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Resume

Nous décrivons une méthode récurrente de détermination des facteurs spéciaux de suites
automatiques.

Abstract

We give an inductive method to determine the special factors of some automatic sequences.

1. Introduction

The study of factors of infinite sequences goes back at least to Thue [10,11]. Among
the questions which have been addressed is the problem of computing the complexity
function P, where P(n) is the number of factors of length n.

We quote here some results obtained by the analysis of the special factors of
particular sequences on sets of two elements:

— computing the complexity function of the Thue—Morse sequence [3,6] and the

Fibonacci’s one [2].

— construction of an automaton for computing the sequence P(n + 1)-P(n) for some

infinite words [9].

The study of the special factors of sequences whose complexity function is 2n + 1
(therefore defined on sets of three elements) and satisfying some technical require-
ments, show that they can be represented by an exchange of six intervals [1]. (This
extends a classical result on representation of Sturmian sequences by rotations [8]).
The sequence is represented by a graph which is used as a foundation to build a kind
of abstract generalization of continued fraction expansion, on three elements. The
proofs use classical results of graph theory and can easily be extended to sequences
whose complexity function is (k + 1)n + 1 (therefore defined on sets of k elements) and
satisfying the following condition (x):
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(+) Forany integer n, there exists a unique special factor of length n. Such sequences
can be represented by an exchange of 2k intervals.

We think that a generalization of the procedure used in [1] will allow us to get
a geometric representation of (at least) sequences with linear increase. Before trying to
get an eventual representation, we have to investigate sequences satisfying (*).

Our aim is to give an inductive method to determine the special factors of
automatic sequences (fixed points of injective constant length substitutions) without
constraint in the number of the elements of the set. This (certainly) will make us know
more about sequences satisfying ().

2. Preliminaries

Let A* be the free monoid generated by a non-empty finite set 4 called alphabet.
The elements of 4 are called letters and those of 4* words. For any word v in A*, jv|
denotes the length of v, namely the number of its letters. The identity element of A*
denoted by ¢ is the empty word; it is the word of length 0. A word v is said to be
a factor of w if w = xvy for some x,y in 4*. We then write v|w. If x = ¢ (resp. y = ¢),
vis called a prefix (resp. suffix) of w. A prefix or a suffix of w is said to be a strict one if it
is different from w.

We denote by M (A) the set A* UA™ where A™ is the set of infinite words with letters
in A.

We call substitution, a morphism f:4 — A* It can be naturally extended to
a morphism from A* to A*. A substitution is said to be a constant length ¢ substitu-
tion if ¢ = | f(i)| for any letter i of A. If there exists a letter a € 4 such that f(a) = am
with {m| > 0. then the set of words with prefix a has a fixed point u = am f(m)
fim) ... f5m) ...

Let k > 2 be an integer and let [k] denote the set {0,1, ... ,k — 1]. A k-automaton is
given by

(i) to alphabets 2 and E,

(11) an initial point x, € 2,

(i1) an application @:[k]x X — X,

(iv) an application 7: 2 — E.

For any couple (/, x) € [k] x 2, let ¢( j, x) = j(x) or more simply jx. The application
@:[k] x 2 — Z can be naturally extended to an application from [k]* x 2 to 2 in this
way. let eg e, 1, ...,e0€[k] and let xeZ. Inductively, set eze, | ...e4(x)
=e,e,_1 ... ¢1(eo(x)) and ¢(e,x) = x.

Let n > 1 be an integer. We develop r as follows: n = Z;Loej(n) k’. Let g be the
largest integer contained in logn/logk. If j > g put e;(n) = 0 and e,(n) # 0. Therefore,
n can be represented by ey(n) e, _,(n) ... eg(n) € [k]* and 0 is represented by the empty
word. For any x € X, define nx = e (n) e, ,(n) ... eo(n) x. Then when n strokes the
sequence of all integers, (nxg),cn IS an infinite sequence of elements in X and
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(t(nxo))sen 18 an infinite sequence of elements in E. A sequence ¢ is said to be
k-recognizable if there exists a k-automaton (X, xo. ¢, E, 7) such that t = (1(nx¢)),en-
We have the following result [4].

Proposition 1. Let E be a not empty finite set,t = (t,) € EN and k a prime integer. Then
the following are equivalent:
(1) The sequence t is recognizable by a k-automaton.
(1) t is generated by a substitution of constant length k.
(iti} There exists a finite field K of characteristic k and an injective application
%2:FE — K such that a(t) is algebraic over K[ X].

Remark 1. Without supposing k prime, the equivalence between (i) and (ii) has been
proved in [5].

Example 1. The sequence 1 <2 <4 <7 < 8 < ... of the integers which sum of the
digits in their base 2 expansion is odd is recognizable by the 2-automaton
(Z,x0, 0. E,7) where 2 = {i,s}, E={0,1}, xo =i, ¢(0,i) =1i. ¢(0,5) =s. @(l.i) ==
(1, 5) =1, t(i) = 0, 7(s) = 1. Note that it is the fixed point in 0A4* of the substitution
fo on the alphabet A = {0, 1} defined by f,{0) = 01 and f,(1) = 10.

Let u be a finite or infinite word. We denote by F(u) the set of finite factors of u and
by F,(u) its subset consisting of the factors of length ». If u is an infinite word, it 1s
trivial to verify that every factor of a word v of F(u) is a word of F(u) and that there
exists a letter a such that va is in the set F(u). The factor v of u is said to be special if for
any letter i of A, vi is a factor of u. Denote by FS(u) the set of the special factors of
u and by FS,(u) the set of the special factors of length n.

Let S be the shift defined by S(agaya, ... ) = a, a, ... and let Q2 be the closure of the
set {S*(u); k € N} where the distance d is given by d(v,w) = exp(-inf{n e N; ¢, # w,)).
The sequence u is associated with the dynamical system (2, T) (where T is the
restriction of S to Q) and it is said to be minimal when the empty set and Q are the only
closed subsets of 2 invariant under T.

Example 2. The Morse sequence, fixed point in 14* of the substitution f; on the
alphabet 4 = {1.2} defined by f;(1) = 12, f1(2) = 21 is minimal.

Example 3. The fixed point in 14* of the substitution f, on the alphabet 4 = {1,2, 3!
defined by f,(1) = 121, f5(2) = 232 and f,(3) = 323 is not minimal.

The following classical characterization has been proved in [7].

Proposition 2. The word u is minimal if and only if for any factor m of u, there exists an
integer j depending on m such that

forany ke N, mlugug iy ... Uy (1)
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Remark 2. The Condition (1) means that every factor m of u appears in u with
bounded lacunas.

We give here a simple criterium for minimality.

Proposition 3. Let u be a fixed point of the substitution f on the alphabet A. If u is
a prefix of u with | f(a)| = 2 and if every letter of A is a factor of u, then the following are
equivalent:
(1) u is minimal and lim | f¥(b)| = + oo for every letter b e A.
(i1) There exists L < Card(A) such that for any be A,a|fL(b).
(i) For any b € A, there exists k(bye N such that alf"””(b).

Proof. (i) = (ii1) is a consequence of Proposition 2 and of the fact that every letter of
A s a factor of u. Let us suppose (iii) and let us prove (ii). We set L = Max [k(b); b € A|
where k(b) = Min{n; a| f"(b)}. As a| f(a), one has a| f*(b) for every s > k(b). Hence,
a| fE(b) for every b € A. Furthermore, for any letter b # a. there is a letter ¢ such that
k(c) = k(b) — 1; hence L < Card(A). Let us suppose (ii) and let us prove (i). In
particular, | f(b)| > 0 for every be A. As f(a)ead™. lim| f*(a)| = + oo. For every
b,a| fL(b); hence, lim| f*(b)| = + oc. As a is prefix of u note that u = f(a). Let m be
a factor of u: There is j such that m| f¥(a). Hence, m| f’*X(b) for every b € A.

So m appears in u with lacunas bounded by 2(Max{|f(b)|: be A}y " —2. By
Proposition 2, u is minimal. [

From now, we will consider minimal sequence u, fixed points of injective constant
length ¢ substitutions which are not periodic.

3. Some properties of factors and special factors

Let w be a factor of u. It can be decomposed as follows:
w=xf(v)y. (2)

In (2) x is a strict suffix of a word f(v,), y is a strict prefix of a word f(v,) and vy, 0, € A4.
A factor w of u is said to be rythmical if it has a unique decomposition with
condition (2).

Example 4. In the Morse sequence, 122 and 221 are rythmical while 121 and 212 are
not rythmical.

Propositiond. Ifthere exists a rythmical factor R of u with |R| > a. then every factor of
u which has R as a factor is rythmical.

Proof. Let m be a factor of u such that R is a factor of m. The decomposition of u by
blocks of ¢ letters, namely u = f(ug) f(1;) ... gives a decomposition of R read in m.
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Since there is only one decomposition, one has a prefix B of a word 1n f(A4) of length
|B| < osuchthatif R = uguy 41 ... g+, then k + | B| is a multiple of 6. The position of
up+p in R, and so in m, gives a decomposition of m induced by that of u, but which
does not depend on the reading of m in u. Let m = x(m)(m;) ... (m)p be this
decomposition, where the words m, belong to f(A), and, « like f satisfy [x|.|f| < ¢.
Since f is injective, m is a rythmical factor. [

Letm and u be in A*. u is said to be a “bifix” of m if it is both a prefix and a suffix of m.
Hence, there exists r and v’ in A* such that m = ur = v'u.

The following two lemmas describe the structure of factors which have the same
“bifixes”.

Lemma 1. Let m,u and v be factors such that m = ur = vu, u and v non-empty, and let
us set d = ged(Jul,[v]). Then m = p" where p is the prefix of m of length d and r = |m|, d.

Proof. Let us first prove that for kA = E(|m|/|v|) (where E(x) denotes the largest
integer contained in the real x) one has m = p(v)v* = vp(v)v* ™! where p(v) is the prefix
of r of length |m| — k|v|. This decomposition is trivial if {u| < |¢] since in this case one
has u = p(r) and k = 1. Let us suppose |u| > |v|; from ur = vu one derives u = vu' so
that vu'v = veu' and uw'v = vu’. Inductively, u = v*u” with |u”| < |v] and v = ru” so
that 4" = p(r) and m has the required form.

The lemma is clearly true if |u| = |v] or if one of the factors u or v is a letter. Let us
suppose the lemma true for factors m such that |m| < K. We can suppose |u| > |v]. and
the preceding argument gives m = p(v)e* = vp(v)r* ~!. Then m’ = p(v)e( =rp(r)) and
|m’'| < K. Furthermore, ged(|ul,|¢]) = ged(|v],|p(v)]) = d. so that by the induction
hypothesis m' = n"" with r' = |m’|/d and r a prefix of r.

Hence, there exists two integers s and t such that p(r) = n** and ¢ = 7" Finally.
m o= gidthd 0

Lemma 2. Let m,u,v and v’ be factors such that m = uy = t'u and uv' = ru. Then
v =t and m e p* where p is the prefix of m of length ged(|ul.|e|).

Proof. If |u| = |v|( =|v'|), v and ¢’ are both prefixes of u and have the same length.
Then v = ¢ and Lemma 1 holds. Let us suppose |u| < |v| and let us set ¢ = r,u and
v" = rju. Hence, ur,u = viuu and wviu = vyuu so that v, = v} and ur] = vyu. We
are then led to the preceding case with |¢,| = |¢| — |u|. Inductively, one obtains for
k = E(|e]/u]): v = nyu* and ©* = vyu® with ur, = vju and ury = vu. As Ju| > |y, one
has r;, = r;, and Lemma 2 derives directly from Lemma 1. [

Let u be a fixed point in 14* of a substitution of constant length ¢ on the set 4, and
let us suppose that all the letters of A are factors of u. It is clear that if u is periodic.
with the period of length ", then all the factors f"(a) are the same for any a e A.
Reciprocally, if there exists v such that all the factors f"(a). a € A, are the same, then
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f*(1) is a periodic word of u of length ¢*. If any period of u is not a power of o, the
preceding property is not valid. If u is not periodic on an alphabet of two letters, the
property is true, i.e. f is injective. In other words:

Lemma 3. Let f be a constant length substitution on the set A = {1,2}, with the fixed
point u in 1A* and not periodic. Then f*(1) # f*(2) for any integer k and for any factors
m and m’ of A*, one has f(m)=f(m') =>m=m'".

Let m be a factor of u and set L, (m) = Sup {(k; m* | u}. Let us estimate L,(m) when m is
a letter or a word of two distinct letters.

Lemma 4. Let u be a non-periodic minimal sequence, fixed point of a constant length
o substitution f on the set A = {1,2}, and let us suppose u in 1A*. Then ¢ + ¢ (resp.
6> + 0% 4 o) is an upper bound for L,(1) and L,(2) (resp. L,(12) and L,(21)).

Proof. Since u is not periodic, one has f(1)¢ 1*. Furthermore, f(2)¢ 2* because u is
minimal. Two cases can occur.

Case 1. Let us first suppose that f(2)¢1*. Then for any ie A, one has
L,(i) < 20( < 6% 4+ o). In fact, if there exists j& 4 such that L,(j)> 26 so j*° is
a factor of u. As f is a constant length o substitution, one of the words f(1) or f(2) is
a factor of j%°. As f(1)¢ 1%, from f(l)e 1A* and f(2)¢2* one derives f(2) =17
a contradiction.

Let us prove now that for any word ije A such that i j, one has
L(ij) <20 + o( < ¢ + ¢ + o). Let us suppose that for a choice of ij one has
L.(ij) = 202 + ¢. Thus, the word (ij)?° "7 is a factor of u and can be decomposed as
follows: s(f(a)) f(by) ... f(ba,)p(f(c)). where b,eAd for ke{l,....2¢] and
a,c € Auiel; s(f(a)) (resp. p( f(c))) denote a suffix of f (a) (resp. a prefix of f(c}). f ¢ is
not odd, then for any k. f(b,) = (ij)"’?* or f(bx) = (ji)”? and by Lemma 3, one has
b, = b, = ... = b,,; thisis a contradiction because L,(b) < 2o foreverybe A. If 5 is
odd, for every k such that 1 < k < ¢ one of these cases occurs: f (b 1) = (ij)" 72 (i)
and f(by) = (ji) ™V (j) or fbae—1) = (j))' 2 (j)and f(bx) = () 2 (i). In
any case, one has f(1) = (12)°“ 12 (1) and f(2) = (21)"”~V/2 (2) so that u is periodic;
a contradiction.

Case 2: Let us now suppose that f(2) € 1*. Thus, the letter 2 appears only in f(1). As
f(1)e 14%, L.(2) < 0. Let us prove that L,(1) < 6% + 6. If L,(1) > ¢% + o, then 1€
is a factor of u and its following decomposition s(f(a)) f(by) ... f(b,)p(f(c)) implies
f(b)=1°for any ke {1, ...,a}. Hence, by = b, = ... =b, =2 so that L,(2) = a;
a contradiction.

Let us now estimate L,(ij), i # j. If L,(ij) > ¢ + ¢ + o, then as we have just shown
there exists a factor m of u of length 62 + o such that f(m) € (ij)* or f(m) € (ji)*. As
1is a prefix of /(1) and f (2), one has f (m) € (12)*. Hence ¢ is not odd, f (1) = (12)7? and
m = 1°*: a contradiction because L,(1) <62 +0. [
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Proposition 5. Let u be a fixed point of an injective substitution of constant length o on
the set A = {1.2. ...,q}. Let us suppose u in 1A*. u minimal and not periodic. Then
there exists Ly depending on o and q such that every factor of u of length > L is d
rythmical one.

Let us prove first Proposition 5 when 4 is a set of two elements:

Proof. Let m be a factor of u such that |m| > L, and let us suppose that m is not
rythmical. Then there exists two different decompositions of m, Bf (D)C and B f(D")C”
with condition (2). We can suppose |[C| # |C'|. In fact if |C| = |C’|, then C = C" and
|B| =|B’|. Thus, B = B’ so that f(D) = f(D’) and by Lemma 3, D = D’. Hence, we can
choose |C| < |C'| and set C' = XC, | Xyl =r.0<r<o - L

Let us set now D=a,...a,, D'=aj...a,. One has Bf(a,)... fla,) =
B'f(ay) ... fla1)Xo.k—1 < g <k, where B and B’ are, respectively, suffixes of f(b)
and f(b') and X, prefix of f (ap). Moreover, bay, ... a, and b'q ... a)ay are factors of u.
Let us set ay; = b.ay.; =b and let us write f(a;) = X, X,, f{a}) = X, X, with
[X,|=0—r and |X,| =r. We then get Bf(a,)... f(a,) =B f(a,) ... f{a’) X, and
recursively for i = 1, ...,k we can write

fla)y=UV.fla)=V.U,[flais)) = UV,
with |U,| =|U;| =rand |V,|=|V;|=0 —r. (3)

Choosing L. one has k > ¢® + 02 + 0. Hence, D 1s not a factor in a word in
1*02* U(12)*. Let us write D = WW' with |W| = E(k/2). As g > 2. 6% + ¢ is a lower
bound for the lengths of W and W' and by Lemma 4,1 and 2 are both factors of
W and W’ If 21 is not a factor of W then W is a factor of a word in 1¥ U2* so that 21
is a factor of W'. In the same way if 12 is not a factor of W, then it is a factor of W'
Moreover.if 11 and 22 are not factors of D, then D 1s a factor of a word in (12)* which
1s a contradiction to Lemma 4.

Finally, we have {12,21,11} < F,(D) or {12.21,22} < F,(D).

Let us set f(1)=UV and f(2)=UV" with |U|=|U'|=r. By (3), E=
(VU V'U,VU} or E'= (VU ,V'U,V'U'}isincluded in {UV,U'V’}. As the hypoth-
esis f(1) € 1 A* which gives the difference between the letter 1 and the letter 2 will not
be used later, we can suppose E <« {UV,U'V’}.

If E is a set of one element, then V =V’ and U = U’ so that f(1) = f(2)} which
contradicts the fact that u is not periodic. Hence E is a set of two elements. If U = U’,
then E={VU,V'U] so that UV =VU and UV'=V'U or UV =V'U and
UV’'=VU. Lemma 1 in the first case and Lemma 2 in the second case yields the
contradiction f (1) = f(2). If V = V", the same argument gives the same contradiction.
We can now suppose U # U’ and V # V. Then E is a set of three elements and this is
out of question. [J
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The preceding proof shows that if a factor D of u is such that the words 12,21 and one
of the words 11 or 22 are both factors of D, then f(D) is rythmical. Let us summarize:

Propositon 6. Let [ be a substitution of constant length o on the set A = {1,2] and let
u be a fixed point of f. minimal and not periodic. Let L, be the least integer g such that
12,21 and one of the words 11 or 22 are both factors of every factor of u of length > g.
Then every factor of u of length > o(L, + 1) is rythmical.

Let us prove now Proposition 5 in the general case.

Proof. We shall proceed as follows.

Let u be a fixed point of an injective substitution f of constant length ¢ on the set
A= 11,2, ....q} with ¢ > 3. Let us suppose that u is minimal and not periodic. We
shall show that there exists a constant H depending on ¢ and g such that if there exists
a factor m of u of length > H which is not rythmical, then there exists an integer
d divisor of ¢ and a substitution F of constant length ¢ on an alphabet P such that
P c A% Card(P) < g — 1 and F(u) = u, looking u as an infinite word on the alphabet
P. Moreover, m can be read like an element of P* and one can prove that it is not
a rythmical factor on the alphabet P. As the length of m in P is |m|/d, we get
a contradiction if |m| > § Ly(a.q — 1).

In the case 4 = {1,2} the proof was to show that if there does not exists a rythmical
factor of any length, then /(1) = f(2). In other words, f could be seen as defined on an
alphabet of one letter. We shall follow this idea in three steps. beginning by the
generalization of Lemma 2.

Step L.

Lemma 5. Let M be a set of words of length ¢ on an alphabet A. Let U = P.(M) (resp.
V =8§,_,(M)) be the set of the prefixes (resp. suffixes) of length r (resp. @ — r) of the
words of M. Moreover, let us suppose

V=P, _ (M) and U =S.M). 4)

Let d = ged(o.r) and P be the set of the prefixes of length d of the words of M. Then
M < P*

Proof. Even if we have to permute U and V., we can suppose r <o —r. Let v be
a word of V. There exists m € M and u € U such that m = ur. As v is prefix of a word
m, of M, there exists u’ € U such that m; = vu" and by (4), there exists u, € U and
vy € V such that m; = vy’ = u,v,. We can then write v = u;w, so that m = uu;w;. In
other words, M < UUW, ( =U2W,) where W, is the set of the suffixes of length
o — 2r of the words of M. Let W, _, be the set of the suffixes of length ¢ — kr ( = 0) of
the words of M.

Let us now suppose that M = U*W, _, for an integer k such that ¢ > (k + )r. As
V = P,_,(M) one has, as above, V < U*W,. M c V' implies M = U**! W, so that
VeU ' Wy
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Let us repeat this process until t = E(a/r). As every word m of M can be written as
m = ur and m = v'u’, respectively, in UV and VU with V = U'"!W,_,. one has

M=uUy...uw=uy ... u_wu, u.uclU, wweW,_,. (5)

In particular, u,w = w'u;.

If o =t.r then W,_; is empty and the lemma is proved. If o # r.r. let us set
M =S Mforp=c—-(t—-1r,U =Uand V'=W_,.

From the hypothesison U and V onehas S,_,(M')=S,_,(M)=S,_(V)=V'and
by (5), P,_.(M’y = V'. Furthermore, U = S,(M) = S,(M'} = §,(V) and by (5), one has
S,(V)=P,(M’). Finally, U' = P,(M')=5,(M")and V' =S,_,(M'})=P,_.(M').

Hence, we are led back to the preceding case with p and p — r replacing, respective-
ly, o and 7, and the same gcd. Thus, if Lemma 5 is proved for M’, then U’ and V' are in
P* so that M is in P*. As Lemma 5 is evident for ¢ = 2d and if it is true for the
multiples 2d.3d, ... ,kd, then the preceding argument shows that it is true for
o = (k + 1)d. Hence, Lemma 5 is proved recursively on the multiples of o. [

Step 2. Let L, depending on ¢ and g be a constant such that for every factor m of
u of length > L, one has F,(m) = F,(u).

We may choose L, such that it depends on f, butin any case 26?9 — 1 holds always.
In fact if m{u and |m| > 2629 — 1, then there is a factor of m which can be written as
f*4(a). Let E;(a) be the set of the factors of length 2 which appears in one of the words
fla). ....f¥a). If E,. (@) = E,(a), this means that for every ur e E,(a), one has
Fa(uv) < Ela). So Ey 4 q(a) = Ei(a) for any n > 0, and this equality holds as soon as
k = Card(4?%) = ¢°.

Let us choose now H =a(L, + 1). Let m be a factor of u such that |m| > H.
and let us suppose m not rythmical. Then there exists two different decompositions
of m:

Bf(D)C = B’ f(D')C’ with condition (2). (6)

As for the proof for two letters, we can write D =a; ...a,, D' =a, ... a) with
k—1<g<k Thus, Bf(ay) ... f(a;) = B'f(a,) ... fla}) X, where B and B’ are, res-
pectively, suffixes of f(b) and f(b'), X, prefix of length r of f(ay) and ba, ... a,
and b ay ... a’\ag factors of u. Let us set b =a, ., and b’ = a,, ;. We have again the
relation (3).

Let M =f(A4), U =P.M)and V = 8§,_,(M). For a choice of H, one has k > L,.
Every letter of 4 appears in ay ... a; and a; ... a} so that by (3), S,(M) = U. Further-
more, every letter of A appearsalsoina, ., ... a; and by (3), P,_ (M) = V. By Lemma
5, M < P* for P = P,(M) = S4(M) with d = gcd(a, 7).

Let us suppose Card(P) = Card(A). Then the images f(a) are determinated by their
prefixes (or suffixes) of length d and there exists bijections f: 4 - U.,1:4 - V. f’:
A — U and t': A - V such that for every ae A, f(a) = Bla)t(a) = T'(a) ' (a). If the
word of two letters «'a is a factor of D, then by (2), #'(a’) = f(a) so thata = 7 B'(a").
Let us set 6 = f~'#". Then J is a bijection in A and bD = b3 (b) ... 5%(b).
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As every letter is in D, J is a bijection order ¢. Furthermore, as every factor of u of
length 2 is in D, they have necessarily the form ad(a) so that u = 15(1)d%(1) ... . This
means u, = 6*(ug) which yields the contradiction that u is periodic.

Let us suppose that Card(P) < Card(A) and let us call ¥ the canonical imbedding of
P*into A* which will be extended to M(P). As f(A) = M < P*, we can see the words
of M(M) like words of M(P). Let ¢ : M(M) — M(P) denote this identification and let
h:M (A) - M(M) be the application induced by the substitution f. Let F =¢ -h-y
and 4 = ¢(h(u)). By construction, 4 is the sequence u after grouping in successive
words of d letters.

This means d, = ug ... U+ 1)a— 1, and F is a substitution of constant length ¢ on the
alphabet P. The infinite word & of P* is a fixed point of F which is minimal by
Proposition 2.

Step 3. Let us prove that m (satisfying (6)) can be seen like a factor of 4. In fact,
B and B’ are suffixes of words of M of length multiples of d and C and C’ are prefixes of
words of M that are also multiples of d. Let us remark that the decompositions of
m come from the decomposition of u in successive blocks of ¢ letters given by u = f (u).

Considering 4@ and F, the decomposition (s) of m is (are) a consequence of the
decomposition of @ in blocks of ad letters:

A=1[(uo... ug—1) ... (Magg—1y -+ Ugo— 1) I[(Uto -~ Uao+ 13— 1) - Mgz 1) -+ Uzgs—1)] .o

Every block can be seen as ¢ factors of words in P (of d letters) or as d factors of
words in M (of ¢ letters).

One derives that the decomposition Bf(D)C implies the decomposition
BB, F(D)C,C of m with B; = f(4) (resp. C, = f(u)) where A (resp. y) is a prefix (resp.
a suffix) of D. In the same way the decomposition B'f(D')C" gives
B f(AYF(DY) f()C’. In particular, if m is rythmical on the alphabet P, then
|Bf(4)| = |B'f{2')] so that|B| — | B'| is a multiple of ¢ and this is quite of the question.
Hence, m is not rythmical on P and the length of m, seen like a word in P, is at least
2|lm|/e = 2H /0.

Let us choose now Ly(a,¢q) = 629"V for g > 3. (The value for ¢ = 2 is bigger than
the value we have already obtained.) As H(o,q) < 26%4*", if |m| > Ly(0,q), one has
m| = Hand 2\m|/c = 26%*! > Ly(g,q") forany ¢’ = 2, ... ,q — 1. If the proposition
is proved for alphabets with number of letters < g — 1, then every factor m of u of
length > Lg(o,q) is rythmical on the alphabet 4. []

Remark 3. The constant L, = ¢>“" " gives the minimal length of the word m to be
rythmical but it is not the “best possible™. In fact, for example, L, = 64 for the Morse
sequence but one can easily prove that every factor of length > 4 is rythmical, and 4 is
the optimal value.

Remark 4. As shown in the following example, the hypothesis that u is not periodic in
Proposition 5 is necessary. Let A = {a,b}, f3(a) = aba and f3(b) = bab. So f; is
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injective and of length 3. Furthermore, f%(a) = (ab)” is a fixed point of f3. As a| f3(a)
and a| f5(b)and from Proposition 3(ii), f%(a)is minimal. For every n > 1, (ab)®" is not
a rythmical factor of f“(a). In fact, (ab)®" = e.f((ab)*").e = a.f((ba)*"~'.b).ab.

Propositon 7. Every suffix of a special factor is special.

Proof. Let w = xv be a special factor. For every letter i € A, xvi = wiis a factor of u so
that vi is a factor of u. Then v is special. [

The following corollary is immediate.

Corollary. If FS(p) is empty, then for any n > p, FS(n) is empty.

4. Inductive construction of special factors

Let n > L, be an integer, where L, is the constant of Proposition 5. For two
different letters i and j, P; , (resp. P) will denote the greatest common prefix of f (i) and
f(j) (resp. the greatest common prefix of all the f(i)). Let us set o, , =|P,,| and
o =|P|

Theorem 1. If there exist two different letters i and j such that P, , # P, then there is no
special factor of length n > L.

Proof. By contraposition: Let us suppose that FS,(s) is non-empty and let
w = xf(v)y be a decomposition of a special factor of length n > L,. By Proposition
5 this decomposition is unique. Then for every letter i € A, wi is a factor of u. Any one
of the Card(A) different factors yi is a prefix of exactly one f(k).

Since this connexion is bijective, one has P; ; = y for every couple (i j) of two
different letters. [

Theorem 2. Let k be the least integer such that ¢k + o > n and let us suppose that for
any two different letters i and j, P; ; = P. Then the special factors of length n > Ly are
suffixes of length (n-a) of the images of the special factors of length k to which one has
concatenated at right P.

Proof. Let us prove first that the construction above gives special factors.

Let v be a special factor of length k. Then for every letter i € A4, viis a factor of u. It is
the same for its image whose length is 6k + o. The prefix f (v). P of length ok + o of the
image f (vi) is special because P = P; ;. From Proposition 7, it is the same for all its
suffixes.
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Let us prove now that every special factor of length > L, can be obtained by
the construction of Theorem 2. Let w be a special factor of length n > L. By
Proposition 5, w is rythmical: w = x f(v)y, where x is a strict suffix of exactly one f( j)
and y is a strict prefix of exactly one f(k). So w is a factor of f( jok) with jvk factor of u.
Since w 1s special, wi is a factor of u for every letter i € A. Any one of these different
Card(A) factors yi is a prefix of exactly one f(k), and this connexion is bijective. Hence
y = P and jv special. Finally, w = xf(v)P where xf(v) is a suffix of f(jv) with jv
special. [

Example 5. In the Morse sequence, every factor of length > 4 is rythmical; further-
more, P(5) =12 and P(6) = 16. As « = 0, the 4 special factors of length 5 are the
suffixes of length 5 of the images of the special factors of length 3 which are
112,121,212 and 221. One has f;(112) = 121221, f,(121) = 122112, f,(212) = 211221
and f;(221) = 212112 so that the special factors of length 5 are 21221,22112,11221
and 12112

Example 6. Let u be the fixed point in 14* of the substitution f;, on the alphabet
A = {1,2} defined by f4(1) = 112 and f,(2) = 111. Every factor of u of length > 5 is
rythmical. Furthermore P(5) = 8 and P(6) = 9. As o = 2, the special factor of length
5 1s the suffix of length 3 of the image of the special factor of length 1 to which one has
concatenated at right P=11. 1 is the special factor of length 1 and we have
f4(1) = 112 so that 11211 is the special factor of length 5.

5. Conclusion

The inductive method described above shows that if a sequence satisfies (), it must
be such that for any two different letters i and j, P; ; = P. Other considerations bring
us to assume that these sequences have a non-linear complexity between (k — 1)n + 1
and kn + 1.

Therefore, P(n + 1) — P(n) is not constant; so, a geometric representation will be
(probably) more difficult to get.

Nevertheless, since this difference takes only a finite number of values, we hope to
succeed .... One could start with sequences such that Card{P(n + 1) — P(n);
ne N*} =2 before trying to get an inductive procedure.
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