMMs are concatenated to represent words, which in turn can be 
concatenated to represent complete utterances. Model variations can also be introduced 
to represent common effects of coarticulation between neighboring phonemes or words. 
Word transition costs can also be introduced to permit the use of a grammar. When dy-
namic programming is used to get the best match between the data and a statistical model 
as described earlier, the resulting best-path calculation is called a Viterbi decoding [8], [6]; 
his is the dominant approach used in continuous speech recognition. 

For most speech-recognition tasks of interest, the acoustic information by itself is 
insufficient to uniquely determine what was said. In fact, in the human example, what was 
spoken is determined by a complex combination of mechanisms, including the incorporation 
of knowledge about the syntax and semantics of a language, as well as the pragmatic 
expectations from a situation. Likewise, our speech-recognition systems in general must 
make use of some information about the language that is available prior to the reception of 
the new acoustic information. In most current systems, however, only very simple linguistic 
information is incorporated, such as the frequency of pairs or triplets of words. In some 
systems, however, particularly those that operate in some limited application domain, deeper 
knowledge about probable paths in the task dialog can be used, sometimes incorporating 
structured models for natural language. 

5.5 FINAL COMMENTS 

Given the relatively long history of research into ASR, the variety of techniques alluded to 
in earlier sections, and the widely reported successes with fairly difficult tasks, one might 
wonder why ASR is considered a research topic at all. In fact, despite press reports to the 
contrary,5 speech recognition by machine is still a difficult and largely unsolved problem, 
and there are a number of areas of active research that are being explored in the attempt 
to conquer the remaining serious problems. In particular, although ASR is good enough to 
be used for many practical tasks, recognizers as of 2011 are still often brittle, providing 

5It has often been suggested that the solution to machine speech-recognition is five years away; in fact, this has 
been suggested so repeatedly that it must be true! 
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unreliable performance under conditions that are handled quite well by human listeners. A 
short parable (courtesy of John Ohala) may illustrate the current state of affairs. 

Stanford6 artificial intelligence researchers perfected a talking and listening handy-
man robot, which was then sent out to solicit research funds door to door. The robot rolled 
up to its first house, and rang the bell: 

ROBOT: 
I am Stanford's handyman robot. Tell me a task, and I will do it for $5 per hour. This money 
will be applied to further research in artificial intelligence. 
HUMAN: 
$5 an hour? Sounds great! Can you paint? 
ROBOT: 
My painting is of the highest quality. 
HUMAN: 
OK. See that paint brush and bucket of paint? Take them out back and paint the porch. 
ROBOT: 
Your request will be fulfilled, courtesy of Stanford. 

(The robot trundles off to do his job, and returns in an hour). 

ROBOT: 
The task is complete. Please deposit $5 to aid in further research. 
HUMAN: 
(Handing over the cash) This was a great deal! Come back again! 
ROBOT: 
(While leaving) Oh, by the way, it wasn't a Porsche. It was a BMW. 

Given the human example, perhaps we can get some good ideas about how to build 
artificial systems that will not perform so poorly when handling situations that people 
find so straightforward. Although naive mimicry of the human systems is likely to be 
an insufficient tactic, we believe that there is much to be learned from human speech 
perception. 

Before we proceed to further detail on either human or machine systems for audio 
signal processing, we must first provide some technical background. We will return at a 
later point to the aspects of speech-recognition technology that have been briefly alluded 
to in this chapter. 

6Remember, this is a parable. 
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5.6 EXERCISES 

5.1 If the acoustic environment is noisy, how could you imagine each of the blocks of Fig. 5.2 being 
modified to help with speech recognition? 

5.2 You have a recognition system that can recognize strings of up to 16 digits, in which approximately 
15% of the digits are incorrect. Describe some scenarios in which the system could be useful. 

5.3 Describe some situations in which a five-word recognizer can accomplish a more difficult task than 
a 1000-word recognizer. 

5.4 Suppose that any one of 16 distinct symbols could occur at any point in a sequence, with equal 
probability: 
(a) What is the entropy associated with an occurrence of a symbol? 

(b) What is the perplexity? 

Now suppose that four of the symbols could occur with the same probability as before, but four were 
twice as probable and eight were half as probable: 

(c) What is the entropy? 

(d) What is the perplexity? 
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Baseball is 90% mental. The other half is physical. 

—Yogi Berrà 

I T IS not possible to understand speech and audio signal processing in any depth 
without having a solid background in the mathematical underpinnings of signal processing 
and pattern recognition. There are many good books on these topics, and this text is not 
intended to replace them. However, in Part II we have gathered together some major points 
and concepts that we feel the reader must grasp. While distributing earlier drafts of this 
text, we found that the backgrounds of interested students and colleagues varied greatly. 
Therefore, even though we have limited the discussion to a few principal relevant points, 
we have included material at several levels of difficulty. A very brief introduction into 
the most relevant engineering mathematics for signal processing and pattern recognition is 
provided here. Readers who have studied this material previously may still wish to refresh 
their memories, or at least touch on familiar material lightly in order to get the feeling for 
our style of notation. Some advanced sections are also provided, such as the discussion of 
the Expectation-Maximization algorithm in Chapter 9. 

Chapters 6 and 7 focus on digital signal processing, and Chapters 8 and 9 provide 
basic material for pattern recognition. We begin in Chapter 6 with a brief description of 
the basic mathematical descriptive device for discrete-time systems, the z transform. We 
then apply this approach to convolution and ultimately to resonance, a form of filtering 
that is often useful in speech and music processing. Chapter 7 extends this discussion to 
more general types of digital filters, concluding with the discrete Fourier transform and 
its efficient implementation as the fast Fourier transform. Chapter 8 introduces some of 
the fundamentals for pattern-recognition systems, including approaches that range from 
minimum distance classifiers to multilayer perceptrons. Chapter 9 extends this discussion 
to statistical systems, starting with a brief reminder about probability densities and their 
properties, and proceeding through descriptions of several styles of probability estimators 
that are used in pattern-recognition problems such as speech recognition. The chapter 
concludes with a discussion of expectation maximization, which is a somewhat more 
advanced topic than the earlier material. However, it is included here because it has become 
a key method for modern statistical pattern recognition. 
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DIGITAL SIGNAL PROCESSING 

6.1 INTRODUCTION 

Von Kempelen spent 20 years building his speech synthesizer. He used the most viable 
method of implementation for his time (~1780): mechanical devices. In the first half of 
the 20th century Fant and others built speech synthesizers from analog electronic compo-
nents. When the digital computer arrived, speech researchers recognized its potentiality for 
speech-processing tasks, but it was not until recently that computational power became suffi-
ciently great and cost became sufficiently low that even complex algorithms could be imple-
mented cheaply and in real time. So, advances in speech processing owe much to advancing 
computer technology; but, in addition, this progress has been dependent on the mathemat-
ical discipline of digital signal processing - also called discrete-time signal processing. 

The connection between speech and digital signal processing is straightforward. 
Speech depends greatly on filtering, both in production and perception. The vocal tract is 
a complicated arrangement of acoustic tubes; understanding the behavior of vocal tracts 
relies on physical models of these acoustic tubes. We shall see in Chapters 10, 11, and 12 
that digital models of tubes are based on digital signal processing (DSP) concepts. Also, 
the auditory system was recognized, more than a century ago, to have properties akin to a 
filter bank that analyzes the spectral characteristics of the speech signal. 

It therefore is desirable to include material from the DSP field, with emphasis on the 
filtering properties of DSP algorithms. The fundamentals of DSP are briefly reviewed and 
then applied to the theory and design of digital filters, with emphasis on those elements that 
connect to our description of speech and music coding. 

6.2 THE Z TRANSFORM 

In this section we discuss the mathematical properties of the z transform. In Chapter 7 we 
will discuss the mathematical properties of the discrete Fourier transform. These transforms 
are the mathematical bridges that connect the time and frequency properties of discrete-time 
signals, just as the Laplace transform bridges the time-frequency properties of continuous 
signals. We start with a sequence x(n), defined for all n. Define the z transform of x(n) as 

X(z) = £ x(n)z-, (6.1) 
i l — — OO 

where г is a complex variable and X(z) is a function of a complex variable. 
Although Eq. 6.1 makes no explicit reference to time, in many practical cases x(n) is 

derived by sampling a continuous signal at equally spaced time intervals. 
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In dealing with physical systems, it is convenient to assume that sequences begin at 
n = 0, so that x{n) is undefined for negative values of n and we have another definition of 
the z transform: 

X(z) = £x(/i)z"". (6.2) 

We will be dealing with Eq. 6.2 unless otherwise noted. We call X(z) the two-sided 
z transform and refer to X(z) as simply the z transform, or, for the sake of clarity, the 
one-sided z transform. 

Note that the z transform is a linear operation; that is, the z transform of a weighted 
sum is the weighted sum of the z transforms of the individual terms of the sum. This can 
easily be seen by inspection of Eq. 6.1 or Eq. 6.2. Also, the z transform of a delayed 
sequence x(n — m) is the z transform of the original sequence multiplied by z~m- (The proof 
is left as an exercise.) These properties will prove to be extremely useful. 

6.3 INVERSE Z TRANSFORM 

Equation 6.2 is invertible; that is, we can find the sequence x(n), given the function X(z). 
To show this, multiply Eq. 6.2 by z*~ ' and perform a closed line integration on both sides 
of the equation. If the integration path is within the region of convergence of the infinite 
series, then the summation and integration can be interchanged, yielding 

éx(z)zk-1 = Σχ(η) (fz*-"-1 dz. (6.3) 

But (stated without proof; see Exercise 6.6), 

**-'*= f° **'*". (6.4) 
2nj for к = n 

From Eqs. 6.3 and 6.4 we have 

x{k) = ^-. <£ Xiz)/-1 dz. (6.5) 
2π/ J 

In Eqs. 6.3, 6.4, and 6.5, the integration path must enclose the origin. 
For many practical problems, this integration never need be explicitly done; rather, 

the inverse transform can often be computed by inspection, with the use of the linearity and 
delay properties described in Section 6.2 (see Exercise 6.3). 
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6.4 CONVOLUTION 

The discrete convolution theorem is the defining equation of linear discrete systems. The 
mathematical statement is 

n n 

y(n) = У\ x(m)h(n — m) = V x(n — m)h(m), (6.6) 
m=0 m=0 

where h (n) is the response of a linear system to a unit pulse, where the latter is defined as 
a sequence that is zero for all n except x(n) = 1 for n = 0. 

The unit-pulse response function h(n) is associated with the time-domain behavior of 
the system; knowledge of h(n) allows one, in principle, to find the response to any arbitrary 
input signal. Similarly, the system response to a discrete-time complex exponential can 
serve as a defining function in the frequency domain. Let the complex exponential be ejaM. 
From Eq. 6.6, the steady state response (as n -* ») is given by 

y(n) = £ h{m)eM"-m) = eim £ h(m)e-
iam = βίωηΗ(β'ω), (6.7) 

m=0 m=0 

where H(eJ(0n) is seen to be the z transform of the system, evaluated on the unit circle. 
Thus, the steady state output of the system is a signal with the same frequency as the input, 
but with a complex gain factor that is given by the z transform of the system evaluated at 
that frequency. This is a defining property of linear time-invariant systems. 

If X(z) is the z transform of x(n) and H(z) is the z transform of h(n), then it can be 
shown that 

Y(z) = H(z)X(z) (6.8) 

(See Exercise 6.1). 
Equation 6.6 is a temporal relation between two time functions; Eq. 6.8 is the equiv-

alent relation in the complex z domain. If the value of z is restricted to lie on the unit circle 
in the z plane, then the z transform reduces to the Fourier transform of the sequence. 

Stated physically, convolution in the time domain leads to multiplication in the 
frequency domain. Furthermore, multiplication in the time domain leads to convolution in 
the frequency domain. We will state the result without proof. 

у(и) =x{n)h(n), 

1 Γ2π 

Y{e»)^ X{eia)H[e1^,s')}dw. (6.9) 

Integration is on the unit circle. 
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_L 
Frequency (Hz) 

FIGURE 6.1 Spectrum of a continuous signal. 

6.5 SAMPLING 

If a continuous function of time x(t) is sampled every T seconds to produce the sequence 
x{nT), the resultant frequency response is periodic, with period l/T. If the original signal 
is band limited so that it contains no frequencies greater than 1 /2T, we get the pictures of 
Figs. 6.1 and 6.2. 

No information is lost in going from Fig. 6.1 to Fig. 6.2. In fact, the original, 
continuous signal can be recovered by low-pass filtering with a filter of bandwidth 1/2Г; 
this is a statement of the well-known sampling theorem. 

As a consequence of the well-known time-frequency trade-off, a sample, which has 
zero width in time, will have an infinite width in frequency; so, therefore, will a sequence of 
samples. The fact that each period in Fig. 6.2 is an exact duplicate of the original response 
of Fig. 6.1 can be shown in a number of ways. 

First, since the samples represent the product of two signals (the original signal and 
a set of unity height samples T seconds apart), the resulting frequency response of the 
product is the convolution of the two frequency responses and leads directly to Fig. 6.2. 

Second, Fig. 6.1 has its counterpart in the z plane. If the z transform of a sequence 
is evaluated on the unit circle in the z plane then z — e^. Let Θ in Fig. 6.3 be (ùT; the z 

FIGURE 6.2 Spectrum of uniformly spaced samples. 
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FIGURE 6.3 The unit circle in the complex z plane. 

transform becomes 

X(eJaT) = Yjx{n)e-Ja"T. (6.10) 
71=0 

One complete path around the unit circle corresponds to co7"s traveling from 0 to 2π. 
When ωΓ = 2nfrT = 2π, fr = l/T, where T is the precise period of Fig. 6.2. As we keep 
circulating around the unit circle, subsequent periods of Fig. 6.2 are traced out. 

6.6 LINEAR DIFFERENCE EQUATIONS 

Much of the material in this book involves analysis and synthesis. Analysis often consists of 
studying the frequency components of signals; this is best done through filters, or through 
transform methods. In the analog world, filters are composed of resistors, capacitors, and 
inductors or their electronic equivalents. In the digital world we generally do filtering with 
computer programs. The signals we process are digital; they are quantized samples, or more 
simply, numbers. 

Synthesis often consists of modeling physical devices, such as violins or human vocal 
tracts. In many cases the models may be approximated with linear systems. Filtering in the 
analog domain is mainly expressed mathematically through systems of linear differential 
equations. Modeling of systems in which space as well as time are parameters requires 
systems of partial differential equations. In the digital domain, systems of linear difference 
equations are needed to mathematically describe one-dimensional linear time-invariant 
devices. The description of more complicated systems such as acoustic tubes involves 
computer algorithms that have been labeled "digital wave guides" by Smith [8]. In many 
systems of interest, synthesis models obey some form of the wave equation, with solutions 
consisting of traveling or standing waves. Such models can be implemented by computer 
by incorporating relatively long delay elements into the algorithms. The following sections 
deal with both types of algorithms. 
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6.7 FIRST-ORDER LINEAR DIFFERENCE EQUATIONS 

A simple example is the first-order equation: 

y(n)=Ky(n-i)+x{n). (6.11) 

A solution to this equation may be obtained by use of the z transform. Given the 
previously described properties of linearity and delay, we can show the z-transform solution. 
Let X(z) be the z transform of x(n) and let Y(z) be the z transform of y{n)\ taking the z 
transform of Eq. 6.11, we find 

Y(z) = Kz-
lY(z) + Ky(-l) + X(z). (6.12) 

Solving for Y(z) yields 

X(z) Ky(-l) 

where y(—1) can be interpreted as an initial condition of y(n). For example, if _y(— 1) = 0 
(the system is initially at rest), then 

Y(z)=X{z)H(z), (6.14) 

where 

я« = ТзЬ = ^г (6Л5) 

Here H{z) is the transfer function related to the difference equation 6.11. The transfer 
function is defined as the ratio of the z transform of the output to the z transform of the 
input. Since the z transform of a unit impulse is unity, the transfer function can also be 
defined as the z transform of the output when the input is a unit pulse. 

The frequency response of this first-order system can be studied from the geometry 
in the z plane. First, note from Eq. 6.13 that knowing the input X(z) anywhere in the z 
plane, plus knowledge of the number y(—1), allows determination of the z transform Y(z) 
of the output anywhere in the z plane. Of special interest is the response of the system to a 
steady-state sinusoid. For mathematical brevity we use as the input the complex exponential 
x(n) = e·7"9. The resulting response of the system can be found by evaluating Y(z) on the 
unit circle, as shown in Fig. 6.4. This evaluation has a simple geometric interpretation, 
as we can see by comparing the rightmost term of Eq. 6.15 with Fig. 6.4 for the case 
z = e'9. The result (which can be generalized) is this: consider any point on the unit 
circle corresponding to an angle Θ. Construct the vector connecting the zero at the origin to 
that point on the unit circle, and divide by the vector connecting the pole to the same point. 
(Dividing two vectors representing complex numbers results in a vector whose magnitude 
is the ratio of the magnitudes, and whose angle is the difference of the angles). This gives 
the (complex) frequency response at that chosen point on the unit circle. The magnitude 
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z-plane 

К) 

FIGURE 6.4 Geometric interpretation of the frequency response of a first-order difference 
equation. 

and phase of the result is computed to be 

\H 
1 

ΔΗ = tan" 

{l+K2-2Kcosey'2' 

К sm& 
ì - к cose/' 

(6.16) 

(6.17) 

If x(n) consists of samples from an analog signal, Θ — (ùT, so Eqs. 6.16 and 6.17 are 
direct functions of frequency. 

6.8 RESONANCE 

From Fig. 6.4 and Eqs. 6.16 and 6.17 we see that the smallest magnitude of the vector from 
the pole to the unit circle occurs for Θ = 0, so this value of Θ and hence, of frequency, 
corresponds to the maximum value of the frequency-response magnitude. In general, as 
the path on the unit circle gets close to a pole, the magnitude of the frequency response 
increases. If we move the pole to some angle ф, near the unit circle, then, as Θ approaches 
ф, the magnitude function peaks; this is resonance. 

Figure 6.5 depicts such a situation. 
We notice that the pole position is a complex number in the z plane. What is the 

difference equation in the time domain that could lead to Fig. 6.5? Let us try 

y(n) = reßy(n- l)+x(n), 

Y(z) - rJ* 

Y(z) 

г_ 1К(г)+Х(г), 

*(г) 

(6.18) 

(6.19) 

(6.20) 
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z-plane 

^ S 
-Maximum value 

-Pole 

FIGURE 6.5 As Θ approaches φ, the magnitude of the z transform on the unit circle peaks. 

which leads to the geometry of Fig. 6.5. However, notice that y(n), the inverse z transform, 
is a sequence of complex numbers. The determination of resonance based on sequences of 
real numbers requires a second-order difference equation: 

y{n) = Ay(n - 1) + By(n - 2) + x(n). 

The z transform of Eq. 6.21 is 

Y(z) = Az~lY(z) + BZ-2Y{z) + X(z). 

Solving for Y(z), we find 

X{z) _ z2X(z) 
Y(z) l-AZ-l-Bz'2 z2-Az-B 

The geometry in the complex z plane is shown in Fig. 6.6. 

(6.21) 

(6.22) 

(6.23) 

FIGURE 6.6 z-Plane depiction of resonance for a second-order system. 
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x(n) 

z ►· z Π y(n\ 

FIGURE 6.7 Discrete-time network for Eq. 6.26 concatenated with Eq. 6.27. 

If A = 2r cos Θ and В = —r2, the denominator of Eq. 6.23 becomes 

d = z2 - (2rcose)z + r2, (6.24) 

and this results in the roots 

Zio = re ±fi (6.25) 

Another form of resonance can be obtained from the configuration shown in Fig. 6.7. 
Figure 6.8 shows the z-transform equivalence of Fig. 6.7. 
Hi (z) is the transfer function of the difference equation, 

u(n) = x(n) ± x(n — M), 

and #2(z) is t n e transfer function of the equation 

у (и) = 2cos9y(n — 1) — y(n — 2) + u(n). 

Explicit expressions for H\ (z) and #г(г) aie easily obtained: 

Hl(z) = l±z~M, 

H2(z) = 1 
1 -2cos9z-' +z~ 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

In the z plane, Hi (z) is represented by M zeros spaced uniformly around the unit 
circle. If M is even (e.g., 12) and the minus sign in Eq. 6.28 is used, the zeros are as shown 
in Fig. 6.9. Thus, for example, the zeros at 60° can be cancelled by designing #г(г) to have 
two poles at the same angles, as shown in Fig. 6.10. Cascading the two z transforms yields 
the pole-zero plot of Fig. 6.11. 

Figure 6.12 shows the magnitude of the frequency response. 

ад 
Н,к) = 1-г-' 

ί/(ζ) 
H2(z) ■■ 

1 
1 - 2 c o s ö z +z~' 

Y{T) 

FIGURE 6.8 z Transform corresponding to the network. 
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FIGURE 6.9 Zeros of Я,(г), Eq. 6.28. 

FIGURE 6.10 Pole-zero plot of H2(z), Eq. 6.28. 

FIGURE 6.11 Pole-zero plot of the product. 

64 CHAPTER
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Normalized frequency ( f ) 

FIGURE 6.12 Magnitude of HyH2 versus Θ on a unit circle for M = 12, Я , = 1 - z
 M . 

6.9 CONCLUDING COMMENTS 

In the preceding sections, we have seen how the z transform allows us to analyze a time-
domain system, defined in terms of a difference equation, and predict its frequency response 
by evaluating the z transform on the unit circle. Because of the simple relationship between 
the position of the poles and zeros in the z plane and the behavior of the overall z transform, 
we can quickly get an approximate idea of the frequencies at which our system will have 
peaks it its gain (resonances, resulting from poles close to the unit circle), or minima 
(anti-resonances, arising from zeros near or on the unit circle). 

Most new systems for the processing of speech and music are now digital, and as 
such are based on the fundamental mathematical tools briefly reviewed in this chapter. 
Filters typically perform linear convolutions, and filter responses are generally specified in 
terms of their z transforms, which have their time-domain equivalence in terms of differ-
ence equations. First- and second-order systems form the basis of much discussion about 
linear discrete-time systems, and understanding the basics of the effect of transforming a 
continuous time signal into a sequence of numbers (sampling) is fundamental to this work. 

For further reading, there is a wide range of reference texts on the subject of DSP, 
including [4], [1], [7], [5], and [6]. Of particular historic interest is Chapter 5, by W. 
Hurewicz, in [2]. Reference [3] describes the fundamental mathematics behind the z-
transform. 
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Re(z) 

FIGURE 6.13 z-Plane picture of the digital filter with transfer function H(z) = 
i+z~", where M = 6. The six zeros shown are the roots of H(z) = 0. Note that they are 
three pairs of complex conjugate values. In principle there are also six poles at z — 0, not 
shown here since they have no effect on the frequency response of the filter. 

6.10 EXERCISES 

6.1 

6.2 

6.3 

6.4 

6.5 

Prove that if y(n) is the convolution of two sequences x(n) and h(n), then the z transform Y(z) is the 
product of the z transforms X(z) and H(z). 

Prove that the z transform of a delayed sequence x(n — M) is z~MX(z), where X(z) is the z transform 
of the undelayed sequence. What conditions are needed to make the proof correct? 

Let W(z) = 2X(z) + Зг~3У (z). Find the inverse z transform of W(z) by inspection of the right-hand 
side, that is, without using contour integrals. 

Let H(z) = Y(z)/X(z) = (1 — z~')/(l — 0.5z_1). Use algebra to generate an expression with Y(z) 
on the left-hand side and then use inspection to generate a corresponding difference equation. 

Figure 6.13 is a z transform illustration of a digital filter. Choose Θ in H2(z) to cancel the lowest 
frequency pair of Hi (z). Plot the magnitude of the resulting frequency response of H{ (z)H2(z) on the 
unit circle. 

6.6 Try to prove the famous Cauchy integral equation (Eq. 6.4). If you have trouble, find a book on 

h{n) 

Ϊ 1 I 1 . 1 1 f 
1 I I I I I R 

t 

5 6 7 8 9 10 11 12 13 14 

h (n) = 0 for n г N ■■ 0 for n < 0 
, Л Г = 1 5 

FIGURE 6.14 Finite sequence. 
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χΜ 

-*~уЫ) 

FIGURE 6.15 Digital filter structure. 

functions of a complex variable, study the proof, and write it up. 

6.7 Letx(«) = Kn,n = 0,1,2,3, . . . .Find theztransformofx(n).GivenAr(z),use the inversion theorem 
Eq. 6.5 to compute x(n). 

6.8 What is the solution to the difference equation y(n) = Ky(n — 1) with initial condition y(0) = 1? 
Next, find the region of convergence of the z transform of your solution y(n). К < 1. 

6.9 A finite sequence h(n) is shown in Fig. 6.14. 

(a) Find H{eia), and assuming that H(ej0>) = e~° ^ ^ " ' ' « ( ω ) , sketch Я(со) in the interval 0 < ω < 
2π. 

(b) This impulse response can be implemented by the structure shown in Fig. 6.15. Determine a, b, 
and с for N odd and for N even. 

A Hanning window w(n) is applied to h{n) to form the product f(n), where w(n) = 1/2 — 
l/2cos(2nn/N). 

(c) Sketch the new function f(n) versus n. 

(d) Show how to implement a filter with impulse response f(n) by the frequency-sampling structure 
shown in part (b). 

6.10 Figure 6.16 shows the pole patterns of three z transforms, Hl(z), H2(z), and H3(z). 
Determine the conditions for which the corresponding sequences h\(n), h2(n), and h3(n) can be 
stable. 

6.11 Find the magnitude of H(z) on the unit circle at ω = 0, π/4, π/8, and 7π/8 for the network described 
by the difference equation y(n) — by(n — 1) = x(n) — ax(n — 1) with initial conditions x(n) = 0 and 
y\n) = 0, for a = 2 and b = 1/2. 

6.12 Find the linear convolution of the two sequences x(n) and h(n) shown in Fig. 6.17. 

Hx (z) H2 (z) 

FIGURE 6.16 Pole patterns for three different z transforms. 

ft, (z) 
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Ί Г 
-4 

- 1 * 

FIGURE 6.17 Two sequences. 

~l I Г 
2 4 

x(n) 

h{n) 

Ί I Г 
6 8 

y(n) = x(n) * h(n) 

6.13 Consider the equation 

y{n) =y(n— 1) + x(n) - x[n - 8), 

withy(-l) = 0andx(n) = 0 f o r n < - 1 . 

(a) Obtain an explicit solution for H(z), the network transfer function. 

(b) Draw the digital network. 

(c) Does this network have all poles, all zeros, or both poles and zeros? 

(d) Show the positions of the network zeros, if any, in the complex z plane. 

(e) Is the network stable? 

(f) Sketch y(n) versus n if x{n) is a unit sample. 

(6.30) 
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DIGITAL FILTERSAND DISCRETE 
FOURIER TRANSFORM 

7.1 INTRODUCTION 

If we define a filter as a device that discriminates among incoming frequencies, then fil-
ters can be implemented, for example, by mechanical, acoustical, pneumatic, or electrical 
elements. In the past few decades, discrete-time algorithms employing computational ele-
ments have played an increasing role in filter applications. Most commonly, these elements 
also incorporate discrete numerical values (as opposed to continuous circuit variables1) to 
represent signals. For simplicity we refer to these devices as digital filters. In this chapter, 
we deal with some of the issues that arise in the design of digital filters. Many of the ideas 
of digital signal processing pertain directly to digital filter design. However, in addition, 
many of the filtering concepts developed for the design of analog electrical filters [11] 
apply equally well to digital filter design. Section 7.2 is a review of these concepts. In 
Section 7.3 we show how simple mathematical transformations bridge the gap between the 
analog and digital world. The remainder of this chapter focuses on methods that have been 
primarily applied to discrete-time linear systems. Of particular interest is the application 
of the discrete Fourier transform (DFT) to filter theory and applications. Both filtering and 
the DFT are widely used for speech-processing applications. 

The traditional analog filter design consists of two major portions; the approximation 
problem and the synthesis problem. Approximation refers to the development of an analytic 
expression that satisfies the constraints of the design problem (e.g., a ratio of polynomials, 
such that the frequency response is low pass with a 3-dB point at 4 kHz). Synthesis refers 
to the implementation of the filter, for instance as a cascade of second-order sections. In 
most books on analog filter design methods, the synthesis problem is the primary focus 
and occupies the main part of the book. This is because the analog circuits (consisting of 
resistors, inductors, capacitors, and operational amplifiers) have components with numerical 
values that are often too difficult or costly to specify with great accuracy. Thus, the trick in 
analog design is to create structures that are the least sensitive to component errors. 

Digital filter design also requires both approximation and synthesis, but the situation 
is somewhat reversed; the approximation problem, how to find filter parameters to satisfy 
a given design criterion, predominates. Good design technique in the analog world is very 
important because the designer knows that his components are never perfect, so the search 
for a synthesis method that is least vulnerable to such imperfections is an integral part of the 

'There is a class of devices in which analog values are sampled in time; an example of such a device is a switched 
capacitor filter. 
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design mystique. In the early days of digital filter design, this accuracy problem could also 
be critical because of the possible bad effects of the finite word lengths (in some cases only 
12 bits or even fewer were available). Nowadays, the availability of 32-bit word lengths and 
floating point capabilities at a greatly reduced cost means that the designer of digital filters 
can choose highly accurate components (although low cost, high-volume components still 
often use shorter word widths). 

A filter function has relevance in both the time and frequency domains; complete 
specification in the frequency domain completely specifies behavior in the time domain, and 
vice versa. The Fourier transform of the frequency function is precisely the time response 
of the filter to an impulse (a delta function) applied at time zero. 

Synthesis of digital filters can be divided into FIR (finite-impulse response) and IIR 
(infinite-impulse response) methods. A nonrecursive filter has an output that is a function 
of the input samples and is not a function of previous output samples. Such filters have 
only zeros in the complex z plane and are always FIR; that is, the response to a unit sample 
(a sequence with a value of one at time zero and zero for all other times) is zero after a 
finite number of samples. A recursive filter has an output that is a function of the input 
samples and previous output samples. Such a filter has, in general, both poles and zeros in 
the complex z plane, and in general has an impulse response (unit sample response) that 
does not diminish to zero after any finite number of samples - for example, a response such 
as h(n) = 0.5". 

Our discussion will necessarily be very brief; our aim is to point the reader at the 
large body of knowledge that has been developed over most of the past century. Thus, some 
of the specifics may be omitted or an appropriate reference will be mentioned. 

7.2 FILTERING CONCEPTS 

The most common application of a filter is to permit a given band of frequencies to 
pass through relatively undisturbed while all other frequencies are severely suppressed. 
However, many other applications exist. In this section we describe some of the desired 
characteristics of several well-known filters. 

Most commonly, filters are designed to be low pass (passing frequencies below some 
cutoff point), high pass, bandpass, or band reject. To determine the functional relation 
between the filter and frequency, we introduce the filter transfer function, #(ω). In classical 
analog filter design, Я is a complex function of the complex variable s. (The radian 
frequency ω = 2π / is a real variable; it turns out to be very useful to define the complex 
variable s with the stipulation s = a + ja>, so that the value of the radian frequency is 
simply the distance along the vertical axis in the complex s plane.) The squared magnitude 
of H must be real, so it is convenient to establish our design criterion in terms of this 
squared-magnitude function. The classic solutions to this problem consist of a number of 
design families, most notably the Butterworth, Chebyshev, elliptic, and Bessel filters. All 
of these are IIR designs. 

We first study the simple case of a low-pass Butterworth filter that satisfies the 
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FIGURE 7.1 Butterworth frequency response for different n. From [2]. 

equation 

|Я(;ш)|2 = ,1. ,- . (7.1) 

Several facts can be deduced from Eq. 7.1. First, the squared-magnitude function 
is unity when ω = 0 and approaches zero as ω approaches infinity. For all values of the 
parameter n, the function is always one-half at ω = ωε, but for larger values of n, the 
transition is sharper, as seen in Fig. 7.1. 

Figure 7.1 plots the magnitude, not the squared magnitude, of Eq. 7.1. Thus, at the 
cutoff frequency <йс, the function \H\ is 0.707, or, in logarithmic terms, —3 dB (deciBels; 
see Section 13.2.4). 

It may be desirable, in many cases, to have a sharper transition region. An alternative 
to a Butterworth filter is the Chebyshev filter.2 For a given filter complexity the Chebyshev 
filter can fulfill this role. 

The Chebyshev filter squared-magnitude function is specified by 

'Г^2=1+е4(»МГ С7.2) 

where V„(x) is a Chebyshev polynomial of order n that can be generated by the recursion 
formula 

Vn+l(x) = 2xVn(x) - Vn-t(x), (7.3) 

with 

V0 = l, Vi=x. (7.4) 

The Chebyshev polynomial has the property of equal ripple over a given range of x, 
as seen in Fig. 7.2 for the case n = 4. 

2Sometimes this name is spelled Tschebyscheff, corresponding to an alternate transliteration from the Cyrillic. 
Because of this spelling, the transfer function is often given as T(s). 
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ω 

Frequency 

FIGURE 7.2 Chebyshev frequency response for и =4. From [2]. 

The parameter n, for either the Butterworth or Chebyshev filter, determines the 
complexity of the function. For a given value of n, therefore, the relative merits of the two 
filter types can be compared. It can be shown that, for a given complexity, the Chebyshev 
function has a sharper transition from passband to stop band. Comparisons are a bit tricky, 
since the Butterworth function is monotonie whereas the Chebyshev function oscillates. 

Jacobian elliptic functions have the property of equiripple in both the passband and 
stop band with an even sharper transition. This function is shown in Fig. 7.3. 

Thus, for a given complexity, the elliptic filter frequency response most closely 
resembles a rectangle (for the three filters described) whereas the Butterworth is the "worst" 
of the three in this respect. However, the magnitude response of a given filter is not the 
only criterion for comparison. In many applications, the phase response may be equally 
or even more important. For now it is sufficient to say that the phase response of elliptic 
and Chebyshev filters and the associated transient responses make these filters unsuitable, 
for example, to the design of bandpass banks for most audio applications. Of the three, the 
Butterworth filter is most often the designer's choice. 

. 
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FIGURE 7.3 Jacobian elliptic frequency response. From [2]. 
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FIGURE 7.4 Comparison of the group delay for four filter types: A = Butterworth, 
В = Chebyshev, С = elliptic, D = Bessel. From [2]. 

5000 

If phase response is overwhelmingly important, a design that focuses on the phase 
response might outdo all three of the above designs. Indeed, such filters have been designed 
and built. One design that results in a good transient response is the Bessel filter, so called be-
cause it is proportional to the inverse of the Bessel polynomial, defined by the recursion [ 12] 

β„(ω) = (2и - !)£„_! (ω) + ω2β„_2(ω), (7.5) 

withßo(o)) = 1 and.Bi(a>) = ω + 1. 
A measure of the goodness of the transient response is the graph of the group delay 

versus the frequency of the filter function, defined as the derivative of the phase with respect 
to the radian frequency. Figure 7.4 shows the group-delay graphs for the four filters we 
have discussed. 

We see from this figure that, except for the Bessel design, the group delay peaks 
strongly near the transition regions. This means that frequencies in that region have a 
markedly different delay for lower or higher frequencies. In one experiment [9], channel 
vocoders were simulated with each of the four types. It was found that the Chebyshev and 
elliptic designs caused an unacceptably high reverberation of the vocoded speech signal. 

Lerner [6] showed that both a high degree of phase linearity and reasonably selective 
passbands could be attained. The specific function is given by Eq. 7.6: 

L(s) = Σ 
Dj(s-

£ ( * + в)2 + (4)2 (7.6) 

where £>] = 1/2, Dm = [ ( - l ) m + 1 /2] , Д = ( - l ) i + 1 , and ф is the resonant frequency of 
the rth pole. 

The low-pass designs of the previous section can be transformed to produce high 
pass, bandpass, and band stop filters. For example, we might want to transform a low-pass 
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design that passed frequencies from 0 to 1 Hz to a bandpass filter with Ω; as the lower cutoff 
frequency and ΩΗ as the upper cutoff. To accomplish this we need to map the variable s of 
the original function into the following function of s, Ω/, and ΩΜ.3 

S(ilu - Ω,) 
^ + Ω,,Ωι 

Analog continuous-time filter design essentially always resulted in IIR filters, given 
the components that were available. Discrete-time implementation has expanded the design 
possibilities for FIR filters. FIR filters can be designed with a perfectly linear phase by 
constraining the coefficients to be symmetric, since the coefficients are in one-to-one 
correspondence with the impulse response. 

7.3 TRANSFORMATIONS FOR DIGITAL FILTER DESIGN 

The preceding section introduced a number of useful filter structures. How can these 
functions be synthesized as discrete-time filters? An approximation criterion is needed, 
since a discrete-time implementation can never be identical to the continuous-time filter 
functions. The work of Hurewicz [5] provides a technique for doing this in an impulse 
invariant way. By this we mean that the (discrete-time) response to a unit pulse of the 
derived digital filter will be samples of the impulse response of the associated analog filter. 
Let's begin with a simple single-pole analog function. The impulse response of this simple 
system is the inverse Laplace transform of this function. 

-if A' 
* ( ' > = L U T ^ =*«""*■ ( 7 ·8 ) 

If we sample k{t) at equally spaced intervals nT and take the z transform of the 
resulting sequence, we obtain 

H(z) = , %T -, · (7-9) 
1 - е s·' z 

Thus, H(z) is the impulse invariant z transform corresponding to the simple single-
pole system of Eq. 7.8. For more complex systems in which the s-plane poles are single 
(not multiple) poles and in which the impulse response is a real function, this leads to the 
correspondence 

, . Л DM - e-"T cos(diT)z-1] 

W ~+ H{Z) = gl-^ccWr^+V-^' (7Л0) 

where L(s) is the function of Eq. 7.6. Thus, we have specified a digital Lerner filter in terms 
of the components of an analog Lerner filter. 

3To visualize how this transformation could have such an effect, begin with a simple low-pass function such as 
1/1+s. 
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7.4 DIGITAL FILTER DESIGN WITH BILINEAR TRANSFORMATION 

The frequency response of an impulse invariant digital filter is an aliased version of the 
continuous frequency response from which it was derived. We need to examine a given 
design carefully to determine if this aliasing is detrimental. 

Aliasing is best understood by studying Fig. 7.5. In (a) the analog response curve 
is almost totally contained within the Nyquist frequency range. Thus, the discrete-time 
version, (b), which must be periodic, is nearly identical to the analog response in that region. 
However, in (c) the analog response has a greater than Nyquist range and the resultant 
discrete-time response, (d), is significantly different than the desired analog response. 

A wideband filter is more likely to cause problems when digitized by impulse invari-
ance. An alternate approach depends on the bilinear transformation. The original s plane is 
mapped into the z plane with the jco axis mapping into the unit circle. This mapping is 

: + Γ 
(7.11) 

which leads to the mapping of z = 1 to s = 0, z = ε](π/2> to s = j , and z = e1% to s 
The analog frequency (ÜA maps into the digital frequency ω^. 

ωΑ 

„ > 0 7 Λ • * n | — j . (7.12) 

к Frequency 

Frequency 

*■ Frequency 

*- Frequency 

FIGURE 7.5 Effect of aliasing. Note that the total response is the sum of the curves 
shown; the grey hatching indicates the alias distortion. 
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Other techniques exist for designing discrete-time filters with arbitrary properties. 
One powerful method that employs linear programming and the Remez exchange algorithm 
[7] is an iterative method that leads to an optimum design in the sense that both passband 
and stop band are equiripple, and that the transition from passband to stop band is most 
rapid. We have seen that elliptic filters also have this optimum property, but this Remez 
method is based on a pure FIR design so that linear phase as well as good magnitude can 
coexist. 

7.5 THE DISCRETE FOURIER TRANSFORM 

Through the early 1960s both the Fourier transform and its mathematical cousin, the 
Laplace transform, were widely used as theoretical aids in signal processing, but they 
were not employed much in actual computation. The hardware needed to implement these 
functions was quite expensive and quite "klugey," but soon after it was shown how to do 
filtering by computer, Cooley and Tukey [1] introduced the fast Fourier transform (FFT) 
and sparked an explosion of theoretical and practical results in many fields. Such activity, 
in parallel with great advances in computers, meant that signal-processing algorithms could 
be implemented orders of magnitude faster with hardware orders of magnitude smaller than 
what was used a few decades ago. Heideman et al. [4] showed that the concept of the FFT 
was understood by Gauss as well as by Good [3], but until the Cooley-Tukey paper and its 
digestion by signal-processing folk, no great new works resulted. 

In this section we introduce the DFT and work exclusively with this digital version, 
trusting the interested reader to seek the many fine books and papers on the more general 
subject of transforms. In this section we outline some of the theoretical issues and in 
Section 7.6 we focus on the FFT. 

The DFT of a finite duration sequence x(n), 0 < n < N — 1, is defined as 

X(k)=Yix(n)W*, (7.13) 
n = 0 

with W = e~№%lN^. Comparing this definition with the definition (Eq. 6.2) of the z transform, 
we can think of the DFT as a finite version of the z transform, evaluated on the unit circle. 
The inverse DFT can be computed; that is, given the sequence X(k), 0 < к < N — 1, we 
obtain 

*(Ό = è Σ X(k)W-nk. (7.14) 

The DFT computation yields the spectrum of a finite sequence; hence its great impor-
tance in signal-processing applications. Spectrum analysis can, of course, be implemented 
by means of a bank of analog or digital filters. There are many variations on the specific 
nature of spectrum analysis; these can conveniently be related to filter-bank parameters, 
such as the number of filters, the frequency range of the filter bank, and the amplitude and 
phase responses of the individual filters. In many cases, the use of a DFT can emulate (or 
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TABLE 7.1 Relations between a 
Sequence and Its DFTa 

X(n) 

conjugate-symmetric 
conjugate-antisymmetric 
real 
imaginary 
real and even 
real and odd 

« 

о 
о 
о 
Ф> 

<=> 
о 

Х(к) 

real 
imaginary 
conjugate-symmetric 
conjugate-antisymmetric 
real and even 
imaginary and odd 

"Recall that a conjugate-symmetric sequence x(n) = x*{-n) has a 
real part that is even (symmetric around 0) and an imaginary part 
that is odd (antisymmetric around 0). A conjugate-antisymmetric 
sequence x{n) = -x*(-n) has an odd real part and an even 
imaginary part. 

approximately emulate) the properties of a given filter bank, and, through the FFT, perform 
the computation more efficiently. In Section 7.6 we illustrate how the FFT gets its speed, 
but it is useful to show the speed savings that can be obtained. Here we state without proof 
(for the present) the computational properties of a FFT. 

If N is a power of 2 then the DFT can be computed in N log2 N operations. This 
contrasts with the "brute force" DFT computation, which takes N2 operations. Thus, for 
example, ifN= 1024, log2 N=10, the savings is a factor of 100 (ignoring the details). The 
computational cost of a brute force DFT is in the same ball park as that of a filter-bank 
spectral analysis. 

The DFT can be taken, in general, of a sequence of complex numbers. Table 7.1 
relates the initial sequence x{n) with its DFT X(k). 

In measuring the spectrum of a signal, we want to know the frequency range to be 
covered, the number of frequencies measured, and the resolving power of the algorithm. In 
general, a real-life signal such as speech or music, a radar or sonar signal, or some biolog-
ical signal (e.g., an electrocardiogram) is of sufficient duration that we can say that it goes 
on forever. Furthermore, it usually changes character as time progresses. The researcher 
wanting to perform spectral analysis by DFT must decide, based on her or his insights 
about the signal, on the duration of the DFT, on the time between successive applications 
of the DFT, and on the sampling rate of the discretized signal (assuming that the data were 
obtained by sampling an analog signal). Additionally, the researcher must choose a window 
that is appropriate for the problem. For example, the parameters of a speech-production 
model can change over a time span of 10-20 ms. Thus, an appropriate window size could 
be 20 ms, but with a DFT update every 10 ms. If L is the assumed time duration of the 
window and M is the number of samples in the window, then L = MT, where T is the 
sampling interval. 

The choice of the DFT size N is dictated by the desired spectral resolution and in 
general can be greater than M. This is easily implemented by padding with zeros. Therefore, 
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44) gp-F' ">щщ 44) 

FIGURE 7.6 Circular convolution of two eight-point sequences. Only у (0), у (2), у (4), and 
у (7) are shown. All outer circles carry the same sequence, but the inner circles rotate for 
the different values. Convolution consists of summing the products of adjacent values on 
the two circles, to give the value of the output named in the center. 

if it is desired that the frequency spacing between adjacent DFT samples is OF, the sampling 
rate R = (5F)N. The frequency range covered by the DFT is therefore R. However, for an 
input that is real (the imaginary component is zero), the DFT is symmetric about R/2 so 
that the nonredundant DFT result yields a frequency range of R/2. 

In Chapter 6 we showed that the sampling of an analog signal in the time domain 
resulted in a periodic function in the frequency domain. In the DFT both time and frequency 
are samples; thus, both x{n) and X(k) are periodic. Both Eqs. 7.13 and 7.14 are periodic 
with a period N. Consequently, if we begin with a perfectly finite-length sequence of length 
N and compute its DFT, the inverse DFT will be periodic in N. As a result, the product 
of two DFT's results in the circular convolution of the time sequences. This is readily 
visualized in Fig 7.6. 
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FIGURE 7.7 Linear convolution of two finite-length sequences by DFT. 

For each one sample rotation of the outer circle, the convolution is the sum of all 
products of samples facing each other. Thus, for example, the first term of the convolution 
is given by 

y(0) = X(,hu + X] Ηη + x2h6 + x3hs + *4й4 + xsh3 + X(,h2 + Xjh\, (7.15) 

whereas the term for n = 2 is 

y{2) = x0h2 + X\h\ + x2h0 + χφΊ + x4h6 + x5h5 + x6h4 + *7/г3. (7.16) 

The DFT can implement the linear convolution required for FIR filtering operations 
by judicious padding of two finite-length sequences with the proper number of zeros [10]. 
An example is shown in Fig. 7.7. 

Given two sequences of length N\ and N2, pad each sequence with zeros so that the 
two padded sequences have length M + N2 — 1. Then, by multiplying the DFTs of the two 
sequences and taking the inverse DFT of this product, one obtains the linear convolution 
y{n). This technique is useful, for example, when one wishes to implement a FIR filter with 
many terms in its impulse response. 

To perform filtering by DFT for a very long input waveform, one must perform 
overlap-add (sectioned) convolution; the technique is described in [10] and in many other 
books and papers. 
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7.6 FAST FOURIER TRANSFORM METHODS 

There is a great variety" of FFT algorithms. They can all be derived from successive 
applications of a single operation, by representing a one-dimensional string of numbers as 
a two-dimensional array. If we have an /V-point sequence, the integer N is either a prime or 
a composite number. If N is prime, it cannot be expressed as a product of smaller integers. 
If N is composite, it can be expressed as the product N1N2. If either or both N\ and N2 are 
composite, further reduction is permissible. For example, we can express the number 60 
as 12x5 or 3 x 4 x 5 or 2 x 2 x 3 x 5 , and so on. The term radix is commonly used to 
describe this decomposition. If TV can be expressed as a power of a single integer r, the FFT 
algorithm is called a radix r algorithm. The term mixed radix means that all factors of TV" 
are not identical. 

The computational advantage of the reductions just described comes directly from 
the fact that a two-dimensional DFT is more efficient than a one-dimensional DFT with the 
same number of input samples. This stems from the observation that a two-dimensional DFT 
can be implemented, for example, by performing one-dimensional DFTs on all columns to 
obtain a new matrix and then performing one-dimensional DFTs on all rows of the new 
matrix. The total computation time for/Vi columns by Λ^ rows is of the order (N\)2 + (/V2)2, 
and that may be appreciably smaller than the computation time (N\ + N2)2. Be aware that 
the advantages of this kind of reduction are true only for very special cases, such as the 
DFT algorithm. 

Let's now derive the mathematics of this DFT trick. Let the one-dimensional index 
be n, as usual. Letting the column index be m and the row index be / (M is the number of 
columns and L is the number of rows), we get 

n = Ml + m. (7.17) 

We now perform the two-dimensional DFT and choose r and s as the transformed 
variables; these can be recomposed to yield the single variable 

k = Lr + s. (7.18) 

We are now in a position to express the DFT samples X(k) = X(s, r) as the transform 
of x(n) =x(l, m) by simply substituting Eqs. 7.17 and 7.18 into the definition of the DFT, 
giving 

M - l L- l 

X{k)=X(s,r) = Σ £*(i,™)W(Mi+m)(Lr+s)· (7.19) 
m = 0 ( = 0 

Expanding w^Ml+m^Lr+s\ observing that WMLlr = WNlr = 1, and properly associating 
indices with summation signs, we rearrange Eq. 7.19 as 

M - l L- l 

X(s, r) = £ W^W™ £ x(l, m)WMsl. (7.20) 
m=0 1=0 
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Notice that the L-fold sum is the DFT of the wth column of the array having the 
kernel WM. Thus the first step in our computational procedure would be as follows. 

1. Compute the L-point DFT of each column. The result is a function of s and w; 
call it q(s, m). Equation 7.20 can now be written as 

M-Ì 

X(s,r) = £ WLmrWmsq(s,m). (7.21) 
m=0 

2. Obtain a new array h(s, m) by multiplying every q(s, ni) by its twiddle factor Wms. 
Equation 7.21 now reduces to 

M-\ 
X(s,r) = £ h(s,m)WLmr. (7.22) 

m=0 

Equation 7.22 is recognized to be the M-point DFT of each row, with the row index 
s. Thus the final step in the procedure is as follows. 

3. Compute the M-point DFT of each row of the h(s, m) matrix, with WL as kernel. 

FIGURE 7.8 Flow chart of an eight-point FFT. Note that the outputs on the right-hand side 
are in a different order from the inputs on the left-hand side. From [2]. 
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Several results emerge from the procedure. If N is the highly composite number 
2l where / is an integer, the DFT may be decomposed into / dimensions, each being a 
two-point DFT. In most applications such a restriction is usually no problem, since, as 
we mentioned previously, padding with zeros simply alters the numerical meaning of the 
frequencies corresponding to the k values. 

Another result of interest is that of row-column permutation. If the computation 
is performed in place, the ordering of the resulting к values is, in general, different than 
the ordering of the incoming n values. The advantage of an in place algorithm is that no 
subsidiary memory is needed; when the computation is done, the result is at the same 
location as when the computation started. However, the result is no longer in the same 
order; an example is shown in Fig. 7.8. 

Each two-point DFT is represented as a nodal point in the figure and the twiddle 
factors are shown as arrows. Each time a two-point DFT is computed, the result is stored 
back into the same memory elements. Finally, as seen in the figure, the indices of the result 
are bit reversed, so that, for example, register number 3, which carries the input /3 (011), 
will wind up holding the output sample F^ (110). 

Bit reversal may be avoided by using extra memory to hold intermediate results; an 
example is shown in Fig. 7.9. 

7.7 RELATION BETWEEN THE DFT AND DIGITAL FILTERS 

Since both DFTs and filter banks are capable of performing spectral analysis, it is fair to 
inquire what the mathematical relations are between these methods. Figure 7.10 shows a 
filter-bank implementation of a sliding DFT. 

Assume that the system is initially at rest. Then, it is easy to see that the initial 
N arrivals of the signal samples will produce the required DFT output samples. Now 
consider the Mh sample. Because of the TV-sample delay, the delayed zeroth sample cancels 
the original contribution of the zeroth sample, so that the outputs will now register the 
contributions from sample 1 through sample N. Thus, each set of outputs at every sample 
point corresponds to the DFT of a sequence that has been slid over to the right by one 
sample. 

For the filter-bank implementation of Fig. 7.10, the number of multiplications per 
point is N. Thus the filter-bank implementation seems more efficient than the sliding FFT. 
However, the FFT computation can be hopped. Some examples of hopping are shown in 
Fig. 7.11. 

Notice that the hopped measurement is simply a sampling of the sliding measurement; 
an equivalent result is obtained by sampling the filter-bank outputs. The effects can be 
treated by standard aliasing arguments: each channel of the FFT is equivalent to one of 
the (complex) bandpass filter arms of Fig. 7.10, and the subsampled version of it will 
experience aliasing similar to the illustration in Fig. 7.5. A smaller hop, corresponding to 
more frequent sampling, results in larger separation between primary and alias images, and 
hence less distortion of the subband signal. Figure 7.12 shows examples of such effects. 
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FIGURE 7.9 Flow chart of an eight-point FFT; no bit reversal, not in place. From [2]. 

No overlap results in severe aliasing; a 2:1 overlap significantly decreases aliasing 
distortion, and a 4:1 overlap (perhaps enhanced by windowing) can reduce the effects to 
insignificance. 

7.8 EXERCISES 

7.1 Prove that n = 4 is an appropriate value for a digital Butterworth filter with a 3-dB attenuation at 
1250 Hz, and more than a 20-dB attenuation at 2000 Hz. Assume a sampling rate of 10 kHz. 

7.2 Suppose that you had the choice of a Butterworth or Chebyshev design of a low-pass filter. Discuss 
the criteria you might use to decide on a final design. 

7.3 In a radix 2 FFT, prove that the number of complex multiplications is N/2 log2 N. 

7.4 An analog signal is sampled at 10 kHz, and 23 samples are digitized and stored in computer memory. 
It is desired to obtain a spectrum by means of DFT that covers the range 0 -5 kHz, with at a least 
7-Hz resolution. Specify an algorithm to perform this task. 
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FIGURE 7.10 Filter-bank implementation of a sliding DFT. From [8]. 

7.5 Prove that the configuration of Fig. 7.10 produces the same output as that of a sliding DFT. Which 
implementation (Fig. 7.10 or the sliding DFT) is more efficient? 

7.6 Consider the sequence x(0) = 1, x(\) = 2, x(2) = 3, x(3) = 4, x(4) = 5, andx(n) = 0 for all 

other values of n. 

(a) Compute the sequence by linearly convolving x(n) with itself. 

(b) Compute the sequence by circularly convolving x(n) with itself. 

(c) Compute the circular convolution of a suitably modified version of x(n) to obtain the exact result 

FFT1 > < FFT2 > < FFT3 -FFT4- No Overlap 

FFT1 > « FFT3-

- FFT2 —*■ «— FFT4- 2:1 Overlap 

-FFT1-
I I I 
L· I . FFT2 

i i FFT3-

-FFT4-

4:1 Overlap 

FIGURE 7.11 Three examples of hopped FFTs. From [8]. 
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FIGURE 7.12 Aliasing effects of hopped FFTs. From [8]. 

7.7 

7.8 

7.9 

of part (a). 

Figure 7.13 shows the spectrum of an analog signal. 
The signal x{t) is sampled at equally spaced intervals T = 0.5s, thus creating the signal x(nT). 

(a) Draw the spectrum Xd (/) of x(nT). 

(b) Is x(t) recoverable from χ(ηΓ)? If so, how? 

In the analog domain, an ideal differentiator is defined by its transform H((ù) = ja. In the discrete 
domain it is convenient to define a band-limited ideal differentiator as shown in Fig. 7.14. 

(a) Find the unit sample response of the discrete domain differentiator. 

(b) Sketch the result for 0JC = π. 

(c) Is the unit sample response causal? 

(d) Is the unit sample response real? 

We are given a block of 512 samples and want to compute the DFT at 15 values of k. The samples 

Х(Л 

/(Hz) 

FIGURE 7.13 Spectrum of an analog signal. 
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FIGURE 7.14 Ideal differentiator in the discrete domain. 

were obtained by sampling an analog signal at 10,240 samples/s. The 15 values of interest uniformly 
cover the DFT output from X ( 150) to X ( 164). 

Assume that you have a choice of a radix 2 FFT or a straightforward (slow) DFT. Compare 
the running times of the two approaches. 

7.10 Let's take the DFT X(k) of the finite sequence x(n), for N = 8. Now, form a new sequence specified 
as Y(k) — X(k) for even values of A: and zero for odd values of k. 

(a) If y(n) is the inverse DFT of Y(k),fmdy(n) for л = 0 ,1 ,2 , . . . ,7 in terms of the original sequence 
x(n). 

(b) If x(n) has the values 0, 1, 2, 3, 3, 2, 1, 0, find the numerical values of y(n) for« = 0, 1, 2, 3, 4, 
5, 6, 7. 
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PATTERN CLASSIFICATION 

8.1 INTRODUCTION 

Much as the discipline of digital signal processing forms the technological basis for the 
processing of audio signals, pattern recognition is the basic field of study that underlies 
application areas such as speech recognition. In this chapter and the one that follows, 
we present some major concepts that are essential to understanding pattern-recognition 
technology. We begin in this chapter with a brief survey of the basic methods of classifying 
simple patterns. We distinguish here between pattern recognition and pattern classification 
by restricting the latter to the distinction between categories for sets of observed data 
samples or vectors. For the more inclusive term of pattern recognition we can also mean the 
recognition of sequences (which may be multidimensional) that are not presegmented into 
the patterns to be classified. In such cases it may not even be known exactly which training 
examples are synchronous with the class labels. For instance, in handwriting recognition, 
we wish to recognize the sequence of written marks with a sequence of characters (or 
words), but we may not know exactly where one letter ends and another begins. Similarly, 
in speech recognition, we wish to associate the input speech patterns with a sequence of 
words. Each of these examples requires the association of an observation sequence with 
a labeling sequence. For now, we are going put aside the issue of temporal sequencing to 
concentrate on the simpler case of pattern recognition for static patterns. 

A supervised pattern-classification system is trained with labeled examples; that is, 
each input pattern has a class label associated with it. Pattern classifiers can also be trained 
in an unsupervised fashion. For example, in a technique known as vector quantization, some 
representation of the input data is clustered by finding implicit groupings in the data. The 
resulting table of cluster centers is known as a codebook, which can be used to index new 
vectors by finding the cluster center that is closest to the new vector. This approach has sev-
eral advantages for low-bit-rate coding (some of which will be discussed in later chapters), 
but it also can be useful for the reduction of computation in speech recognition. For the most 
part, the pattern classifiers referred to in this book will be trained in a supervised manner. 

As noted earlier, the job of static pattern classification is to classify individuals into 
groups. For example, consider classifying humans with the features of height and weight. 
In Fig. 8.1 the circles could be Swedish basketball players, whereas the triangles might 
represent speech-recognition researchers. For the figure as shown, it would be very easy to 
devise a system to divide people into the two classes. 

For the case of speech, Fig. 8.2 shows an extreme case of some vowels represented 
by their formant frequencies Fl and F2. The vowels represented are as pronounced in 
the words beet {I'll), bat {lati), bot (/a/), and boot (lui). Notice that they fall into nice 
groupings. Unfortunately, speech data are not generally this well behaved. For instance, 
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FIGURE 8.1 Distinct classes of Swedish basketball players (circles) and 
speech-recognition researchers (triangles). The points labeled ц and ц are the means for 
these two classes. The solid line represents a linear decision boundary derived from a 
minimum Euclidean distance, and the thick dashed line is a linear decision boundary that 
would perfectly separate classes for these data. 

if more vowels were added to the chart, the classes would often intermingle in the F1-F2 
space. Furthermore, there is enough variability in speech that the graphing of the F1-F2 
values from a large spoken-language database into this figure would leave little white space. 

Note that in each case the individual examples were represented by some choice of 
variables. In the case of speech, for instance, we did not attempt to distinguish between 
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vowel classes by using individual waveform amplitudes as features, but rather by using 
variables that we believed to be relevant to classification. In general, the choice of input 
representation is one of the major issues in the study of pattern recognition. 

8.2 FEATURE EXTRACTION 

As shown in Fig. 8.3, the first step in any pattern-classification system is to evaluate some 
representation of the input pattern. Although in some cases this is the degenerate repre-
sentation that consists of the raw input data, in general this can be improved with signal 
processing. In the case of speech, for instance, some form of power spectrum is often eval-
uated. Typically, these acoustic representations (vectors of relevant variables) are extracted 
within successive analysis windows that overlap. For example, windows of 20-30 ms over-
lapped by 10 ms are often used, although step sizes between frames can range from 5 to 
20 ms. The features extracted are generally spectral or cepstral coefficients that condense 
the information in the speech signal to a vector of numbers, typically of length 5-40. For 
the classification of one-dimensional time series such as monaural music or speech, the 
input time series is transformed into a sequence of feature vectors that are sampled at a rate 
that is generally much lower than the original sequence (though each sample is represented 
by a vector rather than the original scalar). 

What are the major considerations involved in the choice of a feature representation? 
Since the overall goal in pattern classification is to distinguish between examples of different 
classes, in general the goal of feature extraction is to reduce the variability for features for 
examples that are associated with the same class, while increasing the distinction between 
features from examples that belong to different classes. In some cases this goal can be 
formulated as an explicit criterion that yields a procedure or even an analytical solution 
for optimal performance (such as the linear discriminant that will be briefly described later 
in this chapter). The training data, however, may not give us a complete picture of the 
variability that will be seen during the classification process, so it is desirable to normalize 
for irrelevant factors in the data wherever possible. For the case of speech recognition, a 
number of these examples will be given in a later chapter, but for now we note that such 
normalization schemes (for instance, to reduce the effects of overall energy or of some 
constant spectral factor) can be important for practical classification systems. 

Despite these deep problems associated with normalizing for unseen conditions, it is 
still true that it is desirable to learn something about the capabilities of candidate feature sets 
for discrimination from the data. This should be the goal of feature extraction - in some 
sense, the pattern classification can be solved trivially if the features are good enough. 
In practice, for most interesting problems none of the components of the task are truly 

Pattern Feature 
Extraction 

Feature 

Vector 
Classification 

Class 

FIGURE 8.3 Pattern classification is often divided into two major components - feature 
extraction and the classification of the features associated with a pattern. 
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trivial. 
Aside from this basic goal of feature extraction, another perspective is the deter-

mination of the best feature vector size. The best representations for discrimination on 
the training set have a large dimensionality. In fact, given enough dimensions, a group 
of patterns may be split up in any arbitrary way. However, the best representations for 
generalization to the test set are usually succinct. Too detailed a representation may also 
represent characteristics of the particular training set that will not be present for indepen-
dent data sets. Thus, there is a trade-off between the training-set classification performance 
and generalization to the test set. For instance, in the extreme case, you could represent 
the training set by storing a million measurements for each example; this will permit the 
splitting of the training set into the labeled categories with a trivial classifier. However, if 
many of the dimensions are not reliable measures for distinguishing between examples of 
the classes in unseen data (as is almost certainly the case with so many measures), then 
classification on a test set will be difficult. 

In general, it is desirable to find a good (and moderate-sized) set of generalizable 
features. There are several common methods of reducing the dimensionality of the features. 
Two direct analytical approaches are principal components analysis (PCA) and linear 
discriminant analysis (LDA). The object of PCA is to find a projection of the feature vector 
down to a lower dimension, such that the variance accounted for is maximized. This is the 
most common approach used, and it is reasonable if you don't know anything else about the 
data. The limitation is that the components are chosen to maximize the variance accounted 
for, which can be a problem if most of the variance isn't important for discrimination -
such as the variance near 0 Hz within speech signals. For pattern classification, it is often 
better to have components that maximally account for discriminability. 

Linear discriminant analysis is an approach that tries to maximize variance between 
classes and minimize variance within classes, given the constraint of a linear transformation 
of the input features. Chapter 5 of Duda, Hart, and Stork[3] gives a good description 
of this technique. This has been usefully applied to speech recognition by a number of 
researchers since the late 1980s [5,4]. In general, discriminant approaches to dimensionality 
reduction have tended to give preferable results to using variance-based approaches such 
as PCA, though this is a deep and tricky issue. For instance, features chosen to maximally 
discriminate between samples with a high signal-to-noise ratio may be poor choices for test 
examples that are corrupted by unexpected additive noise. 

One can also use application-specific knowledge to reduce the dimensionality of the 
feature vectors, or just test different reductions by evaluating a pattern recognizer trained 
on the reduced features on a test set. This is often helpful, although testing any significant 
number of possible feature subsets can often be quite computationally intensive. 

8.2.1 Some Opinions 

Although this is a debatable point, it can be argued that it is often better to throw away bad 
features (or bad data) than to reduce their weight. This is true even though we can generally 
establish an objective criterion for error and adjust weights to minimize this criterion. 
However, for many applications the biggest difficulty of pattern classification can be that 
the training patterns are not completely representative of unseen test data, and so in practice 
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it can be better to simply ignore dimensions or data that we believe to be unreliable. 
How can one determine what data or features are bad? Often the best way to make 

this determination is through the analysis of errors in the pattern recognizer. We often can 
simplify this process by having some idea of where to look for problems. For instance, in 
ASR, energy can be an unreliable feature for practical usage (since talker energy can vary 
significantly for the same word, given different speakers, gains, etc.), and removing it has 
often improved results in realistic conditions. In contrast, variables that reflect the signal 
energy can be important for a number of discriminations, for instance between voiced and 
unvoiced sounds. Fortunately, the local time derivative of log energy is independent of 
overall (long-term) gain, since 

j t \ogCE{t) = ^[logC + log£(i)] = jf log£(0, (8.1) 

where С is a time-invariant (constant) quantity. 
Finally, in pattern-recognition experiments, it is important to avoid two common 

errors during system development: 

1. Testing on the training set - the training examples are used to design the classifier, but 
the desired system is one that will perform well on unseen examples. Therefore, it is 
important to assess the classifier on examples that were not seen during training. The 
system could implicitly or explicitly be memorizing characteristics of the specific 
examples in the training set that may not be present in an independent test set. 

2. Training on the testing set - even when a test set is used for evaluation, features or 
parameters of the classifier are often modified over the course of many experiments. 
Thus, the system may also become tuned to the test set if it is used a number of times. 
It is common in speech-recognition research, for instance, to define a development 
set for all such adjustments; final performance is then reported on a second evaluation 
set for which no new parameters have been adjusted. 

8.3 PATTERN-CLASSIFICATION METHODS 

Given a feature vector choice, pattern classification primarily consists of the development 
or training of a system for classification of a large number of examples of the different 
classes. As of this writing, statistical methods are the dominant approach, and as such we 
will devote a separate chapter to their brief explanation. First, however, we describe the 
major methods for the training and use of deterministic pattern classifiers. It should be noted 
that these same methods can also be viewed statistically as well; however, the deterministic 
perspective may be a more intuitive starting point. 

8.3.1 Minimum Distance Classifiers 
Minimum distance classifiers are based on the notion that we can learn or store pattern 
examples that are representative of each class, and then we can identify the class of new 
examples by comparison to the stored values. For instance, if we store the heights and 
weights of all the Swedish basketball players and speech-recognition researchers, we can 
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compare the height and weight of a new visitor to all of these examples and choose the class 
of the closest one as the class of the newcomer. One could even use some kind of a vote, 
in which the class of the majority of the local examples is used to determine the class of 
the new examples. Alternatively one could store one or more prototypes to represent each 
class, such as the most typical (or average) for each one, and again choose the class of the 
closest prototype as the class of the new example. All of these cases are types of minimum 
distance classifiers. 

In a minimum distance classifier, a key point is the definition of a distance function 
that accepts as input two feature vectors, one representing a new example and one a stored 
vector, and returns the distance between the two vectors. The choice of this distance function 
is very important; it is also equivalent to implicit statistical assumptions about the data. 
Intuitively, however, simple distance measures can be misleading, given a different scale 
of values or differences in importance for the discrimination of different dimensions of 
the feature vector. For instance, in the case of height and weight, if weight is in pounds 
and height is in feet, the Euclidean distance between a new and a stored example will be 
dominated by weight, while in fact one might expect that height might be an important 
predictor of success of a career in professional basketball. 

A sample minimum distance classifier might have j templates z,, where 0 < i < j . 
For each input vector x, choose 

argmin [Д- = v / ( x - z i )
r ( x - z ; ) ] (8.2) 

(where the symbol T refers to the transpose operation). In other words, choose the i which 
minimizes the distance Д . Manipulating the algebra, we get 

argmin Df = x ' x - 2 ( x r z , - Izfz,- (8.3) 

Since x r x is constant over i, we can also equivalently choose to maximize the following 
function: 

argrnax I D\l = x' z,· - -z/ z; I , (8.4) 

which is a linear function of x. If each template j is normalized so that zf z,- = 1, then we 
can just maximize 

argmax(A"2 = xrz,)· (8.5) 

The minimum distance classifier in this case is equivalent to a classifier based on the 
maximum dot product with the stored vector. 

Given this distance function, as noted earlier, we can derive a decision rule for 
classifying new vectors by assigning the vector the class of its nearest neighbor. This is 
called (appropriately) nearest-neighbor classification. In the limit of an infinite number of 
samples, this rule will achieve at most twice the error of the optimum classifier [3]. This 
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can also be generalized to a fc-nearest neighbor rale, where the class of the new vector is 
decided by a vote of the class of the fc-nearest neighbors; in a variant of this, the voting 
weight is determined from the distance of the neighbor. 

This technique is potentially problematic in several ways. For the case of the direct 
use of all examples, it requires a great deal of storage for large problems; in addition, 
the search over these examples can also be time consuming. To reduce computation and 
storage, one can sometimes store only a small number of prototypes to represent the class; 
for instance, in Fig. 8.1, we indicate the mean of each class (written as z, for class /). 
Also, unless the feature vector is preprocessed to equalize the importance of the feature 
dimensions, this method is particularly prone to scaling problems (as noted earlier). Finally, 
for high dimensions, the space will be sparsely sampled by the training set. 

8.3.2 Discriminant Functions 

As noted earlier, finding the minimum distance to a prototype is closely related to finding 
the maximum dot product (essentially a correlation) between a new vector and the stored 
vectors. Finding the best prototypes for this measurement, then, can be viewed as deter-
mining weights for a linear recombination of the input features that will be maximum for 
the correct class. The term for this determination of a function that is maximum for the cor-
rect class is discriminant analysis. This function will determine decision surfaces between 
classes, where the value of the function of values along a surface is the same for the two 
classes that are bounded by the surface. For example, Fig. 8.4 shows that two discriminant 
functions will be evaluated for each input pattern. The input values for which these two 
functions are equal specify a decision boundary in the input feature space. In general, there 
can be many discriminant functions that can then be used by a decision-making process to 
determine the best class for the pattern (as in Fig. 8.4). 

Linear discriminant functions generate linear decision surfaces; in two dimensions 
(as in Fig. 8.1) the surface is a line, whereas in three dimensions it is a plane. In general, 
a linear decision surface is called a hyperplane. Returning to the case in which we use 
minimum distance to prototypes as the decision criterion (see Eq. 8.4), we find that each 
discriminant function would correspond to a constant plus a dot product between the input 
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FIGURE 8.4 A system to discriminate between two classes. 
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feature vector and the prototype. Suppose there are two prototypes (one for each class), zj 
and Z2. Then, for input vector variable x, the decision boundary corresponds to 

x r z , - - z [ z , = x r z 2 - 2Z2Z2 (8.6) 

or 

x r(z, - z2) = - (z[zi - z(z2). (8.7) 

If the prototypes (templates) are all normalized, as in Eq. 8.5, the right-hand side 
goes to zero. 

Take the example of our Swedish basketball players and speech-recognition re-
searchers. A number of methods can be used to learn the right hypersurface (which in two 
dimensions is a line) to best separate the two classes; probably the most common approach 
is to use the Fisher linear discriminant function, which maximizes the ratio of between-class 
and within-class scatter.1 Alternatively, iterative methods such as gradient learning can be 
used to find the best line to divide the classes. In both cases, some criterion (such as the sum 
of the linear discriminant values for misclassified examples) is maximized (or minimized), 
in which the changes to the linear discriminant coefficients are adjusted according to the 
partial derivative of the criterion with respect to each coefficient. 

A particularly simple approach would be to use Eq. 8.7, which was derived by using a 
discriminant function based on the minimum distance from a template that was the average 
of all of the examples of a class. The line corresponding to this equation (the thin solid 
line in Fig. 8.1) is not a particularly good decision boundary between the two classes. 
This illustrates one of the potential pitfalls with the use of minimum Euclidean distance 
as a criterion: in this case, the weight is represented with much larger numbers, and so 
it dominates the distances; this forces the decision boundary to be nearly horizontal. The 
dashed line in that figure shows a more sensible decision boundary, such as one might 
hope to get from one of the other approaches mentioned. Since this idealized line perfectly 
partitions the two classes, we refer to this data set as being linearly separable. 

In current approaches, most often the technique for determining the linear separator 
is based on a statistical perspective. We will return to this point of view in the next chapter. 

8.3.3 Generalized Discriminators 
Often, one may want decision surfaces that are nonlinear. Although simple cases such as 
quadratic surfaces can be derived by methods similar to the ones discussed above, artificial 
neural networks can be utilized to get quite general surfaces. McCulloch and Pitts first 
modeled neurons in 1943, using a threshold logic unit (TLU). In this model, an output 
either fires or does not; firing occurs when a linear function of the input exceeds a threshold. 

1 The within-class scatter is proportional to the sample covariance matrix for the pooled data. The between-class 
scatter is the weighted sum Σϋ=\ n,(m, — m)(m.i — m) r , where С is the number of classes, m, is the mean vector 
for the !th class which contains щ items, and m is the total mean vector [3]. 
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This model could be viewed as equivalent to a linear discriminant function. As noted in 
earlier chapters, Rosenblatt developed perceptrons in the late 1950s and early 1960s, 
based on the McCulloch-Pitts neuron. In Rosenblatt's group, systems were built based on 
combinations of multiple neurons and also based on a final combining layer of neurons. 
Originally these multilayer perceptron (MLP) systems used TLUs, and so somewhat tricky 
training methods had to be used since these units implemented a function that was not 
differentiable. In other words, for systems of this generation, it was not straightforward to 
adjust an internal variable by using the partial derivative of an output error criterion with 
respect to the variable, since the TLU implemented a binary output. Some schemes were 
found to work around this problem; for instance, in discriminant analysis iterative design 
[5], the first layer of neurons was trained by simple statistical methods (see Chapter 9), while 
the output neurons were trained to minimize an error criterion based on a differentiable 
nonlinear function of the output sum (before the threshold). In later developments [12], [9] 
the thresholding function was replaced with a smoother (differentiable) nonlinear function. 
A common choice is the sigmoidal (S-like) function 

/СУ) = т-^—, (8.8) 

which is bounded between zero and one. 
The use of the differentiable nonlinearity (as opposed to a step function) permitted 

uniform training procedures for all layers based on changing the weights at all layers to 
minimize the output error criterion, using partial differentiation and the chain rule. It can be 
proved that a two-layer MLP2 with enough internal nodes (or hidden nodes) can learn any 
arbitrary mapping from input to output; hence, MLPs make good general discriminators. 
Figure 8.5 shows a typical MLP with two layers. A unit in the most common kind of 
modern MLP computes a nonlinear function [e.g., f(y)] of the weighted sum of its inputs 
(as shown in Fig. 8.6). 

n 

У] = w0j + Y,WijXi- (8.9) 

No computation takes place at the input layer; it only takes place at the hidden and output 
layers. 

The training of such networks is straightforward. An error criterion is established 
(e.g., a mean-squared error), and this is then differentiated with respect to the weights that 
were used to evaluate the MLP output in Eq. 8.9. The weights are updated proportionately 
to this partial derivative, and an error signal is also computed that can be propagated 
backward to parts of the network that contributed to the value that was an input to the 
neurons in the output layer. This process can continue through multiple layers by using 
the chain rule of differentiation, since the nonlinearities that are typically used in most 

2Unfortunately, the literature is inconsistent on the naming convention here: the MLP in the figure is sometimes 
called a two-layer system (since there are two layers doing the computation) and sometimes called a three-layer 
system (since the input features form a kind of a layer). 
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Output layer 

Hidden layer 

Input layer 

FIGURE 8.5 A typical MLP. 

MLPs are differentiable functions such as the one given in Eq. 8.8. The overall algorithm 
is referred to as error backpropagation, and it is described in detail in such texts as [9] or 
[8]. A brief description and derivation are given in the Appendix at the end of this chapter. 

During training, the update of the MLP parameters can be done in two different ways. 
The first approach is off-line training. In this case, we accumulate the weight updates 

over all the training patterns and we modify the weights only when all the training patterns 
have been presented to the network. The gradient is then estimated for the complete set 
of training patterns, which guarantees, under the usual conditions of standard gradient 
procedures, the convergence of the algorithm. 

The second way is on-line training. In this case, the MLP parameters are updated 
after each training pattern according to the local gradient. However, although this does 
not actually minimize the error gradient directly, it can be shown [10] that this process 

FIGURE 8.6 A typical unit for a MLP. The unit implements a linear or nonlinear function of 
a weighted sum of the input variables. A typical choice for f(yj) is given by Eq. 8.8. 
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FIGURE 8.7 Illustration of the "maximum margin" decision boundary in a Support Vector 
Machine. Solid dots are training examples of one class, hollow dots are examples of the 
other class. Although many linear boundaries would perfectly separate the examples of the 
two classes, the SVM finds the decision boundary, shown as a solid line, that stays furthest 
away from any example, i.e., it has the largest possible "margin of error". The dotted lines 
show the outer edges of this boundary, touching the closest training patterns (the "support 
vectors"). 

will stochastically converge to the same solution.3 In practice, the on-line training exhibits 
several advantages compared with the off-line procedure: it is generally acknowledged 
that it converges much faster and that it can more easily avoid local minima. This can be 
explained by the fact that the use of local gradients introduces noise in the training process, 
which usually improves the behavior of gradient searches because of the lowering of the 
risk of getting stuck in a suboptimal local minimum. Additionally, for large and varied 
training sets (such as are typically used for speech recognition), on-line training implies 
multiple passes through similar data for each single pass through the whole set. 

8.4 SUPPORT VECTOR MACHINES 

MLPs can be viewed as a way of expressing a family of nonlinear decision boundaries 
whose complexity can be controlled by adjusting the number of hidden units, and whose 
parameters are set via gradient descent. In the mid-1990s, Corinna Cortes and Vladimir 
Vapnik proposed a new approach to the problem, based on Vapnik's earlier work on optimal 
classifiers. The Support Vector Machine (SVM) [2] employs a number of innovations to 
find nonlinear classification boundaries, and has subsequently had enormous impact on a 
wide range of applications, due to its excellent classification performance and resistance 

3 Since the local gradient can be viewed as a random variable whose mean is the true gradient, such an approach 
is sometimes called a stochastic gradient procedure. 
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to overfitting. Rather than defining directly a family of nonlinear boundaries, the approach 
is to define an extended feature space (for instance by concatenating nonlinear functions 
or combinations of the existing feature dimensions), then solving for the optimal linear 
classifier in this extended space. 

As the number of dimensions increases, the capacity of a linear classifier to make 
arbitrary separations of a finite set of training data increases, so at some dimensionality 
perfect performance on training data is possible. There may even be infinitely many hy-
perplanes that achieve maximum performance on the training data, which leads to the idea 
of maximum-margin classifiers: the optimal classifier is the one that keeps all the training 
examples as far away as possible from the decision boundary, so that for instance slight 
perturbations of their features due to noise are least likely to change their labeling. As 
illustrated in Fig. 8.7, this maximum-margin approach finds a decision boundary equidis-
tant from the nearest training examples of each class. These nearest points are known as 
the "support vectors", and the classifier depends only on these points and not at all on the 
remaining training examples. Finding these points and hence the decision boundary is cast 
as a quadratic-programming optimization problem, starkly different from the least-squares, 
gradient-descent solutions common in other classifiers. 

One further innovation in Support Vector Machines is perhaps the most powerful. 
Because a plane in the high-dimensional space can be defined via inner products with 
specific points in that space, the SVM doesn't actually require the construction of the 
nonlinearly-extended feature space: all it requires is an inner product function (also known 
as a kernel function) that returns the inner product between two points in the space. 
By defining a nonlinear kernel function that operates on the original, lower-dimensional 
data, the optimization procedure can find the maximum-margin hyperplane without the 
computational burden of projecting points into a high dimensional space. In fact, the 
effective feature space may even be infinite-dimensional, meaning that this 'kernel trick' 
approach is the only way it could be handled computationally. 

Although the theory of SVMs starts from perfectly-separating hyperplanes, in many 
situations we do not expect our labels or our features to provide perfect separation (for 
instance, some examples may simply be mislabeled, or the feature space may be inevitably 
overlapped). To avoid overfitting such data (i.e. finding a decision boundary that managed 
to snake its way around the interspersed examples in the overlap region), an extension to 
the SVM incorporates "slack variables" that allows a certain number of training points to 
remain on the incorrect side of the decision boundary (i.e. to have negative margins). The 
optimization problem remains much the same, seeking to identify the best set of points to 
maximize the total boundary to all the support vectors - including those exploiting their 
"slack". A single cost weight, C, governs the trade-off between margin and slack, and is 
typically optimized empirically on cross-validation data. 
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FIGURE 8.8 Unsupervised clustering of examples visualized with the dendrogram. The 
left pane shows data in two dimensions that appear to fall into two clusters, centered 
around (0.5,0.5) and (1.5,1). The dendrogram on the right shows the progressive grouping 
of nearby examples by agglomerative hierarchical clustering. The topmost division 
separates the two main clusters. 

8.5 UNSUPERVISED CLUSTERING 

So far, we have assumed our training examples are accompanied by the class label corre-
sponding to each item. In many situations, however, examples are available without any 
predefined labels. Although this greatly limits what can be done with the data, there are 
still some techniques that can be applied to this unsupervised case. In particular, the exam-
ples may fall into natural clusters - as illustrated in Figure 8.8, in which the points in the 
left-hand panel appear to come from two distinct modes. These modes could take on the 
role of labels, leading to the problem of assigning labels to all examples that reflect their 
natural cluster. This process is known as clustering. 

There is a large and diverse literature on clustering, reflecting among other factors 
the difficulty in defining the actual goal of the algorithm when data does not fall into 
clear clusters. One intuitive algorithm is agglomerative hierarchical clustering, which is 
illustrated in the right panel of Figure 8.8 by a representation known as a dendrogram 
[3]. Items are grouped into successively larger clusters, merging at each stage the most 
similar (least distant) pair of items or clusters. The dendrogram shows these merges, where 
the horizontal line joining the two items being merged reflects the dissimilarity (distance) 
at which the merge was made. (The items are rearranged on the horizontal axis to avoid 
crossing lines.) Discrete cluster assignment can be made by choosing a distance threshold, 
then separating each cluster that is still distinct at that threshold. In figure 8.8, a distance 
threshold of 0.2 divides the two clusters, whereas a threshold of 0.15 would separate 
out three of the outliers of the larger mode into separate clusters. (For this illustration, the 
distance between two clusters is taken as the shortest distance between any pair of examples 
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spanning the clusters.) 
While agglomerative clustering can lead to valuable visualizations, a more commonly-

used technique is £-means clustering. This algorithm starts with a desired number of clus-
ters, k, each represented by a centroid point in feature space. These centroids are randomly 
initialized, e.g., by placing them at к randomly-selected examples from the data set. Then, 
each sample point is compared to each centroid, and assigned to closest. Once all points 
have been labeled this way, the centroids are recalculated as the mean positions of all 
points assigned to them, and the iteration repeats. If no centroids move in an iteration (i.e. 
all points keep the same labels), the process is complete. 

Many other clustering algorithms have been proposed, addressing different limita-
tions of simpler schemes. Spectral clustering [7], for example, is able to propagate clusters 
along elongated linkages by manipulating the eigenvectors of a modified "affinity" (near-
neighbor) matrix. The Gaussian Mixture Model, described in the following chapter, is 
sometimes viewed as a clustering scheme, since it makes a probabilistic assignment of 
each training point to one of its Gaussian components. However, a more detailed discus-
sion is beyond the scope of this chapter. 

8.6 CONCLUSIONS 

The use of nonlinear discriminant functions and/or feature spaces permits the construction 
of classification mechanisms that can become arbitrarily complicated and that need not 
conform to any strong prior notion of the nature of the decision boundary. The use of very 
general functions, however, makes the determination of a useful error criterion even more 
complicated. For this reason, as well as the availability of powerful training algorithms, 
statistical approaches have become very popular and important, particularly for speech 
recognition. This is the subject of Chapter 9, but even in the statistical case it is sometimes 
useful for intuition's sake to map approaches back to their approximate equivalent in a 
deterministic framework. 

8.7 EXERCISES 

8.1 Suppose that you wish to classify patterns into one of two classes. (Take the case of Swedish basketball 
players and speech-recognition researchers, given heights and weights for each example.) Unknown 
to you, it turns out that the squared value of heights and of weights (in centimeters and kilograms; 
respectively) sum to a value greater than some constant С for all basketball players, and to under this 
value for all the researchers. What is the shape that represents this decision surface? How would you 
need to modify the input features in order to make a straight line be the optimal decision surface? 

8.2 George has designed a classifier that can perfectly distinguish between basketball players and re-
searchers for every example in the training set. Martha has designed a classifier that makes some errors 
in the training set classification. However, Martha insists that hers is better. How can she be right? In 
other words, what are some potential pitfalls in the development of a classifier given a training set? 
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8.3 Assuming that one is willing to use an infinite number of training examples (and take an infinite 
amount of time for classification), would it be possible to do perfect classification of speech utter-
ances given all possible waveforms? 

8.4 How can one simply transform the feature values to equalize the influence that they have on a 
Euclidean distance? Using the data points from Fig. 8.1, do this transformation and show that the 
distance-based linear classifier does a better job than the original one. 

8.5 Give some conditions under which it might be preferable to train a linear pattern classifier or a 
generalized nonlinear one such as a MLP. 

8.8 APPENDIX: MULTILAYER PERCEPTRON TRAINING 

There is a large body of literature on training methods for multilayer perceptrons. However, 
here we simply define notation and derive equations for the most common form of back-
propagation training. Similar methods are useful in a large number of nonlinear systems 
for pattern classification. The development is largely reproduced from Chapter 4 of [1]. 

8.8.1 Definitions 
We generalize the MLP of Fig. 8.5 to an η-layered perceptron consisting of (η + 1) layers 
L((i = 0 , . . . ,η) of several units, where LQ corresponds to the input layer, L^ to the 
output layer, and Le (i = 1 , . . . , η — 1 ) to the hidden layers. Hidden and output units are 
computational units, and their output values are determined by first summing all of their 
inputs (as given by Eq. 8.9) and then passing the results through the sigmoid function given 
by Eq. 8.8. The output values of layer Le form а щ vector h((x„), which is a function of the 
input vector xn. Here щ is the number of units in Le. Input vector ho(x„) and output vectors 
/ϊη(χ„) are also denoted x„ and g{xn) in the following. Vector he(xn) (£ = 0 , . . . ,η — 1) 
stands for the (щ + 1 ) augmented vector, where the zeroth unit will be fixed to one and will 
account for the biases of the following layer. As the biasing unit is irrelevant for the output 
layer, we have /ΐη = /ζη. Layer Le-\ is fully connected to layer Lg by a (ne-\ + 1) x щ 
weight matrix W{. Matrix We denotes We deprived of its first row (corresponding to the 
biases). The state propagation is thus described by 

he(xn) = F[W]he^(xn)], е=1,...,ц, (8.10) 

where F is a nonlinear function, typically a sigmoid function (e.g., Eq. 8.8) that operates 
componentwise. Finally, we may write symbolically: 

/ιη(*„) =,?(*„), (8.11) 

where g is now a nonlinear function ofx„, depending on the parameters We, W 6 [ 1 , . . . ,η]. 
The model parameters (the weight matrices We) are obtained from a set of training 

input and associated (or desired) output pairs by minimizing, in the parameter space, the 
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error criterion defined as 

E = f,\\g(xn)-d(xn)\\
2, (8.12) 

where, given each training input vector x„, and d(xn) is the desired output associated with 
x„, g(x„) represents the output vector Αη(χ„) generated by the system. If there is at least 
one hidden layer, given Eqs. 8.10 and 8.11, g(xn) is a nonlinear function of the input xn 

(defining nonlinear decision surfaces) and contains the sigmoid function of Eq. 8.8. The 
total number of training patterns is denoted by N. 

Error backpropagation training of such a system can be briefly summarized as follows. 
For each training iteration t (t = 1 , . . . , T), there is presentation of all the training input 
vectors x„, n = 1 , . . . ,N, forward computation of the output vectors g(x„) (using Eq. 8.10), 
and calculation of the error function E. There is also backward propagation of the error 
(using the chain rule) to compute the partial derivative of the error criterion with respect to 
every weight, and update of the weights according to 

dE 
Wkj{t+l) = Wkj(t) ~a

dw uy ( 8 · 1 3 ) 

in which a is usually referred to as the step-size parameter or learning rate and has to be 
small enough to guarantee the convergence of the process. In other words, we compute the 
error gradient for the weight vector and adjust the weights in the opposite direction. 

8.8.2 Derivation 
In the following paragraph, it is shown that the backpropagation algorithm can be derived 
by interpreting the problem as a constrained minimization problem. This approach, initially 
proposed in [6], regards MLP training as a constrained minimization problem involving 
the network state variables h((x„) and the weights. We remind the reader of a method 
that is often used for such problems, namely that of Lagrange multipliers. Suppose that 
we wish to find an extreme value (e.g., minimum) for a function f(x,y,z), with side 
constraints given by equations such as g(x, y, z) = 0. We then construct the auxiliary function 
H(x, y, z, λ) = /(JE, у, Z) + hg(x, у, г), and we find values of x,y, z, and λ for which all the 
partial derivatives of Я are equal to zero. This gives the desired solution, and the approach 
can be generalized to multiple side conditions by using multiple constraint terms, each 
with its own Lagrange multiplier Λ,. See standard calculus textbooks (e.g., [10]) for further 
explanation and derivation. 

The MLP training problem may be specified by a single Lagrange function L contain-
ing the objective function E and constraint terms, each multiplied by a Lagrange multiplier 
A(. In this particular case, the constraint terms describe the network architecture, that is, 
the forward equations of the network. 

For each training pattern xn, we want /!η(χ„) = d{xn) under the η constraints rep-
resented by Eq. 8.10. By introducing η vectorial Lagrange multipliers Λ ,̂ ί = 1, . . . ,η , 
we transform the problem to one of minimizing a modified error function L versus the 
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parameters We, h?(xn), and Λ ,̂ for t = 1 , . . . , η, with 

L = [d(x„) - hrl(xn)]
T[d{x„) - hn(xn)] 

+ YtAl{hi(x„)-F[WT
tht.1(x„)]}. (8.14) 

t=\ 

A constraint is met when the corresponding term in L is zero. It may be shown that 

VL[At,ht{xn),Wt]=0, ί = 1 , . . . , η (8.15) 

corresponds to a minimum of £ while meeting the constraints. We may split condition 8.15 
into its constituent partials. 

Condition 1: 

| ^ = o , e=i,...,r\, (8.16) 

where the derivative is applied to each component of its argument. This leads to 

hfa) = F\WT
tht-i(xn)], (8.17) 

which comprises the forward recurrences 8.10 of the error backpropagation algorithm. 

Condition 2: 

dL 0, £=1,...,T\. (8.18) 
dh((xn 

Setting to zero the derivative with respect to /ιη leads to 

Λη =2[d(x„) -Λη (*„)]. 

Differentiation with respect to the other he's yields 

By defining 

Ae = We+iF'[WTe+lhe{xn)]Ae+u £ = Ι , . , . , η - 1. 

be(xn) = F'[WT
eht-i{xn)]At, € = Ι , . , . , η - 1, 

we finally obtain 

\(xn) = 2F'[W^V,(·*„)] \d{xn) - Λη(*»)], (8.19) 

and the backward recurrence 

be = F'[WT
ihl_i]WMbM, e=l,...,T\-l, (8.20) 
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which comes from substituting the expression for Ae into the definition for bi{x„) above 
and then replacing the expression for be+i (x„) in the result. 

This recurrence yields a vector that is generated for each layer from the higher 
(later) layers. The next condition will show how this vector, which is the backward error 
propagation term, is used to update the weights. 

Condition 3: 

J§-=0, £=1,...,η. (8.21) 
aw t 

This leads to 

F' [W^ht-i (*„)] Kih]_x (xn) = 0 (8.22) 

or 

M*»)ÄLW = O, e=i,...,i\. (8.23) 
The weight matrices We satisfying these equations can be obtained by an iterative 

gradient procedure making weight changes according to a(dL/dW(), where a is again the 
learning-rate parameter. The parameters at training step t + 1 are then calculated from their 
value at iteration t by 

WT
t(t + 1) = WT

t{t) + abt{xn)h
T

(_t (*„), (8.24) 

which is the standard weight update formula of the error backpropagation algorithm. 
These three conditions, when met, give a complete specification of the backpropaga-

tion training of the network: optimizing with respect to the Lagrange multipliers gives the 
forward propagation equations; optimization with respect to the state variables gives the 
backward equations (the gradients); and optimization with respect to the weights gives 
the weight update equations. 
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STATISTICAL PATTERN 
CLASSIFICATION 

9.1 INTRODUCTION 

Audio signals such as speech or music are produced as a result of many causes. For instance, 
although a speech signal originates in a vocal apparatus, the received signal is generally 
also affected by the frequency response of the audio channel, additive noise, and so on. 
The latter sources of variability are unrelated to the message that is communicated. Much 
of the development of speech-signal analysis is motivated by the desire to deterministically 
account for as much of this variance as possible. For example, it would be desirable to 
reduce the spectral variability among multiple examples of the same word uttered with 
different amounts of background noise. However, with the use of common representations 
of speech, signals corresponding to the same linguistic message vary significantly. 

For this reason, it is often desirable to model an audio signal such as speech as 
a random process and then to use statistical tools to analyze it. This general class of 
approaches has proven to be extremely useful for a range of speech-processing tasks, but 
most notably for speech recognition. However, before seriously discussing the applications 
of statistics to speech processing, we must introduce some basic concepts. In this chapter 
we briefly introduce statistical pattern classification (see [5] for a much more thorough 
treatment). As with Chapter 8, we focus on static patterns and leave the recognition of 
temporal sequences for a later chapter. 

9.2 A FEW DEFINITIONS 

Here we give, without proof (or detailed explanation), a few operational definitions that 
should prove useful for this and later chapters. More rigorous definitions as well as ex-
planations and definitions for basic terms such as probability and random variable can be 
found in sources such as Papoulis [6]. 

1. A discrete random variable has a range of isolated possible values. For example, 
the random variable corresponding to the number of dots associated with a pair of thrown 
dice can take only the values 2, 3 , . . . ,12. The set of probabilities for all possible values of 
such variables form a discrete probability density function, whose values sum to one. 

2. A continuous random variable has a continuum of possible values. For example, 
the temperature at a particular point in space and time could be any value within some 
reasonable range. In reality our measurement accuracy is limited, so that in some sense we 
only know the temperature to the closest value with some finite resolution; however, for 
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many problems the number of such possible values is huge, and so it is better to characterize 
the variable as being continuous. In this case, there is a corresponding continuous probability 
density function that must integrate to one; that is, for x, a continuous random variable, and 
P(x), the probability density function (or pdf) forx, 

L P{x)dx=l. (9.1) 

In other words, the area under the P(x) curve is one. 
The integral of this function over any finite interval corresponds to a probability. For 
simplicity's sake, both probability densities and probabilities will be represented by P(.). 

3. A joint pdf governs multiple variables. Thus, for random variables x and y, 

Г ГР(Х,У) 
J —oo J — oo 

dxdy=\. (9.2) 

In other words, the volume under the P(x, y) curve is one. 
4. A conditional density function is equivalent to a joint density function that has 

been scaled down by the density function for one of the variables. In other words, 

and, consequently, 

'Ш = %$ (9.3) 

P(x,y) = P(y\x)P(x), (9.4) 
P(x,y) = P(x\y)P(y). (9.5) 

5. Given Eqs. 9.4 and 9.5, we also note that 

which is one form of Bayes' rule. Thus, a conditional probability density function can 
be expressed as a product of the opposite conditioning times a ratio of the pdf's of the 
individual variables. This is extremely useful for manipulating the form of pdf's. 

9.3 CLASS-RELATED PROBABILITY FUNCTIONS 

In Chapter 8 we showed that there was a close relationship between a minimum distance 
classifier and discriminant analysis. When speech features are viewed as random variables, 
their probability density functions can be used to derive distance measures, for which the 
Euclidean case is a special case that implies certain statistical assumptions. Additionally, 
the corresponding discriminant functions have a straightforward statistical interpretation. 
This can be used to define (in theory) an optimal decision rule, that is, one that has the 
minimum probability of classification error. 
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To begin with, let us assume that there are К classes. If we let со* be the Hh class and 
let x be an input feature vector, then the following statements are true: 

• Р(щ | x) is the probability that the correct class is ω^ given the input feature vector. 
This is sometimes referred to as the posterior or a posteriori probability, since this 
probability can only be estimated after the data have been seen. 

• Р(щ) is the probability of class щ, which is called the prior or a priori probability 
of class k, since this can be evaluated before x has been observed. 

• P(x | о)*) is the conditional pdf of x (conditioned on a particular class k), sometimes 
referred to as a likelihood function. 

Intuitively, we can think of a likelihood function as being a kind of a closeness 
measure (if a particular class-dependent density is closer to the new observation than other 
densities, it will tend to have a higher likelihood); we will see later on that the negative log 
of this function can often be interpreted directly as a distance. 

Finally, using Bayes' rule, we can express the posterior in terms of the prior and the 
likelihood as follows: 

^ | x ) = ^ J ^ ) . (9.7) 

9.4 MINIMUM ERROR CLASSIFICATION 

We can optimally classify a feature vector into a class by using a maximum a posteriori 
(MAP) decision rale. This rule is optimum in the sense that it will give the minimum 
probability of error. The rule can be stated simply as follows. Assign x to class к if 

Р(щ1|х)>Р(Шу|х), 7 = 1,2,...,*:, зфк. (9.8) 

In other words, choose the class with the maximum posterior probability. This should be 
an intuitive result; one should always choose the most probable class given the evidence 
available. Why is this also the optimum strategy in theory? 

To illustrate this we take the example of a two-class problem. In this case the proba-
bility of error is 

„, . . fPfitìJx) if we choose хесог 
/>( error x) = < , , · 

I F(co2 x) if we choose x e ωι 

Clearly for any observed value of x, this probability of error is minimized if we 
choose the value of к corresponding to the maximum posterior probability. Finally, since 
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the overall probability of error is 

P(error) = / Р(еггог, х) rfx 

= I F(error | x)F(x) dx, (9.9) 

then if P(error | x) is the minimal value for each choice of x, the overall integral is 
minimized.1 

This extends naturally to the case of more than two classes. 

9.5 LIKELIHOOD-BASED MAP CLASSIFICATION 

Some kinds of systems directly estimate the class posterior probabilities P(co [ x). However, 
often it is easier to generate estimates of likelihoods P(x | ω). For this latter case one can 
typically compute statistics separately for the input vectors falling into the different classes. 
Given the Bayes rale formulation from earlier in this chapter, there is a straightforward 
(in principle) transformation between the two kinds of densities. In fact, the factor P(x) 
typically does not need to be computed. Since P(x) is a constant for all classes, finding the 
maximum posterior is equivalent to determining 

argmax P((ùk | x) = argmax P(x | (ùk)P((ùk). (9.10) 
к к 

Decisions between candidate classes can also be made by using a ratio of posterior 
probabilities: 

P(co,|x) _Р(х\щ)Р(щ) 
Ρ (ω ; | χ ) Ρ(χ |ω, )Ρ(ω ; ) · 

The Bayes decision rule says that if this ratio is > 1 then we pick ω^ over co7. This is 
equivalent to assigning x to class к if 

f(*l°*) >^1 (912) 
Ρ(χ|ω,) Р(едО V · ; 

for all j other than k. 
The left-hand side of Eq. 9.12 is often referred to as the likelihood ratio. Taking the 

log of the likelihood ratio, we find that the rule states the ω^ is chosen over со, if 

logP(x | cot) + logP{(ùk) > logP(x | CO;) + logP(co,·). (9.13) 

The MAP classification based on likelihoods is then equivalent to choosing a class 

'For simplicity's sake, we have written the integral as if x were a scalar. 
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to maximize a statistical discriminant function: 

argmax[logP(x | co*) + logP(ro^)]. (9.14) 

9.6 APPROXIMATING A BAYES CLASSIFIER 

How do we find the В ayes classifier? Unfortunately, the actual density functions referred to 
earlier are essentially always unknown for real problems. Consequently, we must estimate 
the densities from training data. The training results in the learning of some set of parameters 
Θ, which will then be used during classification to estimate the required probabilities. For 
the formulation of Eq. 9.14, this would mean that we would train estimators of P(x | ω^, Θ) 
for each class ω^. Maximum likelihood (ML) procedures are used to learn the parameters 
that will give the largest possible values for these quantities. Given a good enough estimator, 
enough data, and perfect estimates for the prior probabilities Р(щ), parameters Θ that are 
learned by the ML criterion will lead to the MAP classifier. 

Some specific approaches to training the parameters Θ include the following. 
1. For each class, count the instances for which a feature or group of features is 

closest to a finite set of prototypical values. When the discretization is done for a group 
of features (e.g., locating the nearest spectrum among one of 256 candidate spectra), it is 
called vector quantization, or VQ. 

2. Assume a parametric form for the density, whose parameters can be directly 
estimated from the data. The most common example of this approach is the Gaussian 
distribution. 

3. Assume a parametric form for the density, in which the parameters must be esti-
mated with an iterative solution. For example, a density can be represented as a weighted 
sum or mixture of Gaussian densities - a Gaussian mixture model, or GMM - with the 
means, covariances, and mixture weights to be learned from the data. These parameters 
are typically learned through some variant of the expectation maximization (EM) algo-
rithm (Section 9.8). GMMs are particularly useful for modeling densities that are more 
complicated than simple Gaussians (e.g., multimodal distributions). 

4. Use automatic interpolation-learning to estimate posteriors directly (e.g., with a 
neural network; see Chapter 27. In this case it is the posterior probabilities that are learned, 
rather than the likelihood densities. As with the Gaussian mixtures, complicated multimodal 
distributions can be represented in this way. 

In practice the training of posterior estimators may lead to different results than 
the training of likelihood estimators. In principle direct posterior estimators will require 
the training of parameters that are influenced by all of the input vectors, which can greatly 
increase the complexity, though there can be a trade off with a smaller number of parameters. 
We will return to these issues in Chapter 27. 

For the moment, we restrict ourselves to the case of a single Gaussian. An analysis 
of this case can often provide us with insight that may be useful in understanding the more 
complex methods of density estimation, to which we will return later in this text. 

The central feature of the Gaussian assumption is that the density is completely 
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defined by the first- and second-order statistics (means and covanances). In one dimension 
(one feature), the Gaussian probability density function can be expressed as 

P(x | ω,-) = 
1 

2πσ; 
exp 

1 fx-Mi 
2 V σ, 

(9.15) 

where μ, is the mean and σ, is the standard deviation (square root of the variance) for the 
ith class. 

In two or more dimensions, this takes the form 

P(x | ω,) 
1 

(л/2Й)"|£;|1/2 
exp ( χ - Α ) Γ Σ Γ > ( χ - (9.16) 

where £,· is the covariance matrix of the ith class,2 |Σ,·| is the corresponding determinant, 
and d is the dimension of x. 

The product (x — μ,-^Σ,"1 (χ — μ,) is often called the (squared) Mahalanobis distance. 
Note that it is similar in form to the Euclidean distance, which would be (x — μ;)Γ(χ — μ,). 
In the special case in which the covariance matrix is diagonal (all off-diagonal values equal 
to zero), the inclusion of the factor Σ,'1 is equivalent to scaling all the variables to a variance 
of one before computing the Euclidean distance. More generally, multiplying by this factor 
is equivalent to rotating the feature vectors so that their covariance matrix would be the 
identity matrix. In other words, the effect is to decorrelate the feature vectors, in addition 
to the scaling of each feature to have unity variance. 

Recalling expression 9.13, the optimal Bayes classifier in the case of a Gaussian 
density would correspond to the use of a statistical discriminant function: 

ft(x) = - - ( x - r t ) r 2 r l ( x - r t ) - log, 2 π - - l o g , | Σ , | + l o g i c o , ) . (9.17) 

Note that the first term of this function is the Mahalanobis distance, so that when the 
later terms can be ignored, choosing i to maximize g,-(x) is equivalent to choosing the class 
with the minimum Mahalanobis distance between the input vector and the corresponding 
mean vector. 

Note also that the term d/2 loge 2π is constant over all classes, and so it will be 
ignored in the rest of this discussion. More generally, maximizing g,(x) can be simplified 
by dropping terms from the discriminant function that are the same for all classes. Consider 
the following two cases. 

1. There is no correlation between the features for any of the classes, and all features 
have the same variance; that is, Σ, = σ2Ι 

|Σ,·| 

ft(x) = logico,), (9.18) 

2Reminder: the element of the ith covariance matrix in the jth row and the kth column is the covariance between 
the jth and kth features for all observations in the ith class. The covariance between two random variables is the 
expected value of their product once the means have been removed. 
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where the constant and covariance determinant terms have been dropped. In the case in 
which the prior probabilities of the different classes are all equal, this function is a Euclidean 
distance. Thus, minimum distance classifiers that use a Euclidean distance are equivalent 
to Bayes' classifiers in which we assume Gaussian densities for the likelihoods, equal prior 
probabilities for each class, no correlation between the different features, and features that 
each have the same variance. 

2. If the covariance matrices are the same for all classes, i.e., Σ, = Σ, then an equiv-
alent statistical discriminant function is linear in x. (See the Exercises for more on this.) In 
this case, we can estimate the optimal linear discriminant function by estimating the overall 
covariance and the means for each class. 

The Gaussian approximation can be quite poor in some cases, for instance if the 
pdf is not unimodal (has more than one big bump). Density functions for real-world 
data can often be better approximated by more complicated models, such as a mixture 
(weighted summation) of Gaussians. However, the analysis above is a good place to start 
for understanding's sake, and in many cases a model based on a single Gaussian per class 
can be useful for formulating a classifier. 

9.7 STATISTICALLY BASED LINEAR DISCRIMINANTS 

As in Section 9.6, consider the Bayesian classifier with an assumption of Gaussian form 
for the density of each class. Further assume that the features are uncorrelated with one 
another so that the covariance matrix consists of variances only (no nonzero off-diagonal 
elements). Further assume that the covariance matrix is identical for each class. Since there 
are no off-diagonal elements, the net effect is to scale down each feature in the x and μ 
vectors by the corresponding standard deviation (see Exercise 9.1). For simplicity's sake, 
then, we simply remove the covariance matrix from Eq. 9.17 and assume that the random 
variables have been scaled to have a variance of one. Expanding out Eq. 9.17 and dropping 
the constant and class-independent terms, we derive a discriminant function: 

g,(x) = x r w - -μ[μ, + log, Ρ(ω,). (9.19) 

Comparing this expression with the discriminant function Df (Eq. 8.4) in Chapter 8, 
we see the following differences: 

1. The prototype or template ц has been replaced by its mean (as was also done in 
Fig. 8.1). 

2. The features are viewed as random variables and have been scaled by the within-class 
standard deviation (square root of variance), assumed to be the same for each class. 

3. There is an additional term that corresponds to prior knowledge about how probable 
each class is. If this certainty is strong enough, it can outweigh evidence from the 
data. For instance, if 99% of the population consists of basketball players and only 
1% consists of speech-recognition researchers, on the average the classification error 
would only be 1% if all new cases were classified as basketball players regardless of 
height or weight. More generally, this factor simply applies a bias. 
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If there is no prior information to suggest favoring one class over the other, and the 
features are scaled as suggested above, then the statistical discriminant function described 
above is equivalent to the distance-based classifier of Chapter 8. However, the statistical 
formulation is very general, permitting both a principled way of normalizing the ampli-
tudes of the features (scaling down the variances to be equal to one) and a provision for 
incorporating prior biases about the classification. If the statistical assumptions are justified 
(for instance, the Gaussian form), the resulting classifier is optimal in the Bayes sense. 

9.7.1 Discussion 

As noted previously, the Bayes classifier is the optimal one that we attempt to approximate 
with the methods described here. The simplifying assumptions described above permit 
principled approaches to the approximation of this classifier. However, the class-dependent 
covariance matrices are not generally equal, and the distributions are not usually well de-
scribed by a single Gaussian. Fortunately, approaches exist for learning more general forms 
of distributions. Iterative techniques can be used to find the parameters for distributions 
where there is no direct analytical solution, such as the means and variances for a mixture 
(weighted sum) of Gaussian densities. Neural networks can also be trained to determine 
probability density functions, which will be discussed in Chapter 27. However, for many 
cases (such as Gaussian mixtures) an approach can be used that guarantees finding the 
best possible value of the parameters given the parameters from the previous iteration. The 
dominant approach for this purpose is called EM. 

9.8 ITERATIVE TRAINING: THE EM ALGORITHM 

In the earlier sections here we have shown how one can estimate the parameters for a 
Gaussian density corresponding to a class. Given the true densities for all classes, one 
may determine the optimum Bayes classifier. Given parameters trained to maximize the 
likelihood for the data in each class, we can approximate the Bayes classifier. However, in 
many problems, there is no analytical solution for the parameters of the statistical classifier 
given the training data. An example of such a problem is finding the means, variances, and 
mixture weights for a sum of Gaussian densities, given a sample of data points. We will 
postulate a model in which each individual Gaussian generates some of the observed data 
points. Given that there is no way to directly compute estimates for these quantities (since 
we do not know which points correspond to which Gaussian), we need an optimization 
technique to find the parameters for each Gaussian (and for its mixture) that will maximize 
the likelihood of all of the observed data. 

The dominant approach to such problems is called the Expectation Maximiza-
tion (EM) algorithm [4]. In this approach, the parameter-estimation problem is structured 
to incorporate variables representing information that is not directly observed, but that is 
assumed to be part of the model that generated the data. Such a variable is often called 
hidden or missing. For instance, in the Gaussian mixture case, a hidden variable could be 
the index of the Gaussian that generated a data point. The key idea of EM is to estimate the 
densities by taking an expectation of the logarithm of the joint density between the known 
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and unknown components, and then to maximize this function by updating the parameters 
that are used in the probability estimation. This process is then iterated as required. We 
can show fairly easily that if this expectation is maximized, so too is the data likelihood 
itself, which (as noted previously) is typically the goal for statistical model training. First, 
we express the expectation of the joint likelihood of observed and hidden variables as a 
function of both old parameters ©0id and new ones Θ. Then for random variable к (a missing 
or hidden variable), observed random variable x, and parameters Θ, let 

Q(0,0old) = £ Ρ ( * | * , Θ Ο Μ ) log/>(*,* I®) 
к 

= J > ( * | *, 0old) \og[P(k | x, ®)P(x | 0)] 
к 

= '£P(k\x,&oli)ìoeP(k\x,®) + iogP(x\@)YiP(k\x,®ola) 
к к 

= YjP(k\x,®oìa)\ogP(k\x,e) + \ogP(x\Q). (9.20) 
к 

If Θ is chosen to be equal to 0ои, then 

Q(0„id,0oid) =Y,P(k\x,@oU)logP(k\x,@oU) + \ogP(x\®M). (9.21) 
к 

Subtracting Eq. 9.21 from Eq. 9.20 and rearranging terms, we get 

logP(x | 0) - logP(x | 0old) = Q(0,0old) - Q(0o]d, 0old) 

+ I^l^o l d ) log^i^. (9.22) 

However, the last term is the relative entropy or Kullback Leibler distance, which can be 
shown to be nonnegative [3]. Therefore, if a change to Θ increases Q, log P(x | Θ) increases. 
In other words, changing the parameters to increase the expectation of the log likelihood 
of a joint distribution between the data and a hidden variable will also increase the log data 
likelihood itself. In principle, we could maximize the expectation for each value of Θ and 
then reestimate Θ. Although there is no guarantee of how good the estimates would be, 
they are guaranteed to improve (or at least get no worse) with each iteration. 

In many cases, it is possible to structure the problem so that we can analytically 
determine the choice for the parameters that will maximize the expectation in each iteration. 
Then a new expression for the expectation can be determined, followed by a new parameter 
estimation, and so on. 

Figure 9.1 shows a histogram drawn from a bimodal distribution that is the sum of 
two Gaussian densities (renormalized to integrate to one). If data points could be unam-
biguously assigned to one of the two component densities, then one could estimate the 
means, variances, and weight for each component analytically. However, if the data assign-
ments are unknown, we must evaluate these quantities by using expected values over the 
joint distributions (of mixture index and observed data value) and iteratively improve the 
estimates. This has proven to be a powerful concept and works well under many conditions. 
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One Iteration of EM 

FIGURE 9.1 In the center is a histogram for 1000 data points that were sampled from a 
mixture of two Gaussians. The correct mixture parameters are means of -4.0 and 5.0, sigmas 
of 2.0 and 1.5, and equal weights of 0.5. The outermost Gaussian shapes correspond to an 
initial (poor) guess for the mixture parameters, consisting of means of -12 and 11, sigmas 
of 3.5 and 2.6, and equal weights. The log likelihood of the data for this guess was -5482. 
After one iteration of EM, the density in the middle is obtained, which is quite a good fit to the 
data. The corresponding means are -4.1 and 5.0, sigmas are 2.0 and 1.5, and weights are 
0.49 and 0.51. The log likelihood for this new estimate was -2646. Further iterations did not 
appreciably change the parameters or the likelihood for this simple example. The vertical axis 
for the densities is scaled up by 1000 to match the histograms, i.e., having an integral of 1000. 

The figure shows quick convergence to a good fit for this simple example. There are many 
other useful cases for which we can find the optimum values for Θ at each stage, and in 
practice the optimization often converges quite quickly. 

To illustrate EM, let us take the specific example of optimizing the parameters for a 
density that is composed of a weighted sum (or mixture) of simpler distributions, Gaussians. 
This is a fairly general notion, since we can always decompose an unknown probability 
density P(x | Θ) as3 

P(x | Θ) = £ P(x, * | θ) = £ P(* | Θ)Ρ(χ | k, Θ), (9.23) 

3For simplicity's sake, we will only consider the case of a univariate density; that is, the case in which the 
observed variable is a scalar. The more general vector case is very similar but is more intricate because of the 
matrix arithmetic. See [1] for a description of the vector case. 
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using the definitions of joint and conditional densities, and assuming К disjoint (but un-
known) categories. We hope to choose these categories so that the component densities can 
be simply computed. 

As is typical for training with a ML criterion, we will attempt to approximate the 
true densities by maximizing the likelihood P(x | Θ) or its logarithm. There is no analytical 
expression that will generally yield the Θ to maximize either of these quantities directly. 
Furthermore, taking the logarithm of the rightmost expression in Eq. 9.23 would require 
the log of a sum, which would generally be difficult to optimize. However, we can consider 
the variable к to be an unobserved (hidden) random variable corresponding to the mixture 
component from which each data sample came. Then the theorem proved in Eq. 9.22 tells 
us that an increase in the expectation of logP(x, к j Θ) will also increase the data likelihood 
P(x | Θ). Equation 9.23 also shows that we can interpret the probability of this hidden 
variable as the mixture weight. 

Given these interpretations, we can write an expression for the log joint density for 
observed and hidden variables. 

Z = logP(.x,jt|0) = log[P{k\@)P{x\k,@)], (9.24) 

with an expected value over N examples and К mixture components of 

Q = E(Z) = £ £ P(k | x„, ©old) log[P(k | Θ)Ρ{χ„ \ k, &)]. (9.25) 

Note that we have distinguished between 0ощ, the parameters used to generate the distribu-
tion with which we will evaluate the expectation, and Θ, which is a variable to be optimized 
(in the sense of maximizing Q). 

Finally, we can decompose this expression into two terms by using the usual properties 
of the log function: 

Q=££P(fc |x„,0 o l d) logP(£ |0) + ££P(£|;t„,0o ld)logP(;t„|*,0). (9.26) 
fc=ln=l *=1л=1 

We will often assume models for which the Θ parameters of the two terms are disjointed 
and can be optimized separately. 

One way that we can train the parameters for this density is to assume that each 
mixture component P(x | k) is a Gaussian with mean μ^ and standard deviation σ^. In this 
case, P{k) is the weight given to Gaussian к in the model. 

Recalling Eq. 9.15, we can express the Gaussian density for component к as 

P(xn | k) = exp 
V2nak 

1 i x„ 

2 
Ά 

<*k 
(9.27) 

where μ̂  is the mean and Ok is the standard deviation for the component. 
Substituting this definition into expression 9.26, we find that the expectation to be 
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maximized becomes 

К N 

s = £ Σ p(*l *-„ о·»") lQg р(м ®) 
/fc=ln=1 

Г , . _ № ) 2 

-££P(*|x„,0old) 
k=\ n=\ 

l 0 g ^ " ^ 5 ^ + C 
-4 

(9.28) 

where the C term refers to constants that will disappear with the differentiation to follow. 
Given this choice of parametric form for the mixture density, we can use standard 

optimization methods to find the best value for the parameters. Let's begin by solving for 
the means. Setting the partial derivative dQ/dpj to zero, we find that the first term (which 
is not dependent on the means) drops away, as do all the terms for which k is not equal to 
j ; thus we get 

ΣΡϋ\χη^οΜ)(^-^)=0, (9.29) 

n=l \aj °j/ 

or (multiplying through by d2- and moving the second term to the right-hand side) 

N N 

£P(j |χη,ΘΜ)χη = £P(j Ixn,&м)ц. (9.30) 
Thus 

_ ΣΒ=1 PU I χη,®οϋ)Χη /Q -51 ч 
μ' ~ vN pair (=> Ϊ " ( ' 

Ln=lFU\Xn,Void) 

A similar procedure can be used to proceed from Eq. 9.28 to derive the optimum 
value for the variances (see Exercises). The result is 

о _ ILIPU\X',®M)(X*-MJ)2
 (Q , , V 

Σΐ,η/Κβ,*,) · ( ] 

In the case of the mixture weights P{k | Θ), Eq. 9.28 must be supplemented with 
a Lagrangian term λ[£^=1 P{k \ Θ) — 1], which expresses the constraint that the mixture 
weights must sum to one. Then let Q* be the augmented function that includes this constraint 
term. Taking the partial derivative [dQ*/dP(j \ Θ)] and setting it to be equal to zero, 
we find that the term involving means and variances may be disregarded, leaving the 
equations 

^ = ^ β ) | 1
/ 5 ( ^ " ' Θ ο ω ) + λ = ° · ( 9 · 3 3 ) 

Summing this up over all the components j yields λ = — N, so that the mixture weights 
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can be expressed as 

pu\®) = ijipu\x"'@4u) (934~> 

The results in Eqs. 9.31, 9.32, and 9.34, each include an expression P(j \x„,®0id)-
How do we evaluate this? This can be done using Bayes' rule, that is, 

p / , , r й , _ P(x„ | j,®M)P{j| ΘοΜ) P(x„ | j,eM)P{j I&M) 
U l "' ° l d j~ Ρ(χη\®Μ) " Σ ί = , ^ μ , Θ ο Μ ) ^ | Θ Ο Ι α ) ' ( V · ^ 

which only includes terms that we have already shown how to evaluate. That is, 
P(xn | j , ©ом) is the value of the jth Gaussian at x„ assuming the mean and variance 
from the previous iteration. Similarly, P(j | 0ощ) is the weight of the y'th Gaussian from the 
previous optimization step. 

9.8.1 Discussion 

Equations 9.31, 9.32, and 9.34 have an interesting form. Each is an expectation over many 
examples of the desired parameter, with the appropriate normalization so that the densities 
incorporated actually sum to one. Thus, EM has led us to a sensible and satisfying result; 
compute the posterior distribution of the hidden variable given the observed variables and 
the old parameters, and use it to compute the expectations of the desired new parameters. 
The mean and variance for each Gaussian are estimated by weighting each instance of the 
sampled variable by the probability ofthat sample having originated from the corresponding 
density, and then scaling appropriately. The mean that is computed in this way is also 
sometimes called a center of mass for the variable. The estimate for the mixture weight, or 
the prior probability for each mixture, is just the average of the posterior probabilities of 
the mixture over all of the training samples. 

An interesting special case occurs for a single Gaussian. When К = 1, the posterior 
is always equal to one, and Eqs. 9.31 and 9.32 can be reduced to the standard equations for 
the sample mean and covariance. 

We have not discussed initialization. EM is only guaranteed to maximize the data 
likelihood for each step, and it is not guaranteed to find the global maximum. For simple 
problems such as that illustrated in Fig. 9.1, this is clearly not a problem. However, in the 
more general case, good initializations can be important for improving the quality of the 
resulting solution. 

The overall EM procedure can be briefly summarized as follows. 

1. Choose a form for the probability estimators (e.g., Gaussian) for the densities asso-
ciated with each class. 

2. Choose an initial set of parameters for the estimators. 

3. Given the parameters, compute posterior estimates for the hidden variables. 

4. Given posterior estimates for hidden variables, find the distributional parameters that 
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maximize the expectation of the joint density for the data and the hidden variables. 
These will be guaranteed to also maximize the improvement to the likelihood of the 
data. 

5. Assess goodness of fit (e.g., log likelihood) and compare to the stopping criterion. If 
not satisfied, go back to step 3. 

This section constitutes a very brief and light introduction to EM. For a more complete 
description, the reader should consult one of the many references for EM, e.g., [2] or [4]. 
We will also return to EM later (in Chapter 26) in the context of hidden Markov models. In 
that case, we will modify the parameters for estimates of densities that are hypothesized to 
generate sequences. 

9.9 EXERCISES 

9.1 Expand out expression 9.17 for the case in which only the diagonal terms of the covariance matrix 
are nonzero, and in which the covariance matrix is equal across classes. Reduce the expression to a 
simpler function by eliminating all terms that are either constant or equal for all classes. 

9.2 The heights and weights of basketball players and speech researchers are vector quantized so that there 
are 16 different possible reference indices i corresponding to (height, weight) pairs. A training set is 
provided that has the height and weight and occupation of 1000 people, 500 from each occupation. 
How would you assign them to reference indices? Given a chosen approach for this, how would 
you estimate the discrete densities for the likelihoods P(i | occupation)? How would you estimate the 
posteriors /'(occupation | г)? How would you estimate the priors P(occupation) and Ρ(ϊ)Ί 

9.3 A Bayes decision rule is the optimum (minimum error) strategy. Suppose that Albert uses a Bayes 
classifier and estimates the probabilities by using a Gaussian parametric form for the estimator. Beth is 
working on the same problem and claims to get a better result without even using explicitly statistical 
methods. Can you think of any reason that Beth could be right? 

9.4 Section 9.8 derived the EM update equations for the mixture weights and means of a univariate 
Gaussian mixture, but it only stated the result for the variances. Derive the variance update equations. 
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Soun ys noght but eyr ybroken 
And every speche that ys spoken 
Lowd or pryvee, foul or fair, 
In his substance ys but air. 

—Geoffrey Chaucer 

I V I U C H MODERN work in speech and audio signal processing is focused on the 
use of mathematical tools, such as those introduced in Part II. However, what sets this field 
apart from others is that sound is the signal of interest. It is essential, then, to obtain at least 
a cursory understanding of the nature of the acoustic signal, and in particular of the basic 
physics of its production, transmission, and reception. These topics are introduced in Part 
III. As with other areas of study in this book, acoustics is discussed in much greater detail 
in other sources, to which we happily direct the reader who develops a deeper interest in 
the subject. 

Chapter 10 reviews basic material on traveling and standing acoustic waves, such 
as might be found in an introductory physics text. This perspective is then applied to 
acoustic tubes, which are commonly used as models for the production of speech and 
music. Chapter 11 continues in this vein for the case of speech, and Chapter 12 applies 
the same mathematical methods to sound production in common types of acoustic musical 
instruments. Finally, Chapter 13 describes a critical component between the sound source 
and the listener, namely, the acoustical properties of the room in which the sound is produced 
and received. 
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10.1 INTRODUCTION 

Many pleasing sounds are produced by carefully designed and carefully controlled acoustic 
tubes or vibrating strings.1 A brief categorization of some of these sounds follows: (a) 
plucked string instruments such as guitars, banjos, mandolins, and harps are set into vi-
bration by the musician directly (i.e., with fingers); (b) bowed string instruments such as 
violins, violas, and cellos are set into vibration by the frictional force between the bow and 
string, (c) Struck string instruments like the piano are set into vibration by a complicated 
mechanism following the depression of the piano keys by the performer, (d) Acoustic 
tube resonances in the human vocal tract help produce the sounds of speech or music, (e) 
Acoustic tube resonances in brass instruments such as trumpets, cornets, flugelhorns, and 
trombones are excited by the player's lip vibrations, (f) Acoustic tube resonances in the 
clarinet and oboe produce sound stimulated by a vibrating reed that is set into vibration by 
the player's breath stream. 

Many instruments can be mathematically characterized by the wave equation, a partial 
differential equation in both time and space. For example, the vibration of a plucked guitar 
string is described by knowing the motions of every point along the string. We will see that 
the solutions to the simplest wave equation consist of traveling waves whose properties are 
largely determined by boundary conditions. 

The wave equation yields important insights into the properties of tubes and strings, 
but there are additional complications in understanding the sounds produced by practical 
instruments. The vocal and nasal tracts of the human voice are stimulated into sound-
producing vibrations when excited by either oscillations of the vocal cords or air turbulence 
caused by the forcing of air through narrow openings. Interactions between these excitation 
sources and tube resonances may often require nonlinear modeling methods. Also, the 
human vocal tract is a complex acoustic tube and is lossy, so our problem will be to 
simplify the analysis in order to obtain mathematically tractable yet useful results. We 
begin with an analysis of the vibrating string as the simplest way to come to grips with the 
basics of wave theory as applied to the human voice and many musical instruments. 

1 Although strings alone do not generate loud enough sound, their coupling to wood or metal causes the latter to 
vibrate to create the sounds we hear at a concert. 
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FIGURE 10.1 Vibrating string geometry. 

10.2 THE WAVE EQUATION FOR THE VIBRATING STRING 

The wave equation for the vibrating string can be deduced by application of Newton's 
second law of motion (F = ma). Figure 10.1 depicts an infinitesimal section of the string. 

To arrive at the simplest form, we need to make the following assumptions: (a) 
there is no stiffness in the string; (b) tension and mass density are constant throughout the 
length; (c) the vertical displacement of the string from its normal position is small; and (d) 
there are no gravitational or frictional forces. 

Let S = string tension. From Fig. 10.1, we see that the total tensional force in the у 
direction is the difference between the forces at x and x + dx and can be expressed in terms 
of the angles φι and Φ2: 

^ = 5(1ап(ф2)-1ап(ф,)). 

1 а п ( ф 1 ) = | 

*n(fc) = fx + 

ду 

, „„(♦,) = s 

^(g>, 

x+dx 

(10.1) 

(10.2) 

(10.3) 

From Eqs. 10.1, 10.2, and 10.3, 

F, = *(gU (10.4) 

If we assume that, for shallow angles, dx is equal to length along the string, and 
define ε to be the (uniform) mass density along the string, then the total mass in the length 
dx is edx, and Newton's second law gives 

S i ^ dx - dt2 dx. (10.5) 

Defining с as the square root of the ratio S/e, we anive at the one-dimensional wave 



DISCRETE-TIME TRAVELING WAVES 143 

equation: 

'д2у\ д2у 
a*;-**· (10-6) 

Solutions to Eq. 10.6 can take many forms, depending on boundary conditions. If 
the string is plucked, traveling waves will be set up. Such a wave is described by the 
time-variable string displacement function y(x, t). Since we know that y(x, t) is a traveling 
wave, let's assume a solution of the form 

y+{x,t)=f{x-ct). (10.7) 

If the function f(x — ct) has well-behaved first and second derivatives, it can be 
shown that f(x — ct) is a solution to wave equation 10.6. The constant с has the dimension 
of velocity, so that f(x — ct) can be interpreted as a traveling wave moving in the positive 
x direction with velocity c. Similarly, 

y~(x,t)=f(x + ct) (10.8) 

represents a wave traveling in the negative x direction with the same velocity. The sum of 
the two traveling waves is also a solution, so we finally have a solution that will turn out to 
be of practical interest for the boundary conditions that we intend to impose. 

y(x,t)=Af(x-ct)+Bf(x + ct). (10.9) 

10.3 DISCRETE-TIME TRAVELING WAVES 

To simulate traveling waves by computer, we need to discretize both time and space. A 
block diagram of such a simulation is shown in Fig. 10.2. 

If an external stimulus is applied to the structure of Fig. 10.2 and the system is set 
into motion, a wave traveling to the right is created in the upper track and a wave traveling 
to the left is created in the lower track; the output of the system at any time is the pattern of 
all the sums shown in the figure. The simulation is therefore not of the wave equation but 
of its solutions. Since both x and t of Eq. 10.9 are now discrete variables, we can replace 
x by mX and t by riT to obtain the discrete-time and discrete-space version of Eq. 10.9, 
where « is a time index, m is a distance index, T is the time-sampling interval, and X is the 
distance-sampling interval. 

y(mX,nT) = Af{mX - cnT) + Bf(mX + cnT). (10.10) 

Thus, for example, at any (discrete) time and (discrete) place, the state of the sim-
ulation is the weighted sum of a forward- and backward-traveling wave; the constants A 
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and В are determined from the boundary conditions and initial conditions imposed on the 
system. 

10.4 BOUNDARY CONDITIONS AND DISCRETE 
TRAVELING WAVES 

As an example, consider a string fixed at both ends and given an ideal pluck at its center, 
as shown in the discrete-time simulation of Fig. 10.2. With these constraints the string 
vibration history can be followed, as in Fig. 10.3. The discrete-time version of the pluck is 
the upper-right pattern of Fig. 10.3. Symmetry has been invoked to decompose this initial 
pattern into the two patterns to the left of the equal sign. The pattern to the left of the 
plus sign propagates to the right while its neighbor propagates to the left; summing these 
produces the pattern following the equal sign. The constraint that the ends are fixed means 
that the sum is always zero at both ends; this can only happen if the two traveling waves 
cancel at the ends, which in turn dictates that the incoming, previously-unseen values for 
each traveling wave take on the negative of the value departing the opposite-traveling 
wave. Figure 10.3 shows the result for the first twelve clock cycles; the reader is invited to 
continue the sequence until the original pattern (top line) reappears. 

10.5 STANDING WAVES 

At any instant, each of the traveling wave patterns of Fig. 10.3 can be decomposed into a 
Fourier series in the x dimension. Thus, we can imagine that the harmonics of the pattern 
are (sinusoidal) traveling waves. The sum of a left- and right-traveling sinusoid results in 

1 2 1 

FIGURE 10.2 Discrete-time simulation of a string fixed at both ends. At both x = 0 and 
x = /, у (x,t) = 0. The sequences 1, 2, 1 shown in the figure represent initial values of the 
string position. 
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y+{x,t) y-(x,t) y(xj) 

t = 0 

t=l 
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FIGURE 10.3 Step-by-step history of traveling waves stimulated by a pluck. Notice how 
at time t = 5, the leftmost (incoming) point of y+ becomes the negative of the leftmost 
(exiting) point of y~, and similarly the rightmost point of y~ is the negative of the rightmost 
point of y+, as dictated by the fixed-end boundary conditions. 

a standing wave. To see this, consider the traveling waves in Eqs. 10.11 and 10.12: 

g(x, t) = sin(hc-ct), (10.11) 

q(x,t) = sin(fo; + cf). (10.12) 
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' 

I I h> 

FIGURE 10.4 Longitudinal waves in an air column. 

The sum is 

g(x,t) +q(x,t) = 2 cos(ct) sin(Ajc). (10.13) 

Thus, the sum is a sinusoid of fixed phase in the x dimension but with a time-varying 
amplitude. 

10.6 DISCRETE-TIME MODELS OF ACOUSTIC TUBES 

Ideal acoustic tubes obey the same wave equation as that of the vibrating string, but there 
are obvious differences that we discuss here in a preliminary way. The vibrating string has 
the single variable y(x, f ) of interest. An acoustic tube has two variables of interest: the 
pressure gradient p(x, t) and the volume velocity u(x, t) of a small volume of air. In a string, 
the vibratory motion is perpendicular, or transverse to the directions of wave propagation; 
in a tube, the motion of the air molecules is longitudinal (in the same direction) as the wave 
motion. This motion is depicted in Fig. 10.4. 

The physical law for air motion in an acoustic tube is Newton's second law, just 
as in the string. The pressure gradient p(x,t) causes a change in u(x, t), whereas the 
velocity gradient causes compression and rarefaction of the air, thus changing p(x, t). The 
development of the details (left to the reader) results in the equations 

(10.14) 

(10.15) 

d2p\ 
Ъх2) 

d2u\ 
Эх2 / 

д2р 
dt2 

д2и 
~ dt2 

These equations imply that both p(x, t) and u(x, t) can be expressed as traveling 
waves. A useful configuration is that of an excitation source at one end and an open tube at 
the other. At the interface between the open tube and the external environment, the pressure 
gradient will drop to zero; at the other end, the volume velocity will follow the volume 
velocity of the applied source. 

The constants of the vibrating string are the tension S and the string mass density ε. For 
the air-filled tube, the constants are p, the mass density of the air and к, the compressibility 
of the air. Both p(x, t) and u(x, t) are traveling waves with velocity с given by 

(ркГ 
(10.16) 
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x(n) u+(mX - cnT) 

P(UT) 

+ (closed) 
or-(open) I "(1,7") 

-y(n - 2M) 

o- ··· *-D 
w(mX + cnT) 

(open) 

FIGURE 10.5 Discrete-time simulation of pressure and volume velocity in an acoustic 
tube. Upward arrows are pressure waves; downward arrows are velocity waves; and small 
squares are unit delays. The plus sign on the left corresponds to a tube closed at the left, 
and the minus sign signifies a open tube at the left. The tube is always open at the right. 

The solutions for u(x, t) and p(x, t) are 

u(x, t) = u+(x — ct) — u~(x + ct), 

p(x,t) = Zo[u+(x — ct) + if {x + ct)], 

(10.17) 

(10.18) 

where Z0 has to be determined. (Note the different signs for u~ in each equation.) 
Application of Newton's second law leads to the relation between velocity and 

pressure: 

dp p /Эй 
Эх А V Эг 

where A is the tube cross-sectional area. 
By combining Eqs. 10.17, 10.18, and 10.19, we can show that 

(10.19) 

(10.20) 

Here Zo can be interpreted as an impedance relationship between volume velocity and 
pressure. The relations of Eqs. 10.17 and 10.18 can be represented digitally by Fig. 10.5. 
The upper track contains the set u(mX — cnT); the lower track is u(mX + cnT). 

10.7 ACOUSTIC TUBE RESONANCES 

The dynamics of the propagating signals in Fig. 10.5 can be appreciated by observing how 
the signal at point A varies with n (or time). All other signals on the upper track are merely 
delayed versions of the signal at point A. Let's call this signal y(n). Then the signal at 
point В is — y(n — 2M), where M is the number of delays in the upper (or lower) track. 
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Refc) 

(a) (b) 

FIGURE 10.6 Poles of a discrete-time simulation of a lossless, uniform acoustic tube. 

Therefore 

y(n) =x{n) ±y(n-2M), 

and the corresponding z-transform relationship is 

m Y{z) 
Ι ψ Γ 

= 4z)H{z). 

(10.21) 

(10.22) 

If the minus sign is used in Eq. 10.22, the poles are distributed as shown in Fig. 10.6(a). 
If the plus sign is used, the poles of H(z) are also distributed uniformly on the unit circle as 
in Fig. 10.6(b). The examples in the figure are for M = 3. The angle between any adjacent 
poles is π/Μ. 

The distribution of poles on the unit circle immediately translates into a frequency 
response. To see this, replace z by β^ωΤ in Eq. 10.22 and compute the magnitude of H(z) 
(for the plus sign in Eq. 10.22): 

\H(e j<i>T\ 1 1 
| l + e - 2 j W M | \2cos{M(ùT)\' (10.23) 

For real acoustic tubes, of course, there will be some energy loss, so the poles will 
not be precisely on the unit circle and the corresponding magnitude will not be infinite for 
any finite sinusoidal input. 

10.8 RELATION OF ACOUSTIC TUBE RESONANCES 
TO OBSERVED FORMANT FREQUENCIES 

The human vocal tract can be approximately modeled as an acoustic tube excited at one 
end by glottal vibrations and at the lips by an open or closed tube. During articulation of 
the neutral vowel (the first phoneme of "above"), the vocal tract most closely resembles 
the uniform acoustic tube of the previous section. 
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1/4 wavelength 

FIGURE 10.7 First three modes of an acoustic tube open at one end. 

In Chapter 3, the spectrogram was introduced as a speech-analysis tool, and reso-
nances of the vocal tract were observed; for the neutral vowel, the resonant frequencies 
(formants) were approximately 500,1500,2500, and 3500 Hz, and so on. These values can 
be justified by noting the resonant modes that occur in a uniform acoustic tube excited at 
one end and open at the other end. The first three modes are shown in Fig. 10.7. One can 
obtain these mathematically by solving for the volume velocity, after modifying Eqs. 10.17 
and 10.18 to accommodate the above constraints. The result (stated without proof and left 
as an exercise) when the excitation is a complex exponential U{tì))ej(M is 

φ > 0 = £ θ ! { [ β ^ ] Μ ( ΐ α 2 4 ) 

From Eq. 10.24, we see that the poles occur when 

о>„ = [(2и+1)яс]/2/, и = 0,1,2,.... (10.25) 

Thus the frequencies /„ — ω„/2π are 

/„ = (2n+l)c/4/, л = 0,1,2,.... (10.26) 

For с = 344 m/s (in air) and / = 0.17 m (typical vocal tract length), /„ = 500,1500, 
2500, and 3500 Hz, and so on. 

We can get the same result from a purely discrete-time argument. From Eq. 10.23, 
and using the plus sign, the resonant radian frequencies are given by 

ω„ = [(2η+1)π]/2Μ7\ и = 0,1,2.. . . (10.27) 

Equating Eqs. 10.26 and 10.27, we get the relationship 

MT = l/c, (10.28) 
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500 Hz, 3500 Hz, etc. 

3500 Hz 

2500 Hz, 5500 Hz, etc. 

, 500 Hz 

1+z-* 

= 8000 Hz 

FIGURE 10.8 Two examples showing that the same resonant frequencies can be 
obtained with different sampling rates and different spatial quantization. 

which implies that M and T are functionally correlated to the actual length of the tube and 
the velocity of propagation. Figure 10.8 illustrates this point for the two cases M — 3 and 
M = 8. When the sample interval T is adjusted, the same resonant frequencies are mapped 
out in both cases. 

Since the cross-sectional area of the vocal tract varies as one moves from the glottis 
to the lips, a model must include this fact. One approach is to use a model that consists 
of relatively small acoustic tube sections; each section is a lossless tube of constant cross 
section over its length, but each tube may have a different length and area. Thus, each 
section by itself has the properties that we have just analyzed, but the model is complicated 
by the interfaces between the tubes. In Chapter 11, these issues will be discussed in the 
context of human vocal tract analyses. 

10.9 EXERCISES 

10.1 Show that Eqs. 10.7, 10.8, and 10.9 are all solutions of wave equation 10.6. 

10.2 Continue the sequence of Fig. 10.3 until the initial pattern reappears. 

10.3 If the discrete-time simulation of the string (Fig. 10.2) is plucked at a position of one-fourth of its 
length, describe the sequence. 

10.4 Prove that if the pluck is at 1/nth the string length, the nth harmonic will be missing. 

10.5 Find the poles of Eq. 10.22 for M = 6 for both the plus and minus signs. 
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10.6 Make a rough sketch of the magnitude of Eq. 10.22 for both the plus and minus cases. 

10.7 Consider an acoustic tube excited at one end by the complex exponential [/(co)^™ and open at the 
other end. Prove that the volume velocity in the tube satisfies Eq. 10.24. 

10.8 Consider two acoustic tubes of the same dimension. Tube 1 is open at both ends; tube 2 is open at 
one end and closed at the other end. Now consider the lowest modes of both tubes; which tube will 
have the lower of such modes? Explain. 

10.9 As the mass density in a tube increases, does the tube impedance increase, decrease, or stay the same? 
Explain. 

10.10 If the tension in a vibrating string is increased, does the vibration frequency rise, fall, or stay the 
same? Explain. 

10.11 An acoustic tube closed at both ends and excited at its midpoint will resonate at frequencies 
higher, lower, or equal to that of an acoustic tube open at one end and excited at the other end. 
Explain. 

10.12 Find the lowest three vibrational modes of (a) a string with a length of 6 m, (b) a string with a length 
of 2 cm, (c) a tube 2 ft. long, and (d) a tube 6 in. long. 

10.13 Find the three lowest modes in a helium-filled pipe closed at both ends. (Length is 0.5 m.) 
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ACOUSTIC TUBE MODELING 
OF SPEECH PRODUCTION 

11.1 INTRODUCTION 

For many years, Gunnar Fant directed the Speech Transmission Laboratory in Stockholm. 
He performed X-ray measurements to determine the shape of the human vocal tract during 
phonation. In 1970 (based to a great extent on his doctoral thesis) his book Acoustic Theory 
of Speech Production [1] was published. It contained detailed information on vocal tract 
shapes. 

For each phoneme in any spoken language there corresponds one or several sequences 
of vocal tract shapes. With the development of digital signal-processing concepts, these 
shapes can be efficiently modeled. In Chapter 10 we showed how simple acoustic tubes 
could be digitally modeled. In this chapter, these ideas are extended to more complicated 
acoustic tube structures that relate to spoken sounds. 

11.2 ACOUSTIC TUBE MODELS OF ENGLISH PHONEMES 

Fant first traced area functions from the X-ray data. An example is shown in Fig. 11.1 for 
the vowel /i/ as in /bid/. 

On the left is the tracing and on the right we see the area of the tube as a function of the 
distance from the glottis. This area function is quantized as a concatenation of cylindrical 
tubes. This string of tubes can now be approximated by analog T networks [1] or digital 
waveguides [4]. Straightforward mathematical derivations for a practical system (four or 
more tubes) become difficult. Computer simulation using digital waveguides is a more 
effective method than with analog T networks. So we begin with digital waveguides and 
then add speech-specific attributes such as source function properties. 

Our aim is to establish relationships between various acoustic tube structures and 
the resonant modes resulting from these structures. We will see that even a small num-
ber of tubes exhibit resonances that resemble formant measurements of the different 
phonemes. 

Figure 11.2 shows a single section of a digital waveguide. This figure is a graph-
ical representation of the equations describing the pressure and volume velocity at the 
two ends of a lossless, uniform acoustic tube, governed by Eqs. 10.17-10.20. From this 
figure we now derive the relationships between щ,Рк (the inputs) and ил+ьЛ+i (the 
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CHAPTER 3

Speech and Audio Signal Processing: Processing and Perception of Speech and Music, Second Edition 
by Ben Gold, Nelson Morgan and Dan Ellis 
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^ ^ 

18 16 14 12 10 8 6 4 2 0 
FIGURE 11.1 X-ray tracing and area function for phoneme N. From [1]. 

outputs). 
For the Mi section we can write the equations 

щ 
pc, 

Pk = T H + uk) = укЫ + ч ), 
Ak 

(П.1) 

(11.2) 

where Ak is the cross-sectional area and Vk = pc/Ak, p is the density of the gas in the tube, 
and с is the velocity of sound in the tube. We have omitted the arguments, remembering 
that u+ always has (i — x/c) as an argument and u~ has (i + x/c) as an argument. Notice 
the similarity between Eqs. 11.1 and 11.2 and Eqs. 10.17 and 10.18. 

In what follows, we use the same notation for the space-time functions and their z 
transforms. No confusion should result, since the г-transform versions always explicitly 
include z. 

Similarly, 

uk+\ — uk+\ uk+\i 

Pk+i =Vk+l(ut+l +иш). 

(11.3) 

(11.4) 

An inspection of Fig. 11.2 yields the equations 

uk+l — <■ uk i 

uk+l — z uk i 

(11.5) 

(И.6) 

/ / 
T-M 

\ V 

C^rA 

ult - x/c) 

*--£f- ^>^rp^ 
uk+1U-x/c) 

FIGURE 11.2 Single section of a digital waveguide. M is the delay in units of the 
sampling period. 
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and this leads to the following set of two equations in the two unknowns, ηζ and uk : 

«fc+1 — Z Uk — Z Uk , 

pk+i=Vk+1(z-Mu+ + zMu;). 

(11.7) 

(11.8) 

The solutions are 

zM zM 

OT/ -Pk+\ + TrUk+\, 
■Z-Vk+\ ^ 

(11.9) 

2Vt k+l 
-Pk+\ -И/Н-1· (11.10) 

Substituting Eqs. 11.9 and 11.10 into Eqs. 11.1 and 11.2, we arrive at the basic chain 
relationship between the kth and (k + l)th stage: 

Uk ■ 

Pk 

2 

zM + z-M 

Uk+l 
1 Iм-Z-

Vk+x 
-Pk+], 

Pk+\ + Vk+\ -Uk+\■ 

(11.11) 

(11.12) 

Since our interest is to determine the resonances in the system, and since, for a lossless 
tube, the poles always appear on the unit circle, we can replace z by ej& (where θ = ωΓ) 
so that Eqs. 11.11 and 11.12 become 

щ = cos(MQ)uk+i + —— un(MQ)pk-
Vk+l 

Pk = jVk+i sin(MQ)uk+] + cos(MQ)pk. 

(11.13) 

(11.14) 

It is useful to express Eqs. 11.13 and 11.14 in matrix form; adding additional sections 
results in successive matrix multiples. 

cos(M9) jVk+l sin(M9) 

~ sin(M6) cos(MG) 
•4+1 

Pk+\ 

Uk+i 
(11.15) 

Thus, for example, if we want the relationship between the kth section and the (&+2)th 
section pictured in Fig. 11.3, we can write down the matrix result 

cos(M9) jVk+i sin(M9) 

Vk+i 
ι(ΜΘ) s(MG) 

cos(L6) jVk+2 sin(L6) 

j — sin(L6) cos(L9) 

Pk+2 

Щ+2 

Pk 

uk 

= 

to
 

to
 

to
 

to
 

Pk+2 

Uk+2 

(11.16) 

(11.17) 
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FIGURE 11.3 Two-section digital waveguide. M and L are the delays of successive 
sections, in units of the sampling period. 

with 

fin = cos(MG) cos(L9) 
Vk+2 

sin(MG) sin(L9), 

Bn = jVk+2 cos(M9) sin(LG) + jVk+i sin(M9) cos(LG), 

B21 = — sin(M9) cos(LG) + ^-cos(M9)sin(L9), 
Vjr+l Vk+2 

-Vk+2 sin(LG) sin(M6) + cos(M9) cos(LG). 

(11.18) 

(11.19) 

(11.20) 

(11.21) 

For many speech sounds, particularly vowels, the mouth is open so that the pressure 
gradient at the mouth opening is zero; setting pk+2 to zero in Eq. 11.17, we get the simple 
relationship 

Uk+2 
Uk (11.22) 

Setting B22 to zero allows us to solve for the poles on the unit circle. B22 can be 
simplified by noting from Eq. 11.1 that V* = рс/Аь using the trigonometric identities 

1 
cos(M9) cos(LG) = -{cos[(M + L)6] + cos[(M - L)9]}, (11.23) 

(11.24) 

Then, letting the factor r = (A^+i — Ak)/{Ak+y + Ak), we arrive at the relation-

sin(M9) sin(L9) = —{cos[(M + L)Q] - cos[(M - L)9]}. 

ship 

cos[(M + L)Q\ + r cos[(M - L)9] = 0. (11.25) 

Given the parameters M, L, and r, we can find those values of Θ that correspond to the 
resonances (formants) of the two-tube structure. Figure 11.4 shows a plot of the positions 
of formants 1 and 2. 

Each curve in this f\ ,/2 plane corresponds to specific values of M and L, and the 
curves trace out a trajectory that is a function of the ratio A2/A\. Also shown in the figure 
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FIGURE 11.4 Formants 1 and 2 obtained from the two-tube model. 

are the f\ ,/2 points for various vowels obtained from the work of Peterson and Barney [2]. 
Any curve passing close to a vowel implies that there exists a two-stage digital waveguide 
that has approximately the same f\ ,/2 value as that vowel. Notice that not all vowels are 
close to a trajectory; such vowels require a model in which the number of stages exceeds 
two. Also, this analysis has ignored matches to higher formants; again, a model with more 
stages is required. However, as is made clear in the studies by Fant [1] and Portnoff [3], an 
acoustic configuration can always be found to match the measured steady-state spectrum 
of any speech sound. 

11.3 EXCITATION MECHANISMS IN SPEECH PRODUCTION 

Thus far we have shown how an acoustic tube or combinations of such tubes respond to 
acoustic stimuli. In the human vocal system, three types of excitation exist. The speech 
signal is the response of the vocal tract to some combination of the three exciting signals. 

During the production of vowels and vowellike sounds, the excitation is a nearly 
periodic sequence of pulselike pressure changes occurring at the glottal opening. Pressure 
changes originating in the lungs force open the vocal cords, which are then quickly closed 
by elastic forces, which are again forced open, and the process repeats. Neurologically 
controlled muscles determine the vocal cord tension and hence the degree of elasticity; 
thus, the frequency of this excitation signal is controlled by the speaker. 

Vowels generally are excited as described above, but not always. Vowels can be 
whispered. In such cases the vocal cords remain open but the air stream must pass through 
the small glottal opening; this produces turbulence, a noiselike component in the air stream. 
The resonances of the vocal tract will further shape the pressure wave to produce the 
whispered vowel. 

Turbulence can also be produced by constrictions in other parts of the vocal tract; for 
example, for voiceless fricatives to be generated, noise can be generated at the tongue-tip-

Formants one and two obtained from 
two-tube model compared to 
measured values of formants 1 
and 2 for various vowels. 

(See Text for further explanation.) 
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teeth constriction ( / s / or / th / ) , or, further back in the vocal tract, at the tongue-upper-palate 
constriction ( /sh/) , or at the teeth-lower-lip constriction (/f/) . These excitation signals are 
acted on by the vocal tract complex to produce the various spectra typifying the different 
fricative sounds. 

Such excitations can take place in concert with glottis-controlled excitations during 
voiced fricatives. The vocal tract configurations during these sounds are the same as the 
corresponding voiceless fricatives, but the vocal cords can be simultaneously vibrated, 
yielding sounds that contain both quasiperiodic and noise components. 

Transients in the vocal tract are another source of excitation. If pressure is built 
up anywhere in the tract by occlusion, sudden removal of the occlusion causes a sudden 
pressure change that propagates throughout the vocal cavity. This occurs, for example, for 
( /p / ) , ( /k / ) , and ( / t / ) . 

11.4 EXERCISES 

11.1 In Section 11.2 it is stated that for a lossless tube, the poles always appear on the unit circle. Can you 
justify this claim? 

11.2 Derive Eqs. 11.18-11.21 givenEqs. 11.16 and 11.17. 

11.3 What are the boundary conditions on pk and щ for an open tube and for a closed tube? 

11.4 Sketch an acoustic tube model of a voiceless fricative sound such as /sh/. This sketch should be of a 
qualitative nature accompanied by some intuitive justification of your solution. 

11.5 Repeat the previous problem for the voiceless plosives. 

11.6 Repeat again for the voiced fricatives and plosives. 

11.7 Finally, repeat for the nasal sounds. 

11.8 If the space-time solution to the wave equation can be expressed as the separable product of a time 
function and a space function, derive explicit solutions for these two functions. Base your solution 
on the case of a single space dimension. 
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MUSICAL INSTRUMENT 
ACOUSTICS 

12.1 INTRODUCTION 

In Chapter 10, we analyzed wave motion on strings and in acoustic tubes. In Chapter 11, 
we applied these concepts to model speech production. In this chapter, these ideas will be 
applied to the study of some musical instruments. 

Many instruments use vibrating strings, whereas others use the human breath stream. 
In the case of speech or singing, the sound we hear is created by the resonances of the vocal 
tract. Thus, the breath stream represents the excitation that creates the traveling wave that is 
then modified by the vocal tract resonances. Similarly, the vibrating strings in a string instru-
ment excite the body of the instrument, causing it to vibrate to produce the sounds we hear. 

String instruments can be further classified as plucked (guitars, banjos, and harps), 
bowed (violins, violas, and cellos), or struck (piano), and these differences in excitation 
have a significant effect: Plucking involves a sudden perturbation of some small section of a 
string; the subsequent string vibrations can be represented as a straightforward source-filter 
model. Bowing is a more complex operation. Friction allows the bow to drag the string 
along horizontally (in the plane of the strings); when the restoring force of string tension 
becomes large enough, the string snaps back to its quiescent state, only to be again captured 
by the bow. Thus the string horizontal motion is a sawtoothlike motion. 

Wind instruments can employ vibrating reeds (clarinet), lip vibrations (trumpet and 
trombone) or vocal cord vibrations (singing). Percussion instruments (drums, xylophones, 
and bells) are excited by striking some material. The piano, as we shall see, is sufficiently 
complex to be treated as a separate category. 

String instruments and reed instruments have this in common: the excitation func-
tion is the source of the overtones (harmonics), whereas the main source of sound radiation 
(e.g., the violin body or trumpet body) determines the overall spectral shape of the emitted 
sound. (Spectra are of course further modified by room or concert hall reverberations; see 
Chapter 13.) It is convenient to consider these instruments as source-filter systems, as we 
do the human voice. It's worth remarking, however, that these instruments have regimes of 
oscillation as discussed in [3], whereby resonances from the main sound sources feed back 
to affect the properties of the excitation. 

In this chapter we first direct our attention to the violin as (predominantly) a bowed 
string instrument. We examine how the strings, the bridge, and the body of the violin vibrate 
in response to bowing. Next we study the radiation patterns of bowed string instruments. 
We then discuss some aspects of piano design and construction. Finally, we include a brief 
section on the acoustic properties of several wind instruments. 
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12.2 SEQUENCE OF STEPS IN A PLUCKED 
OR BOWED STRING INSTRUMENT 

Listening to a string instrument involves the following sequence of actions: 

1. The string is plucked or bowed and begins to vibrate. 

2. The string motion causes the wooden bridge to vibrate. 

3. The bridge motion sets the upper plate of the instrument body into vibration. 

4. The entire body now vibrates, as does the air inside the body. 

5. An acoustic radiation pattern caused by body and air vibration is set up. 

6. This radiation pattern is modified by the room or concert hall acoustic environment. 

7. The listener's auditory apparatus interprets the received sound. 

12.3 VIBRATIONS OF THE BOWED STRING 

The motion of a string fixed at both ends and plucked at its center was described in Chapter 
10. Figure 10.3 gives a history of the string displacement. The modes of vibration are 
obtained by a Fourier analysis of this displacement pattern. The string vibrations cause the 
bridge to vibrate, and this sets the body of the instrument into motion, effectively creating 
the sound we hear. 

The behavior of a bowed string can be analyzed by considering the relationship 
between force on the string and its velocity, shown schematically in Fig. 12.1. Friction 
between the bow and the string will at times keep them locked together, moving at the same 
velocity over a wide range of transmitted forces; this situation is represented by the vertical 
line on the right of Fig. 12.1, where v, the transverse velocity of the string, is equal to Vb, 

N F 

v h / 

/ \ Slope 

/ / 

Vb V 

FIGURE 12.1 Two relations between the force and velocity of a bowed string. From [11]. 



160 MUSIC PRODUCTION 

the velocity of the bow. At other times there is slippage between bow and string, and the 
total force transferred via friction will drop as the relative velocity increases, represented 
as the curved lines in the figure. A second relationship comes from the instantaneous linear 
response of the string velocity to an applied force, represented by the sloping straight line. 
This line is displaced from the origin by v/,, the effect of existing ('historical') reflected 
waves on the string. The slope of the line is Y /2 = (Tm)~05, where T is the string tension 
and m is the string mass per unit length, and Y is the wave admittance of the string. This 
leads to Eq. 12.1: 

v ( 0 = i | V ( 0 + v*(0 (12.1) 

In a computer simulation, v/,(i) is first obtained by propagating and summing existing 
waves on the string. Then the new force and velocity on the string can be found as the 
intersection shown circled on the figure; this provides the new input to the system, and the 
simulation continues. 

If we watch the string vibration during bowing, the string seems to sweep out a 
parabolic path. However, high-speed photography reveals that the string is nearly straight, 
with a bend that races around the string and follows the curved path. The situation is 
depicted in Fig. 12.2, where the bottom figure shows the string displacements at the point 
of contact with the bow. The figures marked (a) through (h) indicate the states of the string 
corresponding to the same letters on the bottom figure. 

Ideally, the string displacement at the bowing point should behave like a sawtooth 
wave; in practice, however, it does not always follow this ideal. Extra slippage can be 
caused by variations in the boundary conditions at the nut or bridge, the two points at which 
the string is fastened, as well as by poor bowing. Figure 12.3 shows simulations of the 
string velocity at the bowing point for good (upper) and bad (lower) bowing, which differ 
in how the end condition are set up. In the good case, the rapidly-moving corner is rounded 
a little each time it is reflected by an end; in the bad case, no such rounding is simulated. 
We see that in the bad case, the string keeps slipping in and out of bow control during the 
time that it is mostly in contact [11]. 

12.4 FREQUENCY-RESPONSE MEASUREMENTS 
OF THE BRIDGE OF A VIOLIN 

The bridge is the transduction mechanism that translates the string vibrations into the strong 
body vibrations needed to produce a satisfactory audible radiation field. The outline of a 
normal violin bridge is shown in Fig. 12.4. 

Hacklinger [6] measured bridge vibrations with a mute violin: he attached a heavy 
iron block to the frame, to decouple the body from the bridge motion. Figures 12.5 and 12.6 
show several bridge frequency responses, illustrating their resonant peaks and variability. 

Here is a summary of Hacklinger's conclusions based on his experiments: 
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Time 

FIGURE 12.2 String state vs. string displacement at the point of bow contact. 
Both columns in the figure show the string displacement at a given instant. The arrows in 
the left column show the directions of the motion of the point of maximum displacement. 
The arrows in the right column indicate the vertical forces along the string. From [10]. 

FIGURE 12.3 Good and bad string velocity at the bowing point. From [11]. 
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FIGURE 12.4 Normal violin bridge outline. From [6]. 
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FIGURE 12.5 Bridge A (mellow) and bridge В (brilliant) frequency-response curves. From 
[6]. 
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FIGURE 12.6 Bridge A (original) and bridge В (reduced cross section) response curves. 
From [6]. 
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1. The frequency response of the bridge has a strong influence on total violin timbre. 

2. The conventional bridge form is well suited to produce the desired timbre by relatively 
small changes in bridge dimensions. 

3. Bridge influence is strongest for the two upper strings (A4 =440.0 Hz and E5 = 
659.3 Hz). 

4. The stiffness of violin bridges should be between 1500 and 3000 N/cm. 

5. The bridge is made of maple and its elasticity varies greatly, so it is advisable to 
measure the stiffness of the wood before constructing the bridge. 

6. On the average, hard wood bridges produce darker violin sounds. 

7. High bridges require thinner upper edges or a higher stiffness to obtain the same timbre. 

The important consequence of all this is as follows: below 1 kHz, the bridge 
frequency response has little effect on the overall response. The bridge generally has a 
resonance between 2 and 4 kHz, and the frequency and magnitude of this resonance does 
have a significant effect. 

12.5 VIBRATIONS OF THE BODY OF STRING INSTRUMENTS: 
MEASUREMENT METHODS 

Here we concentrate on methods of measuring vibrations of the instrument body (item 4 
in Section 12.2). Although the discussion refers to guitars, the methodology applies to the 
measurements of the body vibrations of other string instruments as well. 

Once the upper plate of the guitar is set into vibration, the entire body plus the 
enclosed air is set into motion. Both the vibration of the wood body and the enclosed air 
radiate acoustic energy; air motion has resonances that are at lower frequencies than body 
resonances. Research has identified two low-frequency resonances of the guitar; one is the 
low-frequency resonance of the upper plate, and the other is the resonance of the body of 
enclosed air. Caldersmith [4] has treated the guitar as a reflex enclosure ("an externally 
driven plate . . . backed by an enclosed air volume which is vented to the external air with 
a hole or a tube"). 

Guitar body vibrations are complex. Various techniques have evolved to measure 
these vibrations. Among these are Chladni patterns, an external excitation method, and 
holography. 

Chladni patterns: When sand or salt is sprinkled on a plate and then the plate is 
vibrated, the particles will collect in areas that exhibit the lowest vibration amplitude; these 
regions are called nodal lines. They appear when the plate is vibrated at one of its resonant 
frequencies. Thus, by attaching a voltage-controlled transducer to the plate and varying the 
frequency of the sinusoidal voltage, one can determine the resonances of the plate. 

External excitation method: Resonant modes may also be estimated by placing a 
microphone at some standardized distance from the plate and measuring the received signal 
as a function of frequency; vibrations are induced in the same manner as the production of 
Chladni patterns. 
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Holographie method: A more accurate way of measuring resonant modes of a 
guitar top (or bottom) plate is through the use of optical holography. The concept of 
holography is explained by considering the simultaneous illumination of a specific object 
by two beams. We explain in the following paragraphs how this allows preservation of 
the phase information in the resultant wave front as well as storage of this information on 
photographic film. Then, by illumination of the film with one of the two beams (i.e., the 
reference beam), a near replica of the original wave front is perceived by the eye, and the 
beholder is fooled into thinking that he or she sees the original object. 

Let the wave front obtained by illuminating an object of interest with a monochromatic 
light beam be represented as the two-dimensional vector u(x, y), a complex function of the 
spatial coordinates x and y. The reflected light from the object of interest is incident on 
photographic film. At the same time, a reference beam that reflects off the mirror M2 is also 
incident on the film. Figure 12.7 shows how this is done. 

Let the reference beam create a wave front v(x, y). The total illumination on the film 
is the vector sum h(x, y) = u(x, y) + v(x, y) of the two illuminations: 

Щ2 = hh* = (M + V)(M* + V*), (12.2) 

= uu* + vv* + uv* + vu*, (12.3) 

where the asterisked vectors are complex conjugates. If we now assume that the refer-
ence illumination magnitude |v| is constant over the recording surface, then the amplitude 
transmittance of the recorded film is 

g = K + y(uu* + uv* + vu*), (12.4) 

where К is a constant bias and γ is a constant property of the film. 

FIGURE 12.7 Holographic photography. LA, laser; M's, mirrors; BS, beam splitter; LP, 
lens-pinhole holder; D, diffuser; О, object of interest; J, jig; and H, holographic film. From 
[1]. 
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Next, let's shine a beam of light identical to the reference illumination through 
the processed film; this amounts to multiplication of each term in Eq. 12.4 by v(x,y); the 
result is 

f = Kv + yv\u\2+yu\v\2+yv2u*. (12.5) 

The important item to notice is that the third term on the right side of Eq. 12.5 is an 
exact copy (except for a scale factor) of the original wave front! Thus, if we can succeed in 
eliminating or greatly diminishing the other three terms of Eq. 12.5, we should be able to 
view a replica of the original object by illuminating the film with the reference wave front. 

Equation 12.5 is a static representation. How do holographic methods allow the 
determination of an object's movement? Go back to Eq. 12.3 and integrate over the exposure 
time T of the film. Remembering that v, the reference, is constant, we can write 

fT/2 fT/2 rT/2 fT/2 
/ \h\ dt = vv* + / \u\dt + v* udt + v u*dt. 

J-T/2 J-T/2 J-T/2 J-T/2 

Let's focus attention on the third term on the right of Eq. 12.6 and define 

rT/2 

-T/2 

(12.6) 

rT/2 Г 

F(x,y) = v* u(x,y,t)dt = v* / p{t)u{x,y,t)dt, (12.7) 
J-T/2 J-<*> 

where p(t) = 0 except in the interval — T/2 to T/2, during which it is unity. 
Using Parseval's theorem,1 we find 

with 

and 

F{x,y) = v* I sinc(fT)U(x,y,f)df, (12.8) 

U(x,y,f) = f" u(x,y,t)e-Mdt (12.9) 

. , , Sin(7t/T) / , o i m 
sinc(/r) = ——. (12.10) 

π/Γ 
We can interpret the action of the film as performing a low-pass filtering in the 

frequency domain. To obtain the distribution of intensity on the film, we use the fact 
that the reference and object beam create an interference pattern that is time varying and 
dependent on the phase variation with time as the object vibrates. The geometry is shown 
in Fig. 12.8. 

For simplicity we assume that the object is a flat plate moving in the x direction. 
A light ray strikes the plate at coordinates y, z at an angle θι. It is reflected at an angle 

'Parseval's theorem states that f™x x(t)y* (t)dt = J^X(f)Y*(f)df for the two transform pairs. 
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FIGURE 12.8 Holography of a vibrating plate. 

Vibration Path 

02 and strikes the holographic film at the point y\,z\- If the maximum excursion of the 
object is B, we see from Fig. 12.8 that the change in path length of the incident wave over 
this maximum excursion is ßcos(6i), and the corresponding time difference is the same 
quantity divided by c, the velocity of light. A similar argument holds for the reflected wave. 
If λ is the wavelength of the light, and remembering that the phase φ is 2nft and that 
с = /λ, we obtain the total phase excursion: 

Δφ = 
2 n ß [ c O s ( e ! ) + C 0 S ( 6 2 

(12.11) 

Powell and Stetson [9] have shown that the intensity I(yi,zi) is the product of the 
static intensity /st and the integral 

/ ■ Λ'ΦΟΙ-ΖΙ,Ο dt, (12.12) 

where φ is a sinusoidally varying phase with maximum value Δφ and the integration time 
depends on the film's sensitivity. This integral can be expressed as a Bessel function series, 
but since the film behaves like a low-pass filter, the interference pattern can be evaluated 
as the zeroth-order Bessel function /ο(Δφ): from Eq. 12.11 we can write 

i(y,z) 
2jtó[cos(ei) + cos(92)] (12.13) 

Figure 12.9 shows JQ(KX) for three different values of A". As К increases, the number 
of oscillations of Jo(Kx) increases, but the value of Jo(Kx) decreases more rapidly. Fig-
ure 12.10 shows the patterns of holographic reconstruction for different intensities; these 
can be directly related to the three plots of JQ(KX) of Fig. 12.9. 

In Fig. 12.10, the dark lines correspond to the peak vibration amplitudes and the white 
fringes correspond to the nodes, or nulls. Figure 12.10 corresponds to the lowest mode, 
or resonant frequency of vibration. The evaluation of the sound at some point removed 
from the guitar body requires a spectral analysis, as the guitar plate is sinusoidally vibrated 
for different frequencies. This is a complicated procedure because the results obtained are 
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FIGURE 12.9 Plots of a zeroth-order Bessel function for three values of K. 

functions of the driving points, the frequencies, and the placement of the microphone, as 
well as the properties of the plate being tested. 

12.6 RADIATION PATTERN OF BOWED STRING INSTRUMENTS 

Meyer [7] experimentally investigated the directional characteristics of violins, violas, 
cellos, and contrabasses. Measurements were made in an anechoic chamber; thus, the 
measurements dealt with the direct sound from the instruments and did not deal with the 

FIGURE 12.10 Holographic reconstruction of a vibrating can bottom. Reconstructions of 
three holograms of a 35-mm film can bottom with a progressive increase in amplitude of 
excitation at the lowest resonance frequency of the can bottom. From [9]. 
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FIGURE 12.11 Photograph of a violin mounted on a turntable. From [7]. 

reverberation patterns that would be generated in a concert hall or room. Reverberation is a 
very important component of the sound reaching the listener's ears, and it will be considered 
in Chapter 13. 

In Meyer's experiment the instrument is mounted on a turntable, as shown in the 
sketch of Fig. 12.11. The string movements are damped and excitation is applied directly to 
the bridge by a small vibrating needle controlled by an electrodynamic oscillation system. 
The needle is vibrated in the same direction that is normally done by the strings. Radiated 
sound is measured by a microphone that is 1-m distant for violins and violas and 3.5-m 
distant for cellos and contrabasses. Recording is synchronized with turntable motion. 

Figures 12.12-12.15 give overall results for the various instruments as a function of 
the frequency bands. Figures 12.12 and 12.13 show the radiation pattern of the cello in two 
planes. The general tendency is for the directivity to become sharper for high frequencies. 
For the cello frequencies 2000-5000 Hz, there are two main lobes. 

Figure 12.14 shows the radiation pattern for the violin in the horizontal plane. For low 
frequencies (200-400 Hz), radiation is omnidirectional; between 1 and 1.5 kHz, the lobes 
are narrow, widening again as the frequency increases. We see from Fig. 12.15 (contrabass) 
that the main lobes versus frequency are very different than those of a violin. 

How do anechoic measurements help determine the best arrangement of an orchestra 
for concert halls? We quote from Meyer's abstract: "These results suggest that different 
arrangements for the strings would be optimum for different concert halls and differ-
ent styles of musical composition." In other words, the design of seating arrangements 
is a multidimensional problem, and Meyer's measurements constitute one of several 
considerations. 
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FIGURE 12.12 Principal radiation directions of the cello in the vertical plane. 
From [7]. 

12.7 SOME CONSIDERATIONS IN PIANO DESIGN 

The earliest pianos that resembled present models were built by Bartolomeo Cristoferi 
(1655-1731). A version completed in 1720 still exists and is on display at the Metropolitan 
Museum of Art in New York City [5]. 

The piano strings (88 sets in a standard piano) vibrate when struck by the key-
actuated hammers. These vibrations are transmitted via a wooden mount to the sounding 
board, which produces most of the sound. As Fig. 12.16 indicates, the action of a piano is 
quite complex. 

The following conditions have to be satisfied in piano design [2]: 

1. The hammer must rebound immediately after striking the string. 

2. The string cannot be struck twice for a single note. 

3. The pianist should be able to strike the key again before it returns to static position. 

4. Tone should persist as long as the key is held down. 
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FIGURE 12.13 Principal radiation directions of the cello in the plane of the bridge. From 
[7]. 

From Fig. 12.16, here is a list of mechanical motions in the grand piano: 

1. The performer pushes the key down. 

2. The key lifts the capstan and raises the damper. 

3. The wippen rotates and raises the jack. 

4. The jack pushes on the roller. 

5. Through the roller, the jack raises the hammer. 

6. The jack strikes the jack regulator. 

7. The jack rotates and no longer pushes on the roller. 

8. The momentum of the hammer motion permits the key to be struck. 

9. The hammer rebounds. 

10. The hammer is caught by the back check to prevent a second striking of the string. 
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FIGURE 12.14 Principal radiation directions of a violin in the horizontal plane. From [7]. 

11. The performer allows the key to lift partially. 

12. The jack upper end slopes back under the roller. 

13. If the key is again depressed while it is halfway down, the hammer will strike the key 
again. 

14. The key release allows the damper to fall back on the string. 

This mechanism is repeated for each note. 
Effect of the hammers: The piano hammers are made of heavy felt glued to a 

wooden body. If the surface of the hammer is hard, the tone is brighter (larger values of 
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FIGURE 12.15 Principal radiation directions of a contrabass in the horizontal plane. From 
[7]· 

high-frequency harmonics). A soft surface creates softer tones. The piano tuner has various 
methods of changing the hardness of the surface. 

The hammer strikes the string approximately one-seventh of the way along the string, 
as shown in Fig. 12.17. The precise excitation of the piano string by the hammer is a critical 
factor of the resulting piano tone. The choice of one-seventh is an empirically derived 
result. 

Design of piano strings: The frequency of a string is a function of its speaking length 
(the vibrating portion of the string), its tension, and its mass. Thus, the high notes of a piano 
use strings that are quite a bit shorter and thinner than the strings used for the bass notes. The 
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FIGURE 12.16 Action of a grand piano. From [2]. 

piano designer is constrained by such factors as overall piano size (thus constraining the 
maximum length of low-frequency strings) and the tensile strength and fatigue resistance 
of the shorter strings (to prevent broken strings). Given a reasonable set of parameters for 
L%$ (the string length for the highest note), the following empirical formula gives a good 
approximation to any string length Ln as long as n is greater than approximately 20: 

L„ — Lgg (S ' (12.14) 

with S = 1.055 and L88 = 0.0508 m. 
Figure 12.18 shows the string length versus key number of a 2.74-m grand piano. 

The hexagons in the figure are based on Eq. 12.14, whereas the circles are actual string 
lengths of the piano. 

Figure 12.19 shows a comparison of speaking lengths for four pianos. The squares 
in the figure are for a 0.91-m upright piano, the triangles for a 1.57-m grand piano, the 
hexagons for a 2.13-m grand piano, and the circles for a 2.74-m grand piano. Notice that 
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FIGURE 12.17 Relative positions of the string and hammer. From [2]. 
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FIGURE 12.18 Theoretical (hexagons) and actual (circles) speaking lengths of a 2.74-m 
grand piano. From [5]. 

for keys above middle C, the larger piano has longer strings. The upright piano has the least 
amount of discontinuity at middle C; the string lengths of the smaller grand also follow a 
fairly smooth trajectory. 

Piano strings are usually made of steel to withstand the high tension. These strings 
usually have stiffness. This changes the overall response of the string; a fourth-order 

FIGURE 12.19 Speaking lengths of four pianos. From [5]. 
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FIGURE 12.20 Inharmonicity, in cents of 16th partial for three pianos. An octave is often 
given in cents; 1200 cents = 1 octave. A cent is defined logarithmically so that one cent 
corresponds to the ratio 21/1200. From [5]. 

derivative is introduced in the differential equation [8], as follows: 

dx2 05K2 У У Jb 
dx* 

pS 
dt2' 

(12.15) 

where T is the tension, S is the cross-sectional area, к is the radius of gyration, p is the 
density, and Q is the modulus of elasticity. 

Sinusoidal waves can travel along such a wire, but the overtones are no longer exact 
multiples of the fundamental frequency. Although such a result may appear troublesome, 
it turns out that the slight inharmonicity is liked by most listeners. Figure 12.20 shows the 
deviation from a perfect harmonic series of three pianos for the 16th harmonic over a range 
of notes. The vertical scale is given in cents deviation from harmonicity. 

12.8 BRIEF DISCUSSION OF THE TRUMPET, TROMBONE 
FRENCH HORN, AND TUBA 

Each of these four brass instruments consists of a mouthpiece, a mouthpipe, a cylindrical 
section, and a bell. The reason for this design starts with the formula for the modes of a 
closed cylindrical pipe (See Chapter 10 on Wave Basics): 

_ nv 
}n~ 4L' 

1,3,5,7, (12.16) 
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FIGURE 12.21 The evolution of a trumpet: effects of the mouthpiece and bell. From [2]. 

where v is the velocity of the sound wave (343 m/s in air), L is the length of tubing, and n 
refers to the nth mode. There are no modes for even values of n. 

Figure 12.21 indicates how modification of the tube to construct the trumpet shifts 
the modes so that they are harmonically related for the trumpet. 

The left column shows the modes of a simple closed tube that satisfy Eq. 12.16. 
Cutting off a length of pipe and replacing it by the nonuniform mouthpiece does not change 
the low-frequency modes but does affect the high-frequency modes, since the mouthpiece 
behaves like a tube closed at one end. The overall result is that the virtual length of the 
overall system increases with increasing frequency, with a consequent lowering of the 
modes, as shown in the center column of Fig. 12.21. 

The bell moves the lower modes up. The tube is effectively shortened and the lower 
modes are shifted from the center column of Fig. 12.21 to the right column. The frequencies 
of the modes, beginning with the mode just below C4, correspond to the second, third, and 
fourth (and so on) harmonics of the (fictitious) black note. This note is provided by the 
vibration of the player's lips at the fundamental frequency (the so-called pedal tone). The 
lowest mode (between E2 and F2) is not energized, since the player's lips provide no energy 
at this frequency. 

Figure 12.21 shows the result for one specific length of tubing, but the overall length 
can be varied by means of three valves of the trumpet. This would shift the various positions 
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FIGURE 12.22 Trumpet valve. From [2]. 

of the excited modes, but they would still be in harmonic relation to the fundamental 
frequency provided by the lips' vibrations. 

The playing ranges of the brass instruments vary greatly; the tuba has a range from 
approximately 50-200 Hz, the trombone's range is approximately 80-600 Hz, the range 
of the French horn is approximately 70-700 Hz and the trumpet's range is approximately 
150-1000 Hz. 

Figure 12.22 shows a trumpet valve. When the piston is up, air flows through the 
tube unmolested. Depressing the valve forces the air column to follow the arrows, thus 
increasing the effective length of tubing and lowering the mode frequencies. 

12.9 EXERCISES 

12.1 Describe a procedure whereby the complex conjugate of the original image is viewed by use of 
holographic techniques. 

12.2 Prove Parseval's theorem by using both Fourier transform and z-transform notation. 

12.3 Discuss the relationship between Fig. 12.9 and 12.10. 

12.4 Most of the instruments we have discussed can be modeled as acoustic resonators excited by some 
form of vibration. For the human voice, a simplified representation of a vowel is that of a time-variable 
filter (the vocal tract), excited by glottal pulses. Devise analogous representations for the violin and 
trumpet. 
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12.5 Does bowing or plucking a violin string cause more high-frequency excitation? Justify your answer. 

12.6 A piano is an example of a struck string instrument and a harpsichord is an example of a plucked 
string instrument. For the same note, the piano string has a higher tension and greater diameter. How 
does this affect the relative lengths? 

12.7 Why are some notes on the piano produced by striking several strings at once? 

12.8 What is the effect on the spectrum of a trumpet note when played with greater intensity? 

12.9 Explain what is meant by regimes of oscillation in a trumpet. 
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CHAPTER 

ROOM ACOUSTICS 

13.1 INTRODUCTION 

In previous chapters, we described some of the fundamentals of the acoustics of tubes and 
strings, using abstractions that we showed to be relevant to the production of audio signals 
in the human vocal tract and in some musical instruments. Once these signals leave their 
sources, however, they generally encounter boundaries that are at least partially reflective. 
Thus, a listener or a microphone receives a multipath version of the original source signal. 
Therefore, room acoustics are also a fundamental concern for many audio signal-processing 
applications. In this chapter, we discuss the effect of room boundaries on a sound wave, the 
resulting phenomenon of reverberation (i.e., the smearing of a source sound over time as a 
result of these boundary effects), and the effect of reverberation on speech intelligibility. As 
with many topics discussed in this book, this chapter can only serve as a brief introduction, 
with a practical focus on factors that affect the goals of audio signal processing. 

13.2 SOUNDWAVES 

At atmospheric pressure and standard conditions of humidity, the speed of sound is 

с = 331.4 + 0.67 m/s, (13.1) 

where T is the temperature of the air in degrees Celsius. At 20°C, the speed of sound is 
343.4 m/s, or about 1127 ft/s, corresponding to a transmission time of approximately 1 ms 
for each foot. If a reflective boundary is 10 ft (~305 cm) from an acoustic source, it will 
take roughly 20 ms for the sound wave to return. This is too short for the second sound to 
be heard as a distinct echo. In contrast, if the boundary is 50 ft or more from the source, it 
will take at least 100 ms for the sound wave to return, which is long enough for the listener 
to hear a discrete echo. In many rooms, successive reflections are too close together to be 
audible as separable events. 

In real acoustic environments, the speed of sound varies over time and space, as a 
result of factors such as temperature (as noted in the equation) and humidity. The nature of 
the received reflective pattern will be dependent on these sources of variability, as well as on 
movements of the sound source or receiver around the room. However, for a midfrequency 
sound wave, and for a given source and receiver position, the room acoustic effect can 
be seen as a linear time-invariant sum of attenuated, filtered, and delayed versions of the 
original signal. In other words, for this limited approximation, the room effect can be 
viewed as a linear convolution with an echo pattern. We will return to this perspective, but 
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first we review acoustic wave propagation in the context of room acoustics. 

13.2.1 One-Dimensional Wave Equation 

In Chapter 10 we gave a one-dimensional equation relating space, time, and pressure for a 
progressive acoustic plane wave (repeated here in slightly different form): 

*£ = !*£ (132) 
Эх2 с 2 Э?2 ' ( ' 

with a general solution of the form 

p{x,t)=F(ct-x) + G{ct+x), (13.3) 

where F(ct — x) represents a wave moving toward increasing values of x, and G(ct + x) 
represents a wave moving toward decreasing values of x. 

For sinusoidal functions, λ = c/f (i.e., wavelength equals the speed of sound 
divided by frequency). To give some physical intuition, if we assume that с « 1000 ft/s, 
then1 a 20-Hz signal has a wavelength «50 ft long, a 1-KHz signal has a wavelength «1 ft 
long, and a 20-KHz signal has a wavelength «0.5 in. (1.27 cm) long. 

In our previous examples (speech and music), we examined sound propagation in 
objects that were small in comparison to the wavelengths of low-frequency sounds (e.g., 
violins or human vocal tracts). In the case of room acoustics, we consider sound prop-
agation in enclosures that are much larger. For wavelengths that are much smaller than 
room dimensions, ray paths from the source to the receiver (including reflective paths) 
can be traced to yield a reasonable approximation to the acoustic transmission charac-
teristics. 

It is often useful to think of sound in terms of wavelength, particularly for intuition 
concerning the extent to which a structure is a barrier to sound transmission. Noting the 
physical size (wavelength) of acoustic waves can also help provide intuition for another 
aspect of audio perception, known as head shadowing. The human head is a barrier of 
significant size to high-frequency sound waves. Thus, sound from the opposite side of the 
head is low-pass filtered.2 

13.2.2 Spherical Wave Equation 

Ignoring any directionality of a source, ignoring the effect of boundaries, and assuming a 
point source, the propagation of waves in three-dimensional space will be spherical. The 

'Recall that the actual speed is closer to 1130 ft/s at room temperature; we assume the lower speed above for 
simplicity's sake only. 
2This filtering effect is used to good advantage by the auditory system, helping to determine the direction of the 
arrival of sound waves. Spatial location is also assisted by the relative timing of the arrival of sound waves at 
each ear. 
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wave equation in spherical coordinates is 

&p_ , 2 dp _ 1 d2p 
dr2 

A solution is the complex exponential. 

+ Z± = -2^- (13.4) 

e· 
.j(a)t-kr) 

p{r,t)=Fi> =P0 , (13.5) 
r r 

where p is the pressure, r is the distance between the source and the receiver, PQ is the 
amplitude of the sinusoidal sum, t is the time, к = 2π/λ, and со = kc. Note that the pressure is 
inversely proportional to r. This proportionality relationship is a reasonable approximation 
in free space and under many outdoor conditions. 

13.2.3 Intensity 

Intensity is defined as the amount of sound energy flowing across a unit area surface in a 
second. This is equivalent to the rms pressure times the rms velocity, or3 

I = pv. (13.6) 

This can also be expressed without the velocity term, which can be expressed as the ratio 
of pressure to impedance (as noted in Chapter 10), yielding 

Ψ I=—, (13.7) 
Рос 

where po is the medium density, с is the speed of sound as before, and рос is the characteristic 
impedance. For a sinusoid, 

pi 

/ = r - 2 - . (13.8) 
2p0c 

So / <χ p2, and for a spherical wave p °c 1/r implies / <* l/r2. 
In other words, as with many other interesting physical phenomena, sound intensity 

follows an inverse square law with distance - but don't forget the assumptions of a point 
source and lack of reflective boundaries! In addition, one must assume that the sound 
medium (air in the room acoustics case) does not dissipate any energy, which is particularly 
incorrect for high-frequency audio signals. 

3For derivations of this and other relations that are simply stated here as facts, check acoustics texts such as [3]. 
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13.2.4 Decibel Sound Levels 

Conventionally, the difference between sound energy levels is measured in decibels: 

L = 10 log 

Since the intensity is proportional to the square of the pressure, 

L = 20 log 

(13.9) 

(13.10) 

The denominator values are often chosen to be reference values that correspond to 
the threshold of hearing at 1 kHz, namely 

p2 = 2 x 1(Γ5 N/m2 and /2 = 1(Г12 W/m2. 

For these choices, the decibel levels become the sound pressure level (SPL) and the intensity 
level, respectively. The two measurements are roughly equivalent for plane or spherical 
waves measured in the air. 

13.2.5 Typical Power Sources 

For speech in many natural situations, it is preferable to assume that the point source 
propagates hemispherically rather than spherically. Given this assumption, the following 
are typical power values for various speech sources. The number in parentheses indicates 
the SPL of the sound wave flowing across a 1-m2 area 40 cm away from the source. 

• Whispered speech: 1 nW (30-dB SPL) 

• Average for speech: 10 μψ (70-dB SPL) 

• Loud speech: 200 μΨ (83-dB SPL) 

• Shouted speech: 1 mW (90-dB SPL) 

Ignoring boundaries, we find that the SPL would be 6 dB lower for each doubling of 
distance. Note that shouted and whispered speech differ by 60 dB, which is a power ratio of a 
million! This is certainly not comparable to the human sense of relative loudness; however, 
the cube root of intensity is often used as such a measure. Given this approximation, a 10-dB 
increase in intensity corresponds roughly to a doubling of perceived loudness. However, 
as we discuss in Chapter 15, loudness is frequency dependent. Perceived loudness is 
generally weaker for lower frequencies, though the apparent frequency response is flatter 
for louder sounds. The loudness control found on some stereos, as opposed to the volume, 
does some filtering to adjust for human sensitivity characteristics; roughly speaking, these 
controls usually bring up the extremes of low and high frequencies at low volumes so as to 
compensate for the reduced perceived bandwidth at the lower volume level. 
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Sound-level meters often make use of standard frequency-weighting characteristics 
in order to more closely approximate loudness, as opposed to acoustic energy. This certainly 
makes sense for measurements that will be relevant for human perception, such as the noise 
level in a building. One of the most common standards is the A-weighted measurement, typ-
ically used for a low to moderate loudness level, in which a large energy-loudness correction 
must be made for the low frequencies (reducing sensitivity to low frequencies) [6]. This is 
probably appropriate for applications such as describing the noise levels in a typical acous-
tic background, since a low-frequency rumble could have a very large amplitude before it 
had the same perceptual effect as a midfrequency sound. Sound-pressure-level meters com-
monly have an A setting for this purpose; В and С settings correspond to loudness correc-
tions for successively higher sound pressure levels, and they apply smaller low-frequency 
compensations. SPL measurements for the A-weighted case are often referred to as dB A. 

For machine speech-analysis purposes, these weighting curves can often be mislead-
ing, since a large low-frequency noise can sometimes have strong effects on our algorithms 
but will have a reduced effect on dBA measurements. 

13.3 SOUND WAVES IN ROOMS 

As suggested earlier, the mathematics used for acoustically modeling a room as a box 
is similar to that used for abstractions of strings and tubes. Solving the wave equation 
will result in characteristic resonances that will be instantiated as standing waves. For an 
ideal box, the lowest-frequency resonance will correspond to a wavelength that is twice 
the size of the room's longest dimension. Any room will actually have a large number of 
such resonances, and at higher frequencies these can be approximated by a continuum; as 
explained in [4], the number of modes (eigenfrequencies) below frequency / is proportional 
t o / 3 . 

For sound-production devices, such resonant phenomena are often the most critical 
aspect. However, resonances are often not the most important aspect of room acoustics 
for the study of the how speech and music will be perceived by listeners and machines. 
In particular, the biggest effect on the intelligibility of speech comes from the effects of 
reverberation, which is more fundamentally a time-domain phenomenon. 

Thus far in this chapter we have noted that a point source emanates a spherical wave-
front whose intensity is inversely proportional to the square of distance. In an enclosure, 
however, boundaries will reflect some of the energy, causing the receiver to get a series of 
delayed and attenuated versions of the original signal. The pattern of these returns estab-
lishes the audio character of the room, both for intelligibility and for sound quality (e.g., for 
the musical quality of a concert hall). These characteristics are determined by the geometry 
of the room, the positions of the source and receiver of sound, and the absorption character-
istics of the boundaries. We separately describe the long-term and short-term effects of the 
room echo response, as they are qualitatively quite different. We ignore more complicated 
effects (such as diffusion from complicated surfaces). 
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13.3.1 Acoustic Reverberation 

When a wave front impinges on a boundary, part of the energy is reflected, and part is 
absorbed; absorption includes both energy that is transmitted and energy that is dissipated 
into heat. A key part of architectural acoustics, then, is the use of measurements of the 
fraction of energy that is absorbed, called the absorption coefficient. These coefficients are 
typically frequency dependent; most ordinary materials absorb better at high frequencies 
(or, conversely, reflect better at low frequencies). For example, Table 13.1 shows that a 
typical coefficient for acoustic paneling is 0.16 at 125 Hz, but it is 0.80 at 2 kHz. Some 
materials that are less absorptive overall show less frequency sensitivity. For instance, 
glass typically has a coefficient of 0.04 at 125 Hz and 0.05 at 2 kHz. For nearly any real 
room, the effect of this frequency dependence is to shorten the time for reflections to die 
down for a higher-frequency energy; put another way, contributions to the current sound 
from previously emitted sounds are low-pass-filtered (as well as delayed and attenuated) 
versions of the original. 

For large distances, high frequencies, or both, sound absorption of the air can cause 
an additional low-pass-filtering effect. In addition to the inverse square attenuation, the 
energy absorption of the air can be approximated by a factor of e~mr, where m is 0.0013/m 
at 1 kHz and 0.021 at 4 kHz (for a relative humidity of 50%). 

TABLE 13.1 Effective Absorption 
Coefficients of Common Building 
Materials3 

Frequency in Hz 

Material 

Acoustic paneling 
Acoustic plaster 
Brick wall, unpainted 
Draperies 

light 
heavy 

Felt 
Floor 

concrete 
wood 
carpeted 

Glass 
Marble or glazed tile 
Plaster 
Rock wool 
Wood paneling, pine 

125 

0.16 
0.30 
0.02 

0.04 
0.10 
0.13 

0.01 
0.06 
0.11 
0.04 
0.01 
0.04 
0.35 
0.10 

500 

0.50 
0.50 
0.03 

0.11 
0.50 
0.56 

0.02 
0.06 
0.37 
0.05 
0.01 
0.05 
0.63 
0.10 

2000 

0.80 
0.55 
0.05 

0.30 
0.82 
0.65 

0.02 
0.06 
0.27 
0.05 
0.02 
0.05 
0.83 
0.08 

"From [3]. The coefficients listed here are only 
representative. 
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Whereas the early pattern of reflections can be an important cue as to the size 
and shape of the room (as well as the distance to the sound source), the reflections usually 
become quite dense within 100 or 200 ms of the first (direct) wave front. This dense pattern, 
which tends to have a roughly exponential decay, is typically characterized by the time that 
it takes a steady-state noise signal to decay by 60 dB, a value that is referred to as RT60. 

There are a number of ways to derive a formula for RT60, as elaborated in such 
sources as [3] or [4]. Some use a stochastic approach, assuming independence of reflection, 
whereas others begin with a first-order differential equation to approximate the balance 
between absorption and generation. In either case the simple approximations lead to an 
exponential decay, which on the average conforms to the long-term response in regular 
rooms. In the 1920s a Harvard professor named Sabine showed empirically that a particu-
larly simple approximation was a reasonable predictor of reverberation time (ignoring air 
absorption), namely 

RT60= '] V (13.11) 

in MKS units, and 

0.049V 
RT60 = (13.12) 

OCX 

for English units (feet), where S, V, and ά are the surface area, volume, and average 
absorption of the room, respectively. 

Including the effect of air absorption, 

0.049 V 
RT60 = — - (13.13) 

Sa + 4m V 

in feet, where m is the acoustic air-absorption term given above. This air term typically 
dominates at very high frequencies, and it is largely irrelevant for low frequencies. 

For concert hall acoustics, a rale of thumb is that 75% of the absorption is contributed 
by the audience and orchestra, so that measurements taken in an empty hall must be 
interpreted with care.4 

Reverberation has a number of effects on acoustic signals such as music and speech, 
most obviously to smear them out in time. When the reverberant energy is large (for instance 
when the distance between source and receiver is large, and when RT60 is long), syllable 
onsets and identities can be masked by decaying energy from previous syllables. This can 
hurt intelligibility, particularly when combined with noise. For music, a degree of smearing 
that is considered appropriate for some forms of music (such as Bach organ pieces) can 
cause an undesirable loss of definition for others (such as string quartets). 

As noted at the start of this chapter, the net effect of reverberation on a sound sig-
nal for a particular source position and receiver (microphone or ear) position may be 
roughly expressed as a linear convolution of an echo response with the source signal. A 
simple approximation to this response is an exponentially decaying impulse response, such 
as that implied by the RT60. However, although the reverberation time is important, the 

4For this rule of thumb and many other fascinating observations about 76 famous concert halls, see [1]. 
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corresponding exponential impulse response gives a poor match to many of the important 
features that characterize a room's acoustics. There are, however, a number of ways of 
more accurately estimating the impulse response in a real room (for one specific source 
and receiver position). One of the most popular is to emit white noise or pseudorandom 
sequences from a calibrated source and correlate them with the received signal at the mi-
crophone. This can be easily shown to yield an estimate of the desired impulse response. 
For linear time-invariant systems in general, Rxy = Rxx * h(t), where R^ is the correlation 
between processes x and y, Rxx the autocorrelation for x, and h{t) is the impulse response 
that is convolved with x to yield y. Then if Rxx = δ(ί) (uncorrelated input sequence), the 
measured output correlation R^, is equivalent to the desired impulse response. 

In an alternative approach, a chirp (a signal with an instantaneous frequency that 
rises with time) can be used as the test source. The output signal is then phase adjusted to 
compensate for the timing of the different sinusoidal components in the source, resulting in 
an estimate of the transfer function (Fourier transform of the impulse response) of the linear 
model for the source-receiver relationship. Figure 13.1 show an impulse response that was 
measured through the use of a chirp-based approach. The response was measured in an 
experimental chamber at Bell Labs that has walls with adjustable absorption characteris-
tics. The adjustable characteristics were set to yield an RT60 of 0.5 s. Figure 13.2 shows 
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FIGURE 13.1 Measured impulse response from the experimental varechoic chamber at 
Bell Labs. This was part of a collection by Jim West and Gary Elko, along with Carlos 
Avendano, who kindly passed it on to us. The room reverberation time was set to be 
roughly 0.5 s, the distance from the source to the microphone was 2 m, and the shutters in 
the varechoic chamber were 43.7% open. The time of flight from the sound source to the 
microphone was removed from the impulse response display, so the plot doesn't illustrate 
that sound travels at finite speed. 
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FIGURE 13.2 Two waveforms for the continuous phrase "two oh six," uttered by a female 
speaker over the telephone. The first waveform is the original signal, and the second was 
derived from the first by convolution with the impulse response shown earlier. The phrase 
is part of the Numbers database from the Oregon Graduate Institute. 

two versions of the waveform for a sequence of spoken numbers: one that was taken 
directly from the amplified and digitized microphone signal, and one that was artificially 
reverberated by using the measured impulse response from the Bell Labs recording setup. 
Note that although time smearing is evident, most of the basic energy features are still 
intact for this case; in fact listeners do not seem to have any trouble understanding what is 
said in this example. However, it is difficult to make speech-recognition models that will 
recognize the reverberated forms when they have been trained on the original versions. 

Reverberation typically increases the loudness at a given location, both because 
energy generated over a range of time in the past is received in the present, and also 
because sound that would have radiated away in an open space is instead received by a 
listener in a closed space. Nonzero reflectivity of boundaries is an essential part of sound-
reinforcement systems - it can be difficult to provide intelligible speech to listeners in 
rooms that are overly absorbent. Intelligibility is particularly aided by contributions to 
loudness from the early components in the impulse response. 

13.3.2 Early Reflections 

Prior to the arrival of a significant energy density, reflections are relatively sparse, and 
an exponential energy decay is typically not a useful description. Apparently these early 
reflections (i.e., in the first 80-100 ms) provide critical cues for the listener's sense of 
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FIGURE 13.3 Zoom of the first 200 ms of the measured impulse response, in which the 
initial point (the direct sound) is omitted in order to scale up the rest of the sequence. 

intimacy or apparent room size and character [5]. A critical parameter characterizing these 
early reflections for concert halls is the initial time-delay gap, which is defined for concert 
halls as the delay between the time of receipt of the direct sound and the time of the first 
echo, as measured at a point midway between the orchestra and the back of the hall (or 
overhang of a balcony when there is one in the back). As noted in [1], the best concert 
halls rated by conductors are those that have an initial time-delay gap of 15-30 ms. In the 
case of speech, additional energy that is received from these early reflections is integrated 
by the listener into the apparently direct sound, which typically enhances intelligibility and 
quality. 

Figure 13.3 shows an expanded version of the first 200 ms of the impulse response 
shown earlier. Note that the early response tends to look roughly like a series of discrete 
echos, whereas by 100 ms the sequence has a significantly more continuous character. 

13.4 ROOM ACOUSTICS AS A COMPONENT 
IN SPEECH SYSTEMS 

As should be clear from the preceding sections, the acoustics produced in a room undergo 
significant processing as a result of a multipath transmission from source to receiver. 
When the receiver is a human listener, moderate reverberation can improve intelligibility 
by increasing the signal-to-noise ratio: more signal gets to the listener. For a constant 
signal level received by the listener, however, reverberation tends to hurt intelligibility, 



EXERCISES 189 

particularly for large amounts of reverberant energy and for long reverberation times. This 
is particularly true when the signal-to-noise ratio is poor. 

Even a small amount of reflected energy can effect the spectral or apparent spatial 
character of the sound for a human listener; but such small effects do not generally hurt 
intelligibility. Thus, the effects of the early reflections, as noted earlier, are largely to 
modify the listener's impression of the rooms size or intimacy. However, this is often 
not the case for machine signal processing of audio signals such as speech. Particularly 
for the speech-recognition application, even relatively short-term echo patterns modify 
the signal representations so as to be inconsistent with stored representations collected in 
different (i.e., nonreverberant) environments, such as speech collected from a close-talking 
microphone. Significant additive components from previous sounds appear to hurt machine 
recognition systems seriously for much smaller reverberation effects than are required to 
hurt intelligibility for humans. 

The most common approach to handling these problems is to use a directional (noise-
canceling) microphone quite close to the talker's mouth. In addition to improving the signal-
to-noise ratio, such an arrangement keeps the direct-to-reverberant energy ratio high, so that 
the room acoustic effects are minimized. Unfortunately, there are many situations in which 
the microphone cannot be placed in this way. There has also been a significant amount of 
research on microphone arrays (see, e.g., [2]). In these studies, processing techniques such 
as beamforming (see Chapter 39) or matched filtering have been applied to signals from as 
many as 200 microphones. These approaches improve spatial selectivity and thus reduce 
the effects of room acoustics on speech intelligibility and recognition performance. 

13.5 EXERCISES 

13.1 On one hand, explain how a reflective ceiling in a lecture hall could potentially improve the intelligi-
bility of speech. On the other hand, explain how reflective surfaces could hurt speech intelligibility. 

13.2 For an omnidirectional point sound source, the received sound level at a microphone is an 80-dB 
SPL 10 ft away in an anechoic chamber (a room with essentially no reflective boundaries). What 
is the SPL at a 20-ft distance? If the same source and microphone are put in a highly reverberant 
room for which the energy from reflections in the first 40 ms is much smaller than the energy from 
later reflections, what is the corresponding change in decibel SPL when the microphone distance is 
doubled? 

13.3 A rectangular room has a 12-ft high ceiling and is 20 ft wide and 30 ft long. The ceiling is made of 
acoustic paneling and the floor is wooden. The other walls are 25% glass and 75% wood paneling. 

(a) What is the approximate RT60 at 125, 500, and 2000 Hz, ignoring air absorption? 

(b) Let one corner of the floor be the position of the origin, and let (x,y, z) be the position in feet 
along the 20-ft wall, 30-ft wall, and the height (respectively). For a sound source at (10, 10, 3) and a 
receiver at (10, 18, 3), find the propagation time for the direct sound. Also find the propagation time 
for the first reflection that is received after the direct sound. 
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Man, if you gotta ask, you'll never know. 

—Louis Armstrong (on being asked what jazz is) 

I ^ O E S A falling tree make a sound if no one is there to hear it? By the physical 
definitions of Chapter 13, it most certainly does. Nevertheless, in this case the sound may 
not matter to us. The way in which sounds are interpreted by human hearing is obviously 
critical to speech communication and music appreciation. Similarly, coding and synthesis 
systems rely on some explicit or implicit model of how the acoustic signal is perceived by 
listeners. In the case of recognition, it is less obvious that human mechanisms for hearing 
are important, since in principle one could derive a completely artificial pattern-recognition 
system. However, human speech recognition is the one working example of a general and 
robust system for speech recognition and understanding. For all of these reasons, we believe 
that an introduction to the basic elements of auditory perception is critical to the goals of 
this text. 

Chapter 14 provides a review of the peripheral auditory system, from the outer ear 
through the auditory nerve. Chapter 15 introduces psychoacoustics, focusing on the spectral 
resolution of human hearing. Such concepts are particularly important in light of the major 
emphasis on spectral estimation in speech and audio applications. Pitch analysis by machine 
has been a key component of many speech-analysis systems and has often benefited from 
knowledge of pitch perception, which is described in Chapter 16. All three of these chapters 
concern human hearing. Chapters 17 and 18 focus on perception of the particular sound 
signal that is speech. Chapter 17 provides an introduction to the vast literature on this 
topic, whereas Chapter 18 specializes further with a discussion of the recognition of speech 
(i.e., syllables or word sequences). As we move away from the relatively well-understood 
mechanisms in the auditory periphery (i.e., the ear), the description necessarily becomes 
more behavioral; that is, since we don't know how the brain really recognizes speech, 
we tend to report the results of recognition experiments rather than describe physiology. 
However, even in this case it can be useful to understand the comparison between human 
and artificial recognition performance, a topic that is introduced in Chapter 18. 



EAR PHYSIOLOGY 

14.1 INTRODUCTION 

The human ear is able to perform very useful signal processing on incoming signals. For 
example, there are auditory mechanisms for making sense of target signals despite noisy 
environments. Fine frequency and intensity differences can be measured by the ear. Von 
Helmholtz [4] proposed that the auditory nerve processes sound tonotopically; that is, 
by having different nerve bundles be sensitive to different frequencies. This notion of the 
auditory system as a sophisticated filter bank persists today and is the basis of much auditory 
research. 

While the anatomy (i.e., the structure) of the auditory system in most animal species is 
fairly well understood, we still have a long way to go toward comprehending the physiology 
(i.e., the function of the components). There are a great many similarities among the 
auditory systems of many animals, including humans. Thus, in this chapter we survey 
the physiological knowledge garnered from animal studies. In the next chapter we survey 
psychophysical studies on human subjects; in succeeding chapters we use this knowledge 
to try to erect plausible models of how the human auditory system perceives the pitch of 
speech and music and how it perceives speech. 

14.2 ANATOMICAL PATHWAYS FROM THE EAR 
TO THE PERCEPTION OF SOUND 

The neocortex is that large part of the human brain that ultimately determines the nature of 
sensory input such as auditory stimuli. Here we trace the pathways that lead from the outer 
ear to this cortical percept. Figure 14.1 is a diagrammatic sketch of this pathway.1 

Figure 14.1 shows the ascending pathways from the right cochlea to the cortex. 
Notice that there are both right and left versions of the intermediate neural nuclei. The 
right cochlea shown at the bottom right is part of the peripheral auditory system and its 
fibers innervate (excite) the right cochlear nucleus, but we see that there are pathways from 
there to both the right and left way stations. The left ear follows a comparable path (not 
shown to avoid confusion). Fibers that follow these ascending pathways are called afferent 
(feedforward). 

There are also feedback mechanisms in the auditory system. Figure 14.2 shows half 
of the descending paths: those ending at the right cochlea. We see that there are effer-
ent (feedback) neurons from most of the way stations that eventually terminate in the 
periphery. 

■Figures 14.1 and 14.2 omit many details of the auditory pathways. Only the most studied nuclei are shown. 
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FIGURE 14.1 Auditory pathways linking the right ear to the brain. 
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TABLE 14.1 Cells in the Auditory Nuclei of the 
Monkey3 

Central Auditory Nucleus Number of Cells 

Cochlear nuclei 88,000 
Superior olivary complex 34,000 
Nuclei of lateral lemniscus 38,000 
Inferior colliculus 392,000 
Medial geniculate body (pars principalis) 364,000 
Auditory cortex 10,000,000 

aFrom[12]. 

There are approximately 30,000 auditory neurons associated with each cochlea in 
humans. About 1000 of these neurons connect to around 20,000 outer hair cells. The 3500 
inner hair cells connect to the roughly 29,000 neurons remaining. Table 14.1 is a list of 
cells in the auditory nuclei of the monkey. From the numbers in this table, it seems that the 
knowledge still to be obtained vastly exceeds the knowledge presently known. 

Although the anatomy of the auditory path is fairly well understood, the physiology 
is still only partly understood. Many measurements on cats and other mammals have 
been made at the periphery, the nerve bundle leading from the inner ear into the cochlear 
nucleus. The cochlear nucleus (the next stage of neural processing beyond the peripheral 
auditory nerve) is only partially understood. There is a much greater variety of functions 
in this neural nucleus than there is in the auditory nerve, and if this pattern continues as 
we work our way up through all the pathways, it will be many years before sufficient 
physiological information is available so that scientists can propose a plausible model of 
auditory function. For these reasons, most of this chapter focuses on the peripheral auditory 
system; in particular, it focuses on the inner ear, which contains the cochlea. 

14.3 THE PERIPHERAL AUDITORY SYSTEM 

Figure 14.3 shows the three components of the peripheral auditory system: the outer, 
middle, and inner ears. The input is an acoustic signal and the output is a collection of 
neural spikes that enter the brain, as indicated in Figs. 14.1 and 14.2. 

The auditory canal is an acoustic tube that transmits sound to the eardrum, where 
acoustic energy is transduced to vibrational mechanical energy of the middle ear. The 
middle ear consists of three very small bones (ossicles); the malleus is attached to the 
other side of the eardrum and its vibration is transmitted through the incus to the stapes . 
The stapes motion impinges on the oval window of the inner ear. The oval window is a 
flexible membrane, and its motion sets the fluid within the cochlea in motion. This motion is 
transmitted to the basilar membrane within the cochlea. The final transducing medium is the 
collection of hair cells sitting atop the basilar membrane that implement the transformation 
to the neural spikes of the auditory nerve bundle. The semicircular canals (not shown in 
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FIGURE 14.3 The peripheral auditory system. Boundaries between outer, middle, and 
inner ears are approximate. 

the figure) are part of the vestibular system that controls the sense of balance and are not 
part of the organs of hearing. 

As seen in Fig. 14.3, the shape of the cochlea resembles that of a snail, but we can 
better picture what happens by looking at Fig. 14.4. In this figure we have unwound the snail. 
Where the stapes impinges on the oval window is called the base; the far end (deep inside the 
snail) is the apex . Near the base, the basilar membrane (BM) is relatively narrow and stiff; 
near the apex it is wider and less stiff, with the result that high frequencies excite the basal 
portion and vibrations die out as they approach the apex. At low frequencies, vibrations 
begin at the base but reach peak amplitude further down, as seen in the figure. It is important 
to realize that high- and low-frequency disturbances created by stapes motion arrive at their 
respective peak basilar membrane points nearly simultaneously, because wave propagation 
is predominantly a fluid phenomenon and these traveling waves are appreciably faster than 
wave propagation on an isolated basilar membrane. This leads to the supposition that the 
BM action is akin to a filter bank, and in Chapter 19 we shall see that much research activity 
has centered around this concept. Figure 14.5 is a pictorial representation of BM activity. 

The importance of the BM derives from the location, on the BM, of the auditory 
transducers, the hair cells. Motion of the hairs, or stereocilia, causes firing of the audi-
tory nerves that innervate (connect to) the hair cells, and it is the spikes produced by the 
auditory neurons that relay all auditory information to higher brain centers. 

14.4 HAIR CELL AND AUDITORY NERVE FUNCTIONS 

Figure 14.6 shows how stereocilia motion (caused by BM motion) leads to neural spiking 
of the auditory nerve that is connected to the corresponding hair cell. To follow this activity, 
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FIGURE 14.5 Pictorial representation of activity along the basilar membrane. From [3]. 
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FIGURE 14.6 Neural spiking produced by hair-cell stereocilia motion. 

we need to make a slight detour in our discussion. All cells are inside a membrane that can 
permit molecules to flow from inside to outside of the cell (and vice versa). Control of this 
chemical flow is through molecules that are embedded in the cell membrane. Many of the 
chemicals both inside and outside the cell are charged so that this molecular flow can cause 
changes in the voltage potentials of the cells. Thus, in the case shown in Fig. 14.6, it is the 
flow of potassium and sodium ions that create the voltages needed to trigger neural spikes 
(action potentials). 

In Fig. 14.6, depolarization is equivalent to making the voltage difference from inside 
to outside the cell more positive, because of the flow of positively charged sodium ions 
from outside to inside. For this flow to occur requires the presence of a neurotransmitter that 
opens channels in the auditory fiber. The precise mechanism of spike generation involves 
an understanding of the Hodgkin-Huxley model of neural firing [11], which is beyond the 
scope of this brief synopsis. 

14.5 PROPERTIES OF THE AUDITORY NERVE 

Many experiments have been performed on the auditory nerves of small mammals. Cats 
have been the mammal of choice in most cases because the auditory system of the cat closely 
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FIGURE 14.7 Sketch of the inner and outer hair cells in a cross section of the cochlea. 

resembles that of the human. The properties that have been evaluated include spontaneous 
spike generation, adaptation, tuning, synchrony, and various nonlinear effects. 

Figure 14.7 is a drawing of some of the anatomy inside the cochlea. We see that three 
rows of outer hair cells and a single row of inner hair cells sit on the basilar membrane. 
The stereocilia of the hair cells impinge on the tectorial membrane, and the resultant forces 
open channels in the hair cells that eventually can cause spiking in the cochlear (auditory) 
nerve bundle shown in the lower left of the figure. Figure 14.8 is a schematic diagram 
of the innervation patterns; notice the three rows of outer hair cells (OHCs) and the one 
row of inner hair cells (IHCs), but also notice that approximately 90% of the afferent 
(ascending) auditory neurons come from this inner single row, whereas most of the efferent 
(descending) neurons go to the three outer rows. 

Physiological measurements have uncovered some general properties of auditory 
nerves, including adaptation, tuning, synchrony, and nonlinearity (including masking). 

FIGURE 14.8 Schematic diagram of inner (IHC) and outer (OHC) hair cells. From [13]. 
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FIGURE 14.9 Adaptation by an auditory nerve. From [7]. 

Adaptation: When a stimulus is suddenly applied, the spike rate of an auditory nerve 
fiber rapidly increases. If the stimulus remains (such as a steady tone), the rate decreases in 
an exponential manner to a steady value. Figure 14.9 shows a poststimulus time histogram 
for an afferent auditory nerve innervating an inner hair cell. 

The poststimulus time histogram is obtained by the use of the following procedure: 
the tone is applied to the ear and the time of each spike referred to the initiation of the tone 
burst is measured. The tone is applied many times so that a histogram of spike-arrival times 
is obtained. We see from the figure that in the absence of the stimulus the neuron produces 
spikes at a small but discemable rate. This is called the spontaneous rate. At the beginning of 
the tone burst the neuron responds with many spikes, but after approximately 20 ms a steady 
rate is achieved. When the tone is removed, the spike rate decreases to slightly lower than the 
spontaneous rate for a short time before resuming its normal spontaneous rate. Therefore, 
Fig. 14.9 shows us that the neuron is more responsive to changes than to steady inputs. 

Tuning: We have mentioned that the action of the basilar membrane resembles that 
of a bank of tuned filters and that the tuning frequency is a function of the position on the 
BM. We also know that different hair cells lie on different parts of the BM. Thus, it is no 
surprise that auditory nerves have tuning properties. Figure 14.10 shows an example. 

Figure 14.10 is obtained by the use of the following procedure: for a given frequency, 
a 50-ms tone burst is applied every 100 ms. The sound level is gradually increased until the 
spike discharge rate is increased by one spike/s, at which time the sound pressure level (or 
SPL, as defined in Chapter 13) is recorded. This procedure is repeated for all frequencies 
to create the curves shown in the figure. The lowest values of these curves correspond to 
the frequency at which the nerve is most sensitive and therefore to its resonant frequency. 
Thus, these neural tuning curves look like the inverse of a bandpass filter tuning curve. 

The results obtained here can be contrasted with von Bekesy's [2] measurements 
on basilar membranes. Treated as bandpass filters, the neural measurements result in 
appreciably narrower filters than von Bekesy's BM filters. For some time, physiologists 
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FIGURE 14.10 Tuning curves of six auditory nerve fibers. From [6]. 

tried to erect models to explain this discrepancy, but recent, more refined measurements 
on BM motion indicate agreement between BM and neuron. This allows us to advance the 
hypothesis that the primary component of an auditory fiber's tuning properties is the basilar 
membrane motion and that the curves of Fig. 14.10 are determined mainly by the BM mo-
tion and the position of the hair cell that innervates the neuron. There is, however, evidence 
that the hair bundles (stereocilia) of the hair cells also contribute to the tuning curves [5]. 

Also notice the shape of the tuning curves. The left side of the resonance curve is a 
relatively slow function of frequency, whereas the right side has a much steeper slope. This 
fact also correlates well with the BM response to tones. For example, Fig. 14.5A shows 
the BM response to a 1000-Hz tone; the envelope of BM displacement is seen to be the 
approximate inverse to the tuning curves of Fig. 14.10. 

Synchrony: Again we apply a tone and perform a measurement on a cat's auditory 
neuron. This time we measure the histogram of time intervals between adjacent spikes. 
When this measurement is repeated many times, interval histograms such as those shown 
in Fig. 14.11 are created. 
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Notice that the time between peaks in both histograms is the inverse of the frequency. 
This indicates that spikes tend to occur in synchrony with the applied stimulus. There is 
still a probabilistic component to this phenomenon, as indicated by the finite width of the 
peaks and the small but observable noise floor - some small percentage of the spikes do 
not occur in synchrony with the signal. 

Phase locking is another way to describe synchrony. Experimentally, it has been 
shown that neurons fire in phase with the stimulus primarily at low frequencies. Phase 
locking does not exist in the cat's auditory nerve for frequencies beyond 5 kHz and 
gradually diminishes above 1 kHz. 

Nonlineari ties: There are several phenomena that can be traced to the nonlinear 
behavior of the cochlea: saturation, two-tone suppression, masking by noise, and combi-
nation tones. 

Saturation: The number of spikes that a nerve fiber can generate in a given time 
is limited by the biology of the fiber. It is also true that different fibers have varying 
properties. For example, the spontaneous rate can vary over many decibels. This can lead 
to an interesting result, shown in Fig. 14.12. Part D is the input power spectrum of the vowel 
in the word bet. Each point in parts A, B, and С is the normalized rate of a fiber at a given 
characteristic frequency (CF); these are high spontaneous rate fibers (and therefore low 
threshold fibers). As the input is increased, more fibers saturate so that as one progresses 
from A to C, the system loses its ability to represent the spectrum. In contrast, the low 
spontaneous fibers shown in parts E and F remain unsaturated for the same intensity inputs 
and thus continue to create a plausible image of the spectrum. It is currently of interest to 
auditory scientists to study the way in which more central auditory neurons make use of 
this diversity to yield a large dynamic range (100 dB) from the firings of individual neurons 
with dynamic ranges varying from 20 dB to 40 dB. 

Two-tone suppression: Figure 14.9 shows adaptation to a tone by a nerve fiber. 
We see that after approximately 20 ms, the firing rate is at a steady state. If, now, a new 
tone is applied without removing the old tone, then, depending on the parameters, the 
old tone can be suppressed. Figure 14.13 shows this effect. After a short interval the old 
tone is strongly suppressed, but then the firing rate increases to a new steady state that 
is lower than the previous steady state. When the new tone is removed, the firing rate 
increases suddenly and then adapts to the steady state. The specific result depends on the 
parameters, including frequency of the masker (suppressing tone), amplitude of the masker, 
frequency and amplitude of the signal, the time relation between the signal and masker, the 
characteristic frequency of the fiber, and the threshold of the fiber. Figure 14.14 shows the 
shaded areas where a tone of a frequency different than the probe tone suppresses the probe 
tone by 20% or more. Outside the shaded areas but inside the tuning curve, the addition of 
a second tone causes an increase in the firing rate. 

Masking of a tone by noise: If a tone plus noise is presented to a fiber, the noise has 
a suppressing effect on the response of the fiber to the tone. Figure 14.15 shows the firing 
rate of an auditory nerve as a function of the tone intensity, both with and without additive 
wideband masking noise. As the tone intensity increases toward its saturation, we see that 
the tone in noise fires at a lower rate when noise is present. The tone frequency and fiber 
CF were both 2.9 kHz. The noise band was 2.5—4 kHz. 
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FIGURE 14.14 Suppression regions of an auditory nerve fiber. From [1]. 

Combination tones: If a fiber is excited by two tones, a combination tone may 
appear that was not present in the stimulus. Thus, it is possible to excite a fiber with the 
combination tone 2/1-/2 when both f\ and /2 are far from the CF of the fiber. For example, 
if the two applied tones are /1 = 1.0 kHz and /2 — 1.1 kHz, then the combination tones 
0.7 kHz (4/1-З/2), 0.8 kHz (3/i-2/2), and 0.9 kHz (2/]-/2) will also be able to excite the 
appropriately tuned fiber. 

14.6 SUMMARY AND BLOCK DIAGRAM 
OF THE PERIPHERAL AUDITORY SYSTEM 

1. The complete mammalian auditory system contains many millions of neurons, but 
the peripheral auditory system of humans contains approximately 30,000 neurons 
and is the best understood component. 
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FIGURE 14.15 Rate vs. intensity with and without additive noise. From [8]. 
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2. The auditory system consists of both ascending and descending fibers. Thus, there is 
feedback at most levels. 

3. The outer ear terminates at the eardrum and affects the acoustics much like that of an 
acoustic tube. 

4. The middle ear performs mechanical impedance transformation, from the malleus 
(driven by the eardrum) to the stapes (which drives the inner ear fluids). 

5. The basilar membrane behaves like a bank of mechanical tuned circuits, over the 
complete range of auditory signals. 

6. BM motion is transmitted to the stereocilia of the hair cells, and this leads to the 
firings of peripheral auditory neurons. 

7. Auditory nerves adapt to stimuli, spiking vigorously at the beginning of a new input 
and then continuing to spike in the steady state at a reduced rate. 

8. Each auditory nerve has a best or characteristic frequency, which is a function of its 
position on the basilar membrane. 

9. For low frequencies (below 5 kHz) spikes tend to synchronize with periodic stimuli. 
This is called phase locking. 

10. Various nonlinearities exist in the auditory system, leading to such phenomena as the 
limited dynamic range of a nerve, masking effects, and combination tones. 

Figure 14.16 is a summary block diagram of many of the connections in the system. 
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FIGURE 14.16 Conceptual block diagram of the peripheral auditory system. From [3]. 
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14.7 EXERCISES 

14.1 Assume that the ear canal in a typical person is 3 cm long and of cylindrical shape with a diameter 
of 0.8 cm. Also, assume that the ear drum behaves like a solid, inflexible wall. Describe how the 
acoustical properties of the eardrum affect the frequency response of the overall system. How do 
these properties affect neural spiking for a 100-Hz pure tone stimulus and for a 3-kHz stimulus? 

14.2 The dynamic range of a normal human ear is approximately 100 dB, but the measured dynamic range 
of many neurons is approximately 20-30 dB. How does the auditory system manage such a high 
dynamic range with such restricted elements? 

14.3 In response to pure sinusoidal tones, a specific auditory nerve will spike at different rates, depending 
on the stimulus frequency. Various theories of the mechanism have been advanced. Discuss these 
theories and present empirical justifying evidence. 

14.4 Describe the sequence of events leading to auditory nerve spiking when an acoustic pressure wave 
appears on the outer ear. 

14.5 The frequency response in the peripheral auditory system is tonotopic (center frequency changes with 
place). Explain how this comes about. 

14.6 Present a heuristic justification for the statement that the basilar membrane behaves like a bank of 
bandpass filters. 

14.7 Refractory times in auditory nerves (intervals immediately following a spike during which the nerve 
is incapable of firing again) are at least several milliseconds. Explain how the auditory system is 
capable of responding to high-frequency stimuli (5 kHz or higher). 

14.8 Many people are deaf because their hair cells have been destroyed. Can you think of a way whereby 
some hearing is restored? 

14.9 Devise one or more thought experiments that demonstrate that listeners can hear frequencies that are 
not present in the stimulus. 

BIBLIOGRAPHY 

1. Arthur, R. M., Pfeifer, R. R., and Suga, N., "Properties of 'two-tone inhibition' in primary 
auditory neurones," J. Physiol. 212: 593-609, 1971. 

2. von Bekesy, G., Experiments in Hearing, McGraw-Hill, New York, 1960. 
3. Frishkopf, L. S., Class notes, Quantitative Physiology II-Sensory Systems, Massachusetts Insti-

tute of Technology, 1989. 
4. von Helmholtz, H., On the Sensation of Tone as a Physiological Basis for the Study of Music, 

4th. ed., A. J. Ellis, trans., Dover, New York, 1954; orig. German, 1862. 
5. Hudspeth, A. J., "The cellular basis of hearing: the biophysics of hair cells," Science 230: 

745-752, 1985. 
6. Kiang, N. Y.-S., and Moxon, E. C, "Tails of tuning curves of auditory nerve fibers," J. Acoust. 

Soc. Am. 55: 620-630, 1974. 
7. Pickles, J., An Introduction to the Physiology of Hearing, 2nd ed., Academic Press, New 

York/London, 1988. 



208 CHAPTER 14 EAR PHYSIOLOGY 

8. Rhode, W. S., Geisler, С. D., and Kennedy, D. Т., "Auditory nerve fiber responses to wide-band 
noise and tone combinations," J. Neurophysiol. 41: 692-704, 1978. 

9. Rose, J. E., Brugge, J. F., Anderson, D. J., and Hind, J. E., "Phase-locked response to low-
frequency tones in single auditory-nerve fibers of the squirrel monkey," Journal of Neurophysi-
ology 30: 262-286, 1967. 

10. Sachs, M. В., and Young, E. D., "Encoding of steady state vowels in the auditory nerve: rep-
resentation in terms of discharge rate," J. Acoust. Soc. Am. 66: 470-479, 1979. 

11. Shepherd, G. M., "Neurobiology," Oxford Univ. Press, London/New York, pp. 101-119, 1988. 
12. Tobias, J. V., ed., Foundations of Modern Auditory Theory II, Academic Press, New York/London, 

1972. 
13. Yost, W. A., and Nielsen, D. W., Fundamentals of Hearing - An Introduction, Holt, Rinehart & 

Winston, New York, 1977. 



Psychoacoustics is the science in which we quantify the human perception of sounds. 
The ultimate aim is to derive a quantitative model that matches the results of all auditory 
experiments that we can contrive. This is quite a tall order, since, to a great extent, the human 
auditory system remains a "black box," despite many years of physiological research. In 
this chapter we survey some of the results that have the most obvious relevance to speech 
and audio applications. Where possible, we correlate psychoacoustical phenomena with 
physiological measurements. 

We can establish some objective variables that will be adjusted in order to assess 
human perception of sounds. For frequency and intensity, standardized instruments can 
produce outputs that are linearly proportional to the stimulus. For example, a device that 
counts the number of zero crossings of a sinusoid over a prescribed time interval can be 
calibrated to read what we can define as the frequency of the signal. A measure of the 
spectrum of a sound can also be defined, for instance by a particular form of spectrogram. 
Duration is another objective property of a sound. 

Each of these sound characteristics has a corresponding perceptual variable. The 
perception of frequency is called pitch, the perception of intensity is called loudness, and 
the perception of spectrum is called timbre. These human response variables are not linearly 
proportional to the value of the corresponding stimulus variables. Thus, if a person hears 
a pure tone at some given frequency / , followed by another tone at 2 / , the perception 
will not be that the frequency of the second tone is double that of the first tone. Similarly, 
if the intensity of the tone is doubled, the human subject will not describe it as twice 
as loud. The same argument holds for perception of duration. Furthermore, the response 
variables are often dependent on more than one of the stimulus variables. For instance, the 
subjective impression of pitch, although primarily dependent on frequency, can vary with 
other parameters, such as intensity or spectrum. The same holds for loudness and timbre. 

Some issues of interest in this area include the following. 

1. How sensitive is human hearing? How does the ear1 respond to different intensities? 

2. How does the ear respond to different frequencies? 

3. How well does the ear focus on a given sound of interest in the presence of interfering 
sounds? 

1 In common parlance the ear actually refers to the entire apparatus for hearing, up to and including the brain. 
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Such questions can be quantitatively addressed by conducting psychoacoustic tests. In 
the following sections we review some of the classic experiments that have been performed 
to try to answer a few of these types of questions. In particular, we discuss experiments 
to demonstrate the dependence of perceived loudness on objective parameters of intensity, 
duration, and spectrum. Pitch will be discussed in Chapter 16. 

The reader's understanding can be further enhanced by listening to a set of demon-
strations that were released on a commercial compact disk, Auditory Demonstrations [7]. A 
review paper by Hartmann [6] contains evaluations based on class listening tests for these 
demonstrations. 

15.2 SOUND-PRESSURE LEVEL AND LOUDNESS 

Sensations (hearing, seeing, smelling, etc.) increase logarithmically as the intensity of the 
stimulus increases. Many experiments have certainly verified (at least approximately) this 
law and have led to the use of the decibel scale. To define a subjective measure of loudness, 
we introduce the sone. Based on the work of Stevens [11] and others, an empirical relation 
between the sound pressure p and the loudness S in sones gives the result 

S - p 0 6 , (15.1) 

where a sone value of one is set to be the loudness of a 1000-Hz tone at an intensity of a 
40-dB SPL. Recalling from Chapter 13 that the intensity is proportional to the square of 
the pressure, we obtain 

Socf3. (15.2) 

Roughly speaking, we can say that the loudness is proportional to the cube root of the 
intensity.2 From Eq. 13.9, we can derive that a 10-dB increase in sound intensity corresponds 
to an increase in intensity by a factor of 10. According to Eq. 15.2, then, this 10-dB increase 
roughly corresponds to a doubling in sone value. 

The constant of proportionality implied by Eq. 15.1 is frequency dependent. In 
general, the subjective listener response of loudness is a function of the intensity, frequency, 
and quality of the sound. Figure 15.1 shows a standardized set of curves for pure tones. 
Each curve denotes the measurement of equal loudness as a function of tone frequency. 
Typically, the listener adjusts the intensity at a given frequency until it is judged to be of 
equal intensity to a standard 1000-Hz tone. We see from these curves that the ear is most 
sensitive to sounds of approximately 4 kHz. Each contour of loudness level corresponds 
to units called phons. The phon level is set to be equal to the SPL in decibels at 1000 Hz. 
Thus, for example, we see that for a SPL of 40 dB, the loudness of a tone at 100 Hz is 20 
phons less than the loudness at 1000 Hz. 

This frequency-dependent sensitivity leads to the differing standards for sound-
pressure-level meters, as were briefly described in Chapter 13, Section 13.2.5 in particular; 

2 Stevens' empirical formula is not very different than a logarithmic relation over the intensity values of interest. 
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Frequency in cycles per second 

FIGURE 15.1 Equal loudness curves for pure tones. From [4]. 

the relative insensitivity to low-frequency sounds led to the development of A weightings, 
which deemphasize these sounds. Note also that this variation in sensitivity is reduced 
for louder sounds, which led to the development of B-weighted and C-weighted SPL 
measurements. 

These relationships are illustrated in [7] by demonstrations 4 and 6. In demonstration 
4, tones are played in intensity steps of 1, 3, and 6 dB. In demonstration 6, tones are played 
in intensity steps of 5 dB for frequencies ranging from 125 to 8000 Hz. 

Finally, there are many experiments that have been performed to demonstrate the 
dependence of loudness on the duration of a sound. Such experiments have shown that if 
the duration of a sound is smaller than approximately 200 ms, it will be less loud than a 
sound of the same intensity with a duration greater than 200 ms. In demonstration 8 of 
[7], for instance, pulses are presented with decreasing sound-pressure levels (0, —16, —20, 
—24, —28, —32, —36, and —40 dB). The listener responds by noting at which step the 
sound became inaudible. The test is repeated for durations of 1000, 300,100, 30,10,3, and 
1 ms. Figure 15.2 shows the result averaged over 103 listeners in a reasonably reverberant 
classroom, as reported in [6]. 

The scale on the left of Fig. 15.2 shows the pulse level, relative to the first pulse, 
at which audibility was lost. The dashed line is a reference with a slope of —10 dB per 
decade of duration. We see that the result asymptotes at approximately 100 ms, at which 
point further duration increases change the perceived threshold very little. This time would 
probably be longer if the experiment had been conducted with headphones, as the rever-
beration in the classroom undoubtedly extended the length of each pulse as received by the 
listeners. 
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FIGURE 15.2 Effect of duration of a pulse in noise on loudness. For each tone duration 
the ordinate on the solid curve gives the smallest audible tone level (on the left) and the 
corresponding step number (on the right). Error bars of 2 standard deviations are shown. 
The broken line is a reference to show a slope of -10 dB per decade of duration, which 
corresponds to a simple integration of signal power. From [6], Fig. 5. 

15.3 FREQUENCY ANALYSIS AND CRITICAL BANDS 

In Section 15.2, we described the frequency dependence of a listener's sensitivity to pure 
tones. However, most signals of interest are more complex. This suggests other types of 
experiments to learn about the perception of multiple tones. Some of the most important 
of these are based on the notion that some kind of frequency analysis is central to human 
hearing. 

As we discussed in the previous chapter, auditory neurons are tuned to specific 
characteristic frequencies. Thus, we surmise that the auditory system behaves like some 
sort of a filter bank. Experiments have been performed for many years to determine the 
characteristics of these auditory filters. Fletcher [2] performed some of the early experiments 
of this kind. In one such series of experiments, he based his measurements on the ear's 
response to a pure tone in band-limited white noise. Initially, the tone level was set to be 
heard by normal ears. The tone level was then decreased in discrete 5-dB steps until the 
listener did not hear it, and the number of steps was registered. The noise bandwidth (still 
with the same flat spectrum) was decreased and the experiment was repeated. Until the 
noise bandwidth was decreased to some critical value, the listener's ability to hear the tone 
remained the same, despite the decrease in noise power. However, for noise bandwidths 
lower than this critical value, the listener's response was monotonically enhanced. 

The experiment could then be repeated with a tone of a different frequency, and in 
this way these critical values could be plotted over the total audible band. 

The implication is this: in listening to a tone of a given frequency, the listener 
applies a psychological filter of width approximately equal to this critical value. The filter 
ignores noise outside this bandwidth. Thus, the decision as to the absence or presence of 
the tone is based on the signal-to-noise ratio within this band. Figure 15.3 is a caricature 
of the apparent and measured signal-to-noise (S/N) ratios for this type of experiment. Note 
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FIGURE 15.3 Critical ratio experiment. The solid line shows the apparent signal-to-noise 
ratio of the psychological filter; the dashed line shows the signal-to-noise ratio of the 
stimulus. 

that the break point in the solid line in this figure can be interpreted as showing the noise 
bandwidth corresponding to a critical band for the particular tone frequency used. 

Fletcher called these critical filter widths the critical bands. Later researchers (see 
Chapter 19) have developed methods of estimating the shapes of auditory filters. 

From an engineering standpoint, probably the most important result that emerges 
from critical band research is that auditory filters with higher center frequencies have 
greater bandwidths. The Bark scale and the scale proposed by Greenwood, as shown in 
Fig. 15.4, are reasonable approximations to critical bands obtained from psychoacoustic 
measurements. 

Similar results can be obtained by having listeners compare the loudness for a pair 
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FIGURE 15.4 Plots of estimated bandwidth as a function of center frequency for the Bark 
scale, and Greenwood's cochlear frequency-position function, with two constant-Q scales 
also shown for comparison. From [8]. 
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FIGURE 15.5 Critical bands by loudness comparison. Solid curves represent the 
spectrum of the test noise burst; dashed curves represent the spectrum of the reference 
noise burst. The loudnesses of reference and test bursts are compared by listeners. From 
[7]. 

of noise bursts. In one experiment demonstrated in [7], the reference noise burst had a 
bandwidth that was a fixed 15% of the center frequency, whereas the test noise burst 
maintained a constant power by lowering the amplitude and widening the bandwidth as 
shown in Fig. 15.5. As long as the test-signal bandwidth was smaller than the critical band, 
the loudness of the two stimuli remained equal, but when the test stimulus exceeded the 
critical band, it was typically judged to be louder than the reference. 

These two critical band experiments are presented in demonstrations 2 and 3 in [7]. 

15.4 MASKING 

In Section 15.3, we described an experiment in which the ability to hear a tone was masked 
by the presence of noise within the same spectral region. This led to models for the spectral 
resolution of human hearing. Similarly, many experiments are based on the effect of one 
tone on another, which it is hoped will lead to a better understanding of the perception of 
complex sounds. When two tones are presented simultaneously, the weaker tone may, in 
some cases, not be heard. A number of results have commonly been observed for this type 
of experiment. Closer tones have a greater effect, and louder tones affect tones that are 
further away in frequency. It has also been observed that a tone more easily masks a tone 
of higher frequency than one of lower frequency. 

In masking experiments, there is typically a target signal, which is the one to be 
detected, and a masker signal, which is the one being manipulated to affect the listener's 
perception of the target. In one such experiment, a 2000-Hz target signal and a 1200-
Hz masker are applied simultaneously. The masker consists of eight bursts and the signal 
consists of four bursts over the same interval, as shown in Fig. 15.6. The sequence is repeated 
10 times, with the target tone set at a decreased intensity level for each presentation (down 
by 15 dB for the second sequence, and reduced by 5 dB more for each new sequence). 
After all presentations, the masker and target signals are reversed, as shown in the figure. 

Some of the results quoted in [6] for experiments of this kind are ambiguous. They 
are affected by other factors, such as the overall intensities and the amount of room 
reverberation present. However, the asymmetry of the masking affect, namely the greater 
spread upward in frequency than downward, is illustrated in the histogram shown in Fig. 
15.7. The figure plots a histogram of the number of listeners who heard more n pulse 
streams with the 2000-Hz masker than with the 1200-Hz masker. The open bars are for the 
60-dB masker level and the dark bars are for the 75-dB masker level. It is clear, at least for 
this test, that for a sufficiently intense masker, the asymmetry is decidedly in favor of the 
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FIGURE 15.6 Signals and maskers for a simultaneous masking experiment. The length 
of each line represents the duration of a tone. From [6]. 

lower-frequency masker. 
Demonstration 9 of [7] presents this experiment for the listener. 
Masking can also occur when the signal and masker are nonsimultaneous. In exper-

iments of this sort, a short signal (often called a probe) is presented at various times as 
a target signal, and the effect of the masker is measured. When the masker precedes the 
probe, the effect on perception is referred to as forward masking. When the masker follows 
the probe, the effect is referred to as backward masking. Masking effects decrease as the 
time between masker and probe increases, but can persist for 100 ms or more [9]. Temporal 
(nonsimultaneous) masking experiments are presented in demonstration 10 of [7]. 

High quality audio coding schemes such as MPEG-Audio (MP3) take advantage of 
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FIGURE 15.7 Asymmetry of the masking of one tone by another. For each level (upper 
horizontal axis), the vertical bars show the number of listeners for whom n more streams 
are masked by the lower-frequency masker than are masked by the higher-frequency 
masker, where n is marked on the lower horizontal axis. From [6]. 
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simultaneous and sequential masking to hide the distortion that results from representing 
each sample with very few bits. We will describe these techniques in Chapter 35, including 
a more detailed discussion of masking. 

15.5 SUMMARY 

In this chapter, we have presented abrief introduction to experiments that have demonstrated 
the dependence of loudness on a number of stimulus characteristics. In choosing these 
experiments, we have focused on those characteristics that seemed fundamental to our 
overall goals, namely the signal processing of speech and audio. Some of the key results 
of this chapter are as follows. 

1. Loudness is roughly proportional to the cube root of sound intensity, with a doubling 
of loudness being observed for a 10-dB increase in the SPL. 

2. Loudness is frequency dependent, and this frequency dependence is itself amplitude 
dependent. The sensitivity is greatest at approximately 4 kHz, with large deviations 
for low frequencies at low signal levels (up to 80 dB less sensitivity at 20 Hz). Smaller 
deviations are observed for low frequencies at high signal levels. 

3. Longer sounds of a given intensity sound louder, up to a duration of 200 ms. This 
implies some kind of temporal integration, as do the results of forward-masking 
experiments. 

4. Experiments indicate the existence of critical band filters. The bands are wider at high 
frequencies than at low frequencies. Further details on these filter characteristics will 
be described in Chapter 19 in the context of filter-bank models that can be used in 
speech and audio applications. 

5. Pure tones that are close in frequency mask one another, with the lower-frequency 
tone masking the higher-frequency tone more than vice versa. Higher-amplitude tones 
also mask neighboring tones more than lower-amplitude tones. This set of results will 
affect the filter-bank models described in Chapter 19, and is central to the perceptual 
audio coding techniques of Chapter 35. 

As with many of the topics of this book, we can only provide an introduction to a 
major area of study such as psychoacoustics (for further reading, see [3], [5], [9]). In both 
the previous chapter and this one, for instance, we have avoided discussion of binaural 
(two ear) hearing, even though this aspect of hearing is fundamental to the ability to locate 
sound sources spatially; the use of multiple receivers by the auditory system also improves 
intelligibility under noisy or reverberant conditions. Similarly, there have been many studies 
that explore the ability of humans to identify and separate auditory streams; a comparable 
visual phenomenon would be the ability to recognize a car on the other side of a white 
picket fence. Many experiments of this latter type are described in [1]. Although we do not 
go into further detail on these topics, it is essential to the understanding of speech and audio 
signal-processing algorithms that we study the perception of pitch. This is the subject of 
Chapter 16. 
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15.6 EXERCISES 

15.1 Critical band experiments result in psychoacoustical tuning curves that resemble bandpass filter 
frequency-response curves. Theory says that these curves are related to the tuning curves of Fig. 
14.10, but these latter curves seem to be the inverse of critical band filters. How do you explain this 
apparent discrepancy? 

15.2 Having explained the previous problem, we are still faced with the fact that physiological tuning 
curves and psychoacoustic tuning curves are different. Can you provide a plausible explanation for 
this difference? 

15.3 As the intensity of a pure tone is increased, it sounds louder. What do you think happens neurophys-
iologically to make this happen? 

15.4 What reason can you give to explain why a low-frequency tone is better able to mask a tone of higher 
frequency than vice versa? 

15.5 One of the difficulties with two-tone masking is the beating effect. Thus, although the weaker tone is 
effectively masked, the listener hears the beats. Devise an experiment that overcomes this difficulty. 

15.6 Three tones (100 Hz, 2000 Hz, and 7000 Hz) are presented monaurally over wideband headphones 
(40 Hz-16 kHz) to a young adult subject with normal hearing. In each case, the sound-pressure level 
at the subject's ear is 40 dB. What would be the expected loudness for the tones, going from the most 
loud to the least loud? 
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CHAPTER 

MODELS OF PITCH 
PERCEPTION 

16.1 INTRODUCTION 

Human pitch perception is performed by the complete auditory system. Aside from the 
periphery, our knowledge of this system is still so fragmentary that the task of modeling 
human pitch perception depends primarily on the interpretation of many psychoacoustics 
experiments, abetted somewhat by continuing physiological explorations. In this chapter, 
we first review some proposals (and the accompanying controversies) about the nature of 
this remarkable facility of ours. We then elaborate on some of these ideas by comparing 
performances of models with experimental results. The reader should be aware that there is 
a long and rich history associated with this problem. For greater detail than we can provide 
here, consult the excellent review by de Boer [2]. 

As with Chapter 15, the understanding of some of these concepts can be improved 
by listening to the relevant demonstrations from [10]. 

16.2 HISTORICAL REVIEW OF PITCH-PERCEPTION MODELS 

As noted in Chapter 14, von Helmholtz [8] conceived of the auditory system as a bank 
of many overlapping bandpass filters. The relationship between this model and the known 
physiology of the periphery can be seen from Figs. 16.1 and 16.2. 

As noted in Chapter 14, the basilar membrane and associated hair cells respond 
more to high frequencies at the entrance to the cochlea. As the vibrations penetrate more 
deeply into the cochlea, the basilar membrane (BM) response becomes more sluggish, 
corresponding to filters with lower center frequencies. A pure tone would cause greatest 
vibration at a specific place on the BM, and this would ultimately lead to perception of that 
tone. An important fact to note is that the ultimate perception of the tone is dependent on 
the activities of specific cortical neurons. We will return to this point later. 

An engineering model of the auditory system is shown in Fig. 16.2. Note that the 
components of the inner ear (BM, hair cells) are represented by a filter bank. 

Although von Helmholtz's place theory supplies a credible explanation for the pitch 
of pure tones, it runs into some difficulty accommodating the perception of complex 
tones. There are many instances when pitch can be readily identified when the fundamen-
tal frequency is completely absent. Many years before the electronic age, Seebeck [18] 
demonstrated this result by using a siren, as shown in Fig. 16.3. 
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FIGURE 16.1 Schematic of the outer, middle, and inner ears. 

The rotating disk with a single opening, subjected to a wideband acoustic field, 
produced pulses of sound at the frequency 1 /T. When the disk had two openings at opposite 
ends, the repetition rate was doubled. When one of the openings was slightly displaced, the 
frequency was again 1 /T, but the first harmonic could be made extremely small by reducing 
the displacement. Thus, Seebeck created the original version of the missing fundamental 
experiment. In such experiments, listeners are presented with complex tones with essentially 
no energy at the fundamental frequency in order to determine the pitch perception for such 
a stimulus. 

Figure 16.4 illustrates a modern version of Seebeck's experiment, presented in demon-
stration 20 of [10]. The listener hears a complex tone at a fundamental frequency of 
200 Hz. Successive harmonics, beginning with the first, are removed. Many listeners per-
ceive the same pitch as would be heard for a sequence that included the fundamental. 

How can the place explanation for pitch perception be maintained, given experiments 
such as Seebeck's? von Helmholtz defended his hypothesis by arguing that an (unspecified) 
nonlinear operation at the basilar membrane caused the BM to vibrate at the place corre-
sponding to the fundamental frequency, even when there was no energy at that frequency 
in the original signal. Many years later this argument was proved false by Licklider [12]. 

Engineering Model 

Signal Acoustic 
tube 

Outer 
ear 

To higher auditory centers 

FIGURE 16.2 Engineering model of the outer, middle, and inner ears. The dashed curve 
encloses a model of the inner ear as a linear filter bank; this model will be specified further 
in Chapter 19. 
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FIGURE 16.3 Pulse train and resultant spectrum in Seebeck's experiment. The first 
column represents the physical arrangement for the production of each sound; the other 
columns show the corresponding time waveform and power spectrum. Note that for the 
sound labeled c, the spectral component corresponding to the disk rotation speed (1/T) 
has a magnitude very close to zero. 

He alternately played a pure tone (at the fundamental) and a harmonic series of the same 
fundamental frequency but with the actual first harmonic physically absent. The listener 
then perceived two sounds of equal pitch but different timbre. Then noise with a band 
centered at the fundamental was added to this sequence. It was found that the pure tone 
was completely masked, whereas the harmonic series was still heard. If perception of the 
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harmonic series were dependent on the combination tone appearing at the fundamental fre-
quency place in the BM, this combination tone should also have been masked. Licklider's 
experiment is reproduced in demonstration 22 of [10]. 

Licklider's result reinforced the so-called periodicity model of Schouten [17], who 
proposed that the auditory system perceived pitch by somehow measuring the periods of the 
signals as they traveled from BM (by means of hair cells) onto auditory fibers. Schouten's 
model is depicted in Fig. 16.5. 

From this figure we observe that for a 200-Hz pulse train, the lower-frequency filters 
(below 1000 Hz) resolve the lower harmonics of the pulse train. For the high-frequency 

Attenuation 

FIGURE 16.5 Schouten's depiction of BM responses to a periodic 200-Hz pulse train. 
From [15]. 
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FIGURE 16.6 Ritsma's setup to determine dominant frequencies for pitch perception. 
From [16]. 

channels, however, a carrier signal that is within band for each filter appears to be modulated 
by a periodic signal so that the period of the input signal is easily recognized. Schouten 
thus hypothesized that pitch perception would be more salient at these higher harmonics. 
He asked his student Ritsma to set up an experiment to try to verify this hypothesis [16]. 
The experimental setup is shown in Fig. 16.6. Both the low-pass and high-pass filters in the 
figure are subjected to pulse trains having repetition rates that depend on the oscillators. 
Ritsma showed that the listener always chose the output of the low-pass filter as the 
preferred pitch. (The precise design of an experiment to arrive at the result is deferred to 
the exercises). 

Thus, it does not appear to be the case that pitch perception is primarily a high-
frequency phenomenon. More specifically, the results of testing the pitch perception of 
many listeners showed that the dominant frequencies for perception were in the vicinity of 
the third, fourth, and fifth harmonic. This result destroyed Schouten's hypothesis but still 
left open the question of a suitable model. 

Other important insights were obtained from the experiments of Houtsma and 
Goldstein [9]. In one experiment, musically trained listeners were asked to recognize the in-
terval between two successively played signals.1 Each signal contained two successive har-
monics of a given fundamental. When the two signals were presented to both ears, the trained 
subjects had no trouble identifying the intervals. They then repeated this experiment with 
one major modification: for each signal, only one harmonic was presented to one ear and 
the other harmonic to the opposite ear. Again, pitch intervals were correctly identified. This 
result implied that the perception of pitch is centrally located. That is, perception appears 
to have taken place after the auditory signals from the two ears had been combined. From 
Fig. 14.1, this means that processing to determine pitch must take place at the superior 
olivary complex or higher. Also, significantly, von Helmholtz's place theory again plays 
some role in these more recent perspectives on pitch. In particular, the model proposed 
by Goldstein [7] assumes that the BM resolves the low-frequency harmonics and that the 
auditory system recognizes the pattern of excitations on the BM. 

'An interval is the ratio between the fundamental frequencies of two signals. 
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16.3 PHYSIOLOGICAL EXPLORATION OF PLACE 
VERSUS PERIODICITY 

Miller and Sachs [14] collected poststimulus time histograms of spiking intervals over a 
wide range of fiber characteristic frequencies (CFs) from cats. Results for the synthetic 
speech stimulus "da" are shown in Fig. 16.7. 

Their results show that some fibers yield patterns that support the Goldstein place 
concept, whereas others support the periodicity concept. Eight fiber discharge patterns are 
shown in Fig. 16.7, with CFs ranging from 250 Hz to 3620 Hz. Also shown on the figure 
are formants 1, 2, and 3. For the fibers with CF = 250 Hz and CF = 400 Hz, responses 
are synchronized to individual harmonics of the fundamental frequency of approximately 
120 Hz. For the fibers with CF = 330 Hz and CF = 970 Hz, responses are synchronized to 
the fundamental frequency. It is clear that the auditory system may use more than a single 
mechanism in arriving at a pitch estimate. A more complete explanation for these results 
is left as an exercise for the reader (see Exercise 6). 

In recent decades, many deaf patients have been given cochlear implants; this oper-
ation sometimes provides new auditory capabilities. In this procedure, the dysfunctional 
hair cells are bypassed, and implanted electrodes excite the auditory nerve bundle directly. 
Since the electrodes are distributed throughout a specific region of the cochlea, it is possible 
to observe patient responses when individual electrodes, placed at specific places on the 
BM, are stimulated. Results show [5] that responses to the same periodic stimuli vary as a 

Physiological Data from Miller and Sachs 
"Representative of Voice Pitch in Discharge 

Patterns of Auditory Nerve Fibers" 

CF = 250 Hz 

CF = 330 Hz 
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fl = 480 Hz 

CF = 970 Hz 

CF= 1370 Hz 
f2 = 1440 Hz 

CF = 2000 Hz 

CF = 2830 Hz 
f3 = 2760 Hz 

CF = 3620 Hz 

CF = Characteristic frequency 

FIGURE 16.7 Histograms of spiking intervals. From [14]. 
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FIGURE 16.8 Scaled pitch response of a single implanted patient. Each solid curve 
corresponds to the response for a different electrode. From [5]. 

function of the place of excitation. Figure 16.8 gives the results for a six-electrode implant 
as a function of a pulselike stimulus repetition rate. For repetition rates between 100 and 
200 Hz, the perception of pitch increases almost linearly with the rate. Beyond 200 Hz, 
pitch is quite constant, which is quite different than for normal ears. We also notice that 
when the electrode is closer to the base (i.e., electrodes 5 and 6), pitch is higher than for the 
electrodes closer to the apex. This observation is reminiscent of the early place hypothesis 
of von Helmholtz. 

16.4 RESULTS FROM PSYCHOACOUSTIC TESTING AND MODELS 

As we noted earlier, the two major categories of pitch-perception models are those based 
on BM place and those based on the periodicity of the outputs from the BM. Although 
modern perspectives often include aspects of each theory, we have found it instructive to 
compare the response of these models to different stimuli. 

A periodicity model is shown in Fig. 16.9. A correspondence is assumed between 
the basilar membrane and the filter bank. Further, the hair cell-auditory nerve complex is 
modeled as the elementary pitch detectors (EPDs). As in the research by Ritsma, the filters 
cover the low-frequency portion of the speech spectrum (100-2000 Hz). The ability of 
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FIGURE 16.9 Block diagram of the periodicity model. 
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FIGURE 16.10 Block diagram of the place model. 

these filters to resolve harmonics is a function of the pitch and spectrum of the incoming 
signal. 

Neural spiking tends to follow the peaks of the signal. Given an auditory nerve 
spike, that same nerve cannot respond to further stimulation during the refractory period. 
Following this period, the voltage difference between the interior and exterior of the neuron 
gradually returns to normal, thus increasing the probability of subsequent firings. The global 
algorithm shown in the figure generates a histogram of the intervals between successive 
spikes and spikes two, three, or four intervals apart. Pitch period is determined by choosing 
the interval corresponding to the maximum value of the histogram. 

A place model is shown in Fig. 16.10. The underlying hypothesis of this model is 
the ability of the auditory system to resolve harmonic peaks of the stimulus. This reso-
lution probably takes place at higher auditory levels above the periphery. Stage 1 of the 
figure is a version of the Seneff algorithm [19] that performs a statistical separation of 
the frequency spacing between spectral peaks. Stage 2 is related to the harmonic sieve 
algorithm of the Goldstein model, as implemented by Duifhuis [4]. The spectral peaks 
are correlated with sets of harmonically spaced narrow windows. The nominated sets are 
based on the winning pitch of stage 1. The final winner corresponds to the set of maximum 
correlation. 

We can refer to two examples from [10] in order to test the fidelity of each of these 
models to human pitch perception. In the first of these, we present listeners with signals 
that are not harmonic that result from the shifting of each of several harmonics upward 
by the same amount; this is presented in demonstration 21 of [10]. Figure 16.11 shows 
the harmonic structure of two signals. The top signal clearly leads to a pitch of 200 Hz, 
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FIGURE 16.11 Shift of virtual pitch. 
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FIGURE 16.12 Responses of both models to virtual pitch shifts. 

either for humans or for either model. However, the bottom signal is a shifted version of 
the top signal and leads to a perceived pitch of 210 Hz. Many experiments, using dif-
ferent parameters, verify that shifted versions of harmonic signals result in reliable pitch 
perception. At issue is how to explain the amount of pitch shift as a function of the shift 
of the stimulus frequencies. Figure 16.12 shows the results for both place and periodicity 
models for a variety of conditions. Both models respond more or less correctly to the 
stimuli. 

In another case, we can present an entirely different type of stimuli. In demonstration 
26 from [10], a five-octave diatonic scale is played with pulse pairs. This is followed by a 
four-octave diatonic scale built from samples of a Poisson process. Finally, a four-octave 
scale is played with bursts of comb-filtered white noise.2 Here we tested the two pitch 
perception models for the last of these stimuli. Figure 16.13 shows how the noise is comb 
filtered. By sequentially changing the delay, one can control the pitch (which is inverse to 
the delays) to produce the four octaves shown in Fig. 16.14. 

Figure 16.15 shows how the models respond to the comb-filtered noise. Instead of the 
use of the diatonic scale of Fig. 16.14, a slightly different sequence of delays was presented 
to the models, consisting often delays ranging from 12.0 to 2.1 ms. Each of the signals was 

2Comb filtering refers to multiplying the input spectrum by some simple periodic function, for instance by placing 
equidistant zeros around the unit circle in the z plane. Since the result is a filtering out of periodic chunks of the 
spectrum, the filtering action appears like a comb. 
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FIGURE 16.14 Diatonic scale for a comb-filtered noise demonstration. 
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FIGURE 16.15 Tracks of the detected periods for both place and periodicity models of 
pitch, given comb-filtered noise for different delays. 

processed by both models for 160 ms, followed by a pause of 55 ms. Figure 16.15 shows 
the resulting pitch-period estimates; the dips correspond to the off times. 

The place model follows the psychoacoustic results for the initial six of the 10 
cases. The periodicity model more or less follows the same pattern but very erratically. 
Interestingly, the higher pitches are better represented by this model. 

More details on listener response to various noise signals can be found in [1]. 
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FIGURE 16.16 Response of periodicity model to Flanagan-Guttman pulse train. 

The results from comb-filtered noise seemed to suggest that place-based models 
were a better match to human perception. However, in other cases the periodicity model 
performs quite well. An example in point is an experiment by Flanagan and Guttman 
[6] that demonstrated two modes of pitch perception. The listener was presented with a 
sequence of periodic pulses of pulse rate R. Each period consisted of three positive pulses 
followed by one negative pulse; thus the fundamental frequency was R/4. When R was 
less than approximately 150 Hz, listeners perceived pitch to be R; for R greater than 200 
Hz, listeners perceived pitch to be R/4. Figure 16.16 shows the result obtained with the 
periodicity model. In this case, this model gives a good match to the behavior of listeners. 
The place model that we used gave erratic results and is not reproduced here. 

16.5 SUMMARY 

The reader may feel at this point that there are no conclusions that can be made at all. 
Certainly our understanding of pitch perception is incomplete, and the many experiments 
on the topic often seem to point in different directions. However, the two models discussed 
do follow, to some extent, the psychoacoustics data. One can argue, as do Meddis et al. 
[13] and Delgutte and Cariani [3], that the interval histograms of fiber firings supply all 
the required pitch information. Yet, it is still necessary to explain how this periodicity 
information is translated by the auditory system into the necessary place information in the 
cortex. One can subscribe to the modified place model of Goldstein, but we still need to 
understand how the various resolved harmonics get translated into a single answer. In either 
case, it is likely that the brain makes use of all available information, particularly since 
some aspects of the signal may be obscured under different acoustics conditions. In any 
event, these models have provided much food for thought for engineers who have designed 
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FIGURE 16.17 Spectra from "West End Blues" and proposed important spectral sections 
for pitch perception. 

automatic pitch-detection systems for use in speech communications or for diagnostic 
purposes in detecting vocal cord or vocal tract illnesses. 

We close the chapter by giving a musical example to illustrate the portions of the 
spectrum that are the proposed critical inputs for the auditory system according to some of 
the model builders referenced in this chapter. Figure 16.17 shows the spectra of the first 
eight notes of the great trumpet cadenza by Louis Armstrong in "West End Blues." 
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16.6 EXERCISES 

16.1 Experiments have demonstrated that nerve fibers have a refractory period; that is, for several mil-
liseconds following the production of a spike, the neuron is incapable of producing a new spike. This 
implies that the spike frequency of a single neuron cannot exceed several hundred hertz. Given this, 
how can one justify the periodicity model of perception? 

16.2 Combination tones produced by the ear's nonlinearity have been verified from psychoacoustic data. 
Why doesn't this fact nullify the validity of Licklider's demonstration that the missing fundamental 
was not re-created in the cochlea by nonlinearities? 

16.3 Design an experiment using Ritsma's setup (Fig. 16.6) to show that the auditory system perceives 
pitch based on the low-frequency portion of the spectrum. 

16.4 Ritsma showed that the dominant frequencies for pitch perception were harmonics 3, 4, and 5. Do 
you think that this relationship holds for very low (R;50 HZ) or very high (a;1000 Hz) fundamental 
frequencies? Discuss. 

16.5 (a) Miller and Sachs collected Poststimulus time histograms to produce Fig. 16.7. Explain how this 
is done. 

(b) Instead of poststimulus time histograms, interval histograms are often collected. Explain the 
difference. Would interval histograms for the same stimuli have been as useful? 

(c) Licklider [11] and Meddis et al. [13] both presented a pitch-perception model based on a sum of 
autocorrelation functions across frequency channels. Derive a relationship between this function and 
the interval histogram. 

16.6 Explain the results of Fig. 16.7. Why are some fibers synchronized to a harmonic and others to the 
fundamental frequency? 

16.7 Since most of us don't have perfect pitch, we can't simply assign a number or a note to the pitch of a 
sound. Think of one or more ways of determining pitch perception experimentally. 

16.8 Both place and periodicity models performed quite well for the stimulus of Fig. 16.11. Explain how 
the models managed to emulate human performance for this task. 

16.9 What is the property of comb filtered noise that makes it plausible for the place model to emulate 
human perception for at least the lower pitches? 

16.10 What is the pitch of a harmonic series with missing fundamental frequency? Is it (a) the fundamental 
frequency, (b) twice the fundamental frequency, (c) halfway between (a) and (b), or (d) none of the 
above? (In that case, what is your guess?) 
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SPEECH PERCEPTION 

17.1 INTRODUCTION 

How do people perceive speech? This question, in addition to being of great scientific 
interest, is also of central concern to those concerned with building systems for the pro-
cessing of speech. For instance, engineering choices in the development of speech coding 
or synthesis systems should incorporate knowledge of what distortions affect intelligibility 
or voice quality for the human listener. It could also be argued that the human system 
for speech recognition and understanding is the one known example of a robust speech 
recognizer, that is, a recognizer whose performance is insensitive to variability over the 
range of nonlinguistic factors in the speech signal. Although simple mimicry of human 
mechanisms may not be a good approach to engineering design, it is still likely to be useful 
to study the functional characteristics of human speech perception. 

What can we say about the physiological response of the human auditory system to 
a speech stimulus? How might this be related to the psychology of what listeners hear for 
such stimuli? These are the kinds of issues we intend to introduce in this chapter. 

17.2 VOWEL PERCEPTION: PSYCHOACOUSTICS 
AND PHYSIOLOGY 

In Chapter 11, we saw that vowel articulation depended greatly on resonances (formants) 
of the vocal tract configuration. What is the relation between formants and the perception 
of vowels? This can be asked both at the level of the neural response to vowels and at 
the level of the human perception of the vowel identity. The answers to such questions 
are complex and controversial. Nonetheless, it is apparent that there is some relationship 
between formants and vowel perception. We have already observed in Chapters 14 and 
15 that the effective bandwidth of auditory filters widens considerably for higher center 
frequencies. For low-formant frequencies (e.g., below 1 kHz), F\ and F2 would be resolved 
by the narrow bandwidth region of the auditory system, but for higher-formant frequencies, 
adjacent formants would not be resolved. This led to the idea that perhaps the perception 
of vowels by the ear really depended on just two effective formants. Carlson et al. [2] ran 
a psychoacoustic test to study this conjecture. The listener controlled the Fj parameter of a 
two-formant vowel synthesizer by trying to match it to a four-formant vowel synthesizer. In 
general, the best matches were for the adjustable F2 to be appreciably higher in frequency 
than the reference F2 for the front vowels (high F2) but equal to the reference F2 for the 
back vowels (low F2). This result strengthened the two-formant conjecture, at least at the 
level of the full human system for speech perception. 

232 
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FIGURE 17.1 Block diagram of sound representation in the auditory system. From [16]. 

At the finer, more physiological level, the story is less clear. Sachs et al. [16] studied 
the response of auditory neurons and cochlear nucleus neurons in the cat to steady-state 
synthetic vowel stimuli. Their concept of representation is illustrated in Fig. 17.1. 

This figure implies that auditory physiologists have obtained a large amount of data 
on patterns of spiking in the tonotopically1 organized peripheral auditory system. In the 
central processing region, tonotopic organization is maintained, but unlike the periphery, 
different nuclei contain neurons with diverse characteristics, so that the same input will 
create different pathways to the auditory cortex where recognition takes place.2 

The physiological measurement of mammalian auditory systems demands great skill 
by the investigator and is a time-consuming and laborious procedure. Sachs et al. have 
performed a physiological coup by computing simultaneous responses of hundreds of pe-
ripheral auditory nerves to the same stimulus; their valuable data have been used by other 
researchers (e.g., [19] and [18]). In one of their experiments they studied the responses to the 
steady-state vowel Id (as in bet) by computing the poststimulus-time histogram (PSTH)3 

and its Fourier transform. Figure 17.2 shows the PSTH and its Fourier transform for a 
single neuron with CF = 400 Hz. These graphs show synchrony to the fourth harmonic of 
the stimulus. 

If we now look at the results for many neurons, as in Fig. 17.3, we see that different 
neurons will synchronize to different harmonics of the stimulus. The measure used is the 
synchronization index, defined as the Fourier transform magnitude at a specific frequency 
divided by the average rate of the unit. Thus, in Fig. 17.3a, the fibers in the vicinity of 
400-500 Hz are in synchrony to the fourth harmonic, whereas in Fig. 17.3c fibers in the 
vicinity of 1700-2000 Hz are in synchrony to the fourteenth harmonic (1793 Hz). If we 
now look at Fig. 17.3d, we see neurons that are in synchrony to harmonic 19 (2432 Hz). 
Therefore, in this figure, the neural ensemble appears to be sensitive to formant 3, and 

■Recall from Chapter 14 that tonotopic organization refers to a structure in which the different parts have different 
frequency sensitivities. 
2Note that the final stage in Fig. 17.1 is blank, reflecting our relative ignorance of the mechanisms for pattern 
recognition in the brain. However, a wide range of experiments have attempted to explore the function of the 
auditory cortex, for example those described in [7]. 
3See Chapter 14. 
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FIGURE 17.2 Poststimulus-time histogram and Fourier transform of single 400-Hz fiber. 
From [16]. 
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FIGURE 17.3 Synchronization indices for many peripheral auditory neurons. From [16]. 
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these data are in contrast to the two-formant conjecture arising from the modeling results. 
Of course this measurement arises from the auditory periphery only, and the two-formant 
results correspond to the complete auditory system. From this evidence we might infer that 
the periphery retains fairly fine spectral information that may or may not be used later on 
in the auditory chain. 

17.3 THE CONFUSION MATRIX 

Early work on speech perception (in the 1950s) focused on the properties of vowels. At 
the time, it was fairly well understood that vowellike sounds were produced through the 
resonances (formants) of the vocal tract; it was natural to ask how the perceptual mechanism 
behaved toward this well-understood input. Subsequent research has verified that steady-
state vowel perception is one of many interesting aspects of speech perception in general.4 

Formant transitions, at the boundaries between consonants and the following vowel, play 
a significant role in the correct perception of consonants [12]. Furthermore, consonants 
typically play a much greater role than vowels in the human understanding of speech. (In 
written Hebrew, for example, vowels are not explicitly displayed.) 

Research by Miller and Nicely [13] examined the degree of confusion by listeners 
presented with different consonant transitions into the vowel /a/ as in "father". Sixteen 
consonants were chosen: p, t, k, b, d, g, f, s, sh (as in shoe), th (as in thin), z, v, th (as 
in then), zh (as in azure), m, and n. The listeners were forced to make a decision and the 
results were compiled into a confusion matrix. Two examples of the results are shown in 
Figs. 17.4 and 17.5. 

P 
t 

к 
f 
Θ 

ί 
b 
d 
g 

V 

δ 

3 

m 
n 

P 
240 
1 
18 

9 

t 

252 
3 

к 
41 
1 

219 

1 

/ 
2 
1 

225 
69 

Θ 

1 

24 
185 

1 

1 

1 

s 

232 

ί 

236 

b 

5 
3 

242 

6 
1 

d 

213 
33 

2 

g 

1 

22 
203 

3 
4 

V 

2 

24 

171 
22 
1 

δ 

1 

12 

3 

30 
208 
7 

1 

г 

1 
1 

4 
238 

3 

244 

m n 

1 
1 

274 1 
252 

FIGURE 17.4 Confusion matrix for S/N = +12 dB and a frequency response of 200-6500 
Hz. From [13]. 

4 In recent years it has become increasing clear that in natural speech, there are few regions with truly steady-state 
spectral characteristics; rather, it is much more common to have spectral characteristics constantly in flux. Thus, 
the steady-state vowel should be viewed as an abstraction rather than a universal physical phenomenon. 
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FIGURE 17.5 Confusion matrix for S/N = 
Hz. From [13]. 

-6 dB and a frequency response of 200-6500 

Each figure is a 16 x 16 matrix. The spoken syllables are listed vertically; the 
transcribed results for each consonant are listed horizontally. For example, the top row of 
Fig. 17.4 shows that the consonant "p" was heard correctly 240 times and incorrectly 44 
times (distributed among the four consonants shown). For a lower signal-to-noise ratio (Fig. 
17.5), confusion in spotting the "p" has considerably increased. Miller and Nicely collected 
a total of 17 such matrices for different signal-to-noise ratios and different filters. In the 
figures, standard symbols are used for the phonemes; thus, row (and column) 5 corresponds 
to th (as in thin), row 7 corresponds to sh (as in shoe), row 12 corresponds to th (as in then) 
and row 14 corresponds to zh (as in azure). 

The 17 conditions are listed in Fig. 17.6. 
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FIGURE 17.6 Seventeen conditions of S/N and filtering. From [13]. 
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The sounds of any language can further be categorized by features.5 The features used 
by Miller and Nicely were voicing, nasality, affrication, duration, and place of articulation, 
and they are defined as follows. 

Voicing: As noted earlier in this book, vocal cord vibration is present for certain 
phonemes such as vowels. Other sounds, such as voiceless fricatives, are made with an 
open glottis and no vocal cord vibration. Exceptions occur; for example, when speech is 
whispered, the vocal cords stay open. 

Nasality: In English, the three phonemes, m, n, and ng (as in sing), are articulated 
with an open velum, allowing the breath stream to go through the nasal passageway as 
well as through the oral cavity. In French, many vowels are nasalized. In English, vowels 
preceding or following a nasal are also often nasalized. 

Affrication: The fricative sounds, such as s, z, f, and v, are produced with open vocal 
cords but with a constriction somewhere in the vocal tract (depending on the particular 
sound), which causes turbulence in the breath stream. 

Duration: This feature is self-explanatory. 
Place of articulation: In the plosive sounds, the phoneme p is characterized by a 

sudden opening of the lips, whereas the phoneme к is characterized by the sudden opening 
toward the back of the vocal tract. In these and other sounds, the position of a critical spot 
in the vocal tract changes as a function of the sound. 

Many interesting questions can be explored with confusion matrices. For example, 
one can ask which features are more vulnerable to noise. 

The feature concept was created by Jakobson et al. [10]. Their intent was to establish a 
feature set that encompassed all languages, so it was more extensive than the Miller-Nicely 
set and other sets that have been proposed. Figure 17.7 is the Jakobson et al. version of the 
distinctive feature set. Notice that all features can be classified as either place or manner of 
articulation. Furthermore, as implied in the figure, the features of the left-hand column can 

Place p к t b d g f thin s sh v the z azure m n ng I r w h 
bilabial + - - + - - - - - - - - - - + _ _ _ _ + _ 
labiodental _ _ _ _ _ _ + - _ _ + _ _ _ _ _ _ _ _ _ _ 
dental _ _ _ _ _ _ _ + _ _ _ + _ _ _ _ _ _ _ _ _ 
alveolar - - + - + - - - + - - - + - - + - + - - -
palatal _ _ _ _ _ _ _ _ _ + _ _ _ + _ _ _ _ + _ _ 
velar - + - - - + - - - - - - - - _ _ + _ _ _ _ 
pharyngeal _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + 

Manner 
glide _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ + + + _ 
nasal _ _ _ _ _ _ _ _ _ _ _ _ _ - + + + _ _ _ _ 
Stop + + + + + + - - - - - - - - _ _ _ _ _ _ _ 
fricative _ _ _ _ _ _ + + + + + + + + _ _ _ _ _ _ _ 

voicing 

FIGURE 17.7 Binary distinctive feature set of Jakobson et al. From [10]. 

5Note that the termfeatures here has a different meaning than we used in our earlier chapters on pattern recognition; 
in those, features just referred to the observed variables. In the phonetics literature the word typically refers to 
standard binary variables that characterize speech sounds. 
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FIGURE 17.8 Articulatory classification of consonants. From [15]. 

be represented as binary entities. Finally, the set includes the semivowels or glides, plus Pal 
(last five columns in Fig. 17.7). 

The set of consonants in Fig. 17.7 can also be classified into articulatory categories, 
as shown in Fig. 17.8. This figure defines the consonants in terms of the required vocal 
tract shape (including the role of the glottis) and the place in the vocal tract of greatest 
constriction [15]. 

Voiers [22] used six features in his diagnostic rhyme test (DRT). He called his features 
voicing, nasality, sustention, compactness, sibilation, and graveness. The DRT has been 
used to test a great variety of speech-communication systems, most often a vocoder system. 
In assessing the results of a DRT, he made use of these features to produce a score of the 
complete test. 

Ghitza [9] extended the DRT to include tiling. In this paradigm, word pairs in the DRT 
were modified by interchanging selected time-frequency acoustic regions (called tiles) and 
the errors induced by these changes were evaluated. In this way, perceptual distance metrics 
were derived, allowing the experimenter to determine the critical spectral-temporal regions 
for the perception of a given consonant. 

17.4 PERCEPTUAL CUES FOR PLOSIVES 

English plosive sounds or stop consonants (p, t, k, b, d, and g) can contain four successive 
acoustically distinct intervals. Typically a period of silence (commonly called a closure) 
occurs to allow for the pressure buildup in the closed vocal tract. This occlusion is suddenly 
opened, resulting in an acoustic burst. For voiceless plosives, the burst is followed by an 
interval of aspiration and then by a formant transition into the vowel. For the voiced plosives, 
the aspirate interval is missing, so these contain three acoustically distinct intervals. This 
description excludes other cases, for example, a plosive followed by a fricative. Note also 
that unvoiced plosives sometimes have reduced aspiration when preceded by a fricative 
sound (such as s). 
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FIGURE 17.9 Perceptual responses to different burst frequencies and vowels for the 
voiceless plosives. From [3]. 

The length of time between the release of closure and the start of voicing for a follow-
ing vowel is referred to as the voice onset time (VOT). The VOT is an important perceptual 
cue; in the extremes, a very long VOT nearly always leads to a percept of an unvoiced stop 
(p, t, or k), whereas a very short VOT leads to the percept of a voiced stop (b, d, or g). 

Cooper et al. [3], using the Haskins Pattern Playback (see Chapter 30), studied 
the perceptual roles played by the release burst and the following vowel, for voiceless 
stop consonants. Figure 17.9 shows results for seven vowels and 12 burst frequencies. 
It can be seen that high-frequency bursts (greater than 2500 Hz) were always perceived 
as /t/, whereas low-frequency bursts (below 1000 Hz) were always perceived as /p/. For 
intermediate burst frequencies, listeners chose /p/ for vowels with low first formants and 
/k / for vowels in which F\ and Fi were relatively close together. The tentative conclusion: 
cues (i.e., perceptual hints) for voiceless plosives were based on both burst frequency and 
the following vowel, at least for /k/ and /p/. 

17.5 PHYSIOLOGICAL STUDIES OF TWO VOICED PLOSIVES 

Miller and Sachs [14] have studied the response of cats' ears to the sounds /da/ and /ba/. 
The stimuli were generated with the Klatt synthesizer (see Chapter 30). Figure 17.10 shows 
the stimulus properties for /da/. 

For each 20-ms interval, PSTHs of the signals were taken for a large ensemble of 
fibers over a wide range of characteristic frequencies. Fourier transforms of these histograms 
were computed, and a synchronization measure called the average localized synchronized 
rate (ALSR) was introduced. The ALSR is computed as a function of the Mi index of the 
discrete Fourier transform of the PSTH of the Lth fiber, divided by the fiber's average rate 
(RkL), so that 

ALSR(fc) = ~ Σ Λ«-' (17Л) 
M * LeCt 
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/da/ 
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* k^ ms ι̂ ^ 

2048 / ^-4· 2048 f ' 
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FIGURE 17.10 Stimulus for the syllable /da/. The left plot of (a) shows the 
formants and fundamental frequency of the applied synthesizer parameters; the right plot 
shows the overall SPL time variation, (b) shows the time waveform, (c) shows the first 20 
ms (left) and last 20 ms, and (d) shows the corresponding spectra. From 
[14]. 

where Q is the set of fibers whose CFs are within ±0.25 octave of that frequency, and M^ 
is the number of fibers in Q . The ALSR shows how new results may be obtained as a result 
of the ability to obtain data from many fibers based on the same stimulus. Figure 17.11 
shows one example. 

The dashed curves shown in the right column correspond to the formants used in the 
synthesizer. We can see that these formant trajectories are well represented by the ALSRs. 
Thus the temporal aspects of the spike patterns in the auditory nerve prove to be a good 
representation of the actual stimulus spectrum. 
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FIGURE 17.11 Smoothed spectra and corresponding ALSRs for the five 20-ms intervals 
at the beginning of the /da/ stimulus. From [14]. 

17.6 MOTOR THEORIES OF SPEECH PERCEPTION 

As of this writing, our knowledge of the representation of speech in the brain is very 
primitive. When incoming speech is transformed into a neural representation, what does 
the brain match this representation to in order to decide on what was said? Although 
we don't know the answer to this, there have been a number of theories advanced. One 
prominent view (though probably not a dominant one) is referred to as the motor theory 
of speech perception. This theory is based on the hypothesis that our brains interpret the 
received speech patterns in terms of the neural pattern production that we need to articulate 
the same incoming speech. To quote Pickett [15]: 

It derives from the 'functional' school of psychology.... The functionalists insisted 
that all perception is organized to serve as a basis for behavioral action [1]. 

An engineering model of the motor hypothesis was proposed by Stevens and Halle 
[20]; a diagram is shown in Fig. 17.12. 

In this model, called analysis by synthesis, a tentative analysis is first carried out as 
shown in box A in the figure. To quote Pickett again [15, pp. 192-193]: 

The speech sound input on the left is first analyzed by the auditory mechanism, A, 
which may provide an analysis in terms of distinctive features. The auditory analysis is 



242 CHAPTER 17 SPEECH PERCEPTION 

Speech 
input 

= > 

Analysis of 
auditory 
features 

Store 

Tentative 
-+-j decoding to 

phonemes 
Previous 
context 

Tentative 
phonemes 

A 
Comparator — Differ- Controller 

/decision 
maker 

N . Phom 
1 / outf 

erne 
output 

Trial pattern 
of auditory features 

J _ 
Trial phonemes 

Synthesis of 
auditory 
pattern 

from motor 
instructions 

, к 

E 

F 

Articulatory 
motor 

instructions 

Phonological 
rules of 

the language 

FIGURE 17.12 Analysis by synthesis motor theory of speech perception. From [15]. 

fed to a store, B, which retains the auditory features for subsequent use in the 
comparator, H, and in a preliminary phoneme decoder, C. This decoder converts the 
auditory features into a tentative sequence of phonemes, which is combined with the 
previous context by the controller/decision mechanism, D, to give a trial sequence of 
phonemes. The trial sequence is then converted by phonological rules, E, to a set of 
motor articulatory instructions, F. These are fed to a synthesizer, G, which converts the 
instructions into a set of auditory features, a trial auditory pattern that can be 
compared with the stored auditory pattern. The difference, or 'error, ' seen by the 
comparator, H, are assessed by the decision mechanism; if the error is low the 
decision confirms and puts out the preliminary phoneme sequence as the final 
decision; if the error is high the differences are used to generate a new, different 
sequence of trial phonemes, and the synthesis process is repeated for the new 
phonemes. The process reiterates until a final, best decision is made. 

Several variations on the motor hypothesis have been proposed. Work by Galunov and 
Chistovich [8] led to a proposal for a syllabic motor theory. Studdert-Kennedy [21] pointed 
out that although consonants are processed categorically (quantal response on continuously 
controlled parameters) and vowels are not processed categorically, this reflects a basic 
structure of the acoustic syllable. He then proposed a motor theory of speech acquisition 
in infants that postulates the existence of inherited articulatory and auditory templates that 
make it possible for the growing child to learn to speak and to recognize speech. 

In 1965, Lane [11] showed experimentally that categorical perception is not restricted 
to speech sounds but works for certain nonspeech stimuli; he thus cast doubt on the motor 
hypothesis and the notion that the human brain has special speech-processing neural entities. 
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As Pickett [15, p. 206] remarks, the motor theory, at this stage, may be more appealing than 
compelling. 

17.7 NEURAL FIRING PATTERNS 
FOR CONNECTED SPEECH STIMULI 

Delgutte [6] has recorded neural firing patterns in the cat in response to a spoken English 
sentence of several seconds. As did Sachs et al., he measured PSTHs, but his focus was 
primarily on the phoneme transitions. Figure 17.13 shows a comparison between the pattern 
of neural spiking and the sound spectrogram below. It can be seen that the transitions as 
represented by the spectrogram are also well represented by the firing patterns. 

Figure 17.13 indicates how neural spike patterns respond to transients in speech. 
Delgutte [5] proposed a model for neural detection of the VOT. The model hypothesizes 
a measure of the difference between onset times of low-CF and high-CF neurons. An 
example is seen in Fig. 17.13 for the /J/ in "Joe" and the /t/ in "took"; one can find 
the VOTs by measuring the time intervals between the 400-Hz and 4000-Hz CF onset 
times. 

Speech contains relatively steady-state as well as transient intervals (although fluent 
speech is essentially in constant flux, as noted earlier). Chistovich et al. [4] proposed a 
speech perception system that included a tonic and a phasic component; we have already 
described the phasic as the system response to transients; the tonic is the response to steady 
stimuli that frequently occur for vowels and fricatives. Figure 17.14 shows the PSTHs for 
neurons with CFs ranging from several hundred hertz to 3000 Hz for two periods of the 
steady-state vowel /ae/ (as in hat). 

These measurements are the same ones shown in Fig. 17.13 but with a greatly 
expanded time scale. It can be seen, for instance, that intervals between peaks in the 
histograms of the lower-CF fibers are inverse to F\, whereas CF fibers between 1300 and 
1800 Hz show peaks at intervals of 0.7 ms, the inverse of F2. Notice that the lowest CF 
fiber resolves the fundamental frequency FQ of 100 Hz. Interestingly, the high-CF fibers do 
not resolve the harmonics and the histograms also reflect FQ. 

In Figure 17.15, interval histograms rather than PSTHs are measured for the same 
stimulus as that of Fig. 17.14. (Notice that the scales for the two figures differ.) Peaks appear 
at roughly the same intervals, but, in addition, FQ is represented by a major peak in all fibers 
so that the pooled distribution (B in the figure) yields a very strong representation of the 
fundamental period. In Section 17.3 on Confusion Matrices, we plotted the confusions for 
each of 16 consonants preceding the vowel /a/ (as in father). Delgutte [6] has obtained 
response patterns of a single fiber for several cases. These are shown in Fig. 17.16. 

The spectrograms of the synthesized consonant-vowel sounds are shown in the left 
column of the figure. The middle column gives the response of an auditory filter with 
CF= 1800 Hz. The rightmost row gives the response of a fiber in the inferior colliculus 
with CF = 1100 Hz. Note that this final row shows a sparser response to the stimulus, a 
tendency that is often seen farther up the auditory chain. 
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FIGURE 17.13 Neural firing patterns for different CFs and spectrograms of the same 
sentence. From [6]. 

17.8 CONCLUDING THOUGHTS 

It would be easier to present a coherent picture of the physiological basis of speech 
perception if it was very well understood - but it is not. There have been many experiments 
showing the response of neurons to simple stimuli (particularly in the periphery, i.e., at 
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FIGURE 17.14 PSTHs for two periods of a steady vowel. Plot В shows the vowel 
waveform. From [6]. 

the auditory nerve), but the results of these experiments provide us with more detail than 
understanding of the overall operation of the system. It is apparent that the auditory nerve 
provides rich representations to the higher centers, and that both spectral information and 
temporal information are available for these later systems to use. Some of more central 
auditory subsystems (such as the cochlear nuclei) contain cells that react in a number of 
diverse ways to the stimuli; as noted in Chapter 14, the auditory nerve has both high-
threshold (low spontaneous rate) fibers and low-threshold (high spontaneous rate) fibers, so 
that even the notion of a spectral representation at the auditory nerve is made complicated. 
As noted in Chapter 16, there is also significant evidence that some temporal information 
is passed on to higher centers, and this information may be used for more than pitch 
perception. However, key features of formant trajectories for short-syllable stimuli do 
appear to be well represented at the auditory nerve (although higher-pitch speech appears 
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FIGURE 17.15 Interval histograms for two periods of a steady vowel. Plot В shows the 
pooled distribution, summing up over the characteristic frequencies. From [6]. 

to generate representations with less of a clear correspondence with formant structure.) It 
is also apparent that at least some of the sounds that are commonly confused by listeners 
generate somewhat similar representations at the auditory nerve. 

In this chapter, we also presented some classic results of psychophysical experiments 
with simple speech stimuli - in particular, with individual phonetic elements and with 
simple plosive-vowel syllables. Such experiments were often done with synthesized sounds 
or with careful talker presentations of isolated elements. Some of the basic ideas that are 
now used in discussions of speech perception came from these studies. In particular, these 
include the notion of common confusions, the notion of phonetic features that characterize 
individual sounds, and the apparent existence of some internal representation that seems 
to be more coarse than what is suggested by a pure formant structure. We also noted some 
of the aspects of stop-consonant perception, including voice onset time, burst frequency, 
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FIGURE 17.16 Response patterns of two fibers to various synthetic speech 
consonant-vowel transitions. From [6]. 

and formant transitions. We have necessarily skipped many important areas of study, such 
as prosody (patterns of pitch, intensity, and durations), effects of accent and dialect or 
pronunciation in general, speech as part of multiple auditory streams in real environments, 
and so on. In Chapter 18, we will extend the discussion to the problem of human speech 
recognition. 

17.9 EXERCISES 

17.1 In Section 17.2, it is stated that "the best matches were for the adjustable F2 to be appreciably higher 
in frequency than the reference F2 for the front vowels but equal to the reference F2 for the back 
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vowels." Why did this result strengthen the two-formant conjecture? 

17.2 What phonemes would you think would be most difficult to perceive over a quiet telephone channel? 
What about a noisy one? Give an explanation. 

17.3 Three measures of auditory neural activity are based on the times of occurrence of neural spikes; these 
are (a) PSTHs, (b) interval histograms, and (c) period histograms. In (a), a histogram of the time of 
occurrence of spikes following stimulus onset is accumulated. This involves repeated presentations 
of the same stimulus; the stimulus is typically 10-20 ms in duration. In (b), the same stimulus may 
be presented to the animal's ear, but the measurement is the time between adjacent spikes. In (c), 
the times are measured relative to the reference time in a periodic stimulus; for example, the time 
between the positive-going zero crossing of a sinusoidal stimulus and the occurrence of spikes within 
the subsequent stimulus period. Make diagrammatic sketches of how a single neuron might respond 
to a single presentation for each of these measurements. Then, discuss the relationships between the 
three methods, using the responses to a tone and a click as examples. Can you think of cases in which 
one of the measurements is superior to the others? 

17.4 Jakobson et al. [10], Miller et al. [13], and Voiers [22] each developed a distinctive feature set. The 
concept was based on the notion that phonemes could be described in terms of more elementary 
entities. As the text indicates, the work of Jakobson et al. was more extensive. Discuss how the 
feature systems of Voiers and Miller et al. can be derived from the Jakobson et al. system. Compare 
Voiers and Miller and give your opinion as to the relative merits and demerits of each for assessing 
speech-communication systems. Why did Miller and Voiers find it necessary to simplify the Jakobson 
system? 

17.5 The ability of Sachs and Young [171 to measure the responses of many neurons to the same stimulus 
created new opportunities for physiological research on auditory systems. Discuss how the ALSR is a 
byproduct of these technical developments. Can you cite other measurements that became available, 
given this new capability? 

17.6 The sound spectrogram (described in Chapters 2 and 3) has served for many years as a standard 
way of visualizing the properties of a speech signal. More recently, researchers have developed the 
neurogram to describe speech in the time-frequency domain. Discuss the relationship between these 
two methods and give your opinion as to the pros and cons of each method. (Review Section 17.7, 
plus any other material you know about as a preliminary to your discussion). 

17.7 What is meant by categorical perception? Do you know of any examples of this in domains other 
than speech? 

17.8 Discuss the motor theory of speech, giving arguments for and against it. 
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HUMAN SPEECH RECOGNITION 

18.1 INTRODUCTION 

How do people recognize and understand speech? As with other aspects of perception 
that we have touched on, this is a focus for many books and articles. Our task is further 
complicated by the fact that, despite the profusion of articles on the subject, very little is 
understood in this area; at least there is very little that experts agree on. 

Here we can only hope to introduce a few key concepts and in particular to lay the 
groundwork for the reader to think about aspects of human recognition that are different 
from the common approaches to artificial speech recognizers. For this purpose, we focus 
on two particular studies: the perception of consonant-vowel-consonant (CVC) syllables 
in decades-long studies, directed by Harvey Fletcher of Bell Labs (and later reexamined 
by Jont Allen [1]); and the direct comparison of human and machine "listeners" on tasks 
of current interest for speech-recognition research, as described by Richard Lippmann of 
Lincoln Labs [10]. 

18.2 THE ARTICULATION INDEX AND HUMAN RECOGNITION 

In the 1990s, Jont Allen from AT&T revived interest in a body of work done at Bell Labs 
in the 1920s by a group headed by Harvey Fletcher; [1] is an insightful summary of Allen's 
perspective on this work. Here we describe only a few key points from that paper. 

18.2.1 The Big Idea 

A principal proposal of this paper is that humans do not appear to use spectral templates 
(e.g., one set of local spectral features every 10 ms), but rather they do partial recognition 
of phonetic units across time, independently in different frequency ranges. In other words, 
Allen's model suggests a subband analysis for speech recognition, in which partial decisions 
are developed independently and then combined at the level of phonetic categorization. 

This suggestion is notable for a number of major reasons. 
1. It is based on decades of measurements with human listeners; in other words, even 

if it does not turn out to be entirely correct, it is not a casual suggestion, and it is likely to 
at least be related to the character of human hearing. 

2. It is also based on a theory of human hearing that was developed by Fletcher to 
model the experimental results. In other words, there is a theoretical structure that can be 
used. In particular, Fletcher defined a measure called the articulation index (called AI long 
before the term was ever used for artificial intelligence). In this context he intended the 
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word articulation to refer to the probability of identifying nonsense speech sounds. This was 
in contrast to the notion of intelligibility, which refers to the identification of meaningful 
speech sounds such as words or sentences. 

3. Finally, it is at odds with virtually every speech-recognition system that engineers 
have built; nearly all ASR systems have primarily depended on framewise features that are 
based on short-term spectral estimates. 

18.2.2 The Experiments 

Starting around 1918, Bell Labs researchers designed databases from CVC, consonant-
vowel (CV), and vowel-consonant (VC) nonsense syllables. Their estimate at the time was 
that these types comprised approximately 74% of the syllables used over the telephone, and 
as such provided a good idealized testbed for the recognition of speech without the more 
complex factors of multisyllabic acoustic context or syntactic or semantic factors. Over 
the following years, listening tests were conducted with differing signal-to-noise ratios 
and frequency ranges; the latter were established by using high-pass or low-pass filters. A 
fundamental motivation was to determine the bandwidth that was required for the telephone 
system; in fact it was these experiments that led to the frequency range that is in use today. 

There were many results from these experiments, but two that Allen focused on were 
as follows. 

1. The probability of getting a CVC syllable correct (determined by counting the 
number of times that listeners correctly identified the syllable for a given condition) was 
roughly the product of the probabilities of having the initial C, the V, or the final С phone 
correct in the syllable identification. This meant that, as far as this measure and experiment 
were concerned, the phone identifications could be treated as being independent. 

2. For speech low-pass filtered and high-pass filtered at the same point, the phone 
error probability for the total spectrum was equal to the product of the error probabilities for 
each of the two bands. In other words, the probability of error for the band from 100 Hz to 
3000 Hz would be the product of the error probabilities for bands from 100 to 1000 Hz and 
from 1000 to 3000 Hz. More formally, let s(a, b) be the articulation (probability of correct 
phone classification) for speech with a lower spectral limit of fa and a higher spectral limit 
of fb. Then Fletcher's experiments seemed to show that 

[1 -s(a,c)} = [1 -s(a,b)][l -s(b,c)]. (18.1) 

Equivalently, 

log10[l - s(a, c)] = log10[l - s{a,b)] + log10[l - s(b, c)}. (18.2) 

Fletcher then defined an AI as 

A I W = l o g . o O ^ ) 
log10(l - Jmax) 

where im a x is the maximum articulation (that is, the best that people could achieve with a 
high signal-to-noise ratio and wide bandwidth), measured by Fletcher to be 0.985. 
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Given the experimental result of Eq. 18.1, dividing Eq. 18.2 by log10(l — smax), we 
see that the AI has the property that 

Al[s(a,c)}=Al[s(a,b)}+Al[s(b,c)} fa <= fb <= fc. (18.4) 

Thus, a relatively simple nonlinear transformation of the probability of phone correctness 
converted it to a measure that would be roughly additive over frequency. 

18.2.3 Discussion 

The articulation index measure also implied an underlying density, for which the integral 
over some contiguous range corresponded to the AI for that range. Allen notes that Fletcher 
and Stewart generalized from these results to a multi-independent channel model of phone 
perception. As noted from Eq. 18.1, the error for a wideband signal is equal to the product 
of errors for two individual bands. If correct, this would be an astonishing kind of indepen-
dence - essentially it says that if any single band leads to perfect phone identification, errors 
in any of the other bands don't matter! Such a system is in some sense optimal, though the 
form of optimality is one that we currently don't know how to implement in engineering 
systems. However, Allen's interpretation of the Fletcher data is that this was indeed what 
was observed. 

There have been some objections to the AI theory as a literal truth; for instance, Lipp-
mann showed human performance for speech that had been filtered to essentially remove 
components between 800 and 3000 Hz to in fact be significantly better than that which 
would be predicted from AI analyses [12]. The choice of phones as the fundamental unit 
of speech recognition is also controversial, as others have suggested transition-based units, 
half-syllables, or even complete syllables as being more primary (particularly during natural 
speech, for instance during human-to-human conversations) [7]. Also, while the Fletcher 
experiments suggest an ideal (for high SNR and broad bandwidth signal) phoneme error 
rate of 1.5%, they were designed to test substitution errors, and human phoneme recog-
nition of natural speech also includes insertions and deletions; furthermore the phonetic 
classification was determined for a syllable in a known position in the carrier sentence. A 
modern measure of human phone recognition errors was observed in [16], where Italian 
-speaking subjects were asked to phonetically transcribe Japanese and Spanish sentences 
from conversational telephone speech, which is known to be more difficult to transcribe 
than carefully read sentences (and for which presumably the cross-language property would 
eliminate the effects of higher level information). In this case, the best subjects still had 
phone error rates in the mid-teens. 

However, aside from interpretations that remain controversial, the Fletcher studies 
are still extremely instructive. For instance, it seems very likely that there is a significant 
amount of analysis that is performed in the human auditory system on limited bands of the 
speech over time, and that this information is later integrated into some kind of incomplete 
decision about sound unit identity. A number of speech researchers incorporated ideas such 
as this into experimental ASR systems [3, 2, 8]. More generally, it is likely that human 
hearing incorporates many maps for decisions about what was said; see Fig. 17.1 in the 
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FIGURE 18.1 Six speech-recognition corpora. From [10]. 

previous chapter, for instance, for the Sachs et al. perspective, in which multiple maps that 
are each tonotopically organized are used in order to make phonetic distinctions. 

18.3 COMPARISONS BETWEEN HUMAN AND MACHINE 
SPEECH RECOGNIZERS 

Although the automatic speech recognition (ASR) research of the past few decades has 
resulted in great advances, much more remains to be done to achieve the oft-stated goal of 
devices that equal or exceed human performance. Lippmann [ 10] has compared recognition 
accuracy for machines and people on a range of tasks. Figure 18.1 shows six recognition 
corpora with vocabularies ranging from 10 to 20,000 words, and this includes isolated 
words, read sentences, and spontaneous speech. All cases are speaker independent (trained 
on one set of speakers but used on a different set). Table 18.1 lists the characteristics of six 
speech corpora. 

The column marked Recognition Perplexity is a measure of the average number of 
words that can occur at any point in an utterance, assuming a particular grammar, as defined 
in Chapter 5. Given the ability of many recognizers to use word-sequence constraints, 
perplexity is a good measure of the linguistic uncertainty in the grammar, and as such tends 
to correlate with the recognition difficulty for a task. It does not account for the acoustic 
difficulty of a task; for instance, an unconstrained digit sequence has roughly the same 
perplexity as an unconstrained sequence of letter names that rhyme with "e," but the latter 
has words that are much more acoustically similar to one another, so error rates tend to be 
higher. The perplexity for the last row is left blank, as the row refers to a wordspotting task, 
which does not use a constraining grammar in the same sense as the other tasks. 

The five boxes in Fig. 18.2 show comparisons between humans and the best ASR 
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devices for all table entries but the Wall Street Journal case. 
These results are for the cases of clean speech; in other words, there are essentially 

no environmental effects, such as a poor signal-to-noise ratio (SNR). As the top 3 boxes 
show, both ASR and human error rates increase with perplexity. The bottom two boxes 
are for very different conditions so that perplexity is no longer a reasonable measure of 
difficulty. These boxes indicate that for more normal (less formal) human discourse, huge 
increases in ASR error rates occur. 

Another comparison indicator is given in Table 18.2; namely, the effect of adding 
noise to a test set from the Wall Street Journal corpus. 

Discussing these data, Lippmann notes [11]: 

. . . the error rate of a conventional high performance HMM (Hidden Markov Model) 
recognizer increases dramatically from 7.2% in quiet to 77.4% at a SNR of 10 dB at 
noise levels that do not affect human performance. This enormous increase in error 
rate occurs for all high-performance recognizers tested in this noise and trained using 
quiet speech. A noise adaptation algorithm reduces this dramatic drop in performance 
and provides an error rate of 8.4% at a SNR of 22 dB and 12.8% at a SNR of 10 dB. 

We note that although the noise adaptation algorithm helps a great deal, the error rate 
still almost doubles between the quiet and 10-dB SNR case, while increasing only slightly 
for human listeners over this range. Further, even with noise adaptation there is still an 

TABLE 18.1 Characteristics of Six Talker-Independent Recognition Corpora3 
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From [10]. 
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order of magnitude greater error with ASR than for the human experiment. '. 
Lippmann summarizes his results as follows. 

Results comparing human and machine speech recognition demonstrate that human 
word error rates are roughly an order of magnitude lower than those of recognizers in 
quiet environments. The superiority of human performance increases in noise and for 
more difficult speech material such as spontaneous speech. Human listeners do not 
rely as heavily on grammars and speech context.... Humans do not require retraining 
for every new situation.... These results and other results on human perception of 
distorted speech suggest that humans are using a process for speech recognition that is 
fundamentally different from the simple types of template matching that are performed 
in modern hidden Markov speech recognizers. 

In [10] Lippmann further suggests that examining more narrow spectral (and tem-
poral) regions, as well as learning how to ignore or focus on different kinds of phonetic 
evidence, will be key problems for future ASR research.2 

'While these results were generated in the 1990s, as of 2011 there is still a broad gap in word error rates between 
the roughly 1 % for the human case and what is typically seen for ASR of noisy speech. 
2Lippmann later refined this material and described it in a journal paper [13]. 
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TABLE 18.2 Word Error Rate for a 5000-Word Wall Street 
Journal Task, Using Additive Automotive Noise 

System 

Baseline HMM ASR 
ASR with noise compensation 
Human listener 

10-dB SNR 
(%) 

77.4 
12.8 
1.1 

16-dBSNR 
(%) 

42.2 
10.0 
1.0 

Quiet 
(%) 

7.2 

0.9 

Recognition of large vocabulary conversational speech has improved enormously 
since the Lippmann studies, making use of very detailed statistical models trained on 
thousands of hours of telephone conversations, as noted in [14] and [4] where word error 
rates in the mid-teens were reported on a task for which error rates of 70 to 80% were often 
observed in the early 1990s. However, inter-annotator error rates for humans listening to 
speech from this corpus were still significantly lower (4.1 to 4.5% for careful transcriptions, 
as noted in [6]). 

Finally, we note that in a 2008 study [15], a number of feature extraction methods 
(MFCC, PLP, Mel Filterbanks, and Rate Maps) were applied to the task of classifying 
articulatory features in VCV syllables with an SVM, and in general human performance 
was still found to be significantly better for every case (though human SR and ASR were 
close for the characteristic of voiced vs. unvoiced). 

18.4 CONCLUDING THOUGHTS 

As we noted in Chapters 14—17, the peripheral auditory system has been explored for 
many years. Although it still would be presumptuous of us to assume that the physiology 
up to the auditory nerve is well understood, there is a moderate amount of agreement 
among scientists about the basics in this area. Farther up the auditory chain, our knowledge 
is certainly much more limited, though there have been efforts to model the functional 
properties of mammalian primary auditory cortex; some of these models have even inspired 
a number of experimental methods for ASR. Overall, though as of this writing it would be 
fair to say that the internals of human speech recognition are little understood. 

As noted in this chapter, people generally recognize speech very well, even under 
conditions that appear to pose great difficulty for our ASR systems. And though [16] 
appeared to show a somewhat closer error rates for human and machine recognition (par-
ticularly at the phone level) than had been observed previously, it is clear from many studies 
that human speech recognition under even moderately noisy or reverberant conditions can 
degrade far more gracefully than current ASR does. 

What do we know about human speech recognition that differs from our best artificial 
systems? 
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Signal processing: Although we don't know exactly what signal processing occurs in the 
auditory system, we do know that processing occurs with a range of time constants and 
bandwidths. Given the robustness of human listening to many signal degradations, each of 
which would severely degrade an individual representation, it is likely that many maps of 
the input signal are available to the brain; see for instance studies in neuroscience, e.g.,[5] 
and [9] that have revealed that neurons in the mammalian auditory cortex are highly tuned to 
specific spectro-temporal modulations. ASR's current use of simple functions of short-term 
spectra measured every 10 ms may be a significant limitation. However, even within this 
constraint, a number of the characteristics of auditory perception have been incorporated 
into speech-processing systems, and these will be discussed in the next few chapters. 

Subword recognition: Humans seem to be able to adapt their use of the multiple signal 
representations according to the requirements of the moment. In [10] Lippmann calls for 
the addition of "active analysis in the front ends of speech recognizers to determine when a 
feature is present and when it is a component of a desired speech signal. This supplementary 
information can be used by classifiers that can compensate for missing features." As noted 
earlier in this chapter, Allen has focused on the use of subband information over time, 
and he suggests some representation incorporating a correlation between subbands as a 
measure; combining these threads of information is an open problem, though the current 
leading contenders for a solution are all based on ideas from statistical pattern recognition. 

Temporal integration: Humans are able to understand utterances with a wide range of 
speaking rates, implying some kind of time normalization. In contrast, durations are often 
key components in phonetic discriminations. For example, as noted in Chapter 17, the 
VOT (the time between the burst and the following vowel) is the key discriminating factor 
between "pa" and "ba." In ASR, the most common form of temporal normalization is a 
crude compromise that does not sufficiently reduce variability (ASR systems often do much 
worse on fast speech) but also eliminates critical information about internal timing. 

Integration of higher level information: In many cases in which the acoustic evidence 
is equivocal, the utterance identification can still be made based on the expectations from 
syntax, semantics, and pragmatics (where the latter refers to facts from the particular 
situation). Additionally, for many tasks it is not really necessary to recognize all the words, 
but only to get the relevant point. This is made obvious by examining written transcriptions 
of the spoken word. Particularly if there is no second corrective pass, there are often many 
differences between what is said and what was written. Essentially, people are trained to 
recognize the gist of what was said, and usually not the precise word sequence. In our 
ASR systems, we tend to focus equally on all words, both informative and noninformative; 
furthermore, our current capabilities for the integration of higher-level information are quite 
primitive, except in specialized systems that depend on an extremely restricted application 
domain. 

This concludes the first half of our text. In the remaining chapters, we will focus on 
the engineering approaches that are currently the basis of audio processing systems, with a 
particular focus on speech recognition, synthesis, and vocoding. 
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18.5 EXERCISES 

18.1 Imagine a tonotopically organized (subband-based) phoneme recognition system such as the one 
discussed by Allen. What might be the potential advantages or disadvantages of such a system? 

18.2 Lippmann points out many ways in which 1996 speech-recognition technology is inferior to the 
capabilities of human speech recognition. Suggest some situations in which human speech recognition 
could potentially be worse than an artificial implementation. 
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My sources are unreliable, but their information is fascinating. 

—Ashleigh Brilliant 

^J EGINNING WITH Part V, we illustrate how signal processing and pattern-recog-
nition techniques can be applied to problems in speech and audio. In Parts V-VIII we will 
incorporate the ideas hinted at in Part I, using the mathematics from Part II, assuming the 
underlying structure of the signal suggested in Part III, and with a perspective derived from 
our view of human hearing as described in Part IV. 

In every speech-processing system, signal processing is used to extract relevant 
features. In the case of analysis for synthesis, for instance, representations of the short-
term spectrum are computed in order to preserve perceptually relevant features for later 
reproduction. In the case of speech recognition, features are typically computed so that 
sounds associated with different linguistic units can be distinguished. In each of these 
cases, researchers have developed representations to optimize for the specific goals of the 
application. However, much as the colors in a painter's palette are used to compose a range 
of possible hues, basic approaches to the representation of short-term spectral information 
are used as components in more complex types of feature extraction that are described later 
in this text. The three chapters in Part V describe archetypes for speech feature extraction; 
these are the filter bank, cepstral analysis, and linear prediction. 



THE A UDITORY SYSTEM 
AS A FILTER BANK 

19.1 INTRODUCTION 

As noted in [9], one of the key measurements used in speech processing is the short-term 
spectrum. In all of its many forms, this measure consists of some kind of local spectral 
estimate, typically measured over a relatively short region of speech (e.g., 20 or 30 ms). 
This measure has been shown to be useful for a range of speech applications, including 
speech coding and recognition. In each case, the basic notion is that of capturing the 
time-varying spectral envelope for the speech, and in each case it is desirable to reduce 
the effects of pitch on this estimate; either pitch is used separately (as with a vocoder or 
a tone language speech-recognition system), or it is generally discarded as irrelevant to 
the discrimination (as in most English language speech-recognition systems). Therefore, 
in speech applications, the short-term spectral algorithm is usually designed to estimate a 
spectral envelope that has a reduced influence from the pitch harmonics in voiced speech. 

In this chapter and the following two, we will describe three basic approaches to 
the estimation of the short-term spectral envelope: filter banks, cepstral processing, and 
linear predictive coding (LPC). The first and oldest approach is that of temporally smoothed 
power estimates from a bank of bandpass filters. Since much of the inspiration for such 
an approach originates from models of the human auditory system, we will begin with a 
discussion of the interpretation of the auditory system as a filter bank. 

In Chapter 14 we displayed tuning curves of individual auditory nerve fibers and 
showed that the bandwidth increased with the CF (characteristic frequency) of the fiber. In 
Chapter 15 we discussed psychological tuning. Here we discuss filter-bank designs that can 
be used to model these aspects of the human auditory system. We review Fletcher's early 
experiments on critical bands. We then move to more recent experiments, in particular to 
Patterson's results, that lead to specifying shape as well as to the bandwidth of auditory 
filters. Following this we discuss versions of the so-called gammatone filters, which are 
attempts at physical realizations of the tuning curves of Chapter 14. We conclude with a 
more informal discussion of some of the filter-bank designs that have been at least partially 
influenced by auditory system research. 

19.2 REVIEW OF FLETCHER'S CRITICAL 
BAND EXPERIMENTS 

As noted in Chapter 18, Harvey Fletcher and his collaborators at Bell Laboratories experi-
mented extensively on human hearing [1]. In addition to the experiments on CVC syllable 
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perception, they did extensive work on masking phenomena. In a test of what is called si-
multaneous masking, the listener was presented with a tone plus wideband noise. Initially, 
the tone was of low enough intensity so that it was not perceived. The intensity of the tone 
was then gradually increased until it was just barely perceived; this intensity was called 
the threshold intensity. As the noise bandwidth was decreased, no change took place in 
the threshold until a critical band was reached. As bandwidths decreased still further, the 
threshold of detection decreased. 

Such experiments suggested the existence of an auditory filter in the vicinity of the 
tone that effectively blocks extraneous information from interfering with the detection of 
the tone. This vicinity is called a critical band and can be viewed as the bandwidth of each 
auditory filter. The experimental results showed that the width of a critical band increases 
with the higher frequency of the tone being masked. Thus, the results yielded important 
information about the bandwidth of the auditory filter, though not about its shape. 

The quantitative result is shown in Fig. 19.1 (a repeat of Fig. 15.4, added here for 
convenience). The Bark scale of Fig. 19.1 (a good approximation to psychoacoustic critical 
band measurements) yields bandwidths that are below 200 Hz until the center frequency 
exceeds 1000 Hz. As center frequency increases above 1000 Hz, the Bark scale adheres 
closely to bandwidths that are logarithmic functions of the center frequencies. Thus, for 
frequencies above 1000 Hz, the data is another example of Weber's law, which states that 
our peripheral senses tend to follow a logarithmic law of sensation as a response to a 
stimulus. 

Below approximately 800 Hz the bandwidths measured by Fletcher were fairly 

200 500 1000 2000 
Center frequency (Hz) 

FIGURE 19.1 Plots of estimated bandwidth as a function of center frequency for two 
constant-Q scales, the Bark scale and Greenwood's cochlear frequency-position function. 
From [2]. 
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constant, with a bandwidth of approximately 100 Hz. More recently, Moore et al. [4] 
performed a different set of psychoacoustic measurements to estimate bandwidths for these 
low frequencies. These measurements seemed to show that the auditory filter bandwidths 
for low-frequency tones increased significantly between 100 and 800 Hz. The degree to 
which they increase is still a matter of some controversy among experts in the field. 

Another result from Fletcher, based on very different psychoacoustic data (discussed 
in Chapter 18), related the articulation index (AI) to auditory bandwidths. As noted pre-
viously, the AI is a simple function (given by Eq. 18.3) of the average phone accuracy 
associated with a listener's response to CVC (consonant-vowel-consonant) nonsense syl-
lables. Measurements were made by gradually increasing the bandwidth of a low-pass 
filtered version of these spoken syllables. As the bandwidth increased, the AI increased; 
in this way the AI could be directly associated with the speech bandwidth. As shown in 
Fig. 19.2, each mark indicated an equal increment in the AI, and we see from that figure 
that higher frequencies require a greater bandwidth to achieve the same AI increase as that 
of the lower frequencies. Thus, this test also leads to a model for which the auditory filters 
increase in bandwidth for higher frequencies. 

19.3 RELATION BETWEEN THRESHOLD MEASUREMENTS 
AND HYPOTHESIZED FILTER SHAPES 

Figure 19.3 shows two noise bands. The low-pass noise ranges from zero to 600 Hz, and 
the high-pass noise has a cutoff at 1200 Hz. 

The listener's task is to detect a tone as its frequency varies from 400 to 1400 Hz. 
The small circles in the figure show the psychoacoustic results. The three curves shown 
correspond to three different hypotheses as to the auditory filter shape. Presumably, the 
assumed auditory filter shape can be varied until the computed threshold for any frequency 
is equal to the measured threshold. In this experiment, curves were found for three specific 
filter shapes: the rectangular filter (i.e., a filter with very steep transitions, approximating 
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.7 .8 .9 1.0 
Single frequency in kHz 

FIGURE 19.3 Predicted vs. measured threshold signal power in the region of a noise 
notch. The three curves correspond to three hypothetical filter shapes. The trajectory of 
small circles shows psychoacoustic results. The height of each noise rectangle is N0 as in 
Eq. 19.2. From [5]. 

a rectangular frequency response) used by Fletcher, a standard resonance (a pole pair 
with resonance frequency of the tone), and a symmetric filter (to be discussed later in the 
chapter). We note that the rectangular filter assumption results in the greatest error relative 
to the psychoacoustic results. The data for this experiment are from [10]. 

In this experiment, the noise was kept fixed while thresholds were computed for 
different tone frequencies. This permitted fitting of the auditory filter shape given a fixed 
filter paradigm, but it did not allow for an arbitrary filter transfer function to be designed 
directly from the psychoacoustic measurements. Patterson [5] developed a somewhat more 
complex method by varying the width of the rectangular noise band shown in Fig. 19.4 and 
keeping the tone frequency fixed. For each choice of a noise bandwidth, he measured the 
signal threshold or the SPL that was required for the tone to just barely be heard. He began 
with the following mathematical representation: 

P = K Г N{f)\H{f)Uf, 
Jo 

(19.1) 

where P is the tone power at the threshold, N(f) is the power spectrum of the noise, H(f) 
is the transfer function of the auditory filter, and К is the proportionality constant relating 
tone power at the threshold to the noise leaking through the filter, which is represented by 
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• *. Auditory filter 

' Tone V 

FIGURE 19.4 Auditory filter shape computed by measuring the threshold as a function of 
the low-pass filter noise bandwidth. W is the cutoff frequency for the noise; Af is the 
difference between the tone frequency and W. From [5]. 

the integral of the product of the noise spectrum and the filter shape. 
If the noise spectrum is very close to rectangular, it can be removed from the integral, 

and Eq. 19.1 reduces to 

P = KN( Jo 
\H(f)\2df, (19.2) 

where W is the cutoff frequency of the low-passed noise, and NQ is the constant noise power 
spectral level; P is thus a function of W. By differentiating Eq. 19.2, we obtain an explicit 
result for the auditory filter magnitude function: 

\H(W)f 1 dP 
KNodW' 

(19.3) 

Note that this method can yield the magnitude function of the auditory filter but not 
its phase. 

We can see from Fig. 19.4 that for a value of W that is appreciably lower than the 
tone frequency, Eq. 19.3 results in a sensitive measure of H(f). However, when the noise 
bandwidth W is in the vicinity of the tone frequency, sensitivity is poor. To combat this 
problem, Patterson introduced a variable high-pass noise and varied the cutoff of the noise 
from well above the tone to just below it. 

The results, normalized about the tone frequency, are displayed in Fig. 19.5; tone 
sensitivities are displayed in terms of signal levels that were discernible by 75% of the 
subjects. The top display shows the skirts of the filter at the low-frequency side; the bottom 
displays the high-pass noise case. The tone frequencies used are shown as parameters, 
ranging from 0.5 to 8 kHz. The abscissa is also in kilohertz, and we clearly see the large 
spread of the skirts as the tone frequency increases. 

The implicit assumption in all results discussed thus far is that the auditory filter whose 
shape is to be found is centered around the tone to be detected. Figure 19.6 illustrates a 
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FIGURE 19.5 Low and high skirts of auditory filters computed by varying the bandwidth of 
both low- and high-pass noise. The five curves show the data obtained at five different 
signal frequencies: 0.5, 1.0, 2.0, 4.0, and 8.0 kHz. From [5]. 

shortcoming of this method. What if the observer's auditory filter is off center, as shown in 
Fig. 19.6(b)? With this, the noise is lowered and this should lower the resultant threshold. A 
similar argument holds for high-pass noise. However, if off-center listening is really taking 
place, it becomes very difficult to use Eqs. 19.1-19.3 to compute # ( / ) . 

Patterson [6] recognized this difficulty and devised a way to avoid it; the idea is 
illustrated in Fig. 19.6(c). Instead of separate low-pass and high-pass noise spectra, the 
listener is presented with notched wideband noise. As seen in the figure, off-frequency 
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FIGURE 19.6 Bandpass notched noise to minimize effects of off-frequency listening, (a) 
Noise presented to a hypothetical auditory filter centered around the tone, (b) Hypothetical 
auditory filter that is shifted, (c) Noise spectrum at both low and high frequencies, so the 
shaded noise area is the same for both hypothetical filters. From [6]. 

listening simply shifts the noise from one side of the noise source to the other, leaving 
the total masking noise the same. Patterson [5] was able to show that the derived auditory 
filters that led to the responses of Fig. 19.5 could be quite accurately represented by the 
so-called symmetric filter: 

\H(f)\2 = 
[(Δ//α) IP' 

(19.4) 

The parameter a is a measure of the filter selectivity; 1.29a is the 3-dB filter band-
width. The function is symmetric on a linear frequency scale. If we define the bandwidth 
as BW and assume the symmetric filter response, and if we also maintain the previous 
assumption that the noise has a constant spectrum over its bandwidth, then we can show 
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that 

N 
Ì.22KBW, (19.5) 

where К is the constant of proportionality given in Eq. 19.1 ; Patterson takes К to be 1.0 in 
the discussion in [5]. 

Thus, the symmetric filter predicts that when a tone is masked by wideband noise, 
the signal-to-noise (power) ratio at the threshold will be proportional to the bandwidth of 
the auditory filter centered at the tone frequency. 

19.4 GAMMA-TONE FILTERS, ROEX FILTERS, 
AND AUDITORY MODELS 

Figure 19.7 defines the gamma-tone filter in terms of its impulse response in the ana-
log (continuous) domain. The name derives from the form of the envelope, which is an 
Mh-order gamma function. Notice that there are four parameters in this formula. In partic-
ular, when cor and b are varied, these impulse response functions can implement filters of 
different center frequencies and bandwidths. 

The Laplace transform of the gamma-tone filter impulse response is a function with 
both poles and zeros. Its frequency response (magnitude for s = j(ù) is displayed as GTF 

FIGURE 19.7 Impulse response of gammatone filter. The first curve shows the gamma 
envelope as a function of time, and the second shows a reference cosine at the peak 
frequency of the filter. The final curve shows their product, which is the impulse response. 
From [3]. 
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FIGURE 19.8 Frequency responses of various forms of the gamma-tone filter. From [3]. 

in Fig. 19.8 for five different ratios of b to ωΓ. GTF stands for gamma-tone filter. Also 
shown in the figure are results for APGF (all-pole gamma-tone filter) and OZGF (one-zero 
gamma-tone filter). All three cases are displayed for the same five values of the parameters. 

By discarding the zeros of the original GTF to produce the APGF, Lyon [3] claims 
that an improvement in auditory modeling is obtained: 

1. The APGF is simpler and more well behaved. 

2. The APGF provides a more robust foundation for modeling auditory data. 

3. The low-frequency tail of the APGF is unaffected by the bandwidth parameter, unlike 
the awkward behavior of the GTF. 

4. The APGF has a very simple implementation; in the digital (or analog) domain, 
implementation consists of a cascade of second-order sections. 

The APGF has the following Laplace transform: 

К 
H{S] - [(s-p)(s-p*W 

(19.6) 
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FIGURE 19.9 Approximations to auditory filters: the APGF for N = 16, and two roex 
filters for p = 30 and p = 15. Adapted from [3]. 

As seen in Fig. 19.8, the APGF has a flat unity gain at very low frequencies. Lyon [3] 
states " . . . it is not necessarily desirable. A sloped but otherwise linear tail can be obtained 
by adding . . . a zero at s = 0." This is called the OZGF; the linear tail can be observed in 
the figure. 

It's worth remarking that the Patterson symmetric filter is an APGF for N — 2. 
Roex (rounded exponential) filters were introduced by Patterson and Nimmo-Smifh 

[7]. One of their versions is described by the following equation: 

roex(p) = (l+pjg|)e-*l, (19.7) 

where p is a parameter defining the filter and g is a normalized frequency value, where 
g = 0 for the center (peak) frequency. 

Figure 19.9 (adapted from Lyon's paper) compares the responses of an APGF and two 
roex approximations to auditory filters. We can see that the roex filters are more symmetric, 
whereas the APGF has a slower rise and a steeper fall. Thus, a well-designed APGF tends 
to more closely resemble neural and psychoacoustic tuning curves. 

19.5 OTHER CONSIDERATIONS IN FILTER-BANK DESIGN 

Aside from the precise filter transfer function, other factors must be included in designing 
a set of filters that is, in some sense, a reasonable emulation of an auditory filter bank. 
A simple question to ask (though difficult to answer) is, How many filters should be 
used? Historically, this question has been answered by trial and error. In his choice of the 
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Voder filter-bank design (see Chapter 2), Dudley was influenced by several factors. From 
psychoacoustic experiments by Fletcher and others, he decided that the filter bank should 
extend over the frequency range 300-3000 Hz. Then, since the Voder was to be controlled 
by a keyboard to switch on various spectral shapes, a suitable number of filters was 10, 
corresponding to the number of available fingers. This led to a bank of 10 bandpass filters, 
each with a width of 300 Hz. 

At the time that Dudley conceived of and designed the first vocoder (the late 1930s), 
implementation required large and relatively expensive components, so there was a natural 
desire to keep the parts count low. Like the Voder, the first vocoder built had only 10 
channels, each including a filter with 300-Hz bandwidth. Results, however, were not sat-
isfactory. A decade later, Vaderson gave a lecture demonstration of a 30-channel vocoder 
that had excellent quality. 

These early vocoders did not take advantage of the variable-frequency resolution of 
the ear. Later vocoders built at Bell Laboratories did have wider bandwidths for higher cen-
ter frequencies, and this resulted in a reduction to 16 channels covering the same frequency 
range. 

In a vocoder, the purpose of the analysis filter bank is to generate a reasonable 
estimate of the speech spectrum. The fulfillment of this goal is complicated by two important 
properties of speech: (a) its quasi-periodicity during voiced segments, and (b) its variation 
with time. 

During voiced speech, the spectrum is very close to periodic; an idealized example 
is shown in Fig. 19.10. The top figure shows an example with many spectral lines. We see 
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FIGURE 19.11 Bandpass power estimation. 

that the bank of narrow-band filters leads to a spectral estimate that follows the comblike 
properties shown, whereas a bank of wideband filters yields a spectral estimate that tends 
to follow the spectral envelope. 

The spectrum of speech is time varying, but the rate of variation is based on articulator 
movements and is thus slow (of the order of 10-20 Hz). Thus, the spectral envelope at a 
given instant and frequency can be estimated from the output shown in Fig. 19.11. What 
should be the bandwidth of the low-pass filter? If made too narrow (e.g., 10 Hz), the output 
may not be able to follow spectral variations at that frequency. If made too wide, pitch 
ripple will appear at the low-pass filter output. 

19.6 SPEECH SPECTRUM ANALYSIS USING THE FFT 

The incorporation of fast Fourier transform (FFT) programs as spectrum analyzers created 
a different set of design options. With the FFT it was easy to generate a high-resolution 
spectrum analysis, since the computation time only increased logarithmically with increases 
in resolution. However, the same issues that complicated filter-bank design still held for 
FFT analysis. For example, if we want the equivalent of 1024 bandpass filters, this can 
surely be implemented with a 1024-point FFT. However, if we implement this by choosing 
1024 samples to analyze a rectangular window and then invoking the FFT program, results 
are not too good. Assume, for example, that the speech was originally sampled at 10 kHz. 
This means that 1024 samples corresponds to approximately 100 ms of speech. During this 
time, the spectrum could have changed greatly, which means that this type of spectrum 
analysis will not track the natural spectral change in the speech. There are many tricks to 
overcome this problem. First, windowing only 20 ms of speech (200 samples) and then 
augmenting the input to the FFT with 824 zeros will still produce a spectrum with 1024 
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samples, but since the result is based on only 20 ms of speech, the result is close to a snapshot 
of the 20-ms segment. Also, multiplying the 20 ms by a suitable window, e.g., Hamming or 
Kaiser, removes most of the artifacts produced by the abruptness of a rectangular window 
(see [8] for a more extended discussion of windowing). 

19.7 CONCLUSIONS 

Psychoacoustic and physiological research have made it possible to estimate the frequency 
resolution properties of the human auditory system. This research has helped influence the 
design and implementation of many kinds of spectral analysis methods that look carefully 
at the speech spectrum. In addition to frequency resolution issues, there are also highly 
significant temporal issues. Designers need to consider both time and frequency design 
issues in the context of the specific applications. 

19.8 EXERCISES 

19.1 Explain why the auditory bandwidths obtained by psychological measurements do not necessarily 
agree with the tuning curves of auditory neurons (as described in Chapter 14). 

19.2 Explain why the bandwidths determined by the equal articulation index differ from the critical bands 
of Fig. 19.2. 

19.3 Explain why Fletcher's critical band experiments were not able to predict the shape of the auditory 
filters. 

19.4 Can you present one or more physiological explanations of why auditory filter bandwidths increase 
with frequency? Your answer can be speculative but should be buttressed with some facts. 

19.5 High-frequency hearing loss in normal hearing adults increases with age. Give one or more explana-
tions. 

19.6 The AI devised by Fletcher was based on listeners' responses to nonsense CVC syllables. Why did 
Fletcher choose nonsense CVC's instead of CVC's from a natural language such as English? 

19.7 Develop a mathematical model of Patterson's notched noise experiment (Fig. 19.6). Derive an 
expression for the auditory filter as a function of the measured threshold of detection of a tone when 
(a) there is no off-frequency listening and (b) when the listener performs off-frequency listening with 
an increment δ/ . 
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THE CEPSTRUMASA SPECTRAL 
ANALYZER 

20.1 INTRODUCTION 

In Chapters 11 and 12, models of speech and music production were introduced. The basic 
structure of these models could be identified as an excitation that was input to a system of 
resonators; the convolution of the former with the impulse response of the latter component 
produced the approximation to the modeled speech or music signal. It is therefore natural 
to contemplate an analysis of the signal as a separation of two components corresponding 
to source (or excitation) and filter (or resonator) respectively. This is an example of a 
process that is often called deconvolution, or the separation out of a signal from an impulse 
response that has been convolved with it. In the channel vocoder, for example, the excitation 
is modeled as either a quasi-periodic pulse train (caused by vocal cord vibration) or a noise 
signal caused by turbulence. In Chapter 16 we studied how the auditory system perceives 
the pulse train component of the excitation; in Chapter 31, methods of detecting both the 
periodic and noisy components will be reviewed. In Chapter 19 there was a brief discussion 
of how a vocoder analyzer models the spectral envelope, which is a function of the vocal 
tract articulator positions. In summary, a channel vocoder separates excitation from the 
filter, and therefore goes some way towards performing deconvolution. Similarly, in speech 
recognition it is generally desirable to separate the filter information, which provides the 
major cues for phone classification, from the excitation characteristics, which, for American 
English at least, contain only limited phonetic information beyond the voiced-unvoiced 
distinction. 

Cepstral analysis performs deconvolution through a mechanism that is quite different 
from those incorporated in a channel vocoder. In order to understand how cepstral analysis 
performs deconvolution, we first need to delve into a little relevant theory. 

20.2 A HISTORICAL NOTE 

Bogert et al. [1] may have been the first to use cepstral processing; in this case it was 
used for seismic analysis. While Bogert was performing his research, Alan Oppenheim, 
then an MIT graduate student, was working on a fairly complete mathematical theory that 
he called homomorphic processing. During a visit to Bell Labs by Oppenheim and one 
of this book's authors in the early 1960s, Bogert and Oppenheim exchanged ideas on the 
subject. Subsequently, Oppenheim became convinced that his concepts could be usefully 
applied to vocoder design. He later spent a 2-year sabbatical at the MIT Lincoln Laboratory 
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(in the late 1960s) and developed a complete analysis-synthesis system based on what he 
called homomorphic (i.e., cepstral) processing. Further important work along these lines 
was carried out by Oppenheim et al. [3], [4] and also by Schäfer [6], [5] and Stockham [7]. 

20.3 THE REAL CEPSTRUM 

It is convenient to assume that the signal consists of a discrete time sequence, so that the 
spectrum consists of а г transform evaluated on the unit circle. Let us consider a speech 
example, with X referring to the spectrum of the observed speech signal, E to the excitation 
component (for instance, the glottal pulse train), and V to the vocal tract shaping of the 
excitation spectrum. We begin with a multiplicative model of the two spectra (the excitation 
and the vocal tract). Thus, the spectral magnitude of the speech signal can be written as 

|X(co)| = |£(co)||V(co)|. (20.1) 

Taking the logarithm of Eq. 20.1 yields 

log|X(a>)| = log|£(co)| + log|V(a>)|. (20.2) 

Particularly for voiced sounds, it can be observed that the E term corresponds to 
an event that is relatively extended in time (e.g., a pulse train with pulses every 10 ms), 
and thus it yields a spectrum that should be characterized by a relatively rapidly varying 
function of co; in comparison, because of the relatively short impulse response of the vocal 
tract, the V term varies more slowly with co. With the use of this knowledge, the left-hand 
side of Eq. 20.2 can be separated into the two right-hand-side components by a kind of 
a filter that separates the log spectral components that vary rapidly with co (the so-called 
high-time components) from those that vary slowly with co (the low-time components). 
Such an operation would essentially be performing deconvolution. 

Equation 20.2 has transformed the multiplicative formula 20.1 into a linear operation 
and thus can be subjected to linear operations such as filtering. Since the variable is 
frequency rather than time, notations must be changed. Thus, for example, rather than 
filtering (for time), we have liftering (for frequency); instead of a frequency response, 
we have a quefrency response; and the DFT (or z transform or Fourier transform) of 
the log |X (co) | is called the cepstrum. The cepstrum is computed by taking the inverse г 
transform of Eq. 20.2 on the unit circle, yielding 

CW = T- Г log|X(<D)|e*»" Λϋ, (20.3) 
2π J-π 

where c(n) is called the nth cepstral coefficient. The deconvolutional properties of the cep-
strum for speech can be visualized by using Fig. 20.1 depicting the sequence of operations 
from the speech wave to the cepstrum. Figure 20.1(d) shows the cepstrum, as defined by 
Eq. 20.3. The spectral envelope, which varies slowly with respect to frequency, yields large-
valued cepstral coefficients for low values of n, but it dies out for high n. The spectral fine 
structure is more rapidly varying with CO, and it yields small-valued cepstral coefficients for 
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FIGURE 20.1 Cepstral analysis. The dotted line in panes (b) and (c) indicate the 
inverse-transform of the region of the cepstrum to the left of the dotted line in pane (d). 

small n, but large values beyond the crossover point shown in the figure. Thus, the contribu-
tion of the excitation and the vocal tract filter can (in principle) be separated in the cepstral 
domain. Both components can be inverted to generate the original spectral magnitudes. 

20.4 THE COMPLEX CEPSTRUM 

Thus far, all our equations have used real functions. It is also possible to define a complex 
cepstrum that gives useful insight into properties of actual systems. 

Let's start with a sequence x{n) that can be of finite or infinite duration. We assume 
that this sequence is the impulse response of a well-behaved linear system that can be 
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described in terms of a ratio of z transforms. Then 

x(7) - лп£,(1-^-')п£,(1-М 
[Z)~ nìLid-ctz-·) · ( } 

Given that a*, b^, and Q are complex constants with magnitudes less than unity, 
Eq. 20.4 represents a digital network with poles inside the unit circle (to ensure stability) 
and zeros inside the unit circle (first product in the numerator) and zeros outside the unit 
circle (second product in the numerator). A is simply a scaling factor. 

The logarithm of Eq. 20.4 is represented as 

Mi M„ N 

logX(z) = log A + ^ l o g O - a ^ - 1 ) + £log(l-ft»z) - £ log(l - c ^ 1 ) , (20.5) 
k=\ k=i k=\ 

and the complex cepstrum x(n) of Eq. 20.5 is determined from 

x(n) = — Г logX(a)eJmnd(ù. (20.6) 
2π J-π 

At this point, we state without proof (left as an exercise) that the complex cepstrum 
can be evaluated to be 

(20.7) 

These equations lead to some interesting relations between pole-zero positions and 
complex cepstral values. For example, 

• If x(n) = 0 for n > 0, this must correspond to an all-zero (FIR) filter with all the 
zeros outside the unit circle. 

• If x(n) = 0 for n < 0, this must correspond to a filter with all the poles and zeros 
inside the unit circle. This defines a minimum phase filter. 

An example of a practical application of such results is the development of a filter 
bank based on physiological measurements of the tuning curves of cat auditory neurons. 
Delgutte [2] has measured and documented the results of these measurements. Only the 
magnitude of the cat's neural tuning curve was directly measured (not the phase). In this 
application (as in many others) it would be desirable to estimate the complete transfer 
function, including the phase. 

There is some physical evidence that the basilar membrane vibrations (and therefore 
the auditory tuning curves) can be represented as minimum phase filters [2]. The application 
of Eq. 20.7 makes it possible to estimate the phase under this assumption, employing the 
following procedure. 

log A, 

i-*=l n " Lk=i n ' 

n = 0 

n>0 

n<0 
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1. Measure the auditory nerve tuning curves over a variety of neurons with different 
CFs; these responses resemble the tuning curves shown in Chapter 14 (Fig. 14.10). 

2. These tuning curves can be inverted to produce magnitude functions of auditory 
bandpass filters. We now have an approximation to the function X(z) of Eq. 20.4. 

3. Using a discrete-time version of Eq. 20.6, compute the complex cepstrum. Instead of 
evaluating the integral, a DFT-based version gives good results. 

4. Set x(n) to zero for n < 0. This means that the truncated version of x(n), which we 
will denote x(n), must correspond to a log spectrum that is minimum phase. 

5. The final step is the inversion of x(n). 

Step 3 can be implemented with a DFT, using the formula 

$>(") = Ì Σ log[X„(*)]W-"*, (20.8) 

where, as in Chapter 7, W is a shorthand for e~^2nlN\ and where the subscript p is a 
notation to indicate that all the processing is performed in discrete time. 

Step 5 can also be implemented with a DFT as 

N - l 

\og[Xp(k)) = £i(n)VT*. (20.9) 
fc=0 

The result that we are seeking, namely, the value of the complex (minimum phase) 
spectrum Xp(k), can be obtained by simply exponentiating the left side of Eq. 20.9.' In 
this way, each neural tuning curve can be well approximated by a minimum phase filter in 
which both the magnitude and phase of each filter is specified. 

It should be mentioned that these techniques can, in exactly the same manner, be 
applied to obtain filters corresponding to the psychoacoustic tuning curves obtained by 
methods such as those described in Chapter 19. Notice, by the way, that the all-pole 
gamma-tone filter (APGF) of Chapter 19 is indeed a minimum phase filter. An interesting 
exercise would be to try to find an APGF that approximates, in both magnitude and phase, 
the filter response functions obtained by the method described above. 

The complex cepstrum must thus be distinguished from the traditional cepstrum, 
which deals entirely with real functions. Figure 20.2 shows the basic difference between 
the complex cepstrum and the (traditional) cepstrum. 

20.5 APPLICATION OF CEPSTRAL ANALYSIS 
TO SPEECH SIGNALS 

Figure 20.3 shows the result of various operations on a windowed speech signal to produce 
both the complex cepstrum and the cepstrum. Figure 20.3(b) shows the result of computing 
the log magnitude of the DFT of the signal shown in Fig. 20.3(a). Since we also want to 

'All logs in this chapter are assumed to be natural logarithms. 
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FIGURE 20.2 Practical implementations of systems for obtaining (a) the complex 
cepstrum and (b) the cepstrum. 

obtain the complex cepstram, we need to save the phase component of the DFT. Phase 
computation is a tricky operation, usually producing a value between —π and π, as in 
Fig. 20.3(c). However, for this situation, it is necessary to unwrap the phase, as shown in 
Fig. 20.3(d). The complex cepstrum can be obtained by an inverse DFT (IDFT), from the 
log magnitude of Fig. 20.3(b) and the phase of 20.3(d). The cepstrum can be obtained by 
simply computing an IDFT of the function shown in Fig. 20.3(b). 

Time (samples) 

(/) 

FIGURE 20.3 Computing the complex cepstrum and cepstrum for a voiced speech 
segment. From [5]. 
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FIGURE 20.4 Cepstrum "littering" of voiced speech. From [5]. 

Figure 20.3 shows how both the complex cepstrum and the cepstrum can be com-
puted from the original speech segment. Figure 20.4 now shows the steps involved in 
cepstral filtering, also called homomorphic filtering, of the same speech segment. Begin 
by multiplying the complex cepstrum, Fig. 20.3(e), by a rectangular window that includes 
the major energy centered about zero but excluding the small peaks at ±45 samples. When 
this windowed complex cepstrum is inverted, the smoothed log magnitude and the smooth 
unwrapped phase of Figs. 20.4(a) and 20.4(b) are obtained. Exponentiation of the complex 
spectrum of these two figures results in Fig. 20.4(c), which can be labeled as the impulse 
response of the vocal tract. If we now perform comparable operations on the high-time or 
high-quefrency part of the complex cepstrum of Fig. 20.3(e) (the part not in the rectangular 
window), we obtain the results shown in Figs. 20.4(d), 20.4(e), and 20.4(f). Therefore, 
Figs. 20.4(c) and 20.4(f) show how cepstral analysis and filtering perform deconvolution, 
generating distinct functions of the excitation function [Fig. 20.4(f)] and the vocal tract 
impulse response. 

20.6 CONCLUDING THOUGHTS 

When it is necessary to return to a time waveform without making minimum phase assump-
tions, it is necessary to use the complex cepstrum. However, in many practical applications, 
processing of the phase is not a useful operation, and in any case adds complexity. In these 
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cases, cepstral processing can be implemented by dealing entirely with real functions; such 
a situation is displayed in Fig. 20.1, where separation of the excitation and filter can be 
seen to occur at the cepstral level. This separation has been shown to be useful in many 
applications, including 

• Pitch estimation for vocoding (see Chapter 31). 

• Spectral envelope estimation for vocoding (see Chapter 32). 

• Cepstral computations for other kinds of of spectral estimates; for example, see 
Chapter 21 for LPC, and Chapter 22 for critical band filter banks. These representa-
tions are used for a range of applications, including speech recognition. 

In the latter two cases, a moderate number of cepstral coefficients (typically 10-14) 
are used to represent the short-term spectral envelope. The choice of a small number of 
coefficients provides a further smoothing of the spectral estimate beyond what might be nec-
essary for separation of the excitation alone. This is often beneficial to pattern-recognition 
tasks, in which we wish to suppress minor spectral differences between examples of the 
same sound. 

20.7 EXERCISES 

20.1 Prove that the cepstrum c(n) is the even part of the complex cepstrum xn. 

20.2 Find the cepstrum of an all-pole model of the vocal tract. Assume that the vocal tract transfer function 
can be expressed as 

V{z) = IlLO-oz-'Ki-ciz-1)' 

where ck = rke
J&k. 

20.3 Consider the FIR filter 

3 
y(n) = x{n) - -x(n -\)-x(n- 2). (20.10) 

(a) Find the complex cepstrum of the filter impulse response. 

(b) Is the filter a minimum phase filter? If not, show how it can be transformed into a minimum phase 
filter with the same spectral magnitude. 

20.4 Assume that a speech or music signal can be represented as the product of two signals; one rapidly 
varying and the other slowly varying. You are asked to design a gain control to minimize the effects of 
the slowly varying signal on the quality of the perceived sound. Sketch the design of a homomorphic 
system that accomplishes this. 
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CHAPTER 

LINEAR PREDICTION 

21.1 INTRODUCTION 

In Chapter 19, we described spectral representations that are based on the signal and (to 
some extent) some of the properties of human hearing, in particular the property of requir-
ing less frequency resolution at high frequencies. In Chapter 20, we showed that cepstral 
processing could provide a smoothed spectral representation that is useful for many speech 
applications. In both cases, however, we made no explicit use of our knowledge of how 
the excitation spectrum is shaped by the vocal tract. As noted in Chapters 10 and 11, 
speech can be modeled as being produced by a periodic or noiselike source that is driving 
a nonuniform tube. It can be shown that basing the analysis (in a very general way) on such 
a production model leads to a spectral estimate that is both succinct and smooth, and for 
which the nature of the smoothness has a number of desirable properties. This is the main 
topic of this chapter.1 

21.2 THE PREDICTIVE MODEL 

In Chapter 10, we showed that a discrete model of a lossless uniform tube led to an input-
output relationship for an excitation at one end and the other end closed (see Eqs. 10.21 
and 10.22, and Figs. 10.5 and 10.6). For the case in which the far end of the tube is open, 
we noted that the complex poles of the tube transfer function would be on the unit circle at 
frequencies given by 

fn = (2n+l)c/4l, и = 0,1,2,.... (21.1) 

We further noted that, for the average-length (17 cm) vocal tract and the speed 
of sound at room temperature (344 m/s), this meant that such a tube would have one 
resonance/kHz. In the more realistic case with energy loss at the boundaries, the poles will 
be inside the unit circle, but still at the angles implied by the resonance frequencies. 

Of course, the real vocal tract is far more complicated than a uniform tube, often 
being represented by a nonuniform tube consisting of multiple shorter concatenated tubes 
of differing cross-sectional areas but having the same length. This could be viewed as an 
approximation to a continuous vocal tract shape. The resulting tube would have a set of 
resonances that (one would hope) would be similar to those for an actual vocal tract (in 

'Many of the figures in this chapter were taken from [4]. 

CHAPTER 3

Speech and Audio Signal Processing: Processing and Perception of Speech and Music, Second Edition 
by Ben Gold, Nelson Morgan and Dan Ellis 
Copyright © 2011 John Wiley & Sons, Inc. 
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FIGURE 21.1 Resonator frequency response. The resonator consisted of a pair of 
complex poles with a radius of 0.9 and an angle of 60°; the sampling rate is assumed to be 
8 kHz. 

the shape required to produce a particular sound). However, for our current purposes it 
is sufficient to note that real vocal tracts do generate resonances whose number can be 
predicted reasonably well by tube models. Experiments in speech perception, such as those 
described in Chapter 17, have long suggested the fundamental importance of the formants 
for human listeners. Therefore, we will assume for now that we only need a model that can 
represent a sufficient number of resonances. 

Suppose, then, each formant can be represented by a pole-only transfer function of 
the form 

W 
1 

1 - biZ' - CiZ 
(21.2) 

(where for the moment we ignore the filter gain). A typical frequency response for such a 
filter is shown in Fig. 21.1. We note in passing that the values of c, are always less than one 
for a stable filter (left as an exercise for the reader). 

Assuming a 5-kHz bandwidth, one would typically need five such resonators in 
cascade to represent the five formants that would be expected on the average. Ordinarily one 
would also expect to require one or two more poles (possibly real) to represent the nonflat 
spectrum of the driving waveform, so a complete vowel spectrum could be represented 
reasonably well by six such sections. 

Although this cascaded approach has been used in many synthesis applications, it is 
useful for our current purposes to imagine multiplying through all of these sections to get 
a direct-form implementation of the spectral model: 

H(z) 
1 

1-Lj=i«;z-
(21.3) 

where P is twice the number of second-order sections going into the product (P = 12 in 
the example above), and the a coefficients are the coefficients of the resulting fth-order 
polynomial. 
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y(n-2) 

y(n-P) 

FIGURE 21.2 All-pole model for the generation of a discrete-time sequence. 

Figure 21.2 is a diagram of the complete model. In later chapters such a system will 
be used as a starting point to describe linear predictive approaches to speech synthesis, but 
in the current context it will be used as a model to represent the signal spectrum. Thus, the 
short-term spectrum of a speech signal can be represented by a filter that can be specified 
by P — 2 * (BW + 1 ) coefficients, where BW is the speech bandwidth in kilohertz. Note 
that since the driving-signal spectrum is folded into the filter, the model excitations are 
considered to be white. 

For the system shown in Fig. 21.2, the discrete-time response y(n) to an excitation 
signal x(n) would be 

у (и) = x{n) + £ ajy{n - j). (21.4) 

The coefficients for the second term of this expression are generally computed to 
give an approximation to the original sequence, which will yield a spectrum for H(z) that 
is an approximation to the original speech spectrum. Thus, we attempt to predict the speech 
signal by a weighted sum of its previous values. That is, 

y{n) = £ ajy(n - j) (21.5) 

is the linear predictor. Note that this has the form of a FIR filter, but that when it is included 
in the model of Fig. 21.2 the resulting production model is IIR. The coefficients that yield 
the best approximation of y(n) to y(n) (usually in the mean squared sense) are called the 
linear prediction coefficients. In the statistical literature, the overall model is sometimes 
called an autoregressive (AR) model. 

The difference between the predictor and the original signal is referred to as the error 
signal, also sometimes called the residual error, the LPC residual, or the prediction error. 

When the coefficients are chosen to to minimize this signal energy, the resulting error 
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FIGURE 21.3 Residual error waveforms for several vowels. From [4]. 

signal can be viewed as an approximation to the excitation function. The residual signal 
e{n) = y(n) —y{n) consists of the components of y(n) that are not linearly predictable 
from its own previous samples, which is the case for a periodic excitation in this model, 
assuming that the number of samples between excitation pulses is much larger than the 
order of the filter. Figure 21.3 shows several examples of such error signals (preceded by 
the original waveforms) for steady-state vowels; note that the prediction error has large 
peaks that occur once per pitch period. 
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21.3 PROPERTIES OF THE REPRESENTATION 

We have shown that a simple model for speech production2 leads to a spectral representation 
that is the minimum required to potentially represent the vocal tract resonances that shape 
the speech spectrum, particularly for voiced sounds. However, this still leaves us with (at 
least) two remaining questions: 

1. What error criterion should we minimize between the model spectrum and the ob-
served spectrum? 

2. What is the best (not the minimum) number of coefficients to put into the represen-
tation? 

We do not know if current answers to these questions are optimal. However, in 
the basic form of LPC that has been traditionally incorporated in audio signal-processing 
systems, coefficients have been chosen to minimize the squared error between the observed 
and predicted signals. As shown below, this leads to a solution that is represented in terms of 
its autocorrelation function. We state without proof (see, for instance, [3]) that minimizing 
the squared error criterion is also equivalent to minimizing the integrated quotient between 
the speech power spectrum and the model power spectrum, or 

f |Κ(ω)|2 αω 
D=L\HW^-

 ( 2 1 · 6 ) 

where for simplicity we have ignored a gain term corresponding to the error power. Thus, 
minimizing the mean squared difference between y(n) and its linear predictor y{n) is 
equivalent to minimizing a kind of distortion between the signal spectrum and the model 
filter spectrum. 

What are the characteristics of this particular spectral distortion criterion? Note that 
for this measure, the portions of the spectrum for which |F(co)|2 is smaller than |#(co)|2 

will make small contributions to the integral. For a harmonic signal that is being modeled 
with LPC, this means that the model spectrum will tend to hug the harmonic peaks, but not 
the valleys between. Therefore, for model orders that are not too large, the error criterion 
given in Eq. 21.6 will lead to a spectrum that is an estimate of the envelope of the signal 
spectrum. See Fig. 21.4(c) for a short-term speech spectrum and the corresponding linear 
predictive spectrum. 

Since, as noted earlier, it is a common goal to model spectral resonances, the squared 
error criterion seems reasonable. Additionally, moderate amounts of additive noise will 
have only small effects on the estimate, since the largest change to the spectrum will 
occur in the spectral valleys. However, a squared error criterion is not necessarily ideal; 
for instance, portions of the spectrum that have large magnitudes will tend to dominate 

2 Although the discussion has been oriented toward speech, similar arguments could also be made for acoustic 
instruments with a simple source-resonator structure. 
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FIGURE 21.4 Example of (a) a windowed speech signal, (b) the LPC error signal, (c) the 
signal spectrum with the LPC spectral envelope superimposed, and (d) the LPC error 
spectrum. From [4]. 

the error, which may not necessarily be those parts that are most relevant to either speech 
intelligibility (for coding or synthesis applications) or phone discrimination (for recognition 
applications). This weakness is often ameliorated by pre-emphasizing the data with a fixed 
first-order FIR filter to help to flatten the spectrum. 

Given this model structure and error criterion, what should be the number of coeffi-
cients used? In the previous section we gave an approximation to the number of coefficients 
that are required in order to represent the spectral resonances. However, since the model 
only provides an approximate fit to the short-term signal spectrum, clearly using a greater 
number of coefficients (a higher-order discrete-time model) will yield model spectra that 
are a better match; in general, using more parameters in a least-squares fit to a sequence 
will provide a better fit. However, having the greater detail is not always an advantage. 
In particular, the typical goal for the short-term spectral analysis of speech is to compute 
a spectral envelope that is relatively unaffected by pitch; thus, in general the details of 
hannonic structure should not be modeled at this stage. Additionally, a larger number of 
parameters will tend to make the estimate more susceptible to errors that are due to additive 
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noise in the observed signal. 
Therefore, the model order used depends critically on the goal for the spectral analysis. 

In cases in which an extremely accurate spectral representation is required, higher model 
orders may be used. For applications such as speech recognition, though, the model order 
is typically kept very close to the rule of thumb described earlier (though sometimes a 
slightly higher model order is found to be helpful). Although this may sound somewhat 
ad hoc, more formal approaches are not always good enough to accurately determine the 
best model order for a given application. Probably the best known of these is the use of the 
Akaike information criterion, or AIC [1]. In this approach, the error variance is replaced 
by a new distortion in order to penalize the model complexity. In particular, the AIC is 
given by AIC = log σ2 + 2p, where σ2 is the error variance and p is the autoregressive 
model order. This measure has the right property, namely penalizing model size in addition 
to the error variance; however, the choice of the weight of the model order is based on 
assumptions that may not be correct in practice. Makhoul [3] applied this measure to a 
speech sample and got a reasonable result, with tenth-order predictors having the lowest 
AIC; however, in practice the best value would tend to be found by trial and error. 

Figure 21.5 shows the spectral envelope for LPC models of different orders given 
the same speech sample. It is apparent that the low model orders do not adequately capture 
the formants, whereas the very high model orders begin to track the harmonic content. 

Figure 21.6 shows the reduction in prediction error energy for increased model 
orders. Note that in general the error is larger for unvoiced sounds, which are inherently 
less predictable. 

21.4 GETTING THE COEFFICIENTS 

Let us assume that in the situation of interest, x(n) of Eq. 21.4 is unknown. In this case, as 
noted earlier, we choose the a parameters in order to minimize the squared error between 
y(n) and Σ%ι а]У(п — j) o v e r the sequence. For speech applications, the y(n) of interest is 
typically a locally windowed form of the original speech sample sequence; that is, 

y(n)=w(n)s(n), (21.7) 

where w(n) is a local window (e.g., a 20-ms-long Hamming window) that we assume to 
be N points long, and s(n) is the sampled speech data. The error signal between the model 
output and the signal then is 

e(n)=y(n)-£ajy(n-j). (21.8) 

Defining a distortion metric over the window, we find 

Л Г - 1 

Σ 
n=0 

ο=Σ*2(Ό = Σ y(n) - Σ ajy(n - л (21.9) 
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FIGURE 21.5 LPC speech spectra for different model orders. From [4]. 

If we take partial derivatives with respect to each a, we get P equations of the form 

5>Ж«'../')=Ф('.0) for i=l ,2 , . . . ,P , (21.10) 

where φ(ί, j) is a correlation sum between versions of the speech signal delayed by i and j 
points. 

For the case of the windowed signal for which no points outside of the window 
are used for the estimate, φ(/, j) is only a function of the absolute value of the difference 
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FIGURE 21.6 Root-mean-square prediction error for different model orders. From [4]. 

between i and j , and the resulting correlation matrix at the left-hand side of Eq. 21.10 
is Toeplitz; that is, not only is it symmetric, but all the values along each left-to-right 
diagonal are equal. For this special case, the system of equations can be solved by efficient 
procedures [0(P2)] known as the Levinson or the Durbin recursions. Although efficient, 
they do require significant numerical precision. These procedures are described in detail 
in a number of other sources, including [3], and they are not be repeated here. For what is 
called a covariance analysis, the correlations are computed by sliding the signal window 
along outside of the blocked area, so that the resulting matrix is not Toeplitz (though 
it is symmetric). The resulting system of equations is typically solved by a Cholesky 
decomposition (sometimes called the square-root method), which takes more computation 
[0(P3)] but which is numerically quite stable (see, for instance, [2]). 

21.5 RELATED REPRESENTATIONS 

In practice, the prediction coefficients are often not a good representation to use for most 
applications. In cases in which the digital word length is critical, the polynomial coefficients 
tend to be too sensitive to numerical precision. When a covariance analysis is used, the 
stability of the resulting filter is not guaranteed, and it is not checked easily with a predictor 
polynomial. The coefficients are not orthogonal or normalized, which potentially creates 
other difficulties for classifiers that might use these features. 

For all of these reasons, LPC coefficients are generally transformed into one of a 
number of other representations, including the following. 

1. Root pairs: the polynomial can be factored (using commonly available iterative 
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M points; an overlap of at least 50% is typical. Parameter weighting refers to a cepstral 
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procedures) into complex pairs, thus finding something like the resonances discussed in this 
chapter. Each of these is implemented by a second-order filter, which has simple stability 
properties and good numerical behavior. This can be useful for synthesis but has not tended 
to be used for recognition. 

2. Reflection coefficients: the polynomial can be transformed into a set of coeffi-
cients that represent the fraction of energy reflected at each section of a nonuniform tube 
(with as many sections as the order of the polynomial). The reflection coefficients also can 
be used directly as the coefficients for a lattice filter for synthesis. The first few coefficients 
must be represented with more precision than the later ones, and all of the values are 
bounded by —1 and 1 for stable filters. This is probably the most common representation 
for LPC synthesis. 

3. Cepstrum: there is a recursion that can be used to generate a set of cepstral 
coefficients corresponding to the LPC spectrum; it is efficient, as it does not require any 
explicit spectral computations. The resulting variables are orthogonal (as are the DFT-based 
cepstral coefficients) and well behaved numerically. They are the most common form of 
LPC-based variables used for speech or speaker recognition. 

Figure 21.7 shows the complete LPC process, including the transformation into 
cepstral coefficients for speech recognition. In this case temporal derivatives are also 
commonly used to augment the feature vector. 

21.6 CONCLUDING DISCUSSION 

We have shown that linear prediction can be used to generate estimates of the spectral 
envelope for the short-term spectrum of speech that is commonly of interest for applications 
in synthesis and recognition. It is based on a model of the vocal tract shaping of an excitation 
signal. When the model is a good one (for instance, for steady-state vowels), the approach 
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yields a good match to the spectral envelope; in other words, using an eighth- or tenth-order 
model to represent four formants works pretty well under good conditions. When the model 
is a poor match to the physical generation, for instance, when the sound is nasalized (the 
extra side chain creates significant zeros), the results tend not to be so good; additionally, 
unvoiced sounds tend to have a different (usually simpler) spectral shape and may be 
overparameterized by a model order that is appropriate for the vowels. Still, even in these 
cases LPC often provides a reasonable spectral estimate. 

Another issue of concern for linear prediction modeling is the use of sharp antialiasing 
filters to precede sampling. In many signal-processing applications we tend to think of 
aliasing distortion as evil, and so we wish to prevent it at all costs - it is common to 
set the corner frequency for such filters at 40% or so of the sampling frequency rather 
than at the ideal of 50% required by the Nyquist theorem (for a filter with a perfect 
rectangular frequency response). However, if the analysis used is LPC, this choice will put 
a steep low-pass filter characteristic within the band modeled by LPC analysis. Essentially, 
the analysis only has a fixed number of poles to place in order to model the spectrum, 
and having such a steep filter will reduce the degrees of freedom available to model 
the speech. From another perspective, having a large range of spectral values to model 
tends to make the correlation matrices ill conditioned, with a corresponding large range in 
the matrix eigenvalues [3]. Practically speaking, when LPC is used, it is common to set 
the antialiasing corner frequency at roughly the half-sampling frequency, particularly for 
applications in speech and speaker recognition, even though the aliasing distortion becomes 
significant. 

LPC analysis focuses on the spectrum as a product of resonances. As we have 
noted in previous chapters, resonant (formant) frequencies have often been associated 
with phonetic identity, particularly for vowels. However, there is significant variation in 
these frequencies among people; in particular, the vocal tract length tends to scale these 
frequencies, leading to very different average values for adult males, adult females, and 
children. Thus, there tends to be a built-in speaker dependence for LPC-based features. In 
contrast, filter banks and cepstral analysis are less tied to the specific resonant frequencies, 
but they consequently lack some of the previously noted advantages of basing the envelope 
estimate on these resonances. Table 21.6 summarizes a number of other comparative 
points between these spectral envelope estimates; note that the LPC column refers to the 
predictor polynomial only, as some of the weaknesses indicated there for LPC can be 
softened by using cepstral parameters from the LPC analysis. In Chapter 22 we will discuss 
approaches that have been developed to benefit from all three spectral envelope estimation 
methods. 

We note that this chapter has skimmed over the implementation mathematics very 
lightly; please refer to references [3] and [4] for much more complete discussions of the 
autocorrelation and covariance methods, including the efficient recursions used. Lattice 
implementations of LPC filters will be briefly discussed in Chapter 32. Finally, reference 
[5] is a good source for a completely different perspective based on maximizing the entropy 
of the spectral estimate but leading to similar solutions. 



BIBLIOGRAPHY 297 

TABLE 21.1 Summary of Characteristics of Basic Methods for 
Spectral Envelope Estimation in Speech" 

Characteristic Filter Banks Cepstral Analysis LPC 

Reduced pitch effects χ χ χ 
Excitation estimate χ χ 
Direct access to spectra χ 
Less resolution at HF x 
Orthogonal outputs x 
Peak-hugging property x 
Reduced computation x 

aAn x in a column means that the analysis method indicated by the column label is a 
particularly good match to the characteristic indicated by the row label. The last 
column refers to predictor coefficients; many of the limitations indicated are softened 
by transformation to cepstral coefficients. The excitation estimate row refers to 
getting some estimate of the excitation, not necessarily the one that is commonly 
used in the application. HF refers to high frequency. 

21.7 EXERCISES 

21.1 We have indicated that the squared error criterion leads to a spectral ratio error criterion (between the 
power spectra associated with the speech and the model). Use Parseval's theorem to show this. 

21.2 A signal includes a very noisy spectral slice between 500 and 600 Hz. An engineer proposes imple-
menting a steep notch filter (band reject) to remove this noise. If this signal is going to be analyzed 
with linear prediction, what is a potential difficulty with this plan? 
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I always heard it couldn't be done, but sometimes it don't always work. 

—Casey Stengel 

^ ί UILDING ON both the mathematical techniques of Part II and the feature extrac-
tion methods of Part V, we now focus on a single important application area: speech 
recognition. We describe a major aspect of speech-recognition systems in each of the eight 
chapters in Part VI. In Chapter 22, we extend the archetypal processing paradigms of 
Part V to the style of signal-processing features that are most commonly used for 1998 
ASR systems. Chapter 23 introduces the linguistic categories that are most frequently used 
in such systems, such as phones and phonemes. The next two chapters describe methods 
for determining a sequence of words from measures of the similarity or dissimilarity be-
tween training examples of words and new test data. In both cases, the primary technique 
described is a search method known as dynamic programming. In Chapter 24, distance 
between sounds in training versus test examples is used as the measure of dissimilarity. 
Although this approach per se is rarely used today, its description can often be a useful 
introduction to more advanced techniques. In Chapter 25, the statistical generalization of 
this approach is developed, and its relation to the mathematical abstraction known as hidden 
Markov models is described. In this case, the distances used in the dynamic programming 
are probabilistic. These values are estimated by a system that has previously been trained, a 
process that is described in Chapter 26. Chapter 27 extends these approaches to discriminant 
training, a class of algorithms that are designed to improve the ability to separate classes for 
a linguistic unit (e.g., phonemes or words). Chapter 28 adds a review of the most common 
methods for model adaptation, as well as some more recent topics in discriminant training. 
Finally, Chapter 29 outlines the elements of a complete system, including language models. 
Although the estimation and training of these models are not typically viewed as signal 
processing per se, they are essential for any real recognition system. 



FEATURE EXTRACTION 
FOR ASR 

22.1 INTRODUCTION 

In previous chapters, we have introduced some general classes of feature extraction that 
researchers and system developers have found useful for the representation of speech. Filter 
banks, cepstral analysis, and LPC are indeed the generic representations of choice for a 
range of applications in speech and audio processing. However, for each application area, 
there are specific representations that have been developed, and they often have some of 
the characteristics of more than one of these archetypes. 

For current ASR systems, the goal has generally been to find a representation that 
is relatively stable for different examples of the same speech sound, despite differences in 
the speaker or environmental characteristics. In this chapter, we briefly discuss a few of 
the common approaches. For most of these, the representation will be computed roughly 
once every 10 ms over a window of 20 or 30 ms. We also briefly describe some of the 
common techniques used to further process the feature vectors in order to make the overall 
system robust to simple linear distortions of the input signal (that is, to produce the same 
recognition results despite these deviations). Finally, we briefly discuss a few of the many 
research approaches that are being explored in the area of improved feature extraction. 

22.2 COMMON FEATURE VECTORS 

Over the past few decades, many variants of filter banks, LPC, and cepstral vectors have 
been used for speech recognition. More recently, the majority of systems have converged 
to the use of a cepstral vector derived from a filter bank that has been designed according 
to some model of the auditory system. Although there are a number of variants, we 
describe here the two that are used in most systems: mei cepstrum [3], [7] and perceptual 
linear prediction (PLP)[21]. In fact, these approaches are quite similar, and in recent years 
researchers have experimented with hybrids of the two. 

Here we give the basic steps of such analyses, noting the differences between the 
mei cepstral and PLP approaches for each. We use Fig. 22.1, which gives the procedure 
for PLP, as a point of reference for these steps; we also refer to Fig. 22.3 for a prototypical 
example of the effects of each step. 

1. Compute a power spectral estimate for the analysis window; typically for both 
mei cepstrum and PLP this is done by windowing the analysis region (e.g., with a Hamming 
window), calculating the FFT, and computing its squared magnitude. This step corresponds 
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FIGURE 22.1 Steps in the computation of PLP. 

to the first rectangle of Fig. 22.1, and it yields a power spectrum such as the one shown in 
(1) of Fig. 22.3. 

2. Integrate the power spectrum within overlapping critical band filter responses 
(second box of Fig. 22.1). There are a number of forms used for these filters, but all 
of them are based on a frequency scale that is roughly linear below 1 kHz and roughly 
logarithmic above this point, as discussed in earlier chapters. The mei scale is based on 
pitch perception and is used in the filter bank for the mel-cepstral approach (hence the 
name). Since it is based on human experimental data, there are a number of approximations 
and models that have been used. In the mei case, the integration step is done with a 
triangular window applied to the log of the power spectrum, as shown in Fig. 22.2.' 
For the case of PLP, trapezoidally shaped filters are applied at roughly 1-Bark intervals, 
where the Bark axis is derived from the frequency axis by using a warping function from 
Schroeder: 

^ = 6 1 n | l 2 L + 

'There is no universally agreed-upon warping for the mei scale. Davis [6] proposed a filter spacing of 100 Hz 
up to 1 kHz, and spacing at multiples of 1.15 from 1 kHz to 4 kHz; this is widely used. Other expressions are 
described by O'Shaughnessy [34] and Fant [12]. 

— У 
I200TTJ 

+ 1 (22.1) 
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FIGURE 22.2 Mel-scale filter bank. From [37], in turn adapted from [7]. This corresponds 
to the spacing defined in [6] 

Here 00 is the frequency in radians/second. The trapezoidal window is an approximation to 
the power spectrum of the critical band masking curve from Fletcher [14]. In both cases, the 
net effect is to reduce frequency sensitivity over the original spectral estimate, particularly 
at high frequencies. The higher frequencies are also somewhat emphasized given the wider 
filter bandwidths. The results are illustrated in (2) and (3) of Fig. 22.3. 

3. Pre-emphasize the spectrum to approximate the unequal sensitivity of human 
hearing at different frequencies. In most mel-cepstrum analyses, this is actually done 
before the original spectral analysis, and an important side effect is to eliminate the effect 
of dc offsets in the speech signal. In PLP analysis, this step is implemented as an explicit 
weighting of the elements of the critical band spectrum.2 This step corresponds to the 
equal-loudness curve box in Fig. 22.1 and also to (4) in Fig. 22.3. 

4. Compress the spectral amplitudes (power law of hearing in Fig. 22.1). Typically, 
the log is applied after the integration. In PLP, the cube root is taken rather than the log, 
which is an approximation to the power-law relationship between intensity and loudness 
[43]. Aside from matching this property of human hearing, the effect of this step is to 
reduce amplitude variations for the spectral resonances, as can be seen in (5) of Fig. 22.3. 

5. Perform an inverse DFT (third box from the bottom, Fig. 22.1). Although this 
step is not illustrated in Fig. 22.3 (since that figure solely describes the spectral effects), 
it is a critical step for both mel-cepstral analysis and for PLP. In the former case, it is the 
step that yields cepstral coefficients. For PLP, since the log has not been computed, the 
results are more like autocorrelation coefficients (though they are still from a compressed 
spectrum). Since the power spectral values are real and even, only the cosine components 
of the inverse DFT need be computed. 

6. Perform spectral smoothing. Although the critical band spectrum suppresses some 
detail, another level of integration has been shown to be useful for reducing the effects of 
nonlinguistic sources of variance in the speech signal. In mel-cepstral processing, this step 
is accomplished by cepstral truncation; typically the lower 12 or 14 components are com-

2In recent software implementations of PLP, there is sometimes an explicit high-pass filter at the input to handle 
dc offsets, in addition to the frequency-domain pre-emphasis. 
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FIGURE 22.3 Effect of PLP steps on the spectrum. 

puted from 20 or more filter magnitudes. Thus, the higher Fourier components in the com-
pressed spectrum are ignored, and the resulting representation corresponds to a smoothed 
spectrum. In the case of PLP, an autoregressive model (derived by the solution of linear 
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equations constructed from the autocorrelations of the previous step) is used to smooth 
the compressed critical band spectrum; as with conventional LPC, the resulting smoothed 
spectrum is a better fit to the spectral peaks than the valleys. Many researchers have found 
that this approach leads to better noise robustness and speaker independence than the cep-
stral truncation. Part (6) in Fig. 22.3 shows a smoothed representation of the peaks that is 
suggestive of the kind of results one gets with PLP processing. 

7. Use orthogonal representation. For mel-cepstral analysis, no further step is nec-
essary to get orthogonal features - the elements of the truncated cepstral vector have 
this property, which typically simplifies the pattern recognition that follows. For PLP, the 
autoregressive coefficients are converted to cepstral variables. 

8. Perform liftering. Not shown in either diagram is an additional step that is often 
taken: the cepstral parameters are often multiplied by some simple function (such as na, 
where n is the cepstral index and a is a parameter between zero and one). The purpose of 
this function is to modify the distances that could be computed with these features to be 
more or less sensitive to the amplitude of resonant peaks in the spectrum. When a is set 
to one, the cepstrum is said to be index weighted, and the resulting lifter typically has the 
effect of roughly equalizing the variances of the different cepstral coefficients. 

Both mel-cepstral analysis and PLP provide a representation corresponding to a 
smoothed short-term spectrum that has been compressed and equalized much as is done 
in human hearing. As noted earlier, in recent years a number of researchers have also 
experimented with blending the two approaches; in particular, some have found it advanta-
geous to use PLP but with the triangular integration windows from the typical mel-cepstral 
analysis. 

Thus, the features of mei cepstrum and PLP are extremely similar. Each has the re-
duced resolution at high frequencies that is indicative of auditory filter-bank-based methods, 
yet provides the orthogonal outputs that typify cepstral analysis. The principal difference 
between the two lies in the nature of the spectral smoothing (cepstral or LPC based). 
Since PLP is LPC based, it is interesting to compare the analysis to the more standard 
LPC approach described in the Chapter 21. Figure 22.4 shows this comparison. Note that 
the autocorrelation step of LPC is expanded out to its frequency-domain equivalent (the 
inverse DFT of the squared magnitude spectrum) for this comparison. Essentially, the 
pre-emphasis often done in LPC analysis is equivalent to the equal-loudness filtering in 
PLP. The major remaining difference lies in the computation of the compressed critical 
band spectrum for PLP, which is not done in the LPC analysis. Thus, PLP can be either be 
viewed as a mel-cepstral analysis with LPC-like spectral smoothing, or as a LPC analysis 
for an implicit version of the speech that has been warped according to auditory properties 
(in particular, critical band and power-law models of hearing). This warping has the effect 
of altering the error criterion of the autoregressive modeling. In practice it has often been 
found that the result of this change has been that lower-order PLP models are required 
(in comparison with standard LPC), and that a somewhat greater speaker independence is 
achieved (particularly for low order PLP). 
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22.3 DYNAMIC FEATURES 

Feature vectors computed from mel-cepstral or PLP analyses appear to provide good smooth 
estimates of local spectra. However, it could be argued that a key characteristic of speech 
is its dynamic behavior. Because of this, many researchers have made use of estimates of 
the local time derivatives of the short-term spectrum or cepstrum. 

One of the most common forms of this measure is the so-called delta cepstrum [15]. 
This is typically implemented as a least-squares approximation to the local slope, and as 
such is a smoother estimate of the local derivative than a simple difference between cepstra 
for neighboring frames. This can be expressed as 

AC; (и) 
LL-NkQ(n + k) 

(22.2) 

Thus, each stream of delta cepstral values is computed by correlating the corresponding 
stream of cepstral values with a straight line that has a slope of one. 

The second derivative (commonly referred to as the delta-delta cepstrum) is also 
often useful, and it corresponds to a similar correlation, but with a parabolic function. 

Many speech-recognition systems have incorporated features such as these. They tend 
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to emphasize the dynamic aspects of the speech spectrum over time and to be relatively 
insensitive to constant spectral characteristics that might be unrelated to the linguistic 
content in speech, such as the long-term average spectral slope. However, the resulting 
feature vectors miss some of the gross characteristics that are salient in static spectral 
representations, and typically they are not sufficient for good recognition performance. 
In practice most systems that incorporate delta features use them as an add-on to static 
measures such as mei cepstra or PLP cepstra. 

22.4 STRATEGIES FOR ROBUSTNESS 

22.4.1 Robustness to Convolutional Error 
In the previous section, we suggested that simple transformations, such as estimates of local 
time derivatives of cepstral parameters, could be robust to constant spectral components in 
the data. Let us be somewhat more precise. Suppose that a speech signal with short-term 
spectrum S (co, t) is processed by a linear time-invariant filter with transfer function #(co, t). 
Then, if X(co, t) is the short-term spectrum of the observed signal, we may say 

Χ(ω,ί) = S{(ù,t)H{<ù,t). (22.3) 

Then the corresponding short-term log power spectrum would be3 

log|X(<a,?)|2 =log[S(cu,i)|2 + log[H((ü,i)|2. (22.4) 

Thus, a convolutional effect in the time domain (as caused by the filter) corresponds 
to a multiplication in the frequency domain, and to a sum in the log power domain. If these 
two additive components have different properties over time then they can be separated 
fairly simply. For instance, if Я is constant over time, and if constant components of S are 
not useful, one can simply estimate the constant component of the sum by computing the 
mean of the log spectrum. Alternatively, one may compute the Fourier transform of the 
above components, yielding cepstra, and remove the means in this domain. This operation 
is a standard one in many speech-recognition systems, and it is referred to as cepstral mean 
subtraction, or CMS. 

Let us dwell on this notion momentarily. A disturbance has affected the speech, and the 
disturbance might be unknown - a change in telephone channel, a switch in microphones, 
or perhaps just a turn of the speaker's head so that the overall spectral characteristic is 
changed. The above analysis suggests that distinguishing between the signal components 
on the basis of how quickly the log spectrum or cepstrum changes with time can separate 
out the speech from the convolutional disturbance. In other words, disturbances that were 
convolutional in the time domain become additive in the log spectral domain. If such 

3Conventionally, a base of 10 would be used for the logarithm, and the result is often multiplied by 10 for graphical 
displays of log power spectra so that the axis can be labeled in terms of decibels. 
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additive components have different spectral characteristics, linear filters can be used to 
separate them out. 

Viewed in this more general framework, CMS can be seen as a specific example of a 
more general notion of filtering in the domain of the time trajectories of log power spectral or 
cepstral coefficients. Another specific example of such a principle is the approach referred 
to as RASTA-PLP. This is a modification to PLP analysis that is an on-line approach to 
achieving robustness to convolutional disturbances [24], [26], [23].4 In this approach, the 
log of each critical band trajectory is filtered with a bandpass filter; typically there is a zero 
at dc, and the restriction at the higher frequencies establishes the passband in the domain 
of critical band modulations to a range that appears to be required for speech intelligibility. 
The resulting filtered trajectory is then exponentiated to yield a modified critical band power 
spectrum for analysis in the later steps of PLP. 

Figure 22.5 shows the basic steps of RASTA processing. A common form for this 
processing is to use the first steps of PLP or mel-cepstral analysis for the spectral analysis 
block shown in the figure. Figure 22.6(a) shows a bandpass filter characteristic that was 
determined experimentally, that is, by modifying a pole position in order to maximize 
the recognition accuracy for a particular task (in this case, isolated digit recognition). 
Interestingly enough, this characteristic bears a strong resemblance to an independent 
measurement made from human sensitivity to frequency modulation, as shown in Fig. 
22.6(b). Thus, it appears that a basic property of human hearing, namely the sensitivity 

4The more general idea of filtering temporal trajectories of subband energies, or simple transformations such 
as cepstral trajectories, is sometimes also called RASTA filtering. RASTA has also been applied to analysis 
approaches other than PLP; for instance, it has been applied to mei cepstra. 
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FIGURE 22.6 (a) RASTA filter characteristic, optimized for a recognition task. 
(b) Human sensitivity to frequency modulation. Both figures courtesy of Hynek Hermansky. 
Original data for (b) from [18]. 

to the modulation rate in audio, has a strong similarity to the bandpass characteristic of 
spectral envelope modulation rates that we find useful to pass in our recognition system. 
We speculate that, given this characteristic of hearing, speakers tend to produce spoken 
language that can be most easily heard. 

Aside from the details of PLP, RASTA can be seen as comparable to a short-time 
version of CMS, or as a reintegration of the delta coefficients referred to earlier. The short-
time characteristic, though, results in a nontrivial modification of the spectrum. Figures 
22.7(a)-22.7(c) show time-frequency plots for three different representations of five Czech 
vowels: the conventional spectrogram, a spectrogram computed from low-order PLP 
cepstra, and a spectrogram computed from RASTA-PLP cepstra, respectively. The major 
effect of low-order PLP (fifth order) on the spectrum is to emphasize a small number of gross 
spectral features. The addition of RASTA causes the signal to decay after the onset of each 
steady-state region. The result is much more sensitive to transitions, which are smeared into 
the formerly steady-state regions. Although RASTA does have an improved independence 
from convolutional error, users must be aware of the effects of initial conditions (abrupt 
starts in artificial data segmentations, for instance); additionally, the statistical models used 
must include some representation of context from the left, since there is an increased 
statistical dependence on earlier signals because of the filter characteristic. 

22.4.2 Robustness to Room Reverberation 
In Chapter 13, we noted that the relationship between the signal at a sound source in a 
room and the received signal at a distant microphone could be modeled as a linear convo-
lution. The corresponding impulse response, sometimes called an echo response, is only 
an approximation as nonlinear and time varying effects are actually present; furthermore, 
the impulse response can vary greatly depending on the positions of source and receiver, 
the position and movement of objects (e.g., people) in the room, etc., and so is not really 
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a "room response," as it is sometimes called. That being said, it is reasonable to broadly 
characterize the effect of reverberation on a speech signal based on what has been observed 
(and explained theoretically) for many rooms. In all non-anechoic rooms, the effect of 
reverberation is to smear the source signal over time. If we do approximate this as a linear 
convolution, one might think that the approaches described above might be effective in 
eliminating these effects; following the same logic, one can get rid of (or at least signifi-
cantly reduce) convolutional components that are slowly varying by filtering in something 

tal Ш ml lei lol 

(«) 

0 *-Time[s] 3 5 

FIGURE 22.7 Spectrograms for five Czech vowels: (a) conventional, (b) after PLP 
processing, and (c) after RASTA-PLP processing. From [23]. 
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like a log spectral (or cepstral) domain, or by simply removing the mean over a large 
enough segment. However, both CMS and RASTA typically operate over a succession of 
analysis frames with a 10 ms step, and this is far too short to remove the effects of room 
reverberation. 

There have been some experiments in which an average log spectrum was removed 
from a long term analysis window, followed by a resynthesis of the speech to be used 
for ASR [16]. In some cases (particularly with a modest amount of training data) this 
was helpful; but for a large, well-trained system, there was little improvement from this 
technique for natural room reverberation (though there continued to be ASR improvements 
for artificially reverberated data, which suggests caution in interpreting such results). One 
difficulty with this approach is that for long segments (seconds, rather than 10 ms), the 
phase estimate is crucial, and the technique used simply used the original, reverberant phase 
for the resynthesis. 

Other attempts to remove reverberant effects (for the single microphone case) are 
nicely described in [40], and include: estimate and invert the associated impulse response; 
use a truncated time-reversed response as a matched filter; filtering to maximize kurtosis 
in subbands; and separately processing minimum phase and all-pass components of the 
transfer function. All of these methods had some beneficial effects, but were not clearly 
successful in reducing word errors for speech recognition. Recently [31] reported using 
normalization of the temporal modulation spectrum for this purpose. The use of multichan-
nel arrays has actually helped to mitigate the effects of room reverberation, and is briefly 
described in a later section in this chapter (but explained much more completely in [40]. 

There is another way to look at the problem, however: rather than attempt to remove 
the effects of reverberation in a test set, process the training set so that the resulting models 
will better represent a correspondingly processed test set. In other words, even if you don't 
know exactly what the source-receiver impulse response will be during test, it is likely that 
for any microphone placement more than a foot or so away from the source, there will be 
some time-smearing of the signal; so a bit of time smearing of the training data. In Brian 
Kingsbury's PhD thesis [29], he reported his development of a speech recognition front 
end that incorporated such smearing, which could be described as a lowpass filtering of 
the temporal modulations (much as RASTA is a bandpass filtering of these modulations). 
His approach was more complex than this, incorporating two different signal processing 
streams, and utilizing multiple Automatic Gain Control (AGC) modules; but the net result 
was a method that showed significant reductions in error rates for artificially reverberated 
data, though the experiments were not performed with natural far-field microphone data. 
His results with near-field microphone data were, unsurprisingly, not as good; but when 
combined with feature streams with more conventional features (PLP), were significantly 
improved over those achieved with PLP alone. Such approaches might offer a viable 
alternative to reverberation removal for improving ASR results. 

22.4.3 Robustness to Additive Noise 

Generally speaking, the approaches of the previous section used some period of speech 
to determine an average value in a log spectral or cepstral domain and subtracted it off 
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to eliminate components of the log spectrum that were essentially unchanging. For the 
case of additive noise, similar arguments can be used to suggest subtracting off something 
like an average power spectrum (see Exercises). In a common version of this approach, 
generally referred to as spectral subtraction, estimates of the noise power spectrum are 
literally subtracted from the observed short-term power spectrum. When a second channel 
is available to assist with the noise estimate (e.g., a second microphone), the estimation of 
the noise spectrum is simplified (see Section 22.6). Otherwise, estimates of the noise can be 
accumulated over time from histograms of the signal; typically the probability distributions 
of noise and signal energy are quite different, and the components can be estimated over 
time by a variety of means that will not be discussed here. Spectral subtraction is discussed 
extensively in [8] as is the related technique of Wiener filtering. In practice, approaches are 
used which differ from the theoretical recipes for either one, for instance to handle negative 
power estimates for the enhanced signal (for instance by setting them to a small positive 
value). 

Additionally, RASTA can be modified for the noise problem by changing the com-
pressive nonlinearity of Fig. 22.5. In this on-line approach, called J-RASTA (sometimes 
called lin-log RASTA), a noise power estimate is used to modify the nonlinear processing 
function prior to the RASTA filtering. RASTA approaches in general are discussed in much 
greater detail in [23]. 

There are many other compensation algorithms that modify the cepstral vector based 
on estimates of the noise or other linear modification of the signal, in general based on 
some computation of the difference between training and testing environments. Many of 
these (such as SNR-dependent cepstral normalization) have been developed at CMU and 
were described in [42]. 

Starting around 2000, the European Telecommunications Standards Institute (ETSI) 
put together a working group to develop a new feature extraction module for an approach 
to ASR called Distributed Speech Recognition (DSR), in which the features would be 
calculated on a cell phone and the rest of the ASR would be done remotely. The key 
characteristic sought for this front end was robustness to additive noise. The overall goals 
and process for the development of this new standard were described in [35]. The resulting 
standard is now referred to as the Advanced (DSR) Front End, or AFE, and is described 
in [32]. The AFE incorporates a number of strategies for noise robustness, but some of 
the primary components are a two-stage Wiener filtering module (using successive noise 
estimate to design the noise-reducing filters), a waveform processor that emphasizes high 
SNR parts and deemphasizes low SNR parts, and a voice activation detector that permits 
the dropping of non-speech frames that might otherwise be falsely interpreted as speech and 
show up as insertions in the recognition output. The datasets developed for this project were 
also made publicly available, and researchers outside of the standards process were able 
to pursue other approaches that were often quite effective, such as a two-stream approach 
where the streams have complementary properties, and are further processed by multi-
layer perceptrons before combination [11],; and an algorithm that, given training data with 
examples of both clean and noisy speech (not required for the methods described above), 
models noisy speech as a mixture of Gaussian components for each separate kind of noise 
or convolutional distortion [10]. 
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22.4.4 Caveats 
The preceding discussion was mostly restricted to certain classes of signal disturbance: 
linear and additive disturbances that have different temporal characteristics from speech. 
Further, it was assumed that spectral modifications did not completely obliterate the signal 
- an extremely sharp low-pass filter at 2 kHz will destroy high-frequency components 
in a way that RASTA or CMS will not be able to handle. Many real disturbances are 
nonlinear, phone dependent, or both. Nonetheless, many systems have found simple linear 
normalization schemes to be very important for acceptable performance under realistic 
conditions. Nonlinear discriminative transformations, for instance incorporating multi-
layer perceptrons, are also showing promise, particularly for handling multiple streams of 
speech features. 

22.5 AUDITORY MODELS 

In some sense many of the standard ASR features described earlier make use of insights 
and perspectives concerning the auditory system. The emphasis on power spectrum (ig-
noring the short-term phase), the integration into critical bands, the use of mei or bark 
scales, compression with log or cube-root functions, and spectral smoothing all are at least 
consistent with current perspectives on auditory function. For a particular example, that of 
the IBM Tangora system, an approximation to neural firing rates was used, incorporating a 
model of short-term adaptation [5]. Even RASTA processing appears to have some relation 
to models of forward temporal masking. Thus, many of the common feature computations 
already in use are in some sense related to auditory models. 

Many other auditory-inspired models have been proposed. In work at MIT, a model 
was developed that computed auditory-inspired parameters called mean rate and synchrony 
[41]. At Bell Labs, another representation was developed called the ensemble interval 
histogram (EIH). The EIH computed a kind of a spectrum based on interval statistics [17]. 
For both the MIT and Bell Labs models, researchers have sometimes observed useful 
properties (in particular, robustness to some kinds of additive noise), but the techniques 
have not achieved widespread use. 

Finally, as noted in Chapter 18, a number of experiments have been performed in 
which features (such as cepstral parameters) are separately computed for different bands of 
the spectrum (e.g., 4-7 bands for telephone speech) [2]. These were inspired by models of 
speech perception that incorporated within-band measurements across time, as described in 
[1]. Experiments with neuron recordings in the primary auditory cortex of small mammals 
seemed to indicate that there are other axes of representation that might be relevant, such 
as the temporal modulations of the signal [9]. Models of this kind of analysis were directly 
applied to speech-nonspeech discrimination [33]. Modulation filter multi-stream methods 
that are a generalization of the multi-band approaches have also been applied to speech 
recognition, for instance in [28], and, more recently, [45] and [46]. 
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z{n) = x(n) + y^n) /—ч x(n) 

x = clean signal 
л >Ί · У 2 = noise 
>'(") z = noisy signal 

FIGURE 22.8 Two-microphone noise reduction. From [37]. 

22.6 MULTICHANNEL INPUT 

Nearly all ASR systems incorporate a single channel of input. However, improved robust-
ness to noise, reverberation, and nonlinguistic disturbances in general can often be obtained 
by using several microphones and computing features that take advantage of the multiple 
sources of acoustic information. In two-microphone schemes, for instance, differences in 
the SNR between the two microphones (which can be achieved by placing one microphone 
relatively near the talker) can be used to improve speech-signal estimation. Figure 22.8 
shows a simple noise-reduction scenario, in which it is assumed that the second input signal 
contains noise only. If y\ (и) is related by a linear transformation to the isolated noise signal 
Уг{п), then adaptive least-squares approaches (on-line regression between the two signals) 
will attempt to find the best signal to subtract off from the input. In practice, such techniques 
can work quite well; in one demonstration of this technique, given at an ICASSP in the 
early 1980s, helicopter noise that was significantly louder than the speech was successfully 
subtracted to yield a very intelligible signal. 

When practical, microphone arrays can use beamforming approaches to attempt to 
focus on the sound source; thus, the spatial location of the desired or undesired signals can 
be incorporated for their separation [13]. Most often a simple delay-and-sum approach is 
used, which attempts to maximize signal-to-noise ratio for the desired signal by estimating 
the delays between microphones for the desired source and correspondingly delaying the 
microphone signals and summing them. This reinforces the desired signal. In some cases 
cross-correlation approaches are used, which are at least inspired by processing that is 
often presumed to occur in human binaural hearing [44]. More recent approaches, which 
can help for noisy or moderately reverberant environments, optimize the microphone 
stream weights to maximize the likelihood of the recognition features, given the complete 
recognition system [38], [39]. In the case of greater reverberation, a subband approach 
(also optimizing the microphone stream weights by maximizing likelihoods given the full 
recognizer) has shown promise [40]. Microphone arrays are also discussed further in this 
book in Chapter 39 in the context of source separation. 

УМ „ Adaptive 
filter 
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22.7 DISCRIMINANT FEATURES 

Feature extraction for ASR has also benefited from discriminant transformations such 
as: linear discriminant analysis (LDA, discussed in Chapter 8), heteroscedastic linear 
discriminant analysis (HLDA [30]), in which the equal variance assumptions of LDA are 
dropped; and the neural network-based tandem approach [22] in which the input features 
are processed by discriminatively trained multi-layer perceptrons (MLPs) prior to their use 
by a Gaussian mixture-based HMM recognizer. Particular examples of this approach now 
are explored in many labs, and in a number of forms; for instance, the so-called TRAPs 
(temporal patterns) approach described in [25] used separate MLPs on each critical band 
before combination into a feature vectorln for the HMMs. In another approach called HATs 
[4] only the outputs of the hidden layer of the subband MLPs were used to generate outputs 
for a combining MLP Related work using subband information as input to a 5-layer network 
in which all layers were trained but an internal "bottleneck" layer was used was reported in 
[ 19]. In [36], transformations of the posteriors from a large number of Gaussians were added 
to the original feature vector. Aside from their inherently discriminative properties, all of 
these approaches can facilitate the incorporation of features covering a broader acoustic 
context than is typical for earlier systems, and this has often proved to be beneficial. 

22.8 DISCUSSION 

Since the topic of this chapter was feature extraction for ASR, we have ignored char-
acteristics of ASR systems that are more typically associated with the pattern-matching 
functions, for instance the statistical estimation. However, optimal functioning of these dif-
ferent components is necessarily linked. In particular, one of the most effective approaches 
to noise compensation has been the modification of statistical models to permit them to 
better represent the corrupted speech. Some methods (such as CMU's codeword-dependent 
cepstral normalization) modify the statistical parameter estimation for the case of cepstral 
input variables that have been degraded by linear and additive spectral effects. In the case 
of representations such as RASTA-PLP, it has been shown that some kinds of statistical 
estimators are much better able to handle these features than others (in particular, RASTA 
incurs a strong dependence on the left context, and the model must be able to represent 
this). Other kinds of feature vectors can have quite different properties, for instance a high 
dimensionality, components that are very correlated, and an added emphasis on transition 
regions. Other features (such as EIH) are computed over longer stretches of time than 
the more common feature sets, which strongly affects the corresponding statistics. These 
may be difficult to accommodate properly with traditional structures, and future research 
in ASR may need to simultaneously consider changes to the feature extraction and the 
statistical components. Finally, some approaches to improving robustness to noisy and/or 
reverberant environments actually operate in later parts of the chain. Examples include 
model adaptation to test conditions differing from the training data (discussed in Chapter 
28), and the use of pragmatic knowledge from the task (such as the position in a directed 
dialog) to push the decision towards a more likely recognition. 
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22.9 EXERCISES 

22.1 Recall that an octave is a frequency range of a factor of 2, and that fractions of an octave are computed 
on a log scale (e.g., the frequency that is one-half an octave above f is \/2/i ). 

(a) Compute a set of frequencies that are one-third an octave apart starting at 100 Hz and going up 
to 3200 Hz. 

(b) Use Eq. 22.1 to warp these numbers to the Bark scale. 

(c) Using these results, characterize the difference between filters centered at these frequencies from 
filters centered at 1-Bark intervals. 

22.2 Show that the slope of the best line approximating cepstral feature C, from time n — NXo time n + N 
(in the sense of the total squared error) is given by Eq. 22.2. 

22.3 Describe some circumstances in which autoregressive smoothing of the spectrum, as done in PLP, 
could be preferable to smoothing by cepstral truncation, as is done for mei cepstra. Describe a situation 
in which mei cepstra could be preferable. 
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CHAPTER 

LINGUISTIC CATEGORIES FOR 
SPEECH RECOGNITION 

23.1 INTRODUCTION 

In the past few chapters, we have introduced the fundamentals of feature extraction for ASR. 
The resulting features are gathered into feature vectors that are associated with linguistic 
categories during training, and then during recognition they are integrated over time to find 
the best linguistic sequence to assign to the observed sequence of feature vectors. 

Here,' we discuss the linguistic categories that have been used or proposed for use 
in ASR. Many of these have been alluded to previously (articulatory features, phones, 
phonemes, syllables, words, phrases, sentences, etc.); here we attempt to define terms 
more rigorously, particularly with regard to their application in speech engineering. We 
also highlight some of the research areas relating to the representation of these linguistic 
categories in ASR, particularly in the context of fluent speech. 

23.2 PHONES AND PHONEMES 

23.2.1 Overview 
Words are a natural unit for modeling in ASR, particularly since there are many applications 
for which isolated words are an adequate form of input. Even for continuous speech, using 
complete words as the fundamental linguistic unit permits acoustic modeling of the word-
specific context of the sounds used. Consider, for example, a digit recognition task (e.g. for 
credit card numbers): the system must recognize strings of digits, where the vocabulary size 
(in English) is only 11 words - one through nine, zero, and "oh". One can assume that each 
word type will be seen many, many times during training. In this case, whole-word models 
can be quite effective: each word is subdivided into a fixed number of HMM states (e.g. 
onel, one2,..., onen), and the sounds of the word are automatically inferred during training 
using the Expectation-Maximization algorithm. Using complete words as the fundamental 
linguistic unit permits acoustic modeling of the word-specific context of the sounds used. 

However, when the vocabulary size gets much larger, whole-word models become 
problematic: there is typically not enough data to support learning the statistics of each 
word individually, and there is no way to build a model for a word not seen in training. In 
essence, it is a wasteful use of training data to ignore any commonality between sounds 

' This chapter was largely written by Eric Fosler-Lussier. 
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within different words. Therefore, subword units of some type that divide a word into 
multiple units are nearly always employed in large-vocabulary ASR. 

Subword units can also describe the gross characteristics of variation that are seen 
in the pronunciation of words particularly in natural speech. For instance, consider the 
pronunciations of "You did eat" and "Did you eat?" The former sentence is likely to be 
used in a clarifying context, with emphasis on the "did" (e.g., as a response to "I haven't 
eaten yet"). The latter, however, can be used in a more informal context (such as when your 
friend is ready to gnaw her own arm off and is looking for dining company); consequently, 
the pronunciations of "you" and "did" are often quite different, leading to pronunciations 
such as "Dijaeet?" When models are built on a word-by-word basis, one would have to build 
many different models of words like "did" and "you," which can vary in different contexts. 
Moreover, we would like to have some relationship between "Dijaeet?" and "Woujaeet?" 
(Would you eat?) - a task difficult to achieve in word-by-word models. We would like to 
have a notion of what makes these two words ("did" and "would") similar. 

Borrowing from the field of linguistics, many ASR systems divide words up into units 
called phones or phonemes (depending on the system). Although phones and phonemes 
are often confused in the ASR literature, each of these terms has a distinct meaning 
in linguistics, and we explore these differences further in this section. We also discuss 
what makes phone(me)s similar to each other, and how linguists and speech researchers 
write down phones and phonemes. Finally, we focus on how these linguistic concepts are 
implemented in an ASR system. 

23.2.2 What Makes a Phone? 

Large acoustic variability for the same word is typical of spoken language. In Chapter 17, 
we discussed the concept of categorical perception - the fact that small acoustic variations 
(such as shifts in the spectrum for stop consonants) often do not change the listener's 
perceptions of the segment in question. 

Linguists have categorized many of the sounds of the languages of the world into 
segments called phones. Although not all linguists agree on the identity of these phones, 
phoneticians have a general system for codifying them. Phones are not even necessarily 
the smallest units used to describe sounds - linguists will often use modifiers to phones, to 
refer, for instance, to fronted or raised vowels - but they represent a base set of sounds that 
can be used to describe most languages. 

Phones are usually written in brackets (e.g., [m]). The IPA2 phonetic transcription 
for "spat", for instance, would be [spasth]. This indicates that the word is made up with 
an s, followed by an unaspirated p, the short vowel a, and an aspirated t. Note that in a 
phonetic description, features such as aspiration will be important. To determine whether 
a consonant such as p or t is aspirated, hold your hand in front of your mouth. If you feel 
a breath of air as you say the consonant in the word, then it is aspirated. Try saying "spat" 
versus "pat"; in the latter case, with the larger amount of air produced, the p is said to be 
aspirated, as opposed to the unaspirated3 p in "spat". 

international Phonetic Alphabet - see Section 23.3 for a description. 
3The linguistic term unaspirated means that there is only a little bit of air. This is different from the term unreleased, 
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TABLE 23.1 Korean Distinction 
between Aspirated and 
Unaspirated [p] 

Korean English Gloss 

[phul] 'grass' 
[pul] 'fire' 

23.2.3 What Makes a Phoneme? 

Since the set of phones is designed to cover the set of all languages, an inventory of these 
can be quite large, with any single language using only a subset. The set of unique sound 
categories that a language uses are called the phonemes of the language. Two sounds are 
considered to be parts of different phonemes if they make a distinction between two words; 
these words are called minimal pairs. The words mat and pat are lexically distinct; from 
this we can conclude that in English, /m/ and /p/ are different phonemes. In general, we 
write phonemes between slashes, to distinguish them from phones. 

There will be some cases in which a sound in one language is just not used in another. 
For example, the velar fricative4 ch in German (e.g., in the word sprach, represented by the 
IPA symbol [x]) is not a sound used in English. Conversely, the English voiced th sound 
(as in this and that, represented by IPA [8]) doesn't appear in German; speakers who have 
trouble with this sound will often substitute [z], or less frequently, [d]. 

In other cases, different phones will be possible given the same phoneme. In this 
case, the phones are called the allophones of the phoneme. In English, for example, the 
aspirated [ph] and unaspirated [p] correspond to the same phoneme, /p/. If you try to say 
spit with an aspirated [ph], or pit with an unaspirated [p], the result is not some different 
word, but rather an unusual pronunciation of these words (perhaps sounding like they came 
from a foreign speaker). This is not the case in Korean,5 however - there is a minimal pair 
which shows a distinction between the two (Table 23.1). 

The fact that adding aspiration changes the meaning of the word indicates that /p/ 
and /ph/ are really two separate phonemes in Korean. 

23.3 PHONETIC AND PHONEMIC ALPHABETS 

In trying to write about phones and phonemes, linguists have found that the alphabets of 
English and other languages are not an optimal choice for linguistic descriptions. Consider 
the words thing and that. The sounds corresponding to the letters "th" are different in each of 
these words. This indicates that we need some way to distinguish between them beyond En-

which means that no air is produced whatsoever. 
4See the next section on articulatory features for the definition of a velar fricative. 
5This example is due to Finegan and Besnier [8]. 
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glish orthography. Also, the fact that English requires two letters to represent this one sound 
is suboptimal, particularly when the sounds "th" make are only minimally related to the in-
dividual sounds of [t] and [h]; we want a system that represents one sound with one symbol. 

The system that phoneticians have devised for this purpose is called the International 
Phonetic Alphabet (or IPA). This alphabet has a base of approximately 75 consonants and 
25 vowels, which covers most languages, and a large inventory (50 or so) of diacritics that 
can be used to modify the base phones in order to achieve finer phonetic distinctions. 

In the late 1980s, a database of read sentences called TIMIT6[1, 12] was phonetically 
labeled (using a combination of automatic and manual methods) for use in automatic speech 
recognition. So that the database could be machine readable, an ASCII symbol set was used, 
where the requirement of one symbol per sound was relaxed. The TIMIT phoneset features 
a slightly smaller inventory of phones than IPA (61 phones), but it is English specific and 
still makes relatively fine phonetic distinctions. Table 23.2 shows the relationship between 
the these two symbol sets. 

23.4 ARTICULATORY FEATURES 

Linguists have tried to characterize what makes some phones and phonemes similar to each 
other, and what makes them different. In Chapter 17, we looked at articulatory features, 
which are designed to capture some similarities between the way different segments are 
produced by the vocal tract.7 Here we look at some of the correlates across phones that can 
be used in the categorization of these sounds. 

23.4.1 Consonants 
Consonants are made by constricting the tube of the vocal tract in various ways, usually 
with the tongue. Two main categorizations used in determining similarities between phones 
are the place and manner of articulation. The place of articulation refers to the point of 
closest constriction in the oral cavity. Figure 23.1 gives a cartoonish picture of the oral 
cavity, with labelings of different constriction sites. The places of articulation found in 
English and other languages are as follows. 

Bilabial: These segments are made with a constriction at the lips. Examples of this are 
[b] and [m]. 

6This term is an acronym for Texas Instruments, where the database was collected, and the Massachusetts Institute 
of Technology, where it was transcribed. 
7It is interesting to note that linguistics has latched onto the idea of characterization by the production method, 
rather than by some features of perception. Partially, this is because it is much easier to introspect how we produce 
sounds than how we perceive sounds. There is some debate over whether trying to use a production-based model 
of phones in a recognition scheme is the proper thing to do. However, there is not currently an adequate model of 
the features of categorical perception that can be used. 
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FIGURE 23.1 Places of the oral cavity used for articulations. 

Labiodental: Labiodental segments require speakers to place their lower lip against 
their upper teeth, as in [f] and [v]. 

Interdental: (also known as dental segments) Here, the constriction is placed between 
the teeth. The only sounds in this category for English are [Θ] {thing) and [3] {thai). 

Alveolar: Behind the teeth sits the alveolar ridge; constrictions here will result in seg-
ments such as [t], [n], and [z]. 

Palatal-alveolar: If the constriction is made slightly behind the alveolar ridge, at the 
junction of the ridge and the hard palate, sounds like [Γ] (as in sherry) and [3] (measure) 
can be made. 

Palatal: The only English phone made by a constriction on the hard palate is [аз] 
(/udge), although this sound can also be palatal-alveolar. In German, the sound of the 
letters "ch" after some vowels like "i" will result in a palatal segment: for example, "ich" 
would be [19]. 

Velar: These segments are made by constrictions even further back in the mouth, closer 
to the soft palate (velum). Sounds in English that are velar include [k] and [n] (as in sing). 

Labiovelar: Some sounds are actually made by constrictions in two distinct places; clo-
sures at the lips and velum are a common example, which describes the English phone [w]. 



324 CHAPTER 23 LINGUISTIC CATEGORIES FOR SPEECH RECOGNITION 

TABLE 23.2 TIMIT Phone Types. 

Phones in the TIMIT Database 

TIMIT IPA Example TIMIT IPA Example 

pel 
tel 
kcl 

P 
t 

к 
q 
ch 
f 
th 
s 

sh 
m 

em 
1 

el 
nx 
w 
hh 
er 

iy 
ey 
ae 
ao 
ow 
uw 
aw 
oy 
ax 
epi 
h# 

ρΊ 

tn 

kn 

P 
t 

к 
? 

t j 
f 
Θ 
s 

J 
m 
m 
1 
1 
? 
w 
h 
31 

i 
ey 

ae 
э 

ow 

u 
au 
01 

э 

(p closure) 
(t closure) 
(k closure) 

pea 
tea 
key 
bat 

choke 
fish 
thin 

sound 
shout 
moon 
bottom 

like 
bottle 

winner 
wire 
hay 
bird 
beet 
bait 
bat 

bought 
boat 
boot 

about 
boy 

about 
(epenthetic sii.) 

(silence) 

bel 
del 
gel 
b 
d 

g 
dx 
jh 
V 

dh 
z 
zh 
n 

en 
ng 

eng 
r 

У 
hv 
axr 
ih 
eh 
aa 
ah 
uh 
ux 
ay 

ax-h 
ix 

pau 

V 
(Г 

gn 

b 
d 

g 
r 

d3 
V 

3 
z 

3 
n 
n 

И 
IJ 

r 

j 
fi 
a1 

I 

ε 
a 
л 

и 

У 
ау 

э 
i 

(b closure) 
(d closure) 
(g closure) 

bee 
day 
gay 
dirty 
joke 
vote 
then 
zoo 

azure 
noon 

button 
sing 

Washington 

right 
yes 

ahead 
butter 

bit 
bet 

father 
but 

book 
toot 
bite 

suspect 
debit 

(pause) 

Uvular: The uvula is the small flap of skin which hangs down at the back of the mouth. 
There are no segments in the English inventory which are actually uvular; in French, 
however, the phoneme /r/ is often realized with a uvular phone [и], as in "rouge". 
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Glottal: A closure can sometimes take place as far back the oral cavity as the glottis; 
a little-understood segment that occurs in English is the glottal stop [?], which will often 
precede word-initial vowels (as in the negative utterance uh-uh [?э?э]), or replace segments 
like [t] in some dialects of British English (for example, bottle [Ьа?э1]). 

The manner of articulation refers to the amount of constriction that is made in a 
consonantal gesture. The main categories seen in English are as follows: 

Stops: (Plosives) These segments are produced by a complete blockage of the airstream. 
Often, when stops are generated, two acoustic events result: first, the airstream is completely 
stopped (often called the closure), and then, after a short duration, the closure is released. 
Examples of stops are [th] or [p]. Another type of stop is the flap or tap; the alveolar flap, 
whose IPA symbol is [r], is often used in American English to replace [t] or [d]. Compare, 
for example, the middle consonant in "butter", usually pronounced with a flap, with a word 
like "deter", where the III sound is a full [t]. Flaps are often shorter than full stops; the 
tongue just taps for a short time against the roof of the mouth before returning to a less 
constricting position. 

Fricatives: Fricatives can be thought of as "almost stops" - the tongue comes very 
close to a complete closure, enough to create turbulence in the airstream. Examples include 
[f] and [Jl (as in sherry). 

Affricates: An affricate is really a combination between a stop and a fricative. Affricates 
start with a stop closure, but instead of a normal stop release, a fricative is produced. In 
the IPA, this is notated by the combination of two symbols; for example, the English word 
с/геггу is spelled [tferi] in IPA. 

Nasals: Related to the stops are the nasals. Nasals such as [n] or [rj] (sing) close off 
the oral cavity in the same way that stops do. However, the nasal passage is opened at the 
velum, allowing air to escape through the nose, rather than building up behind the closure 
as in a stop. 

Liquids and Glides: These classes are often called approximants; these segments, 
although still consonantal, are more vowel-like in nature. They will often combine with 
vowels, blurring the boundaries between the vowel and the consonant. The English liquids 
include [1] and [r], which tend to 'color' preceding vowels with their sound. The glides [y] 
and [w] often lengthen vowels to create diphthongs (such as boy). 

Other Articulations: Other articulations are also possible that are not commonly used 
in English. Trills are made by loosely placing the tongue in the place of articulation, 
and allowing the airstream to vibrate the tongue. Spanish uses the [r] trill in some words 
such as perro, "dog." Other types of stops are possible as well; ejective stops build up a 
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large amount of pressure behind the stop before releasing with a poplike sound; implosive 
stops are created while breathing in, rather than out. Some African and Native American 
languages also utilize clicks, in which the tongue creates a small vacuum in the oral cavity, 
which is then released with a clicklike sound. 

One other major distinction in English consonants is voicing: two phones can be 
made with exactly the same articulations, but with the vocal folds vibrating in one case and 
not in the other. When the vocal folds vibrate, a consonant is called voiced; it is voiceless 
otherwise. The difference between voiceless and voiced consonants can be seen in Sue 
versus zoo, or pat versus bat. 

23.4.2 Vowels 

Vowels can be categorized in a similar manner as consonants; often the manner of articu-
lation is just considered to be vowel, and the place can vary over the same range seen for 
consonants. However, linguists generally tend to use three major parameters to describe 
vowels: frontness, height, and roundedness. 

The frontness (or backness) of a vowel is similar to the place of articulation, in that it 
gives a general indication of the place of greatest constriction (i.e., highest tongue height) 
in the mouth. In English, we tend to use three different positions: front, as in beat [i], bit 
[i], bet [ε], and bat fse]; central, as in "high schwa" inhibit [i], "schwa" about [э]; and back, 
as in boot [u], boat [o], bowght [э], bwt [л], and father [a]. 

The frontness correlates with higher second-formant frequency (F2) values, although 
some use the difference F2 — F\ to describe frontness. 

The height of a vowel refers to how far the lower jaw is from the upper when making 
the vowel. High vowels, such as [i] and [u], have the lower and upper jaws close together. 
Low vowels, such as [as] and [a], have a more open oral cavity. The height of a vowel 
correlates well with the first-formant frequency - high vowels have a low F\, low vowels 
have a higher F\. The actual values of the formant ranges depend on the speaker's vocal 
tract; for instance, men tend to have lower resonances than women, because they have a 
longer vocal tract. English speakers use approximately four different vowel heights in the 
inventory of vowels. This is difficult to pinpoint, since the variability in vowel formant 
frequency is actually quite large. 

Roundedness refers to whether the lips have been rounded (rather than spread) in 
vowel production. In English, the front vowels are often unrounded, whereas the back 
vowels are rounded - as shown by bit versus boot. In other languages, such as German 
and French, front vowels may also occur in rounded form, such as in the German word 
for vegetable, Gemüse [gamüzo]. Rounding tends to lower the first- and second-formant 
frequencies. 

There are other features that can also affect vowel quality. In English, vowels often 
become rhoticised (r-colored) when followed by an /r/ sound, as in bird, or star. Nasalization 
happens when vowels are adjacent to nasals - as seen in the difference between the vowels 
in the words "in" and "it", and "can" and "cat". 
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23.4.3 Why Use Features? 
Why are linguists (and speech researchers) interested in categorizing phones by using 
articulatory features? One reason is that phones with similar articulatory features are similar 
acoustically. Features also allow generalizations to be captured over classes of phonemes; 
for example, consider the realization of [t] and [d] segments as the flap [r] in words like 
buiier and ladder. We can create a rewrite rule, called a phonological rule, to describe this 
effect: 

+vowel 
—stress 

The rale above says "change [t] to [r] when the phone on the left is a stressed vowel 
and the phone on the right is an unstressed vowel." However, we would have to specify 
two rules to completely describe this phenomenon - one for [t] and one for [d]. Using 
articulatory features, we can only specify one rule to cover both instances: 

+stop 

+alveolar 
- r / 

+vowel 

+stress 

+vowel 

—stress 

In this section, we have merely scratched the surface of phonetics and phonology. 
For a further explanation of phonemes, phones, and the way phones are produced by the 
vocal tract, a good introductory text is Л Course in Phonetics, by Peter Ladefoged [20]. 

23.5 SUBWORD UNITS AS CATEGORIES FOR ASR 

Ultimately, in ASR we would like to be able to define a set of categories for statistical 
pattern recognition; an obvious set would be some type of phonetic or phonemic system. 
One of the open questions in ASR is what constitutes the appropriate set of phones for 
classification. The choice of phoneset generally depends on the dictionary used; a dictionary 
provides a lookup table from words to their phonetic or phonemic pronunciations. 

For American English, the TIMIT phoneset uses an inventory of 61 phones - rather 
large by ASR standards. Some dictionaries are more phonemic, such as the CMU dictionary 
[44] which uses only 40 classes. The trade-off is that having fewer classes often makes 
it easier to discriminate between classes since there will be more samples per class on 
average, but more classes will allow finer phonetic distinctions that may include some 
contextual information. 

Some systems have used completely data-driven categories for subword units; one 
early system was the Tangora system by IBM [3], in which these categories were called 
fenones - models derived from statistical clustering techniques. Typically there were a 
somewhat larger number of fenone units (e.g., 200) than the number of phones used in 
comparable systems. A related approach was taken by Bacchiani and Ostendorf [2], who 
developed a system for jointly deriving context-dependent acoustic subword units and 
the lexicon, finding that their acoustic segmentation approach outperformed phone units 

+vowel 
+stress 
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for a modestly sized task (1000 word vocabulary). A difficulty noted in this approach is 
determining pronunciations for words not seen in training. 

A middle approach, taken by most modern ASR systems, is to use linguistic infor-
mation (phones) to derive a base representation for a word, and then to allow the system to 
develop related self-organizing categories. For example, many HMM-based system divide 
phones into at least three subunits (states), representing the beginning, middle, and end of 
a phonetic segment. While the initial (bootstrap) definition of the subword unit may come 
from human definition as established in a phonetic dictionary, the ultimate class associations 
for the ASR system will be automatically determined during the training of the system. 
Still, the use of linguistic units such as phones or phonemes, even if only for bootstrap 
models, permits the incorporation of structure in other ways, such as the representation of 
alternate pronunciations for spoken language. This is discussed further in the next section. 

An important question for system designers is how to proceed when pronunciation 
dictionaries do not exist at all, or there are words that need to be in the vocabulary that do not 
appear in a base dictionary (e.g., proper names). For languages with a regular orthography 
(spelling of words), one can use the letters of the word as the representation of the word 
— replacing the phones of the word with the graphemes of the word. The acoustic model 
must then model the variation in sounds for similar letter patterns: for example, in English, 
consider the sounds of "th" in the words "this", "with", and "hothouse", or the letter "e" 
in "bed", "bead", and "bide." English has quite a bit of variability in the matching of 
orthography to sounds because of language shifts over centuries, along with a significant 
number of imported words, so it may not be a good candidate for grapheme-based models. 
Other languages, however, show enough regularity of orthography to make grapheme based 
representations viable - for instance, Spanish [17]. One can also jointly model graphemes 
and phonemes as subword units [43, 6]. 

Another approach for the unknown word pronunciation is to treat the problem as 
one of predicting a transformation from grapheme sequences to phone sequences, often 
called a "letter-to-sound" system (LTS).8 One of the earliest systems that predicted sound 
sequences this way was the NETtalk system [36] - a neural network trained to scan a 
sequence of letters and predict the most likely phoneme sequence. A similar technique is 
to use decision trees to accomplish this prediction (e.g. as in the Festival TTS system [41]), 
which attempt to generalize over windows of letter/sound patterns; advanced techniques 
for such generalizations include learning by analogy using latent semantic analysis [5]. 

One of the basic problems for speech recognition systems is that no matter which type 
of units are selected, there is still a wide amount of acoustic variation in how those units are 
realized due to factors such as speaker accent, gender, or speaking rate - examples include 
the varying pronunciations of "tomato" between British and American English, and the 
pronunciation of "probably" as "prob'ly" in fast speech. One can choose to model this as a 
phonological variation (allowing variants in the subword unit sequence) or as an acoustic 
variation (using a single subword unit sequence for a pronunciation and then modeling the 
variation in the underlying acoustic model). 

8LTS systems are prevalent in open-domain speech synthesis systems, where the synthesizer must be able to 
produce speech for any possible input. 
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23.6 PHONOLOGICAL MODELS FOR ASR 

Phonological models have appeared in the literature in two basic forms: rule-based systems, 
which encode rales derived by linguists, and data-driven inductive methods, which attempt 
to find relationships between a "canonical" form and a "surface" form. 

23.6.1 Phonological rules 
Phonological rales attempt to derive new pronunciations from an original dictionary. These 
can be used for various reasons, such as to map between phonemic and phonetic category 
sets. For example, to convert between the CMU dictionary (with 40 phones) and the TIMIT 
phone set (61 phones) one can use a set of phonological rales, such as the flap rale described 
in Section 23.4.3 [40,21]. 

Another use for phonological rules is to expand the set of pronunciations that can 
represent a word. For example, the word else [els] can sometimes be pronounced [elts], as 
is pointed out by Tom Lehrer's rhyme scheme in song:9 

You give me welts, 
like nobody else, 
as we dance to the masochism tango. 

The [t] that gets inserted into "else" is called an epenthetic stop. In order to allow for 
the possibility of this pronunciation of "else" (and "false", "pulse", and "Alzheimer's"), 
we can write another phonological rule: 

0 - » t / 1 s$. 

This rale says "insert a [t] (i.e., replace nothing with [t]) between an [1] and an [s] before a 
syllable boundary ($)." With a large set of rales, one can generate many pronunciations - in 
fact, overgeneration is possible. Consider a rale of final alveolar stop deletion, which deletes 
word-final [d] and [t] stops after [n] (and other segments). This rale would make the words 
"an" and "and" be pronounced the same, potentially increasing the confusability between 
words for the recognizer. Usually, ASR systems either use a small number of pronunciations 
or have probabilities attached to the pronunciations in order to rank-order them. 

23.6.2 Pronunciation rule induction 

Another approach to modeling variation on the phonological level is to build data-driven 
systems that observe pronunciation variants for words by matching dictionary pronunci-
ations to observed pronunciations in a corpus, and then attempting to learn the variation 
using methods similar to the letter-to-sound systems described above. Observed pronunci-
ations can come from phonetically-labeled corpora (e.g. TIMIT) that have been marked up 

'Thanks to John Ohala for this example. Really. 
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by linguists, or by using a speech recognizer as a phonetic transcriber to generate phone 
strings not constrained by a lexicon. 

Riley [32] and Chen [7] developed the first systems that attempted to capture phono-
logical variation using decision trees: looking over a sequence of phones from a dictionary 
pronunciation, those systems tried to predict the phones actually pronounced in the TIMIT 
transcriptions based on the context of each phone in turn. These systems were able to cap-
ture some of the same rules as posited by linguists: for example, Riley's system was able to 
induce the flapping rule. Similar results have been seen with pronunciations automatically 
generated by speech recognition systems (e.g., [10]). 

Both styles of phonological rale have found some success in systems where phones 
are the primary unit of representation; a good survey of these kinds of techniques can be 
found in [39]. However, one can also build the model of acoustic variation directly into the 
acoustic model by using semi-automatically determined units such as context-dependent 
phones, as described in the next section. 

23.7 CONTEXT-DEPENDENT PHONES 

Previously, we said that phonemic categorizations often use less contextual information 
than phonetic ones. However, some ASR systems get around this by explicitly modeling 
the surrounding context of a phone. For example, in Fig. 23.2 we can replace single-phone 
(monophone) models with ones that include the left and right contexts (triphones). This 
means that the [k] and [t] models, which were previously shared by "cat" and "kit", are 
now different for each word, depending on the central vowel. 

Context-dependent phones can accommodate certain kinds of pronunciation varia-
tion. For example, our "welts'V'else" rhyming example can be handled quite readily by 
triphones: if each triphone is represented by a 3-state HMM, the final state of the /1/ sound 
(in the model [eh-l+s]) would likely incorporate the variation of an introduced Ixl sound; 
other examples of /1/ not in that context would not allow for the introduction of a Ixl. 

In addition to triphones, one can use increasing amounts of context to make quadra-
phones, quinphones, and so on. However, this increases the number of models by quite a 
bit. For a 40-phone set, the number of triphones is already of the order of 403 = 64,000, 

Monophone models Triphone models 

FIGURE 23.2 Phone models of cat and kit. 
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some of which are very unlikely to be seen in a moderate size of training data.10 One way 
to reduce this dimensionality is to cluster the triphones based on acoustic features. If the 
clustering is done by manner or place of the left and right context phones, the results are 
known as generalized triphones. If the models are blindly clustered by learning techniques, 
they are usually called clustered triphones (or quinphones, etc.). 

Decision tree triphone clustering [45] is one of the dominant methods for tying 
together parameters in current HMM-based speech recognition systems. The technique 
works by attempting to merge "similar" triphones together - triphones that have the same 
center phone and similar phonetic contexts. The decision tree finds similar contexts by 
searching over classes of phones (e.g. the articulatory features in Section 23.4), attempting 
to minimize the loss in model likelihood due to generalization over the contexts. 

23.8 OTHER SUBWORD UNITS 

Phonemes, phones, clustered subphones, and context-dependent versions of these units have 
been the dominant structures for ASR over the past two decades. However, other units have 
been considered and potentially have a number of significant advantages. Some researchers 
have suggested that the key element in speech intelligibility is not the classification of 
steady-state speech sounds (which are actually infrequent in natural fluent speech), but 
rather the classification of the transitions between phones. A unit that is a good match to 
this perspective is the diphone, which is typically defined as extending from the middle of 
one steady-state region to the middle of the next. Diphones are quite common in commercial 
speech synthesis, but they have been used only occasionally for speech recognition. 

Another unit of interest to the speech community has been the syllable (and sometimes 
a half-syllable unit called a demisyllable). The onsets of syllables appear to be easier to 
detect acoustically than the beginnings of phones, and syllables have structural constraints 
that can potentially be exploited in an ASR system. Speech recognition researchers who 
work with languages other than American English have more frequently incorporated 
syllable or syllable-related units. Examples include considerable work in Japanese [26], 
Chinese [23], German [31], [18], [19], Hungarian [42], and Spanish [25]. 

A few research projects are currently exploring syllables for English, though the 
work is controversial; detractors view English as being a poor case for syllable-based 
structure, since there are a range of complex syllable types in English, and syllable timing 
is complicated by stress patterns. However, an examination of the patterns of conversational 
speech has shown that extremely simple syllabic types and timing patterns represent the 
lion's share of fluent conversational speech [13]. In general, syllables are associated with 
contours in energy and pitch that are 150-250 ms long. 

For phonological purposes, syllables are often divided into three parts: the onset, 
nucleus, and coda. The nucleus is an obligatory component, and, as the name indicates, 
is the center of the syllable. Nuclei are usually vocalic segments. The onset is typically 

10The actual number is probably smaller as a result of phonotactic constraints; for instance, the triphone [b-f-z] is 
not one that will be found in English. 
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consonantal material that precedes the nucleus (in a vowel-initial syllable there is no onset 
other than the beginning of the nucleus), whereas the coda is the material following. In the 
word "spat", the onset is [sp], the nucleus is [se], and the coda is [th]. 

23.8.1 Properties in Fluent Speech 
A well-known rule of thumb is that onsets are preferred over codas in English. This means 
that syllabifications will often change in fluent speech. For instance, consider the word 
"five" ([fayv]), which only has one syllable in isolation. In the phrase "five eight", the 
possibility of resyllabification ([fay] [vet]), exists, where "five" would occupy part of two 
syllables. As a result, in fluent speech word boundaries and syllable boundaries may not 
coincide. 

23.9 PHRASES 

In most current ASR systems, the acoustic models are structured as words (themselves 
typically composed of subword units, as noted earlier), and the words are grouped together 
into complete utterances by using models of language (typically simple statistical models, 
as will be discussed in later chapters). Ordinarily there is no other acoustic unit larger than 
a word. However, some work has incorporated phrase structure in speech recognition [22], 
[4]. Acoustically, phrases appear to have some coherence in terms of contours of energy 
and pitch, essentially corresponding to a sequence of syllables that can include multiple 
words; they are also commonly distinguished by breaks of lower energy (i.e., silence) 
between the phrases. Phrase boundaries also often serve to indicate a change in topic or a 
syntactic boundary (such as the beginning of a relative clause). However, the main current 
application for phrase structure is as part of a syntax for natural language used in spoken 
language systems for some limited domains - such as the Air Travel Information System 
mentioned in the next section. 

23.10 SOME ISSUES IN PHONOLOGICAL MODELING 

In the late 1980s and early 1990s, many speech researchers focused on the transcription 
of read speech, or on the recognition of command phrases in human-computer interac-
tion systems. In terms of U.S. government-funded tasks, read-speech problems included 
the Resource Management task (recognizing scripted commands to a database of naval 
warships) and the North American Business News task (recognizing sentences read from 
the Wall Street Journal and other newspapers); the Air Travel Information System task 
used recordings of spontaneous interactions between a human and a computer system, in 
which the human was trying to get airline information. Subsequently, speech recognition 
tasks have increased in complexity, including transcribing human interactions in recorded 
telephone calls (Switchboard, CallHome databases), online computer language translation 
in human-to-human conversations (Verbmobil), or recorded spontaneous radio interviews 
(parts of the Broadcast News database). In these tasks, researchers have found that the 
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pronunciation variability increases quite dramatically in these situations. The big challenge 
is to find ways to predict the variability that occurs in these settings. 

Siegler and Stern [37] and Mirghafori et al. [27] showed that abnormal speaking 
rates correlated well with ASR word error on the Wall Street Journal speech transcription 
task; a higher- or lower-than-average speaking rate was a good indicator that a speech 
recognizer would make more errors. This has also been seen in spontaneous corpora such 
as the OGI Numbers corpus [28] and Switchboard database [29]. It is likely (although yet 
to be proven) that some of the errors are due to changes in pronunciation, such as the 
reduction or deletion of some phones. Researchers are looking into ways of incorporating 
speaking-rate information into the pronunciation model. 

Another factor that affects pronunciation models is function words, i.e., high-frequency 
words including some prepositions and pronouns, which often carry little semantic content 
and have a wide variation of pronunciations within conversational speech. These func-
tion words often do not receive the same lexical stress as other words [35] and are often 
reduced,11 as their pronunciation depends heavily on the surrounding context. For example, 
in a survey of pronunciations of the ten most frequent words12 within a portion of the 
Switchboard corpus transcribed by phoneticians, Greenberg [14] cites an average of over 
60 pronunciations per word. Words that are repeated in a conversation also tend to have 
reduced pronunciations compared to the initial mention of the word [11]. 

As mentioned above, another research issue is how to build pronunciation alternatives 
to be used in an ASR system. Using phonological rales [40], [21] allows the speech 
researcher to take advantage of the work of linguists, but one must manually construct all 
the rules. Decision trees can be used as statistical models for learning phonological rules 
from data [32,7], which saves the work of trying to find all of the relevant phonological rules 
but may miss some generalizations that have very little data; this approach also requires 
hand-transcribed data, which is expensive to obtain. Schmid et al. [34] and Sloboda [38] 
use machine alignments instead of hand transcriptions in order to get enough data to build 
word models. Fosler et al. [9] combine the two approaches above and allow phonological 
processes to occur across words (to handle "dijaeat" vs. "did you eat" phrases) in a more 
dynamic approach: in their system, the pronunciations of words change depending on the 
surrounding words. 

Some researchers have suggested that the appropriate way to handle pronunciation 
variation is in the acoustic, rather than the lexical, models. Jurafsky et al. [16] suggest that 
triphones are very good at capturing phone substitutions, but perhaps not deleted phones 
in conversational speech. Saraclar and Khudanpur [33] also show that "mispronounced" 
phones in phonetically transcribed speech are acoustically more similar to the original 
phone than to the transcription. Hain [15] also demonstrated that good performance could 
be achieved by increasing the complexity of the acoustic model while maintaining a single 
pronunciation per word. 

Another school of thought is that phones are just too coarse to model the subtleties of 

"That is, pronunciations are transformed from their canonical form, often with vowels centralized, or phones 
shortened or deleted. 
12This list consists of I, and, the, you, that, a, to, know, of, and it. 
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phonetic variation; Ostendorf [30] argued that we should not be modeling speech sounds 
as "beads on a string" in ASR. A promising resolution could lie at the articulatory level, by 
modeling phonetic variation as a confluence of asynchrony of speech articulators [24]. 

23.11 EXERCISES 

23.1 Why would lip rounding tend to lower the first- and second-formant frequencies of a vowel? (Hint: 
consider the acoustic tube model discussed in Chapter 11.) 

23.2 What would the phonological rule for final alveolar deletion after [n] described earlier look like? Use 
the symbol # for word boundaries. 

23.3 Can you explain why the word "think" is more similar to the word "thing" than to the word "thin"? 
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DETERMINISTIC SEQUENCE 
RECOGNITION FOR ASR 

24.1 INTRODUCTION 

In the past few chapters, we have established the basics for understanding the static pattern-
classification aspect of speech recognition. 

1. Signal representation: in most ASR systems, some function of the local short-
term spectrum is used. Typically, this consists of cepstral parameters corresponding 
to a smoothed spectrum. These parameters are computed every 10 ms or so from 
a Hamming-windowed speech segment that is 20-30 ms in length. Each of these 
temporal steps is referred to as a frame. 

2. Classes: in most current systems, the categories that are associated with the short-
term signal spectra are phones or subphones,1 as noted in Chapter 23. In some systems, 
though, the classes simply consist of implicit categories associated with the training 
data. 

Given these choices, one can use any of the techniques described in Chapter 8 to 
train deterministic classifiers (e.g., minimum distance, linear discriminant functions, neural 
networks, etc.) that can classify signal segments into one of the classes. However, as noted 
earlier, speech recognition includes both pattern classification and sequence recognition; 
recognition of a string of linguistic units from the sequence of segment spectra requires 
finding the best match overall, not just locally. This would not be so much of a problem 
if the local match was always right,2 but we are not this lucky! There are always some 
local errors, and our real goal is (typically) to recognize the correct sequence of words, 
not to find the phone identity associated with each frame. Furthermore, both timing and 
pronunciation can vary between our stored representation and the new speech that we 
wish to recognize. Therefore we must somehow trade off between different choices of 
frame-class identification so that the global error is minimized, that is, the error over a 
complete choice of a transcription for an utterance. Furthermore, even during the training 
phase, the boundaries of internal sound units (e.g., phones) are unknown. For these reasons, 

'These categories are often further subdivided into classes associated with a particular phonetic context; for 
instance, a triphone is a phone with particular phonetic categories to its left and right. 
2However, even if the local match always gave the correct phone, the variation in pronunciation could still 
generate possible confusions between words, so that higher-level information is still often necessary to decode 
the linguistic meaning. 
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even the simplest speech recognizer must take longer stretches of time (typically an entire 
utterance) into account when deciding what was said at any point. This entails doing both 
segmentation and classification; in many cases both are done with a single pass. 

In this context, speech recognition may be seen as a particular case of sequence 
recognition. That is, for a sequence of frame observations (framewise signal representations 
or vectors) X = (JCI,JC2, . . . , * „ , . . . ,XN), we wish to associate X with a second sequence 
Q = (q\,q2, ■. ■ ,q„, ■ ■ ■,qn), where each q represents some linguistic or quasi-linguistic 
unit, and where the sequence Q is chosen to minimize some error criterion. For simplicity's 
sake, in this chapter the second sequence will be restricted to another sequence of frame 
observations, used as a reference. In other words, we will be matching a sequence Xх" 
with sequences Xr

k
ei for 1 < к < К, where К is the number of reference sequences. We 

will also confine the discussion to deterministic methods, in which we establish distance 
metrics and methods for time normalization. In the next chapter we will move to statistical 
approaches, which are in some ways more general, but the intuition for sequence-integration 
methods may be clearer if presented first in a deterministic framework. The limitation to 
frame-observation references and to deterministic methods also provides some historical 
background, since nearly all ASR systems used these approaches before 1980. 

24.2 ISOLATED WORD RECOGNITION 

In order to make this discussion more concrete, let us consider the example of a simple 
template-based isolated word-recognition system. Imagine that the speech is received over 
the telephone, with an 8-kHz sampling rate, and with roughly a 3.4-kHz spectrum. The 
speech is pre-emphasized with a single-zero filter so that the spectral slope is relatively flat 
for voiced sounds. Once every 10 ms we apply a 25-ms Hamming window to the data, and 
we compute 10 mel-cepstral coefficients as explained in Chapter 22. We weight the cepstra 
by their index (except for со, which for simplicity's sake we ignore in this example). In 
principle, this weighting makes the feature variances roughly equal [5]. 

Thus, for each 10 ms we have 10 weighted cepstral numbers. Let us further imagine 
that the task is digit recognition, namely, the recognition of the words zero, one, 
nine.3 Assuming that the digits are, on the average, roughly 300 ms long, we will have 
approximately 30 cepstral vectors for each word uttered. Each collection of cepstral vectors 
X is called a template, illustrated in Fig. 24.1. During a training phase, we will compute 
and store reference templates XT

k
ei. During testing, we will compare each new pattern of 

cepstral vectors Xm with all of the reference templates and identify the new utterance as 
being the word associated with the template with the smallest distance to the new pattern. 
We will defer for the moment what "distance" means here. 

For any computations involving the distance between two sequences of feature vec-
tors, we must handle the issue of time normalization - comparing two sequences that are 
of different length. 

3In real applications the word oh must also be recognized, but we ignore this detail here. 
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c 1 
сг 
c 3 
c 4 

c 5 
ce 
c7 
c 8 

c9 
c10 

• · · 

x1 x2 x3 XU 

FIGURE 24.1 Template consisting of N tenth-order cepstral vectors. 

24.2.1 Linear Time Warp 
Suppose that we wish to compare two sequences of index-weighted cepstral vectors. Given 
a distance metric between any two vectors, if each template is the same length, we can 
compose the global distance (or distortion) between two templates as the sum of the local 
distance (still to be defined) between each corresponding frame of the templates being 
compared. In other words, 

D{Xf, r " ) = f r f ( 4 f , *■"), (24.1) 

where d is the local distance between cepstral vectors, D is the total distortion between the 
templates, and N is the template length (the same for both templates by assumption). 

In general, however, reference and input templates will have a differing number of 
vectors, so we cannot directly compare the sequences frame by frame. In particular, we 
would like two examples of the utterance "two" to have a very small overall distance, even 
though one of them was 300 ms long and the other was 600 ms long. The most obvious way 
to match the two sequences is by linear time normalization - basically, either the reference 
or the input vector sequence is subsampled or interpolated to yield a pair of sequences that 
are the same length. For the case given here, this could be done by repeating each vector 
of the 300-ms case, or by discarding every other vector from the 600-ms utterance. This is 
illustrated in Fig. 24.2 (only the first 10% on each axis is shown). 

This is the approach that was used in many systems in the 1970s, and in fact it 
lingered in commercial systems for some time because of its simplicity. However, there 
are clear limitations to the idea. Generally, variations in speech duration are not spread 
evenly over different sounds. For instance, stop consonants vary only slightly in length, 
whereas diphthongs and glides (and in general vowels and vowellike sounds) vary a great 
deal over different utterances of the same word. For instance, in the word "two," the initial 
stop consonant would probably have a very similar length for both the 300-ms and 600-
ms cases, whereas the following vowel would comprise most of the time normalization. 
Therefore, it would be preferable to warp the stop consonant less than the following vowel. 
In general, we would like to have a way to optimally warp the matching process. This can 
be done by using a nonlinear or dynamic time warp process (illustrated for a single case in 
Fig. 24.3). 
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rei 
A0 

FIGURE 24.2 Linear time normalization for the case in which the reference template has 
twice as many frames as the input template. 

24.2.2 Dynamic Time Warp 

General Description As noted in the previous section, a linear time warping of acoustic 
templates does not properly compensate for the different compression-expansion factors 
that are observed for fast or slow instances of different phonetic classes. Therefore, it would 
be desirable to compensate for this variability in a dynamic manner, that is, finding the best 
possible warping of the time axis for one or both sequences that are being compared. 

FIGURE 24.3 Nonlinear time normalization for the case in which the reference template 
has twice as many frames as the input template, and the reference template is most 
expanded after frame 2. 
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Vintsyuk [8] may have been the first to observe that the dynamic programming principle 
of Bellman [1] could be applied to this problem; however, the idea was not widely known 
elsewhere until the mid-1970s. 

Dynamic programming is an approach to the implicit storage of all possible solutions 
to a problem requiring the minimization of a global error criterion. It is formulated as a 
sequential optimization strategy in which the current estimate of the global error function 
is updated for each possible step. At each step, enough information about the plausible 
hypotheses are retained so that at the end, when the best global error value is found, the 
corresponding set of choices that correspond to this value can also be discovered. A classic 
example of this (see, for instance, [7]), is the knapsack problem. In this problem, we wish 
to stuff items of N different types with varying sizes and values into a knapsack that has 
a capacity of M (in the units of size), such that we maximize the value of the take. In this 
case, the dynamic programming solution is an efficient approach to computing the best 
combination for all knapsack sizes up to M. Thus, the problem for M= 10 is solved by 
considering each item i of size m,- < M that can be fit into that bag, then adding on the 
best possible solution for a bag of the remaining space, M — от,-, which has been found at 
an earlier stage in the computation. This can be implemented by explicitly or implicitly 
building up a table of cumulative costs. In addition to the costs, the local information of 
how each possible solution was achieved is stored; in the case of the knapsack, for each 
value of M and each item that could have been added to complete that solution, the identity 
of the item is stored. Thus, once the best total value is found for M = 10, we can look up 
what was added to achieve that best number, and we can backtrack to find the sequence of 
items added to the knapsack to achieve the best total value. 

Applied to template matching for speech recognition, this algorithm can be stated 
fairly simply. Imagine a matrix D in which the rows correspond to frames of a reference 
template and the columns correspond to an input template. For each matrix element in D 
we will define a cumulative distortion measure, 

D(i, j) = d(i, j) + π ώ ν Μ {D[p(i, j)] + T[(i, j), p(i, j)]}, (24.2) 

where d is a local distance measure between frame i of the input and frame j of the reference 
template, and where p(i, j) is the set of possible predecessors to i, j ; in other words, the 
coordinates of the possible previous points on the matching trajectory between the two 
templates. The T[·] is a term for the cost associated with any particular transition. Thus, 
each matrix element is the value of the total error that arises from the best step that could 
lead to associating those two frames, and since this step is made after a similar optimal 
decision, the best cumulative distance in the final column (corresponding to the last frame in 
the input template) will be the distortion corresponding to the best match between reference 
and input. For isolated word recognition, the reference with the lowest value will be taken 
as the best match. The basic computational step is illustrated in Fig. 24.4. 

Thus, the algorithm consists of the following steps. 

1. Compute the local distance for each element in column 1 of each distortion matrix 
(that is, the distance between frame 1 of the input and all the frames of each reference 
template). Call this the cumulative distortion value for that matrix element. 
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Lowest cost to (i,j) 
\ \ f D(M ,j) + T10 ■» 

x -D ( i , j ) = d(i,j) + min^ D(ttj-1)+T01 } 
f VDfl-IJ-D + TnJ 

Local match cost f 
Best predecessor 

(including transition cost) 

Input frames i 

FIGURE 24.4 Basic DTW step for the case of simple local constraints. Each i,j node is 
associated with a local distance d and a cumulative distortion D; the equation to the right 
shows the basic computational step. 

2. Starting with frame 2 of the input, and beginning with the bottom row (frame 1 of the 
first reference template), compute the local distance and add it to the best cumulative 
distortion value for all possible predecessors (that is, all possible matches between 
input and reference that could temporally precede either the current input frame or 
the current reference frame). Compute this value for each element in the column for 
each reference template. 

3. Continue this operation through each of the other columns. 

4. Find the best distortion number in the last column for each reference template and 
declare it the distortion associated with that reference. 

5. Choose the word associated with the best of the reference distortions and declare it 
the winner. 

Since this algorithm applies a dynamic programming approach to the time warp 
problem, it is often referred to as a dynamic time warp, or DTW. 

Global Constraints Although the algorithm just described gives the basic approach, 
there are modifications to the approach that are used in nearly all real implementations. For 
instance, it is a waste of computation to compare the first input frame with the last reference 
frame. Figure 24.5 shows a plausible set of constraints to reduce the search space. 

Local Constraints Similarly, the possible predecessors are limited to a few nearby 
matrix elements. Figure 24.6 shows a common constraint for DTW problems in which the 
local warping is constrained to skip no frames of either the reference or input template, but 
to permit repeats of either one. 

Thus, for this case, the minimum of Eq. 24.2 is computed over only three predecessors. 

Template Clustering As we have described the algorithm here, the input template is 
compared with each reference template. However, we have left open how many reference 
templates will be used for each word. In general, a single template will be insufficient, 
given the variability inherent to speech. For speaker-dependent recognition, it is often 

Φ 

E 
Я 
1_ 
Φ 
и 
с 
ω 
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Search subspace 

FIGURE 24.5 Typical global slope constraints for dynamic programming. The 
search-subspace section is the only region searched, since matrix elements outside of this 
space are considered to be unlikely matches. 

sufficient to store a small number of reference templates for each word in the vocabulary. 
For speaker-independent training, many more examples are generally required. In either 
case, the multiple examples are often replaced with a smaller number of representative 
prototypes that are obtained by clustering the raw examples. Many different clustering 
approaches can be used, including the K-means algorithm described in Chapter 8. In this 
case, however, the distance is between two sequences (templates consisting of sequences 
of vectors), and the distance is taken to be the DTW distortion between the two templates. 

D(m, n) 

D(m-1, n-1) D(m, n-1) 

FIGURE 24.6 Typical local constraints for dynamic programming; m is the index for the 
frame of the speech input, and n is the frame for the reference template. D(i,j) is the 
minimum distortion value for a match going through input frame i and reference frame j. 
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With this metric, a large number of examples for each word can be clustered into one or 
more prototypes that can then be used to represent the word. 

24.2.3 Distances 

In Chapters 8 and 9 we saw that a poor distance measure could lead to a bad classification 
performance; for instance, in the example of Chapter 8, using a simple unweighted Eu-
clidean distance for height-weight pairs (in feet and pounds, respectively) gives too much 
emphasis on the weight. We saw that a reasonable strategy was to scale the features so 
that they covered roughly the same range; in Chapter 9 we looked at this problem from a 
statistical standpoint, and the Gaussian model normalized by the standard deviations for 
each feature. However, we noted then that even this approach did not necessarily lead to an 
optimal distance measure, since it did not account for the effectiveness of each feature for 
classification. A linear discriminant analysis was mentioned as a solution, but even in this 
case there is an implicit assumption about the distance between points in feature space. 

Many researchers have worked on plausible approaches to measures that corre-
sponded well to human perceptual distance. Some of these led to the kinds of feature 
measures we have already discussed. For instance, we mentioned in Chapter 22 the lifter-
ing that is often applied to cepstral values that result from LPC, mel-cepstral analysis, or 
PLP. Viewed from the perspective of perceptual distances, the design of features such as 
index-weighted PLP cepstra is in fact focused on generating measures that can be effectively 
compared with a Euclidean distance. 

Once such modifications are used in the front end, however, how can we know 
what distance measure would be optimal? In general we must establish some mathematical 
framework and allow an automatic procedure to learn the best measure for distance. Using 
a statistical framework gives us powerful mathematical tools and a definition for optimality 
that corresponds well with the goals of classification; for this reason, nearly all modern 
systems represent distance in probabilistic terms. This will be the focus of the chapters that 
follow. 

24.2.4 End-Point Detection 

Because accuracy is often higher for an isolated word system,4 pauses between words are 
often mandatory in commercial products (particularly for large-vocabulary dictation). For 
template-based systems such as the one described in this chapter, one of the main limitations 
to recognition accuracy has been the segmentation between the desired speech sequences 
and nonspeech segments; in other words, to locate the end points of the speech so that the 
templates can be formed. The reader may find this statement odd; after all, shouldn't it be 
easier to do a speech-nonspeech classification than to distinguish between different speech 
classes? However, it has often been observed that the former discrimination has been the 
source of most of the errors in such systems. One reason for this is that the vocabularies 
for artificial systems are typically chosen to be as orthogonal as possible - that is, most 

4Although it is generally true that the best state-of-the-art recognizer for the same vocabulary, environment, and 
so on is more accurate if trained for the isolated word case, it should also be noted that systems that have been 
designed and trained for continuous speech input can also have difficulties with isolated words. 
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easily discriminable. In a case in which the words are necessarily similar, as in the alphabet, 
frequent users generally modify the vocabulary for better discrimination, as in "alpha bravo 
charlie." In contrast, the competing nonspeech sounds have no such characteristic and can 
often be confused with speech; for instance, the short-term spectrum of a breath may be 
confused with that of a fricative sound. 

The example in Fig. 24.7 shows a click preceding the beginning of a spoken word. 
The click has sufficient energy that an energy threshold alone would be insufficient to screen 
out the click while still preserving the beginning of the speech segment. It is common to 
include time thresholds in the determination; for instance, in this figure the length of time 
between the click and the start of speech is so great that the probability of the two being 
part of the same word is very low. Such detection schemes have been built and often have 
reasonable accuracies under the conditions that the thresholds have been optimized for, but 
they can be troublesome as conditions change. 
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FIGURE 24.7 Bell Labs example of a mouth click preceding a spoken word. From [5]. 
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FIGURE 24.8 Example of a DTW path for connected words. In this case, the best path 
was found to correspond to words k',K, \,K, and k". 

24.3 CONNECTED WORD RECOGNITION 

Thus far, we have restricted the discussion to the recognition of individual words, uttered 
in isolation. How does the problem change if the words are uttered without pauses between 
them? Of course the pronunciation of each word can be dramatically altered, as we have 
noted earlier. However, even if we ignore this phenomenon, there are strong practical 
differences from the isolated word case. In principle, one could still warp the input against 
templates for every possible word sequence. However, in general this number is far too 
large - both storage requirements and the comparison time would be too great (infinite in 
the general case). 

Therefore, in addition to the time normalization and recognition goals of isolated 
word DTW, connected word recognition requires segmentation into the separate words 
so that they can be time normalized and recognized. Here too, dynamic programming 
techniques can be used to search efficiently through all possible segmentations. Vintsyuk 
also did early work on this problem, as did Sakoe, as well as Bridle. Sakoe's algorithm 
[6] required two passes, one for computing distances and a second for assembling the 
best word sequences given these distances. Both Vintsyuk and Bridle developed one-stage 
approaches, and the algorithm is described in detail in [4]. Here we only briefly mention a 
few key features. 

The basic principle of connected word DTW is (conceptually) to assemble one large 
matrix consisting of all the word templates, and to do dynamic programming on the whole 
thing a column at a time, as with the isolated word case. At word boundaries the local 
constraints are different (since the preceding frame can come from other words), but 
otherwise the basic distortion computation step is the same. However, at the end, it is 
necessary to backtrack from the best cumulative distortion in the last column in order to 
find what was said. In principle this could be done by storing a second matrix that holds 
the pointer to the best preceding matrix element; this can be followed back from the last 
column to reveal the complete warping function, even across words. Figure 24.8 shows a 
typical warping path that could be tracked in such a procedure. 
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As Ney points out in [4], the main problem with this simplified description is that it too 
leads to a large storage requirement, particularly for large-vocabulary cases. For instance, 
given a 20,000-word vocabulary, 50 frames/word, and 20 words per utterance, both the 
distortion and backtracking matrices would have 109 elements. Fortunately, it turns out 
that some small complications to the algorithm provide enormous savings in storage. The 
distortion matrix can be reduced to storing two columns, since for most implementations the 
legal predecessors in the warp come from at most one frame into the past. The backtracking 
matrix can be replaced with two lists that are each the length of the utterance (in frames) : a 
"from template" list that gives the template index of the word with the lowest cost that ends 
at a particular frame, and a "from frame" list that points to the end frame of the previous 
word, given that the current frame is the end frame of the current word. These lists, which 
we can represent as T{n) and F(n) respectively, can be generated on line as the DTW 
algorithm proceeds. To backtrack, the following procedure can be followed. 

1. Let j be the frame pointer, and initially let j be N, the number of frames in the 
utterance. Then the word with the lowest-cost ending in the last frame would have 
index T(N). In Fig. 24.8, this would be word k". 

2. Point to the last frame in the previous word using the "from frame" list F ( ). In terms 
of the stored arrays, this value would be F[T(j)}; as noted above, j would initially 
be equal to N. In the figure, F[T(j)] would be the time index of the frame before the 
first frame of the best warp for word k". 

3. Set j to the value of F[T(j)]. Then looking at the "from template" list T( ), one finds 
that the word ending in frame j would be T(j). In the figure, this would be word K. 

4. Repeat the last two steps until the entire word sequence has been noted. This sequence 
will be associated with the optimal path through the match between the input template 
and all possible combinations of the reference templates. 

The preceding is a simplified description of DTW. In particular, we have not discussed 
additive transition costs, multiplicative weightings of particular transition slopes, and word-
sequence restrictions that are sometimes provided by a grammar. 

24.4 SEGMENTAL APPROACHES 

Thus far in this chapter, the only linguistic units used have been words; dynamic program-
ming was used to find the best match to reference templates associated with candidate 
words. Thus, the local (per frame) distances were not associated with any linguistically 
defined class other than the word. However, as noted in Chapter 23, words typically are 
structured items, consisting of subword units that are common across many words. In 
principle this structure can and should be used to improve the effectiveness of any finite 
amount of training data. 

For framewise dynamic-programming-based speech recognition, such subword units 
have primarily been used for statistical systems, and so we will defer their discussion to 
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the next two chapters. However, as noted in Chapter 4, in the 1970s and 1980s a number 
of systems were built that made extensive use of acoustic-phonetic knowledge, some of 
which used statistical classification and some of which used deterministic approaches. In 
either case, subword units were used. 

Probably the best known systems in this class were the efforts of Ron Cole's group 
(first at CMU [2] and later at OGI [3]), and related work at MIT by Victor Zue and 
his colleagues [9]. These systems incorporated explicit acoustic-phonetic knowledge in 
order to segment the speech separately into phonetic segments, and then classify them. 
Time normalization was thus accomplished by combining costs at a segment level rather 
than on a framewise basis, and phones or phonemes were the classes to be identified. By 
incorporation of smaller units than words, learned parameters were shared across many 
words. By incorporating explicit decision rules for specific phonetic examples (sometimes 
deterministic, sometimes statistical), the designers were not limited to defining a single 
distance metric for all kinds of decisions. 

A prototypical example of this approach was the FEATURE system developed at 
CMU [2]. This system used deterministic measures for the phonetic segmentation, and 
then it classified the segments either with a linear discriminant function or with a Gaussian 
classifier. 

24.5 DISCUSSION 

The incorporation of dynamic programming into speech-recognition systems became stan-
dard by the mid 1980s, though it was used in many research systems in the 1970s. The 
notion of a time-flexible distance between sequences was a critical one, and essentially all 
systems incorporate it in some fashion now. The specific mechanism of acoustic template 
matching, however, is no longer commonly used, except perhaps in some voice dialing 
systems. It has been shown to be useful to incorporate at least some lower-level structure, 
either from linguistic knowledge or from some self-organized process, so that some kind 
of sub word units are incorporated in nearly all systems. 

As noted previously, a more flexible form of distance design has been developed in 
the form of statistical learning procedures. Distributions are estimated in a training process 
and then used in an optimal decision procedure during recognition. However, both training 
and recognition still depend on many assumptions, and the best choice of these assumptions 
still largely depends on designer intuition. It is often useful to consider speech recognition 
from the standpoint of the earlier systems described in this chapter in order to develop the 
insight that is necessary for these decisions. 
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24.6 EXERCISES 

24.1 As noted here and in [4], connected word recognition can be done by using only two columns from the 
distance-distortion matrix (in addition to the frame and template pointer lists): the current column 
and the previous one. Suppose that the local slope constraint prohibits entirely vertical paths; in 
other words, input frames cannot be repeated in the time warp. Given this restriction, how could you 
modify the algorithm to use only one distance-distortion column? 

24.2 Imagine an F\-F2 graph, and examples of formant values in frames for the phones /i/ and /u/ 
represented by points in the graph. In this framework, explain how discrimination from frames of 
nonspeech could be more difficult than discrimination between the two phone types. 
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STATISTICAL SEQUENCE 
RECOGNITION 

25.1 INTRODUCTION 

In Chapter 24 we showed how temporal integration of local distances between acoustic 
frames could be accomplished efficiently by dynamic programming. This approach not only 
integrates the matches between incoming speech and representations of the speech used in 
training, but it also normalizes time variations for speech sounds. In the case of continuous 
speech, this approach also effectively segments the speech as part of the recognition search, 
without the need for any explicit segmentation stage. Distances can also be modified to 
reflect the relative significance of different signal properties for classification. 

However, there are a number of limitations to the DTW-based sequence-recognition 
approaches described in the last chapter. As noted previously, a comparison of templates 
requires end-point detection, which can be quite error prone with realistic acoustic condi-
tions. Although in principle distances can be computed to correspond to any optimization 
criterion, without a strong mathematical structure it is difficult to show the effect on global 
error for an arbitrary local distance criterion. Since continuous speech is more than just a 
concatenation of individual linguistic elements (e.g., words or phones), we need a mecha-
nism to represent the dependencies of each sound or category on the neighboring context. 
More generally, as noted in Chapter 9, statistical distributions are a reasonable way to 
formally represent the variability that is observed in real speech samples. 

For all of these reasons, statistical models are extremely useful for sequence recog-
nition, particularly for speech. The use of a statistical framework provides a powerful set 
of tools for density estimation, training data alignment, silence detection, and in general 
for the training and recognition of isolated words or continuous speech. These mathematical 
tools have now become so widely used that they are more or less the standard methods for 
nearly all speech-recognition systems. Even research systems that do not strictly follow the 
approach given here tend to describe their algorithms in terms of the common statistical 
paradigm. It could also be argued that the use of statistical pattern recognition increases the 
generality of the methods; since the choice of any distance is equivalent to some implicit 
statistical assumption, one may as well directly represent the distance in terms of statistical 
optimality. 

In statistical speech recognition, as in the deterministic case, there is a strong temporal 
component; in particular, during recognition a local distance is integrated over time in a way 
that provides some normalization for temporal variability. For most statistical approaches, 
speech is represented as having been generated according to some probability distributions. 
Since there are different speech sounds, it is necessary to assume that there is more than one 
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distribution; therefore, we construct models for linguistic units, each of which is associated 
with some statistical parameters related to the distributions. In a training process, we will 
estimate these parameters by choosing them to approximate a minimum probability of error 
(Bayes) solution. During recognition, we will search through the space of hypothesized 
utterances to find the hypothesis that has the maximum a posteriori probability. For practical 
reasons, we will need to incorporate some approximations, and this will make the results 
suboptimal. Furthermore, only estimates of the probabilities and density functions will be 
available, so we will never reach the true error minimum. In particular, any finite training set 
will be an imperfect representation of an independent test set; the latter might, for instance, 
have some form of acoustic noise that was not present in the training set. Thus, deterministic 
aspects (such as using features that are robust to spectral slope) are still important, even in 
a statistical system. 

25.2 STATING THE PROBLEM 

We will begin with a restatement of the Bayes rule: 

^ | X ) = ™ , (25.1) 

where, in this case, the class M, is the y'th statistical model for a sequence, where 0 < j < J, 
and X is the observable evidence of that sequence. As in the preceding chapter, X will 
typically consist of cepstral vectors computed with auditory-warped spectral estimates 
from succeeding acoustic windows. 

According to the Bayes decision rule, the minimum probability of error (of classifying 
X into the correct category Mc) is attained if one always assigns X to that model with 
the maximum P{Mj \X). If we had many examples of each model, one could learn the 
parameters for some pattern classifier from the examples in the training data (as in the static 
pattern classification problems in Chapters 8 and 9) and apply them during recognition for 
each sequence. More generally, it is often necessary to break up the models into submodels 
that we learn to classify with some distortion so that training data is shared over the 
models; for instance, rather than training models for complete sentences, we tend to learn 
to represent words, syllables, or phones, and we put them together to make models for the 
utterances. Thus, when we learn the statistics of the sound [ae], we can apply them both to 
the representation of pat and bat. 

Let's begin with the simplest case, in which the candidate models Mj correspond to 
words, and in which we will only do isolated word recognition. In this case, it would be 
desirable to design a classifier that would look at a sequence of cepstral vectors (essentially 
the input template of Chapter 24) and categorize it as one of J words. If all of the examples 
(both in training and test) were of exactly the same length, one could concatenate all cepstral 
vectors into one large vector and design a static pattern classifier by any of the approaches 
discussed in Chapters 8 and 9. Aside from not being generalizable to more realistic cases, 
though, even this idealized problem would not take advantage of any structure within the 
concatenated vector. 
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When the Bayes rule is applied to the recognition problem, we should really incor-
porate the dependence on the parameter set Θ that was learned during training, so that we 
get: 

, , ^N P(X\Mh®)P(M,\®) 
P{Mj\X,@) = У ' » J^ Ji '. (25.2) 

Now let us consider the speech-recognition problem per se. Ordinarily, we will have 
some ability to predict the probability of a word sequence even without any acoustic 
evidence. In the degenerate case this just consists of a uniform probability distribution over 
all possible utterances, but more generally there is some preference for some utterances 
over others. In more complex cases this preference may come from pragmatic factors (e.g., 
during a conversation about the weather you are less likely to discuss brain surgery), but the 
simplest preconceptions about the word sequence come from the statistical distributions of 
groups of words. In either case, we can presume that there will be some estimator available 
for P(Mj). If we can assume that the components in Θ used for estimating P(Mj) are 
independent of the components associated with estimating P(X \Mj), we can separately 
estimate the two. Further using the fact that P(X | Θ) is fixed for all choices of j , we can 
state that an optimal decision rule for choosing the stochastic model Mj that will lead to 
the minimum probability of error is 

7best = argmaxP(Mi|X,0) = argmaxP(X )Mj,&A)P(Mj | ®L), (25.3) 

where ®A is a set of parameters that have been learned for the acoustic model (representing 
the statistical relationship between the model and the observed sequence of feature vectors), 
and ®i is the set of parameters that have been learned for the language model (parametrizing 
the statistical distribution of all word sequences). 

Figure 25.1 shows the general scheme, with the dependence on parameters sup-
pressed. 

If we limit our discussion to the acoustic model (and assume for the moment that 
the language model is perfect), then the optimum decision rule shows us that we wish to 
associate a large likelihood P(X | Mj, ©д) with j b e s t , and smaller likelihoods with the other 
acoustic models. More generally, there are three problems that must be addressed with the 
use of statistical models for speech recognition.1 

1. Parametrization and probability estimation: How should P(X \ Mj, &A) be com-
puted, and what are the necessary assumptions about the stochastic models to define the 
parameter set Θ^? In general it is not possible to estimate the probability density of a 
complete sequence without constraining assumptions; typically these assumptions involve 
temporal independence at some level so that the total estimate is broken up into constituents 
that can be effectively estimated. The rest of this chapter addresses the integration of these 
components into the likelihoods of acoustic sequences; the discussion of the estimation of 
the temporally local components will be postponed until the next chapter. 

'This categorization of HMM problems was used in [1], which in turn was adapted from the discussion by Rabiner 
in such sources as [3] and [4]. 
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FIGURE 25.1 The Bayes decision rule classification. For the discussion in this chapter, 
the observations to be classified are a sequence of feature vectors X, corresponding to a 
speech utterance. The classes correspond to statistical modeis M, and the minimum 
probability of error is obtained by choosing the model with the largest product term on the 
right. 

2. Training: Given the parametrization above, and a set of training sequences as-
sociated with stochastic models, how should ©д be determined so that each model has the 
highest likelihood associated with its observed sequence of feature vectors? This will be 
discussed in Chapters 26 and 27. 

3. Decoding: Given the set of stochastic models Mj with their trained parameters 
©A, how should the best sequence of these models be found to classify the input sequence 
X according to the Bayes decision rule? We give a simplified answer to this question in 
this chapter, but we will give a further discussion in Chapter 29, when we discuss complete 
systems. 

See [4] or [2] for extended discussions of all three problems. 

25.3 PARAMETERIZATION AND PROBABILITY ESTIMATION 

Even for the case of isolated words, the statistical models used must represent both tem-
poral variability and temporal structure. A likely structure for this purpose is a stochastic 
finite-state automaton, which can be used as a model for a speech unit (e.g., a phone or 
word). The model will consist of some states, a topology of connection between them, 
and some associated parameters. The parameters will be learned from examples in a 
training phase and then will be incorporated during recognition. The automata most com-
monly used for speech recognition are generative models. That is, the states have outputs 
(rather than inputs), which are the observed feature vectors. The probability densities as-
sociated with each acoustic model are probability density functions for the generation 
of observed feature vectors in a sequence, conditioned on that model, as suggested by 
Fig. 25.2. For instance, one could imagine a density function for PLP cepstra produced 
by the model for the word "one." However, for the many reasons mentioned earlier, it is 
commonly preferable to break up the density for a complete sequence into a combination of 
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P(X|M|, ΘΑ) 

FIGURE 25.2 A generative model with its parameters produces an observation sequence 
according to some statistical distribution. To concatenate such models to generate 
concatenated sequences, we typically make Markov assumptions. 

densities corresponding to subsequences. This is typically accomplished by using a Markov 
assumption.2 

With the use of Markov assumptions, the general stochastic automata that we referred 
to here become Markov models. Hidden Markov models are stochastic automata that have 
an additional layer of indeterminacy, which we describe later in this chapter. However, we 
begin with an explanation of a simple Markov model (again borrowing from [4]) so that 
we can see the general form of such structures and how they can be used to represent the 
probability of sequences. 

25.3.1 Markov Models 
A Markov model is a finite-state automaton with stochastic transitions (that is, for which 
each transition has an associated probability) in which the sequence of states is a Markov 
chain. The states in each model M will be designated qt[£ = 1, ■.., L(M)]. Each of these 
states is associated with a class co(^). 

Consider the three-state Markov model shown in Fig. 25.3, where each state corre-
sponds to one day's weather (assuming state residency is per day). 

This model has a stochastic transition matrix: 

l I 1 
3 3 3 
I l i 
4 2 4 
1 1 1 

-4 4 2-

By the definitions of joint and conditional probability,3 the probability of any sequence 
Q=(q\q2,q\...,qN) is 

P(Q) = Ρ(? 1 )Π^ 'Ί<Γ 1 ,<Γ 2 , · · ·,<?')· (25.4) 
i=2 

We typically assume that the probability of any state transition is independent of any 
previous transitions (that is, that the probability of moving to a particular state depends 
only on the identity of the previous state); this is a first-order Markov assumption. In this 

2Recall that an nth-order Markov chain is a sequence of discrete random variables that depends only on the 
preceding n variables. The value for n is typically one (a first-order system) for speech recognition. 
3See Chapter 9 for a reminder. 
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state output 

a -—► sunny 

b -<—► cloudy 

с -i—«- rainy 

1/3 1/2 

FIGURE 25.3 Three-state Markov model for the weather (sunny, cloudy, or rainy). 
Transition probabilities are given as fractions. State residency corresponds to a day. 

case, the previous equation reduces to 

P(Q)=P(q1)U.Ptf\j-1)- (25.5) 
/=2 

Thus, given Ulis Markov property, the probability of any particular sequence can be 
found by multiplying the probability of the individual transitions in the state sequence. 

For the weather model, we will assume (for simplicity's sake) that all initial sequences 
start with "a" (the first day considered is always sunny). 

Then: 

EXAMPLE 25.1 

The sequence "abc" occurs with a probability of 1/3 x 1/4 = 1/12. ■ 
Further, the probability of a set of sequences (for instance, the set of all sequences 

of a certain length with specified start and end states) is just the sum of probabilities of all 
sequences within the set. 

Then: 

EXAMPLE 25.2 

The probability of observing the sequence "axe", where x could be anything, can be 
calculated as is shown in Table 25.1. If states "a" "b" and "c" corresponded to speech 
phones, as opposed to states of the weather, this second example could be viewed as giving 
the prior probability of any sequence of length three that started with phone "a" and ended 
with phone "c." This property will be useful later; however, it is also necessary to associate 
acoustic observations with the statistical models. For this, we will need to define hidden 
Markov models. ■ 
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TABLE 25.1 Computation of the 
Probability of Observing 
Sequence "axe" 

P(fl, 

P(ai 
Ρ{αλ 

P(fl, 

-*b2 

->· a 2 

->C2, 

*>2 

a2 
Cl 

—> X, X—> 

- < * ) = 

- c 3 ) = 

- c 3 ) = 

<*) 

= 1/3 x 

= 1/3 x 

= 1/4 x 

1/4 = 

1/4 = 

1/2 = 

= 1/12 

= 1/12 

= 1/8 

7/24 

25.3.2 Hidden Markov Model 
Each output of a Markov model corresponds to a deterministic event, whereas each output 
of a hidden Markov model (HMM) corresponds to a probabilistic density function; thus, 
for any observed output sequence, the generating state sequence of a HMM is hidden. As 
an example, imagine that there is a line of people behind a screen and the people in it are 
a random mix of Swedish basketball players and speech-recognition researchers. We can't 
see the people in the line, but each one utters a deep sigh, presumably for being in such a 
long line (see Fig. 25.4). Now, since (as noted in Chapter 8) the basketball players tend to be 
larger, their sighs are produced by a larger vocal apparatus; the associated resonances will 
tend to be lower in frequency. However, there will be a lot of within-occupation variability 
in the spectra; that is, even when one analyzes spectra only from the basketball players, 

FIGURE 25.4 The screen hides the line of basketball players and ASR researchers, but 
we hear their sighs. 
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FIGURE 25.5 Two-state HMM, with transitions permitted from each state to itself and to 
the other. Observations are presumed to be generated by this model, with associated 
density functions P(x | q) for each state. Each transition is stochastic with conditional 
probabilities />(<?,· | qj). 

the spectra will still be highly variable from person to person. In the terminology of this 
chapter, then, the "state" refers to the job category of the hidden person (basketball player or 
researcher). The output associated with the state is an acoustic observation of a sigh. If we 
only hear the sighs and don't observe the speakers, then the job categories form a sequence 
of hidden variables, whereas the acoustic emissions (the sighs) are directly observed. The 
hidden sequence is presumed to be generated according to some distribution, and for each 
choice of state an acoustic signal is generated according to another distribution. 

Figure 25.5 shows a two-state HMM that could represent the line-of-sighs example. 
State <?| could correspond to a Swedish basketball player, and state qt could represent a 
speech researcher. Each state is associated with a density function for the emitted acoustics 
(where, for instance, the acoustic representation could be the average second-formant value 
for the high-energy portions of the sigh). In the limited (but common) case in which this 
density function is assumed to be independent of previous states or observations, it can 
be written as P{xn | qi). The density P{xn \ q\) would then be the distribution of average 
formant values for a sigh from a basketball player, and P(x„ \ q-ι) would be the distribution 
of average formant values for ASR researchers' sighs. 

It is also commonly assumed that the sequence is a first-order Markov chain, so that 
the probability for a transition from state i to state j can be written as P(qj \ qi), where the 
special case of i = j is referred to as a self-loop. 

More formally, as with Markov models, the states in each model M will be designated 
qt\i = 1, · · · ,L(M)]. Each of these states is associated with a class (£>(qi). Each emission 
probability P(x„ \ qj) will actually refer to the probability of the class со(дг). This distinction 
is important since the rth state might not be the ith class; in particular, different states in the 
same model could be of the same class, and different incidences of the same class could 
occur in different models. For simplicity's sake we generally ignore the class designation 
in our probabilistic notation. 

25.3.3 HMMs for Speech Recognition 

As noted in Chapter 24, speech is commonly represented as a sequence of measurements 
that are computed over a 20-ms or 30-ms window, with a typical interframe step size of 
10 ms. HMMs for speech recognition, then, are typically an interconnected group of states 
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that are assumed to emit a new feature vector for each frame according to an emission 
probability density function associated with that state. Each new observation frame can in 
principle be associated with any state (as any frame of an input template can be associated 
with any frame of a reference template, as noted in Chapter 24). However, the topology 
of the HMM (that is, the pattern of interstate connections) and the associated transition 
probabilities provide temporal constraints; for instance, a high self-loop probability for 
a state means that it will tend to be repeated more than once, and a directed connection 
between [ae] and [m] in a word model means that pronunciations with [ae] followed by 
[m] is permitted. These models are also typically constrained to be left to right; that is, the 
state transitions have some temporal order. 

For simplicity's sake, in most of our discussions we assume word models that asso-
ciate states with subword sounds that are roughly phonelike. However, it is common that 
each phone is modeled by several states with their own densities, and that each subphone 
is modeled in context (that is, that a state represents a subphone under some contextual 
constraints). For instance, a state might represent the initial part of an [ae] sound for those 
cases in which the previous sound was a nasal. As we shall see in later chapters, however, 
states will often ultimately represent self-organized classes that may have something to do 
with linguistic categories, but that are ultimately defined implicitly by an iterative statistical 
procedure. 

25.3.4 Estimation of P(XIM) 

Given a model M, and its definition (in terms of states, transition topology, probabilities, 
and parameters for the estimation of probabilities), we can then consider the estimation of 
the likelihood of a data sequence, assuming that it was generated by this model. Initially 
we make first-order Markov assumptions as suggested earlier, and we ignore any details or 
difficulties with the estimation of the local probabilities or likelihoods. We just assume that 
we are able to compute the likelihoods P(x„ \ q^) for each observation vector n and each 
model state q^.4 Further, we assume that each transition probability P(qj \ qì) is known. 

Given these assumptions, we can show that we can get an estimate of the data 
sequence likelihood from the local likelihoods, using an efficient set of recursions that can 
be implemented in a way that is reminiscent of the computations performed in template 
matching for isolated word recognition. 

Total Likelihood Estimate Let us assume that we can compute the likelihood of a 
data sequence, assuming a particular path through the model; let us call the state sequence 
associated with that path Q,·, one of / paths that are of length N (the data sequence length) 
and that are permitted in the model M. The joint density for X and g, could in principle 
be estimated by multiplying together all of the local transition probabilities and acoustic 
likelihoods associated with that sequence; in other words, the product would have an 
emission term P(xn \ q^) for each frame n and another term P(qj \ qi) for each transition 
from i to j . These values for each legal sequence <2, in M could then be summed up to get 

"Chapters 9 and 26 give a number of methods for determining these local probabilities. 
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the complete data likelihood: 

P(X|M) = £ P(Q„X\M). (25.6) 
allßj in M of length Λ» 

Though straightforward, this procedure requires roughly 2N x L(M)N arithmetic steps, 
where L(M) is the number of emitting states of the model; there are L{M)N possible state 
sequences and each state sequence requires approximately 2N calculations. 

Fortunately, a more efficient algorithm exists, and it is called the forward procedure.5 

For this approach, the likelihood P(X \ M) is expressed as the sum of the joint probabilities 
of each possible final state: 

L(M) 

Ρ(Χ\Μ)=ΣΡ($Χ\Μ) (25.7) 
1=1 

where L(M) is the number of states, N is the length of the observed sequence in frames, 
X* is the sequence of observations from frame a through frame b, and q" is the state qi at 
frame n. 

Thus, to get the complete likelihood, we need to find the joint probability of the final 
state and all the data leading up to it. This may not seem like a very useful expression, but 
in fact we can decompose it further into the product of a local term and a cumulative term 
in order to build up a recursive estimation scheme. Factoring the expression P(q1, X" | M) 
into two components (again using the definitions of joint and conditional probabilities),6 

we get the following relation, called the forward recurrence: 

L(M) 

P{qlX?\M) = £ P{qn
k-\xrl \M)P{q%xn\ql-l,Xr\M). (25.8) 

/ t = l 

We then define 

an(l\M)=P(q1,X^\M), (25.9) 

which is the probability of the joint event that the state at time n is q/, and that the sequence 
Xf (from the beginning to frame ri) is observed, given the model M. Then we get the 
forward recurrence: 

UM) 

α„(/|Μ) = £ a„^(k)P(q1,x„ \cfr\xr\M). (25.10) 
fc=l 

When the recurrence reaches the final frame, Eq. 25.7 can be used to obtain the complete 
likelihood. 

5There is an analogous procedure that is called backward, which will be discussed at a later point. 
6Recall from Chapter 9 that P(a, b \ c) = P(a \ b, c)P(b \ c). 
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The right-hand side of Eq. 25.10 is composed of two parts : the previous value for the 
recursion sum for each predecessor state, and a new likelihood for the state and data given 
all the previous values. Thus, if we could estimate the latter conditional likelihood for each 
time point and state, we could get the complete likelihood in an efficient number of steps. 
Without any simplifying assumptions, the second term can also be decomposed as follows: 

Р(4!,ХЯ\4Г\Ц-\М)=Р(4\4Г1,ХГ1,М)Р(ХЯ\4;,4Г\Х1-\М). (25.ii) 

Unfortunately, such densities are difficult to estimate. Therefore, further assumptions 
are required. We typically make the Markovian assumptions that we have referred to earlier, 
simplifying the two terms on the right-hand side of Eq. 25.11. 

First, the state chain is assumed to be first-order Markov. As with the earlier examples, 
this means that the probability that the Markov chain is in state qi at time n depends only 
on the state of the Markov chain at time n — 1, and it is conditionally independent of the 
past. With this assumption, we transform 

р(<Я\4Г1,хГ\м)-+Р(4!\4Г1>м). 

Second, observations are assumed to be independent of past features and states. This 
means that the probability that a particular acoustic vector will be emitted at time n depends 
only on the state at that time, and it is conditionally independent of the past: 

P(xn | cfi, q\-\ ХГ\ М) - P(xn \cfi,M). 

With these simplifications, Eq. 25.11 becomes 

P(cfi,xn\q"k-\Xr\M) =P(rf\4K-l,M)P(xn\tfi,M). (25.12) 

Thus the forward recurrence becomes 

L(M) 

a„(l\M)= Σ an^{k\M)P(qn
l\q

n
k-\M)P(xn\q

n
l,M). (25.13) 

Thus, given the conditional independence assumptions described here, we can com-
pute the likelihood for a data sequence being produced by a particular model, using a 
recursion that is only dependent on local emission and transition probabilities. Each step 
consists of computing a sum over all possible predecessor states of the product of three 
components: the local acoustic likelihood (for that state and that frame); the transition 
probability from the previous state; and the value of the a recursion for that previous state at 
the previous frame. The reader may find this computation somewhat familiar - it is similar 
to the dynamic programming for templates discussed in the previous chapter, except that 

• each of the terms is probabilistic rather than deterministic, 

• the hypothesized predecessors are model states rather than actual frames, 
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• the local constraints do not typically permit a repeat of the current frame to match 
the same state (all predecessors correspond to the previous frame), 

• the local and global factors are combined by multiplication rather than summation, 
and 

• the combination of terms over different predecessors is combined by summation 
rather than finding the maximum (or minimum in the case of distance). 

The last two differences can actually be done away with in a further simplification 
that we discuss in the following paragraphs. 

Viterbi Approximation: Estimation of Best Path Within the assumptions de-
scribed here, the forward recursion yields the complete likelihood; although more efficient, 
it is functionally equivalent to the direct summation of the likelihoods of all possible legal 
paths (length N sequences of state transitions) within a model. However, the procedure 
can be tricky to use, since it requires both multiplication and addition of likelihoods and 
probabilities. If only multiplication were done, then the computation could be converted to 
the log domain to handle the wide range of values for the products. However, since there is 
also addition, the log probabilities must be exponentiated.7 

Aside from these numerical difficulties when the complete likelihood is used; it is 
often useful to find the single best state sequence to explain the observation sequence. This 
simply requires modifying the forward recurrence by replacing all the summations with the 
max function. Hence, the best-path (or Viterbi) approximation to Eq. 25.8 is 

P~(tfi,X?\M) = max P(qn
k~

] ,ΧΓ' \M)P(q1,x„ \ q"^1 ,Χ^1 ,M). (25.14) 

With the independence and the first-order assumptions, it further reduces to 

Щ,Х?\М) =max[P(9r
1,xr1 \М)Р(^\^-\М)]Р(хн\^,М). (25.15) 

An equivalent form can be seen for the log domain: 

\0gP(q1,X^\M) = max [ logFfa jT 1 ,*?- 1 I M) + l ogP( t f | qT\M)} + \ogP{xn \ <fi,M), 

(25.16) 

or 

- l o g P ( t f , x r \M) = min [ - l o g g e r 1 Д Г ' | М ) - l ° g P ( t f I C ^ ) ] - logP(x„ | <fi,Nt). 

(25.17) 

'There are, however, clever interpolation schemes for approximating z = x + у (or equivalently e,ogz = elogjr + 
elogv) while keeping all values in the log domain. 
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In this form, the recursive step is extremely similar to the corresponding step in the 
deterministic dynamic time warp. Interpreting each negative log probability as a kind of 
distance (since large probabilities mean a better match), Eq. 25.17 essentially says that 
the global distance for a particular state and frame is the sum of a local (statistical) distance 
[—logP(x„ | q",M)] and the minimum over all possible predecessors of the sum of global 
distances and transition costs.8 Given such an interpretation, the approaches for recognition 
discussed in Chapter 24 (discrete word recognition, one-pass continuous recognition) also 
apply here, with the exception that we now have a formulation for how to combine the 
acoustic information with any prior statistics about the word sequences. 

25.4 CONCLUSION 

In this chapter, we have presented the general notion of statistical models for speech 
recognition, and we have then specialized them to the kind of stochastic finite-state automata 
that we call hidden Markov models. We have further shown how simplifying assumptions 
can lead us to a set of recurrences that yield acoustic sequence likelihoods. These likelihoods 
can, in combination with prior probabilities for word sequences, lead to word sequence 
hypotheses that will yield the minimum probability of error (if the assumptions are correct; 
alas, they aren't). 

Thus far, however, we have said little about how the local probabilities used in these 
recursions are estimated, nor how these estimators are trained. These will be the primary 
topics for the next chapter. 

Finally, to derive efficient and simple recursions, we found it necessary to make a 
number of assumptions that, as noted earlier, are almost certainly not true (but that are 
useful nonetheless). 

1. Language model parameters and acoustic model parameters are assumed to be com-
pletely separable; that is, the language model is independent of acoustic model 
parameters, and the acoustic model is independent of language model parameters. 

2. The state chain is assumed to be first-order Markov. This means that the probability 
that the Markov chain is in state qi at time n depends only on the state of the Markov 
chain at time n — 1, and it is conditionally independent of the past. 

3. Observations are assumed to be conditionally independent of past observations and 
states. This means that the probability that a particular acoustic vector will be emitted 
at time n depends only on the transition taken at that time, and it is conditionally 
independent of the past. 

4. Recognition is often based on the best path (Viterbi), and not on all possible state 
sequences (total likelihood) for a model. 

'The reader should compare Eq. 25.17 with Eq. 24.2. 
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25.5 EXERCISES 

25.1 In this chapter, we derived a forward recursion for P(X \ M) by expressing it as £, P(Xf, qf \ M). 
Derive a similar backward recursion. That is, derive 

ß„(/|M) =р{х?+1 \ς/!,χϊ) =£ß„+1(fc|M)p(?r
1
 \4!)Р(ХШ k"+1)· 

к 

25.2 The Viterbi search finds the state sequence that is the most likely match to the observed data. A search 
incorporating full likelihood estimates (without the Viterbi assumption) permits us to find the most 
likely model. How could these two yield different results? Give an example. 
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CHAPTER 

STATISTICAL MODEL TRAINING 

26.1 INTRODUCTION 

In the previous chapter, we introduced the notion of statistical models and sequence recog-
nition; we further introduced the common assumptions of conditional independence that 
lead to the particular form of generative statistical model1 called a hidden Markov model 
(HMM). We then showed how such models could be used to compute the likelihood of 
the sequence of feature vectors having been produced by each hypothetical model, given 
some assumptions of conditional independence. This likelihood was either a total likelihood 
(using the forward recursion), taking into account all possible state sequences associated 
with the model, or a Viterbi approximation, only taking into account the most likely state 
sequence. Further assuming that the language model parameters were separable from the 
acoustic model parameters, we showed that the Bayes rule gave us the prescription for 
combining the two models to indicate the model (or sequence of models) that gives the 
minimum probability of error. 

A key component in this development was the integration of local probability values 
over the sequence; essentially this was a local product of state emission and transition 
probabilities with a cumulative value computed from legal predecessor states. In other 
words, we derived approaches for determining complete sequence likelihoods given all 
the local probabilities. However, this still left a major problem: How do we get these 
probabilities? Even with the simplifying assumptions we have made, this is far from a 
trivial problem. State densities and transition probabilities are rarely known a priori, so in 
general they must be estimated from the training data. 

The methods of Chapter 9 are directly relevant here. In that chapter, we described 
two parametric forms (Gaussians and mixtures of Gaussians) and introduced a general 
methodology for training their parameters. Given a set of labels for a sequence of speech 
frames, then, one could associate a model with all frames that have a particular label. For 
example, a feature from all speech frames labeled as the [ae] sound could be represented 
by a mixture of Gaussians. The parameters of each such model could then be trained to 
maximize the likelihood of the corresponding data, for instance by using EM. 

However, speech recognition requires somewhat more complex procedures, though 
they are qualitatively similar to this simple scenario. For one thing, EM on framewise 
densities would maximize the likelihood P(xn | qj) for each j , which might not be the same 
thing as maximizing the likelihood of a complete model for a word or sentence. Thus, we 

1A statistical model is called generative when its observations are assumed to be generated by a state occupancy 
or transition, according to some statistical distribution. 

364 

CHAPTER 3

Speech and Audio Signal Processing: Processing and Perception of Speech and Music, Second Edition 
by Ben Gold, Nelson Morgan and Dan Ellis 
Copyright © 2011 John Wiley & Sons, Inc. 



HMM TRAINING 365 

must optimize over the space of complete sequences; that is, we must compute expectations 
over the space of all possible state sequences corresponding to the models for the training 
data. EM in this case can be shown to increase the likelihood of a complete sequence 
of observations given the models. Additionally, the training data are typically labeled 
asynchronously to the frames; that is, we ordinarily know that the training phrase "fifty-
five" corresponds to a sequence of speech frames, but we don't know where the subword 
units start and stop. Consequently the state identity itself must be a hidden variable in the 
sense that we used the term in Chapter 9. 

In the next section we apply EM to HMMs. 

26.2 HMM TRAINING 

The EM derivations of Chapter 9 showed that choosing parameters that maximized the 
expectation of the log of the joint density for observed and hidden variables would also 
maximize the likelihood of the observed data. When applied to HMMs, the hidden variables 
are the sequence of states associated with the Markov models.2 Starting with a general 
expression for an auxiliary function that could be maximized in order to ensure the data 
likelihood is optimized (adapted from Eq. 9.25): 

Q = £ P ( * | *Я1 0„,d) log[P(xn | k, ®)P(k | Θ)] (26.1) 
к 

where к is a hidden variable (for which we will sum over all examples), xn is the nth 
example of the observation, and Θ are the parameters to be optimized. 

For the case of a HMM, we use the state sequence as the hidden variables, and we 
compute the expectation conditioned on the entire sequence. As in Chapter 25, let qn

k be 
the state at time n that is of type k, let Xf refer to the complete sequence of TV frames, 
and let Q be the corresponding sequence of hidden state variables (not to be confused with 
Q, the symbol we introduced in Chapter 9 to refer to the expected log joint density being 
optimized in EM). Then the corresponding expectation would be 

Q = £p(ß|X1'v,0old,M) log[P(xf | β,Θ,Μ)Ρ(ρ[Θ,Μ)]. (26.2) 
Q 

This is the expectation of the joint likelihood of the observed feature vectors and the 
unobserved HMM state sequences.3 This expression could be maximized for each model 
M (which has associated permissible state sequences) by adjusting Θ. 

In Chapter 25, we noted that the probability terms in Eq. 26.2 are often simpli-
fied by a series of conditional independence assumptions. Using these, we can approximate 

2This is the minimal set of hidden variables for the HMM training problem. Other variables may also be hidden, 
such as the component weightings for Gaussian mixtures. 
3In some derivations, the first probability in this equation would be the joint probability of Q and X. Maximizing 
over either distribution will maximize the data likelihood, and it will also lead to estimation procedures that are 
essentially the same. 
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P(Xf IQ) by n!Li ρ(χη I <f) (a product of emission probabilities), and P(Q) by 
P(# ) Πη=2 ̂  (#" 19й-1) (a n initial state prior multiplied by a sequence of transition proba-
bilities). Using the usual properties of the logarithm and re-expressing the summation over 
all sequences Q as the sum for all possible values of frame index n and state type к (or state 
pairs к and I in the case of the third term), we get 

N L(M) 

2 = Σ Σ ρ(ιΐ I *?> ®°и>M) lQgp(x» I «*. ®. M ) 

i(M) 

+ Σ P ( « * I * м Θ°><>' Af) l o g Ρ ( 4 I Θ, M) 

ДГ L(M)L(M) 

+ Σ Σ Σ ^ . « r 1 |xj\0old,M)iog/>(^ \4г\®,м), (26.3) 
n=2 t = i e=i 

where, as in Chapter 25, L(M) is the number of states in model M. 
Although we have written this expression with a general shared notation for the 

parameters, typically the three terms can be optimized separately. The first term can be 
optimized with the same methods that were shown in Chapter 9; in particular, note the 
similarity to the second term of Eq. 9.26. In that chapter, we chose a reasonable parametric 
form for the density estimator. This permitted the computation of partial derivatives of a 
Q function with respect to the unknown parameters. Setting the resulting expression to 
zero produced linear equations that could be simply solved. This determined the parameter 
values that corresponded to the best possible increase in data likelihood for the given initial 
density estimates. 

For simplicity's sake, here we assume that a single univariate Gaussian is associated 
with each HMM state.4 Given these assumptions, we can proceed through the same steps 
as were taken in Chapter 9. The resulting expression for the mean associated with state 
(density) j is then 

LLxP{<fj\x",®o^M)Xn 

and the corresponding expression for the variance estimate is 

J~ Σΐ.^ΙΧί',ΘοΜ,Αί) ' ( ' 

(Compare these with Eqs. 9.31 and 9.32 in Chapter 9.) 
Continuing the analogy with the development in Chapter 9 (Section 9.8), we can 

use Lagrangian multipliers to optimize the second and third terms of Eq. 26.3. That is, 
we take partial derivatives of each term separately, summed with an additional term that 

"As noted in Chapter 9, the extension to vector observations is not difficult, but it complicates the mathematics. 
Similarly, incorporating mixture Gaussians rather than single Gaussiane requires us to have hidden variables that 
denote both the state and the generating Gaussian, which would complicate the notation without significantly 
enhancing this exposition. 
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incorporates constraints based on the fact that for these cases the parameters that we wish 
to optimize are probabilities. For the case of the second term, we want to estimate the prior 
probability of the first state in each model. The corresponding Lagrangian term will be 

λ, 
UM) 

*=1 

Θ - 1 (26.6) 

which expresses the constraint that the probabilities of all initial states must sum to one. 
Similarly, for the third term of Eq. 26.3, the Lagrangian term will be 

^tri 

L(M) 

*=1 

(26.7) 

which expresses the constraint that the probabilities of all transitions from any particular 
state must sum to one. In each case we take partial derivatives of the augmented term (with 
respect to the variable we wish to optimize), set the result to zero, solve for the Lagrangian 
multiplier, and resubstitute for the final expression for the optimum value of the unknown.5 

Taking these steps, we end up with an expression for the optimum first frame prior 
probabilities: 

P{q)\M) =P(q) | ΧΓ,Θοω,Μ) (26.8) 

Thus, the best estimate of this prior is just the posterior probability taken from the previous 
parametric representation. 

Similarly, the optimum transition probabilities can be shown to be 

P{q)\qT\M) Ll2P(<ipqr I y " 
| Λ 1 i 

&oU,M) 

LUKiT X\ i Θ0] , M 
(26.9) 

Note in particular two points about this expression. 

1. The denominator can also be expressed as an outer sum over the numerator for all 
\Χ?,Θο1ά,Μ). states j , that is, £ ^ E Ü U ^ . t f 

The form of this equation is similar to the others we derived, in the sense that it is a 
kind of normalized expectation. In particular, it may be interpreted as the expected 
value of the number of transitions from state / to state j , normalized by the expectation 
of the number of transitions from state i. 

Thus, for the prior probabilities for the first state and for state transitions, we can 
compute optimum updates from estimates of the relevant posterior probabilities. That is, we 

5 See Chapter 9 for the analogous computations for the probabilities that are used as the weights of a Gaussian 
mixture. 
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require an estimate of posterior probability of single states and of pairs of states, conditioned 
on the entire observation sequence. In the case of the emission probabilities, we have 
just given a simple example of a parametric form (that of a single univariate Gaussian). 
However, it is generally true that the iterative training of HMM emission parameters is 
crucially dependent on the estimation of the posterior probability P{q"j | Xf, Θ0ω)- In the 
following section we show how all of these posterior probabilities can be estimated. Given 
these estimates, though, the training procedure is (in principle) straightforward. 

1. Choose a form for the local probability estimators (e.g., Gaussian) for the densities 
associated with each state. 

2. Choose an initial set of parameters for the estimators. 

3. Given the parameters, estimate the probabilities P{qnAX\ ,®0\ά) for each state 
and time. Similarly, estimate the probabilities P(q'j,q"~1

 ΙΧ^,ΘΟΜ) f° r e a c h state 
transition and time. These are essential terms in the estimate of the expectation Q for 
the EM algorithm, as given by Eq. 26.3. 

4. Given these probabilities, and the parametric form chosen in step 1, find the parame-
ters that maximize Q. These parameters will be guaranteed to give the best possible 
improvement to the likelihood for each model. 

5. Assess the new models according to some stopping criterion; if good enough, stop. 
Otherwise, return to step 3. 

Although some training approaches use somewhat different criteria and probabilis-
tic estimates, the general form of the training for all statistical sequence systems remains 
the same: use the current parameters to estimate posterior probabilities for the hidden 
variables, and then use these posteriors to determine new parameters that maximize the 
expectation Q (and thus the data likelihood, according to the EM proof in Chapter 9). In the 
remainder of this chapter we describe some further specifics for some simple HMM-based 
approaches. 

26.3 FORWARD-BACKWARD TRAINING 

As noted in the previous section, EM-based training of HMMs requires the estimation 
of the probability of each type of state occurring at a frame. These probabilities can be 
estimated by using a combination of the forward procedure (described in Chapter 25) and 
a similar one called the backward recursion (see problem 25.2 in Chapter 25). Together 
these recursions will yield the required probabilities, which can then be used to generate 
the new set of estimator parameters. This procedure then will maximize the likelihood of 
the correct models (given the usual Markov assumptions). 
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Let's start by redefining the two recursions6: 

Оп{е\м) = p{xiqn
t\M) £ап^(к\М)Р{д"е\дГ1) P{xn\q"), (26.10) 

Ut\M) = P{X^\qn
(,X",M) =^n+i(k\M)P{ql+l \ <ff) P [xn+l \ cfk

+l). (26.11) 
к 

Note that the second equation has the same form as the first, but it proceeds backward 
in time. The second one was also chosen to have the property that 

aH{l\M)b,(t\M)=P(X?,<ft\M). (26.12) 

In other words, the product is the joint likelihood of the complete data sequence and 
a particular state at a particular time. Summed up over all the possible states at that time, 
this will then yield P(Xf | M). 

Given these intermediate results, we can then compute the probability of a particular 
state at a particular time, given the entire data sequence: 

pWbW- Р{х»щ - Lean(i\M)Ui\M) (26ЛЗ) 

This can be used to update the parameters of the probability estimators for the emission 
density associated with each state. In particular, given a specific form for these estimators 
(e.g., Gaussian), the probabilities of Eq. 26.13 can be used to compute parameters that 
maximize the expectation Q and hence the data likelihood. In Section 26.4, we show this 
process for Gaussians and for discrete densities. 

In addition to these emission densities, the state transition probabilities can also 
be chosen to maximize the expectation Q. As noted in Section 26.2, these probabilities 
are determined from the posterior acoustic probability estimate of the state transitions, or 
P(q",ql~l |Xf ,M); see Eq. 26.9. This requires a series of approximations based on the 
same conditional independence assumptions that were used in Chapter 25 to develop the a 
recursion and will result in a somewhat messier expression. However, in principle, we can 
compute the required probability with a product of an a term, а ß term, and an emission 
and a transition probability to represent the posterior contribution of the current transition. 
This is illustrated in Fig. 26.1. 

More formally, we wish to estimate the numerator of Eq. 26.9 (since the denomina-
tor can be obtained by summing the numerator over all possible states). Equivalently, we 
can estimate the quantity P(q"j, q"\~l, Xf | Θ0ω, M), since both denominator and numerator 

6For consistency of notation with Chapter 25, we will suppress the explicit dependence on the old parameters 
0oid in this section. The reader should keep in mind, however, that all of the 'local' probabilities used in these 
expressions come from estimators that may have been trained by a previous step (or else that use parameters that 
have been chosen for initialization). 
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FIGURE 26.1 A state transition and the terms that are used for training of the associated 
probability. The total probability of all paths terminating in state к at time n - 1 is given by 
a„_! (k\M). The total probability of all backward paths (ending at time N) that start with 
state £ at time n is given by β„(£ | M). Local probabilities P{qt \ qk) and P(xn | qt) are 
multiplied in to get an estimate of the total probability for all paths that contain the transition 
from к to i. 

of Eq. 26.9 can be multiplied by the term P(X^ | Θ0ω,Μ). We then split up the data se-
quence into past, present, and future terms to express the desired quantity (suppressing Θ 
and M for simplicity's sake), and proceed with the derivation: 

PyUt'fk ι^ΐ ixn,Xnj, 

= р(<й,хя,х?+,\4Г1,хГ1)Р(4г 

= P(qe,xn,Xn+ì\qk ,Xl Ja„_ 

= P(XN
n+i j q»,qr\xr\xn)P{qn

e,Xn | ^ Γ ' ^ Γ ' ) « -

= Μί\Μ)Ρ{$ίΧη\4ί-\ΧΓι)α*-

^„(e\M)P(q"e,xn\q"k-
i)an. 

= Ut\M)P{xn | qhqr'M^i I <?Γ>«-

^n(£\M)P(xn\q"e)p(q'}\qri)an 

Each equality in this derivation either represents a definition (for a or β), or else an 
application of the axiom P(ab | c) = P(a | bc)P{b j c). Each use of the symbol « in-
dicates that we are making use of the conditional independence assumptions described 
in Chapter 25. For instance, in the expression for the joint probability of the obser-
vation and state for the nth frame (26.19), we can drop dependence on X"~l if there 
is also a dependence on q"^1 (expression 26.20). This is the first-order Markov as-
sumption. That is, given knowledge of the previous state, we assume that no other 
information about the past will provide any additional information about the current 
state. 

'niXn+lJ 

\хГ) 
x{k\M) 

i(k\M) 

Лк\М) 

i(k\M) 

ι(*|Λί) 

i(k\M) 

i(k\M) 

(26.14) 

(26.15) 

(26.16) 

(26.17) 

(26.18) 

(26.19) 

(26.20) 

(26.21) 

(26.22) 
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Using the terms of Eq. 26.22 to estimate the transition probabilities of Eq. 26.9, we 
find that the optimum transition probabilities are 

_Σ?=2Ρ(^<?Γ',*ίΊθο1α,Μ) 

lZ=2P{<fi-l,x!'\®M,M) 

Σΐ2 Mi I M)P{x„ I q"e)P{q"( \ Q c b - i (* I M) 

Σ'ίΤ'EÜUUtIм)р{хп 14})ρ(4ΐ | fr>„-,(* |м) ' 
(26.23) 

Similarly, for the first frame probabilities as given by Eq. 26.8, the optimum proba-
bilities can be computed directly from Eq. 26.13 for the case of n = 1, or 

, , , ч аЛк\М)ЪЛк\М) 
Pia) М) = — — — —— (26 241 

In summary, a (forward) and ß (backward) recursions are used to derive estimates 
for the probabilities of the hidden state and state transition variables, conditioned on the 
sequence of acoustic feature vectors. For the unconditioned (prior) probabilities, as given 
by Eqs. 26.23 and 26.24, the probabilities themselves are trained parameters of the model. 
In the case of emission probabilities, the parameters are variables associated with some 
particular structure for the estimator, e.g., Gaussian. 

For all of these parameters, estimation and maximization steps can be repeated until 
some stopping criterion is reached. The overall procedure is then referred to as forward-
backward or Baum-Welch training. 

26.4 OPTIMAL PARAMETERS FOR EMISSION 
PROBABILITY ESTIMATORS 

For many common structures of probability estimators, update equations can be found for 
which the partial derivative of the expectation Q (with respect to the estimator parameters) 
is zero, and the likelihood of the data is maximized. For any particular iteration of the Baum-
Welch procedure, these update equations will be applied, incorporating probabilities that 
have been estimated from the previous iteration. Here we illustrate this process for the case 
of two simple structures: a Gaussian density, and a discrete density. 

26.4.1 Gaussian Density Functions 
Recall that a multivariate Gaussian distribution is defined by two groups of parameters: 
the mean vector, and the covariance matrix. In the most general case, each of these will be 
unique for each state category (e.g., phone), but often the nonzero part of the covariance 
matrix is limited to diagonal elements (variances). 

As noted previously, the expected values of each mean must be computed by weight-
ing each feature vector by the probability that it corresponds to the particular state. This 
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is expressed in Eq. 26.4. Note that the denominator may be interpreted as the expected 
number of frames associated with state j . Expressing both numerator and denominator in 
terms of the recursion results (where the a values come from the forward recursion and the 
ß values come from the backward recursion), we get 

Mj ZL^nU\M)UJ\M) ' 
(26.25) 

The variances can be computed in a similar manner. 

26.4.2 Example: Training with Discrete Densities 

For discrete densities, each xn is mapped to the nearest cluster center y, in a process called 
vector quantization, or VQ (to be discussed a bit more later in this chapter). A distribution 
is stored in a table for each y;. For each feature vector xn, the probability P(xn \ q") is then 
approximated by P(yj | q"e), where the feature vector was closest to cluster center y;. 

To derive the optimum values for the emission parameters, we begin with the same 
term of the auxiliary function Q that we have been differentiating, namely the first term of 
Eq. 26.3. However, the parameters to be estimated for the discrete case are the probability 
estimates P(yj \ qt) themselves. Thus, we need a Lagrangian term in the optimization to 
represent the constraint that these parameters must sum to one. Putting in this term, we get 

& = Σ Σ p(rt Ix">®°'<ьм) logp(x« I # . Θ ' Μ ) + λ 

л=1 t=l 

£p(y,|9 t ,e)-i (26.26) 

Taking the partial derivative with respect to P(yj \ qe, Θ) and setting the result to zero yields 

£p(<fi\Xi,®o*,M) 
P{yj\cfl,®,M) 

-λ = 0, (26.27) 

where the notation 5ny is used for a function that is one when xn is quantized to y7 and zero 
when it is quantized to some other codebook entry. Here P(yj | q") is fixed to be the same 
for any value of и, so we can multiply through by this value and get 

£P{ql | Jff,Θοω,Μ)δ„; = -XP{yj I tfi,Q,M) (26.28) 

Summing over all values of y;-, we find that the constraint reduces the right-hand side to be 
—λ and removes the δ term from the left-hand side (since the sum would now include all 
frames), so that we get 

λ =-£ />(# | χ?,©,*,,;*). (26.29) 

Resubstituting into Eq. 26.28 and rearranging terms, we finally get 

Lt,P{(l"\x^&oM,M)8„e 
P(yj\qt,&) 

EJLIP(9? X?.©oid,Ai) 
(26.30) 
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This new estimate of the emission probabilities associated with a VQ value and a state can 
be viewed as the expected value of the number of frames associated with that VQ value 
and state, normalized by the expected value of the total number of frames. 

Finally, we can see that the probabilities required for Eq. 26.30 are just the probabili-
ties from Eq. 26.13, and thus they can be obtained from the normalized product of forward 
and backward recursions as given in that latter equation. 

26.5 VITERBI TRAINING 

In Chapter 25, we noted that the full likelihood of a model can be approximated by the 
likelihood associated with the most likely sequence of states. This was referred to as a 
Viterbi approximation. The advantage of this approximation is that sums in the a recursion 
can be replaced with a maximum, which simplifies the numerical considerations. Similarly, 
in Viterbi training, we will attempt to optimize the parameters to maximize the likelihood 
of the best path (state sequence) in the correct model. For this case, then, the posterior 
probabilities used in the estimation step are assumed to either be zero or one; that is, at each 
stage in the EM iterations, we will assume a particular state sequence for the training data. 

The EM steps then take the following form7 : 

1. Assume an initial set of parameters for the density estimators. 

2. Determine the most likely state sequence (or assume one if initializing from segmen-
tations rather than densities). 

3. Update the parameters. 

4. Assess the solution and repeat the previous two steps as necessary. 

We begin by discussing the second step. Assuming that we have some probability 
estimators, how do we find the best segmentation of the frames into a state sequence? This 
question was essentially answered in a different context in the previous chapter. We know 
that a Viterbi decoding procedure will find the likelihood of the best path (state sequence) 
for each model. Further, since the most probable transition was used at each step, we 
will be able to backtrack and determine the corresponding state sequence. Conceptually, 
segmentation of training data with a known model transcription is the same as recognition, 
except that in the former case there are no alternate model sequences to consider. 

Since we can obtain an emission probability for each frame and state category, each 
of these is used in a process that is often called Viterbi alignment. In this process, dynamic 
programming is done, essentially using the one-pass method, in which the local distances 
are — logP(yj | qe), and where there are transition costs —logP(^ | q^) for hypothesizing 
transitions from states к to t. Unlike the recognition scenario, the only model sequences 

7This process is conceptually much simpler than the approaches discussed previously. We have chosen to discuss 
the non-Viterbi case first, however, because it is more general. As noted above, Viterbi training can be considered 
a special case of forward-backward training in which the posterior probabilities are either one or zero. 
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FIGURE 26.2 Illustration of the iterative Viterbi alignment. Each utterance x,- is 
segmented into an initial estimate of state occupancies for the corresponding model Λί,. 
For instance, this can be done with the linear match shown by the dashed line in the figure. 
Then the parameters are chosen to maximize the likelihood of the data. Given the new 
parameters, a new segmentation is found (shown here as the solid curve). This 
corresponds to the most likely path through the model given the new parameters. The 
arrows down to the X-axis show the corresponding state transition times for each of these 
segmentations. 

that are considered are the ones associated with the known word sequence; all the word 
models together can be considered as a single model for the entire utterance in this case, 
and there is only one to be evaluated. Backtracking can be done since the best previous state 
can be preserved for each frame, and so the best state sequence can be found. Additionally, 
since only one model sequence need be evaluated, often it is not necessary to use elaborate 
data structures for this process - the distance and backtracking information can be held in 
complete matrices, since the storage is not prohibitive as it would be in the recognition 
case. 

Figure 26.2 illustrates Viterbi alignment. In the case shown in the figure, we begin 
the iterative process with an assumed segmentation, but the initial segmentation can also 
be derived from an assumed set of densities. 

The state sequence that is found through the backtracking procedure is considered 
to be an alignment of the states with the feature vectors. In the next step, we estimate the 
transition and emission probabilities, assuming that this state sequence is correct. 

Finally, the solution must be assessed. We can do this by looking at the changes in 
the global likelihood and setting some threshold on the improvement. Another approach is 
to test for convergence of the segmentation by counting the number of frames for which 
the state label has changed. 

Although Viterbi training can be quite effective and is simple to understand and 
implement, it requires an additional approximation over the Markov assumptions mentioned 
previously, and this is in some sense a disadvantage. However, in Viterbi training, the best 
path through each model is reinforced, so that during recognition the best path is more 
likely to correspond to the correct model. 

For Viterbi training, the state transition probabilities are particularly simple to eval-
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uate. Consider Eq. 26.9, which gave an expression for the optimum transition probabilities 
in the general case of probabilistic state occupation. If the posterior probabilities for a 
transition are assumed to be one when a state pair is present in the Viterbi alignment, and 
zero when it is not, then that equation becomes 

/ „ i - i \ no. trans, i to i 
Р(я, ЧТ ) = -с -■■ (26.31) 

J no. trans, from ι 
In other words, to estimate state transition probabilities, we simply count to find the relative 
frequency of each particular transition. 

As with the more general case of Baum-Welch training, we consider Gaussiane 
and discrete densities in order to derive the update equations for the emission probability 
estimators. 

26.5.1 Example: Training with Gaussian 
Density Functions 

For each Viterbi iteration, the optimum means and variances are computed from all the 
frames labeled with each state category. The ordinary equations for these parameters are 
indeed optimum. This can be shown by taking the corresponding solution without any 
Viterbi assumptions, and substituting one and zero appropriately as the only permitted 
probabilities. For example, consider Eq. 26.4. Substituting a probability of one for all cases 
in which a segmentation yields a label of state j , and zero elsewhere, we get 

Eframes labeled j * „ 
<"j = ? , , , ■ .· (26.32) 

no. frames labeled j 

Similarly, the variance is just 

2 2-frames labeled j\^n Hj) /ΌΑ QQ4 

' no. frames labeled j 

26.5.2 Example: Training with Discrete Densities 

In the case of discrete density functions, since the acoustic vector has been quantized to 
one of a finite number of categories (typically a few hundred), we can compute relative 
frequencies of each of these categories for those frames that have a particular state label. 
Starting from Eq. 26.30, we again substitute probabilities of one for frames within a 
segmentation for state £ and zero elsewhere. Given the δ function in that equation, which 
further eliminates frames from the numerator sum for VQ values other than j , we end up 
with 

. , „ no. frames labeled £ and v, „ , „ . . 
Pbi qi) = ; л ъ л л / ■ ( 2 6 · 3 4 ) 

no. frames labeled t 
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Given these new probabilities, another Viterbi alignment can be run, and so on, until some 
stopping criterion is met. 

26.6 LOCAL ACOUSTIC PROBABILITY ESTIMATORS FOR ASR 

Here we give a little more detail about the estimator structures used in the previous examples, 
as well as a few more complex types. 

26.6.1 Discrete Probabilities 
As noted previously, discrete probabilities for speech frames (given a particular state 
category) are estimated by counting co-occurrences between state labels and the VQ index 
for each frame. Prior to the training methods described above, a VQ training phase is 
implemented. In this phase, the training data are clustered by using one of a number of 
common methods, such as the K-means method. In a variant on this approach, sometimes 
hierarchical clustering is done - first the feature vectors are clustered into two clusters, 
then into four, and so forth, with each step consisting of a complete K-means clustering, 
and with the next step initiated by choosing a split that satisfies some reasonable criterion. 
A common number of cluster centers to end up with is somewhere between 128 and 512. 
The smaller the number the more robust the quantization will be to small variations, but 
the larger the number is the better match each cluster center value is to the unquantized 
version of each feature vector. 

Thus, in this training phase, a list of prototypical feature vectors is computed; this 
list is commonly called a codebook. When it is used (either during training or recognition), 
each incoming feature vector is mapped to the closest prototype vector in the codebook 
and the resulting index is used to represent the frame; as noted earlier, this can be used as 
an index into a table of probabilities. 

In practice, it is better to use separate codebooks for static features (e.g., mei cepstra), 
dynamic features (e.g., delta mei cepstra), and energy-related features. This leads to multiple 
probabilities that must be combined. Typically, they are combined by multiplication, which 
is tantamount to assuming conditional independence between these features. Thus even 
though the use of discrete distributions seems to be free of strong distributional assumptions 
(e.g., Gaussian), their practical use requires quite strong statistical assumptions. If a single 
codebook is used, then the use of Euclidean distances for the quantization is also equivalent 
to a strong assumption about the statistical distribution of the features. Finally, recent 
practical experience for many researchers has shown that continuous densities can often be 
used to achieve better performance. 

Despite these seeming difficulties, the simplicity and low computation requirements 
for these methods make discrete (VQ-based) HMMs a popular methodology for local 
probability estimation. 
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26.6.2 Gaussian Densities 

As noted earlier, feature vectors associated (deterministically or probabilistically) with 
each state can be assumed to be generated by a multivariate Gaussian distribution. This is 
a fairly strong assumption, but it is not so bad if a full covariance matrix is used (including 
nondiagonal elements). Unfortunately, when enough state categories are used to make this 
assumption as reasonable one, the number of parameters for full covariance matrices can 
be prohibitive. 

For this reason, it is now more common that simpler Gaussians are used (variance 
only) and are combined in mixtures, as described below. This is often found to be a more 
effective use of the parameters. 

26.6.3 Tied Mixtures of Gaussians 

Each emission probability density can also be assumed to be the weighted sum of a common 
pool of Gaussian densities. We can express this as 

^(*-lei) = Е с д р ( л - 1 «*·■/). (26·35) 

which is axiomatically correct if Cß = P(j | ql). 
Another way of looking at such a system is as a discrete system for which variances 

are also considered, and for which the probability is not just associated with a single 
cluster center, but with several (or all in the unconstrained case). Thus, this method is often 
referred to as soft VQ. The HMMs that result are sometimes referred to as semicontinuous 
for similar reasons. Practically, these methods have become very popular, as they share 
some of the simplicity of the discrete methods and yet permit continuous representations 
of the densities. 

26.6.4 Independent Mixtures of Gaussians 

In the previous case, the density for each state was estimated by a different weighting on 
the same pool of base densities. In the more general case of mixture Gaussians, each state 
has its own set of mixtures densities (not just the weights, but separate Gaussians with their 
own means and variances). This provides a more detailed estimate of the densities, but as 
such generally requires more training data. 

Many systems now actually use something in between tied and independent Gaus-
sians; there is generally some kind of automatic procedure to determine to what extent the 
data will support an independent estimator for each state, and to what extent the data are 
sparse enough that tying is required. 

26.6.5 Neural Networks 

As noted in Chapter 9, neural networks can also be used to estimate probabilities. However, 
they are sufficiently different (different assumptions, optimization criteria, etc.) that they 
will be treated separately in the next chapter. 
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26.7 INITIALIZATION 

Thus far, we have largely skipped over the initialization of parameters. This is required for 
any form of EM. There are a number of common ways in which this is done. Sometimes 
the models are initially estimated from a manually transcribed database such as TIMIT 
(briefly described in Chapter 23). For instance, if three states are used for each phone, the 
phone segmentations can be used as marked in TIMIT, and three segments for each phone 
can initially be assumed to be of equal length. Models can be trained from this, iterated 
on TIMIT, and then used as the initial models for the new database. Alternatively, TIMIT 
phone models could be used to provide an initial segmentation of the new database, and 
that could be iterated upon in a similar manner. Sometimes systems use a signal-processing 
approach to come up with preliminary segmentations, which are used to generate the initial 
models. One can also just divide up the sequences according to the average relative lengths 
of phones. Even simpler approaches have been used, but particularly for Vi terbi training, 
the initialization can have a significant effect on the results. 

26.8 SMOOTHING 

For all of these methods, there is a fundamental difficulty that is essentially always present 
to some degree: we wish to capture the variability inherent in the data, which pushes us 
toward ever finer representations (for instance, modeling triphones, or phones with specific 
left and right context, rather than phones); however, these finer categories have fewer 
examples. Indeed, poor estimates for categories that occur relatively infrequently may also 
hurt recognition for other categories significantly, since recognition requires integration of 
the probabilistic estimates over complete utterances. 

Therefore, it is common that we will require the combination of good estimates of 
coarse categories with noisy estimates of fine categories, in order to stabilize the estimate 
of the latter: this process is often called smoothing. A number of techniques have been 
developed for this purpose; here we describe two. 

1. Backoff smoothing: this is a simple but often effective method. Thresholds are 
set for a minimum number of examples for each level of granularity, and when the minimum 
is not present, the estimator backs off to a coarser level. For instance, if there are enough 
examples of a particular triphone, its emission probability may be used directly; if there 
are not enough, a biphone might be used; if there are not enough examples of the biphone, 
then the phone probabilities are used. The setting of proper thresholds is obviously a tricky 
point, but for many purposes simple heuristics work for this. 

2. Deleted interpolation: this is a much more sophisticated process, and it appears 
to work quite well. Instead of choosing which estimator to use, all of them are used with 
weighting factors that are learned from testing on data that are disjoint from the training 
data. Often, this is done by partitioning the training data into N pieces (e.g., 10) and then 
training up N different sets of parameters by using all the different choices for (N — 1)/N 
of the data. For the case of two estimators, the goal is to choose ε optimally to combine the 
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estimator parameters, that is, 

ΘΓ = e 0 j + (1 - ε ) Θ 2 . (26.36) 

In one approach, ε is set to the fraction of utterances for which Θι was better. Another 
solution is to treat ε as missing information (a hidden variable) and to use EM training. 

26.9 CONCLUSIONS 

In this chapter we have shown the basic approaches used for the training of HMMs 
for speech recognition. As usual we have just scratched the surface; consult [l]-[5] for 
more of the theory (convergence proofs, etc.). Conference papers from the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP) and the Interspeech 
(formerly ICSLP/Eurospeech) all have many more recent examples of practical approaches 
that have been taken in complete systems. 

In all of these approaches, however, we have made a set of assumptions that we 
actually know to be unrealistic; in particular, trying to represent the longer-term dependence 
between observations is a recurring theme in much current research. Further, the basic 
training approaches are entirely based on improving the likelihood scores of the correct 
models, and they do nothing to assure us that the likelihoods of the incorrect models will 
be low. This issue will lead us to a study of discriminant models and estimators. 

26.10 EXERCISES 

26.1 Show all the steps that lead to the expression for optimum first frame prior probabilities as given in 
Eq. 26.8. 

26.2 Show all the steps leading to Eq. 26.25, starting from Eq. 26.4 and using the definitions for the 
forward and backward recursions. 

26.3 Show all the steps leading to Eq. 26.31 from Eq. 26.9. 
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CHAPTER 

DISCRIMINANT A CO USTI С 
PROBABILITY ESTIMATION 

27.1 INTRODUCTION 

In the previous chapters we introduced the notion of trainable statistical models for speech 
recognition, in particular focusing on the set of methods and constraints associated with 
hidden Markov models (HMMs). In both training and recognition phases, the key values 
that must be estimated from the acoustics are the emission probabilities, also referred to 
as the acoustic likelihoods. These values are used to derive likelihoods for each model 
of a complete utterance, in combination with statistical information about the a priori 
probability of word sequences. In other words, the probabilities that the local acoustic 
measurements were generated by each hypothesized state are ultimately integrated into a 
global probability that a complete utterance is generated by a complete HMM (either by 
considering all possible state sequences associated with a model, or by considering only 
the most likely). 

In Chapter 26 we provided examples of two common approaches to the estimation of 
these acoustic probabilities: codebook tables associated with vector quantized features, 
giving probabilities for each feature value conditioned on the state; and Gaussians or 
mixtures of Gaussians associated with one or more states. For both of these examples, 
EM training is used to maximize the likelihood of the acoustic feature sequence's having 
been generated by the correct model. However, when the parameters are modified in 
this way, there is no guarantee that they will also reduce the likelihoods of the incorrect 
models. Training that explicitly guarantees the relative improvement of the likelihood 
for the correct versus incorrect models is referred to as being discriminant. Discriminant 
training for sequence-recognition systems thus has the same goal as discriminant training for 
static tasks; the parameters for the classifier are trained to distinguish between examples of 
different classes. In the limit of infinite training data and convergence to optimal parameters, 
maximum likelihood training is also discriminant, in that it converges to the Bayes solution 
that guarantees a minimum probability of error. However, given practical limitations, it is 
often helpful to focus more directly on discrimination during training, which is the topic 
discussed in this chapter. There are a number of approaches to discriminant training in ASR, 
including the use of neural networks for state probability estimation. We briefly survey a 
range of approaches, and then we focus on the use of neural networks for discriminant ASR 
systems. We will also return to other discriminant training methods in the second half of 
Chapter 28. 
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27.2 DISCRIMINANT TRAINING 

Recall that in Chapter 25, we used the Bayes rule to describe the fundamental equation for 
statistical speech recognition. For convenience, we repeat this here: 

, , ч P(X\Mj)P(Mi) 
P(Mj\X)= l ' p ( ^ '', (27.1) 

where, as before, the class M, is the y'th statistical model for a sequence, 0 < j < J, and X 
is the observable evidence of that sequence. 

In real systems, the actual probabilities are unknown, and instead we have esti-
mates that depend on parameters that we will learn during training. Again repeating from 
Chapter 25, we can explicitly incorporate dependence on a parameter set Θ to get 

«IWl^fflfj«. (27.2, 

Recall that, for example, Θ could include means and variances for Gaussian components 
of the density associated with each state. 

During training, Θ is changing. Typically Θ is changed to maximize the likelihood 
P(X | Mj, Θ). However, this will also change the denominator P(X | Θ), and we cannot be 
assured that the quotient will increase. To illustrate this potential difficulty further, if we 
expand the latter probability to a sum of joint probabilities 

£ P(X, Mk | Θ) = £ P{X I Mk, ®)P(Mk I Θ), (27.3) 
*=1 k=\ 

then the Bayes rule expression becomes 

P{Mj\X,B)= / ( ^ Θ ) Τ / ' ? > (27.4) 

or 

P{Mj ίΧ,Θ)= i + {[ Lvj Pi* I Aft, &)Р(мк j ®)]/[p(x I Mj, &)P(MJ IΘ)]} · ( 2 7 '5 ) 

Thus, given some speech acoustics and some model parameters, the probability of a 
particular model is simply related to the ratio of the likelihood of that model weighted by its 
prior probability, divided into the sum of this product for all of the other models. Thus, to be 
sure that this probability estimate increased for a change in the parameters, we would aim 
to reduce the likelihood for incorrect models as well as to increase the likelihood for correct 
models. Training procedures that attempt to do this (or at least increase the likelihood ratio 
between correct and incorrect models) will be discriminant (between models). 

There are several major categories of discriminant training that have been developed. 
We briefly mention three of them, and then we proceed in somewhat more detail on another 
discriminant approach that is based on neural networks. 
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27.2.1 Maximum Mutual Information 

A quantity that is closely related to the fraction of Eq. 27.4 is the mutual information 
between the models and the acoustics, or 

I{M,X\®} =E log P ^ X ^ й Р{М | Θ)Ρ(Χ | Θ) (27.6) 

where E is the expectation operator over the joint probability space for the models and the 
acoustics. 

For a particular choice of model and acoustic pair, 

= iog Πχ\Μ»&) ( 2 7 7 ) 

where the last transformation is obtained by dividing the numerator and denominator by 
P{Mj | Θ) and then expanding out the denominator as in the previous section. 

This differs from Eq. 27.4 only in that it lacks a prior probability term in the numerator, 
and in that there is a log function. It is clear that this too is a discriminant formulation, in 
that alterations to Θ that increase the mutual information will increase the earlier quantity 
[ignoring the prior probability term P(Mj | Θ) in the numerator of Eq. 27.4]. 

In work at IBM (see, e.g., [1]), methods were developed to train parameters Θ in 
order to increase this criterion. These approaches have been referred to as maximum mutual 
information (MMI) methods. Training is done with a gradient learning approach, in which 
the parameters are modified in the direction that most increases the mutual information. 

MMI approaches have been incorporated in a number of speech-recognition research 
systems. One practical problem with using MMI for continuous speech recognition is the 
need for probability estimates for each of the terms in the denominator of Eq. 27.7. In 
the general case, there are an infinite number of such terms, since there are an infinite 
number of possible word sequences. One solution is to approximate the denominator by 
estimating probabilities for a model that permits any phoneme sequence. Another approach 
has been to approximate the sum over all models (i.e., all possible word sequences) by just 
using the sum over the TV-most probable models (word sequences). Specific techniques for 
large-scale MMI training are presented in Section 28.3. 

27.2.2 Corrective Training 

Corrective training was a term applied by the IBM group to an MMI-like approach in which 
the parameters were modified only for those utterances in which the correct models had 
a lower likelihood than the best models. This can be seen as an approximation to MMI 
in which the fraction in Eq. 27.7 is only modified for a reduced set of examples (only 
the cases in which the most likely hypothesis was incorrect). For these cases, the acoustic 
probabilities are adapted upward for the correct model and downward for the incorrect 
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models. In other words, if 

Ρ(Χ\ΜηΘ)>Ρ(Χ\Με,Θ)+Α, 

then 

such that 

P(X | Mc, Θ*) > P(X | Mc, Θ); P(X \ Mr, Θ*) < P{X \ Mr, Θ). 

Here Δ is a margin that must be exceeded before an utterance is considered to be recognized 
so poorly as to suggest correction of the models, Mc is the correct model, and Mr is the 
recognized model. The method was described in greater detail in [2]. 

27.2.3 Generalized Probabilistic Descent 

A generalization of corrective training and MMI approaches was developed by Katagiri 
et al. [12]. Given parameters Θ, they define a discriminant function associated with each 
model M, as gt (X; Θ). This discriminant function can be any differentiable distance function 
or probability distribution. Often the discriminant function is defined as 

g,(X;@) = -logP(X\Ml,e). (27.8) 

Another solution could be to define gi(X; Θ) as the MMI in Eq. 27.7. 
Classification will then be based on this discriminant function according to the rule 

X e Mj if j = argmax g,-(X; Θ). (27.9) 

Given this discriminant function, we can define a misclassification measure that will 
measure the distance between one specific class and all the others. Here again, several 
measures can be used, each of them leading to different interpretations. However, one of 
the most general ones given in [12] is 

dj(X; Θ) = gj{X, Θ) - log i j J L · £ ехр[лй(Х; Θ)] 1 , (27.10) 

in which К represents the total number of possible reference models. It is easy to see that if 
η = 1, Eq. 27.10 is then equivalent to Eq. 27.7, in which all the priors are assumed equal 
to l/K. 

The error measure (Eq. 27.10) could be used as the criterion for optimization by 
a gradientlike procedure, which would result in something very similar to MMI training. 
However, the goal of generalized probabilistic descent is to minimize the actual misclassifi-
cation rate, which can be achieved by passing dj(X; Θ) through a nonlinear, nondecreasing, 
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differentiable function F (such as the sigmoidal function given in Chapter 8, Eq. 8.8) and 
then by minimizing 

£(0) = E E f № 0 ) ] · (27-H) 
i XeMj 

Other functions can be used to approximate the error rate. For example, we can also assign 
zero cost when an input is correctly classified and a unit cost when it is not properly 
classified, which is then another formulation of the minimum Bayes risk. 

This approach is very general and includes several discriminant approaches as par-
ticular cases. In the case of continuous speech recognition (for which all incorrect models 
cannot typically be enumerated), this approach requires an approximation of the incorrect 
model scores. Approximations such as those used with MMI (e.g., TV-best hypotheses) can 
also be used for this case. 

27.2.4 Direct Estimation of Posteriors 

Model probabilities are usually estimated from likelihoods using the Bayes rule. However, 
it is also possible to estimate the posterior probabilities directly and to incorporate the 
maximization of these estimates (for the correct model) directly in the training procedure. 
The most common structure for such an approach is a neural network, typically a multilayer 
perceptron (MLP) such as that described in Chapter 8; sometimes recurrent (feedback) 
connections are also used. Neural networks can, under some very general conditions, 
estimate HMM state posterior probabilities. These can then be used to estimate model 
probabilities. 

It has been shown by a number of authors ([4], [9], [18]) that the outputs of gradient-
trained classification systems can be interpreted as posterior probabilities of output classes 
conditioned on the input. See the Appendix at the end of this chapter for a version of the 
proof originally given in [18]. 

These proofs are valid for any neural network (or other gradient-trained system), 
given four conditions. 

1. The system must be trained in the classification mode; that is, for К classes (e.g., 
state categories), the target is one for the correct class and zero for all the others. 

2. The error criterion for gradient training is either the mean-squared difference between 
outputs and targets, or else the relative entropy between the outputs and targets. 

3. The system must be sufficiently complex (e.g., contain enough parameters) to be 
trained to a good approximation of the mapping function between input and the 
output class. 

4. The system must be trained to a global error minimum. This is not really achieved 
in practice, so the question is whether the local minimum that might actually be 
obtained will be good enough for our purpose. 

It has been experimentally observed that, for systems trained on a large amount of 
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speech, the outputs of a properly trained MLP or recurrent network do in fact approximate 
posterior probabilities, even for error values that are not precisely the global minimum. 
When sigmoidal functions (e.g., the function given in Eq. 8.8) are used as output non-
linearities, for instance, it is often found that the outputs roughly sum to one, at least on 
the average. However, since individual examples do not identically sum to one, many re-
searchers use some form of normalized output. One of the most common approaches to this 
is to use a softmax function rather than a sigmoid. A common form for this nonlinearity is 

f(yA = —^—, (27.12) 

where v,- is the weighted sum of inputs to the i'th output neuron. In other words, each such 
neuron value is exponentiated, and then the results are normalized so that they sum to one. 

Thus, neural networks can be trained to produce state posteriors for a HMM, assuming 
that each output is trained to correspond to a state category (e.g., a phone). HMM emission 
probabilities can then be estimated by applying the Bayes rule to the ANN outputs, which 
estimate state posterior probabilities P{qk | x„). In practical systems, we most often actually 
compute 

ρ(χηIЧк) _ Р{дк\хп) ηη , , , 
P(xn) ~ P(q„) ■ ( ' 

That is, we divide the posterior estimates from the ANN outputs by estimates of class 
priors. The scaled likelihood of the left-hand side can be used as an emission probability 
for the HMM, since, during recognition, the scaling factor P(x„) is a constant for all classes 
and will not change the classification. 

Figure 27.1 shows the basic hybrid scheme, in which the ANN generates posterior 
estimates that can be transformed into emission probabilities as described here, and then 
can be used in dynamic programming for recognition. 

Since posterior probabilities for an exhaustive set of state categories sum to one, the 
network training is discriminant at the state level; that is, changing the parameters to boost 
the correct state will also move the system farther away from choosing the incorrect states. 
In fact, the backpropagation process explicitly includes the effects of negative training from 
the targets associated with the incorrect states. 

However, the goal of discriminant training is not to improve discrimination at the 
level of states, but rather at the level of complete models (i.e., words or utterances). Is there 
any reason to believe that this training is discriminant between models? Although there is 
no real proof of this, there are several types of observations that can be made. 

1. Intuitive: a system that is better at distinguishing between submodels should be 
better at distinguishing models. Although mismatches at higher levels (e.g., poor pronun-
ciation models) can interfere with this, it nonetheless would be hard to argue that it should 
be better to have poor local discrimination. 

2. Empirical: when a neural network is trained, performance at the state (frame) 
level and at the word level can be tested after each epoch. The number of epochs that yields 
the best performance is often not exactly the same for the different levels; however, the 
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FIGURE 27.1 Use of a neural network to generate HMM emission probabilities for speech 
recognition. At every time step n, acoustic vector x„ with right and left context is presented 
to the net (Fig. 27.2). This generates local probabilities P(qk \ xn) that are used, after division 
by priors P(qk), as local scaled likelihoods in a Viterbi dynamic programming algorithm. 
Here, the arrows coming up from each ANN output symbolize the use of these scaled 
likelihoods (after taking the negative logarithm) as distances from the acoustic input to their 
corresponding state at time n. The solid curves show the best path at each time point. 

general tendencies are very similar, and the optimum stopping point is typically very close 
for the two criteria. Therefore, to the extent that the word error rate is a measure of model 
discrimination, the state-based discriminant training of neural networks tends to lead to 
systems that are more discriminant at the model level. 

3. Theoretical: although there is no proof per se that the training described here 
is discriminant for words or utterances, it can actually be proved that an idealized system 
that incorporates dependencies on all previous states is discriminant at the complete model 
level. The simpler system here can be viewed as the same training regimen with some 
strong simplifying assumptions. 

On the last point, work over the past few years has shown that relaxing these simpli-
fying assumptions somewhat (for instance, including a dependency on the previous state 
explicitly in the network training) can demonstrate some improvement [5]. However, since 
the improvement is small, it is still likely that the simpler system is typically improving 
model-level discrimination. 
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Aside from improved discrimination, there are other reasons for researchers' interest 
in the use of neural networks for probability estimation in statistical ASR. The structure of 
the network permits flexible inclusion of a range of features, such as acoustic inputs from 
long temporal contexts. This can facilitate a wide range of experiments that might otherwise 
be quite tricky with Gaussian mixtures or discrete densities. These approaches also tend to 
be unconstrained by implicit or explicit assumptions about the feature distributions (e.g., 
conditional independence within a state). Finally, in practice it has often been observed that 
fewer parameters are required for posterior-based systems, in comparison with equivalently 
performing systems that use likelihood estimators. This may be due to the tendency of the 
former systems to incorporate more parameter sharing. 

The next section elaborates on some basic characteristics of hybrid HMM-ANN 
systems that are used for ASR. 

27.3 HMM-ANN BASED ASR 

27.3.1 MLP Architecture 
As described earlier, scaled HMM state emission probabilities can be estimated by applying 
the Bayes rule to the outputs of neural networks that have been trained to classify HMM 
state categories. Such estimates have been used in a significant number of ASR systems, 
including large-vocabulary speaker-independent continuous speech-recognition systems. 
Sometimes these systems have used MLPs, such as those described in Chapter 8. The 
MLPs could either consist of one single large trained network (systems have been trained 
with millions of parameters)[16], or of a group of separately trained smaller networks [8]. 
Sometimes the systems use recurrent networks, typically with connections from a hidden 
layer back to the input [19], [7]. These can be trickier to train than the fully feedforward 
systems, but they typically can get very good results with fewer parameters than the 
feedforward systems. 

A typical single-net feedforward implementation is illustrated in Fig. 27.2. Acoustic 
vectors usually incorporate features such as those discussed in Chapter 22 (e.g., mei cepstra 
or PLP). A temporal context of such vectors (e.g., 9) are input to the network. For simple 
implementations, the output categories correspond to context-independent acoustic classes 
such as phones, and each phone uses a single density. More complex implementations can 
use multiple states per phone, context-dependent phones, or both (see Chapter 23 for a 
discussion of triphones, for instance). These more complex designs typically use multiple 
networks (see, for instance, [8]). 

27.3.2 MLP Training 

A number of techniques have been developed to improve the performance of these networks. 
Some of these are as follows. 

1. On-line training: neural network theory is somewhat more complete for so-
called batch training than for on-line training. In the former, modification of the weights 
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FIGURE 27.2 Single large MLP used for probability estimation in speech recognition. The 
acoustic input consists of feature vectors for the current frame, four previous, and four 
following frames. The output corresponds to phonetic categories for HMM states. 

is only done once per pass through the data, whereas weights are modified for every new 
pattern in on-line training. However, the latter tends to be much faster for realistic data sets, 
since the data tend to be quite redundant, so that one on-line pass is in practice equivalent 
to many batch passes. 

2. Cross-validation: the goodness of the network must be evaluated during training 
in order to determine whether sufficient learning has occurred, or sometimes even to 
optimize training parameters (such as the learning rate). In practice it is often useful to test 
the system on an independent data set after each training pass; depending on the learning 
algorithm, the resulting test set performance can be used either for comparison with a 
stopping criterion or to assess how to change the learning rate. For many cases, failure 
to do this testing can result in networks that are overtrained. That is, they can overfit the 
training data, which can lead to poor generalization on independent test sets. 

3. Training criterion: the relative entropy criterion referred to here tends to perform 
better (certainly in terms of convergence) than the mean-squared error. 

See [16] for further discussion on these and other practical points. 

27.3.3 Embedded Training 
In Chapter 26 we described two principle approaches for iteratively improving the model 
likelihoods, both based on EM. In Viterbi training, we alternately segmented word-labeled 
data and updated parameters for the models; these steps were repeated until some stop-
ping criterion was reached. In forward-backward training, explicit segments were were not 
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computed; rather, recursions were used to generate state probability estimates for each 
frame, and model parameters were estimated from these. These iterative or embedded pro-
cedures were necessary because of the lack of an analytical solution to the optimization 
of the model parameters. In particular, segment boundaries or probabilities are not typi-
cally known; rather, training is usually done with speech utterances for which the phone 
sequence (or sometimes only the word sequence) is known, but not the exact timing of 
phonetic segments. 

Similarly, ANN training can be embedded in an EM-like1 process. In the Viterbi 
case, dynamic programming is used to segment the training data (using scaled likelihoods 
computed from the network outputs). The resegmented data are then used to retrain the 
network. There is also an approach that is quite analogous to the typical Baum-Welch 
procedure of Chapter 26; scaled likelihoods are used with the usual forward-backward 
equations to estimate posterior probabilities for each state and frame. The network is then 
retrained, using these probabilities as targets [10]. In some cases the recursions can be 
modified to accommodate dependencies on previous states for more complex models [5]. 

This section has focused on the use of feedforward neural networks in HMM-based 
speech recognition. For a brief description of a large-vocabulary system based on recurrent 
networks, see [7]; the system itself is described more completely in [19]. 

27.4 OTHER APPLICATIONS OF ANNS TO ASR 

For brevity's sake, we have only discussed neural networks in the context of their application 
to discriminant training for HMM probability estimation. However, there are a range of 
other applications of neural networks to speech recognition; some examples follow. 

1. Predictive networks: training networks are used to estimate each frame's acoustic 
vector given some number of previous vectors, assuming some state category [14], 
[21]. 

2. ANN models of HMMs: networks can be designed to implement the Viterbi algo-
rithm [15] or the forward recursion of the forward-backward algorithm [6]. 

3. Nonlinear transformation: networks may also be used to transform the observation 
features for HMMs [3]. 

4. Clustering: networks have been used to cluster the data prior to classification stages, 
for instance, using the Kohonen feature maps [13]. 

5. Adaptation: networks have been used to adapt to the acoustic vectors for a particular 
speaker [11], or to map from noisy to clean acoustic conditions [20]. 

6. Postprocessing: networks trained for more complex models (e.g., statistics of a 
complete phonetic segment) can be used to rescore word-sequence hypotheses that 

1 The procedures that are actually used correspond more to what is sometimes called generalized EM. In generalized 
EM, the M step doesn't actually maximize the likelihood, but simply increases it, typically by a gradient procedure. 
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are generated by a first-pass system that may use more conventional approaches 
[22]. 

We also refer the interested reader to [16] and [17] for more information on many of 
the topics discussed in this chapter. 

27.5 EXERCISES 

27.1 Consider Eq. 27.4. Suppose that all К models have entirely disjoint parameters; that is, changing the 
parameters for one model has no effect on the likelihoods for another model. Does an increase in 
P(X | Mk, Θ) (as a result of a change in Θ) imply an increase in P(Mk | X, Θ)? What if each parameter 
change affects the likelihood estimates for all models? 

27.2 Briefly describe the principles that underly the use of maximum mutual information for HMM 
parameters. Explain how these methods differ from maximum likelihood estimation. Under what 
circumstances might these alternative training techniques be of benefit? 

27.3 It was stated in the chapter that HMM-based systems that use neural networks for posterior probability 
estimation often require fewer parameters than systems that are trained to estimate state likelihoods 
by using Gaussiane or Gaussian mixtures. State some reasons why this might be true. 

27.4 Systems that are trained to be more discriminant should, in principle, make fewer errors than systems 
than have not been so trained. Describe some testing condition in which the discriminant training 
could hurt performance. 

27.5 It is sometimes said that neural networks do not require the selection of an intermediate representation 
(i.e., features) but rather can automatically extract the optimum representation. However, in practice, 
researchers have found that predetermined features are essential for good speech-recognition perfor-
mance, even when neural networks are used. Why might someone think that the neural networks 
were sufficient, and why might they not be in practice? 

27.6 APPENDIX: POSTERIOR PROBABILITY PROOF 

Here we briefly repeat the proof originally given in [18], which gives a clear explanation of 
how networks trained for one-of-K classification can be used as estimators of probabilities 
for the К classes. 

We assume that the network training criterion will be the mean-squared error (MSE) 
between the desired outputs of the network, which we represent as dj(x) for the ith output 
and an input of x, and the actual outputs gi(x). In practice, other common error criteria will 
lead to the same result. 

For continuous-valued acoustic input vectors, the MSE can be expressed as follows: 

E = fp(x) £ £ > Ы * ) [ge(x) - de{x)f dx. (27.14) 
J k=lt=l 
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Since P(x) = Σ*=ι P(qi,x), we have 

К ( К К ì 
E = ! Σ { Σ Σ (*< w - * W]2 р(9* i*) \ р(ъ>χ)dx-

J i=l l_i=lfc=l J 

After a little more algebra, using the assumption that d((x) = δ« if x E qu, we find that 
adding and subtracting p2 (qg \ x) in the previous equation leads to 

E = [ f I f [*?(*) - 2ft WP(9, | x) + P2(9< | *)] I P(q,,x) dx 
·' i= l ^£=1 J 

+ /" Σ I Σ [p(^ lχ) - p2 (9t l *)l [ Р(Ъ, *) ^ 
■̂  i=l [<=1 J 

= / f i f feW -P(Ì/I*)]2W(ft,*)^ 

+ i f ( f {P{9t\x)[l-P{qt\x)]})P(qi,x)dx. (27.15) 
·' i=l \i=\ ) 

Since the second term in this final expression 27.15 is independent of the network outputs, 
minimization of the squared-error cost function is achieved by choosing network parameters 
to minimize the first expectation term. However, the first expectation term is simply the MSE 
between the network output ge(x) and the posterior probability P(qi \ x). Minimization of 
Eq. 27.14 is thus equivalent to minimization of the first term of Eq. 27.15, that is estimation 
of P{qt | x) at the output of the MLP. This shows that a discriminant function obtained by 
minimizing the MSE retains the essential property of being the best approximation to the 
Bayes probabilities in the sense of mean-squared error. A similar proof was also given in 
[18] for the relative entropy cost function (computing the relative entropy between target 
and output distributions). 
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ACOUSTIC MODEL TRAINING: 
FURTHER TOPICS 

28.1 INTRODUCTION 

In the previous chapters we provided a broad introduction to speech recognition methods, 
including training. However, there are a number of other methods for improving the statis-
tical modeling of speech acoustics that have proved to be advantageous. In this chapter1, 
we will discuss two of the most important of these: adaptation, and common methods of 
discriminative training. 

28.2 ADAPTATION 

28.2.1 MAP and MLLR 
We begin with a brief description of the adaptation problem which, for simplicity, we will 
frame in terms of speaker adaptation. There are many other goals for adaptation, for example 
channel adaptation, but the underlying principles are shared. We have at our disposal a 
baseline HMM that has been trained from a large corpus consisting of many (probably 
thousands of) hours of data collected from many (again probably thousands of) speakers. 
We think of these models as being speaker-independent and denote the model parameters 
0S / . We are given a small collection (possibly minutes or at most hours) of training frames, 
X^, from a single target speaker and we would like to produce speaker-dependent models, 
with model parameters 0SD , that perform better than the speaker-independent models on 
the target speaker's test data. In adaptation, instead of training new models from scratch, 
we use 0S / and the frames X^ to estimate ®SD. 

Before proceeding let us recall the notation that we used in the E-M training formalism 
but now in the context of the speaker-independent models, 0 я . If we let Y[ denote the 
frames in the large corpus used to estimate 0 5 / and recall that L(M) denotes the number of 
hidden states in the HMM, then for each state / with 1 < / < L{M) the model mean pf1 is 
given by2 

* ~ E L , ^ ? | ^ ' , M ) · (28Л) 

1 This chapter was written by Steven Wegmann. 
2We are assuming that the Baum-Welch algorithm has converged. 
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In Eq. 28.1 the probability Р(с^ | Yj, ®SI,M) is often called state /'s occupancy of frame 
n and we think of this probability as the fraction of frame n that is assigned to state /. From 
this point of view, Eq. 28.1 says that rf' is just the average of the frames weighted by their 
fractional frame assignments. 

Given the collection of frames from our target speaker, Xf, and the speaker-independent 
models, Θ5', a natural way to construct the speaker-dependent models, 0 Ж is to use a ex-
pression analogous to Eq. 28.1, namely 

..■so ti=xP{ql\x^®s'iM)x° 
μ' ELp( t f | x f ,®»Af) · ( 2 8 · 2 ) 

The idea behind Eq. 28.2 is that we use the well-estimated models ®SI to obtain the state 
occupancies for the frames from the target speaker, and then, just as before, our estimate of 
the means μ^° are simply the averages of these frames weighted by the state occupancies. 
Also, it is useful to define for each I the total fractional count 

nl =
 1£p(cf;\X^&s',M), (28.3) 

which is the sum of the fractional frames from the adaptation data that are assigned to state 
/. 

In general, the estimates of the means μ^° given by Eq. 28.2 will be unreliable because 
of two main problems. The first problem arises because the adaptation data X^ will not 
be uniformly distributed across the states: some states, silence for example, will have lots 
of adaptation data, while others may not have any adaptation data at all. Clearly using 
Eq. 28.2 to estimate pfD will be reasonable when щ is large, risky when щ is small, and 
nonsensical when щ = 0. The end result is that the reliability of the estimates, μ^°, will 
vary considerably across the states, with the reliability for a given state depending on how 
large щ is. The second problem arises when the adaptation data is substantially different 
from the original speaker-independent training data: for example if the speaker-independent 
training data was collected in clean acoustic conditions while the adaptation data comes 
from noisy conditions. In this case the state occupancies P{q11 Xf, Θ5/, Μ) based on the 
speaker-independent model will be unreliable. Taken together these two problems lead us 
to regard Eq. 28.2 as giving noisy estimates of the true speaker-dependent means, and our 
simple analysis suggests a possible remedy: smoothing these noisy estimates, /jfD, using 
the counts, щ, and the more reliable speaker-independent means, μ '̂. The two smoothing 
methods that we will consider here are both linear, with the first being an interpolation while 
the second is weighted linear regression, and both methods can be viewed as applications 
of empirical Bayes. 

The first approach is known as maximum a posteriori (MAP) adaptation ([11]). We 
introduce a parameter τ and define the MAP estimate for the mean for each state I by 

MAP _ iLi р(яЧ | Xf, ®S', M)xn + τμ? 
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or equivalently3 

rfAP = "iriD + *ri\ (284) 
ηι+τ 

First, we note that in Eq. 28.4 the parameter τ controls how much weight is placed on the 
prior, namely the speaker-independent means tf1, relative to the speaker-dependent counts 
and means щ and pfD. In this sense μ^ΑΡ is the posterior estimate of the speaker-dependent 
mean for state I from the new evidence consisting of the fractional count щ and mean μ^° 
and the prior consisting of the count X and mean μ^1. In particular, this is the point of view 
that is taken in [ 11 ]. However, from our point of view the MAP estimate fits most naturally 
within the framework of empirical Bayes (see e.g. [7], [8], or [15]). One point is that we 
do not have at our disposal a universal prior that will work in all situations. Instead, we use 
an empirically derived prior, μ^, that is estimated from a large collection of data closely 
related to our new evidence. We then use the additional information from the empirical 
prior to improve our estimate of the speaker dependent means. 

Second, we note that Eq. 28.4 results in a form of smoothing or regularization that 
is very similar in spirit to how we deal with rare or unseen n-grams when estimating n-
grams for language modeling (e.g., see [3]). In particular, provided that we choose τ > 0, 
this smoothing corrects for the ill-defined behavior of μ%° when щ — 0. However, MAP 
adaptation is only able to compensate for the data sparsity component of the noise in the 
estimates rfD, since it explicitly uses 0 s ' to produce the counts щ. 

Finally, we make some simple observations concerning the prior count τ and its 
relationship to the fractional counts щ based on Eq. 28.4. The first thing to note is that there 
is a single τ which is used for all of the states, /. Given a particular choice for τ > 0, if 
щ = 0, then iJfAP = pf, while if щ ^> X, then fJfAP ~ rfD. Hence, as щ varies from 0 
to °o, rffAP smoothly varies between μ^ and (ifD. The trick to using MAP adaptation is to 
choose x large enough so to get sensible estimates jJfAP, but not too large. If x is too small 
then it won't protect against the case щ = 0 while if x is too large then )JfAP = rf' for 
every /. It is useful think of x as being a prior count of frames and, in particular, it is useful 
to think of x as being the minimum number of frames necessary for a reliable estimate of 
any state's mean. Consequently, a sensible choice for x is usually somewhere between 10 
and 100, depending on the particular situation. 

The second approach is known as maximum likelihood linear regression (MLLR) 
(see [14]4). The idea is to use a linear model to predict the noisy μ/ΰ from the μ^7. We 
use maximum likelihood to estimate the parameters of this linear model, and then use this 
estimate to transform the speaker-independent means. These transformed means are the 
MLLR estimates for the speaker-dependent means. We let a = (ao, a\ )' be the coefficients5 

in our linear model given by the simultaneous system of equations, one for each I with 

'Technically, for this to be trae in general we need to follow the convention that n^JD = 0 whenever щ — 0. 
4We will be following the convention in this chapter that the features are one-dimensional. This means that in our 
account of MLLR the affine transformation will also be one-dimensional, which, in the authors opinion, simplifies 
the notation considerably and makes the connection between MLLR and weighted linear regression easier to see. 
5Here do and a\ are scalars. 
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1 < / < L(M): 

l4D =ao + сщ//. (28.5) 

Since Eq. 28.5 is an over-determined system of linear equations (L(M) equations in the 
two unknowns αο and ai), there is not a unique solution to a. We let ä denote the maximum 
likelihood solution to Eq. 28.5, which means that we maximize the following with respect 
to a: 

Q = £ P ( ß I Xi, &S',M) log[P(Af | Q, ®SD,M)P{Q | Θ™,Μ) 
Q 

(28.6) 

Then the MLLR estimates for the means are given by 

rfUJl = a0 + älri'. (28.7) 

An equivalent but more intuitive formulation of MLLR can be given using weighted linear 
regression. Since we are only adapting the means, we simplify the notation for the variances 
(and standard deviations) by writing σ; instead of σ^7. We have L(M) pairs of observations 
(/Y^D,juf7). As before we want to predict μ^° from our knowledge of f/f1, but now we use 
the weighted regression model 

tfD = a0 + aijuf + ε, (28.8) 

where each error term satisfies 

i.i.d Т.Т/Г, Gj 

Ei ~ JV(0, — 
П, 

(28.9) 

Note that under this weighted regression model, states that have smaller variance or more 
adaptation data will have more influence on the model.6 As we previously noted, scarcity 
of adaptation data can make the speaker-dependent means noisy or unreliable, but the 
weighted regression model that MLLR uses produces a smoother estimate. We use the 
weighted least squares solution to Eq. 28.8, which is the maximum likelihood estimate 
for the weighted regression model. We define the L(M)-dimensional (column) vector of 
speaker-dependent means Z by 

6We are ignoring the minor technicalities involving states that have no adaptation data, i.e., щ = 0. 
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the 2 x L(M) matrix of augmented speaker-independent means Y by 

/ 1 Л? \ 
i 4' 

and the diagonal L(M) x L(M) weight matrix W by 

I' n-\ 0 .. . 0 \ 

0 ^ .. . 0 
w 

о о 
nL(M) 

Then the weighted least squares estimate for a is given by 

ä = (Y'WYy1 Y'WZ. (28.10) 

In Exercise 28.1 we show that these two formulations of MLLR are in fact the same, more 
specifically, that the maximum likelihood solution to Eq. 28.6 is given by Eq. 28.10. Also, 
part (c) of Exercise 28.1 recasts Eq. 28.10 into a simpler and perhaps more familiar least 
squares solution for äo and aj. 

Note that, just like MAP, adaptation using MLLR is a form of empirical Bayes 
estimation. While it was not originally formulated in this way in [ 14], MLLR takes our noisy 
estimates ρή° and smooths them with an empirical prior μ̂ 7 to obtain $LLR. In particular, 
from Eq. 28.7 we see that the estimate /J^LLR is a linear function of the empirically derived 
prior μ^, and that the linear function's coefficients, äo and ä\, are functions of the prior @SI 

and the new evidence щ and /^D. 
Unlike MAP, MLLR is able to compensate for both sources of noise in the original 

estimates μ^°, namely the data sparsity issues and the problems arising from unreliable 
state occupancies щ. This latter problem is dealt with by the error terms in Eq. 28.9: here 
we balance the noisy counts by the variances in the speaker-dependent model that was used 
to produce them. 

The full MLLR formalism is more elaborate than we have described here: 

• There can be more than one linear transformation. The collection of states is par-
titioned into regression classes which determine the correspondence between states 
and transformations. These regression classes may be constructed by hand using 
intuition or automatically using a top-down splitting algorithm. 

• One can constrain the form of the transformation to convenient types, for example 
block diagonal: one block for the cepstral features, another for the differences, etc. 

• There is an extension for adapting the variances in addition to the means (see [9]). 
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This extension no longer has a closed-form solution nor does it have an interpretation 
in terms of linear regression. 

There is a closely related alternative to adapting the means and variances known as 
constrained maximum likelihood linear regression (CMLLR).7 In this framework, 
the linear transformation that is estimated is usually applied to the features rather 
than the model parameters. CMLLR does not generally have a closed-form solution 
nor is it related to linear regression. 

28.2.2 Speaker Adaptive Training 

Speaker adaptive training (SAT) uses MLLR at training time to reduce the within-speaker 
variability in the models (see [1]). Before explaining the idea behind SAT, we need to 
introduce some notation. Let X denote training data collected from R training speakers. 
We partition the training frames X\ into the R speaker-specific subsets by dividing (and 
rearranging if necessary) the frames 1 through N into R intervals [ar,br] where a\ = 1, 
ÒR = TV, and the frames X%r come from speaker r. If 0 s ' are maximum likelihood models 
estimated from X, which we use to seed the SAT process, then we denote the per-state mean 
of the data from speaker r by μ] and 

Given any state /, we would expect that there is a great deal of variability in the collection of 
speaker specific means {μ\ί }f=) which is due to various speaker effects, e.g., the response 
of the channel to the speaker in a particular recording environment. The main idea in SAT 
is to assume that there are underlying speaker-independent means for each state, μ^ΑΤ, and 

R linear transformations {a^ = (aj, , a\r )}f=1 that explain the variability in μ[ via 

^=а{
0
г)+а\г)

МГ- (28.11) 

Using the transformations {a^}f=l to account for the variability in the {μ, }f=1 makes 
μ^ΑΤ a more speaker-independent estimate of the state mean. Also, when we estimate the 
variances relative to μ^ΑΤ we end up tighter estimates because we have eliminated at least 
some of the variance in the data due to speaker effects. The net result is that the models 
trained using SAT should be more focused on the within-speaker variability in the data than 
the original seed models which summarize both the within-speaker and the between-speaker 
variability in the data. 

7This was first described in [6] where the authors also derived the closed-form solution for estimating a diagonal 
transformation. The problem of estimating a non-diagonal transformations does not generally admit a closed-form 
solution, but in [9] a practical algorithm for estimating general transformations is described. 
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It is worth noting that while the transformations {a^}JL, are part of the model 
that we estimate during speaker adaptive training, they are only used during the training 
process and are subsequently discarded. When we use the models @SAT for recognition of 
an unknown speaker we use MLLR, either in supervised or unsupervised mode, to compute 
a transformation for the new speaker. 

The goal of speaker adaptive training is to estimate the underlying means and standard 
deviations, ®SAT = (μ/ΑΓ,σ/ΑΓ), and the collection of transformations, {aw}>=1. The 
training procedure, which we will briefly describe, is a variant of standard HMM training 
using the EM algorithm. Via the transformation a^r\ we introduce a speaker specific 
Gaussian output log-likelihood 

\ogP{xn\qb<l>SATMr\M) = -\[Xn a° J \ * > - l o g o f " " - l o g V à i , 

which we use to re-write the standard auxiliary function Q as 

Q = Σ Lp(Q I *£. ®". Щ i °g№ è ; IQ, ® w , «(г),м)р(е | ©s/, м)}. 

We want to maximize Q with respect to the variables {dri }JL,, {/-tf^Jiii , and {σ^ΑΤ }Д1 '. 
We initialize by using the speaker-independent models and the identity transformations, 
i.e., &SAT = Θ57 and {a^ — (0, l)}f=i· We then maximize Q in three separate steps: 

(a) First with respect to each of the a^. This amounts to separately estimating R MLLR 
transformations, where our estimate a^ is obtained using the data from training 
speaker r and an analog of Eq. 28.10. 

(b) Next with respect to each of the means {l4AT}i=\ ■ This results in the following 

. М Г = Σΐΐ Ita, ПИ I Xal· ®SI,M)à[r\xn - 4]) 

(c) Finally with respect to each of the variances {(tfAT)2}iL\ . which results in 

(òSAT)2 = ΣΙ, Ita, P{4Ì I x*;, ®SI,M)(Xn - 4 ^ - 4r))2 

After step (c) is complete, we repeat starting with step (a), but using our current estimate of 
@SAT instead of @sr as a seed. We iterate steps (a), (b), and (c) until the procedure is judged 
to have converged, which typically occurs in two or three cycles. It is straightforward to 
verify that each of the steps (a), (b), and (c) increase the value of the auxiliary function Q 
and the log-likelihood of the training data. 
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28.2.3 Vocal tract length normalization 

Vocal tract length normalization (VTLN) [4, 13, 20] is another method used to account 
for within-speaker variability in data. The method has its roots in the observation that 
if we assume a uniform tube with length L for the model of the vocal tract, then the 
formant frequencies in speech produced by this vocal tract will be proportional to \/L. 
Suppose, then, that we have speech data collected from N speakers with vocal tract lengths 
L\,L2, ■ ■ ■ ,LN. If we rescale or warp the frequency axis of the spectrum during signal 
processing of speaker i's data by the factor Lj/L*, then, under this simple model, we will 
have made all of the data appear as if it were produced by the vocal tract of a single, 
standard length, L*. 

In practice, we do not try to directly estimate a given speakers vocal tract length8. 
Instead we have a small - e.g., 10 - collection of predetermined frequency warpings that 
we select from using a maximum likelihood procedure. For each utterance, we produce 10 
different versions of the corresponding feature file, the collection of which we denote by 
{ ;̂},·=ι ■ We select which version of the feature file to use via the rule: 

X = arg max P(X,- I Θ5/,Μ) 

This procedure works very well using speaker-independent models, ®SI, to reduce the 
variability of test data. However, we usually also use this to reduce the variability of the 
training data in an iterative procedure, similar in spirit to SAT, that produces a sequence of 
models (®v

k
TLN)- To produce the (®\TLN), we initialize with ®lTLN = ®SI. At step k, we 

re-process the training data, this time selecting the appropriately warped version of each 
utterance via: 

X = arg max P(Xt | ®v
k
TLN,M) 

We retrain using the warped training data to produce the models ®\™. We select ®VTLN 

from the sequence (®lTLN) by running recognition on an independent, validation test set. 
Convergence in error rate usually occurs within two or three iterations of this procedure. 
When we perform recognition using ®VTLN we need to use the VTLN procedure on the 
test data itself, otherwise performance will degrade; the models ®VTLN are unaware of the 
speaker variability in the training data that VTLN accounts for, so we must use VTLN to 
account for this speaker variability in the test data too. 

8While this method doesn't actually measure the vocal tract length (which has a more complicated relationship 
with spectral content than would be given by the uniform tube model), it does provide a framework to improve 
performance. 
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28.3 LATTICE-BASED MMI AND MPE 

The early versions of MMI training described in Section 27.2.1 only worked well on small 
vocabulary tasks using small models, e.g. digit recognition. Subsequent refinements to 
MMI training (see [21] and [17]) have resulted in two discriminative training methods for 
HMMs, lattice-based MMI and MPE, that work well irrespective of the size of the task or 
the models. There are two main aspects to these improvements that we shall discuss in turn. 

The first refinement involves including what is known as the the language model 
scale in the MMI objective function ([19]). Recall that when we perform recognition on an 
acoustic observation X, in principle we choose the recognition transcript, M, according to 
the rule 

M = arg max P(X | M, Θ)Ρ(Μ | Θ), 
M 

where P(X | M, Θ) is given by our acoustic model and P(M | Θ) is given by a language 
model (LM). As a practical matter, however, we almost always scale the LM probability 
by a language model scale, к, and choose M by the rule 

M = arg max P(X \ M, @)P(M | Θ)κ, 
и 

or equivalently by 

M = argmaxP(X \Μ,Θ)<Ρ(Μ\Θ). 
M 

We let Mref be the true or reference model sequence for the training features X and since 
the LM will be unchanged by MMI we drop its dependence on Θ. Then the MMI criterion 
for lattice-based MMI is given by 

r(MHf\x,B) = r(x\"~f>*M"~r) . (28.12) 

Adding к makes this new MMI criterion more closely related to the criterion that is actually 
used during recognition. The set of possible alternative transcriptions {Mj}j=l is obtained 
by running recognition on the training data X. Since J is typically very large, we store the 
results of this recognition in a lattice. 

The second refinement is in how we estimate parameters using the MMI criterion. 
As noted above, early versions of MMI used gradient descent for parameter estimation. 
In [12] the authors introduced a variant of the Baum-Welch algorithm, which they called 
the extended Baum-Welch algorithm, to estimate parameters using the MMI criterion.9 If 
we momentarily forget about the scaling, then the idea behind extended Baum-Welch is 
simple and worth understanding. Extended Baum-Welch is an iterative algorithm, so we 

'The algorithm described in [12] was for HMMs that used discrete output distributions. In [16] the algorithm was 
generalized to HMMs with continuous output distributions. 



LATTICE-BASED MMI AND MPE 403 

shall let Θ denote our initial models parameters and let Θ denote the possible choices for 
our updated parameters. Since the logarithm of the (unsealed) MMI criterion is given by 

logP{Mref |X, Θ') = logP(X | M„f, ®)P(Mref) - logP(X | ©'), 

the idea is to take the difference of the auxiliary functions that Baum-Welch estimation 
would use for logP(X \ Mref, Θ ) and \ogP(X | Θ ) to obtain an auxiliary function suitable 
for estimation using logP(Mre/ | X, Θ'). Here is a sketch of the details, where we further 
simplify matters by concentrating on the means. We run a single pass of Baum-Welch as 
if we were estimating parameters for the term \ogP(X | Mref, Θ ), we denote the corre-
sponding auxiliary function by Qnum, and we call the resulting statistics that we accumulate 
(using the forward-backward algorithm) the numerator occupancies. For the state means 
the numerator occupancies are summarized by {p"um, n"um}l^l which are determined by 
formulas analogous to Eq. 28.2 and Eq. 28.3. We also run a single Baum-Welch as if we 
were estimating parameters for the term logP(X | Θ ), where we consider all the model 
sequences consistent with the set of transcriptions {Mj}J=i, we denote the corresponding 
auxiliary function by Qden, and we call the resulting statistics that we accumulate the de-
nominator occupancies. The denominator occupancies are summarized by {/jfen, nfen j , ^ '. 
We would like to define an auxiliary function, QMM\ for the MMI criterion using Qnum and 
Qden. The simplest approach is to just take the difference of auxiliary functions: 

QMM'{&\&) = Qnum{®\<d) - 0*η(Θ',Θ). 

Maximizing QMM'(@\ Θ) with respect to Θ results in the following estimate for state Z's 
mean: 

„пит . .пит „den,Aen 
= ηί_μ, nJ_EL·, (28.13) 

^1 ..пит ..den v ' 

This naive estimate suffers from two, equally serious, problems. First of all, we have no a 
priori reason to expect that for all/, n"um ψ nfen, in other words Eq. 28.13 is not necessarily 
well-defined for all /. Second of all, even if Eq. 28.13 is well-defined for all /, there is no 
guarantee that this estimate will result in an increase in the MMI criterion in the sense of: 

log P(Mref | X, Θ) > log P(Mref | X, Θ) 

MM) To solve both of these problems, we introduce positive constants {D[}[^i , a prior 
TZ, and define a smoother version of QMMI via 

L(M) 

QMM1{<5>,®) = Q""m(& ,&) - Qd'n{® ,Θ) - £ Α ^ , σ ί , / ι , , σ , ) . (28.14) 

The prior is the Kullback-Leibler distance from the Gaussian with parameters (μ, σ) to the 
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Gaussian with parameters (μ , σ ): 

π(μ',σ,μ, σ) = σ +(:μ ~ μ) + log ^ - 1 (28.15) 
2(σ γ σ 2 

This prior has the property ΤΖ(μ , σ , μ, σ) > 0 with equality if and only if μ = μ and σ = σ, 
so its role in Eq. 28.14 is to resist Θ moving away from Θ. Using the smoothed QMMI 

results in the estimate for state Fs mean that is actually used in extended Baum-Welch, 
namely 

= г?гйит - ndrrien + Dm 2 8 1 6 ) 
n™m - nfn +D, ' 

Clearly, if we choose D[ > nfen, then Eq. 28.16 is well defined, and it turns out10 that if 
D[ ^> 0, then using the estimates defined in Eq. 28.16 will result in an increase in the MMI 
criterion. 

In practice, we start MMI training from a well estimated maximum likelihood model, 
say ^LE (here MLE denotes Maximum Likelihood Estimate, i.e., the model resulting from 
conventional, non-discriminant, training). Note that the mean update formula in Eq. 28.16 
is similar in flavor to the MAP adaptation formula Eq. 28.4. In particular, if we choose each 
Di » 0, then the updated parameters Θ will be essentially the same as our starting point 
©ML£. Another method used to smooth the parameter estimates with the MLE is called 
I-smoothing [17]. Just as in MAP adaptation, we introduce a prior count τ, and our estimate 
of state /'s mean is now given by 

. = (nr + K̂""1 -<"<" + Dm 
μ' ni1"" + τ - nf" + Di 

The reader should think of the prior count τ as being relative to the MLE, so if τ is chosen 
appropriately, Eq. 28.17 will keep the model means and variances for states with small 
counts n"um and nfen close to the MLE means and variances even after several iterations 
of extended Baum-Welch. This results in less noisy updates for rare states, thereby adding 
some stability to extended Baum-Welch. 

The reader should consult [17] for the many details that we have omitted, for example: 

• The estimation formulas for the variances, transition probabilities, and mixture 
weights. 

• How to choose the constants D/. 

• Details on lattice generation. 

Minimum phone error (MPE) training is another discriminative training method for 
HMMs that is closely related to MMI [17]. For any Mj, we let A(Mj,Mref) denote the 

l0See [2] for details. 
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phone accuracy11 of Mj relative to Mref, which is the number reference phones minus the 
number of phone errors in Mj. Then the MPE criterion is given by 

j 

FMPE(®) = £ P K ( M j \X,e)A(Mj,M„f), 
7=1 

When we use the MPE criterion to select model parameters, we are trying to choose 
parameters that maximize the expected phone accuracy. An iterative algorithm based on 
extended Baum-Welch is used to estimate model parameters using the MPE criterion. I-
smoothing with MLE priors is an essential ingredient of this algorithm, in fact the update 
formula for the state means is given by a formula very similar to Eq. 28.17 (see Eq. 28.22 
below), but the occupancies are determined differently than in MMI. 

Generally speaking, MPE outperforms MMI when there is a large amount of training 
data (more than 100 hours). The MPE estimation algorithm is also more stable than extended 
Baum-Welch. When performing MMI training, the optimal number of iterations of extended 
Baum-Welch is determined by examining the performance of the resulting models on a 
validation test set. Optimal performance on the validation set will usually occur within a 
narrow range of iterations, with performance degrading significantly if extended Baum-
Welch is run too many times. While the number of iterations of the MPE estimation 
algorithm still needs to be determined by examining the performance of the resulting 
models on a validation test set, optimal performance will occur within a broader range of 
iterations. One reason for this is that the MPE criterion is explicitly based on phone errors 
so it is inherently more self-regulating than the MMI criterion: if the model parameters are 
pushed too far away from the optimum, then this will induce errors which in turn will result 
in a decrease in the MPE criterion. The tradeoff for this stability is that MPE estimation 
takes roughly twice as many iterations as MMI estimation does. Recent work ([18]) has 
successfully combined some of MPE's strengths with MMI. 

28.3.1 Details of mean estimation using lattice-based MMI 
and MPE 

In this section we will fill in the details concerning the statistics that are accumulated for 
mean estimation using lattice-based MMI. We will also describe and motivate the MPE 
estimates for the means. Finally we shall describe how the lattices are used to efficiently 
accumulate these statistics. 

The lattices that lattice-based MMI and MPE use store two compatible levels of 
information and are usually referred to as phone-marked lattices. The top level consists of 
word lattices, with the nodes storing the start and end times of the words. An arc between 
two nodes stores the word identity along with information about the pronunciation variant. 
The language model scores are also stored at this level. Thus a path through a word lattice 
gives a transcription along with the corresponding language model score. The lower level 

1 ' We really do mean phone accuracy even when we are, say, using triphone-based HMMs: in this case we would 
first strip away the triphone contexts of both the hypotheses and the reference before computing A (Mj, Mref ) . 
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consists of phone lattices that are obtained from the word lattices by first expanding the 
pronunciations of the words, then force-aligning to get the start and end times for each 
phone. Just like the the word lattices, the nodes in the phone lattices store the start and end 
times of the phones while each arc in the lattice stores the phone's identity and acoustic 
model score. A path through the phone lattice gives a phonetic transcription along with the 
corresponding acoustic model scores. MMI and MPE both use two phone-marked lattices, 
the numerator lattice and the denominator lattice, to accumulate the statistics used in their 
iterative estimation procedures. At the word level, the numerator lattice contains the correct 
(or reference) transcriptions for the training data while the denominator lattice consists of 
the correct transcription plus the result of a recognition of the training data using the MLE.12 

Forced-alignment using the MLE gives the phone level information for both the numerator 
and the denominator lattice. 

The phone arcs in the numerator and denominator lattices are central to the lattice-
based MMI and MPE formalisms, so before proceeding further we begin to describe 
the necessary notation involving the phone arcs. To start, a phone arc a consists of the 
underlying phone (possibly with context) ap, along with start and end times for the arc, as 

and ae, measured in frames.13 We let Л denote the set of all phone arcs in the denominator 
lattice, Anum denote the set of all phone arcs in the numerator lattice, M = {Mj}^=1 denote 
the set of all alternative transcriptions in the denominator lattice, and, given a € Л we 
define M.a to be the set of transcriptions that pass through (or contain) the phone arc a. 
Finally, let P(q", Ma \ X\ , Θ) be the - scaled -joint probability of being in state / at frame 
n and in any transcription that contains a given X, i.e., 

PW,Ma\x?,®)= Σ P{qnnM\x»,@). 
MeMa 

In lattice-based MMI, the numerator occupancies for state / relative to initial param-
eters Θ are given by 

« T = Σ ΣΡΜ>Μ°\Χ?>@)> (28.18) 

and 

„nUm _ ^AnmLanUsP{<ibMa\x»,<d)Xn 
Vi - -щ. ' (.zö.iy; 

12 So by construction, the numerator lattice is a sub-lattice of the denominator lattice. 

"Naively, we could set the start and end frames of the arc to be equal to the times specified by the nodes that 
the arc traverses. This, however, would lead to some frames being counted too many times in the occupancy 
statistics. Consider, for example, a node that has an arc entering the node and another arc exiting the node: the 
frame corresponding to this node will be assigned to both the entry and the exit arc. Instead we need to ensure 
that the frame is assigned to just one of these arcs, so we set as equal to the first frame after the beginning node 
of the arc, and ae equal to the frame specified by the ending node of the arc. 
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while the denominator occupancies for state I are given by 

and 

nfn = ΣΣ p(q1,Ma | X», Θ), (28.20) 
ÖG4 n=as 

„äen _ ΣαεΑΣ%αιΡ(νηΜα\Χ»,Θ)Χη 

fi - ZdFn · (28.21) 

As we have previously described, these occupancies are used to obtain the MMI estimates 
of the means using Eq. 28.16 or, in the case of I-smoothing, Eq. 28.17. 

MPE also uses the numerator occupancies for I-smoothing, but we need to define two 
additional sets of occupancies. In order to facilitate this, we define the quantity с (a) to be 
the average phone accuracy of all the transcriptions that pass through a via 

P(M,Zf |©)Л(М,Мге/) 
C[a> 1меМаР(М,ХП&) · 

We also define cavg to be the average phone accuracy of all the transcriptions in the lattice 
via 

P(M,X? I &)A(M,Mref) 

LMeMP(M,xn®) ■ 

Note that since 

£ P ( M 1 X f | 0 ) = P ( X f | 0 ) ) 
MeM 

we can simplify the definition of cavg: 

cavg= Σ P(M\X?,®)A(M,Mref). 
MeM 

In particular, this means that cavg = FMPE(®), or the MPE criterion relative to our initial 
parameters Θ. Finally we introduce two additional subsets of A, namely Л+ = {a £ A : 
c(a) — cavg > 0} and A- = {a e A : c(a) — cavg < 0}. 

The two sets of occupancies, the positive occupancies {nfos', rf°s},Α, , and the neg-

ative occupancies {n"eg,p"e8}l!L1 , are given by 

"Г - Σ Σ P^l Ma | X», &)(c(a) - cavg), 
a£A+ n=as 
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and 

rs = ΣαβΑ+ Σαη=αι P{qbMa | X», @)(c(a) - cavg)xn 
r*l pos 5 

nneg = £ £ p{ql Ma ! χι* @){Cmg _ c(fl))) 

„eg _ Σ.£Λ_ Σ ^ , Piffi, Ma | Xf, 0)(cavg - c{a))xn 
Hi neg 

nl 

pos DOi-iL(Af) r «eg neg-iL(M) , t пит ,лит\ЦМ) We use the occupancies {nfos,^os},^>, {nf, #*}£">, and { ^ ™ , ^ " " 1 } ^ ' together 

π=ι with a prior count τ and collection of positive constants {Α};Α] to define the I-smoothed 
MPE estimate for state /'s mean: 

№ - иГ + х - и Г + Д« ' ( } 

While the form of the MPE estimate, Eq. 28.22, is very similar to the that of the 
MMI estimate, Eq. 28.16, the MMI and MPE occupancies have different interpretations. 
In the case of MPE, the positive occupancies are computed on Л+ which is precisely the 
set of arcs a where the expected accuracy of the transcriptions that pass through а, с (a), 
is greater than the expected accuracy of all the transcriptions, cavg, while the negative 
occupancies are computed on A- which is precisely the set of arcs a where the expected 
accuracy of the transcriptions that pass through a is less than the expected accuracy of all 
the transcriptions.14 Thus, providing that x — щ& +D[ > 0,15 μι moves towards (rf°s, which 
we can think of a region of improved phone accuracy, and moves away from μ^, which we 
can think of as a region of decreased phone accuracy, from a starting point constructed from 
the priors μ/, μ"""1, Di, and τ. In the case of MMI, the analog of the positive occupancies 
are the numerator occupancies which are computed on all of the phone arcs in the correct 
transcription, while the analog of the negative occupancies are the denominator occupancies 
which are computed on all of the phone arcs whether they are correct or not. Thus, again 
assuming that x — ще& + Dt > 0, the MMI estimate μι moves towards μ̂ ""*, which we can 
think of a region of improved sentence accuracy, and moves away from μ^en, which we can 
think of as a region of decreased sentence accuracy, from a starting point constructed from 
the priors μι, μ"αηί, Du and X. 

Parameter estimation using lattice-based MMI or MPE is feasible because the quan-
tities cavg and 

{{P(ql,Ma\XF,®)rnLas,c(a)}aeA 

"Note that we ignore the counts accumulated on the phones arcs that have average accuracy, i.e. the a e Λο = 
{a e Л : c(a) — cavg = 0}. 

"This is almost always true in practice. 
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can be efficiently computed using three variants of the forward-backward algorithm over 
the phone arcs in the lattices. To enable this computation we need to make the simplifying 
assumption that the allowable hidden state sequences in the HMMs may be restricted 
to those that respect the phone arc start and end times. We also make the following 
independence assumption about the distribution of frames given a sequence of phone arcs: 
given any transcription M G M, let a1, a2,..., ak be a underlying sequence of non-trivial 
phone arcs corresponding to M. We encode the language model probability, P(M), into 
phone arc transition probabilities by setting P(a' | я ' - 1) = 1 if the phone arcs a'-1 and a' 
are within a word, and setting P(a' | a1'1) to the corresponding language model probability 
if a'-1 and a' cross a word boundary. We also define the joint probability P(al, a2,... ,ak) 
to be 

к 

P(a\a2, ...,ак) = Р(а1)ЦР(а! | a'"1). 

With these conventions 

к 
P{M) = P(a\a2,... ,ak) = Р{а1)ЦР{а1 | а''"1), 

i=2 

and we can decompose P(M, a1, a2,..., ak,Xy | Θ) as follows 

к 
Р(М,а1,а2,...,ак,Х? \®)=P{X? \ а\аг,... ,ak,&) x Р(а*)ЦР(а' \а''1). (28.23) 

/=2 

Finally our independence assumption is that 

P(X? | a\ a2,..., ak, Θ) = f[P(x} \ a\ Θ). 
i = l 

Also, each P(Xa' | a',®) is modeled using an HMM for the underlying phone (usually 

with triphone context) a'p starting from a's and ending at a\. 
Note that we have intentionally left out the scaling of the acoustic probability by the 

factor i in Eq. 28.23. We will continue to do this in the rest of this section mainly because 
of notational difficulties that scaling introduces. In particular, the unsealed probabilities 
and densities that we use really are probabilities and densities, while this is not true for 
the scaled versions without a tedious re-normalization. It is also easy for the reader to 
get the correct, scaled versions of all the formulas: simply replace every occurrence of 
P(X% | Ma,®) withP(Xa°; | Ma,®)*. 

We give a sketch of the details starting with the computation of {P(q",Ma \ 
Χ ^ , Θ ) } ^ for each a G Λ. For each phone arc a б Л we run the usual forward-
backward algorithm within the boundaries as and ae. Thus for each phone arc we have a 
separate estimation problem for the the underlying triphone starting at as and finishing at 
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ae. The result of these computations are 

{P{qt | X*,a, Θ) = P{cfi | Xf, Ma, Θ ) } ^ . 

and 

Ρ(Χ^\α,Θ)=Ρ(Χ^\Μα,&). 

Since 

P(q1, Ma I Xf, Θ) = P(tf | Xf, Μ , , Θ)Ρ(Μβ I X», Θ), 

to finish the computation of F(i?", ΛΊα I X?,®) it suffices to compute P{Ma | Xf, Θ) for 
every phone arc a e A 

To accomplish this, we again use the forward-backward algorithm, but this time over 
the phone arcs in the phone lattices. For convenience, we add to the lattice a single trivial 
entry node, 0, and insist that all the initial arcs in the lattice start at 0. We also add to the 
lattice a single trivial exit node, N + I, and a trivial exit arc, ε, that leads from the final 
frame, N,to N + I. Thus es = N,ee = N + I, and M = Με. Given a phone arc a e Л, 
let Ma be the set of phonetic transcriptions (or paths through the phone lattice) that start at 
the trivial beginning node 0 and end at ae, and let Ma be the set of phonetic transcriptions 
that start at ae and end at the trivial final node N+l. Then the key observation is that we can 
decompose P{Ma,X\ | Θ) into the product of the forward probability P(M^,X"e \ Θ) 
and the backward probability P{Ma,Xa I Θ), i.e. 

P(Ma,X? I Θ) = Ρ{Μ^Χλ' | &)P(MaiX% I Θ). 

We compute the forward probabilities P{Ma,X\' | Θ) recursively as follows: 

(a) If a is an initial arc, as = 0, then we set 

P(M„,X? I Θ) = P(Xa
a's I Λ*β)Θ)Ρ(β). 

(b) If a is not an initial arc, as > 1, then we set 

PiMa^i I Θ) = Σ p(Mr,Ά' I ®)P(a I r)P{X% \Ma,&). 
r^A with re—as 

Since M£ = Mi = M, the recursion terminates with the computation of 

Р(Ми,Х? I Θ) = Р(М,Х? I ©) = P(X? | Θ). 

Likewise, we compute the backward probabilities P(Ma,Xae \ Θ) recursively by setting 
Ρ(Με,ΧΝ+ι | 0 ) = land 

Ρ(ΜαΧ | Θ) = Σ p(Mr,X?e, | ®)P(r | a)P(x;: | Mr, Θ). 
r£A with rs—ae 
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Finally we compute Ρ{λΛα \ Xf, Θ) (our goal) using the forward and backward probabilities 

The quantities {с(а)}аел are computed using the final variant of the forward-
backward algorithm, our account of which will assume that we have already computed 
the set of probabilities 

{P{Xa
a; | Ма,&),Р(М„,Х? | Θ),Ρ(Μα,χΖ \ ®)UA-

First we give a more formal description of A(M, Mref). Given a transcription M e Ai, we 
regard it as a phone-level transcription, and for each phone arc a in this transcription we 
define A (a) by 

( 1 if ap is the correct phone, 
0 if ap is a substitution error, 
— 1 ή ap is an insertion error. 

Then A(M,Mref) = LaeM^(a)·16 Given a phone arc a e Л and a path M & Ma, we can 
split M into two parts: the path that starts at the beginning node and ends at ae, namely 
M € -Mg, and the path that starts at ae and ends in the terminal node, namely M e Л4а. 
Since M = M U M, it follows that 

A{M, Mnf) = A{M, Mnf) +A(M, MnI). 

Motivated by this, we define the forward average, c(a), and the backward average, c{a), by 

P(M,X?' \@)A(M,M„f) 

-{a)~ ΣΜ^ΗΜ,ΧΠΘ) 

and 

_, , = LMeM,P(M,X»J®)A(M,Mref) 

LmeMaP(M,xa
N

e\®) 

The key observation that enables the efficient computation of c(a) is that 

с (a) = c(a) + с (a). 

We compute the forward averages, c(a), recursively as follows: 

16An important detail that we are omitting is how to efficiently compute A(a) over all of the phone arcs. In [17] 
this is handled through an approximation that takes into account the time boundaries as and ae. 
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(a) If a is an initial arc, as = 0, then we set c{a) = A(a) 

(b) If a is not an initial arc, as > 1, then we set 

, , = LreA*tort=a,c(r)P(M,,X![' | ®)P(a | r)P(Xa
a; \ Ma,®) 

-w ^A^=asP(MrX{\®)p{a\r)p{xa
a:\Ma,@) + [a>' 

which simplifies to 

/ \ Ъг&А with f>=a, к {r)P{MrX{ I Θ)Ρ(α I r) 
C-[a) 1геА^г^Р(МгХ<\®)Р(а\г) + W-

The terminal forward average computation gives cavg, via either cavg = c(e) or 

= l*,eA^ae=NcSa)P(M„Xf 1 Θ) 

Similarly, we compute the backward averages, c(a), recursively by initializing with c(e) 
0 and setting 

-(a) = LreA^r^PiMX^tyPir | a)P{Xr
r: I Mr,Q)(c(r) +A(a)) 

LreA**br,=a. P{Mr,X" | ®)P(r | a)P(X2 | Mr, Θ) 

28.4 CONCLUSION 

This chapter has introduced some significant recent improvements to HMM-based speech 
recognizers. First, we looked at adaptation, in which a speaker-independent acoustic model 
is systematically modified to match the particular characteristics of an individual speaker, 
either during recognition or for both training and recognition.The second part provided 
details of some improvements to the discriminant training first mentioned in Chapter 27 
as a way to adjust model parameters in order to minimize recognition errors, instead 
of the proxy goal of maximizing training data likelihood in conventional MLE training. 
While the details of MMI and MPE training become increasingly involved, we hope that our 
examination gives some flavor and insight into how phone and word errors can be attributed 
to individual acoustic model components, thereby facilitating direct optimization of these 
parameters. Such training schemes, while considerably more computationally expensive 
than MLE techniques, have none-the-less become feasible even for very large-scale speech 
recognition systems, and have returned significant accuracy improvements in leading-edge 
research recognizers. 
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28.5 EXERCISES 

28.1 For each / with \ <l < L(M), define щ by 

UM) 

° / k=\ °k 

(a) Show that the Q defined in Eq. 28.6 when viewed as a function of a = (a0, a\) has precisely one 
critical point satisfying 

and 

L(M) L{M) 

ι=ι ;=ι 

(b) Show that the weighted least squares solution given in Eq. 28.10 also reduces to Eq. 28.24 and 
Eq. 28.25. 

(c) Let (MSD,MS1) be a pair of discrete random variables taking values in {{/^D,^')}l!il . Show that 
if we define the probability distribution of (MSD,MS!) by 

Prob((MSD,Ms') = Cuf ,μ?')) = "/ 

then we can re-interpret Eq. 28.24 and Eq. 28.25 as follows: 

л _ Cov(MSD,Ms') 
a> ~ Var(MS') 

and 

ä0 = E(MSD)-älE(MSI). 

28.2 Verify the Kullback-Leibler formula Eq. 28.15. 

28.3 Verify that c(a) = c(a) + c(a). 

28.4 In our account of the computation of cavg and 

{{P(c,lMa\X?,®)r„Us,c(a)}a€A 

we split it into three separate variants of the forward-backward algorithm. Devise a more efficient 
algorithm that combines these variants into one forward-backward algorithm and show how to 
compute the MPE occupancies 

{„пит пит POS DOS mg neg~,L(M) 
\ n l I ft > " ; iHl i " ; г Hi fl=i ■ 

28.5 In the Baum-Welch algorithm for HMM parameter estimation, the probabilities P(q" \ X", Θ) can 
be thought of as fractional counts, i.e., what fraction of frame n is assigned to state /. An important 
property that these counts have is 

L(M) 

£ Ρ ( 9 7 | ^ , Θ ) = 1 
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which is simply a restatement of the fact that P(q" | Χ^,Θ) is the probability distribution of the 
frame n across the states 1 through L(M). In this exercise we will verify that the probabilities 
P{q", | λία,Χ^, Θ) have an analogous interpretation. 

Let An = {a £ A : as < n < ae}, i.e., the set of arcs that contain frame n. Show that 

\J Ma = M (28.26) 
aeA„ 

and that given a, b e A„ with a ψ b 

МаПМь = Θ, (28.27) 

from which it follows that 

£ P(Ma |Χ,",Θ) = 1. (28.28) 
aeA„ 

Use this to show that 

L(M) 

£ £ P{q"l,Ma\Xl®) = \. (28.29) 
(=1 aeA„ 
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CHAPTER 

SPEECH RECOGNITION 
AND UNDERSTANDING 

29.1 INTRODUCTION 

The incorporation of linguistic constraints into speech recognition will be the major focus of 
this chapter.1 Thus far, we have described ASR as a pattern-recognition problem, requiring 
signal representations, distance or probability estimators, and temporal integration. We 
have largely ignored linguistic structure, except where it was required to describe the 
classification units (Chapter 23). However, the Bayes rule formulation of ASR requires 
an estimate of the prior probability of a hypothesized sequence of words. Since we often 
do not have enough examples of any given complete utterance to estimate its likelihood 
accurately, we must be concerned with strategies for training word-sequence probability 
estimators with insufficient data.2 Finally, it is also necessary to represent the pronunciation 
of words as a succession of smaller linguistic units such as phones. 

We show how these aspects are incorporated in the decoding process for recognition. 
We also discuss a number of aspects of complete system integration, including one example 
of a speech-understanding system, that is, a system that includes a functional interpretation 
of the recognized word sequences (for a limited task). 

For the purposes of this chapter, we establish some simple definitions: 

• Decoding: given local probabilities or distances between inputs and references, 
search for the best model sequence.3 

• Recognition: given the input speech, give the best word sequence. 

• Understanding: given the input speech, give the best meaning (or action). 

Figure 29.1 shows a typical architecture for a simple speech-understanding system. 

1 This chapter owes much to earlier documents and talks by Dan Jurafsky, Gary Tajchman, and Eric Fosler-Lussier. 
2Note that this problem is quite analogous to acoustic probability estimation, in which estimators for the probability 
of speech sounds must be trained despite typically having an insufficient representation of all possible acoustic 
variations. 
3Because of the limitations of space we do not provide any serious description of decoding strategies here. In 
practical systems the design of decoders can be critical, providing the best possible trade-off between resource 
requirements and search errors (where the latter are errors arising from the decoding process that would not have 
occurred if all possible word sequences had been considered) and resource requirements. The heuristics of good 
decoders can be quite varied, depending strongly on the details of each individual system. For more on this topic, 
see [2], [7], [8], and [9]; an excellent overview can be found in [5]. 
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FIGURE 29.1 Generic speech-understanding system. 

29.2 PHONOLOGICAL MODELS 

In Chapter 23, we described some of the basic elements of word pronunciation, particularly 
phones and phonemes. In principle, one could simply permit any pronunciation for any 
word in the training set, and let the iterative training techniques of the last two chapters be 
used to discover the pronunciations. To some extent, this kind of self-organized pronunci-
ation model has been found useful; for instance, IBM has developed systems in which the 
fundamental linguistic unit has been the fenone rather than the phoneme, where the former 
is a self-organized unit (that is, one that is learned in an unsupervised manner from the 
data). 

Still, there do appear to be regularities in pronunciation that can be exploited, and 
since these regularities are tied to other phenomena (such as speaking rate, accent, stress, 
etc.), it appears that there can be some value in explicit models of pronunciation. In any 
event, the majority of ASR systems initialize their statistical training based on a lexicon 
including one or more pronunciations for each word. A training procedure is then used to 
further refine the pronunciations. 

Figure 29.2 shows sample pronunciations for two short words. Each of the states in 
these models can represent a phonetic HMM, which might comprise several states with tied 
or separate acoustic distributions. Note also that the models incorporate phonetic transition 
probabilities, which are generally learned from examples but which can be initialized from 
good guesses. An initial lexicon may actually consist of many more pronunciations than 
these, arising from a combination of dictionaries, application of phonological rules, text-
to-speech systems, examples from manually transcribed databases, and even hand editing. 
Given all of these potential pronunciations, a working set of pronunciation models can be 
derived from the following procedure. 

1. Run the local acoustic probability estimator (e.g., discrete density estimator) and 
incorporate in a Viterbi alignment of the training data; in other words, use dynamic 
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Front End 

Signal 
Processing n. 

Spectral-
like 

features 

Phone Likelihood 
Estimator 

p0.80 
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som 
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"cat" 

Decoder Parser 

Semantics 

Lexicon (HMM) Grammar (n-gram) 
dog cat 

the 0.1 
0.3 

0.2 
0.1 
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FIGURE 29.2 Pronunciation models for "of" and "the." Each state in these models could 
consist of several HMM states, including possible self-loops. 

programming with backtracking to find the most likely state sequence for the training 
observations. 

2. Repeat the alignment procedure as necessary (including retraining of the acoustic 
estimators). 

3. With the final alignments, count the occurrences of each pronunciation and normalize 
to get pronunciations probabilities. 

Figure 29.3 shows a set of paths that could be considered for the different pronunci-
ations of the words "of the." 

At the surface, this is no different than any other Viterbi training procedure; however, 
here we specifically isolate the phonological model aspects of specific groups of states. This 

END ah-ah-v-dh-ax-ax-ax 

ax-ax-ax-v-dh-iy-iy 

/>(vlah) = .4 

START p(ah| START) = .5 

FIGURE 29.3 Forced Viterbi alignment paths for two short words, each with two possible 
pronunciations. In this case we assume that a phone corresponds to a single HMM state 
with a possible self-loop. Where several paths lead to a node, the black arc indicates the 
optimal one chosen by the algorithm. 
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TABLE 29.1 Some Phonological Rules for Casual Speech 

Name Reductions 

Mid vowels 
High vowels 
R-vowel 
Syllabic n 
Syllabic m 
Syllabic I 
Syllabic r 
Flapping 
Flapping-r 
H-voicing 

Rule 

-stress [aa ae ah ao eh er ey ow uh ] ^ ax 
-stress [iy ih uw] —> ix 
-stress er -> axr 
[ax ix] n —> en 
[ax ix] m -> em 
[ax ix] I -> el 
[ax ix] r ->axr 
[t d]-> dx /V [ax ix axr] 
[t d]-> dx /V r [ax ix axr] 
hh —> hv / [+voice] [+ voice] 

P r a 

0.60 
0.57 
0.74 
0.35 
0.35 
0.72 
0.77 
0.87 
0.92 
0.92 

aThis column shows the probability of the rule's application, as taken from 
transcriptions of natural speech input to a speech-understanding system, using forced 
Viterbi alignment to determine the pronunciations. 

can sometimes lead to estimates of the probability of broader categories of pronunciation, 
which can be generalized to words that were not seen during training. For instance, we can 
observe a systematic variation of pronunciations based on such factors as rate of speech, 
dialect, accent, and words in context. 

Table 29.1 gives phonological rule probabilities that have been obtained through such 
a procedure; these can be used to generate reasonable pronunciations for words that have 
never been observed in the training set. 

29.3 LANGUAGE MODELS 

In Chapter 9 we showed that the Bayes rule provides a simple transformation to reverse 
the arguments in a conditional probability or density. In earlier chapters we applied this 
rale for the specific example of speech-observation frame and word sequences, in which 
the parameters of the acoustic and language models are assumed disjoint. For convenience, 
we repeat this formulation here: 

^^»--^w^· (29Л) 

In the previous chapters, we focused on the acoustic probabilities Ρ(Χ\Μ,ΘΑ), 
and we assumed that the language models would provide the prior model probabilities. 
The reader should note that the simple expression P(M | &L) hides a host of theoretical and 
practical difficulties. At the core of this difficulty is the fact that, in general, we don't have 
enough data to estimate the probability of word strings of unrestricted length. Even if we 
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were to limit ourselves to word strings with three elements, for a vocabulary of 10,000 
words there would be a trillion possible word strings. Of course many of these would never 
occur, but with that many possible strings, we would never know how to interpret the 
nonoccurrence of a word string in the training set. In other words, if a word triple never 
occurs in training, it still could occur during recognition. 

For this reason, the estimation of P{M | ®L) typically requires the use of multiple lev-
els of approximation, in which poor estimates of multiple word probabilities are combined 
with better estimates of shorter-length sequences. This situation is not unique to language 
modeling, of course, and we have already spoken of the need for smoothing in estimates 
of local acoustic probabilities. In the case of language models, though, estimates also com-
monly incorporate a large number of training sequences that may come from written text, 
which differs in fundamental ways from word sequences in natural speech; the relative 
scarcity of word-transcribed data for spoken language often necessitates the additional use 
of the text-based materials. 

Although iterative statistical training methods such as EM learn directly from the 
data, they can nearly always benefit from the prior imposition of some structure. In speech-
recognition systems that are focused on a limited domain (such as data-base query for 
restaurants information), the syntactic and semantic structure can be used to further con-
strain the word-sequence hypotheses for recognition. In the more general domain of English, 
our limited knowledge of the structure of spoken language has not yet really been shown 
to provide strong advantages over unstructured statistical approaches. 

Some of the fundamental questions about language modeling for speech recognition 
bear a strong resemblance to our questions about statistical modeling in general, as described 
in Chapter 26: 

1. Parametrization and probability estimation: How should P(M | Θ^) be com-
puted, and what are the necessary assumptions about the stochastic models to define the 
parameter set Θ^? In general it is not possible to estimate the probability density of a com-
plete sequence without constraining assumptions; as with the acoustic parameters, these 
assumptions typically involve conditional independence so that the total estimate is broken 
up into constituents that can be effectively estimated. 

2. Training: Given the parametrization here, how should 0 L be determined so that 
the known sequence of words has the highest possible likelihood? 

3. Decoding: How can the trained parameters Θ^ be incorporated along with the 
acoustic models to classify the input sequence X according to the Bayes decision rule? 

As noted in Chapter 5, the uncertainty about each word given the the predictive 
power of a language model is measured by its perplexity, which is just 2H, where H is 
the average entropy for a word given the language model. In the simple case in which 
each word has exactly N equally likely successors, the perplexity would then be N. In 
general, adding linguistic predictive power will reduce the perplexity, and this tends to 
improve recognition performance (though this is not guaranteed; many researchers have 
been disappointed by recognition results using techniques that reliably reduce perplexity). 
Explicit representations of syntactic and semantic structure can be useful for perplexity 
reduction, but estimators for P(M) have been dominated by simple statistical approaches, 
most commonly the n-gram approach [3]. 
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29.3.1 n-Gram Statistics 

In many recognition systems, the language model is a simple one: for each word (including 
a placeholder "START" word) there is a list of possible words that can follow. This is 
sometimes called a word-pair grammar (for obvious reasons). A generalization of this 
approach is to associate a probability with each word in the follow set, and this is called a 
bigram model. Similarly, a word list with associated probabilities that can follow any pair 
of words is called a trigram model. In general, such models are called n-grams, where n is 
a small integer. 

How can such probabilities be used to estimate P{M)1 First, let 
M — wl""=w\,и>2,... , VVJV,, for Nw words in the hypothesized HMM M. Then, for each 
sequence wf, 

N 

P « ) = P(wi)P(w2 | Wl)P(w3 | w]) . ..P(wN | < - ' ) = l\P{wk | w*-1). (29.2) 

We then approximate 

so that 

PKK" 1 )«^!^ , ) (29.3) 

pKJ^n^Kii)- (29·4) 

where P{w\) and P(wk \ wkZn+\) for к = 1 are typically defined equal to P{w\ | START). 
This approximation should look familiar: it uses an (n — 1)-order Markovian as-

sumption. Thus, for the trigram case, n is equal to 3 and we assume that we only need two 
predecessor words to compute the linguistic priors for the next word. 

Let's take the specific example of the word sequence "I eat dinner." For a bigram 
grammar, the probability for this sequence is given as 

P(\ eat dinner) = P(I | start)P(eat | I)P(dinner | eat). 

Since the word transcription is presumed to be known for the training set, in principle 
the и-gram probabilities can simply be estimated by counting co-occurrences of the words. 
For instance, for the case above, a simple estimate of P(eat 11) would be 

P(\ eat) no. occurrences of "I eat" 
P eat I = ^ — i = ——-. (29.5) 

P(l) no. occurrences of I 

When there are are many occurrences of these words, good estimates can be obtained in 
this simple way. However, as noted previously, it is difficult to estimate the likelihoods of 
infrequently occurring n-grams. For large-vocabulary recognition, the number of possible 
bigrams or trigrams becomes huge, and many of the probabilities are poorly estimated. 
Furthermore, the predictive power is often stronger for words that are not the immediately 
preceding words. For instance, in the phrase "eating a large number of hamburgers," the 
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word "eating" would most likely be a better predictor of "hamburgers" than "number of." 
Modeling these longer-distance relationships with simple n-grams would typically require 
a fairly large value for n, which would not be feasible with typical training set sizes. Some 
word types tend to be more important than others in general (e.g., verbs as opposed to 
conjunctions), and simple и-grams do not have a notion of structure that would explicitly 
handle syntactic and semantic relations. Some of these problems are ameliorated by using 
written text to train language models, since huge amounts of on-line text is now available. 
This also, however, raises a new problem: spoken language is quite different from written 
language, and the differences may limit the utility of the written corpora for spoken language 
model training. 

For these reasons, a major concern in speech-recognition research has been the im-
provement of statistical language models. Some of the most successful of these techniques 
have been similar to those discussed in previous chapters in the context of acoustic like-
lihood estimation - for instance, backoff or deleted interpolation techniques for the incor-
poration of trigram, bigram, and unigram probabilities. Experiments continue with hybrids 
between more structured grammars and word-based ones [e.g., class-based n-grams, such 
as Р(Рооас1а88 | eat)]. 

As of this writing, formal grammars such as context-free grammars are most com-
monly used for the interpretation of recognizer output in a speech-understanding system. 
One example of such an approach is given later in this chapter. 

29.3.2 Smoothing 

As noted earlier, there is never enough training data to learn all the statistical relationships 
between words in speech communication. This fact has been one of the motivations for the 
interest in more structured language models. However, even for n-grams, it can be difficult 
to make good probability estimates for infrequent combinations of words. This requirement 
is similar to the one discussed in Chapter 26 for acoustic density estimation. In that chapter, 
we noted that the need for capturing acoustic variability motivates the use of finer state 
categories such as triphones (as opposed to phones), but that such finer categories have 
fewer examples. A similar observation can be made for the language model. Trigrams are 
stronger models (in the sense of potentially being more predictive) than bigrams, but many 
more sequences of three words will occur infrequently than sequences of two words. 

With language modeling as with acoustic modeling, it is common that we will 
require the combination of good estimates of coarse categories with noisy estimates of fine 
categories, in order to stabilize the estimate of the latter: as noted in Chapter 26, this 
process is often called smoothing. The same techniques that are used for acoustic model 
smoothing are commonly used for language modeling as well, namely the following. 

1. Backoff smoothing: this is a simple but often effective method. Thresholds are 
set for a minimum number of examples for each level of granularity, and when the minimum 
is not present, the estimator backs off to a coarser level. For instance, if there are enough 
examples of a particular trigram, the probability derived from relative frequencies may be 
used directly; if there are not enough, a bigram might be used; if there are not enough 
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examples of the bigram, then the unigram probability (relative frequency of the word) is 
used. Backoff grammars are extremely common in ASR systems. 

2. Deleted interpolation: this is the same process that is described in Chapter 26, 
applied to the combination of я-gram probabilities for different values of n. As in the 
acoustic case, two sets of parameters are combined with weighting factors that are learned 
from testing on data that are disjoint from the training data. Often, this is done by partitioning 
the data into N pieces (e.g., 10) and then training N different sets of parameters using all 
the different choices for N — 1 /N of the data. For the case of two estimators, the goal is to 
optimally choose ε to combine the estimator parameters, that is 

ΘΓ = εΘ, + (1 -ε)Θ2. (29.6) 

In one approach, ε is set to the fraction of utterances for which Θι was better. Another 
solution is to treat ε as missing information and to use EM training. Finally, in practice this 
value is often set by trial and error. 

For both backoff and deleted interpolation, various techniques are used to assign 
a small probability to unseen or infrequent words while correspondingly reducing the 
probabilities derived from relative frequencies observed during training. One of the most 
common approaches is called Kneser-Ney discounting (named after the researchers who 
developed the approach, as described in [6]). A excellent description of n-gram smoothing 
approaches can be found in [1], and a further description of language modeling approaches 
as well as many other aspects of speech recognition mathematics can be found in [5]. 

29.4 DECODING WITH ACOUSTIC AND LANGUAGE MODELS 

As noted earlier in this chapter, the Bayes rule provides a mathematical structure that permits 
the easy integration of prior word-sequence probabilities with the acoustic probabilities. 
However, there are some important practical considerations. For instance, when first-order 
HMMs are used, the only word-sequence probability incorporated in the search is (by 
definition) a bigram (which may back off to a unigram). In other words, since the probability 
of exit from a word-final state is only dependent on the word transition probability (that is, 
probability of the new word given the old), there is no obvious way to include an «-gram 
with an и of 3 or more in an on-line Viterbi search with the usual first-order Markov 
assumptions. 

However, there are three ways in which such longer-range models are sometimes 
incorporated in the search. 

1. Use a higher-order model. If the model explicitly includes higher-order dependen-
cies, and if the search is built to handle them, then even a Viterbi search can use trigrams. 
This does, however, definitely complicate the search. 

2. Use a depth-first search. Some recognition decoders incorporate a strategy com-
monly called stack decoding, in which a prioritized queue (not actually a stack) holds the 
best current hypotheses, which are extended and reshuffled for each new frame. Since a 
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complete hypothesis is evaluated for each new extension, long-range models (n greater 
than 2) can be used. 

3. Postprocess the word sequence. Some number of proposed hypotheses for the 
complete utterance can be evaluated by a separate module that can do the scoring based on 
long-range criteria. This can be done explicitly in what is called an N-best list, in which the 
first module submits a list of the most likely utterance hypotheses, along with an estimate 
of their probabilities. These probabilities are rescored by the second module, using new 
sources of information (such as matching scores for syntactic or semantic rules). It can also 
be done implicitly by generating a lattice (i.e., graph) of possible word sequences, with 
associated probabilities from the on-line acoustic and language models. Here too the lattice 
can be rescored, using the second set of information sources. 

29.5 A COMPLETE SYSTEM 

In the early-mid-1990s, Berkeley speech researchers designed a speech-understanding sys-
tem called the Berkeley Restaurant Project (BERP), a medium-vocabulary (1200 word) 
speaker-independent spontaneous speech-understanding system [4]. BERP functions as a 
knowledge consultant whose domain is restaurants in Berkeley. A brief description of this 
system (which drew inspiration from earlier systems such as VOYAGER from MIT [10]) 
may serve to illustrate some of the points discussed earlier. 

Figure 29.4 shows the complete speech-understanding system, in which the decoder 
uses bigrams in addition to a stochastic context-free grammar (SCFG)4 for language 
model probabilities. In the current implementation of BERP, a SCFG is used to generate 
bigram probabilities that are smoothed with the bigrams computed from the training set 
transcriptions. The SCFG consists of 1389 hand-written rales, which were trained on a 
4786-sentence corpus using EM. A sample rule would be 

WANTING - S -> i WANT - V WANT - OBJ (Prob = 0.35). 

4 An SCFG is a four-tuple (W, N, A, R) in which W is a set of terminal symbols (in our case words), N is a set of 
nonterminal symbols (e.g., VERB), A is a start symbol, and R is a set of rules of the form N' —► X->, where X-> is 
a string of terminals and nonterminals and where there is an associated probability P(N' —> X-i). 
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USER-
FIGURE 29.4 The BERP architecture. 

The decoder is a first-order Viterbi decoder, and the result of the recognition is inter-
preted by a parsing routine (using the SCFG) so that fields in a data-base query can be filled 
in. A simple dialog manager handles the interaction between the user and the database, 
making use of the filled-in field. The natural language component knows a little bit about 
the world; for instance, it knows what day it is so that "tonight" gets reinterpreted as the 
specific day so that the system can check to see if a restaurant is open. 

Table 29.2 gives a sample interaction with the program. 
An interesting aspect of this research project was analyzing the different rule prob-

abilities that were observed for different groups of speakers; this was studied as part of a 
larger project to try to understand the nature of accent. For instance, initiating a sentence 

TABLE 29.2 A Berkeley Restaurant Project 
Interaction 

Name 

Thai Bar-B-Q 
Plearn Thai Cuisine 
Berkeley Thai House 
Siam Cuisine 

Address 

1958Shattuck 
2050 University 
2511 Channing 
1181 University 

Cost 

$$ 
$$ 
$$ 
$$$ 

Distance 

5 
5 
20 
18 

BERP: Welcome to BERP. How may I help you? 
User: I'm looking for a Thai restaurant. 
BERP: When would you like to go out? 
User: I'd like to go for lunch on Saturday. 
BERP: How far from ICSI are you willing to travel? 
User: Anywhere within walking distance. 
BERP: How much money do you want to spend? 
User: Doesn't matter. 
BERP: Here are some restaurants that meet your requirements. 
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with the word "PLEASE" occurred with probability 0.00057 for American speakers of 
English, while for German speakers of English the corresponding probability was 0.1. 

29.6 ACCEPTING REALISTIC INPUT 

We conclude this chapter with a brief discussion of some practical concerns for complete 
speech-recognition-speech-understanding systems. 

Early in this book we mentioned a kind of recognition paradigm called word spotting, 
in which the system is intended to recognize some limited vocabulary but which can accept 
an unlimited vocabulary input. A typical form for such a system is to look for something 
like digits but permit the user to say "Uh, I guess the number is five." In such systems, 
we are not only interested in a low error rate, but also in rejection of irrelevant words. 
Often we are willing to have more word errors (in the sense of not getting them right) in 
exchange for having better confidence about the ones that we have not rejected. Formally, 
such systems take the form of a signal detection scheme, in which the designer trades off 
false acceptances against missed detections. 

However, in practice, rejection and measures of confidence are significant for all 
speech-recognition-speech-understanding systems. All such systems will make errors, and 
it is important to have a good strategy for those cases in which the system believes it may 
be making an error. This means that several other facilities must be available besides the 
recognition algorithm we have emphasized, including: 

• A representation for words and sounds other than the ones in our lexicon 

• A measure of confidence in the recognition-understanding output 

• A rejection policy given that a measure of confidence 

The first requirement is often called a garbage model (sometimes also called a filler 
model). This is sometimes implemented by using a fully connected model with all phones; 
another approach is to use an average log emission probability for the top N states other than 
the best one (for each frame). In any case, the difference between the log likelihoods of the 
most probable model and this filler model (a log likelihood ratio) is often used as a measure 
of confidence. Other measures can be derived from the range between log likelihood for 
the most likely and second most likely utterance, or from estimates of the average entropy 
of the phonetic probabilities. Measures have also been developed based on the behavior 
of the decoder itself, such as the number of alternate hypotheses that remain within some 
pruning threshold. 

During development tests a signal detection curve (sometimes called a receiver-
operating characteristic, or ROC) is used to associate confidence levels with trade-offs 
between false acceptances and false rejections for the utterance recognition. Having such 
measures can also be important for assessing a fielded technology; although the recognition 
error rate is often not easily determined for systems that are being used commercially, 
statistics about confidence measures can be unobtrusively gathered. 

Given these models and measures, any particular application will have a rejection 
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policy. For instance, if the end use is a telephone application for which the cost is closely 
related to time use (time is money), the best strategy may simply be to fall back to a 
human operator whenever any confidence is low. For other cases in which a few retries are 
tolerable, the system may just request a repeat by the user. Of course, users will often just 
talk louder in this case. 

As noted earlier, speech-understanding systems incorporate natural language pro-
cessing for the recognized utterances. However, for fluent speech, utterances often do not 
follow the expected word patterns. Furthermore, users will insert disfluencies (filled pauses 
such as "um" and false starts such as "I'm going to Lon - Paris") and nonspeech sounds 
(such as coughs). Although filler models will handle some of these problems, the result-
ing hypothesized transcriptions will still often not be parsed by using a simple grammar. 
Consequently, it is essential that the natural language processing component be able to 
handle speech fragments; that is, it has to be able to pick out useful groups of words out 
of a word sequence that otherwise does not make sense to the parser. In the case of BERP, 
for instance, it can pick out "Chinese food" out of the phrase "I urn wanna have let's see 
Chinese food". Other speech-understanding systems have similar capabilities. 

29.7 CONCLUDING COMMENTS 

As with most other chapters in this text, we have just touched the surface on many topics, 
and we have had to leave out many others entirely. As an example of the former, we 
have just briefly discussed search (decoding) techniques, and we only mentioned the use of 
formal grammars. We have not described real-time constraints for practical systems and the 
impact that these have on algorithmic choices. For many applications, the integration with a 
natural language processing component is not merely a static one as we have reported here; 
the generation and interpretation of dialog is quite important. Complete systems are not 
merely recognizers or even understanding engines, and such components must be integrated 
with synthesis or playback, speaker verification, and so on. Nonetheless, this chapter is an 
introduction to the rest of the recognizer. 

We recommend that the reader consult [5] for a range of topics related to language 
modeling and computational linguistics that are essential to the design of complete recog-
nition (and synthesis) systems. 
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And computers are getting smarter all the time; scientists tell us that soon they will be able to 
talk with us. (By "they," I mean computers; I doubt scientists will ever be able to talk to us.) 

—Dave Barry 

I N PART VII we proceed to applications for which a speech signal is generated for 
human listeners. As with recognition, we begin with classical methods and then extend the 
discussion to the more refined approaches that are current. 

Chapter 30 describes the basics of speech-synthesis systems. Although many modern 
systems are concatenative, newer approaches based on statistical analysis-synthesis meth-
ods are also discussed, as well as several methods that are of historical interest. Chapter 31 
proceeds to describe basic approaches to pitch detection, which is still a difficult problem. 
Many modern coding systems avoid this difficulty by not making an explicit pitch deter-
mination per se, but this information is still important for some applications. Chapter 32 
provides a general background for the different classes of vocoders; as with Chapter 24's 
description of deterministic recognition systems, this chapter does not so much describe a 
method in current practice as provide background material for more complex methods that 
are still related to the older approaches. Chapter 33 then proceeds to discuss vocoders that 
are designed for a low bit rate (typically 2.4 kbits/s or less), starting with simpler approaches 
and proceeding to more modern refinements. Finally, Chapter 34 describes higher-quality 
vocoders, leading up to the class of systems that is currently used in cellular telephony, and 
Chapter 35 describes the high-quality encoders based on psychoacoustic masking used to 
encode music and other wideband signals for today's broadcast and portable devices. 
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30.1 INTRODUCTION 

The goal of this chapter1 is to introduce engineering approaches for "talking" machines that 
can generate spoken utterances without requiring the every possible utterance to be pre-
recorded. Generally, speech synthesis requires the use of sub-word units, in order to provide 
the extended or even arbitrary vocabularies required for applications such as text-to-speech 
(TTS); this is the most common application of speech synthesis. A TTS system operates as 
a pipeline of processes, taking text as input and producing a digitized speech waveform as 
output. The pipeline can be described in two main parts: the "front end", which converts 
text into some kind of linguistic specification; and the waveform generation component, 
which takes that linguistic specification and creates an appropriate speech waveform. 

The task of the front end is to infer useful information from the text; that is, information 
that will help in generating an appropriate waveform. The written form of a language does 
not fully specify the spoken form, so in order to correctly produce the spoken form prior 
knowledge must be used. Some examples of using prior knowledge to enrich the information 
encoded in the written form include: 

1. Text preprocessing: Ambiguities in the written form, such as abbreviations and 
acronyms, must be resolved. An example of this is the translation of "Dr." into either 
"Doctor" or "Drive," depending on the context. 

2. Pronunciation prediction: The spelling of each word must be converted into 
a phonetic string representing its pronunciation. For many languages, a pronunciation 
dictionary is required. Sometimes, additional information about the word will be required 
before it can be looked up in a dictionary: for example, noun and verb forms that are 
spelled the same ("close", "present", etc.). Words that are not in the dictionary must have 
pronunciations predicted using a letter-to-sound model. This is typically a simple statistical 
model learned from a set of known words and their pronunciations (i.e. the dictionary 
itself). Languages with regular spelling-to-sound patterns (e.g., Spanish) may only require 
a dictionary for exceptional words (e.g., foreign words) and can use a letter-to-sound model 
for all other words. Once the pronunciations of the individual words have been found, a 
small amount of further processing is often applied to modify some pronunciations based 
on the surrounding context. 

3. Prosody prediction: To fully specify the spoken form of the utterance, more than 
the phonetic pronunciation is required; there must also be a description of the prosody: the 
pattern of fundamental frequency, duration and amplitude. Normally, a symbolic prosodie 

1 This chapter has been extensively rewritten for the 2nd edition by Simon King of Edinburgh University. 
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description is first predicted from the text. An example of a system for describing prosody 
using a small inventory of symbols is "Tones and Break Indices" (ToBI) [45] and a common 
choice for predicting a ToBI description from the text (including the pronunciation, parts of 
speech, and any other information available) would be a decision tree that had previously 
been trained on data manually annotated with ToBI labels. Whatever type of symbolic rep-
resentation used, it will then be converted into continuous values of fundamental frequency, 
segment durations and so on. This conversion may be carried out explicitly by a separate 
process (for example, the conversion of ToBI symbols into values for rises and falls in 
the fundamental frequency), implicitly within unit selection (as described in Section 30.2 
below), or by the same statistical parametric model that generates the spectral features, as 
in HMM-based synthesis (described in Section 30.3). 

The resulting linguistic specification contains many layers of information: the original 
text, its pronunciation, prosodie pattern, and so on. From this specification, a waveform 
must be generated. There are two main methods in current use for doing this: 

1. Concatenative synthesis: small pre-recorded fragments of speech are automatically 
selected from a database, concatenated and played back. The selection of the optimal 
sequences of speech fragments is made according to cost functions, which evaluate 
how well the linguistic context of each fragment matches the context of the sentence 
being synthesized, and evaluate how natural the fragments will sound when concate-
nated together. This is the dominant technology at the moment, and is described in 
more detail below. 

2. Statistical parametric speech synthesis: a parametric representation of speech is gen-
erated from a statistical model, then converted to a waveform using a vocoder. This 
technology is receiving a significant amount of attention at the moment, because of 
its flexibility, as described in more detail below. 

Other methods for waveform generation include: 

3. Physical/articulatory modeling: a mathematical model of the vocal tract is used to 
generate the speech signal. Although such models can generate some very realis-
tic speech sounds, particularly vowels, they typically sound less good on complex 
sounds, such as consonant clusters. The early mechanical systems from von Kem-
pelen and Wheatstone (see Chapter 2) were literal physical models. More recent 
examples use software simulations, as in the work of Coker and colleagues ([9], 
[11], or [43]) or computationally-intensive numerical methods such as finite-element 
or waveguide models of the vocal tract [52, 13]. All of these approaches suffer the 
limitation that it is currently not possible to use text to automatically predict accu-
rate values for the the (potentially large number of) parameters of a physical model. 
Such approaches are currently more interesting from a scientific standpoint than as 
practical methods for speech synthesis. 

4. Formant synthesis: a set of filters are used to simulate the resonances of the vocal 
tract; the input to the filters is a periodic signal for voiced speech or an aperiodic signal 
for unvoiced speech, or a combination of the two. Typically, the various parameters 
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of formant synthesizers (such as the frequencies and bandwidths of the filters) are 
provided by a complex set of hand-crafted rules. This technology was the state of the 
art until the mid-1980s, and is still used in a few legacy applications, or where only 
very limited computational power and memory are available. 

30.2 CONCATENATIVE METHODS 

The current dominant approach to speech synthesis involves the concatenation of fragments 
of waveform, selected from a pre-recorded database of natural speech. This "cut-and-paste" 
approach to waveform generation requires a carefully recorded and labelled database, 
an automatic method for selecting fragments of speech from that database and a signal 
processing component to concatenate the fragments. 

The earliest concatenative methods stored very small amounts of speech. For in-
stance, in the approach developed by Forrest Mozer and used by some semiconductor 
manufacturers in the 1980s, simplified waveforms were stored and concatenated during 
playback [39]. Voiced sounds were compressed by manipulating a pitch period waveform 
to reduce the number of signal samples that were required to have a power spectrum that 
was sufficiently close to the original. 

For many years, the most popular method was to store one example of every required 
diphone (defined in Chapter 23). Diphones are a better choice than phones for concatenative 
synthesis, because the joins between units will then occur mid-phone. The spectrum in 
the middle of a phone tends to be relatively stationary and consistent, compared to at a 
boundary between two phones. In diphone synthesis, any required word or sentence can 
be constructed by concatenation of the appropriate sequence of diphones. Since only one 
copy of each diphone is stored, a significant amount of signal processing is required in 
order to achieve the required fundamental frequency contour and segment durations. In 
the most popular current approach, known as unit selection, many different instances of 
each required diphone (or other unit type) are stored, in order to maximize the chances of 
finding a unit from an appropriate context and to minimize the amount of signal processing 
required during concatenation [28]. 

30.2.1 Database 
A typical unit selection synthesizer will use a database containing a few hours of speech 
from a single speaker, recorded under controlled conditions and carefully labelled with a 
time-aligned phonetic transcription and prosodie information such as phrase breaks, pitch 
accents and boundary tones. The labeling may be done manually or semi-automatically. 

The contents of the database - the sentences read by the speaker and the accuracy 
with which the speech is labelled - are a major contributing factor to the final quality of 
the system. The database must contain a wide variety of types of speech units, in a wide 
variety of phonetic and prosodie contexts. The sentences to be read are therefore often 
selected algorithmically from a much larger body of text, such as web pages, newspapers or 
out-of-copyright books. For domain-specific applications, the inclusion of a small amount 
of domain-specific material can substantially improve the quality of the system. 
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FIGURE 30.1 In the unit selection method, units are automatically chosen from a large 
database, then concatenated in order to synthesize a new sentence. In the figure, "Sn" 
denotes the 12th instance of unit type "s" in the database. The list of candidates for each 
target has already been pruned, leaving only units with a relatively low target cost (in this 
example, the 12th, 73rd and 62nd instances of "s" have been retained as candidates). 
Dynamic programming is used to find the path through the lattice of candidate units that 
minimizes the total sum of target and join costs (in this example, that path is "s[2 Рг 'Уз2 
ch7"). The selected units are then concatenated to produce the final synthetic speech 
waveform. For simplicity, this example uses phone units and the concatenation takes place 
using waveforms, but an actual system may use diphone units and RELP-PSOLA to 
concatenate the units. 

Although larger databases provide better coverage of the speech units, it is harder to 
record them consistently since the speaker must spend many hours in the recording studio 
over a period of weeks or months. Consistency of recording conditions, speaking rate, 
effort and voice quality are very important, because when new sentences are synthesized, 
adjacent units might be selected from parts of the database recorded far apart in time. 

30.2.2 Unit selection 

From the large and carefully labelled database, units are automatically selected to render 
any required new sentence, as illustrated in Figure 30.1. Typically, the units are diphones, 
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but half phones and other unit types are also used. In order to choose the best sequence of 
units, two cost functions are employed. The target cost measures how closely the linguistic 
context of each candidate unit from the database matches the linguistic specification of the 
corresponding unit in the sentence to be rendered. This cost function generally consists of a 
weighted sum of factors, each of which measures the match/mismatch for a single linguistic 
feature (left and right phonetic context, stress, syllable position, ...). The target cost is re-
quired because the acoustic properties of units are heavily dependent on their context. The 
other cost function, the join cost measures how well each possible sequence of candidate 
units will concatenate, by comparing the short-term spectral features, energy and funda-
mental frequency of each unit at the concatenation point. The join cost is required because 
sudden changes in acoustic properties at the concatenation points would be perceived as 
unnatural. It is usual to define the join cost between two contiguous units from the database 
as zero. As a result, the unit selection method will prefer to choose naturally-occurring 
sequences of units, resulting in fewer concatenation points per sentence. A dynamic pro-
gramming search method (Chapter 24) is used to efficiently find the overall best sequence 
of units that minimizes the sum of all the target and join costs. 

30.2.3 Concatenation and optional modification 

Once the sequence of units has been selected, they are concatenated together. In some 
systems, certain properties of the units may be modified in order to make them join better 
(e.g., small modifications to the spectrum, energy and fundamental frequency around the 
concatenation points) or in order to achieve a required prosodie pattern (modifications 
to durations and fundamental frequency). Generally, most unit selection systems aim to 
perform as little modification to the speech signal as possible, since it will result in audible 
artefacts. 

Depending on the modifications required, concatenation can take place using one 
of a number of possible representations of the speech signal. In the simplest case, time-
domain waveforms are concatenated using pitch-synchronous overlap-and-add (PSOLA) 
[7] at the concatenation points. If small modifications are required, then techniques such 
as linear predictive PSOLA (LP-PSOLA) are popular. In LP-PSOLA, rather than storing 
diphone waveforms per se, linear predictive coefficients (or transformed values, such as 
reflection coefficients, log-area ratios or line spectral frequencies) are stored. The PSOLA 
algorithm is then used to provide prosodie modifications by operating on the excitation 
signal, and spectral envelope smoothing is achieved by smoothing the LP coefficients [40] 
(or more commonly the line spectral frequencies derived from them). For high-quality 
speech synthesis, where storage space is not the main consideration, residual-excited linear 
predictive PSOLA (RELP-PSOLA) [18] is commonly used since it results in near-perfect 
reconstruction of the speech signal in cases where little or no modification has been 
performed. LP techniques are described in Chapters 32 and 34. 

In the days when diphone synthesis was the dominant technique, many representations 
for speech signals were proposed that enabled fundamental frequency, duration and spectral 
envelope to be modified independently. Although less relevant to unit selection, some may 
still be useful, and may perhaps be adapted for use in statistical parametric synthesis. These 
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techniques include sinusoidal (harmonic) modeling, where the speech signal is represented 
as a sum of sine waves along with some representation of the aperiodic energy present 
[36], [3] and resynthesis methods such as multiband resynthesis overlap add (MBROLA) 
[18] in which the database is pre-processed (using a sinusoidal model) so that every frame 
has the same phase, thus making subsequent concatenation and prosodie modification 
less sensitive to errors in epoch marking. Once the sequence of units has been selected, 
they are concatenated together. In some systems, certain properties of the units may be 
modified in order to make them join better (e.g., small modifications to the spectrum, 
energy and fundamental frequency around the concatenation points) or in order to achieve 
a required prosodie pattern (modifications to durations and fundamental frequency). Such 
modifications are, however, avoided where possible since they can create audible artifacts. 

30.3 STATISTICAL PARAMETRIC METHODS 

Dutoit [18] pointed out that approaches using corpus-based models of speech segments 
offered a more flexible framework than waveform concatenation and indeed this turned out 
to be an area of significant developments in speech synthesis. At the time Dutoit made that 
observation, two HMM-based speech synthesis systems had been proposed. HMMs had 
been in use for speech recognition for some time (see Chapter 25 - Statistical sequence 
recognition) and, since they are generative models1, it was natural to ask whether they can 
be used to generate speech. 

Tokuda and colleagues [48] developed a method for generating speech features from 
HMMs which used the dynamic features (also known as delta and delta-delta features). The 
key feature of this work was the ability to generate smooth speech feature trajectories with 
the appropriate statistical properties. This work directly led to current HMM-based syn-
thesis systems which offer a complete modeling framework for the spectrum, fundamental 
frequency and duration of speech segments. 

Donovan & Woodland [17] also developed a method for synthesis using HMMs. The 
key feature of their method was to employ powerful data-driven decision-tree clustering 
techniques originally developed for speech recognition, in order to automatically find an 
inventory of a few thousand context-dependent sub-word units (which correspond to HMM 
states, each of which is one-fifth of a phoneme). The waveform generation algorithm was 
simple: the sequence of HMM states corresponding to the input phoneme sequence is found 
using the clustering decision tree, then piecewise constant linear prediction coefficients 
associated with each state are used to generate the waveform. 

30.3.1 Vocoding: from waveforms to features and back 

HMMs, as formulated for speech recognition, operate not on time-domain waveforms but 
on a representation of the spectral envelope of speech. One problem to overcome when 
using HMMs for speech synthesis is therefore how to generate speech waveforms from 

2 A generative model is a statistical model for randomly generating observable data. 
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such representations, which we will call speech features. A typical set of speech features, 
used in speech recognition, would be a dozen or so MFCCs (as defined in Chapter 22). This 
representation does not contain sufficient information to reconstruct the original speech 
signal. Crucially, there is no information about the source, but the spectral envelope is 
also only very crudely described by 12 coefficients. For synthesis, source information is 
required, plus a more detailed representation of the spectral envelope. 

A useful way to understand statistical parametric speech synthesis is by comparing it 
to a vocoder (Chapter 32). A vocoder contains two components: an analyzer or encoder that 
converts speech waveforms into a parametric representation called speech features (usually 
for storage or transmission) and a synthesizer or decoder that reconstructs the waveform 
from the speech features. Statistical parametric speech synthesis operates in the speech 
feature domain. But, whereas a vocoder merely transmits the features unaltered, in speech 
synthesis a statistical model is built from them. This model can be stored and used later to 
generate appropriate speech features for any required sentence. Since the speech features 
are being modified (condensed into a statistical model comprising means and variances, 
then generated from that model), perfect reconstruction of the speech waveform will not 
generally be achieved even for sentences that are present in the training corpus. 

Clearly, the quality of the vocoder will strongly affect the overall quality of the system. 
A better vocoder might be expected to give better quality synthetic speech. However, it 
must be remembered that the speech features will be modified in speech synthesis. Some 
features are more amenable to modifications than others, in just the same way that some 
representations devised for concatenative synthesis give better quality than others when 
modifying the fundamental frequency, duration and spectral envelope. For HMM-based 
speech synthesis (by far the most common statistical parametric method), the speech 
features must have the following properties: 

• allow reconstruction of the waveform (vocoding) 

• be amenable to modifications - separate out the fundamental frequency from the 
spectral envelope and also allow duration to be altered 

• be appropriate for statistical modeling - for example, being decorrelated to allow the 
use of diagonal variance Gaussian pdfs, use a non-linear frequency warping (e.g., the 
Mel scale) in order to concentrate the parameters of the model on those frequencies 
that matter most for speech signals 

A common choice of speech features that meet these requirements is a form of 
frequency-warped cepstral coefficients, plus source information. The cepstral coefficients 
are usually extracted from speech waveforms not using the filterbank method employed 
in ASR (Chapter 22) but rather with the spectral representation referred to below. The 
frequency warping is typically on the Mel scale (as described in Chapter 22) and the 
resulting features are called MELCEP (whereas the cepstral features typically used in ASR 
are called MFCC). 

In early HMM-based speech synthesizers, the speech features and the methods em-
ployed for generating speech waveforms from them resulted in rather "buzzy"-sounding 
speech. When compared to the much more "transparent" qualities of concatenative meth-
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ods, early attempts at HMM-based speech synthesis produced far less natural results. But 
improvements came quickly to all aspects of the method, particularly in the following three 
areas: 

Spectral envelope representation: Because the speech features will be statistically 
modeled, it is useful to have a decorrelated representation of the spectral envelope - for 
example, cepstral coefficients (Chapter 20). Better results are obtained when using a warped 
frequency scale, such as the Mel scale, because this leads to more detailed modeling at 
frequencies where the human auditory system is most discriminating (and which also matter 
most for speech signals). The Mel Generalized Cepstrum (MGC), proposed by Tokuda [47], 
is a generalized representation that includes (as special cases) both Cepstral Coefficients 
and Linear Predictive Coefficients, with a user-selectable frequency scale warping. MGC 
coefficients give good results for HMM-based speech synthesis and a cepstrum of order 40 
is a common choice, although even larger values may give better results in some cases. 

Spectral envelope estimation: Speech synthesis benefits from a much more detailed 
representation of the spectral envelope than used in automatic speech recognition (Chapter 
22), but standard methods for extracting spectral envelopes from the short-term spectrum 
of a single frame suffer from interference from the harmonics in this case. The high-
quality vocoder STRAIGHT includes a method for extracting a detailed spectral envelope 
representation without undue influence from the fundamental frequency, namely, pitch 
synchronous analysis. STRAIGHT can also be used to generate the waveform from the 
speech features during synthesis. 

Source modeling: Simple excitation - switching between a pulse train or noise -
results in a buzzy quality to the synthetic speech. Current systems used mixed excitation, 
where the pulse train is mixed in varying proportions with aperiodic noise whose spectrum is 
shaped using a 5-band filter. The speech features modeled by the HMM therefore comprise 
a single value for the fundamental frequency (which is set to a special dummy value in 
unvoiced frames) and 5 filter coefficients. 

30.3.2 Statistical modeling for speech generation 

The HMMs used for speech synthesis are similar to those used for ASR (Chapter 25). 
However, there are some important differences. 

Context-dependency HMM-based speech synthesis generates not only the segmental 
properties of speech (those things that differentiate phonemes) but also prosody, reflected 
in the durations, amplitudes and fundamental frequency of speech sounds. The HMMs 
used in speech synthesis are generally, as in ASR, models of phone-sized units. Since 
the acoustic properties of speech depend not only on the current phoneme identity but on 
the surrounding context, the models must be context dependent. The difference between 
synthesis and recognition is in the context that must be taken into account. In recognition, 
only the segmental context is used - the one or two preceding and following phones 
- resulting in triphone or quinphone models (Chapter 23). For synthesis, the prosodie 
context must also be taken into account, including features such as the position of the 
current phone within its parent syllable and phrase, the position of its parent syllable in 
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the phrase, the position of that phrase in the utterance as a whole, and so on. One HMM 
is required for every phoneme in every possible phonetic-prosodic context, leading to a 
vast number of potential models. Just as in ASR, parameter sharing amongst models is 
necessary (see Section 26.8). 

Observation probability distributions The observation vectors, comprising the 
speech features required to drive the vocoder, are considerably larger for synthesis than 
recognition. For example, 40 MELCEP coefficients may be used to describe the spectral 
envelope, plus a value for F0 and five aperiodic energy coefficients. To these 46 numbers 
are appended first and second order derivatives, making a total observation vector size of 
nearly 140. 

It is common to divide this large feature vector into several streams for statistical 
modeling purposes (for example, parameter tying may be performed separately for each 
stream). The F0 value also requires special treatment, since it is undefined in unvoiced 
frames, so multi-space distributions (MSD) are used [49], which can handle a combination 
of discrete and continuous distributions. 

Duration modeling In speech recognition, the durations of individual phones is not 
strongly discriminative (i.e., knowing the duration of a segment does not help much in 
identifying which phoneme it is). However, a good model of duration is essential for 
high-quality speech synthesis and so HMM-based speech synthesis uses explicit paramet-
ric models of state durations. These are typically log-Gaussian distributions. Introducing 
explicit duration models means that the models are no longer strictly HMMs, and are in 
fact referred to as Hidden Semi-Markov Models (HSMMs). 

Generation using the Trajectory HMM algorithm Recall that the observation 
vectors for HMMs, whether used for recognition or synthesis, contain so-called delta and 
delta-delta features (Section 22.3). These represent the rate of change of the basic speech 
features (commonly known as the static features in HMM recognition or synthesis) over 
time. Obviously, the values of the delta features at any particular frame depend on the 
values of the static features in that frame and in the neighboring frames. 

If we were to generate an observation sequence from an HMM by first randomly 
choosing a state sequence and then randomly generating an observation from the Gaussian 
in each state, there is no guarantee that the generated delta features will depend on the 
static features in the correct way. This is because of the Markov property of the model, 
which means that the features at one instant in time are statistically independent of the 
features at all other times, given the HMM state sequence. Furthermore, if we were to 
generate the most likely observation from each Gaussian, that would always be its mean 
value, resulting in a piecewise constant sequence of values. The so-called Trajectory HMM 
solves these problems, and generates a smoothly-varying sequence of static, delta and delta-
delta features with the correct inter-dependencies and statistical properties. The generated 
sequence is the one with the maximum likelihood, given the model and the constraints 
between static, delta and delta-delta features. 
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FIGURE 30.2 Speaker-adaptive HMM-based speech synthesis operates in three phases. 
Training part: an "average voice" model is trained on a multi-speaker database. Adaptation 
part: speech from the target speaker is used to estimate adaptation transforms. Synthesis 
part: the adapted model is used to generate speech. "MSD-HSMM" means Multi-space 
distribution Hidden Semi-Markov Model. Reproduced with permission of Junichi Yamagishi. 

30.3.3 Advanced techniques 

As HMM-based speech synthesis has come to maturity, an ever-increasing array of ad-
vanced methods are being developed to improve all aspects of the method. 

One notable technique that has been borrowed from speech recognition, then further 
improved, is the adaptation of the statistical models in order to manipulate the generated 
speech. The original goal of adaptation was to transform a set of already-trained HMMs 
so that they better fitted some new data. A typical application of this is in speaker-adaptive 
speech recognition (Chapter 28), in which the very large number of model parameters 
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cannot be re-trained on a small amount of data from one speaker, but where a relatively 
small number of adaptation transforms can be estimated. These transforms are linear and 
are applied to the model parameters (such as the means and covariances of the Gaussians). 
To understand why linear transforms work, think about the vowel spaces (Fl vs. F2) of two 
individual speakers: to map one to the other, we could apply a shift followed by a scaling 
and rotation. Automatic methods exist for estimating the transforms from either labelled 
or unlabeled speech data. Applied to speech synthesis, adaptation allows the creation of 
new voices using quite small amounts of data. These new voices may be for different 
speakers, or different speaking styles of the same speaker (e.g. emotional speech). Since 
the transforms are linear, it is also easy to interpolate between multiple transforms, thus 
allowing continuous modulation of emotion or speaker identity. Figure 30.2 illustrates 
how a speaker-adaptive HMM-based synthesizer is trained, adapted and used to synthesize 
speech. 

A recent comprehensive description of HMM Synthesis can be found in [53]. 

30.4 A HISTORICAL PERSPECTIVE 

It is useful to look back at early approaches to speech synthesis. Although the methods 
described in this section are no longer in widespread use, links can be made between these 
early methods, which were generally intended to model the behavior of the vocal tract, 
current methods (unit selection and HMM-based synthesis) and future possibilities, such 
as detailed (and controllable) physical models. 

As noted earlier, von Kempelen's synthesizer could be viewed as an early articulatory 
system. However, even the 1939 Voder of Chapter 2 already had abstracted the model of 
speech production from that of a direct analog of articulation to one that focused on key 
features that could be easily parametrized. As noted previously, this simple model was 
based on separately specifying the excitation from the spectral shaping that modeled the 
filtering action of the vocal tract. Although this characteristic of the Voder foreshadowed 
later developments, the Voder still required hand-control of the parameters, as did von 
Kempelen's synthesizer. In both cases, virtuosic performances by the human controller 
were required - a foreshadowing of the problems with later approaches based on analogs 
of the vocal tract: the limitations may not be in the modeling, but rather in the methods for 
controlling the values of the model parameters. 

By the 1950s, the OVE [20] and PAT [34] synthesizers3 introduced an intermediate 
step which allowed parameters to be entered by hand after careful spectrographic study of 
the utterance to be synthesized. (Thus, these were not real-time devices like the Voder or 
von Kempelen's machine.) OVE was a serial combination of formant resonators, whereas 
PAT was a parallel network. In each case, though, intense human effort was involved, 
but not to play the synthesizer. Rather, researchers inspected spectrograms to determine 
formant positions for different sounds, which were catalogued and recalled. 

This human labor was eliminated in the Pattern Playback of Haskins Laboratory [14], 

3OVE is the acronym for the Latin orator verbis electris, and PAT stands for parametric artificial talker. 
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FIGURE 30.3 The Haskins Pattern Playback, consisting of an optical system for 
modulating the amplitudes of a set of harmonics of 120 Hz over time, depending on 
patterns painted on a moving transparent belt. From [32]. 

which synthesized speech directly from printed spectrograms or hand-drawn spectrographic 
cartoons. The device is shown in Fig. 30.3. It played an important role in early speech-
perception research [35]. 

Fant et al. [21] had developed OVE II, shown in Fig. 30.4. This system is a typical 
formant synthesizer and uses an arrangement of resonant filters to simulate the formants 
of the vocal tract. The input to the filters is provided by an excitation model, which 
simulates the periodic signal produced by the vocal folds and the aperiodic (noise-like) 
signal produced by frication. Other systems, such as that of Holmes [27], use a parallel, 
rather than serial, arrangement of filters, but the idea is basically the same. 

The synthesizer developed by Dennis Klatt [31] was a compromise between the 
designs of Fant and Holmes, using both serial and parallel arrangements of filters (Fig. 
30.5). There are a total of 19 parameters to vary in this system. 

The 1960s witnessed the development of synthesis-by-rule programs, which took 
as input simply the sequence of phonemes, from which the parameters of the synthesizer 
were automatically predicted using complex, hand-crafted sets of rules. Klatt's formant 
synthesizer (Fig. 30.5), when driven by such a set of rules, provides the complete text-to-
speech system called KlattTalk, later commercialized under the name DecTalk. 

As noted earlier, complete text-to-speech translation needs an additional major step: 
grapheme- (text symbols) to-phoneme transcription. Umeda et al. [50] demonstrated the 
first complete text-to-speech system, and research proceeded through the 1970s and into 
the 1980s, culminating in commercially available systems. 

The principal connection between these early speech synthesizers and current meth-
ods such as unit selection and HMM-based speech synthesis is that they generally use 
some model of speech production comprising a source and a filter. Even LP-PSOLA or 
RELP-PSOLA unit selection involves a source-filter model of speech, although in RELP, 
the source "model" consists of stored samples of residual waveforms. In HMM-based 
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FIGURE 30.4 The OVE II Speech Synthesizer of Gunnar Fant. From [21]. 

speech synthesis, there is an explicit source-filter model, with the parameters of both being 
controlled by the HMM. 

The form of the source-filter model (whether it is LP-PSOLA, or STRAIGHT) will 
obviously make a significant contribution to the overall quality of the speech produced 
by the synthesizer, but even the best source-filter model is of no use unless it can be 
automatically driven - its parameter values must be provided. For example, in the case of 
HMM-based speech synthesis, there is still a substantial difference between STRAIGHT-
vocoded speech (i.e., a source-filter model being used with exactly the right parameter 
values) and speech synthesized by the HMM plus STRAIGHT waveform generation. This 
indicates that the statistical modeling is probably the current weakest link in the chain. 

30.5 SPECULATION 

As noted back in 1997 by Dutoit [18], speech synthesis is not a solved problem, at least in 
the sense that its quality is still not as good as that of natural speech (particularly for general 
text-to-speech synthesis). This statement is still true today, but there has nevertheless been 
significant progress since 1997. 

The most significant development has been HMM-based speech synthesis. This 
method is already being used in commercial products, particularly in applications where 
its low memory footprint is an advantage such as embedded systems (e.g. in-car satellite 
navigation). 

More generally, there has been an increase in the use of statistical methods in speech 
synthesis and more application of data-driven learning techniques. The manual labour 
and high costs associated with constructing a state-of-the-art unit-selection system are a 
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FIGURE 30.5 The Klart Synthesizer. Nineteen variable control parameters are identified, 
including the new voicing source parameters OQ (open quotient) and TL (spectral tilt). 
From [32]. 

substantial barrier to the widespread use of that technique. If methods can be found to 
automatically construct voices, with little or no manual intervention, then the range of 
applications for speech synthesis can be dramatically extended. Data-driven, statistical 
techniques offer the most promising route to this goal. 

Dutoit also notes that natural speech has a kind of variability that is not observed in 
synthetic speech, but that adding randomness to the parameter streams in current systems 
just makes them sound worse. Further work in this area is still required. 

30.5.1 Physical models 

The most successful models of speech at the moment are quite abstract: they operate in the 
spectral domain and do not have any realistic representation of vocal tract shape. Physically-
plausible models of the vocal tract are slowly improving, although there is not yet a good 
enough method for automatically controlling their parameters to generate speech and they 
tend to have difficulties with sounds such as stops. If these problem can be solved, then 
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physical models may one day offer the ultimate in flexibility and realism for generating 
artificial speech. 

30.5.2 Sub-word units and the role of linguistic knowledge 

Speech synthesis involves the construction of new words and sentences from sub-word 
units. In diphone synthesis, the unit inventory (the list of types of unit) is obvious: one of 
each required diphone. But in unit selection and HMM-based speech synthesis, the unit 
inventory is not quite so explicit. 

Unit selection uses a large database of labelled speech. Since the precise linguistic 
context of every single unit (every token) is different (absent duplicated sentences in the 
database), we might say the number of unit types is the same as the number of tokens. 
However, this is not helpful when we wish to construct a novel sentence: we will almost 
never find the correct units in the database. Instead, it is essential to define classes of 
equivalent or interchangeable units so that we can re-use units in the database to make 
novel sentences. For example, if we think that the only contextual linguistic properties that 
influence the sound of a phone are its left and right neighbors, then the inventory we should 
choose is triphones. In reality, many other properties of the context influence the sound of 
a phoneme, and this is what the target cost attempts to model. The target cost is used to 
'score' candidates based on their contextual match (in terms of some linguistic properties) 
to the target sentence. Some candidates from the speech database may receive the same 
score from the target cost function. We may then consider them to be a single type of 
unit: they are linguistically equivalent, given the current target sentence being synthesized, 
and cannot be differentiated based on their linguistic properties. The target cost function 
therefore implies a unit inventory, albeit in a rather opaque fashion that is hard to analyze. 

In HMM-based speech synthesis, the large number of phonetic-prosodic contexts 
taken into account results in a potentially vast number of unit types, but in practice the 
HMM states are clustered using a decision tree. The effective unit inventory is therefore 
the set of leaves of the tree - the state clusters. 

The state clustering decision tree in current approaches to HMM-based synthesis (as 
well as in Donovan's method [17]), is performing a very similar role to the target cost 
function in unit-selection synthesis. Both are describing which units are equivalent and 
interchangeable in terms of their linguistic properties. In unit selection, such units receive 
the same target cost. In HMM synthesis, they end up in the same state cluster. 

This data-driven construction of linguistic classes - the basic building blocks of 
speech - is a powerful concept. With a larger database of speech, larger, more fine-grained, 
unit inventories are possible. Automatic methods for defining the number of unit types 
typically have the attractive property of scaling the complexity of the system to suit the 
available data. 

30.5.3 Prosody matters 

Everyone agrees: prosody matters for synthetic speech. Yet the field of prosody research 
is characterized by many competing theories, models and techniques with little agreement 
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as the most promising way forward and certainly no clear winner. Prosody is inherently a 
difficult thing to predict, for two principal reasons: 1) it depends on many other layers in 
the linguistic hierarchy, all the way up to the meaning of the sentence being spoken, the 
pragmatic context, the intent of the speaker etc., and 2) for any given sentence, there is 
more than one acceptable prosodie pattern. 

The dependency on meaning and para-linguistic information such as speaker state 
(emotion, for example) means that prediction from plain text input requires many assump-
tions to be made. We could say that current models can predict 'inoffensive' prosody (they 
sound bored, or boring), but they cannot generally predict 'appropriate' prosody for ar-
bitrary input. The fact there there is 'more than one right answer' makes learning from 
data hard since any real dataset will contain just one possible pattern and not represent all 
acceptable patterns. It also makes evaluation hard, because comparing synthetic speech 
with single natural examples may be misleading, and because human listeners in subjective 
tests may make highly variable judgements about what constitutes 'good' prosody. 

The advent of unit selection caused many researchers to lose interest in prosodie 
modeling because the prosody produced by selecting units based on fairly simple linguistic 
features tended to be better than that generated by an explicit model. However, HMM-based 
synthesis requires more explicit modeling (generally only at the symbolic level) and this 
may be re-awakening interest in prosody modeling for speech synthesis. It is possible that 
many of the statistical methods described in Chapters 25-28 in this book will begin to see 
greater application to speech synthesis in general, and to prosody analysis and generation 
in particular. 

30.6 TOOLS AND EVALUATION 

Dutoit [18] noted that a critical basis for further progress in speech synthesis is the avail-
ability of a synthesis system with full control of its parameters for research purposes. More 
generally, research toolkits are critical to progress in fields like speech synthesis, where 
a wide variety of skills and considerable amounts of time are required to build even a 
conventional system. When such toolkits are modular, they also enable direct comparisons 
between competing techniques, simply by changing one module in the system. A number 
of speech synthesis toolkits are available and in use by the research community, including4: 

• MBROLA: A waveform generation module from the Faculté Polytechnique de Mons. 
http://tcts.fpms.ac.be/synthesis/mbrola.html 

• Festival: A complete and widely-used open source text-to-speech toolkit from the 
University of Edinburgh and Carnegie Mellon University. It includes diphone and 
unit-selection modules and supports HMM-based synthesis using HTS (see below). 
http://www.cstr.ed.ac.uk/projects/festival/ 

4Unfortunately, this printed page is fairly static, and the Web changes rather frequently. If the Web pages cited 
here do not lead to the desired systems, we apologize. 
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• Mary: Another complete open source text-to-speech toolkit from the Deutsche 
Forschungszentrum für Künstliche Intelligenz, ht tp: / /mary.dfki .de/ 

• HTS: A toolkit for HMM-based speech synthesis (training the models and waveform 
generation) from Tokuda at the Nagoya Institute for Technology and his collaborators, 
built as an extension to the popular НТК toolkit, h t tp : / /h ts .sp .ni tech.ac . jp / 

Although there are some signal-based measures for the quality of synthetic speech 
(e.g., Mel-cepstral distortion between synthetic and natural examples of the same sentence), 
there is as yet no substitute for subjective tests using human listeners. Such tests are time-
consuming and expensive to conduct. Within-system tests are routinely used for determining 
which of a set of competing techniques (e.g., models for predicting prosody) are preferred 
by listeners. Comparisons between systems are harder to perform, since only a few complete 
systems are freely available. The annual Blizzard Challenge [4] is the only open evaluation 
in which many different systems are compared in a large-scale listening test with many 
hundreds of listeners. Although the Blizzard Challenge results provide reliable information 
about the naturalness and intelligibility of complete systems, they do not directly tell us 
why some systems are preferred by listeners. 

30.6.1 Further reading 
[51] and [46] are recommended reading for broad coverage of speech synthesis. 

30.7 EXERCISES 

30.1 When a speech transformation to change male-sounding speech into female-sounding speech is 
performed, it is necessary to raise both the fundamental frequency and the formant frequencies. Give 
a physiological explanation for why this strategy seems to work. 

30.2 Describe at least three important steps in a modern text-to-speech synthesizer. 

30.3 Give four examples (for English) where letter-to-sound conversion could get into trouble. Can you 
design a system to avoid or alleviate these errors? 

30.4 Unit selection synthesizers typically use a join cost which measures how well two speech segments 
will join together. Give some examples of the acoustic properties of the speech signal that might be 
used to calculate the join cost. 

30.5 Describe some of the factors typically used in the target cost of a unit selection synthesizer 

30.6 Identify as many similarities as possible (both general concepts and specific details) and point out 
differences in the way speech waveforms are created from a parametric representation in the Haskins 
Pattern Playback system, the OVE II formant synthesizer and the STRAIGHT vocoder. 
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30.8 APPENDIX: SYNTHESIZER EXAMPLES 

30.8.1 The Klatt Recordings 
Beginning with the Voder, much research (interrupted by World War II) has been dedicated 
to the development of speech synthesizers. Much of this work was summarized in 1987 in 
a monumental article by Dennis Klatt [32]. Included with Klatt's paper was a plastic record 
with a large number of synthesizer recordings.5 We list a number of these recordings here 
with a few comments. 

30.8.2 Development of Speech Synthesizers 
Voder: This is a recording of the Voder that was described in Chapter 2. A block diagram 
of the Voder was shown in Figs. 2.4 and 2.5. 

Pattern Playback: See Fig. 30.3 and the accompanying discussion. 

PAT, the Parametric Artificial Talker: This device, developed at the University of 
Edinburgh and consisting of three resonators in parallel with three frequency controls, 
was introduced by Walter Lawrence to American audiences at an MIT conference in 
1956. Three additional parameters were used for excitation control. A moving glass slide 
converted painted patterns to control parameters. 

OVE or OVE I: OVE was also introduced at the 1956 MIT conference as a cascade 
connection of three formants, with formants 1 and 2 controlled by the movement of a 
mechanical arm. Hand-held potentiometers controlled the frequency and amplitude of the 
voicing source. Since OVE spoke only vowel-like sounds, no noise source was needed. 

PAT in 1962: Updated version of PAT. Amplitude controls and a separate fricative were 
added. At the 1962 Stockholm Speech Communication Seminar, the synthesizer attempted 
to match a naturally spoken sentence. 

OVE II in 1962: At the same seminar, the updated OVE II also matched, quite success-
fully, the same spoken utterance. See Fig. 30.4. 

Holmes' Sentence on OVE II: John Holmes worked very hard to try to match the 
sentence "I enjoy the simple life" to make it indistinguishable from the original. 

The Same Sentence by Holmes: Using his own parallel synthesizer, Holmes tried 
again. 

Male-to-Female Transformation with DecTalk: The fundamental frequency was 
multiplied by 1.7, and the formants and glottal wave shape were varied. 

5The soundfiles of these recordings may be heard at http://www.icsi.berkeley.edu/eecs225d/klatt.html. 
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The DAVO Articulatory Synthesizer: George Rosen built the original model in 
1958 [44]. It was modified by Hecker [26] to include a nasal tract. 

Vocal Cord-Vocal Tract Synthesis: Flanagan and Ishizaki [22] simulated a speech 
synthesizer in which the vocal cord and vocal tract operations were interdependent. 

The independence of source and filter in nearly all synthesizer models neglects the 
possible effect that the dynamics of the vocal tract can alter the dynamic properties of 
the excitation function. By overtly including cord-tract interaction, Flanagan et al. have 
edged one step closer to a true physiological model, but it is still an open question as to 
the perceptual effect of this step. The turbulent noise source allows generation of noise 
anywhere in the model for fricative sounds. Could this system be improved by using digital 
waveguides? 

30.8.3 Segmental Synthesis by Rule 

Early synthesis-by-rule programs began with a phoneme string; prosodie features were 
entered by hand to match the original utterance. 

Kelly-Gerstman [29] Synthesis by Rule: They used a basic element that resembles 
a digital waveguide. A section was shown in Fig. 11.3. This system was demonstrated at 
the Copenhagen 1961 International Conference on Acoustics. 

British Synthesis by Rule, 1964: Holmes et al. demonstrated this program at the 
fall meeting of the Acoustical Society in Ann Arbor, Michigan, 1964. 

Diphone Concatenation Synthesis by Rule: Dixon and Maxey [16] of IBM 
demonstrated this program at the 1967 MIT Conference on Speech Communication and 
Processing. 

Synthesis by Rule with an Articulatory Model: Coker [9] also demonstrated this 
device at the same 1967 MIT Conference. 

30.8.4 Synthesis By Rule of Segments and Sentence 
Prosody 

The previous examples did not include prosodie features. These examples, in addition to 
using phoneme strings as inputs, also include stress marks and some syntactic information. 

First Prosodie Synthesis by Rule: Mattingly discussed this as part of his report on 
speech research [38]. 

Sentence-Level Phonology Incorporated in Rules: Klatt [30] used phonology 
to generate segmental durations and a fundamental frequency contour, as well as sentence-
level allophonic variations. The inputs were phoneme strings plus stress and syntactic 
symbols. 
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Rules from Linear Prediction Diphones and Prosody: Olive [41] demonstrated 
this system at ICASSP '77. 

Rules from Linear Prediction Demisyllables: Browman [5] also used prosodie 
rules. 

30.8.5 Fully Automatic Text-To-Speech Conversion: 
Formants and diphones 

First Text-to-Speech System: Umeda et al. [50] designed this system, based on an 
articulatory model. 

Bell Laboratories Text-to-Speech System: Coker et al. [10] demonstrated this 
system at the 1972 International Conference of Speech Communication and Processing in 
Boston. 

Haskins Text-to-Speech System: Cooper et al. [15] used the Mattingly phoneme-
to-speech rules, coupled with a large dictionary [38]. 

Reading Machine for the Blind: Kurzweil [33] demonstrated this commercially 
available machine, which included an optical scanner, on the CBS Evening News. 

Votrax Type-n-Talk System: Gagnon [23] demonstrated this cheap device at the 1978 
ICASSP. He implemented the research by Elovitz et al. [19] that converted letters to sounds. 

Echo Low-Cost Diphone Concatenation: This was demonstrated in 1982. 

MITalk System: Allen et al. [1], [2] demonstrated a full-blown text-to-speech system, 
using complicated heuristics to translate graphemes to phonemes. The synthesizer was 
created by Klatt. 

Multi-Language Infovox System: This was a commercial system [37] that was based 
on the research of Carlson et al. [6]. It was developed at the Royal Institute of Technology 
in Stockholm and demonstrated at ICASSP '76 and ICASSP '82. 

The Prose-2000 Commercial System: Original research was done at Telesensory 
Systems by James Bliss and associates [24], [25]. 

Klattalk and DECtalk: This was Dennis Klatt's final system, which was licensed to 
Digital Equipment Corporation. 

Bell Laboratories Text-to-Speech System: Olive and Liberman [42] used the 
Olive diphone synthesis strategy [41] in combination with a large morpheme dictionary 
[12] and letter-to-sound rules [8]. The system was demonstrated at the 1985 ASA meeting. 
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30.8.6 The van Santen Recordings 
[51] also included a set of synthesizer demonstrations; given the move toward concatenati ve 
synthesis in the 1099s, most of the examples are of this variety. Here we briefly summarize 
the audio demos on the CD accompanying this reference as well as being described in the 
text. 

DECtalk: This demo is from an updated version of the system described above. 

Bell Laboratories Text-tO-Speech System: Similarly, this is an updated version 
of the diphone-based system described above. The system has migrated to a commercial 
product called TrueTalk. 

Orator: Bellcore has a commercial system that is based on demisyllable concatenation. 

EuroVOCS: This is a diphone concatenation system. 

30.8.7 Fully Automatic Text-To-Speech Conversion: 
Unit selection and HMMs 

The majority of research systems and commercially-available products now use either unit-
selection or HMM-based synthesis. Diphone and formant synthesis are only used in niche 
applications where, for example, a very small memory footprint is necessary (e.g. embedded 
systems), or extreme manipulations of the speech are more important than naturalness (e.g., 
screen readers for the blind requiring very fast speaking rates). 

Research systems Section 30.6 lists some research systems, including Festival and 
Mary, which are both fully automatic text-to-speech systems. These give a good indication 
of the state-of-the-art in academic research. They both have web sites with interactive 
demonstrations. Another notable research system is CHATR [28], from ATR in Japan, 
which was the first unit-selection system and had many characteristics still found in current 
systems; its successor is Ximera, in which a single-speaker database of over 100 hours of 
speech is employed. 

Commercial products The names and availability of commercial products, and of the 
companies producing them, is constantly changing. Commercial products that are typical 
of the current state of the art (circa 2011) are made by large companies such as Acapela, 
AT&T, Loquendo and Nuance, although there are also a number of smaller companies 
operating in this market, often targeting specific applications such as in-car navigation 
(e.g., SVOX) or computer games (e.g., Phonetic Arts). 
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PITCH DETECTION 

31.1 INTRODUCTION 

In some of the previous chapters, we have stressed the model of speech and music production 
as consisting of one or more excitations that drive a time-variable filter. In this chapter we 
focus on the excitation model, and in particular on the extraction of pitch frequency. The 
time-variable filter that results in the spectral envelope can be estimated in different ways, 
including filter banks, cepstra, and linear prediction (see Chapters 19, 20, and 21), as well 
as combinations of these approaches (see Chapter 22). 

Modeling of the excitation function of speech requires paying particular attention 
to the following components: (a) the periodic or nearly periodic opening and closing 
of the glottis during voicing; (b) the shape of the glottal pressure pulse; (c) the position 
in the vocal system of the constriction that creates turbulent flow during unvoiced sound; 
(d) the nature of the excitation function during stop consonant articulation; (e) how voicing 
and turbulence combine during articulation of the voiced fricative sounds; and (f) possible 
nonlinear interactions between excitation and acoustic tube response. 

In many ways, accurate modeling of the excitation parameters is more complex than 
modeling of the time-varying linear filter that we use to represent the vocal tract. Channel 
vocoder researchers in the 1950s must have been somewhat aware of this when they stated 
that vocoders of that era lacked good pitch detectors. During this period and later (into the 
1960s and 1970s), many novel methods of tracking the voice fundamental frequency were 
invented; these included algorithms for distinguishing buzz (quasi-periodic voicing) from 
hiss (turbulent air flow; therefore, noiselike excitation). Although a comprehensive model 
of human speech excitation remains elusive, here we outline the substantial progress that 
has been made. 

31.2 A NOTE ON NOMENCLATURE 

As discussed in Chapter 16, the word pitch (in the context of speech processing), as defined 
operationally by psychoacousticians, is the frequency of a pure tone that is matched by 
the listener to a more complex (usually periodic) signal. This is a subjective definition. 
When engineers speak of a "pitch detector," they usually refer to a device that measures 
the fundamental frequency of an incoming signal; this is an objective definition. In this 
chapter, pitch perception refers to the subjective result and pitch detection refers to an 
objective result. Pitch detection and fundamental frequency estimation are often used 
interchangeably. 
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»400Hz Frequency 

FIGURE 31.1 Dudley's slope filter to enhance the fundamental frequency component. 

31.3 PITCH DETECTION, PERCEPTION AND ARTICULATION 

In Chapter 16, several models of pitch perception were treated. Many ideas in pitch detection 
(but not all of them) are reminiscent of these models, which yielded insights that help us 
invent better pitch detectors. However, we gain additional insight by considering how the 
excitation function in speech or music is produced. 

Homer Dudley's design of the original channel vocoder included a pitch detector. At 
that time, many psychoacousticians believed Helmholtz's assertion that the fundamental 
frequency component must exist at some level in order to perceive the pitch. It is interesting 
to speculate whether Dudley was influenced by this belief. The Dudley pitch detector 
was based on the articulatory premise that the voiced speech signal always included the 
fundamental frequency component; his design consisted of a slope filter designed to enhance 
this component to make it easier for the hardware to correctly measure its frequency. The 
slope filter is shown in Fig. 31.1. 

It can be seen from the sketches of Fig. 31.2 that passage through the slope filter of 
a signal with almost equal first and second harmonics greatly reduces the second harmonic 
relative to the fundamental. 

A simple way to extract the fundamental period is shown in Fig. 31.3. First, the 
positive peaks of the signal are found; this is followed by the detection algorithm shown in 
the figure. Dudley made use of the knowledge that unadulterated speech usually (perhaps 
always) contains a significant fundamental component. Thus, for example, Charles Vader-
son successfully demonstrated a channel vocoder with Dudley's pitch detector in 1950. 
However, many practical communication systems (e.g., telephones) are band limited, and 
the fundamental component of the speech may be completely missing.1 Furthermore, en-
vironmental noise may completely mask the fundamental. This leads us to describe more 
complex signal-processing algorithms for conditioning the speech prior to detection. 

In many cases, some form of an autocorrelation function (typically on a low-pass-
filtered form of the speech signal) is used as the core methodology. For a periodic signal 
(with period within the passband of the filter), the peaks of the function correspond to peaks 
at multiples of the signal period, and to some extent the influence of noise is reduced. 

1 In many telephone systems the components below 300 Hz are strongly attenuated. 
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FIGURE 31.2 Effect of the slope filter on a two-component signal. The three panels on 
the left show the first and second harmonics of a complex tone and the sum of the two. 
The three panels on the right show that the second harmonic has been greatly attenuated 
by the slope filter, leading to a sum that closely resembles the first harmonic of the tone. 

31.4 THE VOICING DECISION 

Certain speech sounds, such as the voiceless fricatives /s/, /sh/, /th/, and /f/, can be modeled 
as the output of an acoustic tube complex when a portion of the tube has very narrow 
cross section (a constriction), causing the airflow to become turbulent. For our present 
discussion, it is sufficient to equate turbulence to the presence of a random noise source. 
For example, in the production of /s/, the narrow, turbulent cross section is located between 
the tongue tip and upper teeth. Thus, the source is close to the mouth opening and the 
excitation is shaped by various reflections in the vocal tract. A reasonable model of the 
excitation for these sounds is that of white noise, which is then shaped by the vocal tract 
for that sound. 

The voiced fricatives /z/, /th/ (as in the), /zh/ (as in azure), and /v/ are controlled 
by the same vocal tract shape as their voiceless counterparts, but, in addition, the vocal 
cords are simultaneously vibrating. Thus, there are two sources of excitation in this case; 
furthermore, since the periodic excitation is formed at the glottis and the noise is formed 
near the lips, the two sources excite the vocal tract quite differently. 

The voiceless plosives, /p/, /t/, and /k/, involve a transient burst followed by noiselike 
aspiration. As discussed in Chapter 17, the formant transitions at the start of voicing are 
auditory cues for distinction among these three sounds, so this has to be part of an articulator 
model. In Chapter 32, we relate how these modeling issues have been dealt with in vocoder 
design. 

A number of features have been used to train and use a classifier for the voicing 
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FIGURE 31.3 Extraction of the pitch period. Detections are only permitted when a peak 
value (indicated by the vertical lines with arrows) exceeds a time-varying threshold 
determined by the previous detection's amplitude and time, as shown by the solid 
horizontal and exponentially decreasing curves. 

decision, such as spectral slope (often estimated by normalizing the first autocorrelation 
coefficient by the energy), high frequency energy vs. low frequency energy, and features 
related to confidence in a pitch decision. In experiments performed by one of the authors, 
speaker-specific neural networks incorporating feature selection were found to be very 
useful for this classification task [12]. 

31.5 SOME DIFFICULTIES IN PITCH DETECTION 

Figure 31.4 illustrates some of the problems encountered in pitch detection. Figure 
31.4(a) shows two speech waveforms; the bottom signal has a period approximately one-
fourth of the top signal. This illustrates the large dynamic range of the voice fundamental 
frequency. The pitch of some male voices can be as low as 60 Hz, whereas the pitch of 
children's voices can be as high as 800 Hz. Figure 31.4(b) shows how the period can 
fluctuate drastically and almost instantaneously. The leftmost period is quite short, but the 
next five periods are more than twice as long before snapping back to shorter periods. 
This kind of behavior makes pitch tracking difficult. Figure 31.4(c) shows a rapid change 
in the spectrum caused, for example, by sudden closure as in a vowel-to-nasal transition. 
Although the fundamental frequency has not changed drastically, pitch detection based 
on waveform analysis can suffer. Figure 31.4(d) shows a transition region from aperiodic 
(hiss) excitation to quasi-periodic (buzz) excitation. For the precise transition instant to be 
caught, a fast-acting time-domain detector would be best. Finally, Figs. 31.4(e) and 31.4(f) 
show the effect of speech degradation that is caused by telephone transmission and added 
acoustic noise, causing extra problems in pitch extraction. 

31.6 SIGNAL PROCESSING TO IMPROVE PITCH DETECTION 

Several methods of conditioning the speech signal to improve pitch detection have proved 
useful. Among these, we include low-pass filtering, spectral flattening and correlation, 
inverse filtering, comb filtering, cepstral processing, and high-resolution spectral analysis. 
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FIGURE 31.4 Time-domain waveforms illustrating six examples of difficulties in pitch 
detection. 
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FIGURE 31.5 Full-band speech signal. 

Low-pass filtering: We know from Chapter 16 that human pitch perception pays more 
attention to the lower frequencies. Interestingly, estimating the pitch period by eye is 
typically easier with low-passed waveforms such as those shown in Fig. 31.6 than with 
full-band waveforms such as those shown in Fig. 31.5. It thus seems plausible that a pitch-
detection device would have less trouble finding the correct period by analyzing the signal 
of Fig. 31.6 than that of Fig. 31.5. This has proved true in practice. 

Spectral flattening and correlation: A more sophisticated concept was proposed by 
Sondhi [18]. It is based on the observation that a Fourier series representation of harmonics 
of equal amplitude and zero phase results in a signal that is very much like a pulse train. 
Sondhi proposed that the original signal first be spectrally flattened. An approximation to 
this operation is shown in Fig. 31.7, where the outputs of a bank of bandpass filters (BPFs) 
are divided by their own energy and the components added. 

The sum is now sent through an autocorrelator, which creates a zero-phase time 
function, thus approximating the equal harmonic-zero-phase criterion proposed by Sondhi. 
Figure 31.8 shows the effect of autocorrelation. 

. wW$\0§ 

FIGURE 31.6 Low-pass filtered speech signal. 
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FIGURE 31.7 Spectral flattening and its effect on the speech signal; FWR, full-wave 
rectification. From [18]. 

\, 

L fcz 
tz \ 
L_ 
t 

|L I I 

*,· /> 
- * f * 

t I 
A A 

_ l__^u_ 
, А л, 

JL A 
I I * . 
1 \ 

l 
Д 

L L__ 
L__ ί 

Lag 15 ms —i -
FIGURE 31.8 Autocorrelation function of spectrally flattened speech, with successive 
30-ms sections with 15-ms overlap. From [18]. 



462 CHAPTER 31 PITCH DETECTION 

Inverse filtering: This concept begins with the hypothesis that the speech signal is the 
convolution of an excitation and a vocal tract filter. If one were able, in some manner, to 
specify the time-varying vocal tract at all times, then the speech signal could be passed 
through a filter with a spectrum inverse to that of the vocal tract filter; the output, ideally, 
should be the glottal waveform, again simplifying pitch tracking. Chapters 19-21 describe 
methods for estimating the spectral envelope; inverse filtering, at least for the relatively 
simple vowel sounds, consists of building a linear system having zeros where the original 
spectral envelope has poles. Markel [10] has implemented inverse filtering as part of his 
SIFT algorithm for fundamental frequency estimation.2 

Comb filtering: The speech signal is sent through a multitude of delays, corresponding 
to all possible (discrete) periods of the input. The system is shown in Fig. 31.9. 

For 10-kHz sampling and a fundamental frequency range of 50-500 Hz, the number 
of possible periods (in samples) ranges from 20 to 200. Thus the comb filter of Fig. 31.9 
must contain at least 181 taps; at each tap the signal and its delayed version are subtracted. 
If the signal is periodic, one of the tapped outputs should be zero, so an estimate can be 
made by examining the tap outputs. 

Ross et al. [14] have implemented a comb-filter pitch detector. 

Cepstral pitch detection: As elucidated in Chapter 20, cepstral analysis performs decon-
volution of the source and filter. In Chapter 20 we stressed the application to the spectrum 
envelope but, as shown by Noll, [13] the high-time portion of the cepstrum contains a very 
clear hint about the fundamental frequency. Figure 31.10 shows sequences of log spectrum 
cross sections and the resulting cepstra for a male (two left columns) and a female (two 
right columns). Note the large peak corresponding to the pitch period in the second and 
fourth columns. 

Finally, we should mention that simply measuring the spectrum with a high reso-
lution illuminates the positions of the harmonics. In the next section, we show how this 
straightforward operation can lead to a powerful pitch-detection algorithm. 

31.7 PATTERN-RECOGNITION METHODS FOR PITCH DETECTION 

It has often been found that multiple sources of information (or multiple estimators of 
a variable) provide a more reliable estimator. For instance, it can be easily shown that 
the estimate of a variable's mean formed by averaging N independent measurements has 
a variance that is \IN times the variance of a single measurement. More generally, the 
use of multiple estimators permits a secondary decision process to consider agreement 
among estimators. In practice, it is often difficult to determine whether measurements are 
independent, but even if there is some degree of dependence, improvement is often made. 

An example of the use of parallelism for pitch detection [5] was the development of 
such a program that consisted of four major steps: 

2SIFT stands for simplified inverse filter tracking. 
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FIGURE 31.10 Cepstral analysis for pitch detection. Panels 1 and 3 show successive 
spectral cross-sections and panels 2 and 4 show the corresponding cepstra. From [13]. 

1. A low-pass filter to smooth the speech wave. 

2. A processor that generated six functions of the peaks of the filtered speech. 
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FIGURE 31.11 Estimation of periods by elementary pitch detectors. 

3. Six identical elementary pitch-period estimators (PPE), each working on one of the 
functions. 

4. A global, statistically oriented computation based on the results of step 3. 

Figure 31.11 depicts the six measurements. Each is input to a PPE; the task of the 
PPE is to eliminate spurious peaks and save those that are separated by the correct period. 
Each PPE performs the function described by Fig. 31.3. 

The box labeled final pitch-period computation in Fig. 31.11 compiles a histogram 
of all measured intervals between peaks as outlined in Fig. 31.12. To avoid delays, the only 
candidates for most probable period are chosen from among the most recent, and one of 
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FIGURE 31.12 Final estimate of the pitch period: (a) outputs of the six PPEs, 
(b) matrix of the six outputs; each of the entries in the first row of the matrix is a candidate 
for the final estimate. Adapted from [5]. 

these six is selected, based on the histogram of all periods. This set of measurements can 
be repeated as often as desired; typically, a new selection is made every 5-15 ms. 

The histogram obtained from this algorithm can also be used to produce a buzz-hiss 
decision [6]. 

As computer processing has increased in speed, there has been an evolution toward 
new algorithms that require such speeds to operate in real time. One set of algorithms 
extends the histogram idea discussed here by including more measurements. For example, 
instead of preprocessing with just a single low-pass filter, the speech is passed through a 
bank of 19 bandpass filters covering the range 200-2000 Hz. The output of each filter is 
passed through an elementary pitch detector similar to the PPE described earlier. There 
now exists a total of 38 outputs (since both positive and negative peaks are represented). 
Also, the histogram of times between pitch peaks is generalized somewhat to include times 
between peaks that are separated by several other peaks; this is equivalent to the origi-
nal proposal by Licklider [8] to compute the correlation function of the spike train from 
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FIGURE 31.13 Harmonic pitch-detection algorithm. From [17]. 

simulated neurons. 
Licklider's concept, plus later ideas that were similar [1], [11], [9], [3], based its 

measurements on the speech wave directly or on a low-pass filtered version of the speech. 
The same notion of computing a histogram, but one based on high-resolution spectral 
analysis, was carried out by Schroeder [15] and Seneff [17]; the latter will be briefly 
summarized. 

Figure 31.13 shows a spectral magnitude cross section containing seven peaks. (This 
spectrum is based on a 20-ms windowed section of the speech.) The peaks are ordered, as 
shown. Then the frequencies of peaks 1 and 2 are marked. Then peak frequencies 1,2, and 3 
are marked; then 1, 2, 3, and 4 are marked, and so on, until all seven peak frequencies have 
been marked in this manner. A histogram is then computed (bottom right) of the intervals 
shown in Fig. 31.13, and the winner is picked to be the interval that occurs with the greatest 
probability. 

The above two algorithms have in common the concept that performing a collection 
of procedures on the conditioned speech can lead to improvement. A somewhat different 
statistical approach was developed by Goldstein [7] and implemented by Duifhuis [4]. In 
their method, a single, powerful algorithm is employed but the parameters are adjusted to 
be successively tuned to the specific fundamental frequency. In other words, the hypothesis 
is advanced that the result is, for example, f\. This hypothesis is then tested by comparing 
the spectrum of the signal with the spectrum of the hypothetical signal, and a score is 
obtained. The procedure is now repeated for /2, /з . and so on, and the best score determines 
the winner. The crucial point is that all permissible hypotheses go through the test. An 
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FIGURE 31.14 Goldstein-Duifhuis optimum processor algorithm. 

implementation of this algorithm is shown in Fig. 31.14. This procedure exemplifies the 
maximum likelihood approach of testing all reasonable hypotheses and choosing the one 
having the greatest probability. 

31.8 SMOOTHING TO FIX ERRORS IN PITCH ESTIMATION 

Physiological constraints limit the rate at which the voice's fundamental frequency can 
vary, and this can be exploited to correct errors made by local pitch estimators. Median 
smoothing is a popular technique invented by Tukey [20] which looks at a sequence of 
final decisions and treats this sequence as a collection of points on a histogram. Thus, for 
example, the sequence 5, 6, 12, 7, 8 is plotted as a discrete probability density in the lower 
part of Fig. 31.15 and as a cumulative probability distribution in the upper part. 

The median is the x position for which P is one-half. In Fig. 31.15, the median is 
7; thus, the center of the sequence is replaced by 7, so the new sequence becomes 5, 6, 7, 
7, 8. In this example, the outlier 12 was replaced. In this case, as in many others, median 
smoothing is preferable to a linear filter, for which the effect of an outlier would spread to 
other samples. In the case in which a one represents a buzz (voiced) excitation and a zero 
represents a hiss (unvoiced), a sequence of 1, 1, 0, 1, 1, the zero gets changed to a one 
and the modified sequence is 1, 1, 1, 1, 1. Thus, median smoothing can also be used to fix 
buzz-hiss errors. 

In practice, median smoothing is applied to sequences in much the same way as a 
symmetric FIR filter. That is, for each window of ./V points, where N is an odd integer, the 
value of point (N + l ) /2 in the window (for a new, smoothed sequence) is set equal to 
the median of the points in the window. The window then is stepped along by one sample 
point, and the function is recomputed. This repeated sequence of operations is then referred 
to as an jV-point smoothing. 
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FIGURE 31.15 Illustration of median computation for a sequence of numbers. The lower 
graph shows a discrete density; the upper shows the cumulative distribution; median 
corresponds to the point where cumulative distribution is 0.5. 

By cascading a three-point median smoother with a five-point median smoother 
(Fig. 31.16), one can transform the presmoothing pitch contour (top figure) into the result 
shown on the bottom. In this modification of the basic median smoother, two additional 
constraints are imposed: (a) if the low-pass signal energy is below a threshold, the result 
is set to hiss (zero in the figure), and (b) if the variance of three successive results is too 
large, the median smoother output is also set to hiss. 

A second approach to smoothing pitch estimates is via dynamic programming (DP). 
DP was introduced in Section 24.2.2 as the principle that allowed dynamic time warping to 
efficiently find the best path through a matrix of local-match scores subject to constraints 
on local transitions. By the same token, it can be used to find the sequence of reported 
pitch values that optimizes a combination of consistency with an underlying period strength 
feature (such as autocorrelation) and a transition penalty favoring continuity or smoothness. 

• . * Input 
. pitch 

contour 

· · · . · After 
3-point 
median 
smoother 

··—«»»»»» · 
After 
5-point 
median 
smoother 

FIGURE 31.16 Example of median smoothing for a sequence derived from a speech 
signal. Each point is computed every 10 ms. Zero values correspond to the decision that 
speech for that frame is unvoiced. From [17]. 
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FIGURE 31.17 Illustration of the progressive normalization applied in Yin [2]. A 20 ms 
excerpt of female speech is shown in part (a); its raw autocorrelation (over a 40 ms 
window) shown in part (b) shows a number of additional maxima around the correct peak 
at 0.004 s. Part (c) shows the squared difference function (i.e. approximately part (b) 
flipped and shifted), as well as its the cumulative mean (the thicker, lighter line). Part (d) 
shows the trace of part (c) normalized by its cumulative mean. Now the true period of 4 ms 
is easily detected as the first minima below a threshold of 0.1 (the shaded region). 

DP-based smoothing was incorporated in systems such as the one reported in [16]. A later 
application to normalized cross-correlation coefficients in the "robust algorithm for pitch 
tracking" (RAPT) algorithm was reported in [19]. RAPT is the basis for the get-fO pitch 
extraction software that is widely used as a reference in speech processing; DP is extremely 
effective in evaluating each alternative in regions of locally-ambiguous pitch, and finally 
choosing the pitch that gives the best overall continuity through time. 

31.9 NORMALIZING THE AUTOCORRELATION FUNCTION 

As mentioned above, the local autocorrelation of a signal x over a window of length W 
starting at time t, 

(τ)=Σ>(0*(ί' + τ) (31.1) 

is a natural way to detect periodic repetitions in a waveform since it will show a maximum at 
any period τ where the signal (approximately) repeats. Autocorrelation, however, presents 
a number of practical difficulties, as illustrated in Figure 31.17: for the short fragment of 
voiced female speech shown in part (a), the autocorrelation in part (b) shows many peaks. 
Although visually it is fairly easy to tell that the peak at 4 ms (corresponding to a pitch 



470 CHAPTER 31 PITCH DETECTION 

of 250 Hz) is the "right" one, it proves difficult to design a thresholding scheme that will, 
at the same time, ignore the large peak around zero lag, and be robust both to suboctave 
errors (the second-order peak at lag 8 ms) and to superoctave errors (i.e., the peak due to 
the strong second harmonic at 2 ms). 

These problems were addressed by de Cheveigné and Kawahara in their pitch detector 
Yin [2]. Instead of autocorrelation, they considered the squared-difference between the 
signal and its delayed version, 

t+W 

ά,{τ) = Σ{χ{ί')-χ{ί' + τ))2 (31.2) 

Note that this can be expressed in terms of the autocorrelation: 

4(τ) = Γ,(0) + Γ,+τ(0)-2Γ,(τ) (31.3) 

where rt(Q) is simply the energy of л; within the window starting at t, and thus for signals 
with stationary energy, d, is approximately a negated and offset version of rt, as shown in 
Figure 31.17 (c). 

Introducing the energy terms r, (0) and rf+x (0) goes some way towards clarifying the 
true period as the lag at which the difference function becomes close to zero, but there 
is still potential for confusion in the region of τ = 0. To eliminate this, the final stage of 
processing normalizes the difference function by its cumulative mean up to that value, i.e., 
they define a cumulative-mean-normalized difference function: 

^) = T^L· (31.4) 

This function, shown in Figure 31.17 (d), has a value that, by definition, starts at 1, and 
tends to be largest for τ close to zero, eliminating the first minimum in dt{%). Now, finding 
the period is a simple matter of finding the earliest minimum that falls below a simple, 
insensitive threshold - for example, 0.1. 

Yin includes several other refinements including interpolation of the best lag, and a 
stage of searching over a small time range in the region of analysis window to find the 
best local estimate. Beyond this, however, it does not apply any time smoothing, yet it was 
shown to significantly outperform a range of standard approaches. It has become a popular 
reference method, especially on relatively clean speech signals. Pitch detection in lower 
signal-to-noise ratios remains an active research area; we will return to the particular case 
of multi-pitch extraction for music signals in Chapter 37. 
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31.10 EXERCISES 

31.1 Using Klatt's synthesizer as a model (Chapter 30), find the sequence of excitation functions for: 

(a) Voiced fricatives, 

(b) Voiced plosives, 

(c) Affricates (ch, dj), 

(d) Voiceless plosives. 

31.2 Figure 31.7 shows a way of spectrally flattening a speech signal. Another method is to pass the speech 
through a bank of bandpass filters and hard limit each output, which is then bandpass filtered by an 
identical filter. Can you compare the two methods? How are they the same? How do they differ? 

31.3 How might the measurements described in connection with Figs. 31.11 and 31.12 be used to create 
a buzz-hiss decision? 

31.4 Given a sequence of detected periods of 90, 90, 94, 73, 85, 40, 78, 95, 97, 50, 100, 105, 110: 

(a) Find the new sequence after three-point median smoothing. 

(b) Find the resulting sequence after processing the result of (a) with a five-point median smoother. 

31.5 Build a circuit or write a program to generate a pulse train. Include the ability to vary the repetition 
frequency. For reference frequencies of 50, 100, 200, 400, and 800 Hz, measure the just noticeable 
deviation from that reference. Design a convenient way to plot results. Discuss. 

31.6 The pitch detection circuit used by Dudley consisted of a slope filter followed by a zero-crossing 
meter. The filter had a log magnitude versus frequency shape that approximated a straight line (see 
Fig. 31.1). 

(a) Design a digital filter to approximate the magnitude response of the slope filter. 

(b) Consider a signal defined by the equation 

y(t) = cos ωί + cos 2co/ + cos 4uM (31.5) 

as input to the slope filter. 
Write the equation for the output q(t). Measure the zero crossings of both the input and output and 
discuss how they compare as pitch detectors. 

31.7 Describe the perceptual effects of the following types of errors in modeling the excitation function: 

(a) Mistakenly changing buzz to hiss. 

(b) Mistakenly changing hiss to buzz. 

(c) Doubling the detected pitch. 

(d) Halving the detected pitch. 

31.8 Write a brief essay (less than 1000 words), giving your views of the following pitch detection 
algorithms: 

(a) Comb filtering. 

(b) Gold-Rabiner parallel-processing time-domain algorithm. 

(c) Cepstral analysis. 

(d) Spectral flattening and autocorrelation as described by Sondhi. 

(e) Implementation of Goldstein's model as described by Duifhuis. 

(f) Seneff's Harmonic pitch detector. 
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VOCODERS 
ШШШШШ H B H l 
32.1 INTRODUCTION 

We are now in a position to define complete vocoder systems, often called analysis-
synthesis systems. Detailed descriptions of spectral envelope estimations employing three 
analysis methods were outlined in Chapters 19, 20, and 21. These methods are filter 
banks, cepstral analysis, and linear prediction. In addition, speech synthesis was treated in 
Chapter 30 and pitch detection was treated in Chapter 31. In this chapter, we combine this 
material into complete analysis-synthesis structures. The following chapters will elaborate 
on specific forms of vocoders. 

The primary application of vocoder systems is source coding to reduce the required 
rate of transmission. Source coding is also useful for efficient storage of speech and music, 
for example, in voice answer-back systems or in compact disks. As Dudley pointed out 
(see the preface to Chapter 3), source coding is useful in secrecy systems; it is also useful 
as an aide to help us understand how speech is produced, which in turn may be helpful for 
exploring diagnostic tools in speech and hearing pathologies. Another application is speech 
transformations, which we discuss in Chapter 40. 

32.2 STANDARDS FOR DIGITAL SPEECH CODING 

Figure 32.1 shows the standardized bandwidths and coding rates for four speech and music 
applications. The purpose of source coding research is to devise methods of lowering 
the required coding rates while maintaining the quality and robustness of the transmitted 
or stored speech. (Notice that the standard for telephony decreased fourfold within the 
1972-1991 period, as a result of research). 

The range of coding rates for these systems varies over nearly an order of magnitude. 
Intuition tells us that different applications will require different system designs. Further-
more, given certain robustness requirements, it may often be necessary to employ systems 
with rates that can be time variable to help combat environmental obstacles such as noise 
or (for long-distance transmission) atmospheric uncertainties. 

32.3 DESIGN CONSIDERATIONS IN CHANNEL 
VOCODER FILTER BANKS 

A version of a channel vocoder system is displayed in Fig. 32.2. Its essence is to break the 
speech into multiple frequency bands, and encode them separately. These days, systems 
such as these are usually composed entirely of digital hardware once the speech is sampled 
and quantized. 
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FIGURE 32.1 Digital coding standards. 
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The first set of design issues centers around the bandpass filters. We should begin by 
assuming that the analyzer and synthesizer filters covering the same section of bandwidth 
are identical. (This is not an absolute requirement, and some vocoder designs do not obey 
this dictum.) Given this, we now list some of the design parameters that have to be studied: 

1. What should N be; that is, how many filters in the bandpass filter bank? 

2. What should be the filter bandwidth as a function of its center frequency? 

3. Which of the many known design methods works best for channel vocoders? 

4. How can the FFT algorithm be adapted to meet criteria? 

Number of bandpass filters: To look at this issue, we first need to specify the 
overall system bandwidth. According to the standards of Fig. 32.1, a compact disk uses an 
approximately 20-kHz bandwidth compared to a 3-kHz one for a telephone channel. Does 
a vocoder with a CD bandwidth then require seven filters for every one of the telephone? 
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FIGURE 32.2 Channel vocoder analyzer and synthesizer. 
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Certainly not! Recall from Chapter 15 on Psychoacoustics that the frequency resolution of 
the ear diminishes with increasing frequency. Figure 15.4 shows that the auditory bandwidth 
at 10 kHz is approximately 2000 Hz! 

Consider for the moment the telephone example. In addition to the signal bandwidth, 
one must specify the available transmission bandwidth, which in turn controls the overall 
bit rate. Assume that the vocoder must transmit information at 2400 bps (bits per second). 
Further assume that 400 bps will be allotted to transmission of the excitation parameters. 
Finally, also assume that each of the magnitude signals of Fig. 32.2 has to be updated 50 
times per second and that 4 bits are needed to represent each of these signals; thus 200 bps 
per channel are needed. The result is that N=10. However, we know from Dudley's early 
results that 10 bandpass filters yield speech of substandard quality (see Chapter 3). 

The lesson to be learned is this: any one parameter in the channel vocoder cannot 
be designed in isolation! Design parameters must be a compromise among the number of 
channels, the update rate per channel, the bits allocated per channel, and the division of rate 
between the spectral envelope and excitation function. Much experience has established 
that satisfactory vocoded speech for telephony may require from 15 to 25 channels; later 
we will show how such numbers fit into the overall design. 

Filter bandwidth specification: We begin with the knowledge that filters can have 
an increased width with center frequency without degrading the output speech. Many early 
channel vocoders were designed with the same bandwidth; the reason was the increased 
ease of filter design and implementation. 

One possible design criterion is again to refer to Fig. 15.4. The auditory bandwidths 
are approximately 100 Hz for center frequencies below approximately 800 Hz and go up 
to approximately 250 Hz for 3-kHz center frequencies. One can design filter passbands 
that more or less follow this criterion. Again, a compromise for ease of implementation is 
usually invoked. The critical bandwidth curve is approximated in a stepwise fashion; for 
example, six filters of 100 Hz width from 200 Hz to 800 Hz; six filters of 150 Hz width 
at center frequencies 950, 1100, 1250, 1400, 1550, and 1700; five filters of 200 Hz width 
at 1800, 2000, 2200, 2400, and 2600; and three filters of 300 Hz width at 2800, 3100, and 
3400. There is a total of 20 filters. 

Another possible design criterion is to specify that, for the great majority of speakers, 
each filter should encompass a single harmonic of the voiced speech. If this could be done, 
it might be argued that the data rate of the following low-pass filters could be lowered, since 
the detected envelope when a single harmonic is detected (rather than two harmonics) within 
a given filter may require less updating and thus a lower transmission rate. If this notion 
were followed for voice fundamental frequencies as low as 100 Hz, a total of 32 filters 
would be needed to encompass the 200- to 3400-Hz telephone band. (For CDs, for which 
music storage is the primary requirement, this argument no longer holds.) Furthermore, 
equal bandwidth filters would be used. 

An advantage of equal bandwidth design is based on the role of the synthesizer filter 
bank. A reasonable criterion for good spectral envelope representation is to examine the 
spectrum of the synthesizer output when the excitation consists of a single sharp impulse 
and all filter magnitude signals are constant; the resultant spectrum should be constant over 
all frequencies. Another way to state this is that the sum of all synthesizer filter impulse 
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responses should be very much like a perfect impulse. Designing such a filter bank is 
significantly simpler when all filters are of equal bandwidth and shape. 

Filter designs: Chapter 7 has a discussion of the various criteria for digital filters 
based on previous analog designs. One point worth reiterating is that sharper skirts don't 
improve the quality of the vocoded speech because reverberation is introduced. Filters with 
linear phase characteristics can be incorporated into the design to minimize reverberations. 
These can be implemented in at least four ways. Bessel filters [21] are minimum phase 
filters that produce a very linear phase; Lerner filters [14] that are not at minimum phase 
(they have zeros outside the unit circle) also produce an excellent phase response. Both of 
these designs are of the IIR variety, but linear phase can be attained more easily with FIR 
design methods that create symmetric impulse responses. 

32.4 ENERGY MEASUREMENTS IN A CHANNEL VOCODER 

The next step in spectrum analysis of the incoming speech is to process the outputs of the 
bandpass filters to produce an estimate of the spectrum. These estimates, called magnitude 
signals in Fig. 32.2, are derived as shown in the figure. A simple example in Fig. 32.3 
illustrates the progression from the output of a single bandpass filter that generates a 1000-
Hz harmonic of the input signal. The box marked "magnitude" (Fig. 32.2) immediately 
following the bandpass filter can be, for example, a full-wave or half-wave rectifier (or 
it can be a system involving Hilbert transforms, as discussed later). A half-wave rectified 
signal is shown in Fig. 32.3(b). The spectrum of this signal is shown in Fig. 32.3(c). 

We have assumed a sampling rate at the input and at the bandpass filter levels of 

time 

(«) 

time 

(b) 

- low-pass filter 

± 
spectrum envelope information 1000 Hz frequency 

(c) 

FIGURE 32.3 Example of energy measurement with a half-wave rectifier. 
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FIGURE 32.4 Effect of pitch ripple in a spectral estimate. 

10 kHz. The low-pass filter that follows has, in this case, the simple task of eliminating 
frequencies of 1 kHz and above while preserving the spectrum near dc that reflects the 
slow variation caused by spectral changes. Typically, this variation is of the order of 
5-15 Hz. Therefore, decimation (downsampling) can allow for a new sample every 10-20 
ms. Each discrete sample must now be further quantized, using as few bits as possible to 
keep transmission rates as low as possible. At this point, the magnitude signals of Fig. 32.2 
are ready to be multiplexed and transmitted to the synthesizer. 

What happens if a particular bandpass filter is wide enough to accept two successive 
harmonics of the speech? Figure 32.4 shows the bandpass filter output consisting of har-
monics 12 and 13 of a speech wave with a fundamental frequency of 80 Hz. The half-wave 
rectified signal is shown in part (b) and its spectrum is shown in part (c). 

Notice that there is now a substantial component at the fundamental frequency; this 
component is unwanted pitch ripple. Now the low-pass filter has an appreciably more 
difficult task to remove this spurious component while faithfully passing the legitimate 
spectral variations. Again, we are faced with the fact that good design (in this case, of the 
low-pass filters) is a compromise depending on a number of factors: spectral variations, 
bandpass filter widths, pitch-ripple attenuation, and so on. The final choice of low-pass 
filter bandwidth determines the permissible degree of decimation, and this in turn affects 
the distribution of coding bits for transmission. 

Spectral magnitude may also be estimated by Hilbert transform techniques [19]. In 
the simplest case, if the bandpass filter output is a sinusoid, then the Hilbert transform is a 
pure tone exactly 90° out of phase but of the same magnitude; therefore, a diagram such as 
Fig. 32.5 will generate the magnitude of the original bandpass filter output. In this idealized 
case, no low-pass filter is required. 
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FIGURE 32.5 Hilbert transform method for finding the squared magnitude of a tone. 

The block marked "Hilbert Transform" in Fig. 32.5(a) has the idealized frequency 
response shown in part (b). The magnitude is constant and the phase oscillates between 
+j and —j. Such a block may be created as an FIR filter with an anti-symmetric impulse 
response [19]. 

32.5 A VOCODER DESIGN FOR SPECTRAL 
ENVELOPE ESTIMATION 

For many years, requirements for many digital vocoders included operation at 2400 bps. 
If we assume, tentatively, that 400 bps is enough to encode excitation, that leaves us 
2000 bps to play with. If 20 channels are initially chosen, this comes to 100 bps per 
channel. Now, subjective measurements indicate that channel quantizing paradigms are 
efficiently implemented by means of differential pulse code modulation (DPCM) across 
bands; this means that the differences between adjacent bands are transmitted, instead of 
the actual band values. Intuitively, this makes sense, since we expect a high degree of 
correlation between adjacent filters [4]. The first (lowest frequency) channel serves as a 
three-bit reference, and successive channels use two-bit DPCM coding. For 20 channels, 
the total is 3 + 38 = 41 bits. For a frame rate of 50 samples/s, this comes to 2050 bps, which 
is just a bit more than desired. Obviously, the numbers can be varied in many different 
ways. For example, if the designer believes that he or she can get away with only 15 
channels, each channel can be coded more accurately with three-bit DPCM plus four bits 
for the reference, a total of 45 bits per frame, but now the frame rate must be reduced to 
44.4 frames/s. 

32.6 BIT SAVING IN CHANNEL VOCODERS 

Several useful tricks for bit-rate reduction are available; in this section, we discuss three 
such items. These are (a) efficient quantization, (b) linear transformations, and (c) frame fill. 

Efficient quantization: The human ear and brain judge relative sound intensities 
more or less logarithmically (see Chapter 15). Thus, it makes sense to quantize the channel 
energy in a nonuniform manner. Naturally, the idea of some sort of logarithmic quantization 
comes to mind, but care is needed. The log of zero is — o°; this is not a useful value in a 
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x(n) 

FIGURE 32.6 μ-law characteristic. From [20]. 

quantizer. Smith [20] analyzed the μ-law quantizer that results in a useful logarithmic type 
of quantizer. The signal is first passed through a nonlinearity with no memory given by 

where it is assumed that the input x is always positive, X is the maximum value of x, and μ 
is a parameter. 

Figure 32.6 shows input-output relations of a μ-law characteristic for several values 
of μ, and Fig. 32.7 is an example of a two bit μ-law quantizer. 

A more general approach to the quantization problem is given by Max [15]. Under 
the hypothesis that the probability density function of the signal is known, one constructs a 
set of quantizing steps that correspond to equal probabilities of signal magnitudes occurring 
within that quantization interval; thus if the signal magnitude is very unlikely to fall within a 
given range, the resulting quantization interval can be large, causing a large distortion; this, 
however, happens very rarely. An example of a three-bit quantizer using Max's concept is 
seen in Fig. 32.8. 

Linear transformations of the spectral data: Since the magnitude signals (see 
Fig. 32.2) from a channel vocoder are, to some degree, correlated, it seems natural to 
search for a way that takes advantage of this correlation to reduce the data rate. These 
magnitude signals are correlated over both time and frequency. Taking advantage of these 
two-dimensional correlations has generally been considered to be too difficult; the work 
cited below separates the two dimensions. First, we deal with the frequency-domain cor-
relation; thus, for example, in a channel vocoder, each frame (consisting of perhaps 20 
spectral values) is analyzed separately and a specific linear transformation is invoked that 
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FIGURE 32.7 Two-bit μ-law quantizer. From [20]. 

tends to order the results proportional to their significance. 
A very simple example helps explain the concept. Assume a frame consisting of only 

two spectral samples, x\ andx2· Now, apply the transformation 

y1 =χι +x2, Уг =x\ -X2- (32.2) 

If x\ and xj are both equal to some number x, then y\ = 2x and y2 = 0. Thus, only y\ need 
be transmitted and both x\ and хг can be reconstructed from the inverse transformations 

_ 3Ί + Уг _У\~У1 

More generally, we need to find a linear transformation 

yj 

N 

Σααχη 
i = l 

1 , 2 , 3 , . . . , T V , 

(32.3) 

(32.4) 

such that the transformed set y, is arranged in size place. It is then up to the intuition of 
the designer to estimate how many bits can be saved by transmitting the yj set. Since Eq. 
32.4 is a linear transformation, the full set of x,- can be reconstructed. These ideas have 
been tried by numerous researchers, among them Crowther and Rader [6], Kramer and 
Mathews [13], Pols [18], Andrews [2], Zoharian and Rothenberg [24], and Ahmed et al. 
[1]. Table 32.1 lists these authors and the particular transformations they used. Note that 
in several cases the authors used principal components analysis (PCA), which we briefly 
mentioned in Chapter 8 as a general approach to dimensionality reduction. 

This transformation scheme, which is based on the correlation properties of signals, 
was derived in 1933 by Hotelling [12]. In this approach, the linear transformation is 
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FIGURE 32.8 Quantizing for equal probabilities. 

chosen to rotate the x vector so that the new components correspond to eigenvectors of the 
sample covariance matrix. The components with the largest eigenvalues (or, equivalently, 
variances) are viewed as the principal ones. Thus, for example, if one begins with 20 
variables and successively finds the first four or five transformed variables, these may be 
sufficient to preserve nearly all the information of the original variables. Clearly, bit savings 
can result. 

A simpler approach that does not require the determination of the optimal transforma-
tion is to compute the discrete cosine transform (DCT). For many speech applications, the 
DCT leads to similar results as a procedure such as PCA that decorrelates the transformed 
variables. 
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TABLE 32.1 Authors and Methods 
of Linear Transformations to 
Reduce Bit Rate 

Author Method 

Crowther Walsh-Hadamard transform 
Kramer PCA 
Pols PCA 
Andrews Karhunen-Loev transform 
Zoharian PCA 
Ahmed DCT 

The DCT of a sequence x(n) of N points is defined by the equation 

DCT(*) = ^ | > ( W ) c o s {2П^)Ы, k=l,2,...,(N-l). (32.5) 

For к = 0, the term preceding the sum is y/2/N. 
The reader is referred to the cited references for more details. It should also be men-

tioned that the straightforward method of DPCM across adjacent channels takes advantage 
of correlations in frequency. 

32.7 DESIGN OF THE EXCITATION PARAMETERS 
FOR A CHANNEL VOCODER 

The original Dudley channel vocoder employed a pulse generator, a noise generator, and 
a buzz-hiss switch. The underlying assumption was that speech is composed of sounds 
that are periodic or noisy (aperiodic). The purpose of a voicing detector at the analyzer 
was to make a one-bit voicing decision to control the synthesizer buzz-hiss switch. It is an 
interesting fact that although this model includes some fallacious assumptions, it produced 
speech that was quite intelligible. 

What are these fallacies? First, for the voiced fricative sounds, the excitation is really 
a combination of buzz and hiss. This immediately makes the job of the analyzer more 
difficult. It must first identify the sound as a voiced fricative and then determine the relative 
values of the two sources. 

However, this is not the only difficult aspect of the problem. The voiceless plosives, 
typically, follow a silence, then begin with a transient burst, followed by noiselike aspiration, 
before finally beginning pure voicing if followed by a vowel (the situation is even more 
complex if the plosive is followed by another consonant such as a plosive or fricative.) If 
the plosive is followed by a transition sound such as "r" or "1", both buzz and hiss may be 
simultaneously present. 

The synthesizer configurations of Fant and Klatt (see Chapter 30) confront this issue 
by including buzz-hiss combinations in their structures. Their synthesizers are controlled 
either by humans who know what sounds they want or by text, where again the desired 
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sound output is preordained. This fine degree of control is a formidable task for an automatic 
analyzer system. 

Some systems have been built which do estimate periodic and aperiodic components, 
however, such as the hybrid harmonic/stochastic analysis described in [8]. In this approach, 
least squares optimization is used to find the best set of harmonics (frequency, amplitude, 
and phase) to match the voiced spectrum. The error spectrum, which consists of the original 
minus the harmonics, is approximated by a filtered noise source. The parameters of the 
noise filter are estimated in a second optimization procedure. 

Both the voiced and unvoiced plosives feature transient bursts, which are often im-
portant perceptual cues for recognition by people (see Chapter 17). These bursts can be very 
short, lasting perhaps 5-15 ms. For low-rate vocoder systems to transmit this information 
adequately requires too great a bit rate for both excitation and spectral parameters. (Very 
rapid spectral changes also occur in transitions to nasal murmurs.) Again, the major dif-
ficulty is for the analyzer to detect when these modifications are needed. At this writing, 
there is little to report on efforts to rectify this situation. Current vocoders operating at 2400 
bps are not able to synthesize speech that is indistinguishable from the original. 

Spectral flattening: Spectrum analysis for vocoders is almost always carried out 
on a frame-by-frame basis; for each frame, a windowed speech segment of 20-40 ms is 
analyzed. Within this window, many periods of the speech may be present. If the signal is 
not quite periodic (if, for example, there is pitch jitter), the excitation function can contribute 
to the overall spectral shape. Thus, if this excitation function is faithfully produced at the 
synthesizer and since it is also measured by the spectrum analyzer, a degree of pitch-induced 
spectral distortion is introduced into the system. As a way to combat this problem, spectral 
flattening can be introduced to reduce this distortion; an example of such a system is shown 
in Fig. 31.7. In the present application, the input signal will be the excitation function 
generated by the chosen source functions. 

The notion of spectral flattening was first introduced by David et al. [7] in a different 
context. They assumed that all of the relevant excitation information resided in the so-
called baseband part of the speech; this is the speech bandwidth from approximately 300 to 
900 Hz. By passing this signal through a simple nonlinearity such as a rectifier to generate 
higher frequencies and then passing this new signal through the spectrum flattener, either 
like the one in Fig. 31.7 or the one in Fig. 32.9, the resulting excitation spectrum would be 
very close to constant with frequency. Figure 32.10 shows a complete voice-excited vocoder. 
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32.8 LPC VOCODERS 

LPC (linear predictive coding) vocoders were briefly discussed in Chapter 3. In Chapter 21, 
a more detailed discussion of the LPC analyzer was undertaken. In this section we describe 
several synthesis structures. 

The relative roles of the excitation parameters in LPC and channel vocoders is 
certainly an interesting and useful topic for discussion. In a low-rate system, for example, 
2400 bps, both types of vocoders usually rely on algorithms that generate these parameters 
by a direct analysis of the speech wave. However, a notable difference between the two 
systems is the presence, in LPC, of the error signal. This can be a powerful tool that 
allows for fascinating LPC vocoder variations. The use of the unadulterated error signal as 
excitation results in synthetic speech that is a replica of the original. No such parameter is 
available for channel vocoders. Of course, simply transmitting the full error signal does not 
result in bit saving; however, if we assume that LPC spectral analysis has captured much of 
the spectral information, this means that the error signal will be primarily a function of the 
excitation parameters and ought to be codable at a lower rate. Many schemes have tried to 
take advantage of this fact, and in Chapter 34 we explore several. In this section, we focus 
on spectral estimation for LPC vocoders of low rate and assume that excitation analysis 
and synthesis take place in the same manner as for channel vocoders. 

We know from previous chapters that the LPC synthesizer is an all-pole digital filter. 
Figure 32.11 is a block diagram of a complete system. 

One possible LPC synthesizer configuration is shown in Fig. 21.2. This is the standard 
direct-form digital filter, in which the coefficients are obtained by one of the matrix inversion 
methods described in Chapter 21. Another possible structure is that of a cascade of digital 
pole pairs; for this, the analyzer must compute the roots of the polynomial. A third, 
commonly used structure is the lattice of Fig. 32.12. An observed advantage of the lattice 
is its decreased vulnerability to quantization error. 

32.9 CEPSTRAL VOCODERS 

Chapter 20 describes cepstral analysis. The first vocoder employing cepstral methods was 
by Oppenheim [17]. Figure 32.13 shows the analyzer configuration, and Fig. 32.14 shows 
the synthesizer structure. By liftering the signal obtained after the inverse Fourier transform 
with short-time window w(n) to eliminate the high-time components, the cepstrum c(n)w(n) 
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emphasizes vocal tract filter information. As discussed in Chapter 31 on Pitch Detection, 
the high-time components can be used to obtain pitch and voicing information. In this way, 
deconvolution of the excitation and vocal tract filter components is performed. 

Synthesis involves the reverse process of convolution, as seen in Fig. 32.14. 
The excitation generator produces pulses at the measured fundamental period or, 

for voiceless sounds, closely spaced pulses of random polarity. These are convolved with 
the estimated impulse response of the vocal tract h(n) to produce the synthesized output 
speech. 

32.10 DESIGN COMPARISONS 

In the sections on channel vocoders, we detailed several design issues. In this section we 
briefly review these issues on a comparative basis for the three basic algorithms: channel, 
LPC, and cepstral vocoders. 

Discreteness of analysis in the three systems: we discussed the issue of how many 
filters were appropriate for channel vocoder analysis in Section 32.3. By performing an 
energy measurement for each channel, we get a discrete representation of the spectral 
magnitude. In LPC analysis, the least-squares criterion leads to direct computation of the 
parameters of the synthesis filter. The computation involves the solution of a set of n 
linear equations, so the specification of n corresponds to the choice of the number of filters 
in the channel vocoder. It is interesting to note that n — 10 has been considered to be a 
reasonable specification for a 2400-bps LPC vocoder; 10 filters were not adequate for 
Dudley's original channel vocoder design. (This issue is explored in the problem set of this 
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FIGURE 32.12 Lattice synthesizer for LPC. 

chapter.) 
In cepstral analysis, the low-time part of the cepstrum yields information on the vocal 

tract filter. Since the cepstrum is computed from a discrete Fourier transform, the low-time 
portion consists of a finite number of values. It is effectively a Fourier series representation 
of the slowly-varying spectral envelope shown as the output of the log magnitude block 

| * " > 

' ■ 

Pitch 
extraction 

DFT 

X(k) 

Log magnitude 

log \X(k) 

IDFT 

' c(n) 

• 
Short-time lifter 

Ιφ)νν(η) 

I Pitch 
•| parameters 

FIGURE 32.13 Cepstral vocoder analysis. The input speech is a discrete-time sequence 
x(n). Its Discrete fourier transform (DFT) is X(k). The next two operations convert the 
spectrum to cepstrum. The cepstrum is used to determine voicing and pitch, and a window 
that is nonzero for cepstral indices less than some value is multiplied by с (и), the 
cepstrum, yielding a truncated cepstrum c(n)w(n). 
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FIGURE 32.14 Cepstral vocoder synthesis. The truncated cepstrum given by c(n)w(n) is 
converted to a log spectrum and then to a corresponding impulse response. This is 
convolved with a periodic or noiselike excitation determined by the pitch and voicing to 
yield an approximation to the original speech. 

in Fig. 32.13. In Oppenheim's system, he chose the first 32 points of the cepstrum as 
his spectral representation.1 In later work [23], Weinstein and Oppenheim represented the 
homomorphically-computed vocal tract impulse response by linear prediction; they were 
able to reduce the overall bit rate to approximately 4000 bps by sending the resulting LPC 
coefficients. 

Bandwidth specification: in Section 32.3, issues of choosing a set of bandwidths 
for the channel vocoder filter bank were discussed. In traditional LPC systems, once the 
value of n is chosen, the resultant synthesizer and its spectrum are determined, so there is 
no need for any additional specification. In cepstral analysis, the designer has the choice 
of the DFT size. Both the LPC and cepstrum can be modified to be more perceptually 
oriented. A popular technique (in speech-recognition research) to create a perceptually 
oriented cepstrum starts with direct smoothing of the spectrum, as shown in Fig. 32.15. 
Mel scale approximation to smoothing is accomplished by multiplying the spectrum by 
each of the N weighting functions of Fig. 32.15(b) and summing to produce an N-point 
smoothed spectrum. The resultant cepstrum is thus primarily a function of the vocal tract 

1 Since Oppenheim's motivation was to prove the feasibility of a brand new algorithm, he did not design a 2400-bps 
system; it would be difficult to devise a 2400-bps cepstral vocoder with so many parameters without some clever 
coding of the cepstral points. 
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FIGURE 32.15 Smoothing of the log spectrum by multiplying (a) by the set of windows (b). 

filter; pitch ripples have been mostly eliminated. 
In traditional LPC, the required correlation matrix is computed in the time domain. 

However, the correlation function can also be computed as the Fourier transform of the 
power spectrum, and the power spectrum can be computed with variable bandwidth to 
resemble the responses of auditory filters, as in mei scale cepstral analysis. As noted in 
Chapter 22, Hermansky [11] has proposed a perceptually linear predictive technique that 
employs this trick, plus an equal loudness approach. 

Pitch ripple: in the channel vocoder, pitch ripple was caused by channel filters that 
were too wide. In the cepstrum, a sufficiently low pitch will cause cepstral components 
of the excitation function to appear in the liftering window designed to try to isolate the 
vocal tract filter component. In LPC, if the pitch is too low, the fit of the resultant synthesis 
filter will be a function of the transition from one harmonic to the next as well as from one 
formant to the next. 

Quantization of the parameters: in all systems, design comparisons depend on 
the perceptual effects of quantizing the particular parameters. With direct spectral mea-
surements, as in the channel vocoder, more bits are needed to code the lower-frequency 
components. 
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32.11 VOCODER STANDARDIZATION 

The research and development efforts directed toward the deployment of different vocoder 
systems has resulted in a veritable Tower of Babel. Vocoder transmitters and receivers 
must be compatible; a channel vocoder transmission would not be understood by a LPC or 
homomorphic receiver without specialized interfaces. A transmission system operating at 
8 kb/s is not automatically compatible with a 2.4 kb/s receiver. 

At present, there are many vocoder systems of different designs, different bit rates, 
and different error-correcting methods. As a result, there are various organizations to set 
standards. The International Telecommunications Union sets global telecommunications 
standards. This group formulates speech-coding standards, evaluates and tests potential 
standards, and requests new standards to meet new applications. The European Telecommu-
nications Standards Institute sets standards for digital cellular communications in Europe. 
In North America, these standards are set by the Telecommunication Industry Association, 
and in Japan they are set by the Research and Development Center for Radio Systems. The 
International Maritime Satellite Corporation sets standards for satellite-based telephony ap-
plications. Finally, the U.S. Government and NATO have the responsibility to standardize 
secure telephony. A detailed study of these standards is given by Cox [5]. 

Almost all standards in the bit rate range of 2.4 kb/s through 8 kb/s are variations on 
the CELP algorithms described in Chapter 34; these algorithms are extensions of the basic 
LPC approach with a more elaborate excitation model. The notable exception is the secure 
2.4 kb/s standard [22]; thus far, the CELP algorithm has not led to a sufficiently intelligible 
system at this low rate. 

A 4.15 kb/s coder was standardized by the International Maritime Satellite Corpo-
ration for worldwide ship to shore via satellite telecommunications. This is the Improved 
Multi-Band Excitation (IMBE) coder that transmits voice (including error correction) at 
6.4 kb/s [9], [10]. It is a variation on the Sine Tranform Coder2 [16], with voicing decisions 
made independently in different frequency bands. 

Finally, we should make a few remarks about compatibility even given standards. Two 
standards operating at different bit rates are not compatible without a carefully designed 
interface. A simple example of a two-rate system is described in [3], in which a channel 
vocoder operating at 2.4 kb/s is augmented by subband signals derived from the low-
frequency channel filters. When transmitting to a compatible terminal, the subband spectrum 
is given precedence over the same spectral portion generated by the 2.4 kb/s vocoder; but 
when transmitting to a 2.4 kb/s compatible terminal, only the channel vocoder portion of 
the analyzed speech is sent. 

2This is a complete vocoding technique based on the analysis technique briefly described in Chapter 30. Chapter 
40 will describe the use of this approach for speech transformations. 
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TABLE 32.2 Parameters of Four Speech Files to be 
Synthesized 

Fi 

270 
270 
300 
300 

Fj(BW) 

40 
40 
50 
50 

F2 

2290 
2290 
870 
870 

F2(B\N) 

70 
70 
60 
60 

F, 

3010 
3010 
2240 
2240 

F3(BW) 

170 
170 
220 
110 

Fo(Pitch) 

100 
300 
100 
300 

32.12 EXERCISES 

32.1 Consider the following. 

(a) Consider two adjacent filters of the same bandwidth. The designer has specified that the amplitude 
responses of these filters cross at the 3-dB point. Now apply a sinusoidal input to both filters at the 
frequency at which they cross. What should be the relative phases at this crossover point so that the 
summed output is exactly of the same magnitude as that of a sinusoid at either of the filter center 
frequencies? (Assume that the adjacent filter has no effect at the center frequency of each filter.) 
(b) If the relative phase at crossover is between 135° and 225°, this will result in a large dip in 
magnitude at the crossover. Can you think of a simple way to improve the situation? 

32.2 If the input to the Hilbert transform scheme of Fig. 32.5 is the sum A c o s ^ r ) + ßcos(«>2i), find the 
output at point P. Is there a need for low-pass filtering at this point? Explain. 

32.3 How can the μ-law equation (Eq. 32.1) be modified to behave as a prequantizer for a signal that goes 
through negative as well as positive excursions? 

32.4 This problem is a small research project. It was pointed out in the text (Section 32.10) that a tenth-
order LPC performed better than a 10-channel vocoder. Perhaps a filter bank that resembled the 
auditory system (instead of an equal bandwidth filter bank) might give better results. The project, 
therefore, is to program a tenth-order LPC and to compare it with your choice of a filter bank for a 
10-channel vocoder. Keep in mind that auditory filters increase in bandwidth as the frequency rises. 
For this exercise, do not attempt to quantize the parameters to achieve a specified bit rate. 

32.5 (The following four problems were donated by Professor Don Johnson, who teaches a speech-
processing course at Rice University.) The purpose of this laboratory exercise is twofold. The first 
is to obtain experience in the generating of synthetic speech. The second is to apply the theory of 
short-time spectral analysis to speech. 

(a) Generate four files containing synthetic speech. This speech is to be generated on the computer 
by applying a train of unit samples to a cascade of second-order IIR filters. Let the effective sampling 
rate be 10 kHz. 

The parameters of these speech files are in Table 32.2 (all values are in hertz). 
Use impulse invariance to design the digital filters. In your response, demonstrate the design 

procedures and tabulate the filter coefficients. 

(b) Compute the short-time spectrum of each of the synthetic speech files. Use rectangular and 
Hanning windows with durations of 51.2 ms and 12.8 ms. Compute and display the log magnitudes 
of the DFT of the windowed speech segments. Note if the phase of the window relative to the location 
of the excitation made any difference in the results. 

(c) Extract from each of the synthetic speech files one pitch period. Compute the log magnitude of 
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the DFT of these periods and compare to the results of (b). 

(d) Compare measurements of formant location and bandwidths to the known values. 

32.6 The purpose of this laboratory exercise is to determine how well homomorphic deconvolution works 
on speechlike signal. 

(a) Compute and display the cepstrum for each of the synthetic speech files you generated in the 
previous laboratory assignment. Note the various aspects of the cepstrum (e.g., do different pitch 
values change the spectral envelope much, how well does the pitch line stand out, etc.). Use a 51.2-ms 
Hanning window in comparing the required short-time spectra. 

(b) Compute the smoothed spectral envelope for these cepstra in two ways: one in which the pitch 
is known exactly and one with a fixed window duration of 3.0 ms. 

(c) Compare the homomorphically smoothed spectra with their corresponding short-time (un-
smoothed) spectra. 

(d) Measure formant frequencies and bandwidths and compare them with their actual values and also 
with the values obtained in the previous laboratory assignment. 

32.7 In this laboratory exercise you are to study the smoothed spectra obtained with linear prediction. 

(a) Use the correlation method of linear prediction to compute the coefficients of the predictor 
polynomial for the four speech files. Apply a Hanning window with a duration of 51.2 ms to the data 
prior to the computation of the correlation function. Evaluate these coefficients for orders 4,6, and 12. 

(b) Compute the log magnitude spectral envelopes for each case. Compare the effects of pitch and 
order on the spectral envelope. 

(c) Measure formant frequencies and bandwidths from the linear predictive spectra. Compute the 
roots of the predictor polynomial. Do these roots correspond to the location of the poles you used to 
generate the synthetic speech files? Compare. 

32.8 Spectral analysis in the presence of noise: it is claimed that the spectral analysis schemes that are 
based on an explicit model of speech production (e.g., homomorphic or linear predictive analysis) 
are sensitive to parametric errors in the model. In this laboratory exercise, changes in the spectral 
envelope caused by the presence of additive white noise will be explored. 

(a) Use a Gaussian random-noise generator to produce a white-noise sequence. Produce cases in 
which the signal-to-noise ratio is 0 dB, 10 dB, and 20 dB for each of the low-pitch speech files. 
(b) Use short-time DFT's (12.8-ms Hanning window) to determine the spectra of these records. 

(c) Apply cepstral and LPC analysis on these data records to obtain spectral envelope information. 
Note how these methods are sensitive to the presence of noise. Note how the spectra change with 
assumed model order. 

32.9 In Section 32.10 it is stated that more bits are needed to code the lower-frequency parameters. Propose 
some perceptually based arguments to verify this statement. 
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LOW-RATE VOCODERS 

33.1 INTRODUCTION 

To a first approximation, a teletype system transmitting at 75 bps can transmit textual 
information at almost the same rate as a person speaking the same text. Of course, the 
speech has much more information than the text. The speaker's identity, emotional state, and 
prosodie nuances are all information, though not all of this information may be necessary 
for speech communication per se. For this chapter, it is assumed that a good 2400-bps 
vocoder contains all of the relevant information. Given this assumption, we will consider 
low-rate vocoders to encompass bit rates between 75 and 2400 bps. 

In Chapter 32 we examined two methods of bit-rate reduction: efficient quantization 
schemes and linear transformations. In this chapter we extend this discussion to report on 
several other bit-saving methods. First, we describe the benefits obtainable by taking 
advantage of the time correlation of the spectral and excitation components. When the 
sampling rates of these components are lowered, bit saving automatically takes place; the 
trick will be to find interpolation algorithms that do not inordinately degrade the output 
speech. 

A different approach to bit-rate reduction comes from the original work by C. P. 
Smith [18], [19] on channel vocoders, which was later applied to LPC vocoders by Buzo 
et al. [3]. This approach was called pattern matching by Smith and vector quantization 
(VQ) by Buzo et al. (We shall, for the most part, stick with the more popular latter 
description.) The idea was (as discussed more generally in Chapters 9 and 26) this: the 
number of perceptually distinguishable spectra is far smaller than the number that is 
typically generated by a speech device such as a channel vocoder. Therefore, (a) if the 
spectrum were treated as a multidimensional vector and a way could be found to store all 
the perceptually distinguishable spectra, (b) if each of the stored spectra was given a label, 
and (c) when a new spectrum arrived, it would be matched against the stored vectors and 
the label of the best match would be transmitted and decoded at the receiver using the same 
codebook. 

Another traditional way of reducing bit rate is to reduce the number of parameters 
that have to be sent. For example, in a typical channel vocoder, 15-20 channel signals 
are used; in LPC, 8-12 predictor coefficients are generally needed. Formant vocoders, in 
contrast, require as few as four spectral parameters; the problem here is the difficulty of 
tracking formants accurately. 

Finally, technological advances in the field of ASR have led to the concept of recog-
nition synthesis, in which longer speech segments (e.g., phonemes, diphones, and syllables 
[8], [21]) are identified at the analyzer and regenerated at the synthesizer. This is an in-
teresting research topic, but as explained further later, it is unlikely to achieve general use 
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(over languages, speakers, and acoustic conditions) in the foreseeable future. 
In this chapter our goal is to study several systems that make use of one, or some 

combination, of the above concepts. 

33.2 THE FRAME-FILL CONCEPT 

The basic idea of frame fill, proposed by McLarnon [10], is to transmit from analyzer to 
synthesizer every Mth frame, thereby achieving an M: 1 reduction in bit rate. The savings 
is not quite that great, since some control information must be sent, instructing the receiver 
how to reconstruct (or fill in) missing information. Thus with the choice of M = 2, close 
to a 1200-bps rate is feasible if a 2400-bps system is started with. 

Frame fill for a channel vocoder: Let's define frame (iV — 1) and frame (N + 1) as 
the two frames that are sent, and frame (N) as the frame computed by the analyzer but not 
sent. Then: 

1. Compare frame (N) of data to be omitted with frame (TV — 1) and frame (N + 1). 

2. In accordance with some reasonable distance measure, decide which neighbor matches 
the omitted frame. 

3. Also, consider as a match candidate some weighted combination of the information 
contained in the two neighboring frames. 

4. Select the option (three choices) representing the best match and append its I.D. code 
(two bits) to the frame that is to be transmitted. 

McLarnon chose a distance metric to be 

d=ft\log[Sc(k)]-log[Sr{k)]\, (33.1) 

where К is the number of channels and where Sc (k) refers to the magnitude of the kth spec-
tral component for the candidate Mh frame and Sr(k) refers to the equivalent magnitude 

TABLE 33.1 Coding Conventions for a Low-Rate Channel Vocoder3 

System 
(bps) 

2400 
1200 

800(V) 
800(UV) 

Voicing 

1 
2 
2 
2 

Pitch 

6 
6 
6 
0 

Ref 
Channel 

3 
3 
3 
3 

DCPM 

Two-Bit 

18 
17 
1 
6 

One-Bit 

0 
1 

17 
12 

Ctrl 

0 
2 
4 
4 

Total Bits 

48b 

481 
33i 
33i 

(Hz) 

50 
25 

24,24 
24,24 

aFrom [2]. 
bTwo bits are unused. 
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TABLE 33.2 Coding 
Conventions for a Low-Rate 
LPC Vocoder2 

Parameter 

Sync 
V/UV this frame 
V/UV next frame 
Strategy bits 
Pitch pointer 
Energy 

k0 

kx 
k2 

къ 
кц 
k5 

кь 
к! 
* β 

kg 

1200 
bps 

1 
1 
1 
4 
6 
5 
5 
5 
4 
4 
4 
4 
3 
2 
2 
2 

aNote that k5-k9 are omitted in 
unvoiced frames. From [2]. 

800 
bps 

0 
0 
1 
3 
6 
4 
4 
4 
4 
3 
2 

for either frame (N — 1) or frame (/V + 1). Table 33.1 (after [2]) summarizes the coding 
strategy to reduce the bit rate from an original 2400-bps channel vocoder to 1200 bps and 
800 bps. 

Frame fill for a LPC vocoder: Bit-rate savings in LPC vocoders is more subtle 
than for channel vocoders and depends greatly on the synthesizer structure. For example, 
if the predictor coefficients were transmitted, assigning bit rates to each would be an 
arduous empirical task because of the obtuse relationship between the coefficients and the 
more physically intuitive spectrum. Both psychoacoustic experiments [1] and engineering 
considerations favor the use of the reflection coefficients. Blankenship and Malpass [2] 
performed frame-fill experiments on a 2400-bps LPC vocoder and arrived at the breakdown 
of Table 33.2 for both 1200 bps and 800 bps. 

Notice that the reflection coefficients £4 through kg are not sent when the excitation is 
hiss. This knowledge allows the analyzer to perform a fourth-order rather than a tenth-order 
analysis during hiss. The strategic control of frame fill is somewhat more complex for LPC 
and, as shown in the table, requires four bits for the 1200-bps version and three bits for the 
800-bps version. Table 33.3 gives comparative DRT (diagnostic rhyme test, see Chapter 
17) results for all three versions of both systems. 



496 CHAPTER 33 LOW-RATE VOCODERS 

TABLE 33.3 Summary of 
Three-Speaker DRT Accuracy 
Results' 

Rate (bps) 

2400 
1200 
800 

Vocoder 

Channel 

89.6% 
87.6% 
84.0% 

LPC 

91.6% 
85.1% 
82.0% 

"From [2]. 

33.3 PATTERN MATCHING OR VECTOR QUANTIZATION 

Let's assume that a listener can tell any two spectral patterns apart from a total population 
of 220(= 1,048,576) patterns. Given a strategy that permits identification of the storage 
location of any of these million or so patterns, we see that the transmitter needs to transmit 
only the storage location, with confidence that the receiver (possessing the same set of 
stored patterns) can generate the correct spectrum. 

So far, so good; but there are difficulties. How do we determine the particular subset 
of 220 out of a much larger set? How do we implement an efficient search procedure at the 
receiver to find the pattern? 

Two conditions for some success are clear. First, a large amount of data must be 
collected and analyzed, and second, a distance metric must be formulated so that most 
entries are perceptually distinct. An attractive geometric way of looking at these issues was 
proposed by Buzo et al. [3]. They defined a single frame of information as a vector. If we 
think of each frame as a single point in a multidimensional space, we try to fill the space 
with points that are as far apart from each other as possible. This line of reasoning leads 
straightforwardly to the term vector quantization.1 

When C. P. Smith began his work in the 1950s, bulk memory was best obtained by 
rotating machines, such as drums. Progress was slow, although by 1962, Smith was able to 
perform a feasibility experiment. Buzo, Markel, and Gray reintroduced the concept using 
LPC vocoders. At the Lincoln Laboratory, the same concepts were applied to a channel 
vocoder by Gold [6] and to the SEEVOC system of Paul [11]. Each used a different vocoder 
configuration, a different distance metric, and a different strategy for building a system. 

Gold's pattern-matching channel vocoder: listening and visual observation were 
the primary vehicles; this made the procedure interactive but time consuming. The system 
begins with an empty table of stored patterns. The first sentence is processed by the 
channel vocoder analyzer, and all spectral cross sections are entered into memory. By 
visual inspection of these cross sections, the experimenter enters the nonredundant spectra 

1VQ was also discussed in Chapters 9 and 26 in the context of statistical pattern recognition. 
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into the pattern table. The next sentence is matched against this embryonic table. The 
process continues, using both visual and auditory feedback, until the experimenter decides 
that a sufficient number of patterns has been stored. 

Paul's adaptive vector quantization: adaptation is accomplished by continuing al-
teration of the pattern table to match the current speaker and environment. An incoming 
spectrum is matched against all existing reference patterns. If the best match fails to satisfy 
a fixed criterion, the new pattern is incorporated into the pattern table, replacing that pattern 
that has not been transmitted for the longest time. 

The spectral envelope estimation (SEE) vocoder algorithm was used as a base in these 
experiments [12]. (SEE uses cepstral processing to obtain spectral patterns.) Performance 
was quite impressive. When a new speaker began, a brief period of quasi-intelligible speech 
was followed by adaptation; the system quickly tuned in on the new speech. It should be 
noted that the system requires that updated reference sets be periodically transmitted. To 
maintain the low bit rate requires the detection of silent intervals during which new pattern 
sets can be sent. 

33.4 THE KANG-COULTER 600-BPS VOCODER 

Kang and Coulter [9] developed a 600-bps vocoder that employs LPC methods followed 
by formant tracking based on the LPC parameters, as well as vector quantization of the 
formants. Their device is a useful example of how the different data-reduction techniques 
can be combined to achieve significant bit-rate reduction. A block diagram of their system 
is shown in Fig. 33.1. 

LPC vocoders have already been discussed in Chapters 21 and 32. Here, we want 
to refer back to the predictor coefficients and show how to manipulate them to improve 
formant tracking. Let's consider, as an example, an nth-order predictor. We know that the 
z-transform of the synthesizer can be expressed in terms of an nth-order polynomial in z. 

H(z) = ; Ц -. (33.2) 
1 - a\z ' — a2z

 L anz " 

For a tenth-order system, as aw approaches unity, the 10 poles of the system gravitate 
toward the unit circle, as shown in Fig. 33.2. As the poles progress, the resultant spectrum 
changes as indicated in Fig. 33.3. (In the figure the parameter кю corresponds to аю in our 
notation.) As kio gets very close to the unit circle, in (/), the peaks of the spectrum are 
very obvious and relatively easy to identify. 

However, these values of peak frequencies are only approximations to the formants. 
As seen in Fig. 33.2, the pole trajectories are not radial. Thus, it is necessary to backtrack by 
gradually returning k„ to its original value and iteratively recomputing the formants in steps. 

Vector quantization of the formants: just as perceptually distinct speech spectra are 
a relatively small subset of all possible speech spectra, so are the perceptually significant 
formant patterns a small subset of all such patterns. Kang and Coulter worked with a stored 
table of just 128 vector formant patterns. They also vector quantized six partial correlation 
coefficients for use with unvoiced sounds. Their parameter coding is shown in Table 33.4. 
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FIGURE 33.1 Kang-Coulter 600-bps voice digitizer. From [9]. 

Finally, Kang and Coulter present a summary of DRT results, using the Voiers version 
of feature comparison (see Chapter 17); these results are shown in Table 33.5. 

33.5 SEGMENTATION METHODS FOR BANDWIDTH REDUCTION 

In Section 33.1 it was noted that the lowest reasonable data rate for a speech-transmission 
system is of the order of 75 bps, equivalent to a teletype rate. Let us try to imagine 
how one would go about building such an ideal system. First, a very good automatic 
speech recognizer would be the front end of the system. This would mean that the 
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f = 2000 Hz 
Unit circle 

f = 4000 Hz f = 0Hz 

FIGURE 33.2 Loci of the poles as ki0 approaches unity. From [9]. 

transmissionsystem has available the equivalence of printed text material that can now be 
sent by teletype. At the receiver, a text-to-speech (system) would be needed to reproduce 
the spoken version of the text. 

There are two strong limitations to this scenario. First, even a very good text-to-
speech system does not reproduce the characteristics of the speaker. This means that we 
really need more bits with which to (hopefully) reproduce the style of the speaker and 
convince the listener of the speaker's identity. To determine how many more bits might 
be needed for this task, we would have to invent methods and perform psychoacoustic 
testing on a fairly large scale, in order to arrive at some estimation of the extra bandwidth 
needed, and how to do the job of approximating the speaker's voice. To our knowledge, 

TABLE 33.4 Parameter Coding for a 600-bps Voice Digitizer9 

Parameter 

Frame Rate 
Vocal tract filter parameters 
Excitation parameters 
Voiced-unvoiced decision 
Amplitude 
Pitch 
Synchronization 
Tot. no. of bits 

Typ. 2400-bps 

Coding 

Linear Predictive Encoder 

44.444 Hz 

40 bits/frame 

1 bit/frame 
6 bits/frame 
6 bits/frame 
1 bit/frame 

54 bits/frame 

600-bps 
Voice Digitizer 

40 Hz 
7 bits/frame 

1 bit/frame 
4 bits/frame 

5 bits/ double frame 
1 bit/double frame 

30 bits/double frame 

aFrom [9]. 
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FIGURE 33.3 Spectra of an all-pole system as poles migrate toward the unit circle. From 
[9]. As the poles get closer to the unit circle, the peaks associated with the poles become 
more distinct and easier to identify. (See text for further explanation.) 

such research has not been done. However, as long ago as 1980, speech researchers were 
beginning to grapple with such problems, and work centered around these issues is currently 
quite active. 

Even if we are willing to sacrifice speaker identity and style, however, one would still 
need to accurately recognize phonemes or some other linguistically sufficient speech unit. 
This has been demonstrated for Japanese speech in [8] and [21]. In the latter reference, for 
instance, phoneme HMMs were used to recognize phoneme strings. Japanese phonotac-
tics permit relatively strong constraints on phoneme sequences (in comparison, say, with 
English), and the resulting recognition was good enough to provide 150-bps synthetic 
speech with comparable subjective evaluations as with a VQ system that required 400 bps 
(where neither of these figures included pitch information). This was very impressive; how-
ever, the experiments were done for a single speaker, under pristine acoustic conditions, 
and in a language that is particularly conducive to such an approach. We are not aware 
of any current application of this approach to the general case of unconstrained acoustic 
conditions, speaker style, and without speaker-specific training. 

Nonetheless, let's look more closely at an idealized speech-transmission system, one 
that recognizes and transmits individual phonemes. If we assume an average speaking 
rate of 10 phonemes/s and a total of 64 phonemes, this idealized system would transmit 
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TABLE 33.5 DRT Accuracy: Comparison of a 600-bps System 
with the Mother 2400-bps System3 

Feature 

Voicing 

Nasality 

Sustention 

Sibilation 

Graveness 

Compactness 

Average 

Perception 

Distinguishes /b/ from /p/, 
lai from IM, NI from IM, etc. 
Distinguishes /n/ from /d/, 
Imi from /b/, etc. 
Distinguishes IM from /p/, 
/b/ from /v/, IM from /Θ/, etc. 
Distinguishes /s/ from /Θ/, 
/ГУ from lai, etc. 
Distinguishes /p/ from IM, 
/b/ from /d/, /w/ from /r/, 
/m/ from /n/, etc. 
Distinguishes /y/ from /w/, 
/g/ from /d/, /k/ from IM, 
/J7 from /s/, etc. 

600 bps 
Voice Digitizer 

99.9% 

84.4% 

78.1% 

60.2% 

68.0% 

88.3 % 

79.9% 

2400 bps 
LPE 

89.6% 

93.6% 

77.0% 

93.2% 

81.5% 

93.0% 

88.0% 

"For the most part, the lower bit-rate system is not as good at providing cues for feature 
perception; we don't know why the voicing result appears to have been better for the 
lower rate system. From [9]. 

the spectral components (coded as phonemes) at 60 bps. The synthesized speech quality 
would be determined exclusively by the phonemes stored at the receiver, independent of the 
specific speaker. Further, since the acoustic properties of a phoneme are strongly dependent 
on the surrounding sounds, the resultant synthetic speech intelligibility would almost surely 
be severely compromised. 

A somewhat better (but far from perfect) facsimile of the speech could be obtained 
by recognizing and storing allophones at both ends. Assuming 1000 allophonic variations 
of all the phonemes, and again choosing a speaking rate of 10 phonemes/s, our new system 
now requires 100 bps for the transmission of vocal tract information. 

Examining Table 33.4, we see that the frame rate for the Kang-Coulter 600-bps 
vocoder is 40 Hz. We can speculate that the application of frame fill would reduce the bit 
rate to approximately 300 bps. With this modification we are beginning to approach the 
limits as defined by the idealized analysis-synthesis system. Such an extension has been 
tried on different basic vocoders by various researchers and is called segmental vocoding. 
Instead of simply omitting the transmission of alternate frames (as in frame fill), strongly 
correlated contiguous frames are merged into segments, and these segments are then vector 
quantized. If there are, on average, N frames per segment, the resultant equivalent bit rate 
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is reduced by almost a factor of N. Note that this approach does not require explicit ASR 
for the segments. 

It should be noted that merging of contiguous frames is an extension of the frame-
fill concept discussed briefly in Section 33.2. Rather than halving the frame rate, the 
segmentation methods divide the frame rate by a signal-dependent integer. Since much of 
the speech signal consists of quasi-stationary voiced segments that change very slightly 
from frame to frame, segmentation algorithms can lead to greater savings in the average 
bit rate. 

Segmentation algorithms lead to variable length segments, with resultant complica-
tions. For example, the Kang-Coulter vocoder would search for a stored segment with 
formant tracks that most closely resembled the formant tracks of the new segment. 

Representation of the speech spectrum can take many forms, depending on the spe-
cific processing system. For the Kang-Coulter vocoder, the derived spectral parameters 
are formants, and it seems reasonable to compare adjacent segments by inspecting first-
order formant differences. Roucos et al. [15] worked with the LPC-derived parameters 
and, for the segmentation determination, they proposed inspection of the log-area ratio 
differences.2 

A key issue is the comparison of the derived segments with stored versions of 
the codebook segments. In Section 33.3 there was a brief discussion of adaptive vector 
quantization, in which the system went through a transient period, entering new vectors 
into the codebook that were based on a new speaker's speech properties. Alternate strategies 
are the multispeaker approach, in which a fixed codebook is created, based on the data from 
a variety of speakers, with the hope that any new speaker's segments will resemble stored 
segments from this variety. Still another strategy is the single-speaker approach, wherein 
a fixed collection of segments is computed for just one speaker - the sole user. This idea 
can be extended to a population of users, each one having his or her private codebook. 

Obviously, the single-speaker approach requires a smaller codebook and thus uses a 
lower bit rate than the multispeaker system. The adaptive VQ should compare in bit rate 
with the single-speaker VQ at the price of more computation and greater complexity, since 
it has to include an algorithm that adds new code words to the codebook and an algorithm 
to determine which code words to eliminate. 

Many strategies exist for deciding on the appropriate code to transmit, given an ana-
lyzed segment. A standard criterion is the L2 measure; that is, the mean-squared difference 
between the components of the new vector and those of each of the stored vectors. These 
components differ from system to system, whether it be LPC, a channel system, or a homo-
morphic system. In addition, as discussed in [7], different distance measures are available, 
such as log spectral distance, cepstral distance, and various criteria based on likelihood 
ratios. 

A variety of methods for very low bit-rate coding have been the object of research 
during the past two decades; see, for example, [4], [5], [14]—[17], [20]-[22]. 

2See Rabiner and Schäfer [ 13] for definitions of various LPC parametric representations, including log-area ratios. 
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33.6 EXERCISES 

33.1 Prove that for the direct-form nth order LPC synthesizer, the poles migrate toward the unit circle as 
the nth PARCOR coefficient kn approaches unity. 

33.2 Devise an algorithm to obtain good approximations to the formant frequencies after correctly identi-
fying the spectral peaks when kn is very close to unity. 

33.3 Prove that the poles corresponding to the formants remain inside the unit circle as k„ approaches 
unity and then backtracks. 

33.4 Given the formant frequencies obtained by the above methods, find the corresponding predictor 
coefficients for a sixth-order system. 
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CHAPTER 

MEDIUM-RATE AND HIGH-RATE 
VOCODERS 

34.1 INTRODUCTION 

In Chapter 32 we were introduced to vocoders and the technique of analysis-synthesis sys-
tems. The channel vocoder was discussed in some detail. In Chapter 33, low-rate vocoders 
were presented that coded speech at rates below 2400 bps, with an expected sacrifice in 
sound quality. In this chapter1 we discuss speech coders that operate at bit rates greater than 
2400 bps (typically 4800-16000 bps) but that can deliver more robust and higher-quality 
speech. This always involves some form of waveform coding in addition to the customary 
modeling of the vocal tract parameters. That is, under a source-filter model, while low-rate 
vocoders focus on the filter parameters, quality is improved at higher bitrates by improving 
the source description. We also discuss some pure waveform coding systems including 
subband and differential coding. 

A variety of medium-rate systems have been proposed and implemented, including 
voice-excited systems, LPC residual-excited systems, split-band systems and, more re-
cently, code-excited systems, employing analysis-by-synthesis methods. It should be noted 
that analysis by synthesis requires much more computational power than previous systems 
so that its use in real-time environments is a result of advances in high-speed computing. 

34.2 VOICE EXCITATION AND SPECTRAL FLATTENING 

Much of the effort devoted to improving vocoders is based on the realization that the 
excitation signal is crucial to vocoder quality. The voice-excited vocoder [31] was an early 
attempt to confront this issue, and its principle is illustrated by the short-time voice spectra 
of Figure 34.1. The trick is to generate the spectrum of Fig. 34.1(c), a spectrally flattened 
version of the original sound, which can serve as a suitable excitation signal. In their 
original work, Schroeder and David passed the low-pass signal (Fig. 34.1(b)) through a 
zig-zag network (Fig. 34.2) to produce many distortion products. 

A more effective scheme developed later by David et al. [11] is shown in Fig. 34.3. 
The speech is low-pass filtered to create a baseband signal and then passed through a simple 
distortion network (such as a half-wave rectifier) to generate upper harmonics. This new 
signal passes through a filter bank extending over the entire spectrum of interest, and the 

1 This chapter was jointly written by Jeff Gilbert and the authors. 
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FIGURE 34.1 Spectral flattening of the baseband signal to produce the vocoder 
excitation signal. 

bandpass filter outputs are hard limited. 

34.3 VOICE-EXCITED CHANNEL VOCODER 

This method of spectram flattening is not ideal. If, for example, two harmonics appear in the 
same filter, the weaker harmonic tends to be suppressed by the stronger one. Nevertheless, 
this concept has been implemented as part of the voice-excited channel vocoder shown in 
Fig. 34.4. 

Typical bandwidths of the baseband signal vary from 600 to 900 Hz; the wider 
bandwidth signals lead to higher-quality results, but also to greater transmission rates. 
The remaining spectrum is analyzed as in a conventional channel vocoder (described in 
Chapter 32). The baseband signal is usually transmitted by some standard waveform coding 
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FIGURE 34.2 Zig-zag network. 
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technique (discussed in Section 34.5). At the receiver, the baseband signal is decoded, 
spectrally flattened to provide the excitation for the channel vocoder, and also added in to 
the output. 

Figure 34.3 shows the receiver baseband filter and part of the synthesizer filter bank. 
Each hard-limited subband signal is again passed through a bandpass filter (to limit its 
energy to the appropriate spectral region), then modulated by the corresponding channel 
energy decoded from the channel vocoder information, before summing to create the 
channel vocoder output. 

34.4 VOICE-EXCITED AND ERROR-SIGNAL-EXCITED 
LPC VOCODERS 

The principles behind voice-excited LPC vocoders are the same as for channel vocoders; 
a spectrally flattened excitation signal must be generated and then integrated into an LPC 
vocoder configuration. But rather than having to construct this through some additional 
mechanism, a flattened version of the original speech - the residual, or error signal - is a 
natural part of LPC analysis. 

As explained in Chapter 21, exciting an LPC synthesizer with the unmodified error 
signal reproduces the input speech. For a vocoder, the challenge is to find a compressed 
version of the residual that can be conditioned to serve as an appropriate excitation. Magill 
and Un [23] invented a residual-excited LPC vocoder that was able to operate at a 9600-bps 
rate, and Weinstein [35] developed a similar system using the voice baseband as excitation. 

Whether one uses the error signal or the original speech, the problem is the same: at 
the analyzer, the signal must be low-pass filtered to conserve the transmission bandwidth, 
necessitating bandwidth re-expansion, for instance by distortion and spectral flattening, in 
the synthesizer. In their original work, Magill and Un used the approach of David et al. [11] 
of passing the residual through a nonlinear distortion. This is not a satisfactory method, 
since the degree of deviation from the desired spectrum flattening depends to a great 
extent on the time-varying spectrum of the speech. Makhoul and Berouti [24] proposed an 
alternative method, illustrated in Fig. 34.5. Here the baseband is replicated by appropriate 
down-sampling. 

Such a scheme has two deviations from the ideal: first the replications reflect the 
spectral envelope of the baseband, and second the harmonics of the replicated spectra do 
not fall at multiples of the fundamental frequency (except by accident).2 

Another scheme, given in [35], uses the LPC error-signal concept to perform spectral 
flattening. In this scheme, known as VELP (for voice-excited linear prediction, as opposed 
to RELP, for residual-excited linear prediction), an LPC analysis is performed on the 
received, distorted, baseband signal to create a new error signal. If we assume that this 
analysis accurately represents the spectrum, it follows that the resultant error signal has a 
flat spectrum and is thus a useful excitation. 

2It's worth noting the results of Ritsma (Chapter 16) that the human auditory system is less sensitive to inhar-
monicities at frequencies above 1500 Hz. 
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FIGURE 34.5 Alternate method of spectral flattening, using downsampling. The solid 
spectral lines are those of the original baseband speech. By reducing the original sampling 
rate by a factor of 6 (from 7.8 kHz to 1.3 kHz), the spectrum is aliased, producing the 
additional spectral lines shown as dashed. 

Figure 34.6 shows simplified block diagrams of VELP and RELP. In VELP, since 
the excitation is derived directly from the received, low-pass filtered speech, this baseband 
can be added to the high-pass vocoded speech. In RELP, the processed error signal is used 
only as excitation. 
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Split-band systems versus voice or error-signal-excited systems: In split-
band systems, the baseband signal is transmitted, but instead of distorting this signal at 
the receiver to regenerate higher-frequency components, the system makes explicit use 
of a pitch detector. Thus, the baseband frequencies are waveform coded while the higher 
frequencies are vocoded by one of several possible methods. 

How do split-band systems compare with voice-excited or residual-excited systems? 
Possible advantages for the latter are that (a) pitch and voicing detection are not needed, thus 
saving hardware and channel capacity, and (b) quality in a noisy environment is improved 
since there are no pitch parameters to be estimated or bad voicing decisions to be made. 

Although it is true that split-band systems require the extra hardware (or software), 
it can be argued that with the present state of technology, the difference in implementation 
cost is insignificant. A more important issue is that of robustness. Psychoacoustic tests 
demonstrate that for frequencies higher than 1500 Hz, pitch errors are not very intrusive. 
For example, a channel vocoder can be totally noise excited for frequencies above 1800 
Hz with very little effect on the overall quality [16]. 

34.5 WAVEFORM CODING WITH PREDICTIVE METHODS 

Since the speech spectrum is not, in general, flat, implying some degree of correlation 
between waveform samples, bit-rate savings are possible by means of delta modulation 
techniques. We assume that fewer bits are required to code the difference between two 
adjacent samples than are needed to quantize the samples directly. A simple mathematical 
statement of the problem is this: Let s(n) be the signal, and compute the difference e{n) = 
s(n) — s(n — 1). Next, quantize e(n) so that e{n) is the quantized version of e(n), and 
transmit this quantized error signal. The system, shown in Fig. 34.7, is called differential 
pulse code modulation (DPCM) and shows the coding and decoding of the signal. 

From this simple notion have grown concepts and schemes of varying degrees of so-
phistication. First, we note that speech intensity varies widely with phonemes and speakers; 
this suggests that an adaptive quantization technique could save additional bits. A possible 
implementation of such a concept is shown in Fig. 34.8. 

The derived volume signal, V, is presumed to be slowly varying at roughly syllabic 
rates. It controls the compression and expansion of the quantizer. At the receiver, true 
speech volume is approximately restored by multiplying the quantized error signal by V. 
An important feature of such a system is the need for frame synchronization. 
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FIGURE 34.7 Differential pulse code modulation. 
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FIGURE 34.8 Adaptive differential pulse code modulation (ADPCM). 

A difficulty with the concept corresponding to Fig. 34.8 is the slope-overload problem. 
If the integrator in Fig. 34.8 has a fixed step size, the response to a rapidly rising signal 
would cause the decoded signal to fall behind. To overcome this problem, we introduce a 
quantizer with a variable step size; such a system is shown in Fig. 34.9 and is called CVSD 
(continuously variable slope delta) modulation. 

First, the speech synthesizer is implemented at the transmitter so that its output can 
be monitored continuously and compared to the input signal. Then the error signal is taken 
to be the difference between the input signal and this synthesized signal. In addition, die 
slope analyzer, M, changes the quantization steps according to the following rale: if three 
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FIGURE 34.9 Continuously variable slope delta modulation. 
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FIGURE 34.10 Rudimentary linear prediction concept. 

successive error signal samples are the same sign (indicating an inability to follow rapid 
changes), the step size is increased; in all other cases the step size decreases. Increases and 
decreases are not equal. Also, both increases and decreases are clamped. 

34.6 ADAPTIVE PREDICTIVE CODING OF SPEECH 

The ideas of adaptive PCM can be generalized and to some extent incorporated into speech-
modeling concepts. Figure 34.10 shows a rudimentary linear prediction model. Here 1 —P(z) 
represents a linear filtering of speech samples, and the analyzer alters the parameters of 
1 — P(z) according to some chosen algorithm (e.g., a least-squares minimization). Both the 
error signal and parameters are quantized and transmitted. At the synthesizer, the inverse 
filter is excited by the received error signal to produce the output speech. 

The error signal of the system of Fig. 34.10 grows proportionally to the speech 
volume. To prevent this, we introduce Fig. 34.11. 

The synthesizer filter is placed in the analyzer feedback loop, and the quantized error 
signal magnitude is adjusted to try to minimize the error signal. This gain control in the 
feedback loop can be adjusted for each new speech sample (as in CVSD), or it can be a 
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slowly varying adjustment operating, for example, at a syllabic rate. 
A sophisticated realization of this concept, shown in Fig. 34.12, is called adaptive 

predictive coding (APC) [5]. 
In this system, prediction of the speech wave is based on (a) the measured value 

of the speech wave one fundamental period back and (b) an LPC analysis of the error 
signal resulting from (a). The fundamental period is computed by a pitch detector and the 
pitch-lag predictor gain a is computed to minimize the mean-squared error of the first error 
signal. The parameters a\, a^, Дз, and at, are computed by performing a LPC analysis of 
the first error signal. The transmitted error signal e{n) is computed as shown in the figure. 
The residual gain q is controlled at syllabic voice rates. The transfer function between the 
signals e(n) and sn is seen to be the appropriate synthesis filter. 

APC embodies the concepts of both modeling and prediction. By incorporating a 
degree of both vocal tract and excitation modeling, the APC algorithm managed to reduce 
the error-signal information rate significantly; APC systems work well at bit rates of 
approximately 8 kbps. 

34.7 SUBBAND CODING 

Waveform coding is different from vocoding because it does not make explicit use of a 
speech-production model. Nevertheless, certain properties of the speech signal and the 
human auditory system can be put to good advantage in designing a waveform coded 
speech-transmission system. For example, it is known that the speech signals in an average 
telephone conversation are present less than 50% of the time. We also know that a narrow-
band signal can more effectively mask quantization noise if the noise spectrum is in the 
neighborhood of the signal frequency. This leads to the notion of subband coding [27], [10] 
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FIGURE 34.13 Masking threshold of noise to a sinusoidal masker. From [19]. 

in which the speech is first passed through a filter bank and then each band is individually 
quantized. Krasner [19] ran an experiment to study the masking properties of a tone on 
noise within the critical band of the noise. The results are shown in Fig. 34.13. 

We see that the noise should be from 18 to 28 dB below the signal before it is 
completely masked. With a 16-channel subband coder, Krasner was able to show that ap-
proximately 35 kbps is required to make 4-kHz speech sound as good as the raw speech. 
This masking principle is exploited to the full in the perceptual audio coding schemes of 
Chapter 35. 

Estaban and Galand [13] proposed the use of quadrature mirror filters (QMFs). 
These filters have rather magical properties: under certain conditions, aliasing caused 
by overlapping bands can be shown to cancel. A QMF splits the total bandwidth into 
two symmetrical subbands. The upper filter can be obtained precisely from the lower one 
by replacing all odd coefficients by their negatives. Figure 34.14 shows a four-channel 
QMF decomposition and reconstitution system. QMFs and their use in subband coding are 
described in more detail in Section 35.3.1. 

34.8 MULTIPULSE LPC VOCODERS 

Another way to transmit the excitation signal is used in the multipulse LPC vocoder, which 
could be considered a direct predecessor of CELP3 In a multipulse vocoder, the residual 
is modeled by the summation of a number of scaled impulses that can be characterized 
by their amplitude and location. Thus in addition to transmitting the LPC coefficients, 
the amplitude and location of the excitation impulses are also transmitted. The question 
then remains how to determine the location and height of the impulses. This is done by 

3It is interesting to note that one of the inventors of this method, Bishnu Atal, also co-authored the first paper on 
code-excited linear prediction (CELP). Atal was one of the original inventors of LPC itself. 
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an analysis-by-synthesis method of choosing the impulses such that they minimize the 
difference between the actual speech signal and the speech signal that the receiver will 
reconstruct. (See Fig. 34.15.) 

The impulses are filtered through the LPC synthesis filter, which will then reconstruct 
the coded version of the signal. This is then subtracted from the actual signal and passed 
through a perceptual weighting filter. If 1/A(z) is the prediction filter, then the perceptual 
weighting filter is of the form W(z) = A(z)/A(z/c), where с is a constant controlling the 
amount of weighting, with 1 denoting no weighting and typical values ranging from 0.7 
to 0.9. The effect of this scaling the z-plane by the constant с is to move all the poles of 
\/A{z/c) closer to the origin, thereby "blurring" the corresponding peaks in the spectrum 
in comparison with 1/A(z). Thus, the entire effect of W(z) is to provide narrow spectral 
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dips local to each resonance in the prediction filter l/A(z). This perceptual weighting filter 
accounts for the effect on human hearing of the interaction of the excitation sequence with 
the LPC parameters [32] - namely, that distortion energy will be less important near to the 
prediction filter peaks since this is where the peaks in the synthesized signal will provide 
masking. The perceptually weighted error is minimized by an optimization procedure to 
choose the best impulse locations and amplitudes. For simplicity, the impulses are deter-
mined sequentially, although an increased performance could be obtained at the expense 
of increased computational requirements if the impulses were determined simultaneously. 
The time complexity of the sequential optimization is linear in the number of possible 
impulse locations and linear in the total number of impulses to be determined. 

Multipulse LPC vocoder with pitch synthesis: Although multipulse LPC is fairly 
compact and can yield high-quality synthetic speech, several modifications can further 
improve it. One of these modifications is particularly relevant to CELP and is described 
here. The modification is based on the observation that the excitation sequences are often 
highly correlated from one pitch period to the next.4 By adding a pitch synthesis filter (also 
known as a long-term predictor), one can exploit this redundancy. The pitch synthesis filter 
is of the following form, where с is a scale factor, b controls the amount of prediction 
(0 < b < 1), and T is the pitch period: 

The addition of the pitch synthesis filter means that only the difference between the current 
excitation signal and its form one pitch-cycle earlier (with appropriate scaling) needs to be 
transmitted. 

34.9 CODE-EXCITED LINEAR PREDICTIVE CODING 

Although multipulse LPC with pitch synthesis yields an improved performance over pre-
vious versions of LPC, the application of vector quantization techniques to the problem 
of coding the excitation signal can increase the performance even further, leading to a 
lower level of audible distortion as well as reduced bandwidth requirements. The resultant 
technique is called Code-excited linear prediction or CELP. 

34.9.1 Basic CELP 
As pointed out by Schroeder and Atal [33], "the speech synthesizer in a code-excited linear 
predictive coder is identical to the one used in adaptive predictive coders (APC)." 

In CELP, the difference in excitation from frame to frame is not characterized by a 
few impulses, but rather as one of a fixed number of sequences in a codebook. Thus, to 
resynthesize the signal, the CELP synthesizer shown in Fig. 34.16 can be used. In the basic 

"This concept was introduced in the discussion of the APC system. 
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CELP implementation, the sequences in the codebook are predetermined, zero mean, unity 
variance, Gaussian random numbers. 
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FIGURE 34.16 CELP synthesizer. 

A codebook of Gaussians was chosen because an investigation of a large corpus of 
speech data revealed that the excitation sequence needed in an LPC vocoder with a pitch 
synthesis filter was indeed Gaussian by nature [4]. Non-Gaussian codebook designs are 
described later. 

The CELP coder then has the burden of choosing the codebook sequence5 that 
will produce the least perceived distortion. This is performed by an analysis-by-synthesis 
method as shown in Fig. 34.17. The address of the code word (for each frame) that minimizes 
the perceptual error is then sent to the receiver, along with the standard LPC parameters. 

In the most basic version of CELP, an exhaustive search over the whole codebook 
is performed. This, however, can be a quite costly operation. The codebooks are typically 
512-1024 entries; a typical entry consists of approximately 40 samples (which would be a 
5-ms interval for an 8-kHz sampling rate). Thus, each excitation sequence in the codebook 
must be filtered with the pitch synthesis and LP synthesis filters, subtracted from actual 
speech signal, and then filtered with the perceptual weighting filter. Optimizations to avoid 
some of this computation are discussed in the next section. 

The gain factor for each excitation sequence can be adjusted in a manner similar 
to the way that the impulse amplitudes are adjusted in multipulse LPC. The LP spectral 

5 Also sometimes called the excitation sequence, since it is what excites the LP synthesis filter, or the innovations 
sequence, since it represents what is new in the signal (i.e., what cannot be predicted by the LP synthesis filter). 
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parameters are coded by using vector quantization as previously described. 
Since the pitch period and excitation sequence change more rapidly than the spectral 

characteristics of the speech signal, the codebook index, gain, and pitch estimate are 
transmitted more often than the LP spectral coefficients. 

The U.S. Federal Standard 1016 specifies a 4800-bps CELP coder as follows: 

1. The 10 LP spectral parameters are updated every 30 ms, consuming 34 bits or 1133.3 
bps. 

2. The pitch estimate (both period and long-term feedback gain) is sent four times as 
often (every 7.5 ms). The feedback gain is coded as a five-bit number, whereas every 
other pitch period is coded as an eight-bit and a six-bit number. When it is coded as 
an eight-bit number, the actual pitch period is sent. In between the eight-bit values, 
six-bit difference values are sent. Since the pitch does not often change extremely 
rapidly, this is sufficient. The pitch estimate totals 1600 bps. 

3. Finally the excitation codebook indices are sent every 7.5 ms, using a nine-bit index 
to specify which of the 512 codebook vectors to use and a five-bit gain to specify 
its amplitude. This requires 1866.67 bps. When added to 200 bps of synchronization 
and forward error correction, this yields the specified 4800 bps. 

34.9.2 Modifications to CELP 

As with most new techniques, several modifications to the basic CELP vocoder have been 
proposed and implemented. They are divided into two categories. The modifications that 
are aimed particularly at reducing the computation involved in the codebook search are 
presented in Section 34.10. Other modifications targeted at higher signal fidelity or other 
improvements are discussed as follows. 

34.9.3 Non-Gaussian Codebook Sequences 

Although Gaussian noise can model much of the variation of the excitation, it does not 
model well the onset of voicing from silence or unvoiced segments. Where multipulse 
LPC was able to target particular places in the excitation sequence and quickly add the 
periodic impulses required for voiced speech, a Gaussian-only codebook is unable to be so 
specific in its alterations. This, however, can be remedied by including some deterministic 
excitation sequences in the codebook [36]. 

The improved codebook is divided into four sections representing four different 
excitation classes. The first class, occupying half of the 512-entry codebook, is the standard 
stochastic excitation sequences. Another class consisting of single pulses is included to 
allow rapid voicing onset. A third class representing periodic pulses at the current pitch 
period (as estimated in the LP Analysis section and used in the pitch synthesis filter) is 
included for more gradual voicing onset. A fourth class is that of a glottal pulse for more 
detailed excitation at lower pitch periods. 

Another implementation of the CELP algorithm uses sine and cose functions as 
part of the codebook [22]. Using deterministic codebook sequences can not only improve 
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performance but can also lower the computational requirements. 

34.9.4 Low-Delay CELP 

As described here, CELP vocoders buffer of the order of 20 ms of speech and can thus 
delay speech by 20-40 ms. This can be a problem for use over a telephone line if echo 
cancellation is not used [26]. For applications in which the delay is critical, a low-delay 
implementation of CELP is possible [7], [8]. One-way delays of the order of 2 ms have 
been achieved. The low-delay CELP does have the disadvantage of a higher resultant bit 
rate - typically 16,000 bits/s are required for toll-quality speech. 

The reduced delay is achieved by using much smaller blocks (five samples or 0.625 
ms) and additional adaptation mechanisms to predict signal characteristic trends (See 
Fig. 34.18). Prediction and gain adaptation entail having the synthesis section look at the 
recent past history of the excitation sequence and filtered excitation sequence, and from 
that update auxiliary LP generators that produce new estimates of the gain coefficient and 
spectral filter coefficients. 

In the coder, synthesis adaptation is modeled by computing the synthesizer estimates 
of the gain and spectral filter coefficients, and then compensated by adjusting the excitation 
sequence so as to produce the desired output. Thus, the only information that is sent over 
the channel are the excitation codebook indices. The advantage is that only very recent 
information is used. All adaptation occurs based on the excitation sequences, which are 
decoded by me synthesizer very shortly after they are present at the coder. Therefore, no 
long-term (20 ms) framing of the speech occurs. 
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Since the pitch predictor would require a history at least the length of a pitch period, 
it would introduce delay and thus cannot be used. Because of this, the LP filter order must 
be increased to approximately 50. 

As previously mentioned, the excitation sequences are also drastically reduced in 
length to five samples. The codebook index is still 10 bits, but three bits are desig-
nated for the gain control and seven for the excitation waveform shape. Since only 128 
shapes are now possible, standard Gaussian random sequences do not provide an ade-
quate selection. Instead, a closed-loop optimization procedure is performed that chooses 
and optimizes the vectors in the codebook by using real test data to reduce anticipated 
distortion. 

Channel errors are often an important issue in speech coding and have been dealt 
with in an interesting manner in this implementation. The codebook indices are coded with 
a binary Gray code, such that codes that are most similar differ by only one bit in encoding. 
(The Gray code is a binary code in which sequential bits differ by only one bit. For instance, 
a three bit Gray code would be: 0 = 000, 1 = 001, 2 = 011, 3 = 010, 4 = 110, 5 = 111, 
6 = 101, 7 = 100. Thus, bit errors can be handled more robustly.) 

Other implementations of low-delay CELP coding have been investigated. In partic-
ular, [26] discusses an implementation that uses an adaptive codebook (see Section 34.10.6 
for definition). 

34.10 REDUCING CODEBOOK SEARCH TIME IN CELP 

In its initial incarnation, CELP was far from able to operate in real time. In fact, the original 
implementation by Schroeder and Atal required 125 s of Cray-1 CPU time to process 1 s 
of speech [33]. Since then, aside from the general improvements in CPU speed,6 many 
optimizations have been proposed and many real-time solutions have been engineered. 

The rate-limiting step in the CELP system is the search through the code-word 
dictionary to find the excitation sequence that minimizes the perceived distortion. As the 
algorithm has been stated, this requires passing each sequence in the codebook through 
three all-pole infinite impulse response (IIR) filters, namely, the pitch synthesis filter, the 
LP synthesis filter, and the perceptual weighting filter (as described in Section 34.9). It is 
then necessary to compute an associated error for the sequence. This exhaustive search can 
be quite demanding, even for the fastest digital signal processors. A number of solutions 
to this problem have been proposed, some of which will be discussed here. 

34.10.1 Filter Simplification 

By careful investigation of the arrangement of the filters in the CELP coder, it is possible to 
modify the basic structure so as to reduce the three IIR filtering operations to one filtering 
operation with no memory. A brief explanation of the modifications and results will be 

6The Cray 1, considered a supercomputer at the time referred to here, had a clock rate of 80 MHz, which would be 
considered extremely slow by the standards of today's home PCs. It did have great memory bandwidth, however. 
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FIGURE 34.19 CELP coder after the first reduction step. Adapted from [2]. 

presented here; the reader is referred to [2] for further details. 
The first modification is to move the perceptual weighting filter from the output of 

the summer (Σ) to its two inputs. This is equivalent as the filter is linear. The perceptual 
weighting filter is of the form A(z)/A(z/c), and thus when placed after the pitch synthesis 
filter [which is of the form 1 /A (z) ], the two will combine to form a single filter of the form 
l/A(z/c). (See Figs. 34.19 and 34.20.) 

Next, the pitch synthesis filter can be removed from the codebook search loop. The 
pitch synthesis filter is of the form B(z) = 1 — bz~T, where b is a gain factor and T is akin 
to the predicted pitch period. Thus, the output of the pitch synthesis filter is equal to the 
sum of its input and what its output was T samples ago. It can be assumed that T is longer 
than the excitation sequence length. This means that the output of the pitch synthesis filter 
T ago was due to a previous excitation sequence and hence the current choice of excitation 
sequence will not affect it. For this reason, it is constant with respect to the codebook 
search for the current block and can just be subtracted from the input speech once and then 
forgotten. A simplified picture of the reduced CELP coder is shown in Fig. 34.21. 

Thus the CELP coding has been reduced to some processing of the original speech 
segment (including removing the effects of the memory of the pitch synthesis filter), and 
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version from [2]. 

then a filtering operation with no memory on each of the codebook sequences, followed 
by an error computation of the sum squared difference between the filtered code word and 
modified original speech. 

34.10.2 Speeding Up the Search 
One advantage of the previously described filter simplification is that it allows the search 
procedure to be simplified to the maximization of a scaled inner dot product of each 
codebook sequence with a modified version of the original signal [2]. This is shown as 
follows. 

The goal is to minimize the error E over the current input block x„ and find the best 
gain G, with g„ representing the response of \/[A{z/c)]. 

The error metric E used is the mean-squared error: 

E = Σ(χη - Ggn) (34.2) 

Find G by setting the derivative of E with respect to G to 0: 

dE 
0- 3G 

^ = -2£*„g„ + 2GYig
1
n, 

n n 

= Lxngn 

so 

(34.3) 

(34.4) 
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(34.5) 

(34.6) 
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However, Σχ^ only depends on the input and Y,gn is a scale factor depending only 
on the LPC spectral filter and code word, so we just precompute α^ = v X g l and choose 
the best g„ to maximize (£*„#„)/a*. 

Thus the inner product of the filtered code words and the input sequence, scaled by a 
factor inversely proportional to the energy of the codebook sequence, is to be maximized. 
This scale factor does not, however, have to be computed in real time. Since the LPC 
spectral coefficients are vector quantized, and the codebook sequences are quantized, a 
simple look-up table can be implemented to obtain the correct value for a given codebook 
index and set of LPC spectral coefficients. 

This still does appear to require that each code word be filtered by l/[A(z/c)] before 
its inner product with the input sequence is computed. However, this can be reduced to 
computing an inner product of the unfiltered code word with a filtered version of the input 
sequence as follows: 

The goal is to maximize P = Σ.ηχη8η, where x„ is the input sequence and gn is the 
response of the inverse filter with no memory, l/[A(z/c)], to the current code word, c„. 
Here gn can be written as the convolution product of с and the impulse response /„ of 
l/[A(z/c)]: 

I 

so 

ЛГ-1 / N-l \ N-l / ЛГ—1 \ 
p = Σ \χηΣc>fn-i = Σ l··-Σ*■/»-· ' <34·8) 

n=0 \ i=0 / /=0 \ n=0 / 

or 

N-l N-l 

P = £ adi with di = £ xnfn-i. (34.9) 
i=0 11=0 

Thus we compute only the inner product of the backward-filtered input i/, with 
unfiltered code-word vectors c,. Hence the codebook search has effectively been reduced to 
taking an inner dot product of each code word with another vector, which is only computed 
once per frame. This is much more computationally feasible than an entire filtering operation 
per code-word comparison. 

34.10.3 Multiresolution Codebook Search 
Given a particular distance measure for computing which codebook entry matches best, 
mere are several ways to search that are more effective than the exhaustive full-search 
method. A multistage codebook search entails performing preliminary, less computationally 
intensive and thus less accurate searches on the database to narrow the number of possible 
candidate sequences down from the entire size of the database to some more reasonable 
subset, which is then searched in the slow, accurate manner. This type of optimization also 
is used frequently in other fields such as image processing. 
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In one version of the multistage codebook search, preliminary comparison stages 
are performed at lower temporal resolution by low-pass filtering and decimating by five 
the 1024 codebook entries and desired excitation sequence [25]. The scores from these 
reduced-resolution comparisons are used to determine the best 70 candidates, which are 
then compared at full resolution. 

The authors report that a speedup by a factor of 9 is achieved with those parameters. 
The decimation factor and subset search size were chosen by simulation so that 99% of the 
time the reduced resolution search would not eliminate the correct sequence. Using two 
preliminary stages at decimations of five and two allows a speedup by a factor of 13, again 
with 99% accuracy. 

The reduced-resolution codebook entries can be computed offline since they are 
independent of the speech signal. This results in a slight increase in required storage, but it 
does not impose a computation time penalty. 

34.10.4 Partial Sequence Elimination 
Another approach to multistage searching is not to compare the full codebook sequences 
at reduced resolution, but rather to compare only part of the sequences at full resolution 
[9]. In this scheme, the first к samples of the desired excitation sequence are compared 
with the first к samples of each of the codebook vectors. This is used to narrow the second 
stage, which is a full-length search, to some fixed number of the most promising codebook 
entries. This was reported to reduce the number of multiply and add operations by 75%. 

34.10.5 Tree-Structured Delta Codebooks 
Tree-structured databases often lend themselves to an efficient search. One requirement, 
however, is that the parents and children must be related in some meaningful way. Thus, 
if the values in a conventional linear codebook were assigned to the nodes in a tree, there 
would be no computational benefits. Gaussian random sequences may not appear to lend 
themselves well to ordering, but by use of a limited set of random sequences to form a basis 
for a larger set, the larger set can be encoded in a tree whose height is proportional to the 
number of basis vectors. This can be done with tree-structured delta codebooks [34]. 

A tree-structured delta codebook is constructed hierarchically from a limited number, 
L, of precomputed basis vectors, ACo through ACL i. (See Fig. 34.22). The codebook entries 
can be found by starting with the code vector at the root and then adding or subtracting 
the delta code vectors encountered while traversing the path to the desired node. (Note that 
Co = ACo.) For example, the value of C5 is ACo — ACi + АСг. In this way, the 2L — 1 
vectors in the codebook can be generated from the L delta code vectors, ACo · · · AQ-i-

Tree-structured delta codebooks not only reduce memory requirements but also re-
duce computational requirements. (The former is reduced by a factor of 100 whereas the 
latter is reduced by a factor of 70 as compared to conventional codebooks.) Because of 
the incremental nature of the tree structure, the best-match codebook searching can be per-
formed on the codebook deltas rather than on the entire codebook. This reduces the amount 
of filtering and correlation (or vector dot products in reverse terminology) to be linear 
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with L. As before, the energies of the filtered codebook sequences have to be computed, 
and used, to inversely scale the inner product, which is computationally proportional to 
the square of L. This, however, could be eliminated if a look-up table was used as seen 
previously in Section 34.10.2. 

The choice of delta code vectors is computed off line by analyzing large amounts of 
speech data and choosing principal orthogonal vectors that lead to the least distortion when 
used to code the test data. Iterative methods allow the delta code vectors to adapt. 

It should be noted that because of the tree nature of the codebook, and the fact that 
valid codebook indices lie both at the leaves of the tree and also in interior nodes, some of 
the delta code vectors are used more often than others. In particular, the delta code vectors 
with low indices are used more often than those with higher indices. The extreme cases 
are ACQ, which is a component of all vectors in the codebook, and AQ,_i, which is only a 
component of half of the codebook vectors. Thus the ordering of the delta codebook vectors 
is important. Delta vectors that are more tuned to the current excitation sequence spectral 
distribution should be placed near the root of the tree, whereas the delta vectors that are 
tangential to the excitation sequence should be placed in lower levels. This motivates a 
technique called delta vector sorting, in which the order of the delta vectors is keyed to the 
spectral content of the desired excitation sequence. The delta vectors are all filtered through 
the LPC spectral shaping filter and sorted by weighted energy. The delta vectors with the 
greatest amount of energy can be used most effectively to build the desired excitation 
sequence, and they are thus placed nearest to the root of the codebook tree. Since the 
coefficients of the LPC spectral shaping filter are known to both the coder and synthesizer, 
no additional information has to be transmitted. 

34.10.6 Adaptive Codebooks 
In the previous implementations of CELP, the codebooks used were precomputed and 
remained constant through the coding and decoding operation. This, however, does not 
take advantage of the fact that the speech signal's characteristics vary over time. Thus, it 

FIGURE 34.22 Tree-structured delta codebook. Taken from [34]. 
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might be advantageous to have a codebook that adapts to the speech signal. This approach 
has been used in many of the more recent implementations of CELP; see, for example, [14], 
[15], and [26]. (The concept is also described for use in a self-excited vocoder in [30]). 

The most common form of an adaptive codebook has the codebook contain entries 
taken from the previously synthesized excitation signal. Thus think of the codebook not 
as a set of К discrete TV-sample code vector sequences that are selected from, but rather 
a recorded linear history of the previous KN excitation samples (actually KN + N — 1). 
Then choosing a code word involves determining where in the past KN samples to select 
N consecutive samples for reuse as the current code vector.7 Since the code index is now in 
the range of zero to KN — 1, it would require log2 (K) + log2 (N) bits, so KN is chosen to be 
usually approximately 128 with N remaining at approximately 40. Thus the total codebook 
is quite small. (K no longer has any real significance, as the code words are all part of one 
continuous sequence.) The code index is sometimes called a lag or represented by an L, 
since it represents the amount of time to go back to retrieve the excitation sequence. 

An adaptive codebook also has the computational advantage of not requiring the 
perceptual weighting filter. Since the excitation sequence is taken from recent excitation 
sequences, it will be of the correct perceptual weighting since the previous excitations 
sequences were. Although this argument may seem circular, a proof and simulations are 
given in [14]. Some implementations filter or scale the excitation sequence before adding 
it to the codebook [26]. 

Adaptive codebooks are good for steady-state voiced excitation sequences, but they 
are not well suited for the voicing onset or for unvoiced sounds. To remedy this, some 
predetermined static codes are included in another section of the codebook. It should be 
noted that these sequences can bypass the perceptual weighting filter as well, since they are 
more random in nature and it is hoped that the noise shaping is not necessary. 

34.10.7 Linear Combination Codebooks 

Although forming codebooks from a linear combination of basis vectors was described in 
relation to tree encoding of code words in Section 34.10.5, the alternative implementation 
described here is sufficiently different to warrant individual treatment. This codebook 
arrangement is used in the system described in the next section. 

Instead of using a tree structure to combine the basis vectors, it is possible to use the 
actual binary representation to control how the basis vectors are combined [15]. Consider К 
basis vectors used to form a 2K entry codebook. In this 2K entry codebook, each codebook 
entry is a linear combination of all basis vectors, where the basis vectors can be scaled only 
by — 1 or 1. Thus it is easy to see how all 2K entries are formed from a K-hii codebook 
index. 

This structure is very useful for a number of reasons. First, it is quite memory efficient, 
since again only the basis vectors need to be stored as the combinations are inherent in the 
binary code. This coding also makes the system resistant to channel errors since changing 
one bit of the code will only change the sign of one of the basis vectors and the others will 

7Thus the term adaptive codebook makes it sound more complex than it actually is, but this is the accepted 
terminology for a fairly simple concept. 
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remain the same. 
The structure also facilitates an efficient codebook search. If the codebook entries are 

arranged by Gray code order, then neighboring vectors differ only by one basis vector. This 
means that transformed versions of all of the codebook vectors can be obtained sequentially 
and incrementally by simply adding or subtracting twice the value of one of the transformed 
basis vectors. 

34.10.8 Vector Sum Excited Linear Prediction 

Finally, another method to reduce the codebook search time is called vector sum excited 
linear prediction (VSELP) [15]. VSELP entails using not just one codebook, but rather a 
sum of the outputs of multiple (typically two or three) codebooks to form an excitation 
sequence. Each of the codebooks is smaller than in a single codebook system, typically 
128 vectors in size, and has its own associated gain. The codebook search then can be 
performed by sequentially searching through the individual codebooks and optimizing the 
gain parameters individually. Since the sum of the sizes of the codebooks is less than the 
size of a large codebook, the search can be performed more rapidly. In the system described, 
one of the codebooks used was of the adaptive variety, whereas the two others were standard 
stochastic codebooks so that the next excitation could be a combination of the two types of 
excitation. Vector quantization is employed to efficiently code the three gain parameters. 

34.11 CONCLUSIONS 

In this chapter, speech coders covering bit rates that were higher than the traditional 
2400-bps systems were studied. A relatively large number of such systems have been 
proposed and implemented, but it's worth noting that these systems are all variations of 
the basic notions developed decades earlier. The primary such notion was that advantages 
can be gained by modeling human speech production as that of a time-variable linear filter 
with appropriate excitation. Additionally, the speech wave can be digitized with resultant 
improvements in transmission despite the apparent need for greater bandwidth. 

The search for the best excitation function has punctuated a good deal of the work 
reported in this chapter. It began with the ideas that led to the voice-excited vocoder and 
continued through the many inventions that characterized code-excited LPC vocoders. 
Several developments were crucial to these advances: one was the work of C. P. Smith 
that led to the many uses of vector quantization (see Chapter 33); another was the 
work of Atal and Schroeder in creating the LPC concepts. In particular, the LPC er-
ror signal played a vital role. Of the more recent systems, the CELP coder has re-
ceived much attention because it strikes a requisite balance between coding efficiency 
and speech quality. It considers both technological and biological constraints to achieve 
this goal. The CELP algorithm can be implemented readily in real time by using stan-
dard low-cost digital signal-processing chips, allowing easy entrance into the commer-
cial sector; in one form or another, it is the basis of all current mobile telephony stan-
dards. 

In addition to the approaches described here, there has been a significant amount of 
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work in recent years in the general area of sinusoidal (sometimes called harmonic) coders, 
as briefly mentioned in Chapters 30 and 32. Since such coders are particularly amenable to 
prosodie transformations, they will also be discussed in Chapter 40. 

34.12 EXERCISES 

34.1 Consider the use of voice-excited vocoders in the public telephone network. In a typical network, 
frequencies below 300 Hz are not transmitted. Design a voice-excited vocoder that operates at 9600 
bps. First, determine the required band of the baseband filter and estimate the bit rate to transmit this 
signal. Then, choose a reasonable number of filters for spectral analysis and design the coding rates 
for each channel so as to fulfill the overall specified rate. 

34.2 Design one or more split-band systems using channel vocoders. Make a block diagram sketch and 
estimate the bit rate needed for each of the parameters you choose. 

34.3 Repeat the split-band design problem for an LPC-based system. 

34.4 Explain the primary differences between the multipulse and CELP vocoders. 

34.5 The perceptual weighting filter is described in the text as a frequency-domain weighting of the 
LP spectrum. Describe some other properties of human hearing that might potentially be of some 
importance for making the error minimization relevant to speech perception. 

34.6 Explain why ADPCM requires frame synchronization. 

34.7 Find the inverse to the discrete cosine transform. 

34.8 Show how the DCT can be computed by using fast transform methods. 
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CHAPTER 

PERCEPTUAL AUDIO CODING 

35.1 TRANSPARENT AUDIO CODING 

In Chapters 32 to 34 we looked at a number of approaches to encoding speech signals with 
the goal of minimizing the size of the representation (i.e., the bitrate required for real-time 
transmission, or the number of bytes required for offline storage) while preserving the 
quality of the speech. These schemes started from the source-filter model of speech, then 
were able to exploit the constraints ofthat scheme to encode intelligible speech in drastically 
fewer bits than required for the original waveform. However, while fully intelligible, the 
reconstructed signals were usually easily distinguished from the originals. 

In this chapter, we consider the situation where (a) we cannot assume that the source 
material is speech, or indeed any particular limited class of sound, and (b) our goal is a 
reconstructed signal that, for a normal listener, is indistinguishable from the original - that 
is, the coding scheme is 'transparent'. The most prominent application of these techniques 
is for encoding music and other entertainment content such as the audio tracks of movies, 
and the best-known example of this family of coders is the MPEG-1 Audio layer 3 standard, 
better known as MP3. These schemes have been quite successful: taking an uncompressed 
CD audio stream as a starting point (16 bits per sample x 2 samples per frame x 44,100 
frames per second = 1.41 Mbps), MP3 can generally achieve transparency at around 10% of 
the source bitrate, i.e., 128-160 kbps, or under 2 bits per sample (in a stereo frame). More 
advanced coders such as the AAC used in MPEG-4 push this closer to 1 bit per sample. 

Note that our goal of transparency does not imply that aim to be able to decode 
to exactly the same waveform; such schemes, termed "lossless", can remove redundancy 
(inefficient encoding) in a raw audio signal represented with 16 bits per sample, but rarely 
achieve compression ratios much better than about 50%, or around 700k bits per second 
for a CD-quality stereo. In order to achieve higher compression ratios while preserving 
transparency, we are looking for schemes where the decoded signal may differ from the 
original source, but such differences are insignificant to the listener, that is, we have 
removed irrelevant information. Any powerful compression scheme will also eliminate 
redundant information by adopting an efficient encoding, but the majority of gains come 
from irrelevance removal. 

To achieve these dramatic reductions, it is necessary to exploit the limits of auditory 
perception. As discussed in Chapter 15, the complex machinery that allows us to be so 
exquisitely sensitive to our acoustic environment does exhibit a number of limitations, 
such as the phenomena of masking in which more intense sounds mask the perception of 
weaker sounds. The central 'trick' of the coding approaches described in this chapter is to 
take the quantization noise - the inevitable by-product of representing the signal in a small 
number of bits - and hide it below the masking threshold as efficiently as possible. This 
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requires a great deal of dynamic control over where the quantization noise occurs, as well 
as good predictive models of masking phenomena. This approach is known as perceptual 
audio coding, since it is perceptual transparency that is being pursued. Measured by simpler, 
objective measures such as signal-to-noise ratio (SNR), the reconstruction is not particularly 
good. Indeed, one could say that the goal of perceptual audio coding is to create the most 
severely distorted version of the original signal that is still perceived as unmodified by a 
listener. 

If SNR is no longer a relevant metric, we might ask how such systems can be 
evaluated. Although the development of automatic, objective measures is an area of research 
[11], the ultimate test lies with human listeners. Various formal listening test protocols have 
been developed to provide some quantification and repeatability in subjective evaluation: 
a "Mean Opinion Score" test involves presenting a panel of expert listeners with a range 
of audio material encoded with the scheme being tested and asking them to rate the overall 
impact of the processing on a scale from 1 ("very annoying") to 5 ("imperceptible"); 
these ratings are then averaged to obtain a score for the scheme. Such tests are quite 
reliable, but expensive to conduct. An interesting phenomenon in advanced coders is the 
existence of "learning effects" where a given coder may introduce idiosyncratic distortion 
which becomes increasingly annoying as the listener learns to spot it. Listening panels may 
incorporate training sessions in which judges are specifically guided to listen for distortions 
specific to a coder. 

Given the primary goal of minimizing bits used without affecting perceived quality, 
there are a number of secondary goals that may influence the design of these coders. These 
reflect the different applications in which the coders may be deployed. Most obvious is 
the overall computational cost of encoding and decoding, which in general is traded for 
compression efficiency. Another consideration is that live broadcasts or bitstreams to be 
read from media such as DVDs may need to maintain a constant average bitrate over 
some short timescale, but storing files on disk may take advantage of variations in the 
"compressibility" of the source material over time, e.g., by using very few bits to represent 
quiet or silent sections. 

Given the enormous commercial impact of these schemes, questions of standardiza-
tion and intellectual property ownership in the algorithms become significant: standards 
bodies such as MPEG conduct lengthy negotiations to decide which technologies are in-
cluded in a standard, and hence which members will be able to benefit from the licensing 
income stream; by the same token, open-source enthusiasts may be motivated to develop 
entirely separate schemes purely to avoid licensing obligations. (Digital media technologies 
have also been shaped by questions of control of the content, e.g., to prevent unauthorized 
file sharing, but these questions are beyond the scope of this chapter.) Finally, certain 
schemes may facilitate applications beyond simple listening, such as adaptive transcoding 
where a single encoded representation can be "scaled" to provide the best possible trans-
mission to a device such as a mobile phone to which the available bandwidth can vary 
rapidly in real time. 

The remainder of this chapter looks in more detail at the main components of a 
"typical" perceptual coder. First, we look at the models of human psychoacoustic masking 
that predict where quantization noise can safely be permitted without affecting perceived 
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FIGURE 35.1 Tone-on-tone simultaneous masking. A tonal (sinusoidal) component will 
"mask" the perception of weaker tones nearby in frequency, effectively elevating the 
threshold of audibility in that region of the spectrum (after [14]). 

quality. Then we will look at how we can in practice control the occurrence of noise 
in time and frequency, i.e., "noise shaping". Finally, we look at a number of ancilliary 
issues in the design of coders, and compare the details of several widely-used compression 
standards including MP3 and AAC. An excellent and more detailed account of perceptual 
audio coding is provided by Painter & Spanias [6]. A more detailed description specific to 
MPEG-1 Audio layer 3 (MP3) is given by Pan [7]. 

35.2 PERCEPTUAL MASKING 

35.2.1 Psychoacoustic phenomena 

Given the perceptual coder's goal of introducing distortion only in parts of the signal where 
it will be unnoticed by a human listener, we must start with a more detailed look at what 
can and cannot be perceived by the ear. The essential idea of psychoacoustic masking is 
illustrated schematically in Figure 35.1, which shows the threshold of detection by a human 
listener of a sinusoidal tone at different frequencies in the presence of a fixed "masker" 
sinusoid. The vertical scale shows the energy of tones at different frequencies, and the 
lower curve shows the "absolute threshold", i.e., for each frequency, the minimum energy 
of a tone that can be detected in quiet; tones below this curve are simply not perceived 
by a listener. If, however, instead of quiet, the experiment is conducted in the presence of 
a clearly-audible masker tone, test tones with frequencies close to the masker need to be 
considerably more intense before they are detected - the masker tone has modified the limits 
of detectibility resulting in the upper, "masked threshold" curve. The range of frequencies 
around the masker tone that exhibit elevated thresholds is known as the "critical band", 
introduced in Chapter 15; many hearing phenomena vary on this scale, and it appears to 
reflect a deep aspect of the ear's mechanics and neurophyisiology. 

Notice that the elevated threshold is always somewhat below the level of the masker 
(in practice, 5-20 dB, depending on frequency and the temporal properties of the masker and 
masked signals), and that the masking is asymmetric in frequency, extending significantly 
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simultaneous masking 
-10 dB 

masker envelope 

masked threshold 

time 

backward masking 
~5 ms 

forward masking 
~100 ms 

FIGURE 35.2 Sequential masking. The masking effect of a tone takes several hundred 
milliseconds to fully decay after the masker ceases (forward masking). Even if the 
low-intensity tone starts slightly earlier than the masker, its perception may still be 
suppressed by the masking tone (backward masking). 

further for frequencies above the masker than below (the so-called 'upward spread of 
masking', related to the structure of the cochlea in which energy at a particular frequency 
must pass through the parts of the cochlea responsible for detecting higher frequencies 
before it dissipates at its 'best place'). Masking of this kind was first noted in the late 
nineteenth century, was first systematically investigated by Wegel & Lane [13], and has 
been widely studied since. A comprehensive summary is provided by Zwicker & Fasti [14]. 

Masking occurs not only when the masking tone is present, but also for a certain 
amount of time afterwards and even before. Figure 35.2 gives a sketch of this effect. It can 
take 100 ms or more for thresholds to return to normal after a masker is extinguished; this 

Masking tone 

Elevated masking 
threshold "skirt" 

r freq t Bark 

FIGURE 35.3 The combination of simultaneous and sequential masking result in a 
time-frequency "skirt" of elevated threshold around a strong, sustained tone. 
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decay is known as "forward masking" in contrast to the much smaller effect of "backward 
masking", in which a masking tone prevents the detection of a test tone that actually begins 
up to a few ms before the masker. Although this reverse causality seems paradoxical, we 
must remember that the brain doesn't immediately "know" that a tone is present; rather, 
there is some processing time during which evidence is being collected before a decision 
can be made. Backward masking can be understood as later signals overwhelming this 
process before it can complete, thereby suppressing the perception of the earlier sound. 
Combining these descriptions of simultaneous and sequential masking, we can illustrate the 
effect of a short masking tone as a kind of "skirt" in the time-frequency plane, below which 
the listener cannot perceive the presence of energy - see Figure 35.3. For our purposes, this 
masked area corresponds to range of energies in the signal into which quantization noise 
may safely fall without affecting perceived quality. 

35.2.2 Computational models 

In perceptual coding, it is the strong and prominent components of the signal being encoded 
that will be used to hide the noise and distortion resulting from coding. Thus, the masking 
signal cannot be controlled or specified in advance; all we can do is analyze the signal 
and infer the tolerable level of noise at each point in the time-frequency plane (i.e., the 
maximum noise energy that will not be noticed by the listener). To do that, we need 
a quantitative model of the phenomena outlined in the previous section, able to make 
fine-grained predictions of the masked threshold resulting from arbitrary input signals. 

There are a number of issues that complicate this process: 

• The precise masking curves as stylized in Figure 35.1 vary both in position and shape 
relative to the masker depending on frequency and level; 

• A tonal masker has characteristics that are qualitatively different from a masker 
formed from a narrow band of filtered noise that is otherwise matched in energy. This 
can be understood by noting that a noise masker will have a fluctuating level, making 
it harder to detect the small change in overall level that results from the presence of 
a masked tone. Thus, noise maskers raise the threshold more than tonal maskers of 
equal power; 

• Most experiments deal with single maskers, but a general signal will include multiple 
maskers that may be relevant at any given frequency. 

Specific perceptual experiments can be devised to probe and measure each of these effects, 
e.g., the additivity of masking curves. Also, in the final analysis, it is safe to be conservative, 
i.e., underestimate the available masking - and limit oneself to adding quantization noise 
that is perhaps far below perceptible levels. Hence, a transparent audio coder does not need 
an extremely precise masking model, although a more accurate model will enable greater 
bitrate reductions while preserving transparency. 

A number of perceptual model implementations exist, generally trading computa-
tional expense for accuracy of prediction. In fact, one of the dimensions in which different 
implementations of a single standard (such as MP3) can differentiate themselves is in the 
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FIGURE 35.4 Development of the estimated psychoacoustic masking threshold for a 
single frame of audio. Crosses indicate tonal peaks, and circles are non-tonal maskers. 
The dashed line shows the assumed absolute hearing threshold, the lower bound on all 
masking effects. (Figures generated with [8]). 

quality and efficiency of their psychoacoustic models, since the precise allocation of bit 
resources to different time and frequency locations is not a rigid part of the standard, but 
is left for individual implementations to decide. Figure 35.4 illustrates the results of the 
processing stages in a typical psychoacoustic model, in this case the low-complexity model 
(model 1) published as an example in the original MPEG Audio specification [5] and 
implemented in Matlab by Petitcolas [8]. 

The process starts with a short segment of the original audio file spanning the time for 
which the masking is to be estimated, usually 1024 samples or 23.2 ms at 44.1 kHz. This is 
windowed then converted to a spectrum with the Fourier transform. The solid line in the top 
panel of Figure 35.4 shows this spectrum, plotted on the Bark frequency axis (introduced 
in Chapter 15) which approximates the critical-band frequency resolution of the human 
ear. The dashed line shows the inferred absolute threshold on the same axis, i.e., the lower 
limit of energy that needs to be encoded at all1. The next step is to identify prominent 

1 This threshold will depend on the absolute level at which the signal is being played, but the curve is positioned 
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FIGURE 35.5 Modeled masking thresholds as a function of masker level for a tone at 10 
Bark » 1.5 kHz (after [6]). 

masking components and to classify them as "tonal" or "non-tonal" so that the appropriate 
masking properties may be applied. Tonal components are identified by looking for peaks 
in the spectrum that are significantly larger (e.g., 7 dB) than their immediate neighborhood, 
where the neighborhood gets proportionally wider at higher frequencies to account for the 
broadening auditory filters. Energy not picked up in the search for tonal peaks is summed 
within each critical band and represented as a set of discrete "non-tonal" components, one 
for each critical band. The overall set of components is pruned to keep only the strongest 
tonal peaks within a 1 Bark window, and to ignore any components falling below the 
absolute (quiet) threshold. These individual tonal and non-tonal components are shown as 
points at the corresponding energies and center frequencies in the top pane. 

The next stage is to calculate the effective masking thresholds for each of these 
components, shown in the second panel. Each component results in a masking skirt that 
spreads to adjacent frequencies. The skirt is approximated by a piecewise linear function 
of the Bark-scale frequency; Figure 35.5 shows the masking curves for a tonal component 
at 10 Bark at a number of levels. Notice the "upward spread of masking" asymmetry, and 
that the upward slope becomes shallower as the masker becomes more intense. The middle 
pane of Figure 35.4 shows these curves for all the maskers identified in the short frame of 
music; you can see that the non-tonal maskers result in a higher level of masking relative 
to their energy when compared to the tonal components. Finally, the individual masking 
thresholds are combined with the threshold in quiet by summation in the power domain, 
giving the overall masking threshold as a function of frequency as shown in the lowest 

based on the conservative assumption that the maximum amplitude possible within the soundfile encoding would 
correspond to 96 dB SPL - corresponding to listening to the music with the volume turned "way up". 
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FIGURE 35.6 Quantization noise within one subband should be kept below the estimated 
masked threshold. 

pane of Figure 35.4. 
The MPEG specification includes a second, more complex psychoacoustic model 

(model 2) that avoids the explicit detection of masking peaks or their explicit classification 
as "tonal" or "noise": instead, each spectral bin has an associated "tonality" index between 
zero and one that reflects how accurately it matches an extrapolation (in both magnitude and 
phase) from the preceding two time windows: sustained sinusoids, which are quite common 
in music audio, will tend to be well predicted by extrapolation. The tonality index is then 
used as an interpolation between masking functions fit to tone and noise data. However, 
in practice the difference between the psychoacoustic models is a matter of degree and 
precision: their overall behavior is similar. 

35.3 NOISE SHAPING 

Given the predictions of the masking thresholds at different frequencies that are synchro-
nized to the signal, we now have the possibility of maximizing the amount of quantization 
noise that can be added to the signal while preserving perceptual transparency - provided 
we can control where the noise falls. This problem, of manipulating the distribution of 
quantization noise in time and frequency, is called "noise shaping" and comes in many 
guises. For the kinds of coding considered in this chapter, the goal is to be able to indepen-
dently vary the quantization noise at each point in the time-frequency plane, corresponding 
to the masking surface calculated by the psychoacoustic model. In practice, this is achieved 
by dividing the signal up on a time-frequency grid, then choosing different quantization 
levels within each cell of the grid according to the local capacity to tolerate quantization 
noise, as dictated by the local masking threshold. 

This idea is illustrated in Figure 35.6: The full audio spectrum is assumed divided 
into a number of subbands, each broad enough to encompass some variation in the masked 
threshold. Linear quantization of the subband time-domain samples has the effect of adding 
a small error offset to each sample, and this is well modeled as independent, random, 
additive noise with a fixed distribution. Such a white noise sequence has a fiat spectrum 
(equal energy at all frequencies, on average) whose energy is proportional to the amplitude 
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of the offsets and thus proportional to the step size of the quantizer. Assuming the signal 
within the subband is scaled to fully occupy the amplitude range afforded by the quantizer, 
the quantization noise will be approximately 6B dB below the peak signal level in the band, 
where В is the number of bits used in the linear quantization. (Each additional bit halves the 
quantizer step size, reducing its energy by 201og102 « 6 dB.) Hence the signal-to-noise 
ratio (SNR) resulting from quantization is around 6B. 

At the same time, the signal in that band and other adjacent bands, results in a 
masked threshold. The minimum value of the threshold within the frequencies included in 
the subband corresponds to the best opportunity for the listener to detect the flat quantization 
noise. By structuring our frequency decomposition so that subbands tend to be contained 
within the local region of large threshold elevation, we can keep this minimum threshold 
relatively high. Ideally, we will hide the quantization noise, which tracks the amplitude 
of a peak signal component, under the masking curve that similarly follows the peak. As 
long as the quantizer is given enough bits to keep the noise level below this minimum 
threshold, perceptual transparency should be preserved. The margin between the signal and 
the minimum masked threshold is sometimes called the the Signal-to-Masker Ratio (SMR), 
leading to a noise-to-masker ratio MNR = SMR — SNR. Keeping the MNR negative is the 
criterion of perceptual transparency. 

35.3.1 Subband analysis 
How, then, can we break up our continuous signal into little independent blocks of time-
frequency for which we can make the optimal quantization choices, using just enough bits to 
push the MNR below zero? In principle, we can use a bank of bandpass filters to divide the 
signal into separate subbands, then divide each subband signal into short time sequences, 
and apply quantization to each sequence. At the far end, after decoding, the subband signals 
can be added together, and provided we are reasonably careful in designing our filters, we 
will reconstruct the full-band signal. If we do this naively, however, each subband signal 
will inherit the sampling rate of the original signal, and thus if we divide into M subbands, 
we end up with M times as many samples to quantize - not a good start if our goal is 
data reduction. If, however, we know that we have divided the signal up such that each 
subband represents just \/Mth of the full spectrum, sampling theory tells us that we should 
be able to downsample that signal by a factor of M without losing information, even if 
the original bandlimited signal occupies higher frequencies. Reconstructing such a signal 
involves interpolating back to the full sampling frequency (i.e., inserting zeros to replace 
the samples discarded during decimation), then again applying the (ideal) bandpass filter 
to select the spectral alias that falls into the original band. Thus, our original time-domain 
signal is replaced by M signals, each sampled \jMth as often, for the same number of 
total samples and no "data explosion". This is known as a maximally-decimated filter 
bank, or critical sampling - see Vaidyanathan [12] for a thorough discussion. This overall 
encode-decode loop is illustrated in Figure 35.7. 

The one weakness of this approach is the assumption of ideal bandpass filters. In 
practice it is not possible to construct bandpass filters that exactly break up the spectrum 
into M disjoint regions with no overlap that can then be summed up to reconstitute the 
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FIGURE 35.7 Structure of a subband coder and corresponding decoder. The input signal 
is divided into M bandlimited signals, each accounting for \/Mth of the total bandwidth, 
which are then downsampled by a factor of M (critically sampled), quantized based on the 
psychoacoustic model's estimate of the tolerable quantization noise at that moment in that 
band, and transmitted. At the decoding end, the dequantized samples are interpolated up 
to full sampling rate, again bandpass-filtered to recover the appropriate frequencies, then 
summed to reconstruct the full-bandwidth signal. 

full band, and the effort to approach such ideal "brick-wall" filters would result in time-
domain properties that were increasingly problematic - long ringing that would compromise 
the time localization we wish to achieve. Practical filters with finite-duration impulse 
responses will exhibit a finite transition region between the passband and stopband, and if 
the passbands are set up to fully capture all the original signal, this transition region will 
end up straying beyond the \/Mth of the spectrum associated with the particular subband, 
as illustrated in Figure 35.8. Decimation, however, will alias (fold) any signal components 
outside the principal subband back into that band, leading to a particularly nasty kind of 
distortion. 

This problem is solved through alias cancellation [12]. Although a single decimated 
subband will introduce alias terms resulting from energy just beyond the ideal edge of 
the band, the corresponding imperfections in the reconstruction filters in the decoder will 
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FIGURE 35.8 Alias cancellation in quadrature-mirror filterbanks. 

introduce similar alias terms from the neighboring channel. By careful construction, it is 
possible to have these two corresponding alias terms appear with opposite signs so that in 
the final summation they cancel out. This process is illustrated in Figure 35.8: a spectral 
component lies close to the subband boundary, such that it has substantial energy in two 
adjacent subband signals. After decimation and the subsequent upsampling (i.e., the stages 
in Figure 35.7, ignoring the quantization), both bands have both components at the true 
frequency and aliases at the frequency reflected in the band edge, fnyq/M (where fnyq is 
the Nyquist rate or highest representable frequency, and M is the number of subbands). 
However, by putting these signal through reconstruction filters that mirror the original 
analysis filters (giving this approach its name, quadrature-mirror filtering or QMF) we 
can guarantee that the complementary alias from the higher band has exactly the same 
amplitude as the original alias in the lower band. By negating the reconstruction filters in 
alternating bands prior to final reconstruction, all such aliases can be cancelled 2. Careful 

2Alert readers may wonder why this negation - subtracting the reconstruction of subband N + 1 from the 
reconstruction of subband N in order to cancel the alias - does not end up flipping the polarity of the components 
in that subband. In fact, the way that the high-pass filter defining subband N + 1 is constructed from the low-pass 
filter for subband N results in a π/2 phase shift for the unaliased components (and - π / 2 for aliased components). 
Specifically, if the low-pass filter is an even-length, symmetric FIR filter, then the high-pass - obtained by 
multiplying the low-pass impulse response by (—1)" - will be antisymmetric. When the filter is reapplied in 
reconstruction, the original component thus accumulates a total phase shift of π, which is then corrected by 
negating its sign. 
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FIGURE 35.9 Castanet sound example. Top pane: original waveform. Middle pane: 
Reconstruction from MPEG-1 Audio Layer II (MP2) at 128 kbps. Bottom pane: 
Reconstruction from MPEG-1 Audio Layer III (MP3) at 128 kbps. Note the "pre-echo" noise 
immediately preceding the attack in the MP2 version. 

design of the original band-pass filter ensures that the magnitude response of the non-alias 
components remains exactly or very nearly flat. 

A different analysis of maximally-decimated filterbanks focuses on the time-domain 
[9]. If a signal is broken into blocks of N samples, with 50% overlap between successive 
windows, maximal decimation will require each block to be represented by only N/2 coef-
ficients, meaning that a reconstruction of that block in isolation cannot fully reproduce the 
original block but must introduce distortion that may be considered time-domain aliasing. 
If, however, the alias components in successive reconstructed blocks can be made equal and 
opposite, then, as in the frequency domain case above, the aliases can be cancelled in the 
final overlap-add reconstruction. This approach is known as time-domain alias cancellation 
(TDAC), and by dealing directly with the time-domain form of the filters, it permits the 
derivation of exact perfect-reconstruction analysis-synthesis structures. The most common 
instance of this uses the Discrete Cosine Transform (DCT) for the core frequency transform, 
and is known as the modified DCT (MDCT) [10]. 

35.3.2 Temporal noise shaping 

In general, we want to divide the spectrum of the signal into a relatively large number of 
subbands so that each band corresponds to a narrow range of frequencies, enabling us to 
take full advantage of the masking that results from the strongest components in the band. 
However, due to the dual nature of time and frequency, reducing the width of the frequency 
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FIGURE 35.10 Switching windows as used in the MP3 MDCT coding. Subband signals 
are analyzed in 50%-overlapped blocks of 36 samples using the "long" window until the 
psychoacoustic model detects a region of rapid signal change. The block before the 
change uses the asymmetric "start" window, then the transient block is coded as three 
successive 12 sample subblocks each using the "short" window. Once the region of 
transients is complete, the analysis switches back to 36 sample blocks, first using a "stop" 
window, and using "long" windows from then on. 

bands implies lengthening the duration of the time windows, imposing a lower limit on 
the temporal resolution of our quantization noise control. If a sound changes amplitude 
suddenly, the analysis frame containing the large onset may also include signals of much 
lower amplitude immediately preceding the transient, which will inherit the same, coarse, 
quantization that is deemed suitable for the high-amplitude portion of the frame - leading 
to noise whose amplitude is significant when compared to low-amplitude portion of the 
waveform. This situation is known as "pre-echo" and is illustrated in Figure 35.9, which 
shows about 50 ms of a recording of castanets and guitar, showing a single, very sharp 
castanet transient. The top pane shows the original recording, and the second pane shows 
the result of encoding and decoding using MPEG-1 Audio Layer II (MP2), which uses a 
fixed 26.1 ms (1152 sample) frame, further spread by 11.6 ms (512 sample) analysis and 
synthesis filter impulse responses. The effects of this excess quantization noise are clearly 
visible for at least 20 ms prior to the onset at t = 0.972 s. The effect is also quite easy 
to hear, amounting to a softening or blurring of the transients, as if there were multiple 
castanets being played together rather than just one. 

Of course, this problem could be reduced by using a shorter analysis windows, but 
to do this uniformly would sacrifice some of the "coding gain" advantages afforded by fine 
frequency resolution. It is, however, feasible to vary the frame size dynamically in response 
to the particular signal conditions within the frame. This is the approach taken in MPEG-1 
Audio Layer III (MP3), which, as can be seen in the third pane of Figure 35.9, is effective in 
eliminating the pre-echo (in combination with the other efficiency improvements included 
in MP3). The core MDCT spectral transform in MP3 usually operates on blocks of 36 
samples, with 50% overlap resulting in 18 new samples represented by each block. These 
samples come from individual bands of the first-stage 32 subband filterbank, thus a block of 
18 subband samples corresponds to 18 x 32 = 576 audio samples, or around 13.1 ms at 44.1 
kHz sampling rate. When, however, the psychoacoustic model detects a portion of the signal 
that involves rapid change in multiple bands (e.g., large deviations from the extrapolation 
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FIGURE 35.11 Temporal envelope estimation by linear prediction. The envelope of the 
transient speech waveform is approximated by the smooth curve, which results from linear 
prediction of the frequency-domain coefficients. The poles of this predictor correspond to 
peaks in the envelope, shown by crosses. 

mentioned at the end of Section 35.2.2), one or more adjacent blocks are instead encoded 
as successions of three, 12 point subblocks, overlapped by 6 samples. (Forcing the short 
windows to occur in blocks of three allows the overall framing to remain synchronized to 
a 576 sample frame.) These much shorter windows, illustrated in figure 35.10, allow the 
quantization noise to be limited much more precisely in time, at the cost of reduced ability 
to exploit simultaneous masking. They do, however, allow any remaining pre-echo artifacts 
to be hidden more effectively within backward-masking effects. The transitions between 
long and short windows require special asymmetric window shapes that are applied to long 
blocks, but actually involve setting six samples at the short-facing end to zero. Although this 
further sacrifices spectral resolution in these blocks, the combination of just four window 
shapes (long, short, start, and stop) plus two MDCT sizes (36 and 12 point) provides a much 
greater flexibility in handling spectrally-stable signals interspersed with rapid transients, 
while preserving perceptual transparency at reasonable bit rates and with relatively minor 
increases in coding expense and complexity. 

Rather than providing a set of discrete choices for temporal window, a second ap-
proach could be to build (and transmit) a window that follows the temporal envelope of 
the signal itself. This envelope signal could be divided out prior to encoding, to produce 
signal blocks with approximately constant amplitude in time, then, when the envelope is 
re-applied to the post-quantization signal in the decoder, the quantization noise spread uni-
formly in time is reshaped to track the overall amplitude of the signal, being attenuated at 
times when the signal is small and allowed to grow larger in the presence of large-amplitude 
target signals that can mask it. The representation and transmission of such an envelope 
could, however, consume considerable bits or bandwidth that might be better used simply 
increasing the quantizer resolution. 

However, in the case of signals with highly transient envelopes, there is a particularly 
data-efficient way to implement what amounts to this scheme. Chapter 21 described the 
techniques of linear predictive coding (LPC) in which a waveform with a highly predictable, 
periodic structure could be efficiently described by a low-order feedback structure that 
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"predicted" each successive sample as a linear combination of a few preceding samples. 
In the frequency domain, this predictability appeared as a spectrum with a few peaks 
- the resonances of the all-pole filter constituted by the feedback system. The duality 
between time and frequency dictates that the more 'steady' the signal in the time domain, 
the more 'peaky' (impulse-like) its spectrum. By the same token, a signal with a highly 
impulsive or transient time-domain envelope is compelled to have an increasingly steady 
or predictable frequency-domain representation, with the limiting case being an impulse in 
time whose Fourier transform has a constant value and a phase that wraps around linearly 
with frequency. 

Carrying the duality further, the same mathematical analysis can be applied to capture 
this predictability of the spectrum in a low-order linear predictor - for instance by predicting 
higher-frequency spectral values as a linear combination of a few lower-frequency bins. 
Just as conventional LPC allows an efficient coding scheme in terms of a set of predictor 
coefficients that are held fixed for a block of residual time-domain excitation, sets of 
spectral coefficients such as the coefficients of an MDCT transform will be more efficiently 
represented as predictor-plus-residual in the case where a highly transient temporal envelope 
induces strong correlation within a spectral region. 

Because of the duality between the time and frequency domains, the frequency-
domain predictor has an informative transform domain interpretation. Recall that time-
domain LPC results in a filter whose magnitude response is a smoothed approximation to 
the signal's spectrum. Here, with time and frequency interchanged, the frequency-domain 
predictor can be analyzed into a time-domain magnitude response that approximates the 
temporal envelope of the signal, as illustrated in Figure 35.11. The residual, frequency-
domain excitation that is transmitted along with the predictor, corresponds to the spectrum 
of the time-domain signal after this envelope is divided out. It is these residual values that 
are quantized and thus into which the quantization noise is introduced. On reconstruction, 
passing the spectrum values through the prediction filter is equivalent to multiplying the 
residual with the temporal envelope. Thus, the quantization noise has a temporal noise 
shape applied to it, and is made smaller in the critical, low-amplitude portions of the frame. 
Crucially, the temporal envelope is encoded as only a few coefficients -just two per "peak" 
in the envelope - and thus constitutes very little additional data. 

This Temporal Noise Shaping (TNS) approach was proposed for coding by Herre 
& Johnson [4] and discussed in more detail in Herre [3]. The notion of exploiting these 
parametric representations of temporal envelopes is further explored in Athineos & Ellis 
[1]. The MPEG-4 Advanced Audio Coder (AAC) employs TNS, and its result when applied 
to the castanets signal is shown in the bottom pane of Figure 35.9.3 

3Note that the temporal envelope modification of the signal blocks affects their spectrum and hence the correct 
application of the psychoacoustic model. However, since the reduced spectral resolution of an extreme envelope 
modulation implies corresponding gains from the prediction of the spectral coefficients, it is argued that this 
scheme allows a kind of continuous, signal-adaptive trade-off between spectral and temporal properties [4]. 
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35.4 SOME EXAMPLE CODING SCHEMES 

Many factors influence the design of coding schemes, including compromises between 
computational expense and bitrate efficiency, application-dependent considerations such 
as maximum coding delay, but also less technical factors such as compatibility with earlier 
standards and interests of intellectual property owners. Here, we briefly discuss the partic-
ular combinations of the above techniques used in a few common perceptual audio coding 
schemes, as well as some of the other technical details they include. 

35.4.1 MPEG-1 Audio layers I and II 
The original MPEG Audio specification was devised in the late 1980s and early 1990s 
at a time when the computational requirements for real-time decoding seemed daunting 
for contemporary hardware. Thus, three "layers" were specified, providing increasing 
coding efficiency at increasing computational expense. Layers I and II were relatively 
straightforward subband coders using a 32-band approximate-QMF filterbank on blocks 
of 384 (layer I) or 1152 (layer II) samples. This results in frequency bands 690 Hz wide, 
too broad to take full advantage of auditory masking at the low end of the spectrum where 
critical bands are 100 Hz wide or smaller. Layer II is usually considered transparent at 192 
kbps for a stereo signal. The standard video encoding used on DVDs includes a layer II 
audio stream. 

MPEG Audio is designed to achieve a constant bitrate at a fine scale, i.e., each 1152 
sample block is allocated a fixed number of bits. This, combined with a short synchroniza-
tion word at the start of each frame, leads to streams that can be interrupted and resumed 
at any point. This is important for applications such as digital audio broadcast, which are 
essentially continuous bitstreams with no overall header. 

Figure 35.12 shows the layout of the data comprising an MPEG Audio bitstream. It 
shows one frame of layer I coding, corresponding to 384 stereo samples, or about 8.7 ms 
of audio at a sampling rate of 44.1 kHz. The frame is 140 bytes long, giving a bit rate of 
140 x 8 x 44100 ~ 384 и 128 kbps. 

35.4.2 MPEG-1 Audio Layer III (MP3) 

The theory of perfect reconstruction MDCT filterbanks was emerging during the period 
of the MPEG-1 standardization, and it was incorporated into the most complex algorithm, 
layer III (better known as MP3). MP3 uses the same 32 band filterbank as layers I and II, 
meaning that a hardware decoder for all three layers could reuse this component. Beyond 
this, however, each subband signal is further subjected to an MDCT analysis, increasing 
the spectral resolution by a factor of 18 (for long windows) to give a total o f 3 2 x l 8 = 576 
spectral bins, or about 38 Hz resolution for a 44.1 kHz sample rate. This two-level scheme 
is referred to as a hybrid filterbank. 

MP3 includes a significant number of other technical enhancements over layer II. 
There is the window switching to control pre-echo as described in Section 35.3.2. Addi-
tionally, a more sophisticated quantizer is used that includes power-law quantization so that 
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Byte 1 Byte (8 bits) 

0 

16 

24 

32 

40 

48 

56 

64 

72 

80 

88 

96 
104 

112 

120 

128 

136 

■ ■ ; i 

I 

I 

Header: defines layer, bitrate, channels, etc. (4 bytes) 
Subband bit allocation indices: 
32 subbands x 2 channels x 4 bits 
= 32 bytes 

Subband scale factor indices: 
32 subbands x 2 channels x 6 bits 
(only for subbands with nonzero bit allocation) 
s 48 bytes 

Quantized subband samples: 
32 subbands x 2 channels x 12 samples 
x 2-15 bits / sample (as per bit allocation, 
only for subbands with nonzero bit allocation) 

Padding to make frame an integer number of 4 byte blocks 

FIGURE 35.12 Bit usage layout in an example MPEG-1 Audio Layer I frame encoding 
384 stereo samples in 140 bytes, for a bit rate of 128 kbps. 

step sizes get smaller for smaller sample values. A Huffman coding stage varies the number 
of bits used to represent each sample (or small groups of samples) in inverse proportion to 
their overall prevalence, meaning that common sample values consume fewer bits. Finally, 
a bit "reservoir" allows bits to be shifted around over a scale larger than single frames, 
even for a fixed-rate stream. MP3 achieves transparent coding for most material at around 
128 kbps. 

35.4.3 MPEG-2 Advanced Audio Codec (AAC) 

Advances in computational hardware, as well as theoretical developments in psychoacoustic 
coding, led to the specification of a new MPEG audio scheme in the mid 1990s that 
abandoned the hybrid interbank and other vestiges of MPEG-1 Audio for a complete 
redesign based on a single MDCT stage, switching between 1024 and 128 spectral bins 
- similar to the switching windows of MP3, but with a greater difference between long 
and short windows. AAC also includes the LPC-based temporal noise shaping described 
in Section 35.3.2, additional backward prediction of spectral values between frames for 
highly stationary signals, and more flexible schemes for encoding stereo and multichannel 
sequences to exploit redundancies between channels. Along with differences in the coding 
techniques, the standard is expanded to accommodate a larger range of signals such as 
"5.1" surround sound (left, right, center, rear left, rear right, plus a low frequency effects 
channel), and to provide a broader set of 'profiles' to offer different trade-offs of bitrate and 
computational expenses. AAC at 96 kbps is near transparent for stereo signals. Technical 
details are provided in Bosi et al. [2]. 
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FIGURE 35.13 Example of psychoacoustic coding. Top pane: original music file, 
including drums, guitar, and bell tree. Middle pane: reconstruction after coding in MP3 at 
128 kbps. Bottom: residual difference after aligning coding delay of 2257 samples. 

35.5 SUMMARY 

In this chapter we have seen how specific properties of hearing - most importantly the way 
that a strong tone will mask the perception of other energy nearby in time and frequency -
can be exploited to achieve large data rate reductions for audio without perceptible degra-
dation. In fact, audio coded at one or two bits per sample actually has a high level of 
background noise: As illustrated in Figure 35.13, the residual noise that has effectively 
been added through coding is only 10-20 dB below the energy of the signal. However, 
because it follows the time-frequency structure of the signal very closely, it remains largely 
imperceptible to human listeners. Achieving this kind of coding requires an accurate pre-
diction of when and where noise will be masked, good techniques to efficiently control the 
quantization within such fine-scale patches of time-frequency without introducing any re-
dundant coefficients, and solutions to a range of other problems including signals that may 
require particularly close time resolution to avoid pre-echos. We have seen the powerful 
and elegant solutions that have been employed to permit this quantization, and we finished 
with a brief summary of the collections of techniques used in some of today's dominant 
high-quality audio compression schemes. 
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35.6 EXERCISES 

35.1 Referring to Figure 35.13: 
(a) What are the visible differences between the signal before and after coding? How did these 

changes arise? 
(b) What is the average SNR in the coded example? 

35.2 Based on Figure 35.5, a 100 dB SPL tone at 10 Bark provides masking for energy up to around 92 
dB SPL at 10 Bark (an 8 dB target to masker ratio, or TMR), falling to around 45 dB SPL at 9 Bark 
(a 55 dB TMR). 

(a) For a 2-Bark subband centered at 10 Bark, approximately how many bits would be required for a 
linear quantizer to ensure the quantization noise fell below the masked threshold for this tone? 

(b) How would this value change if the tone were instead at 40 dB SPL. 

35.3 In Figure 35.8, we see how the alias just below the band edge in subband N matches the amplitude 
of a corresponding alias introduced in subband N + 1, such that when the subbands are combined in 
reconstruction, this alias cancels. However, the figure also shows a component of lower amplitude 
just above the band edge. Can you explain, in broad terms, what happens to this component, and why 
it does not result in distortion? 

35.4 Figure 35.12 shows a particular example of a frame of MPEG-1 Audio Layer I data. Given that each 
sample can be quantized at between 2 and 15 bits, what are the smallest and largest sizes (in bytes) 
such a frame could occupy? What would be the overall bitrates corresponding to these extremes? 
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552 OTHER APPLICATIONS 

The Universe is full of magical things patiently waiting for our wits to grow sharper. 

—Bertrand Russell 

■ ARTS VI and VII focused on speech recognition, synthesis, and coding as the 
primary applications of the engineering methods introduced in this book. These tasks 
have been the object of study for decades, and they can also be seen as archetypes for a 
wide range of potential applications. However, there are certainly many more ways to use 
the technologies discussed here. Part VIII provides introductory information about a few 
other applications to give a sense of the possibilities. 

Digital representations of music audio have become increasingly important in the 
past decade; Chapter 36 looks at some ways computers can be used to create music signals, 
then Chapter 37 looks at problems of recognizing individual musical events in audio 
recordings, and Chapter 38 looks at broader problems of organizing and searching music 
audio collections. 

Music, as with other real-world sound scenes, often consists of multiple acoustic 
sources, and Chapter 39 looks at some techniques for separating and isolating those sources. 
Methods developed for the analysis and synthesis of speech and other sounds can be adapted 
to provide a range of transformations, as described in Chapter 40. 

Finally, the approaches to statistical pattern recognition that were described in Part 
VI can be applied beyond speech recognition to tasks such as confirming the identity of 
a talker, or to segmenting a recording of a discussion according to the individual talkers. 
This first task, called speaker verification, is described in Chapter 41, and the second task, 
which has become known as diarization, is covered in Chapter 42. 

Other applications are left as an exercise for the reader to discover. 



CHAPTER 

SOME ASPECTS OF COMPUTER 
MUSIC SYNTHESIS 

36.1 INTRODUCTION 

In this chapter, we first briefly discuss the possible reasons for the use of a computer 
to generate musical sounds. Then we try to categorize the different approaches to com-
puter music synthesis, that is, the kinds of processing algorithms that are commonly used. 
The reader will undoubtedly realize that many of the methods of speech processing are 
very closely related to those of music processing; both depend strongly on the computer 
and on the ideas of digital signal processing. However, whereas speech processing is 
tied to the physiology of speaking and listening to speech, music processing is closely 
associated with the acoustic production of music by traditional instruments and the phys-
iology of listening to music. For some researchers in the field, the computer frees them 
from the classical sounds of strings, horns, and the like and allows them to create new 
"instruments." Our discussion draws extensively on the survey paper by Moorer [4]. 

Why computer music? In the late 1950s, several speech researchers began to re-
alize the potential power of the computer to help in their research. At the time, signal 
processing, such as audio bandpass filtering, was far too expensive to do on computers. 
However, with the development of digital signal processing (DSP) techniques and the 
availability of high speed, small, and cheap integrated circuits, it became apparent that 
digital methods were the answer to future growth. Research workers in music quickly 
adopted this new technology and used it for their own ends - freedom of expression, preci-
sion, and greatly enhanced implementation of new ideas. An early visionary was Mathews 
[2], who realized that computer-based block-diagram compilers could be applied to music 
synthesis. 

36.2 SOME EXAMPLES OF ACOUSTICALLY GENERATED 
MUSICALS SOUNDS 

Figures 36.1, 36.2, and 36.3 show waveforms and example spectra for a single note, the E 
above middle C, played by cello, clarinet, and trumpet, respectively. From these figures, it 
can be seen that a single note can be divided into three segments: the attack, the steady 
state, and the decay. Notice, for example, that the attack time of the cello is appreciably 
longer than that of the clarinet or trumpet. These three instruments have in common their 
periodicity. There is, however, a noticeable lowering of the even harmonics of the clarinet 
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FIGURE 36.1 Waveforms and spectrum of the cello playing E4 (329.6 Hz). From [4]. 
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FIGURE 36.2 Waveforms and spectrum of the clarinet playing E4. From [4]. 
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FIGURE 36.3 Waveforms and spectrum of the trumpet playing E4. From [4]. 

at low frequencies. During the steady-state portion, the note may be altered by tremolo (an 
amplitude modulation) or vibrato (a frequency modulation). 

Figure 36.4 is a bass dram note; it is not periodic, more or less resembling noise. But 
the sound is distinct to our ears, so there is certainly an underlying structure. 

36.3 MUSIC SYNTHESIS CONCEPTS 

The computer can be used to help the composer develop his or her compositional ideas. 
It can also be used as a real-time performer. An interesting example of performance was 
demonstrated by Vercoe [9]. A piano-violin sonata of Cesar Franck was performed; the 
violin part was played by a human violinist. The computer performed the keyboard part 
from a score in its memory but also by detecting the pitch of the violin and adjusting its 
tempo to that of the live performer. 

The three main elements in computer music are: 

1. The development of software to emulate the acoustics of a real or imaginary instru-
ment. 

2. The editing capability to deal with a musical score. 

3. Software to integrate the above elements into a performance. 

The use of block-diagram compilers and specialized computer languages has been a 
standard line of development. The programmer (often the composer) defines "instruments" 
and then enters a score, which consists of durations, pitch, and loudness. These methods 
have been named direct synthesis [4]. 

Direct synthesis may be implemented in a variety of ways. The approach pioneered 
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FIGURE 36.4 Example of an isolated bass drum note. From [4]. 

by Mathews [2] was to devise a programming language to simulate various instruments. 
A specific software module is called a unit generator. Examples of unit generators are 
oscillators, noise generators, frequency shifters, envelope generators, and other blocks that 
the programmer may wish to add to this collection. A crude simulation of the cello note of 
Fig. 36.1 is shown in Fig. 36.5. 

The first five harmonics of the cello spectrum are implemented by oscillators, each 
with its own amplitude and frequency control, and the sum is then multiplied by the envelope 
generator, obtained by indexing a pre-stored version of the envelope of Fig. 36.1. Thus, for 
a single note, the programmer must specify five amplitudes and five frequencies as well as 

AMP AMP AMP AMP AMP 

Envelope of cello note 

Synthesized cello note 

FIGURE 36.5 Block diagram of a simulated cello note. 
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AMP1 FREQ1 AMP 2 FREQ2 AMP3 FREQ3 AMP 

FIGURE 36.6 Two flow charts to generate an amplitude-modulated signal. 

the envelope. If this note, with all its parameters, is repeated often, the programmer can 
install the complete algorithm for that note as a subroutine. Different notes, with different 
durations and/or dynamics, may be treated as separate subroutines. We can see that creating 
a program for even a relatively simple musical piece is quite complicated. 

The top part of Fig. 36.5 is often called additive synthesis, referring to the addition 
of a collection of sinusoidal oscillators. Musical waveforms can be created in other ways. 
Figure 36.6 shows two block diagrams (or flow charts) that generate the same waveform. 
The form on the right multiplies a carrier sinusoid (at frequency fc by sinusoidal amplitude 
modulation (at fm) to generate two addition "sideband" harmonics at fc — fm and fc + fm; 
Amplitude modulation is a simple way of generating several harmonics without explicitly 
calculating each one. 

More complex forms of modulation produce richer signals. Chowning [1] employed 
a form of frequency modulation (FM). We know of broadcast FM as the modulation of a 
high-frequency carrier by a relatively low-frequency modulation. The mathematical basis 
of FM resides in the following formula: 

sin[6 + asin(ß)] = J0(a) sin(G) + £ ,4(oc)[sin(e + Jtß) + (-1)* sin(6 - fcß)], (36.1) 

where Θ = 2nfctiT, fc is the carrier frequency, ß = 2nfmnT, fm is the modulation frequency, 
Л is the fcth-order Bessel function, and a is the modulation index. By manipulation of these 
parameters, a variety of musical sounds can be synthesized without the need for separate 
sine generators for each component required by additive synthesis. 

36.4 ANALYSIS-BASED SYNTHESIS 

Analysis-based synthesis closely resembles the methods of vocoder research. A given 
musical piece is first analyzed and parameters are extracted; these parameters are used to 
drive a synthesizer. Of course, given the ability to perform transformations, such systems 
are more than just musical vocoders. 
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FIGURE 36.7 System for additive synthesis. From [4]. 

The most common ways of employing analysis-based synthesis are known as additive 
synthesis and subtractive synthesis. Additive-synthesis concepts date back more than a 
century to the Telharmonium (see Chapter 2). Additive synthesis has also proved to be a 
useful speech-processing algorithm [3]. 

Figure 36.7 shows the concept of additive synthesis. The system consists of an array 
of sinusoidal generators, each controlled by two time-varying parameters, the amplitude 
and frequency. 

Figure 36.8 shows analyze an existing signal to generate the parameters required 
for additive synthesis. The right-hand side of Fig. 36.8 is a harmonic extractor for a single 
harmonic of a periodic signal. It is important to realize that the fundamental frequency must 
be known in advance. The filters H(z) are designed to smooth the parameters over exactly 
one cycle of the pitch, resulting in a pitch synchronous analysis As seen on the left-hand 
side, the results produce precisely the parameters needed for the additive synthesis of figure 
36.7.1 

Figure 36.9 shows the result of a harmonic analysis of a clarinet note. For the data 
inherent in this plot to be reduced, a piecewise linear fit is shown in Figure 36.10. 

This line-segment approach, in which the segments are determined by human graphi-
cal interaction, results in tones that resemble the original. An interesting application of this 
research is shown in Fig. 36.11, where the representation of the cello tone (1) undergoes 
successive transitions to culminate in a French horn tone (8). 

1 The analysis-based synthesis we have just described differs from the additive-synthesis algorithm of McAulay 
and Quatieri [3] in an important respect. The latter depends on a high-resolution DFT followed by a sophisticated 
peak-tracking algorithm that does not specifically track pitch harmonics, although many peaks found with this 
algorithm may correspond to harmonics. Their method works for music as well as speech. 
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FIGURE 36.8 Analysis model for additive synthesis. The details of the harmonic extractor 
are shown on the right. Note that the final smoothing is done using Я3(г); that is, a 
cascade of three H{z) section. From [4]. 

FIGURE 36.9 Harmonic analysis of a clarinet note. From [4]. 
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FIGURE 36.10 Piecewise linear fit to the clarinet note. From [4]. 

Subtractive synthesis borrows directly from work on speech vocoders. The classical 
speech-production model uses a wideband excitation to drive a vocal tract filter. The same 
model is used in subtractive synthesis for music. The excitation is wideband but the filters 
attempt to emulate the model of an actual musical instrument (possibly a novel one invented 
by the composer). As in additive synthesis, the major application of this method involves 
the intercession of the user to modify the results of the analysis to synthesize a variation 
of the input musical signal. As noted in Chapter 40, the time scale, pitch, and spectrum 
can be modified. In addition, the attack, steady state, and decay times of a note can also be 
changed. 

36.5 OTHER TECHNIQUES FOR MUSIC SYNTHESIS 

Musique concrete is synthesis based on connecting stored musical sounds in innovative 
ways. This method is somewhat analogous to voice answer-back machines that respond by 
concatenating stored words. 

Real-time modeling of known and invented musical instruments is now a feasible ap-
proach to synthesis because hardware speeds make such modeling possible. This approach 
is analogous to that of articulatory models of the human speech-production mechanism (see 
Chapters 10-11). New DSP methods [8] enhance our ability to accurately model musical 
instruments. 
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FIGURE 36.11 Transition from the cello to the French horn. From [4]. 
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36.6 REVERBERATION 

When we listen to music, the sound reaching our ears almost always includes reverberation; 
this is also true of speech when we are not listening to a telephone or headphones. In a 
large church, reverberation times of the order of seconds produce that special quality. In 
a concert hall, the architecture depends greatly on the desired acoustic response. Even in 
a small living room, listening to the radio or TV includes echoes. This has already been 
discussed in a very general way in Chapter 13, where we noted that essentially all sounds 
received at listener's ears are affected by the room acoustics. 

When reverberation effects are simulated, there are two key aspects of the simulation 
from the standpoint of human hearing: the temporal characteristics of the early (first 100 
ms) echo response, and the overall energy envelope - the amplitude of indirect (reflected) 
energy, and how quickly it dies out. In the early work on the simulation of these effects, 
the first factor was generally ignored, and the focus was on simulating an energy decay that 
corresponded to a desired decay time. 

Figure 36.12 shows some digital networks and the resultant pole-zero plots for 
some of the common early approaches. The left side of the figure shows simple feedback 
circuits, with one and two feedback taps respectively. The correspondence to a physical 
reverberation is simple. After receiving an initial sound, one receives a set of reduced 
amplitude reflections every m samples. Since these systems implement poles only, the 
resulting frequency response is quite bumpy, consisting of many peaks (commonly called 
a comb filter). Schroeder [7] proposed adding feedforward paths to these filters in order to 
add zeros (which appear on the z-plane at the reflections of the poles in the unit circle), 
yielding an overall response that is all-pass, i.e., with a flat frequency response. These are 
shown on the right side of the figure. 

Two parameters control the quality of reverberation: m determines the echo time 
(and the number of poles), and G controls the gain (and thus the closeness of the poles to the 
unit circle). These systems respond to an impulse by producing a set of impulses; as long 
as the gain is less than unity, successive impulses decrease in value. Figure 36.13 shows 
shows six impulse responses. Each reverberator is a cascade of three all-pass reverberators; 
the numbers in parentheses are the delays and gains of each all pass. 

In practice, many listeners have found that there is no great difference in the artifi-
cial character of these reverberators, either with or without the feedforward paths. This is 
probably true because although the long-term frequency response for the all pass is flat, 
short-term spectra computed for the system output are anything but flat, and in fact do not 
greatly differ from the feedback-only case; note that when the feedforward impulse is out of 
the analysis window, the analyzed sequence is exactly the same for the left- and right-hand 
parts of the figure. Human hearing more closely corresponds to the short-term analysis. 

Another key missing point in these simple reverberation models was some repre-
sentation of the early impulse response. Although a dense pattern of echos may not be a 
bad model for late reverberation, the first 100 ms or so of a reverberation pattern is better 
described as a series of discrete impulses. They are generally too close in time to be heard 
as individual echos by the listener, but still it can be demonstrated that much of the char-
acter of the apparent listening space (size of room, distance from source to receiver) can 
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(a) (h) 

FIGURE 36.12 Four variations of digital reverberators. The left column shows simple 
comb resonators, which are converted to equivalent all-pass filters (of the form proposed 
by Schroeder) by the addition of a feed-forward path in the right column. The top row is a 
standard single-delay comb filter and all-pass. The root locus is shown for m =9. The 
bottom row shows more complex filters whose impulse response follows a decaying 
sinusoidal envelope at frequency θ/m. In all filters, G controls the decay. The roots are all 
on a circle the radius of which is G1/m, and the zeros of the all-pass filters fall on a circle of 
radius Gl/m. The term С stands for cos(0). In an actual musical context, m would be chosen 
to be a prime integer from about 50 to 2000. From [4]. 

be inferred by the listener from the characteristics of the pattern of these early echos [5]. 
Digital reverberation devices that are commonly available today make use of both tailoring 
of early echos and of the decay pattern of the more dense later components. 

36.7 SEVERAL EXAMPLES OF SYNTHESIS 

The following examples are taken from Pierce [6]: 

1. Synthesis of a stringlike tone: the frequency response in Fig. 36.14 is an approxi-
mation to the spectra we have encountered in Chapter 12. 

2. Synthesis of a set of brassy tones: as illustrated in Fig. 36.15, the first item uses 15 
harmonics; then a single harmonic is played with successive items including more 
and more harmonics; culminating in a repeat of the initial item. 
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FIGURE 36.13 Impulse responses of several reverberators. From [4]. 
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FIGURE 36.14 Spectrum for a synthetic stringlike tone. From [6]. 
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FIGURE 36.15 Synthesis of brassy tones. From [6]. 
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(a) (M 

FIGURE 36.16 Bell-like tone experiment. From [6]. 

(c) 

3. Improvement of bell-like tone by trial and error: Figure 36.16 shows frequency-
time trajectories for three versions of a bell-like tone. In (a), all harmonics have equal 
trajectories (fast attack and slow decay). In (b), the higher harmonics have shorter 
decay times, and in (c), vibrato is added by splitting several harmonics into two 
closely spaced frequencies to produce beats. 

36.8 EXERCISES 

36.1 Devise a transformation scheme that would modify a trumpet note to sound like a cello note. 

36.2 How would you modify the trumpet note to sound like a clarinet note? 

36.3 What should H(z) be for the system of Fig. 36.8 to be a truly pitch synchronous analysis? 

36.4 Prove that some of the digital reverberators in the Fig. 36.12 networks are all-pass filters. Which 
ones? 

36.5 From the basic FM equation, choose parameters to produce a harmonic series centered around the 
carrier frequency. 

36.6 Now choose parameters to eliminate the odd harmonics of the series. 
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MUSIC SIGNAL ANALYSIS 

37.1 THE INFORMATION IN MUSIC AUDIO 

Music is arguably the richest and most carefully-constructed of all acoustic signals -
several highly-trained performers can work for hours to get the precise, desired effect 
in a particular recording. We might conclude that the information carried by the musical 
waveform is greater than in any other sound - although this immediately gets us into the 
puzzling territory of trying to define exactly what information it is that music carries, why 
it exists, and why so many people spend so much time creating and enjoying it. 

Leaving aside those philosophical points that are beyond the scope of this chapter, 
we can easily name a great many objective aspects of a music recording that a listener 
can extract, with more or less difficulty, such as the beat, melody, lyrics etc. As with other 
perceptual feats, we can hope to build computer-based systems to mimic these abilities, 
and it is interesting to see how successful such approaches can be, and to consider the 
applications in which such automatic systems could be used. 

As discussed in Chapter 36, music has been linked to computers since the earliest 
days of electronic computation, including Max Matthews' 1967 synthesis of "Daisy Daisy" 
on an IBM 7094. Computer music synthesis soon led to the idea of computer music anal-
ysis, with the first attempt at automatic transcription by Moorer [16]. However, it quickly 
emerged that, as with other attempts at machine perception, the seemingly effortless anal-
yses performed by human senses were very difficult to duplicate on a machine. Despite 
more or less continuous research, it is only now that we are on the verge of having the 
algorithms, the computational power, and the datasets available to produce systems capable 
of general music transcription and various other musically-relevant judgments. Technolog-
ical developments have, at the same time, presented urgent challenges in navigating large 
online and portable music collections, which cry out for a 'listening machine' able to listen, 
remember, and retrieve in listener-relevant terms. 

Below, we look at a range of different problems in extracting information from music 
recordings, starting with the most detailed - such as the individual notes played by the 
performer - and moving to progressively larger temporal contexts. The unifying theme is 
that symbolic information is extracted from raw audio waveforms. Thus, we do not include 
the significant body of work on making high-level musical inferences directly from score 
representations (e.g., MIDI, a machine-readable note-event description), although this work 
has been a strong influence on the more recent audio-based work. 
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Hallelujah 
V'KHn Me MI iah 

Revelalion U: t5 , 19:6, Ifi George Frideric Handel 
16Я5-175У 

Allegro 

V'-^^PF^W p * I 
Hal - I t - l u - j J i ! UM - le- lu- jah] Hal Le . ] j - j ah ! Hat- I d u - p h ! Hal ■ le In-jab, 

Hal - Ic- Ju-jali! KBL - l c - Lii-jabl H*l-Lc - ]u-j*h! HaL- le- In-jah! Hal - Ic - lu-jnhk 

Hal - le- lo- ja l i ! HBI - ] e - l u - j ah" Hal-Le - ]u->ali! Нл1-1е-]u-jah! Hal - le - tu-jn 

Hal - le- Lo-jali! Hoi - l c - Lu-johl Etil-Lc - lu-jah! HJIL- IC- lij-jah! EJal - Je - tu-j 

FIGURE 37.1 Beginning of the musical score of Handel's Hallelujah chorus. 

37.2 MUSIC TRANSCRIPTION 

Figure 37.1 shows a musical score, the conventional documentary representation of a 
musical piece in the western classical tradition. A musical score has a similar relationship 
to music audio that actors' scripts have to their speech: A musician (or group of musicians) 
can use the score to recreate an acoustic rendition of the piece, and the composer of 
the piece attempts to specify all the relevant information in the score, although different 

Hallelujah Chorns (Vocal opening) 

FIGURE 37.2 Spectrogram of a recording of the music of Figure 37.1. 
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performances will differ to some extent in their "interpretation" in aspects of detailed timing 
and emphasis variations. Significantly, a trained music student is often able to listen to a 
piece of music and regenerate the score, or a close approximation (although they may need 
to listen repeatedly to short sections). This is called transcription, and is an important part 
of the "ear training" that musicians undergo. 

If a person can transcribe a recording of music into a score, we might hope to be able to 
do the same thing automatically with a computer. This is the analog of speech recognition 
in the musical domain. However, unlike the majority of speech tasks in which there is 
only one speaker speaking at a time, the most significant body of music audio consists of 
multiple, simultaneous musical instruments (ensembles), and a full transcription requires 
untangling them all. From this perspective, music transcription is even more challenging 
than speech recognition, and indeed it is not yet comparably successful. Other aspects, 
however, such as the common characteristics of different renditions of individual notes, 
and the constraints between sequential and simultaneous tokens, give music signals some 
favorable properties and make transcription a viable goal. 

Music transcription is valuable for applications such as searching for a particular 
melody within a database of recordings (needed for "query-by-humming"); high-quality 
transcripts would make possible a range of exciting analysis-resynthesis applications, in-
cluding analyzing, modifying, and cleaning up famous archival recordings. ' Another 
motivation for transcription arises from the observation that a score-type description typ-
ically consists of just a few hundred bits of information per second of audio - a factor of 
1000 or more times smaller than a comparable, high-quality encoding of the audio itself. If 
music audio recordings could be automatically and accurately abstracted to their score-level 
descriptions, it could open up a whole new family of compression algorithms [21]. 

37.3 NOTE TRANSCRIPTION 

Like pitch in speech (discussed in Chapters 16 and 31), musical pitch arises from local, 
regular repetition (periodicity) in the sound waveform, which in turn may be analyzed into 
regularly-spaced sinusoid harmonics at integer multiples of the fundamental frequency (/Ό) 
in a Fourier analysis. These are visible as horizontal stripes in the spectrogram shown in 
Figure 37.2 (not to be confused with the vertical stripes, which indicate the note onsets and 
syllables). Note transcription could be a relatively simple search for a set of fundamentals to 
explain the observed harmonics, except that (a) for various reasons including noise and the 
inherent trade-off between time and frequency resolution, identifying discrete harmonics in 
Fourier transforms can be noisy and ambiguous, and (b) simultaneous sinusoids of identical 
or close frequencies are hard to separate (since even if their frequencies match, their relative 
phase may result in reinforcement or cancellation). Unfortunately, musical harmony is 
based on simple ratios of fundamental frequencies of notes, presumably because such 

1 Analyzing and re-recording old piano recordings by famous performers such as Rachmaninoff is the goal of 
startup Zenph Studios. Precise performance details are extracted from the original recording, then the piece is 
re-performed on a robotic piano in a cleaner acoustic environment [26] 
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FIGURE 37.3 Block diagram of the multiple-fundamental-frequency transcription 
algorithm of Klapuri [12]. 

combinations lead to "interesting" effects when the coincident or close harmonics interfere 
with one another. Thus, multiple-voice music audio is full of such collisions. None the less, 
many note transcription systems have been developed based on fitting harmonic models to 
the signals, and they have steadily increased the detail extracted (from one or two voices 
through to higher-order polyphony) and the range of acoustic conditions in which they 
can be applied (from small numbers of specific instruments, to instrument-independent 
systems). 

Interesting examples include Goto & Hayamizu [11] and Klapuri [12]. At the heart of 
these approaches is an algorithm for accounting for the spectral peaks in a single frame of the 
Fourier transform with a small number of fundamental frequencies. Figure 37.3 illustrates 
the system of Klapuri [12]: First, spectral frames are normalized to reduce the impact 
of aperiodic noise and interference and enhance the true harmonic peaks. The spectral 
magnitude is smoothed across frequency, then this smoothed spectrum is subtracted, leaving 
only the rapid variations in the spectrum such as the sharp spectral peaks. This is essentially 
high-pass filtering the spectrum along the frequency axis. This enhanced spectrum is then 
passed to the "predominant fO estimation" block, which identifies the single fundamental 
period most strongly present in the spectrum. This is done by correlating it against a template 
that consists of an ideal set of harmonics of a given fundamental - effectively summing up 
the enhanced energy at all the expected harmonic locations. An example template appears 
as the grid of vertical lines in the upper graph in the Predominant fO Estimation box. 
By doing this for every value in a dense grid of candidate fundamental frequencies, the 
approach derives a 'strength' function as a function of /o, shown in the lower graph. The 
predominant fundamental is then chosen as the largest peak in this graph, and is reported 
as one of the fundamentals present in the frame. 

Other notes are found by iteratively removing the harmonics of the found notes 
from the original spectrum, then repeating the search. However, it is not particularly 
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unusual in music to have simultaneous notes where the fundamental of one is an integer 
multiple of the fundamental of the other. For instance, if one note with fundamental 
frequency F has harmonics at F, 2F, 3F,..., then a simultaneous note one octave above 
it will have harmonics at 2F,4F,6F,.... If all the harmonics of the lower note were 
completely removed, we would never subsequently find the higher note. To avoid this, 
the system enforces some kind of continuity in the amount of energy that is subtracted. 
By constraining the energy removed at 4F to be no more than some fixed threshold 
above the average of the energy present at 3F and 5F (the adjacent harmonics of the 
lower fundamental, which do not interfere with the higher note), the system is able to 
leave some energy at the frequencies of harmonics that have experienced constructive 
interference making their energy much higher than that of their immediate neighbors. 
This is illustrated in the fO spectral smoothing block, where the spectrum consists of two 
notes whose fundamentals are in a ratio of 3:1. The thick line shows the smooth spectrum 
constraint based on the lower fundamental (i.e., the more closely spaced harmonic peaks). 
The added prominence of every third harmonic clearly pushes it above this threshold, 
leaving adequate information in the modified spectrum to identify the higher note in a later 
iteration. 

In contrast to 'expert system' approaches based on insight into the nature of musical 
notes, an 'ignorance-based' approach was explored by Ellis & Poliner [7] who trained 
general-purpose support-vector machine (SVM) classifiers to recognize spectral slices 
(from the spectrogram) that contain particular notes, based on labeled training data. They 
obtained training data from multitrack music recordings (where each instrument is in a 
separate track), extracting the pitch of the main vocal line, then using those pitch values 
as labels for training features extracted from the full mixdown. This approach compared 
well to more traditional techniques, coming third out of ten systems in a formal evaluation 
of systems for identifying the melody in popular music recordings, conducted as part of 
the "MIREX-05" formal evaluations of music information retrieval technologies [6]; on 
average, around 70% of melody notes were correctly transcribed, with a wide variation 
across different pieces. In many cases, transcribed melodies are clearly recognizable, im-
plying the transcripts are useful, e.g., for retrieval. But a significant number of excerpts 
have accuracies below 50% and barely recognizable transcripts, although, as with any 
evaluation, it is hard to interpret the absolute performance without looking in detail at how 
it was calculated, and what kind of material was used in the test set. 

37.4 SCORE ALIGNMENT 

Since note transcription is so challenging, various simplifications of the problem have 
also been considered, for instance by incorporating more knowledge or constraints into the 
solution. One notable case is when the score - i.e., the expected sequence of notes, and their 
canonical timing - is taken as an input to the transcription system. On the face of it, this is 
solving transcription by starting with the answer, but in practice the process of aligning a 
known score to a recorded rendition has a number of useful applications, including: 
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• automatic accompaniment [4, 25, 5] 

• extracting expressive details of a performance [22] 

• aligning information, e.g., different performances, or audio playback to a related 
visual display [13, 17]. 

The majority of work on this topic (e.g., [18, 24, 5, 17]) has drawn on the ideas of 
Dynamic Time Warping (DTW). DTW was introduced in Chapter 24 as a simple approach 
to speech recognition via matching time-warped instances to reference templates. DTW 
also appeared in Chapter 26 in the guise of Viterbi alignment, which is used to find the 
correspondence between a known word sequence and the audio of the utterance. This 
is very much the same problem faced in audio-to-score alignment: we know the pitches 
(frequencies) we expect, and we have an approximation of their timing from interpreting 
the score with a single, fixed tempo, but the actual recording is likely to have a different, and 
perhaps varying tempo. Moreover, the precise realizations of each note (i.e., the spectral 
detail in the harmonic profiles) are unknown. 

DTW uses the highly efficient dynamic programming algorithm to search over all 
allowable temporal alignments - sets of corresponding pairs of time points in the two 
sequences being aligned - to maximize the sum of a local, framewise similarity measure, 
and possibly a score associated with with quality of the alignment, such as preferring 
paths that correspond to approximately equal tempos between recording and reference. The 
constraint on "allowable" alignments generally requires that the aligning process advances 
in both dimensions (tref and tabs) at every step, leading to limits on the slope of the path 
created by plotting tref against t0bs- In other variants, a step may move forward in only one 
dimension, leading to a path that may have horizontal or vertical stretches in which some 
nonzero stretch of time in one sequence is all matched to the same, single instant in the 
other. Figure 37.4 shows an example of an alignment path between the score of Let It Be 
by the Beatles, represented as a MIDI file with rigid tempo, and the recorded performance. 

Dynamic programming simply finds the lowest-cost path through a matrix of point-
to-point similarities, so the overall success of the alignment is dependent upon how those 
similarities are calculated - i.e., how to evaluate a particular short segment of audio as 
being consistent or inconsistent with a particular set of active notes from the musical score. 
One simple approach is to generate audio from the score, then make the comparison in the 
audio domain between the actual recording and the synthesized rendition. When the score 
is encoded as a MIDI file, a format principally intended as the input to music synthesizers, 
generating audio is simply a matter of employing one of many available MIDI synthesizer 
programs. The short-time spectra of the two audio versions can then be compared, e.g., by 
cosine similarity: 

„ _ l*XrW,[b\ ( 3 7 Л ) 

νΣΜΨΣΛΐΨ 

where Xr [k] is the magnitude of the kth spectral bin of the frame of real audio, and Xs [k] is the 
same for the synthetic audio [24]. Cosine similarity is the cosine of the angle between the 
high-dimensional spectral vectors, and thus is 1 when they are 'parallel' (scaled versions 
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FIGURE 37.4 Example of audio-to-score alignment. Left pane: 'piano roll' visualization of 
a score-level description of "Let It Be" by the Beatles. Bottom pane: spectrogram of the 
audio recording. Main pane: Peak Structure Distance [18] similarity between score and 
audio, with best path overlaid. Wiggles in path reflect deviations from strict tempo in 
performance. 

of one another), zero when they are orthogonal, and -1 when they are antiparallel. As such, 
it is invariant to scaling of either spectrum, meaning the similarity will still be high even if 
the absolute level of the synthesized version is different from the original recording. 

However, even though MIDI scores will often include some specification of the type 
of synthetic voice or instrument to be used for each part of the score, the timbres of the 
original and synthesized instruments will likely be very different, placing an upper limit on 
the similarity scores that may open the door to confusions and misalignments. Instead, it is 
possible to make the comparisons between cepstral vectors - the inverse Fourier transforms 
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of the log-magnitudes of the original spectra, introduced in Chapter 20. By excluding the 
first few cepstral components, differences in level and in overall spectral shape are factored 
out, and the comparison is limited to "fine structure" of the spectrum, i.e., the detail of 
the individual harmonics of each constituent note. To preserve these harmonic details, the 
cepstrum should be based on the full, original spectrum, not the smoothed and Mel-warped 
spectrum most often used for speech cepstral features (described in Chapter 22), which, 
by design, suppresses pitch-related information. For these cepstral features, a Euclidean 
distance measure is a good match. 

It is also possible to design a similarity measure that directly compares a set of score 
notes to a short-time spectrum, avoiding the need for synthesized audio altogether. Orio 
& Schwarz [18] defined a 'peak structure distance' that uses the notes from the score 
to identify a set of frequencies that ought to contain the energy of harmonics indicating 
those notes, for instance by taking the first eight harmonics of each note's pitch. They then 
create a 'mask' consisting of the spectral bins in which those frequencies should appear, 
then rate the consistency of the observed spectrum with that mask as the proportion of the 
total energy of the spectral frame that falls under the mask. If the actual audio contains 
only the pitches indicated in the score, and has negligible energy above the 8th harmonic, 
the ratio will be close to 1. If, however, the audio contains harmonics other than those 
predicted, the ratio will fall accordingly. The key property is that the actual energy of the 
individual harmonics, and their relative strengths, have little or no effect on the measure, 
thus sidestepping the timbre-matching problems that arise with audio synthesis. 

37.5 CHORD TRANSCRIPTION 

Direct transcription of the pitches of all notes being played is clearly a useful basis for 
analysis and processing of music audio, but, depending on the application it may be more 
detail than is needed. Take, for instance, the task of recognizing a particular piece of music 
- perhaps with the goal of detecting alternative performances or versions of the same 
underlying composition. Knowing the notes would be useful, but certain performers might 
change the specific notes as part of their own interpretation. Less likely to change, at least 
for a large subset of interpretations, is the underlying harmonic structure, i.e., the sequence 
of chords that make up the piece - since even if a melody note is changed, the accompanying 
chord is often unaltered. For this task, it would be more appropriate to transcribe not the 
individual notes, but their combined effect: the musical chord (e.g., С major, Bb minor) 
they constitute. And since to a large extent there is only a single principal chord present at 
any moment in the audio, the problems of dealing with overlapping signals do not arise: 
the chord is a 'global' property of the audio at a particular time. Thus chord transcription 
may be easier (i.e., more accurate) as well as more useful. 

Although the chord perceived by a listener is determined mainly by the set of con-
current notes being played, which themselves are carried by the harmonics in the spectrum, 
an interesting musical effect is that notes that are changed by exactly one octave (i.e., a 
doubling or halving of the fundamental frequency) do not change the underlying chord - at 
least for the canonical 3-note root chords at the core of western harmony. Thus, С major can 
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be represented by a combination of C4 (261.6 Hz), E4 (329.6 Hz) and G4 (392.0 Hz), but 
also by E4, G4, andC5 (2x 261.6 = 523.2 Hz), or by any other combination of C, E, andG 
in different octaves. Because of this, in one of the first papers to address recognizing chords 
in music audio, Fujishima [10] proposed to describe the audio spectrum with a reduced 
representation he called the "Pitch Class Profile", but which is now generally known as 
chroma representation. In a chroma representation, the entire spectrum is 'folded' down 
onto a single octave, for instance into 12 bins representing each of the semitones (C, CjJ, 
. . . , Aj}, B) of the octave. By summing the energy associated with a particular fundamental 
across all octave shifts of that note, the chroma representation gives a good description 
of the different notes present in the audio without distinguishing the octave in which they 
occur. One simple way to calculate a chroma representation is by taking the energy in each 
bin of a standard spectrum (e.g., the output of a Fast Fourier transform), and assigning it 
to the chroma bin closest in frequency. Algorithmically, this can be done by going through 
every bin of the spectrum and adding its energy to the appropriate bin in a chroma vector, 
e.g., 

for each fft_bin do 
chroma-bin = mod(round( 12 log2 (freq(fft-bm)/freq(C4)) ),12) 
chroma_energy[chroma_bin] += fft_energy[fft_bin] 

end for 
where mod(x, 12) returns the remainder (modulo) of integer x divided by 12,/reg(fft_bin) 
returns the frequency in Hz associated with a particular bin the spectrum, i.e., = к ■ SR/N 
for the kth bin of an N-point Fourier transform on a signal sampled at SR Hz, andfreq(C4) 
is the reference frequency for the first chroma bin, i.e., 261.5 Hz. (Several refinements 
to chroma calculation have been proposed that seek to improve frequency resolution in 
low-frequency bins, and exclude non-tonal energy [8].) 

Figure 37.5 illustrates the chroma representation by comparing it to the spectrogram, 
for the two inversions of а С major chord described above. The 'chromagram' takes chroma 
representations of each short-time window, then plots them as columns to show the variation 
of the 12 chroma bins as a function of time (just as the spectrogram shows the variation 
of spectral content). If you look carefully around 260 Hz in the spectrogram, a comparison 
of the first chord (e.g., at t = 1 sec) and the second (at t = 2 sec) shows that the second 
chord is lacking the fundamental for C4 at 261.6 Hz, but in the chromagram both chords 
look essentially the same. Also note that although the 1st, 2nd, 4th, 8th, etc. harmonics 
of a given fundamental will all contribute to the same chroma bin, the other harmonics -
which often contain significant energy - will contribute to other bins. For instance, the 3rd 
harmonic has a chroma value 7 semitones (or a musical fifth) above the fundamental. This 
is principally responsible for the weak chroma activation we see in the figure at D (a fifth 
above G) and В (a fifth above E). In practice, however, such 'ghost' chroma do not impair 
the usefulness of the representation. 

Starting with a chroma representation, chord detection may then be accomplished in 
very much the same way that phonemes are recognized in automatic speech recognition, 
as described in Chapters 22-26: For each distinct chord class, a statistical model of the 
feature observations associated with this class is learned from training data. To further 
improve recognition, sequential constraints such as the likelihood that a chord label will 
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G Major, two inversions ( ΐ^ „= 12Ягпя) С Major - chromagram 

FIGURE 37.5 The two С major chord inversions described in the text, synthesized with a 
piano voice. Left: Score notation; Middle: Spectrogram analysis; Right: Equivalent chroma 
representation (or 'chromagram'). 

stay the same in successive time frames, and the probability that any particular chord will 
be followed by any other, can be captured in a state transition matrix. Put together, these 
constitute a hidden Markov model for chord recognition, and this can even be trained 
using the same EM procedure used in speech recognition if, for instance, the label data is 
available only as a chord sequence for a given training audio example, but without detailed 
time alignments [23]. Much recent work has looked at refinements to this basic chord 
transcription framework, with corresponding improvements in performance [2, 14, 3]. 

37.6 STRUCTURE DETECTION 

Above the level of individual chords and notes, music has further levels of structure, such 
as phrases and sections. Such structures comprise coherent sequences of chords and/or 
notes that often repeat, with or without variations. A listener, particularly one with some 
musical training, can easily identify phrases and sections, and might segment a pop song 
into 'intro', 'verse', 'chorus', etc., or a piece of classical music into 'theme Г, 'bridge', 
'development', etc. As we might expect, there has also been a substantial body of work 
that attempts a similar segmentation using automatic analysis. 

The problem of detecting musical structure is unusual because it constitutes a combi-
nation of local factors (e.g., a change in chord sequence or instrumentation between verse 
and chorus) and global factors (e.g., one definition of a chorus is a segment that repeats 
periodically with little or no variation). Thus, to successfully recover structure, we should 
expect to involve both local and larger-scale comparisons, and need some way to com-
bine these measurements. Another complicating aspect is that, while music listeners will 
generally agree that it makes sense to divide a piece of music into segments that relate to 
one another in various ways, it is harder to get listeners to agree on exactly where those 
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boundaries should fall, or on the 'natural' segments in a given piece of music. Partly these 
problems are a question of hierarchy (e.g., does each line of a verse, which may repeat the 
same melody, constitute a separate section, or only the entire verse?), but in other cases the 
segmentation is simply ambiguous, such as a bridge section that always occurs between 
verse and chorus: some might view it as the end of the verse, and others as the start of the 
chorus, and still others see as distinct from both. 

One of the earliest ideas in this area was the 'similarity matrix' introduced in Foote 
[9]. In this visualization, a piece of music is represented as a square image, with each 
cell reflecting the local similarity between frames of the file at the times corresponding to 
the x and у co-ordinates - i.e., similar to the cost matrix used as the basis of alignment 
in Figure 37.4, except that one audio recording is being compared to itself, rather than a 
second piece of audio or a score representation. As with alignment, the comparison can 
be based on different feature representations (cepstra, chroma, ...), and can use different 
similarity measures (cosine, Euclidean,...), and different sizes of local time window, each 
leading to a different perspective on the internal structure of the music. Figure 37.6 shows 
one example, the self-similarity of the entire 231 seconds of Let It Be by the Beatles, using 
cosine similarity of Mel-frequency cepstral coefficients. By comparing the light and dark 
patches to the hand-marked segment labels, it is clear that the similarity matrix contains 
much relevant information. 

The similarity matrix was first used as a basis for automatic identification of chorus 
segments in Bartsch & Wakefield [1], who used chroma features calculated on beat-length 
segments (from an earlier beat-tracking step) to build a similarity matrix. The matrix is then 
smoothed along diagonals to emphasize off-diagonal stripes, which correspond to regions 
of successive, synchronous similarity. Then the largest value in the smoothed similarity 
matrix, indicating the longest and most exactly-repeated section, is chosen as the chorus. 
Evaluating against a set of 93 popular music tracks where the chorus had been manually 
marked, their system achieved an average temporal overlap between the automatically-
identified chorus and the hand-marked chorus of around 70%, compared to around 30% for 
a baseline system that chose random segments. 

Subsequent work has continued to improve music segmentation and corresponding 
labels through better measures of structural fitness applied to descriptions that account for 
the entire recording [19]. Integration of high-level structure with low-level features has 
been improved by using local clustering of frames to form consistent segments prior to the 
comparison between different segments to find repeating structure [15]. However, further 
progress on music segmentation is limited by the intrinsic ambiguity and limited agreement 
between manually-annotated ground truth [20]. 

37.7 CONCLUSION 

This chapter has looked at some of the information that can be directly extracted from music 
audio at the lowest level. We have seen that many musically-interesting descriptions can be 
successfully recovered with a combination of signal processing and pattern recognition. In 
the interests of space, we have omitted discussion of important work in extracting percussive 
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Similarity Matrix - Let It Be - Cosine dist (100Hz-1.8kHz сер) 

int vrs cho vrs cho br inst cho vrs cho out Segments 

FIGURE 37.6 Similarity matrix for Let It Be by the Beatles (entire piece). The 'texture' of 
the image clearly changes with the different manually-annotated segments of the piece 
(shown at the side). Off-diagonal stripes indicate repeating segments. 

(unpitched) events, identifying instruments, and tracking tempo and key, as well as much 
else. All of this 'literal' information can be used as a basis for more abstract analyses of 
the music audio items, for instance as the basis of music classification or retrieval systems 
as discussed in Chapter 38. 

37.8 EXERCISES 

37.1 Consider a C-major chord consists of three notes with fundamentals of 261.6 Hz (C4), 329.6 Hz (E4), 
and 392.0 Hz (G4), and with each note consisting of its first 6 harmonics. 

(a) What will be the frequencies of all the harmonics present? Assuming a spectral resolution of 20 
Hz (corresponding to a temporal resolution on the order of 50 ms), how many of these harmonics 



BIBLIOGRAPHY 579 

will be stationary, and how many will be so close as to interfere by phase cancellation ("beating")? 
(b) If the amplitudes of the harmonics fall as 1/n (where n is the harmonic number), and each note 

has equal amplitude, and if harmonics are quantized into 12, equally-spaced chroma bins aligned 
to the chord's tuning, what would be the chroma representation of this chord? How does this 
differ from what might be expected? 

37.2 The chord progression for the verse and chorus of "Let it Be" by the Beatles can be transcribed, with 
one observation every half-bar (two beats), as: 
{C, G, a, F, C, G, F, C, a, e, F, C, C, G, F, C} 
where capital letters indicate major chords and lower case indicate minor chords. 

A hidden Markov model is trained using this sequence. Given a set of 8 observations in which 
the first chord is unambiguously С but the remaining observations match all chord models with 
equal likelihood, what would be the result of Viterbi decoding of the hidden Markov model for this 
sequence? 

37.3 Secton 37.6 mentions one evaluation metric for structure detection systems: the proportion of 
manually-marked "chorus" segments correctly identified. However, a more general structure dis-
covery task is to segment and label all the different time regions in a musical piece. Algorithms 
may exhibit several common flaws including over-segmentation (dividing the piece up into too many 
segments), under-segmentation, segment boundary skew (i.e. placing a boundary some distance away 
from its true location), as well as incorrect clustering of the segments defined by the boundaries. 

Propose a measure for evaluating structure detection algorithms, discussing how it reflects 
each of these problems. You may also wish to consider the problem of inconsistent ground truth from 
different manual labelers. 

BIBLIOGRAPHY 

1. Bartsch, M. A. and Wakefield, G. H., "To catch a chorus: Using chroma-based representations for 
audio thumbnailing," in Proc. IEEE Worksh. onApps. ofSig. Proc. to Acous. and Audio, 2001. 

2. Bello, J. P. and Pickens, J., "A robust mid-level representation for harmonic content in music 
signals," in Proc. ISMIR, pages 304-311, London, 2005. 

3. Cho, Т., Weiss, R. J., and Bello, J. P., "Exploring common variations in state of the art chord 
recognition systems," in Proc. Sound and Music Computing Conference (SMC), pages 1-8, 
Barcelona, 2010. 

4. Dannenberg, R. В., "An on-line algorithm for real-time accompaniment," in Proc. Int. Computer 
Music Conf., pages 193-198, Paris, 1984. 

5. Dannenberg, R. B. and Raphael, C, "Music score alignment and computer accompaniment," 
Commun. ACM, 49: 38-43, 2006. 

6. Downie, J., West, K., Ehmann, A., and Vincent, E., "The 2005 Music Information Retrieval Eval-
uation eXchange (MIREX 2005): Preliminary overview," in Proc. 6th International Symposium 
on Music Information Retrieval ISMIR, pages 320-323, London, 2005. 

7. Ellis, D. P. W. and Poliner, G., "Classification-based melody transcription," Machine Learning 
Journal, 65: 439-456, 2006. 

8. Ellis, D. P. W. and Poliner, G., "Identifying cover songs with chroma features and dynamic 
programming beat tracking," in Proc. ICASSP, pages IV-1429-1432, Hawai'i, 2007. 

9. Foote, J., "Visualizing music and audio using self-similarity," in Proc. ACM Multimedia, pages 
77-80, 1999. 



580 CHAPTER 37 MUSIC SIGNAL ANALYSIS 

10. Fujishima, Т., "Realtime chord recognition of musical sound: A system using common lisp 
music," in Proc. ICMC, pages 464-467, Beijing, 1999. 

11. Goto, M. and Hayamizu, S., "A real-time music scene description system: Detecting melody 
and bass lines in audio signals," in Working Notes of the IJCAI-99 Workshop on Computational 
Auditory Scene Analysis, pages Ъ1-А0, Stockholm, August 1999. 

12. Klapuri, A., "Multiple fundamental frequency estimation by harmonicity and spectral smooth-
ness," IEEE Trans. Speech and Audio Processing, 11: 804-816, 2003. 

13. Kurth, F. and Müller, M., "Efficient index-based audio matching," IEEE Trans. Audio, Speech 
and Language Proc, 16: 382-395, Feb 2008. 

14. Lee, K. and Slaney, M., "Acoustic chord transcription and key extraction from audio using 
key-dependent HMMs trained on synthesized audio," IEEE Trans. Audio, Speech and Language 
Proc, 16: 291-301, Feb 2008. 

15. Levy, M., Sandier, M., and Casey, M., "Extraction of high-level musical structure from audio 
data and its application to thumbnail generation," in Proc ICASSP, pages V-13-V-16, Toulouse, 
2006. 

16. Moorer, J., "On the transcription of musical sound by computer," Computer Music Journal, 1: 
32-38, 1977. 

17. Müller, M. and Ewert, S., "Joint structure analysis with applications to music annotation and 
synchronization," in Proc. ISMIR, pages 389-394, Philadelphia, 2008. 

18. Orio, N. and Schwarz, D., "Alignment of monophonic and polyphonic music to a score," in Proc. 
International Computer Music Conference, pages 155-158, Havana, September 2001. 

19. Paulus, J. and Klapuri, A., "Music structure analysis using a probabilistic fitness measure and an 
integrated musicological model," in Proc ISMIR, pages 369-374, Philadelphia, 2008. 

20. Peiszer, E., Automatic audio segmentation: Algorithm, experiments and evaluation, Masters 
thesis, Vienna University of Technology, Vienna, Austria, 2007. 

21. Scheirer, E., "Structured audio, Kolmogorov complexity, and generalized audio coding," IEEE 
Transactions on Speech and Audio Processing, 9: 914-931, 2001. 

22. Scheirer, E. D., Extracting Expressive Performance Information from Recorded Music, Masters 
thesis, MIT Media Lab, 1995. 

23. Sheh, A. and Ellis, D. P. W., "Chord segmentation and recognition using EM-trained Hidden 
Markov Models," in Proc. Int. Conf. on Music Info. Retrieval ISMIR-03, pages 185-191, 2003. 

24. Turetsky, R. J. and Ellis, D. P. W., "Ground-truth transcriptions of real music from force-aligned 
midi syntheses," in Proc. Int. Conf. on Music Info. Retrieval ISMIR-03, pages 135-141, 2003. 

25. Vercoe, B. and Puckette, M., "Synthetic rehearsal: Training the synthetic performer," in Proc. 
Int. Computer Music Conf, pages 275-278, Vancouver, Canada, 1985. 

26. Walker, J. Q., "Music technology at Zenph studios," Classical Voice of North Carolina, 2005. 



MUSIC RETRIEVAL 

38.1 THE MUSIC RETRIEVAL PROBLEM 

Online music sources, such as Apple's iTunes Music Store, provide practically instant 
access to many millions of music tracks. In the past, choosing music to listen to was a 
question of flipping through actual media (CDs or LPs), with physical constraints limiting 
the choice to dozens or at most hundreds. Today, many people carry so much music around 
with them on portable devices that even just browsing through the cover images could take 
hours. This growth by several orders of magnitude of the scale of music choices demands 
entirely new mechanisms for identifying and selecting music - what we are calling the 
music retrieval problem. This chapter looks at various formulations of this problem, and 
some current solutions. 

Music retrieval shares many aspects with classic text document search (e.g., web 
searching), but also has some distinctive characteristics owing to the differences between 
the ultimate purposes of retrieval: listening to music is not so much like reading a document. 
Music retrieval may be aimed at finding a specific, known item, or alternatively something 
fitting to the listener's mood or taste. It may be based on a specific query, either in words or 
by example, or it may be "implicit" (such as activating an internet radio station), in which 
case the query can be drawn from context such as personal music collections or recent 
listening history. The actual needs or goals to be satisfied may not be clear, even to the 
listener, and indeed music preference is still a mysterious phenomenon. All this contributes 
to the need for a range of different approaches. 

In this chapter, we will look at a number of music retrieval scenarios. The first is query-
by-example with the goal of finding an exact match, i.e., the audio fingerprinting task, now 
popularized by applications running on portable devices that can name background music 
being played in public spaces. A similar scenario, but involving very different solutions, 
is "query by humming", in which the user vocalizes some imitation of the desired piece 
for the machine to identify. A third related variant is cover song matching, where a query 
example is given, but the task is to find recordings that are recognizably the same music, 
but performed by different musicians and/or with a different interpretation. 

Moving beyond these searches for specific items, a common scenario is for listeners 
to want to hear music they like, or that matches a particular situation, without having to 
individually specify each track. This can be based on text queries describing particular 
bands, genres, or other "tags", or perhaps derived from specific examples with the goal of 
finding "more music like this". An example application of piece-to-piece music similarity 
task is in playlist generation, where the task is to come up with a sequence of music 
recordings that can be played in sequence to satisfy or please a listener. 

All of these approaches are based on the actual audio content of the music recordings, 
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which is our interest here. It is worth recognizing, however, that there are many other 
sources of information about music and musicians, and these can have significant influence 
and utility in practical music retrieval tasks. The most familiar is the recommendations 
commonly encountered in online music stores based on comparisons between a particular 
user's music collection (or listening history) and those of other users over a wide pool: 
Roughly speaking, the idea is to find mores users who resemble the target user, then 
recommend whatever those other users liked or bought. Such approaches never actually 
look at the audio content, but merely at the behavior of humans, who are presumably 
responding to the audio as well as other influences. In the case of music for which a large 
amount of user interaction data is available, these approaches can be highly effective, 
although such techniques place new or little-known pieces at a considerable disadvantage 
since they will rarely be recommended (the "cold start" problem). Several recent approaches 
have sought to combine audio-based music similarity into a framework otherwise based on 
user data, e.g., [22, 2]. 

38.2 MUSIC FINGERPRINTING 

Music fingerprinting, which aims to identify a particular recording within a large archive, 
is the least ambiguous task considered in this chapter, and also one of the most widely 
used. Fingerprinting is used to monitor radio broadcasts (e.g., for royalty collections), to 
identify music collections that may have been digitized in different ways and which may 
have unreliable labels, as well as for the now-classic application of identifying a piece of 
music being played in a public space that you recognize but cannot name. In all these cases, 
fingerprinting is very successful - which at first may appear surprising, since no human can 
instantly recognize among millions of tracks. But in fact the task is just the kind of thing 
that is relatively easier for computers: there is a closed set of existing recordings, and the 
query audio is precisely the same (exactly the same waveform), at least at its point of origin. 
Thus, almost any summary feature is sufficient to specify the piece, provided it is not too 
badly distorted by the transformations and channels the original audio goes through on its 
way to becoming the query. The other considerations are merely that the feature should 
retain enough detail to avoid false alarms, along with secondary considerations such as the 
size of the reference database, the ease with which it can be searched, computational cost, 
etc. 

One very successful algorithm for identifying recordings even amid noisy back-
grounds was developed by Avery Wang for Shazam [20]. The matching is based on the 
identification of time-frequency "landmarks" - prominent energy peaks at a particular time 
and frequency. The rationale behind using these landmarks is that the frequencies of spectral 
peaks, the relative times at which they occur, and the fact that they are prominent compared 
to their immediate neighbors, are unlikely to be changed by the addition of background 
noise, or distortion caused by channels of various kinds. In particular, it is the timing and 
spectral location of the landmark that are recorded, not the actual level of the peak, as 
this is much more vulnerable to modification by these effects. The landmark parameters 
are combined with a matching scheme that can successfully and unambiguously identify a 
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Query audio 

FIGURE 38.1 Example of music fingerprint matching using the Shazam landmark-based 
algorithm. Black circles indicate time-frequency "landmarks", and lines connecting them 
indicate the pairs of landmarks stored as descriptors in the hash table. The top pane 
shows the analysis of a 5.6 s noisy query, and the bottom pane shows the matching 
excerpt found in the reference database. White lines indicate matching descriptors. 

match even if only a small minority of all the possible landmarks are identified in the query 
- thus only a relatively tiny part of the audio, sparsely distributed in time and frequency, is 
actually responsible for each successful match. 

The reference index is based on pairs of landmarks, such that a particular track is 
represented by a relatively large number of local landmark pairs, described by the frequency 
of the first landmark peak, the frequency of the second peak, and the time difference between 
them. These three values are combined via a hashing function to yield a single key. The 
database then holds, for each key, the list of reference track IDs, and the time within each 
track at which the combination of landmarks occurs. 

Querying the database then consists of forming local landmark pairs from the query 
audio, retrieving the lists of all the reference tracks that contain each of those hashed keys, 
then seeing if there is any track that occurs in an unusually large proportion of the retrieved 
lists. Generally speaking, an individual hash will occur in a random selection of all the 
reference tracks, so the chance of an unrelated track turning up in many of the lists - i.e., a 
false alarm - is very low. If there are multiple contenders for the most likely track, however, 
a second stage of confirmation is to look at the times at which each matching landmark 
hash occurs in the query compared to the time it occurs in the reference track, as retrieved 
from the database. Although the query has an unknown offset in its start time relative to 
the reference item (i.e., it may be plucked from the middle of a track), the time difference 
between landmarks located in a query and those in a matching reference should be constant, 
thus confirming the validity of a match. 

Figure 38.1 illustrates the operation of this algorithm. The top pane shows an audio 
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query, captured by a hand-held recorder in a noisy background during the playback of the 
target track over low-quality speakers: Note the almost total lack of detail above 3 kHz. The 
lower pane shows the corresponding fragment of the reference signal, as identified among a 
dataset of several hundred tracks. The black circles show, for both the query and reference 
audio, the detected landmark peaks; the black lines link pairs of landmarks that form the 
hash keys. Thin white lines highlight the matching landmarks that facilitate the matching 
of this 5.5 s query: Although both excerpts contain over 50 landmark pairs, only 12 of these 
are commonly identified and thus matched. However, the chance of these 12 landmark 
pairs being identified by chance is vanishingly small, thereby minimizing the risk of false 
alarms. And because the relatively dense identification of landmarks in the reference audio 
presents many chances for the query to match, the approach is very successful at matching 
even short, noisy queries - as shown in this example. 

38.3 QUERY BY HUMMING 

When exposed to the idea of using computers to help find music, people often imagine a 
system that can identify the intended piece of music represented in a hum, whistle, or short 
sung snippet. This evidently seems the most natural way of formulating a music query, 
although it is relevant mainly in known-item searches, not for alternative scenarios that 
involve looking for an unspecified piece appropriate to a particular situation or listener. 
When compared to fingerprinting, query by humming (QBH) is far more challenging since 
sung or hummed queries can vary enormously from person to person, depending on factors 
such as singing skill, accuracy of memory, and environmental conditions. Even the same 
query produced by the same person but on different occasions may be in a different key, 
i.e., based on a different starting pitch, leaving aside other variations. And even the most 
skillful and accurate hummed query cannot come anywhere close, in waveform terms, to 
a multi-instrument, polyphonic target recording. Thus, QBH is a long-standing challenge 
and has had a relatively long and steady history of research progress. 

QBH can be decomposed into two main tasks: (1) transcribing a hummed or sung 
query into a suitable, high-level representation, then (2) matching that representation against 
a large database of known reference items. The first problem is strongly related to the 
transcription techniques discussed in Chapter 37, whereas the second is more to do with 
efficient and tractable comparison metrics. There is also the more basic problem of how to 
obtain and encode the reference items, which has a strong influence on the representations 
and comparison techniques used. Much work in QBH has assumed the availability of 
symbolic descriptions of reference melodies, e.g., as fully-transcribed MIDI encodings of 
the vocal line. However, it is of much more practical use if the matching can be performed 
against, or at least automatically reconciled with, untranscribed databases of music audio. 

To illustrate the difficulty of this task, Figure 38.2 shows an example of a typical 
sung query: an amateur rendition of the beginning of a song. Despite a moderate level of 
background noise, a standard pitch tracker is able to recover a useful description of the 
time-varying fundamental frequency. When we compare this against a canonical version 
of the intended melody, however, we see large differences. The grey boxes in the lower 
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FIGURE 38.2 Example of input to a query-by-singing system. Top pane is a spectrogram 
of a sung query. Lower pane shows fundamental frequency track (from Yin [3]) overlaid on 
best-aligned metronomic ground truth (gray patches, showing the range of frequencies that 
will quantize to the same pitch). Query is from Jang [7]. 

pane show the target melody after transposing in time and frequency and scaling the tempo 
to match the query pitch track as closely as possible. As can be seen, sung queries are 
often quite inaccurate in pitch and timing, and it can be very difficult to identify the breaks 
between notes in continuous, slurred contours. 

Early approaches to QBH attempted to transcribe the query into a string of discrete 
note symbols. To deal with inaccuracies in sung pitches and timing, McNab et al. [Il] 
encoded both the query and the reference database of melodies as a simple sequence of 
pitch differences, quantized as Up, Down, or Repeat. This representation is invariant to 
variations in note duration, or to errors in pitch provided the pitch moves in the right 
direction. Matching was then based on string matching techniques, which can further 
tolerate small variations (inserted or deleted note events, or incorrect contour labels). 
Unfortunately, at this level of simplification many reference melodies become similar and 
thus confusable. 

Since note segmentation is difficult, a more successful approach is to use the raw 
pitch contour without segmentation to match against the reference melodies [6]. The entire 
contour can be moved up or down in pitch to achieve maximum similarity (e.g., smallest 
squared difference) from the reference contour. This will mean that inaccuracies in sung 
pitch will degrade the quality of a match, but it provides the advantage that a more 
accurate query will lead to more accurate results - unlike the crudely-quantized melody 
representation that threw away much of the query information. To deal with differences 
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in timing, Dynamic Time Warping (introduced in Chapter 24) can be used to find the 
best alignment between query and reference items, typically with limits on the alignment 
path slope such as constraining it to lie in the range 0.5 . . . 2. This approach led to great 
improvement in retrieval accuracy, but was far more costly to compute than simple string 
comparison. However, simplified alignment schemes that search for only a single, fixed 
alignment slope (i.e., a constant tempo warp) or a simple piecewise-linear slope actually 
perform better than a less constrained, full DTW alignment [21]. 

Since QBH is most valuable for large reference databases, considerable attention has 
gone into mechanisms for pruning the search space, e.g., by applying a sequence of filtering 
stages based on simpler comparisons that can safely exclude large portions of the reference 
dataset prior to the final, expensive alignment comparison. Mainstream database research 
addresses problems of rapid search in large datasets. For instance, given a metric that obeys 
the triangle inequality (such as Euclidean distance), techniques such as vantage objects 
can accelerate searches for nearest neighbors [17]. These approaches work by indexing 
the reference database in terms of distances to a small number of "vantage point" objects 
such that items at a particular distance from each point can be quickly retrieved. The 
distance of the query from these vantage objects is similarly calculated. Since the triangle 
inequality dictates that the distance between two points cannot be less than the difference 
between their distances to a vantage point, any reference items that do not have distances to 
every vantage object that nearly match those found for the query can quickly be excluded, 
drastically reducing the number of exact comparisons that need to be made. 

A similar idea is behind the indexing scheme known as locality sensitive hashing 
(LSH) [1]. In this case, however, the distances are quantized and the reference items are 
stored in a hash table indexed by these quantized distances. By a careful combination of 
intersections and unions of hashes, the number of distances and the size of the quantized 
bins can be determined systematically to retrieve, with a predefined confidence, all items 
that lie within a certain radius of the query. Owing to the hash table, the query is very fast and 
query time is almost independent of reference database size. Ryynänen & Klapuri [14] use 
this in their QBH scheme, allowing them to include pitch contours based on every possible 
starting note in their reference database instead of having to assume that queries will start 
at the beginning of the reference melody. They further use automatic melody transcription 
(as discussed in Chapter 37) to build a reference database directly from existing music 
recordings, and report good accuracy in matching real user queries. 

A different approach to QBH involves matching sung queries to other queries instead 
of reference descriptions [12]. Given a database of sung queries that have each been 
manually associated with the intended target track, this effectively bypasses problems of 
transcription and extracting the melody from music audio recordings. Matching must still 
rely on some kind of alignment, but given that the items being matched are of the same 
nature (amateur sung queries), it can be an easier problem. Also, the most popular excerpts 
to hum are likely to be the ones best represented in the database. However, it does require the 
work of manually labeling the initial queries, and can only match popular, previously-seen 
queries. 
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38.4 COVER SONG MATCHING 

Musicians are fond of taking an existing piece of music and putting their own "inter-
pretation" on it. Such alternate versions range from close imitations of the original (e.g., 
by tribute bands, who strive to reproduce the performances of their idols) to radical re-
interpretations (along the lines of John Coltrane's 14 minute, modal version of the Rogers 
and Hammerstein show tune "My Favorite Things"). In various scenarios it is useful to be 
able to match these so-called "cover" versions of original pieces, for instance to automati-
cally identify pieces in a live performance with their studio-recorded equivalents. It is also 
an interesting problem in its own right, since it focuses attention on the underlying music 
rather than the particular style or instrumentation used in its performance. 

Cover song matching differs from fingerprinting because the underlying audio is not 
exactly the same: The detailed landmarks described in Section 38.2 are able to distinguishing 
even alternate takes of the same piece by the same musicians, circumstances in which a 
human listener might not notice any differences. This task is also quite different from QBH, 
in as much as the query is much richer than a single hummed or sung melody, although in 
some cases the lead melody line may be the only point of similarity shared with the original. 
Other points of similarity between cover and original may include the chord progression 
(i.e., the combined 'color' of simultaneous notes) and the lyrics. Factors that frequently 
vary are the key (i.e., the absolute pitch basis), the rhythm and tempo, the instrumentation, 
and other aspects conveying music style. 

Cover song matching has been the subject of several formal evaluations within the 
MIREX music information retrieval evaluation activity [4]. Given that sequences of notes 
(melodies) and their combinations (harmonies and chords) are most often preserved in 
cover versions, successful approaches have been based on representations that effectively 
capture these aspects independent of the specific instruments used - namely, the chroma 
vectors introduced in Section 37.5, which were originally devised for chord recognition. 
Chroma vectors describe each short time window of audio by sorting the energy of spectral 
peaks (individual sinusoid harmonics) into 12 bins representing the 12 distinct semitones 
of the (western) musical scale. The simultaneous notes at approximately equal intensity 
that constitute a chord have a signature pattern in this representation, as does a single 
melody note whose intensity dominates the accompaniment. Thus, chroma representations 
constitute a convenient compromise between melodic and harmonic description that is very 
appropriate for cover song identification. 

Figure 38.3 illustrates chroma representations of the beginnings of two versions 
of "Let It Be" - the original by the Beatles, and a cover version by Nick Cave with a 
markedly different instrumentation and vocal line. While the chroma representations are 
clearly different, they share many features including the signature F-E-D-C falling cadence 
at the end of the introduction, highlighted by the thick outlines in the Figure. Chroma 
are calculated on beat-length time windows (from a preceding beat tracking stage), which 
means that the patterns remain (mostly) registered, even though the performances have 
tempos about 4% different. The bottom pane shows the result of cross-correlating these 
two chroma representations over all relative timing skews up to ±80 beats, and over all 12 
possible relative transpositions. There is a clear peak at zero transposition and around zero 
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Lei ii Be - The Heaiies ii42 SPto) 

FIGURE 38.3 Beat-chroma representations of "Let It Be" by the Beatles (top pane), and 
as covered by Nick Cave (middle pane). Bottom pane is the cross-correlation of the two 
matrices, at all 12 relative transpositions, for up to 80 beats timing skew. 

beats relative timing. The 16 beat phrase sequence also shows up as periodic peaks visible in 
this correlation. The peak values in this kind of whole-track beat-chroma cross-correlation 
were used for a successful and efficient cover song matching scheme by Ellis & Poliner 
[5]. 

Cross-correlation of beat-synchronous chroma matrices offers a quick way to compare 
tracks and can find matches even if only a relatively small portion of the tracks match, 
since chance correlations tend to be small. However, in order to capture the full range of 
possible alignments, some kind of DTW is required. Serra et al. [15] use so-called local 
alignment in their chroma-based cover song system, which has shown the best performance 
in several MIREX evaluations. In local alignment, a full grid of costs is calculated just as in 
conventional DTW, but the scores can be positive (for good matches) and negative (for weak 
local matches, or for steps indicating non-linear paths). The accumulated score, however, is 
set to zero everywhere it would otherwise have become negative, and any such points have 
no traceback, i.e., they become new starting points for local regions of matching. Such a 
scheme can effectively find multiple, disjoint regions of good match within larger stretches 
of signal. The Serra et al. system also includes several other optimizations shown to be 
beneficial in the cover matching task. 
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38.5 MUSIC CLASSIFICATION AND AUTOTAGGING 

So far, we have only discussed retrieving music audio by using audio queries. But one of the 
most natural ways of formulating a query is to use words. Although, as mentioned above, 
searching for music may be qualitatively different from searching for documents on the 
web, there are still plenty of scenarios in which associating music with relevant keywords 
would be desirable. For instance, sorting music into genre categories, the traditional way 
of organizing large collections of music in record stores and elsewhere, is one version of 
labeling music with a particular set of terms. Also, many web sites allow users to 'tag' 
music with descriptive keywords, for instance to help them search for particular subsets. It 
is an attractive problem to see how accurately a machine can assign such tags. 

By viewing each word or tag as a discrete category, music-to-term mapping is simply 
a conventional classification problem - either a binary task (is this term relevant to this 
music or not?), or an N-way task (which of these N genre tags best describes this music?). 
As such, it is a good fit to the statistical pattern classification techniques described in 
Chapter 9. The main questions are: 

• Granularity: What is the appropriate time scale over which to perform classification 
- entire tracks, some kind of sub-track division (such as 10 s fragments), or larger 
collections of tracks such as albums or the entire output of an artist? 

• Features and representation: As with any classification task, the choice of features, 
and the suitability of those features for the particular classifier being used, have a 
crucial influence on eventual performance. Music is very different from speech - in 
particular, speech features such as MFCCs are generally designed to suppress pitch 
information, but pitch is essential to music. At the same time, MFCCs have proven 
very successful in many music audio classification tasks including genre and artist 
classification [8]. More musically-relevant measures, such as chroma and rhythm-
related features, have sometimes shown value in more specialized tasks. Classifying 
sequences of short frames requires some summarization of features calculated from 
the frames (e.g., the 25 ms frames typical of speech, or possibly beat-length segments): 
mean and covariance are commonly used, although more sophisticated descriptions 
based on autoregression of features have also been shown as beneficial [13]. 

• Classifiers: Most popular general-purpose classifiers have been applied to music 
audio classification. Much early work used Gaussian Mixture Models (GMMs) [18], 
although more recently Support Vector Machines, based for instance on Mahalanobis 
distance between feature covariance matrix elements, have been more successful [10]. 
Hidden Markov models, surprisingly, have rarely shown much benefit over simpler 
classifiers that ignore sequential structure in the audio. It is obvious that music 
contains very rich information in its temporal structure, so this must presumably be 
attributed to limitations in the way that this structure has been captured or modeled. 

• Categories and data: There are many different sets of categories (or tags) that could 
be addressed by these methods. Several have been investigated within MIREX, 
including genre (and sub-genres), artist identification, and musical mood. For any 
such task, however, the results are naturally strongly dependent on the type, quantity 
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FIGURE 38.4 User interface of the "MajorMiner" web-based game for collecting music 
tags. The user listens to a 10 s music clip, then enters tags as free text. Points are scored 
on the basis of whether other players submit the same tags. 

and quality of the training data used. In fact, genres, which are primarily a marketing 
construct of record companies, turn out to be poorly distinguished by humans: Meng 
et al. [13] found their subjects averaged below 60% accuracy assigning 30 s clips 
into eleven popular music categories. Other tasks, such as music mood, suffer similar 
problems of quality and repeatability of ground-truth training labels. In general, 
researcher-defined categories are often suspect, since they may embody prior biases 
about the nature of the problem or the interests of users. This has led to a shift towards 
tags directly contributed by users, as described below. 

One way to collect ground truth is via web-based games, inspired by the image 
labeling "ESP" game of von Ahn & Dabbish [19]. In this popular technique, a web site 
presents any casual web visitor with some complex content (an image in the ESP game, 
or a music clip for our purposes), then invites them to confirm or enter relevant keywords. 
Typically, some competitive or game elements are introduced as a kind of incentive; when 
the game rewards tags that agree with those given by other users, this also encourages 
accurate and reproducible tagging. Mandel & Ellis [9] describe one such game whose 
primary user interface is shown in Figure 38.4. Players listen to 10 s clips of music audio 
and tag them with as many free-form tags as they wish: points are scored only for tags 
that are confirmed by other players who hear or have heard the same clip. The scoring 
rewards the first person to enter a particular tag (if it is subsequently validated by other 
listeners), and gives no points for frequently-entered clips, providing a balance between 
novelty and consensus. Although users were given no particular instruction concerning the 
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FIGURE 38.5 Classifiers trained from the MajorMiner tag data applied to all 10 s 
segments from an entire track ("Liberation" by Outkast). The top pane shows a Mel-scale 
spectrogram of the entire track, along with manual annotations showing the principal 
changes in instrumentation. The lower pane shows the output of a number of relevant 
classifiers. Several segments from this track were included in the segments heard by 
listeners, and the most popular manually-assigned tags are outlined with border width 
indicating their popularity. Classifier outputs agree with user tags, but also generalize to the 
remainder of the audio. 

kinds of tags to use, the most popular tags obtained concerned more objective aspects such 
as instrumentation (e.g., "drums", "male"), with genre categories ("pop", "jazz") occurring 
less frequently. 

The outcome of this game is a large collection of spontaneous user-generated labels 
for relatively short musical snippets. By ensuring that each clip is played to several different 
users, good notions of reliability and agreement for each tag are obtained. Then, all the 
clips bearing a given tag can be used, along with a selection of counter-examples, to train 
a classifier able to automatically tag previously unseen music clips. Figure 38.5 shows the 
output of a number of these classifiers over an entire track broken into 10 s segments. A 
random subset of six of these segments were presented to listeners in the game, and their 
most popular responses are also indicated in the figure, showing good agreement with the 
automatic classifiers. 

38.6 MUSIC SIMILARITY 

The most interesting and demanding version of the music retrieval task is to find music 
"similar" to a given example or collection - for instance, to recommend new music to 
listeners wishing to expand their collections, or to build a coherent playlist of songs for 
a personalized music stream. Many of the techniques from music audio classification 
are relevant here: For instance, if genre classification is achieved by learning boundaries 
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between MFCC distribution descriptions, music similarity might be simply estimated by 
the Kullback-Leibler divergence between those distributions [10], although clearly this 
can only account for a small part of the seemingly rich subjective phenomenon of music 
similarity. 

Adding to the difficulty of these tasks are the problems of ground truth and evaluation. 
If we wanted to train a classifier to decide which tracks were similar to or different from 
a particular example, where would we get labels for positive and negative examples? And 
once we build such systems, how do we decide which system makes the best selections 
from a given collection? Ultimately, the only meaningful source of judgments is human 
listeners, and so for the MIREX 2006 Audio Music Similarity evaluation, human judges 
were recruited to listen to up to 30 candidate matches (drawn from a corpus of 5000 
tracks) for each of 60 queries. The candidate matches were the pooled, top-5 results of 
the six algorithms submitted for evaluation. Judges rated the similarity of each candidate 
to the original query, and the algorithms were ranked on their average similarity scores. 
Automatic systems still have some way to go, with fewer than one quarter of candidates 
being judged "very similar" in 2006, increasing to around half for the best systems in the 
2009 evaluation. 

While most similarity systems use some kind of direct comparison between audio-
derived features, an alternative approach is to apply tag- or concept-related classifiers as 
described in the previous section, then use the correlation across the set of classifier outputs 
as a measure of similarity. This approach was used by Turnbull et al. [16] in the 2007 
MIREX music similarity evaluation, with results that were statistically equivalent to the 
other top systems. The attraction of this approach is that it can use user-labeled training 
data, and it leverages the individual classifiers to distinguish between aspects of the audio 
data that are relevant to human judgments (for a variety of categories) and those that should 
be ignored. 

38.7 CONCLUSIONS 

Music retrieval is a broad area whose significance has rapidly increased, and it is thus 
the topic of a great deal of current research. In this chapter we have looked at various 
incarnations of this problem, with different forms of queries (audio, textual, contextual) 
and different kinds of desired results (specific items or novel recommendations). While the 
existence of regular, formal evaluations has had a strong positive influence on the field, 
many researchers feel that current techniques don't really get at the musical "core" of these 
audio signals, and look forward to future developments able to reach further into the rich 
and deep structure of musical sounds. 

38.8 EXERCISES 

38.1 In the example of Figure 38.1, there are about 50 landmark-pairs shown for each 5 second sound 
excerpt. 12 of them are shared, which is the basis of matching the two fragments. 
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(a) If the landmark-pairs are represented by a 20 bit hash, and a given reference track can be 
considered as a uniform collection of these hashes, what is the probability that an unrelated track 
will match at this level? You can assume the reference track is 200 seconds long, and that hashes 
occur at an average of 10 per second. 

(b) Assuming this level of hash consistency (i.e. that only 12/50'As of reference hashes will appear in 
the query), what length of query is required to achieve a false-match rate below 1 % for a database 
of 1 million tracks? 

38.2 Consider three melodies: 

• The first line and a half of the US National Anthem: 
"Oh, say can you see by the dawn's early light what so proudly we hailed ..." 

• The first three lines of Yesterday by the Beatles: 
"Yesterday all my troubles seemed so far away, now I need a place to hide away ..." 

• The first two lines of A Little Help From My Friends by the Beatles: 
"What would you say if I sang out of tune, would you stand up and walk out on me..." 

(a) Transcribe each melody into a sequence of Up / Down / Repeat melodic contour symbols. 
(b) Based on the length of the shortest sequence, calculate the Hamming distance between each pair 

of melodies (i.e., the number of symbol positions in which the symbols differ). Which melodies 
have the smallest distance? Does this seem reasonable? 

38.3 In the bottom panel of Figure 38.3, the dark peak at 0 beats time skew and 0 semitones transposition 
indicates the principle alignment between the two versions of "Let It Be". But we also see other local 
maxima in the cross-correlation. 

(a) Along the 0 semitone transposition row, we see a series of local maxima, the first two being just 
inside ±20 beats. To what do these correspond? 

(b) We also see peaks in other rows, including ±5 semitones transposition. What do these peaks 
indicate? Comment on their timing relative to the main peak. 

38.4 Automatic tagging of music audio typically employs statistics of the audio gathered over some 
window, from a few seconds up to entire tracks and beyond. Discuss the appropriate rimescale for 
different kinds of labels (instruments, moods, genres). How can we choose the appropriate rimescale 
for a particular classification task? 
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SOURCE SEPARATION 

39.1 SOURCES AND MIXTURES 

Sound is a remarkably linear medium, which is to say that in the presence of two, distinct 
sound-producing sources such as two people speaking, the pressure waveform at our ears 
is essentially the sum of the individual pressure waveforms we would experience from 
each of the speakers individually. This makes hearing useful because it means that acoustic 
information is not easily obscured - unlike the visual domain in which a nearer object can 
block the view of a more distant one. By the same token, however, it means that every 
acoustic "scene" we experience is the sum of all the acoustic sources within audible range, 
which can become a complicated mess of energy. 

Most of the recognition problems we have considered so far have made the assumption 
that the source of interest - speech, musical instrument, or something else - dominates the 
received sound. Speech against a noisy background has received a fair amount of attention 
in the speech recognition community, but most often it is handled with simple feature-
domain compensation (such as the approaches discussed in Chapter 22) that try to make 
the features resemble the noise-free case, and/or by use of noisy training examples so that 
the variations due to the background noise are absorbed by the same statistical models used 
to accommodate other variations (speaker, style, etc.). Such approaches have clear limits, 
however: consider the scenario we started with, illustrated in Figure 39.1, of two people 
speaking at the same time. Viewed as a collection of low-level features, there is no intrinsic 
way to distinguish between the properties of the "target" and "interfering" speaker - they 
are both voices. Thus, a more sophisticated approach is required. 

An ideal solution would be to take the sound consisting of the mixture of different 
sources, and somehow separate out the individual source signals. This is known as the source 
separation problem, and is the subject of this chapter. This intuitively natural idea, however, 
hides a number of subtle problems: How can we define an acoustic source? Many sounds can 
themselves be further broken down into components with distinct originating mechanisms, 
such as the pitched voicing and the sibilant hiss of speech, so a unique definition of a 
source is elusive. At what level of detail do we need to separate the sources, for instance 
do we need the waveform, or just higher-level features? Do we need to completely remove 
interference and perfectly recover the original signal, or is enhancement sufficient? What 
is the ideal source signal anyway, given that even in the absence of interference a single 
acoustic source will result in different sounds at different locations thanks to reverberation 
and other channel effects? 

In the following sections we look at a number of approaches to this problem. When 
multiple observation are available, for instance if we have multiple microphones, several 
approaches can enhance one source relative to others with minimal assumptions by using 

595 

CHAPTER 3

Speech and Audio Signal Processing: Processing and Perception of Speech and Music, Second Edition 
by Ben Gold, Nelson Morgan and Dan Ellis 
Copyright © 2011 John Wiley & Sons, Inc. 



596 CHAPTER 39 SOURCE SEPARATION 
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FIGURE 39.1 An example source separation problem. Top row: Spectrograms of 
individual male and female voices. Bottom pane: Spectrogram of the mixture of the two 
voices (as might occur at a cocktail party). It is difficult to discern the details of each 
component in the mixture. 

acoustic beamforming or other blind source separation techniques. Examination of the 
behavior of human listeners when confronted with real or artificial mixture signals -
known as Auditory Scene Analysis [5] - can inspire biomimetic processing that earns 
the name Computational Auditory Scene Analysis (CASA). Finally, more detailed prior 
knowledge (or assumptions) about the nature of the target signals can accomplish model-
based separation even in the case when only a single recording channel is available. 

39.2 EVALUATING SOURCE SEPARATION 

Before looking at different techniques, it is worth spending a few moments considering 
what we wish to achieve, and how we can measure our success. One obvious application of 
successful acoustic signal separation would be for hearing instruments, i.e., to pick out and 
amplify a single voice from a competing background in situations where a human listener 
has difficulty understanding the voice unaided - the scenario dubbed the Cocktail Party 
Problem by Cherry [7]. We could gauge performance by some measure of the distortion 
between the isolated source signal and the signal recovered from the mixture (e.g., for 
artificially-mixed test cases, where the true source signals are thus available). 

Signal-to-noise ratio (SNR), i.e., the energy of the original target divided by the energy 
of the difference between target and processed output, is clearly a sufficient condition, in 
the sense that achieving high SNR is sufficient to guarantee high separation quality with 
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output signals that sound very much like the original. However, it may not be a necessary 
condition, since in many cases it can be too restrictive. For instance, modifying a signal 
with a simple linear filter, or a small delay, can result in large differences as measured by 
SNR, yet the signal is barely altered from the listener's point of view. A set of measures 
that preserve the equivalence of such simple modifications has been proposed by Vincent 
et al. [35], which divides the recovered signal into components that can be obtained by 
fixed filtering of the target source, filtering of any known competing sources (interference), 
and energy that cannot be produced by fixed filtering (distortion). This leads to additional 
measures such as signal-to-interference ratio (SIR) and signal-to-distortion ratio (SDR), 
which give more useful measures of the performance of complex source separation systems. 

If the goal of separation is to support ASR for noise-corrupted signals, we might 
prefer to measure performance with the standard metrics of speech recognition - e.g., 
word error rate - and see how the inclusion of source separation techniques can reduce 
errors compared to running the unmodified mixture into the recognizer. Source separation 
for other kinds of automatic signal analysis (such as the melody transcription discussed 
in Chapter 37) can similarly be evaluated by the corresponding metrics developed for 
scenarios without separation. 

Finally, if the goal of source separation is to improve a sound for presentation to a 
human listener, the ultimate evaluation must be by tests with real listeners. These could 
measure intelligibility, i.e., whether the processing improves the ability of a listener to 
correctly identify the words in an utterance. Very often, intelligibility has a rather abrupt 
variation with SNR, with a transition from near-perfect recognition to near-guessing over 
just a few dB change in interference level (although this depends greatly on the conditions, 
including factors such as the predictability of the speech material). A different facet of 
listeners' judgments is sound quality, as determined by mean opinion score tests, in which 
a panel of listeners rate the the quality of a processed sound on a scale of 1 (awful) 
to 5 (excellent). These two attributes do not necessarily correlate: high intelligibility is 
still possible with low quality, and improvements in quality do not necessarily result in 
improvements in intelligibility [22]. 

Since tests with listeners are arduous and expensive to conduct, there has been 
a significant effort to produce automatic systems to predict the results, at least within 
certain domains. Examples include Perceptual Evaluation of Speech Quality (PESQ) and 
Perceptual Evaluation of Audio Quality (PEAQ) [32], complex systems incorporating 
auditory models that are tuned to match subjective judgments of quality as closely as 
possible over a range of material. Similarly, Ma et al. [26] review a number of models 
including the Articulation Index and Speech Transmission Index that have been proposed 
to predict intelligibility based on more or less detailed descriptions of the signal-to-noise 
conditions. 
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FIGURE 39.2 Two simultaneous speakers s, and s2 being recorded by two microphones 
xi and x2. Each microphone records a mixture of both voices, but the mixtures are slightly 
different due to the different coupling channels аи between mie i and speaker j. 

39.3 MULTI-CHANNEL APPROACHES 

Consider the situation illustrated in Figure 39.2, where two people speaking simultaneously 
are being recorded by two microphones. (The signal shown in Figure 39.1 could be from 
one of these microphones.) Although both microphones will, in general, record a mixture of 
both voices, the precise combination between the voices in each mixture will be different. 
We can express this situation in matrix form, 

*l(0 
_x2(t)_ 

= 
an ai2 

an a22 
*i(0" 
J2(0_ 

x = As (39.2) 

where x,(i) is the mixture signal recorded by microphone i, Sj(t) is the source signal 
from speaker j , ац represents the coupling between mie i and source j , and the bold 
symbols indicate matrices. α,7 could consist of simple direction-dependent gains, or, in 
general, frequency-dependent gain and time (or phase) modification - in which case Eq. 
39.1 should more properly be written in the Fourier transform domain. 

The matrix formulation of Eq. 39.2 immediately suggests an approach to solving 
the problem via an unmixing matrix W, with estimates of the original sources s given by 
s = Wx. Making W = A - 1 will exactly undo the mixing observed by the microphones, 
so that s = s. The main difficulty with this, however, is that the mixing matrix A is usually 
not known, and thus finding (or approximating) its inverse is a challenge. It is instructive, 
however, to follow through this simple example: Applying both mixing and unmixing 
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matrices, we get: 

s = 

i l _ 

Separation is achieved when the "cross terms" in Eq. 39.6 disappear, i.e., 

W11Ö12 + Wi2fl22 = 0 a n d W21ÌJ11 + W22021 = 0 ( 3 9 . 7 ) 

This of course occurs when 

W = A - 1 (39.8) 

WH VV12 

W21 W22 

The purpose of running through this familiar inverse of a 2 x 2 matrix is to highlight exactly 
how the sources are separated: to remove the contribution of S2 in the reconstruction S\, the 
weights used to combine X\ and X2 (namely w\\ and W12) are set in the precise ratio that 
will balance the different proportions of S2 in e a ° h microphone signal, so that on summing 
the two weighted microphone components together the contributions of S2 will cancel out 
leaving only s\. 

This cancellation (or "nulling-out") provides the basis for rejection of point-source 
interference in multichannel source separation techniques. It is important because, in ideal 
circumstances, it can provide perfect removal of unwanted sources. However, notice that 
it is very sensitive to the exact balance between the contributions of the interfering source 
in each microphone: small errors in the corresponding weights will result in a failure to 
completely cancel and rapid growth of the residual error. Moreover, if the proportions of 
both sources are similar in the two microphones, then cancelling the interfering source 
may nearly cancel the target source too, so any other components (such as independent 
noise from the microphone preamplifiers) will become increasingly dominant. This is in 
fact equivalent to an ill-conditioned mixing matrix, indicating likely numerical problems 
in calculating its inverse. 

39.4 BEAMFORMING WITH MICROPHONE ARRAYS 

As a result of the finite speed of sound, sound emanating from a single point source will 
arrive at different points in space at different times. A typical speed of sound (which varies 

Wx = WAs 
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FIGURE 39.3 Directional gain responses for a five-element linear mie array operating in 
broadside (zero relative delay) and endfire (maximum inter-mic delay) modes. Each plot 
shows the response for 250 Hz, 1 kHz, and 4 kHz. Note how the spatial response 
becomes sharper for higher frequencies. 

slightly with temperature, pressure, humidity etc.) is around 340 m/s, or around 1 foot per 
millisecond. Thus, two microphones a foot apart will record the waveform of a source 
located along the extension of their common axis with around 1 ms relative delay, whereas 
sound from a source lying on their equidistant plane will reach both microphones at the 
same time. (This analysis extends easily to any number of microphones). By delaying the 
various microphone signals so as to align sound arriving from a particular direction then 
summing the results, sound from that direction sums up coherently (in-phase), whereas 
sounds from any other directions will generally not be in phase and will thus be attenuated; 
the precise attenuation depends on the phase difference corresponding to the delay, and 
thus varies with frequency. This simple approach, known as delay-and-sum, has a wide 
range of applications, and is in fact the principle behind the elongated, highly directional 
"shotgun mics" used on film sets and by birdwatchers - although in that case, the delaying 
and summing is done in the acoustic domain (within a waveguide formed by the mie body), 
rather than electronically. 

Instead of precisely canceling sound from a single, interfering direction, a delay-and-
sum system has a gain that varies with direction but is maximized in the target direction; 
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thus, it is more appropriate for reducing noise that comes from many directions at once, 
such as isotropie noise or late reverberation. Figure 39.3 shows the directional response 
of a simulated five-element linear array of omnidirectional mics with uniform inter-mic 
spacing of 10 cm. Gain is shown as a function of angle on a polar plot; thus the 'lobes' 
point in the direction of greatest sensitivity. The upper plot shows the response when the 
channels are summed with zero relative delay, which favors wavefronts parallel to the mie 
axis (broadside). The plot to the right shows the response when each mie signal is delayed 
by 0.1/340 sec so as to align the response to wavefronts normal to the mie axis (endfire). 
Note that the mie array, and thus its directional response, is symmetric for any rotation 
around the inter-mic axis. We see multiple lobes and nulls arising from the different phase 
cancellations between the different mie signals. The precise pattern depends on frequency, 
becoming increasingly detailed at high frequencies when the relative phase of the signals 
received by the mics changes most rapidly with angle. Large sidelobes can occur due to 
spatial aliasing when the inter-mic spacing is greater than the sound wavelength, leading 
to incident angles where, at that frequency, the phases observed by each microphone are 
identical to those expected from the target direction. 

Because the spatial response of the delay-and-sum beamformer varies with frequency, 
interfering sounds are not uniformly attenuated but are subject to considerable spectral 
coloration, which can be disturbing - particularly if the interfering source moves. This can 
be moderated by using more complex weighting schemes that vary with frequency, so the 
spatial response is more uniform across the spectrum - which normally means broadening 
the spatial response at high frequencies. This generalization is known as filter-and-sum, 
since each mie channel is now subject to a complex, frequency-dependent modification of 
timing (phase) and gain before being summed together. The range of possible filter-and-sum 
systems is evidently very large, and design schemes can be devised to optimize different 
objective criteria. We1 will show how a fairly simple multi-channel signal model can be 
used to derive many of the most widely used classical beamforming algorithms. 

39.4.1 A multi-channel signal model 

Given an array of M microphones, it is assumed that each microphone receives a delayed 
and attenuated version of the original source signal plus some additive noise. This noise is 
assumed to have zero mean and can be attributed to the environment and/or the electrical 
circuitry of the sound capture hardware. The amount of attenuation and delay is depen-
dent on the relative positions of the sound source and the microphones. Thus, at the mth 
microphone, the received signal can be written as 

*m(f-Tm) = ams{t -Xm) + nm(t), m = l , . . . , M (39.10) 

■This section was written by Michael Seltzer. 
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where s(t) is the source signal, and am and xm are the gain and delay associated with the 
mlh microphone. In the frequency domain, this can be represented as 

Xm{eia) = dm(e]°>)S(eja) + N(eja) (39.11) 

where dm{eja>) = ame~jan"·. We can then represent the set of signals received by all 
microphones as an M-dimensional vector 

_XM(e^)_ 

= 

aMe~imu 

S(eJ0)) + 

>,(*>>)" 

M^). 

In beamforming, the vector of M observed signals is linearly combined to generate a single 
channel output signal. 

M 

У{еП = £ Ц>:(еПХт(еП. (39.13) 
m = l 

Because we typically process all frequency bands independently, the variable repre-
senting frequency will be dropped from subsequent notation. Furthermore, we can further 
simplify the equations by representing the multi-channel processing using matrix-vector 
notation. Thus, the signal model in Eq. 39.12 can be compactly represented as 

x = dS + n (39.14) 

and the beamforming operation in Eq. 39.13 represented as a simple inner product 

y = wHx. (39.15) 

The manner in which the beamformer parameters w are chosen is the subject of much 
research. In the following sections, we describe several classical approaches. These can be 
divided into two basic categories: time-invariant beamformers and adaptive beamformers. 

39.4.2 Time-invariant Beamformers 

A time-invariant beamformer is one whose weights are pre-computed and held fixed during 
deployment. The weights are independent of the observed target and/or interference signals, 
and depend only on the assumed location of the source and/or interference. In time-invariant 
beamforming, because we do not know anything about the nature of the desired signal other 
than its direction of arrival, a reasonable goal of processing would be to minimize the power 
of the output signal у subject to the so-called distortionless constraint, i.e., there should be 
no distortion in gain or phase of any signal that arrives from the direction of arrival of the 
target signal, called the look direction of the array. The power of the array output signal 
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can be expressed as 

\y\2 = |wHx|2 = wsxxBw = ν/"Φχχνν (39.16) 

where Φχχ is the M x M power spectral density (PSD) matrix of the observed array signals. 
It is clear from Eq. 39.14 that Ф„ is composed of the PSD of source signal and the PSD of 
the noise. Because we cannot assume knowledge of the characteristics of the source signal, 
we can only minimize the noise power Ф„„. Substituting Ф„„ for Фхх into Eq. 39.16, we 
can write a suitable beamforming objective function 

wSF = argminw (ν?ΗΦ„η\ν) subject to w"d = 1 (39.17) 

where w H d = 1 represents the distortionless constraint. This constrained optimization 
problem can be solved using the method of Lagrange multipliers to obtain the following 
solution 

W s f = № d ( 3 9 Л 8 ) 

nn 

This solution is the called the Minimum Variance Distortionless Response (MVDR) 
beamformer. In practice, we do not know the PSD of the noise Ф„„ ahead of time. As a 
result, the noise PSD is replaced by a model of the noise, called the coherence matrix Tnn. 
The coherence matrix represents the normalized cross correlation between the noise at the 
different pairs of microphones. The most commonly used coherence matrix models noise 
that has equal power at all microphones but is uncorrelated across all pairs of microphones, 
i.e., Г„„ = ocl. Substituting I for Ф„„ in Eq. 39.18 leads to the aforementioned delay-and-
sum beamformer: 

wDS = I d (39.19) 
M 

Using instead a coherence matrix that models spherically or cylindrically isotropie noise 
[14] results in the superdirective beamformer [12]. Such coherence models are good where 
ambient stationary noise, e.g., air conditioning, is present. 

In addition to approaches to beamformer design that use signal and noise models 
to obtain the parameters, another class of beamformer design algorithms use a technique 
called pattern synthesis. In these methods, the shape of the resulting beampattern is spec-
ified during the design and beamformer parameters are chosen to best match the desired 
beam shape. Examples of such methods include modeling the beampattern using Dolph-
Chebyshev polynomials [33] or cosine functions [31]. 

It should be noted that the name "time-invariant beamforming" does not imply that 
such beamformers cannot be used to track moving targets. For moving sound sources 
or sources with unknown position, a set of time-invariant beamformers, chosen to cover 
the expected sound field, is first created offline and stored. During deployment, a sound 
source localization algorithm, e.g., [24, 3, 39], is used to estimate the location (or direction 
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mics 

FIGURE 39.4 The Generalized Sidelobe Canceller. 

of arrival) of the desired sound source. This information is then used to select the most 
appropriate beamformer from the collection. 

39.4.3 Adaptive beamformers 
If the environment contains discrete noise sources with unknown location, e.g., a radio or 
interfering talker, it may be advantageous to use an adaptive beamformer. As the name 
implies, adaptive beamformers update their parameters in an online manner as input sam-
ples are received. The Frost beamformer [15] is arguably the most well-known adaptive 
beamforming algorithm. In this algorithm, the output power of the array is minimized for 
the current noise conditions, while maintaining the same distortionless constraint described 
earlier. The Frost beamformer is in essence an online implementation of the time-invariant 
beamformer of Eq. 39.18 in which the power spectral density of the observed signals is 
used directly. However, to make the beamformer adaptive, the PSD of the received signals 
Φ π = £[хх я] is replaced by an instantaneous estimate based solely on the current frame 
x rxf. The beamformer weights are incrementally updated at each frame by the LMS algo-
rithm, to minimize the instantaneous output power without distorting signal from the look 
direction. 

The Generalized Sidelobe Canceller (GSC) was proposed as an alternative architec-
ture to the Frost beamformer [18]. The GSC consists of two structures, a fixed beamformer 
that produces a non-adaptive output, and an adaptive structure for sidelobe cancellation. 
The adaptive structure of the GSC is preceded by a blocking matrix that blocks signals com-
ing from the desired look direction. The weights of the adaptive structure are then adjusted 
to cancel any signal common to both structures, assumed to be noise. The architecture of 
the GSC is shown in Figure 39.4. The advantage of the GSC is that it turns the constrained 
optimization problem solved by Frost into a simpler unconstrained optimization problem. 
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While adaptive beamforming algorithms can be quite effective at preserving the 
source signal and cancelling point sources of interference, they are similar to time-invariant 
beamformers in that they are highly dependent on accurate sound source localization. If the 
estimate of the talker's position (direction of arrival) is incorrect, even by a few degrees, 
some cancellation of the desired signal will occur. This is easy to understand by examining 
the structure of the GSC. If the sound source localization is not accurate, the target signal 
will pass through the blocking matrix and then be cancelled the adaptive filters. As a result, 
improvements to the GSC have been proposed that make the algorithm more robust to 
localization errors [20]. 

39.4.4 Alternative Objective Criteria 
The classical time-invariant and adaptive beamformer algorithms described in the previous 
sections worked on the same basic objective criterion, namely minimizing the output power 
of the array. More recently, researchers have proposed alternative objective criteria to 
derive beamformer parameters in either a time-invariant or adaptive manner. For example, 
in Gillespie et al. [17], a beamformer was proposed in which parameters were chosen 
to maximize the kurtosis of the LPC residual. This beamformer was specifically targeted 
at reducing the amount of reverberation in the output signal. In Kumatani et al. [25], a 
GSC that was adapted according to a negentropy criterion was proposed. Both kurtosis 
and negentropy have also been proposed as objective criteria for independent component 
analysis [23], to be discussed in the next section. Finally, in Seltzer et al. [30] a beamformer 
was proposed for speech recognition applications in which the parameters were adapted to 
maximize the likelihood of the output signals as measured by the speech recognizer. 

The information presented in this section represents only a brief introduction of beam-
forming approaches that are possible with an array of microphones. Additional information 
about microphone arrays can be found in Benesty et al. [2] and Brandstein & Ward [4], and 
a thorough treatment of array processing in general can be found in Van Trees [33]. 

39.5 INDEPENDENT COMPONENT ANALYSIS 

The microphone array processing techniques of the previous section made few assumptions 
about the nature of the signals being processed, but they did assume knowledge of the 
microphone array geometry, and the direction of the target source. A different scenario 
could be an environment with a number of point sources, all of which are potentially 
targets, measured by a number of sensors whose relative location, and even individual 
characteristics, are unknown. If the number of sources is less than or equal to the number 
of sensors, then a mixing expression similar to Eq. 39.1 could hold, and a solution that 
approximated the inverse of the mixing matrix might exist. But in the absence of structural 
constraints on the mixing matrix, how can we approximate its inverse? 

One possibility is to look at the outputs of the candidate unmixing process, s. When 
we have the "right" unmixing process, each channel will contain contributions from only a 
single source; for all other settings, one or more of the reconstructed channels will consist 
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of mixtures of multiple sources. By making the simple but critical assumption that the 
different sources are emitting unrelated sound waveforms, we can search for the unmixing 
parameters that maximize the statistical independence of the separated outputs. A pair 
of outputs that both contain contributions from the same source will exhibit a degree of 
statistical dependency, thus independence is maximized when each source appears in only 
a single output channel - i.e., complete separation. The family of techniques based on this 
separation principle is known as Independent Component Analysis (ICA). It was initially 
proposed by Comon [8] and widely popularized by Bell & Sejnowski [1]. 

One route to evaluating statistical independence is to look at the higher-order moments 
of each output signal individually. Many audio signals have heavy-tailed distributions 
(leptokurtic), which is to say that very large amplitude values are more likely than would 
be expected for a Gaussian-distributed signal of the same variance. As a corollary, the 
signal also spends more time close to zero than a comparable Gaussian distribution. This 
tendency can be measured by the fourth moment, also known as kurtosis, commonly 

defined as kurt(x) = E ( ^ ) — 3, where x is the random variable, and μ and σ are its 
mean and standard deviation respectively. Note that this definition assigns a kurtosis of 
zero to a Gaussian distribution, negative values for platykurtic distributions, and positive 
values for leptokurtic distributions. The weak law of large numbers dictates that the sum 
of independent random variables with non-Gaussian distributions will have a distribution 
that tends towards Gaussianity as the number of components increases, so the kurtosis of 
an output channel that comprises a sum of two independent, leptokurtic signals will have a 
kurtosis smaller than one source alone. Given a parameter space that allows us to vary the 
relative proportions of the two sources, we expect a peak in the kurtosis for settings that 
result in a pure, single source in the output. 

This is the case illustrated in Figure 39.5. The left pane shows the joint distribution 
of a simulated two-channel recording of two sources, i.e., the situation from Figure 39.2 
described by Eq. 39.1. The underlying signals are leptokurtic, leading to visible "rays" 
in the joint distribution that result from instants when one source has a large amplitude 
but the other source is close to zero. The right pane shows the kurtosis evaluated for 
weighted combinations of the two mixture signals. In general, this weighted combination 
is parameterized by two coefficients (i.e., one row of the unmixing matrix W), but we 
can normalize the magnitude of this two-element vector without changing the net balance 
of the two original sources. Thus, all possible mixtures can be parameterized by a single 
coefficient, which corresponds to the angle of the unit vector in the joint distribution 
plane onto which the mixture is being projected. The right pane shows the kurtosis of the 
projection as a function of this angle; we see two local maxima at the values marked θι and 
Θ2. These values correspond to projections onto the corresponding vectors in the left pane, 
which can be seen to be orthogonal to the "rays" of the joint distribution. Thus, these are 
the projections that collapse one of the two input sources onto zero, leaving only the other 
source in the reconstruction - i.e., the rows of unmixing matrix W that would achieve 
perfect separation. 

Note that if the original source signals had been Gaussian distributed, this approach 
would not have worked. The sum of Gaussian distributed random variables is itself Gaussian 
distrubuted, and thus the mixture scatter would have been elliptical with no features to 
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Mixture Scatter Kurtosis vs. Θ 
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FIGURE 39.5 Kurtosis as a function of projection "angle" for unmixing a mixture of two 
heavy-tailed signals. Left pane shows the joint distribution of the two mixture signals, with 
clear dominant directions for the two underlying distributions. Right pane shows the 
kurtosis of a linear combination of the two sensor signals (i.e., one row of a candidate 
unmixing matrix) as a function of the equivalent angle Θ they are being projected onto in 
the left pane. Kurtosis reaches local maximal values for projections that completely 
eliminate one or other of the underlying sources. 

indicate the separate sources, and the kurtosis would have been zero for all projections. 
Fortunately, as mentioned above, in almost all cases real-world signals have non-Gaussian 
amplitude distributions and so the ICA approach can be applied. 

Despite a very wide range of formulations and approaches, ICA techniques all rely 
on maximizing an independence measure of this kind for the reconstructed source outputs, 
implying that each output consists of a single, distinct source. Optimization is generally done 
via gradient descent, i.e., unmixing parameters are progressively updated in the direction 
that increases the measure of independence until a local maximum is reached. While the 
example above was for a simple, instantaneous mixture with no frequency dependence, the 
more complex case in which different sources experience different filterings prior to mixing 
can in principle be solved by the same techniques. One approach is to break each signal into 
a large number of frequency bands via the DFT, then solve a scalar complex-valued ICA 
problem separately in each frequency band. As long as the individual source components 
found for each frequency can be correctly collected together into complete sources (the 
"permutation problem"), this can successfully accomplish blind source separation. 

Clear and thorough reviews of ICA are given by Hyvärinen et al. [23] and Pedersen 
et al. [27]. 

39.6 COMPUTATIONAL AUDITORY SCENE ANALYSIS 

The beamforming and ICA approaches presented above rely on the idea that an inverse 
can be found to a matrix-based mixing in the style of Eq. 39.1. In fact, despite their 
very different formulations, it is worth noting that, in the case of two point sources, both 
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techniques will converge towards equivalent ideal solutions. If however the number of 
sources is larger than the number of microphones, then the mixing matrix is nonsquare, 
the unmixing process is underdetermined, and no unmixing matrix can be found. That is 
to say, fixed linear combinations of N microphone signals can give us at most N linearly-
independent output signals; mixtures of more than N sources cannot be inverted this way. 
Another way of stating this is that each null of the form of Eq. 39.7 consumes one degree 
of freedom, so N channels allows us to place at most N — I independent spatial nulls, to 
completely remove N — I spatially-compact interfering sources. If the interference arises 
from more than this many directions, or if its structure is not spatially compact, fixed linear 
filtering and cancellation will not be able to remove it completely. 

In the limiting case only a single channel is available, leaving no opportunity for 
cancellation through summing. However, when presented with such monaural sources 
- for instance, a recorded sound mixture played back through a single speaker - human 
listeners are often able to "hear out" individual sources, be they voices, musical instruments, 
or other sound events. This process of organizing complex acoustic signals was dubbed 
"Auditory Scene Analysis" (ASA) by Bregman [5] by analogy with the process by which 
visual percepts are organized into objects and other structures. 

Extensive perceptual experiments by Bregman and many others (reviewed by Darwin 
[13]) have led to an account of how listeners achieve ASA: the received sound mixture is 
broken up into distinct components delimited in time and frequency (for instance, individual 
harmonics, or bands of noisy energy, presumably broken into separate frequency regions 
by the spectral analysis performed by the cochlea). Each of these components has a range 
of attributes such as onset and offset times, frequency range, modulation characteristics 
etc. Then, perceived sound sources are constructed by grouping together these individual 
components on the basis of their shared characteristics. This is in keeping with the Gestalt 
school of psychology from the early twentieth century, which accounted for perceptual 
organization in terms of abstract principles such as well-formedness and common-fate: 
energy in different frequency bands that starts or stops at the same time is showing evidence 
of common fate, and thus it will tend to be perceived as arising from a single source even 
if the energy is widely spaced and discontiguous. 

An alternative interpretation in ecological terms (i.e., relating on the properties of 
the environment) is that each independent sound-producing source will have some kind 
of time-varying state that will be reflected in co-ordinated ways in the sound energy it 
emits, regardless of frequency band. It is intrinsically unlikely that energy in two different 
frequency ranges will appear or disappear at the same moment simply by coincidence. 
If this happens repeatedly, the simplest and most likely explanation is that the energy all 
arises from a single source, and thus is most appropriately considered to be a single source's 
sound. 

This description, consisting of an initial analysis into small energy fragments local 
in time and frequency, then grouping these fragments into larger-scale sources on the basis 
of "grouping cues" such as common onset time or harmonicity (consistency with a single 
fundamental frequency), has provided inspiration for a family of loosely-related source 
separation algorithms gathered under the title of Computational Auditory Scene Analysis. 
A schematic of a typical system described by Brown & Wang [6] is shown in Figure 39.6, 
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FIGURE 39.6 Schematic of a Computational Auditory Scene Analysis (CASA) system [6]. 
Sound mixtures are broken up into time-frequency fragments, each associated with a 
range of attributes such as onset time or compatible fundamental frequencies. Fragments 
are then grouped into perceived sources on the basis of these "cues", leading to a 
segmentation of the time-frequency plane according to different sources. 

and follows the ASA account from psychology quite closely: The input sound mixture is 
first analyzed into different frequency bands by a simulation of the cochlear filterbank, 
then a variety of cues are calculated on this time-frequency representation to extract points 
of energy onset, spectral regions consistent with the same fundamental frequency, regions 
exhibiting similar rates of frequency modulation, etc. The entire time-frequency plane is 
carved up into small regions such that these properties are consistent for each region, then 
a set of grouping rules are applied to form sources that favor the integration of energy that 
has synchronized onset, can be regarded as harmonics of a single fundamental frequency, 
etc. This results in a 'labeling' of the time-frequency plane that indicates which source is 
considered dominant at each point. 

This labeling leads naturally to an approach to separating the sources: Starting from an 
invertible decomposition into time and frequency such as the short-time Fourier transform, 
simply zero-out all energy outside the regions deemed belonging to a particular source, then 
invert the transformation. This time-frequency "masking" has proven to be a remarkably 
effective method for separating sources even when only a single channel recording is 
available. In contrast to the stationary (or at best slowly-varying) processing of beamforming 
or ICA, masking can be viewed as a time-varying filter that follows and extracts the rapidly 
time-varying spectral structure of the target source. 

The weakness of time-frequency masking is that energy cannot be separated below the 
level of the individual time-frequency cells used in the initial analysis, since any mixed en-
ergy within those cells is not modified beyond a simple scaling. ICA and similar techniques 
are not affected by such signal "collisions" in time and frequency, since their weighted 
combinations can exactly cancel interference based on its spatial properties regardless of 
its spectral characteristics. However, masking has no intrinsic dimensionality limits on the 
number of channels needed to separate a certain number of sources. Moreover, it can be 
startlingly successful, perhaps because of the sparsity of many natural sounds when dis-
tributed on a time-frequency plane, which is to say that source signal energy is often highly 
concentrated in a subset of the cells (e.g., the frequencies of the harmonics) with little or 
no energy in the remaining cells. This makes it relatively rare that two signals will have 
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v3n7 - Original mixture v3n7 - Hu & Wang mask v3n7 - Hu & Wang Separation 
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FIGURE 39.7 Example of CASA signal separation via time-frequency masking. Left pane 
is a spectrogram of a two-voice mixture. Middle pane shows the mask indicating cells 
dominated by the target voice on the basis of detected harmonicity cues by Hu & Wang 
[21]. Right pane shows reconstructed target voice. Although the extracted energy is 
successfully dominated by one voice, many regions contain no energy, corresponding to 
deleted cells. 

similar energy in a single time-frequency cell, the situation that masking cannot satisfacto-
rily handle. Figure 39.7 shows an example of separating one voice from a mixture of two 
on the basis of local harmonicity cues, and reveals the "holes" left in the reconstruction in 
regions where target voice energy was not easily identified, leading to muffled or distorted 
reconstructions. Statistical models, however, can be used to infer the most likely values for 
these cells based on marginalizing joint distributions of present and missing values [10]. 

A review-style comparison of human source separation with efforts to reproduce this 
capacity by computer is presented by Cooke & Ellis [9], and a set of articles providing a 
comprehensive view of CASA has been collected in Brown & Wang [36]. 

39.7 MODEL-BASED SEPARATION 

The missing energy in Figure 39.7 highlights a problem with the CASA approach: it is 
based more or less entirely on local signal features, yet sources often show structure at 
much larger scales, and this structure is potentially useful for separation. To develop this 
idea, let us pose signal separation as a probabilistic inference problem of identifying the 
set of individual source reconstructions s that have the greatest posterior probability given 
the observed signals x, i.e., 

s = argmaxPr(s|x) (39.20) 
s 

= argmaxPr(x|s)Pr(s) (39.21) 
S 

= argmax Pr(x|s) f j Pr(s,·) (39.22) 
s i 

Using Bayes rule we turn this into the product of two pieces: The first part is the likelihood 
of the observations given the source signals, Pr(x|s), which is typically a simple forward 
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problem, e.g., adding the signals together for a single-channel, filtering-free scenario. The 
second part is the prior likelihood of that particular set of source signals; if we assume 
the sources are behaving independently, this is just the product of prior likelihoods over 
each source s,- individually. These source likelihoods, Pr(i,) amount to models of source 
behavior, and are the vehicle through which any kind of constraints about the structure of 
source signals - both low-level, local structure, and more high-level top-down behavior -
may be brought to bear on the signal separation problem. 

These models may take a very wide range of forms, but some of the richest and 
most useful models of acoustic signals are found in speech recognition. The acoustic and 
language models in a speech recognizer comprise a highly complex description of the 
possible, expected behaviors of a voice signal. As we saw in Chapter 25, the process 
of speech recognition itself is nothing more than an inference problem of the form of 
Eq. 39.22, except with the word sequence, instead of the signal, as the desired output, 
and, most often, only a single source signal being considered. The framework, however, 
does not change profoundly if multiple sources (characterized, for instance, by mutually-
independent hidden state sequences) are recognized at once. This idea was first proposed 
as HMM decomposition by Varga & Moore [34], and has been extensively studied under 
the title of Factorial HMMs (FHMMs) [16]. 

A successful recent example is the so-called "super-human" multi-talker speech 
recognition system developed by Hershey et al. [19]. This system was developed for a 
formal Speech Separation Challenge in which the task was to correctly transcribe particu-
lar keywords in simultaneous mixtures of two grammatically-constrained utterances. The 
appellation "super-human" reflected the result that this system actually exceeded the per-
formance of human listeners in certain conditions such as when both speakers had similar 
voices and were presented at a similar level. The approach was to treat this as a factorial 
HMM problem, and recover the pair of hidden state sequences corresponding to the two 
utterances. This idea is illustrated in Figure 39.8, which shows how the best (Viterbi) path 
for such a two-chain FHMM can be visualized as a 3-dimensional trajectory through a 
series of planes formed as the outer product of the set of states of the two models. 

Although it is computationally challenging, in principle such a factorial model is 
easily reduced to a familiar single-chain HMM: if the two models have state inventories 
Q1 (with N\ distinct states) and Q2 (N2 states), then the factorial model will have a state 
space Q1 x Q2 (N\ x N2 states), consisting of every possible combination of a state from 
model 1 and a state from model 2. The transition matrix (now consisting of (N\ x Λ^)2 

entries) is simply the product of the probabilities of the transitions involved in each separate 
chain, which are assumed to occur independently. 

The per-state acoustic observation models, Рт(х\д] ,q2A, are also much more nu-
merous, but again are relatively simply related to the two original source models, being 
the expected observations given the combination of the two model states. If the original 
single-source models provide observation distributions in terms of means and variances 
of log-spectra, then these models can be systematically combined in the original signal 
domain to create the appropriate combined observation distribution, even taking into ac-
count the unknown relative phase of the two components (which will increase magnitude 
uncertainty). However, as noted above, in a sufficiently fine time-frequency representation, 
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FIGURE 39.8 Illustration of a factorial HMM. The observed mixture is modeled as the 
combination of two, independent hidden Markov models; the best state sequence is thus a 
trajectory in a 3-dimensional volume with axes model 1 state, model 2 state, and time. 
(Figure drawn by Ron Weiss.) 

the sparsity of the speech signal will ensure that most cells encounter a large imbalance 
between predicted source magnitudes, with one model predicting a signal much larger 
than the other and thus dominating the combination in that dimension. This inspires the 
"max-approximation" [34, 29], in which the combined observation model is built up as the 
larger magnitude of the two component states in each dimension. 

Given this new, larger, composed set of states, comprising observation distributions 
and the full transition matrix, factorial decoding can now proceed exactly as for any other 
HMM. However, because the state space is exponential in the number of models, various 
computational tricks and approximations are generally employed. 

In the "super-human" system, a couple of additional considerations were included. 
Firstly, since the relative level of the two voices was not constant but varied over a 
15 dB range, it was necessary to estimate this relative level for each test mixture, for 
instance by trying a variety of composed models to see which gave the best match to the 
observations. In single-voice recognition, overall variations in level are easily removed in 
signal preprocessing, but the combined state observations obviously depend on the relative 
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level of the two sources that can no longer be normalized away. Secondly, the system 
attempted to identify exactly which pair of speakers was present in the mixture, then used 
individual acoustic models specifically trained on those speakers. The particular database 
used in the evaluation was constructed to consist of only 34 different speakers, all of 
whom appeared both in the (single speaker) training data and in the (mixed speaker) test 
data. This allowed the "super-human" system to build 34 individual per-speaker models, 
and to identify from among the closed set the pair of speaker models best matching the 
mixed observation, which could then be used in the factorial recognition. Although this 
seems to be exploiting an artificial aspect of the evaluation, a similar system based on 
parametric "eigenvoice" speaker models, and hence able to adapt to a much wider range 
of speakers, has been proposed by Weiss & Ellis [38]. A detailed comparison of a wide 
range of approaches, all evaluated on this same two-speaker task, is presented in Cooke et 
al. [11]. 

If the goal of processing the speech mixtures is simply to identify the words, then 
recovering the most likely state sequences can give all the desired information. If, however, 
a reconstructed audio signal is required, some additional processing is needed. (In fact, 
the "super-human" system used the outputs of its factorial HMM processing to reconstruct 
audio, which was then fed to a second, conventional speech recognizer to make the final 
word transcription; this permitted the use of a much more complex final recognizer, trained 
on a wider range of speech data). Typically, the feature distributions used in an HMM 
do not contain sufficient detail to permit waveform reconstruction, but the approximate 
spectra of each inferred source, for instance as represented by the means of the per-state 
observation distributions, can be compared between the different state sequences to create 
a mask similar to the one in Figure 39.7. This can then be used in the same way to separate 
out the energy from time-frequency cells believed to be dominated by the target. Moreover, 
since the state sequence includes estimates for the whole spectrum, the "holes" left by 
masking can be filled-in to provide energy at the estimated level - for instance, by scaling 
the original energy in the mixture. Even when this energy is predominantly non-target, it 
can improve the quality of the reconstruction to have something rather than nothing in these 
holes. 

Although we have focused in this section on using speech models to provide the 
constraints to permit inference of the individual source signals, the same principles can be 
applied to any sound source. The individual state-based acoustic distributions in a hidden 
Markov model can encapsulate a very wide range of structures and regularities, including 
attributes like harmonicity and common onset that were used explicitly in CASA systems. 
However, the computational efficiency of such a generic approach may suffer in comparison 
to a more special-purpose representation. 

39.8 CONCLUSIONS 

In this chapter we have seen a range of approaches to the ubiquitous problem of mak-
ing sense of sounds that consist of the combined effects of multiple sound-producing 
sources. This problem admits a very wide range of approaches, from potentially exact, 
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source-independent, directional filtering in situations where sources have compact spatial 
characteristics and multiple microphones are available, through to probabilistic inference 
exploiting detailed prior knowledge of source behavior for mixtures of structured sources 
in monaural recordings. Because of the multiple principles at play, there are many opportu-
nities for combining approaches, for example to use ICA-style techniques to cancel signals 
between multiple microphones, then time-frequency masking to further reduce interference 
in the best resulting single-channel signal [28], or combinations of human-inspired binaural 
source formation with speech source models derived from speech recognizers [37]. Such 
combinations are advantageous, since each approach has unique advantages. 

39.9 EXERCISES 

39.1 The broad idea of signal-to-noise ratio (SNR) is to measure how much signal energy there is compared 
to the amount of noise energy (usually expressed in logarithmic units, i.e., dB). But the actual value 
depends on the definitions of "signal" and "noise". 

(a) One definition, applicable to a signal separation system with a clearly identifiable signal input s(t) 
that has been corrupted by the addition of interference, is to stipulate that the ideal output should 
exactly match the input; any difference between them counts as noise. Thus if the separation 
system output is s(t), the noise in that output is, by definition n(t) = s(t) — i(t). Under this 
definition, what is the SNR of a system whose output is identically zero, s(t) = 0? What about if 
the system output is a white noise sequence with the same energy as the input, but no discernible 
evidence of the input? 

(b) Another definition, particularly applicable to systems that enhance or separate by applying a 
time-varying filter to the signal as illustrated in Figure 39.7, is to consider the input of the system 
as consisting of two components, signal and noise, then to calculate SNR as the ratio of the energy 
of the two components at the output, i.e., the energy of the output of the filtering process if the 
input was signal alone compared to the output energy if the input was the noise alone. Under this 
measure, what is the SNR if the output is identically zero? What strategy delivers the best 
possible SNR? 

39.2 The Generalized Sidelobe Canceller of Fig. 39.4 uses a blocking matrix to convert the M input signals 
into M — 1 channels that contain only energy from non-target directions. Anything in these signals can 
then be removed from the system output, via conventional adaptive filtering, to improve separation. 
For a two-input system with a straight-ahead (broadside) target look direction, what would be a 
suitable blocking matrix? 

39.3 Two signals ίι(ί) and s2(t), both have the same kurtosis of 4. A combination is formed as x(t) = 
(xs\ (f) + (1 — a)s2(t). Sketch the kurtosis of x over the range ox = 0 . . . 1. What additional factors 
influence the precise shape of this curve? 

39.4 A 2-chain factorial HMM, as illustrated in 39.8, can be constructed as a conventional, single-chain 
HMM whose state space consists of every possible combination of states from each of the two 
component source models. If both source HMMs have N states, how big is the transition matrix for 
this combined model? How can these values be obtained? 
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SPEECH TRANSFORMATIONS 

40.1 INTRODUCTION 

There are a variety of techniques to modify the speed, pitch, and spectrum of a speech 
signal. Some methods work directly on the speech wave to modify the time scale or pitch. 
Other methods are based on analysis-synthesis systems (i.e., vocoders), in which the de-
rived parameters can be adjusted to modify the synthetic output. However, some medium-
and high-rate vocoder systems do not explicitly compute the fundamental frequency, which 
complicates their use for pitch modification. 

Speech modification techniques have many applications. For instance, as noted in 
Chapter 30, pitch and duration must often be modified for concatenati ve synthesis. Speeding 
up a voice response system can save time for a busy, impatient user. It may also be a useful 
addition in speech communication channels subject to fading. Compressing the spectrum 
could potentially be of help to people with hearing disabilities. 

The following three sections explain some of the fundamental issues in speech 
transformations. This is followed by a study of speech modification in analysis-synthesis 
systems, that is, channel vocoders, LPC vocoders, and homomorphic vocoders. The chapter 
concludes with a review of three specific systems: the phase vocoder [4], the Seneff system 
[20], and the sine-transform coder of Quatieri and McAulay [17]. 

40.2 TIME-SCALE MODIFICATION 

A popular application of speech processing is time-scale modification. In this section, 
several systems are presented that perform this function while preserving, as far as possible, 
the original excitation and spectrum. 

Schemes for time-scale compression and expansion include work by Lee [8], Garvey 
[5], and Fairbanks et al. [3]. These early works utilized a "sampling" method1: Time was 
divided into segments, e.g., of 30 ms; to time-compress the speech by a factor of 2 (as shown 
in Fig. 40.1(b)), alternate segments were deleted and the remaining segments abutted. 
To time-expand by a factor of 2, each segment was repeated, as shown in Fig. 40.1(c). 
Previously, Miller and Licklider [11] had demonstrated that speech could be "chopped" 
(alternate segments zeroed out), with no appreciable intelligibility loss for small chops. 

Figure 40.1 shows that the sampling method introduces artifacts, such as discontinu-
ities at the segment boundaries. 

1 Not to be confused with sampling in digital-to-analog conversion. 
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FIGURE 40.1 Sampling method of speech compression and expansion: (a) original 
utterance of the histogram, (b) speedup, and (c) slowdown. 
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Scott and Gerber [19] performed a pitch synchronous time-scale modification and 
reported an increase in word intelligibility from 88.1% for the sampling method to 92.1% 
for their method. Their experiment was restricted to words that were completely voiced, as 
in the example of Fig. 40.2. 

A more recent method of time-scale modification described in [21] makes use of the 
pitch synchronous overlap and add (PSOLA) algorithm that was mentioned in Chapter 30. 

FIGURE 40.2 Pitch synchronous time compression and expansion of "on." 
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FIGURE 40.3 PSOLA for time compression. From [21 ]. 

The overlap-add procedure can be performed on the original speech signal or on a derived 
excitation signal, e.g., from an LPC coder. The first step in this procedure is to compute 
the pitch marks. A tapered window with duration proportional to the local pitch period is 
centered on each pitch mark. The resultant windowed speech fragments can be overlapped 
to reconstruct the original signal. If, however, some fragments are selectively removed, and 
the gaps closed up so as to delete entire pitch cycles, the result is a sped-up version of the 
original signal with the same pitch and spectrum as the original. An example is shown in 
Fig. 40.3. 

40.3 TRANSFORMATION WITHOUT EXPLICIT PITCH DETECTION 

There are several ways to generate an excitation function that may be used to drive a vocal 
tract model to produce synthetic speech: 

Homomorphic analysis: In Fig. 20.1, the high-time filtered version of the cepstrum corre-
sponds to the excitation function. Therefore, when an inverse FFT is performed, followed 
by exponentiation, followed by an FFT, the appropriate excitation function is obtained. 

Inverse filtering: By performing inverse filtering on the incoming speech, the output 
represents the excitation function. For an all-pole model derived in LPC, the error signal 
thus serves as the excitation function. Inverse filters can be constructed as the mathematical 
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FIGURE 40.4 Effect of low-pass filtering followed by downsampling. The original 
spectrum, in (a), was obtained by sampling an analog signal at rate fs. When (a) is 
low-pass filtered and downsampled by 2:1, (b) results. The segments marked В and С in 
the top spectrum (a) have disappeared, and B, below has been replaced by D, above. C, 
below, has become A, above. 

inverse of a spectral envelope derived by any other method. 

Spectral flattening: This method removes the spectral envelope component of the speech, 
leaving the excitation function. Different techniques are available to perform this function. 

An approximation to spectral flattening can be realized by low-pass filtering of 
the speech followed by downsampling. An example is shown in Fig. 40.4. Notice that the 
resulting excitation spectrum is not flat. Also, the frequency position of the spectral lines are 
probably not harmonics of the voice fundamental frequency. Nevertheless, if the baseband 
signal (i.e., die low-pass filter output) is of sufficiently high bandwidth (e.g., 1500 Hz), the 
perceptual effect of these distortions is minimal (see Chapter 16 on Pitch Perception). 

40.4 TRANSFORMATIONS IN ANALYSIS-SYNTHESIS SYSTEMS 

Vocoders are analysis-synthesis systems. Thus, once the parameters of a given speech 
model are analyzed, it is possible to intervene before synthesis to produce some transformed 
version of the speech. For example, we can change the fundamental frequency from its 
measured value to some function of that value. The spectrum and the timing may also be 
altered. We will first show how such transformations can be handled in a channel vocoder. 
Analogous results are obtainable with LPC and cepstral vocoders. 

Speeding up the speech: We are familiar with the result of playing a tape back at a higher 
speed than was used during recording, or equivalently playing out a sampled waveform at 
a higher sampling rate than used during capture. The pitch is increased and the formants 
get higher, thus distorting the spectrum. However, it is usually desirable to speed up the 
speech without changing the pitch or distorting the spectrum. How can this be done? 



622 CHAPTER 40 SPEECH TRANSFORMATIONS 

In a channel vocoder, analysis is performed on a frame basis. In each frame (typically 
10-20 ms long), the energy in a frequency band is estimated (see Chapter 32). During 
synthesis, the number of samples synthesized is made equal to the number of samples 
analyzed; analysis and synthesis frames are of the same duration. Now, let's imagine 
that for every 100 input samples to the analyzer, only 50 samples are synthesized. This 
effectively shortens the duration of the output speech relative to the input speech; the result 
is a speedup. The fundamental frequency and the spectrum have been parametrized so they 
are unchanged. 

It is clear that speeding up speech cannot work in real time. However, this use of 
the channel vocoder can be applied to a practical real-time situation [2]. Consider a long-
distance speech-communication link, in which atmospheric conditions result in occasional 
fading of the signal. A two-way signaling path can be set up, in which the receiver notifies 
the transmitter that a fade has occurred. When the transmitter gets this message, it stores 
the analysis frames rather than transmitting; meanwhile, it continues to send a probe signal 
that presumably will not be received until the fade passes. When this happens, the receiver 
sends an all-clear signal and now the transmitted speech is sped up until the buffer is 
cleared, at which time normal transmission resumes. 

Pitch change: In the early days of channel vocoders, it was demonstrated that pitch could 
easily be varied in real time by turning a dial. In a frame-oriented digital vocoder, there is 
no difficulty in combining pitch modification with slowdown (see Fig. 40.5) or speedup. 

Spectral modifications: There are several reasons for interest in this type of transformation. 
Deep-sea divers speak in a helium-rich environment, and this gives the speech a Mickey 
Mouse effect that is due to the spectral changes caused by changes in the velocity of sound. 
These spectral distortions can be reversed in a channel vocoder. 

Another possible application is spectral modification to cram the frequency space 
into the hearing portion of a partially deaf person's ear. A popular game is to change a male 
voice to female and vice versa; such a game could conceivably be part of a psychological 
gender experiment. 

Voice-modification methods can also be applied to various speech recognition tasks. 
One such application is to modify the reference (input) voice to better resemble a target 
voice on which the recognizer has been trained [12], [14], [21]. Another application is, for 
a multispeaker environment, to generate many modified versions of one or several speakers 

— | 1.2 p\>— 

Time 

FIGURE 40.5 Combined pitch change and slowdown. 
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to be used as data for training the recognizer. 
To summarize: a channel vocoder, because it parametrizes excitation and spectrum 

separately and because the number of output samples need not be equal to the number of 
input samples, is capable of modifying speed, pitch, and spectrum in any combination. 

The classical LPC and homomorphic vocoders (see Chapter 32) transmit the voice 
fundamental frequency and the voiced-unvoiced decision in ways very similar to that of 
a channel vocoder. Thus, pitch modifications in these systems can be the same as in the 
channel vocoder. 

However, the parameters encoding vocal tract information are very different for 
these three classical algorithms. The channel vocoder estimates spectral envelope with a 
filterbank, and it transmits an encoded version of these estimates. In LPC, the transmitted 
spectral parameters are closely associated with the synthesizer, e.g., as reflection coef-
ficients. The homomorphic vocoder typically sends an encoded version of the low-time 
liftered cepstrum. 

In an LPC vocoder, spectral modifications can be implemented in various ways. 
For example, once the analyzer has determined the synthesizer parameters, the spectral 
envelope can be computed, either directly or by computing the DFT of the synthesizer 
impulse response. A new set of autocorrelation values are then computed from the modified 
spectrum and the reflection coefficients recomputed. 

Alternately, a DFT of the computed correlation values yields the square of the spectral 
magnitude, which can be modified [7] before converting back to the time domain via an 
inverse DFT. This new correlation function can then be used to compute the modified 
parameters for synthesis. 

In a homomorphic vocoder the cepstrum can be low-time liftered to preserve the part 
that pertains to the spectral envelope. A DFT will produce the log spectral envelope, and 
this spectrum may be modified, then exponentiated. This modified spectrum can then be 
converted into an impulse response via an inverse DFT. 

One method of performing time-scale modification in a channel vocoder is mentioned 
above, where speedup or slowdown is obtained by synthesizing a different number of 
samples than were analyzed. Another technique is to alter both the fundamental frequency 
parameters and the spectral parameters and then modify the ratio of the input to output 
sampling rates. As an example, say we wish to double the vocoded speech rate. First, 
we halve the fundamental frequency parameter and modify the spectrum to "scrunch" it 
(compressed in frequency) by a factor of 2. Then, after resynthesis based on these modified 
parameters, we play back the modified signal at double the original sampling rate. This 
speeding-up halves the duration of the utterance, but at the same time restores the pitch 
and spectrum to their original values. Comparable manipulations allow for time-scale 
modifications in LPC and homomorphic vocoders. 

40.5 SPEECH MODIFICATIONS IN THE PHASE VOCODER 

The phase vocoder [4] begins by performing a short-time Fourier transform (STFT) analysis 
of the incoming signal, yielding a complex value for each frequency bin. The correct 
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FIGURE 40.6 Spectrographic illustrations of slowdown and speedup. From [4]. 

alignment of the overlap-add portions in reconstruction relies on the phase difference 
between the values in each bin in successive time frames. Thus, by manipulating the 
phase derivative, independent of the magnitude, it is possible to modify the signal timing. 
As an example, consider speeding up the speech by a factor of 2. First, we scale the 
phase derivative of each channel by one-half, before re-integrating along time to obtain the 
modified STFT. If we now reconstruct with half the time hop between successive frames, the 
result is a signal with half the duration, but the original spectral magnitudes, and few or no 
artifacts resulting from the overlaps in the time-compresses synthesis. Note, however, that 
some care must be taken in calculating the true phase derivative (instantaneous frequency) 
from widely-spaced time samples, since most frequencies will complete many entire cycles 
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between the samples. Correctly accounting for these complete cycles is known as phase 
unwrapping. 

The same technique can be used to modify the spectrum without changing the time 
scale; the most convenient way to achieve this is to modify the time-base while preserving 
the spectrum as above, then to adjust the sampling rate to restore the original duration while 
at the same time stretching or compressing the spectrum. 

By decomposing the signal into a set of Fourier bins with particular magnitudes and 
phase-derivatives, the phase vocoder is, in essence, making a sinusoidal model of the signal 
(see Section 40.7). From this perspective, we can see that the phase vocoder gives the best 
results when its frequency analysis is fine enough to contain at most a single harmonic 
component in each bin. 

Examples of both speedup and slowdown are shown in Fig. 40.6. 
The original phase vocoder [4] was implemented by using a filter bank. Portnoff 

[16] worked out the rate modification details with a short-time Fourier transform analysis 
(STFT) to effectively emulate the phase vocoder. This work served as a model for future 
work [13], [18] employing the STFT. Nawab et al. [15] went a step farther; showing how 
the modified signal could be reconstructed from the magnitude of the STFT. Griffin and 
Lim [6] developed the LSEE-MSTFTM (least-squares error estimation of the modified 
short-time Fourier transform magnitude). Le Roux et al. [9] derived a direct expression of 
the constraints between nearby values in the overlapped STFT, and used this to create a 
much faster, progressive algorithm for accurate reconstruction from STFT magnitude. 

40.6 SPEECH TRANSFORMATIONS WITHOUT 
PITCH EXTRACTION 

Let us now look in detail at how these ideas can be combined into a single system for 
modifying voice. Seneff's approach [20] is shown in Fig. 40.7. The figure shows the steps 
leading to a doubling of the fundamental frequency without changing the spectrum and 
without parametrizing the fundamental frequency estimation. 

First, the spectral envelope is measured; we know from Chapter 32 that there are 
several available approaches. Spectral envelope estimation is used to create a time-domain 
inverse filter that has the effect of deconvolving the excitation and the spectral envelope. 
Passage of the original signal through the inverse filter generates an approximation to the 
excitation (shown for voiced speech in the figure). By low-pass filtering and downsampling 
by 2:1, excitation pulses are generated having half the period. Meanwhile, the impulse 
response of the vocal tract is obtained by the inverse transform of the spectral envelope, 
and this function is convolved with the downsampled excitation function to produce the 
transformed signal, time compressed by 2:1. Finally, this signal is sent through a phase 
vocoder; we see that the output has twice the pitch of the input. 

Figure 40.8 shows how these ideas can be incorporated into a complete system, in 
which phase vocoding is integrated into the overall system structure. 

A high-resolution spectrum is obtained; the magnitude and phase are treated sepa-
rately. Items I, II, and III illustrate how a flattened version of the spectrum can be obtained. 
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FIGURE 40.7 Example of transformation without pitch extraction: doubling of 
fundamental frequency. From [20]. 

The phase spectrum is unwrapped. Our next job is to reduce the extent of the spectrum as 
shown in the figure; this is done by 2:1 downsampling of the spectrum envelope to produce 
V. Multiplying the downsampled spectral envelope by the flattened spectrum produces VI. 
It is then a simple matter to combine item VI with the phase-multiplied spectrum (VII) to 
finally (by means of polar-to-rectangular transformation) get back the original spectrum (I) 
but with twice the pitch. 

Phase unwrapping and multiplying are illustrated in Fig. 40.9. The original phase 
is essentially linear for any harmonic component of the spectrum, as shown by the solid 
lines that traverse zero to 2π. Unwrapping the phase yields the lower straight line, and 
doubling the phase yields the dotted straight line above; when it is rewrapped, we get the 
result shown in the figure, which corresponds to doubling the frequency of the underlying 
harmonic component. 

Frequency Compression and Gender Transformation: Hearing loss is a term 
that covers a wide range of symptoms. Here we speculate on the possibility that severe 
loss of high-frequency hearing (e.g., above 1 kHz) can to some degree be compensated 
by employing one of the transformation tricks described above. Since there is critical 
speech information in the spectrum above 1 kHz, some intelligibility may be returned by 
scrunching an entire 4 kHz spectrum into the 0 to 1 kHz band. In a channel vocoder, this 
can be done by keeping the pitch undisturbed and designing the synthesizer with the same 
number of filters as the analyzer, but covering only the low band. Thus, for example, the 
4 kHz analyzer filter magnitude signal modulates the 1 kHz synthesis filter, the 2 kHz 
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FIGURE 40.8 Seneff speech-modification algorithm. From [20]. 

analyzer filter modulates the 500 Hz synthesis filter, and so on. 
Some experiments along these lines have been tried; unfortunately, we know of no 

successful results thus far [10]. An example of spectral scrunching is shown in Fig. 40.10 
parts (e) and (f). Also shown in Fig. 40.10 [parts (c) and (d)] is the male-to female trans-
formation, in which both fundamental frequency and effective formant frequencies have 
been increased. 
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FIGURE 40.9 Phase unwrapping and multiplication. From [20]. 

40.7 THE SINE TRANSFORM CODER AS A 
TRANSFORMATION ALGORITHM 

In Chapter 30 we briefly discussed the use of sinusoidal analysis for the representation 
of segments for concatenative synthesis. These approaches are applied to vocoding in the 
sine transform coder (STC) of Quatieri and McAulay [17]. In this method, the synthesizer 
is excited by a collection of sinusoidal signals. The frequencies and magnitudes of these 
signals are derived with an analysis procedure based on a high resolution, short-time DFT.2 

The sum of these sinusoids represents the resultant synthesis. Given this model, the STC is 
capable of time-scale modification, pitch modification, and spectrum modification. 

Time-scale modification in the STC: The analysis procedure computes the frequencies 
and magnitudes of the sinusoids at a rate corresponding to the rate at which successive 
DFTs are performed. When the rate of presentation of these parameters to the synthesizer 
is changed, the rate of the resultant synthetic speech is also changed. 

Spectral modification in the STC: Given the high-resolution DFT, a number of options 
are available for finding the spectral envelope (e.g., cepstral analysis, spline interpolation, 
and LPC analysis). The spectral envelope is now scrunched, as illustrated in Fig. 40.11, and 
new magnitudes are assigned to the sinusoids based on sampling the scrunched spectrum. 

Pitch modifications in the STC: Given the spectral envelope, pitch modification can be 

2The phase is also derived in the STC analysis; the reader is referred to their papers for more details on their 
sophisticated analysis procedure. 
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FIGURE 40.10 Several transformation examples: (a) 31 -ms section of waveform of the 
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From [20]. 

done by changing the derived frequencies and then sampling the spectral envelope at the 
new frequencies to generate new magnitudes for the shifted frequencies. 

The above methods can be combined with changes in the analysis and synthesis 
sampling rate ratio to produce a great variety of modifications. 

40.8 VOICE MODIFICATION TO EMULATE A TARGET VOICE 

In Section 40.4 we stated that in certain applications it is desirable to transform a voice to 
match that of a specific target voice. Valbret et al. [21] discuss this problem. To implement 
their scheme, it is first necessary to have sufficient data on the reference voice (the input) and 
the target voice. To train the system, words from each speaker are time aligned, using DTW 
(dynamic time warping) methods (see Chapter 24), followed by a training algorithm, using 
vector quantization, to set up a correspondence between target and reference vectors. When 
this training is complete, it is straightforward to map the input speaker into the target speaker. 
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FIGURE 40.11 Illustration of spectral modification in STC. From [17]. 

The results of Valbret et al. indicate that the average value of the fundamental 
frequency is a more important cue than the spectrum to identify a given speaker. 

Childers [1] describes a method of modeling the glottal source for voice conversion. 
He uses a polynomial model and enters 32 versions of the glottal source function into a VQ 
table. 

40.9 EXERCISES 

40.1 Show how spectral scrunching can be realized using the system of Fig. 40.8. 

40.2 In Sec. 40.5 it is stated that a phase vocoder implemented as a filter bank works best if there is a 
single harmonic in each filter during voicing. Explain why this is so. 

40.3 How would you modify the spectrum in a phase vocoder without affecting speed or pitch? 

40.4 Consider a high-frequency speech-communication system in which it is desired to maintain speech 
continuity despite fades. Imagine that during the first 10 s there are no fades; at 10 s there is a 5-s fade. 
Make a sketch of the resulting timing of the transmitted, buffered, and received speech, indicating 
the beginning and end of the fade. The end result should be that the receiver gets all of the speech, 
but occasionally it will receive a time-scaled version of the transmitted speech. 
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40.5 It is desired to slow the output of the speech synthesized by the STC algorithm by 70%. Describe the 
steps needed to do this. Assume that the analyzer computes a high-resolution DFT every 10 ms. 

40.6 Using pitch synchronous speedup by 2, design an algorithm to speed up the utterance histogram of 
Fig. 40.1. Present your research as a computer program with audio results, if possible, or as a block 
diagram or flow chart. 

40.7 Given a cepstrum, how would you modify the pitch of the utterance without explicitly estimating the 
pitch? 

40.8 In Fig. 40.4(a), assume that the frequencies present are 300, 600, 900, and 1200 Hz, and so on. What 
frequencies appear in Fig. 40.4(b)? If the corresponding signal is now upsampled by 2:1 to restore 
the original sampling rate, what frequencies appear in the new signal? 

40.9 Using the PSOLA method, sketch a design for modifying pitch, leaving other parameters intact. 
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SPEAKER VERIFICATION 

41.1 INTRODUCTION 

In Chapters 22-29, we introduced the basics of automatic speech-recognition systems. 
However, there are a number of related application areas that use many of the same tools 
and perspectives. One such class of applications is speaker recognition, for which speaker 
verification is a particularly important example. Here1 we describe some of the basic 
principles of this application. 

Speech contains many characteristics that are specific to each individual, many of 
which are independent of the linguistic message for an utterance. In Chapter 29 we discussed 
some of these characteristics from the perspective of speech recognition, for which they 
generally are a source of degradation. For instance, each utterance from an individual is 
produced by the same vocal tract, tends to have a typical pitch range (particularly for 
each gender), and has a characteristic articulator movement that is associated with speaker, 
dialect, or gender. All of these factors have a strong effect on the speech that is highly 
correlated with the particular individual who is speaking. For this reason, listeners are often 
able to recognize the speaker identity fairly quickly, even over the telephone. Artificial 
systems recognizing speakers rather than speech have been the subject of much research 
over the past 30 years, and multiple commercial systems are currently in use. 

Speaker recognition is a generic term for the classification of a speaker's identity from 
an acoustic signal. In the case of speaker identification, the speaker is classified as being 
one of a finite set of speakers. As in the case of speech recognition, this will require the 
comparison of a speech utterance with a set of reference models for each potential speaker. 
For the case of speaker verification, the speaker is classified as having the purported identity 
or not. That is, the goal is to automatically accept or reject an identity that is claimed by 
the speaker. 

Traditionally, there has been the distinction of text-dependent vs text-independent 
mode of operation, depending on whether or not the recognition process is constrained to 
a predefined text. Text-dependent recognition is the easier task, because there is less vari-
ability between speech utterances. It is probably better to call this mode word conditioned, 
because there are many ways to know what has been said: it could be a fixed or prompted 
passphrase, or words can be extracted automatically by word spotting or ASR techniques. 

Speaker recognition has many potential applications, including the authentication 
(e.g., telephone and banking applications), access control, parole monitoring, fraud detec-
tion, and intelligence. 

1 This chapter was originally written by Hervé Bourlard, and later substantially updated and expanded by David 
van Leeuwen. 
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Speaker recognition generally requires the calculation of a score reflecting the simi-
larity between two speech segments: a test segment and a training (or enrollment) segment. 
The basic task is that of detection: to tell whether the segments were spoken by the same 
of by different speakers. This task can be directly used for verification or authentication 
purposes. The detection score can also be used as the basis for speaker identification, but 
here we will concentrate on the more general detection task. 

The main challenge in speaker recognition is to distinguish the variability due to 
the difference in speakers from the variability due to other factors. These confounding 
variabilities can be intrinsic, such as the physical, medical or emotional state of the speaker, 
the content, the language spoken, the effort at which speech is produced; or extrinsic, 
such as the recording conditions including acoustics, transducers, recording equipment, 
transmission channel and noise. 

For better performance, there can be multiple training segments, preferably recorded 
in different sessions. 

For a good introduction to speaker recognition, we refer the reader to [6, 8, 2, 1]. 

41.2 GENERAL DESIGN OF A SPEAKER RECOGNITION SYSTEM 

Since the basic task of speaker detection is a two-way classification problem, the core 
approach is to try to estimate the likelihoods P(X\S), that the speech X is produced by 
speaker S, and P(X|-iS), that the speech is produced by someone else. The speech data X 
here is usually represented by a sequence of features extracted from the speech signal, and 
the likelihood functions for S and ~^S are formed by some mathematical model M. A basic 
similarity measure then is formed by the likelihood ratio 

P(X\M,S) 
B P(X\M,^S) 

Note that it is also possible to directly model the likelihood ratio in a single model. The 
model parameters for M(S) and M(^S) are estimated using the training speech segment 
and from typically a large set of "background" speech from many speakers that are known 
to be different from S. 

The score s can be used for decisions, i.e., whether or not the speech X was uttered 
by the speaker S, directly by thresholding the score. However, in practice the likelihood 
functions tend to be dependent on the particular sample of the test data X, and similarly the 
model parameters are sensitive to the particular sample of training training data. Therefore, 
this influence is lowered by normalizing the scores s by computing scores over a cohort of 
non-target models and test segments, respectively. 

Multiple systems can be fused by computing a weighted sum of the individual 
normalized system scores, leading to better performance. As a final step, a threshold must 
be chosen that will minimize the expected cost of decision errors. This is a process known 
as calibration and is governed by the relative costs of false positives and false negatives, 
and the prior probability of the target speaker. 

At various points in this design, a collection of "background" speech is required, for 
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instance for modeling the feature space, the non-target speakers ~^S, for score normalization 
and for fusion and calibration. A proper choice of data for these steps is an essential part 
of the design of a speaker recognition system. 

41.3 EXAMPLE SYSTEM COMPONENTS 

In this section we will briefly discuss some of the more popular system design choices. 

41.3.1 Features 
Many types of features have been proposed and used in speaker recognition. The lowest-
level features are known as 'acoustic' features, typically frame-based spectral representa-
tions. Perhaps surprisingly, successful features are the same as used in speaker-independent 
ASR, namely MFCC and PLP coefficients (see Chapter 22). Although LPC features (Chap-
ter 21) typically do not perform as well on their own, they tend to lead to better performance 
when fused with other acoustic systems. When using acoustic features, it is essential to 
first remove silence frames by some form of speech activity detection. The classifier is also 
helped by normalizing individual feature streams via short-time Gaussianization (known 
as 'feature warping') [15] or utterance-based normalization to a zero-mean, unit standard 
deviation distribution. Higher-level features include prosody (pitch contour and timing), 
idiolect (word usage) and turn-taking behavior. Generally, one can say that higher level 
features represent more behavioral traits, and are more difficult to extract automatically, 
and lower level features represent more physical traits, and tend to be easier to extract 
automatically. 

41.3.2 Models 
In the enrollment process a speaker model needs to be formed to be able compute likelihood 
ratios for test segments. For simplicity, we will concentrate on acoustic features. Since the 
1990s a very popular modeling technique has been Gaussian Mixture Models (GMMs, 
Chapter 9), which we have encountered as the output probabilities in HMMs for ASR in 
Chapter 26. Specifically, the UBM-GMM approach introduced by Doug Reynolds [16] 
represents P(X\M, -*S) by a GMM trained on many (e.g., thousands) of speakers. This is 
called the Universal Background Model (UBM), and is trained via Maximum Likelihood 
using the Expectation Maximization algorithm (see Section 9.8). Rather than training a 
separate model for the target speaker S from scratch, the UBM is used as a prior distri-
bution for a maximum a posteriori (MAP) [9] estimate of the model parameters given the 
training data, as described in Section 28.2.1. Typically, only the means of the Gaussians are 
adapted in this way. This has a nice interpretation of the GMMs: the UBM represents the 
probability density function (PDF) of all possible speech from all possible speakers, and 
the characteristics of the target speaker S are represented by the shifts in the means. The 
UBM-GMM further has many other advantages, including computational efficiency. 

The shifts can be used directly in the calculation of the GMM likelihood function, 
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but they can also be used treated as features in their own right. Of particular interest is 
the use of these shifts as inputs to a Support Vector Machine classifier (see Section 8.4), 
which is a discriminative modeling technique, rather than the generative GMM. The shifts 
of the means can, after some scaling [4], be concatenated into a fixed-size 'supervector', 
containing all information extracted from the utterance by the model. By performing this 
operation not only for the target speaker but also for a large collection of background 
speakers, we obtain many points in a high dimensional space. An SVM can be trained to 
separate the one positive example of the target speaker from the background data point 
by constructing a hyper-plane that maximizes the margin between the two classes. The 
points on the margin are called the support vectors, and determine the model. The concept 
of distance between points x and у in an SVM is governed by a kernel function fc(x, y). 
For the GMM-SVM approach [4] this is simply a linear kernel, i.e., the kernel is the inner 
product x T Y. This makes it possible to represent the model by the position and direction 
of the hyperplane alone, i.e., by the normal to the plane n and an offset. This is an efficient 
way of storing the model, and leads to very efficient computation of a score at test time by 
means of an inner product. This way of modeling is an example where the likelihood ratio 
function is computed in a single model. 

Another way to arrive at an efficient computation of the likelihood function in the 
UBM-GMM model is to see the MAP-adapted speaker model as a perturbation of the 
UBM. The effect of this perturbation on the value of the likelihood function can then be 
approximated by a Taylor expansion of the UBM w.r.t. its parameters, i.e., the means of the 
Gaussians. In the difference of the log-likelihood functions of the Taylor expansion and the 
UBM, many terms cancel, and the speaker model is then computed from the zero"1- and 
first-order statistics of the training data—the statistics that are normally computed in MAP 
adaptation. The representation of the model is by a single supervector, and computation 
of a test score involves a single inner product (dot-product) with test supervector. This 
approach is known as dot-scoring [10]. 

There are many more models possible to represent a likelihood function. The Gener-
alized Linear Discriminative Sequence kernel for SVM [3] uses a monomial expansion of 
the acoustic features (i.e., powers and products of individual feature dimensions) averaged 
over the whole utterance as another large vector to represent a speech utterance as a point 
in a high-dimensional space. A standard linear SVM in this space has all the computational 
advantages mentioned in the GMM-SVM approach. This approach is very symmetric in 
character, there is no preference for using either the "train" of "test" segment for training the 
model by contrasting the utterance to a large background of non-target speaker utterances, 
and it performs relatively well if either of the segments is of shorter duration. Some feature 
types require different models. For instance, a speech recognition system can be used to 
decode the words spoken in the train and test utterance. The sequence of words can then 
be used as features. [7] One model for such features can be formed by a я-gram language 
model. Again, a background of non-target speakers can be used to train a baseline model, 
and this can be adapted to a speaker-specific model by interpolation of the background 
model with a model formed by the train words. The likelihood function can be formed, 
e.g., by computing the negative entropy of the test words given the speaker model, and 
comparing this to that of the background model. Also other models have been proposed for 
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word-based features, such as sequence kernels in SVMs. Word features require quite some 
computational efforts to produce, but in situations with longer training (~ 15 minutes) this 
approach pays off in terms of speaker recognition performance. 

A last approach worth mentioning here aims at modeling the acoustic characteristics 
of the speaker by the parameters of transform that is required to make the speaker look more 
like the average speaker. [17] To this end, the (constrained) maximum likelihood linear 
regression (C)MLLR technique (briefly described in Chapter 28) is borrowed from speech 
recognition where it is used to make the acoustic features more "speaker independent". 
Here, what is used are the transform parameters, which are further modeled using an 
SVM classifier. Specifically, the transform parameters need a special normalization, rank 
normalization, in order to obtain good speaker recognition performance results. In rank 
normalization, each parameter value is replaced by its rank in a large background of 
transforms from different speakers. 

41.3.3 Score normalization 
Speaker detection performance can depend critically on the normalization of scores. One 
can imagine that the value of the likelihood function of an utterance spoken by a particular 
speaker actually depends on what has been said. If the contents contains more "likely" 
sounds, the likelihood score will be higher than when it contains relatively many "unlikely" 
sounds. Another effect that will influence the overall likelihood is the spectral shaping of 
the signal. Although the denominator in the likelihood ratio will compensate for such 
likelihood shape to some extent, we need better compensation strategies. One such strategy 
is score normalization. This can be carried out to compensate for variation in test segment 
(i-norm) or in train segment (z-norm) or both (zi-norm). 

The idea is to compute the score of a test segment not only with the target model, but 
also with a set of known non-target models, known as the i-norm cohort. A score is then 
normalized by the transformation 

s, = ^ (41.2) 
σ» 

where μ, and σ, are the mean and standard deviation of scores over the i-norm cohort. 
Equivalently, variation due to training segment variability can be compensated for by 
normalizing scores using a cohort of non-target test segments (z-norm cohort) applied to 
the target model. 

The importance of f-norm or z-norm depends on the modeling technique and the 
application of the speaker recognition system, and on other compensation schemes that are 
used, г-norming appears to be quite effective in general discrimination performance [14], 
and is also helpful in the fusion of multiple speaker recognition systems, ί-norming has the 
effect that the expected distribution of non-target scores has zero mean and unit standard 
deviation, which can give some control over the false alarm rate. For instance, a threshold 
of 3.0 for i-normed scores would give an expected false alarm rate of 0.13 % assuming a 
normal distribution of non-target scores. The expected miss-rate at this threshold, however, 
is determined by the overall discriminability of the detection task. 
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Some techniques require г-normalization, such as the dot-scoring approach. Here, 
the z-norm cohort plays a similar role as the negative examples in the SVM approaches. 
Advanced channel compensation techniques such as Joint Factor Analysis (JFA) also rely 
on the application of г-norm [21]. 

41.3.4 Fusion and calibration 

At the end of the computation chain lies the possible combination of multiple systems, and 
presentation of the score to the user. In practice, these to steps can be combined, sharing 
the same training data. When two or more systems have the same score ranges (e.g., as a 
result of applying i-norming to each individual system) their scores can be combined into 
a detector with a better performance. The easies model for such system fusion is to use a 
weighted sum of scores s,· 

s = w0 + Yiwisi (41.3) 
i 

where w, are the weights, and WQ is an overall offset. One can choose the weights equal, 
but this is not likely to be the optimum combination. In order to choose weights optimally, 
they must be chosen to optimize some expected performance. This needs a development 
set of test trials, and a performance objective. A natural objective may be to minimize the 
number of errors, but we will see that different types of errors (false alarms, misses) can 
have different costs associated to them. The ratio of target trials to non-target trials in the 
development test will determine the optimum settings, so care must be taken to ensure that 
this ratio is set to give the intended results. We will now address the important subject of 
evaluation. 

41.4 EVALUATION 

As for many fields in speech technology, evaluation plays an important role in the develop-
ment of speaker recognition systems. In the first place, it gives the developers of systems 
a means to check their performance and make design decisions about techniques, usage 
of data, and fusion strategies. Secondly, when different research groups use the same data 
and evaluation protocol, results can be compared at a detailed level and more is learned 
from the differences in approach between groups. The latter motivation has been taken 
to the level of a formal paradigm in the series of NIST speaker recognition evaluations 
(SRE), which have been organized at regular intervals since 1996. These evaluations draw 
participants from all over the world, and have a somewhat competitive nature, providing 
extra motivation to researchers. 

Important ingredients of evaluation are the definition of a task and an evaluation 
metric. Speaker detection presents two possible decision errors, false negatives and false 
positives, or misses and false alarms. Depending on the application, the error of one type 
may be considered worse than the error of the other type. The performance metric is 
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therefore defined in terms of a cost function Qet 

Cdet = CmissftargPrniss + C F A ( 1 — MargJÌFAi (41.4) 

where Cmiss and CFA are the costs of misses and false alarms, and Ptarg is the prior probability 
of a target speaker. These three parameters define the application of the speaker recognition. 
The values of Pmiss and PFA are determined in the evaluation, and are computed as the 
fraction of target and non-target trials in error, respectively. Note that one can compare the 
performance to a trivial detector that always makes the least-cost decision based on prior 
and cost only, 

C^ = \CmisArs l f 6 < 1 ' (41.5) 
C F A ( 1 - / W ) if Θ > 1 

where 

Θ = r
CTP7 s (41.6) 

LFA( ,1 — itarg) 

may be called the 'effective prior odds', the parameter that governs the decision trade-off. 
As indicated in Sect. 41.2 a system can make decisions by applying a threshold t to 

the (normalized) score s, i.e., decide that X is uttered by speaker S if s > t. It is instructive 
to look at the distribution of scores for target and non-target trials for a typical speaker 
recognition system. By applying a threshold, one can see the probabilities of misses and 
false alarms as the light and dark gray areas in Fig. 41.1a in proportion to the total area 
of the PDF for targets and non-targets, respectively. Immediately visible is the trade-off 
of the two error types when the threshold is varied. This trade-off is nicely shown in a 
DET-plot (Detection Error Trade-off) [13]. Here the axes are warped according to the 
probit function Φ(χ), or inverse cumulative normal distribution, which can be expressed in 
terms of the inverse error function 

Ф(л) = v^erT'(2jc-l). (41.7) 

This warping has the property that a threshold swept across overlapping Gaussian distri-
butions will result in a straight line. The DET-plot for the data in Fig. 41.1a is shown in 
Fig. 41.1b. The warping of the axis makes the trade-off nicely linear, which has several 
advantages. Many different systems or conditions can be shown in the plot without too 
much clutter. The decision point is indicated by the rectangle, the width and height of the 
rectangle indicating the 95 % confidence interval of the values for (/kA,Pmiss) assuming 
trial-independence and a binomial distribution. Indicated in the circle is C^f, the minimum 
value of Cdet obtained by sweeping the threshold. Finally, the the crossing of the diagonal 
imiss = ^FA the Equal Error Rate (EER), the performance measure most often reported in 
literature as in indication of the general discrimination performance of a speaker recognition 
system. 

The DET-plot and the performance measures C^1" and EER are used extensively 
in development of speaker recognition systems, and when actual decisions have to be 
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FIGURE 41.1 (a, left) Probability density function for target and non-target scores, (b, 
right) DET-plot, showing the trade-off between misses and false alarms obtained from the 
same scores. 

made (as for submitting results to a NIST SRE), the threshold used for obtaining C^1" on 
development trial set is often used for making decisions for the evaluation trial set. As 
indicated in Sect. 41.3.4 decisions can be made in the fusion process, where a development 
set of trials is needed to optimize the fusion parameters. Rather than optimizing for the 
cost function Cdet(Oiiss5 Срд» t̂arg)» it *s possible to calibrate scores over a range of cost 
functions, and thereby applications, by minimizing a 'soft' version of counting errors 

C„r = ^ ( ^ - Σ 1°g(1 + eSi,)) + ΊΪ-Σ 10SO + e"iW)). (41·8) 
2 log 2 \N„n„ ,i-i„ Nam ,£* ) 

targ ietarg 

where s(t) indicates the score for trial t, Nt3Ig and Nnm are the number of target and non-
target trials in the test, and summations are over those trials sets, respectively. The metric 
Сцг measures in how far the scores s can be considered calibrated log-likelihood-ratios, 
which have the property [19] 

log 
P(i|target) 

P(i|non-target) 
(41.9) 

By using dir as optimizing criterion in fusion, the final score has log-likelihood-ratio 
character. One of the consequences is that the optimal Bayes' decision threshold for these 
calibrated scores is —Θ (cf. (41.6)), which can be computed from the application's cost 
parameters. If the prior of costs in the application changes, no re-calibration is necessary; 
the only modification required is to shift the threshold according to (41.6). 

The evaluation metric Сцг is dimensioned such that it measures the average informa-
tion loss in bits due to discrimination and calibration errors of the speaker detector. There 
also exists an algorithm to compute Q\r under optimal calibration conditions, Cj£in which 
can be considered the application-independent counterpart of C^1". For a deeper discussion 
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of these various evaluation measures we refer to [19]. 

41.5 MODERN RESEARCH CHALLENGES 

The research in text independent speaker recognition has in recent years been driven 
by task and conditions denned in the regular NIST SREs. In addition, these evaluations 
donate speech data to the research community. The research focus has been on channel 
variability (train and test segments recorded through different telephone handsets, networks, 
encodings, different acoustics and transducers), language variability (train and test segments 
recorded in possibly different languages), and speaking style variability (varying levels of 
vocal effort). The channel (or session) variability challenge has been approached quite 
successfully in the (Joint) Factor Analysis model (JFA) from Patrick Kenny [11], where the 
shifts in GMM means in the supervector space are seen as the sum of a shift due to channel 
and speaker. Both shifts appear in different sub-spaces, which have to be found from training 
data. Here, the intricate relation between evaluations (providing the data) and algorithm 
development becomes clear. Apart from the JFA model, other techniques have with more 
or less success been applied, such as Probabilistic Subspace Adaptation (PSA) [12], the 
very elegant and efficient Nuisance Attribution Projection (NAP) for the GMM-SVM [5] 
and Feature Domain channel factor compensation [18] which can be applied to any further 
classifier. 

In the SRE series, some parameters that influence performance have been varied, such 
as training duration (from 10 s to multiple sessions of 5 minutes) or test segment duration 
(10 s to 5 minutes), and here the different research groups can choose their own focus. For 
instance, commercial systems with applications in banking have more interest in shorter 
duration conditions, and for this reason concentrate on text-dependent implementations. 

Some issues in speaker recognition have hardly been addressed, for instance aging 
of the voice, and different physical, emotional or health conditions of the speakers. One 
reason for this is the lack of data available to characterize such variations. 

Forensic applications of speaker recognition pose stringent demands on the robustness 
of calibration to adverse recording and speech production conditions of the samples. The 
challenge is to understand the effects of these conditions such that speaker recognition 
results can be used not only for investigatory purposes, but ultimately for presenting 
evidence using a Bayesian interpretation for the truth-finding process in court. 

41.6 EXERCISES 

41.1 Give some of the specific properties of mei cepstral or PLP analysis, as described in Chapter 22, that 
could be a poor match to the goals of speaker recognition. 

41.2 Show thatEq. 41.1 is the probabilistically-correct basis for decision, and explain how prior probabil-
ities for different speakers give the optimal threshold for the score s. 
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41.3 Suppose that you have already trained a large-vocabulary speaker-independent recognizer on many 
speakers. Propose some ways that such a system could be used as the basis for a speaker-verification 
system. 
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SPEAKER DIARIZATION 

42.1 INTRODUCTION 

As discussed in Chapter 8, for some applications it is useful to develop a classifier even 
without any labels, the so-called 'unsupervised' clustering task. For time series data, it is 
often useful to both segment and cluster the segments, for instance to associate each time 
segment with a particular source, even if that source is unknown. In the case of speech, this 
operation is known as speaker diarization, namely, the determination of who spoke when 
[25]. In its typical instantiation, there are no pre-existing models for any of the speakers; 
models are learned on the fly, with no supervisory information. No information about the 
underlying language, spoken text, amount of speech, number of speakers, or the placement 
of microphones need be given. As with nearly all modern speech applications, the dominant 
underlying model is a statistical one; and as in speaker verification, the basic representation 
is a Gaussian mixture model for each speaker, as described in Chapter 41. However, also 
like speaker verification, state-of-the-art implementations are relatively complex. In this 
chapter we1 will present the major methods in current use. 

Unlike verification, speaker diarization does not require the recognition of particular 
speakers i.e., labeling speech with real names. It does, however, have its own challenges. In 
particular, diarization requires segmentation, which is not usually required for verification. 
Furthermore, for some applications, the clustering and segmentation must be done without 
having a large amount of audio material - it can sometimes be required to determine the 
speaker segments with only a few minutes of audio. Unsurprisingly, this task is also subject 
to the same problems common to other forms of speech processing: in particular, the 
conflation of speaker identity with transducers, room acoustics, noise, channel properties, 
and voice variability e.g., due to emotion or health; and of course with linguistic content, 
which may vary from segment to segment of the same speaker, and may be similar for 
segments with differing speakers. As with many speech tasks, speaker diarization is also 
made more difficult by speech overlap, which is quite common in conversational speech. 

Speaker diarization is a useful first step in virtually any task that involves the presence 
of more than one talking person when there is no speaker-specific training data. Tasks to 
which speaker diarization has been successfully applied include speaker-adaptive speech 
recognition, video and audio retrieval and navigation, copyright infringement detection (by 
extracting speaker patterns to identify unique identical dialogs parts), and certain tasks in 
automated human-behavior analysis (e.g., dominance detection based on analyses such as 
who spoke most/least and who got interrupted most often). 

1 This chapter was written by Gerald Friedland. 
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FIGURE 42.1 Conceptual overview of a typical speaker diarization system. In 
single-microphone conditions beamforming is ommited. 

42.2 GENERAL DESIGN OF A SPEAKER DIARIZATION SYSTEM 

As already introduced above, the goal of speaker diarization is to segment a single or multi-
channel audio recording into speaker-homogeneous regions with the goal of answering the 
question who spoke when? using little or no prior knowledge. When multiple microphones 
are used, the task can be become much simpler, e.g., when every speaker has his or her 
dedicated line (such as in telephone conferences) or individual headsets (though cross-talk 
can still be a problem). However, the task of using microphone arrays at one or more fixed 
locations in the room can be as much of a challenge as the single-microphone case. In 
practice, a speaker diarization system has to answer not only one but two questions: 

• What are the speech regions? 

• Which speech regions belong to the same speaker? 

Conceptually, a speaker diarization system performs three tasks: First, discriminate between 
speech and non-speech regions, second, detect speaker changes to segment the audio data, 
third, group the segmented regions together into speaker-homogeneous clusters. While 
this could in theory be achieved by a single clustering pass, as a practical matter many 
speaker diarization systems use a speech activity detector as a first processing step and then 
perform speaker segmentation and clustering in one pass as a second step. Other pieces 
of information, such as the number of speakers in the recording and quantitative ranking 
of each talker's speech time, are extracted implicitly. When arrays of microphones are 
used for recording, most current speaker diarization systems choose to use beamforming 
and then process the signal is if it was one audio stream. A side effect of beamforming 
is a higher signal-to-noise ratio compared to the individual microphone channels and the 
possibility to compute time-delay-of-arrival features. The time-delay-of-arrival features are 
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the estimated differences of the sound wave traveling times caused by the speakers being 
located at different distances from each microphone in the array, as discussed in Section 
39.4. Figure 42.1 shows the conceptual architecture of a typical speaker diarization system. 

The output of a speaker diarization system consists of labels describing speech seg-
ments in terms of start time, end time, and speaker cluster name. The US National Institute 
of Standards and Technology (NIST) has defined a standard metric to measure the accu-
racy of speaker diarization systems by evaluating the output against manually-annotated 
ground-truth segments, usually with timings refined through ASR forced-alignment. The 
two segmentations are compared by using a dynamic programming procedure to find the 
optimal one-to-one mapping between the hypothesis and the ground truth segments so that 
the total overlap between the reference speaker and the corresponding mapped hypothe-
sized speaker cluster is maximized. The difference is expressed as Diarization Error Rate 
(DER) which is defined as follows: 

"5 i dur(s) ■ {ma.x(Nref{s),Nhyp{s)) - Ncorrecl(s)) 
=1 dur(j) · Nref 

DER = "s=i y ' v—:v '" ^"~"^-"—"""«"v-;/ ( 4 2 1 ) 

with S being the total number of time segments, defined by merging all the boundaries in 
both reference and hypothesized segmentations. The terms Nref(s) and N^s) indicate the 
number of speakers speaking in segment s, and Ncorrect (s) indicates the number of speakers 
that speak in segment s and have been correctly matched between reference and hypothesis. 
Segments labelled as non-speech are considered to contain zero speakers. DER is usually 
expressed in percent; when all speakers and the non-speech in a file are correctly matched 
the error is 0%. Consequently, a formal definition for the task of speaker diarization is the 
minimization of Equation 42.1. 

For practical reasons, DER is often decomposed into the sum of three components: 
misses (speaker in reference, but not in hypothesis), false alarms (speaker in hypothesis, 
but not in reference), and speaker-errors (mapped reference is not the same as hypothesized 
speaker). Wrongly assigned labels in overlapping speech regions are either handled as 
misses or false alarm, depending on whether it is the reference or the hypothesis containing 
non-assigned speakers. If multiple unmatched speakers appear in either or both of the 
reference and hypothesis, the error counts as multiple speaker errors. When measuring 
performance, NIST uses a collar of 250 ms around every reference speaker segment, which 
absorbs any inaccuracies in the ground-truth annotation. 

At the time of writing, typical speaker diarization systems achieve roughly 10-
15% SNR-to-noise ratio 4-speaker meetings with very limited overlap recorded with a 
microphone array can sometimes be diarized with less than 2% DER. A larger number 
of speakers, speakers with easily-confusable voices, non-speech sounds such as music, 
speakers talking simultaneously, emotional variance, laughter, coughs, and many other 
factos can increase DER. The greatest challenge is to roubustly achieve low error rates 
despite these factors that can vary significantly from recording to recording. The next 
section provides an overview of some popular system design choices. 
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FIGURE 42.2 A conceptual visualization of two iterations of the agglomerative 
hierarchical clustering algorithm explained in Section 42.3.2. 

42.3 EXAMPLE SYSTEM COMPONENTS 

Over the years, many different speaker diarization algorithms have been developed in the 
speech community. The following is an overview of some design choices. 

42.3.1 Features 
The speech signal is usually parametrized in frames with a window size of 20-30 ms 
and a stepsize of 10 ms, typically computing 13-19 parameters. Popular features are Mel-
Frequency Cepstral Coefficients (MFCCs) and Perceptual Linear Prediction (PLP) features, 
sometimes augmented with log energy. Some implementations also use Linear-Prediction 
Coefficients (LPC) features. Note that these are the same features, introduced in Chapter 22, 
that are commonly used in automatic speech recognition, among other speech processing 
technologies. Additional features are found by computing first and second order derivatives, 
often found by applying linear regression over 3-7 consecutive frames. Thus, a common 
dimensionality of the feature space is 26 or 39. Recent research work has also explored 
the use spectro-temporal features [27] and long-term features (around 500 ms), including 
prosodie features [11]. The performance of features depends on many factors, especially 
the chosen metric and statistical model for the segmentation and clustering algorithm. As a 
result, beyond the common usage of MFCC and PLP cepstra (and time-delay features from 
microphone arrays, as described in Section 42.3.3), there is no predominant feature choice 
in the speaker diarization research community. 

42.3.2 Segmentation and clustering 
There are fundamentally two styles of approach to the main core of a speaker diarization, 
the segmentation and clustering step, which could be referred to as "bottom-up" and 
"top-down". The former incorporates agglomerative hierarchical clustering, in which an 
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initially large number of clusters are gradually merged to improve some chosen metric, 
using a stopping criterion to determine when to discontinue the merging process. The latter 
uses divisive clustering, which starts with a small number of initial clusters (sometimes one) 
and performs splits according to a metric, again stopping when some criterion is reached. 
In both cases, the goal is to achieve an optimum number of clusters (ideally corresponding 
to the number of speakers), and also to determine the start and end points for each segment 
in each cluster. 

The most common basis for the choice of merging two segments, or splitting a 
single one into two, is the so-called Bayesian Information Criterion (BIC) [5]. For both 
alternatives of merged and split assignments, the following measure is computed: 

logp(X\®)-^kXlogN (42.2) 

where X is the sequence of speech features in the segment (such as MFCCs), Θ are the 
parameters of the statistical model(s) for the segment, К is the number of parameters for 
the model(s), N is the number of speech feature vectors (e.g., frames) in the segment, 
and λ is an optimization parameter - ideally 1.0, but in reality tuned empirically. Other 
"hyperparameters" to the process include the number of initial segments (for the bottom-up 
approach) and the initial number of Gaussiane per model, both of which can be critical 
choices, as can the type of initialization used for the first segmentation. 

Note that the first term is simply the log likelihood of the segment, while the second 
term accounts for complexity. Without the second term, the optimum value would simply 
be one that had the largest number of segments (and parameters), since this would best fit 
the data. However, the presence of the tuning term λ is a bothersome limitation, since it 
requires a well-matched development data set for tuning. [1] proposed keeping the number 
of parameters constant between the split-or-merge choices, for instance by using more 
Gaussian components for the single-model case. This would mean that the second term 
would be irrelevant. In other words, as long as the number of parameters is kept the same, 
comparison based on BIC reduces to using log-likelihood alone. 

Most commonly, the statistical model used to represent each cluster is a Gaussian 
Mixture Model (GMM). As described in Chapter 9, this is a weighted sum of Gaussian 
distributions, where most commonly each Gaussian is parameterized by a mean vector 
and a diagonal covariance matrix. The underlying model for the entire speech sample is 
typically a Hidden Markov Model, where each state corresponds to a cluster (represented 
by a GMM), and the actual segmentation at each iteration is determined by a Viterbi 
realignment. Since speaker turns usually last many frames, a minimum-duration constraint 
is enforced for each speech segment (with a typical value of 2.5 seconds) to make sure that 
it is speakers that are clustered, not phones or other units. The following outlines a typical 
bottom-up diarization algorithm, visualized in Figure 42.2: 

1. Generate an initial segmentation by uniformly partitioning the audio file into к seg-
ments of the same length, where к is chosen to be several times larger than the assumed 
number of speakers in the audio track. Train a GMM for each initial segment. 

2. Re-segmentation: Run a Viterbi decoder using the current set of GMMs to segment 
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the audio track. 

3. Re-training: Retrain the models using the current segmentation as input. 

4. Select the closest pair of clusters and merge them. This is done by going over all 
possible pairs of clusters, and computing the difference between the sum of the BIC 
scores of each of the models and the BIC score of a new GMM trained on the merged 
cluster pair. The clusters from the pair with the largest positive difference are merged, 
the new GMM is used, and the algorithm repeats from step 2 unless the stopping 
criterion (e.g., target number of clusters) is reached. 

The result of the algorithm is a segmentation of the audio into k1 clusters and a GMM for 
each cluster, where k! is assumed to be the number of speakers. 

42.3.3 Acoustic beamforming 
As discussed in Section 39.4, microphone arrays are often used as a method to enhance 
the audio signal captured by far-field microphones. The redundancy among the multiple 
channels can be exploited to enhance the signal, even if some of the channels have a very 
poor SNR. When speaker diarization is to be performed on data that has been collected by a 
microphone array and enhanced by beamforming, it is natural to exploit the availability of 
spatial information for speaker segmentation and clustering. By correlating the individual 
microphone signals, estimates of inter-channel delay may be used not only for delay-and-
sum beamforming of multiple microphone channels but also for speaker localization. One 
can obtain information on the location of the audio source (i.e., speaker) by calculating 
the so-called time delay of arrival (TDOA). This is the relative difference in propagation 
delay caused by the varying distances of the microphones from the speaker. NIST evalu-
ates diarization on microphone arrays as the so-called MDM (multi-distant microphone) 
condition, which is contrasted with the single-distant microphone (SDM) condition. It is 
preferable for the beamforming algorithm not to require knowledge of the placement of 
microphones, as this information may not be available. 

The standard algorithm for calculating TDOA features is GCC-PHAT (Generalized 
Cross Correlation with Phase Transform) [15]. The algorithm selects a reference channel 
and aligns the other channels using a standard delay-and-sum algorithm. The contribution 
of each signal channel to the output is dynamically weighted using cross-correlation. The 
TDOA features are estimated by measuring the resulting time shifts of each channel after 
alignment. Current research focuses on finding methods to select the optimum reference 
channel and to better stabilize the time-delay-of-arrival (TDOA) values between channels 
before the signals are summed together. Using TDOA features alone, error rates are con-
siderably higher than those achieved with acoustic features. Therefore, a combination of 
TDOA and acoustic features is used by integrating the feature streams at some stage of 
the algorithm, e.g., by using them for initialization or integrating them using weighted 
log-likelihood combination. 

Unfortunately, there are also some disadvantages to obtaining spatial information 
purely from the audio signal. First, it is very hard to detect when a person moves or walks 
around, so the method can mistakenly report multiple speakers in this case. Second, this 
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method requires significantly more computational effort since as many as eight or more 
data streams have to be processed. Third, and most importantly, a microphone array is 
required, which limits the generality of this approach. 

42.3.4 Speech activity detection 
If the end goal is diarizing speakers, and not extraneous nonspeech sounds, speech/nonspeech 
discrimination is an essential prerequisite for diarization. Many of the errors in current sys-
tems are due to mistakes in this stage of the processing. While it may seem surprising that 
this two-class problem is still not fully solved, in reality one of the classes (nonspeech) can 
consist of anything, and perhaps it should really be thought of as a problem of detecting 
speech (often called Speech Activity Detection, or SAD) in an environment that can contain 
many signals for which one has no models. 

SAD involves the labeling of speech and non-speech segments, and can have a 
significant impact on speaker diarization performance for two main reasons. The first 
stems directly from the speaker diarization performance metric, the DER, which takes 
into account both the false alarm and missed speaker error rates. Consequently, poor SAD 
performance will lead to an increased DER. Second, non-speech segments can disturb the 
speaker diarization process by introducing irrelevant data into the the acoustic models. 

SAD is a fundamental task in almost all fields of speech processing (coding, enhance-
ment, and recognition) and many different approaches and studies have been reported in 
the literature [20]. Non-speech segments may include silence, but also ambient noise such 
as paper shuffling, door knocks, or voiced noise such as breathing or coughing, or other 
background noise such as an ambulance going by outside. TV content often contains sound 
effects, music, laughter, and applause. Highly variable energy levels can be observed in the 
non-speech parts of the signal. Moreover, differences in microphones or room configura-
tions may result in variable SNRs from one recording to another. These factors make SAD 
far from trivial, and simple, threshold-based techniques using features of energy, spectral 
divergence between speech and noise, and pitch estimation, have proven to be relatively 
ineffective. 

Supervised approaches tend to give better performance. They rely on a two-class 
detector, with models pre-trained on speech and non-speech data [28, 2, 8, 16, 30]. Speech 
and non-speech models (e.g., using GMMs) may optionally be adapted to specific record-
ing conditions [9]. As with other speech processing tasks, MFCCs have been used for 
this purpose. Discriminant transformations such as Linear Discriminant Analysis (LDA), 
sometimes coupled with Support Vector Machines (SVM) have also been proposed. The 
main drawback of model-based approaches is their reliance on external data for the train-
ing of the initial models which makes them less robust to changes in acoustic conditions. 
Hybrid approaches have also been proposed: In most cases, an energy-based detection is 
first applied in order to label a limited amount of speech and non-speech data for which 
there is high confidence in the classification. In a second step, the labeled data are used to 
train session-specific speech and non-speech models, which are subsequently utilized in a 
model-based detector to obtain the final speech/non-speech segmentation [29, 24, 18]. 
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42.4 RESEARCH CHALLENGES 

In this section we briefly review some of the research topics in this area that remain unsolved 
as of this writing. 

42.4.1 Overlap resolution 
A fundamental limitation of most current speaker diarization systems is that only one 
speaker is assigned to each segment. The presence of overlapped speech, though, is common 
in multiparty conversations and consequently presents a significant challenge to speaker 
diarization. Specifically, in regions where more than one speaker is active, missed speech 
errors may occur. Even when classified as speech, overlapped speech segments should 
not be assigned to only a single speaker cluster nor included in any individual speaker 
model. Doing so not only results in a higher speaker error when scoring but also adversely 
affects the purity of speaker models, which ultimately reduces diarization performance. 
Approaches to at least detect overlap for ASR were assessed in [22, 7]. However, only a 
small number of systems detect overlapping speech well enough to improve diarization 
error rates [4, 26, 3]. 

Initially, the authors in [19] demonstrated a theoretical improvement in diarization 
performance by adding a second speaker during overlap regions using a simple strategy 
of assigning speaker labels according to the labels of the neighboring segments, as well 
as by excluding overlap regions from the input to the diarization system. However, this 
initial study assumed oracle (ideal) overlap detection. In [26] a real overlap detection 
system was developed, as well as a heuristic that computed posterior probabilities from 
diarization to post-process the output and include a second speaker in overlap regions. 
The main performance bottleneck is due to errors in overlap detection; more work on 
enhancing its precision and recall is reported in [4,3]. This approach consists of a three state 
HMM-GMM system (non-speech, non-overlapped speech, and overlapped speech), and 
the best feature combination is MFCC and modulation spectrogram features [14], although 
comparable results were achieved with other features such as RMS energy, spectral flatness, 
and harmonic energy ratio. The reported performance yielded a relative improvement of 
about 10% DER. However, given ideal overlap detection, the relative DER improvement 
goes up to 37%, indicating that this area has great potential for future improvement. 

42.4.2 Multimodal diarization 
As discussed above, speaker localization information can successfully be used in speaker 
diarization by incorporating TDOA features. With the recent ubiquitous availability of cam-
eras, it is therefore no surprise that researchers have started tackling speaker diarization 
as a combined audio-visual problem. Initial approaches to audio-visual speaker identifi-
cation involved identifying lip motion from frontal faces, eg. [6], [12], [13], [21], [23]. 
The underlying assumption was that motion from a person comes predominantly from the 
motion of the lower half of their face. In a real scenario, however, the subject behavior is 
not controlled and, consequently, the correct detection of the mouth is not always feasible. 
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More recent approaches of multimodal speaker diarization have therefore tried to exploit 
other forms of body behavior, e.g., head and hand gestures, which are also visible mani-
festations of speech [17]. The work presented in [10], for example, assumes audio-visual 
diarization as a single, unsupervised joint-optimization problem. The work uses the basic 
underlying assumption that people who currently speak also show greater visual activity 
than people who do not talk. Audio-visual speaker diarization has the potential to overcome 
the shortcomings of audio-only approaches, such as overlap resolution. 

42.4.3 Further challenges 
This chapter provides a basic introduction to the current state-of-the-art in speaker di-
arization research. Still, many challenges remain. Most importantly, as of 2011, speaker 
diarization systems are not yet robust enough to be easily ported across different task 
and data domains. Often parameters of systems are tuned to a particular set of data such 
as broadcast news or meetings. In a new domain, tuning of parameters often starts from 
scratch. Even variations inside one domain, e.g., meeting data recorded at different sites, 
can lead to large variations in performance. Speaker variations caused by emotions or very 
short interruptions (e.g., below the minimum duration constraint) pose challenges that are 
yet to be addressed, possibly by audio-visual approaches. The greatest challenge remains 
the handling of overlapped speech. 

42.5 EXERCISES 

42.1 The Bayesian Information Criterion (BIC) is related to the principle of Minimum Description Length 
(MDL). Explain how. 

42.2 In the segmentation/clustering algorithm presented in this chapter, the clusters are said to be "purified" 
in each step by merging two clusters according to the BIC. Provide a colloquial explanation for how 
this "purification" works. Explain possible problems. (Hint: Having done exercise 1 first will help). 

42.3 Show how the Diarization Error Rate (Equation 42.1) can be split up into the sum of false alarm 
speech, missed speech, and speaker error. 

42.4 Propose a way to measure the fitness of a feature for speaker diarization and explain why pitch alone 
is not good enough. You may use real data to explain your results. 

42.5 Estimate an upper bound for the runtime of the speaker diarization algorithm as presented in this 
chapter. What is the bottleneck? 

42.6 Propose a divisive segmentation/clustering approach in pseudo code. Discuss the differences between 
top-down approach and a bottom up approach shortly in terms of runtime. 

42.7 Explain typical expected problems when performing speaker diarization as presented here in the 
following data domains: Recorded voice-over-IP phone conference, a board meeting recorded with a 
microphone array, a conversation recorded with a cell-phone in a car, a recorded theater performance, 
broadcast news, an air-traffic control session, a microphone mounted onto a surveillance camera. 

42.8 Perform the following experiment: Ask a co-student/co-worker to find a video on the Internet in a 



BIBLIOGRAPHY 653 

language that you do not speak and where you do not know the participants. It should contain a 
conversation of several minutes with at least 4 speakers (a foreign talk show might be a good choice). 
Do not watch the video, only listen to the audio and perform manual speaker online diarization 
by saying "speaker 1", "speaker 2". Let your co-worker/co-student rate you: How good are you at 
assigning the right speakers in a normal and in an overlap situation? How does the situation improve 
once you look at the video? 
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A posteriori probability 
defined, 126 
estimated directly, 385-388 

A priori probability 
defined, 126 

Absorption coefficients, 184 
Acoustic model training, see Automatic 

speech recognition (ASR), 
statistical training 

Acoustic source, 595 
Acoustic tube 

model, 152-157 
discrete-time, 146-147 
resonances, 147-148 

Adaptation, of auditory nerve, 200 
Adaptive beamformers, 604-605 
Adaptive codebooks for CELP, 525-526 
Adaptive differential pulse code 

modulation (ADPCM), 510 
Adaptive predictive coding, 512 
Additive synthesis, 557, 558 
ADPCM, see Adaptive differential pulse 

code modulation 
Advanced Audio Codec (AAC), 547 
Advanced Research Projects Agency 

(ARPA), 46 
Afferent neural pathways, 193 
Affricate, 325 
AI, see Articulation Index 
AIC, see Akaike Information Criterion 
Air Travel Information System (ATIS), 48 
Akaike Information Criterion (AIC), 292 
Alias cancellation, 540 

time-domain, 542 
Alignment 

of music, 571-574 
All-pole gammatone filter (APGF), 

270-272 
Allen, J., 250 
Allophone, 321 
Alpha recursion, see Forward recurrence 
ALSR, see Average localized 

synchronized rate 

Alveolar consonant, 323 
Analysis-based synthesis, see Music, 

synthesis, analysis-based 
Analysis-by-synthesis, 241, 515, 517 
Analysis-synthesis systems, 23, 25, 473 
ANN, see Artificial neural network 
Anvil, see Incus 
Apex, 196 
APGF, see All-pole gammatone filter 
AR model, see Autoregressive model 
ARPA, see Advanced Research Projects 

Agency 
Articulation Index (AI), 250-252 
Articulatory features, see Features, 

articulatory 
Artificial neural network (ANN), 

112-115,385-391 
derivation of back propagation training, 

119-122 
for probability estimation, 385-388 
for speech recognition, 388-391 
multi-layer perceptron (MLP), 388-389 
proof of producing posterior 

probabilities, 391-392 
recurrent, 388 
use with HMMs, see Hidden Markov 

model/artificial neural network 
hybrid 

ATIS, see Air Travel Information System 
Attack time, of musical instruments, 553 
Audio coding 

lossless, 531 
perceptual, 531-548 

Auditory anatomy, 193-196 
Auditory demonstrations, 210-215, 

219-226 
Auditory filter, 263-270 
Auditory models, 270-272, 313 
Auditory nerve, 196-205 
Auditory nuclei, 193-195 
Auditory scene analysis (ASA), 608 
Auditory system 

as a filterbank, 263-274 

peripheral, 195-196 
Autocorrelation analysis 

for LPC, 292-294 
for pitch detection, 460 
to estimate room impulse response, 186 

Automatic speech recognition (ASR) 
decoding for, see Decoding 
deterministic methods, 337-348 
difficulty, 60-62 
dimensions, 62-64 
discriminant training, 382-391, 

402^tl2 
feature extraction for, 301-315 
language models for, see Language 

models 
linguistic categories for, 319-334 
motivation for study, 59 
overview of components, 64—67 
phonological models for, see 

Phonological models 
statistical methods, 350-362 
statistical training, 364—379 

Autoregressive (AR) model, 288 
Autotagging (of music), 589-591 
Auxiliary function 

for expectation maximization, 132, 365 
Average localized synchronized rate 

(ALSR), 239 

Back propagation learning, 113-114, 
119-122 

Back-off smoothing, see Smoothing 
Backtracking, 346-347 
Backward recursion, 363 
Baker, J., 46 
Bark scale, 213, 303 
Barrel organ, 14 
Basilar membrane, 195 
Bass drum, 555 
Baum, L.E., 45 
Baum-Welch training, see 

Forward-backward training 
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Bayes decision rule, see Maximum a 
posteriori rule 

Bayes rule, 125 
Bayesian information criterion (BIC), 648 
Beamforming, 189, 314, 599-605 

adaptive, 604-605 
delay-and-sum, 600 
for diarization, 649-650 
generalized sidelobe canceller (GSC), 

604 
minimum variance distortionless 

response (MVDR), 603 
Bellman, R., 341 
Bennett, W.R., 24 
Berkeley Restaurant Project (BeRP), 

424-426 
Bessel filter, 91 
BIC, see Bayesian information criterion 
Bigram, 421 
Bilinear transformation, 93 
Bogert, В., 277 
Brass instruments, 175-177, 553 
Bridle, J., 346 
Butterworth filter, 88 
Buzo, A., 493 
Buzz and hiss, 11,467,482 

Cahill, Т., 16 
Call Home corpus, 51 
CASA, see Computational auditory scene 

analysis 
Cauchy theorem, 74, 85 
Cello 

radiation pattern, 169, 170 
CELP, see Code-excited linear prediction 
Cepstral analysis, 27, 277-284, see 

Cepstrum 
for pitch detection, 462 

Cepstral features for music, 574 
Cepstral liftering, 278, 283, 484,488 
Cepstral mean subtraction (CMS), 307 
Cepstrum 

complex, 279-281 
mei or PLP, 301-305 
of speech, 281-283 
real, 278-279 

Channel vocoder 
design considerations, 473-476 
history, 23-25 
voice excited, 506-508 
X-System, 24 

Chebyshev filter, 89-90 
Chladni patterns, 163 

Cholesky decomposition, 294 
Chord, musical, 574, 587 

transcription, 574-576 
Chowning, J., 557 
Chroma representation, 575, 587 
Chromagram, 575 
Circular convolution, 96-97 
Clarinet, synthesis of, 558-560 
Clustering, 117-118 

for diarization, 647-649 
CMS, see Cepstral mean subtraction 
Coarticulation, 61 
Cochlea, 195 
Code-excited linear prediction (CELP), 

516-527 
Codebook, 105, 376, 502, 516 
Coding 

adaptive predictive, 512 
low-delay, 519-520 
multipulse, 514-516 
of waveforms, 510-512 
subband, 513-514 
using frame-fill, 494-495 
using vector quantization, 496-497 

Cohort, 634 
Coker, C.H., 432 
Colliculus, inferior, 195 
Comb filtering, 226, 462 
Computational auditory scene analysis 

(CASA), 607-610 
Concatenative synthesis, 433^36 
Conditional probability density, defined, 

125 
Confidence, 61, 426 
Confusion matrix, 235-236 
Connectionist network, see Artificial 

neural network 
Context-dependent phones, 330-331 
Context-free grammar, stochastic, 424 
Continuously variable slope delta 

modulation (CVSD), 511 
Contrabass 

radiation pattern, 172 
Conversational speech, 51 
Convolution 

circular, 96-97 
linear, 97 

Cooley-Tukey algorithm, see Fast Fourier 
Transform 

Corrective training, 383-384 
Cosine similarity, 572 
Covariance analysis, for LPC, 294 
Covariance matrix, 129 

Cover versions (of music), 587-588 
Critical bands, 212-214 
Critical sampling, 539 
Cross-validation, for neural network 

training, 389 
CVSD, see Continuously variable slope 

delta modulation 

DARPA, see Defense Advanced Research 
Projects Agency 

DCT, see Discrete cosine transform 
Decibel (dB), 182 
Decision tree triphone clustering, 331 
Decoding (for ASR), 423^124 
Deconvolution, 25, 26, 277, 278, 283 
DecTalk, 442 
Defense Advanced Research Projects 

Agency (DARPA), 46 
Delay-and-sum beamforming, 600 
Deleted interpolation, see Smoothing 
Delta cepstrum, 306 
Delta-delta cepstrum, 306 
Demisyllable, 331 
DER, see Diarization error rate 
Detection error tradeoff (DET) plot, 639 
DFT, see Discrete Fourier transform 
Diagnostic rhyme test (DRT), 238 
Diarization, see Speaker diarization 
Diarization error rate (DER), 646 
Differential pulse code modulation 

(DPCM), 510 
Digit recogition, 42-АЪ 
Digital coding standards, 473 
Digital waveguide, 152-156 
Diphone, 331 
Diphthong, 325 
Direct synthesis, see Music, synthesis, 

direct 
Discrete acoustic probability, 375 
Discrete cosine transform (DCT), 

481-482, 542 
Discrete Fourier transform (DFT), 94-97 

inverse, 94 
Discrete Fourier transform, inverse, 282 
Discriminant 

analysis, 111 
function, 111-112 
training, 382-388, 402-412 

Disfluencies, 60 
Distance 

Mahalanobis, 129 
Euclidean, 129 
Kullback Leibler, 132 
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DPCM, see Differential pulse code 
modulation 

DRT, see Diagnostic rhyme test 
DTW, see Dynamic time warp 
Dudley, H., 29-36 
Dynamic features, see Delta cepstrum 
Dynamic programming, 45, 341-342, 

468, 572 
Dynamic time warp (DTW), 340-342, 

572, 586 
connected word recognition with, 

346-347 
local alignment, 588 

Ear anatomy, see Auditory anatomy 
EER, see Equal error rate 
Efferent neural pathways, 193 
EIH, see Ensemble interval histogram 
Elliptic filter, see Jacobian elliptic filter 
EM, see Expectation maximization 
Emission probability 

defined, 357 
estimation of, 376-377 

End-point detection, 344-345 
Ensemble interval histogram (EIH), 313 
Entropy, 63,420 
Epenthetic stop, 329 
Equal error rate (EER), 639 
Equal loudness curves, 211 
Error back-propagation, see Back 

propagation learning 
backward recurrence, 121 
weight update, 122 

Error residual (for LPC), see Linear 
predictive coding, residual 

Euclidean distance, see Distance, 
Euclidean 

Excitation, 25 
for music, 158 
for speech, 156-157, 278, 289, 438, 

455,505-510,620 
Expectation maximization (EM), 131-137 

for HMMs, 365-368 

Factorial hidden Markov model (FHMM), 
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Fant, G., 152 
Fast Fourier Transform (FFT), 98-100 
Feature extraction, 107-109 

for automatic speech recognition, 
301-315 

Features 
articulatory, 322-327 

phonetic, 236-238 
Fenones, 327 
FFT, see Fast Fourier Transform 
FHMM, see Factorial hidden Markov 

model 
Filler model, see Garbage model 
Filter bank 

auditory system as, 263-274 
implementation by FFT, 100-101 

Fingerprinting, for music, 582-584 
Finite impulse response (FIR), 88 
FIR, see Finite impulse response 
Fletcher, H., 212-213, 250 
Fletcher-Munson curves, see Equal 

loudness curves 
FM synthesis, 557 
Forced alignment, see Viterbi alignment 
Formant 

analysis, 28 
synthesis, 432 

Forward recurrence, 359 
Forward-backward training, 368-371 
Frame 

for analysis, 66, 337 
Frame-fill, 494-495 
Frequency transformation, 626-627 
Fricative, 26, 325 
Frost beamformer, 604 

Gammatone filter (GTF), 270 
Garbage model, 426 
Gaussian density, 129 

forward-backward training for, 
371-373 

Viterbi training for, 375 
Gaussian mixture model (GMM), 377 

EM training for, 131-136 
GEM, see Generalized expectation 

maximization 
Gender transformation, 626-627 
Generalized expectation maximization 

(GEM), 390 
Generalized probabilistic descent (GPD), 

384-385 
Ghitza, O., 238 
Glide, 325 
Glottal stop, 325 
GMM, see Gaussian mixture model 
GPD, see Generalized probabilistic 

descent 
GSC, see Beamforming, generalized 

sidelobe canceller 
GTF, see Gammatone filter 

Hair cells, inner and outer, 195-199 
Hammer, see Malleus 
Harmonic/stochastic analysis, 483 
Harmony (in music), 570 
Harper, H., Voder operator, 13 
Hartmann, W., 210 
Helmholtz, H. von, 193, 218 
Hidden Markov model (HMM) 

acoustic probability estimation, 

357-362 
adaptation, 394-401 

MAP, 395 
maximum likelihood linear 

regression (MLLR), 396-399 
explanation, 356-357 
problem categories, 352-353 
training, 364—371 

Hidden Markov model/artificial neural 
network hybrid, 388-390 

Hilbert transform, 477 
HMM, see Hidden Markov model 
HMM Toolkit (НТК), 49 
HMM/ANN, see Hidden Markov 

model/artificial neural network 
hybrid 

Holography, 163-167 
Huffman coding, 547 
Hurewicz, W., 83 
Hybrid HMM/ANN, see Hidden Markov 

model/artificial neural network 
hybrid 

Hyperplane, 111 

I-smoothing, 404 
IBM, 46 
ICA, see Independent component analysis 
IDFT, see Discrete Fourier transform, 

inverse 
IIR, see Infinite impulse response 
IMBE, see Improved multi-band 

excitation 
Improved multi-band excitation (IMBE), 

489 
Impulse invariant filter design, 92 
Impulse response 

of a filter, 88 
of vocal tract, 277 

Incus, 195 
Independent component analysis (ICA), 

605-607 
Inferior colliculus, 195 
Infinite impulse response (IIR), 88 
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International Phonetic Alphabet (IPA), 
322 

Interval histogram, 201-203 
Inverse filter, 462, 620 
Inverse z-transform, 74 
IPA, see International Phonetic Alphabet 

J-RASTA, 312 
Jacobian elliptic filter, 90 
Jakobson, distinctive feature set of, 237 
Jelinek, F., see IBM 

K-means clustering, 118, 376 
Kang-Coulter, 497^*98 
von Kempelen, W., 9 
Kempelen-Wheatstone synthesizer, 9-10 
Keyword spotting, 62 
Klatt recordings, 448^50 
Klatt synthesizer, 442 
Knowledge-based systems, 50-51 
Kullback Leibler distance, see Distance, 

Kullback Leibler 
Kurtosis, 311,606 

Labiovelar consonant, 323 
Language models, 419-423 
Lattice synthesizer, 486 
LDA, see Linear discriminant analysis 
Learning rate, 120 
Lerner filter, 91 
Licklider experiments, 219-221 
Liftering, see Cepstral liftering 
Likelihood, 126 
Linear convolution, 97 
Linear difference equations 

first order, 78-79 
Linear discriminant analysis (LDA), 108 
Linear predictive coding (LPC), 27, 

286-297 
model order, 290-292 
residual, 288, 484, 508 
synthesizer, 435 
transformed representations of, 

294-295 
vocoder, voice excited, 508-510 

Linear time-invariant systems, 75 
Linear transformations, to reduce coder 

bitrate, 480 
Linguistic Data Consortium (LDC), 48 
Liquid, 325 
Locality sensitive hashing (LSH), 586 
Loudness, 210-211 

curves for equal, see Equal loudness 
curves 

LP-PSOLA, see Pitch-synchronous 
overlap-add, linear predictive 

LPC, see Linear predictive coding 

Mahalanobis distance, see Distance, 
Mahalanobis 

Malleus, 195 
MAP adaptation, see Speaker adaptation, 

maximum a posteriori 
MAP decision rule, 126 
Markov models, 354-355 
Masking, 214-216, 533-535 

backward, 215, 535 
computational models of, 535-538 
forward, 215, 535 
physiological, 203 
psychoacoustic, 214—216 
simultaneous, 214, 534 

Matthews, M., 567 

Maximum a posteriori (MAP) rule, 126 
Maximum likelihood (ML) procedures, 

128 
for pitch detection, 467 

Maximum likelihood linear regression 
(MLLR), see Speaker adaptation, 
maximum likelihood linear 
regression 

Maximum mutual information (MMI), 
383 

lattice-based training, 402-404 
MBROLA, see Multiband resynfhesis 

overlap add 
McCulloch-Pitts neuron model, 112 
MDCT, see Modified discrete cosine 

transform 
Mean Opinion Score (MOS), 532, 597 
Median smoothing, 467^-68 
Mel frequency cepstral coefficient 

(MFCC), 301-305 
for diarization, 647 
for music, 589 

Mel scale, 302-303, 487 
Melography, 14 
MFCC, see Mel frequency cepstral 

coefficient 
Microphone array, 601 
MIDI, 567, 572 
Miller, G. and Nicely, P., 235-237 
Minimum classification error (MCE), see 

Generalized probabilistic descent 
Minimum distance classifiers, 109-110 

Minimum phase filter, 280, 281, 476 
Minimum phone error (MPE) training, 

404 
Minimum probability of error, 126 
MIREX, 571,587, 589,592 
Missing fundamental, 219 
MLLR, see Speaker adaptation, maximum 

likelihood linear regression 
MLP, see Multi-layer perceptron 
MMI, see Maximum mutual information 
Model-based separation, 610-613 
Modified discrete cosine transform 

(MDCT), 542 
Motor theory, 241-243 
Mozer, F., 433 
MP3, 531, 533, see MPEG-1 Audio Layer 

III (MP3) 
MPEG Audio, 546-547 
MPEG-1 Audio Layer III (MP3), 546-547 
Multi-layer perceptron (MLP), 112-115 

for speech recognition, 388-389 
training of, 119-122 

Multiband resynthesis overlap add 
(MBROLA), 436 

Music 
alignment, 571-574 
classification, 589-591 
fingerprinting, 582-584 
retrieval, 581-592 
similarity, 591-592 
synthesis, 553-565 

analysis-based, 557-560 
direct, 555-557 
frequency modulation, 557 

transcription, 568-571 
Musical score, 569 
Mutual information, 383 
MVDR, see Beamforming, minimum 

variance distortionless response 

N-best list, 424 
N-gram language model, Α2Χ-ΎΣ1 
Nasal, 325 
Nearest-neighbor classifier, 110 
Negentropy, 605 
Neural firing patterns, for speech, 243 
Neural network, see Artificial neural 

network 
Neural tuning curves, 201, 280 
Noise shaping, 538-539 

temporal (TNS), 542-545 
Noise to masker ratio (NMR), 539 
Noise-robust ASR, 311-312 
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using multiple microphones, 314 
Nonrecursive filter, 88 
Normal distribution, see Gaussian density 

Observation probability, see Emission 
probability 

Off-line training, 114 
On-line training, 114 
One-zero gammatone filter (OZGF), 271 
Oppenheim, A.V., 277 
Overtraining, 389 
OZGF, see One-zero gammtone filter 

Palatal, 323 
Palatal-alveolar, 323 
Palate, 323 
Parseval's theorem, 165 
Pattern classification, definitions, 105 
Pattern matching (for vocoders), see 

Vector quantization 
Pattern playback machine, 239, 441 
Patterson, R., 266, 272 
PCA, see Principal components analysis 
Perceptron 

definition, 113 
multi-layer, see Multi-layer perceptron 

Perceptual audio coding, see Audio 
coding, perceptual 

Perceptual evaluation of speech quality 
(PESQ), 597 

Perceptual linear prediction (PLP) 
analysis, 301-305 
comparison with mel-cepstra, 305 

Periodicity model of pitch, 221-228 
Perplexity, 63, 420 
Phase locking, 203 
Phase unwrapping, 282, 625, 626 
Phase vocoder, 623-625 
Phone, 320 
Phoneme, 321 
Phonetic features, see Features, phonetic 
Phonological models, 329-330, 417-419 

issues, 332-334 
rules for, 329-330 

Phrases, 332 
Piano design, 169-175 
Pierce, J., letter about ASR, 41, 43 
Pitch 

detection, 455^70 
autocorrelation, 460 
cepstral analysis, 462 
Gold-Rabiner, 462^*65 
inverse filtering, 460 

using median smoothing, 467-468 
musical, 569 
perception, models of, 218-229 

periodicity, 221-222 
place, 218-221 
place and periodicity combined, 

223-228 
ripple, 477, 488 

Pitch-synchronous overlap-add (PSOLA), 
435,619 

linear predictive, 435 
Place model of pitch, 218-228 
Plosive, 26, 238, 325 
PLP, see Perceptual linear prediction 
Posterior, see A posteriori probability 
Posterior probability estimation, 385-388, 

391-392 
Poststimulus time histogram (PSTH), 200, 

223, 233 
Prediction error (for LPC), see Linear 

predictive coding, residual 
Principal components analysis (PCA), 108 
Prior, see A priori probability 
Probability density function (pdf), 125 
Pronunciation models, see Phonological 

models 
Pronunciation, unknown words, 328 
Prosody 

defined, 247 
for synthesis, 445^146 

prediction, 431 
PSOLA, see Pitch-synchronous 

overlap-add 
PSTH, see Poststimulus time histogram 
Psychoacoustics, 209-216 

QBH, see Query by humming 
QMF, see Quadrature-mirror filter 
Quadrature-mirror filter (QMF), 514, 

539-542 
Quefrency, 278 
Query by humming (QBH), 584-586 

Radiation patterns, of musical 
instruments, 167-168 

Radio Rex, 40-41 
RAPT, see Robust algorithm for pitch 

tracking 
RASTA processing, 308-309 
Receiver operating characteristic (ROC), 

426 
Recursive filter, 88 
Relative entropy, 132 

RELP, see Residual-excited linear 
prediction 

RELP-PSOLA, see Residual-excited 
linear predictive PSOLA 

Remez exchange algorithm, 94 
Residual (for LPC), see Linear predictive 

coding, residual 
Residual-excited linear prediction 

(RELP), 508 
Residual-excited linear predictive 

PSOLA, 435 
Resonance, 79-83 

from all-pole model, 287 
measured with holography, 163 

Resource management (RM), 47 
Reverberation 

artificial, 562-563 
natural, 184-188 
time(RT60), 185 

Rhoticised vowel, 326 
Riesz speaking machine, 9 
Ritsma pitch perception experiments, 222 
Robust algorithm for pitch tracking 

(RAPT), 469 
ROC, see Receiver operating 

characteristic 
Roex filter, 272 
RT60, see Reverberation, time 

Sabine, formula for reverberation time, 
185 

SAD, see Speech activity detection 
Sakoe, H., 346 
Sampling, 76-77 
Saturation, of auditory nerve fiber, 203 
SCFG, see Context-free grammar, 

stochastic 
Schouten, J., periodicity model, 221 
Search, for recognized word sequence, see 

Decoding 
SEE, see Spectral envelope estimation 

vocoder 
Segment-based recognition, 347-348 
Segmentation 

for diarization, 647-649 
Segmentation-based vocoders, 498-502 
Seneff auditory model, 313 
Shazam, 582 
SIFT, see Simplified inverse filter tracking 
Sigmoidal function, 113 
Signal to distortion ratio (SDR), 597 
Signal to interference ratio (SIR), 597 
Signal to masker ratio (SMR), 539 
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Similarity matrix, in music, 577 
Simplified inverse filter tracking (SIFT), 

462 
Sine transform coder (STC), see 

Sinusoidal modeling 
Sinusoidal modeling, 436,558,628-629 
Sliding DFT, relation to filtering, 100 
Slope filter, 456 
Smoothing, 378, 422-423 
Softmax function, 386 
Sone, 210 
Sound 

intensity, 181 
pressure level (SPL), 182, 210 
speed of, 179 

Source separation, 595-614 
evaluation, 596-597 

Source-filter, 25, 505 
model, 158 
separation, 26-28, 277 
synthesis, 436, 442, 449 

Sparsity, of speech signals, 609 
Speaker adaptation, 394-401 

maximum a posteriori (MAP), 395 
maximum likelihood linear regression 

(MLLR), 396 
vocal tract length normalization 

(VTLN), 401 
Speaker adaptive training (SAT), 399^100 
Speaker-dependent (SD) speech 

recognition, 62 
Speaker diarization, 644-652 

multimodal, 651 
overlap resolution, 651 

Speaker identification, 633-634 
Speaker-independent (SI) speech 

recognition, 62 
Speaker verification, 633-641 

detection error tradeoff (DET) plot, 639 
features, 635 
joint factor analysis (JFA), 641 
likelihood ratio, 634 
score normalization, 637 
universal background model (UBM), 

635 
Speaking rate, effect on ASR, 333 
Spectral envelope estimation 

comparison of methods, 297 
Spectral envelope estimation (SEE) 

vocoder, 497 
Spectral flattening 

for pitch detection, 460 
for vocoders, 483, 505 

Spectral subtraction, 312 
Spectrogram, 28 
Speech activity detection (SAD), 650 
Speech recognition, see Automatic speech 

recognition 
Speech understanding, see Berkeley 

Restaurant Project 
definition, 416 

SPL, see Sound, pressure level 
Spontaneous rate, of nerve fibers, 200 
Stack decoding, 423 
Standards for voice coding, 489 
Standing waves, 144-146 
Stapes, 195 

STC, see Sine transform coder 
Stereocilia, 196-198 
Stevens, S., 210 
Stirrup, see Stapes 
Stochastic context-free grammar, see 

Context-free grammar, stochastic 
Stochastic gradient learning, 115 
Stop consonant, see Plosive 
String 

bowed, 159-163 
physics and geometry of, 142-143 

Stringed instrument, body vibration, 
163-167 

Structure detection, in music, 576-577 
Subband 

analysis, 539-542 
coding, 513-514 
for noise shaping, 538 

Subtractive synthesis, 558 
Subword units, 327 
SUMMIT system, 52 
Support Vector Machine (SVM), 571 
Support vector machine (SVM), 115-116 
Switchboard corpus, 51 
Syllable, 331 

coda, 332 
in fluent speech, 332 
nucleus, 331 
onset, 331 

Synchrony, 201 
Synthesis 

music, 553-565 
speech, 431-451 

concatenati ve, 433^136 
evaluation of, 446-447 
formant, 432 
history of, 441^143 
HMM, see Synthesis, statistical 

parametric 

physical modeling, 432 
source-filter, 436 
statistical parametric, 436-441 
unit selection, 434-435 

Synthesis problem for digital filters, 87 

Telharmonium, 16 
Template matching, 338 
Text-to-speech (TTS), 431 
Theremin, 16 
Threshold logic unit (TLU), 112 
Tied mixture, of Gaussians, 377 
Tiling, 238 
Time alignment, see Viterbi alignment 
Time delay of arrival (TDOA), 649 
Time normalization, see Dynamic time 

warp 
Time scale modification, 617-620 
Time warp 

linear, 339 
nonlinear, see Dynamic time warp 

Time-domain alias cancellation (TDAC), 
542 

Time-frequency masking, 609 
TIMIT, 47 
TLU, see Threshold logic unit 
TNS, see Noise shaping, temporal 
Toeplitz matrix, 294 
Tonotopic organization, 193, 233 
Training, discriminative, see 

Discriminant, training 
Transcription 

of music, see Music, transcription 
Transfer function, 78 
Transition probability, 354 
Traveling wave, 143 
Tree-structured delta codebook, 524 
Trigram, 421 
Trill, 325 
Triphone, 330 
Troy, fall of, 37-38 
Tschebyscheff filter, see Chebyshev filter 
TTS, see Text-to-speech 
Tuning curves, of auditory nerves, 201 
Turbulence, 156 
Twiddle factor, 99 

Unigram, 423 
Unit selection, see Synthesis, speech, unit 

selection 
Universal background model (UBM), 635 
Unmixing, 598 
Uvula, 324 
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Vector quantization (VQ), 105, 128, 376, 
493, 496-497 

Vector sum excited linear prediction 
(VSELP), 527 

Velar, 323 
VELP, see Voice-excited linear prediction 
Velum, 323 
Verbmobil, 59 
VEV, see Voice-excited vocoder 
Vibrating string, 142, 158 
Vintsyuk, Т., 341,346 
Violin 

frequency response, 160, 168 
radiation pattern, 171 

Virtual pitch, 220, 225 
Viterbi 

algorithm, 361 
alignment, 373 
approximation to forward recurrence, 

361 
decoding, 423 
training, 373-375 

Vocal tract length normalization (VTLN), 
401 

Vocoder, 473^89 
cepstral, 484 
channel, 473-183 

voice-excited, 506-508 
low-rate, 493-502 
LPC, 484 

voice-excited, 508-510 
phase, 623-625 
standards for, 489 

Vocoding, for speech transformation, 
621-623 

Voder, 9-13 
Voice onset time (VOT), 239 
Voice-excited linear prediction (VELP), 

508 
Voice-excited vocoder (VEV), 506-509 
Voiced-unvoiced decision, 457^-58, 482 
Voicing, 326 
Voicing decision, see Voiced-unvoiced 

decision 
VOT, see Voice onset time 
Vowel frontness, 326 
Vowel height, 326 
Vowel perception, 232-235 

Vowel roundedness, 326 
Vowel, lingustic parameters, 326 
VQ, see Vector quantization 
VSELP, see Vector sum excited linear 

prediction 
VTLN, see Vocal tract length 

normalization 

Wall Street Journal, 48 
Wave equation 

derivation, 142-143 
one-dimensional, 180 
spherical, 180 

Waveform coding, 510-512 
Wheatstone synthesizer, see 

Kempelen-Wheatstone synthesizer 
Wordspotting, see Keyword spotting 

X-System, see Channel vocoder 

Yin, 470 

z-transform, 73-74 
Zig-zag network, 505 


