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AUTHOR'S PREFACE

This book deals with a branch of mathematics of utmost
importance to scientists and engineers concerned with
actual mathematical calculations. Here the reader will
find a systematic treatment of the basic theory of the
more important special functions, as well as applications
of this theory to specific problems of physics and
engineering. In the choice of topics, I have been guided
by the goal of giving a sufficiently detailed exposition
of those problems which are of greatest practical interest.
This has naturally led to a certain curtailment of the
purely theoretical part of the book. In this regard, it
should be noted that various useful properties of the
special functions which do not appear in the text proper,
will be found in the problems at the end of the appro
priate chapters.

The book presupposes that the reader is familiar with
the elements of the theory of functions of a complex
variable, without which one cannot go very far in the
study of special functions. However, in order to make
the book more accessible to non-mathematicians, I
have made a serious attempt to keep to a minimum the
required background in complex variable theory. In
particular, this has compelled me to depart from the
order of presentation found in other treatments of the
subject, where the special functions are first defined by
certain convenient representations in terms of contour
integrals.

The usual elementary course in complex variable theory
is adequate for an understanding of most of the material
presented here. It is also desirable, but not necessary,
to know something about the analytic theory of linear
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Iv AUTHOR'S PREFACE

differential equations. I occasionally draw upon other
branches of mathematics and physics, but only in con
nection with certain specific examples, so that lack of
familiarity with the relevant information is no obstacle
to reading the book.

It is assumed that the reader already appreciates, from
his own experience, the need for using special functions.
Therefore, I have not made a special point of motivating
the introduction of various functions. By the same token,
I have always sought the simplest way of defining the
special functions and deriving their properties, without
concern for historical or other considerations.

The arrangement of the material in the separate chapters
is dictated by the desire to make the different parts of
the book independent of each other, at least to a certain
extent, so that one can study the simplest classes of func
tions without becoming involved with functions of a
more general type. For example, I have separated the
theory of the Legendre polynomials and Bessel functions
of integral order from the general theory of spherical
harmonics and cylinder functions, and I have also con
structed the theory of spherical harmonics without re
course to the properties of the hypergeometric function.

The applications of the theory were selected with the
aim of illustrating the different ways in which special
functions are used in problems of physics and engineer
ing. No attempt has been made to give a detailed treat
ment of the corresponding branches of mathematical
physics. In this regard, most space has been devoted to
the application of cylinder functions, and particularly,
of spherical harmonics.

In preparing the present second edition of the book I
have revised an earlier edition in various ways: Chapter
4 now contains a new version of the theorem on expan
sions in series of Hermite polynomials, which extends
the previous theorem to a larger class of functions. I
have also increased the number of examples illustrating
the technique of expanding functions in series of Hermite
and Laguerre polynomials. In Chapter 5 there is a new
section dealing with the theory of Airy functions, which
are often encountered in mathematical physics and play
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an important role in deriving asymptotic representations
of various special functions. Chapter 9, devoted to the
theory of the hypergeometric function, has been com
pletely revised, and I hope that in its present form, this
chapter will be useful to theoretical physicists and others
concerned with the application of the hypergeometric
function, thereby partially filling a gap in the literature
on the subject. I have added many new problems, which
serve both as exercise material and as a source of supple
mentary information not to be found in the text itself.
At the same time, I have removed a few problems of no
particular interest. Finally, the references have been
brought up-to-date.

I would like to take this opportunity to thank I. P.
Skalskaya for help in preparing the present edition of
my book.

N.N.L.



TRANSLATOR'S PREFACE

For the most part, this edition adheres closely to the
revised Russian edition (Moscow, 1963). However, as
always with the volumes of this series, I have not hesi
tated to introduce whatever improvements occurred to
me in the course of working through the book. In the
present case, two departures from the original text merit
special mention:

1. The Bibliography and the references cited in the
footnotes have been slanted towards books available
in English or the West European languages.

2. Chapters 6 and 8 have been equipped with prob
lems, most of them taken from the excellent collection
by Lebedev, Skalskaya and Uflyand (Moscow, 1955).

Finally, it was deemed impractical to build in sufficiently
detailed references to numerical tables of the special
functions. Here all roads eventually lead to a consulta
tion of the exhaustive bibliography compiled by Fletcher,
Miller, Rosenhead and Comrie, or its Russian counter
part by Lebedev and Fedorova.

R.A.S.
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1
THE GAMMA FUNCTION

1.1. Definition of the Gamma Function

One of the simplest and most important special functions is the gamma
function, knowledge of whose properties is a prerequisite for the study of
many other special functions, notably the cylinder functions and the hyper
geometric function. Since the gamma function is usually studied in courses
on complex variable theory, and even in advanced calculus,l the treatment
given here will be deliberately brief.

The gamma function is defined by the formula

r(z) = L" e-ttz - 1 dt, Re z > 0, (1.1.1)

whenever the complex variable z has a positive real part Re z. We can write
(I.I.I) as a sum of two integrals, i.e.,

r(z) = f e-ttZ-1dt + LX' e-ttZ-1dt, (1.1.2)

where it can easily be shown2 that the first integral defines a function P(z)

1 See D. V. Widder, Advanced Calculus, second edition, Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1961), Chap. II.

2 See E. C. Titchmarsh, The Theory of Functions, second edition, Oxford University
Press, London (1939), p. 100, noting that the integrand e-'tZ

-
l is analytic in z and con

tinuous in z and t for Re z > 0, 0 < t < 00, while the first integral is uniformly
convergent for Re z ;:. I) > 0 and the second integral is uniformly convergent for
Re z ,,; A < 00, since then

IL' e-'tZ
-

l dt I,,; l ' e-'t 6
-

l dt < 00, 15,'" e-'t Z
-

l dt I,,; 5,'" e-'t A
-

l dt < 00.



2 THE GAMMA FUNCTION CHAP. 1

which is analytic in the half-plane Re z > 0, while the second integral defines
an entire function. It follows that the function r(z) = P(z) + Q(z) is analy
tic in the half-plane Re z > 0.

The values of r(z) in the rest of the complex plane can be found by
analytic continuation of the function defined by (1.1.1). First we replace the
exponential in the integral for P(z) by its power series expansion, and then
we integrate term by term, obtaining

i
1

00 (1)" 00 ( 1)" i1
P(z) = tz- 1 dt 2: --=-, t" = 2: --=-, tl<+z-l dt

o "=0 k. "=0 k. 0

= i (- 1)" _1_,
"=0 k! z + k

(1.1.3)

where it is permissible to reverse the order of integration and summation
since 3

i
1

00 I( 1)" I i 1
00 t" i 1

ItZ
-
1jdt 2: ~ t" = tX-1dt 2: -, = ettX-1dt < co

o "=0 k. 0 ,,=ok. 0

(the last integral converges for x = Re z > 0). The terms of the series (1.1.3)
are analytic functions of z, if z # 0, - 1, - 2, . .. Moreover, in the region 4

[z + kj ~ a > 0, k = 0, 1,2, ... ,

(1.1.3) is majorized by the convergent series

and hence is uniformly convergent in this region. Using Weierstrass' theorem5

and the arbitrariness of a, we conclude that the sum of the series (1.1.3) is a
meromorphic function with simple poles at the points z = 0, - 1, - 2, ...
For Re z > °this function coincides with the integral P(z), and hence is the
analytic continuation of P(z).

The function r(z) differs from P(z) by the term Q(z), which, as just shown,
is an entire function. Therefore r(z) is a meromorphic function of the com
plex variable z, with simple poles at the points z = 0, -1, -2, ... An

3 E. C. Titchmarsh, op. cit., p. 45.
4 By a region we mean an open connected point set (of two or more dimensions)

together with some, all, or possibly none of its boundary points. In the latter case, we
often speak of an open region or domain, in the former case, of a closed region or closed
domain.

5 See A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. I
(translated by R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965),
Theorem 15.6, p. 326.
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analytic expression for f(z), suitable for defining f(z) in the whole complex
plane, is given by

00 ( l)k I J00

f(z) = L --=-, -- + e-ttz - 1 dt,
k=O k. z + k 1

z #- 0, - I, -2,... (1.1.4)

It follows from (1.1.4) that f(z) has the representation

( l)n 1
f(z) = -f--- + D(z + n)

n. z + n
(1.1.5)

in a neighborhood of the pole z = - n (n = 0, 1, 2, ... ), with regular part
D(z + n).

1.2. Some Relations Satisfied by the Gamma Function

We now prove three basic relations satisfied by the gamma function:

f(z + 1) = zf(z),

7t
f(z)f(l - z) = -.-'

SIn 7tZ

(1.2.1)

(1.2.2)

(1.2.3)

These formulas play an important role in various transformations and calcula
tions involving f(z).

To prove (1.2.1), we assume that Re z > °and use the integral repre
sentation (1.I.l). An integration by parts gives

f(z + 1) = LX' e-ttZdt = -e-ttZ [ + z 100

e-ttZ- 1 dt = zf(z)

The validity of this result for arbitrary complex z #- 0, - 1, - 2, . .. is an
immediate consequence of the principle of analytic continuation,6 since both
sides of the formula are analytic everywhere except at the points z = 0, -1,
-2, ...

To derive (1.2.2), we temporarily assume that °< Re z < 1 and again
use (1.I.l), obtaining

f(z)f(l - z) = LX) LX) e-(s+t)s-Ztz - 1 ds dt.

6 According to this principle, which we will use repeatedly, if j(z) and q:>(z) are
analytic in a domain D and if j(z) = q:>(z) for all z in a smaller domain D* contained in
D, then f(z) = q:>(z) for all z in D. The same is true if j(z) = q:>(z) for all z in any set of
points of D with a limit point in D, say, a line segment. See A. 1. Markushevich, op. cit.,
Theorem 17.1, p. 369.
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Introducing the new variables

u = s + t,

we find that 7

tv = -,
s

CHAP. I

('" ('" du dv ('" Vz- 1 7t
f(z)f(l - z) = Jo Jo e-

u
v
z
-

1
1 + v = Jo 1 + v dv = sin7tz'

Using the principle of analytic continuation, we see that this formula remains
valid everywhere in the complex plane except at the points z = 0, ± 1, ± 2, ...

To prove (1.2.3), known as the duplication formula, we assume that
Re z > °and then use (1.1.1) again, obtaining

22Z - 1f(z)f(z +.1) = L'" i'" e-(S+t)(2v"ii)2Z- 1t- 1/2dsdt

=4 L'" L'" e-(O(2+p2l(2oc~)2Z-1ocdocd~,

where we have introduced new variables oc = vs, ~ = VI. To this formula
we add the similar formula obtained by permuting oc and ~. This gives the
more symmetric representation

22Z - 1f(z)f(z + t) = 2L'" i'" e-(O(2+p2)(2oc~)2Z-1(oc + ~)docd~

= 4 II e-(O(2 +P2)(2oc~)2Z-1(OC + ~) doc d~,
a

where the last integral is over the sector cr: °~ oc < 00, °~ ~ ~ oc. Intro
ducing new variables

we find that

22Z - 1f(z)f(z + 1-) = ('" V2z - 1 dv ('" e-
U

du
Jo Jo vu - v

= 2 L'" e- vv2z - 1 dv L'" e- w2 dw = V;f(2z).

As before, this result can be extended to arbitrary complex values z # 0, -1-,
- 1, - t, ... , by using the principle of analytic continuation.

We now use formula (1.2.1) to calculate fez) for some special values of the
variable z. Applying (1.2.1) and noting that f(l) = 1, we find by mathe
matical induction that

f(n + 1) = n!, n = 0, 1,2, ... (1.2.4)

7 For the evaluation of the integral in the last step, see E. C. Titchmarsh, op. cit.,
p. 105.
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Moreover, setting z = 1- in (1.1.1), w~obtain

THE GAMMA FUNCTION 5

ret) = LX) e- 1t- 1 /2 dt = 2 L'X) e- u2 du = v~,

and then (1.2.1) implies

(1.2.5)

_ 1·3·5··· (2n - 1) . ;-
r(n + t) - 2n v 1', n = 1,2, ... (1.2.6)

Finally we use (1.2.2) to prove that the function r(z) has no zeros in the
complex plane. First we note that the points z = n (n = 0, ± 1, ± 2, ... )
cannot be zeros of r(z), since r(n)=(n-l)! if n= 1,2, ... , while
r(n) = 00 if n = 0, -1, - 2, ... The fact that no other value of z can be a
zero of r(z) is an immediate consequence of (1.2.2), since if a nonintegral
value of z were a zero of r(z) it would have to be a pole of r(1 - z), which is
impossible. It follows at once that [r(z)] -1 is an entire function.

1.3. The Logarithmic Derivative of the Gamma Function

The theory of the gamma function is intimately related to the theory of
another special function, i.e., the logarithmic derivative of r(z):

.1.( ) = r'(z).
'i' z r(z) (1.3.1)

(1.3.2)

Since r(z) is a meromorphic function with no zeros, Iji(z) can have no singular
points other than the poles z = - n (n = 0, 1, 2, ... ) of r(z). It follows from
(l.l.5) that Iji(z) has the representationS

Iji(z) = - _1_ + n(z + n)
z+n

in a neighborhood of the point z = - n, and hence Iji(z), like r(z), is a mero
morphic function with simple poles at the points z = 0, - 1, - 2, ...

The function Iji(z) satisfies relations obtained from formulas (1.2.1-3)9 by
taking logarithmic derivatives. In this way, we find that

1
Iji(z + 1) = - + ¥z),

z

1ji(1 - z) - Iji(z) = l' cot l'Z,

Iji(z) + Iji(z + 1) + 210g 2 = 21ji(2z).

(1.3.3)

(1.3.4)

(1.3.5)

8 Of course, the regular part Q(z + n) in (1.3.2) is not the same as in (1.1.5).
8 By (1.2.1-3) we mean formulas (1.2.1) through (1.2.3). Similarly, (1.2.1, 4, 6) means

formulas (1.2.1), (1.2.4) and (1.2.6), etc.
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These formulas can be used to calculate \jI(z) for special values of z. For
example, writing

\jI(1) = r'(l) = -y, (1.3.6)

(1.3.7)n = 1,2, ...

where y = 0.57721566 ... is Euler's constant, and using (1.3.3), we obtain

n 1
\jI(n + I) = -y + L -,

k=l k

Moreover, substituting z = t into (1.3.5), we find that

\jiG) = -y - 2 log 2, (1.3.8)

and then (1.3.3) gives

n 1
\jI(n + t) = -y - 2 log 2 + 2 L 2k _ I' n = 1,2,... (1.3.9)

k=l

The function \jI(z) has simple representations in the form of definite
integrals involving the variable z as a parameter. To derive these representa
tions, we first note that (1.1.1) implies 10

r'(z) = LX> e- ttZ- 110g t dt, Re z > O. (1.3.10)

If we replace the logarithm in the integrand by its expression in terms of the
Frullani integral ll

100 e-X - e-xt
log t = dx,

o x
Re t > 0, (1.3.11)

we find that 12

100 dx foor'(z) = - (e- X - e-xt)e-ttZ-1 dt
o x 0

(1.3.12)Rez > O.

= fooo ~ [e-Xr(z) - fooo e- t(X+l)t z - 1dt]-

Introducing the new variable of integration u = t(x + I), we find that the
integral in brackets equals (x + 1) - Zr(z). This leads to the following integral
representation of \jI(z):

(00 [ I] dx
\jI(z) = Jo e-

X

- (x + Iy x'

10 To justify differentiating behind the integral sign, see E. C. Titchmarsh, op. cit.,
pp. 99-100.

11 See H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, third edition,
Cambridge University Press, London (1956), p. 406, and D. V. Widder, op. cit., p. 357.

12 Here, as elsewhere in this chapter, we omit detailed justification of the reversal of
order of integration. An appropriate argument can always be supplied, usually by prov
ing the absolute convergence of the double integral and then using Fubini's theorem.
See H. Kestelman, Modern Theories of Integration, second revised edition, Dover Pub
lications, Jnc., New York (1960), Chap. 8, esp. Theorems 279 and 280.
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To obtain another integral representation of \jJ(z), we write (1.3.12) in the
form

. 100
[ 1 ]dx . [lOOe- X 100

dX]\jJ(z) = hm e- X
- - = hm - dx - ,

o~o 0 (x + ly x 0-0 0 X 0 (x + lyx

and change the variable of integration in the second integral, by setting
x + 1 = et• This gives

\jJ(z) = lim [(00 e-
t
dt _ (00 e-

tz
t dt]

0-0 Jo t JIOg (1 +6) 1 - e

. [1 00
(e-

t
e-

tZ
) 10

e-
t

]= hm - - dt - - dt ,
o~o log (1 +0) t 1 - e t log (l +0) t

and therefore, since the second integral approaches zero as a-+ 0,

Re z > 0.\jJ(z) = 50
00

(e;t _ 1 ~-t; t) dt,

Setting z = 1 and subtracting the result from (1.3.13), we find that

(1.3.13)

or
i

oo e-t - e- tz
\jJ(z) = -y + 1 t dt,

o - e

i ll - xz - 1

\jJ(z) = -y + 1 dx,
o - x

Re z > 0,

Re z > 0,

(1.3.14)

(1.3.15)

where we have introduced the variable of integration x = e- t•

From formula (1.3.15) we can deduce an important representation of \jJ(z)
as an analytic expression valid for all z #- 0, - 1, - 2, ... , i.e., in the whole
domain of definition of \jJ(z). To obtain this representation, we substitute the
power series expansion

0:::.; x < 1

into (1.3.15) and integrate term by term (this operation is easily justified).
The result is

00 (1 1)\jJ(z) = - y + L - - - .
n=O n + 1 n + z

(1.3.16)

The series (1.3.16), whose terms are analytic functions for z #- 0, -1, - 2, ... ,
is uniformly convergent in the region defined by the inequalities

Iz + nl ~ a > 0, n= 0, 1,2, . .. and Izi < a,
since

1

1 1 I a+l
n + 1 - n + z < (n + 1)(n - a)
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for n ~ N > a, and the series

CHAP. 1

(1.3.17)

(1.3.19)

~ a + 1
n=N (n + I)(n - a)

converges. Therefore, since ais arbitrarily small and a arbitrarily large, both
sides of (1.3.16) are analytic functions except at the poles z = 0, -I, -2, ... ,
and hence, according to the principle of analytic continuation, the original
restriction Re z > 0 used to prove this formula can be dropped. Ifwe replace
z by z + 1 in (1.3.16), integrate the resulting series between the limits 0 and z,
and then take exponentials of both sides, we find the following infinite pro
duct representation of the gamma function:

1 = eYZ n e-zln(1 + .:).
r(z + 1) n=l n

This formula can be made the starting point for the theory of the gamma
function, instead of the integral representation (1.1.1).

Finally we derive some formulas for Euler's constant y. Setting z = 1 in
(1.3.12-13), we obtain

("'( 1 )dX ("'( 1 I)y = -lj;(I) = Jo 1 + x - e- X x = Jo 1- e- t - t e-tdt. (1.3.18)

Moreover, (1.3.10) implies

y = - L'" e- t log t dt,

which, when integrated by parts, gives

i1 f'" i11 e-
t f'" e-

t
y = log t d(e- t - I) + log t d(e-t) = - dt - - dt.

o 1 0 t 1 t

Replacing t by I/t in the last integral on the right, we find that

i
1 1 -t -lit-e -e

y = dt.
o t

(1.3.20)

1.4. Asymptotic Representation of the Gamma Function for
Large Izi

To describe the behavior of a given function fez) as Izl - 00 within a
sector ex. ~ arg z ~~, it is in many cases sufficient to derive an expression of
the form

fez) = rp(z)[1 + r(z)], (1.4.1)

where rp(z) is a function of a simpler structure than fez), and r(z) converges
uniformly to zero as Izl- 00 within the given sector. Formulas of this type
are called asymptotic representations of fez) for large Izi. It follows from
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ao = 1, N = 1,2, ... , (1.4.3)

(1.4.1) that the ratioj(z)jep(z) converges to unity as Izi -+ 00, i.e., the two func
tions j(z) and ep(z) are" asymptotically equal," a fact we indicate by writing

j(z) ~ ep(z), Izi -+ 00, IX ~ arg z ~ ~. (1.4.2)

An estimate of 1r(z) 1 gives the size of the error committed whenj(z) is replaced
by ep(z) for large but finite Izi.

We now look for a description of the behavior of the function j(z) as
Izl-+ 00 which is more exact than that given by (1.4.1). Suppose we succeed
in deriving the formula

j(z) = ep(z)Lto anz- n + rN(z)],

where ZNrN(Z) converges uniformly to zero as Izi -+ 00, IX ~ arg z ~~. [Note
that (1.4.3) reduces to (1.4.1) for N = 0.] Then we write

00
j(z) ~ ep(z) L: anr n,

n=O
Izl -+ 00, IX ~ arg z ~ ~, (1.4.4)

and the right-hand side is called an asymptotic series or asymptotic expansion
of j(z) for large Izi. It should be noted that this definition does not stipulate
that the given series converge in the ordinary sense, and on the contrary, the
series will usually diverge. Nevertheless, asymptotic series are very useful,
since, by taking a finite number of terms, we can obtain an arbitrarily good
approximation to the function j(z) for sufficiently large Izi. In this book,
the reader will find many examples of asymptotic representations and asymp
totic series (see Sees. 1.4,2.2,3.2,4.6,4.14,4.22,5.11, etc.). For the general
theory ofasymptotic series, we refer to the references cited in the Bibliography
on p. 300.

To obtain an asymptotic representation of the gamma function r(z), it is
convenient to first derive an asymptotic representation of log r(z). To this
end, let Re z > 0, and consider the integral representation (1.3.13), with z

replaced by z + 1, Le.,

r'(z + 1) (00 (e- t e- tz )
Iji(z + 1) = r(z + 1) = Jo -t- - et _ 1 dt

f
oo e-t - e- tz 1foo foo (1 1 1)= dt + - e-tzdt - - - - + -t-- e- tz dt,

o t 2 0 0 2 t e-l

or

r'(z + 1) 1 (00 (1 1 1) -tz
r(z + 1) = log z + 2z - Jo 2 - t + et _ 1 edt,

where we have used (1.3.11). Integrating the last equation between the limits
1 and z, and bearing in mind that

log r(z + 1) = log r(z) + log z,
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we find that 13

log r(z) = (z - ~) log z - z + 1

+ ('" (~ _ ! + _1_) e-
tz

- e-
t

dt
Jo 2 t et - 1 t '

where Re z > O. It should be noted that the function

(
1 1 1) 1f(t) = - - - + -- -,
2 t et -lt

CHAP. 1

(1.4.5)

(1.4.6)

(1.4.7)

appearing in the integrand in (1.4.5), is continuous for t ~ 0, withf(O) = -h,
as can easily be verified by expanding f(t) in a power series in a neighbor
hood of the point t = O.

To simplify (1.4.5), we evaluate the integral

J = L'" f(t)e- t dt.

This can be done by using the following trick: If

f = L'" f(t)e- t
/
2 dt,

then

(1.4.8)

J
'" [ 1 (t)] J'" (e-

tI2 1) dtf - J = e- t/2 f(t) - - f - dt = - - -t- -.
o 2 2 0 t e -1 t

It follows that

1'" (e-tI2 - e- t e- t) dt
f = (f - J) + J = - - -

o t 2 t

J
'" [ d(e- tI2 - e- t) e- t - e- tI2]= - - + dt

o dt t 2t

e- t/2 - e-tl'" IJ"'e- t - e- tl2 1 1 1= - + - dt = - + - log-·
t 020 t 22 2

(1.4.9)

On the other hand, substituting z = t into (1.4.5), we find that

f - J = t log 7t - t,
and hence

J = 1 - t log 27t.

Using this result, we can write (1.4.5) in the form

log fez) = (z - t) log z - z + t log 27t + w(z),

(1.4.10)

(1.4.11)

(1.4.12)

13 The choice of the path of integration is unimportant. To justify integration behind
the integral sign, we use an absolute convergence argument (cf. footnote 12, p. 6).
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w(z) = LX) f(t)e- tz dt, Re z > 0. (1.4.13)

(1.4.14)

Since f(t) decreases monotonically as t increases,14 the integral (1.4.13) also
converges for Re z = 0, 1m z -# 0. 15

Using (1.4.12) and (1.4.13), we can easily derive an asymptotic representa
tion of r(z). First let larg zl ~ n/2, and integrate (1.4.13) by parts, obtaining

w(z) = ~ [J(O) + LX) I'(t)e- tz dt)'

Since I'(t) ~ 0, II'(t)1 = - I'(t), we have

Iw(z)1 ~ I~I [f(O) - f'l'(t) dt] = 2{;f),
i.e.,

1
1w(z) I < 61zl' larg zl < ~. (1.4.15)

Then, taking exponentials of both sides of (1.4.12), we find that

r(z) = e(z- y.) log z-z+ Y. log 2" [1 + r(z)],

where
r(z) = eWCz ) - 1.

According to (1.4.15),

c
1r(z) 1 < IZT'

larg zl < ~, (1.4.16)

(1.4.17)

where C is an absolute constant (we assume that z is bounded away from
zero, i.e., Izi ~ a > 0). Thus r(z) is of order Izl-l as Izi ~ 00, a fact indi
cated by writing 16

r(z) = O( Izl-l), (1.4.18)

and hence (1.4.16) is an asymptotic representation of r(z) in the indicated
sector.

To derive an asymptotic representation of r(z) which is valid in other

14 This follows at once from the expansion
., I

f(t) = 2 k~ t 2 + 47t2k2

See K. Knopp, Theory and Applications ofInfinite Series (translated by R. C. H. Young),
Blackie and Son, Ltd., London (1963), p. 378.

15 E. C. Titchmarsh, op. cit., p. 21.
16 We say that fez) is of order <p(z) as z ~ zo, and write fez) = O(<p(z» as z ~ Zo if

the inequality If{z)1 .,; AI<p(z)1 holds in a neighborhood of zo, where A is some con
stant. If Zo is not explicitly mentioned, then Zo = 00.
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sectors of the complex plane, we proceed as follows: Let abe an arbitrarily
small fixed positive number, and let

7t
2" ~ arg z ~ 7t - a.

Since arg ( - z) = arg z - 7t, this implies

7t-"2 ~ arg(-z) ~ -a.

It follows from (1.2.1-2) that

7t

fez) = -zf( -z) sin 7tZ'

where, according to (1.4.16) and (1.4.18),

f(-z) = e-(z+%)(lOgZ-"i)+Z+J!,lOg2"[1 + O(lzl- 1)].

On the other hand, in the sector (1.4.19),

-1tiz ( 1 ) -"Iz
= - e 2i I - Zze21ttz = - e 2i [I + O( Izl-l)],

(1.4.19)

(1.4.20)

(1.4.21)

(1.4.22)

since ze2"iz is bounded in this sector. Substituting (1.4.21-22) into (1.4.20),
we again arrive at formula (1.4.16). A similar result is obtained for the sector

7t
- (7t - a) ~ arg z ~ - 2"

Finally, therefore, in any sector

larg zj ~ 7t - a,
we have the asymptotic representation

fez) = e(z- y,)log z-z+ J!, log 21t [1 + O( Izl-l)]. (1.4.23)

Considerations resembling those just given, but much more complicated,17
lead to the more exact formula

fez) = e(z-J!,) log z-z+J!, log 2" [1 + _1_ + _1_ _ 139 + O(lzl-4)].
12z 288z2 51840z3

(1.4.24)

If z = x is a positive real number, then (1.4.16) becomes Stirling'sformula

(1.4.25)

17 See G. N. Watson, An expansion related to Stirling's formula, derived by the method
ofsteepest descents, Quart. J. Pure and Appl. Math., 48, 1 (1920).
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where for rex) we have a sharper estimate than that given by (1.4.17). In fact,
if z = x > 0, then

(00 1
jw(x)1 ~ f(O) Jo e- xt dt = 12x' (1.4.26)

so that
Ir(x) I ~ e1

/
12x

- 1. (1.4.27)

Finally, we note that (1.2.4) and (1.4.25) imply the following asymptotic
representation of the factorial:

n --+ 00. (1.4.28)

1.5. Definite Integrals Related to the Gamma Function

(1.5.1)Re p > 0, Re z > 0,

The class of integrals which can be expressed in terms of the gamma func
tion is very large. Here we consider only a few examples, mainly with the
intent of deriving some formulas that will be needed later.

Our first result is the formula

(00 e-pttz ...1 dt = r(z),
Jo pZ

which is easily proved for positive real p by making the change of variables
s = pt, and then using the integral representation (1.1.1). The extension of
(1.5.1) to arbitrary complex p with Re p > °is accomplished by using the
principle of analytic continuation.

Next consider the integral

B(x, y) = f tX- 1(1 - t)y-l dt, Re x > 0, Re y > 0, (1.5.2)

known as the beta function. It is easy to see that (1.5.2) represents an analytic
function in each of the complex variables x and y. If we introduce the new
variable of integration u = t/(1 - t), then (1.5.2) becomes

B(x, y) = 100
(1 :x:;x+y du, Re x > 0, Re y > 0. (1.5.3)

Settingp = 1 + u, z = x + yin (1.5.1), we find that

1 _ 1 ( 00 _(l + u)ttX + y- 1 dt
(1 + u)X+y - rex + y) Jo e ,

and substituting the result into (1.5.3), we obtain

1 fOO fooB(x,y) = e-tt x + y- 1 dt e-utux - 1 du
rex + y) 0 0

= rex) (00 e - ttY - 1 dt = r(x)r(y).
rex + y) Jo rex + y)

(1.5.4)

(1.5.5)
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Thus we have derived the formula

B( )
_ r(x)r(y)

x,y - rex + y)'

CHAP. I

(1.5.6)

relating the beta function to the gamma function, which can be used to derive
all the properties of the beta function.

PROBLEMS

1. Prove that

Ir(i )12 = rt,
Y Y sinh rty

for real y.

Ir(-!- + iy)[2 = ~h
cos rty

2. Using (1.5.6), verify the identity

(00 cosh 2yt dt = 22x - 2 r(x + y)r(x - y),
)0 (cosh t)2X r(2x)

3. Prove that

Re x > 0, Rex >IReyl.

r(~)("/2 ("/2 v; 2
)0 cos" ede =)0 sin

v ede = 2 rG + 1) Re v > -1,

Re [L > -1, Re v > -1.

4. Verify the formula

33Z - y,
r(3z) =~ r(z)r(z + ·!)r(z + 1).

5. Derive the formula

3\j;(3z) = \j;(z) + \j;(z + ·n + \j;(z + 1) + 3 log 3.

Hint. Calculate the logarithmic derivatives of both sides of (i).

(i)

Re z > O.

6. Derive the following integral representation of the square of the gamma
function, where Ko(t) is Macdonald's function (defined in Sec. 5.7):

r 2(z) = 22- 2z JoOOt2Z-1Ko(t)dt,

Hint. Use formulas (5.10.23), (1.5.1) and the integral in Problem 2.



PROBLEMS

7. Derive the asymptotic formulas

THE GAMMA FUNCTION 15

r(z + IX) = e(Z+"-Yz)lOgZ-Z+YzIOg21t[1 + O(lzl-l)],

~g: ;~ = Z"-~[I + (IX - (3)t + f3 - I) + O(!zl-2)}

where IX and f3 are arbitrary constants, and larg z[ ~ 1t - 13.

Hint. Use the results of Sec. 1.4.

8. Derive the asymptotic formula

[rex + iY)1 = V2ITe-Yz1t'Y'lyIX-Yz[1 + r(x,y)],

where as It[ --+ 00, rex, y) --+ °uniformly in the strip Ixl ~ IX (IX is a constant).

9. Show that the integral representation

I I r t -z d
r(z) = 2ITi Jc e t t

holds for arbitrary complex z, where r z = e- Z log t, [arg tl < IT, and C is the
contour shown in Figure 13, p. 117.

10. The incomplete gamma function y(z, IX) and its complement r(z, IX) are
defined by the formulas

y(z, IX) = fo" e-ttZ
-

1 dt, Re z > 0, [arg IX[ < IT,

r(z, IX) = LX> e-ftZ
-

1 dt, larg IXI < IT,

so that
y(z, IX) + r(z, IX) = r(z).

Prove that for fixed IX, r(z, IX) is an entire function of z, while y(z, IX) is a mero
morphic function of z, with poles at the points z = 0, - I, - 2, ...

11. Derive the formulas

y(z + I, IX) = zy(z, IX) - e-"lXz ,

r(z + I, IX) = zr(z, IX) + e-"IXZ•

12. Derive the following representation of y(z, IX):

'" (_I)klXk+Z
y(z, IX) = k~ k!(k + 2)· z =f. 0, -I, -2, ...



(2.1.1)

2
THE PROBABILITY INTEGRAL

AND RELATED FUNCTIONS

2.1. The Probability Integral and Its Basic Properties

By the probability integral is meant the function defined for any complex
z by the integral

<1>(z) = ~; f e-
t2

dt,

evaluated along an arbitrary path joining the origin to the point t = z. The
form of this path does not matter, since the integrand is an entire function of
the complex variable t, and in fact we can assume that the integration is along
the line segment joining the points t = 0 and t = z. According to a familiar
theorem of complex variable theorY,l <1>(z) is an entire function and hence
can be expanded in a convergent power series for any value of z. To find this
expansion, we need only replace e- t2 by its power series in (2.1.1), and then
integrate term by term (this is always permissible for power series 2), obtaining

2 JZ 00 (_1) lc t 21c 2 00 (_I)IcZ 2k+l

<1>(z) = .;- .L k f dt = .;- .L kl(2k I)'
V7t 0 k;O' V7tk;O' +

Izl < 00. (2.1.2)

1 If f(t) is analytic in a simply connected domain D, then the integral

cp(z) = r f(t) dt,

evaluated along any rectifiable path contained in D, defines an analytic function in D.
See A. 1. Markushevich, op. cit., Theorem 13.5, p. 282. The theorem remains true if
f(a) = 00 or a = 00, provided that the improper integral exists.

2 Ibid., Theorems 16.3 and 15.4, pp. 348 and 325.
16
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It follows from (2.1.2) that <1>(z) is an odd function of z. For real values of its
argument, l1>(z) is a real monotonically increasing function, whose graph is
shown in Figure 1. At zero we have <1>(0) = 0, and as z increases, <1>(z)
rapidly approaches the limiting value <1>(00) = I, since

i
OO v~e- t2 dt =-.

o 2

The difference between <1>(z) and this limit can be written in the form

(2.1.3)

o 05

~(x)

L-_.l..-._-'--_-'-_--'-_-'-_--'-__x
2.0 2.5 3.0

FIGURE I

The probability integral is encountered in many branches of applied
mathematics, e.g., probability theory, the theory of errors, the theory of heat
conduction, and various branches of mathematical physics (see Sees. 2.5-2.7).
In the literature, one often finds two functions related to the probability
integral, i.e., the error function

(Z v~
Erf z = Jo e- t2 dt = 2 <1>(z),

and its complement

Erfc z = foo e- t2 dt = ~ [I - <1>(z)].
Z 2

(2.1.5)

(2.1.6)

Many more complicated integrals can be expressed in terms of the probability
integral. For example, by differentiation of the parameter z it can be shown
that

2 i oo
e-

zt2

- -I-2 dt = eZ[1 - <1>(VZ)].
1t 0 + t

(2.1.7)
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2.2. Asymptotic Representation of the Probability Integral for
Large Izi

To find an asymptotic representation of the function <I>(z) for large Izl,
we apply repeated integration by parts to the integral in (2.1.4), obtaining

J

OO 1 Joo 1 -z2 1 Joo -t
2

rt2 dt = _ _ _ d(e- t2 ) = _e_ _ _ _e-dt
z 2 z t 2z 2 z t 2

-Z2 -z2 1 3 Joo -t2e e . e=---+- -dt
2z 22z3 Z2 z t4

_ _ z2 [ 1 1 1 ·3 1·3·5 n 1·3· .. (2n - 1)]
- e 2z - 22z3 + 23z5 - 24z7 +··.+(-1) 2n+lz2n+l

( _I)n+l 1.3... (2n + I)Joo e-
t2 d

+ 2n + 1 t2n + 2 t.
z

It follows that

e- Z2
[ ~ Ie 1·3·· ·(2k - 1) ]

1 - <I>(z) = v;z 1 + 1e~1 (-1) (2z2)1e + rn(z) , (2.2.1)

where

Now let

1 3 (2 + 1) J
oo e-t2

rn(z) = (_1)n + 1 -'-'-'-'2=:n:-n-----:. zez2 2n + 2 dt.
z t

largzl::::;~-a,

(2.2.2)

where a is an arbitrarily small positive number, and choose the path of in
tegration in (2.2.2) to be the infinite line segment beginning at the point t = z

and parallel to the real axis. If z = x + iy = retG>, then this segment has
the equation t = u + iy (x ::::; u < (0), and on the segment we have

ItI ::::; usec(j).

(2.2.3)

Therefore

1·3·· ·(2n + 1) roo X L u 2 _ 1·3·· ·(2n + 1)
Irn(z)1 ::::; 2nlzl2n+2 sec (j) J% e u du - (2IzI 2)n+l sec (j),

which implies

1·3·· ·(2n + 1) 1·3·· ·(2n + 1)
Irn(z) I ::::; (2IzI2)n+l sec (j)::::; (2jzI2)n+l sin a'
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It follows from (2.2.3) that as Izi ~ 00 the product z2nrn(z) converges uni
formly to zero in the indicated sector, i.e.,

Izi ~OO,
(2.2.4)

1t
largzl~2-a.

(2.3.1)

(2.3.2)

Thus the series on the right is the asymptotic series (see Sec. 1.4) of the func
tion 1 - <1>(z), and a bound on the error committed in approximating
1 - <1>(z) by the sum of a finite number of terms of the series is given by
(2.2.3). For positive real z this error does not exceed the first neglected term
in absolute value.

An asymptotic representation of the probability integral in the sector

1t 31t
2 + a ~ arg z ~ 2 - a

can be obtained from (2.2.1) by using the relation <1>(z) = -<1>(-z), but the
construction of an asymptotic representation in the sector

1t 1t
- - a & arg z & - + a
2 '" '" 2

requires a separate argument [cf. (2.3.5)].

2.3. The Probability Integral of Imaginary Argument.
The Function F(z)

In the applications, one often encounters the case where the argument of
the probability integral is a complex number. We now examine the parti
cularly shnple case where z = ix is a pure imaginary. Choosing a segment of
the imaginary axis as the path of integration, and making the substitution
t = iu, we find from (2.1.1) that

<1>(ix) _ ~ rx ,,2 d
i-v;)o e u.

The integral in the right increases without limit as x ~ 00, and therefore it is
more convenient to consider the function

F(z) = e- z2 10Z e,,2 du,

which remains bounded for all real z. In the general case of complex z, F(z)
is an entire function, and the choice of the path of integration in (2.3.2) is
completely arbitrary.
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To expand F(z) in power series, we note that F(z) satisfies the linear dif
ferential equation

F'(z) + 2zF(z) = I,

with initial condition F(O) = O. Substituting the series
co

F(z) = .L alczlc
Ic=O

(2.3.3)

into (2.3.3), and comparing coefficients of identical powers of z, we obtain the
recurrence relation

ao = 0, al = I, (k + I)alc+l + 2alc-l = O.

After some simple calculations, this leads to the expansion

F(x)

0.6

0.4

0.2

Izl < 00. (2.3.4)

IL-_L-----i_-.l._---.L_---.l.. ........,~ X

o 0.2 0.4 0.6 0.8 1.0

FIGURE 2

2.0

To study the behavior of F(z) as z ~oo for real z, we apply L'Hospital's
rule twice to the ratio

and then use (2.3.2) to deduce that

lim 2zF(z) = I,

i.e.,
1

F(z) z 2z' Z -0>- 00. (2.3.5)

In Figure 2 we show the graph of the function F(z) for real z ~ O. The maxi
mum of the function occurs at z = 0.924 ... and equals Fmax = 0.541 .....
The function F(z) comes up in the theory of propagation of electromagnetic
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waves along the earth's surface, and in other problems of mathematical
physics.

2.4. The Probability Integral of Argument vi/x.
The Fresnel Integrals

Another interesting case from the standpoint of the applications occurs
when the argument of the probability integral is the complex number

x
z = V7x = V2 (1 + 0,

where x is real. In this case, we choose the path of integration in (2.1.1) to be
a segment of the bisector of the angle between the real and imaginary axes.
Then, using the formula t = vtu to introduce the new real variable u, we find
from (1.1.1) that

<1>(vtx) _ 2 (X -tu2 d _ 2 (X 2 d . 2 (X. 2 d
Vi - v~Jo e u - v~Jo cosu u - 1 v~Jo smu u.

(2.4.1)

The integrals on the right can be expressed in terms of the functions

rz 7tt
2 (Z 7tt

2

C(z) = Jo cos "2 dt, S(z) = Jo sin "2 dt, (2.4.2)

where the integration is along any path joining the origin to the point t = z.
The functions C(z) and S(z) are known as the Fresnel integrals. Since the
integrands in (2.4.2) are entire functions of the complex variable t, the choice
of the path of integration does not matter, and both C(z) and S(z) are entire
functions of z.

For real z = x, the Fresnel integrals are real, with the graphs shown in
Figure 3. Both C(x) and Sex) vanish for x = 0, and have an oscillatory char
acter, as follows from the formulas

, 7tX
2

, • 7tX
2

C (x) = cos T' S (x) = sm T'

which show that C(x) has extrema at x = ± V2n + 1, while Sex) has extrema
at x = ± V2n (n = 0, 1, 2, ... ). The largest maxima are C(1) = 0.779893 ...
and S(V2) = 0.713972 ... , respectively. As x --+ 00, each of the functions
approaches the limit

C(oo) = S(oo) = t,
as implied by the familiar formula 3

1
00 100 ~cos t2 dt = sin t 2 dt = --_.

o 0 2V2

3 D. V. Widder, op. cit., p. 382.

(2.4.3)
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Replacing the trigonometric functions in the integrands in (2.4.2) by their
power series expansions, and integrating term by term, we obtain the following
series expansions for the Fresnel integrals, which converge for arbitrary z:

(Z 00 (_l)k (1tt2)2k 00 (-l)k (1t)2k Z4k+ 1

C(z) = Jo k~O (2k)! 2"" dt = k~O (2k)! "2 4k + l'

(2.4.4)

J
z ~ (-l)k (1tt2)2k+l ~ (-l)k (1t)2k+l Z4k+3

S(z) = L. - dt = L. - --.
o k=0(2k + I)! 2 k=O (2k + 1)! 2 4k + 3

The relation between the Fresnel integrals and the probability integral is
given by the formula

(Z fi (";"/2ze ",,1/4
C(Z) ± is(z) = Jo e±1tit2 /2 dt = -J ~ e±1tt/4 Jo e- u2du

(2.4.5)

which implies

C(z) = 2~2 [e"t/4<I>(J~zr"t/4) + e-"t/4<I>(J~ze"t/4)l
(2.4.6)

Using (2.4.6), we can derive the properties of C(z) and S(z) from the cor
responding properties of the probability integral. In particular, the results of
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Sec. 2.2 lead to the following asymptotic representations of the
integrals, valid for large /z/ in the sector larg zl ~ t7t - a,

1 1 [ 7tZ
2

7tZ
2

]C(z) = - - - B(z) cos - - A(z) sin - ,
2 7tZ 2 2

1 1 [ 7tZ
2

7tZ
2

]S(z) = 2 - ~ A(z) cosT + B(z) sin T '

where

A(z) = ~ (-1)kI7.2k + O(IZ/-4N-4)
k~O (7tZ2)2k ,

B(z) = ~ (-I)kI7.2k+l + O(/ZI-4N-6)
k~O (7tZ2)2k +1 '

I7.k = 1· 3· .. (2k - 1), 17.0 = 1.

Fresnel

(2.4.7)

The Fresnel integrals come up in various branches of physics and engineer
ing, e.g., diffraction theory, theory of vibrations (see Sec. 2.7), etc. Many
integrals of a more complicated type can be expressed in terms of the func
tions C(z) and S(z).

2.5. Application to Probability Theory

By a normal (or Gaussian) random variable with mean m and standard
deviation cr is meant a random variable ~ such that the probability of
~ lying in the interval [x, x + dx] is given by the expression 4.5

Then the probability

P{a ~ ~ - m ~ b}

that ~ - m lies in the interval [a, b] is just the integral

I ib+ m I fb/./20---=- e-(x-m)2/20 2 dx = ---= e- t2 dt
V27tcr a+m V7t a/'/20

(2.5.1)

(2.5.2)

(2.5.3)

4 As usual, [a, bI denotes the closed interval a ~ x ~ b, and (a, b) the open interval
a < x < b.

5 See W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1,
second edition, John Wiley and Sons, Inc., New York (1957). If Xl, .. " X n are the
results of measurements of ~, where n is large, then

1 n
m ~ - L Xk,

n k= 1
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where <I>(x) is the probability integral. As one would expect, (2.5.2) equals I
if a = - 00, b = 00.

Setting a = - Il, b = Il, we obtain the probability that I~ - ml does not
exceed Il:

Then the probability that I~ - mJ exceeds Il is just

P{ [~ - mJ > Il} = I - <1>(2-).
V20"

(2.5.4)

(2.5.5)

The value Il = ?>p for which (2.5.4) and (2.5.5) are equal is called the probable
error, and clearly satisfies the equation

Using a table of the function <1>(x) to solve this equation,6 we find that

IIp = 0.674490".

Example. With standard deviation I mm, a machine produces parts of
average length 10 cm. Find the probability that a part is of length 10 cm to
within a tolerance of I mm.

The required probability is

P{ [~ - 101 ~ OJ} = <1>(:2) ~ 0.683,

i.e., some 68 percent of the parts satisfy the specified tolerance. In this case,
the probable error is approximately 0.7 mm.

2.6. Application to the Theory of Heat Conduction. Cooling of
the Surface of a Heated Object

Consider the following problem in the theory of heat conduction: An object
occupying the half-space x ~ 0 is initially heated to temperature To. It then
cools off by radiating heat through its surface x = 0 into the surrounding
medium which is at zero temperature. We want to find the temperature
T(x, t) of the object as a function of position x and time t.

Let the object have thermal conductivity k, heat capacity c, density p and

6 See E. Jahnke and F. Emde, Tables ofHigher Functions, sixth edition, revised by F.
Losch, McGraw-Hill Book Co., New York (1960), p. 31.
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emissivity A, and let 't" = kt/cp. Then our problem reduces to the solution of
the equation of heat conduction

oT 02T
O't" = ox2' (2.6.1)

subject to the initial condition

TI~=o = To

and the boundary conditions 7

(OT _ hT)1 = 0,
ox x=o

(2.6.2)

(2.6.3)

where h = A/k > O.
To solve the problem, we introduce the Laplace transform T = T(x, p) of

T = T(x, 't"), defined by the formula

T = 100

e-P~ T d't", Rep> O. (2.6.4)

A system of equations determining T can be obtained from (2.6.1-3) if we
multiply the first and third equations by e - P~ and integrate from 0 to 00, taking
the second equation into account. The result is

d2T _
dx2 = pT - To,

dT -
dx - hTlx=o = 0, -, = To.T x_oo

P

(2.6.5)

The system (2.6.5) has the solution

T = :0 (1 - h +\/p e-v'px), Rep> 0, Re vp > O. (2.6.6)

We can now solve for Tby inverting (2.6.4). This can be done either by using
a table of Laplace transforms,s or by applying the Fourier-Mellin inversion
theorem,9 which states that

1 Ja+i oo
T = -. eP~ Tdp,

2m a-loo
(2.6.7)

where a is a constant greater than the real part of alI the singular points of T.

7 For the derivation of equations (2.6.1, 3), see G. P. Tolstov, Fourier Series (trans
lated by R. A. Silverman), Prentice-Hall, Inc., Englewood Cliffs, N.J. (1962), Chap. 9,
Sees. 20 and 24.

8 See A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables ofIntegral
Transforms, Volume 1 (of two volumes), Chaps. 4-5, McGraw-Hili Book Co., New
York (1954). This two-volume set (based, in part, on notes left by Harry Bateman)
will henceforth be referred to as the Bateman Manuscript Project, Tables of Integral
Transforms.

9 H. S. Carslaw and J. C. Jaeger, Operational Methods in Applied Mathematics,
second edition, Oxford University Press, London (1953), Chap. 4, Sees. 28-31.
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The quantity of greatest interest is the surface temperature of the object.
Setting x = 0 in (2.6.6), we find that

Tlx-o = V To = To(_1_2 - ~~).
- p(Vp + h) P - h p - h Vp

(2.6.8)

The simplest way to solve (2.6.8) for the original function Tlx=o is to use the
convolution theorem,10 which states that if11 and 12 are the Laplace trans
forms of f1 and f2' then 1 = IJ2 is the Laplace transform of the function

f( 'r) = f f1(t)f2( 'r - t) dt.

Since it is easily verified that

(2.6.9)

h
11 = vp'

are the Laplace transforms of

h
f1 = .1-'

V 7t'r

(2.6.9) implies

TI -_ 'T' ( ,,2~ _ _h (00 ,,2(~-t) _dt) 'T' "2~(1 2 (".;:r 82d)
x = 0 1 0 e V~ Joe VI = 1 oe' - V~ Joe - s,

i.e.,

(2.6.10)

(2.6.11)'r --+ 00.

where <!lex) is the probability integral. It follows from the asymptotic formula

(2.2.1) that for large 'r the surface temperature falls off like I/V~:

I To
T x~o ~ hV7t'r'

The temperature inside the object (x #- 0) can also be expressed in closed
form in terms of the probability integral.

2.7. Application to the Theory of Vibrations. Transverse Vibra
tions of an Infinite Rod under the Action of a Suddenly
Applied Concentrated Force

Consider an infinite rod of linear density p and Young's modulus E, lying
along the positive x-axis. Let I be the moment of inertia of a cross section of
the rod about a horizontal axis through the center of mass of the section, and

let 'r = VEll pt. Suppose the end x = 0 satisfies a sliding condition, while

10 H. S. Carslaw and J. C. Jaeger, op. cit., Chap. 4, Sec. 33.



SEC. 2.7 THE PROBABILITY INTEGRAL AND RELATED FUNCTIONS 27

the end x = OC! is clamped, and suppose a constant force Q is suddenly
applied at the end x = 0. Then the displacement u = u(x, t) at an arbitrary
point x ~ °of the rod is described by the system of equations 11

u!x~QO = 0,oul = 0
ox x=o '

oulu!",=o = -;;;- = 0,
U't'",=o

o3ul Q
ox3 x=o = Ei

(2.7.1)

To solve this system, we use the Laplace transform, as in the preceding
section. Writing

Rep> 0, (2.7.2)

we obtain the following equations for u:

d 4u 2-
dx4 + P u = 0,

dU/ = °
dx x=o '

u!x~QO = 0,

(2.7.3)

Simple calculations then show that

__ Q (e-';-PIX e-';PiX)
u--- ---,

2Elp2 i V -pi viii Re p > 0, Re V±pi > O. (2.7.4)

To find u, we again use the convolution theorem. Since 12

are the Laplace transforms of

1 (X2 X2)12 = V27tT sin 4't' + cos 4't' '

(2.6.9) implies

Q f"' (. x
2

X
2

) 't' - t Qx't' ( X )
U = EIV27t Jo SIll 4t + cos 4t Vt dt = EI 1 2V~ , (2.7.5)

11 See R. E. D. Bishop and D. C. Johnson, The Mechanics of Vibration, Cambridge
University Press, London (1960), p. 285.

12 Bateman Manuscript Project, Tables of Integral Transforms, Vol. 1, formula (27),
p. 146 or formula (6), p. 246.
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where

CHAP. 2

(2.7.6)
1 Joo 1 - (X2j 2)

f(x) = ---= (sin y2 + cos y2) 2 Y dy.
V27t x y

The functionf(x) can be expressed in terms of the Fresnel integrals C(z) and
S(z), introduced in Sec. 2.4. In fact, integrating (2.7.6) by parts twice, we find
that

2 [(1 2) sin x
2

(1 2) cos X
2

]+----= +x --+ -x --.
3V27t X X

PROBLEMS

1. Show that the functions

y~ 2
cp(z) = 2 eZ lI>(z)

(2.7.7)

satisfies the differential equation cp' - 2zcp = 1, and use this fact to derive the
expansion

2z _z2 ~ (2z2 )1<

lI>(z) = y~e I<~ 1·3 .. ·(2k + 1)' Izi < CIJ.

2. Using formula (2.4.5) and the result of Problem I, derive the following
expansions of the Fresnel integrals

[

7tX2 7tX
2J

C(x) = X Q(x) cos 2 + ~(x) sin 2 '

[
7tX2 7tX

2J
S(x) = X Q(x) sin 2 - ~(x) cos 2 '

where

00 ( _ 1)1« 7tX2)21<

Q(x) = " ,
/~'o 1·3·· ·(4k + 1)

3. Use integration by parts to show that

f lI>(x) dx = xlI>(x) + J~ e- x2 + C.

4. Let ~ be the Laplace transform of the probability integral, i.e.,

(fi(p) = L" e- PX lI>(x) dx.

Prove that
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5. Derive the integral representations

f '" 2' 2 f'" 2 sin 2ztF(z) = e- t sm 2zt dt, <I>(z) = - e- t -- dt.
o 1t 0 t

Hint. Replace sin 2zt by its power series expansion and integrate term by
term.

6. Derive the following integral representations for the square of the prob
ability integral:

4 fl e- Z2 (1+t2)
<I>2(Z) = I - - I 2 dt,

1t 0 + t

_ 2 _ if'" e- z2
(l +t

2
) 1t

[I <I>(z)] - I 2 dt, larg zl ~ -4'
1t 1 + t

Hint. Represent <I>2(Z) as a double integral over the region 0 ~ s ~ z,
o ~ t ~ z, and transform to polar coordinates.

7. Derive the formulas

2 ('"
I - <I>(z) = v~ e- Z2 )0 e- t2-2zt dt,

[I - <I>(z))" = :~ e- 2z2 fo'" e-t2-2.,!2zt<I>(t) dt.

Hint. The second formula is obtained from the first after introducing new
variables IX. = S + t, ~ = st in the double integral over the region 0 ~ s < aJ,

o~ t ~ s.

8. Prove that

• 1tZ
2

_ 2

2 f.l sm 2 (1 + t )
C2(z) ± S2(Z) = - I 2 dt.

1t 0 + t

9. Prove that

(nx 2/2 (nX212

C(x)=)o J_ 1/2(t)dt, S(x)=)o J 1/2(t)dt,

where Jlx) is the Bessel function of order v (see Sec. 5.8).



3
THE EXPONENTIAL INTEGRAL

AND RELATED FUNCTIONS

3.1. The Exponential Integral and Its Basic Properties

(3.1.1)jarg (-z)1 < 7t,

The exponential integral is defined by

J
2 et

Ei(z) = - dt,
_ 00 t

where the integration is along any path L in the t-plane with a cut along the
positive real axis (see Figure 4). Since the integrand is an analytic function in

o

FIGURE 4

the resulting simply connected domain, the integral is path-independent and
Ei(z) is an analytic function of z (cf. footnote 1, p. 16). A possible choice of
the path of integration is the infinite line segment

-00 < Re t ~ Re z, 1m t = 1m z, (3.1.2)

passing through the point z and parallel to the real axis.
30
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If we replace z by - z and t by - t, formula (3.1.1) becomes

f
<Xl e-t

-Ei( -z) z -t dt, larg zl < n, (3.1.3)

where the function - Ei( - z) is analytic in the plane with a cut along the
negative real axis. The graph of this function for z = x > 0 is shown in
Figure 5. It will be noted that - Ei( - x)

-Ei(-xl
decreases monotonically from the value
- Ei(O) = + 00 to the value - Ei( - (0) = 0,
and in fact, its derivative is

d e-X

- [-Ei(-x)] = - - < 0
dx x if x > o.

1.0

To derive a series expansion of the ex
ponential integral, we represent (3.l.I) in
the form

I
-let IO et - 1

Ei(z) = - dt + -- dt
-<Xl t -1 t

i
z et - 1 JZ dt+ --dt + -,

o t -1 t

and observe that the sum of the first two
integrals is an absolute constant, which we
denote by C. Setting t = - u - 1 in the first
integral and t = - u in the second, we find
that

1
11 -u -lfu-e -ec= duo

o u
(3.1.4)

0.5

FIGURE 5

jarg(-z)1 < n. (3.1.5)

Comparison of (3.1.4) and (1.3.20) shows that C coincides with Euler's
constant:

C = y = 0.5772157 ...

Thus we have 1

Ei(z) = y + log ( _ z) + rz
If - 1 dt,Jo t

The integral on the right, whose integrand is an entire function, is itself an
entire function of the complex variable z, and can therefore be expanded in a
power series which converges in the whole plane. To obtain this series, we

1 In this book log z always means the single-valued branch of the logarithm defined
by

log z = log Izi + j arg z, jarg zl < "IT.

Similarly, ZV (v arbitrary) means e V JOg., and so on.
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need only expand the integrand in powers of t and integrate term by term.
The result is

J
.Z et - 1 iZ ~ tk -1 ~ Zk
--dt = L. -dt = L.-'

o t 0 k =1 k! k =1 k!k
Izi < 00,

and therefore the desired expansion of the exponential integral is

00 Zk

Ei(z) = y + log (-z) + k~l k!k' larg(-z)1 < 1t, (3.1.6)

valid everywhere in the plane cut along the positive real axis. It follows from
(3.1.6) that the values of Ei(z) on the upper and lower edges of the cut are
respectively

Ei(x ± iO) = Ei 1(x) =+= 1ti, x > 0,

where Ei 1(x) is the real function defined by
00 k

Ei1(x) = ![Ei(x + iO) + Ei(x - iO)] = y + log x + k~l ~k' x> 0,

(3.1.7)

and known as the modified exponential integral. 2

The exponential integral is often encountered in the applications, e.g., in
antenna theory and other branches of physics and engineering. Many inte
grals of a more complicated type can be expressed in terms of the exponential
integral. For example, the integral

JeZ I(z) dz,

where I(z) is an arbitrary rational function, can be written in finite form in
terms of the function Ei(z) and elementary functions (see Problem 9, p. 42).

3.2. Asymptotic Representation of the Exponential Integral for

Large Izi
To find an asymptotic representation of the function Ei(x) for large Izl,

we apply repeated integration by parts to formula (3.1.1), obtaining

Jz et JZ 1 eZ JZ et
- dt = - d(et) = - + 2. dt

-00 t -oot z -oot

[
1 1 1·2 1.2 ... n] JZ et

= eZ
- + - + - + ... + + 1·2 .. ·(n + 1) -dt.
Z Z2 Z3 zn + 1 _ 00 tn +2

2 Since (3.1.1) does not define Ei(z) for z = x > 0, one can formally extend the de
finition of the exponential integral by defining Ei(x) == Ei,(x) for x > o.
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(3.2.1)

where

J
z et

rn(z) = (n +1)!ze- Z n+2dt,
_ co t larg (-z)1 < 7t. (3.2.2)

To estimate the remainder rn(z), we choose the line segment (3.1.2) as the path
of integration. Suppose larg (-z)1 ~ 7t - 13, where 13 is an arbitrarily small
positive number, and let z = x + iy. Then along the segment t = cr + iy
( - co < cr ~ x) we have

It I ~ Izi sin 13,
and hence

I ( )1 (n + I)! JX a-xd _ (n + I)! II-n-l - O(II-n-l)
rn z ~ Izln+l(sin i3)n+2 -co e cr - (sin i3)n+2 z - z .

(3.2.3)
Therefore we have the asymptotic representation

Ei(z) = ~ [i k~ + O(lzl-n-l)], larg(-z)1 ~ 7t - 13. (3.2.4)
z k=OZ

It follows from (3.2.4) that the divergent series

Z co k'
~L--i
z k=O Z

is the asymptotic series for Ei(z) in the sector larg ( - z)1 ~ 7t - 13.
It should be noted that if Re z ~ 0, i.e., in the sector larg ( - z)1 ~ 7t/2, we

have the sharper estimate
(n + 1)!

Irn(z) I ~ Izln+l' (3.2.5)

In this case, the error committed in approximating Ei(z) by the sum of a finite
number of terms of the asymptotic series does not exceed the first neglected
term in absolute value.

3.3. The Exponential Integral of Imaginary Argument.
The Sine and Cosine Integrals

If z = ix is a pure imaginary, the function Ei(z) can be expressed in terms
of two real functions Si(x) and Ci(x), known as the sine integral and the cosine
integral, respectively. These functions, which are interesting in their own
right, are defined for arbitrary complex z by the integrals

Si(z) = rz
sin t dt, Ci(z) = fZ cos t dt, larg zl < 7t. (3.3.1)Jo t co t
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The choice of the path of integration in the first integral is entirely arbitrary,
but in the second integral it is required that the path of integration L lie in
the plane cut along the negative real axis, as shown schematically in Figure 6.

o

FIGURE 6

For the usual reason (cf. footnote 1, p. 16), Si(z) is an entire function, while
Ci(z) is analytic in the plane cut along the negative real axis.

For real z = x > 0, both functions are real, with the graphs shown in

2
___---Si(X}

-I

-2

FIGURE 7

Figure 7. Moreover, Si(x) and Ci(x) have an oscillatory character, as follows
from the formulas

d S.() sin x
- IX = --,
dx X

.!!.... Ci(x) = cos X,
dx X

which show that Si(x) has extrema at the points X = mt (n = 0, 1,2, ... ),
while Ci(x) has extrema at the points X = (n + t)7t. For X < 0,

Si(x) = - SiC lxi),
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whereas Ci(x) is not defined. For large and small values of the argument, we
have the limiting values

Si(oo) = ~,

Si(O) = 0,

Ci(oo) = 0,

Ci( +0) = - 00.

(3.3.2)

To establish the relation between the functions Ei(ix), Si(x) and Ci(x), we
substitute z = ix (x > 0) into (3.1.1). First we note that the integration along
the original path L can be replaced by integration along the imaginary axis.
In fact, consider the integral of the function etlt along the closed contour
consisting of an arc CR of the circle of radius R with center at the origin, the

iR

IX

o

FIGURE 8

arc L R of the curve L lying inside this circle, and the segment of the imaginary
axis joining the points ix and iR (see Figure 8). According to Cauchy's
integral theorem,

i et 1iR e
t I e

t
- dt + - dt + - dt = 0.

LII t Iz t Gil t

But as R ~ 00, the integral along LR approaches Ei(ix), while the integral
along CR vanishes.3 Therefore

i
loo e IX e

tu IX cos U IX sin uEi(ix) = - - dt = - du = -- du + i -- du,
Izt ooU ooU ooU

3 On the arc ell we have t = Re'o, rt/2 .;; e < rt, and hence

IJ. ~dtl.;; f' ell eos °de = J.'12 e-IlS,nxdX';; J.'12 e- 2Ilx!, dX =::: 1 - e-
Il

,
0Il t .12 0 0 2 R

where we use the inequality sin X ~ (2X/rt), valid for 0 .;; X .;; rt/2 [see A. I. Markushe
vich, op. cit., formula (13.20), p. 272]. It follows that

J. ~dt--';-O
0Il t

asR--,;-oo.
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i.e.,

and similarly,

Ei(ix) = Ci(x) - i [~ - Si(x)l
Ei(-ix) = Ci(x) + i[~ - Si(X)],

x> 0,

x> 0.

(3.3.3)

(3.3.4)

We have proved formulas (3.3.3-4) for x > 0, but it is easily seen by using
the principle of analytic continuation that they hold in a larger region, and
in fact,

Ei( _ze- ltiI2) = Ci(z) - i[~ - Si(Z)}

Ei( - zeltil2) = Ci(z) + i [~ - Si(Z)] ,

"IT
- 2" < arg z < "IT,

"IT
-"IT < arg z < 2"

(3.3.5)

"IT
larg zl < 2"'

To prove (3.3.5), we merely note that both sides are analytic functions of z

in the indicated sectors, and that these functions coincide for z = x > 0.
From (3.3.5) we deduce the useful formulas

Ci(z) = ~ [Ei( _zeltiI2) + Ei( _ze- ltiI2)],

Si(z) = ~ - b[Ei( _zeltiI2) - Ei( _ze- ltiI2)],

(3.3.6)

larg zl < ~,

Izl < 00. (3.3.7)

which express Ci(z) and Si(z) in terms of the exponential integral.
The functions Si(z) and Ci(z) have simple series expansions. The expan

sion ofSi(z) is found by substituting the power series for sin t into (3.3.1) and
then integrating term by term. The result is

. (Z 00 (_I)kt2k 00 (_ I)kz2k+l

Sr(z) = Jo k~O (2k + I)! dt = k~O (2k + 1)!(2k + 1)'

The derivation of the expansion of Ci(z) is somewhat more complicated. The
simplest approach is to use the relation between the functions Ci(z) and
Ei( _ze±ltiI2), together with the expansion (3.1.6). In this way, we find that 4

(3.3.8)larg zl < "IT.

• 00 (_I)kz2k
Cr(z) = y + log z + k~l (2k)!2k '

In particular, (3.3.8) leads to the following values of the function Ci(z) on the
upper and lower edges of the cut [ - co, 0]: 5

Ci( -x ± iO) = Ci(x) ± "ITi, x> 0. (3.3.9)

4 The original restriction larg =1 < n/2 is easily eliminated by using the principle of
analytic continuation.

S For simplicity of notation, we will always regard infinite branch cuts as passing
through the point at infinity, as in the familiar representation of the extended complex
plane by the Riemann sphere (see A. 1. Markushevich, op. cit., Chap. 5).
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Finally, by using (3.2.4) and (3.3.6), we can derive asymptotic representa
tions of the functions Ci(z) and J7t - Si(z) for large Izi in the sector
larg zl < 7t/2. It is easily verified that

Ci(z) = Si~ z P(z) _ co; z Q(z),

7t S'() cos z P() sin z Q( )-- lZ =-- z +-- z
2 z z'

(3.3.10)

where

P(z) = i (-I;:~2k)! + O(lzl-2n-2),
k=O

Q(z) = i (_I)k~:~/ 1)! + O(lzl-2n-3).
k=O Z

3.4. The Logarithmic Integral

(3.4.1)[arg (1 - z)1 < 7t,larg zl < 7t,

Another special function which is closely related to the exponential integral
is the logarithmic integral. This function, which plays an important role in
analysis, is defined by

l z dt
li(z) = -1-'

o og t

where the integral is along any path L belonging to the plane with two cuts
along the segments [- 00, 0] and [1, 00] of the real axis (see Figure 9). By the

z

o

FIGURE 9

usual argument (cf. footnote 1, p. 16), Ii(z) is an analytic function in the cut
plane. By introducing the new variable of integration u = log t, we can
easily express li(z) in terms of the exponential integral. In fact, the original
cut t-plane is mapped onto the strip 11m u[ < 7t in the u-plane, with a cut
along the positive real axis, and (3.4.1) is transformed into the integral

f
lOg z eU

li(z) = - du, (3.4.2)
-00 u
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evaluated along any path belonging to this strip. Since the strip is a part of
the domain of definition of the exponential integral (see Sec. 3.1), it follows
from (3.4.2) that

li(z) = Ei (log z), (3.4.3)

where, as always, log z denotes the principal value of the logarithm (cf.
footnote 1, p. 31).

Using (3.4.3), we can easily deduce the properties of the logarithmic
integral from those of the exponential integral. For example, formula (3.1.6)
implies the expansion

<Xl (log zy'
li(z) = y + log ( -log z) + .L !Jk' (3.4.4)

k= 1 •

where z belongs to the plane with cuts along the segments [- 00, 0] and
[1,00]. In particular, it follows from (3.4.4) that the values of li(z) on the
upper and lower edges of the cut [1, 00] are

H(x ± iO) = li1(x) + Tti, x > 1, (3.4.5)

where li1(x) denotes the real function

li1(x) = ![li(x + iO) + li(x - iO)] = y + log log x + k~l (lO;,;)k, x > 1,

(3.4.6)

known as the modified logarithmic integral. 6 It follows from (3.1.7) and
(3.4.6) that the modified exponential integral and the modified logarithmic
integral are connected by the formula

li1(x) = Ei1 (log x). (3.4.7)

The function li1(x) is frequently encountered in analysis, and is particularly
important in number theory.7

Finally, we note that the results of Sec. 3.2 imply the asymptotic repre
sentation

where

• Z [n k! ]
b(z) = -1- .L -(1)k + rn(z) ,

ogz k=O ogz
a ::::; larg zl ::::; Tt - a, (3.4.8)

Irn(z)! = O(llog zl-n-l)

for large values of Ilog zl. In particular,

(n + I)!
Irn(z) I ::::; Ilog zln+l

for Izi < 1, and in this case the sector is just larg zl ::::; Tt - a.

6 Since (3.4.1) does not define li(z) for z = x > 1, one can formally extend the
definition of the logarithmic integral by defining li(x) == li 1(x) for x > 1.

7 See A. E. Ingham, The Distribution ofPrime Numbers, Cambridge Tracts in Mathe
matics and Mathematical Physics, No. 30, Cambridge University Press, London (1932).
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3.5. Application to Electromagnetic Theory. Radiation of a
Linear Half-Wave Oscillator 8

As a simple example of the application of the special functions studied in
this chapter, we consider the electromagnetic energy radiated by a linear
oscillator of length 21 = A/2, driven by an alternating current 1 of frequency
w = 21tC/A (c is the velocity oflight and Athe wavelength), whose distribution
along the conductor is give by

1tZ
1 = 10 cos 21 cos wI, -I::::; z::::; 1 (3.5.1)

(see Figure 10). Let E(t) and H(t) denote the time-dependent electric and
magnetic field vectors, with complex amplitudes E and H, so that

E(t) = Re {Eel"'t}, H(t) = Re {He/"'t}. (3.5.2)

z

2l

FIGURE 10

Then the power radiated by the oscillator, averaged over a period T = A/C,
is given by the formula 9

P = Re {8~ Is (E x H*)·n dS} (3.5.3)

where S is an arbitrary surface surrounding the oscillator, n is the exterior
normal to S, and H* is the vector whose components are the complex con
jugates of those of H.10

In the present case, the vectors E and H have components (E" Ea, 0) and
(0,0, H) in a spherical coordinate system (r, e, 1jl) [see Figure 10, where Mis

8 The necessary background information in electromagnetic theory, written in the
system of units used here, can be found in G. Joos, Theoretical Physics, third edition,
with the collaboration of I. Freeman, Blackie and Son, Ltd., London (1958).

9 Ibid., pp. 332, 341.
10 As usual in vector algebra, the dot denotes the scalar product and the cross denotes

the vector product.
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the observation point], and for S we can choose a sphere r = p of arbitrarily
large radius p. Then (3.5.3) becomes

P = Re {e:2

fa" EeH* sin 8 d8} (3.5.4)

where H* is the complex conjugate of H. In (3.5.4) we can replace the exact
values of Ee and H by their asymptotic expressions for large r. Using the
well-known formulas for the components of the electromagnetic field of an
elementary dipole,l1 and integrating with respect to z, we easily find that

H ~ E ~ loik -ikp . 8 II 1T:Z ikz cos e d _ 210 i -ikp cos (!1T: cos 8)
~ e ~ e SIn cos 21 e Z - e . 8

ep -I ep sm

for sufficiently large p, where k = (liJe. It follows that

P = l~ (" cos2
(~1T: cos 8) dO

e Jo sm 0 '

where we use the formula

(3.5.5)

The integral in (3.5.5) can be expressed in terms of the cosine integral
Ci(x). In fact, introducing the new variable of integration x = cos 8, we
have

p = l~ (1 I + cos ;x dx = l~ ( e 1 + cos 1T:X dx + e1 + cos 1T:X) dx
e Jo 1 - x 2e Jo 1 - x Jo I + x

l~ ( e 1 - cos 1T:Y (2 1 - cos 1T:Y d ) = l~ (2 1 - cos 1T:Y d
= 2e Jo y dy + J1 Y Y 2e Jo y y

_ l~ J2" 1 - cos Z
- 2 dz.e 0 z

Finally, using the result of Problem 3, p. 41, we find that

p = ~~ [y + log 21T: - Ci(21T:)],

(3.5.6)

(3.5.7)

where Ci(x) is the integral cosine and y is Euler's constant.
The same method can be used to calculate the average power radiated by

antennas with more complicated configurations. It is remarkable that the
results can still be expressed in terms of sine and cosine integrals.

11 G. Joos, op. cit., pp. 338, 340.
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PROBLEMS

1. Verify the integral representation

f'" -zt
- Ei( - z) = e- Z _e__ dt

o 1 + t ' larg zl ~ i

7r
larg zl ~ 2'

2. Verify the following integral representation for the square of the ex
ponential integral:

[Ei(-z)]2 = 2e- 2z (ro e-2zt log? + 2t) dt,
Jo + t

Hint. Represent the left-hand side as a double integral over the region
o ~ s < 00, 0 ~ t ~s, and introduce the new variables IX = S + t, (3 = st.

3. Prove that

(Z I - cos t d
Ci(z) = y + log z - Jo t t, larg zl < 7r.

4. Starting from (3.1.1) and the definition of the modified exponential integral
Eh(x), show that

Ei1(x) = lim (J-- :!..dt + (x:!"dt), x> 0,
£-+0 -00 t JE t

i.e., show that Ei1(x) is the Cauchy principal value of the integral

J
x et

-dt.
_ '" t

5. Verify that

fx et - 1
Eh(x) = y + logx + --dt.

o t

6. Using L'Hospital's rule, show in turn that

lim e- X Eh(x) = 0, lim xe- X Ei1(x) = I,
x-++oo :£_+00

and then deduce the asymptotic formula

Ei1(x) ~ eX, x -+ + 00.
x

7. Using (3.4.7) and the result of the preceding problem, deduce the asymp
totic formula

li1(x) ~ -1x, x-+ +00.
ogx

Comment. This formula plays an important role in number theory.

8. Prove the formula

. . (f1-- dt lX dt)1I1(x) = lim -- + -- ,
_~o 0 log t 1+e log t

Hint. Use (3.4.7) and the result of Problem 4.

x>l.
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9. Consider the integral

CHAP. 3

I f(z)e 2 dz, (i)

where f(z) is an arbitrary rational function, and the path of integration does
not pass through any singular points of the integrand. By separating out the
polynomial part of f(z) and then expanding the remainder in partial fractions,
the evaluation of (i) can be reduced to the evaluation of integrals of the form

Izne2 dz, (ii)

I(z ~2 a)n dz, (iii)

where n is a positive integer. By repeated integration by parts, (ii) can be
expressed in terms of elementary functions, and the problem of evaluating
(iii) can be reduced to the problem of evaluating the integral

I~dZ. (iv)
z-a

Then the substitution u = z - a reduces (iv) to an exponential integral
(generally with a complex argument).

Using the method just described, prove that

Ix et eX
2( _ 1) dt = - - 2Ei(x) + eEi(x - 1), x < O._rott x

10. As usual, let I denote the Laplace transform of f (see p. 25). Prove that

- 1 1 - 1
Si(x) = - arc tan -, - Ei( - x) = - log (l + p),

P P P

where the arc tangent and the logarithm have their principal values.



(4.1.1)

4
ORTHOGONAL POLYNOMIALS

4.1. Introductory Remarks

A system of real functions fn(x) (n = 0, I, 2, ... ) is said to be orthogonal
with weight p(x) on the interval [a, b] if

f p(x)fm(x)fn(x) dx = °
for every m -:f- n, where p(x) is a fixed nonnegative function which does not
depend on the indices m and n. For example, the system of functions
cos nx (n = 0, 1,2, ... ) is orthogonal with weight I on the interval [0,7t],
since

in cos mx cos nx dx = ° if m -:f- n.

Orthogonal systems play an important role in analysis, mainly because func
tions belonging to very general classes can be expanded in series of orthogonal
functions, e.g., Fourier series, Fourier-Bessel series, etc.

An important class of orthogonal systems consists of orthogonal poly
nomials Pn(x) (n = 0, I, 2, ... ), where n is the degree of the polynomial Pn(x).
This class contains many special functions commonly encountered in the
applications, e.g., Legendre, Hermite, Laguerre, Chebyshev and Jacobi poly
nomials. In addition to the orthogonality property (4.1.1), these functions
have many other general properties. For example, they are the integrals of
differential equations of a simple form, and can be defined as the coefficients
in expansions in powers of t of suitably chosen functions w(x, t), called
generating functions. Orthogonal polynomials are of great importance in

43
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mathematical physics, approximation theory, the theory of mechanical
quadratures, etc., and are the subject of an enormous literature, in which the
contributions of Russian mathematicians like Adamov, Akhiezer, Bernstein,
Chebyshev, Sonine, Steklov and Uspensky playa prominent role.

This chapter is devoted to the theory of Legendre, Hermite and Laguerre
polynomials, which have extremely diverse applications to physics and en
gineering. For the convenience of readers primarily concerned with applica
tions, each of these three kinds of polynomials is treated independently.
Those interested in studying the subject from a more general point of view
are referred to the books by Jackson, Sansone, Szego and Tricomi cited in
the Bibliography on p. 300.1 In Problems 21-22, p. 96-97, we also touch upon
the theory of Jacobi and Chebyshev polynomials.

4.2. Definition and Generating Function of the
Legendre Polynomials

The Legendre polynomials are defined by Rodrigues' formula

n = 0, 1,2, ... (4.2.1)

(4.2.2)

for arbitrary real or complex values of the variable x. Thus the first few
Legendre polynomials are

Po(x) = 1, PI(x) = x, P2(x) = t(3x2
- 1),

P3(x) = t(5x3
- 3x), ...

The general expression for the nth Legendre polynomial is obtained from
(4.2.1) by using the familiar binomial expansion

which implies

[nj2j (-I)I'(2n - 2k)! n-2k

Pix) = k~ 2nk!(n _ k)!(n _ 2k)! x ,

where the symbol [v] denotes the largest integer ~ v. It will be shown in
Sec. 4.5 that the Legendre polynomials are orthogonal with weight 1 on the

1 See also A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher
Transcendental Functions, Volume 2 (of three volumes), Chap. 10, McGraw-Hill Book
Co., New York (1953). This three-volume set (based, in part, on notes left by Harry
Bateman) will henceforth be referred to as the Bateman manuscript Project, Higher
Transcendental Functions.
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interval [- 1, 1].Z As already noted, these orthogonal polynomials play an
important role in the applications, particularly, in mathematical physics (see
Sees. 8.3-4, 8.7-8, 8.13-14).

The properties of the Legendre polynomials can be derived very simply if
we first prove that the function

w(x, t) = (1 - 2xt + tZ) -liZ

(where the value of the square root is taken to be 1for t = 0) is the generating
function of the Legendre polynomials, i.e., that the expansion

00

w(x, t) = (l - 2xt + tZ) -liZ = 2: Pn(x)tn
n=O

(4.2.3)

holds for sufficiently small [tl. Let r1 and rz be the roots of the quadratic
equation 1 - 2xt + tZ = 0, and let

r = min {hl,hi}. (4.2.4)

Then w(x, t), regarded as a function of t, is analytic in the disk ItI < r. 3 It
follows from a familiar theorem of complex variable theory 4 that

00

w(x, t) = (1 - 2xt + tZ) -liZ = 2: cn(x)tn,
n=O

ItI < r,

where the coefficients cnCx) can be written as contour integrals

cnCx) = -21 . r (l - 2xt + tZ)-1/2t-n-1 dt,
1t/ Jc (4.2.5)

evaluated along any closed contour C surrounding the point t = 0 and lying
inside the disk Itl < r. If we make the substitution

1 - ut = (l - 2xt + t2)1/2,

then (4.2.5) transforms into the following integral of a rational function
evaluated along a closed contour C' surrounding the point u = x: 5

(4.2.6)

2 This property can be proved directly, by starting from the definition (4.2.1), but our
approach will be different. In fact, it can be shown that if p,,(x) (n = 0, 1, 2, ... ) is an
arbitrary system of polynomials orthogonal with weight 1 on the interval [-1, 1], then
p,,(x) = y"P,,(x), where y" is independent of x. See G. E. Shilov, An Introduction to the
Theory ofLinear Spaces (translated by R. A. Silverman), Prentice-Hall, Inc., Englewood
Cliffs, N.J. (1961), Sec. 58.

3 In the case of greatest practical importance, x is a real number belonging to the
interval [- 1, I], and then r = I.

4 A. 1. Markushevich, op. cit., Theorem 16.7, p. 361.
5 The point u = x corresponds to the point t = 0, and the closed contour C' cor

responds to the closed contour C, since the square root returns to its original value after
making a circuit around C.
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This integral can be evaluated by residue theory. In fact, using the familiar
ru1e, 6 we find that

1 [d n(U 2 - 1)n]cn(x) = 2n f d n == Pn(X) ,n. U u~x

thereby verifying (4.2.3).
To illustrate the utility of the generating function for deriving properties

of the Legendre polynomials, we successively set x = 1, -1,0 in (4.2.3), each
time expanding the left-hand side in powers of t. As a result, we obtain the
important formulas

Pn(1) = 1, pnc -1) = (_1)n,

P2n(O) = (_1)n 1· 3· . ·(2n - 1), P (0) °
2 .4 ... 2n 2n + 1 =.

4.3. Recurrence Relations and Differential Equation for the
Legendre Polynomials

(4.2.7)

We further illustrate the use of the expansion (4.2.3) by deriving some
recurrence relations satisfied by the Legendre polynomials. First we sub
stitute the series (4.2.3) into the identity

8w
(1 - 2xt + t2) at + (t - x)w = 0.

Since power series can be differentiated term by term, this gives

00 00

(1 - 2xt + t2) L nPn(x)tn- 1 + (t - x) L Pn(xW = O.
n=O n=O

Setting the coefficient of tn equal to zero, we find that

(n + 1)Pn+l(x) - 2nxPn(x) + (n - I)Pn- 1(x) + Pn-1(x) - xpncx) = 0,

or

(n + 1)Pn+ 1(x) - (2n + 1)xPn(x) + nPn-1(x) = 0, n = 1,2, ... , (4.3.1)

which is a recurrence relation connecting three Legendre polynomials with
consecutive indices. One can use this relation to calculate the Legendre poly
nomials step by step, starting from Po(x) = 1, P1(x) = x.

Similarly, the identity

8w
(1 - 2xt + t2) - - tw = 0

8x

6 See F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, Inc.,
Englewood Cliffs, N.J. (1962), p. 548.
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00 00

(1 - 2xt + t 2
) 2: p~(x)tn - 2: Pn(x)tn+ 1 = 0,

n:O n:O
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which implies

P~ + leX) - 2xP~(x) + P~ -leX) - Pix) = 0, n = 1,2, ... (4.3.2)

Differentiating (4.3.1), we first eliminate P~-l(X) and then P~+l(X) from the
resulting equation and (4.3.2). This gives two further recurrence relations 8

P~ +lex) - xP~(x) = (n + I)Pn(x),

xP~(x) - P~-l(X) = nPn(x),

n = 0, 1,2, ,

n = 1,2, .

(4.3.3)

(4.3.4)

Adding (4.3.3) and (4.3.4), we obtain the more symmetric formula

n = 1,2, ... (4.3.5)

Finally, replacing n by n - I in (4.3.3), and eliminating P~-l (x) from the
resulting equation and (4.3.4), we find that

n = 1,2, ... (4.3.6)

This last formula allows us to express the derivative of a Legendre polynomial
in terms of Legendre polynomials. If we differentiate (4.3.6) with respect to
x and again use (4.3.4) to eliminate P~-l(X), we arrive at the formula

n = 0, 1,2, ... , (4.3.7)

which shows that the Legendre polynomial u = Pn(x) is a particular integral
of the second-order linear differential equation

[(1 - x 2)uT + n(n + I)u = 0. (4.3.8)

This equation is often encountered in mathematical physics, and plays an

7 To justify differentiating (4.2.3) term by term with respect to x, it is sufficient to
prove that (4.2.3) converges uniformly in the domain Ixl < a, for arbitrary finite a > 0
and sufficiently small [tl. (Here we rely on Weierstrass'theorem, cited in footnote 5,

p.2.) Let It I < b, where b = Va2 + 1 - a. Then, according to (4.2.3), the series

I Pn.~a) [tI"
n= 0 I

converges to (I - 2altl - It[2)-1I2. The uniform convergence of (4.2.3) for Ixl < a,
Itl < b now follows from the inequality

IP,,(x)tnl :;;; Pn.~a) [tI",
I

implied by (4.2.2).
8 In some cases, the validity of a recurrence relation for small n does not follow from

the general argument, but then one can always verify the relation by direct substitution
of Po(x) = I, P,(x) = x, ...
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important role in the theory of Legendre polynomials. By making changes of
variables in (4.3.8), we can easily derive many other equations whose integrals
can be expressed in terms of Legendre polynomials. Thus, for example, the
equation

1 d(. dU)
sin fJ dfJ sm edfJ + n(n + l)u = 0

is satisfied by the function u = Picos e), the equation

d
2
u [< 1)2 1] 0dfJ2 + n + 2" + 4 sin2 e u =

is satisfied by the function U = Vsin ePn (cos e), and so on.

4.4. Integral Representations of the Legendre Polynomials

(4.3.9)

(4.3.10)

The Legendre polynomials have simple representations in terms of
definite integrals with the variable x as parameter. To obtain the first of these
representations, we assume that x is a real or complex number, and choose

the path of integration C' in formula (4.2.6) to be a circle of radius vlx2 - 11
with center at the point U = x. 9 Then

and (4.2.6) becomes

1 J" [X2 + 2xVx2 - Iei(j) + (x2 Pn(x) =-
2,,; -" 2vx2 - Iet(j)

which reduces to

I)e2i(j) _ I]n
dffl,

(4.4.1)If" -Pix) = - [x + vx2 - 1 COSfflJndffl.
,,; 0

Formula (4.4.1) is called Laplace's integral. Here the choice of the value of

the square root Vx 2 - 1 does not matter, since after raising the expression
in brackets to the nth power and integrating the result term by term, odd
powers of the square root vanish.

From (4.4.1) we can derive an important inequality satisfied by Legendre
polynomials. Let x be a real number such that - 1 ~ x ~ 1. Then

Ix + Vx2 - 1 cos ffll = Vx2 + (l - x2) cos2 ffl ~ 1,

and hence
IPn(x)! ~ 1, -1 ~ x ~ 1. (4.4.2)

Another important integral representation of the Legendre polynomials

9 According to Cauchy's integral theorem, replacing the contour C' by any other
closed Jordan curve surrounding the point u = x does not change the value of the
integral.
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can be deduced from (4.4.1) by assuming that x is a real number such that
- 1 < x < 1. In this case, setting

x = cos 6, o < 6 < 7t,

(4.4.3)

we can write (4.4.1) in the form

Pn (cos 6) = ! (" (cos 6 + i sin 6 cos q:i)n dq:i.
7t Jo

If we introduce a new complex variable of integration t = cos 6 + i sin 6 cos q:i

this formula becomes

1 Jete tndt
Pn (cos 6) = ~ ,

7tl e-Ie VI - 2t cos 6 + t2

where the integral is evaluated along the line segment AB joining the points
t = e±t8 (see Figure 11), and the choice of the square root is determined by

t

c

FIGURE 11

the condition that its value at the point t = cos 6 be sin 6. According to
Cauchy's integral theorem, the integration along AB can be replaced by
integration along the arc ACB of the unit circle, since the integrand is analytic
in the region between the arc and the chord. Making this change, and writing
t = eN', we find that

1J8 el(n+ Yz)w
Pn (cos 6) = - dt.jJ,

7t -8 V2 cos t.jJ - 2 cos 6
which becomes

Pn(cos6) = ~ (a V cos(n + ·Dt.jJ dt.jJ, 0 < 6 < 7t, n = 0, 1,2, ... ,
7t Jo 2 cos t.jJ - 2 cos 6

(4.4.4)

after taking the real part. This integral representation is known as the
Mehler-Dirichlet formula.



50 ORTHOGONAL POLYNOMIALS

4.5. Orthogonality of the Legendre Polynomials

CHAP. 4

One of the most important properties of the Legendre polynomials is their
orthogonality on the interval [-1, 1], which follows from the differential
equation (4.3.7). To prove this property, we subtract the differential equation
for the nth polynomial multiplied by Pm(x) from the differential equation for
the mth polynomial multiplied by Pn(x). This gives

[(1 - x2)P';'(x)]'Pn(x) - [(1 - X2)P~(X)]'Pm(x)

+ [m(m + 1) - n(n + 1)]Pm(x)Pn(x) = 0,

or

Integrating the last equation over the interval [- 1, 1] and noting that the
integral of the first term vanishes, we find that

i.e.,

if m #- n. (4.5.1)

Formula (4.5.1) shows that the Legendre polynomials are orthogonal with
weight p(x) = 1 on the interval [-1, 1].

The orthogonality property (4.5.1) plays an important role in the theory
of expansions of functions in series of Legendre polynomials (see Sec. 4.7).
In this theory, we will also need to know the value of the integral (4.5.1) for
m = n, which can be found by the following device (brought to our attention
by V. L. Kan): We replace n by n - 1 in the recurrence relation (4.3.1) and
multiply the result by (2n + I)Pn(x). Then from this equation we subtract
(4.3.1) multiplied by (2n - I)Pn - 1(x), obtaining

n(2n + l)P~(x) + (n - 1)(2n + 1)Pn - 2(x)Pn(x)

- (n + 1)(2n - I)Pn - 1(x)Pn + 1(x) - n(2n - l)P~_l(X) = 0,

n = 2,3, ...

Finally, integrating this relation over the interval [-1, 1], and taking account
of (4.5.1), we find that

I
1

2n - 1I1

P~(x) dx = 2--1 P~-l(X) dx,
-1 n + -1

Repeated application of this formula gives

n = 2,3, ...

I
1

3 I1
2P;(x) dx-21 Pr(x) dx = -2--I'

-1 n + -1 n +
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(4.5.2)n = 0, 1,2, ...

Direct calculation shows that this result is also valid for n = 0, 1, and hence

J
1 2
P~(x)dx = -2--1'

-1 n +
It follows from (4.5.1-2) that the functions

~n(x) = Vn + !Pn(x), n = 0, 1,2, ...

form an orthonormal system on the interval [-1, 1].1°

4.6. Asymptotic Representation of the Legendre Polynomials for
Large n

The Legendre polynomials Pn(x) (-1 < x < 1) have a simple asymptotic
representation which describes their behavior for large values of the degree n.
To obtain this representation, we use a general method due to Stek10vY
Our starting point is the differential equation (4.3.10) satisfied by the function

u(e) = vsin epn (cos e).

Writing this equation in the form

u
u" + (n + !)2U = - 4 sin2 e'

taking account of the initial conditions

(4.6.1)

u,(~) = -P~(O),

and regarding the right-hand side of (4.6.1) as a known function, we find
that 12

u(e) = Pn(O) cos [(n + ~)G - e)] + :~O~sin [(n + ~)(~ - e)]
1 1"/2. d~+ 4( .D u(~) sm [en + ·D(e - ~)] -'-2-'n + e sm ~

(4.6.2)

Equation (4.6.2) can be regarded as an integral equation for the function u(e).

10 A system of functions 'Pn(x) (n = 0, 1,2, ... ) is said to be orthonormal on the
interval [a, b1if

f 'Pm(X)'Pn(X) dx = {~: : ~ ::

11 V. A. Steklov, Sur les expressions asymptotiques de certaines fonctions, definies par
les equations differentielles lineaires du second order, et leurs applications au probleme du
developpement d'une fonction arbitraire en series procedant suivant les-dites fonctions,
Communications de la Societe Mathematique de Kharkow, (2), 10, 97 (1907).

12 See E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice
HalI, Inc., Englewood Cliffs, N.J. (1961), Theorem 11, p. 123.
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(4.6.3)

Next, using formulas (4.2.6), (4.3.6), and the relations (1.2.1, 4, 6) involv
ing the gamma function, we obtain

P2m(0) = (_l)m yr(m + -!-), P2m +1(0) = 0,
7tr(m + 1)

P~m(O) = 0, P~m+1(0) = (_l)m ~~~~++ti)'

It follows that equation (4.6.2) can be written in the form

u(6) = Q(n{sin [<n + 1-)6 + i] + rn(6)}

where Q(n denotes the first or the second of the expressions

r(~ + ~)

y~r(~ + 1)'
depending on whether n is even or odd, and

1 i~ ~ri6) = 4 ( .D u(cp) sin [(n + -!-)(6 - cp)] -'-2-'
Q(n n + e sm cp

(4.6.4)

Now suppose that the variable 6 is confined to the interval ~ < 6 < 7t - ~,

where ~ is a fixed positive number, and let M n denote the maximum modulus
of u(6) in this interval. Then it follows from (4.6.3) and (4.6.4) that for every
6 in [~, 7t - ~],

and hence

7tMn 2'"
M n < Q(n + 4(2n + 1) csc o.

Solving this last inequality for M n, we obtain

M n < Q(n[l - 4(2n
7t
+ 1) CSC2~] -1, 2n + 1 > i csc2 ~,

which implies the estimate

7t csc2
~ [ 7t ] - 1 7t

/rn(6) I < 4(2n + 1) 1 - 4(2n + 1) csc
2
~ , 2n + 1 > '4 csc

2
~.

Thus rn(6) = O(n- 1
) uniformly in the interval [~, 7t - ~]. Therefore (4.6.3)

leads to the asymptotic formula

u(6) ~ Q(n sin [(n + -!-)6 + i]' n -? OC! (4.6.5)

for all ~ < 6 < 7t - ~.
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Making some simple calculations based on Stirling's formula (1.4.25),13
we find that

~J2(J.n"-l -,

7tn
n -!>- 00,

and therefore (4.6.5) can be written in the simpler form

(4.6.6)n -!>- 00.u(6) ~ J:n sin [en + -!)6 + ~],

Recalling the definition of u(6), we finally have the following asymptotic
representation for the Legendre polynomials:

Pn (cos 6) ~ J7tn ~n 6 sin [en + -!-)6 + ~], n -!>- 00, a ~ 6 ~ 7t - a.
(4.6.7)

For more exact asymptotic representations, we refer the reader to Hobson's
treatise. 14

4.7. Expansion of Functions in Series of Legendre Polynomials

In the applications it is often necessary to expand a given real function
f(x), defined in the interval ( - 1, 1), in a series of Legendre polynomials:

00

f(x) = L cnPn(x),
n=O

-1<x<1. (4.7.1)

The coefficients Cn can be determined formally by using the orthogonality
property of the Legendre polynomials (see Sec. 4.5). In fact, multiplying the
series (4.7.1) by Pm(x), integrating term by term over the interval [-1, I] and
using (4.5.1-2), we find that

which implies

Cn = (n + t) fl f(x)Pn(x) dx, n = 0, 1,2, ... (4.7.2)

However, it is not known in advance whetherf(x) can be expanded in a series

13 The fact that lim (1 + ~)n = eX is also used.
n ...... w n

14 E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge
University Press, London (1931).
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of the form (4.7.1), or whether the term-by-term integration used to deter
mine the coefficients Cn is legitimate. Therefore, it cannot be asserted without
further study that the series (4.7.1) with the coefficients (4.7.2) actually con
verges and has the sumf(x). In order to establish simple sufficient conditions
for such convergence (see Theorem 1 below), we first prove the following

LEMMA. If the real function q;>(x) is piecewise continuous 15 in ( - 1, 1)
and if the integral

is finite, 16 then

!~n;, Vn + t fl q;>(x)Pn(x) dx = 0.

Proof First we write (4.7.4) as a sum of three integrals

(4.7.3)

(4.7.4)

I
I [I-l+0 II-a II ]Vn + 1- ... = Vn + t '" + ... + ...
-1 -1 -1+0 I-a

= /1 + /2 + /3' (4.7.5)

Then, using Schwarz's inequality 17 and formula (4.5.2), we find that

1/31 ~ Vn + -! [f-o P;(x) dX] 112 [f-o q;>2(X) dX] 1/2

~ Vn + t [f1 P;(x) dX] 1/2 [f-o q;>2(X) dX] 112= [f-o q;>2(X) dX] 1/2 ,

and similarly,

1/11 ~ [J_-ll+0
q;>2(X)dX] 1/

2
.

It follows from these estimates and the existence of (4.7.3) that given any
e: > 0, there is a S = See:) > 0, independent of n, such that

(4.7.6)

15 For the definition of piecewise continuous and piecewise smooth functions, see
G. P. Tolstov, op. cit., p. 18.

16 If cp(x) is defined only in (-1,1), then (4.7.3) means

f'
-b

lim cp2(X) dx.
a,b-+O+ -l+a

If cp(x) is piecewise continuous in the closed interval [-1, 1], then the finiteness of (4.7.3)
is obvious. In other words, we allow cp(x) to become infinite at the end points - 1 and
1, provided the integral (4.7.3) remains finite.

17 According to Schwarz's inequality,

[f f(x)g(x) dxr,;;; f f2(x) dx f g2(X) dx,

provided the integrals on the right exist. See G. P. Tolstov, op. cit., p. 50.
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Assuming that ahas been chosen in this way, we now use (4.6.3) to write

/2 = Vn + -l ("-01 fj) (cos 6) Pn (cos 6) sin 6 d6
)01

1 1"-01
-+ .;- fj) (cos 6)Vsin 6 cos (n + -l)6 d6

v 2 01

+ 1:-01

fj) (cos 6)Vsin 6rn(6) d6l

where a1 = arc cos (l - a). Since, by hypothesis, fj) (cos 6)Vsin 6 is
piecewise continuous and hence absolutely integrable on [a1, 7t - ad,
the first two integrals on the right approach zero as n~ 00. 18 Moreover,
the last integral also approaches zero as n~ 00, since r,,(6) = O(n -1)

uniformly in [a1, 7t - ad, as shown in Sec. 4.6, where it was also proved
that

as n~ 00. Therefore / 2~ 0 as n~ 00, so that for a suitable choice of
N = N(..), we have

1/21 < j
for every n > N. Combining (4.7.7) and (4.7.6) we find that

(4.7.7)

n < N,

(4.7.8)

and the lemma is proved.

We are now ready to prove

THEOREM 1. If the real function f(x) is piecewise smooth in (-1, 1)
and if the integral

f/ 2(X)dX

is finite, then the series (4.7.1), with coefficients Cn calculated from (4.7.2),
converges to f(x) at every continuity point off(x).

Proof First we note that the conditions imposed on f(x) imply the
existence of the integrals in the right-hand side of (4.7.2),19 so that the
coefficients Cn can actually be calculated. Let Sm(x) denote the sum of

18 G. P. Tolstov, op. cit., p. 70.
19 Apply Schwarz's inequality to the functions f(x) and Pn(x).
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(4.7.9)

the first m + 1 terms of the series (4.7.1). Then it follows from (4.7.2)
that

m m f1
Sm(x) = n~o cnPn(x) = n~ (n + -t)Pn(x) _/(Y)Pn(Y) dy

= f/(Y)Km(X, y) dy,

where
m

Km(x, y) = 2: (n + !)Pn(x)Pn(y).
n=O

(4.7.10)

(4.7.13)

The "kernel" Km(x, y) can be calculated by the following device: We
multiply the recurrence relation (4.3.1) by Pn(y) and then from the result·
ing equation we subtract the same equation with x and y interchanged.
This gives

(n + 1)[Pn+1(x)Pn(y) - Pn+1(y)Pn(x)]
- n[Pn(x)Pn- 1(y) - Pn(y)Pn- 1(x)]

= (2n + l)(x - y)Pn(x)PnCy).

Summing over n from 1 to m, and noting that Po(x) = 1, P1(x) = x, we
obtain

m

(x - y) 2: (2n + I)Pn(x)PnCy)
n=l

= (m + 1)[Pm+1(x)Pm(y) - Pm+1(y)Pm(x)] - (x - y),
which implies

Km(x, y) = m ; 1 Pm+1(X)Pm(~ := :m+1(y)pm(X). (4.7.11)

Integrating (4.7.10) with respect to y between the limits -1 and 1, and
using (4.5.1-2),20 we find that

f1 Km(x, y) dy = 1. (4.7.12)

Now suppose x is a point of (-1, 1) at which I(x) is continuous.
Multiplying (4.7.12) by I(x), subtracting the result from (4.7.9), and
using (4.7.11), we obtain

Sm(x) - I(x) = f~l Km(x, y)[/(y) - I(x)] dy

m + 1 J1= -2- Pm(x) -1 Pm +1(Y)cp(X, y) dy

m + 1 J1- -2- Pm+1(X) -1 Pm(y)cp(X, y) dy,

20 Since Po(Y) = 1, we have

f 1 Pn(y) dy = f 1 Po(y)Pn(y) dy = {~: n oF 0,
n = O.
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(4.7.14)

cp(x, y) = fey) - f(x).
y-x

Regarded as a function of Y, cp(x, y) is piecewise continuous in (-1, 1),
and moreover

f1 cp2(X, y) dy

is finite. In fact, if y #- x, the piecewise continuity of cp(x, y) in (-1, 1)
follows from that of f(y),while cp(x, y) is piecewise continuous at y = x
since

cp(x, x - 0) = f'(x - 0), cp(x, x + 0) = f'(x + 0)

both exist if x is a continuity point of f(x). 21 The fact that (4.7.14) is
finite follows from (4.7.8) and the fact that cp(x, y) is bounded in a neigh
borhood ofy = x, where both cp(x, x - 0) and cp(x, x + 0) exist. There
fore, according to the lemma,

l~~ vim +! f1 Pm+ 1(y)cp(x,y)dy

= lim vim + tf1 Pm(y)cp(x,y)dy = O.
m-oo -1

Moreover, using (4.6.7), we see that each of the expressions

m + Ivi Pm + 1(x)
2 m + 1-

remains bounded as m ~ 00. It follows that the right-hand side of
(4.7.13) goes to zero as m ~ 00, i.e.,

lim Sm(x) = f(x),
m_oo

and the proof of Theorem 1 is complete.

Remark 1. The case where x is a discontinuity point of f(x) is also of
interest. It can be shown that in this case, under the same conditions as in
Theorem 1, the series (4.7.1) converges to the limit 22

lim Sm(x) = !rf(x + 0) + f(x - 0)].
m-oo

(4.7.15)

Remark 2. Theorem 1 gives sufficient conditions for expandingf(x) in a

21 Cf. G. P. Tolstov, op. cit., p. 73.
22 This should be compared with the similar situation encountered in the theory of

Fourier series (ibid., p. 75 If.).
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series of the form (4.7.1). These conditions can be considerably weakened.
A theorem which is valid for a larger class of functions can be found in
Hobson's book.23

4.8. Examples of Expansions in Series of Legendre Polynomials

We now give some simple examples illustrating the technique ofexpanding
functions in series of Legendre polynomials:

Example 1. Letf(x) be a polynomial of degree m:
m

f(x) = L anxn.
n=O

Then (4.7.1) takes the form
m

f(x) = L cnPn(x).
n=O

(4.8.1)

In this case, there is no need to calculate the integrals (4.7.2), since the
coefficients Cn can easily be found by solving the system of linear equations
obtained when the explicit expressions for the Legendre polynomials are sub
stituted into (4.8.1) and coefficients of identical powers of x in both sides of
the equation are equated. Thus, for example,

x 2 = coPo(x) + C1P1(X) + c2Pix) = Co + C1X + -!-c2(3x2 - I),

so that

Therefore
Cz.. = t, C3 = l

x 2 = tPo(x) + tP2(x),

an expansion which is valid for all x.

Example 2. Suppose f(x) is the function

f(x) = {~:
-1~x<oc,

oc<x~l.

According to Theorem 1,f(x) can be expanded in a series of the form (4.7.1),
with coefficients

Cn = (n + t) L1

Pn(x) dx.

Using (4.3.5) and noting that Pn(l) = 1, we find that

Cc = -!-(1 - oc),

23 E. W. Hobson, op. cit., p. 329.
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m

f(x) = t(1 - IX) - t L [Pn+1(IX) - Pn- 1(1X)]Pn(x), - 1 < x < 1. (4.8.2)
n=l

Next, we verify that the relation (4.7.15) holds at the discontinuity point
x = IX. Letting Sm(x) denote the sum of the first m + 1 terms of the series
(4.8.2), we have

m

Sm(lX) = t(1 - IX) - t L [Pn+ 1(IX)PnClX) - Pn(IX)Pn - 1(1X)]
n=l

Since, according to (4.6.7), Pn(lX) -+ 0 as n -+ 00,

lim Sm(lX) = t = -Hf(1X + 0) + f(1X - 0)],
m_oo

in keeping with the general theory.

Example 3. Finally, let

f(x) = Jl ; x.

This function satisfies the conditions of Theorem 1, and hence can be ex
panded in a series of the form (4.7.1). The coefficients en can be calculated
by the following method, which is often useful: We multiply the expansion
(4.2.3) by f(x) and integrate over the interval [-1, 1]. After some elementary
calculations, we obtain

1 [ (1 - t)2 1 + VI] _~ tn I1 Jl - x
2- 1 + t - v- log v- - L -2- Pn(x) dx,

t 2 t 1 - t n=O -1
ItI < 1,

(4.8.3)

where the term-by-term integration is justified by the uniform convergence of
the series (4.2.3) in the interval [- 1, 1], which follows from the estimate
(4.4.2). Expanding t~ left-hand side of (4.8.3) in powers of t, we find that

4 00 tn
00 I1 Jl - x

-3 - 4 L (4 2 _ 1)(2 3) = L t
n

-2- Pn(x)dx,n=l n n+ n=O -1

which implies

I
1 Jt=X 4
-1 -2- Po(x)dx=3'

I
1 JlX-1 -2- Pn(x) dx =

4
(4n 2

- 1)(2n + 3)'
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We now use (4.7.2) to write the required expansion in the form

CHAP. 4

) 1 - x = ~ Po(X) _ 2 ~ Pn(x) ,
2 3 n=l (2n - 1)(2n + 3)

- 1 < x < 1. (4.8.4)

4.9. Definition and Generating Function of the
Hermite Polynomials

Another important class of orthogonal polynomials encountered in the
applications, especially in mathematical physics,24 consists of the Hermite
polynomials Hn(X),25 which can be defined by the formula

n = 0, 1,2, ... (4.9.1)

According to (4.9.1), the first few Hermite polynomials are

Ho(x) = 1, H1(x) = 2x,

and in general,

Ha(x) = 8xa - 12x, ... ,

_ [n/2] (-l)len! n-21e
Hn(x) - Ie~ k!(n _ 2k)! (2x) , (4.9.2)

where [v] denotes the largest integer ~ v. It will be shown later (see Sec. 4.13)
that the Hermite polynomials are orthogonal with weight p(x) = e-x2 on
the interval (- 00,(0).

The Hermite polynomials (or more exactly, the Hermite polynomials
multiplied by the constant factor lin!) are the coefficients in the expansion

w(x, t) = e2xt-t2 = ~ Hn~X) tn,
n=O n.

ItI < 00, (4.9.3)

and hence w(x, t) is called the generating function of the Hermite polynomials.
To prove (4.9.3), we need only note that w(x, t), regarded as a function of
the complex variable t, is an entire function, and therefore has the Taylor
series

2 00 1 [anw]w(x, t) = e2xt - t = .L, -n tn,
n=O n. at t=o

ItI < 00,

24 In problems involving the integration of Laplace's equation and Helmholtz'
equation in parabolic coordinates, in quantum mechanics, etc. (see Sees. 10.7-8).

25 Actually introduced in 1859 by Chebyshev, some years before the publication of
Hermite's work.
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(an~) = eX2[O:e-(X-t)2] = (_l)nex2[dne-nU2] == Hn(x).
at 1=0 at 1=0 du U=X

Formula (4.9.3) can be used to derive various properties of the Hermite poly
nomials. For example, setting x = 0 in (4.9.3), expanding e- t2 in power
series, and comparing coefficients of powers of t in both sides of the resulting
equation, we find that

(4.9.4)

ItI < 1. (4.9.6)

There is another expansion closely related to (4.9.3), which we will prove
in Sec. 4.11, i.e.,

W(x y t) = (1 - t2)-1/2e[2Xyt-(X2+y2)t21/(l-t2) = ~ Hn(x)Hiy) tn It I < 1,
, , n~o 2nn! '

(4.9.5)

where the left-hand side can be regarded as the generating function of
products of Hermite polynomials. Setting y = x in (4.9.5), we obtain

W(x x t) = (1 - t2)-1/2e2x2t/(1+t) = ~ H'j;(x) tn
, , n=O 2nn! '

Formulas (4.9.3, 4,6) play an important role in the theory of Hermite poly
nomials.

4.10. Recurrence Relations and Differential Equation for the
Hermite Polynomials

Substituting (4.9.3) into the identity

owat - (2x - 2t)w = 0

(a power series can always be differentiated term by term), we find that

~ Hn+,l(X) tn _ 2x I Hn~X) tn + 2 I Hn~X) tn+1 = 0,
n=O n. n=O n. n=O n.

which gives

n = 1,2,... (4.10.1)

when the coefficient of tn is equated to zero. The recurrence relation (4.10.1),
connecting three Hermite polynomials with consecutive indices, can be used
to calculate the Hermite polynomials step by step, starting from Ho(x) = 1,
H1(x) = 2x.
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We can derive another recurrence relation satisfied by the Hermite poly
nomials by substituting (4.9.3) into the identity 26

owox - 2tw = O.

This gives

or

H~(x) = 2nHn_1(x), n = 1,2, ... (4.10.2)

Formula (4.10.2) allows us to express the derivative of a Hermite polynomial
in terms of another Hermite polynomial, and is very useful. Using the recur
rence relations (4.10.1-2), we can easily derive a differential equation satisfied
by the Hermite polynomials. In fact, eliminating H n - 1(x) from these two
relations, we obtain

Hn+ 1(x) - 2xHn(x) + H~(x) = O.

Then, differentiating this formula and using (4.10.2) again, we find that

H~(x) - 2xH~(x) + 2nHix) = 0, n = 0, 1,2, ... , (4.10.3)

where the validity of (4.10.3) for n = 0 can be verified directly. It follows
from (4.10.3) that the function u = Hn(x) is a particular integral of the
second-order linear differential equation

u" - 2xu' + 2nu = O. (4.10.4)

(4.10.5)

By making changes of variables, we can easily derive other differential
equations whose integrals can be expressed in terms of Hermite polynomials.
For example, it is easy to see that

u = e-X212Hn(x)

is a particular solution of the equation

u" + (2n + 1 - x 2)u = O.

26 The justification for differentiating (4.9.3) term by term with respect to x follows
from the uniform convergence of (4.9.3) in the domain Ix! < afor arbitrary finite a > O.
According to (4.9.2),

IH (x)! ,,::, Hn(ia)
n " in ' Ixl < a,

so that (4.9.3) is majorized by the convergent series

~ Hn(ia) l:t = e2altl + Itl 2

nfo in n!

and hence converges uniformly for Ixl < a (cf. footnote 7, p. 47).
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(4.11.1)

4.11. Integral Representations of the Hermite Polynomials

The Hermite polynomials have simple and useful representations in terms
of definite integrals containing the variable x as parameter. To derive these
representations, we start from the familiar integral

2 roo
e- x2 = v; Jo e- t2 cos 2xt dt,

where x is an arbitrary real or complex number. Differentiating (4.11.1) 2n
times with respect to X,27 and comparing the result with (4.9.1), we find that

22n + l( l)nex2f 00

H (x) = - e- t2 t2n cos 2xt dt
2n V7t 0 '

n = 0, 1,2, ... (4.11.2)

Similarly, for odd indices we have

22n+2(_l)nex2 foo
H (x) = e-t2t2n+l sin 2xt dt

2n+l V1t 0 '
n = 0, 1,2, ... ,

(4.11.3)

n = 0, 1,2, ...

which can be combined with (4.11.2) into a single formula

2n( ·)n x2 f00Hn(x) = -[ e e-t2 +2itxtn dt,
V7t -00

(4.11.4)

To illustrate the utility of these representations, we now derive formula
(4.9.5). According to (4.11.4), for ItI < 1 we have

~ Hn(X~~nCY) r = ex
2

+ y2 ~ (- ,l)n (2t)n
n=O 2 n. 7t n=O n.

x f:oo f _0000 e - u2- v2+ 2iux +2ivy(uu)n du du

x2
+ y2 J00 J00 00 ( 1)n(2 )n

=~ -00 -00 e-U2-V2+2iUX+2iVYdudun~0 - n! uut

x2
+ y2 J00 f co= e__ e-u2 -v2+2iux+2ivy-2uvt du du.

7t -00-00

After two applications of the familiar formula

(4.11.5)

Re a2 > 0, (4.11.6)

27 To justify differentiating behind the integral sign, see E. C. Titchmarsh, op. cit.
pp. 99-100, noting that the integral in (4.11.1) is uniformly convergent in the disk
Ixl ~ a for arbitrary finite a > 0, since it is majorized by the absolutely convergent
integral

~ f. '" e - t 2 + 2at dt
v'it 0 •
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the right-hand side of (4.11.5) reduces to

CHAP. 4

W(x,Y, t) = (1 _ t2)-1/2e[2XYt-(X2+y2>t2l/(1-t2>.

The legitimacy of the various formal calculations follows from the conver
gence of the expression

IXI2+IYI2J'" f'" '" (2j/lllt/)ne 7t _'" _",e-U2-V2+2IUIIXI+2IVIIYldudvn~ u ~!

for all/tl < 1.

4.12. Integral Equations Satisfied by the Hermite Polynomials

The Hermite polynomials satisfy simple integral equations with symmetric
kernels. To derive these equations, we replace x by Y in the expansion (4.9.3)
of the generating function, multiply the result by eixy - y:'y2 (- 00 < x < 00)
and integrate over ( - 00, 00). This gives

f '" e2yt-t2+tXy_Y:,y2 dy = f'" eiXy -y:' y2 dy ~ Hn\y) tn
- '" - '" n=O n.

(4.12.1)

Interchanging the order of integration and summation is permissible, since

where we have used the inequality

jHn(x)1 ~ ~ HnUjxl),
I

implied by (4.9.2).
Evaluating the integral in the left-hand side of (4.12.1), we find that

(4.12.2)

Comparing coefficients of identical powers of tin (4.12.1-2), we obtain the
desired integral equation satisfied by the Hermite polynomials

n = 0, 1,2, ... (4.12.3)
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If we consider separately the cases of even and odd n, bearing in mind that
H2m(x) is an even function and H 2m + leX) an odd function (of the variable x),
then (4.12.3) implies the following two integral equations with real kernels:

e-x2/2H2m(X) = (_l)mJ~ LX) e-y2/2H2m(Y) cos xy dy,

-X2/2H () ( l)m fi ('" _y2/2H (). de 2m+l X = - ,J~Jo e 2m+l Y Stnxy y,

4.13. Orthogonality of the Hermite Polynomials

m = 0, 1,2, ...

(4.12.4)

It is easy to show that the Hermite polynomials are orthogonal with

weight e-x2 on the interval ( - 00, 00), i.e.,

if m =F n. (4.13.1)

In fact, setting Un = e-x2 /2Hn(x) and using equation (4.10.5), we have

Multiplying the first of these equations by Umand the second by Un' we see that

(4.13.2)

n = 2,3, ...

Then, integrating (4.13.2) over ( - 00, 00), we find that

(n - m) I-"'", UmUn dx = 0,

which implies (4.13.1).
The value of the integral (4.13.1) for m = n can be found as follows:

We replace the index n by n - 1 in the recurrence relation (4.10.1) and multi
ply the result by HnCx). Then from this equation we subtract (4.10.1) multi
plied by Hn-l(x). This gives

H~(x) + 2(n - I)Hn(x)Hn_2(x) - Hn+1(x)Hn - l(x) - 2nH~_1(x) = 0,

n = 2, 3, . .. (4.13.3)

Multiplying (4.13.3) by e-x2 , integrating over (-00,00) and using the ortho
gonality property (4.13.1), we obtain

f-"'", e-X2H~(x)dx = 2n f-"'", e-X2H~_1(X)dx,
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n = 2,3, ...

Repeated application of this formula gives 28

f'oo e-X2 H;'(x)dx = 2n- 1n! !-OOOO e- X2Hr(x)dx = 2nn!V~,

Direct calculation shows that this result is also valid for n = 0, 1, and hence

f-oooo e-x2H~(x) dx = 2nn!V~,

It follows from (4.13.1, 4) that the functions

CPn(x) = (2nn!V~) -1/2e -x2/2Hn(x) ,

n = 0, 1,2, ...

n = 0, 1,2, ...

(4.13.4)

form an orthonormal system on the interval ( - 00, (0).

4.14. Asymptotic Representation of the Hermite Polynomials for
Large n

The Hermite polynomials have a simple asymptotic representation which
describes their behavior for large values of the degree n. This representation
was first found by Adamov,29 and plays an important role in the problem of
expanding functions in series of Hermite polynomials (see Sec. 4.15). We
again apply the general method used in Sec. 4.6 to solve the analogous prob
lem for the Legendre polynomials. Our starting point is the differential
equation (4.10.5) for the function u = e- x2 /2H n(x). Writing this equation in
the form

u" + (2n + l)u = x 2u,

taking account of the initial conditions

(4.14.1)

u(O) = Hn(O), u'(O) = H~(O),

and regarding the right-hand side of (4.14.1) as a known function, we find
that

. /-- sin V2I1+1 x
u(x) = HnCO) cos v 2n + 1x + H~(O) • /

V 2n + 1

1 IX -+ V y2U(Y) sin [V2n + 1(x - y)] dy.
2n + 1 0

28 Note that

(4.14.2)

t"""" e-X2Hr(x) dx = 4 t"""" e-
x2

x
2

dx = 2Vn.

29 A. A. Adamov, On the asymptotic expansion of the polynomials eax2f2 dn(e - ax2f2)(dx'
for large values ofn (in Russian), Annals of the Polytechnic Insitute of St. Petersburg, 5,
127 (1906).



SEC. 4.14 ORTHOGONAL POLYNOMIALS 67

Next, using formulas (4.9.4), (4.10.2) and (1.2.1, 4), we obtain

H (0) = (-I)m r(2m + 1) H (0) 0
2m rem + I)' 2m+1 =,

H ' (0) 0 H' (0) = 2(-I)m r(2m + 2).
2m =, 2m+1 rem + I)

It follows that equation (4.14.2) can be written in the form

u(x) = a.n[cos (V2n + Ix - ~7t) + rn(x)}

where a.n denotes the first or the second of the expressions

(4.14.3)

2r(n + I)
(4.14.4)

(4.14.5)

depending on whether n is even or odd, and

rn(x) = V I (X y2U(Y) sin [V2n + I (x - y)] dy.
a.n 2n + I Jo

To estimate the remainder rn(x) for arbitrary real x, we use Schwarz's
inequality (see footnote 17, p. 54). Taking account of (4.13.4), we have

Irix)I ~ V I [(IXl y4dy]1/2[(IXI U2(Y)dy]1/2
a.n 2n + I Jo Jo

= V I [ (IXI y4 dy] 1/2 [(00 u2(y) dy] 1/2
an 2n + I Jo Jo
(2nn!V~)l/2 Ix1 5 /2- - ~ Ix1 5

/
2

- a.nV2n + I V2 v5 - n •

It follows from Stirling's formula (1.4.25) that

(4.14.6)

as n -+ 00, and hence the product ~nn1/4 is bounded for arbitrary n ~ O.
Therefore

(4.14.7)

where C is some constant. This last inequality shows that for any finite x we
have the asymptotic formula

n -+ 00 (4.14.8)

or

Hn(x) ~ 2(n+1)/2nn/2e -n/2e"2/2cos (V2n + Ix _ n;), n -+ 00. (4.14.9)
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For more exact asymptotic representations of the Hermite polynomials
Hn(x) for large n, we refer the reader to the monographs by Szego and San
sone, cited in the Bibliography (see p. 300).

4.15. Expansion of Functions in Series of Hermite Polynomials

We now show that a real function f(x) defined in .the infinite interval
( - 00, 00) can be expanded in a series of Hermite polynomials

00

f(x) = L cnHn(x),
n=O

-00 < x < 00, (4.15.1)

provided f(x) satisfies certain general conditions. The coefficients Cn can be
determined formally by using the orthogonality property of the Hermite
polynomials (see Sec. 4.13). In fact, multiplying the series (4.15.1) by

e- x2Hm(x), integrating term by term over the interval (- 00,00), and using
(4.13.1,4), we find that

toooo e-X2f(x)Hm(x) dx = n~o Cnf:oo e- x2 Hm(x)Hn(x) dx = 2mm!v/~cm,

which implies

n = 0, 1,2, . . . (4.15.2)

In the course of establishing simple sufficient conditions for the series (4.15.1)
with these coefficients to actually converge and to have the sumf(x), we will
need the following

LEMMA. If the real function ep(x) defined in the infinite interval
( - 00, 00) is piecewise continuous in every finite subinterval [ - a, a] and if
the integral

(4.15.3)

is finite, then

(4.15.4)

Proof First we write the integral (4.15.4) as a sum of three integrals

(4.15.5)
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Then, using Schwarz's inequality, we find that

and similarly,

1/31 :::; [ vn _J00 H;(X)2 e- x2 dX] 112 [Joo (1 + x2)e-x2rp2(x) dX] ~'2
2nn! V7t - 00 1 + x a

(4.15.7)
Our next step is to show that the integral

d> _ Vn J00 H~(x) -x2 d
J---- ---e x

2nn!Y!; _ 00 1 + x 2

satisfies the condition
J = 0(1),

i.e., J is bounded for all n. To show this, we use the identity

J - J~Joo (l..=.E)n~ dx
- 7t -00 l+x2 l+x2 '

proved in Problem 8, p. 95. Writing (4.5.10) in the form

(4.15.8)

(4.15.9)

(4.15.10)

and making the change of variable x -+ x -1 in the second integral, we
obtain

Since

_ An i 1 (1 - x 2)n e- x2 + (_1)ne -x-
2

J - 2 1 2 1 2 dx.
7to +x +x

(4.15.11)

0:::; x:::; 1,

it follows from (4.15.11) that

J :::; 40.. e (1 - x
2 )n~.

,.j ~ J0 1 + x 2 1 + x 2

The integral on the right can be evaluated by making the substitution

I - x 2
. I--

I + x2 = v I - t.
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Then

dx dt
1 + x 2 = 4Vt(1 - t)'

and according to (1.5.2),

CHAP. 4

where B(x, y) is the beta function. Using (1.5.6) and (1.2.5), we find
that

and hence

vnr(~)

r(~ + 1)
The estimate (4.15.9) is now an immediate consequence of Stirling's
formula (1.4.25).

Since .Y is bounded, it follows from the existence of (4.15.3) that
given any e > 0, there is an a = aCe) > 0, independent of n, such that

e
"/31 < 3" (4.15.12)

Assuming that a has been chosen in this way, we now use (4.14.3) to write

'/2 = (2n:~~:F/2 U:a e-
x2

/
2rp(x) cos (V2n + Ix - n;) dx

+ faa e- x2
/
2rp(x)rn(X) dX].

Since rp(x)e- x2
/2 is piecewise continuous and hence absolutely integrable

in [-a, a], the first of the integrals on the right approaches zero as
n --+ 00. The second integral also approaches zero as n --+ 00, since,
according to (4.14.7), the integrand is O(n- 1/4 ) uniformly in [-a, a],
while the factor in front of the brackets is bounded, as follows from
(4.14.6). Therefore'/2 --+ °as n --+ 00, so that for a suitable choice of
N = N(e) , we have

(4.15.13)
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(4.15.15)

for every n > N. Combining (4.15.13) and (4.15.12), we and that

1.11 + .12 + .131 < E, n > N,

and the lemma is proved.

We are now ready to prove

THEOREM 2. If the real function f(x) defined in the infinite interval
( - 00, 00) is piecewise smooth in every finite interval [ - a, a], and if the
integral

f"oo e-X2f2(x) dx (4.15.14)

is finite, then the series (4.15.1), with coefficients Cn calculated from
(4.1.52), converges to f(x) at every continuity point off(x).

Proof First we note that the conditions imposed on f(x) imply the
existence of the integrals in the right-hand side of (4.15.2), so that the
coefficients Cn can actually be calculated.30 Let Sm(x) denote the sum
of the first m + 1 terms of the series (4.15.1). Then it follows from
(4.1.52) that

L '< '
"m m 1 00

Sm(x) = n~o cnHnCx) = n~o Hn(x) 2nn!V~ f- 00 e-
y2

f(y)HnCy) dy

= f-oooo e- y2f(y)Km(x, y) dy,

where

(4.15.16)

The "kernel" Km(x, y) can be calculated by the following device: We
multiply the recurrence relation (4.10.1) by HnCy) and then from the
resulting equation we subtract the same equation with x and y inter
changed. This gives

[Hn+ 1(x)Hn(y) - Hn+ 1(y)Hn(x)] - 2n[Hn(x)Hn_1(y) - HnCy)Hn- 1(x)]

= 2(x - y)HnCx)Hn(y), n = 1,2,... (4.15.17)

Dividing (4.15.17) by 2nn!, summing over n from 1 to m, and noting that
Ho(x) = 1, H 1(x) = 2x, we obtain

2( _ ) ~ HnCx)Hn(y) = Hm+ 1(x)Hm(y) - Hm+ 1(y)Hm(x) _ 2( _ )
x y n~l 2nn! 2mm! x y,

which implies

K ( )
_ Hm+ 1(x)Hm(y) - Hm+ 1(y)Hm(x)

m x, y - . / .
(x - y)2m + 1m!v 'It

(4.15.18)

30 Apply Schwarz's inequality to the functions e -X
212f(x) and e -x

2 '2 Hn(x).
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We note that Km(x, y) satisfies the important identity

CHAP. 4

(4.15.19)

which is an immediate consequence of (4.15.16) and (4.13.1, 4).31
Now suppose x is a continuity point of f(x), and consider the dif

ference Sm(x) - f(x), which, according to (4.15.15) and (4.15.18,19),
can be written in the form

(4.15.20)

(4.15.21)

where

~(x, y) = f(y) - f(x).
y-x

Regarded as a function ofy, ~(x, y) is piecewise continuous in ( - 00, (0),
for exactly the same reasons as given in the proof of Theorem 1, p. 55.
Moreover, the integral

LOoo (1 + y2)e-y2~(x, y) dy

is finite, since rp(x, y) is bounded in any neighborhood of y = x (see
p. 57), and for sufficiently large b > x,

(oo (1 + y2)e- y2 rp2(x, y) dy = (oo (1 + y2)e- y2 [f(Y) - f(x)]
2

dy
Jb Jb Y - X

= 0(1) lOO e- y2 [p(y) +P(x)] dy,

where the last integral is finite, because of (4.15.14). A similar estimate
can be given for the interval (- 00, - b). Therefore, according to the
lemma,

r (m+l)114 fOO -y2H ()( )d
m~n;, [2m+1(m + 1)!V1t]l12 _OO e m+1 yrpx,y Y

m 1
/
4 fOO= lim V e- y2Hm(y)rp(x, y) dy = O.

m- oo (2mm! 1t)1/2 _ oo

31 Since Ho(Y) = 1, we have

f'", e-
y2H n(y) dy = f'", e-

y2 H o(y)Hn(y) dy = {~rr,
n #- 0,
n = O.
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On the other hand, according to (4.14.19) and Stirling's formula, each
of the expressions

[22m +1(m + I)!~F/2 Hm(x)
(m + 1)1/4 2m+1m!V7/

(2mm!~)1/2 Hm+1(x)
m1

/
4 2m + 1m!V7t

remains bounded as m --+ 00. It follows that the right-hand side of
(4.15.20) goes to zero as m --+ 00, i.e.,

lim Sm(x) = f(x),m-oo
and the proof of Theorem 2 is complete.

Remark 1. The case where x is a discontinuity of f(x) is also of interest.
It can be shown that in this case, under the same conditions as in Theorem 2,
the series (4.15.1) converges to the limit

-Hf(x + 0) + f(x - O)J.

Remark 2. Other sufficient conditions for expanding a function f(x) in a
series of Hermite polynomials can be found in the books mentioned at the
end of Sec. 4.1.32

4.16. Examples of Expansions in Series of Hermite Polynomials

In applying Theorem 2 to a given function f(x), we have to evaluate the
integral in (4.15.2). In most cases this is done by replacing Hn(x) by its
explicit expression (4.9.1) or by one of the integral representations given in
Sec. 4.11. The following examples serve to illustrate the technique of expand
ing functions in series of Hermite polynomials:

Example 1. The function

p = 0, 1,2, ...

satisfies the conditions of Theorem 2. In this case,

P

x 2p = .2 C2nH2nCX),
n=O

where

1 foo -x2 2PH ( ) dC2n = . ;- e x 2n X X.
22n(2n)!v 7t - 00

32 See also J. Korous, On expansion of functions of one real variable in a series of
Hermite polynomials (in Czech), Rozpravy Ceske Akademie, (2), 37, no. 11 (1928).
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Substituting from (4.9.1) and integrating by parts n times, we find that

I foo d
2n

C = x 2p -- (e- X2 ) dx
2n 22n(2n)!Y7t _ 00 dx2n

= I (2p)! foo e-x2x2P-2n dx
22n(2n)!Y7t (2p - 2n)! - 00

I (2p)! r(p .!)
22n(2n)!Y7t (2p - 2n)! - n + .

According to the duplication formula (1.2.3) for the gamma function,

22p - 2nr(p - n + t)(p - n)! = Y;(2p - 2n)!,

and therefore the expression for C2n simplifies to

(2p)!
C2n = 22P(2n)!(p - n)(

Thus the desired expansion is

2p (2p)! * H2n(x)
X = 22p L.. (2 )'( ),'n=O n. p - n .

-00 < x < 00, p = 0, 1,2, ...

(4.16.1)

In the same way, we find that

2p+l = (2p + I)! * H2n +1(X) , 0 1 2
X 22p +1 n~o(2n+l)!(p-n)! -oo<x<oo, p=" , ...

(4.16.2).

Example 2. Letf(x) = eax, where a is an arbitrary real or complex num
ber. Then the same method as used in Example 1 shows that

00

eax = L cnHn(x),
n=O

where

so that

-00 < x < 00. (4.16.3)

We get the same result by setting t = al2 in the expansion (4.9.3) of the
generating function.
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Example 3. Consider the function

I(x) = e- a2x2 ,

In this case,
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Re a2 > -1.

oo

e- a2x2 = L C2nH 2n(X),
n=O

where

c = 1 fOO e-<a2+ 1)x
2H (x) dx.

2n 22n(2n)!V7t _ oo 2n

To evaluate the integral, we replace H 2n(x) by its integral representation
(4.11.2). Making an appropriate change of variable and again using the
duplication formula (1.2.3), we obtain (cf. footnote 12, p. 6)

2( I)n iOO fOOc = ---- e- t2 t2n dt e- a2x2 cos 2xt dx
2n 7t(2n) ! 0 _ oo

= 2(-l)n roo e-t2<1 +a-2)t2n dt = (_I)n a
2n roo e-ssn - % ds

V 7t(2n)!a Jo V 7t(2n)! (I + a2)n +% Jo
( -l)n a2n ( _l)na2n
~-'-- ---~ r(n + -t) = ---'------'---------,-
~(2n)! (l + a2)n+ Yz 22nn!(l + a2)n+%

With this value of C2m we have

oo (I)n 2n
e- a2x2 _ ~ - a H (x)

- L., 22n '(1 + 2)n+% 2n ,n=O n. a

Example 4. If

then

- 00 < x < 00, Re a2 > - 1.

(4.16.4)

x> 0,
x < 0,

oo

sgn x = L C2n+1H 2n+l(X),
n=O

where

C2n+l = 1__.--=/ JOO e-x2 H 2n +1(x) sgn x dx
22n +1(2n+I)!v7t -oo

1 iOO= e-x2H (x) dx
22n(2n + 1)!V7t 0 2n+l .

Using the identity

(4.16.5)
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which follows from (4.10.1) and (4.10.2), we find that

H 2iO) (_l)n
C2n + 1 = 22n(2n + I)! vi7t = 22n(2n + I)n!vi7t'

CHAP. 4

and hence

(4.16.6)-00 < x < 00.
1 00 ( -1)n

sgn x = vI~ n~ 22n(2n + l)n! H2n +1(X),

Example 5. By integrating (or differentiating) these formulas with respect
to the variable x or the parameter a, we can derive further expansions of the
same type. For example, integrating (4.16.4) with respect to x over the
interval [0, x] and using (4.10.2), we obtain

-00 < x < 00, (4.16.7)
1 00 (_l)na2n+l H 2n +

1
(X)

<D(ax) = ~n~o 22nn!(l + a2)n+ Y2 2n + 1 '

where <D(x) is the probability integral. Another interesting expansion is
obtained if we multiply the series (4.16.4) by (1 + a2)-1 and integrate with
respect to a from °to 00. This gives

ex2 [1 - <D(x)] = ~ i (--;nl),n H 2n(x),
7t n=O 2 n. 2n + 1

°~ x < 00, (4.16.8)

where we have used the identity (2.1.7).
Other examples of expansion of functions in Hermite polynomials are

given in the problems at the end of the chapter (see p. 93).

4.17. Definition and Generating Function of the
Laguerre Polynomials

Still another important class of orthogonal polynomials encountered in
the applications, especially in mathematical physics,33 consists of the
Laguerre polynomials L~(x),34 defined by the formula

n = 0, 1,2, ... (4.17.1)

33 In problems involving the integration of Helmholtz's equation in parabolic coor
dinates, in the theory of the hydrogen atom, in the theory of propagation of electro
magnetic waves along transmission lines, etc.

34 The polynomials L~(x) differ by only a constant factor from the polynomials
T~(x) investigated by N. Y. Sonine, Recherches sur lesfonctions cylindriques et Ie developpe
ment des fonctions continues en series, Math. Ann. 16, 1 (1880). Laguerre studied only
the special case IX = O. In the literature, the polynomials L~(x) are sometimes called the
generalized Laguerre polynomials.
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for arbitrary real r1. > -1. According to (4.17.1), the first few Laguerre
polynomials are

Lg(x) = 1, L~(x) = 1 + r1. - x,

Lg(x) = t[(1 + r1.)(2 + a) - 2(2 + oc)x + x 2
], ••• ,

and in general, using Leibniz's formula, we have

a. ~ r(n + IX + 1) (-x)"
LnCx) = ,,~o r(k + IX + 1) k!(n - k)!' (4.17.2)

where for all k < n the ratio of gamma functions can be replaced by the
product

(n + r1.)(n + IX - 1)·· ·(n + oc - (n - k - 1)).

It will be shown below (see Sec. 4.21) that the Laguerre polynomials L~(x)

are orthogonal with weight p(x) = xrxe- x on the interval 0 ::;; x < 00. The
polynomials L~(x) = Ln(x) form the simplest class of Laguerre polynomials.
Another important class consists of the polynomials L: 1/2(X) which are
simply related to the Hermite polynomials (see Sec. 4.19).

As the starting point for the theory of Laguerre polynomials, we begin
with the following expansion

<Xl

w(x, t) = (l - t)-rx-le-xt/(l-t> = L L~(x)r,
"=0

ItI < I (4.17.3)

of the generating function w(x, t). To prove (4.17.3), we note that the left
hand side, regarded as a function of the complex variable t, is analytic in the
disk ItI < 1, and hence must have an expansion of the form

<Xl

w(x, t) = (l - t)-rx-le-xt/O-t) = L c~(x)tn,
"=0

ItI < 1.

According to a familiar theorem from complex variable theory, the co
efficients c~(x) can be written as contour integrals

c~(x) = -21 . r (l - t)-rx-le-xt/(1-t)t- n- 1 dt, (4.17.4)
7tzJc

evaluated along any closed contour C surrounding the point t = 0 and lying
inside the disk ItI < 1. Choosing a contour of sufficiently small size and
introducing the new variable of integration u = xj(1 - t), we find that

(4.17.5)

where C' is a small closed contour surrounding the point u = x. Evaluating
this integral by residue theory, we obtain

thereby verifying (4.17.3).
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(4.17.7)

[tl < 1, rJ. > -1.
~ n![L~(x)]2 n

-6 t
- n=O r(n + rJ. + 1) ,

There is another expansion closely related to (4.17.3), i.e.,

W(x, y, t) = (1 - t)-le-(X+Y)t/(1-t)(Xyt)-CX/2Icx[2(;~):/2]

(4.17.6)
= ~ n!L~(x)L~(y) tn It I < 1, rJ. > -1,

n=O r(n + rJ. + 1) ,

where liz) is the modified Bessel function of the first kind (defined in
Sec. 5.7).35 Here the function W(x, y, t) can be regarded as a generating
function of products of Laguerre polynomials. The following special case of
(4.17.6), obtained by setting y = x, is important in the applications:

W(x, x, t) = (1 _ t)-le-2xt/(1-Ox-CXt-CX/2Icx( ~X~l/;)

4.18. Recu rrence Relations and Differential Eq uation for the
Laguerre Polynomials

Substituting (4.17.3) into the easily verified identity

ow
(1 - t2) 8t + [x - (1 - t)(1 + rJ.)]w = 0,

we find that
00 00

(I - t2) L nL~(x)tn-l + [x - (I - t)(1 + rJ.)] L L~(x)tn = 0,
n=O n=O

which gives

(n + I)L~+l(X) + (x - rJ. - 2n - 1)L~(x) + (n + rJ.)L~_l(X) = 0,
n=I,2, ... (4.18.1)

when the coefficient of tn is set equal to zero. Similarly, substituting (4.17.3)
into the identity 36

ow
(I - t) ox + tw = 0,

35 See E. Hille, On Laguerre's series, I, Proc. Nat. Acad. Sci., 12,261 (1926); Part II,
ibid., 12,265 (1926); Part III, ibid., 12, 348 (1926).

36 The justification for differentiating (4.17.3) term by term with respect to x follows
from the uniform convergence of (4.17.3) in the domain Ixl < a for arbitrary finite a > O.
According to (4.17.2),

IL~(x)1 .;;; L~( -a), [xl < a, ex > -1,

so that (4.17.3) is majorized by the convergent series

'".L L~( -a)ltl n = (1 - Itj)-"'-lealtll(l-Itll,
n=O

and hence converges uniformly for Ixl < a.
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we obtain
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00 dL"'() 00

(l - t) L tn~ + L L~(X)tn+l = 0,
n=O dx n=O

which implies

dL~(x) _ dL~_l(X) L'" () = °
dx dx + n-l X , n = 1,2, ... (4.18.2)

Elimination of L~_l(X) from (4.18.1-2) leads to the equation 37

(x - n - 1) dL~(x) + (n + 1) dL~+l(x)
dx dx (4.18.3)

+ (2n + 2 + oc - x)L~(x) - (n + I)L~+l(x) = 0, n = 0, 1,2, ...

Finally, replacing n by n - 1 in (4.18.3) and using (4.18.2) to eliminate
(d/dx)L~_l(X), we obtain

dL"'(x)
x dx = nL~(x) - (n + OC)L~_l(X), n = 1,2,... (4.18.4)

Formula (4.18.4) allows us to expand the derivative of a Laguerre polynomial
in terms of another Laguerre polynomial.

Recurrence relations of another type, involving Laguerre polynomials
with different superscripts can be obtained by regarding the generating func
tion as a function of the parameter oc, and then writing equations connecting
w(x, t, oc) and w(x, t, oc + 1). Thus, substituting (4.17.3) into the identity

(1 - t)w(x, t, oc + 1) = w(x, t, oc),

and comparing coefficients of identical powers of t in both sides of the result
ing equation, we obtain

n = 1,2, ... (4.18.5)

Similarly, substituting (4.17.3) into the identity

ow(x, t, oc) ( 1)
ox = - tw x, t, oc + ,

we obtain another formula of this type:

dL~(x) = -L"'+ l( )dx n-l X , n = 1,2, ... (4.18.6)

Using the recurrence relations (4.18.2,4), we can derive a differential
equation satisfied by the Laguerre polynomials. In fact, differentiating

37 In some cases, the validity of a recurrence relation for small n does not follow
from the general argument, but then one can always verify the relation by direct sub
stitution of Lg(x) = 1, LHx) = 1 + oc - x, ...
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(4.18.4) with respect tox and then using (4.18.2, 4) to e1iminate(d/dx)L~_1(x)

and L~_l(X), we find that

d 2U'(x) dL"(x)
x "----fx- + (oc + 1 - x) d~ + nL~(x) = 0, n = 0, 1,2,... (4.18.7)

It follows from (4.18.7) that u = L~(x) is a particular solution of the second
order linear differential equation

xu" + (oc + 1 - x)u' + nu = 0. (4.18.8)

Equation (4.18.8) is encountered in mathematical physics and plays an im
portant role in the theory of Laguerre polynomials. By making changes of
variables, we can easily derive other differential equations whose integrals
can be expressed in terms of Laguerre polynomials. For example, it is easy
to see that the differential equations

" ( 1 2)' [ oc + 1 x v(v - oc)] °xu + oc+ - vu + n+-
2
--"4+ x U=

and

[
1 OC2]

u" + 4n + 20c + 2 - x 2 + 4" ~2 U = °
have the particular solutions

and

respectively.

(4.18.9)

(4.18.10)

4.19. An Integral Representation of the Laguerre Polynomials.
Relation between the Laguerre and Hermite Polynomials

The Laguerre polynomials have a simple representation in terms of de
finite integrals containing the variable x as parameter. To obtain this repre
sentation, we assume that x is a positive real number. Then

(4.19.1)

where Jv(x) is the Bessel function of order V.
38 Differentiating (4.19.1) with

38 Here we anticipate some results on Bessel functions, proved in Chap. 5. Formula
(4.19.1) is a special case of formula (5.15.2), obtained by setting

a = 1, b = 2Y:X, x = ""/1, v = n + oc.
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r1. > 1, n = 0, 1,2, ...

(4.19.5)

respect to x and taking account of the identity

d ,; ,/-uv/2J(2vu) = U(v-I)/2j (2vu)du v V-I,

obtained by setting z = 2vu in the first of the formulas (5.3.6), we find that

dm r'" - -dxm(e-xxm+a) = Jo (Vxt)n-m+aJn_m+a(2Vxt)e- ttmdt, m = 0, 1,2 ... ,

(4.19.2)

where it is easy to justify the differentiation behind the integral sign. Setting
m = n in (4.19.2) and taking account of (4.17.1), we obtain the desired
integral representation of the Laguerre polynomials:

eXx-
a/2 1'"L~(x) = --,- tn+ y,aJaC2Vxt)e- t dt,

n. 0

(4.19.3)

Although this formula has been derived under the assumption that x is a
positive real number, it can easily be extended to arbitrary complex values of
x by using the principle of analytic continuation.

We now set r1. = ±t in (4.19.3) and use the familiar formulas (5.8.1-2)
from the theory of Bessel functions. Then we have

eX 2 1'" -= - --= e- u2u2n cos (2Vxu) du,
n! V7t 0

(4.19.4)

eX 2 1'" 2 • -= --_ ----= e- U u2n + 1 SIll (2v'xu) du,
n!Vx V7t 0

which, taken together with (4.1 1.2-3), imply

L -1/2() (_1)n H (, /-)
n X = -22n , 2n V X ,n.

L 1/2( ) = (_1)n H 2+nI(VX).
n x 22n + In! Vx

These formulas establish a connection between two classes of orthogonal
polynomials, and allow us to regard the theory of Hermite polynomials as a
special branch of the theory of Laguerre polynomials.39

39 One can also prove the formulas (4.19.5) directly from the expansions (4.17.2) and
(4.9.2).
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4.20. An Integral Equation Satisfied by the Laguerre Polynomials

The Laguerre polynomials satisfy a simple integral equation with a sym
metric kernel. To obtain this equation, we replace x by y in the expansion

'"
(1 - t)-tX-1e -xt/(1-t) = L L~(x)tn,

n=O

multiply the result by

ItI < 1, rJ. > -1, (4.20.1)

e- Y/2ytX/2JiVxy),

where Jiz) is the Bessel function of order rJ., and then integrate from
o to 00. This gives

(4.20.2)

= n~o tn 10'" e- Y/2ytX/2JiVxy)L~(y) dy,

provided that the process of term-by-term integration is permissible. To
prove the legitimacy of this process, suppose Itl < -}. Then, using the
inequalities 40

x~o, rJ.> -1,

where fix) is the modified Bessel function of the first kind (see Sec. 5.7), we
have

f' [JiV xy)le- Y/2ytX/2 n~ ItlnIL~(y)ldy

~ 10'" ItX(Vxy)e- Y/2ytX/2 n~o ItlnL~( - y) dy

= (1 - It I)-tX-1 10'" ItX(Vxy)ytX/2e-Y(1-3Itll/2(1-ltI> dy,

where, in evaluating the sum, (4.20.1) has been used again. For It I < t,
rJ. > - I the last integral on the right converges, as can be verified by con
sidering the asymptotic behavior of the function fix) for large and small x
(see Chap. 5). Therefore the right-hand side of (4.20.2) is absolutely con
vergent, which guarantees the validity of reversing the order of summation
and integration. 41

40 The first inequality follows from (4.17.2), the second from the power series expan
sions of the appropriate Bessel functions (see Chap. 5).

41 E. C. Titchmarsh, op. cit., p. 45.
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(4.20.3)

We now set Yy = U in the left-hand side of (4.20.2) and use formula
(5.1 5.2). This gives

(1 - t)-"'-1 1'" e- y (1+t)/2(1-t) y"'/2J",(YXy) dy

'"= 2(1 + t)-"'-lx"'/2e -X(l-t)/2(l+t) = 2X"'/2e -x/2 L L~(x)(-t)n,

n=O

for ItI < 1.42 Thus, for all ItI < t, we have the identity

2e-X/2x"'/2 n~o (-l)nL~(x)tn = n~o tn1'" e- Y/2y",/2JaCYxy)L~(y) dy,

and then, comparing coefficients of identical powers of t, we obtain the de
sired integral equation

e-X/2x"'/2L~(x) = (-21)n 1'" J",(Yxy)e-Y/2y"'/2L~(y)dy,

0( > -1, n = 0, 1,2, ...

For 0( = ±1- this equation reduces to the corresponding integral equations
(4.11.4-5) for the Hermite polynomials.

4.21. Orthogonality of the Laguerre Polynomials

We now prove one of the most important properties of the Laguerre
polynomials, i.e., their orthogonality with weight e-Xx'" on the interval
o ",:; x < 00. Setting

Un(x) = e-X/2x"'/2L~(x)

and recalling (4.18.9), we see that un(x) and um(x) satisfy the differential
equations

( ')' ( 0( + 1 X 0(2) 0XUn + n + -2- - "4 - 4x Un = ,

( ,)' ( 0( + 1 X 0(2) 0
XUm + m + -2- - "4 - 4x Um = .

Subtracting the second of these equations multiplied by Un from the first
multiplied by Um, and integrating from 0 to 00, we obtain

x(u~um - U~Un)r + (n - m) 1'" UmUn dx = O.

42 For such t,

1 + t
Re 1 _ t > 0,

and hence the convergence condition is satisfied.



84 ORTHOGONAL POLYNOMIALS

For a > -1 the first term vanishes at both limits,43 and hence

CHAP. 4

if m #- n

if m #- n, a > -I. (4.21.1)

or

1"" e-xxaL';,(x)L~(x) dx = °
The value of the integral (4.21.1) for m = n can be found as follows: We

replace the index n by n - 1 in the recurrence relation (4.18.1) and multiply
the result by L~(x). Then from this equation we subtract (4.18.1) multiplied
by L~_1(X), obtaining

n[L~(x)J2 - (n + a)[L~_1(x)12 - (n + l)L~+1(x)L~_1(X)

+2L~(x)L~_1(X) + (n + a - 1)L~(x)L~_2(X) = 0, n = 2,3, ...

n = 2,3, ...

Multiplying this equation by e-xxa, integrating from °to 00, and using the
orthogonality property (4.21.1), we find that

n L'" e-xx"[L~(x)]2 dx = (n + a) L'" e-xx"[L~_1(X)]2 dx,

Repeated application of this formula gives 44

f '" -x a[La( )]2 d = (n + a)(n + a - 1) .. ·(a + 2) f'" -x a[La( )]2 d
e x n X X (1) 3 2 e x 1 x Xo nn- .... 0

r(n + a + 1)-'-----=,-----'-, n = 2,3, ...
n.

It follows by direct substitution that this formula is also valid for n = 0, 1,
and hence

f'" -x a[La( )]2 d _ r(n + a + I)ex nX x- , '
o n.

Obviously, the functions

a > -I, n = 0, 1, 2, ...

(4.21.2)

n = 0, 1,2, ...ep (x) = [ n! ] 112 e-xI2XaI2La(x)
n r(n + a + 1) n ,

form an orthonormal system on the interval °::::; x < 00.

Formulas (4.21.1-2) play an important role in the problem of expanding
functions in series of Laguerre polynomials (see Sec. 4.23).

43 Substituting for Urn and Un, we easily verify that this term is O(x1 + <X) as x -+ O.
44 Direct calculation shows that

50"' rXx<X[L~(x)]2 dx = fO r"x"(a + 1 - X)2 dx = (0: + l)r(o: + 1).
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4.22. Asymptotic Representation of the Laguerre Polynomials for
Large n

Like the other orthogonal polynomials, the Laguerre polynomials have a
simple asymptotic representation which describes their behavior for large
values of the degree n. To obtain this representation, we write

u = e-XI2L~(x),

and note that u is the solution of the differential equation

(4.22.0

(4.22.2)" ( 1)' ( a + 1) xuxu + 0(.+ u + n+-
2
-u=4

which is analytic in a neighborhood of the point x = 0 and satisfies the
initial condition

u(O) = L(1,(O) = r(n + 0(. + O. (4223)
n n!r(O(. + 1) . .

The rest of the argument is somewhat dependent on whether 0(. is positive or
negative, but since this difference is not of a fundamental nature, we will only
consider the case 0(. ~ O.

Regarding the right-hand side of (4.22.2) as a known function, we find
that

where

Ul(X) = (VNx)-(1,J(1,(2VNx), U2(X) = (VNx)-ct Y(1,(2VNx),

0(. + 1
N=n+-

2
-,

and Jix), Y(1,(x) are the Bessel functions of the first and second kinds, re
spectively (see Chap. 5).45 Taking account of the asymptotic behavior of the
Bessel functions, described by formulas (5.16.1, 2), we find that as x -+ 0,

u2(x) -+ 00,

45 Here Ul and U2 are a pair of linearly independent solutions of the homogenous
equation

u" + IX + 1 u' + !! u = 0
x x '

with Wronskian
N

W{Ulo U2} = -;:; (NX)-a.-l.

See equations (5.4.11-12) and (5.9.2)



86 ORTHOGONAL POLYNOMIALS CHAP. 4

while the integral is O(X2).46 Therefore the values of the constants of integra
tion are

A
1

= r(n + IX + 0,
n!

(4.22.5)

and (4.22.4) can be written in the form

u(x) = A1[U1(X) + rn(x)],
where

(4.22.6)

rn(x) == 4A~N fox (Ny)'X+1U(Y)[U1(Y)U2(X) - U1(X)U2(y)] dy. (4.22.7)

It will now be shown that for fixed x ~ 0 the size of the remainder in
(4.22.6) is small compared to the first term. In proving this, we distinguish
two cases: (a) 0 ~ x ~ N- 1 and (b) x > N- 1• First we find an upper bound
(denoted by M n) for the absolute value of [u(x)! in the interval 0 ~ x ~ N- 1.
According to Sec. 5.16, for 0 ~ x ~ N- 1 we have

{

O(N-rxx-rx),

U2(X) = O(10g ~x),

Therefore, if IX > 0, it follows from (4.22.4-5) that

IX > 0,

IX = O.
(4.22.8)

Iu(x)I ~ A10(l) + M nN- 1 fox (Ny)rx+1[O(N-rxx -rx) + O(N-rxy-rx)] dy

= A10(I) + M nx20(0 = A10(l) + M nO(N-2),

which implies that

(4.22.9)

for large n, a result which remains valid for IX = O. Using (4.22.9), we find
that

(4.22.10)

for 0 ~ x ~ N-1, IX > 0, whereas

(4.22.11)

for 0 ~ x ~ N- \ IX = O.
To estimate rn(x) for x > N-1, we write (4.22.7) as a sum of integrals:

rn(x) = _7t [e lN

..• + JX ... J = /1 + /2'
4A 1N Jo liN

According to Sec. 5.16, in the interval N-1 < x < 00 we have

(4.22.12)

46 Except in the case IX = 0, where the integral is o(x 2 log ~).
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Therefore, if IX > 0, we find as before that
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(4.22.14)

a result which remains valid for IX = 0, and moreover

1,12/ :::; (AlN)-lO(N-Y.«-Y.x-Y.<X-Y.) IX (Ny)<X+l!U(y)/(Ny)-Y.<X-Y. dy
liN

Using Schwarz's inequality and formula (4.21.2), we have

rx [r X
] l/2[ roo ] 1/2Jo yY.<X+%lu(y)ldy:::; Jo y"'+% dy Jo u2(y) dy

and hence

which becomes

(4.22.15)

since Al = O(N<X), according to (4.22.5). It follows from (4.22.12, 14,15) that

Irn(x) I :::; O(N-y,<x-y'x -Y,<x-Y.)[N- 1/4XY,<x+% + N- 20(I»). (4.22.16)

A comparison of (4.22.8) with (4.22.10-11), and of (4.22.13) with (4.22.16),
shows that the size of the remainder term in (4.22.6) is small compared to
Ul(X) for all °:::; x :::; a and arbitrary finite a > 0, provided that n is large.
Therefore, finally, we have the asymptotic formula

or

n --+ 00 (4.22.17)

n --+ 00,
IX + 1

N=n+--·
2

(4.22.18)

In the interval °< i3 :::; x :::; a we can replace the Bessel function by its
asymptotic representation (5.16.1). This reduces (4.22.18) to the simpler
form

n --+ 00.

(4.22.19)
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4.23. Expansion of Functions in Series of Laguerre Polynomials

One of the most important properties of the Laguerre polynomials is the
fact that a real function f(x) defined in the infinite interval (0, (0) can be ex
panded in a series of the form

'"
f(x) = L: cnL~(x),

n=O
°< x < 00, (4.23.1)

(4.23.2)

provided f(x) satisfies certain general conditions. The coefficients Cn can be
determined formally by using the orthogonality property of the Laguerre
polynomials (see Sec. 4.21). In fact, multiplying (4.23.1) by e-xxr:tL~(x) and
integrating term by term over the interval (0, (0), we find that

cn = f(n /~ + 1) fa'" rXx"j(x)L~(x) dx.

This expansion is valid if f(x) is piecewise smooth in every finite interval
[Xl' X2] and suitably well-behaved near the points X = °and x = 00. In
particular, we have

THEOREM 3. If the real function f(x), defined in the infinite interval
(0, (0), is piecewise smooth in every finite subinterval [Xl' X2], where°< Xl < X2 < 00, and if the integral

fa'" e- Xx"j2(x) dx

is finite, then the series (4.23.1), with coefficients calculated from (4.23.2),
converges to f(x) at every continuity point off(x). At a discontinuity point,
the series converges to

-Hf(x + 0) + f(x - 0)].

Theorem 3 can be proved by a method similar to that used in proving the
corresponding theorem for Hermite polynomials (Theorem 2, p. 71).47

4.24. Examples of Expansions in Series of Laguerre Polynomials

In applying Theorem 3 to a given functionf(x), we have to evaluate the
integrals in (4.23.2). In most cases this can be done by replacing L~(r1.) by its
explicit expression (4.17.1) or by the integral representation (4.19.3). It is

47 See J. V. Uspensky, On the development ofarbitrary functions in series of Hermite's
and Laguerre's polynomials, Annals of Math., (2), 28, 593 (1927). For the case
(J. > -1-, Uspensky imposes a less restrictive condition on the behavior off(x) near x = O.
For expansion theorems valid under other conditions on f(x), see G. Szego, op. cit., and
J. Korous, On series ofLaguerre polynomials (in Czech), Rozpravy Ceske Akademie, (2),
37, no. 40 (1928).
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sometimes helpful to make use of the generating function (4.17.3). The fol
lowing examples serve to illustrate the technique of expanding functions in
series of Laguerre polynomials: 48

Example 1. The function

I(x) = XV

satisfies the conditions of Theorem 3 if v > -·Hex + 1), and we have

00

XV = L cnL~(x),
n=O

where

n! 100

c = 1) 0 e-Xxv+a.L~(x) dx.
n r(n + ex +

Substituting from (4.17.1) and integrating by parts n times, we find that

1 roo V d
n

( -x n+a.) d
Cn = r(n + ex + 1) Jo x dxn e x x

= (- 1)nv(v - 1)·· ·(v - n + 1) roo e-xxv+a. dx
r(n + ex + 1) Jo

_(_l)n r(v+ex+ l)r(v+ 1) ,
- r(n + ex + 1) + r(v - n + 1)

and hence

o < x < 00, ex > -1.

In particular, if v is a positive integer p, the series (4.24.1) terminates after
a finite number of terms, and we have

XV = rev + ex + 1)r(v + 1) ~ (-l)nL~(x) ,
n~o r(n + ex + 1)r(v - n + 1)

p _ , p ( - 1)nL~(x)

x - rep + ex + l)p. n~o r(n + ex + 1)(p - n)!'

o < x < 00, ex > -1, p = 0, 1,2, ...

Example 2. The function

I(x) = e- ax

satisfies the conditions of Theorem 3 if a > - t. In this case,

00

r ax = L cnL~(x),
n=O

(4.24.1)

(4.24.2)

48 It should be noted that the conditions imposed on the parameters in Examples 1-4
are sufficient, but the expansions may continue to hold in larger regions.
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where

= (a + l)n+"'+l'

With these values of Cn we have

n = 0, 1,2, ...

CHAP. 4

'" ( a )ne- ax = (a + 1)-"'-1 L -- L~(x),
n=O a + 1

°~ x < 00. (4.24.3)

We get the same result by setting t = a/(a + 1) in the expansion (4.17.3) of
the generating function.

Example 3. Consider the function

x > 0, a > 0, r1. > - 1.

In this case, the desired expansion is

'"
(ax)-"'1 2J,i2Vax) = L cnL~(x),

n=O
where

n' f'" (X) ",12 -
Cn = f(n + ~ + 1) Jo e-

x a J,i2vax)L~(x) dx.

To evaluate the integral, we multiply the identity (4.17.3) by

e- x Gf2

J,i2vax)

and integrate with respect to. x from °to 00. Then, assuming that \tl is
sufficiently small, we obtain

(1 - t)-"'-1 fa'" e- xl(1-t) (~rI2 J,i2Vax) dx = e- a(l-t)

'" n oc f'" ()"'12= e- a L a, tn = L tn r X ~ Ji2vax)L~{x) dx,
n= 0 n. n=O 0 a

where we have used formula (5.15.2). Comparing coefficients of identical
powers of t, we find that
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(4.24.4)

00 n

(ax)-a/2Jrl2Vax) = e- a 2: f( a 1) L~(x),
n=o n + IX +

X > 0, a > 0, IX > - 1,

Example 4. If we multiply (4.24.3) by (a + l)a-l and integrate with
respect to a from °to 00, we obtain

(00 e-ax(a + l)a-l da = ~ L~(x) (00 (_a_)n da 2 = ~ L~(x).
Jo n=O Jo a + 1 (a + 1) n=O n+ 1

The integral in the left-hand side can be expressed in terms of the comple
mentary incomplete gamma function (see Problem 10, p. 15). This gives

00 L a( )
exx-ar(lX, x) = 2: ~, °< x < 00, IX > -1, (4.24.5)

n=O n + 1

which for IX = °reduces to

°< x < 00. (4.24.6)

FIGURE 12

'r>----J',~'
~T J

Some other expansions in series of Laguerre polynomials are given in
Problems 19-20, p. 96.

4.25. Application to the Theory of Propagation of Electromag
netic Waves. Reflection from the End of a Long Transmis
sion Line Terminated by a Lumped Inductance

As a curious example of the application of Laguerre polynomials, we
consider the problem of propagation of electromagnetic waves along a trans
mission line of length I. Suppose the
line terminates at one end in a coil of
inductance L o, while at the other end a
source of constant d-c voltage Vo is
suddenly switched on at time t = °
(see Figure 12). Let the instantaneous
values of the voltage and current be
denoted by V = V(x, t) and I = I(x, t),
and let the inductance and capacitance
per unit length of the line be denoted by Land C. Then the problem reduces
to the integration of the following system of linear differential equations,49

(4.25.1)

49 See S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, second
edition, John Wiley and Sons, New York (1953), p. 24.
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subject to the initial conditions

V!t=o = I!t=o = °

CHAP. 4

(4.25.2)

(4.25.3)V!X=1 = Lo ~~IX=I'
To solve these equations, we use the method of the Laplace transform

(see Sees. 2.6,8), which converts (4.25.1) into a pair of ordinary differential
equations. As usual, let!denote the Laplace transform of the function/:

and boundary conditions

V!x=o = Vo,

(4.25.4)

Then (4.25.1) goes into

dV -- - = Ln/dx r'

d1 -- - = CpV
dx '

and eliminating 1, we obtain a second-order differential equation

d 2 V _
dx2 - LCp2 V = 0,

subject to the boundary conditions

(4.25.5)

- VoV!x=o = -,
p

dV L-
dx + L

o
VIX=1 = 0. (4.25.6)

It follows from (4.25.5) and (4.25.6) that

cosh E. (1 - x) +~ sinh E. (l - x)
V = Vo v Lop v ,

P cosh E. I +~ sinh eI
v Lop v

(4.25.7)

(4.25.8)

where v = IjVLC is the velocity of wave propagation along the line, and
Z = VLC is the characteristic impedance.50

We now return to the original function V by using the Fourier-Mellin
inversion theorem (cf. p. 25)

IJ -V = -. ePtV dp,
2m A

where the integral is along a line A parallel to the imaginary axis and to the
right of the origin. Being primarily interested in the voltage at the end of the
line, we set x = I in (4.25.7-8). Then

1 1 J e
Pt

-V =- dVO IX=1 27ti AP coshpt + IX sinhpt 'P,
(4.25.9J

50 S. Ramo and J. R. Whinnery, op. cit., p. 27.
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where 17. = Z/Lo, and T = I/v is the time it takes the wave to go from one
end of the line to the other. To obtain the answer in a form which has a
simple physical interpretation, we expand V!X~1 in powers of e- 2PT and
integrate term by term. This gives

1 ~ 1 f (P - oc)n e P[t-(2n+l)TJ
- VIX=I= L. (_l)n_. -- dp,
2Vo n=0 2m A p + 17. P + 17.

or, if we introduce the new variable of integration q = (p + 17.)/217.,

_1_ V!X=1 = ~ (_l)ne -ocH-(2n+l)TJ _1_. f (I _ ~)ne2qOC[t-(2n+l)TJ dq,
2Vo n~o 2m A' q q

(4.25.10)

where A' is a line parallel to and to the right of A.
The evaluation of the integral in (4.25.10)

1 f ( I)n e
q

,F( -r:) = -. I - - - dq
2m A' q q

(4.25.11)

is accomplished by using residue theory applied to the closed contour con
sisting of A' and the arc of the circle [ql = R (where R is arbitrarily large)
lying to the left of A' if -r: > 0 or to the right of A' if -r: < O. In the first case,
we have

1 [dn
] e' [dn

]F(-r:) =, -dn {(q - I)e
q
,} =, d--------n (yne-y) =L n(,,), (4.25.12)

n. q q=O n. Y y=,

where Ln( -r:) is the nth Laguerre polynomial (see Sec. 4.17), while in the
second case F(,,) = O. Substituting (4.25.12) into (4.5.10), we find that
Vlx = I = 0 for 0 ~ t < T, and

I N-l

2V V!X=1 = L (_l)ne -oc[t-(2n+llTJLn{2oc[t - (2n + l)T]} (4.25.13)
° n=O

for

(2N - I)T < t < (2n + I)T, N = 1,2, ...

Formula (4.25.13) represents the solution in closed form, and the appearance
of new terms at intervals of 2T seconds corresponds to the arrival of addi
tional reflected waves at the point x = I.

This method is applicable to transmission lines terminated by loads of
other kinds, and in many other cases the answer can also be expressed in
terms of Laguerre polynomials.

PROBLEMS

1. Show that all the roots of the equation Pn (x) = 0 are real and lie in the
interval ( - I, 1).

Hint. Use Rolle's theorem.

2. Show that all the roots of the equation Hn(x) = 0 are real.
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3. Prove the inequality 51

- 1 .s; x .s; 1, n = 1, 2, ...

CHAP. 4

IX > --!-,

4. Using the expansions (4.9.2) and (4.17.2), prove Uspensky'slormula

L~(x) = (-l)
n
r(n + IX + 1) f1 (1 _ t2)"- 'h.H2n(yxt) dt,

Y7tr(1X + -t)(2n)! -1

which expresses the Laguerre polynomials in terms of the Hermite poly
nomials.

5. Prove Koshlyakov's lormula 52

L~+~(x) = ~~;);(:: ~: ;j f t"(1 - t)~-lL~(xt)dt, a> -1, ~ > 0.

Hint. Replace the Laguerre polynomial L~(xt) by its expansion (4.17.2),
and integrate term by term.

Comment. For IX = --!-, ~ = IX + -!-, Koshlyakov's formula reduces to
Uspensky's formula.

6. In many cases, the evaluation of integrals of the form

r"", e-X2/(x)H~(x) dx

can be accomplished by the following device: Multiply equation (4.9.6) by
I(x), integrate from - 00 to 00, and evaluate the integral in the left-hand side,
calling the result <pet). Then expand <pet) in powers of t and equate coefficients
of identical powers of t in both sides of the equation so obtained. Applying
this method, show that

{C'" e-x2H~(x) dx = 2nn!Y~,

f-oc", e-X2H~(x)x2 dx = 2nn!Y;(n + -!-).

f-oc", e-2X2H~(x)dx = 2n- Y,r(n + -!-).

7. Prove that

fOC -a2x2H ( ) d _ (2n)! Y; (1 - a2)n
_",e 2n X x-7a ~ ,

Re a2 > 0, n = 0, 1, 2, ... ,

foc - 2 2 2P +n(2n)!(p!)2Y;
e x H p(x)H2n(x) dx = ( _ )'( ')2 '_ '" p n . n.

p=0,1,2, ... , n=0,1,2, ... ,p.

Hint. To derive the second formula, use the method of Problem 6.

51 For a simple proof, see G. Szego, Orthogonal Polynomials, revised edition, Ameri
can Mathematical Society, New York (1959), Theorem 7.3.3, p. 163.

52 N. S. Koshlyakov, On Sonine's polynomials, Messenger of Mathematics, 55, 152
(1926).
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n = 0, 1,2, ...

It1 < 00,

ItI < 00.

8. Prove that

1 fro Hn(x) fro (1 - x 2)n e-
z2

2nn! _ ro 1 ~ x 2 e-
x2

dx = _ ro 1 + x 2 1 + x2 dx

Hint. Use the method of Problem 6.

Comment. This formula was used in the proof of Theorem 2, p. 71.

9. Derive the integral representation

1 froe- XI2L n(x) = e-t2H~(t)cos(V2xt)dt.
2n- 1n!V1t 0

Hint. To calculate the integral on the right, use the method of Problem 6.

10. Derive the formula

-x2 2 _ 2
n
n! rro -s214 (S2)

e H n(X) - v; Jo e L n 2" cos sx ds.

Hint. Use the result of Problem 9 and the Fourier integral theorem.53

11. Derive the following integral equation for the square of the Hermite poly
nomial of odd index:

e-Z2H~,;;~(VX) = faro J
1
(2vxy) e-YH~;l(VY)dy.

Hint. To calculate the integral on the right, use the method of Problem 6.

12. Derive the following integral equation for the square of the Laguerre
polynomial:

e-XxlX[L~(x)]2 = faro J2i2Vxy)e-YylX[L~(y)]2dy, Q( > - t.

Comment. The result of the preceding problem is a special case of this
formula.

13. Prove the expansions

12 2 t ~ (-1)nH2n(x) t2n
e cos x = L.., (2 )' 'n=o n.

t2 . 2 ~ (-1)nH2n +l(x) t2n + 1
e sm xt = L.., (2 1)' 'n=o n + .

Comment. The expressions on the left in these formulas can be regarded
as generating functions for the even and odd Hermite polynomials, respec
tively.

14. Verify the following expansions in Hermite polynomials (cf. Secs. 2.1.3):

eX2[1 _ (f>2(X)] = i ~ (_1)n H 2n(x),
1t n~o 23n + y.n! 2n + 1

53 G. P. Tolstov, op. cit., p. 190.
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15. Derive the following expansion of the square of a Hermite polynomial in
a series of Hermite polynomials:

H2( ) - 2P( ')2 * H 2n(x)
P X - p. n-fo 2n(n!)2(p - n)!'

Hint. Use the result of Problem 7.

p = 0,1,2, ...

16. Derive the following expansion of a product of Hermite polynomials with
different indices in a series of Hermite polynomials:

H ()H () - 2P '( + )' * H 2n +r(x)
p X p+r X - p. p r. L.. 2n I( )I( _ ),'n=o n. n + r . p n.

p, r = 0, 1,2, ...

Hint. For r = 1 the required result is obtained by differentiating the
formula found in the preceding problem. The general case can be obtained by
using mathematical induction.

Comment. This expansion can be written in the symmetric form
mln(p,q)

Hp(x)Hq(x) = p!q! L
n=o

2nHp+q_2n(X)
n!(p - n)!(q - n)!'

p, q = 0, 1,2, ...

17. Using the generating function (4.9.3), prove the following addition theorem
for the Hermite polynomials:

Hix cos a + y sin a) = p! i Hn~x)Hp-n~Y) cosn a sinp - n a.
n=O n.(p - n).

18. Prove the formula

L ( 2 2) (-l)P LP H2n(x)H2P-2n(Y)px+y =-- ,
22p n=o n!(p - n)!

Hint. Use the expansion (4.17.3).

p = 0, 1,2, ...

o < X < OJ, a > O.

19. Derive the following expansion of the incomplete gamma function (see
Problem 10, p. 15) in a series of Laguerre polynomials:

_" _ 00 L~(x)
X yea, x) - n-f

o
2n+e«n + a)'

20. Derive the expansions
P

LgH+l(X + y) = L L~(x)Lg_n(Y),
n=O

p _ ~ r(~ - a + p - n) "
Lp(x) - L.. ( _ )Ir(~ _ ) Ln(x),

n=o p n. a

Hint. Use the generating function (4.17.3).

p = 0, 1,2, ... ,

p = 0, 1,2, ...

21. The Jacobi polynomials p~,,·p)(x) are defined by the formula

P~",p)(x) = (_l)n (1 - x)-"(1 + x)-p~ [(1 - x)n+"(1 + x)nH],
2nn! dxn

a > -1, ~ > -1, n = 0, 1,2, ...
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Using the methods of this chapter, show that the Jacobi polynomials have the
following properties:

(a) The function u = P:,"',P)(x) satisfies the differential equation

(I - x 2)u" + [[3 - IX. - (IX. + [3 + 2)x]u' + n(n + IX. + [3 + I)u = 0;

(b) The polynomials p:'''',P)(x) are orthogonal with weight

p(x) = (1 - x)"'(l + x)P

on the interval [-I, I];
(c) The polynomials p:,"',P)(x) are the expansion coefficients of the generat

ing function
<Xl

w(x, t) = 2"'+PR- 1(1 - t + R)-"'(l + t + R)-P = I Ph"',P)(x)tn, ItI < r,
n=o

where R = (1 - 2xt + t2 )1/2, and r is given by formula (4.2.4).

22. The Chebyshev polynomials 54 are defined by the formula

Tn(x) = cos (n arc cos x), n = 0, 1,2, ...

Show that the Chebyshev polynomials have the following properties:

(a) The function u = Tn(x) satisfies the differential equation

(1 - x 2 )u" - xu' + n2u = 0;

(b) The polynomials Tn(x) are orthogonal with weight

p(x) = (I - X 2)-1/2

on the interval [-I, I];
(c) The polynomials Tn(x) are the expansion coefficients of the generating

function
1 - t2 <Xl

w(x, t) = 1 2 2 = To(x) + 2 I Tn(x)tn, ItI < r,
- xt + t n=l

where r is again given by (4.2.4).

Comment. The Chebyshev polynomials play an important role in the
theory of approximation.

54 Sometimes transliterated as the "Tchebichef polynomials", as in G. Szego, op.
cit., and in the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 2,
Chap. 10. We refer the reader to these sources for further information on the Jacobi and
Chebyshev polynomials.
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5
CYLINDER FUNCTIONS: THEORY

5.1. Introductory Remarks

By a cylinder function we mean a solution of the second-order linear
differential equation

" I, (I V
2

) 0u + -u + - - u =
Z Z2'

where z is a complex variable and v is a parameter which can take arbitrary
real or complex values. Equation (5.1.1), called Bessel's equation of order v,

is encountered in studying the boundary value problems of potential theory
for cylindrical domains (see Sec. 6.3), which explains the origin of the term
cylinderfunction. Certain special kinds of cylinder functions are known in the
literature as Besselfunctions, and this term is sometimes applied to the whole
class of cylinder functions.

The cylinder functions, with their manifold applications, have been
studied in great detail, and extensive tables of such functions are available.
These functions are among the most important special functions, with very
diverse applications to physics, engineering and mathematical analysis itself,
ranging from abstract number theory and theoretical astronomy to concrete
problems of physics and engineering. Some of these applications, mainly
from the field of mathematical physics, will be considered in Chapter 6. The
present chapter is devoted to a brief exposition of the elementary theory of
cylinder functions. The reader who wishes to go further in his study of these
functions should consult the special literature devoted to the subject (see the
Bibliography on p. 300), notably the classic treatise by Watson,l to which
we will make frequent reference.

1 G. N. Watson, A Treatise on the Theory of Bessel Functions, second edition,
Cambridge University Press, London (1962).

98
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5.2. Bessel Functions of Nonnegative Integral Order

In many applied problems, one need only consider a special class of
cylinder functions, corresponding to the case where the parameter v in equa
tion (5.1.1) is a nonnegative integer n. This case is much simpler than the case
of arbitrary v, and will serve to introduce the general theory.

We begin by showing that one of the solutions of Bessel's equation

1 ( n
2

)u" +.- u' + 1 - - U = 0,Z Z2 n = 0, 1,2, ... (5.2.1)

is the function Ul = In(z), known as the Bessel function of the first kind of
order n, and defined for arbitrary z by the series

00 (_ l)k(Z/2)n + 2k
In(z) = k~O k!(n + k)! ' [zl < 00. (5.2.2)

Using the ratio test, we easily verify that this series converges in the whole
complex plane, and hence represents an entire function of z. Suppose we
denote the left-hand side of (5.2.1) by l(u), and introduce the abbreviated
notation

( -1)k
rxk = 2n+2kk!(n + k)!

for the coefficients of the series (5.2.2). Then we have

00 00

I(Ul) = L [(n + 2k)(n + 2k - 1) + (n + 2k) - n2]OCIcZn+2k-2 + L OCIcZn+2k
k=O k=O

00 00

= L 4rxkk(n + k)zn+2k-2 + L OCIcZn+2k
k=l k=O

00

= L [4rxlc+l(k + 1)(n + k + 1) + ocdzn + 2k,
k=O

and therefore l(u1) == 0, since the expression in brackets vanishes. Thus
In(z) satisfies Bessel's equation (5.2.1), i.e., In(z) is a cylinder function. The
simplest functions of this kind are the Bessel functions of orders zero and one:

(Z/2)2 (Z/2)4 (Z/2)6
Jo(z) = 1 - (l!)2 + (2!)2 - (3!)2 +"',

z [ (Z/2)2 (Z/2)4 (Z/2)6 ]
J1(z) = 2 1 - l!2! + 2!3! - 3!4! +... .

(5.2.3)

We now show that the Bessel functions of higher order can be expressed
in terms of the two functions Jo(z) and J1(z). Assuming that n is a positive
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integer, we multiply the series (5.2.2) by zn and then differentiate with respect
to z. This gives

~[nJ()] = ~ (-1)k(2n + 2k) 2n+2k-1
dz z n Z /;::0 2n+2kk!(n + k)! z

00 (_l)k (z)n-1+2k
= zn k~ k!(n _ 1 + k)! 2 = znJn_1(z),

or

n = 1,2, ...~ [znJn(z)] = znJn_1(z),

Similarly, multiplying (5.2.2) by z-n, we find that

d
dz [z-nJn(z)] = - z-nJn+1(z), n = 0, 1,2, ...

(5.2.4)

(5.2.5)

Performing the differentiation in (5.2.4-5) and dividing by the factors z±n,
we arrive at the formulas

J~(z) - '!. In(z) = -In+l(Z), (5.2.6)
z

which immediately imply the following recurrence relations satisfied by the
Bessel functions:

n = 1,2, ...

n = 1,2, ...

(5.2.7)

(5.2.8)

Repeated application of (5.2.7) allows us to express a Bessel function of
arbitrary order v = n (n = 0, 1,2 ... ) in terms of Jo(z) and J1(z), thereby
greatly simplifying the effort needed to calculate tables of Bessel functions.
Formula (5.2.8) allows us to express derivatives of Bessel functions in terms
of other Bessel functions. For n = 0, (5.2.8) should be replaced by

Jo(z) = -J1(z) (5.2.9)

[in keeping with (5.2.5)], which is an immediate consequence of the formulas
(5.2.3).

The Bessel functions of the first kind In(z) are simply related to the coeffi
cients of the Laurent expansion of the function 2

00

w(z, t) = eYzz(t-t- 1) = L cn(z)tn,
n = - 00

°< It I < 00. (5.2.10)

2 Regarded as a function of t, w(z, t) is analytic in the annulus 0 < I) ~ t ~ A < 00,

and therefore this expansion exists.
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To calculate the coefficients cn(z), we multiply the power series

ezt/2 = I + (zj2) t + (zj2)2 t2 + ...
1! 2! '

e-z/2t = I _ (zj2) ~ + (zj2)2.!.. + ...
I! t 2! t2

'

and then combine terms containing identical powers of t. As a result, we
obtain

which implies

Cn(z) = In(z),

cnCz) = (-I?J-n(z),

n = 0, 1,2, ,

n = -1, -2, ,
(5.2.11)

<Xl

w(z, t) = ey'z(t-t- 1
) = Jo(z) + 2: JnCz)[tn + (_I)nt- n], °< itl < 00.

n=l

(5.2.12)

The function w(z, t) is called the generating function of the Bessel functions
of integral order, and formula (5.2.12) plays an important role in the theory
of these functions.

To find a general solution of Bessel's equation (5.2.1), thereby obtaining
an arbitrary cylinder function of integral order v = n (n = 0, 1,2, ... ), we
must construct a second solution of (5.2.1) which is linearly independent of
In(z). For such a solution we choose U2 = Yn(z), called the Bessel function
of the second kind, which will be defined in Sec. 5.4. It will be shown in Sec.
5.5 that this definition leads to the series expansion

where

Yn(z) = ~Jn(Z) log~ - ~ :~: (n - Z! - I)! (~rk-n

1 <Xl (-l)k(zj2)n + 2k
- ; k~O k!(n + k)! [\j;(k + I) + \j;(k + n + 1)],

(5.2.13)

1 1
\j;(m + I) = - y + 1 + 2 + ... + m' \j;(I) = -y,

y is Euler's constant (see Sec. 1.3), and in the case n = 0, the first sum in
(5.2.13) should be set equal to zero. The function Yn(z) is analytic in the
complex plane cut along the segment [ - 00, 0], and becomes infinite as z -+ 0.
Thus, the general expression for the cylinder function of order v = n is a
linear combination of Bessel functions of the first and second kinds, i.e.,

where A and B are constants.

n = 0, 1,2, ... , (5.2.14)
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5.3. Bessel Functions of Arbitrary Order

CHAP. 5

The Bessel functions considered in the preceding section are a special
case of the more general Bessel functions of the first kind of arbitrary order v.

To define these functions, consider the series

00 (_1)k(z/2)v+2k

k~O r(k + 1)r(k + v + 1)'
(5.3.1)

where z is a complex variable belonging to the plane cut along the segment
[ - 00, 0], and v is a parameter which can take arbitrary real or complex
values.3 It is easily seen that (5.3.1) converges for all z and v, and that the
convergence is uniform in each variable in the region Izl ~ R, [vi ~ N (where
Rand N are arbitrarily large). This follows from the fact that starting from
some sufficiently large k, the ratio of the absolute value of the (k + 1)th term
to that of the kth term equals

Izl 2 R2

-:-=---"-,,...;-,;-'----,-----, ~ ,
4(k + l)!k + 1 + vi 4(k + 1)(k + 1 - N)

where the right-hand side is positive, independent of z and v, and approaches
zero as k --+ 00. 4 Since the terms of (5.3.1) are analytic functions of z in the
plane cut along [- 00, 0], the sum of the series is an analytic function of z in
the same region. We call this function the Bessel function of the first kind of
order v, and denote it by liz), i.e.,

00 (_l)k(z/2)v+2k
liz) = k~O r(k + l)f(k + v + 1)' [zl < 00, [arg zl < Te. (5.3.2)

Tu show that the function (5.3.2) satisfies Bessel's equation with para
meter v, we write

l(u) =u" + ~ u' + (1 - ~:)u = 0, Ul = liz),

and repeat the derivation given in Sec. 5.2,5 obtaining
00

l(ul) = L [4IXk+1(k + l)(k + v + 1) + IXdzv + 2k,
k=O

3 In general, the condition imposed on z is necessary for the function ZV to be single
valued, but can be omitted if v is an integer.

4 A series of functions

converges uniformly in a domain D if

IUk+ l(Z)/,,;;; q < 1
Uk(Z)

for all Z in D and k ;;. M, where q is independent of z. See E. C. Titchmarsh, op. cit., p. 4.
5 Recall that a uniformly convergent series of analytic functions can be differentiated

term by term.
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( -1)1<

Using (1.2.1), we see at once that l(ul) == O.
Since for fixed z in the plane cut along the segment [- 00, 0], the terms of

the series (5.3.2) are analytic functions of the variable v (see Sec. 1.1), the fact
that (5.3.2) is uniformly convergent implies that the Bessel function of the
first kind is an entire function of its order v. For integral v = n (n = 0, 1,
2, ... ), r(k + v + 1) = (n + k)! and (5.3.2) reduces to (5.2.2). Therefore
the functions defined in this section are the natural generalizations of those
studied in the preceding section. For negative integral v = -n (n = 1,
2, .... ), the first n terms of the series (5.3.2) vanish (see Sec. 1.2), and the
series becomes

_ ~ (_1)1«zj2)-n+21< _ ~ (_l)n+s(zj2)n+2s
J_n(z) - L. k'(k )' - L. ( )" '

1<=n • - n . s=o n + s .s.

and hence

n = 1,2, ... (5.3.3)

Thus, the Bessel functions of negative integral order differ only by sign from
the corresponding functions of positive integral order. It follows that the ex
pansion (5.2.12) can be written in the form

co

w(z, t) = e Y2Z(t-t-
1

) = L In(z)tn.
n= - 00

(5.3.4)

Many of the formulas derived earlier for Bessel functions of nonnegative
integral order remain the same for Bessel functions of arbitrary order. For
example,

Jv-1(z) - Jv+1(z) = 2J~(z), (5.3.6)

generalize formulas (5.2.4-5, 7-8), and are proved in exactly the same way.
We also have

c~zr [zvJv(z)] = zv-mJv_m(z),

(z ~zr [z-vJiz)] = (-l)mz-v-mJv+m(z),

which are proved by repeated application of (5.3.6).

(5.3.7)
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5.4. General Cylinder Functions. Bessel Functions of the
Second Kind

By definition, a cylinder function is an arbitrary solution of the second
order linear differential equation

l(u) = u" + ~ u' + (1 - ~)u = 0,
and hence has the general form

u = Ziz) = ClUl(Z) + C2U2(Z), (5.4.2)

where Ul and U2 are arbitrary linearly independent solutions of (5.4.1), and
Cl , C2 are constants which, in general, are arbitrary functions of the para
meter v. It is easy to obtain an expression for the general cylinder function in
the case where v is not an integer. In fact, choosing Ul = Jy(z), where Jy(z)
is the Bessel function defined in Sec. 5.3, we take the second function to be
U2 = J -iz), which is also a solution of (5.4.1), since (5.4.1) does not change
if v is replaced by -v. For nonintegral v, the asymptotic behavior of these
solutions as z ---* °is given by

(5.4.3)

and therefore these solutions are linearly independent. 6 Thus, the desired
expression for the general cylinder function can be written as

v #- 0, ± 1, ±2, ... (5.4.4)

(5.4.5)

If v"is an integer, then, because of (5.3.3), the particular solutions Ul and U2

are linearly dependent, and (5.4.4) is no longer a general solution of Bessel's
equation (5.4.1). To obtain an expression for the general cylinder function
which is suitable for arbitrary v, we introduce the Bessel functions of the
second kind, denoted by Yy(z) and defined by the formula

Y(z) = Jiz) cos.V7t - J_iz)
y SIn V7t

for arbitrary z belonging to the plane cut along the segment [- 00,0].7 For
integral v, the rigt)t-hand side of (5.4.5) becomes indeterminate [cf. (5.3.3)],
and in this case we define Yn(z) as the limit

Yn(z) = lim Yy(z).
y~n

(5.4.6)

6 This argument breaks down if v is an integer (including zero).
7 The function we denote by Ylz) is sometimes denoted by Nv(z) in the literature on

Bessel functions.
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Since both the numerator and denominator are entire functions of V, and
since

d .
dv sm 'ITt = Tt cos 'ITt 1= 0 if V = n,

this limit exists and can be calculated by L'Hospital's rule, application of
which gives

Yn(z) = .!. [OJlZ)I _(_l)n oJ-lZ)1 ].
Tt 8v y=n 0'1 y=n

(5.4.7)

It follows from its definition that Yy(z) is an analytic function of z in the plane
cut along [- 00,0], and an entire function of the parameter v for fixed z.

In view of (5.4.4), the fact that Ylz) is a cylinder function, Le., satisfies
Bessel's equation (5.4.1), is obvious for nonintegral v. To show that Yy(z)
is a cylinder function for integral 'I, we use the principle of analytic continua
tion, noting that since l( Yy ) is an entire function of 'I, l( Yy ) == 0 for v 1= n
implies l( Yy ) for all 'I. The fact that the solutions U1 = Jlz) and U2 = Ylz)
are linearly independent follows from the linear independence of the solutions
Jlz) and J _y(z) for nonintegral v, and from a comparison of the behavior of
Ul and U2 as z -+ 0 [cf. (5.4.3) and (5.5.4), proved below] for integral v. Thus,
finally, the expression

(5.4.8)

for the general cylinder function Zy(z) is suitable for arbitrary 'I.

The Bessel functions of the second kind satisfy the same recurrence rela
tions as the functions of the first kind, e.g.,

~ [zYYy(z)] = zYYy_1(z),

2'1
Yy-1(z) + YY +1(z) = - Ylz),z

(5.4.9)

For nonintegral 'I, the validity of these formulas follows from the definition
(5.4.5) and the corresponding formulas for Jlz). To obtain the same formulas
for integral 'I, we need only pass to the limit 'I -+ n, observing that all the
functions involved are continuous with respect to the index v. We also note
that (5.4.7) implies the relation

n = 0, 1,2, ... , (5.4.10)

which allows us to reduce the calculation of functions of negative integral
order to that of functions of positive integral order.

By making changes of variables in Bessel's equation (5.4.1), we can easily
obtain a number of other differential equations whose general solutions can
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be expressed in terms of cylinder functions. Of the various equations ob
tained in this way, those of greatest practical interest are

" 1 - 2oc, [(A V-l)2 OC
2

- V
2y2

] °U + --- u + i"'yz + 2 U = ,
Z Z

u" + OCZVU = 0,

with solutions

(5.4.11)

(

2OC1/2 )
U - Zl/2Z __ Zl + (V/2)

- If(v + 2) Y + 2 ' (5.4.12)

where ZvCz) denotes an arbitrary cylinder function.

5.5. Series Expansion of the Function Yn(z)

To derive a series expansion of the function Yn(z), we use the expansion
(5.3.2) to calculate the derivatives with respect to the index v which appear in
(5.4.7). Because of (5.4.10), we need only consider the case v = n (n = 0,
1,2, ... ). Since, as already shown, the series (5.3.1) converges uniformly in v,
we can differentiate it term by term, obtaining B

OJvCZ)! = ~ (-1)k(z/2)n+2k [lOg': _ <.j;(k + n + 1)]'
OV v=n k=O k!(n + k)! 2

where

.1.( ) = r'(z)
'i' z r(z)

is the logarithmic derivative of the gamma function (see Sec. 1.3). Similarly,
we have

8J_ v(z) = ~(_1)k(Z/2)-V+2k[_1 .: .I.(k- 1)]'
ov k~ k!r(k - v + 1) og 2 + 'i' v +

Fork = 0, 1,2, ... ,n - 1,

r(k - v + 1)~ 00, <.j;(k - v + 1)~ 00

as v~ n, so thilt the first n terms of the last series become indeterminate.
However, using familiar formulas from the theory of the gamma function
[see (1.2.2, 4) and (1.3.4)], we find that

1· <.j;(k - v + 1) = I' [r( _k)' (_ k) <.j;(v - k) + 7t cot 7t(v - k)]
1m r(k _ 1) 1m v sm 7t V

V-n V + v-n 7t

= (_l)n-k(n - k - I)!, k = 0, 1, ... ,n - 1,

B The passage to the limit II -+ n behind the summation sign is legitimate, since a
series obtained by term-by-term differentiation of a uniformly convergent series of
analytic functions is itself uniformly convergent.
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oj-v(Z)/ = (_1)n n~l (n - k, - I)! (=-)2k-n
OV v=n k=O k. 2

n 00 (-I)P [Z ] (Z)2P+n+ (-1) p~o(n + p)!p! -Iog z+ \j;(p + 1) 2 '

where we have introduced the new summation index p = k - n.
It now follows from (5.4.7) that the desired expansion of the function

Yn(z) is

1 n-l (n - k - I)! (z)2k-n
Yn(z) = - - L , -

7'C k =o k. 2

1 00 (_1)k(z/2)n+2k [ Z ]
+ ; k~O k!(n + k)! 2 log 2 - \j;(k + 1) - \j;(k + n + 1)

jarg zi < 7'C, n = 0, 1,2, ... , (5.5.1)

where the first sum should be set equal to zero ifn = 0 [cf. (5.2.13)]. Accord
ing to (1.3.6-7), the values of the logarithmic derivative of the gamma func
tion are given by

\j;(I) = -y,
1 1

\j;(m + 1) = -y + 1 + -+ ... +-,
2 m

m = 1,2, ... ,

(5.5.3)

(5.5.2)

where y = 0.57721566 .. , is Euler's constant. Using (5.2.2), we can write
the expansion (5.5.1) in a somewhat different form:

Yn(z) = ~ In(z) log 2:' - ! n~l (n - Z, - I)! (_2z)2k-n
7'C 7'C k=o'

I 00 (_l)k(z/2)n+2k
- ; k~O k!(n + k)! [\j;(k + I) + \j;(k + n + I)].

(5.5.4)

z --+ 0, n = 1,2, ... ,

Finally, we note that (5.5.1) implies the asymptotic representations

2 z
Yo(z) ~ ; log 2' z --+ 0

Yn(z) ~ _ (n ~ I)! (~) -n,

which show that YnCz) becomes infinite as z --+ O.

5.6. Bessel Functions of the Third Kind

Next we discuss still another class of cylinder functions, i.e., the Bessel
functions of the third kind or Hankelfunctions, denoted by H~l)(Z) and H~2)(z).
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These functions are defined in terms of the Bessel functions of the first and
second kinds by the formulas

ml)(z) = Jlz) + iYv(z), m 2)(z) = Jlz) - iYv(z), (5.6.1)

where v is arbitrary and z is any point of the plane cut along the segment
[- 00,0]. The motivation for introducing the functions (5.6.1) is that these
linear combinations of Jv(z) and Ylz) have very simple asymptotic expres
sions for large Izi (see Sec. 5.11) and are frequently encountered in the
applications.

It follows from (5.6.1) that the Hankel functions are entire functions of v,

and analytic functions of z in the plane cut along [- 00, 0]. Clearly, the
functions H~I)(Z) and H~2)(Z) are linearly independent of each other, and each
is linearly independent of Jlz). Therefore we can write the general solution
of Bessel's equation (5.4.1) in any of the forms

u = Zlz) = AIJv(z) + A 2m l )(Z)
(5.6.2)

= BIJv(z) + B2m 2)(Z) = DIm1)(Z) + D2m 2)(Z),

where AI' ... , D 2 are arbitrary constants, as well as in the form (5.4.8).
Since the Hankel functions are linear combinations of the functions Jlz)

and Ylz), they satisfy the same recurrence relations as these functions, e.g.,

d- [z-VH(P)(z)] = -z-vH(p) (z)dz v v+1 ,
d

- [ZVH(P)(z)] = ZVH(P) (z)dz v v-I ,

2vH(P) (z) + H(p) (z) = - H(P)(z)
v-I v+ I Z v ,

H(p) (z) - H(p) (z) = 2 dmp)(z),
v-I v+1 dz

(5.6.3)

where p = 1,2. Using (5.4.5) to eliminate Ylz) from (5.6.1), we obtain

H~I)(Z) = J -v(z). -: e-
V1tt

Jv(z), H~2)(Z) = eV1ttJv~z). - J -v(z), (5.6.4)
I sm V7t I sm V7t

which imply the important formulas

H<.!t (z) = eV1tim l )(z), H<3t(z) = e- V1ttm 2)(z). (5.6.5)

5.7. Bessel Functions of Imaginary Argument

In the applications, one frequently encounters two functions Ilz) and
Kv(z), which are closely related to the Bessel functions. Let D be the complex
plane cut along the negative real axis. Then, for all z in D, Iv(z) and Klz)
are defined by the formulas

<Xl (Z/2)V+2k
Ilz) = k~O f(k + I)f(k + v + I)'

K (z) = ::.1-lz! - Ilz), larg zl
v 2 sm V7t

Izi < 00, larg zl < 7t,

< 7t, V # 0, ± I, ± 2, ...

(5.7.1)

(5.7.2)



SEC. 5.7

where, for integral 'V = n,

CYLINDER FUNCTIONS: THEORY 109

Kn(z) = lim Ky(z),
y-n

n = 0, ± 1, ± 2, ... (5.7.3)

Repeating the considerations of Sees. 5.3-4, we find that ly(z) and Kiz) are
analytic functions of z for all z in D, and entire functions of 'V.

The functions liz) and Kiz) are simply related to the Bessel functions of
argument ze±1tiI2. If

7t
-7t < arg z <"2' i.e.,

then (5.3.2) implies

7t- "2 < arg (ze1ti/2
) < 7t,

so that

7t
-7t < arg z < "2' (5.7.4)

Similarly, according to (5.6.4), for the same values of z we have

H(l)( 1t112) = J_ize1tiI2) - e-
y1ti

Jize1ti/2)
y ze . i sin 'V7t

-y1tiI21 () -y1ti/2/ ( ) 2= e _y z - e y z = _ -y1tI/2K ( )
i sin 'V7t 7ti e y z ,

and hence

On the other hand, if

7t
-7t<argz<I (5.7.5)

7t
- "2 < arg z < 7t,

then it is easily verified that

7t
-7t < arg (ze- 1ti/2) < -,

2

Ky(z) = - ~ e-y1ti/2H~2)(ze-1tiI2). (5.7.6)

Because of (5.7.4-6), ly(z) and Kiz) are often called Bessel functions of
imaginary argument. However, this term is not too fortunate, and instead we
will usually refer to liz) as the modified Bessel function of the first kind and
to Ky(z) as Macdonald's function. 9

9 K,(z) is called the modified Bessel function of the third kind in the Bateman Manu
script Project, Higher Transcendental Functions, Vol. 2, p. 5.
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It is an immediate consequence of the formulas just derived that ly(z) and
Kiz) are linearly independent solutions of the differential equation

1 ( V
2

)u" + - u' - 1 + - u = °Z Z2'
(5.7.7)

which differs from Bessel's equation only by the sign of one term, and goes
into Bessel's equation if we make the substitution Z = ± it. Equation (5.7.7)
is often encountered in mathematical physics, and its general solution, for
arbitrary v, can be written in the form

(5.7.8)

The functions liz) and Kiz) satisfy simple recurrence relations, e.g.

(5.7.9)

d
dz [z-YKy(z)] = -z-YKy+1(z)

2v
IY_1(z) - IY+1(z) = ~ liz),

2v
Ky_1(z) - Ky+1(z) = - - Ky(z).

z

~ [zYly(z)] = zYly_1(z),

~ [zYKy(z)] = -zYKy_1(z),

Ky_1(z) + Ky+ l(Z) = - 2K~(z),

The recurrence relations involving liz) are proved by substituting from
(5.7.1). Then, using these formulas and (5.7.2), we derive the corresponding
formulas involving Ky(z) for nonintegral v. Finally, we extend the results to
the case of integral v by using the continuity of Kiz) with respect to the
index v.

Two other useful formulas are

(5.7.10)
Ln(z) = In(z), n = 0, ± 1, ±2, ... ,

K_y(z) = Kiz),

where the first follows from (5.7.1) if we note that the first n terms of the
expansion vanish if v = - n, while the second is an immediate consequence
of the definition (5.7.2).

Using (5.7.3) and the method of Sec. 5.5, we can derive a series expansion
of the function Kn(z). The result of the calculations is

_ ! n-1 (-I)k(n - k - 1)! (z)2k-n
Kn(z) - 2 k~O k! 2

1 n-1 00 (z/2)2k+n [ Z ]
+ 2(-1) k~ k!(k + n)! 2 log 2 - Iji(k + 1) - Iji(k + n + I) ,

larg zl < 7t, n = 0, 1,2, ... , (5.7.11)
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where tfi(z) is the logarithmic derivative of the gamma function [whose values
can be found from (5.5.2)], and the first sum should be set equal to zero if
n = 0. We note that (5.7.11) implies the asymptotic representations

1 (z)-nKn(z) ~ 2 (n - I)! 2 '

2
Ko(z) ~ log-,

z
z~o,

z~ 0, n = 1, 2, ... ,

(5.7.12)

which show that Kn(z) becomes infinite as z ~ 0.

5.8. Cylinder Functions of Half-Integral Order

(5.8.1)

(
2Z)1/2 L'" (_I)kz2k ( 2 )1/2 .= - = - sIn z
1t k=O r(2k + 2) 1tZ

We now consider the special class of cylinder functions of order n + t
(n = 0, ±1, ±2, ... ). In this case, the cylinder functions can be expressed
in terms of elementary functions. To see this, we first find the values of the
functions J ± 1/2(Z). Setting v = ± 1- in (5.3.1) and using the duplication
formula (1.2.3) for the gamma function, we obtain

'" (_I)k(z/2)2k+ %

Jl/2(z) = k~O r(k + I)r(k + t)

and similarly,

(
2)1/2

J -1/2(Z) = 1tZ cos Z. (5.8.2)

The fact that any Bessel function of the first kind of half-integral order
can be expressed in terms of elementary functions now follows from the
recurrence relation

[see (5.3.6)], repeated application of which gives

1 ( 2 ) 1/2 [Sin z ]J3/2(Z) = ZJ1/2(Z) - J -1/2(Z) = 1tZ -z- - cos z ,

(
2 ) 1/2 [ . cos Z]

J- 3/2(Z) = - 1tZ SIll Z + -z- ,

and so on. Using (5.3.7), we can write the general expression for I n + y2(z) in
terms of elementary functions. For example, setting v = t in the second of
the formulas (5.3.7) and taking account of (5.8.1), we find that

(
2)1/2 ( d )nSinzJ +y:(z) = (_1)n - zn+% - --,

n 2 1t Z dz z n = 0, 1, 2, . .. (5.8.3)
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To derive the corresponding formulas for Bessel functions of the second
and third kinds, we start from the expressions (5.4.5) and (5.6.4) of these
functions in terms of Bessel functions of the first kind, and use (5.8.1-2).
For example,

(
2) 112

m1~(Z) = i - e- IZ

1T:Z '

(
2)112

Y112(Z) = -J-1Iiz) = - 1T:Z cos Z,

(2) 1/2H(1l(Z) = - i - e1z
1/2 1T:Z'

and so on.
Finally, we note that

(5.8.4)

(
2)112 .

11/2(z) = 1T:Z smh z, (2) 1/2
L 1/2(Z) = 1T:Z cosh z,

(5.8.5)

where the formulas for general index n + 1- are obtained from (5.8.5) and
the recurrence relations (5.7.9). It has been shown by Liouville that the case
of half-integral order is the only case where the cylinder functions reduce to
elementary functions.

5.9. Wronskians of Pairs of Solutions of Be~el's Equation

By the Wronskian of a pair u1(z), u2(z) of solutions of a linear homo
geneous second-order differential equation is meant the determinant

where the prime denotes differentiation with respect to the independent
variable z. The solutions U1 and U2 are linearly independent if and only if
the Wronskian does not vanish identically.lo We now calculate the Wron
skians of various pairs of solutions of Bessel's equation

" 1, (1 V

2

) 0u+-u+ --U=Z Z2'

thereby obtaining a number of formulas which are useful in the applications.
In particular, these formulas show that the solutions in question are linearly
independent, a fact proved earlier by other means.

To calculate the Wronskian, we write the equations for U1 and U2 in the
form

d (V2)dz (zui) + z - Z U1 = 0,

10 E. A. Coddington, op. cit., Theorem 6, p. 111.
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and then subtract the first equation multiplied by U2 from the second equation
multiplied by U1• The result is

which implies

where C is a constant, independent of z, whose value can be determined, for
example, from the relation

C = lim ZW{Ul(Z), U2(Z)}.
z-o

In particular, choosing U1 = Jv(z), U2 = J -v(z), where v is not an integer,
and using the expansion (5.3.2) and formulas (1.2.1-2) from the theory of the
gamma function, we find that

-2v
C = ~i~ r(l + v)r(1 _ v) [1 + O(Z)2] =

which implies

2 sin V7t'----,
7t'

W{Jv(z), J _ v(z)} = 2 sin V7t'

7t'Z
(5.9.1)

The validity of (5.9.1) for integral v follows by continuity, and we have
W == 0, as must be expected. The Wronskians of other pairs of solutions of
Bessel's equation can be found in the same way, or else they can ~e deduced
from (5.9.1) and the relations (5.4.5), (5.6.4). We always begin by considering
the case of nonintegral v, and then use continuity to extend the result to
arbitrary values of v. In this way, we find that

2
W{JvCz), YvCz)} = -,

7t'Z

and so on. For the Bessel functions of imaginary argument we have

(5.9.2)

(5.9.3)

(5.9.4)

z
(5.9.5)

S.IO. Integral Representations of the Cylinder Functions

The cylinder functions have simple integral representations in terms of
definite integrals and contour integrals containing z as a parameter. The
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representations by contour integrals have greater generality, and are usually
valid in larger regions of values of the argument z and parameter v than the
representations by definite integrals, but the latter are more frequently en
countered in the applications. Therefore we will be primarily concerned with
representations by definite integrals. ll

One of the simplest integral representations of the Bessel functions is due
to Poisson. Consider the identity

1 _ 1 II 2k(I _ 2)V- y, d
=r(=k-+-v-+~I) - r(k + 1') rev + 1') -1 t t t, Re v > _.!-,

(5.10.1)

(5.10.2)

implied by (1.5.6). Substituting (5.10.1) into the expansion (5.3.2) and
reversing the order of integration and summation,12 we obtain

00 (_I)k(z/2)V+2k 1 II
liz) = k~O r(k + 1) r(k + 1')r(v + .t) -1 t

2k
(I - t

2
)V-Y, dt

_ (z/2)V II _2 v- y, 00 (-I)k(zt)2k
- rev + t) -1 (1 t ) dt k~O 22kr(k + I)r(k + t)

- (z/2)V II (1 _ 2)V-Y, d
- rmr(v + -t) -1 t cos zt t,

where we have used the duplication formula (1.2.3) for the gamma function:

Thus

( ) - (z/2)V II (1 _ 2)V- Y, d
lv z - r(-Dr(v + -t) -1 t cos zt t, (5.10.3)

Re v > --t, larg zl < 71:,

or equivalently,

liz) = rm~~:)~ -t) fa" cos (z cos e) sin2v e de, Re v > - -t, larg zl < 71:,

(5.10.4)

where we have made the substitution t = cos e.

11 The reader with a special interest in integral representations of cylinder functions
should consult G. N. Watson, op. cit., Chap. 6.

12 To justify reversing the order of integration and summation, we note that

'" Iz/21V+2k 1 fl 11:
k~ r(k + 1) rck + t)r(v + 1') -1 t

2k
(1 - t

2
)V- 2 dt

'" Iz/21V+2k _
= k.fO rck + 1)r(k + v + 1) = Iv< Izl) < 00,

if Rev > -1'.
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To obtain another important integral representation of Jiz), we start
from the formula

~.---,--l_,--,--~ = _1_ r eSs-(k+Y+l) ds,
r(k + v + 1) 21tiJc

(5.10.5)

proved in Problem 9, p. 15, where C is the contour shown in Fig. 13. Sub
stituting (5.10.5) into (5.3.2), we find that

Jy(z) = i (_I)k(z/2)v+2k~ r ess-(k+Y+l) ds
. k=O r(k + 1) 2m Jc

= (~)Y_l reSs-Y-1ds ~ (-I)k(z2/4s)k
2 21ti Jc k=O r(k + 1)

(5.10.6)

= (~)V ~ r es -(Z2/4S)s-V- 1ds,
2 2m Jc

FIGURE 13

where reversing the order of integration and summation is again easily justi
fied by an absolute convergence argument.
Assuming temporarily that z is a positive real
number and setting s = zt/2, we can write
(5.10.6) in the form

Jiz) = -21 . r eYzZ(t-t-l)t-V-l dt, (5.10.7)
m Jc'

where C' is a contour resembling C. By the
principle of analytic continuation, this result
is valid in the whole region larg zl < 1t/2.
Writing t = pete and choosing the radius
of the circular part of C' to be 1, we have

Jy(z) = ~ r" cos (z sin 6 - v6) d6 _ sin V1t Joo e-YzZ(P-P-l)p-Y-l dp,
1tJo 1t 1

which, after the substitution p = e'X, becomes

1 I'" sin V1t100

•Jiz) = - cos (z sm 6 - v6) d6 - -- e- Zsmh 'X-Y'X dex.,
1t 0 1t 0

Rez> 0,

(5.10.8)

where v is arbitrary. In the case v = n (n = 0, ± 1, ± 2, ... ), the second term
on the right vanishes, and (5.10.8) takes a simpler form.

In many cases, one can derive integral representations of Bessel functions
of the second and third kinds from the corresponding integral representations
of Bessel functions of the first kind, by using formulas (5.4.5) and (5.6.4).
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For example, if Re z > 0 and v is nonintegral, it follows from (5.4.5) and
(5.10.8) that

cotV1tf'" cos V1t f'"YvCz) = -- cos (z sm 6 - v6) d6 - -- e- z sinh c<-vrx doc
1t 0 1t 0

CSC V1t f'" 1 f'"- -- cos (z sm 6 + v6) d6 - - e- z sinh C<+VC< doc.
1t 0 1t 0

Replacing 6 by 1t - 6 in the third integral on the right, we find after some
simple calculations that

1 I"" 1 I'"YvCz) = - sm(zsm6 - v6)d6 - - e-ZSlnhC«evc< + e-Vc< cos V1t) doc.
1t 0 1t 0

(5.10.9)

In proving (5.10.9), it was assumed that v is nonintegral, but the formula
holds for arbitrary v by the principle of analytic continuation, since both
sides are entire functions of v.

Integral representations of the Hankel functions can be obtained by using
(5.10.8-9) and the definitions (5.6.1). For example, if Re z > 0,

HS1)(z) = Jv(z) + iYv(z) = ~ Io" et(zsln 6-v6) d6

1 f'"+ ---: e-zslnhC<[evc< + e-v(c<+"tl] doc
1t1 0

= ~fo eZ sinh c<-vc< doc + J... (" eZ sinh t6-v16 d(i6)
1t1 _ oo 1t1 )6=0

+ ~ (OO eZ sinh (c<+"O-v(c<+"O d(oc + 1ti),
1t1 )c<=o

which, after the substitution t = oc + i6, reduces to

Re z > 0, (5.10.10)

where C1 is the contour shown in Fig. 14(a). Similarly,

HS2)(z) = - J.. ( ezslnht-vt dt,
1t1 JC2

Rez > 0 (5.10.11)

where C2 is the contour shown in Fig. 14(b). Thus (5.10.10) and (5.10.11)
are the same, except for the choice of the contour of integration. Substituting
t = u ± -!1ti into (5.10.10-11), we find that

-v"1I2 lHS1)(z) = _e_._ etz cosh u-vu du,
1t1 Dl

V"i/2lHS2)(z) = - ~ e- iz cosh u-vu du,
1t1 Dz

Re z > 0, (5.10.12)

Re z > 0, (5.10.13)

where the paths of integration D 1 and D 2 are shown in Figure 15.
To further transform these integrals, we assume temporarily that z is a



SEC. 5.10 CYLINDER FUNCTIONS: THEORY 117

positive real number and that the parameter v is confined to the strip
-1 < Re v < 1. Then, according to Cauchy's integral theorem, the integral

rri 1-----C1

o
o

-rr/l-----C2

(0)

FIGURE 14

( b)

along the left-hand part of the broken line D l (or D 2 ), up to the point u = 0,
can be replaced by an integral along the negative real axis, and the integral

o
rr/----"""-2

(0)

FIGURE 15

rrl----;2

o

rr/ 1------02 2

(b)

along the right-hand part of the broken line can be replaced by an integral
along the positive real axis. l3 Thus formulas (5.10.12-13) become

- Vlti/2 Joo
H~l)(Z) = _e__._ eizcOShu-vudu,

7t1 _ 00

vlti/2 J00
H~2)(Z) = _~ e- iz cosh u-vu du,

7t1 _ 00

(5.10.14)

(5.10.15)

13 It is easily verified that the integral along the vertical segment needed to complete
each contour to which we apply Cauchy's integral theorem approaches zero as the seg
ment is moved indefinitely far to the left (or to the right) of the imaginary axis. To show
that the condition -1 < Re v < 1 guarantees the convergence of (5.10, 14-15), con
sider the substitution y = e~.
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where z > 0, - 1 < Re z < 1. Using the principle of analytic continuation,
we easily see that (5.10.14) remains valid for °< arg z < 7t, while (5.10.15)
remains valid for -7t < arg z <0, since in each case both sides of(5.10.14-15)
are analytic functions of z in the indicated region. Moreover, the condition
-1 < Re v < 1 can be dropped if 1m z > °in (5.10.14), or if 1m z < °in
(5.10.15). Finally, therefore, we have the integral representations

- VTti/2 J00HS1)(z) = _e_._ eiz cosh U-VU du,
7t1 _00

VTti/2 Joo
H~2)(Z) = _ ~ e-iZcOShU-vudu,7t1 _00

1m z > 0, (5.10.16)

1m z < 0, (5.10.17)

where v is arbitrary.
Formulas (5.10.16-17) are the basic integral representations of the Hankel

functions. Other integral representations of the Hankel functions, useful in
the applications, can be derived by making suitable transformations of the
integrals in (5.10.16-17). For example, consider formula (5.10.16), let
Re v > -t, and for the time being assume that arg z = 7t/2, so that -iz is
positive. According to (1.5.1),

1 fooy-V- Yo = e-XYxV- Yo dx
rev + 1-) 0 '

and hence, setting y = eU in (5.10.16), we have

Re v > -t, (5.10.18)

= 7ti;~VVTt:2!)Loo xv-Yodx LX) exp [- y(x - ~)+ ~]y-l/2dY,

where the reversal of the order of integration is easily justified by proving the
absolute convergence of the double integral. To calculate the inner integral,
we use the formula 14

f
OO Y~

- av2 - (b/v 2)d _ - 2"'aii
o e v - 2Ya e ,

This gives

a > 0, b > 0. (5.10.19)

14 After making the transformation T = p2, the integral (5.10.19) becomes the Laplace
transform of the function 1-T-1/2 e- v /" evaluated at p = Q.
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Rev> --!-,

(5.10.20)

where we introduce the new variable of integration

vx - (iz/2)
t = .

V - iz/2

By the principle of analytic continuation, this formula, proved under the
assumption that - iz > 0, remains valid for arbitrary complex z belonging
to the sector 0 < arg z < 7t. In just the same way, we have the formula

H~2)(Z) =. -2e
v
"t (:.)vJoo e- tzt(t2 -l)v-Yzdt,

rV7tr(v + -D 2 1

Re v > --!-, -7t < arg z < 0

(5.10.21)

for the second Hankel function. The integral representations (5.10.20-21)
play an important role in the derivation of asymptotic representations of the
cylinder functions as Izi -+ 00.

Integral representations for the Bessel functions of imaginary argument
can either be obtained directly by a slight modification of the considerations
of this section, or else deduced from (5.7.4-6) and the corresponding integral
representations of the Bessel functions and Hankel functions. Thus, it
follows from (5.10.3) that

Iv(z) = (z/2)V r (1 - t2)V- Yz cosh zt dt,
V7tr(v + -!-) -1 (5.10.22)

larg zl < 7t, Re v > --1,
and from (5.10.16, 20) that

1 Joo 100
Ky(z) = - e-zcoshU-VUdu = e-zcoshucoshvudu,

2 - 00 0 (5.10.23)

Re z > 0,

Kv(z) = r(v:;-D (~r Loo e- zt(t 2
- l)v- Yz dt,

Re z > 0,

v arbitrary,

Re v > - 1.
(5.10.24)

We also call attention to another integral representation

1 (Z)V [00Ky(z) =:2 :2 Jo e- t-(z2/4t)r- v- 1 dt,
7t

larg zl < 4' (5.10.25)
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which is useful in the applications, and is obtained from (5.10.23) by changing
the variable of integration.

Some other useful integral representations of the cylinder functions and
their products are given in Problems 1-9, p. 139.

5.11. Asymptotic Representations of the Cylinder Functions for
Large Iz[

There are simple asymptotic formulas which allow us to approximate the
cylinder functions for large Izi and fixed v. The leading terms of these
asymptotic expansions can be derived starting from the differential equations
satisfied by the cylinder functions, but to obtain more exact expressions, it is
preferable to use the integral representations found in the preceding section.

Asymptotic representations of the cylinder functions for large Ivl and
fixed z can be obtained rather simply from formulas (5.3.2), (5.4.5), (5.6.4)
and (5.7.1.-2) by using Stirling's formula (1.4.22). The problem of approxi
mating the cylinder functions when both Izl and Ivl are large is one of the
most difficult problems of the theory. Some basic results along these lines can
be found in Chapter 8 of Watson's treatise, and new formulas of this type
have been obtained in recent years by Langer 15 and Cherry.16

Of all the cylinder functions, the Hankel functions have the simplest
asymptotic representations. We now derive an asymptotic representation of
the function H~l)(Z), starting from formula (5.10.20). Making the substitution
t = 1 + 2s, we find that

2V + 1ei{Z - VltlZV f00

H~ll(z) = . e2zissv- Yz(l + s)V- Yz ds,
IV7tf(v +·D 0 (5.11.1)

Rev> --!-, O>argz<7t.

Replacing (1 + sy- y, by its binomial expansion

15 R. E. Langer, On the asymptotic solutions of ordinary differential equations, with an
application to the Bessel functions of large order, Trans. Amer. Math. Soc., 33, 23 (1931);
On the asymptotic solutions of differential equations, with an application to the Bessel
functions of large complex order, ibid., 34, 447 (1942).

16 T. M. Cherry, Uniform asymptotic expansions, J. Lond. Math. Soc., 24, 121 (1949).
On expansion in eigenfunctions, particularly in Bessel functions, Proc. Lond. Math. Soc.,
51, 14 (1949); Uniform asymptotic formulae for functions with transition points, Trans.
Amer. Math. Soc., 68, 224 (1950).
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with remainderp and integrating term by term, we obtain

m1)(z) = (2)1/2 el(Z-YzV1t-y.1t)[i (t- vh(~ + vh (2zi)-1c + r,,(z)].
7tZ 1c=0 k.

Here

(_I)"+1(t - v)"+l(-2zi)v+Yz
r,,(z) = n!f(v + -!-)

x LX' e2zissv+" + Yz ds fo
1

(1 - t)"(l + sty-"-o/z dt,

and we have used the formula

LX) e2zisslc+v-Yz ds = f(v + t)(v + th(-2zi)-<Ic+v+ Yz ),

Re v > -t, °< arg z < 7t, k = 0, 1,2, ... ,
implied by (1.5.1).

Now suppose that a :::;; arg z :::;; 7t - a, where a is an arbitrarily small
positive number, and for the time being, assume that Re v - n - t :::;; O.
Then, estimating Ir,,(z)l, we find that 18

Itt - v)"u1(2Izi)Re v+ Yz e1t 11m vi

Ir,,(z) 1 :::;; n!lr(v + -DI

for fixed v. Therefore

m1)(z) = (2)1/2 el(Z-YzV1t-y.1t)[i (t - Vh\t + vh (2zi)-1c + O(l z l-"-l)],
7tZ 1c=0 k.

Rev> --!-, a:::;; argz:::;; 7t - a, n> Rev - t (5.11.3)

for large Izl. Actually, the condition imposed on n can be dropped, since if

Rev - n - t > 0

17 Note that

(1 +~)"= i (_I)k(-~)k~k+(_I)n+1(-[L~n+1~n+1 e(l-t)n(1 +~t)"-n-1dt,
k=o k. n. Jo

where

larg (l + Q[ < 7';, (A)o = 1,
r(A + k)

(A)k = rCA) = A(A + 1)·· ·(A + k - 1).

16 For complex a and b we have

[abl = lalReb e-1mb·.rga.
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we can always find an integer m > n such that

Rev - m - t:s; o.
Then, representing H~l)(Z) by (5.11.3) with n replaced by m, and noting that

m n mL ... +0(lzl-m-1) = L ... + L ... + 0(lzl-m-1)
k=O k=O k=n+1

n

= L'" + 0(lzl-n-1),
k=O

we again arrive at (5.11.3). Moreover, the relation
H~l)(Z) = e-Vnlfl~l~(z)

[cf. (5.6.5)] allows us to eliminate the condition imposed on the parameter v,
and in fact, by using an integral representation of a somewhat more general
type than (5.10.20), it can be shown that the asymptotic formula (5.11.3)
remains valid in the larger sector 1arg zl :s; 7t - a. 19 Finally, therefore, we
have

H~l)(Z) = (';Zr'2 ei(Z-Yzvn-y.n)L~o (-I)k(v,k)(2iz)-k + 0(lzl-n-1)}

larg zl :s; 7t - a (5.11.4)

for large Izl, where we introduce the notation

( k) = (_I)k (-1. _ ) (l. ) = (4v2 - 1)(4v2 - 32) ... (4v2 - (2k - 1)2)
v, k! Z v " 2" + V k 22kk! '

(v,O) = 1.

An asymptotic representation of the function H~2)(Z) can be obtained in
the same way, starting from formula (5.10.21). The result is

H~2)(Z) = (2) 1/2 e-i(z- Yzvn- y'n) [ i (v, k)(2iz)-k + O(Izl-n-1)],
7tZ k=O

largzl :s; 7t - a, (5.11.5)

which differs from (5.11.4) only by the sign of i.
Asymptotic representations for the Bessel functions of the first and

second kinds can be deduced from formulas (5.11.4-5) and the relations
(5.6.1). Thus we find that 20

Jv(z) = (2) 1/2 cos (z - tV7t - t 7t)[ i (-I)k(v, 2k)(2z)-2k + O( Iz l- 2n-2)]
7tZ k=O

- (';zf'2 sin (z - tV7t - t7t)

X L~ (-I)k(v,2k + 1)(2z)-2k-1 + 0(l z l- 2n-3)].

larg zl :s; 7t - a, (5.11.6)

19 G. N. Watson, op. cit., p. 196.
20 In (5.11.6-8) the integer n need not be the same in both sums.
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Y,(z) = (~z) l/Z cos (z - 1-V7t - t7t)

x L~o(-1)k(v,2k + 1)(2z)-Zk-1 + O(lzl-Zn-3)]

+ (~rZ sin (z - !V7t - t7t) L~o (-l)k(v, 2k)(2z)-2k + O( Iz l-2n-2)],

larg zl < 7t - a. (5.11.7)

Similarly, asymptotic formulas for the Bessel functions of imaginary argu
ment can be derived from the integral representations (5.10.22,24), or else by
using the relations given in Sec. 5.7, in conjunction with formulas (5.11.4-5).
In this way, we find that

Iy(z) = eZ(27tz)-1/2 L~o (-l)k(v,k)(2z)-k + O(l z l-n-1)]

+ e-Z±ltt(y+y,)(27tZ)-1/zL~o (v, k)(2z)-k + O(lzl-n-1)],

larg zl < 7t - a,
and

(5.11.8)

larg zl < 7t - a,

(5.11.9)

where in (5.11.8) we choose the plus sign if 1m z > 0 and the minus sign if
1m z < O. The second term in (5.11.8) will be small if larg zj < !7t - a, and
then

7t
largzl < 2" - a.

(5.11.10)

The divergent series obtained by formally setting n = 00 in each of the
formulas (5.11.4-10) is the asymptotic series (see Sec. 1.4) of the function
appearing in the left-hand side.

The method used here to derive asymptotic expansions gives only the
order of magnitude of the remainder term rn(z), and does not furnish more
exact information about the size of Irn(z)l. With suitable assumptions con
cerning z and v, the considerations given above can be modified to yield
much more exact results. For example, it can be shown21 that if z and v are

21 G. N. Watson, op. cit., p. 206.
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positive real numbers, and if n is so large that 2n ~ v - 1-, then the remainder
in the asymptotic expansion of Jy(z) or Yiz) is smaller in absolute value than
the first neglected term, while the same is true of the asymptotic expansion of
Kiz) if n ~ v - !.

5.12. Addition Theorems for the Cylinder Functions

Given an arbitrary triangle with sides rl , r2 and R, let 6 and tjJ be the angles
opposite the sides Rand r l , respectively (see Figure 16), so that

sin \jJ = ~ sin 6.

FIGURE 16

By an addition theorem for cylinder functions we mean an identity of the form

Zi"AR) = fkl, r2, 6) L <D~m)("Arl)'Y~m)("Ar2)0~m)(6), (5.12.1)
(m)

where "A is an arbitrary complex number with larg"A1 < 1t (for integral v, this
condition can be dropped), and m ranges
over some set of indices. Formula
(5.12.1) is an expansion of the general
cylinder function Zy("AR) in a series
whose terms are obtained by multiply
ing some functionfkl> r2, 6), which is
independent of the summation index
m, by three factors, each of which de
pends on only one of the variables rl ,

r2, 6.
Formulas of this kind play an important role in the applications, espe

cially in mathematical physics. The simplest such formula is the following
addition theorem for the Bessel function of the first kind of order zero:

00

Jo("AR) = L Jm("Arl)Jm("Ar2)elm9
m=-oo

00

= JO("Arl)JO("Ar2) + 2 L Jm("Arl)Jm("Ar2) cos m6.
m=l

(5.12.2)

To prove (5.12.2), we first note that

In(z) = -21 .J e%z<t-t-1)t- n- 1 dt,
1tl c

n = 0, ± 1, ±2, . . . (5.12.3)

where C is an arbitrary closed contour surrounding the point t = 0. 22 Intro
ducing a new variable of integration u by writing

rleta - r2
t = R U,

22 Formula (5.12.3) is a special case of (5.10.7) and can be proved immediately by
using residues, after recalling the expansion (5.3.4).
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and using the fact that

R2 = (rleiS - r2)(rle- iS - r2),
we have

loO.R) = ~ r exp [Arl (ueie __1_.) _ Ar2 (u _ !)] du,
2m Jc' 2 ue,e 2 u u

where the integration is along a contour C' resembling C. Moreover, accord
ing to (5.3.4),

exp[A;l (ueie
- u~ie)] = m~oo lmO·rl)eimSum, (5.12.4)

where the convergence is uniform in u on the contour C'. Therefore, sub
stituting (5.12.4) into (5.12.3) and integrating term by term, we find that

loO.R) = i lm('}.,rl)eimS -2
1

. r exp [- A
2
r2 (u - !)] um- l du

m=-oo mJu u
00

L lmO·r1)l-m( - Ar2)eimS =
m=-oo

00

L lm(Arl)lm(Ar2)eimS,
m=-oo

(5.12.5)

which proves (5.12.2).
We now give two generalizations of formula (5.12.2) to the case of Bessel

functions of arbitrary order v, referring the reader elsewhere for proofs. 23

The first generalization is of the form 24

cos v\j; ~ cos ma
liAR) . .1. = ~ lv+m(Ar2)lm(Arl)' n'

SIn V'j' m = _ 00 SIn mv

where \j; is shown in Figure 16, and r2 > r1 if v is nonintegral (for integral v,
this restriction can be dropped, i.e., r1 and r2 can be interchanged). The
second generalization of (5.12.2) is given by the formula

liAR) = 2Vf( ) ~ ( ) lv+m(Arl)lv+m(Ar2) cv ( a)
(AR)V v /~o v + m (Ar1)V(Ar2)V m cos ,

v =F 0, -1, -2, ... , (5.12.6)

where rl and r2 are arbitrary. Here the functions C;'.(x), m = 0, 1,2, ... ,
known as the Gegenbauer polynomials, are defined as the coefficients in the
expansion

(1 - 2tx + t 2)-V = i C;'.(x)tm
,

m=O

(5.12.7)

[so that the function on the left is the generating function of the polynomials
C~(x)], and have the following explicit expressions:

[m/2] f( + m k)
C~(x) = k~ (_1)k2m- 2k f(v;k!(m --2k)! X

m- 2k (5.12.8)

23 G. N. Watson, op. cit., Chap. 11.
24 Formula (5.12.5) is an abbreviated way of writing two formulas, one involving

cosines in both sides, the other sines.
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[q(x) = 1]. For v = 1- the expansion (5.12.7) reduces to formula (4.2.3),
and then the Gegenbauer polynomials coincide with the Legendre poly
nomials:

(5.12.9)

For v = 0 we have

C~(x) == 0, m = 1,2, ... ,

but the product f(v)C~(x) approaches a finite limit as v --J>- 0:

lim f(v)(v + m)C~(x) = 2 cos (m arc cos x),
v-o

m = 1,2, ... (5.12.10)

(5.12.11)

Therefore both formulas (5.12.5-6) reduce to (5.12.2) in the limit v --J>- O.
For cylinder functions of other kinds, we have similar addition theorems,

among which we cite the following:

cos vlj; ~ cos m6
ZiAR) . .1. = L.. Zv+m("Ar2)Jm("Ar 1). 0 'sm vi" m= _ 00 sm mv

(5.12.16)

(5.12.13)

(5.12.15)

(5.12.12)

(5.12.14)

ZiAR) = 2Vf( ) ~ ( ) Zv+m(Ar2)JV+m(Arl) CV ( 0)
(AR)V v m~o V + m (Ar2)V(Arl)V m cos v ,

cos vlj; ~ m cos m6
Iv(AR) . .1. = L.. (-1) IV+m(Ar2)lm(Arl)' 0'sin vi" m= _ 00 sin mv

liAR? = 2vr(v) ~ (-I)m(v + m) Iv+m(Ar2~lv+m~Ar1) C~ (cos 6),
(AR) m~o (Ar2) (Ar1)

cos vlj; ~ cos me
KiAR). .1. = L.. Kv+m(Ar2)lm(Ar1)' 0 '

sm vi" m= _ 00 sm mv

Kv(AR) = 2Vf( ) ~ ( ) Kv+ m(Ar2)lv + m(Arl) cv ( e)
(AR)V v m~o V + m (Ar2t(Ar1)V m cos .

In formulas (5.12.11-13, 15-16), it is assumed that r2 > r1 unless v is an
integer or Zv+m = Jv + m in (5.12.12).

An important special case of these addition theorems, encountered in
mathematical physics, occurs when v = -to The formulas corresponding to
this case are easily obtained by using (5.12.9), together with the results of
Sec. 5.8.25

5.13. Zeros of the Cylinder Functions

In solving many applied problems, one needs information about the loca
tion of the zeros of cylinder functions in the complex plane, and in particular,

25 G. N. Watson, op. cit., p. 368.
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one must be able to make approximate calculations of the values of these
zeros. Here we cite without proof some important results along these lines.26

We begin by considering the distribution of zeros of the Bessel functions of
the first kind, i.e., roots of the equation

(5.13.1)

Theorem I deals with the case of nonnegative integral v, and Theorem 2 with
the case of arbitrary real v:

THEOREM 1. The function JnCz) , n = 0, 1,2, ... has no complex zeros,
and has an infinite number ofreal zeros symmetrically located with respect
to the point z = 0, which is itselfa zero ifn > 0. All the zeros ofIn(z) are
simple, except the point z = 0, which is a zero of order n if n > 0.

THEOREM 2. Let v be an arbitrary real number, and suppose that
larg zl < '/t. Then thefunction Jiz) has an infinite number ofpositive real
zeros, and a finite number 2N(v) of conjugate complex zeros, where

1. N(v) = oifv > -I orv = -I, -2, ... ;
2. N(v) = m if -em + I) < v < -m, m = 1,2, ...

(In the second case, if[ -v] is odd, there is a pair ofpurely imaginary zeros
among the conjugate complex zeros.) Moreover, all the zeros are simple,
except possibly the zero at the point z = 0.

The following generalization of equation (5.13.1) is often encountered in
mathematical physics (A and B are real):

AJiz) + BzJ~(z) = 0, v > -I, larg zl < '/t. (5.13.2)

It can be shown that this equation has infinitely many positive real roots and
no complex roots, unless

A
B + v < 0,

in which case (5.13.2) also has two purely imaginary roots. 27

The distribution of zeros of the function Iv(z) can be deduced from
Theorem 2 and the relations of Sec. 5.7. In particular, it should be noted that
all the zeros of liz) are purely imaginary if v > -1. Ifv is real, Macdonald's
function Kiz) has no zeros in the region larg zl ~ '/t/2. In the rest of the
z-plane cut along the segment [- 00,0], Kiz) has a finite number of zeros. 28

2" The problem of the distribution of the zeros of cylinder functions is also of con
siderable theoretical interest, but lies outside the scope of this book. We again refer the
reader interested in details to the specialized literature, e.g., Chap. 15 of Watson's
treatise. It should be noted that some of the results on zeros of cylinder functions can
be derived by arguments of a completely elementary character.

27 G. N. Watson, op. cit., p. 482.
28 Ibid., p. 511.
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To make approximate calculations of the roots of equations involving
cylinder functions, one can use the method of successive approximations,
where in many cases a good first approximation is given by the roots of the
equations obtained when the cylinder functions are replaced by their asymp
totic representations.

5.14. Expansions in Series and Integrals Involving
Cylinder Functions

In mathematical physics, it is often necessary to expand a given function
in terms of cylinder functions, where the form of the expansion depends on
the specific nature of the problem (see Sees. 6.3-6.7). We now consider the
most important of these expansions, whose role in various problems involving
cylinder functions resembles that of Fourier series and Fourier integrals in
problems involving trigonometric functions. Foremost among such expan
sions are series of the form

o < r < a, v ~ --!-, (5.14.1)

where fer) is a given real function defined in the interval (0, a), Jv(x) is a
Bessel function of the first kind of real order v ~ - t, and

o < XVI < ... < Xvm < ...

are the positive roots of the equation Jv(x) = O. The expansion coefficients
em can be determined by using an orthogonality property of the system of
functions

m = 1,2, ... , (5.14.2)

which is proved as follows: Let oc and ~ be distinct nonzero real numbers, and
let

" I I (2 V2) 0Urx + r Urx + oc - f2 Urx = , " 1 I (1<2 V
2

) 0Up + r Up + t' - f2 Up =
,

be the equations satisfied by the functions U rx = Jiocr) and Up = Ji~r).

Subtracting the second equation multiplied by rurx from the first equation
multiplied by rup, and integrating the result from 0 to a, we find that

(oc2 - ~2) La rurxu p dr = r(urxup - UPU~)\:'

which implies

i
a J ( )J (I< ) d _ oc~Jioca)J~(~a) - aocJv(~a)J~(oca)r v ocr v t'r r - 2 1<2

o oc -t'
(5.14.3)
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(5.14.4)

(5.14.5)

if v > -1. Setting oc = xvmla, ~ = xvnla in (5.14.3), we obtain the formula

La rJv( Xvm ~)Jv(Xvn ~) dr = ° if m # n,

which shows that the system (5.14.2) is orthogonal with weight r on the
interval [0, a] (see Sec. 4.1).

Taking the limit of (5.14.3) as ~ -* oc, with the aid of L'Hospital's rule,
and using Bessel's equation to eliminate J~, we find that 29

f rJ~(ocr)dr = ~2 [J~2(oca) + (1 - oc~:2)J~(oca)],

or, using the relations (5.3.5),

(5.14.6)

Then, assuming that an expansion of the form (5.14.1) is possible, multiplying
by rJv(xvn ria) and integrating term by term from 0 to a, we obtain the fol
lowing formal values of the coefficients cm :

Cm = 2]2 2( ) ra

rf(r)Jv(xvm !.) dr, m = 1,2,... (5.14.7)
a v+1 X vm Jo a

The series (5.14.1), with coefficients calculated from (5.14.7), is called the
Fourier-Bessel series of the function fer).

We now cite a theorem which gives conditions under which the Fourier
Bessel series of the functionf(r) actually converges and has the sumf(r):

THEOREM 3.30 Suppose the realfunctionf(r) is piecewise continuous in
(0, a) and of bounded variation in every subinterval [r1' r2],31 where
o < r1 < r2 < a. Then, if the integral

rVr If(r)1 dr

is finite, the Fourier-Bessel series (5.14.1) converges tof(r) at every con
tinuity point of f(r) , and to

·Hf(r + 0) + fer - 0)]

at every discontinuity point offer).
Next, we consider an important generalization of the concept of a

Fourier-Bessel series. Suppose the functionf(r) is expanded in a series of the
form (5.14.1), where this time the numbers

o < XvI < ... < Xvm < ...

29 The details are given in G. P. Tolstov, op. cit., p. 218.
30 For the proof, see G. N. Watson, op. cit., p. 591.
31 Concerning functions of bounded variation, see E. C. Titchrnarsh, op. cit., p. 355.
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are the roots of the equation

AJv(x) + BxJ~(x) = 0,

CHAP. 5

(5.14.8)

instead of the equation Jix) = 0. Then it is an immediate consequence of
formulas (5.14.3, 5, 8) that

fa J ( r)J ( r) d _ {02 if m#- n, 2
Jo r v Xvm a v Xvn a r - ~ [J?(Xvn) + (1 - :eJJ;(Xvn)] if m = n,

(5.14.9)

and therefore the coefficients Cm are now given by

Cm = a2{J~2(xvm) + [1 ~ (v2/x~m)]Je(xvm)} rrf(r)Jv(Xvm~) dr. (5.14.10)

The series (5.14.1), with coefficients calculated from (5.14.10), is called the
Dini series 32 of the functionf(r). Iff(r) satisfies the conditions ofTheorem 3,
and if AB- 1 + v > 0, then the Dini series offer) actually converges tof(r) at
every continuity point.33 Both Fourier-Bessel series and Dini series play an
important role in problems of mathematical physics, and examples of such
expansions will be given in Sees. 6.3 and 6.7.

We now turn to expansions of a function fer) defined in the infinite
interval (0, 00), in terms of integrals involving Bessel functions. Among such
expansions, the one of greatest practical importance is the Fourier-Bessel
integral, defined by

fer) = LX) AJv(Ar) dA f' pJiAp)f(p) dp, °< r < 00, v > -1
(5.14.11)

Formula (5.14.11) is sometimes called Hankel's integral theorem, and is valid
at every continuity point of fer) provided that

1. The function fer), defined in the infinite interval (0, 00), is piecewise
continuous and of bounded variation in every finite subinterval
[r1> r2], where °< r1 < r2 < 00;

2. The integral

LX) vrlf(r)! dr

is finite. 34

32 Called a Fourier-Bessel series of the second type in G. P. Tolstov, op. cit., p. 237.
33 For the proof, see G. N. Watson, op. cit., p. 596 If., where one will also find the

modifications that must be made in the Dini series if AB-l + v ,;; O.
34 For the proof, see G. N. Watson, op. cit., p. 456 If. At discontinuity points, the

integral in the right-hand side of (5.4.11) equals

·Hf(r + 0) + f(r - 0)].
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As examples of Fourier-Bessel integrals, consider the expansions

1 100

---::=== = e-;'IZIJo(Ar) dA,
Vz2 + r2

0

- Ie../z2 + ,2 i 00 , T (' )e = e- 1Zj "/;.2+le2 AJOAr dA
VZ2 + r2 0 VA2 + k 2

(5.14.12)

(5.14.13)

x > 0, (5.14.14)

(with real z and r), implied by formulas (5.15.1, 7) below.
The author has studied another integral expansion ofa completely different

type, involving integration with respect to the order of the cylinder function. 35

This expansion, which turns out to be very useful in solving certain problems
of mathematical physics (see Sees. 6.5-6) is of the form

f(x) = 2
2

(00 T sinh 1tT Kh0) dT (00 fCC,) KhC5) dE"
1t Jo Vx Jo VE,

(5.14.15)foo If(x)ldx
1/2

where Kv(x) is Macdonald's function of imaginary order v = iT. Formula
(5.14.14) is valid at every continuity point of f(x) provided that

1. The function f(x), defined in the infinite interval (0, co), is piecewise
continuous and of bounded variation in every finite subinterval
[XbX2], where °< Xl < X2 < co;

2. The integrals

1
1/2 1

If(x)lx- 112 Iog-dx,
o X

are finite.

Example. An expansion of this type is 36

f( ) = . j- -x cos (1. = ~100
T sinh OCT Kh(x) dx v xe '. j_ T.

1t 0 sm OCv x
(5.14.16)

5.15. Definite Integrals Involving Cylinder Functions

In the applications, it is often necessary to evaluate integrals involving
cylinder functions in combination with various elementary functions or special

35 N. N. Lebedev, Sur une formule d'inversion, Dokl. Akad. Nauk SSSR, 52, 655
(1946); Expansion of an arbitrary function in an integral with respect to cylinder functions
of imaginary order and argument (in Russian), Prikl. Mat. Mekh., 13, 465 (1949); Some
Integral Transformations of Mathematical Physics (in Russian), Dissertation, Izd.
Leningrad. Gos. Univ. (1951). At discontinuity points, the integral in the right-hand side
of (5.14.14) equals

-Hf(x + 0) + f(x - 0)].

36 To derive (5.14.16), use (5.14.14) and the Bateman Manuscript Project, Tables of
Integral Transforms, Vol. I, formula (24), p. 197.
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functions of other kinds. Such integrals are usually evaluated by replacing
the cylinder function by a series or by a suitable integral representation, and
then reversing the order in which the operations are carried out. Since an
extremely detailed treatment of this whole topic is available in the literature, 37

we confine ourselves here to a few examples which illustrate the method and
lead to some results needed later in the book.

Example 1. Evaluate the integral

fO e-axJo(bx) dx, a > 0, b > 0.

Replacing Jo(bx) by its integral representation (5.10.8), we find that

roo e-axJo(bx) dx = roo e-ax dx ~ r"/2 cos (bx sin tp) dtp
Jo Jo ~Jo

= ~ r"/2 d;Q roo e-axcos (bxsin tp)dx
~ Jo Jo

where the absolute convergence of the double integral justifies reversing the
order of integration. Evaluating the last integral, we have

foo 1
e-axJo(bx) dx = V '

o a2 + b2

Example 2. Evaluate Weber's integral

a > 0, b > O. (5.15.1)

a > 0, b > 0, Re v > - 1.iOO e-a2x2Jv(bx)xV+l dx,

Replacing JvCbx) by its series expansion (5.3.2) and integrating term by term,
we find that

(
b)V+2kJOO_ e - a2x2x2v +2k + 1 dx

1) 2 0

37 G. N. Watson, ap. cit., Chaps. 12-13, the Bateman Manuscript Project, Higher
Transcendental Functions, Vol. 2, Chap. 7, and ibid., Tables of Integral Transforms,
Vals. 1, 2. See also F. Oberhettinger, Tabellen zur Fourier Transformation, Springer
Verlag, Berlin (1957).
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where reversing the order of integration and summation is again justified by
an absolute convergence argument. Summing the last series, we have

roo e-a2X2J(bx)xV+l dx = b
V

e-b2/4a2
Jo v (2a2)¥+1' (5.15.2)

a > 0, b > 0, Re v > - I.

a > 0, b > 0, - I < Re v < 2 Re fl. + t,

Example 3. Evaluate the integral

roo XV + lJv(bx)
Jo (x2 + a2YU 1 dx,

often encountered in the applications. First we replace the function
(x2 + a2)-U-l by an integral of the type (1.5.1), i.e.,

(5.15.3)I _ I roo -(x2 +a2 )t U d R I
(X2 + a2)U+l - r(fl. + I) Jo e t t, e fl. > - ,

assuming temporarily that -I < Re v < 2 Re fl. + 1 (this guarantees abso
lute convergence of the relevant double integral). Then, using (5.15.2) and
the integral representation (5.10.25) of Macdonald's function, we find that

(5.15.5)a ~ 0, b > 0.

_ bV roo -a2t-(b2 /4t) dt
- 2v+1r(fl. + I) Jo e t v +1 - u

bv 2v-2u 100 d_ a -u-[(ab)2/4uJ U

- 2V +1r(fl. + I) 0 e uV - U+1

aV-UbU
2Ur(fl. + I) Kv-uCab).

The extension of this result to values of the parameter fl. satisfying the weaker
condition -I < Re v < 2 Re fl. + t is accomplished by using the principle
of analytic continuation. Thus we have

roo xV+1Jv(bx) av-ubu
Jo (x2 + a2 )U+ 1 dx = 2Ur(fl. + I) Kv-u(ab), (5.15.4)

a > 0, b > 0, - I < Re v < 2 Re fl. + t.
In particular, setting fl. = -t, v = °and using (5.8.5), we obtain the integral

roo xJo(bx) e- ab
J0 -vrx=;2~+====a::::;;2 dx = -b-'

Example 4. Evaluate the integral

[to Ku(aVx2 + y2) J (b ) v.j.l dJo (x2 + y2)U/2 v X X x,
a > 0, b > 0, Y > 0, Re v > -I,
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which also has numerous applications to mathematical physics. Using the
integral representation (5.10.25) and formula (5.15.2), we find that

i
oo

Kv.<av'x2 + y2)J(b ) v+1 d
(

2 2)£'12 v X X X
o X + Y

bV(v'a2 + b2)£,-V-1
= d' y K£,_V_1(yv'a2 + b2).

By choosing various values of the parameters in the identity

i
oo K (av'x 2 + y2) bV (v'a2 + b2)£,-V-1

(2 2)£'12 Jibx)xv+ 1dx=Jj. K£,_V_1(yv'a2 +b2),
o x +y a y

a > 0, b > 0, Y > 0, Re v > -I, (5.15.6)

we can derive a number of useful formulas encountered in the applications.
For example, setting fL = t, v = 0, we have

(5.15.7)

5.16. Cylinder Functions of Nonnegative Argument and Order

We now collect some elementary and easily verified results pertaining to
the very important case of cylinder functions where both the argument x and
the order v are nonnegative real numbers:

1. Bessel functions of the first kind. For x ~ °and v ~ 0, the function
Jix) is real and bounded, and has an oscillatory character. Its be
havior for small and large values of x is described by the asymptotic
formulas

XV

Jix) ~ 2vr(l + v)' x --+ 0,

Jix) ~ (2 cos (x - tvn - in),
~~

x --+ 00.

(5.16.1)
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JvCx) has infinitely many zeros, including the point x = °if v > 0.
The graphs of Jo(x) and J1(x) are shown in Figure 17.

25201510
- 1 '-------..J..--_--'-__.....L..__---L..__-J

o 5

FIGURE 17

2. Bessel functions of the second kind. For x > °and v ~ 0, the function
YvCx) is an oscillatory real function, which is bounded at infinity. Its
behavior for small and large values of x is described by the asymptotic
formulas

x --+ 0, v > 0,

YvCx) ~ J2 sin (x - -tV7t - i7t),
7tX

2 2
Yo(x) ~ - -log-, x --+ 0,

7t X

x --+ 00, (5.16.2)

x --+ 0, v > 0,

which show, in particular, that Yy(x) --+ - 00 as x --+ 0.

3. Bessel functions of the third kind. For x > °and v ~ 0, the Hankei
functions H~l)(X) and H~2)(X) are conjugate complex functions, which
are bounded at infinity. Their behavior for small and large values of
x is described by the asymptotic formulas

mV)(x) ~ += i(~) y r~v),

x --+ 0,

x --+ 00, (5.16.3)



136 CYLINDER FUNCTIONS: THEORY CHAP. 5

where the upper sign corresponds to the case p = I, and the lower sign
to the case p = 2. Obviously, H~P)(x) --+ 00 as x -0>- 0.

4. Bessel functions of imaginary argument. For x > °and v ~ 0, [vex) is
a positive function which increases monotonically as x --+ 00, while
Kv(x) is a positive function which decreases monotonically as x --+ 00.38

For small x we have the asymptotic formulas

and therefore

2
Ko(x) ~ log-,

x

x --+ 0,

x --+ 0,

x --+ 0,

(5.16.4)

if v > 0,

The asymptotic behavior of these functions as x --+ 00 is given by

x --+ 00,

x --+ 00.

(5.16.5)

Clearly, neither function has any zeros for x > 0.

5.17. Airy Functions

The solutions of the second-order linear differential equation

u" - zu = ° (5.17.1)

are called Airy functions. These functions are closely related to the cylinder
functions, and play an important role in the theory of asymptotic representa
tions of various special functions arising as solutions of linear differential
equations. 39 In particular, the Airy functions turn out to be useful in deriving
asymptotic representations of the cylinder functions for large values of Izj
and lvi, valid in an extended region of values of z and v. The Airy functions
also have a variety of applications to mathematical physics, e.g., the theory
of diffraction of radio waves around the earth's surface. 40

38 This fact about Kix) follows from the integral representation (5.10.23).
39 See R. E. Langer, op. cit., T. M. Cherry, op. cit., and V. A. Fock, Tables of the

Airy Fuctions (in Russian), Izd. Inform. Otdel. Nauchno-Issled. Inst., Moscow (1946).
40 See V. A. Fock, Diffraction of Radio Waves Around the Earth's Surface (in Rus

sian), Izd. Akad. Nauk SSSR, Moscow (1946).
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27t
largzi <"3'

. (Z) 1/2 [ (2Z
3/2

) (2Z
3/2

)]U = U2 = Bl(Z) = '3 L 1/3 -3- + 11/3 -3- ,

We now present the rudiments of the theory of Airy functions. Choosing
ex. = -I, y = I in the second of the equations (5.4.11-12), and using the re
sults of Sec. 5.7, we find that the general solution of (5.17.1) can be expressed
in terms of Bessel functions of imaginary argument of order v = ±t. In parti
cular, two linearly independent solutions of (5.17.1) are

. zl/2 [(2Z
3/2

) (2Z
3/2

)]U = U1 = AI(Z) = T L 1/3 -3- - 11/3 -3-

_ 1 (Z) 1/2 (2z
3/2

)= - - K1/3 -- ,
7t 3 3

27t
larg zi < "3'

(5.17.2)

called the Airy functions of the first and second kind, respectively. Replacing
I±1/3 by the series expansion (5.7.1), we obtain the expansions

< 00,

Izi < 00. (5.17.4)

(5.17.3)

which show that the Airy functions are entire functions of z.
We can also write (5.1 7.3) in another, somewhat more concise form. For

example, the first expansion is equivalent to

. 2 00 sin [237t (k + I] Z k

k(z) ~ 3'" ,~, r(~)r(~) (3''') ,
Using the" triplication formula" for the gamma function [Problem 4, formula
(i), p. 14] we can transform (5.17.4) into

(
k + I) . 27t

3- 2/3 00 r -3- sm"3 (k + 1)
Ai(z) = ----;- k~O k! (3 1/3

Z)k, [zi < 00. (5.1 7.5)

It follows from (5.1 7.3) that the Airy functions Ai(z) and Bi(z) can be
defined as the soluti~ns of equation (5.17.1) satisfying the initial conditions

. 3- 2/3
U1(O) = Al(O) = rm'

. 3-1/6

U2(O) = Bl(O) = rm'

3-4/3

u~(O) = Ai'(O) = - rm'
3-5/6

u~(O) = Bi'(O) = r(1')'

(5.1 7.6)
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The Wronskian of this pair of solutions is

W{Ai(z), Bi(z)} = W{Ai(z), Bi(z)}z=o = L
7t

CHAP. 5

(5.17.7)

27t
larg zj ~ 3 - a, (5.17.8)

where we again use the triplication formula for the gamma functionY We
can also calculate (5.17.7) directly from (5.17.2) and (5.9.5).

Asymptotic representations of the Airy functions for large jzl can be
deduced from the corresponding results of Sec. 5.11. In particular, we have

-1/2

Ai(z) = T z-1/4e -%z'''[1 + O(lzl-3/2)],

larg zl ~ } - a. (5.17.9)

(5.17.10)

It follows at once from (5.17.3), (5.7.1) and (5.3.2) that the Airy functions of
argument - z can be expressed in terms of Bessel functions of the first kind
of order v = ± t:

Zl/2 27t
Ai( -z) = T [J_1/3(tz3/2) + J1/3(fz3/2)], larg zl < 3'

Bi( - z) = Gt2
[J_1/3(tz3/2) - Jl/3(tz3/2)], larg zl < 2

3
7t·

Then, using the asymptotic representation (5.11.6), we find that

(5.17.11)
x-+ co,

x-+ co,

Ai( -x) ;;:; 7t-1/2X-1/4 cos (~X3/2 - i),
Bi( -x) ;;:; - 7t- 1

/
2
X-

1
/
4 sin GX

3
/
2

- i)'
which shows that the Airy functions have an oscillatory character for large
negative values of the argument.

Finally, we note that the definition of Ai(x) and the integral representation
of Macdonald's function given in Problem 6, formula (ii), p. 140, imply

2x l/2 r'" (2X3/2
) yAi(x) =~ Jo cos -3- sinh y cosh "3 dy, x > 0.

After making the substitution

sinh ~ = ~ X- 1/2 t
3 2 '

this gives the following integral representation of Ai(x):

Ii'"Ai(x) = - cos (tt 3 + xt) dt,
7t 0

x ~ O. (5.17.12)

41 For a proof of the first equality in (5.17.7), cf. E. A. Coddington, op. cit., Theorem
8, p. 113.
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x;;::, o.

A somewhat more complicated argument gives the following integral repre
sentation of Bi(x): 42

Bi(x) = .!.. (00 [e- Yst 3
+xt + sin (1-t 3 + xt)] dt,

7t Jo
For an integral representation of [Ai(x)]2, see Problem 22, p. 142.

PROBLEMS

1. Derive the integral representation 43

2i~ 2J~J~(z) = - J2n(2z COS e) de = (_1)n - J o(2z cos e) cos 2ne de,
7t 0 7t 0

n = 0,1,2, ...

2. Derive the following formula involving products of Bessel functions: 44

2 inl2
Jv.(z)Jiz) = - Jv.+i2z cos e) cos (!J. - v)e de,

7t 0

3. Prove that

Re (!J. + v) > - 1.

1 inIn(Z)Jn(z') = - Jo(VZ2 + Z'2 - 2zz' cos e) cos ne de,
7t 0

Hint. Use the addition theorem (5.12.2).
4. Derive the integral representations

n = 0, 1,2, ...

-1<Rev<l, x>O,

- 1 < Re v < 1, x > 0.

Jix) = ~ LX> sin (x cosh t - v;) cosh vt dt,

Yix) = - ~ LX> cos (x cosh t - v;) cosh vt dt,

Hint. Use formulas (5.10.14, 15).

5. Derive the formulas

(
2 )112 el(Z- Yzvn- y'n) 1'" (S )V- Yz

H (l)( ) - e-ssv - Yz 1 ds
v z = 7tZ r(v + t) 0 - 2iz '

Rev> -t, 7t- '2 < arg z < 7t,

42 H. Jeffreys and B. S. Jeffreys, op. cit., p. 510.
43 G. N. Watson, op. cit., p. 32.
44 Ibid., p. 150.

Rev> -t, 7t
- 7t < arg z < 2'



140 CYLINDER FUNCTIONS: THEORY CHAP. 5

6. Prove the following integral representations of Macdonald's function: 45

Rez > 0, Rev> --!-,

x > 0, Re v > --!-,

x > 0, IRe vi < 1,

(i)

(ii)

x> 0, y > 0,

x> 0, y> O.

larg zl < n, Re v > --!-.
7. Prove the following formulas involving products of Macdonald functions :46

Ky(x)Ky(y) = ~ f' e- Yz[t +(x
2

+V
2

)!tJK v ( ¥) 0/

= LX> KoCVx 2 + y2 + 2xy cosh t) cosh vt dt,

Ky(x)Ky(y) = -2.
n rro Jo('V2xy cosh t - x 2 - y2 )sinh vt dt,

sin vn )IOg (v!x)

x> 0, y> 0, IRevl < t. (iii)

8. Derive the integral representation

1 froIy(x)Ky(y) = -2 Jo('V2xy cosh t - x 2 - y2) e- vt dt,
log (v!x)

X > 0, Y > 0, Re v >

9. Derive the integral representation

K",(x)Ky(x) = Lro K",-v(2XCOShi) cosh !J.; v tdt,

10. Derive the following asymptotic representations for large values of the
order Ivl:

Jy(z) ~ .} eV+VIOg(Z!2)-(v+Yz)lOgV,

v2n
Ivl -7- 00, larg vi ~ n - il,

(
2n)112 . (n x)Kiix) ~ --; e- n'12 sm 4: + 't" log 't" - 't" - 't" log"2 '

(In the second formula, x is a fixed positive number.)

45 G. N. Watson, op. cit., 172, 183.
46 Concerning Problems 7-9, see ibid., p. 439. The most detailed investigation of

various integral representations of products of cylinder functions is due to A. L. Dixon
and W. L. Ferrar, Integralsfor the product oftwo Besselfunctions, Quart. J. Math. Oxford
Ser.,4, 193 (1933); Part II, ibid., 4, 297 (1933).
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11. Prove the formulas
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Re v > -1.

Ji-x + iO) - Ji-x - iO) = 2i sin VTt Jix),

Yi- x + iO) - Yi- x - iO) = 2i[Jix) cos VTt + J - vex)],

m1)(-x + iO) - m1)(-x - iO) = -2[J_ix) + e-VltIJix)],

H~2)( - x + iO) - m 2)( - x - iO) = 2[Jix) + eVltIJv(x)],

where x > 0, characterizing the behavior of the cylinder functions on the
cut [- ro, 0].

12. Verify that

lv( -x + iO) - li-x - iO) = 2i sin VTt lix),

Ki- x + iO) - Ki- x - iO) = - Tti[L ix) + Iv(x)] ,

where x > o.
Comment. The formulas given in Problems 11-12 take a particularly

simple form if v = n (n = 0, ± 1, ± 2, ... ).

13. Verify the expansion

LZ J v (t) dt = 2 k~O JV+2k +l(Z),

Hint. Use the recurrence relation (5.3.6) to show that both sides have the
same derivative.

14. Derive the recurrence relation

LZ tlJoJit)dt = zIJoJV+l(z) - ([L - v - 1) LZ tlJo-1Jv+1(t)dt, Re([L + v) > -1.

Hint. Apply (5.3.5) in the form

tV+1Jv(t) = ~[tV+IJV+l(t)],

and then integrate by parts.

15. Using the result of Problem 14, show that the evaluation of integrals of
the form

Re v > - 1, m = 0, 1, 2, ...

reduces to the evaluation of the integral

whose value was found in Problem 13.

Comment. If v = ± (m - 1), ± (m - 3), ± (m - 5), ... , then the co
efficient of the last integral vanishes, and the original integral can be
expressed in closed form in terms of Bessel functions.
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16. Verify the formula 47

CHAP. 5

o~ x < 00.

r(\/ + 1 - fL)
roo Ji~ dx = 2 , Re fL > t, Re (\/ - fL) > - 1.

Jo x" 21'r(\/ + ; + fL)

17. Verify the formula

Joo e-axJ,(bx) dx = [V~ - a]', lOb. / Re \/ > - , a >, > O.
o b'va2 + b2

18. Show that the Bessel function Jo(x) satisfies the following integral equal
tion:

Jo(x) = ~ roo sin (x + y) Jo(y) dy,
7t Jo x + Y

19. The integral Bessel function of order \/ is defined by the formula

J. () f' Jit) dI, Z = -- t,
00 t

larg zl < 7t.

Izl < 00, larg zl < 7t

Izi < 00, n = 1,2, ...

Show that Jiiz) is an entire function of \/ and an analytic function of z in the
plane cut along the segment [- 00, 0] (in fact, an entire function of z for
\/ = ± 1, ± 2... ). Verify the formulas

\/ Jiiz) = \/ r' J,(t) dt - 1, (iv)Jo t

\/Jiiz) = LZ J'-l(t)dt - Jit) - I, Re\/ > 0, [argzl < 7t.

Hint. Use the results of Problems 14 and 16.

20. Prove the following expansions of the integral Bessel functions:

. z 00 (- I)k(Z/2)21<
Jlo(Z) = logz + y + I<~ (2k)(k!)2'

. 1 00 ( _ 1)1«Z/2)21<;+ n

JIn(Z) = - It + I<.fa (2k + n)k!(n + k)!'

Hint. Substitute (5.3.2) into Problem 19, formula (iv).

21. Derive the asymptotic formula

. ( 2 )1/2 sin (x - t\/7t - t7t)JIix);::; - .
7tX x

22. Prove the integral representation

[Ai(x)]2 = 47t~3 Loo Jo C~ t3 + xt)t dt, x ~ 0

for the square of the Airy function of the first kind.

Hint. Use Problem 7, formula (iii).

47 G. N. Watson, op. cit., p. 391.



6
CYLINDER FUNCTIONS: APPLICATIONS

6.1. Introductory Remarks

As already noted in Sec. 5.1, the cylinder functions have a very wide
range of applications to physics and engineering, which cannot even be
touched upon in a book of this size. Instead, we confine ourselves to a dis
cussion ofa few selected problems of mathematical physics involving cylinder
functions,l where the selection has been made with the aim of illustrating
the application of the theory of Chapter 6. We are mainly concerned with
the solution of boundary value problems for various special domains. In
addition to several examples of an elementary character, we include some that
are more complicated, e.g., the Dirichlet problem for a wedge (see Sec. 6.5).

6.2. Separation of Variables in Cylindrical Coordinates

Consider the partial differential equation

2 1 a2u auv u = 2 -a2 + b -a + cu,a t t
(6.2.1)

where V2 is the Laplacian (operator), t is the time, and a, b, c are given con
stants. A variety of important differential equations occurring in mathe
matical physics (e.g., in electrodynamics, the theory of vibrations, the theory
of heat conduction) are special cases of(6.2.1). The boundary conditions im
posed on the function u often require the use of a system of cylindrical

1 We assume that the reader has already encountered the simplest problems of this
type in a first course on mathematical physics.

143
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coordinates r, rp, z, related to the rectangular coordinates x, y, z by the
formulas

x = r cos rp, y = r sin rp, z = z,
where

o ~ r < 00, -7t < rp ~ 7t, - 00 < z < 00.

In cylindrical coordinates, equation (6.2.1) becomes

1 a (aU) 1 02U 02U 1 02U aUr or r or + f2 Orp2 + OZ2 = a2 ot2 + b at + CU,

and has infinitely many solutions of the form

U = R(r)Z(z)<I>(rp)T(t),

(6.2.2)

(6.2.3)

where each of the functions on the right depends on only one variable. Sub
stituting (6.2.3) into (6.2.2) and dividing by RZ<I>T, we obtain

1 d (dR) 1 d
2

<1> 1 d
2
Z 1 (1 d

2
T )

Rr dr r dr + r2<1> drp2 + Z dz2 - C = T a2 dt2 + bT· (6.2.4)

Since the variables r, rp, z and t are independent, both sides of (6.2.4) must
equal a constant, which we denote by _x2

• This leads to two equations

and

1 d 2T dT 2
--+b-+xT=O
a2 dt2 dt

(6.2.5)

(6.2.6)

1 d (dR) 2 1 d2
<1> 1 d 2Z

Rr dr r dr + x + 1=2 drp2 = C - Z dz2'

The same reasoning shows that both sides of the last equation must equal a
constant, which this time we denote by - 1.2 , obtaining the equations

d 2Z
dz2 - (1.2 + c)Z = 0

and

r2[1- ~ (r dR) + (1.2 + x2)] = _ .!- d
2

<1>.
Rr dr dr <I> drp2

Again, both sides of the last equation must equal a constant, denoted by !J.2,

which implies

(6.2.7)

(6.2.8)

and

! ~ (r dR) + (1.2 + x2 _ !J.2)R = O.
r dr dr r2

The process just described is called separation of variables, and leads to
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infinitely many solutions of the form (6.2.3), depending on the parameters
x, )", (1., which can take real or complex values.2

Thus, determining the factors in the product (6.2.3) reduces to the rela
tively simple problem of solving the ordinary differential equations (6.2.5-8).
The first three of these equations can be solved in terms of elementary func
tions, but ifwe introduce a new variable proportional to r, the fourth equation
becomes Bessel's equation, whose solutions involve cylinder functions. The
required solution of the given physical problem is obtained by superposition
of the particular solutions (6.2.3), where the specific conditions of the problem
dictate the choice of the parameters x, )", (1. and the corresponding solutions
of (6.2.5-8).

Finally, we call attention to two important special cases of equation
(6.2.1), obtained by making certain choices of the constants a, band c:

1. Laplace's equation ,Pu = 0 (corresponding to the choice a = b = c = 0).
This equation has particular solutions of the form

where
u = R(r)Z(z)<1>(rp), (6.2.9)

(6.2.10)

!.:!. (r dR) + (),,2 _ (1.2)R = 0
r dr dr r2 ,

d 2Z d 2<1>
dz2 - ),,2Z = 0, drp2 + (1.2<1> = O.

In the special case where the conditions of the problem are such that u
is independent of the angular coordinate <p, we have

where

u = R(r)Z(z) (6.2.11)

1 d (dR) 2-- r- +)"R=O
r dr dr ' ~:~ - ),,2Z = O. (6.2.12)

2. Helmholtz's equation \j2u + Pu = 0 (corresponding to the choice
a = b = 0, c = - k 2

). In this case, application of the method of
separation of variables leads to particular solutions of the form

where
u = R(r)Z(z)<1>(rp),

1 d (dR) (2 (1.2)--r-+),,--R=O
r dr dr r2 '

d
2
Z _ (),,2 _ k2)Z = 0 d

2
<1> + ,,2<1> = 0

dz2 , drp2 r •

(6.2.13)

(6.2.14)

2 Without loss of generality, we can assume that each of the parameters x, :A, f.t belongs
to an arbitrarily chosen half-plane, since changing the sign of x, :A, f.t does not affect the
"separation constants"-x2, -:A2, f.t2.
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6.3. The Boundary Value Problems of Potential Theory.
The Dirichlet Problem for a Cylinder

A function u = u(x, y, z) is said to be harmonic in a domain T if u and its
first and second partial derivatives with respect to x, y and z are continuous
and satisfy Laplace's equation V2u = 0 in T. Consider the problem of finding
a function u which is harmonic in T and satisfies one of the three boundary
conditions

ul" =f,

au/ = f,
an"

(~~ + hu)/" = f, h > 0,

(6.3.1a)

(6.3.1 b)

(6.3.lc)

where cr is the boundary of T, f is a given function of a variable point of cr,3

and a/an denotes the derivative with respect to the exterior normal to cr.

This problem is called the first boundary value problem ofpotential theory or
the Dirichlet problem if the boundary condition is of the form (6.3.la), the
second boundary value problem ofpotential theory or the Neumann problem if
it is of the form (6.3.lb), and the third or mixed boundary value problem of
potential theory if it is of the form (6.3.lc). These problems playa very im
portant role in mathematical physics. 4 We now consider the Dirichlet prob
lem for the case where T is a cylinder of length I and radius a.

Let r, cp, z be a cylindrical coordinate system, with z-axis along the axis of
the cylinder and origin in one face of the cylinder (see Figure 18). To satisfy
the boundary condition (6.3.la), we first solve two simpler problems cor
responding to the boundary conditions

ulr=a = 0, ulz=o = fa, UIZ=1 = Ii, (6.3.2a)
ulr=a = F, ulz=o = UIZ=1 = O. (6.3.2b)

(In the first case, f vanishes on the lateral surface of the cylinder, and in the
second case, f vanishes on the ends of the cylinder.) Obviously, the sum of
the solutions satisfying the boundary conditions (6.3.2a) and (6.3.2b) will
then satisfy the more general boundary condition (6.3.la).5

3 Iff == 0, the boundary condition is said to be homogeneous, and otherwise inhomo
geneous. Here it is assumed that u is continuous in the closed domain T + cr (cf. Sec.
8.1).

4 For a more detailed formulation of boundary value problems, and for conditions
guaranteeing the existence and uniqueness of solutions under various assumptions con
cerning the domain T and the boundary function!, see the books by Frank and von Mises,
Tikhonov and Samarski, Courant and Hilbert, and Smirnov (Vol. IV), cited in the Biblio
graphy on p. 300.

5 It should be noted that in many problems involving inhomogeneous boundary
conditions, repeated use of the superposition method leads to solutions of excessively
complicated form. This can often be avoided by using another method, due to G. A.
Grinberg. Selected Topics in the Mathematical Theory ofElectric and Magnetic Phenomena
(in Russian), Izd. Akad. Nauk SSSR, Moscow (1948).
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For simplicity, we temporarily assume that the boundary conditions are
independent of the angular coordinate <p, so that

10 = lo(r), fz = fz(r), F = F(z).

Then the solution u will also be independent of <p, and therefore, according
to (6.2.11, 12) the particular solutions of Laplace's equation take the form
u = R(r)Z(z), where R(r) and Z(z) satisfy the differential equations

!!!- (r,dR) + A2R = 0 d
2
Z _ A2Z = O. (633)

r dr dr ' dz2 ..

Solving these equations, we find that

R = AJo(Ar) + BYo(Ar), Z = C cosh AZ + D sinh AZ, (6.3.4)

where Jo(x) and Yo(x) are Bessel functions of order
zero, of the first and second kinds, respectively.

First we consider the boundary conditions (6.3.2a).
Since Jo(Ar) --+ 1, Yo(Ar) --+ 00 as r --+ 0, and since the
solution R must satisfy the physical requirement of being
bounded on the axis of the cylinder, the constant B must
equal zero. Then the homogeneous boundary condition
becomes

AJo(Aa) = 0,

and hence the admissible values of the parameter Aare
An = xn/a, where the Xn are the positive zeros of the
Bessel function Jo(x) [see Sec. 5.13]. Thus we obtain the
following set ofparticular solutions ofLaplace's equation:

U = Un = [MnCOSh(Xn~) + Nnsinh(xn~)]Jo(xn~)'

z

::1

FIGURE 18

n = 1,2, ...

(6.3.5)

By superposition of these solutions, we can construct a solution of our
problem. In fact, suppose each of the functions lo(r) and fz(r) can be ex
panded in a Fourier-Bessel series (see Sec. 5.14), i.e.,

lo(r) = ~ 10.nJo(Xn !..),
n=l a

where

(6.3.6)

Iv.n = a2J:(xn) f rlv(r)Jo(Xn~) dr,

Then the series

p = 0, I. (6.3.7)

l
.(I-Z)

00 smh x n -
a

-
U = L {o.n 1

n=l sinh (Xnti)
(6.3.8)
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whose terms are of the form (6.3.5), clearly satisfies both Laplace's equation
and the boundary conditions (6.3.2a).6

Next we consider the boundary conditions (6.3.2b). In this case, we must
set C = 0 and choose

A = n1ti,
I

n = 1,2, ...

if the homogeneous boundary conditions are to be satisfied. Then the solu
tions of (6.3.3) take the form

(n1tr) (n1tr)R = Alo -/- + BKo -/- ,
(6.3.9)

Z = D sin (n;z),

where lo(x) and Ko(x) are Bessel functions of imaginary argument (see Sec.
5.7). Since Ko(n1tr//) --?- 00 as r --?- 0, we must also set B = O. Therefore the
particular solutions of Laplace's equation are now

(n1tr) . (n1tz)U = Un = Mnlo -/- sm -/- , n = 1,2, ... (6.3.10)

Applying the superposition method just described,7 we find that the solution
of Laplace's equation satisfying the boundary conditions (6.3.2b) is given by
the series

1 (n1tr)
~ 0 / • n1tZ

U = L.. Fn ( ) sm -/-'
n= 1 1 n1ta

o -/-

(6.3.11)

(6.3.12)

where the Fn are the Fourier coefficients of F(z) in a series expansion with
respect to the functions sin (n1tz//):

2 (I . n1tZ
Fn = TJo F(z) sm -/- dz.

Remark 1. The solution of the Neumann problem and the mixed prob
lem, involving the boundary conditions (6.3.1b) and (6.3.1c), is obtained in
the same way, but now we must use Dini series (see Sec. 5.14) instead of
Fourier-Bessel series.

Remark 2. To generalize our results to the case of boundary conditions
involving the angular coordinate !p, we construct particular solutions of the

6 Here we have in mind formal solutions, whose validity needs subsequent verifica
tion. A somewhat more rigorous point of view is adopted in Chap. 8 (cf. p. 208).

7 Often called the Fourier method, or the eigenfunction method.
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(6.3.13)

more general form (6.2.9), satisfying the equations (6.2.10). The values of the
parameter fJ. are now determined by imposing the continuity conditions

~;I~= -~ = ~~I~=~'
This is equivalent to the physical requirement that the solutions be periodic
in cp, and gives fJ. = m (m = 0, 1, 2, ... ). The rest of the analysis differs only
slightly from that just given, and leads to the following particular solutions
of Laplace's equation

U = Umn = [MmnCOSh(Xmn~)+ Nmnsinh(xmn~)]Jm(Xmn~) ~~~::' (6.3.14)

(
n7tr) . mtZ cos mcp

U = Umn = Mmnlm -1- sm -1- . ,sm mcp
(6.3.15)

corresponding to (6.3.2a) and (6.3.2b), respectively, where the numbers
Xmn (m = 0, 1,2, ... ; n = 1,2, ... ) denote the positive zeros of the Bessel
function Jm(x). Then the boundary value problems are solved by super
positions of these solutions in the form of double series, with coefficients ob
tained by expanding the functions

fo = fo(r, cp), fz = fz(r, cp), F = F(z, cp)

(6.3.16)

in appropriate double series.

Example. Find the stationary distribution of temperature u in a cylinder of
length I and radius a, with one end held at temperature uo, while the rest ofthe
surface is held at temperature zero.

The desired solution is found at once from (6.3.8) by setting fo = uo,
fz = 0, and using (5.3.5) to evaluate the integral (6.3.7):

00 sinh (xn I ~ Z) Jo(Xn ~)
U = 2uo 2: .

n-l 'h( I) xnJ1(xn)- sm xn(i

6.4 The Dirichlet Problem for a Domain Bounded by Two
Parallel Planes

Using the superposition method, we can also solve the boundary value
problems of potential theory for the domain consisting of the layer between
two parallel planes (see Figure 19). Let the boundary conditions be of the
form (6.3. Ia), and consider the case of rotational symmetry, where the func
tions fo and fz appearing in the conditions

ulz=o = fo, UIZ=1 = II (6.4.1)
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depend only on the variable r. A function which is harmonic in the domain
o < Z < I and satisfies the conditions (6.4.1) can be found by integration
with respect to Aof the following particular solutions of Laplace's equation:

u = u" = [M" cosh AZ + N" sinh Az]Jo(Ar), A ~ 0. (6.4.2)

(6.4.3)

In fact, assuming that each of the functions fo and fz can be represented as a
Fourier-Bessel integral (5.14.11), we find that the formal solution of the
problem is given by

u = roo A1 (Ar) [ I" sinh. AU - z) + I" s~nh AZ] dAJo 0 Jo." smh Al Jl." smh Al '
where

fp." = 100

rfp(r)JO(Ar) dr,

z

p = 0, I. (6.4.4)

)1
------:+--------ro

FIGURE 19

The boundary value problem for the half-space Z > 0 can be solved in
the same way. In fact, the solution turns out to be

u = Loo AJo(Ar)f"e-"Z dA,

where

f" = 100

rf(r)Jo(Ar) dr,

if the boundary condition is of the form

ulz=o = fer).

6.5. The Dirichlet Problem for a Wedge

In the case of a wedge-shaped domain, bounded by two intersecting planes
(see Figure 20), the boundary value problems of potential theory can also be
solved by the superposition method, with the help of cylinder functions. To
obtain a suitable set of particular solutions of Laplace's equation ~12u = 0,
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we introduce a cylindrical coordinate system whose z-axis coincides with the
line in which the two planes intersect, and we set

in the differential equations (6.2.10). Then,
according to Sec. 5.7, the solutions of
these equations become

R = Afi~(crr) + BKh(crr),

<I> = C cosh 'rtp + D sinh 'rtp,

Z = E cos crz + F sin crz,

A = icr,

fJ. = iT,

o :( cr < 00,

0:('r<00

....,=---'-----'--'--'--------x

FIGURE 20where fvCx) and KvCx) are the Bessel
functions of imaginary argument, and
A, B, ... , F are arbitrary constants. Because of the asymptotic behavior of
the functions fiicrr) and Kh(crr) as r - 00 (see Sec. 5.11), we must set A = 0,
which leads to the following set of particular solutions:

. cos crz
u = Uo.~ = [Mo ~ cosh 'rm + No ~ smh 't"m]Ki~(crr). ,

• T • T SIn crz

o :( cr < 00, 0:( 'r < 00.

(6.5.1)

We now show how to use (6.5.1) to solve the Dirichlet problem for the
domain between the two planes tp = tp1 and tp = tp2. 8 For simplicity, suppose
the functionsfp = fir, z) appearing in the boundary conditions

p = 1,2 (6.5.2)

are even functions of z, which implies that the same is true of the solution
u = u(r, tp, Z).9 Assuming that each of the functionsfp can be expanded in a
Fourier integral

where 10

2 1'"gp(cr, r) = - fir, z) cos crz dz,
1t 0

(6.5.3)

(6.5.4)

8 It will be assumed that indices are assigned to cpr, CP2 in such a way that the domain
under consideration corresponds to the interval CP1 < cp < CP2.

9 The case where the f. are odd functions of z is handled in the same way. Then the
solution in the general case is represented as the sum of the solutions of the two simpler
problems with the following even and odd boundary conditions:

ul .. = ... = ·HJ.(r, z) ± f.(r, -z)).

10 G. P. Tolstov, op. cit., p. 190.
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we try to represent the solution of our problem as a double integral

(6.5.5)

(6.5.6)o < r < 00,

formed by integrating solutions of the type (6.5.1) with respect to the para
meters a and "t". Clearly, the functions Gia, "t") must satisfy the relation

gp(a, r) = L
oo

Gia, "t")Kilar)-d"t",

and hence are the coefficients of the functions gia, r), expanded as integrals
with respect to the function Kilar).

In some cases, we can use formula (5.14.14) to find the functions Gp(a, "t").

In fact, if we write

x = ar, ~ = ap, Yxf(x) = g(a, r),

(5.14.14) becomes

g(a, r) = 2
2

(00 "t" Kilar) sinh 7t"t" d"t" (00 g(a, p) K1lap) dp. (6.5.7)
7t Jo Jo p

The expansion theorem (6.5.7) is valid if g(a, r), regarded as a function of r,
is piecewise continuous and of bounded variation in every finite subinterval
[r 1 , r2], where 0 < r1 < r2 < 00, and if the integrals

i1/2 1Ig(a, r)l,-llog - dr,
o r

(00 Ig(a, r)lr- 1/2 dr
J1/2

(6.5.8)

are finite [cf. (5.14.15)]. Provided that the functions gp(a, r) has these
properties, a comparison of (6.5.6) and (6.5.7) shows that

G ( ) 2 . h i oo
( ) Kilar) d

p a, "t" = 2 "t" SIn 7t"t" gp a, r -- r,
7t 0 r

(6.5.9)

and then (6.5.5) gives a formal solution of the problem. However, it often
happens that the first of the integrals (6.5.8) is not finite, since gia, r)
generally approaches a nonzero limit g~(a, 0) as r~ O. To avoid this diffi
culty, we introduce the modified functions

p = 1,2, (6.5.10)

(6.5.11)

and assume, as is usually the case in physical problems, that the conditions
for applying formula (6.5.7) are satisfied by g:(a, r). We then have

g:(a, r) = Loo G:(a, "t")Ki~(ar) d"t",
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G*( ) 2 . h fOO *( ) Kilcrr) dp cr, T = 2 T SIn 7tT gp cr, r -- r.
7t 0 r

On the other hand, it is easy to prove the formula 11

(6.5.12)

x> 0, (6.5.13)

which implies

gp(cr, O)e- aT = ~ gp(cr, 0) (00 Kilcrr) dT. (6.5.14)
7t Jo

Adding (6.5.11) and (6.5.14), we find the desired representation of gicr, r)
as an integral with respect to Kilcrr). Comparing the result with (6.5.6), we
finally obtain

(6.5.15)

and then the solution is given by (6.5.5), as before.

6.6. The Field of a Point Charge near the Edge of a
Conducting Sheet

We now illustrate the method developed in the preceding section, by
finding the electrostatic field due to a point charge q located near the straight
line edge of a thin conducting sheet held at zero potential. To avoid com
plicating the calculations, we assume that the charge q is at a point A in the
same plane as the conducting sheet. Choosing a coordinate system whose
z-axis coincides with the edge of the sheet and whose x-axis passes through
the point A (see Figure 21), we represent the potentiallji of the electrostatic
field as the sum of the potentialljio due to the source and the potential u due
to the induced charges:

q
Iji=ljio+u, ljio=y . (6.6.1)

r2 + a2 + 2ar cos cp + Z2

Then the problem reduces to the special case of the general problem of Sec.
6.5 which corresponds to the following choice of angles and boundary condi
tions:

CP1 = 0, CP2 = 27t, 11(r, z) = 12(r, z) = - y q . (6.6.2)
(r + a)2 + Z2

11 Use (5.10.23) to expand the function e- x cosh ~ in a Fourier integral with respect
to cos Tot, obtaining

and then set ot = O.

2 f.roe- x cosh ~ = ~ 0 K.,(x) cos Tot dT, x> 0,
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y

'/1'0
--~-=O-=----~O--------X

FIGURE 21

CHAP. 6

Using the integral representation given in Problem 6, formula (i), p. 140,
we find that

2q J00 cos crz 2q
gp(cr, r) = - - V dz = - - Ko[cr(r + a)], (6.6.3)

1t 0 (r + a)2 + Z2 1t

where Ko(x) is Macdonald's function. In the present case,

gp(cr,O) = - 2q Ko(cra),
1t

and hence, according to the method of Sec. 6.5, we must first determine the
quantity

G*( ) - - 4q . h Joo Ko[cr(r + a)] - Ko(cra)e-(H K· ( ) d (664)
p cr, 'r - 3 'r sIn 1t'r "crr r. ..

1t 0 r

Since the evaluation of the integral in (6.6.4) is quite complicated, we omit the
details and merely give the final result:

G~ (cr, 'r) = 4~ [Ko(cra) - Kh(cra)].
1t

Substituting (6.6.5) into (6.5.15), we obtain

4q
Gp(cr, 'r) = - "2 K;,(cra),

1t

and then formula (6.5.5) gives

4q Joo Joo cosh (1t - rp)'r
U = - "2 cos crz dcr h Kiicra)Kh(crr) d'r.

1t 0 0 cos 1t'r

(6.6.5)

(6.6.6)

(6.6.7)

The integral in (6.6.7) can be expressed in closed form in terms of ele
mentary functions, and the final result of the calculations turns out to be

U=
q

Vr2 + a2 + 2ar cos rp + Z2

( 1 2 t 2Var sin -trp )x - - arc an -;:=;;===;;==;:========;;
1t Vr2 + a2 + 2ar cos rp + Z2

(6.6.8)
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(we omit the details).12 It follows from (6.6.8) that

.1. 2q 2var sin 1-tp
'f = arc tan ;=~=~==:=========:7tVr2 + a2 + 2ar cos tp + Z2 Vr2 + a2 + 2ar cos tp + Z2

(6.6.9)

Finally, we observe that the surface charge density on the sheet is given by
the quantity 13

(6.6.10)

(6.7.1)

6.7. Cooling of a Heated Cylinder

As an example of the application of cylinder functions to the nonstation
ary problems of mathematical physics, we now consider the problem of the
cooling of an infinitely long cylinder of radius a, heated to the temperature
Uo = f(r) [r is the distance from the axis] and radiating heat into the sur
rounding medium at zero temperature. From a mathematical point of view,
the problem reduces to solving the equation of heat conduction

ou
cp- = kV 2uot '

subject to the boundary condition

(~~ + hu)Ir~a = 0,

and the initial condition

ult=o = Uo = f(r)

(6.7.2)

(6.7.3)

where k, c, p, Aand h = A/k have the same meaning as in Sec. 2.6. Separating
variables in (6.7.1) by writing u = R(r)T(t), we find the equations

~ !!.. (r dR) + x2R = 0
rdr dr '

where _x2 is the separation constant and b = cp/k, with solutions

R = AJo(xr) + BYo(xr),

12 It should be noted that in the present case, the formula

2 fa>Ko[cr(r + a)] = - KI,(cra)K,,(crr) d-r7t 0

allows us to derive the solution (6.6.7) without recourse to the general method of expan
sion as an integral with respect to the functions K,.(crr). To obtain this formula, set
<jJ = TC in formula (42), p. 55 of the Bateman Manuscript Project, Higher Transcendental
Functions, Vol. 2.

13 G. Joos, op. cit., p. 267.
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Since Jo(xr) --+ I, Yo(xr) --+ 00 as r --+ 0, and since R must satisfy the physical
requirement of being bounded on the axis of the cylinder, the constant B
must equal zero.

It follows from (6.7.2) that the parameter x must satisfy the equation

hJo(xa) - xJl(xa) = O.

If we write x = xa, then (6.7.4) becomes

haJo(x) - xJl(x) = 0,

(6.7.4)

(6.7.5)

which has only real roots, symmetrically located with respect to the origin
(see Sec. 5.13). Let 0 < Xl < ... < X n < ... be the positive roots ofequation
(6.7.5). Then the admissible values of the parameter x are Xn = xnla, and
hence the appropriate set of particular solutions of (6.7.1) is

U = U = M 1. (x !-)e-x ;tla
2

bn nO n a '

Superposition of these solutions gives

n = 1,2, ...

(6.7.6)

where, because of the initial condition (6.7.3), the coefficients M n must be
chosen to satisfy the relation

0:::;; r < a. (6.7.7)

(6.7.8)

This is just the problem of expandingf(r) in a Dini series, which can be solved
by using formulas (5.14.9-10). Thus we have

M n = a2[J~(xn) 2+ Ji(xn)] foa rf(r)Jo(xn~) dr,

and the solution of our heat conduction problem is given by the series (6.7.6),
with these values of the coefficients.

6.8 Diffraction by a Cylinder

Finally, we give an example illustrating the application of Bessel functions
of the third kind. Consider the diffraction of a plane electromagnetic wave
by an infinite conducting cylinder of radius a. Let (r, 'P, z) be a system of
cylindrical coordinates such that the z-axis coincides with the axis of the
cylinder and the angle 'P is measured from the direction of propagation of the
incident wave. We assume that the time dependence is described by the
factor etwt , where w is the angular frequency of the incident radiation, and
that the electric vector of the incident wave is parallel to the axis of the
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(6.8.1)

cylinder. Then the problem reduces to finding the complex amplitude of the
secondary field E satisfying Helmholtz's equation

1 0 (OE) 1 02E 2_r cr r or +;=2 OqJ2 + k E - 0,

the boundary condition

Ejr=a + Eoe-ikacos (jl = 0

and the radiation conditions

(6.8.2)

lim vr(~E + ikE) = 0,
r ..... 00 r

(6.8.3)

where k = w/c is the wave number, and Eo is the amplitude of the incident
plane wave. 14

Applying the method of separation of variables, we find that the parti
cular solutions of (6.8.1), which must also be periodic in qJ, are of the form

E = En = [MnH~l)(kr) + NnH~2)(kr)] ~~~ ::' n = 0, 1,2, ... , (6.8.4)

where HA1)(kr), H~2)(kr) are the Hankel functions introduced in Sec. 5.6. It
follows from the symmetry condition that E is an even function of qJ, and
hence we need only consider solutions containing cos nqJ. Moreover, examin
ing the asymptotic behavior of the Hankel functions at infinity, we see that
the radiation conditions will be satisfied only if M n = 0 (no incoming waves).
Therefore the solution of our problem must have the form

00

E = 2: NnH~2)(kr) cos mp.
n=O

It follows from the boundary condition (6.8.2) that

002: NnHA2)(ka) cos nqJ + Eoe-ikacos (jl = O.
n=O

Setting z = ka and t = - iei(jl in formula (6.8.4), we obtain
00

e-ikacos (jl = Jo(ka) + 2 2: (-i)nJn(ka) cos nrp,
n=l

(6.8.5)

(6.8.6)

(6.8.7)

which, together with (6.8.5), implies

NoHb2)(ka) = -EoJo(ka), NnHA2)(ka) = -2Eo( -i)nJn(ka).

Therefore the required solution is given by

E - - E [Jo(ka) H(2)(k) 2 ~ (- ·)n In(ka) H(2)(k) ]. (688)
- 0 Hb2)(ka) 0 r + n~l I H~2)(ka) n r cos nqJ ..

14 See A. N. Tikhonov and A. A. Samarski, Differentialgleichungen der Mathe
matischen Physik, VEB Deutscher Verlag der Wissenschaften, Berlin (1959), p. 497.
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PROBLEMS

CHAP. 6

1. In polar coordinates r, <p, the free transverse vibrations of a stretched mem
brane (with equilibrium position in the r<p-plane) are described by the equa
tion 15

where

V2 ( ) _ I 02u(r, <p, t)
u r, <p, t - b2 ot2 ' (i)

V 2 = !!.- (r !.-)
r or or

Solve the equation of motion (i) for the case of a circular membrane of radius
a, subject to the boundary condition

ul r= a = 0

(fastened edge) and the initial conditions

ult=o = fer), ou/ot t=o = g(r).

2. Solve Problem I with the same boundary condition, but with the more
general initial conditions 16

ult= a = fer, <p), oul" = g(r, <p).
ut t=o

3. In polar coordinates r, <p, the free transverse vibrations of an elastic plate
(with equilibrium position in the r<p-plane) are described by the equation

'<'74 ( ) __ ..!.- 02u(r, <p, t)
v u r, <p, t - b4 ot2 ' (ii)

where V2 has the same meaning as in Problem 1, and V4 = V2(V2). Solve the
equation of motion (ii) for the case of a circular plate of radius a, subject to
the boundary conditions

ulr=a = 0, ou/ _ 0
ot r=a -

(clamped edge), and the initial conditions

ult=o = fer), oul" = g(r).
ut t=o

15 For the derivation of equation (i), and equation (ii) below, see e.g., 1. M. Gelfand
and S. V. Fomin, Calculus of Variations (translated by R. A. Silverman), Prentice-Hall,
Inc., Englewood Cliffs, N.J. (1963), p. 162 ff. Here we do not specify the physical mean
ing of the constant b. By free vibrations, we mean vibrations in the absence of external
forces.

16 For detailed solutions of Problems 1-2, see G. P. Tolstov, op. cit., p. 288 ff.
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Hint. Separate variables in (ii) by writing II = R(r)T(t). The radial
equation then becomes

! .:!. {r':!' [!.:!. (r dR)]} - )(4R = 0,
r dr dr r dr dr

(iii)

where )(4 is the separation constant. The general solution of (iii) which re
mains finite at the center of the plate is

R(r) = AJo()(r) + Blo()(r).

Ans.

a2
• X~b2t fa ]+ b2 2 SIn -2- pg(p)Rip) dp ,

X n a 0

where

the numbers 0 < Xl < ... < X n < ... are the positive roots
of the equation R~(a) = 0, and Rn - Rxn •

4. Find the stationary distribution of temperature II in a
cylinder of length I and radius a whose ends are held at
temperature zero, while the rest of the surface is held at
temperature 110.

5. Find the stationary distribution of temperature II in
the inhomogeneous cylinder shown in Figure 22, made
up of two adjacent cylindrical sections with different thermal
conductivities k 1 and k 2 , if the lateral surface is held at
temperature 110, while the ends are held at temperature
zero.

Hint. If 111 and 112 denote the temperatures in the sec
tions labelled 1 and 2, respectively, then the boundary con
ditions are

z

...-(]

2,-- 0-.......... .,.,.

1

,-- --...

FIGURE 22

6. Suppose an axially symmetric temperature distribution

is established at time t = 0 in an infinitely long cylinder of radius a, which
transfers no heat through its surface. Find the subsequent evolution in time
of the temperature distribution.
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7. Find the potential \jJ of the electrostatic field inside a closed cylindrical sur
face of length / and radius a, whose base and lateral surface are held at the
potential V, while the top surface is held at zero potential.17

8. Find the stationary distribution of temperature u in the half-space z > 0,
subject to the boundary condition

ulz~o = f(r) = {~~' r < a,
r> a.

q
\jJ(r, z) =

u(r, z) = uoa100
e-I.z JOCAr)J1('Aa) dA.

9. Find the potential \jJ of the electrostatic field
in the space between two grounded plane elec
trodes z = ± a due to a charge q at the point
r = 0, z = 0.

Hint. Use formula (5.2.4).

Ans.

FIGURE 23

Ans.

Vr2 + Z2

_ q (00 e -I.a COSh
h
~z Jo(Ar) d),.

Jo cos "a

10. Find the stationary distribution of temperature u in the infinite wedge of
thickness I shown in Figure 23, if the face 'P = (f. is held at the temperature

z

o

ul'l'~e< = f(r) sin n;z, n = 1,2, ... ,

while the rest of the surface is held at temperature zero.

Ans.

) 2. nITZ (00 {f( T. h
u(r, 'P, z = ~ sm -/- Jo O)+~ sm ITT

x faoo [f(p) - e-n~Pllf(O)]KjT(n;p)d:}:~~~::KjT('7r)dT.

11. Solve the preceding problem for an arbitrary temperature distribution

ul'l'=e< = f(r, z).

17 One can think of the two parts of the surface as insulated from each other by an
infinitely thin gasket.



7
SPHERICAL HARMONICS: THEORY

7.1. Introductory Remarks

By spherical harmonics we mean solutions of the linear differential
equation

(1 - Z2)U" - 2zu' + [v(v + 1) - 1 ~2 Z2]U = 0, (7.I.l)

where z is a complex variable, and fL, v are parameters which can take
arbitrary real or complex values. Equation (7.1.1) is encountered in mathe
matical physics when using systems of orthogonal curvilinear coordinates to
solve the boundary value problems of potential theory for certain special
kinds of domains (e.g., the sphere, spheroid, torus), and it is the simplest of
these domains (i.e., the sphere) which gives rise to the term "spherical har
monies." In the spherieal case, the variable z takes real values in the inter
val (-1, 1), and the parameters [1. and v are nonnegative integers, but
boundary value problems with more complicated geometries lead to the
consideration of more general values of z, [1. and v. 1 For most applications, it
is sufficient to assume (as we will do in this book) that z is either a real
variable in the interval (-1, 1) or a complex variable in the plane cut along
the segment [- 00, 1], while v is an arbitrary real or complex number and
fL = m is a nonnegative integer (m = 0, 1, 2, ... ). The reader will find a more
general treatment in the references on spherical harmonics cited in the Bib
liography on p. 300, especially the books by Hobson, Robin and Lense.

1 See Chap. 8, where we consider problems in which the variable z and the para
meters fL, II take various real or complex values.

161
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7.2. The Hypergeometric Equation and Its Series Solution

Before presenting the theory of spherical harmonics, it is appropriate to
consider the problem of solving the linear differential equation

z(l - z)u" + [y - (oc + ~ + l)z]u' - oc~u = 0, (7.2.1)

where z is a complex variable, and oc, ~, yare parameters which can take
various real or complex values. Equation (7.2.1) is called the hypergeometric
equation, and contains as special cases many differential equations encountered
in the applications. Reducing (7.2.1) to standard form by dividing it by the
coefficient of u", we obtain an equation whose coefficients are analytic func
tions of z in the domain °< Izi < 1 and have the point z = °as a simple
pole or a regular point, depending on the values of the parameters oc, ~ and y.
It follows from the general theory of linear differential equations that (7.2.1)
has a particular solution of the form

00

u = ZS 2: CkZ\
k=O

(7.2.2)

where Co =1= 0, s is a suitably chosen number, and the power series converges
for Izi < 1.2

Substituting (7.2.2) into (7.2.1), we find that
00 00

2: CkZ
S + k -

1
(S + k)(s + k - 1 + y) - 2: CkZ8+k(S + k + oc)(s + k + ~) = 0,

k=O k=O

which gives the following system of equations for determining the exponent s
and the coefficients Ck:

COs(s - 1 + y) = 0,

Ck(S + k)(s + k - 1 + y) - Ck-l(S + k - 1 + oc)(s + k - 1 + ~) = 0,

k = 1,2, ...

Solving the first equation, we obtain s = 0 or s = 1 - y. Suppose y =1= 0,
- 1, - 2, . .. and choose s = O. Then the coefficients Ck can be calculated
from the recurrence relation

(k - 1 + oc)(k - 1 + ~)

Ck= k(k-1+y) Ck-l>

If we- set Co = 1, this implies

k = 1,2, ... ,

k = 0, 1,2, ... ,

where we have introduced the abbreviation

(A)O = 1, (J.h = A(A + 1)· . '(A + k - 1), k = 1,2, . .. (7.2.3)

2 E. A. Coddington, op. cit., Chap. 4.
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(7.2.4)Izi < 1,

as in footnote 17, p. 121. Thus, if y 1= 0, -1, - 2, ... , a particular solution
of equation (7.2.1) is

U = U = F(r:I.. ~. y' z) = ~ (r:l..h(~h Zk
1 '" k~O k!(yh '

where the series on the right is known as the hypergeometric series. 3 The con
vergence of this series for Izl < 1 follows from the general theory of liJ;lear
differential equations. 4 However, by using the ratio test, it can easily be
proved without recourse to this theory that the radius of convergence of the
series (7.2.4) is unily, except when one of the parameters r:I.., ~ equals zero or a
negative integer, in which case the series reduces to a polynomial.

Similarly, choosing s = 1 - y and assuming that y 1= 2, 3, 4, ... , we
obtain

(k - y + r:I..)(k - Y + ~)
Ck= k(k+I-y) Ck-l' k = 1,2, ... ,

or

k = 0, 1,2, ... ,(1 - y + r:l..h(I - Y + ~h
Ck = ,

k!(2 - y)k

if we set Co = 1. Thus, if y =I- 2, 3, 4, ... , a particular solution of (7.2.1) is

(7.2.5)

U = U
2

= Zl-Y ~ (1 - y + r:I..)k(1 - y + ~h Zk
k=O k!(2 - y)k

= zl-YF(I - Y + r:I.., 1 - y + ~; 2 - y; z),

Izi < 1, larg zl < 7t.

Therefore, if y 1= 0, 1, 2, ... , the two solutions (7.2.4-5) exist simultaneously
and are linearly independent.5 Then the general solution of (7.2.1) can be
written in the form

U = AF(r:I.., ~; y; z) + Bz1-YF(I - y + r:I.., 1 - y + ~; 2 - y; z), (7.2.6)

where Izl < 1, larg zl < 7t, and A, B are arbitrary constants. However, if y
is an integer, this method leads to only one particular solution, and to find a
second solution we must modify the method, thereby obtaining a solution
which in general contains logarithmic terms.6

By changing variables in (7.2.1), we can obtain a number of other
differential equations whose solutions can be expressed in terms of

3 1fy equals zero or a negative integer, then the coefficients Ck become infinite, starting
from a certain value of k, and a solution of the form (7.2.2) cannot be constructed if
s = O. However, it is easy to see that this situation does not arise if s = 1 - y.

4 E. A. Coddington, op. cit., Theorem 3, p. 158.
5 To prove the linear independence, consider the asymptotic behavior of the solutions

as z -+ O. The two solutions coincide if y = 1.
e E. A. Coddington, op. cit., Theorem 4, p. 165.
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hypergeometric series. Thus, for example, setting z = t2
, we arrive at the

differential equation

d 2u du
t(l - t2

) dt 2 + 2[y - t - (IX + ~ + -t)t2
] dt - 4IX~tu = 0, (7.2.7)

with particular solutions

u = Ul = F(CI., ~; y; t2
), y =1= 0, - I, - 2, ... , (7.2.8)

u = U 2 = t2 - 2yF(1 - y + IX, 1 - y + ~; 2 - y; t2
)

ItI < I, larg tl < 7t, y #. 2,3,4, ... , (7.2.9)

which for nonintegral y constitute a pair of linearly independent solutions of
(7.2.7) in the domain °< ItI < 1.

7.3. Legendre Functions

The simplest class of spherical harmonics consists of the Legendre poly
nomials considered in Chapter 4, which are solutions of equation (7.1.1) for
[L = °and nonnegative integral v = n (n = 0, 1,2, ... ). The next class of
spherical harmonics, in order of increasing complexity, consists of the
Legendre functions, which are solutions of (7.1.1) for [L = °and arbitrary real
or complex v, i.e., solutions of the equation

(l - Z2)U" - 2zu' + v(v + I)u = 0, (7.3.1)

known as Legendre's equation. To determine these functions, we first note
that (7.3.1) can be reduced to the hypergeometric equation by making suitable
changes of variables. In particular, the substitution t = -t(1 - z) converts
(7.3.1) into the equation

d 2u du
t(1 - t) dt2 + (l - 2t) dt + v(v + I)u = 0,

which is the special case of (7.2.1) corresponding to

IX = -v, ~ = v + I, y = I,

(7.3.2)

while the substitution t = Z-2, U = Z-v-1V converts (7.3.1) into the equation

t(l - t) d
2

v + [(v + ~) - (v + ~)t]dV - (~ + I)(~ + !)v = ° (7.3.3)
dt2 2 2 dt 2 2 2 '

which is the special case of (7.2.1) corresponding to

v v 1 3
CI. = 2 + I, ~ = 2 + 2' y = v + 2'
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(7.3.8)

Therefore it follows from the results of the preceding section that two parti
cular solutions of (7.3.1) are

U= UI = F( -v, v + 1; 1; 1 ; Z), [z - 11 < 2, (7.3.4)

v~r(v + 1) (V v 1 3 1)
U = U2 = r(v + t)(2Z)V+I F 2 + 1, 2 + 2; v + 2; Z2 '

Izi > 1, largzl < 1t, V =1= -1, -2, ... , (7.3.5)

where F(I1., ~; y; z) is the hypergeometric series. These solutions are called
the Legendre functions of degree v of the first and second kinds,7 denoted by
Py(z) and Qy(z), respectively. Thus we have

Py(Z)=F(-v,v+l;I;I;Z), Iz-ll <2, (7.3.6)

v~r(v + 1) (V v 1. 3. 1)
Qy(z) = r(v + f)(2z)Y+I F 2 + 1'2 + 2'v + 2'Z2'

Izi > 1, larg z[ < 1t, V =1= -1, -2,... (7.3.7)

The functions Pv(z) and Qy(z) are defined in certain restricted regions of
the complex z-plane, but, as we now show, they can be continued analytically
into larger regions.8 To make the analytic continuation of Piz), the
Legendre function of the first kind, we use the formula 9

21"12
(l)- sin2k <p d<p = ~, k = 0, 1, 2, ...

1t 0 k!

to write (7.3.6) as

P ( ) = ~ (-vh{v + l)k (1 - Z)k
y Z k~O (k!)2 2

_2~ (-vh{v + l)k (1 - Z)k 1"12 . 2k d
- - L... (1) kl 2 sm <p <p

1t k =o 2k' 0

21"12 d ~ (-vh{v + l)k (1 - z . 2 )k
=- <p L... (I) kl -2- sm <p

7t 0 k=O 2" k •

2 ("12 ( 1 1 - z. )
= ~Jo F -v,V + 1;2;-2- sm2 <p d<p,

(7.3.9)

7 The term degree is appropriate here, since for nonnegative integral v = n, Pn(z) is
actually a polynomial of degree n, in fact, the nth Legendre polynomial (see Sec. 7.9).

8 We point out that in this chapter, unlike Chapter 9, the symbol F(I1., 13; y; z) always
denotes the sum of the hypergeometric series, and hence the variable in the fourth posi
tion always has absolute value < 1. This restriction disappears if we interpret
F(I1., 13; y; z) as the hypergeometric function. In fact, prior knowledge of the theory of
the hypergeometric function leads to considerable simplification of the theory of spherical
harmonics.

9 Formula (7.3.8) is an immediate consequence of Problem 3, p. 14.
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where reversing the order of summation and integration is justified because
the series is uniformly convergent in the variable tp. The hypergeometric
series in the right-hand side of (7.3.9) can be summed in finite form. In fact,
we have the identity

(VI + w + VW)2V+1 + (VI + w + VW)-2V-1
F( -v, v + 1; t; - w) = . /

2v 1 + w

= fv(w), Iwl < 1 (7.3.10)

which is proved by noting that the function fv(w) is analytic in the disk
Iwl < 1 and satisfies the differential equation 10

w(l + w)f~' + (t + 2w)f~ - v(v + l)fv = 0. (7.3.11)

But replacing w by -w converts (7.3.11) into the hypergeometric equation
with parameters IX = -v, ~ = v + 1, Y = 1. Then, since equation (7.2.1) has
a unique solution which is analytic in the disk Iwl < 1 and approaches unity
as w --+ 0, it follows that

fv(w) == F( -v, v + 1; t; - w),

as asserted.
We now substitute (7.3.10) into (7.3.9), obtaining the integral representa

tion

PvCz) = ~ Io"/2.fv(Z ; 1 sin2 tp) dtp

for the Legendre function of the first kind. In deriving this formula, it was
assumed that Iz - 11 < 2, but the integral in the right-hand side defines an
analytic function for every z in the complex plane cut along the segment
[ - 00, - 1]. In fact, for any such z, the variable

z - 1 .
w = --sln2 m2 n

belongs to the w-plane cut along [- 00, -1]. Since .fv(w) is analytic in this
plane, our assertion follows by the usual theorem from complex variable
theory.u

Thus the analytic continuation of PvCz) is given by the formula

2 {"/2 (Z - 1 )
PvCz) = :; Jo fv -2- sin2 tp dtp, larg (z + 1)1 < !t. (7.3.12)

10 The point w = 0 is a regular point of the function fv(w), since fv(w) takes its
original value after making a circuit around this point. To verify (7.3.11), it is con
venient to first show that

Yw{'v'wY ! + w[Y! + wlv!'}, - (v + .!)2fv = 0,

and then carry out the differentiation.
11 E. C. Titchmarsh, op. cit., p. 99.
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The function defined by (7.3.12) is analytic in the z-plane cut along [- 00, 1]
(see Figure 24), where it is a solution of the differential equation (7.3.1), by an
obvious application of the principle of
analytic continuation. 12 In particular,
(7.3.12) implies

Pi1) = 1. (7.3.13)

o

FIGURE 24

-1

As will be shown below, every solution
of (7.3.1) which is linearly independent
of the solution u = Piz) , approaches
infinity as z - 1, and therefore the
Legendre function of the first kind can
also be defined as the solution of
(7.3.1) which approaches unity as z - 1.
Since fv(w) is an entire function of the parameter v, it follows from (7.3.12)
that the same is true of Piz). Moreover, it is easily verified that

f-V-1(W) = fv(w),

and hence

P -V-1(Z) = Piz) (7.3.14)

for arbitrary real or complex v.
To make the analytic continuation of Qv(z), the Legendre function of the

second kind, we start with the formula

(7.3.15)

Re v > - 1, k = 0, 1, 2, ... ,

which is easily proved by making the substitution t = s -1 and using formulas
(1.5.2), (1.5.6) and (1.2.3) from the theory of the gamma function. Then,
using (7.3.15) and the definition of Q'(z), and assuming that

Izl> 1, largzl < 7t, Rev> -1,

12 Let fez) be analytic in a domain D, and suppose Lf(z) = 0 for all z in a smaller
domain D* contained in D, where L is a linear differential operator whose coefficients
are analytic in D. [In the present case,

d 2 d
L = (1 - Z2) dz 2 - 2z([Z + v(v + 1).]

Then Lf(z) = 0 for all z in D. Cf. footnote 6, p. 3.
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we have

CHAP. 7

(7.3.16)

1 r'" (V 3 v 5 3 1) dt
= (2Z)V+1 J1 F 2 + 4' 2 + 4; v + 2; z2 t 2 tV+%Vt _ l'

where reversing the order of summation and integration can be justified by an
absolute convergence argument. The rest of the derivation is based on the
formula

(
V 3'15 3) 1 (l+VI-W)-V-%

F"2 + 4'"2 + 4; v + 2; W = VI _ W 2 = glw).

(7.3.17)

To prove (7.3.17), it is sufficient to show that the right-hand side satisfies
equation (7.2.1) for the values 13

v 3 v 5
ex = - + -, ~ = - + -,

2 4 2 4
3

y = v + -,
2

z = w.

Together, (7.3.16) and (7.3.17) imply

I f'" (1) dt
Qiz) = (2Z)V+l 1 gv z2t 2 tV+%Vt _ l'

Izl>l, largzl<7t, Rev>-l.
(7.3.18)

13 To simplify the calculation, which is a bit tedious, it is convenient to first show that

_ G+ ~)gv _ _ G+ ~)(i +ngv

(VI - wg,)' = I + VI _ w' [VI - w(VI - wg.)']' = (I + VI _ W)2 '

Then multiply the first equation by (v + i)V I - wand the second by w, carry out the
differentiation, and add the resulting equations. Formula (7.3.17) can also be derived
from the second of the formulas (9.8.3) by setting

v 3
oc = 2 + 4' Z = w.
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We now assume temporarily that z is a real number greater than I, and
introduce a new variable of integration by setting

zt = I + (z - 1) cosh2 ~.

Then (7.3.18) takes the form 14

roo (Z - 1 )Qiz) = Jo hv -2- cosh2 1ji dlji,

where

(VI + w + VW)-2V-l
hiw) = V 'I+w

larg wi < 7t, larg (1 + w)! < 7t.

(7.3.19)

Although this formula for Qv(z) has been derived under the assumption that
z > 1, it is not hard to see that the integral on the right has meaning in a
larger region. In fact, for z in the plane cut along (- 00, 1] and Iji in the
interval [0, 00],15 the integrand is continuous in Iji for every z and analytic
in z for every Iji. Moreover, if Re v > -1, the integral converges uniformly
in every region

o < p ~ Iz - II ~ R < 00, larg (z - 1)1 ~ 7t - a,
and hence, by the usual argument,16 represents an analytic function in the
plane cut along [- 00, I]. Thus the analytic continuation of Qiz) is given by
the formula

larg (z - 1)1 < 7t, Re v > -1.

(7.3.20)

(7.3.21)

To obtain the analytic continuation of Qv(z) for the case Re v ~ -I, we
first observe that Qiz) satisfies the recurrence relation

2v + 3 v + 2
Qiz) =~ zQV+l(z) - V + 1 QV+2(Z),

which can be verified by direct substitution of the series (7.3.7). If p is any

14 In the course of the calculations, we use the familiar identity

V v JA + vA2
- B JA - vA2

- B
A+ B= 2 + 2 .

15 For these values of z and t, the variable

z - 1
W = -2- cosh2 t

belongs to the plane cut along [- OJ, OJ, where hy(w) is analytic.
16 E. C. Titchmarsh, op. cit., pp. 99-100.
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positive integeJ, we can use (7.3.21) to write the function Qv(z) with arbitrary
index v i= -1, - 2, ... in the form

(7.3.22)

o

FIGURE 25

-1

where avCz, v) and bp(z, v) are poly
nomials in z. Then, choosing p so
large that Re v > -(p + 1), we can
use (7.3.20) to make the analytic con
tinuation of each of the Legendre
functions in the right-hand side of
(7.3.22), and substituting the corres
ponding expressions into (7.3.22),
we obtain a function which is analy
tic in the z-plane cut along [- 00, 1]
(see Figure 25). It follows that Qv(z)

is analytic in this cut plane, for arbitrary complex v i= -1, -2, ... Like
PvCz), the function QvCz) satisfies the differential equation (7.3.1) [cf. foot
note 12, p. 167]. Moreover, (7.3.20) implies

lim Qv(z) = 00.
z-+ 1 +

(7.3.23)

Comparing (7.3.23) and (7.3.13), we see that PvCz) and QvCz) are linearly
independent solutions of (7.3.1).

We now study Qv(z) as a function of the degree v, and show that for every
fixed z, the ratio

Qv(z)
qvCz) = rev + 1) (7.3.24)

is an entire function of v. For Izi > 1, this fact is an immediate consequence
of (7.3.7). To give a proof which is valid for every z in the plane cut along
[ - 00, 1], we use the integral representation (7.3.20) and the recurrence
relation

(7.3.25)

implied by (7.3.21). It follows from (7.3.20) that qvCz) is an analytic function
of v in the half-plane Re v > _1. 17 Repeated application of (7.3.25) leads to
the expression

(7.3.26)

where p is a positive integer, and ocp(v, z), ~p(Y, z) are polynomials in v. It fol
lows that qvCz) is analytic in the half-plane Re v > - (p + 1). Since p can be

17 Note that hiw) is an entire function of Y, while the integral (7.3.20) is uniformly
convergent in y in the region Re y ;;. - 1 + il, where Il > 0 is arbitrarily small. There
fore the usual theorem concerning analytic functions defined by integrals is applicable.
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chosen arbitrarily large, we conclude that qy(z) is an entire function of v.

Therefore, according to (7.3.24), Qiz) is a meromorphic function of v, with
simple poles at the points v = -1, - 2, ...

The general solution u of the differential equation (7.3.1) can be written
as a linear combination of Legendre functions of the first and second kinds,
i.e.,

u = APiz) + BQiz), (7.3.27)

where larg (z - 1)1 < 7t, v i= -1, -2,... In the applications, it is often
necessary to find a general solution of (7.3.1) for the case where x is a real
number in the interval (-1, 1). Since Py(z) is defined for such x, we need only
construct a second linearly independent solution. It is not hard to see that
such a solution is given by the function

(7.3.28)

equal to half the sum of the values of Qiz) on the upper and lower edges of
the cut (cf. Sec. 7.7),18 Thus, if z = x (-1 < x < 1), the general solution of
(7.3.1) is

u = APix) + BQy(x), v i= -1, -2, ... (7.3.29)

7.4. Integral Representations of the Legendre Functions

The Legendre functions have various integral representations in terms of
definite integrals and contour integrals containing the variables z and v as
parameters. As a rule, the most general representations of this type involve
contour integrals, but for practical purposes, representations involving inte
grals along segments of the real axis are of greatest importance. For this
reason, we will only consider representations of this type, referring the reader
elsewhere for integral representations of other kinds.19

We begin by deriving an integral representation of the function Piz).
Assuming that z = cosh (1. «(1. > 0) and introducing a new variable of integra
tion in (7.3.12) by setting

. h 6 . h (1. •
sm 2 = sm 2 sm rp,

we find that

Py(cosh (1.) = ~ {'" cosh (v + t)6 d6
7t J0 V2 cosh (1. - 2 cosh 6

(7.4.1)

18 In the German literature, the symbols Pv(z) and QvCz) are used to denote the solu
tions of (7.3.1) for -1 < z < 1, and the corresponding Gothic letters are used for all
other cases.

19 E. W. Hobson, op. cit., and E. W. Barnes, On generalized Legendre functions,
Quart. J. Math., 39, 97 (1908).
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(7.4.2)

for any real or complex value of the degree v. Writing (7.4.1) in the form

I J" e-(Y+ Y,)8
Py(cosh (X) = - dfJ

7t -" V2 cosh (X - 2 cosh fJ

and then setting

e8 = cosh (X + sinh (X cos y;,

we arrive at another integral representation of the Legendre function of the
first kind, i.e.,

I in dy;P (cosh (X) = - . ,
y 7t 0 (cosh (X + smh (X cos y;)V+l

where v is arbitrary. Replacing v by -v - I in (7.4.2) and using (7.3.14), we
obtain

I inP y (cosh (X) = - (cosh (X + sinh (X cos y;)Y dY;.
7t 0

(7.4.3)

Two other useful integral representations of the function P y (cosh (X) can

TTl

---l_-.I. '--...~+-__.J.~__

-a 0 +a

FIGURE 26

be derived from (7.4.1) by using contour integration, provided that
-1 < Re v < 0. We begin by considering the integral

1 i e(Y+ Y,)t
- dt
7t c V2 cosh (X - 2 cosh t '

evaluated along the contour C consisting of the segments (- 00, - (X - p),
( - (X + p, (X - p) and «(X + p, (0) of the real axis, two semicircles of small radius
p bypassing the two branch points t = ± (x, and the line 1m t = 7t (see Figure

26). Let /(t) be the single-valued branch of v2 cosh (X - 2 cosh t such that
the values of arg / along the segment (- (X + p, - (X - p), the segment
«(X + p, (0), the line 1m t = 7t and the segment ( - 00, (X - p) are 0, -7t/2, °and
7t/2, respectively. Then /(t) is analytic inside C, and if - I < Re v < 0, the
integrals along the segments Re t = ± N, needed to close the contour,
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approach zero as N ----i>- 00. Therefore, passing to the limit as p ----i>- 0, and taking
account of the change of argf along the path of integration, we obtain

I J" e(v + Y.)9 I f 00 e(v + %)9
- ~~- ~
1t -" V2 cosh rt. - 2 cosh 8 1ti " V2 cosh 8 - 2 cosh rt.

I J-oo e(v+ %)(9 + lti) 1 J-" elV + Y.)9
+ - dO + - d8 =0

1t 00 V 2 cosh 8 + 2 cosh IX 1ti - 00 V 2 cosh 8 - 2 cosh IX '

which after some simple transformations becomes

P
v

(cosh rt.) = ~e(v+ %)lti roo cosh (v + -!-)8 d8
1t J0 V2 cosh 8 + 2 cosh rt.

2 foo sinh (v + -!-)8 d8
+ 1ti " V2 cosh 8 - 2 cosh rt. '

- I < Re v < O.

(7.4.4)

Replacing v by -v - 1 in (7.4.4) and recalling (7.3.14), we find that

P ( h) 2 -(v+J!:)lti foo cosh (v + t)8 dO
v cos rt. = - e •

1t 0 V2 cosh 0 + 2 cosh IX

_ 2 foo sinh (v + t)8 d8
1ti " V2 cosh 8 - 2 cosh rt. '

(7.4.5)

where again -1 < Re v < O. Adding (7.4.4) and (7.4.5), and then subtract
ing (7.4.5) from (7.4.4), we obtain

4 foo cosh (v + t)82Plcosh rt.) = - cos (v + t)1t d8,
1t 0 V2 cosh 8 + 2 cosh rt.

O - 4i . ( 1) foo cosh (v + t)8 dO- - sm v + "21t v
1t 0 V2 cosh 8 + 2 cosh rt.

.i foo sinh (v + t)8 d8
+ 1ti " V2 cosh 8 - 2 cosh rt. '

which imply the desired integral representations

2 roo cosh (v + t)8
Pv(cosh rt.) = - cos (v + t)1t J( d8,

1t 0 v2 cosh 8 + 2 cosh rt. (7.4.6)

rt. > 0, - I < Re v < 0,

Plcosh rt.) = ~ cot (v + t)1t foo V sinh (v + t)8 d8,
1t ,,2 cosh 8 - 2 cosh IX

rt. > 0, - I < Re v < 0.
(7.4.7)

Next we derive integral representations of Qlz), the Legendre function
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of the second kind. Assuming that z = cosh a. (a. > 0) and introducing a new
variable of integration in (7.3.20) by setting

sinh ~ = sinh ~ cosh Iji,

we find that

f
a> e-(V+ %>6

QvCcosh a.) = d6
IX vi2 cosh 6 - 2 cosh a.

for Re v > -1. Then writing

e6 = cosh a. + sinh a. cosh ~,

we reduce (7.4.8) to the form

(7.4.8)

1
00 dcosh a. = . ~ ,

Qv ( ) 0 (cosh a. + smh a. cosh ~)V+l a. > 0, Re v > - 1.

(7.4.9)

Formulas (7.4.1-9) were derived under the assumption that a. > 0, i.e.,
that z = cosh a. > 1, but, according to the principle of analytic continuation,
they remain valid in any region of the complex a.-plane where both sides of a
given formula represent an analytic function. For example, (7.4.2) holds in
the region Re cosh a. > 0, while (7.4.6) holds in the whole z-plane cut along
[-00, -1].

Finally, we derive an integral representation of the function PvCz) which
is valid in the interval - 1 < z < 1. In this case we set

z = cos ~ (0 < ~ < IT),
. 6 . ~ .

sm 2 = sm 2sm ~

in formula (7.3.12), obtaining

P
v
(cos~) = 3. rp

cos (v + t)6 d6
IT J0 vi2 cos 6 - 2 cos ~

for arbitrary values of the degree v.

7.S. Some Relations Satisfied by the Legendre Functions

(7.4.10)

The differential equation (7.3.1) does not change if we replace v by -v - 1
or z by -z, and hence it has solutions P-v-1(z), Q-V-l(Z), PvC-z) and
Qv( -z), as well as PvCz) and Qv(z). Since every three solutions of a second
order linear differential equation are linearly dependent, there must be certain
functional relations between the solutions just enumerated. The simplest such
relation is the formula

P -V-l(Z) = Pv(z), (7.5.1)
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proved in Sec. 7.3. To obtain a relation connecting Piz), Qv(z) and Q -V-l(Z),
we assume temporarily that z > 1 and - 1 < Re v < 0. In this case,
-1 < Re (-v - 1) < 0, and using formulas (7.4.7-8), we have

Qicosh~) - Q-v-1 (cosh~) = 7t cot V7t Pv (cosh ~),

or
sinv7t[Qiz) - Q-V-l(Z)] = 7t cos V7tPv(z). (7.5.2)

Formula (7.5.2) remains valid for all z in the plane cut along [- 00, I], since
in this region both sides are analytic functions of z. Moreover, for all z in the
cut plane, both sides of (7.5.2) are analytic functions of v, except when v is an
integer, and therefore (7.5.2) holds for all v 1= 0, ± 1, ± 2, ... Setting
v = n - t (n = 0, ± I, ±2, ... ) in (7.5.2), we find that

(7.5.3)

We now derive another relation between the solutions of (7.3.1), assuming
temporarily that Izi > 1 and larg zl < 7t. Then formula (7.3.7) gives

v 1= - I, - 2, ... , (7.5.4)

where the upper sign corresponds to 1m z > 0 and the lower sign to 1m z < 0.
Using the principle of analytic continuation, we can drop the condition
Izl > I, thereby establishing the validity of (7.5.4) for arbitrary z in the plane
cut along [- 00, I] and arbitrary v 1= -1, - 2, . .. Finally, combining
(7.5.2) and (7.5.4), we obtain

-sin v7t[e±VltiQv(z) + e'fVltiQ_v_l(Z)] = 7t cos V7t PvC -z),

and then using (7.5.2) to eliminate Q-V-l(Z), we find that

2 sin V7t Qv(z) = Pv(z)e'fVlt; - PvC - z),
7t

(7.5.5)

wherev of- -I, - 2, ... , and the upper sign is chosen ifIm z > 0 and the lower
sign if 1m z < O.

The relations (7.5.1-5) play an important role in the theory of spherical
harmonics. In particular, it follows from (7.5.5) that

2 sin V7t. .
-- Qv(x + /0) = Pix)e- vm - PvC -x),

7t

2 sin V7t Qv(x _ iO) = Pv(x)eVlti - Pi - X),
7t

if -1 < x < I. This implies

(7.5.6)

QvCx + iO) - Qv(x - iO) = - i7tPv(x), -1 < x < I, (7.5.7)

and shows why the cut must be extended to the point z = 1 in the case of a
Legendre function of the second kind.
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7.6. Series Representations of the Legendre Functions

CHAP. 7

The Legendre functions defined in Sec. 7.3 are analytic functions of the
complex variable z in the plane cut along [- 00, -1] in the case of PvCz), and
along [ - 00, 1] in the case of QvCz). In restricted regions of these cut planes,
the Legendre functions can be represented by hypergeometric series with
various choices of ex, ~, y and z, examples of which are given by the series
(7.3.6-7). A simple method for constructing all expansions of this type is due
to Barnes,20 and is based on transformations of the contour integrals used to
define the Legendre functions, but most of these results can be obtained by
more elementary means. We begin by deriving formulas suitable for repre
senting the Legendre functions in the domain Izi > 1, larg zl < 7t. According
to (7.3.7), we have

V~f(v+l) (V v 1 31)
QvCz) = f(v + t)(2Z)Y+l F 2 + 1, 2 + 2; v + 2; Z2 (7.6.1)

for z in this domain and arbitrary v =1= - 1, - 2, . .. To obtain the corre
sponding series expansion of the Legendre function of the first kind, we assume
temporarily that 2v is not an integer and use the relation (7.5.2), which can
then be written in the form

tan V7t
PvCz) = -- [QvCz) - Q-V-l(Z)].

7t
(7.6.2)

Substituting the series (7.6.1) into (7.6.2), and using formula (1.2.2) to trans
form the ratios of gamma functions we obtain

_ f(v+-t) v(1 v v.l .1)
PvCz) - V7tf(v + 1) (2z) F 2 - 2' - 2' 2 - v, Z2

f(-v - -t) -v-l (V v 1. 3.1)
+ V 7t f( _ v) (2z) F 2 + 1, 2 + 2' v + 2' Z2 '

Izi > 1, larg zl < 7t. (7.6.3)

The condition imposed on the parameter v can be replaced by the weaker
condition 2v =1= 2p + 1 (p = 0, ± 1, ± 2, ... ), since both sides of (7.6.3) re
main analytic at points v = p. Therefore formula (7.6.3) holds for any
v =1= ±-t, ±t, ...

To derive expansions of the Legendre functions which hold in the part of

20 E. W. Barnes, op. cit. The reader familiar with the theory of the hypergeometric
function can derive the formulas of this section as special cases of the general relations
of Sees. 9.5-6. A compilation of representations of the Legendre functions in terms of
hypergeometric series is given in the Bateman Manuscript Project, Higher Transcendental
Functions, Vol. 1, pp. 124-139.
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the cut plane where Izi < 1, we first note that the substitution t = Z2 trans
forms the differential equation (7.3.1) into

d
2
u (1 3) du 'I ('I 1)t(l - t) - + - - - t - + - - + - u = 0

dt2 2 2 dt 2 2 2 '
(7.6.4)

which is the special case of the hypergeometric equation (7.2.1) corresponding
to the values

'I 'I 1 1
IX = - -, ~ = - + -, y = -.

2 2 2 2

According to Sec. 7.2, the general solution of (7.6.4) for Izi < 1 can be
written in the form

(
'I 1 'I. 1. 2) (1 'I 'I . 3. 2)

U = AF 2 + 2' - 2' 2' z + BzF "2 - 2' 2 + 1, 2' z , (7.6.5)

where A and B are arbitrary constants. In particular, if the values of these
constants are chosen to be A = PiO) , B = P~(O), then u == Piz), and to
obtain the desired expansion, we need only calculate the values of the
Legendre function Piz) and its derivative at the point z = O.

With this aim, we set z = 0 in the series (7.3.6), obtaining

where we have used formula (1.2.2) from the theory of the gamma function.
If we temporarily assume that - 1 < Re 'I < 0, then (see Sec. 1.5)

r(k - '1)r('1 + 1) = B(k _ 'I 'I + 1) = It t"-V-l(l _ t)V dt
r(k + 1) , Jo '

k = 0, 1,2, ... ,

and hence

PV(O) = sin '17t ~ r~k, + 'I + 1) e t"-V-l(l _ t)V dt
7t "=0 2 k.r('1 + 1) Jo
sin'l7t e -v-l v ~ r(k + 'I + 1) (~)"

- -7t- Jo t (1 - t) dt /~/O k!r('1 + 1) 2

sin'l7t e (t)- -7t- Jo t-V-1(l - t)v 1 - 2 -v-l dt,
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where the reversal of the order of summation and integration is justified by

an absolute convergence argument. Setting 1 - t = Vs, we find that

P (0) 2V sin vrc i1 1/ (v - 1)(1 ) - v - 1 d 2Vsin vrc
v = - S72 - S S = - ---rc 0 rc

or

r(-vwG + ~)

rG -~) ,

(7.6.6)

where we have used formulas (1.2.2-3). Since both sides of (7.6.6) are entire
functions of v, our result holds for arbitrary values of v. Using (1.2.2), we
can also write (7.6.6) in the form

r(~ + !)2 2 vrc
PlO) = _ (V ) cos 2'

Vrcr 2 + 1

(7.6.7)

Once we have found Pv(O), we can easily deduce P~(O) by using the recur-
rence relation (7.8.5). This gives

P '(O) P (0) rG). vrc
v = v v- 1 = V _ ( v 1) sm "2'

Vrcr 2 + 2
or

2rG + 1)
P~(O) = _ (V 1) sin v;,

Vrcr 2 + 2
(7.6.8)

where we take account offormula (1.2.1). Combining (7.6.5, 7-8), we obtain
the following series expansion of the Legendre function of the first kind, valid
for Izi < 1 and arbitrary v:

(
V 1)r-+-
2 2 vrc (V 1 v.I. 2)

Plz) = _ (V ) cos 2" F 2 + 2' - 2' 2' z
vrcr 2 + 1

(7.6.9)
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The corresponding expansion for the Legendre function of the second kind is
obtained from (7.6.9) and (7.5.5). After some simple transformations, we
find that

r
r G+ 1)v; (1 v v 3)

Qiz) = e'fV"t/2 (V 1) zF 2 - 2' 2 + 1; 2; Z2
r-+-2 2

(7.6.10)

(7.6.11)

_.rG+~)v; (V 1 v.I. 2)1
+ I v F 2 + 2' - 2' 2' z ,

2r(2 + 1)
where [zl < 1, v #- -1, - 2, ... , and the upper sign is chosen ifIm z > 0 and
the lower sign if 1m z < O. A formula of even greater practical interest is
the series expansion of Qix), obtained from (7.6.10) and (7.3.28):

(
V )./- V1t

r 2 + 1 v 1t cos '2 (1 v v . 3. 2)
Qix) = (V 1) xF 2 - 2' 2 + 1, 2' x

r 2 + 2

rG + ~)v; sin '!f (V 1 v.I. 2)

(

V ) F 2 + 2' - 2' 2' x
2r 2 + 1

- 1 < x < 1, v#-- 1, - 2, ...

To obtain another important class of expansions of Legendre functions,
we temporarily assume that z is a real number greater than 1 and that
Re v > -1. Writing z = cosh IX. (IX. > 0) and using the integral representation
(7.4.9), we obtain

i
oo dqJ i 00 dqJQ (cosh IX.) = =

v (cosh IX. + sinh IX. cosh qJt +1 ( '" _ . '") v+1o 0 erx cosh2 .!. _ e rx smh2 .!.
2 2

= e- (v+ l)rx {Ooo ...,--- d..:..qJ:-:-:-,..-- _

J( (1 _e-2rx tanh2~)v+1 cosh2v+2 ~

= e-(v+1)rxl
o

oo
dqJ ~ r(v + k + 1) e-2krxtanh2k~

J( cosh2v+ 2~ k=O r(v + I)k! 2
2

tanh2k !
_ -(v+1)rx ~ r(v + k + 1) -2krx i oo

2 d
- e ~ r( I)k' e qJ,

k=O v +. 0 cosh2v+ 2!
2
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where the reversal of the order of summation and integration is easily justi
fied. Then setting t = tanh2 (cp/2), we find that

tanh2k :f

Joo 2 Jl---- dcp = tk - 12(1
o cosh2v +2 :e 0

2

_ )V d _ r(k + t)r(v + I)
t t - r(k + v + i) ,

which implies

QvCcosh 17.) = e-(v+l)o< ~ rev -; k + I)r(\ + t) e-2ko<

k=O k.r(k + v + 2)

= e-(v+l)o< rev + l)r(t) ~ (v + IMth e- 2ko<

rev + i) k=O k!(v + -})k •

Therefore we have

y~r(v + I)
Q (cosh 17.) = e-(v+l)o< Rev + 1 l· V + ;i. e- 2o<) (7.6.12)

v rev + i) '2' 2, ,

or, if we return to the variable z,

Q ( ) _ y~r(v + I) ( . /-2-I)v+l { 1 l. ;i. ( • /2 1)2}
v z - rev + i) z - v z - F v + '2' V + 2, Z - v z - .

(7.6.13)

Let z be a complex number belonging to the domain [arg (z - 1)1 < 7t.
Then

w = z - Y Z2 - 1 = z - Y z - 1Y z + 1

belongs to the domain Iwl < I, larg wi < 7t, and is an analytic function of z

(we choose the branch of Y Z2 - 1 which is positive when z is real and greater
than I). Since both sides of (7.6.13) are analytic functions, this formula, just
proved for real z > I, remains valid in the whole domain larg (z - 1)1 < 7t.
Using the principle of analytic continuation, we can also easily get rid of the
condition Re v > -I, replacing it by the single requirement that v #- -I,
- 2, . .. Therefore (7.6.13) holds throughout the domain of definition of
QvCz), which explains the particular importance of this formula.

To derive a series expansion of the function PvCz) from (7.6.13), we use
the relation (7.6.2). Assuming temporarily that 2v is not an integer, we find
after a simple calculation based on (1.2.2) that

( ) rev + I) . /__ . /--
Pvz = Y7tr(v + i)tanv7t(z- vz2 _I)V+IF{v+ l,t;v+i;(z-vz2-1)2}

rev + -!-) Y-- Y--
+ Y7tr(v + I) (z - Z2 - I)-VF{-v, t; t - v; (z - Z2 - 1)2},

larg(z - 1)1 < 7t. (7.6.14)
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The condition imposed on the parameter v can be replaced by the weaker
condition 2v of. 2p + I (p = 0, ± I, ± 2, ... ), since both sides of (7.6.14) re
main analytic at the points v = p. Therefore formula (7.6.14) holds for all
v of. ±t, ±t, ... and for all z in the plane cut along [- co, I]. For v = ±-t,
± t, ... , the formula becomes indeterminate, and a passage to the limit is re
quire<Cto obtain the corresponding analytic expression for P,(z).

7.7. Wronskians of Pairs of Solutions of Legendre's Equation

Let ul(z) and u2(z) be a pair of solutions of Legendre's equation, with
Wronskian W{ul(z), U2(Z)} [see Sec. 5.9]. Then

d
dz [(1 - z2)uf] + v(v + 1)Ul = 0,

d
dz [(1 - Z2)U~] + v(v + l)u2 = 0,

and subtracting the first equation multiplied by U2 from the second equation
multiplied by Ur, we obtain

which implies

In particular, choosing Ul(Z) = QvCz), U2(Z) = Q_, -l(Z), assuming tem
porarily that 2v is not an integer, and letting Izi ---'>- co in formula (7.6.1), we
find that

Y;r(v + I) -2
ul(z) = rev + t)(2z)v+ 1 [I + O( Izi )],

u2(z) = ~~r~-v;) (2z)'[1 + O( Izl-2)],

, Y;(v + 1)r(v + I) -2
Ul(Z) = - rev + t)(2Z)'+lZ [I + O(lzl )],

u~(z) = ~7:r(-)(2z)' [I + 0(lzl-2)].
2" - v Z

Therefore

7tr(v + I)r( -v) 2v + I -2
W{Ul(Z), U2(Z)} = 2rct _ v)r(v + t) -Z-2- [I + O( Izi )]

1
= - 7t cot V7t 2 [I + O( Izl-2)],

Z
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where we have used formulas (1.2.1-2) from the theory of the gamma function.
A comparison of these results shows that for our choice of Ul and U2, the con
stant C equals 7t cot V7t, and hence

7t cot V7t
W{QvCz), Q-V-l(Z)} = 1 _ Z2' [arg (z - 1)1 < 7t. (7.7.1)

Formula (7.7.1) is valid for arbitrary v 1= 0, ± 1, ± 2, ... , since both sides
are still analytic at the points v = n - 1- (n = 0, ± 1, ± 2, ... ). It follows
from (7.7.1) that for all nonintegral v, Qv(z) and Q-V-l(Z) are a pair of
linearly independent solutions of equation (7.3.1), except for the case of half
integral v, where the Wronskian vanishes and QvCz), Q-V-l(Z) are connected
by the linear relation (7.5.3).

Next let Ul = Pv(z), U2 = Qv(z). To calculate the Wronskian of this pair
of solutions, we use (7.6.2), assuming once again that 2'1 is not an integer.
This gives

~n~ 1
W{PvCz), QvCz)} = -- W{QvCz), Q-V-l(Z)} = -1-2'

7t - z

larg (z - 1)1 < 7t. (7.7.2)

According to the principle of analytic continuation, (7.7.2) is valid for
arbitrary v 1= -1, - 2, ... , and therefore the functions Pv(z), Qv(z) are a pair
of linearly independent solutions of equation (7.3.1) for any v such that both
functions are meaningful.

Similarly, using the relation (7.5.5), we find that

2 sin V7t 2 sin V7t 1
W{PvCz), PvC -z)} = - -7t- W{PvCz), QvCz)} = - -7t- 1- Z2'

larg (1 ± z)1 < 7t, (7.7.3)

for arbitrary values of v. Thus the solutions PvCz) and PvC - z) are linearly
independent if v is not an integer. Finally we point out that in the interval
-1 < x < 1 we have the formula

1
W{PvCx), Qv(x)} = 1 _ x 2' (7.7.4)

where QvCx) is the function defined by (7.3.28), and v 1= -1, - 2, ...
The results obtained in this section show that the general solution of

Legendre's equation (7.3.1) can be written in any of the three equivalent
forms

U = APvCz) + BQv(z), larg (z - 1)1 < 7t, v 1= -1, -2, ... ,
(7.7.5)

U = CPvCz) + DPv(-z), larg(1 ± z)1 < 7t, v 1= 0, ±l, ±2, ... ,
(7.7.6)

U = EQv(z) + FQ-v-l(Z), larg(z - 1)1 < 7t, 2v 1= 0, ±1, ±2, ... ,

(7.7.7)
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where A, B, ... , F are arbitrary constants. The same formulas can be written
for real Z = x in the interval (-1, 1), if Qix) is taken to be the function
defined by (7.3.28).

7.8. Recurrence Relations for the Legendre Functions

The Legendre functions satisfy simple recurrence relations connecting func
tions with consecutive indices. To derive these relations, we set z = cosh ex
(ex > 0), assuming for the time being that z is a real number greater
than 1. Then, using the integral representation (7.4.1), we have

PV+1 (cosh ex) + P V- 1 (cosh ex)

= i (ex cosh (v + t)6 cosh 6 dO
7t Jo V2 cosh ex - 2 cosh 0

4 lex coshexcosh(v + t)O 2 lex
=- V2 h 2 hO d6 -- V2coshex-2cosh6cosh(v+-!-)6dO7t 0 cos ex - cos 7t 0

4 (ex
= 2 cosh exPv (cosh ex) - (2v + l)7tJo V2coshex-2coshOdsinh(v+-!-)6

2 h P ( h) 4 (ex sinh (v + -!-)6 sinh 6 d6
= cos ex v cos ex - (2v + l)7t Jo V2 cosh ex _ 2 cosh 6

2 h P ( h) 2 (ex cosh (v + 1)6 - cosh (v - -!-)6 d6
= cos ex v cos ex - (-;;;2:-v-+---=-'1):-7t Jo V2 cosh ex _ 2 cosh 6

1
= 2 cosh exPv (cosh ex) - 2v + 1 [PV+1 (coshex)-Pv_1 (cosh ex)],

which implies

(v + l)Pv+1(z) - (2v + 1)zPv(z) + vPV-1(z) = o. (7.8.1)

According to the principle of analytic continuation, formula (7.8.1) holds for
arbitrary z in the plane with a cut along the segment [ - 00, - 1]. In the same
way, we find that

Pv +1(cosh ex) - Pv- 1(cosh ex)

= i (ex sinh (v + -!-)6 sinh 6 dO
7t Jo V2 cosh ex - 2 cosh 0

4 lex= - - sinh (v + t)O dV2 cosh ex - 2 cosh 0
7t 0

2 lex= (2v + 1) - V2 cosh ex - 2 cosh 6 cosh (v + ·D 6 dO.
7t 0
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After differentiation with respect to IX, this becomes

CHAP. 7

2lIX cosh (v + .1)6
P~+1 (cosh IX) - P~-l (cosh IX) = (2v + 1) - V 2 d6

7t 0 2 cosh IX - 2 cosh 6

= (2v + I)Pv (cosh IX),

or
P~+1(z) - P~ -l(Z) = (2v + 1)PvCz), (7.8.2)

where the result holds in the whole plane cut along [- 00, -1].
The rest of the recurrence relations satisfied by the function Piz) can be

deduced from formulas (7.8.1-2). For example, differentiating (7.8.1) with
respect to z and using (7.8.2) to eliminate first P~ -l(Z) and then P~ +1(z) from
the resulting equation, we arrive at the relations

P~+1(z) - zP~(z) = (v + I)Py(z),

zP~(z) - P~ -l(Z) = vPvCz).

(7.8.3)

(7.8.4)

Moreover, replacing v by v-I in (7.8.3) and eliminating P~-l(Z), we have

(7.8.5)

Recurrence relations for QvCz), the Legendre function of the second kind,
can be obtained in just the same way, starting from the integral representation
(7.4.8). It turns out that these recurrence relations are exactly the same as for
the function PvCz):

(v + I)Qy+ l(Z) - (2v + l)zQvCz) + VQV-1(Z) = 0,

Q~+l(Z) - Q~-l(Z) = (2v + I)QvCz),

Q~+1(z) - zQ~(z) = (v + I)Qy(z),

zQ~(z) - Q~ -l(Z) = vQy(z),

(1 - Z2)Q~(Z) = VQY_1(Z) - vzQvCz).

(7.8.6)

(7.8.7)

(7.8.8)

(7.8.9)

(7.8.10)

Formulas (7.8.6-10) hold for any complex z in the plane cut along [- 00, 1]
and for arbitrary v#-- I, - 2, ... 21 It is easily verified that these formulas
remain valid for the functions QvCx) defined by (7.3.28).

7.9. Legendre Functions of Nonnegative Integral Degree and
Their Relation to Legendre Polynomials

An important class of spherical harmonics, frequently encountered in the
applications, consists of the Legendre functions of nonnegative integral

21 Note thatvQv_1(z)--+l, Q~-l(z)--+-lz 2asv--+O.- z
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degree v = n (n = 0, 1,2, ... ). Since for v = n, equation (7.3.1) coincides
with equation (4.3.8), which has the Legendre polynomial of degree n as a
particular solution, it is natural to expect that there is a simple connection
between this class of functions and the Legendre polynomials. To establish
the connection, we first observe that substitution of v = 0, 1 into (7.3.10)
gives fo(w) = 1, f1(w) = 1 + 4w, and then (7.3.12) implies Po(z) = 1,
P1(z) = z. Since the recurrence relation (7.8.1) for the Legendre functions
coincides with the recurrence relation (4.3.1) for the Legendre polynomials, it
follows that the functions PvCz) of nonnegative integral degree v = n (n = 0,
1, 2, ... ) are identical with the Legendre polynomials considered in Chap. 4.

The Legendre functions of the second kind of nonnegative integral
degree v = n can also be expressed in closed form in terms of elementary
functions. To prove this, we set v = 0, 1 in (7.3.7), assuming temporarily that
z is a positive number greater than 1. After some simple calculations, this
leads to

~ 1 1 1 z+1
Qo(z) = L.. -2k1 2k+1 = -2 log--=-1,

k=O + z Z

~ 1 1 z z+1
Q1(Z) = L.. 2k + 3 Z2k+2 = 2log z _ 1 - 1,

k=O

(7.9.1)

where, according to the principle of analytic continuation, the formulas
(7.9.1) are valid in the whole z-plane cut along [-00,1]. The corresponding
expressions for the remaining functions QnCz) can be derived from (7.9.1) and
the recurrence relation (7.8.6). By using mathematical induction, it is easily
verified that the result can be written in the form

n = 0,1,2, ... , (7.9.2)

where Pn(z) is the Legendre polynomial of degree n, and fn-1(z) is a poly
nomial of degree n - 1 [I-1(Z) == 0]. Formula (7.9.2) shows that the
Legendre functions of the second kind of nonnegative integral degree have
logarithmic singularities at the points z = ± 1. Bearing in mind that

z+l 1+x_.
log --1 = log -1-- + 1T:l,z - - x

for z = x ± iO (-1 < x < 1), and using the definition (7.3.28) of Qv(x), we
find that

Q () Pn(x) I 1 + x f, ()
n X = -2- og 1 _ x - n - 1 X ,

1 1 + x
Qo(x) = 2 log 1 - x'

x 1 + X
Q1(X) = 2 log 1 _ x - 1,

(7.9.3)

which, in particular, shows that QnCx) ---0>- ± 00 as x ---0>- ± 1.
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7.10. Legendre Functions of Half-Integral Degree

CHAP. 7

Another special class of functions encountered in practice consists of the
Legendre functions of half-integral degree v = n - t (n = 0, 1, 2, ... ).22 This
class of functions is also of theoretical interest, since the case v = n - t
occupies a special position in the theory of spherical harmonics, and many
formulas need modification when v = n - t. In the present section, we
assume that the variable z is greater than 1, setting z = cosh ex (ex > 0). This
is the case of greatest practical interest (cf. Sec. 8.11).

To obtain a general formula for the function Qn- liz (cosh ex), we use
(7.6.12), which for v = n - t becomes

Qn- liz (cosh ex) = v';(~(: ~)t) e-(n+ lIz)<X F(n + t, t; n + 1; e- 2<X), (7.10.1)

where ex > 0, n = 0, 1,2, ... A similar representation of Pn - liz (cosh ex) can
not be written down directly from (7.6.14), since this formula becomes indeter
minate for v = n - t. However, the required expansion can be deduced
from the relation (7.6.2) by using L'Hospital's rule to pass to the limit
v _ n - -t. This gives

P . ( h) = l-{[8Q-v- 1 (COShex)]
n - ~.~ cos ex 2 "

7t uv v=n- ~2

Writing formula (7.6.12) in the form

[8
Qv (~~Sh ex)L=n_ liz}

(7.10.2)

Q ( h) _ ~ r(k + v + l)r(k + '1) -<X(2I<+v+1)

v cos ex - k~ r(k + v + ~)r(k + 1) e ,

we find that

(7.10.3)

8Qv (cosh ex)
8v

~ r(k + v + 1)rck + -t)
k~O r(k + v + -t)r(k + 1)

x [Ij;(k + v + 1) - Ij;(k + v + -t) - ex]e-<x(2k+V+1), (7.10.4)

8Q-V-1 (cosh ex)
8v

~ rck - v)r(k + -t)
k~O r(k - v + -t)r(k + 1)

x [Ij;(k - v) - Ij;(k - v + t) - ex]e-<x(2k-V), (7.10.5)

where Ij;(z) is the logarithmic derivative of the gamma function (see Sec. 1.3).
If we set v = n - -t (n = 1, 2, ... ), the first n terms of the series (7.10.5)

become indeterminate, since

r(k - n + 1) = 00, Ij;(k - n + 1) = 00, k = 0, 1, ... , n - 1.

22 Because of(7.5.1, 3) there is no need to consider the case n = -1, -2, ... separately.
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However, using formulas (1.2.2) and (1.3.4), we obtain

lim tjJ(k - v + -t) = (_1)n-I<r(n - k),
v~n-% r(k - v + 1)

which implies

k = 0, 1, ... , n - 1,

(7.10.7)

[
OQ-V-l (cosh oc)]

ov v=n-%

= n'i,l (_1)n-I<r(n - k)r(k - n + -!-) r(k + -!-)e-o«21<-n+ Y2)

1<=0 r(k + 1)

_ ~ r(k + n + -!-)r(k + t) [tjJ(k + .1) _ tjJ(k + 1) _ oc]e-o«2l<+n+ %)
I<~O r(k + n + 1)r(k + 1) 2 ,

(7.10.6)

if we introduce a new summation index in the series

00

L""I<=n

by replacing k by k + n. For n = 0 the first term in (7.10.6) must be set
equal to zero. Moreover, it follows at once that

[oQi~~Shocl=n_ %

~ r(k + n + t)r(k + t)
= I<~or(k + n + 1)r(k + 1)

x [tjJ(k + n + -!-) - tjJ(k + n + 1) - oc]e-o«2l<+n+ Y2 ).

Substituting (7.10.6-7) into (7.10.2), and noting that

(_1)n-I<r(k - n + -t) = r(n +7t-t _ k)'

according to (I.2.2), we find that

Pn - % (cosh oc)

= eo«n- %) n~l r(n - k)r(k + -t) e- 21<o<
7t I<~O r(k + 1)r(n + -t - k)

e-o«n+ %) ~ r(k + n + -t)r(k + t)
+ 7t2 I<~O r(k + n + l)r(k + 1) (7.10.8)

x [2oc + tjJ(k + 1) - tjJ(k + -t) + tjJ(k + n + 1) - tjJ(k + n + -t)]e- 21<o<,

where oc > 0, n = 0, 1, 2, ... , and the first term must be omitted if n = O.
Formula (7.10.8) is the desired series representation of the function
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(7.10.9)

Pn - % (cosh a). To find the values of the logarithmic derivative of the gamma
function appearing in (7.10.8), we use formulas (1.3.6-9). Thus we have

1 I
tJ;(m + 1) = -y + 1 + 2 + ... + liz'tJ;(l) = -y,

tJ;(-t) = -y - 2 log 2,

tJ;(m + -!-) = -y - 2 log 2 + 2 (1 + ~ + ... + _1_),
3 2m - 1

where y = 0.57721566 .. " and n = 1,2, .. ,
Integral representations of the Legendre functions of half-integral degree

can be obtained by setting v = n - -!- in the appropriate formulas of Sec, 7.4.
In addition, there are some special integral representations valid only for
this class of spherical harmonics. For example,

n = 0, 1, 2, ... , (7.10.10)i" cos nrp
Qn-% (cosh a) = V drp,

o 2 cosh a - 2 cos rp

which is easily proved by expanding the right-hand side in a series of negative
powers of cosh a, carrying out the integration and comparing the result with
(7.3.7).23

Finally, we point out that the Legendre functions of half-integral degree
can be expressed in terms of the complete elliptic integrals of the first and
second kinds

K(k) = '0,,1
2vI drp ,

J( - P sin2 rp

with modulus 0 ~ k < 1, a fact of some interest, since there exist detailed
tables of K(k) and E(k).24 To derive these expressions, we use the integral
representations (7.4.1) and (7.10.10) and reduce the resulting elliptic integrals
to the standard form (7.10.11). For example, we have 25

P _ Y2 (cosh a) = 2 a K (tanh ~),
7t cosh 2

(7.10.12)
and so on.

23 See footnote 17, p. 121, and use the easily verified formula

fn n + 2k d - TC(n + 2k)! k 0 1 2
o cos ntp cos <p <p - 2n + 2kk!(n + k)!' ="" ..

24 A. Fletcher, A table of complete elliptic integrals, Phil. Mag., 30, 516 (940).
25 To prove the first formula, make the preliminary substitution

'h e ·h a .SIn 2 = SIn 2SIn<p

in (7.4.1), and then use the fourth entry in Table 4, p. 319 of the Bateman Manuscript
Project, Higher Transcendental Functions, Vol. 2. To prove the second formula, use the
sixth entry in the same table.
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7.11. Asymptotic Representations of the Legendre Functions for
Large I~ I

The study of the asymptotic behavior of the Legendre functions as
Izi -+ 00 for fixed ~ is an elementary problem, whose solution is an immediate
consequence of the various series representations of Pv(z), Qv(z) given above.
A less trivial problem, and one of great practical importance, is to find
asymptotic representations of the Legendre functions as I~[ -+ 00 for fixed z.
In this section, it will be assumed that z is a real number greater than I and
jarg ~I ~ 11t - S (see, however, the rema k on p. 192). For asymptotic for
mulas valid under more general assumptions concerning z and ~, we refer
the reader to the special literature on spherical harmonics. 26

To derive an asymptotic representation of Pv(z), we begin with the
integral representation (7.4.1), which we write in the form

(7.11.1)

Making the substitution t = (I. - e in the integral ,11' we obtain

e(v+%)e< re< e-(v+%)t ( t )-112

,11 = 1t(2 sinh (1.)1/2 Jo (sinh t)112 1 - tanh 2 coth (I. dt

e(v+ %)e< {rOO e-(v+ Y,)t re< e-(v+ Yo)t

= 1t (2 sinh (1.)1/2 Jo (sinh t)112 dt + Jo (sinh tYl2

[(
t )-112

X 1 - tanh 2 coth (I.

e(v+ Y,)e<

1t (2 sinh (l.y12 [,13 + ,14 - ,15]'

] f oo e-(V+ Yo)t }

1 dt - e< (sinh tYl2 dt

(7.11.2)

The integral ,13 can be expressed in terms of the gamma function, and in fact

,13 = 21/2 faOO e-(V+l)t(l - e- 2t)-1/2 dt = 2-1/2BG, v ~ 1)

26 E. W. Hobson, op. cit., E. W. Barnes, op. cit., and G. N. Watson, Asymptotic
expansions of hypergeometric functions, Trans. Camb. Phil. Soc., 22, 277 (1918). The
last reference gives the most detailed treatment of the problem.
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(see Sec. 1.5), which implies

CHAP. 7

(7.11.3)

because of the asymptotic behavior of the gamma function for 1',11"""" 00,

larg ',II ~ 1-7t - a(see Sec. 1.4).
To estimate the integral"4, we use the inequality

(I - X)-1/2 - 1 ~ x(l - a)-1/2,

which implies

o~ x ~ a < 1,

(
t ) -1/2 IX t

1 - tanh 2coth IX - 1 ~ 21/2 cosh 2 tanh 2 coth IX,

From now on, we assume that

It follows that

o ~ t ~ 0(.

0( (00 t
~ 2112 cosh 2coth 1X0 Joe-(ivi sin 6+ lIz)t (sinh t) -1/2 tanh 2dt

= 0(1) fooo e- 1vlt sin 6 t 1/2 dt = 0(1',11- 3/2,

where we use (1.5.1). Finally we have

It follows from (7.11.2-5) that

e(V+ liz)'"
/1 = (2 . h )112 (1 + 0(1',11- 1)].

V7t sm 0(

To estimate /2 is an easier matter. We see at once that

1 I'"1/21 ~ - (2 cosh 0( .- 2 cosh 6)-1/2 d6
7t 0

1 ('" 6 1
< ; Jo (2 cosh 0( - 2 cosh 6)-112 cosh 2d6 = 2'

and hence

(7.1 1.4)

(7.11.5)

(7.11.6)

(7.11.7)
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Combining (7.11.6-7), we obtain the desired asymptotic representation of the
Legendre function of the first kind:

e(V+ Jr.)e<

Pv(coshoc) = (2 . h )112 [1 + O(l v l- 1
)],

V'IT SIn oc
(7.11.8)

'IT/vI-+ 00, larg vi :E; "2 - 3, 0 < OCo :E; oc :E; oc1 < 00.

To derive an asymptotic representation of Qv(z), under the same assump
tions, we begin with the integral representation (7.4.8), making the sub
stitution e = oc + t:

e-(v+ Y2)e< (00 e-(v+ Jr.)t ( t) -112
QvCcosh oc) = (2 sinh OC)112 Jo (sinh t)112 1 + coth oc tanh 2 dt

e-(v+ Y2)e< {(OO e-(V+ Y2)t

= (2 sinh OC)112 J 0 (sinh t)112 dt

_ (00 e-(v+ Jr.)t [1 _(1 + coth oc tanh !2) -11
2

] dt}
Jo (sinh t)l12

(7.11.9)

The integral fa has already been estimated In (7.11.3). To estimate the
integral f 6, we use the inequality

which implies

1 - (1 + X)-112 :E; tx, x ;, 0,

- (1 + coth oc tanh t) -112 :E; 1- coth oc tanh t,

Therefore

t ;, O.

(7.11.10)

provided that oc ;, OCo > O. Combining these results, we obtain the desired
asymptotic representation of the Legendre function of the second kind:

(7.11.11)

Ivl --+ 00,
'IT

larg vi :E; 2' - 3, 0 < OCo :E; oc < 00.
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(7.12.1)

(7.12.4)

Remark. By similar methods, one can derive asymptotic representations
of Pv(z) and QvCz) for the case where z belongs to the interval (-1, 1) and
arg v = 0. It is found that 27

Pv (cos 8) = (--2-
8
)1/

2
sin [(v + -!-)8 + t7t]·[1 + O(/V[-l)],

V7t sm

Qv (cos 8) = (2v;in 8) 1/2 cos [(v + -!-)8 + t7t]· [1 + O( /v/- 1)],

v---+oo, a ~ 8 ~ 7t - a. (7.11.12)

7.12. Associated Legendre Functions

The next class of spherical harmonics, in order of increasing complexity,
consists of the associated Legendre functions, which are solutions of the dif
ferential equation

(l - Z2)U" - 2zu' + [v(V + 1) - 1 :2Z2] u = 0,

for arbitrary v and integral m = 0, 1, 2, . . .. These functions generalize the
functions PvCz) and Qv(z) considered in Sees. 7.3-11, and reduce to these
functions for m = 0.

To define the associated Legendre functions, we assume that z is an
arbitrary complex number belonging to the plane cut along [- 00, 1], and we
introduce a new function v related to u by the formula

u = (Z2 - 1)m/2v = (z - 1)m/2 (z + 1)m/2v.

Then equation (7.12.1) takes the form

(l - Z2)V" - 2(m + l)zv' + (v - m)(v + m + l)v = 0. (7.12.2)

Let w be a solution of Legendre's equation
(1 - Z2)W" - 2zw' + v(v + l)w = 0. (7.12.3)

Then it is easily verified that the function v = w(m) satisfies equation
(7.12.3).28 It follows that the solutions of (7.12.1) are given by

P?:,(z) = (Z2 _ 1)m12 dm~vY),

Qm( ) _ (2 l)ml2 dmQv(Z) I - °1 2
v z - Z - dzm ' ,m - , , ' .. 0'

where PvCz) and Qv(z) are the Legendre functions defined earlier. The functions

27 See J. Lense, Kugelfunktionen, second edition, Akademische Verlagsgesellschaft,
Geest & Portig K.-G., Leipzig (1954), p. 168 If., and E. W. Hobson, op. cit., p. 293 If.

28 Use Leibniz's rule (D. V. Widder, op. cit., p. 483) to calculate the derivatives
(z2v"ym) and (zv')<m).
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P~(z) and Q~(z) are called the associated Legendre functions of the first
and second kinds, respectively. It follows from (7.12.4) and the results of
Sec. 7.3 that P~(z) and Q~(z) are entire functions of z in the plane cut along
[ - 00, 1]. Moreover, P;:'(z) is an entire function of v, while Q~(z) is a mero
morphic function of v, with poles at the points v = - 1, - 2, ...

In the applications, it is often necessary to find the solution of equation
(7.12.1) for real z = x belonging to the interval (-1, 1). To this end, we first
note that values of the associated Legendre functions on the upper and lower
edges of the cut are

P~(x ± iO) = e±<mni/2)(l _ x 2)m/2 dm:xv~x),

Q~(x ± iO) = e±<mniI2)(l _ x2)m/2 dmQv5~m± iO).

Then we introduce two new functions P;:'(x) and Q~(x) by writing

= (_l)m(l _ x2)m12 dmpvCx ),
dxm

Q~(x) = (-;)m [e-mniI2Q~(x + iO) + emni/2Q~(x - iO)]

= (_l)m(l _ x2)m/2 dmQv(x),
dxm

(7.12.5)

where - 1 < x < 1, v is arbitrary [except that v #- -1, - 2, ... in the case of
Q~(z)]' m = 0, 1,2, .... , and QvCx) is the function defined by (7.3.28). The
functionsP;:'(x) and Q~(x), which are easily seen to satisfy equation (7.12.1)
for real z = x (-1 < x < 1), will simply be called the associated Legendre
functions for the interval ( - 1, 1).29

In the special case where v = n is a nonnegative integer (n = 0, 1, 2, ... ),
PvCz) = Pn(z), where P,,(z) is the Legendre polynomial of degree n. Then,
according to (4.2.1), we have

m _ 2 m/2 1 dm+n
2 n

Pn(z) - (z - 1) 2n , d m+n (z - 1) ,n. z

m = 0, 1, 2, ... , n = 0, 1, 2, ... ,

(7.12.6)

and obviously P;:'(z) == 0 if m > n. If m ~ n, the function P;:'(z) is the product

29 Some authors define P':(x) and Q':(x), -1 < x < 1 by the formulas

P':(x) = (1 - x 2)m/2 dmJ;~X), Q':(x) = (1 _ x 2)m/2 dmd~~(x),

differing from (7.12.5) by the constant factor (_I)m, a fact which should be kept in mind
when consulting handbooks and tables involving these functions.
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of (Z2 - l)m/2 and a polynomial ofdegree n - m. In the interval -I < x < I,
the analogue of formula (7.12.6) is

1 d m +n

P;:'(x) = (_l)m(l - x2)m/2 2n I d m+n (x2 - l)n. (7.12.7)
n. x

Ifwe set v = (d/dz)mPlz) in (7.12.2) and multiply the result by (Z2 - l)m/2,
we obtain the recurrence relation

p:;'+2(Z) + ~z\m_\;j/~ P:;'+l(Z) - (v - m)(v + m + I) P~(z) = 0,

m = 0, 1,2, ... , (7.12.8)

which can be used to calculate the function P~(z) step by step, starting from

N(z) = Plz),

P~(z) = (Z2 - 1)1/2P~(Z) = (Z2 .=v1)l/2 Pv-1(z) + (Z2 ~ZI)1/2 Plz).

In just the same way, we find that

Q:;'+2(Z) + ~~:Z_+1)12~ Q:;'+l(Z) - (v - m)(v + m + I)Q:;'(z) = 0,

m = 0, 1,2, . .. (7.12.9)

Similarly, using the definitions (7.12.5), we can easily deduce recurrence rela
tions for the functions P~(x) and Q:;'(x), obtaining

p:;'+2(X) + ~i~ :2~?~ p~+l(X) + (v - m)(v + m + I)P:;'(x) = 0,
(7.12.10)

Q:;'+2(x) + g~:2;?~ Q:;'+l(X) + (v - m)(v + m + I)Q:;'(x) = 0,

where - 1 < x < I, v is arbitrary [except that v # - I, - 2, ... in the case
of Q:;'(x)] and m = 0, 1,2, ...

The associated Legendre functions also satisfy recurrence relations of
another type, involving functions with the same superscript m but different
subscripts v. To derive these formulas, which generalize the corresponding
formulas of Sec. 7.8, we first differentiate (7.8.2) m times with respect to z
and use (7.12.4), obtaining

P~N(z) - P~_+l(z) = (Z2 - 1)1/2(2v + I)P~(z). (7.12.11)

Then, differentiating (7.8.1) m times with respect to z and again using (7.12.4),
we find that

(v + I)P~+1(z) - (2v + l)zP~(z) - (2v + l)m(z2 - 1)1/2P~-1(Z) + VP~_l(Z) = 0,

which together with (7.12.11) implies

(v - m + l)P~+l(Z) - (2v + l)zP~(z) + (v + m)P~_l(Z) = 0,

m = 0, 1,2,... (7.12.12)
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This recurrence relation is the first of the type mentioned, and reduces to
(7.8.1) for m = 0. To obtain two other such recurrence relations, we dif
ferentiate (7.8.2) and (7.8.3) m times with respect to z and replace (djdz)mPiz)
by (Z2 - l)-m!2p~(z), obtaining

dP~+l(Z) _ dP::'_l(Z) _ ---..!!!!...... [pm () _ pm ()] = (2 I)pm( )
dz dz z2-1 v+l Z v-l Z v+ v Z ,

(7.12.13)

dP::'+l(Z) dP':)(z) mz [ m() m ()] _ ( ) m()d - Z -d- + -2--1 zpv Z - Pv + 1 Z - V + m + 1 Pv Z ,
Z Z z-

(7.12.14)

where m = 0, 1,2, ... Subtraction of (7.12.14) from (7.12.13) then gives

zdPd':)(Z) - dP~l(Z) - 2mz 1 [zP':)(z) - P':)-l(Z)] = (v - m)P':)(z). (7.12.15)
Z Z z-

For m = 0, formulas (7.12.13-15) reduce to formulas (7.8.2-4), respectively.
Finally, replacing v by v - I in (7.12.14) and using (7.12.15) to eliminate
(djdz)P::'_l(Z), we obtain the following generalization of formula (7.8.5):30

dpm(z)
(Z2 - I) ----jz = vzP':)(z) - (v + m)P::'_l(Z), m = 0, 1,2, ... (7.12.16)

(7.12.17)

Recurrence relations for the functions Q,:)(z) can be derived in exactly the
same way, starting from formulas (7.8.6-10), and obviously must be identical
with the corresponding recurrence relations for the functions P':)(z). In the
case of the associated Legendre functions for the interval ( - 1, 1), recurrence
relations can be derived by using (7.12.5). For example, we have

(v - m + I)P':)+1(x) - (2v + l)xP':)(x) + (v + m)PV-1(x) = 0,

dpm(x)
(x2 - 1) dX = vxP~(x) - (v + m)P':)_l(X) = 0, m = 0, 1,2, ... ,

and so on.
A closely related result is the formula giving the Wronskian of the pair of

solutions P':)(z), Q,:)(z) of equation (7.12.1). To derive this formula, we first
differentiate each of the equations (7.12.4) with respect to z, and then use
(7.12.4) again to eliminate the derivatives. This gives

dP~Z) = Z2 ~ 1 [(Z2 - 1)1!2p':)+1(Z) + mzP~(z)].

dQ;;:(z) = Z2 ~ 1 [(Z2 - 1)1!2Q,:) + l(Z) + mzQ':)(z)].

30 In Hobson's treatise (op. cit., p. 290), this formula is given incorrectly.
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Substituting (7.12.17) into the expression for the Wronskian, we obtain

W{P!;'(z), Q~(z)} = (Z2 ~ 1)1/2 [Q~+l(Z)P!;'(z) - P~+l(Z)Q~(z)].

Next we observe that (7.12.8) and (7.12.9) imply the identity

Q~+l(Z)P~(z) - p~+l(Z)Q~(z)

= (v + m)(m - v - I)[Q~(z)P~-l(z) - P~(Z)Q~-l(Z)],

and therefore the Wronskian becomes

W{P!;'(z) , Q~(z)} = (v + m)(m - v-I)W{p!;'-l(Z), Q~ -l(Z)},

m = 1,2, ...

Repeatedly applying this formula and using (7.7.2), we find that

w{pm() Qm()} = r(v + m + 1) r(m - v)_1_
yZ, yZ r(v+I) r(-v) I-z2'

or, after taking account of (1.2.2),

w{pm( ) Qm( )} = r(v + m + 1) (_1)m
y z, y z r(v _ m + 1) 1 _ Z2'

where

(7.12.18)

larg(z - 1)[ < 1t, v#- -1, -2, ... , m = 0, 1,2, ...

This result generalizes (7.7.2) and shows that P!;'(z), Q~(z) are a pair of
linearly independent solutions of equation (7.12.1), except when v = 0,
1, ... , m - 1, in which case both sides of (7.12.18) vanish identically. Thus,
apart from this degenerate case, the general solution of(7.12.1) can be written
in the form

u = AP!;'(z) + BQ~(z). (7.12.19)

r(v + m + I) 1
r(v - m + I) 1 - x 2 '

It follows from (7.12.18) and the definition (7.12.5) of the associated Legendre
functions for the interval (-1, 1) that

W{P~(x), Q~(x)} = (-;)m W{P!;'(x + iO), Q~(x + iO)}

+ W{P~(x - iO), Q~(x - iO)}

(7.12.20)

We also observe that the differential equation (7.12.1) does not change if we
replace vby -v - I orzby -z,andhenceithassolutionsP~y_l(z),Q~y-l(Z),

P~(-z) and Q~(-z), as well as P~(z) and Q~(z). Since every three solutions
of a second-order linear differential equation are linearly dependent, there
must be certain functional relations between the solutions just enumerated.
These relations can be obtained directly by differentiating each of the relations
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(7.5.1-2,4-5) m times with respect to z, and then using the definitions
(7.12.4). This gives

F~V-1(Z) = F:;'(z) ,

sin VTC[Q~(Z) - Q~v -l(Z)] = TC cos VTC F:;'(z),

Q~( -z) = _e±V1tiQ~(z),

F:;'(z)e'fVl!i - F;;'( - z) = 3. sin VTC Q~(z),
TC

(7.12.21)

(7.12.22)

(7.12.23)

(7.12.24)

where m = 0, 1,2, ... , and the upper sign is chosen if 1m z > °and the
lower sign if 1m z < 0.

The associated Legendre functions can be represented by hypergeometric
series in suitably restricted regions of the z-plane cut along [- 00, 1]. The
problem of deriving all expansions of this type lies behind the scope of this
book. At this point we consider only the simplest examples, referring the
reader interested in a more detailed treatment to the sources cited in footnote
20, p. 176.

An expansion ofF:;'(z) valid in the domain Iz - 11 < 2, [arg (z - 1)1 < TC
can be obtained by m-fold differentiation of the series (7.3.6). First we note
that

.!!.- F( ~ .. x) = ~ (rl.M~)k kXk- 1 = ~ (rl.h+1(~h+1 xk
dx rI., ,y, k~l (yhk! k=O (Yh+1k!

= rI.~ ~ (rI. + IM~ + Ih x k
L ( 1) k' (7.12.25)

y k~O Y + I,·

= rI.~ F(rI. + 1, ~ + 1; y + 1; x)
y

for Ixl < 1, since (Ah+l = A(A + Ih by definition. Repeated application of
this formula gives

:x: F(rI.,~; y;x) = (rI.~~~~)m F(rI. + m, ~ + m; y + m; x), m = 0, 1,2, ...

(7.12.26)
It follows that

d
m

( 1 - Z)F:;'(z) = (Z2 - I)m/2 dzmF -v, v + 1; 1; -2-

_ (Z2 - I)m/2( _I)m (-v)m(v + I)m ( ..1 - Z)
- 2m (l)m F m - v, v + m + 1, m + 1, -2- .

Moreover, according to (1.2.2),

( 1)
_ rev + m + I)

v + m - rev + 1) ,

(-v) = rem - v) = (_I)m rev + 1) ,
m r( -v) rev - m + 1)
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and hence

CHAP. 7

pm( ) _ r(v + m + I) ( 2 l)m/2
v z - 2mr(m + I)r(v _ m + 1) z -

(7.12.28)

x F(m - v,v + m + I; m + I; 1 ; X).
Next we derive the formula generalizing the basic expansion (7.3.7) of the

function Qiz). Using the duplication formula (1.2.3), we write (7.3.7) in the
form

(7.12.27)

x F(m - V,V + m + I; m + I; I ; Z),

where Iz - II < 2, larg (z - 1)1 < 7t, v is arbitrary, and m = 0, 1,2, ...
This expansion generalizes formula (7.3.6), to which it reduces for m = O.
To obtain the corresponding formula for the interval -I < x < I, we use
(7.12.5) and (7.12.27), obtaining

pm(x) = (-1)
m

r(v + m + 1) (I _ x2)m/2
v 2mr(m + I)r(v - m + I)

r (k v + 2)r(k v + 1)
00 +-- +--

Q ( ) = ~ '" 2 2 -(2k+v+1)
v Z 2.L... 3 z ,k=O k!r(k + v + 2)

and then differentiate this series m times with respect to z.
(1.2.1, 3), we have

Izi < 1,

According to

d
m

Z-(2k +v+ 1)

dzm

= (-l)m(2k + v + 1)(2k + v + 2)· . ·(2k + v + m)z-(2k+v+m+1l

= (_l)m r(2k + v + m + 1) z - (2k + v + m + 1)

r(2k + v + 1)

2mr(k + v + m + 2)r(k + v + m + I)
= (_1)m 2 2 z-(2k+v+m+1)

r(k + v ~ 2)r(k + v ~ I) ,
and therefore

dmQiz) = (_I)m2m- 1z-(v+m+1)
dzm

r (k v + m + 2) r (k v + m + I)
00 + 2 + 2 IxL -

k=O k!r(k + v + 1) Z2k

= (-I)m y;r(v + m + I) -(v+m+1)
2V + 1r(v +.D z

F(V + m + 2 v + m + I. 3. 1)
x 2' 2 ' v + 2' Z2 '
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which implies

Qm() = (-1)mY;f(v + m + 1)( 2 _ 1)m/2
v z 2V+lf(v + t)Zv+m+l =

F(V + m + 2 v + m + 1. 3. 1)
x 2' 2 ,v + 2' Z2 '

where

(7.12.29)

1=1> 1, larg(z - 1)1 < 7t, m = 0, 1, 2, ... , v#- -1, -2, ....

We conclude this outline of the theory of the associated Legendre func
tions by citing the following integral representations which generalize the
corresponding formulas of Sec. 7.4: 31

r(v + m + 1)(Z2 - 1)m/2
P~(z) = --7.:~-~~-_:'--

2mY7tf(m + !)r(v - m + 1)

x fa" (z + YZ2 - 1 cos ~)v-m sin2m ~ d~,

Re z > 0, m = 0, 1,2, ... , (7.12.30)

Pm() r(v + m + 1) r" ( ./-2-1 .I,)V .1. d'l.v Z = 7tf(v + 1) Jo z + v z - cos 'I' cos m't' '1',

Re => 0, m = 0, 1,2, ... , (7.12.31)

P~(cos~)= (-1)
m
2f(v+m+1) 1

Y7tf(m + !)f(v - m + 1)(2sin~)m

x r~ cos (v + 1)6 d6
Jo (2 cos e - 2cos ~)Y2 m '

°< ~ < 7t, m = 0, 1,2,... (7.12.32)

PROBLEMS

1. Prove the formulas

PvC - x + iO) - PvC - x - iO) = 2i sin vrr PvCx),

QvC - x + iO) - QvC - x - iO) = 2i sin vrr QvCx),

where x > 1.

31 The parameter v is arbitrary in (7.12.30-32). For these and many other integral
representations, with suggestions as to proofs, see the Bateman Manuscript Project,
Higher Transcendental Functions, Vol. 1, p. 155 If.
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2. Derive the following representations of the Legendre function Piz) in
terms of hypergeometric series:

Pv(z) = F(v ~ 1, _~; 1;1 - Z2} [1 - Z2[ < 1, jarg(z + l)j < 1t,

Piz) = (z; If F(-V' -v; 1;; ~ D, Rez> O.
Hint. Apply the method used to derive (7.6.9).

3. Derive the following formulas:

./- ( 1 2Vz2-1)Pv(z) = (z + V Z2 - ItF -v'-2; 1; v '
z+ z2-1

I
2(vZ2 - 1) Iv < 1, larg (z - 1)1

z+ z2-1

./- (1 2V Z2 - 1)Piz) = (z - V Z2 - ItF -v -' l' - ,
'2" z - VZ2 - 1

1

2Vz2-11v 2 < 1, jarg(z - 1)j
z - z - 1

< 1t,

< 1t,

Piz) = zVF( - i 1; v; 1; 1 -~} Rez2 >~, jargzl < 1t.

Hint. Expand the integrand of (7.4.3) in series of powers of sin2 (<jI/2),

cos2 (<jI/2) and cos <jI, and then integrate term by term.

4. Derive the following formulas

v~r(v + 1) -v-1 ( .. 2 )
Qiz) = 2V+lr(v + t) (z - 1) F 1 + v, 1 + v, 2 + 2v, 1 _ z '

Iz - I[ > 2, larg(z - 1)1 < 1t, v;f- -1, -2, ... ,

v~r(v + 1) -v-1 ( .. 2 )
Qiz) = 2V+1r(v + t)(z + 1) F 1 + v,1 + v,2 + 2v,I+Z'

Iz + 11 > 2, jarg(z + 1)1 < 1t, v;f- -1, -2, ... ,

Q ( ) = v~r(v + 1) ( 2 _ 1)-%(v+1)F(v + 1~. ~. _1_),
vZ 2V+lr(v+t)z 2' 2,v+ 2'I-z2

Iz2 - 11 > 1, larg(z - 1)1 < 1t, v;f- -1, -2, ...

Hint. Apply the method used to derive (7.6.9).

5. Prove the formula

Q(z) = J~r(v + 1)(z2 _1)-114(Z - vz2 - 1)v+l~
v 2 rev + t)

(
1 1 3 z - V Z2 - 1)

x F -, -' v + -' - ,
2 2' 2' 2VZ2 - 1

I
z - vZ2=1jv < 1, larg(z - I)j < 1t, v;f- -1, -2, ...

2 Z2 - 1
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Hint. Introduce the new variable of integration t = 6 - et in (7.4.8), and
then expand in powers of I - e- t•

6. Prove that if v is not an integer, then the asymptotic behavior as z -+ - I of
the Legendre function of the first kind and its derivative is described by the
formulas 32

P ( ) ~ sin vrr; I z + 1
v Z ~ -rr;- og-2-' P'( ) ~ sin vrr; 1

v z ~ -rr;-1 + z' z-+-l.

7. Using the result of the preceding problem and the functional relations
connecting the Legendre functions of the first and second kinds, show that
for any v, the function Qiz), larg (z - 1)1 < rr; has a logarithmic singularity
at z = I, while the function Qix), -1 < x < I has logarithmic singularities
at both end points of the interval ( - 1, 1).

8. Derive the integral representations

P (cosh et) = I (OO e - 1 cosh a; I (t sinh et)tV dt
v I'(v + 1) Jo 0 ,

Qv (cosh et) = I'(v 1+ 1) I" e- t
cosh a; Ko(t sinh a)tV dt,

Picos 6) = I'(v ~ I) L"' e- I
C03 8Jo(t sin 6)tV dt,

where

IImal ~~, Rev> -1, °~ 6 < n,

and Jo(x), Io(x) and Ko(x) are Bessel functions.

9. Derive the integral representations

cos vrr; J2 fOO K (t)Pv_y,(coshet)=-- - e-tcosha; .V;- dt,
rr; n 0 ·v t

IRe vi < -t, et ~ 0.

Q ( h) - J~ (OO -I cosh a; lit) dt
v - y, cos a - 2Joe VI' Rev> a > 0,

where lit) and Kit) are Bessel functions of imaginary argument (see Sec.
5.7).33

10. Prove the formulas

I ~ 1 Pl"(x)P;;'(x) dx = 0, II [P;;'(x)]2 dx = _2_ (n + m)!,
-1 2n + 1 (n - m)!

m = 0, 1,2, ... , 1= m, m + 1, ... , n = m, m + 1, ... ,

generalizing the results of Sec. 4.5.

32 A possible approach is to use the expansion of Pv(z) given by E. W. Hobson, op.
cit., p. 225.

33 Proof of the formulas given in Problems 8-9 can be found in Watson's treatise
(op. cit., p. 387).



202 SPHERICAL HARMONICS: THEORY CHAP. 7

1 ~ x < iXJ.

1 ~ x < iXJ.

Comment. These formulas play an important role in the theory of series
expansions with respect to the functions P:;'(x).

11. Prove the following addition theorem for the Legendre polynomials:

Pn(zz' - VZ2 - 1 VZ'2 - 1 cos ep)

= Pn(z)Pn(z') + 2 i (_l)mt - m~; P;;'(z)P:;'(z') cos mep.
m=1 n+m.

Prove the analogous theorem for the Legendre functions :34

Pizz' - vz2 - 1 VZ'2 - 1 cos ep)

= Pv(z)Pv(z') + 2 ~ (_l)m ~~\1 - m + gP':(z)P':(z') cos mep,
m=1 \I + m +

larg (z - 1)1 < n, larg (z' - 1)[ < n, Re z > 0, Re z' > O.

12. Prove that the Legendre functions of complex degree \I = - t + iT satisfy
the integral equation

P ()_coshnT{OOP_y.+llY)d
-Y.+I'X ---n-)1 x+y Y,

13. Derive the following integral representation of the square of the function
P - Y. +I'(x):

[P ( )]2 = cosh ITT lOO P - Y. +h(Y)
-y'+h X V V dy,

n 1 l+y 2x2 -1+y

14. Derive the following asymptotic formulas for the Legendre functions of
complex degree \I = -t + iT: 35

P (h) v2 .( 1)- Y. +I, cos Q( ~ v . sm Q(T + 4"n ,
ITT smh Q(

15. Prove that

II x2mp (x) dx = 22n+l r(2m + l)r(m + n + 1) •
-1 2n rem - n + l)r(2m + 2n + 2)

16. Prove the formulas

II V P2n(x) dx = 2iP2n(0)Q2n(i sinh Q(),

- 1 cosh 2 Q( - x 2

II V P2n(x) dx = 2P2n(0)Q2n (cosh Q().

-1 sinh2
Q( + x2

(i)

(ii)

34 For the proof of these and similar formulas, see E. W. Hobson, op. cit., Chap. 8.
35 These formulas are important in connection with the problems of mathematical

physics considered in Sees. 8.5, 8.9, 12-13. They are special cases of general asymptotic
formulas given in Barnes' paper (op. cit.).
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Hint. The substitution (1. ---+ (1. - trri converts (i) into (ii). To prove (i),

expand ·vcosh2
(1. - x 2 in a power series and integrate term by term, using

the result of the preceding problem. Also anticipate formula (9.5.2), and
use (7.3.7) and (7.6.7).



8
SPHERICAL HARMONICS: APPLICATIONS

8.1. Introductory Remarks

The present chapter is devoted to the study of some boundary value prob
lems of mathematical physics which can be solved by the use of spherical
harmonics. Except for Sec. 8.14 (dealing with Helmholtz's equation), we will
be concerned exclusively with potential theory, i.e., with solutions of Laplace's
equation. In fact, we will confine our attention to the Dirichlet problem,
which, according to Sec. 6.3, can be stated as follows: Given a domain T with
boundary cr, and a function f defined on cr, find the function u sUL,h that 1) u is
harmonic in T and continuous in the closed domain T + cr, and 2) u coincides
with f on cr. In the case of an unbounded domain, this statement of the prob
lem must be supplemented by a condition characterizing the behavior of the
function u at infinity.

An effective general method for solving boundary value problems is to
find a system S of orthogonal curvilinear coordinates oc, ~, y such that

I. The surface cr corresponds to a constant value of one of the coordinates
oc, ~,y;

2. Variables can be separated in Laplace's equation, after it has been
transformed to the system S by using the formulas

x = x(oc, ~, y), y = y(oc, ~,y), z = z(oc, ~, y). (8.1.1)

If such a coordinate system S can be found, then a solution of the problem
can usually be obtained by superposition of particular solutions of Laplace's

204
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equation written in the system S (cf. Sec. 6.3). In this regard, we remind the
reader of the following fact from advanced calculus: 1 If the square of the
element of arc length in the system S is given by

(8.1.2)

in terms of the metric coefficients hrx, ho, hy , then in the system S, the
Laplacian operator takes the form

V2U= h hI h [! (hh
Ohy ~U) + : (hh

yhrx ~~) + : (hh
rxho 8U)]. (8.1.3)

rx 0 y uex rx utX u~ 0 u" uy y 8y

8.2. Solution of Laplace's Equation in Spherical Coordinates

One of the most important systems of orthogonal curvilinear coordinates
permitting separation of variables in Laplace's equation is the system of
spherical coordinates r, 6, qJ, related to the rectangular coordinates x, y, z by
the formulas

where

x = r sin 6 cos qJ, y = r sin 6 sin qJ, z = r cos 6,

o :( r < 00, 0:( 6 :( 7t, - 7t < qJ :( 7t.

(8.2.1)

The corresponding triply orthogonal system of surfaces consists of the
spheres r = const, the circular cones 6 = const and the planes qJ = const
passing through the z-axis. Moreover, the square of the element of arc length is

(8.2.2)

and hence, according to (8.1.2), the metric coefficients are

hr = 1, he = r, h", = r sin 8,

and Laplace's equation takes the form [cf. (8.1.3)]

2 1 a ( 2 aU) I 8 (. 8 aU) 1 82
u

V U = f2 or r or + r2 sin 886 SIll 08 + r2 sin2 8 OqJ2 = o. (8.2.3)

It is easy to see that if we look for particular solutions of (8.2.3) of the
form

U = R(r)0(6)<D(qJ), (8.2.4)

then variables can be separated, so that the problem of determining each
factor in (8.2.4) reduces to the solution of an ordinary differential equation.

1 F. B. Hildebrand, op. cit., p. 302.
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In fact, substituting (8.2.4) into (8.2.3), multiplying by r 2 sin2eand dividing by
R0<f>, we find that

[
1 d ( 2 dR) 1 d (. Cl d0)] . 2 Cl I d

2
<f>

Rdr r dr + 0 sin ede sm v de sm v = - (j) dr!l'

which is possible only if both sides equal a constant, which we denote by f1.2.
This leads to two equations

d2 <f>
drp2 + flo2<f> = 0,

1 d ( 2dR) flo2 1 (d. d0)
R dr r dr = sin2 e - 0 sin e de sm e de .

(8.2.5)

The same reasoning shows that both sides of the last equation must equal a
constant, which this time it is convenient to denote by v(v + 1). As a result,
we obtain the equations

1 d (. d0) [ flo2 ]
sin ede sm e de + v(v + 1) - sin2 e

!!... (r 2 dR) _ v(v + l)R = 0.
dr dr

0=0, (8.2.6)

(8.2.7)

Thus, determining the factors in the product (8.2.4) reduces to the rela
tively simple problem of solving the ordinary differential equations (8.2.5-7).
The corresponding particular solutions (8.2.4) of Laplace's equation depend
on two parameters flo and v (in general, complex),2 which can be used to con
struct solutions of boundary values problems of mathematical physics involv
ing various special domains (spheres, cones, etc.). The parameters flo, v and
the corresponding solutions of equations (8.2.5-7) must be chosen in such a
way that each particular solution (8.2.4) is harmonic in the given domain, and
an appropriate superposition of particular solutions solves the given boundary
value problem.

8.3. The Dirichlet Problem for a Sphere

As a simple example of the application of the superposition method, we
consider the interior Dirichlet problem for a spherical domain. To keep
things as simple as possible, we assume that the boundary functionfand the
solution u are independent of the angle rp. Choosing the origin at the center
of the sphere (of radius a) and the z-axis along the axis of symmetry, we can
formulate our problem as follows: Find the function u = u(r, e) such that 1) u

2 Without loss of generality, we can assume that Re f.l. ;;. 0 and Re v ;;. - 1, since
replacing f.l. by - f.l. or v by - v-I does not affect the separation constants f.l.2 and
v(v + 1).
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is harmonic in the domain r < a and continuous in the closed domain r ::::; a,
and 2) u satisfies the boundary condition ulr~a = fee), where fee) is continuous
in the interval°::::; e ::::; 7t.

3

The rotational symmetry of the problem corresponds to setting <I> = 1 in
(8.2.4) and fL = °in (8.2.6). Then (8.2.6) reduces to the differential equation
(7.3.1) for the Legendre functions of argument x = cos e, which for
- 1 < x < 1 has the general solution [cf. (7.3.29)]

o = APv (cos e) + BQv (cos e), (8.3.1)

where PVCx) and QvCx) are Legendre functions of the first and second kinds,
and v is an arbitrary complex number such that Re v ~ - -t. 4 Since the
variable x = cos e actually ranges over the closed interval [- 1, 1], and since as
x-I, QvCx) - 00 while Pv(x) remains bounded [cf. (7.3.13, 23) and Problem 7,
p. 201] we must set B = °if the solution is to remain bounded inside the
sphere. Moreover, since Pix) - 00 as x - -1 unless v is a nonnegative
integer [cf. (4.2.6) and Problem 6, p. 201], the same reason compels us to
choose v = n (n = 0, 1, 2, ... ). Therefore, the only solutions of (8.2.6) for
fL = 0 which remain bounded in the closed interval 0 ::::; e ::::; 7t correspond to
nonnegative integral v and are of the form

o = APn (cos e), n = 0, 1,2, ... , (8.3.2)

where Pn(x) is the Legendre polynomial of degree n. As for the radial equa
tion (8.2.6), it is an Euler equation, with general solution (for v i= - -t)5

(8.3.3)

In the present case v = n, and the requirement that the solution be bounded
at the center of the sphere compels us to choose D = O. It follows that

n = 0, 1,2, ... , (8.3.4)

and hence the appropriate set of particular solutions of Laplace's equation
inside the sphere is

n = 0, 1,2, ... (8.3.5)

We can now solve our boundary value problem by superposition of the
solutions (8.3.5). In fact, suppose the boundary functionf(e) can be expanded
in a series of Legendre polynomials (see Sec. 4.7), i.e.,

00

fee) = L fnPn (cos e),
n=O

o ::::; e ::::; 7t, (8.3.6)

3 The statement of the problem must be suitably modified if f has discontinuities.
4 As already noted (see footnote 2), this is the only case that need be considered.
5 E. A. Coddington, op. cit., Theorem I, p. 147.
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where

In = (n + -!-) fa"1(8)Pn (COS 8) sin 8 d8,

CHAP. 8

(8.3.7)

(8.3.8)

and suppose the series (8.3.6) converges uniformly in the interval [0, 1t]. Then,
choosing M n = Ina-n and summing the solutions (8.3.5), we obtain the series

u = ~ In (!.) n Pn (cos 8),
n=O a

which, according to Harnack's theorem on sequences of harmonic functions,6
converges uniformly for °:( r :( a to a harmonic function with boundary
values

ulr=a = 1(8),

i.e., (8.3.8) solves the Dirichlet problem for a sphere. 7

Remark 1. The solutions of the Neumann problem and the mixed prob
lem, involving the boundary conditions (6.3.lb) and (6.3.1c), can be obtained
by similar methods.

Remark 2. In the case of the more general problem where1= 1(8, rp) is a
function of both angular coordinates, it turns out that the appropriate set of
particular solutions of Laplace's equation in the domain r < a has the form 8

u = Umn = [Mmn cos mrp + N mn sin mrp]rnp;:, (cos 0),
(8.3.9)

m = 0, 1, 2, ... , n = m, m + 1, m + 2, ... ,

in terms of the associated Legendre functions P;:' (cos 0). Moreover, by
replacing the factor rn in (8.3.9) or (8.3.5) by the linear combination
Crn + Dr - n-1, we obtain particular solutions which can be used to solve
boundary value problems for a spherical shell, or for the domain lying out
side a sphere (in the latter case, we must set C = °to prevent the solution
from becoming infinite as r -+ (f)).

8.4. The Field of a Point Charge inside a Hollow
Conducting Sphere

As an application of the results of the preceding section, consider the
problem of determining the electrostatic field due to a point charge q inside a

6 See W. J. Sternberg and T. L. Smith, The Theory of Potential and Spherical Har
monics, University of Toronto Press, Toronto (1952), pp. 216, 247, and R. Courant and
D. Hilbert, Methods of Mathematical Physics, Vol. 2, lnterscience Publishers, New York
(1962), p. 273, where the result is called Weierstrass' convergence theorem.

7 One can also solve the interior Dirichlet problem for a sphere in the case where
f(8) is only piecewise continuous. See the analogous treatment of the interior Dirichlet
problem for a circle, given in A. N. Tikhonov and A. A. Samarski, op. cit., pp.. 284, 301.

8 See E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth
edition, Cambridge University Press, London (1963), p. 392.
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z

FIGURE 27

(8.4.1)y; = 'l. + u,
P

hollow conducting sphere of radius a, held at zero potential. Choose the
origin 0 at the center of the sphere, and let the z-axis pass through the posi
tion A of the charge, which is at distance
b from 0 (see Figure 27). To eliminate the
singularity at A, we write the potential y; of
the electrostatic field as a sum of the potential
of the source and the potential u of the
secondary field due to the charges induced on
the inner surface of the sphere, i.e.,

where

p = AP = Vr2 + b2 - 2br cos 8

is the distance from A to a variable point P,
with coordinates r, 8.9 Since y; must vanish
on the surface of the sphere, determination
of the function u = u(r, 8) reduces to sol-
ving the Dirichlet problem with the boundary condition

ulr=a = - V 2 b2 q 2 b 8 = f(8). (8.4.2)
a + - a cos

The right-hand side of (8.4.2) can easily be expanded in a series of
Legendre polynomials, and in fact there is no need to evaluate the integral
(8.3.7). Instead, we use formula (4.2.3) which immediately implies

00 (b)nulr=a = - lJ. L - Pn'(cos 8).
a n=O a

(8.4.3)

Moreover, since b < a it follows from the estimate (4.4.2) that the series
(8.4.3) is uniformly convergent in the interval [0, 7t]' Therefore, according to
Sec. 8.3, the function u is given by the formula

q co (br)n
u = - - L "2 Pn (cos 8).

a n=O a

Using (4.2.3) again, we find that the sum of the series (8.4.3) is

q 1 q'
u = - -J =,'a br br 2 P

1 - 2C2 ) cos 8 + ((l2)

(8.4.4)

(8.4.5)

where

a
q' = -qlJ'

2

b' =~,
b

p' = Vr2 + b'2 - 2b'r cos 8.

9 Since the problem is rotationally symmetric, u is independent of the angle cpo
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Thus the potential ~ can be written as a sum

q q'
~ = - + " (8.4.6)

p P

where the first term is the potential of the charge q in the absence of the con
ducting sphere, and the second term is the potential of the image charge q' at
the image point A', which takes account of the influence of the sphere. Io

8.5. The Dirichlet Problem for a Cone

FIGURE 28

o~_--L-=-----+----1f-- Z

The ability to separate variables in Laplace's equation written in spherical
coordinates also allows us to solve boundary value problems for the domain
bounded by the surface of an infinite circular
cone. Choose the origin at the vertex of the
cone, and let the z-axis lie along the axis of
symmetry of the cone (see Figure 28). Then
the equation of the cone is e = eo (eo < 1t),
and the Dirichlet problem for the case of
axially symmetric boundary conditions can
be stated as follows: Find the functions
u = u(r, e) such that I) u is harmonic in the
domain 0 < r < 00, 0 ~ e < eo and continuous
in the closed domain 0 ~ r < 00, 0 ~ e ~ eo,
and 2) u satisfies the boundary condition
UIB~Bo = fer) and the condition at infinity
ul r_ 00 ----?>- 0 uniformly in e,l1 where fer) is continuous in the interval 0 ~ r < 00

andf(r)lr_ oo = O.
In applying the method of separation of variables to this problem, we

must set B = 0 in (8.3.1), if the solution is to remain bounded on the axis of
the cone. However, in the present case, there is no reason to choose v to
be a nonnegative integer, since Pv(cos e) is bounded for arbitrary v if
o ~ e ~ eo. In fact, with some extra restrictions on the function fer), the
problem can be solved by choosing

v = --t + iT, T ~ 0,

which corresponds to the following set of particular solutions of Laplace's
equation:

u = u, = [M,cos (Tlog r) + N,sin(T!ogr)]r-1/ 2P_l>+h(COSe). (8.5.1)

Here M, and N, are arbitrary continuous functions (T ~ 0), and the solutions

10 Note that p' = A'P, i.e., p' is the distance between the image point A' and the
variable point P (see Figure 27).

11 The second condition is necessary for the uniqueness of the function u. See A. N.
Tikhonov and A. A. Samarski, op. cit., p. 288.
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(8.5.2)

depend continuously on the parameter 1'. Using (7.3.6), we find that the
Legendre functions of complex degree appearing in (8.5.1) have the series
expansion

P_'/,+h (cos 8) = F(1- + iT, t - iT; I; sin2 ;)

±+ 1'2 . 2 8 (± + 1'2)(*" + 1'2) . 4 8
= I + (l!)2 sm 2 + (2!)2 sm 2 + ...

It follows from (8.5.2) that P _ y, +h (cos 8) is real and satisfies the inequalities

:::; P - y, +i' (cos 8),

P-Y2+h(cos8):::; P_v,+i,(cos8o),

o :::; 8 :::; 7t,

(8.5.3)

Now suppose thatj(r) is such that <p(r) = r 1l2(r) has a Fourier expansion
of the form 12

g(r) = r 1/2/(r) = I" [Gc(1')cos(1'logr) + G.(T)sin(dogr)]d1',

o < r < 00,

I foo I foo .Gc( 1') = - j(r),-1/2 cos (dog r) dr, G.(T) = - /(r)r- 1/2sm (1' log r) dr,
7t 0 1t 0

(8.5.4)

where the integral is uniformly convergent in every finite subinterval [r1, r2]
such that 0 < r1 < r2 < 00. Then, choosing

in (8.5.1), and integrating with respect to the parameter l' from 0 to 00, we
obtain the function

(8.5.5)

which gives the solution of our problem, at least formally.

12 The expansion (8.5.4), which reduces to the standard form of the Fourier integral
if we make the substitution log r = ~ ( - 00 < ~ < 00), is valid if f(r) is continuous and of
bounded variation in every finite subinterval [r" r2], where 0 < r1 < r2 < 00, and if the
integral

50"' If(r)lr-1/2 dr

is finite. See E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, second
edition, Oxford University Press, London (1950), Theorem 3, p. 13.
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Example. Find the electrostatic field due to a point charge q on the axis of
a hollow conducting cone, held at zero potential, if the charge is at distance a
from the vertex of the cone.

As in Sec. 8.4, we write the potential y; as a sum

q; = CJ.. + u,
P

(8.5.6)

where p = vir2 + a2 - 2ar cos 6. Then u satisfies the boundary condition

ule=eo = f(r) = - q .
V r2 + a2

- 2ar cos 60

Using the integral representation (7.4.6), we find that

G (,,) = _ !!. (00 cos (dog r) dr
c 7t Jo Vrvr2 + a2 - 2ar cos 60

__q_(OO cos (dogr) dr

7tVaJo Jr a r- + - - 2 cos 60a r

__q_ J00 cos [,,(s + log a)] ds

7t Va - 00 V 2 cosh s - 2 cos 60

= _ 2q cos (" log a) roo cos "s ds

7tVa Jo v2 cosh s - 2 cos 60

q cos(doga)
- . r h P - Yz+ii -cos ( 0),

va cos 7t"

and similarly,

q sin (" log a)
Gs(") = - . r h P -Yt+i.( -cos ( 0),

va cos 7t" -

Thus the solution of the problem is given by the integral

_ q foo P_!~+i'(COS 6) P ( Q ) cos ["log (r/a)]d
u- - -= (Q) -'lz+h -cos Vo h ".V ar 0 P - Yz + j. cos Vo ' cos 7t"

(8.5.7)

(8.5.8)

(8.5.9)

It is not hard to see that this integral is absolutely and uniformly convergent
for r1 ~ r ~ r2, 0 ~ 6 ~ 60, where 0 < r1 < r2 < 00. In fact, it follows from
(8.5.3) that the integral in question is majorized by the integral 13

fOO d" 1 60
P - Yz +i. (-cos ( 0) --h- = 2- cos -2'

o cos 7t"

13 To verify (8.5.10), set ~ = IT in (8.12.8).

(8.5.10)
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Using this result, we can prove that formula (8.5.9) actually gives the solution
of our problem.14

8.6. Solution of Laplace's Equation in Spheroidal Coordinates

We now turn to other systems of orthogonal coordinates permitting sepa
ration of variables in Laplace's equation, and leading to particular solutions
which can be expressed in terms of spherical harmonics. We begin our dis
cussion by examining two coordinate systems suitable for solving boundary
value problems for spheroidal domains. IS First we consider prolate spheroidal
coordinates ot,~, cp, related to the rectangular coordinates x, y, z by the
formulas

x = c sinh ot sin ~ cos cp, y = c sinh ot sin ~ sin cp, z = c cosh ot cos ~,

(8.6.1)
where

o ~ ot < 00, 0 ~ ~ ~ Te, -Te < cp ~ Te,

and c > 0 is a scale factor. 16 Then every point of space is characterized by a
unique triple of numbers ot, ~, cpo The corresponding triply orthogonal system
of surfaces consists of the prolate spheroids ot = const with foci at the points
(0,0, ± c), the double-sheeted hyperboloids of revolution ~ = const, which
are confocal with the spheroids, and the planes cp = const passing through
the z-axis (see Figure 29). A simple calculation shows that the square of the
element of arc length is

ds2 = c2(sinh2 ot + sin2 ~) (dot2 + d~2) + c2 sinh2 ot sin2 ~ dcp2. (8.6.2)

Therefore the metric coefficients are

h" = h~ = cVsinh2
ot + sin2 ~, h = c sinh ot sin ~,

and Laplace's equation takes the form [cf. (8.2.3)]

2 1 [1 0 ( . h OU) 1 0 ( . OU)V U = -- - SIll ot - + -- - SIll ~ -
c2 (sinh2 ot + sin2~) sinh ot Oot Oot sin ~ o~ o~

+ (_1_
2

_ +~) 02
U

] = 0 (8.6.3)
sinh ot sin ~ Ocp2 .

14 In examining the convergence of integrals involving Legendre functions of com
plex degree v = - t + iT, it is useful to recall the asymptotic formulas proved in
Problem 14, p. 202.

15 The terms spheroid and ellipsoid of revolution are synonymous, and spheroidal
coordinates might be called degenerate ellipsoidal coordinates, since cross sections of the
coordinate surfaces normal to the z-axis are circles rather than ellipses (concerning
ellipsoidal coordinates, see E. W. Hobson, op. cit., Chap. 11).

16 If a point has cylindrical coordinates r, <p and z, then z + ir = c cosh (ot + i~).
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FIGURE 29

CHAP. 8

Now suppose we look for solutions of (8.6.3) which have the form

u = A(oc)B(~)<l>(tp). (8.6.4)

(8.6.5)

Then the variables separate, just as in Sec. 8.2, and the factors A, B, <l> satisfy
the ordinary differential equations

d2 <l>
dtp2 + fL

2
<l> = 0,

1 d (. dB) [ fL
2

]sin ~ d~ sm ~ d~ + v(v + 1) - sin2 ~ B = 0,

1 d ( . dA) [ fL2 ]-'-h- T smh oc -:J - v(v + 1) + --'---h2 A = 0,sm oc uOC UOC sm oc

(8.6.6)

(8.6.7)

where fL and v are parameters whose choice is dictated by the concrete condi
tions of the problem. For example, in the rotationally symmetric case where
u is independent of the variable tp, we set fL = 0, <l> = 1, while in the more
general case where u depends on tp, we set fL = m (m = 0, 1, 2, ... ), since u
must be periodic in tp.

Next we consider oblate spheroidal coordinates oc, ~,tp, related to the
rectangular coordinates x, y, z by the formulas

x = c cosh oc sin ~ cos tp, y = c cosh oc sin ~ sin tp, z = c sinh oc cos ~,

(8.6.8)
where 17

°~ oc < 00, °~ ~ ~ 7t, -7t < tp ~ 7t.

17 If a point has cylindrical coordinates r, <p and z, we now have z + ir = sinh (oc + i(3).
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(8.6.11)

In this case, the triply orthogonal system of surfaces consists of the oblate
spheroids rY. = const, the single-sheeted hyperboloids of revolution ~ = const
and the planes tp = const (see Figure 30). The square of the element of arc
length and Laplace's equation now take the form

ds2 = c2 (cosh2 rY. - sin2 ~)(drY.2 + d~2) + c2 cosh2 rY. sin2 ~ drp2, (8.6.9)

V2u = I [_1~ 8 (COSh oc OU) + _1_ ~ (sin ~ OU)
c2 (cosh2 rY. - sin2~) cosh rY. Ooc 0rY. sin ~ o~ o~

( 1 1) 02U]+ sin2 ~ - cosh2 rY. Orp2 = O. (8.6.10)

r

0: = canst

t---+---+---z

FIGURE 30

Separating variables, instead of (8.6.5-7) we find the following system of
equations for determining the factors A, Band <1>:

d 2 <1>
drp2 + f1.2<1> = 0,

1 d (. dB) [ f1.2 ]
sin ~ d~ sm ~ d~ + v(v + 1) - sin2 ~ B = 0,

1 d ( dA) [ f1.2 ]~~- coshrY.- - v(v + 1) - --- A = O.
cosh oc drY. drY. cosh2 rY.

8.7. The Dirichlet Problem for a Spheroid

(8.6.12)

(8.6.13)

Using the particular solutions of Laplace's equation V2U = 0 found in
Sec. 8.6, we can construct functions harmonic in the interior or exterior of a
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spheroid, thereby solving the boundary value problems of potential theory
for domains of this type. To keep things as simple as possible, we consider
the Dirichlet problem, assuming that the boundary function f and the solu
tion u are independent of the angle qJ. We begin with the case of a prolate
spheroid. The rotational symmetry of the problem corresponds to setting
<D = 1 in (8.6.11) and fL = 0 in (8.6.12-13). Then equation (8.6.12) reduces
to the differential equation for the Legendre functions of argument x = cos ~

(cf. Sec. 8.3), whose only bounded solutions in the closed interval [0, 7t] are
of the form

B = CPn (cos ~), n = 0, 1,2, ... , (8.7.1)

where Pix) is the Legendre polynomial of degree n [cf. (8.3.2).p8
To deal with equation (8.6.7), we observe that (8.6.7) transforms into

equation (8.6.6) under the substitution ~ = iIX. Therefore the general solution
of (8.6.7) for fL = 0, v = n is of the form

A = MPn (cosh IX) + NQn (cosh IX). (8.7.2)

If IX = IXo is the equation of the spheroid on which the boundary conditions
are specified, then the interior domain corresponds to the values 0 ::( IX < IXo

and the exterior domain to the values IXo < IX < 00. 19 Since Pn (cosh IX) ~ 1,
Qn (cosh IX) ~ 00 as IX ~ 0 [cf. (7.3.13,23) and Problem 7, p. 201], we must
set N = 0 when dealing with the interior problem, and hence the appropriate
set of particular solutions of Laplace's equation consists of the functions

n = 0, 1,2, ... (8.7.3)

On the other hand, for the exterior problem we need solutions which are
harmonic outside the spheroid and vanish at infinity (cf. Sec. 8.5). According
to (7.6.1, 3), this requires setting M = 0, so that the appropriate particular
solutions of Laplace's equation are now of the form

n = 0, 1,2, ... (8.7.4)

Next we consider the case of an oblate spheroid. Since equations (8.6.6)
and (8.6.12) are identical, the only difference between this case and the case
of a prolate spheroid is that equation (8.6.7) is replaced by equation (8.6.13).
Therefore we have the same admissible values of the parameter v as before,
i.e., v = n (n = 0, 1,2, ... ), and the factor B(~) is again given by (8.7.1). Since
equation (8.6.13) transforms into equation (8.6.12) under the substitution
~ = -!7t - iIX, the general solution of (8.6.13) for the case fL = 0, v = n is of
the form

A = MPnCi sinh IX) + NQnCi sinh IX),

18 This assertion holds for both the interior and the exterior problem.
19 This is true for either a prolate or an oblate spheroid.

(8.7.5)
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corresponding to the following particular solutions of Laplace's equation:

U = Un = [MnPn(i sinh a) + NnQn(i sinh a)]Pn (cos ~). (8.7.6)

We now show that N n must be set equal to zero if the solutions (8.7.6) are
to be harmonic inside the spheroid. The proof of this assertion is less trivial
than in the case of the prolate spheroid, since both solutions Pn(i sinh a) and
Qn(i sinh a) are bounded in the whole interval °:( a < aQ' In fact, we must
now examine the behavior of grad U near the singular curve of the trans
formation (8.6.8), i.e., the curve a = 0, ~ = 1t/2 on which the Jacobian
o(x, y, z)/o(a, ~, rp) vanishes. It is an immediate consequence of (8.6.9) that

(grad u)2 = 1 [(OU)2 + (OU)2] , (8.7.7)
c2 (cosh2 a - sin2 ~) oa o~

if we assume that U is independent of the angle rp. The denominator in the
right-hand side of (8.7.7) vanishes on the curve a = 0, ~ = 1t/2, and therefore
a necessary condition for grad u to be finite is that the expression in brackets
should also vanish for a = 0, ~ = 1t/2, i.e., that Nn = 0, since (8.7.6) and
(7.6.9-10) imply

[(OU)2 + (OU)2] = (-l)n-1N;
oa o~ c<~Q.P~"/2 .

Moreover, this condition is also sufficient. In fact, if

n = 0, 1,2, ... , (8.7.8)

then

(~~r + (~~r = M;[P;(i sinh a)P~2 (cos ~) sin2 ~
- p~2(i sinh a)P; (cos ~) cosh2 a].

The expression in brackets is a polynomial in cos ~ which vanishes if
cos ~ = ± i sinh a and hence is divisible by cosh2 a - sin2~. It follows that
grad U is well-behaved on the curve a = 0, ~ = 1t/2, so that (8.7.8) gives the
appropriate solutions of Laplace's equation in the interior of an oblate
spheroid. In the case of the exterior problem, we must set M n = °as before,
which gives the solutions .

U = Un = NnQn(i sinh a)Pn (cos ~), n = 0, 1,2,... (8.7.9)

The Dirichlet problem for a spheroid can now be solved by superposition
of the solutions (8.7.3-4) and (8.7.8-9). For example, consider the interior
problem for a prolate spheroid, and suppose the boundary functionf = f(~)

can be expanded in a series of Legendre polynomials
00

f(~) = 2 fnPn (cos ~),
n~Q

In = (n + t) fa"1(~)Pn (cos ~) sin ~ d~,

(8.7.10)



218 SPHERICAL HARMONICS: APPLICATrONS CHAP. 8

which is uniformly convergent in the closed interval [0,7t]. Then, using
Harnack's theorem on sequences of harmonic functions (mentioned on p. 208)
we see that the series

~ Pn (cosh oc)
u = L.. In P ( h ) Pn(cos ~),

n: 0 n cos OCo
(8.7.11)

with terms of the form (8.7.3), converges uniformly for 0 ~ OC ~ OCo to a
harmonic function with boundary values

ul cx : cxo = I(~),

and hence solves the given boundary value problem.

Remark 1. The solutions of the Neumann problem and the mixed prob
lem, involving the boundary conditions (6.3.1b) and (6.3.1c), can be obtained
by similar methods.

Remark 2. In the case of the more general problem where f = I(~, cp) is
a function of both coordinates ~ and cp, it turns out that the appropriate set
of particular solutions of Laplace's equation for prolate and oblate spheroid
are

[M N . ]pm ( ) P'!: (cosh oc) (87 12)u = Umn = mn cos mcp + mn sm mcp n cos ~ Qm ( h)' ..
n cos oc

- - [M N . ]pm ( ) pr;;(i sinh oc) 87 13)
U - U mn - mn cos mcp + mn sm mcp n cos ~ Qm(· . h )' ( ..

• n Ism oc

respectively, where m = 0, 1,2, ... and n = m + 1, m + 2, ... The upper
row in (8.7.12-13) corresponds to the interior problem and the lower row to
the exterior problem.

8.8. The Gravitational Attraction of a Homogeneous
Solid Spheroid

As a simple example of the results of the preceding two sections, we now
calculate the gravitational potential of a homogeneous solid prolate spheroid
of mass m and density p. Let the potentials inside and outside the spheroid be
denoted by <.!Ji and <.!J., respectively. Then, as is well known,20 the problem
reduces to finding the solution of the equations

V2<.!Ji = -47tp, V2<.!Je = 0, (8.8.1)

which satisfy the boundary conditions

o<.!Jil = O<.!Jej ,
on (J on (J

(8.8.2)

where (J is the surface of the spheroid and a/on denotes the derivative with

20 W. J. Sternberg and T. L. Smith, op. cit., p. 134.
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respect to the exterior normal to cr. 21 Solving this problem is equivalent to
solving the equations

V2~* = 0, V2~e = 0,

if we represent ~i in the form of a sum

~i = ~o + ~*, (8.8.3)

where ~* is harmonic inside the spheroid and ~i is a particular solution of
Poisson's equation, e.g.,

~o = -7tp(x2 + y2). (8.8.4)

Using (8.6.1) to introduce spheroidal coordinates oc, ~, rp, and applying
the superposition method to the particular solutions (8.7.3-4), we write the
functions IJ;* and lJ;e in the form

00

IJ;* = L MnPicosh oc)Pn (cos ~),
n=O

00

lJ;e = L NnQn (cosh oc)Pn (cos ~).
n=O

(8.8.5)

To determine the coefficients M n and N n, we have the boundary conditions

lJ;i!"'="'o = ~e!",=",o' ~lJ;il = O"lJ;e/, (8.8.6)
uOC "'="'0 uOC "'="'0

where OCo is the value of the coordinate oc corresponding to the surface of the
spheroid. 22 Noting that

27tpc2
- -3- sinh2 oc [Po (cos ~) - P2 (cos ~)],

(8.8.7)

and comparing coefficients in both sides of each of the equations (8.8.6), we
find that

M o - 27t;c2 sinh2 OCo = NoQo (cosh oco),

M2P2 (cosh oco) + 27t;c2 sinh2 OCo = N2 Q2 (cosh oco),

47tpc2 ,
- -3- cosh OCo = NoQo (cosh oco),

M2P~ (cosh oco) + 47tjc
2

cosh OCo = N2Q; (cosh oco),

(8.8.8)

21 The first of the equations (8.8.1) is known as Poisson's equation. As usual, we
assume that q,,, q,e and their first and second derivatives with respect to x, y, z are con
tinuous.

22 If a is the semi-major axis and c the distance from the origin to the focus of the
spheroid, then

cosh IXo = ~.
r
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MnPn (cosh Il(o) = NnQn (cosh Il(o), n = 1,3,4,5, ... ,
(8.8.9)

MnP~ (cosh Il(o) = NnQ~ (cosh Il(o), n = 1, 3, 4, 5, ....

It follows from (8.8.9) that M n = N n = 0 for all n different from 0 and 2.
Therefore, using (8.8.8) to calculate the nonzero coefficients M o, No, M 2 , N 2 ,

we can write the solution in closed form, susceptible to direct verification.
After some simple calculations, during which we use (7.7.2) and the for
mula

we arrive at the following expression for the potential outside the spheroid:

m
lJie = - [Qo (cosh Il() - Q2 (cosh Il()P2 (cos ~)].

C

Similarly, we can easily find the potential inside the spheroid. Finally, using
(7.9.1), we can express the potentials lJii and lJie in terms of elementary func
tions.

8.9. The Dirichlet Problem for a Hyperboloid of Revolution

The ability to separate variables in Laplace's equation written in spheroidal
coordinates also allows us to solve boundary value problems for the domain
bounded by a hyperboloid of revolution. If Il(, ~, cp are the spheroidal coor
dinates described by (8.6.1), then the surface ~ = ~o corresponds to a hyper
boloid of revolution (see Figure 29). The Dirichlet problem for the case of
axially symmetric (i.e., cp-independent) boundary conditions can be stated as
follows: Find the function u = u(ll(, ~) such that 1) u is harmonic in the domain
o< ~ < ~o and continuous in the closed domain 0 < ~ < ~o, and 2) u satisfies
the boundary condition u!P=Po = f(ll() and the condition at infinity ulcx~oo --+ 0
uniformly in ~, where f(ll() is continuous in the interval 0 < Il( < 00 and
f(Il()lcx~oo --+ o.

As we now show, under certain conditions, the solution of this problem
is given by a superposition of the following particular solutions of Laplace's
equation:

u = u~ = M~P_Y2+i~(coshll()P_Y2+h(cos~), "t" ~ O. (8.9.1)

In fact, setting [J. = 0, v = -t + h in (8.6.6-7), we obtain

B = CP-Y2+h(COS~) + DP-Y2+i~(-COS~),

A = MP_Y2+i~(coshll() + NP_%+h(-coshll(),

and then the condition that the solutions be bounded on the axis of the hyper
boloid, where either ex or ~ vanishes, implies D = N = O. Moreover, accord
ing to (7.6.3), we have P- Yz + h (cosh ex)lcx~oo --+0, and hence u~lcx~oo --+0, as
required. The possibility of making a superposition of solutions (8.9.1) which
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satisfies the boundary conditions is based on the Mehler-Fock theorem, which
states that 23

at every continuity point of{(x), provided that

1. The function f(x), defined in the infinite interval (1, 00), is piecewise
continuous and of bounded variation in every finite subinterval
[Xl' X2], where 1 < Xl < X2 < 00;

2. The integrals

1'0 If(x)lx- l
/
2 Iog X dx

are finite, for every a > 1.

Thus, if the boundary function f( IX) satisfies appropriate conditions,24 we
can write

where

f(lX) = L'" F(-r;)P -Yz+h (cosh IX) dT, o ~ IX < 00, (8.9.3)

(8.9.4)

F(T) = T tanh 7tT LX> f(IX)P _ liz +h (cosh IX) sinh IX dlX.

Then the integral

J"'Fi() P_y,,+i~(COS~) P (h)d
U = T P (P.) - y, + h cos IX T° - liz + h cos "0

gives the solution of our problem, at least formally. For further details,
including the solution of a problem of electrostatics, we refer the reader else
where.25

8.10. Solution of Laplace's Equation in Toroidal Coordinates

In addition to spherical and spheroidal coordinates, there are other
coordinate systems whose use is intimately connected with Legendre functions.

23 See N. N. Lebedev's dissertation (cited on p. 131), and V. A. Fock, On the repre
sentation of an arbitrary function by an integral involving Legendre's functions with a
complex index, Doklady Akad. Nauk SSSR, 39, 253 (1943). At discontinuity points, the
integral in the right-hand side of (8.9.2) equals

t[f(x + 0) + f(x - 0)].

24 E.g., iff(lX) is continuous in [0, A] for every finite A, and if f(lX) falls off like e -<Yz +e)~,

e: > 0 as IX ~ 00.

25 See N. N. Lebedev, Solution of the Dirichlet problem for hyperboloids of revolution
(in Russian), Prikl. Mat. Mekh., 11, 251 (1947).
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First we consider toroidal coordinates IX,~, ep, related to the rectangular
coordinates x, y, z by the formulas

c sin ~

Z = cosh IX - cos ~'

(8.10.1)

c sinh IX sin ep
y = cosh IX - cos ~'

c sinh IX cos ep
X= ,

cosh IX - cos ~

where

o~ IX < 00, -IT < ~ ~ IT,

and c > 0 is a scale factor. 26 This coordinate system is useful for solving
boundary value problems involving the domain bounded by a torus, or the
domain bounded by two intersecting spheres.27 If a point has cylindrical
coordinates r, ep and z, then

c sinh IX
r= ,

cosh IX - cos ~

or more concisely,

c sin ~
Z = ,

cosh IX - cos ~

. . th IX + i~
Z + Ir = Ie co --2-'

(8.10.2)

The corresponding triply orthogonal system of surfaces consists of the
toroidal surfaces IX = const, described by the equation

(r - c coth 1X)2 + Z2 = (~h)2,
sm IX

(8.10.3)

the spheres ~ = const, described by the equation

(z - c cot ~)2 + r2
= (Si~ ~r

and the planes ep = const (see Figure 31). It should be noted that all the
spheres (8.10.3) intersect in the circle r = c, z = O.

It follows from (8.10.1) that the square of the element of arc length is

c2

ds2 = (d1X2 + d~2 + sinh2
IX dep2), (8.10.4)

(cosh IX - cos ~)2

corresponding to the metric coefficients

h = h = c ,
rx ~ cosh IX - cos ~

h = c sinh IX •

co cosh IX - cos ~

26 It is clear from (8.10.1) that x, y and z are periodic in 13 and 'P, with period 2IT.
Therefore we can choose 131 < 13 <:;; 131 + 2IT, 'P1 < 'P <:;; 'P1 + 2IT instead of -IT < 13 <:;; IT,
-IT < 'P <:;; IT (which corresponds to the particular choice 131 = 'P1 = -IT), and it is
sometimes convenient to do so (see Sec. 8.12).

27 Later on, in Sec. 8.13, we will consider a closely related coordinate system, i.e.,
bipolar coordinates.
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r

f3 =const

FIGURE 31

Therefore Laplace's equation in toroidal coordinates has the form

(8.10.5)

o ( sinh rJ. 8U)
OrJ. cosh rJ. - cos ~ OrJ.

+ ~ ( sinh rJ. 8U)
?~ cosh rJ. - cos ~ 8~

1 82u
+ (cosh rJ. - cos ~) sinh rJ. 8cp2 = o.

Unlike the cases considered previously, we cannot separate variables in this
equation. However, if we introduce a new unknown function v by making
the substitution

(8.10.6)

(8.10.7)

U = V2 cosh a. - 2 cos ~ v,

then (8.10.5) goes into the equation

82v 82v 8v 1 1 82v
8a.2 + 8~2 + coth rJ. OrJ. + 4: v + sinh2 rJ. Ocp2 = 0,

which belongs to the class of equations permitting separation of variables.
In fact, setting

v = A(a.)B(~)<I>( cp), (8.10.8)

we find that

. 2 1 d 2A 1 d 2B coth rJ. dA 1 _ 1 d 2<I>
SInh rJ. A drJ.2 + 13 d~2 + ---x- drJ. + 4 - - <D dcp2 = [1.2,
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where fL2 is a constant. This implies

d 2 <I>
drp2 + fL

2
<I> = 0,

.!- d
2
A + coth rJ. dA + ! _~ = _ J.. d

2
B = y2

A drJ.2 A drJ. 4 sinh2 rJ. B d~2

where y2 is another constant, which leads to the equations

d 2 B
d~2 + y2B = 0,

1 d ( . h dA) ( 2 I fL2)A 0
sinh rJ. drJ. SIn rJ. drJ. - Y - 4 + sinh2 rJ. =.

CHAP. 8

(8.10.9)

(8.10.10)

(8.1 0.11)

Thus Laplace's equation in toroidal coordinates has infinitely many
solutions of the form

u = v2 cosh rJ. - 2 cos ~ A(rJ.)B(~)<I>(rp), (8.10.12)

(8.11.1)

where A, B and <I> are the solutions of the ordinary differential equations
(8.10.9-11). By superposition of these solutions, we can solve various boun
dary value problems of mathematical physics for the domains mentioned at
the beginning of this section. As usual, the case of rotational symmetry,
where the function u is independent of the coordinate rp, corresponds to set
ting fL = 0 and <I> = 1. In this case, solving equations (8.10.10-11), we find
that

u = V2 cosh rJ. - 2 cos ~ [APv- Yz (cosh rJ.) + BQv_Yz(cosh a)]
(8.10.13)

x [C cos y~ + D sin y~].

8.11. The Dirichlet Problem for a Torus

To illustrate the application of toroidal coordinates, we now solve both
the interior and exterior Dirichlet problems for the domain bounded by the
toroidal surface rJ. = ao. To keep things simple, we consider the case of rota
tional symmetry, corresponding to fL = 0, <I> = I. We also have the continuity
conditions

cui aul
a~ 0= -" = a~ 0='"

which are equivalent to the physical requirement that the solutions be
periodic in the "cyclic" coordinate ~. The conditions (8.11.1) are possible
only if the parameter y is an integer, which, without loss of generality, we can
assume to be nonnegative, i.e., y = n (n = 0, 1,2, ... ).

For the interior problem, we need solutions bounded in the domain
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r

OCo < oc ~ 00. Therefore, because of the behavior of Pn _ Yo (cosh oc),
Qn- Yo (cosh oc) for large oc, given by formulas (7.10.1, 8), we must set A = O.
On the other hand, for the exterior problem, which corresponds to the do
main 0 ~ oc < OCo, we have to consider the behavior of Pn - Yo (cosh oc),
Qn - Yo (cosh oc) as oc ---+ 0, and then, according to (7.3.13, 23), we must set
B = 0 if the solutions are to remain bounded. Thus the solutions of Laplace's
equation suitable for solving the interior Dirichlet problem for a torus are

u = Un = v2 cosh oc - 2 cos ~ [Mn cos n~ + Nn sin n~]Qn- Yo (cosh oc),

n = 0,1,2, ... , (8.11.2)

while those suitable for solving the exterior problem are

u = Un = V2 cosh oc - 2 cos ~ [Mn cos n~ + Nn sin n~]Pn- Yo (cosh oc),

n = 0, 1, 2, . .. (8.11.3)

For this reason, Pn- Yo (cosh oc) and Qn- Yo (cosh oc) are often called toroidal
functions.

Example. Find the electrostatic field due to a charged toroidal conductor
at potential V.

This problem reduces to solving the
exterior Dirichlet problem with the boun
dary condition

where tP is the electrostatic potential.
According to (8.10.2), the relation between
the quantities c, OCo and the geometric
parameters oc, I of the torus (see Figure 32)
is given by

tPcx=cxo = V, (8.11.4)

21
---1--::0+--+-+--"-------'J~z

c coth OCo = I,

and hence

c
sinh OCo = a,

I
cosh OCo = -.

a
FIGURE 32

As shown above, we should look for a solution in the form of a series (8.11.2),
where, because of the symmetry of the problem with respect to the plane z = 0,
we must set Nn = 0, obtaining

00

u = v2coshoc - 2cos~ 2: MnPn_Yo(coshoc)cosn~. (8.11.5)
'"=()
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The boundary condition (8.11.4) will be satisfied if we determine the coeffi
cients M n from the relation

(8.1 1.6)

Expanding the left-hand side of (8.1 1.6) in a Fourier series in the interval
[ -1t, 1t] and using (7.1 0.10), we find that

2VJ" cos n~MnPn_%(coshoco)=- V d~
1t 0 2 cosh OCo - 2 cos ~

2V
= - Qn-% (cosh oco), n = 1,2, ... ,

1t

V
MoP -1/2 (cosh oco) = - Q_1/2 (cosh oco),

1t

which leads to the following formal solution for y;:

,I, V. 1 [P- 112 (cosh oc)
't' = - v 2 cosh oc - 2 cos ~ P ( h ) Q- 1/2 (cosh oco)

1t _ 1/2 cos OCo

~ Pn - %(cosh oc) ]+ 2 L.. P ( h ) Qn_%(coshoco)cosn~ .
n ~ 1 n - % cos OCo

(8.11.7)

By using the asymptotic representations of Sec. 7.11, it can be shown that the
series (8.11.6) converges and actually gives the solution of our problem.
Finally, we note that the charge density on the toroidal surface is given by the
formula [cf. (6.6.10)]

0" = - _1_ OUI 1_ (cosh OCo _ cos ~) OUI
41tha ooc a =ao 41tC ooc a =ao

Remark. It is easy to see that in the case where U is a function of all three
coordinates oc, ~ and <p, the appropriate solutions of Laplace's equation are

U = Umn = V2 cosh oc - 2 cos ~ [Mmn cos n~ + Nmn sin n~]

m cosm<p
x Qn _ %(cosh a). ,

smm<p
m, n = 0, I, 2, ...

(8.1 1.8)

for the interior problem, and

U = Umn = V2 cosh oc - cos ~ [Mmn cos n~ + Nmn sin n~]

m cos m<p
x Pn_%(coshoc). ,

smm<p

for the exterior problem.

m,n = 0, 1,2, ...
(8.11.9)
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8.12. The Dirichlet Problem for a Domain Bounded by Two
Intersecting Spheres

(8.12.2)

FIGURE 33

r

p = 1,2

-----+-t-------+--__ z

Toroidal coordinates can also be used to solve boundary value problems
involving a domain bounded by two spheres 8 1 and 8 2 which intersect in a
circle y. Let x, y, z be a system
of rectangular coordinates with
origin at the center of y, and
let the z-axis pass through the
center of the spheres (see
Figure 33). Let IX, ~, 'P be a sys-
tem of toroidal coordinates
related to x, y, z by the for
mulas (8.10.1), and choose the
constant c equal to the radius
ofy. Finally, let ~p be the angle
between the plane z = 0 and
the tangent plane to the sphere
8p (p = 1, 2), drawn through
any point of the circle y, where
o < ~1 < ~2 < 2n. Then it fol
lows from (8.10.3) that the
equation of the sphere 8p in toroidal coordinates is ~ = ~p. Moreover, of
the two domains bounded by the spheres, the interior domain D i corre
sponds to the interval ~1 < ~ < ~2' while the exterior domain De corresponds
to the interval ~2 < ~ < ~1 + 2n. In both D i and De, the variable IX

ranges over the interval 0 ~ IX < 00, where points on the z-axis corre
spond to IX = 0 and points on the edge y correspond to IX = 00. 28

We now consider the Dirichlet problem for the domains Di and De, con
fining ourselves to the rotationally symmetric case. Just as before, we start
from the solutions (8.10.13), but unlike Sec. 8.11, there is no longer any need
to restrict v to be a nonnegative integer. In fact, as we shall soon see, the
solution of our problem can be constructed by superposition of solutions of
the form

u = u~ = v2 cosh IX - 2 cos ~[M~ cosh T~ + N~ sinh T~]

x P _Yo +i~ (cosh IX), T ~ 0, (8.12.1)

obtained from (8.10.13) by choosing v = iT and setting B = 0.29 We begin
with the interior problem, and assume that the functionsfp = j~(IX) appearing
in the boundary conditions

u!p=pp = fp,

28 Note also that x = y = 0, z --+ ± OJ if CI. = 0,13 --+ 2IT ±.
29 This is necessary for the solution to be bounded on the z-axis.
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are such that the functions

I{Jp(oc) = fi oc) ,
v2 cosh oc - 2 cos ~p

can be represented as integrals of the form

p = 1,2

°~ oc < 00,

CHAP. 8

(8.12.3)

where the expansion coefficients <1>p('t") are independent of oc. According to
the Mehler-Fock theorem (8.9.2), such a representation is possible, and the
functions <1>p('t") can be calculated from the formula

if the functions fioc) are continuous and of bounded variation in [0, A] for
every finite A, and if the integrals

p = 1,2 (8.12.5)

are finite.
The last condition presupposes that the fp(oc) approach zero sufficiently

rapidly as oc -?- 00, i.e., as the circular edge y is approached. On the other
hand,

lim fp = fi oo) = Uy ,
CX'" 00

where Uy is the value taken by the solution U on the edge y, and this value is
usually not zero. 30 However, in most cases of practical importance, the
modified functions

p = 1,2

(8.12.6)

fall off sufficiently rapidly as oc -?- 00, and hence there exists an expansion

*( ) fpCoc) - fp(oo) f'" "'*( )P (h )dI{Jp oc = ./ = 'Vp't" -%+h cos oc 't",
V 2 cosh oc - 2 cos ~p 0

where <1>:('t") is given by

<1>:('t") = danh7t"'t" L'" 1{J:(oc)P_%+i,(coshoc)sinhocdoc. (8.12.7)

30 Here we assume that the boundary function is continuous, but all our considera
tions can easily be extended to the case of piecewise continuity, where lim!l may 'not
equallim!2' ~~oo

~~oo
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(8.12.8)

Moreover, it is not hard to show that 31

1 foo cosh (7t - ~p)-r
----r======== = P - 'I, +i, (cosh oc) d-r:V2 cosh oc - 2 cos ~p 0 cosh 7t-r: .

for 0 < ~p < 27t. Multiplying (8.12.8) by fioo) and adding the result to
(8.12.6), we obtain an expansion for qJp(oc) of the required form (8.12.3), where

(8.12.9)

Now consider the integral

. / fOO <1>2 sinh (~ - ~1)-r: + <D1 sinh (~2 - ~)-r:

U = v 2 cosh oc - 2 cos ~ J0 sinh (~2 - ~1)-r:

x P _Y:! +i, (cosh oc) d-r:, (8.12.10)

made up of particular solutions of the form (8.12.1). We see at once that
(8.12.10) satisfies the boundary conditions (8.12.2) and hence gives the solu
tion of the interior Dirichlet problem. Similarly, the solution of the exterior
Dirichlet problem can be written in the form

. / f 00 <D 1 sinh (~ - ~2)-r: + <D 2 sinh (27t + ~1 - ~)-r:

U = v 2 cosh oc - 2 cos ~ J0 sinh (27t + ~1 - ~2)-r:

X P-Y:!+i' (cosh oc) d-r:, (8.12.11)
where

and the rest of the notation is the same as before.

Example. Consider the "spherical bowl" or zone obtained by setting
~1 = ~2 = ~o in Figure 33. Find the electrostatic field due to a thin charged
conductor of this shape at potential V.

This is just the exterior Dirichlet problem for determining the electro
static potential Iji, in the special case where

~1 = ~2 = ~o,

31 Combining the formulas

I 2 f'" foo cos't"6::;;;==;===;0:=::;= = - cos X't" d't" d6
V2 cosh x + 2 cosh oc 7t 0 0 V 2 cosh 6 + 2 cosh oc

[cf. (6.5.3-4)] and

2 f'" cos't"6P - Y:! +" (cosh oc) = - cosh 7t't" V d6
7t 0 2 cosh 6 + 2 cosh oc

[cf. (7.4.6)], we find that

1 f'" cos X't"-:-;;;:===;==::::::==:;== = --h- P - y, +,icosh oc) d't",
V2 cosh x + 2 cosh oc 0 cos 7t't"

which gives (8.12.8) after setting x = i(7t - ~p).
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The functions <1\ and <1>2 can be read off at once from (8.12.8):

<1>1 = <1>2 = ycosh ('It - ~o}t".
cosh 'itT

CHAP. 8

\jJ=

Then formula (8.12.11) becomes

. / foo cosh ('It - ~O)T
VV 2 cosh ex - 2 cos ~ h2 cosh ('It + ~o - ~)T

o cos 'itT

X P_Yz+i~(coshex)dT, ~o < ~ < ~o + 2'1t.

(8.12.12)
Substituting

2 foo sin aT
p_Y2+i~(coshex)=-coth'ltT ./ da

'It ex V 2 cosh a - 2 cosh ex

[cf. (7.4.7)] into (8.12.12), and integrating first with res~ect to T and then with
respect to a, we find after some manipulation that the solution can be ex
pressed in closed form in terms of elementary functions: 32

J
V2cos~

cosh ex - cos ~ ] y [ 2+ + - arc tan -;==;====:::;
cosh ex - cos (2~o - ~) 'It V cosh ex cos ~

V2 cos 2~o - ~

J cosh ex - cos ~ 2]- arctan .
cosh ex - cos (2~o - ~) V cosh ex - cos (2~o - ~)

(8.12.13)

The fact that (8.12.13) satisfies the boundary conditions is immediately
apparent.

8.13. Solution of Laplace's Equation in Bipolar Coordinates

There is still another coordinate system which leads to solutions of
Laplace's equation involving Legendre functions, i.e., three-dimensional
bipolar coordinates ex, ~, rp, related to the rectangular coordinates x, y, Z by
the formulas

c sin ex cos rp
X= ,

cosh ~ - cos ex
c sin ex sin rp

y = cosh ~ - cos ex'
c sinh ~

Z= ,
cosh ~ - cos ex

(8.13.1)

32 In integrating with respect to T, use the formula

sinh ITr
(00 c~shpT sin ndT = 2::.- q,
Jo smh qT 2q cosh'!:!. + cos ITp

q q

0,;;; p < q.



SEC. 8.13

where

SPHERICAL HARMONICS: APPLICATrONS 231

°~ IX ~ 1t, - 00 < ~ < 00, -1t < tp ~ 1t,

and e > °is a scale factor. This system is closely related to the toroidal
coordinates studied in Secs. 8.10-12, and is suitable for solving boundary
value problems for the domain bounded by two nonintersecting spheres. If a
point has cylindrical coordinates r, tp and z, then

e sin IX e sinh ~r = , z = ,
cosh ~ - cos IX cosh ~ - cos IX

or more concisely
• • IX + i~

z + Ir = Ie cot ---.
2

r

a = const

-I--+-+-~-+t+.:t-i+t---jli:--+--I--+-Z

FIGURE 34

The corresponding triply orthogonal family of surfaces consists of the
"spindle-shaped" surfaces IX = const, described by the equation

(r - e cot 1X)2 + Z2 = (~)2, (8.13.2)
SIll IX

the spheres ~ = const, described by the equation

(z - e coth ~)2 + r2
= (sin~ ~r, (8.13.3)

and the planes tp = const (see Figure 34). The points r = 0, z = ± e cor
respond to the values ~ = 00, while r = 0, z -+ ±00 if IX = 0, ~ -+ 0 ±.

It follows from (8.13.1) that the square of the element of arc length is

e2

ds2 = (d1X2 + dr<2 + sin2 IX d(2) (8 13 4)(cosh ~ - cos 1X)2 l"" T , ..
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corresponding to the metric coefficients

CHAP. 8

h = h = c ,
ct. P cosh ~ - cos ex

h = c sin ex .
Cj) cosh ~ - cos ex

Therefore Laplace's equation in bipolar coordinates has the form

o ( sin ex OU) 0 ( sin ex OU)
oex cosh ~ - cos ex oex + o~ cosh ~ - cos ex o~

2 (8.13.5)
lou 0

+ (cosh ~ - cos ex) sin ex 0({J2 = .

Just as in the case of toroidal coordinates, we can separate variables, provided
we first introduce a new unknown a new function v by making the substitution

U = V2 cosh ~ - 2 cos ex v,

which transforms (8.13.5) into the equation

02V 02V OV 1 1 02V
O---z + 0(.(2 + cot ex -0 - 4- v + -'-2- -02 = O.ex t-' ex sm ex ({J

To solve (8.13.7), we set

v = A(ex)B(~)<1>«({J).

(8.13.6)

(8.13.7)

(8.13.8)

(8.13.9)

(8.13.11)

(8.13.10)

This gives the following equations for determining the factors A, Band <1>:

d 2<1>
d({J2 + [J.2<1> = 0,

d
2
B ( 1)2 _ 0

d~2 - V +"2 - ,

1 d (. dA) [ [J.2 ]-.- T sm ex"""T + v(v + 1) - -'-2- A = O.
sm ex uex uex sm ex

The first two equations can be solved in terms of elementary functions, and
the third in terms of Legendre functions. In particular, for the rotationally
symmetric case, where the solution U is independent of ({J, we find that

U = V2cosh~ - 2 cos ex [APv (cos ex) + BQv(cosex)]

x [C cosh (v + .!-)~ + D sinh (v + 1-)~]' (8.13.12)

In problems involving the domain bounded by two nonintersecting
spheres ~ = ~1 and ~ = ~2' the variable ex ranges over the closed interval
[0, 7t], and hence to obtain solutions which are finite on the z-axis we must set
B = 0 and v = n (n = 0, 1, 2, ... ), as in Sec. 8.3. Thus, for this class of prob
lems, the appropriate particular solutions of Laplace's equation are

U = Un = V2 cosh ~ - 2 cos ex[Mn cosh (n + -t)~ + N n sinh (n + 1-W]
x Pn (cos ex), n = 0, 1,2,... (8.13.13)
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(8.13.14)
"t" ~ 0,

On the other hand, in problems involving the domain bounded by the surface
(1. = (1.0, the appropriate particular solutions are obtained by choosing
v = --!- + iT ("t" ~ 0), and are of the form

u = u~ = V2 cosh ~ - 2 cos (1.[M~ cos "t"~ + N~ sin "t"~]

x P _ %+il ± cos (1.),

where the plus sign corresponds to the exterior problem (0 ~ (1. < (1.0) and
the minus sign to the interior problem «(1.0 < (1. ~ 7t).

Example. Find the electrostatic field between two spherical conductors of
radius a, whose centers are a distance 21 apart, if one conductor is at potential
- V and the other is at potential + V.

The spheres have equations ~ = ± ~o in bipolar coordinates, if we choose
the quantities c, ~o such that

i.e.,

c coth ~o = I,

c = vf2 - a2 ,

'it =- V

r

c
sinh ~o = a,

I
cosh ~o = 

a

'it =+ V

-+---7I----+----=°-t----+----t---t----z
2/

FIGURE 35

(see Figure 35). Then the problem reduces to finding a function y; (where y;
is the electrostatic potential) which is harmonic in the domain - ~o < ~ < ~o

and satisfies the boundary conditions

Using (8.13.13) and noting that u is an odd function of ~, we look for a solu
tion of the form

00

y; = V::-2-co-s-=-h....,,~-----::2-c-o-s-(1. L MnPn (cos (1.) sinh (n + t)~. (8.13.15)
n=O
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The constants M n can be determined from the condition

v 00 •

V = 2 MnPn (cos 17.) Sinh (n + ·n~o,
2 cosh ~o - 2 cos 17. n =0

CHAP. 8

0< 17. < 7t.

Using (4.2.3) to expand the left-hand side in a series of Legendre polynomials,
we obtain

v
V2 cosh ~o - 2 cos 17.

which implies

vI - 2e 00 cos 17. + e 200

00

V 2 e-(n+ y,)OoPn (cos 17.),

n=O

M n sinh (n + ·n~o = Ve-(n+ 1'2)00 •

Thus the formal solution of the problem is given by the series

y; = Vv2 cosh ~ - 2 cos 17. ~ e-(n+y,)oo ~in:t +t~~ Pn (cos 17.). (8.13.16)
~ Mn n + 0

The fact that (8.13.16) converges and satisfies the boundary conditions is
easily verified.

8.14. Solution of Helmholtz's Equation in Spherical Coordinates

In mathematical physics, Legendre functions arise not only when dealing
with Laplace's equation, but also with other equations, among which Helm
holtz's equation

(8.14.1)

(8.14.2)

is of particular importance. To solve (8.14.1) in spherical coordinates, we
look for particular solutions of the form

u = R(r)0(fl)<D(tp),

just as in Sec. 8.2. The variables separate immediately, and we obtain the
following differential equations for determining the factors R, 0 and <D:

d 2 <D
dtp2 + [J.2<D = 0,

I d (. d0) [ [J.2 ]
sin ede Sill e de + v(v + 1) - sin2 e ° = 0,

d ( dR)dr r2 dr + [k2r2 - v(v + I)]R = 0.

(8.14.3)

(8.14.4)
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Here [.L and v are arbitrary real or complex parameters, but without loss of
generality we can assume that Re [.L ~ 0, Re v ~ -t (cf. footnote 2, p. 206).

Equations (8.14.2-3) coincide with
equations (8.2.5-6), and can be solved z

in terms of elementary functions in the
first case, and in terms of Legendre
functions in the second case. Under the
substitution

R = r- 1/2 v,

equation (8.14.4) goes into

v" + ~ v' + [k2 - (v ~2 1)2] V = 0.

(8.14.5)

This is Bessel's equation of argument
z = kr, whose general solution can be
expressed in terms of cylinder func- FIGURE 36
tions. In particular, in the rotationally
symmetric case, where u is independent of the coordinate 'P, we have

u = r-l/2[AJv+Y2(kr) + BH~~ y'(kr)][CPv (cos 8) + DQv (cos 8)], (8.14.6)

where Jiz) is the Bessel function of the first kind and H~'1 y. is the second
Hankel function. 33 In problems where 8 varies over the interval [0, 7t], the
boundedness requirement compels us to set D = °and v = n (n = 0, 1, 2, ... ).
By superposition of the particular solutions (8.14.6), we can solve many
problems of mathematical physics, including the important problem of dif
fraction of electromagnetic waves by the earth's surface.34

PROBLEMS

1. Let the surface of a sphere of radius a be divided into two regions 51 and
52 as shown in Figure 36. Find the stationary distribution of temperature u
in the sphere if 51 is held at temperature uo, while 52 is held at temperature
zero.

Ans.

u{a) (r)n}u(r,6) = ; 1- cos oc - n:f
1

[Pn + 1 (cos oc) - Pn - 1 (cos oc)] a Pn (cos 6) .

33 This form of the solution is convenient for problems involving steady-state oscilla
tions, when the time dependence is described by the factor e lW

'. If the time dependence is
described by e- IW', we replace HS~)y'(kr) by HS~)y'(kr).

34 G. A. Grinberg, op. cit., Chap. 23.
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2. Find the potential tji of the electromagnetic field inside a sphere of radius
a if one hemisphere (corresponding to 0 ~ 6 < rt/2) is held at potential V,
while the other hemisphere (corresponding to rt/2 < 6 ~ rt) is held at poten
tial zero (cf. footnote 17, p. 160).

Ails.

V [ 00 4n + 3 (r)2n + 1 ]tji(r,6) = - 1 + L -22P2n(0) - P2n + l (cos 6) .
a n=O n + a

3. Find the stationary distribution of temperature u in a prolate spheroid if
half of its surface (corresponding to z > 0) is held at temperature Uo, while
the other half (corresponding to z < 0) is held at temperature zero.

4. Calculate the gravitational potentials tjit, tjie (see Sec. 8.8) of a homogeneous
solid oblate spheroid. Introducing spherical coordinates r, 6 and cp, derive an
asymptotic representation of tjie for small c, where c is the distance from the
origin to the focus and verify that tjie -+ m/r as c -+ 0, the result to be expected.
Derive the corresponding asymptotic formula for the prolate spheroid.

Hint. Note that

r [J 2c c
2 J 2c c

2
]cosh 0: = 2c 1 + r cos 6 + f2 + 1 - r cos 6 + Y2 '

r [J 2c c
2 J 2c c

2
]cos ~ = 2c 1 + r cos 6 + f2 - 1 - r cos 6 + r2 .

Ans. For the prolate spheroid,

tjielc-o ~ m [~ + ;;3 P2 (cos 6)]'

5. Find the electrostatic potential tji inside a hollow prolate spheroid with
semiaxes a and b, which has a point charge q at its center and whose surface
is held at potential zero.

Hint. Write tji as the sum of the potential tjio due to the source and the
potential u due to the induced charges. Use the formula 35

fl V P2n(x) dx = 2P2n(0)Q2n (cosh 0:).
-1 sinh2 0: + x 2

Ans.

[Vsinh2 0:

1

+ cos2 ~
00 Q2n (cosh 0:0) ]L (4n + l)P2n(0) P ( h ) P2n (cosh 0:)P2n (cos ~) ,

n= 0 2n cos 0:0

where tanh 0:0 = b/a.

35 See Problem 16, formula (ii), p. 202.
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6. Calculate the surface charge density (j on a conducting disk of radius a due
to a point charge q a distance 1 from the disk along its axis of symmetry (see
Figure 37).

Hint. Note that the disk is a limiting case of an oblate
spheroid. Use the formula36

J1 P2n(X) dx = 2iP2.(0)Q2n(i sinh 0:).

-1 Vcosh2 0: - x2

Ans.

(j=
q [(a)2( a

2
sin

2
~) - 3/2

- 4ITa2 T 1 + 12

z

q

+ 2i ~ (_ I)n (4n + 1~n! Q2n(il)P2n (cos ~),]
V IT cos ~ n = 0 r(n + 2) a

where ~ = arc sin (ria) and r is the distance from the center FIGURE 37

of the disk to an arbitrary point on its surface.

7. Suppose a constant electric field Eo acts along the axis of symmetry of a
grounded conducting torus. What is the electrostatic potential tj; along this
axis?

Hint. Use formula (7.10.10), after integrating by parts.

AilS.

8 . /-- ~ 2:"" nQn- \12 (cosh 0:0). r<
tj;IT~O = -EoZ + -EovP - a2 sin-2 P . ( h ) SInn",

IT n = 1 n - % cos 0:0

where cosh 0:0 = Ila, and the notation is the same as in Sec. 8.11.

8. Solve the preceding problem, assuming instead that the external field is
due to a point charge q at the center of the torus.

9. Find the electrostatic potential tj; outside a conductor at potential V, which
has the form of the "spindle-shaped" surface mentioned on p. 231 in connec
tion with bipolar coordinates.

Hint. Cf. (8.13.14) and (7.4.6).

Ans.

tj;(o:, ~) = VV 2 cosh ~ - 2 cos 0:

f"" cos~. P-'h+h(-COSO:o)p ( )d
x --h- () -y,+Jt cos 0: ••o cos IT. P _ liz +I, cos 0:0

36 See Problem 16, formula (i), p. 202.



9
HYPERGEOMETRIC FUNCTIONS

9.1. The Hypergeometric Series and Its Analytic Continuation

By the hypergeometric series (already introduced in Sec. 7.2) is meant the
power series

(9.1.1)

(9.1.2)Izl < 1,

where z is a complex variable, oc, ~ and yare parameters which can take
arbitrary real or complex values (provided that y i= 0, - 1, - 2, ... ), and the
symbol (A)k denotes the quantity

rCA + k)
(1.)0 = 1, (Ah = rCA) = 1.(1. + 1)·· .(~ + k - 1), k = 1,2, ...

If either oc or ~ is zero or a negative integer, the series terminates after a finite
number of terms, and its sum is then a polynomial in z. Except for this case,
the radius of convergence of the hypergeometric series is 1, as is easily seen by
using the ratio test. 1

The sum of the series (9.1.1), i.e., the function

R(oc A· • z) = ~ (ocM~h Zk
, 1-", y, L... () k' '

k=O Y k •

1 Writing

we have

I
Uk+l! = I(IX. + k)(~ + k) zl--+ Izi

Uk (y + k)(l + k)

as k --+ 00, so that the hypergeometric series converges for Izi < I and diverges for
zl > 1.

238
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k = 0, 1,2, ... , (9.1.3)

- tz)-adt,

Izi < 1. (9.1.4)

is called the hypergeometric Junction, but this definition is only suitable when
z lies inside the unit circle. We now show that there exists a complex function
which is analytic in the z-plane cut along the segment [1, 00] and coincides
with F(oc, ~; y; z) for [z[ < 1. This function is the analytic continuation of
F(oc, ~; y; z) into the cut plane, and will be denoted by the same symbol. To
carry out this analytic continuation, we first assume that Re y > Re ~ > 0
and use the integral representation

(~h = r(y) e t~-l+k(l _ t)Y-~-l dt,
(Y)k r(~)r(y - ~) Jo

implied by the formulas of Sec. 1.5. Substitution of (9.1.3) into (9.1.2) gives

F(oc,~; y; z) = r(y) i (OC;k Zk e t~-l+k(l - t)Y-~-l dt
r(~)r(y - ~)k=O k. Jo

= r(y) e t~-l(l - t)Y-~-ldt i (OC;k(zt)k,
r(~)r(y - ~) Jo k=O k.

where, as usual, reversing the order of summation and integration is justified
by an absolute convergence argument. 2 According to the binomial expansion
(cf. footnote 17, p. 121),

~o (~k (zt)k = (l - tz)-a, 0 ~ t ~ 1, Izi < 1,

and hence F(oc, ~; y; z) has the representation

D{ p • . z) - r(y) e t~-l(I t)Y-~-l(I
qOC, 1", y, - r(~)r(y - ~) Jo -

Re y > Re ~ > 0,

The next step is to show tbat the integral in (9.1.4) has meaning and repre
sents an analytic function of z in the plane cut along [1, 00]. If z belongs to
the closed domain

p ~ Iz - 11 ~ R, [arg (l - z)[ ~ 1t - ll, (9.1.5)

where R > 0 is arbitrarily large and p > 0, II > 0 are arbitrarily small, and
if 0 < t < 1, then the integrand

t~-l(l - t)Y-~-l(l - tz)-a

is continuous in t for every z and analytic in z for every t, and we need only

2 In fact, if Re y > Re ~ > 0 and Izi < 1, then

I I(IX;k [ Izl" e [t~-l+k(l - t)Y-~-ll dt,,; I (IIX\h Izl" e tRe~-l+k(l - t)ReY-Re~-l dt
k=O k. Jo "=0 k. Jo

= r(Re ~~~~\~y - ~» F(IIXI, Re~; Rey; Iz[).
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show that the integral is uniformly convergent in the indicated region.3 But
this follows at once from the estimate

[t B- 1(1 - t)Y-B-1(1 - tz)-exl :::; MtRe B-1(1 _ t)Re Y-Re B-1

where M is the maximum value of the continuous function 1(1 - tz)l-ex for t
in [0, 1] and z in the domain (9.1.5), and from the fact that the integral

M fa1 tRe B-1(1 - t)Re y-Re B-1 dt

converges for Re y > Re > ~ > 0. Therefore the condition Izi < 1 can be
dropped in (9.1.4), and the desired analytic continuation of the hypergeo
metric function is given by the formula

"'( P. •• ) - r(y) e tB-1(1 t)Y-B-1(1 t )-ex dtr1a,,,,y,z - rc~)r(y _ ~)Jo - - z ,

Re y > Re ~ > 0, larg (1 - z)1 < 7t. (9.1.6)

In the general case where the parameters have arbitrary values, the analy
tic continuation of F(a, ~; y; z) into the plane cut along [1, 00] can be written
as a contour integral obtained by using residue theory to sum the series
(9.1.2).4 A more elementary method of carrying out the analytic continuation,
which, however, does not lead to a general analytic expression for the hyper
geometric function in explicit form, involves the use of the recurrence rela
tion 5

y(y + I)F(a,~; y; z) = y(y - a + I)F(a, ~ + 1; y + 2; z)

+ oc[y - (y - ~)z]F(oc + 1, ~ + 1; y + 2; z). (9.1.7)

By repeated application of this identity, we can represent the function
F(oc, ~; y; z) with arbitrary parameters (y 1= 0, - 1, - 2, ... ) as a sum

p

F(a,~; y; z) = L asp(oc, ~; y; z)F(oc + s, ~ + p; y + 2p; z), (9.1.8)
8=0

where p is a positive integer and the asvCll'., ~; y; z) are polynomials in z. Ifwe

3 E. C. Titchmarsh, op. cit., pp. 99-100.
4 E. T. Whittaker and G. N. Watson, op. cit., p. 288.
5 To verify (9.1.7), we substitute from (9.1.2), noting that the coefficient of Zk in the

right-hand side of (9.1. 7) becomes

( -IX + 1) (IXM~ + 1). + IX (IX + IM~ + 1). _ IX( _ ") (IX + 1)k-1(~ + 1)k-1
Y Y (y + 2).k! Y (y + 2).k! y,., (y + 2)k-1(k - I)!

_ (IXM~)' [( _ 1) ~ + k IX + k ~ + k _ ( _ 1<) (y + k + 1)k]
- (y + 2).k! Y Y IX + ~ + IXy IX ~ IX y,., IX~

= (IXM~h (y + k)(y + k + 1) == y(y + 1) (IXh(~h,
(y + 2hk! (Y)kk!
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choose p so large that Re ~ > -p, Re (y - ~) > -p, then we can use
formula (9.1.6) to make the analytic continuation of each of the functions
F(oc + s, ~ + p; Y + 2p; z) appearing in the right-hand side of (9.1.8). Sub
stituting the corresponding expressions into (9.1.8), we obtain the desired
analytic continuation of F(oc, ~; y; z), since the resulting function is analytic
in the plane cut along [1, 00] and coincides with (9.1.2) for Izi < 1.

The hypergeometric function F(oc,~; y; z) plays an important role in
mathematical analysis and its applications. Introduction of this function
allows us to solve many interesting problems, such as conformal mapping of
triangular domains bounded by line segments or circular arcs, various prob
lems of quantum mechanics, etc. Moreover, as will be seen in Sec. 9.8, a
number of special functions can be expressed in terms of the hypergeometric
function, so that the theory of these functions can be regarded as a special
case of the general theory developed in this chapter (cf. footnote 20, p. 176).

9.2. Elementary Properties of the Hypergeometric Function

In this section we consider some properties of the hypergeometric function
which are immediate consequences of its definition by the series (9.1.2).6 First
of all, observing that the terms of the series do not change if the parameters oc
and ~ are permuted, we obtain the symmetry property

F(oc, ~; y; z) = F(~, oc; y; z).

Next, differentiating (9.2.1) with respect to z, we find that

.:!.... F(oc, ~; y; z) = ~ (ocM~)I<, Zl<-l = ~ (a)l<+1(~)1<,+1 zl<
dz 1<=1 (yMk - 1). 1<=0 (yh+lk.

_ oc~ ~ (oc + 1M~ + 1h I< _ oc~ Dr 1 AI'
- L... (+ 1) k' z - - r,oc + ,I-" + ,y +

Y 1<=0 Y I< . Y

and hence 7

d
d F(oc,~; y; z) = oc~ F(oc + 1, ~ + 1; y + 1; z).
z y

(9.2.1)

1; z),

(9.2.2)

Repeated application of (9.2.2) leads to the formula

~: F(oc, ~; y; z) = (OC{~~~m F(oc + m, ~ + m; y + m; z), m = 1,2, ...

(9.2.3)

6 It follows from the principle of analytic continuation that all the formulas proved
here, under the assumption that Izi < 1, remain valid in the whole domain of definition
of F(oc, ~;y;z).

7 Cf. formula (7.12.25), p. 197.
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From now on, to simplify the notation, we write

CHAP. 9

F(oc, ~; y; z) == F, F(oc ± I,~; y; z) == F(oc ± I),

F(oc, ~ ± 1; y; z) == F(~ ± 1), F(oc, ~; y ± 1; z) == F(y ± I).

Then the functions F(oc ± 1), F(~ ± 1) and F(y ± 1) are said to be contiguous
to F. The function F and any two functions contiguous to F are connected
by recurrence relations whose coefficients are linear functions of the variable
Z. 8 Among the relations of this type we cite the formulas

(y - oc - ~)F + oc(1 - z)F(oc + 1) - (y - ~)F(~ - 1) = 0,

(y - oc - I)F + ocF(oc + 1) - (y - I)F(y - 1) = 0,

y(I - z)F - yF(oc - 1) + (y - ~)zF(y + 1) = 0,

(9.2.4)

(9.2.5)

(9.2.6)

(9.2.7)

(9.2.8)

(9.2.9)

which can be verified by direct substitution of the series (9.1.2). For example,
substituting (9.1.2) into (9.2.4), we obtain

(y - oc - ~)F + oc(1 - z)F(oc + 1) - (y - ~)F(~ - 1)

~ [(y _oc _ ~) (OCM~)k + oc (oc + IM~)k
k=l (yhk! (yhk!

_(y _ ~)(ocM~ - Ih _ oc(oc + 1)k-l(~h-l]Zk
(Y)kk! (yh-l(k - I)!

k~l (oc~~~~~~-l [(y - oc - ~)(~ + k - 1) + (oc + k)(~ + k - 1)

- (y - ~)(~ - 1) - (y + k - 1)k]Zk == 0,

and similarly for (9.2.5-6). Three other formulas are an immediate conse
quence of (9.2.4-6) and the symmetry condition (9.2.1):

(y - oc - ~)F + ~(1 - z)F(~ + I) - (y - oc)F(oc - I) = 0,

(y - ~ - I)F + ~F(~ + 1) - (y - I)F(y - 1) = 0,

y(I - z)F - yF(~ - 1) + (y - oc)zF(y + 1) = 0.

The rest of the recurrence relations can be obtained from (9.2.4-9) by
eliminating a common contiguous function from an appropriate pair of
formulas. For example, combining (9.2.5) and (9.2.8), or (9.2.6) and (9.2.9),
we obtain

(oc - ~)F - ocF(oc + 1) + ~F(~ + 1) = 0, (9.2.10)

(oc - ~)(I - z)F + (y - oc)F(oc - 1) - (y - ~)F(~ - 1) = 0, (9.2.11)

and so on. 9

8 Obviously, the total number of such relations is

(~) = 15.

9 The list of all fifteen recurrence relations involving F and its contiguous functions
is given in the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 1,
p. 103.
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(9.2.15)

Besides the recurrence relations just given, there exist similar relations
between the function F(oc,~; y; z) and any pair of functions of the form
F(oc + I, ~ + m; y + n; z), where I, m and n are arbitrary integers. Some
simple relations of this type are 10

F(oc, ~; y; z) - F(oc, ~; Y - 1; z)

oc~z
y(y _ I) F(oc + 1, ~ + 1; y + 1; z), (9.2.12)

F(oc, ~ + 1; y; z) - F(oc, ~; y; z)

ocZ= -F(oc + 1,~ + l;y + l;z), (9.2.13)
y

F(oc, ~ + 1; Y + 1; z) - F(oc, ~; y; z)

oc(y - ~)z ..
= y(y + 1) F(oc + 1, ~ + 1, Y + 2, z), (9.2.14)

F(oc - 1, ~ + 1; y; z) - F(oc, ~; y; z)

= (oc - ~ - l)z F(oc, ~ + 1; Y + 1; z).
y

Formulas (9.2.12-15) are proved by direct substitution of (9.1.2), or by re
peated use of the relations between F(oc, ~; y; z) and its contiguous functions.

Finally, we recall from Sec. 7.2 that the hypergeometric function
u = F(oc, ~; y; z) is a solution of the hypergeometric equation

z(l - z)u" + [y - (oc + ~ + I)z]u' - oc~u = 0,

which is analytic in a neighborhood of the point z = O.

(9.2.16)

9.3. Evaluation of lim F(oc,~; y; z) for Re (y - oc - ~) > 0
z-+I-

In developing the theory of the hypergeometric function, it is important
to know the limit as z -7- 1- of the function (9.1.2), where the parameters
satisfy the condition Re (y - oc - ~) > 0. 11 Suppose that besides this condi
tion, Re y > Re ~ > 0 as well. Then the desired result can be obtained by
passing to the limit behind the integral sign in (9.1.6), which gives

I· "'( (.l.. • ) - r(y) e a-I (1 _ t)y-ex- a-l dt,z2T- rlOC, \-" y, Z - r(~)r(y _ ~) Jo t

10 Formula (9.1.7) is also a relation of this type.
11 It can be shown that if this condition is not satisfied, then, with certain exceptions,

the sum of the hypergeometric series becomes infinite as z -+ I -.
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or, in view of (1.5.2, 6),

. .. f(y)f(y - CI.. - ~)
hm F(CI..,~,y,z) = f( )r( ~)'
z~ 1 - Y - CI.. y-

where, for the time being, we assume that

CHAP. 9

(9.3.1)

Re (y - CI.. - ~) > 0, Re y > Re ~ > O. (9.3.2)

To justify the passage to the limit, it is sufficient to prove that the conditions
(9.3.2) imply that the integral (9.1.6) is uniformly convergent for 0 :( z :( 1.
To this end, we note that

1 - t :( jl - tzl :( 1

for 0:( z:( 1,0:( t:( 1, and hence

where

(9.3.3)

A = {Re (y - CI.. - ~)
Re (y - ~)

if Re CI.. > 0,
if Re CI.. < o.

The estimate (9.3.3) shows that the integral (9.1.6) is uniformly convergent
for 0 :( z :( 1, since the integral

Ll
tRe P-l(l - t)",-l dt,

which majorizes (9.1.6), is convergent if the conditions (9.3.2) hold.
We now show that the second of the conditions (9.3.2) is not essential.

Suppose that instead of (9.3.2), the parameters of the hypergeometric func
tions satisfy the weaker inequalities

Re (y - CI.. - ~) > 0, Re (y - ~) > -1, Re ~ > -1.

Then the restrictions under which we proved (9.3.1) are satisfied by each of
the hypergeometric functions in the right-hand side of the recurrence relation
(9.1.7). It follows that

1· Fi( A ) y - CI.. + 1 f(y + 2)f(y - CI.. - ~ + 1)1m CI..,,' y' z = -'----,-- =~-~~--==-c-----':--..,-'

z~l- ", y+1 f(Y-Cl..+2)r(y-~+1)

CI..~ f(y + 2)f(y - CI.. - ~)

+ y(y + 1) f(y - CI.. + 1)f(y - ~ + 1)

_ f(y)f(y - CI.. - ~)

= f(y - CI..)r(y - ~)'

which is just the previous result. Repeating this argument, we can prove by
induction that

. f(y)r(y - CI.. - ~)
hm F(CI..,~; y; z) = rc )f( ~)'
z~l- y-CI.. y-

(9.3.4)
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provided only that Re (y - a - ~) > 0. Formula (9.3.4) plays an important
role in the derivation of various relations satisfied by the hypergeometric
function.

9.4 F(a,~; y; z) as a Function of its Parameters

In this section we show that the function

I
f(a, ~; y; z) = r(y) F(a, ~; y; z) (9.4.1)

is an entire function of a, ~ and y, for fixed z. If Izi < 1, the proof is an im
mediate consequence of the expansion

fit A· • ) _ ~ (ah(~)k k
\a, f', y, Z - k~O r(y + k)k! z, Izi < 1, (9.4.2)

obtained by substituting (9.1.2) into (9.4.1). In fact, since the terms of the
series (9.4.2) are entire functions of a, ~, y, and since the series is uniformly
convergent in the region lal ~ A, I~I ~ B, Iyl ~ C (where A, Band Care
arbitrarily large),'2 it follows thatf(a, ~; y; z) is an entire function of its para
meters.

Now let z be an arbitrary point in the complex plane cut along [1, 00], and
consider the formulas

f(a, ~;y;z) = r(~)r(~ _ ~)f t
o-

1
(l - t)Y-O-1(l - tZ)-CX dt'(9.4.3)

Re y > Re ~ > 0, larg (I - z)1 < 7t,

f(a, ~; y; z) = y(y - a + 1)f(a, ~ + 1; y + 2; z)

+ a[y - (y - ~)z].r(a + 1, ~ + 1; y + 2; z), (9.4.4)

which are the analogues of (9.1.6) and (9.1.7). Since the integrand in the
right-hand side of (9.4.3) is an entire function of the parameters a, ~, y for any
tin (0, 1), and since the integral is uniformly convergent in the region

lal ~ A, 3 ~ Re ~ ~ B, 3 ~ Re (y - ~) ~ C,

12 Use the criterion given in footnote 4, p. 102, noting that if

_ (O(h(~h k

Uk - r(y + k)k! Z ,

then

I
Uk+1! = 1(0( + k)(~ + k) 10< (A + k)(B + k) I I 0< 1

Uk (y + k)(l + k) Z ~ (k - C)(l + k) Z '" q <

for Izi < I and sufficiently large k.
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where a > °is arbitrarily small, it follows that f(oc, ~; y; z) IS an analytic
function of its parameters in the region

loci < 00, Re ~ > 0, Re (y - ~) > 0.

By repeated application of the recurrence relation (9.4.4), we can represent
the functionf(oc,~;y; z) as a sum

p

f(oc, ~; y; z) = L bsp(oc, ~; y; z)f(oc + s, ~ + p; y + 2p; z), (9.4.5)
8=0

where the bsp(oc, ~; y; z) are polynomials in oc, ~,y and z, and p is a positive
integer. As just shown, each term of this sum is an analytic function in the
region loci < 00, Re ~ > -p, Re (y - ~) > -p, and hencef(oc,~;y; z) is an
entire function of its parameters. It follows that for fixed z in the plane cut
along [1,00], the hypergeometric function F(oc, ~; y; z) is an entire function
of oc and ~, and a meromorphio function of y, with simple poles at the points
y = 0, -1, -2, ...

9.5. Linear Transformations of the Hypergeometric Function

Consider the class of all fractional linear transformations

, az + b
z =---

ez + d

carrying the pointf: z = 0, 1, 00 into the points z' = 0, 1, 00 chosen in any
order. It is easy to see that besides the identity transformation z' = z, this
class consists of the following five transformations:

z' = _z_, z' = 1 - z z' = _1_, z' = L
z-1 'I-z z

, z - 1z =-_.
z

We now derive various linear relations connecting the hypergeometric func
tions with variables z and z'. Relations of this kind are among the most im
portant in the theory of the hypergeometric function, and are known as linear
transformations of the hypergeometric function. In particular, these formulas
enable us to make the analytic continuation of F(oc,~; y; z) into any part of
the plane cut along [1, 00],13

We begin by deriving a relation which is useful in the case where one
requires the analytic continuation of the hypergeometric function into the
half-plane Re z < 1- Suppose z belongs to the plane cut along [1, 00], and
assume for the time being that Re y > Re ~ > O. Then, using the integral

13 The theoretical possibility of such an analytic continuation has already been
proved in Sec. 9. I.
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representation (9.1.6), and introducing the new variable of integration
s = 1 - t, we find that

"'( (,l,. • ) fey) e Y-B-1(I s)B-1(I _ z + sz)-rx ds
l'IlX,j-',y,z = f(~)f(y _ ~)Jo s -

_(I )-rx r(y) e B'-l(I-s)Y-B'-l(l-sz')ds,
- - z r(W)r(y - W) Jo s

where

w= y - ~,
, z

z =--,
z - 1

and our assumptions imply that Re y > Re W> 0, while z' belongs to the
plane cut along [I, 00],14 According to (9.1.6), the expression on the right is
just

(1 - Z)-rxF(IX, ~'; y; z'),

and hence

F(IX, ~; y; z) = (1 - z)-rxF ( IX, y - ~; y; z ~ 1)' larg (I - z)1 < n.

(9.5.1)

Formula (9.5.1) was proved under the temporary assumption that
Re y > Re ~ > 0, but, as we know from Sec. 9.4, after dividing by fey), both
sides become entire functions of ~ and y.15 Therefore, by the principle of
analytic continuation, (9.5.1) remains valid for arbitrary ~ and y, with the
exception of the values y = 0, - 1, - 2, ... for which F(IX, ~; y; z) is not de
fined. Moreover, if Re z < 1, then

Iz ~ 11 < 1,
and the hypergeometric function in the right-hand side of (9.5.1) can be re
placed by the sum of the hypergeometric series, i.e., (9.5.1) gives the analytic
continuation of F(IX, ~; y; z) into the half-plane Re z < -to

Permuting IX and ~ in (9.5.1), and' using the symmetry property (9.2.1),
we arrive at the relation

larg (1 - z)1 < n,

(9.5.2)

which can also be used to make the analytic continuation of the hypergeo
metric function into the half-plane Re z < 1. To obtain another important

14 Note that under the transformation z' = z((l - z), the plane cut along [I, co j
goes into itself.

15 The expression F[f(lX, ~, y, ... ), g(rx, ~,y" .. ), ... j is an entire function of
rx, ~, y,. , . if F, f, g, ... are entire functions of their arguments.
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result, we perform the transformations (9.5.1) and (9.5.2) consecutively, ob
taining

F(tY..,~; y; z) = (1 - z)-"'( 1 - z ~ I)-<Y-B)F(y - tY.., Y - ~; y; z),

larg (l - z)1 < 7t,

or
F(tY.., ~; y; z) = (l - z)Y-"'-BF(y - tY.., Y - ~; y; z),

larg (l - z)1 < 7t.

(9.5.3)

To derive a relation between the hypergeometric function with variable z
and the hypergeometric function with variable z' = 1 - z, we use a general
method from the theory of linear differential equations. First we note that
the general solution of the hypergeometric equation

z(l - z)u" + [y - (tY.. + ~ + I)z]u' - tY..~u = 0

can be written in the form 16

(9.5.4)

u = A1F(tY.., ~; y; z) + A zZI- YF(l - y + tY.., 1 - y + ~; 2 - y; z),

larg (1 - z)1 < 7t, larg zl < 7t, y =f. 0, ± 1, ±2, . .. (9.5.5)

Under the transformation z' = 1 - z, the domain larg (1 - z)1 < 7t,

larg zl < 7t goes into the domain larg (l - z')1 < 7t, larg z'l < 7t, and equa
tion (9.5.4) goes into the hypergeometric equation with parameters tY..' = tY..,
~' = ~, y' = 1 + tY.. + ~ - y. Therefore the expression

u = B1F(tY.., ~; 1 + tY.. + ~ - y; 1 - z) + Bz(l - Z)y-"'-B

x F(y - tY.., Y - ~; 1 - tY.. - ~ + y; 1 - z), (9.5.6)

larg (l - z)[ < 7t, larg zl < 7t, tY.. + ~ - y =f. 0, ± 1, ±2, ...

is also a general solution of equation (9.5.4). In particular, this implies the
existence of a linear relation of the form

F(tY.., ~; y; z) = C1F(tY.., ~; 1 + tY.. + ~ - y; 1 - z)

+ Cz(l - z)Y-"'-BF(y - tY.., Y - ~; 1 - tY.. - ~ + y; 1 - z),

tY.. + ~ - y =f. 0, ±1, ±2, ...

To determine the constants C1 and Cz, we assume temporarily that
Re (tY.. + ~) < Re y < 1, and then take the limit of the last equality, first as
z----7-I- and then as Z----7-0+. Using (9.3.4), we obtain

C
1

= r(y)r(y - tY.. - ~),

r(y - tY..)r(y - ~)

C r(l + tY.. + ~ - y)r(l - y) C r(I - tY.. - ~ + y)r(l - y) - 1
1 r(l + tY.. - y)r(l + ~ - y) + z r(l - tY..)r(l - ~) -.

16 See Sec. 7.2, noting that by the principle of analytic continuation, formula (7.2.6)
remains valid in the whole domain larg (l - z)1 < !t, [arg zl < !t.
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It follows that
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c _ f(y)f(oc + ~ - y)
2 - f(oc)f(~) ,

after some simple calculations involving the identity (1.2.2). Therefore the
required formula is

.. f(y)f(y - oc - ~). .
F(oc,~, y, z) = f(y _ OC)r(y _ ~) F(oc,~, 1 + oc + ~ - y, 1 - z)

+ (1 - z)y-ex-P f(y)f(oc + ~ - y) (9 )
f(oc)r(~) .5.7

x F(y - oc, y - ~; 1 - oc - ~ + y; 1 - z),

larg zl < 1t, larg (1 - z)1 < 1t, oc + ~ - y of. 0, ± 1, ± 2, ...

To get rid of the superfluous restrictions imposed on the parameters oc, ~

and y, we note that after multiplication by sin 1t(y - oc - ~)/r(y), both sides
of (9.5.7) are entire functions of the parameters. 17 Therefore, according to the
principle of analytic continuation, the relation (9.5.7) is valid for all values of
the parameters except those for which oc + ~ - y = 0, ± 1, ± 2, ... For
mula (9.5.7) gives the analytic continuation of the hypergeometric function
into the domain Iz - 11 < 1, larg (1 - z)1 < 1t.

The remaining relations between the hypergeometric functions with
variablei z and z' can be obtained by combining the formulas just derived.
For example, consecutive application of (9.5.1) and (9.5.7) leads to the rela
tion 18

• . -ex r(y)r(~ - oc) ( . . 1 )
F(I7.,~,y,z) = (1 - z) r(y _ oc)f(~)F oc,y -~, 1 + oc -~, 1 _ z

_p f(Y)r(oc -~) ( . . 1 )+ (1 - z) f(y _ ~)f(l7.) F y - oc, ~, 1 - oc + ~, 1 _ z

jarg (- z)1 < 1t, larg (1 - z)1 < 1t, 17. - ~ of. 0, ± 1, ±2, . .. (9.5.8)

which enables us to make the analytic continuation of F(I7., ~; y; z) into the
domain Iz - 11 > 1, larg (1 - z)1 < 1t. Then, combining (9.5.8) with
(9.5.1-2), we obtain

•• _ -ex f(y)r(~ - oc) ( . . 1)
F(oc, ~,y,z) - (-z) r(y _ oc)f(~)F 17., 1 + 17. - y, 1 + 17. - ~'z

_p f(y)r(17. -~) ( . .1)+ (-z) f(y _ ~)f(l7.) F ~, 1 + ~ - y, 1 + ~ - 17., Z '

larg (- z)1 < TI, larg (1 - z)1 < 1t, oc - ~ of. 0, ± 1, ±2, ... , (9.5.9)

17 Here we again make use of (1.2.2).
18 Note that under the transformation z' = z(z - 1), the domain larg (-z)1 < IT,

[arg (l - z)1 < IT goes into the domain larg z'l < IT, larg (1 - z')i < IT, which guaran
tees that (9.5.1) and (9.5.7) can be applied consecutively.
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which gives the analytic continuation of F(oc, ~; y; z) into the domain [z[ > 1,
larg (1 - z) [ < 7t. Finally, consecutive application of (9.5.7) and (9.5.1)
gives

_ f(y)f(y - oc -~) ( z - 1)
F(oc, ~; y; z) = z "f(y _ oc)f(y _ ~) F oc,1 + oc - y; 1 + oc + ~ - y; -z-

+ z"-Y(1 - z)Y-"-~ f(y)r(oc + ~ - y)
f(oc)f(~)

x F(y - oc, 1 - oc; 1 + Y _ oc _ ~; z ~ 1),

larg zl < 7t, [arg (1 - z)1 < 7t, oc + ~ - y i= 0, ± 1, ± 2, ... , (9.5.10)

which can be used to make the analytic continuation of F(oc, ~; y; z) into the
domain Re z > ,1, larg (1 - z)1 < 7t.

The problem of the analytic continuation of the hypergeometric function
into the z-plane cut along [1,00] is solved by using formulas (9.5.1-3) and
(9.5.7-10). Some exceptional cases, where these formulas are not applicable,
will be considered in Sec. 9.7.

9.6. Quadratic Transformations of the Hypergeometric Function

The relations between hypergeometric functions derived in the preceding
section are valid for arbitrary values of the par~meters oc, ~, y (apart from
certain exceptional values). One can also consider relations where the para
meters satisfy certain constraints; although less general, relations of this type
are also useful in making various transformations and carrying out analytic
continuation. Among such relations, the most interesting involve hypergeo
metric functions with two arbitrary parameters. As will be seen below, they
also contain expressions like

1 + v!=Z
2

1 - v!=Z -4z
I+Vl-z' (1-Z)2"'"

and hence are called quadratic transformations of the hypergeometric function.
As an example of a formula belonging to this class, consider the relation

(
1 - vl=Z)

F(oc, ~; oc + ~ + t; z) = F 2oc, 2~; oc + ~ + t; 2 ' (9.6.1)

larg(1 - z)1 < 7t, oc + ~ + t i= 0, -1, -2, ... ,

which can be proved as follows: The left-hand side is a solution of the hyper
geometric equation (9.5.4) with parameter y = oc + ~ + 1-, which is analytic
in the domain larg (1 - z)1 < 7t. Under the substitution 19

z' = '1(1 - V 1 - z),

19 By vi 1 - z is meant the branch which is positive for real z in the interval (0, 1).
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this equation goes into an equation of the same form with parameters

r1.' = 2r1., W= 2~, y' = r1. + ~ + t,

and the domain [arg (l - z)1 < 1t goes into the domain Re z' < t, which is
part of the domain larg (l - z')1 < 1t. But according to (7.2.6), the hypergeo
metric equation cannot have two linearly independent solutions which are
analytic in a neighborhood of the point z = 0, and hence there must exist a
relation of the form

(
I-V~)F(r1., ~; r1. + f3 + -!-; z) = AF 2r1., 2~; r1. + ~ + t; 2 '

where A is a constant. Setting z = 0, we find that A = I, thereby proving
(9.6.1).

A large number of other relations of the same type can be deduced by
applying the linear transformations of Sec. 9.5 to formula (9.6.1) and changing
the independent variable or the parameters. For example, using (9.5.3) and
(9.5.1) to transform the right-hand side of (9.6.1), we find that

F(r1., ~; r1. + ~ + -!-; z)

(
1 + V~) - 2ex ( V I - z - I)

= 2 F 2r1., r1. - ~ + -t; r1. + ~ + t; VI _ z + 1 '

larg (l - z)1 < 1t, r1. + ~ + t i= 0, -I, -2, ... , (9.6.2)

F(r1., ~; r1. + ~ + -!-; z)

(
I + V1 - z) Yz - ex - ~ ( 1 - v1="Z)

= 2 F r1. - ~ + t, ~ - r1. + t; r1. + ~ + t; 2 '

larg (l - z)1 < 1t, r1. + ~ + 1- i= 0, -I, -2,... (9.6.3)

Using (9.5.1) to transform the left-hand sides of (9.6.1) and (9.6.2), and then
making the substitution

z
z - 1 --+ z,

we obtain two other useful relations:

r1. + ~ + t --+ y,

F(r1., r1. + -!-; y; z) = (1 - Z)-exF( 2r1., 2y - 2r1. - 1; y; ~ - 2VI
1

_ J'
larg (I - z)1 < 1t, (9.6.4)

(
I + V~)-2ex ( 1 - V1="Z)

F( r1., r1. + -!-; y; z) = 2 F 2r1., 2r1. - Y + 1; y; 1 + vI _ z '

larg (1 - z)[ < 1t. (9.6.5)
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Finally, using (9.5.3) to transform the left-hand sides of (9.6.1) and (9.6.2),
and then making the substitution

IX~ IX - -!-,

we arrive at the relations

F(IX, ~; IX + ~ - -!-; z)

I ( 1 - vI - Z)= vI _ z F 21X - 1, 2~ - 1; IX + ~ - t; 2 '

larg(I - z)1 < 7t, IX + ~ - 1- #- 0, -1, -2, ... , (9.6.6)

F(IX, ~; IX + ~ - -t; z)

= 1 (1 + V~)1-2CX
VI - z 2

( v~ -1)x F 21X - 1, IX - ~ + 1-; IX + ~ - -!-; V '
1 - z + 1

larg(1 - z)1 < 7t, IX + ~ - -!- #- 0, -I, -2'4" (9.6.7)

It is interesting to note that formulas (9.6.2, 5, 7) continue the corresponding
hypergeometric functions into the plane cut along [I, 00]. In fact,

11 - v~1 < I
1 + vI - z

if larg (1 - z)1 < 7t, and hence the hypergeometric function in the right-hand
side of each of these formulas can be replaced by the sum of the corresponding
hypergeometric series.

Further results can be obtained by taking inverses of the formulas just
derived. For example, inversion of (9.6.1-3) gives20

F{IX, ~; -!-(IX + ~ + I}; z) = FHIX, -!-~; -!-(IX + ~ + 1); 4z(1 - z)},

Rez < -!-, -!-(IX + ~ + I) #- 0, -I, -2, ... , (9.6.8)

F(IX, ~; IX - ~ + 1; z)

= (1 - z)-cxF{-!-IX,-!-(1X + I) -~;IX - ~ + 1; - (l ~ZZ)2}

Izi < I, IX - ~ + 1 #- 0, -I, -2, ... , (9.6.9)

F(IX, 1- IX;Y;Z) = (l - z)Y-IF{Hy - IX),-t(y + IX - 1);y;4z(l- z)},

Re z < l (9.6.10)

20 In particular, (9.6.8) is obtained from (9.6.1) by making the substitution

1 - VI - z
20( -+ IX, 2[3 -+ [3, 2 -+ z.
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Moreover, combining these formulas with the linear transformations given in
Sec. 9.5, we can obtain stilI another group of formulas. For example, apply
ing the transformation (9.5.7) to the right-hand side of (9.6.8) and making the
substitution

1 - z
z~-2-'

we find that 21

(
1 - Z)F 2~,2~:~ + ~ + 1;---2--

r(~ + ~ + 1)r(t) . 1. 2)
= r(~ + 1-)f(~ + 1-) F(~, ~'2' Z

r(~ + ~ + -!)r( - -n D( 1 1 ..J.. 2)+ Z r(~)r(~) £1 ~ + 2' ~ + 2' 2, Z ,

larg(l ± z)1 < 7t, ~ + ~ + t i=- 0, -I, -2, ...

(9.6.11)

Formula (9.6.1 I) plays an important role in the theory of spherical harmonics.
For example, the relation (7.6.9) is an immediate consequence of (9.6. I1).

We conclude this section by deriving a few formulas of a more compli
cated nature. The first result is

F(~, ~; 2~; z)

(1+ Vl"=Z) -2ot { (1 - Vl"=Z)2}
= 2 F ~,~ - ~ + -!; ~ + 1; 1 + VI - z '

larg (l - z)1 < 7t, 2~ i=- -1, - 3, - 5, ... , (9.6.12)

which is proved in the same way as (9.6.1), by noting that under the change
of variables

, (1 - VI=Z)2z = ,
1 + VI - z

_(1 + Vl"=Z) -2ot
u - 2 v,

equation (9.5.4) goes into the hypergeometric equation with the new para
meters

,
~ =~, w= ~ - ~ + 1, y' = ~ + -!.

Since the verification of this fact is quite tedious, we supply some intermediate

21 In the course of the derivation, it is convenient to assume temporarily that
larg (1 - z)1 < 1t, Re z > O. The result can then be extended the whole domain
larg (1 ± z)1 < 1t by using the principle of analytic continuation.
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steps which will serve to keep the reader on the right track during the course
of the calculation:

(
V1 - 1)2

z = 1 - Vz' + 1 '
dz'
dz =

z'(v1 + 1)3
2(Vz' -1) ,

(9.6.13)

du dz' du _ (v1 + 1)20<+2 [ +,1,(, I, 1) dV] (9614)
dz = dz dz' = 2(V z' _ 1) ocv v z v z + dz" ..

+ v1(v1 + 1)[(oc + 1 + 2~) ~~, + v1(v1 + 1) ~;,~]}.

(9.6.15)

After using (9.6.13-15) to write the hypergeometric equation satisfied by u,
we multiply the result by

1 - V2'
V z'(l + V z')'

obtaining

1 - v1 [ 1 v1 + 1] [ ,1- ,1- dV]
1 + V z' oc + 1 - 2: V z' _ 1 ocV + v z'(v z' + 1) dz'

, 1- _ 1- [( 1 ) dv , 1- , 1- d
2
V]+ v z'(1 - v z') oc + 1 + 2v1 dz' + v z'(v z' + 1) dZ'2

v1 + 1 [ 2v1 ] [ , I, . I, dV]+ V ~ - (oc + ~ + 1) V ocv +v z (v z + 1) -d'
z' ( z' + 1)2 Z

_ oc~(l - V1) v = 0
Vz'(1 + Vz') ,

which can now be reduced quite easily to the hypergeometric equation

z'(l - z') ;:'~ + [(~ + -!-) - (2oc - ~ + i)z'] ;~, - oc(oc - ~ + t)v = 0,

satisfied by v. Making the substitution

1 - vI - z-----0==== --+ Z
1 + VI - z
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F{Z, ~; 2~; (1 ~zZ)2} = (1 + z)2'1F(rx, rx - ~ + -!-; ~ + .;;; Z2),

Izi < 1, 2~ #- -1, -3, -5,... (9.6.16)

Our final result is

F(rx, ~; 2~; z) = (1- ~) -a F{';;rx, 1(rx + 1); ~ + .;;; (2 ~ zf}
larg(1- z)1 < 7t, 2~ #- -1, -3, -5, ... , (9.6.17)

which can be derived as follows: Applying the transformation (9.5.1) to the
right-hand side of (9.6.9) and replacing ~ by rx - ~ + 1-, we obtain

F(rx, rx - ~ + -!-; ~ + -!-; z) = (1 + z)-'1 F{trx, 1(rx + 1); ~ + .;;; (1 ~ Z)2}'

Iz[ < 1, 2~ #- -1, -3, -5,... (9.6.18)

Then, comparing (9.6.13) and (9.6.15), we find that

and the desired result is obtained by making the substitution

4z
(1 + Z)2 ---* Z,

which implies

1 + Z2 2 - z
---*--,

(1 + Z)2 2

The theory of quadratic transformations of the hypergeometric function
was developed by Gauss, Kummer and Goursat, and also from a more general
point of view in Riemann's investigations of a class of differential equations
including the hypergeometric equation as a special case. 22 We refer the
reader to these sources for a more detailed treatment of the subject. 23

22 See E. Goursat, Sur l'equation dif]'erentielle lineaire, qui admet pour integrale la
serie hypergeometrique, Ann. Sci. Ecole Norm. Sup. (2), 10, 3 (I881). The relevant
references by Gauss, Kummer and Riemann are given on p. 296 of the book by Whittaker
and Watson (op. cit.).

23 See also the Bateman Manuscript Project, Higher Transcendental Functions,
Vol. 1, p. 110 If., for an extensive list of quadratic transformations of the hypergeometric
function.
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9.7. Formulas for Analytic Continuation of F(IX, ~; y; z) in
Exceptional Cases

The formulas derived in Sec. 9.5 allow us to obtain the analytic con
tinuation of the hypergeometric function into any part of the z-plane cut
along [1, 00]. However, some of these formulas are no longer meaningful for
certain values of the parameters, and must therefore be modified in a way we
now indicate. The general approach is to start from the formulas of Sec. 9.5
and then carry out appropriate passages to the limit.

For example, suppose we want to find the analytic continuation of the
function F(!X,~; y; z) into the domain Iz - 11 < 1, larg (1 - z)I < 7t. If
!X + ~ - y #- 0, ± 1, ± 2, ... , we can use (9.5.7), but this formula is not
applicable if y = !X + ~ ± n (n = 0, 1, 2, ... ). To derive a formula allowing
us to carry out the analytic continuation in the latter case, we replace the
hypergeometric functions in the right-hand side of (9.5.7) by the correspond
ing series, and use (1.2.2) to transform the result, obtaining

1
r(y) F(!X, ~; y; z)

= 7t [ 1 ~ (!XM~h (l _ Z)k
sin 7t(y - !X - ~) r(y - IX)r(y - ~) k~O r(l + !X + ~ - y + k)k!

=-:--:-:;1:;-;--,- ~ (y - IXMy - ~h (l - Z)k+Y-<X-P]
r(!X)r(~) k~O r(l - !X - ~ + y + k) k!

7t
=. ( P-) (gl - g2)' (9.7.1)

SIll 7t y - !X - i"'

It is easily verified that

I· - I' - 1 ~ (!X + nM~ + nh (1 )k+n1m gl - 1m g2 - L. - z ,
y-<x+p+n y-<x+P+n r(IX)r(~) k=O (n + k)!k!

and hence the right-hand side of (9.7.1) becomes indeterminate for y =
!X + ~ + n. Using L'HospitaI's rule to eliminate this indeterminacy, we have

1 F(!X ~. IX + ~ + n' z) = (_1)n[8
g 1

\ _ 8
g 2! ].

r(!X + ~ + n) " , 8y y=<x+p+n 8y y=<x+p+n

(9.7.2)

After some calculations resembling those made in Sec. 5.5, we find that 24

8g 1\ = 1 n~l (-I)n-k(n - k - 1)!(!XM~)k (l _ Z)k
8y y=<x+p+n r(!X + n)r(~ + n) k=O k!

1 ~ (!X + nM~ + nh
+ r(!X)r(~) k=O (n + k)!k!

x [~(k + 1) - ~(IX + n) - ~(~ + n)](l - z)k+n, (9.7.3)

24 In differentiating g2, we use the formula
d

d)" ()"h = ()"hlq;()" + k) - q;(),,)].

From now on, we assume that !x, 13 # 0, - I, - 2, ...
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Og2\ = 1 ~ (ex + nM~ + nh
oy v=cx+p+n r(ex)r(~) k=O (n + k)!k!

x [1jJ(ex + n + k) - ljJ(ex + n) + 1jJ(~ + n + k)
- 1jJ(~ + n) - IjJ(I + n + k) + log (1 - z)](1 - z)k+n, (9.7.4)

where ljJ(z) = f'(z)jf(z) is the logarithmic derivative of the gamma function.
Substituting (9.7.3-4) into (9.7.2), we obtain

F(ex, ~; ex + ~ + n; z)

= f(ex + ~ + n) n~l (-!)k(n - k - I)!(exM~h (1 _ Z)k
f(ex + n)f(~ + n) k..:0a k!

+ (-I)nf(ex + ~ + n) ~ (ex + nM~ + nh [I (k + I) + ljJ(n + k + 1)
, r(ex)f(~) k=O (n + k)!k! \jI

- ljJ(ex+n+ k)-IjJ(~+n+k) -log(l - z)J(l-z)n+k,

Iz-II<I,larg(l-z)I<7t, n=0,I,2, ... , ex'~"'0,-I,-2, ...

(9.7.5)
As usual, the meaningless sum

-1

2: ... ,
k=O

which appears when n = 0, is set equal to zero.
Formula (9.7.5) is no longer applicable ifex or ~ equals 0, -1, - 2, ... , but

then F(ex, ~; ex + ~ + n; z) reduces to a polynomial, and there is no need for
analytic continuation. Moreover, the case y = ex + ~ - n reduces to that
just considered by using the transformation (9.5.3), which becomes

F(ex, ~; ex + ~ - n; z) = (l - z)-nF(ex', ~'; ex' + ~' + n; z) (9.7.6)

if ex' = ex - n, W= ~ - n.
Similar considerations apply to the other formulas of Sees. 9.5-6. To give

another example, we derive a formula suitable for making the analytic con
tinuation of F(ex,~;y;z) into the domain Izi > 1, larg(-z)1 < 7t in the
case where ex - ~ = 0, ± 1, ± 2, ... Here we have to pass to the limit
~ --+ ex ± n (n = 0, 1,2, ... ) in (9.5.9). A calculation like that given above
leads to the following formula (for the case ~ = ex + n): 25

F(ex, ex + n; y; z)

= f(y)( -z)-cx n~ (n - k - l)!(exh(l - y + exh (-Z)-k
r(y - ex)f(ex + n) k~O k!

+ r(y)( _z)-cx ~ (ex + nh(l + ex - y + nh
f(ex)f(y - ex - n) k~O (n + k)!k!

x [1jJ(k + 1) + ljJ(n + k + 1) - ljJ(ex + n + k)
- ¥y - ex - n - k) + log (-z)]z-n-k,

Izi > 1, larg(l - z)1 < 7t, n = 0, 1,2, ... , ex'" 0, -1, -2, ... ,
y - ex'" 0, ±I, ±2, ... , y'" 0, -1, -2, ... (9.7.7)

25 In the last step of the calculation, use formula (1.3.4).
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We now examine the cases where formula (9.7.7) is not applicable. If
oc = 0, - I, - 2, ... , the function F(oc, oc + n; y; z) reduces to a polynomial,
and there is no need for analytic continuation. According to (9.5.3),

F(oc, oc + n; y; z) = (I - z)y-2rx-nF(y - oc, y - oc - n; y; z), (9.7.8)

and therefore F(oc, oc + n; y; z) reduces to an algebraic function ify - oc = 0,
- I, - 2, ... or y - oc = I, 2, ... , n, and analytic continuation is again un
necessary. If y - oc = n + I, n + 2, ... and oc "# 0, ± I, ±2, ... , then the
hypergeometric function in the right-hand side of (9.7.8) satisfies the condi
tions allowing it to be continued by using formula (9.7.7). Ify - oc = n + I,
n + 2, . .. and oc = I, 2, ... , the hypergeometric function can be represented
by an integral of the type (9.1.6) with a rational integrand, i.e., F(oc, oc + n; y; z)
can be expressed in finite form in terms of rational functions. Finally, we
note that the case ~ = oc - n reduces to that just considered if we again use
the transformation (9.5.3).

9.8. Representation of Various Functions in Terms of the
Hypergeometric Function

As we now show, various familiar functions of mathematical analysis are
special cases of the hypergeometric function F(oc, ~; y; z), corresponding to
suitab~e choices of the parameters oc, ~, y and the ~ariable z: 26

1. Elementary functions. The hypergeometric function F(oc,~; y; z) re
duces to a polynomial if oc = 0, -I, -2, ... or ~ = 0, -I, -2, ...
For example,

F(oc,O;y;z) = I,
.. oc oc(oc+I) 2

F(oc, - 2 , y, z) = I - 2 - z + ( I) z ,
y yy +

and so on. The transformation

F(oc,~; y; z) = (l - z)y-rx-PF(y - oc, y - ~; y; z), larg (l - z)1 < 1t

[cf. (9.5.3)] shows that F(oc, ~; y; z) reduces to an algebraic function if
y - oc = 0, -I, -2, ... ory - ~ = 0, -I, -2, ... In particular,

F(oc, ~; ~; z) = (I - z)-rx, larg (l - z)1 < 1t (9.8.1)

zn = F(-n, I; I; I - z),

for any value of ~, and

(l - z)V = F(-v, I; I;z), (I - Z)-1/2 = FG-, I; I; z),

n = 0, 1,2, '"
(9.8.2)

26 Further examples are given in the Bateman Manuscript Project, Higher Trans
cendental Functions, Vol. 1, pp. 89, 101.
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Other representations of this type can be derived from the formulas of
Sec. 9.6. Thus, setting ~ = oc + tin (9.6.2) and (9.6.7), we obtain

< Te,larg (1 - z)[(
1 + vI - Z)-2O<

F(oc,oc+t;2oc+I;z)= 2 '

1 (1 + vI - Z)1-2O<
F(oc, oc + 1; 2oc; z) = vI _ z 2 ' larg (l - z)1 < Te.

(9.8.3)

By starti1!g from the series expansion

_ 00 zk+ 1 _ 00 (lh(l)1< I<

log (1 - z) - - L -k1 - -z L (2) k f Z,
1<=0 + 1<=0 1<'

[zl < 1

of the logarithm, we find that

log (1 - z) = -zF(I, 1; 2; z), larg (1 - z)! < Te. (9.8.4)

Similarly, we deduce the following formulas for the inverse trigono
metric functions:

arc tan z = zFG, I;!; _Z2),

arc sin z = zF(-t,!;!; Z2),

larg (1 ± zi)1 < Te,

larg (l ± z)1 < Te.

(9.8.5)

2. Elliptic integrals. The complete elliptic integrals

K(z) = L"/2 (l - Z2 sin2 cp)-1/2 dcp, E(z) = L"/2 (l - Z2 sin2 <p)l/2 dcp

of the first and second kinds [cf. (7.10.11)], where z is a complex
variable belonging to the domain larg (1 ± z)! < Te, can also be repre
sented in terms of the hypergeometric function. Assuming temporarily
that [zl < I and using the binomial expansion, we find that

K(z) = ~ (t)t Z21< {"/2 sin21< cp dcp = ::: i: GMt~1< Z2J<,
1<=0 k. Jo 21<=0 (lhk.

which implies

K(z) = ~ F(!, -t; 1; Z2), larg (1 ± z)1 < Te. (9.8.6)

Similarly, we have the following representation of the elliptic integral of
the second kind:

Te
E(z) = '2 F(-!, t; 1; Z2), larg (l ± z)1 < Te. (9.8.7)

Starting from these formulas, one can develop the theory of elliptic
integrals, regarded as functions of the modulus z.



Spherical harmonics. One of the most important classes of functions
which can be expressed in terms of the hypergeometric function consists
of the spherical harmonics studied in Chapter 7. In fact, formulas
(7.12.27) and (7.12.29) immediately imply the following representations
of the associated Legendre functions:

r(v + m + 1) (Z2 - 1)m/2

P~(z) = f(v - m + 1) 2mf(m + 1)

260
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( l-Z)x F m - v, m + v + 1; m + 1; -2- ,

jarg (z ± 1)1 < 1t, m = 0, 1,2, ... , (9.8.8)

F(m+v+2m+v+l. 3.1)
x 2' 2 ,v + 2' Z2 '

larg z[ < 1t, larg (z ± 1)1 < 1t, m = 0, 1,2, . . . (9.8.9)

In particular, the Legendre polynomials (see Sec. 4.2) are given by the
formula

(
1 - Z)Pn(z) = F -n, n + 1; 1; -2- , n = 0, 1,2, . .. (9.8.10)

By regarding (9.8.8-10) as definitions and using the general theory of
the hypergeometric function, it is a simple matter to develop the theory
of spherical harmonics. This approach is especially convenient for
deriving the relations of Sec. 7.6 and their generalizations to the case
of arbitrary m.

9.9 The Confluent Hypergeometric Function

Besides the hypergeometric function F«(1.., ~; y; z), an important role is
played in the theory of special functions by a related function

~ «(1..hzk

<1>«(1.., y; z) = L. -() k"
k=O Y k •

Izl < 00, Y of. 0, -1, -2, ... , (9.9.1)

known as the confluent hypergeometric function. Here z is a complex variable,
(1.. and yare parameters which can take arbitrary real or complex values (except
that y of. 0, -1, - 2, ... ), and, as always,

(1.)0 = 1,
f(A + k)

(Ah = f(A) = 1.(1. + 1)·· '(A -\- k - 1), k = 1,2, ...
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As indicated, the series (9.9.1) converges for all finite Z,27 and therefore repre
sents an entire function of z.

If we set

1 ~ (och Zk
rp(oc, Y; z) = f( ) <I>(oc, y; z) = L r( k) k"Y k=O Y+ .

(9.9.2)

then rp(oc, y; z) is an entire function of oc and y, for fixed z. In fact, the terms of
the series (9.9.2) are entire functions of oc and y, and the series is uniformly
convergent in the region [ocl:( A, Iyl :( C (where A and C are arbitrarily
large).28 Therefore, for fixed z, <I>(oc, y; z) is an entire function of oc and a
meromorphic function of y, with simple poles at the points y = 0, -1,
-2, ...

A comparison of (9.1.2) and (9.1.3) shows at once that

(9.9.3)

The function <I>(oc, y; z) is very frequently encountered in analysis, mainly
because of the fact that a large number of special functions can be obtained
from <I>(oc, y; z) by making suitable choices of the parameters oc, y and the
variable z (see Sec. 9.13). This makes it possible to develop the general theory
of these functions in a simple and compact form.

The definition of the confluent hypergeometric function immediately
implies the identities

d oc
d
- <I>(oc, y; z) = - <I>(oc + 1, y + 1; z),

z y

d m (oc)m
dzm <I>(oc, y; z) = (Y)m <I>(oc + m, y + m; z), m = 1,2, ... ,

27 Use the ratio test, noting that if
(a). Zk

Uk = (y). 7J'
then

IUk + 11 I IX + k Iu;; = (y + k)(1 + k) z -+ 0,

as k -+ 00.

28 Use the criterion given in footnote 4, p. 102, noting that if

(IX). Zk

Vk = r(y + k) 7J'

then

IVk+ 11 I IX + k I A + k I I--;;: = (y + k)(l + k) Z ~ (k _ C)(l + k) Z ~ q < I,

for sufficiently large k.

(9.9.4)

(9.9.5)
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and the recurrence relations

(y - oc - 1)<1> + oc<1>(oc + 1) - (y - l)<1>(y - 1) = 0,

y<1> - y<1>(oc - 1) - z<1>(y + 1) = 0,

(oc - 1 + z)<1> + (y - oc)<1>(oc - 1) - (y - 1)<1>(y - 1) = 0,

y(oc + z)<1> - ocy<1>(oc + 1) - (y - oc)z<1>(y + 1) = 0,

(y - oc)<1>(oc - 1) + (2oc - 1 + z)<1> - oc<1>(oc + 1) = 0,

y(y - 1)<1>(1 - 1) - I(y - 1 + z)<1> + (y - OC)Z<1>(1 + 1) = 0,

CHAP. 9

(9.9.6)

(9.9.7)

(9.9.8)

(9.9.9)

(9.9.10)

(9.9.11)

connecting the function <1> == <1>(oc, I; z) with any two contiguous func
tions <1>(oc ± 1) == <1>(oc ± 1, I; z) and <1>(y ± 1) == <1>(OC'1 ± 1; z). Formulas
(9.9.6-7) can be verified by direct substitution of the series (9.9.1), and then
the other recurrence relations can be obtained by simple transformations of
(9.9.6-7).

Besides the recurrence relations just given, there exist similar relations
between the function <1>(oc, I; z) and any pair of functions of the form
<1>(oc + m, y + n; z), where m and n are arbitrary integers. Two simple rela
tions of this kind are 29

z
<1>(oc, I; z) = <1>(oc + 1, I; z) - - <1>(oc + 1, y + 1; z), (9.9.12)

1

y-oc oc
<1>(oc, y; z) = -- <1>(oc, y + 1; z) + - <1>(oc + 1, y + 1; z), (9.9.13)

y 1

as can be verified by direct substitution of (9.9.1), or by repeated use of the
relations between <1>(oc, y; z) and its contiguous functions.

9.10. The Differential Equation for the Confluent Hypergeometric
Function and Its Solutions. The Confluent Hypergeometric
Function of the Second Kind

It is easy to see that the confluent hypergeometric function is a particular
solution of the linear differential equation

zu" + (y - z)u' - ocu = 0, (9.10.1)

where y i= 0, - 1, - 2, . .. In fact, denoting the left-hand side of this equa
tion by l(u), and setting u = U1 = <1>(oc, y; z), we have

l(u) = ~ k(k - l)(oc)k Zk-1 + (y _ z) ~ (ochk Zk-1 _ oc i (OC)k Zk

1 k=2 (yhk! k= 1 (yhk! k=O (yhk!

[
(OC)l ] ~ (ochzk [ oc + k oc + k ] _

= 1 -() - oc + L.. ( ) k' k --k + 1 --k - k - oc = 0.
Y1 k=llk' 1+ 1+

29 Note the similarity between formulas (9.9.6--13) and formulas (9.2.4-15).
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To obtain a second linearly independent solution of (9.10.1), we assume
that jarg zl < 1t and make the substitution u = zl-yV. Then equation
(9.10.1) goes into an equation of the same form, i.e.,

zv" + (y' - z)v' - oc'v = 0,

with new parameters oc' = I + oc - y, y' = 2 - y. It follows that the function

u = U2 = Zl-Y<1>(1 + oc - y,2 - y;z)

is also a solution of (9.1 0.1) if y '!- 2, 3, . . .. Thus, if y '!- 0, ± I, ± 2, ... ,
both solutions u1 , U2 are meaningful and are linearly independent of each
other,30 so that the general solution of (9.10.1) can be written in the form

u = A<1>(oc,y;z) + Bz 1 -Y<1>(l + oc - y;2 - y;z),

larg zl < 1t, y '!- 0, ±1, ±2, . .. (9.10.2)

With a view to obtaining an expression for the general solution of(9.10.1)
which is suitable for arbitrary y '!- 0, - I, - 2, ... [see (9.10.11) below], we
introduce a new function

. _ r(I - y) . r(y - 1) l-y .
'¥(oc,y,z) - r(1 + oc _ y) <1>(oc,y,z)+ r(oc) z <1>(1 +oc-y,2-y,z),

larg zl < 1t, y '!- 0, ± I, ±2, ... , (9.10.3)

called the confluent hypergeometric function of the second kind. Formula
(9.10.3) defines the function '¥(oc, y; z) for arbitrary nonintegral y, and more
over, as we now show, the right-hand side of (9.10.3) approaches a definite
limit as y --+ n + I (n = 0, 1,2, ... ). Replacing the <1> functions in (9.10.3) by
the appropriate series, and using formula (1.2.2) from the theory of the
gamma function, we obtain

(9.1 0.4)

Since

r I ~ (oc)1< zl< I ~ (och zl<
Y-!~l gl = r(oc - n) /~'o r(k + n + I) k! = r(oc - n) /~'o (n + k)! k!'

1 00 ( ) I<-n

I. '" oc - n I< z1m g2 = - L.. --
y~n+l r(oc) I<=n r(k - n + I) k!

= _1_ ~ (oc - nh+n zl< = I ~ (och zl<,
r(oc) 1<=0 r(k + I) (n + k)! r(oc - n) 1<=0 (n + k)! k!

30 Note that Ul == U2 if Y = 1.
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(9.10.7)

the right-hand side of (9.10.4) becomes indeterminate as y --'?- n + 1, and
approaches a limit whose value can be found by using L'HospitaI's rule, i.e.,

'Y(oc,n+ l;z)= lim 'Y(oc,y;z) = (_l)n+1[0!1! _0!2\ ],
y-n+1 uy y=n+1 uy y=n+1

larg zl < 7t, n = 0, 1,2, . . . (9.10.5)

Calculations like those made in Sec. 5.5 show that 31

Ogl\ 1 ~ (ochzk
-;;;- = f( _ ) L.. ( + k)'k' [1jJ(oc - n) - ljJ(n + k + 1)],uy y=n+1 oc n k=O n ..

Og2! = 1 ~ (ochz
k

oy y=n+1 f(oc - n) k=O (n + k)!k!

x [1jJ(1 + k) - ljJ(oc + k) + ljJ(oc - n) - log z]

1 n~l (_l)n-k(n - k - 1)!(oc - nh k-n
+ f( ) L.. k' z ,oc k=O .

which leads to the following series expansion:

'Y(oc, n + 1; z)

(-I)n+ 1 00 (ochzk
= f( _ ) L ( k)'k' [1jJ(oc + k) - 1jJ(1 + k) - ljJ(n + 1 + k) + log z]

oc n k=O n + ..
1 n-1 (-l)k(n - k - 1)!(oc - nh k-n (9.10.6)

+ f(oc) k~O k! z ,

largz[ < 7t, n = 0, 1,2, ... , oc # 0, -1, -2, ...

Here ljJ(z) = f'(z)jf(z) is the logarithmic derivative of the gamma function,
and the meaningless sum

-1

Lk=O

which appears when n = 0, is set equal to zero.
If oc = -m (m = 0, 1,2, ... ), passage to the limit y --+ n + 1 (n = 0, 1,

2, ... ) in (9.10.3) leads to the expression 32

'Y( -m, n + 1; z) = (_l)m (m +, n)! <1>( -m, n + 1; z),
n.

m = 0, 1,2, ... , n = 0, 1,2, ...

31 In differentiating g2, we use the formula

d
d)" (),,). = ()").[\j!(),, + k) - \j!(),,)].

From now on, we assume that 01: "" 0, - I, - 2, ...
32 Here we again use formula (1.2.2).
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Moreover, it is an immediate consequence of (9.10.3) that the confluent hyper
geometric function of the second kind satisfies the relation

'Y(IX,y;z) = zl-Y'Y(I + IX - y,2 - y;z), larg zl < 'It. (9.10.8)

(9.10.9)
larg zl < 'It, n = 1,2, ...

Using this formula, we can define the function 'Y(IX, y; z) for y = 0, -I, - 2,
... , obtaining

'Y(IX, 1- n;z) = lim 'Y(IX,y;z) = Zn'Y(1X + n,n + I;z),
y-l-n

(9.10.10)

Thus we see that 'Y(IX, y; z) is meaningful for arbitrary values of the para
meters IX and y. It follows from the definition (9.10.3) and the properties of
<1>(IX, y; z) that 'Y(IX, y; z) is an analytic function of z in the plane cut along
[ - 00, 0], and an entire function of IX and y.

Next we show that 'Y(IX, y; z) is a solution of the differential equation
(9.10.1). For y i= 0, ± I, ±2, ... , this is an immediate consequence of
(9.10.3), and for integral y, the result follows from the principle of analytic
continuation (cf. footnote 12, p. 167). For IX i= 0, -I, - 2, ... , the solutions
<1>(IX, y; z) and 'Y(IX, y; z) are linearly independent, as can easily be verified by
calculating the Wronskian 33

W{<1>(IX, y, z), 'Y(IX, y; z)} = - ~~:~ rYeZ,

larg zl < 'It, y i= 0, -1, -2, ... ,

and then the general solution of (9.10.1) can be written in the form

(9.10.11)
u = A<1>(IX,y;z) + B'Y(IX,y;z),

largzl < 'It, lX,y i= 0, -II -2, ...

The function 'Y(IX, y; z) has a number of properties analogous to those of
<1>(IX, y; z). For example, we have the differentiation formulas

d
dz 'Y(IX, y; z) = -IX'Y(IX + I, Y + 1; z),

d m

dzm 'Y(IX, y; z) = (-l)m(lX)m 'Y(IX + m, y + m; z), m = 1,2, ... ,
(9.10.12)

the recurrence relations

'Y - IX'Y(IX + 1) - 'Y(y - I) = 0,

(y - IX)'Y + 'Y(IX - I) - z'Y(y + 1) = 0,

(9.10.13)

(9.10.14)

33 Equation (9.10.1) implies
W{ll>, '¥} = Cz-Yez•

Comparing both sides of this identity as z -+ 0, we find that

C = _ r(y).
r(lX)
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(oc - 1 + Z)'Y - 'Y(oc - I) + (oc - y + 1)'Y(y - I) = 0, (9.10.15)

(oc + z)'Y + oc(y - oc - l)'Y(oc + I) - z'Y(y + I) = 0, (9.10.16)

'Y(oc - I) - (2oc - y + z)'Y + oc(oc - y + 1)'Y(oc + I) = 0, (9.10.17)

(y - oc - 1)'Y(y - I) - (y - 1 + z)'Y + z'Y( y + I) = 0, (9.10.18)

'Y == 'Y(oc, y; z), 'Y(oc ± I) == 'Y(oc ± I, y; z), 'Y(y ± I) == 'Y(oc, y ± I; z)

and so on, whose validity follows from the definition of the 'Y function and
the corresponding properties of the <1> function.

9.11. Integral Representations of the Confluent
Hypergeometric Functions

The functions <1>(oc, y; z) and 'Y(oc, y; z) have simple integral representa
tions which play an important role in the theory and applications of confluent
hypergeometric functions. Here we consider only the basic representations in
terms of integrals evaluated along an interval of the real axis, referring the
reader elsewhere for more general representations in terms of contour
integrals. 34

The simplest integral representation of the function <1>(oc, y; z) can be ob
tained by summing the series (9.9.1) with the help of formula (9.1.2):

(oc)!c = fey) e t<x-1H(l _ t)Y-<x-1 dt,
(yh f(oc)f(y - oc) Jo

Re y > Re oc > 0, k = 0, 1, 2, ...

This gives

m( .) fey) ~ z!c e <X-l+!c(1 _ t)Y-<x-1 dt
'V oc, y, z = f(oc)f(y _ oc) !c~o k! Jo t

fey) i 1 <Xl (zt)!c= t<x-1 (I - t)Y-<x-1dt 2: -,
f(oc)f(y - oc) 0 !c=o k!

or

m( .) _ fey) e ztt<x-1(1 _ t)Y-<x-1 dt,
'V oc, y, Z - f(oc)f(y _ oc) Jo e Re y > Re oc > 0,

(9.11.1)

where reversing the order of integration and summation is justified by the
usual absolute convergence argument (cf. footnote 2, p. 239).

34 See the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 1,
pp. 256, 271 If.
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We can use the integral representation (9.11.1) to deduce an important
relation satisfied by the function <D(oc, y; z). Assuming temporarily that
Re y > Re oc > 0, we make the change of variable t = 1 - s. Then (9.11.1)
becomes

which implies

(9.11.2)

since Re y > Re (y - oc). The relation (9.11.2) was proved under the assump
tion that Re y > Re oc > 0, but after dividing by fey), both sides become
entire functions of oc and y. Therefore, according to the principle of analytic
continuation, (9.11.2) remains valid for arbitrary oc and y, provided that
y "# 0, -1, -2, ...

To obtain an integral representation of 'Y(oc, y; z), we first note that the
function U, defined by

Re oc > 0, Re z > 0, (9.11.3)

is a solution of the differential equation (9.10.1). In fact, denoting the left
hand side of (9.11.3) by leu), we have 35

According to (9.10.2), the solution u can be written in the form

U = A<D(oc,y;z) + Bz1-Y<D(l + oc - y,2 - y;z),
(9.11.4)

larg zl < 7t, Y"# 0, ± 1, ±2, ...

Assuming temporarily that °< Re y < 1 and z > 0, we take the limit of
(9.11.3) as z --+ 0+. This gives

A = lim U = _1_ roo tCX-1(l + t)Y-CX-l dt = f(l - y) ,
.-0+ f(oc) Jo 1'(1 + oc - y)

where we have used formulas (1.5.3) and (1.5.6) from the theory of the
gamma function, and the passage to the limit behind the integral sign is easily

35 With our restrictions on IX and z, the differentiation behind the integral sign is
justified.
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justified. Moreover, differentiating (9.11.4) with respect to z, multiplying by
zY and then taking the limit as z -0>- 0 +, we obtain

B = _1_ lim zYu' = _1__1_ lim zY roo e- zt tO:(1 + t)y-o:-1 dt
1 - Yz-O+ Y - 1 r(ot)z-o+ Jo

1 . i00= hm e-ssO:(s + Z)Y-O:-1 ds
(y - 1)r(ot) z-o+ 0

= I roo e- SsY- 1 ds = r(y - 1).
(y - 1)r(ot) Jo r(ot)

It follows that

r(l - y)
u = r(l + ot _ y) <1>(ot, y; z)

+ r(h:) 1) zl- Y<1>(1 + ot - y,2 - y; z) == '¥(ot, y; z). (9.11.5)

Since both sides are entire functions of the parameter y and analytic functions
of the variable z in the half-plane Re z > 0 (see Sec. 9.10), the temporary
restrictions imposed on y and z can be dropped, and we arrive at the integral
representation

Re ot > 0, Re z > o.
(9.11.6)

Some other integral representations of the functions <1>(ot, y; z) and
'¥(ot, y; z) are given in Problems 11-13, p. 278.

9.12. Asymptotic Representations of the Confluent
Hypergeometric Functions for Large Izi

We begin by deriving the asymptotic representation of'¥(ot, y; z) for large
jzj, which turns out to be simpler than the corresponding representation of
<1>(ot, y; z). Suppose that

Reot> 0, larg zl < ~ - ~,

where ~ > 0 is arbitrarily small. According to (5.11.2),

(l + t)Y-O:-1 = i (-I)k(1 ~ ot - yh tk
k=O k.

( l)n+1(1 + ot ) i 1
+ - - Y n tn+1 (1 _ s)n(l + st)y-o:-n- 2 ds.

n! 0
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Substituting this expansion into the integral representation (9.11.6) and inte
grating term by term, we obtain 36

where

rn(z) = (_1)n+1(1 + oc - Y)nz" ('X> e-zttn+" dt e(1 _ s)n(1 + st)y-,,-n-2ds.
n!r(oc) Jo Jo

Estimating 1rn(z) 1 we find that

Ir (z)/ ~ 1(1 + oc - Y)n ze</ ('X> e-1z1t sin 6 tn+Re "dt
n n!r(oc) Jo

X fo1 (1 - s)n(1 + st)Re (Y-e<)-n-2 ds.

If we choose n so large that Re (y - oc) - n - 2 ~ 0, then

(1 + St)Re (Y-e<)-n-2 ~ 1,

and hence 37

\

(1 + oc - Y)nl r(n + Re oc + 1)lzlRe "en11m "I _ -n-1
1rn(z) 1 ~ (n + 1)!r(oc) (izi sin a)n+Ree<+l - O(lzl ).

It follows that

'Y(oc,y;z) = re<L~ (-I)I«ocM~!+ oc - Yhrl< + 0(l z l-n-1)],

Re oc > 0, largzl ~ ~ - a, n ~ Re(y - oc) - 2 (9.12.1)

for large Izi.
We now show that the conditions under which this formula has

been proved can be considerably weakened. First we note that even if
Re (y - oc) - n - 2 > 0, an integer m > n can always be found such that
Re (y - oc) - m - 2 ~ 0. Since the expansion (9.12.1) certainly holds with
n replaced by m, we have

m nL ... + 0(l z l-m-1) = L ... +
1<=0 1<=0

mL ... +0(lz l-m-1)
l<=n+1

= ~ ... + 0(lzl-n-1)
1<=0

36 According to (1.5.1),

Re IX > 0, Re Z > 0,1 f.'"- e-ztt~+k-l dt = (IX) Z-~-k
r(IX) 0 k.

37 For complex a and b we have
labl = lalRe be -1m b'arg a ~ lalRe benl1m bl.

k = 0, 1,2, ...
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which again gives (9.12.1). Therefore the condition imposed on n can be
dropped, and (9.12.1) is valid for arbitrary n.

Next we get rid of the restriction imposed on the parameter Ct.. Suppose Ct.
satisfies the weaker condition Re Ct. > -1. Then Re (Ct. + 1) > 0, and
formula (9.12.1) can be applied to each of the hypergeometric functions in the
right-hand side of the identity

o/(Ct., y; z) = zo/(Ct. + 1, y + 1; z) + (1 + Ct. -y)o/(Ct. + 1, y; z), (9.12.2)

obtained by replacing Ct. by Ct. + 1 in (9.10.14). Carrying out the necessary
calculations, we again arrive at the asymptotic representation (9.12.1), but this
time with the condition Re Ct. > - 1. Repeating this argument, we see that
(9.12.1) holds for arbitrary values of Ct.. Moreover, by slightly modifying the
method used to prove (9.12.1), we can replace the condition larg zl ~ 17' - ?l
by the weaker condition larg zl ~ 7t - ?l.3S Thus, finally, we arrive at the
following asymptotic representation of o/(Ct., y; z) for large Izl:

'f(Ct.,y;z) = z-cxLt (-l)k(Ct.M~t Ct. - yh Z-k + O([zl-n-l»).

[arg z[ ~ 7t -?l. (9.12.3)

The corresponding asymptotic representation of the function <1>(Ct., y; z)
can be deduced from (9.12.3) and the relation

<1>(~ y' z) fey) e±cxlti o/(~ y' z) + r(y) e±(cx- y)ltiez o/(y - Ct. y' - z)
~,' = f(y - Ct.) v." f(Ct.) " ,

larg zl < 7', -z = ze'flti, y i= 0, -1, -2, ... , (9.12.4)

which is the inverse of (9.10.3), where the plus sign is chosen ifIm z > °and
the minus sign if 1m z < 0. To prove (9.12.4), we assume that y i= 0, ± 1,
±2, ... and use (9.10.3):

. _ f(1 - y) . f(y - 1) l-y _ _.
'f(Ct.,y,z)-f(Ct._y+1)<1>(Ct.,y,z)+ f(Ct.) z <1>(1+Ct. y,2 y,z).

(9.12.5)
Replacing Ct. by y - Ct. and z by -z = ze'flti, we obtain

z • _ f(1 - y) .
e o/(y - Ct., y, -z) - f(1 _ Ct.) <1>(Ct., y, z)

- ~~~ =: :~ zl-Ye±ylti<1>(1 + Ct. - y, 2 - y; z), (9.12.6)

38 Instead of (9.11.6), use the integral representation

1 f",·e ,•
o/(Ct. y' z) = - e-Zlt~-l(l + t)Y-~-l dt

" r(Ct.) 0 '

where

ReCt. > 0,

if -(7t - I»,,; argz"; - (~- I»),

l'f 7t ~ ~2' - 0 ,,; arg z ,,; 7t - 0,
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where we have used (9.11.2). Eliminating <1>(l + 17. - y, 2 - y; z) from
(9.12.5-6), we arrive at (9.12.4) after some simple calculations, where the
validity of the result for positive integral values of y follows from the prin
ciple of analytic continuation. Substituting (9.12.3) into (9.12.4), we find the
desired asymptotic representation of <1>(17., y; z) for large [zl:

<1>(17., y; z)

= r(y) e±CXltiz-cx[i (-l)k(och(l + 17. - Y)k rk + 0(l zl-n-1)]
r(y - 17.) "=0 k!

+ I'("(.) ezz-<y-CX)[i (y - och~1 - OC)k Z-k + 0(lz/-n-1)],
r(oc) k=O k.

[arg z/ :( 1t - 13, y =f. 0, -1, -2,... (9.12.7)

As before, the plus sign corresponds to 1m z > °and the minus sign to
1m z < 0. If /arg z/ :( t1t - 13, the first term is small compared to the second,
and (9.12.7) takes the form

/argz[:( ~ - 13, oc,y =f. 0, -1, -2'00' (9.12.8)

9.13. Representation of Various Functions in Terms of the
Confluent Hypergeometric Functions

As we now show. various familiar functions of mathematical analysis are
special cases of the confluent hypergeometric functions <1>(17., y; z) and
0/(17., y; z), corresponding to suitable choices of the parameters 17., y and the
variable z. Particular attention will be devoted to the special functions intro
duced in Chapters 2-5.

1. Elementary functions. Some typical relations involving elementary
functions are

00 k

<1>(17.,17.; z) = k~ ~! = e
Z

,

00 Zk eZ - 1
<1>(l, 2; z) = L (k 1)1 = --,

k=O +. Z

<1>(-2, l;z) = 1 - 2z + tZ2.
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2. Error functions. It follows from (2.1.5) and (2.1.2) that the error func
tion has the expansion

~ (_I)kz2k+l 00 Gh (_Z2)k
Erf z = L.. = z L - --,

k=O k!(2k + 1) k=O (t)k k!

and hence

(9.13.1)

Similarly, the complementary error function (2.1.6) can be written in
the form

fOO foo e- z2s

Erfc z = e- t2 dt = -!-ze- z2 ds,
z 0 vI + s

if we set t = zV1 + s. Then, according to the integral representa
tion (9.11.6),39

or

where we have used (9.10.8).

7t
[arg zj < "2' (9.13.2)

3. The function F(z). Next we consider the function F(z), related to the
probability integral of imaginary argument (see Sec. 2.3). It follows
from (2.3.4) that

and hence

F(z) = z<I>(1, 1; _Z2). (9.13.3)

4. Fresnel integrals. Combining (2.4.6), (2.1.5) and (9.13.1), we find that

C(z) = ~ [<I>G'~; 7t~2) + <I>G' ~; _ 7t~2)],
(9.13.4)

S(z) = ~ [<I>G'~; 7t~2) _ <I>G' ~; _ 7t~2)].

5. The exponential integral. By definition,

roo e- t

Ei( -z) = - Jz -t- dt, jarg zl < 7t

39 In the derivation we assume that z > 0, and then use analytic continuation to
extend (9.13.2) into the domain larg zl < 1t/2.
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[cf. (3.1.2)], and hence, setting t = z(1 + s) and using the integral
representation (9.11.6), we have

1
00 -zs

Ei(-z) = -e- Z _e_ ds = _e- Z 'Y(I I' z)
o 1 + s ' , ,

or
Ei(z) = -eZ'Y(1, I; -z), larg(-z)1 < Te. (9.13.5)

6. The sine and cosine integrals. Combining (3.3.6) and (9.13.5), we find
that

Ci(z) = -4 e- iz 0/(1, I; zenil2) -4 eiZ 'Y(1, I; ze- niI2), larg zl < ~,

Si(z) = :: + !e-iZ'Y(1 I' zenil2) - !eiZ'Y(1 I' ze- niI2) largzl <::.
2 2i ' , 2i " , 2

(9.13.6)

larg (1 - z)1 < Te.

(9.13.7)

larg zl < Te,

7. The logarithmic integral. It is an immediate consequence of (3.4.3) and
(9.13.5) that

li(z) = -z<1>(1, I; -logz),

8. Hermite polynomials. According to (4.9.2), the even Hermite poly
nomials can be written in the form

H () - ~ (I)k (2n)! (2 )2n-2k _ ( l)n(2)' ~ (-I)k(2z)2k
2n Z - k~O - k!(2n _ 2k)! z - - n .k~O(n - k)!(2k)!

= (_1)n (2n)! i (-nh(2z)2k = (_1)n (2n)! i (-nh(z2)k,
n! k=O (2k)! n! k=O (-thk!

since

and therefore

H () - ( I)n (2n)! <1>( 1. 2)2n Z - - -,- - n, 2", Z .n.
(9.13.8)

For the odd Hermite polynomials we have the analogous formula

H 2n +l(z) = (_ l)n (2n ~ I)! 2z<1>( -n, t; Z2).
n.

(9.13.9)

9. Laguerre polynomials. It follows from (4.17.2) that

p.() = i r(n + ex + I) (_Z)k = (ex + I)n i (-nhzk

n Z k=O r(k + ex + I) k!(n - k)! n! k=O (ex + Ihk!'

and hence

L"( ) - (ex + 1)n <1>( I' )n Z - , - n, ex + , z .
n.

(9.13.10)
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10. Cylinder functions. Assuming temporarily that Re v > -t, we set
s = -t(l + t) in the integral representation (5.10.3), obtaining

22V( /2)V - iz J1J(z) = z e e2izssv-Y2(l _ s)V-%ds
v r(-t)r(v +.t) 0 •

Therefore, according to (9.11.1),

or

J ( ) - (z/2)V - iZffi( 1 2 l' 2' )
v z - rev + 1) e '¥ v+ 2, V + , lZ, larg zi < 7t, (9.13.11)

where we have used the duplication formula (1.2.3) for the gamma
function. Then we use the principle of analytic continuation to show
that (9.13.11) holds for arbitrary v.

Similar representations can be obtained for the other cylinder func
tions. For example, it follows from (5.6.4), (9.13.11) and (9.10.3) that 40

H~I)(Z) = - :; ei(z-Vlt)(2z)V'Y(v + 1,2v + 1; 2ze- lti /2),

7t- "2 < arg Z < 7t, (9.13.12)

7t
-7t < arg Z < I (9.13.13)

Then, using (5.7.6), we obtain the following representations of the
Bessel functions of imaginary argument:

I ( ) - (z/2)V -Zffi( .l- 2 l' 2 )
v Z - rev + 1) e '¥ v+ 2' V + , Z, larg zl < 7t, (9.13.14)

larg zl < 7t. (9.13.15)

11. Whittaker functions. A class of functions related to the confluent
hypergeometric functions, and often encountered in the applications,
consists of the Whittaker functions, defined by the formulas 41

Mk.u(z) = zU+%e- z/2<1>H - k + [L, 2[L + 1; z),

Wk.u(z) = zu+ %e- Z
/
2'Y(t - k + [L, 2[L + 1; z),

40 We also use formulas (9.11.2) and (1.2.2-3).
41 E. T. Whittaker and G. N. Watson, op. cit., Chap. 16.

larg zl < 7t
, (9.13.16)

larg zl < 7t.
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9.14. Generalized Hypergeometric Functions

Consider the power series

00

L
k=O

(9.14.1 )

where p and q are nonnegative integers (p,q = 0, 1, 2, ... ) satisfying the
condition p ~ q + 1, z is a complex variable, ar and Ys are arbitrary para
meters (except that Ys i= 0, -1, -2, ... ), and (A)k = rCA + k);r(A).42
Using the ratio test, we see at once that the radius of convergence of the series
(9.14.1) equals 00 if p ~ q and 1 ifp = q + 1. The sum of the series (9.14.1)
is called the generalized hypergeometricfunction, and is denoted by the symbol

or more concisely, by pFq(ar ; Ys; z), i.e.,

00

pFq{ar ; Ys; z) = L
k=O

p

Il (arh k
r= 1 Z

q k'Il (ish .
s = 1

(9.14.2)

Clearly, pFq{ar ; Ys; z) is an entire function of z if p ~ q. The function
q+1Fq{ar ; Ys; z) is originally defined only in the disk [zl < 1, but can be ex
tended outside this disk by using analytic continuation.

The following are the simplest generalized hypergeometric functions:

00 k

oFo(ar;ys;z) = k~O~! = eZ
,

F. ( . .) ~ (alh k (1 - Z)-"l,
1 0 ar , Ys, z = k~ ¥ z =

42 As usual, the meaningless products
o

IT···,
r=1

o

IT .. ·..
s=1

which appear when p = 0 or q = 0, are set equal to I.
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The last two examples show that the hypergeometric functions considered in
this chapter are special cases of the more general function (9.14.2).

Some features of the theory of ordinary hypergeometric functions can be
carried over to the case of generalized hypergeometric functions. For ex
ample, it is easily seen that the function u = pFq(r1. r ; Y.; z) is a particular
solution of the linear differential equation

(9.14.3)

of order q + 1, where i) denotes the operator z(djdz).43 This equation reduces
to (9.10.1) if p = q = 1, and to the hypergeometric equation (9.2.16) of
p = 2, q = 1. There is a well-developed theory of generalized hypergeometric
functions, with appropriate recurrence relations, integral representations,
etc. 44

PROBLEMS

1. Starting from the integral representation (9.1.6), prove that

F(r:J., [3; y; x + iO) - F(r:J., [3; y; X - iO)

27tir(y) (I)Y-"'-PF( '1 '1r(r:J.)r([3)r(l+y-r:J.-[3) x- y-r:J.,y-[3, +y-r:J.-[3, -x),

x > 1, y ¢ 0, - 1, - 2, ...

Hint. During the proof, assume that Re r:J. < 1, Re y > Re [3 > 0, and
then use analytic continuation.

Comment. This formula shows why the cut [I, <Xl] is necessary in defining
F(r:J.,[3;y;z)forr:J.,[3 ¢ 0, -1, -2, ...

2. Derive the formulas

d d
dz

(z"'F) = r:J.z"'-lF(r:J. + 1) - (zy-1F) = (y - l)zY-2F(y - 1),, dz

where the notation is the same as in Sec. 9.2.

3. Prove the following identities:

• • 1 _ r(r:J. + [3 + -!)r(!)
F(2r:J., 2[3, r:J. + [3 + -!'2) - r(r:J. + -!)r([3 + -!)' r:J. + [3 + -! ¢ 0, -1, -2, ... ,

F(o, ,; 1 + 0 - ,; -1) ~ 2-' (I + °1,){;m oj'
rl-[3+2: r 2:+2:

1 + r:J. - [3 ¢ 0, - 1, - 2, ...

43 Note that applying ato u corresponds to multiplying u by k.
44 For a summary of the theory and references for further reading, see the Bateman

Manuscript Project, Higher Transcendental Functions, Vol. 1, Chap. 4. Some new results
are given by N. E. Norlund, Sur les fonctions hypergeometriques d'ordre superieur, Mat.
Fys. Skr. Danske Vid. Selsk., 1, no. 2 (1956).
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4. Show that the hypergeometric polynomials F( - n, (3; y; z) (n = 0, 1, 2, ... ,
y #; 0, - 1, - 2, .. ,) can be defined as the expansion coefficients of the
generating function

w(z, t) = (1 - t)~-Y(l - t + zt)-~ = i: (Y~n F(-n, (3; Y; z)tn,
n=o n.

ItI < min {I, Iz - 11- 1
}.

5. Derive the integral representation

r~~~«(3)F(o:, (3; Y; z) = -21 . (e+l
oo

r(o: + Si~«(3 + ;)r( -s) (_Z)8 ds,
Y 1t/ )e-lOO Y + s

Reo: > 0, Re(3 > 0, larg(-z)1 < 7t, Y #; 0, -1, -2, .. "

where min {Re 0:, Re (3} < c < 0.

Hint. Complete the contour of integration on the right with the arc of a
circle of radius Rn = n + 1- (n -r 00), and then use residue theory.

Comment. The restrictions imposed on the parameters can be eliminated
by suitably deforming the contour of integration.45

6. Using term-by-term integration, verify the following formulas:

F(o:,(3;y;z) = r(c)~~)- c)f te
-

1(l - t)y-e-
1F(0:,(3;c;zt)dt,

Re y > Re c > 0, jarg (1 - z)1 < 7t,

F(o:, (3; y + 1; z) = Y f01
F(o:, (3; y; zt)tY- 1 dt, Re y > 0, larg (l - z)1 < 7t.

7. By analogy with Sec. 9.10, the hypergeometric function of the second kind
G(0:, (3; y; z) can be defined as

r(l - y)
G(O:,(3;y;z) = r(o: _ y + 1)r«(3 _ y + l)F(o:,(3;y;z)

+ r(y - 1) 1-YF(1 + 1 + (.l • 2 .)r(o:)r«(3) z 0: - y, I"' - y, - y,z,

larg zl < 7t, larg (l - z)1 < 7t, y #; 0, ± 1, ±2, ...

Prove that G(o:, (3; y; z) satisfies the relation

G(o:, (3;y; z) = Zl-YG(o: - y + 1,(3 - y + 1;2 - y;z).

8. Repeating the considerations of Sec. 9.10, show that G(o:, (3; y; z) is an
entire function of 0:, (3, y, and derive the formula

. . _ (_1)n+1 ~ (o:M(3)k k
G(o:,(3,n + l,z) - r(o: _ n)r«(3 - n)k~O(n + k)!k!z

x [tjJ(o: + k) + tjJ«(3 + k) - tjJ(l + k) - tjJ(n + 1 + k) + logz]

1 n~l (-1)k(n - k - 1)!(0: - nM(3 - n)k+ ~ zk-n
r(o:)r«(3) k=O k! '

largzl < 7t, Izi < 1, n = 0, 1,2, ... , 0:,(3 #; 0, -1, -2, ...

45 E. T. Whittaker and G. N. Watson, op. cit., p. 286.
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9. Prove that the functions F(rx, ~; y; z) and G(rx,~; y; z) are a pair of solu
tions of the hypergeometric equation (9.2.16) with Wronskian

W{F( (.l •• ) G( (.l •• )} - _ r(y) -Y(1 _ )Y-"'-P-lrx,l-',y,z, rx,I-"y,z - r(rx)r(~)z z ,

larg(l - z)1 < n, largzl < n, y,p 0, -1, -2, ...

Comment. It follows that the two solutions are linearly independent if
1'1., ~ ,p 0, - I, - 2, ...

10. Find differentiation formulas and recurrence relations for the function
G(rx,~; y; z).

Hint. Use the corresponding relations for the function F(rx, ~; y; z).

11. Derive the integral representation

1'(1'1.) 1 Ie + too 1'(1'1. + s)r( - s)
1'( ) <1>(1'1., y; z) = -2' . 1'( ) (- z)' ds,

y m e-lOO Y + s

Rerx> 0, -Rerx < C < 0, y,p 0, -1, -2, ...

Hint. Use residue theory.

n
larg (- z)1 < 2'

12. Derive the integral representation

<1>(1'1., y; z) = r(~(~ 1'1.) eZz(1-Y)/2 to r t t%(Y-l)-"'Jy_1(2Yti) dt.

Re(y - 1'1.) > 0, largzl < n, y,p 0, -I, -2, ...

Hint. Expand the Bessel function in power series, and then integrate term
by term.

13. Derive the integral representation

(
.) _ 2Z(1-y)/2 ,00 -I "'- Yz(l +Y) (Y-) d

'Yrx,y,z -r(rx)r(rx-y+l»o e t Ky- 1 2 zt t,

Re 1'1. > 0, Re (1'1. - y) > - 1, larg zl < n,

where Kiz) is Macdonald's function.

14. Prove the formulas

<1>( ) r(y) e te- 1(1 _ t)y-e-l<1>(rx, C', zt) dt,
1'1., y; Z = I'(C)r(y _ c) Jo

<1>(1'1., Y + 1; z) = YJ
o
l <1>(1'1., y; zt)tY- 1 dt,

15. Show that the Laplace transform of <1>(1'1., y; x) is

q)(rx,y;x) = ~F(I'I., I;y;~),

Re y > Re c > 0,

Rey > 0.
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2[L + I "# 0, - 1, - 2, ...

16. Verify that the Whittaker functions Mk ...cz) and Wk.,,(z) are a pair of
solutions of Whittaker's equation

" ( I k t - [L2) 0
U + --+-+---u=,4 Z Z2

with Wronskian

r(2[L + 1)
W{Mk.,,(z), W, ...cz)} = - ret - k + [L)'

Hint. Use the definitions (9.13.16).

17. Derive the integral representation 46

Zke -z/2 fOO (t)"+k-J~
Wk...cz) = r([L _ k + ·D Jo e- t t,,-k-Y2 I + z dt,

Re([L - k + -!-) > 0, jargzl < 1t.

18. Using the result of the preceding problem, prove the asymptotic formula

Wk,,,(z) ::::; e- z/2 zk, Izi --+ 00, larg z[ ~ 1t - a.
19. Using the results of Sec. 9.13, derive the following representations of
various special functions in terms of Wk.iz):

E t" _ _1_ - z 2 /2 W ( 2) 1 1 1trlcz - /_e -y..y' z, argz < -2'
2"\ z

Ei (z) = - . /1 eZ/2 W_Y2. 0( -z), larg (-z)1 < 1t,
v -z

Ii (z) = - J z W - Y2'0( - log z), larg zl < 1t, larg (l - z)1 < 1t,
-log z

Kiz) = J~ Wo.v(2z), larg zl < 1t.

20. Prove that
p

II etr
d ) r = 1

dzpFietr;Ys;Z = tIYspFirxr + l;ys + l;z).

8=1

21. Prove that

P+1Fq+1(etr; Ys; Z)

= r(Yq+1) e t"P+1 -1 (l - t)Yq+1 -"P+1- 1pFq(rxr; Ys; zt)dt,
r(rxp +l)r(yq+ 1 - rxp + I) Jo

Re Yq+1 > Re rxp +1 > 0,
where larg (l - z)1 < 1t if p = q + 1.

22. Derive the formula

[F( r< • r< l. )]2 _ F ( 2et, 2~, et + ~; z ).
rx, 1-', et + I-' + "I, Z - 3 2 et + ~ + -t, 2et + 2~

46 E. T. Whittaker and G. N. Watson, op. cit., p. 340.
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Hint. Find a third-order linear differential equation satisfied by the square
of the function F(rx, [3; rx + [3 + t; =),47 and show that the function

. F. ( 2rx, 2[3; rx + [3; = )
3 2 rx + [3 + 1-; 2rx + 2[3

is the solution of this equation which is analytic in a neighborhood of the
point == O.

47 E. T. Whittaker and G. N. Watson, op. cit., Problems 10-11, p. 298.



10
PARABOLIC CYLINDER FUNCTIONS

10.1. Separation of Variables in Laplace's Equation in
Parabolic Coordinates

To solve the boundary value problems of potential theory for a domain
whose surface is an infinite parabolic cylinder, it is appropriate to use a
coordinate system such that the cylinder corresponds to a constant value of
one of the coordinates. Thus, let x, y and z be a system of rectangular co
ordinates with the z-axis parallel to the generator of the cylinder and the x
axis along the axis of symmetry of anyone of the parabolas in which the
planes perpendicular to the z-axis intersect the cylinder. Choosing the origin
at the focus of this parabola, we introduce a three-dimensional system ofpara
bolic coordinates IX, ~, z, related to the rectangular coordinates x, y, z by the
formulas

where

y = CIX~, Z = z, (10.1.1)

- 00 < IX < 00, 0:( ~ < 00, - 00 < z < 00,

and c > 0 is a scale factor. The corresponding triply orthogonal system of
surfaces consists of the parabolic cylinders IX = const with foci at the origin,l
described by the equation

2 2( C1(
2

)Y = - 2cIX X - T ' (10.1.2)

1 The surface IX: = canst > 0, is the half of the parabolic cylinder (10.1.2) with y > 0,
and the surface IX: = -canst is the other half, as indicated in Figure 38.

281



282 PARABOLIC CYLINDER FUNCTIONS CHAP. 10

(10.1.3)

the parabolic cylinders ~ = const with foci at the origin, described by the
equation

y2 = 2C~2(X + ci}
and the planes z = const (see Figure 38). In particular, given a parabolic
cylinder with equation

(10.1.4)

in standard form,2 suppose we choose the product c~~ equal to p. Then the
cylinder (10.1.4) has equation ~ = ~o in the coordinates iX, ~, z, and the do
main inside the cylinder to the values 0 ~ ~ < ~o, while the domain outside
the cylinder corresponds to the values ~o < ~ < 00.

y

=const

a=Q
-~+----+--f-tt--+-----1I---'--'-----X

FIGURE 38

It is an immediate consequence of (10.1.1) that the square of the element
of arc length in the coordinates iX, ~, z is

ds2 = c2(oc2 + ~2) (doc2 + d~2) + dz2.

Therefore the metric coefficients are

(10.1.5)

2 Here p is the distance from the focus (at the origin) to the directrix.
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and Laplace's equation takes the form [cf. (8.1.3)]

\72 _ 1 [CPU cPu 2( 2 2) CPU]
U - c2(a2 + ~2) 0(1.2 + 0~2 + c (1. + ~ OZ2 = O.

Now suppose we look for solutions of (10.1.6) of the form

U = A«(1.)B(~)Z(z).

Then the variables separate, and we obtain

1 [1 d 2A 1 d 2B] 1 d 2Z
c2((1.2 + ~2) A d(1.2 + B d~2 = - Z dz2 = A

2
,

where Ais an arbitrary constant. It follows that

d 2Z
dz2 + A2Z = 0,

1 d 2A 1 d 2 B 2 2 2 2)
A d(1.2 + 13 d~2 - A C «(1. + ~ = O.

The last equation, in turn, can hold only if

d 2A
d(1.2 + (fl - A2C2(1.2)A = 0,

d 2 B
d~2 - (fl + A2C2~2)B = 0,

(10.1.6)

(10.1.7)

(10.1.8)

(10.1.9)

(10.1.10)

where fl is again a constant. Thus Laplace's equation has infinitely many
solutions of the form (10.1.7), depending on two arbitrary parameters Aand fl.

In most physical problems, the parameter A is a positive real number
(cf. Sec. 9.10). Then, introducing new variables

- 00 < ~ < 00, 0,;;;." < 00,

and a new parameter v related to fl by the formula

fl = Ac(2v + 1),

we reduce equations (10.1.9-10) to the form

d 2A
d~2 + (2v + 1 - ~2)A = 0,

d 2 B
dY)2 - (2v + 1 + Y)2)B = O.

10.2. Hermite Functions

(10.1.11)

(10.1.12)

We now investigate equations (1.10.11-12), which, as just shown, arise
when separating Laplace's equation in parabolic coordinates. Clearly, the
problem reduces to studying the linear differential equation

U" + (2v + 1 - Z2)U = 0 (10.2.1)
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for arbitrary real or complex z and v. If we make the substitution

(10.2.1) goes into the equation

v" - 2zv' + 2vv = 0,

CHAP. 10

(10.2.2)

(10.2.3)

(10.2.4)

which for nonnegative integral v = n (n = 0, 1,2, ... ) is just the differential
equation (4.10.4) for the Hermite polynomials studied in Chapter 4. There
fore, in the case where the parameter v is arbitrary, it is natural to call the
solutions of (10.2.3) Hermite functions, while the corresponding solutions of
(10.2.1) are called parabolic cylinder functions. 3

The Hermite functions can be expressed in terms of the confluent hyper
geometric function <D(oc, ,; z). In fact, if we choose t = Z2 as a new inde
pendent variable, equation (10.2.3) goes into

d
2
v (1 )dv v

t dt2 + 2 - t dt + 2v = 0,

which is the special case of equation (9.10.1) corresponding to the parameter
values

v
oc = - 2'

1, = -.
2

Therefore, according to (9.10.2), the general solution of the differential
equation (10.2.4) is

v = A<D( - ~,~; t) + BVf<DC ~ v,~; t), (10.2.5)

or

(
vI. 2) (1 - v 3. 2)

V = A<D - 2' 2' z + Bz<D -2-' 2' z , (10.2.6)

after returning to the original variable z. In particular, choosing the con
stants A and B to be

A = 2
V
r(!) ,

rC ~ V)
B= (10.2.7)

3 The definition given here differs somewhat from that prevalent in the literature (see
the Bateman Manuscript Project, Higher Transcendental Functions, Vol. 2, Chap. 8),
where the term parabolic cylinder function refers to a solution of the equation

" ( 1 Z2) 0U + v+ 2 - 4 u= ,

which reduces to (10.2.1) if we make the substitution z = v'2t. One of the solutions of
this equation is the function Dy(z), related to our function H,(z) [see (10.2.8)] by the
formula
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we arrive at the solution
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2
vr(t) ( v I. 2) 2

Vr( - t) (I - v 3. 2)
V = H.,(z) = (I _V) <D - 2' 2' z + ( V) z<D -2-' 2' z , (10.2.8)

r -2- r -2

which we call the Hermitefunction (of degree V).4 It follows from (10.2.8) and
the known properties of the gamma function and the confluent hypergeo
metric function that Hiz) is an entire function both of the variable z and the
parameter v.

If v = n (n = 0, I, 2, ... ), one of the terms in (10.2.8) vanishes and the
other reduces to a polynomial in z. Using formulas (1.2.1-3) from the theory
of the gamma function, we find after some simple calculations that

H () - ( I)m (2m)! m( 1. 2)
2mZ - - -,-'l-'-m,2:'Z,m.

H ( ) - ( I)m (2m + I)! 2 m( .J.. 2)
2m + 1 Z - - ,Z'l-' - m, 2, Z .

m.

(10.2.9)

Comparing these formulas with (9.13.8-9), we see that if v = n, the function
HvCz) reduces to the Hermite polynomial of degree n.

If v t= 0, 1,2, ... , the general solution of equation (10.2.3) can be ex
pressed in terms of Hermite functions. In fact, since equation (10.2.3) does
not change if we replace z by -z, the function U2 = Hi -z), as well as the
function VI = Hiz), is a solution of (10.2.3). By the usual method (cf.
Sec. 5.9), it is easily shown that the pair of solutions VI' u2 has a Wronskian
of the form

where C is a constant. Setting z = 0 and taking account of the formulas

H (0) = 2
v
r(-D ,

v rC ~ V)
H~(O) = 2

V

r( -t),

r(- ~)
(10.2.10)

which are immediate consequences of (10.2.8), we find that

22V + 1rmr( -t) 2V + 1y;C= W{Vl' v2L=o = - (1 _V) ( V) = r(-v) ,
r--r--

2 2

4 It should be noted that according to (9.10.3), the Hermite function Hiz) bears the
following simple relation to the confluent hypergeometric function of the second kind:

Hiz) = 2V '¥( - ~,~; Z2).
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where in the last step we have used formulas (1.2.2-3) from the theory of the
gamma function. It follows that

2Y + lV~
W{Hy(z), Hi -z)} = r( -v) ez2

(10.2.11)

Therefore, if v #- 0, 1, 2, ... , the solutions Hy(z) and Hy( - z) are linearly
independent and the general solution of (10.2.3) can be written in the form

v = MHiz) + NHy( -z). (10.2.12)

However, suppose v = n (n = 0, 1,2, ... ), so that W == O. Then Hy(z) and
H y ( -z) are linearly dependent, and in fact,

(10.2.13)

Therefore the right-hand side of (10.2.12) is no longer the general solution of
(10.2.3).

To obtain an expression for the general solution of (10.2.3) which is
suitable for arbitrary values of the parameter v, we first observe that the sub
stitution

v = ez2 w,

transforms (10.2.3) into the equation

~ = iz

w" - 2~w' - 2(v + l)w = 0, (10.2.14)

which is the same as (10.2.3) except that v has been replaced by -v - 1. It
follows that the functions

(10.2.15)

are also solutions of equation (10.2.3). Calculating the Wronskians

W{Hiz), eZ2 H_ y_1(iz)} = ezLY2(Y+l)"t,

W{Hy(z), eZ2H_y_1(-iz)} = ez2 +%(Y+l)"i,
(10.2.16)

we find that each of the solutions (10.2.15) is linearly independent of Hiz).
Therefore, for arbitrary v, the general solution of (10.2.3) can be written in
either of the following equivalent forms:

v = MHy(z) + NeZ2 H_ y_1(iz) = PHiz) + Qez2 H_ y_1(-iz). (10.2.17)

Finally, comparing (10.2.17) and (10.2.2), we find the following expres
sions for the general parabolic cylinder function:

u = Me- z2 /2Hiz) + Nez2/2H_y_l(iZ)

= Pe- z2 /2Hiz) + Qez2 /2H -y-l( -iz).
(10.2.18)
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10.3. Some Relations Satisfied by the Hermite Functions

In the preceding section, it was shown that each of the functions

Vi = HvCz),

V2 = HvC -z),

Va = eZ2 H_ v _ 1(iz),

V4 = eZ2 H_ v _ 1(-iz)
(10.3.1)

is a solution of equation (10.2.3). Since a second-order linear differential
equation cannot have three linearly independent solutions, it must be possible
to write each of the functions (10.3.1) as a linear combination of any two
others. In particular, if v i= - 1, - 2, ... ,5 there must exist a relation of the
form

(10.3.2)

To determine the constants M and N, we use the conditions (10.2.10), obtain
ing the system of equations

22v
+ 1r (1 + ~)

M + N = rC; V) ,

Transforming the right-hand sides of these equations by using formulas
(1.2.2-3) from the theory of the gamma function, we find that

2v + 1r(v + 1) V1t
M + N= cos-2 '

V1t
2V+ 1r(v + 1) .. V1t

M - N = V1t I Sill 2'

(10.3.3)

Solving the system (10.3.3) and substituting the resulting values of M and
N into (10.3.2), we arrive at the relation

Hv(z) = 2vr~: 1) eZ2[eVlti/2H -v-l(iZ) + e- vlti /2H -V-l( -iz)]. (10.3.4)

Formula (10.3.4) remains valid for negative integral v if we take the right-hand
side to mean its limit as v -+ - n (n = 1, 2, ... ). Replacing z by - z in
(10.3.4), we obtain the relation

Hi -z) = 2vr~: 1) eZ2[eVltil2H -V-l( - iz) + e- vlti /2H -V-l0Z)]. (10.3.5)

5 If v # - 1, - 2, ... , then
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Further relations can be deduced from (10.3.4-5) by purely algebraic
operations. For example, we have

2V+ 1y;
H(z) = evniH(_z) + ez2 +%(v+1)niH (-/·z) (1036)

v v r( _ v) - v-I , . •

2V +ly;
H (z) = e-vniH (-z) + ez2 -Y,(v+1)niH (iz) (10.3.7)

v v r( _ v) - v -1 ,

and so on.

10.4. Recurrence Relations for the Hermite Functions

The Hermite function Hv(z) satisfies simple recurrence relations which
generalize the corresponding formulas for Hermite polynomials (see Sec. 4.10)
to the case where the degree v is an arbitrary complex number. To derive
these recurrence relations, we first make a preliminary transformation of
(10.2.8), which leads to a simple power series representation of HvCz). Replac
ing the hypergeometric functions in (10.2.8) by their explicit series representa
tions [cf. (9.9.1)], and using the formulas

r( - ~)rC ; V) = 2V +1y;r( -v),

r2 G) = -r( -~)rG) = TI,

implied by (1.2.2-3), we have

Since, according to (1.2.3),

(m+ 1) (m + 2) . j- . j-2mr -2- r -2- = v TI rem + 1) = v TIm!,

(10.4.1)

(10.4.2)
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formula (10.4.2) can be simplified to 6
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Izi < 00. (10.4.3)

This expansion, which is of independent interest, allows us to give a very
simple derivation of the required recurrence relations.

Differentiating the series (l0.4.3) and introducing the new summation
index n = m - 1, we find that

Thus the Hermite function Hiz) satisfies the recurrence relation

H~(z) = 2vHv _ 1(z), (10.4.4)

which generalizes formula (4.10.2). Next we differentiate (10.4.4), obtaining

H~(z) = 2vH~ -l(Z),

which, together with the differential equation (l0.2.3) written in the form

H~(z) - 2zH~(z) + 2vHiz) = 0,
implies

2vH~ -l(Z) = 2zH~(z) - 2vHiz). (10.4.5)

Using (10.4.4) to eliminate H~ -l(Z) and H~(z) from (1004.5), we obtain

Hlz) - 2zHv _ 1(z) + 2(v - I)Hv _ 2(z) = 0. (10.4.6)

Finally, replacing v by v + 1 in (10.4.6) leads to another recurrence relation

(10.4.7)

which agrees with our previous formula (4.10.1) when v is a positive integer.

6 Because of the intervention of the duplication formula (10.4.1), the series (10.4.3)
can be used for nonnegative integral v = n only if we agree that the indeterminate ratio

r( -I)
r(-2)

is formally equal to -4 [the value consistent with (10.4.1)], and all other indeterminate
expressions are evaluated with this in mind.
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(l0.5.1)

10.5. Integral Representations of the Hermite Functions

Various integral representations of the Hermite functions Hy(z) involving
contour integrals or definite integrals can be derived by summing the series
defining Hy(z). The simplest such representation is obtained from (l0.4.3)
by assuming that Re v < 0 and replacing f[t(m - v)] by an integral of the
type (1.1.1). This gives

HvCz) = 1 ~ (-1)m~2z)m roo e- 8s'lz(m-yl-1ds
2f( -v)m=o m. Jo

I fOO -8 -1/v-1 d ~ (-I)m(2zVs)m=--- e s 72 SL-
2f( -v) 0 m=O m!

I foo= e- 8 - 2Z'/Ss- 'lz y - 1 ds
2r( -v) 0 '

where reversing the order of summation and integration is justified by an
absolute convergence argument. Introducing the new variable of integration

t = vi, we can write (10.5.1) in the form

(l0.5.2)Re v < O.
I roo

HvCz) = f( -v) Jo e-t"-2tZt-y-1 dt,

This formula resembles the integral representations of Sec. 4.11, derived
earlier for the Hermite polynomials. In particul~r, it follows from (10.5.2)
that the Hermite functions of negative integral degree can be expressed in
closed form in terms of the complementary error function (2.1.6). In fact,
setting v = -I in (10.5.2), we obtain

H () - fro - t2- 2tz dt - z2f ro - (t + z)2 dt - z2 f ro - 8 2 d_ 1 Z - e - e e - e e s,
o 0 z

i.e.,
H -l(Z) = ez2 Erfc z, (l0.5.3)

and in general

(_1)n d n z2
H -n-1(Z) = -2n I d n (e Erfc z),n. z

n = 0, 1,2, . . . (l0.5.4)

Another important integral representation of HvCz) can be deduced from
(10.3.4) by replacing the Hermite functions in the right-hand side by integrals
of the form (l0.5.2). Under the assumption that Re v > -I, this gives

or

Re v > -1. (l0.5.5)
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Formula (10.5.5) is the generalization of the integral representations
(4.1 1.2-3) of the Hermite polynomials, to which it reduces when v = n
(n = 0, 1, 2, ... ).

Some other integral representations of the Hermite functions are given in
Problems 1-4 at the end of this chapter.

10.6. Asymptotic Representations of the Hermite Functions for
Large jzl

To derive asymptotic representations of the Hermite functions Hy(z) for
large Izi and fixed lvi, we first assume that Re v < 0, larg zl < rt/2. Then,
using (10.5.2) to represent Hy(z), we replace e- t2 by its Taylor series expansion
with remainder, i.e.,

(10.6.1)

where

Integrating term by term and noting that

foo f(2k - v)e-2tzt2k-v-l dt = --,';:---,-,;:-:---'
o (2Z)21< v'

k = 0, 1,2, ... (10.6.2)

if Re z > 0, Re v < 0 [cf. (1.5.1)], we find that

Hy(z) = (2Z)VL~0 (-1):~-vh (2Z)-2k + rn(z)}

where

and

(10.6.3)

(-v)o = 1, (-vb = r( ~~_+v)2k) = (-v)( -v + 1)···(-v + 2k - 1)

(k = 1, 2, ... ). Now suppose that

larg zl ~ ~ - a,

where a > 0 is arbitrarily small. Then it is easily seen that

Irn(z)I ~ (2IzJ)-Revey
,1t

l
lmV! roo e-2tjzlsinOt2n+l-Revdt = O(!zl-2n-2)

jr( -v)l(n + I)! Jo
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(cf. footnote 37, p. 269), and hence (10.6.3) can be writtell in the form

HvCz) = (2z)Y L~o (-I)~!-vhk (2Z)-2k + O( Izl-2n-2)l (10.604)

Next we show that (10.6.5) remains valid for arbitrary v. In fact, let the
condition Re v < 0 be replaced by the weaker condition Re v < I. Then,
using the recurrence relation (1004.7), we represent Hy(z) in the form

HvCz) = 2zHy_1(z) - 2(v - I)Hy_2(z), (10.6.5)

where the real part of the degree of each Hermite function on the right is
negative. Applying (10.604) to each of these functions, and making some
simple calculations, we obtain an expansion of the same form as (10.604),
thereby extending (10.604) to the case Re v < 1. Repeating this argument as
often as necessary, we find that (10.604) is valid for any value ofv. Moreover,
by slightly modifying the method used to prove (10.604),7 we can extend the
result to the larger sector

37t
largzl ~ ""4 - a.

Thus, finally, we arrive at the following asymptotic representation of HvCz)
for large z and fixed v:

37t
larg zl ~ "4 - a.

(10.6.6)

Asymptotic representations of HvCz) which are valid in other sectors of the
complex plane can be derived from (10.6.6) by using the relations (10.3.6-7).
For example, if

7t 57t
4: < arg z < '"4'

then

larg (-z)1 = larg z - 7t1 < 3;, larg (-iz)1 = larg z _ ~I < 3;.

Therefore, applying (10.6.6) to each Hermite function in the right-hand side
of (10.3.6), we find that

Hy(z) = (2ztL~o (~~)k (-V)2k(2z)-2k + O( [zl-2n-2)]

_ v/;e
yni

eZ2 z- y- 1 [ I (v + Ihk (2Z)-2k + 0(l zl-2n-2)],
f( -v) k=O k!

7t 57t4: + a ~ arg z ~ "4 - a. (10.6.7)

7 Instead of (10.5.2), use the integral representation

1 f",·e t8

Hv(Z) = -- e-t2-2tZt-V-l dt,
r( -v) 0

where 161 < 7t/4 and the integration is along the ray arg t = 6.
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Similarly, it follows from (10.3.7) and (10.6.6) that

Hy(z) = (2Z)yL~ (~~)k (-V)2k(2z)-2k + 0(l z l-2n-2)]

_ ~e-Ynt e Z2 z- Y - 1 [i (v + Ihk(2z)-2k + 0(lzl- 2n-2)],
r( -v) k=O k!

- C41t
- s) ~ argz ~ - (i + s). (10.6.8)

Together, formulas (10.6.6-8) give a complete description of the behavior
of the function Hy(z) for large Izi. These formulas do not contradict each
other in their common regions of applicability, since the second terms of
(10.6.7-8) are small compared to the first terms if

31t 1t
- 4 < arg z < - 4'

1t 31t

4 < argz < 4'

and can therefore be included in the term O( 1z[ - 2n - 2).
Finally, we note that (10.6.4) is an immediate consequence of the asymp

totic representation (9.12.3) for the confluent hypergeometric function of the
second kind and the fact that

(cf. footnote 4, p. 285).

10.7. The Dirichlet Problem for a Parabolic Cylinder

The special functions studied in this chapter allow us to solve the boundary
value problems of potential theory for the case of a domain bounded by a
parabolic cylinder. To find the appropriate set of solutions of Laplace's
equation, we introduce the parabolic coordinates (10.1.1) and look for solu
tions in the form of the product (10.1.7), thereby arriving at equations
(10.1.8-10). Ifwe require that the solutions be bounded in the whole domain,
in particular at infinity, it must be assumed that the parameter Ais real. 8 Then
the corresponding solution of (10.1.8) is

z = C cos AZ + D sin AZ, A ~ 0, (10.7.1)

which is bounded for - 00 < Z < 00.

Introducing the new parameter v related to f1. by the formula

f1. = 'Ac(2v + 1),

8 Without loss of generality, we can assume that). is nonnegative, since changing the
sign of). does not affect the separation constant ).2.
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and using (10.2.18), we find that the general solution of (10.1.9) can be written
in the form

A = Me-Acrx2/2HvCVACtY..) + NeAcrx2/2H_v_1(iVActY..).

According to the asymptotic formulas of Sec. 10.6,

(10.7.2)

tY.. --* 00,

tY.. --* 00,

and hence we must set N = °if the solutions are to be bounded. Moreover,
for v 1= 0, 1,2, ... , we have

tY..--*-00

and therefore we must also set M = 0. It follows that unless v is a non
negative integer, there are no solutions which are bounded as tY.. --* ± 00

(except the trivial solution identically equal to zero).
For integral v = n (n = 0, 1,2, ... ), the Hermite functions reduce to

Hermite polynomials, and the solution of equation (10.1.9) bounded in the
interval ( - 00, 00) is

n = 0, 1,2, ... (10.7.3)

Substituting the corresponding value fJ. = Ac(2n + 1) into (1O.1.10), we can
write the general solution of this equation as

(10.7.4)

[cf. (10.2.18)]. Combining (10.7.1) and (10.7.3,4), we see that Laplace's
equation has infinitely many solutions of the form

U = U = e-Acrx2/2H (VACtY..)[P el>.c02/2H (iVAc R)A,n n r..,n n t-'

Q -l>.c02/2H (, /:;-R)]COS AZ+ I>. ne - n -1 V "C r' . , '
, SIn "Z

A ~ 0, n = 0, 1,2, ... , (10.7.5)

which are bounded for - 00 < tY.. < 00, - 00 < Z < 00. For the exterior
problem, ~ varies over the interval ~o < ~ < 00, where the surface of the
parabolic cylinder corresponds to ~ = ~o, and hence we have to set Pl>.,n = 0,
in view of the asymptotic formulas

Hn(iVAC~) ~ in(2VAC~)n, ~ --* 00,

H _n_1(VAC~) ~ (2VAc~)-n-1, ~ --* 00.

We now show that Ql>.,n must be set equal to °if the solutions (10.7.5)
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are to be harmonic in the case of the interior problem, where 0 ~ ~ < ~o.

Here the decisive consideration is the behavior of grad u near the singular
curve of the transformation (10.1.1), i.e., the line oc = ~ = 0 on which the
Jacobian 8(x, y, z)j8(oc, ~,z) vanishes. It is an immediate consequence of
(10.1.5) that

(grad U)2 = C2(OC2 1+ ~2) [(~~r + (~~r] + (~~r

Since the denominator in the right-hand side vanishes on the curve oc = ~ = 0,
a necessary condition for grad u to be finite is that the expression in brackets
should also vanish for oc = ~ = 0, i.e., that Q/-.n = 0, since (10.7.5) implies 9

[(~~r + (~~rL=~=o = (VAeQ/-.n~;~~r = O.

Moreover, this condition is also sufficient, since it is easily verified that if
Q/-.n = 0, then the expression

[(~~r + (~~r]
is divisible by oc2 + ~2, so that grad u is well-behaved on the line oc = ~ = 0. '0

Thus the appropriate particular solutions of Laplace's equation are

2 2 • j- . j- cos AZu = u = P e-(/-c/2)(cx - ~ )H (v Acoc)H (iv ACI<). ,
/-.n /-.n n n I-' SIn AZ

A ~ 0, n = 0, 1,2, ." (10.7.6)

for the interior problem, and

2 2 • j- • j- cos AZu = u = Q e-(/-c/2)(cx +~ >H(VACOC)H_ _ (VAeI<). ,
/-.n /-.n n n 1 I-' SIn AZ

A ~ 0, n = 0, 1,2,. .. (10.7.7)

for the exterior problem.
Boundary value problems involving parabolic cylinders are solved by

superposition of the particular solutions (10.7.6-7). For example, consider
the interior Dirichlet problem, assuming, for simplicity, that the function
1 = f(oc, z) appearing in the boundary condition

ul~=~o =1 (10.7.8)

9 In the course of the calculations, we use the formulas

H.(O)H~(O) = 0,
mt

H.(O)H'-._l(O) = - cos-r

n = 0, 1,2, ... ,

which follow from (10.2.10).
10 Cf. the analogous treatment for an oblate spheroid on p. 217.
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(10.7.9)- 00 < Z < 00,

is an even function of z, which implies that the same is true of the solution
u = u(oc, ~,z)Y Suppose thatfcan be expanded in a Fourier integral

f = LX> f).(oc) cos AZ dA,

where

21 00

f). = - fcos AZ dz,
7t 0

(10.7.10)

and moreover suppose that the solution u can also be represented as a Fourier
integral

(10.7.11)- 00 < Z < 00.u = fooo u).(oc, ~) cos AZ dA,

Then, according to (10.7.6), we can look for u).(oc, ~) in the form of a series

00

u).(oc, ~) = 2: P).,ne-().C/2)(c<2 - B2)HiVAcoc)Hn(tv'Ac~),
n=O

- 00 < oc < 00, 0:::; ~ < ~o, (10.7.12)

and we have the condition

00

f).(oc) = 2: P).,ne-()'cI2)(c<2-B~)Hn(ocVAc)Hn(iVAc~o),
n=O

-00 < oc < 00 (10.7.13)

for determining the coefficients P).,n' Assuming that f( oc) satisfies the condi
tions of Theorem 2, p. 71, we find that

and hence the expansion coefficient u).(oc, ~) is given by the sum

u).(oc,~) = ~ e-()'cI2)(c<2_B2+B~) Hn(iviC~) HiV\coc)
n=O Hn(iVAC~o)

VAC foo , . I-X ----:;= e-).cc< 12f).(oc)Hn(v ACOC) doc,
2nn!v 7t - 00

(10.7.15)

Substituting (10.7.15) into (10.7.11), we obtain the formal solution of our
problem.

" The case where lis an odd function of z is handled in the same way. Then the solu
tion in the general case is represented as the sum of the solutions of the two simpler
problems with the following even and odd boundary conditions:

I, = -H/(oc, z) + I(oc, - z)], 12 = -H/(oc, z) - I(oc, - z)].
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10.8. Application to Quantum Mechanics

The Schr6dinger equation for a linear harmonic oscillator of mass m,
angular frequency <vo and total energy E has the form

(10.8.1)

where!J; is the wave function and Ii is Planck's constant. 12 In quantum mech
anics, it is required to find the values of E for which (10.8.1) has bounded
solutions in the interval - 00 < x < 00. If we set

2mE
[J. = 712'

m<voAC = --,
Ii

equation (10.8.1) coincides with equation (10.1.9). It follows from the
results of Sec. 10.7 that the solutions of (10.8.1) are bounded in (- 00, 00)

only if

i.e., only if

which implies

[J. = Ac(2n + 1),

2mE ( 1) m<Vo,-----rJ2 = 2n + Ii

n = 0, 1,2, ... ,

n = 0, 1,2, ... ,

n = 0, 1,2, ... (10.8.2)

The corresponding wave functions can be expressed in terms of Hermite
polynomials.

PROBLEMS

1. Derive the following integral representations of the Hermite functions:

Re v < 1, larg zl < ~,

7t
Rev < 0, largzl < 2'

Hint. Use formulas (9.10.3) and (9.11.6), and the representation of HvCz) in
terms of '1'"(0(, y; z), the confluent hypergeometric function of the second kind
(see footnote 4, p. 285).

12 See D. Bohm, Quantum Theory, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1963),
p.296.
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Rev < 0,

2. Derive the following integral representation of the product of two Hermite
functions:

H",(z)HvCz)

r(-fJ. - v) ("12 . -",-1' -v-1
= r( _ fJ.)r( _ V)Jo H",+v[z (COS <p + SIn <p)] COS <p SIn <p d<p,

Re fJ. < 0, Re v < O.

Hint. Use (10.5.1) and transform to polar coordinates in the double
integral.

3. Prove the integral representation

H",(z)HvCz) = 1 ('" e-t2-2ztt-"'-V-12F2(-fJ.~~v: it~ fJ. _ v) dt,
r(-fJ. - v)Jo - -2-' 2

where 2F2 is a generalized hypergeometric function (see Sec. 9.14).

Hint. Use (10.5.1) to represent the left-hand side as a double integral over
the square 0 ~ s < IX), 0 ~ t < IX), and then transform to the new variables
u = s + t, v = tis.

4. Prove the formulas

1 f. '" ( 1 t
2

)[H(Z)]2 = --- e-t2-2ztt-2V-1<I1 -v -v + -'- dt
v r( - 2v) 0 '2' 2 '

1 ('" ( 1P)HvCz)Hv+1(z) = r( -2v _ 1))0 e-t2-2ztr2v-2 <II -v - 1, -v - 2:; 2" dt,

Rev < -t.

5. Show that the Hermite functions satisfy the integral equation

X-(V+1)!2HvCx) = 2 fo'" (xy)1!2J _vI2(2xy)y-(V+1)!2HvCy) dy,

o < x < IX) , Re v < 1.

6. Show that the Hermite functions of half-integral degree can be expressed in
terms of the cylinder functions of imaginary argument. In particular, prove
the relation

1t

larg zl < 2'

Hint. Use the integral representation (10.5.1), and make the change of
variable t = 2z sinh2 (6(4).

7. Prove the formula

Ko(x
2
~ y2) = 2 n~o (-l)n~~n + 1) e-(X2+y2)12H 2n(x)H -2n-1(y),

- IX) < x < IX) , 0 ~ Y < IX) ,

where Ko(z) is Macdonald's function.

Hint. Apply Theorem 2, p. 71 and the result of Problem 1.
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8. Consider the system of paraboloidal coordinates ot, ~, tp related to the rect
angular coordinates x, y, z by the formulas

x = Cot~ cos tp, y = Cot~ sin tp,

where 0 "" ot < ro,O "" ~ < ro, - IT < tp "" IT, and c > 0 is a scale factor. In
this coordinate system, the surfaces ot = const, ~ = const are paraboloids of
revolution instead of parabolic cylinders, as in (10.1.1). Find the square of
the element of arc length, the metric coefficients and Laplace's equation in the
system ot, ~, tp. Show that separation of variables is possible in Laplace's
equation written in the coordinates ot, ~, tp, and find the appropriate particular
solutions, both for the interior and the exterior problem.
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