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Introduction

In this paper, a smooth curve means an integral, complete, non-singular one-
dimensional scheme of finite type over C. One can also consider a Riemann-surface.
I say that a smooth curve C is d-gonal if there exists a surjective morphism
¢:C—P! of degree d.

Let C be a smooth curve of genus g and let W] be as defined in Notation 4.
Clifford’s Theorem says that a special effective divisor D on C satisfies

2dim(|D|) < deg(D).
Moreover, eguality
2 dim(|D|) = deg(D)

is only possible if C is hyperelliptic or if D is a canonical divisor on C (see e.g. [6,
Chapter 1V, Theorem (5.4)]). In [11] it is proved that, if 0<r<s<g-—1, then

dind W/, )<s-r.

Here, dim(X) is used to denote the maximum of the dimensions of the irreducible
components of X, while dim(X) is the minimum of the dimensions of the ir-
reducible components of X. Moreover, if 0sr<s<g-2, then

dim(W,, )=s-r

if and only if C is hyperelliptic. In the appendix of [12], it is proved that, if there
exists de Z with 2<d=<g - 2 such that

dim(W,)=d-3,
then C is of one of the following types of curves:

a hyperelliptic curve;
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6 M. Coppens

a trigonal curve;
a two-sheeted covering of an elliptic curve;
a smooth plane curve of d=gree 5.

Assume that C is not a covering of degree at least two of a smooth curve C’ of genus
at least one. In this paper, we give sufficient conditions, concerning dim(W}), for
C to be f-gonal (see Theorem 6(a)).

Let C be a non-hyperelliptic smooth curve of genus g. In [10] and in 8], it is
proved that C is (g—1)-gonal. In [10], it is proved that if a smooth curve of genus
g=15 is not hyperelliptic and is not a two-sheeted covering of a smooth curve of
genus two, then it is (g — 2)-gonal. In [9], it is proved that if a smooth curve of genus
£=12 is a twe-sheeted covering of a smooth curve of genus two, then it is (g —2)-
gonal. Assume that C is not a covering. of degree at least two, of a smooth curve
of genus at least one. In this paper, we give sufficient conditions for C to be (g —f)-
gonal (see Theorerm 6(b)).

In Example 12, I show how the results of Theorem 4 can be sharpened. In
particular, if a smooth curve of genus g=13 is not a hyperelliptic curve, not a
trigonal curve, and not a covering of degree at least two of a smooth curve of genus
at least one, then it is (g — 2)-gonal. This result is sharper than G. Martens’ result
mentioned before.

Let X be a scheme of finite type over C. If we write x € X, then we mean that x
is a C-rational point on X. If E is a locally free Oy -module, then we write E? for
Homy, (E, Oy).

Let C be a smooth curve. We say that C has a gJ, if C has a linear system of
dimension r and of degree d. We also use the notation g} to indicate a particular
linear system of dimension r and of cegree d on C.

If AC™, then we write (A) for the linear span of A. Assume that C is em-
bedded in 7" and that D is an effective divisor on C. We define

(Dy:=({H, a hyperplane in P": H- C= D).

If C is non-hyperelliptic and if C is canonically embedded, then the geometric
Riemann-Roch Theorem says that

dim({D))=deg(D) - dim(|D]) - 1
(sec e.g. [4, p. 248]). We define
Supp(D):={xeC:D-x=0}.

We write K- for the canonical linear system on C. A divisor D on C is called a
specia. divisor on C if and only if [K-—D!#0. A linear system g on C is called
a special linear system on C if the elements of g} are special aivisors on C. Let D,
and D, be two effective divisors on C. Then

A =Inf(D,, D)

i5 the effective divisor on C defined by the conditions that
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D,—A=0 for ie{l,2}

and for each C-rational point x on C satisfying D; —A4 —x=0, the divisor D, -
A —x is 1ot effective. Let g; and g, be two linear systems on C. Assume that D is
the divisor on C, defined by the condition that there exist linear systems g; and g,
on C, having no commona fixed points, so that g;=g;+ D for i e {1,2}. Then we say
that g, and g, are compounded by the same involution on C if and only if for each
x€C and for any two divisors D; e g/ (i€ {1,2}), so that D;—x=0, we have

deg(Inf(D,, D,))=2.

If D is a divisor on C, then we write Oo(D) for the sheaf on C associated to D,
as it is defined in [6, p. 144].

Results

In this paper, we are going to consider smooth curves having infinitely many
gy's. Let deZ,,. If

g=<22d-3,

then every smooth curve of genus g has infinitely many gl’s (see [5).

Lemma 1. Ler g,deZ, so that d<g-1. Let e€Z, so that

e—1
g>(e-2)d—< 5 )

Let C be a smooth curve of genus g and let g,, ..., g, be complete linear systems on
C without fixed points and each orie of them has dimension 1 and degree d. Assume
that for each i,je{l,...,e}, with i+j, the linear systems g; and g, are not cor-
pounded by the same involution on C. Then

. e+1
dlm(|g1+---+ge|)2( 5 >

To prove this loamma, we use the following lemma.

Lemma 2. Let C be a non-hyperelliptic smooth curve of genus g and let D be a
special divisor of degree d or: C such that |D| has no fixed points. Let g} and g}
be complete linear systems on C without fixed points, which are not compounded
of the same involution on C. Moreover, assume that |D+gl| and |D+ g}] are
special linear systems on C. If

dim(iD)=b,  dim(|D+g})=a), dim(D+gsl)=a,,
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then
dim(|D+gi+g/l)=za +a,+1-b.

Moreover, if |D! and g} (resp. | D! and g_}) are not compounded of the same involu-
tion on C, then

azb+2 (resp. a,=b+2).
If

a,=b+2+a, and ay=b+2+a,,
then

dim(|D+g} +zf)=a;+a;+b+5.

Proof. Assume that C is canonically embedded. Let xe C and D, egl and Dzeg}
such that
supp(D;)Nsupp(D)=0,  supp(D,)Nsupp(D) =0,

x=inf(D,, D), x¢(D)YN{D,).
Then
{D,+ D+ D—x)=(D+ D yU(D,»,
hence
dim(D, + D, + D — x)) =dim({D + D;)) + dim({D,))

—dim({D+ D)) N {(D,)).
Beciuse of the geometric Riemann-Roch Theorem, one has
dim((D))=d-b-1,
dim(D+ D)))=d+e—a,—1,
dim(D+D3)) =d+f-ay~1,
dim((Dy))=f-2.

Hence,

dim(DYN{DyY)=a,-b-2.
Because

(D)YN{D+ D)yDDYNKD)) U x}),
one has

dim(D,)N(D+ D))=za,-b- 1.
Hence,

dim(D,+D,+D-x))<d+e+f—-a —a,+b-2.

Therefore, because of the geometric Riemann-Roch Theorem, one has
dim(|D, + D+ D-x|)=a, +a,-b.

But x is not a fixed point of |D; + D,+ D], hence

dim(:Dy+ D>+ Dl)y=za,+a,- b+ 1.
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If |D| and g/ are not compounded of the same involution on C, then there exist
xeC and divisors D,e|D| and D,eg!, such that inf(D,, D,)=x. Using the
geometric Riemann-Roch Theorem, one finds that

D+D,-x|)=zb+1.

dim{
But x is not a fixed point of |D+ D,|, hence,

dim(|D+D,|)=b+ 2.
Proof of Lemma 1. See also [1], but Lemma 2 provides a more geometric proof.
Because, for i#j, the linear systems g; and g; are not compounded of the same in-
volution on C, the curve C is non-hyperelliptic (see e.g. [15, Chapter VI, Theorem

(7.D]). Using Lemma 2 and induction on n, one can prove, for d’eZ., and if
|g + - +g4_>| is special, that

dim(|g, + - +gd'|)a<d ; 1)-

But, because of the induction hypothesis, one finds that

) d—1
dim(|g, + - +gd'—2!)2< 5 )

and therefore |g,+ - + g4 _,| is special if

g>d'(d'—2)—(d'2“ 1).

This proves Lemma 1.

Remark. If the assumptions made in the statement of Lemma 1 are fulfilled, then,
because of the Riemann-Roch Theorem, one has

/
gaed—(e;l)

Proposition 3. Let geZ,. and deZ.,. Let C be a smooth curve of genus g.
Assume that C has infinitely many complete g)’s, so that any two of them are not
compounded by the same involution on C, then

g=<id(d-1).

Proof. Assume that

g>4d(d-1).

Let g,,...,84-; be complete linear systems of degree d and dimension 1 on C,
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without fixed points, so that any two of them are not compounded by the same in-
volution on C. We can use Lemma 1 to conclude that

dim(|g; + -+ +gq-11) Z3d(d - 1).
On the other hand,
deg(g, + -+ g4 ) =d(d-1).
From Clifford’s Theorem (see e.g. [6, p. 343, Theorem (5..4)]), it follows that

in.J..r..Ln. . :’(n
61" ted- 1, axee

Let g;_, be a complete linzar system of dimension I and degree d on C without
fixed points, so that g;_ , ¢ {g,...,&;_} and so that g;_, is not compounded by
the same involution on C with any of the linear systems g, ..., £4_. In this case,
taking g,,...,84_2,841 instead of g,,...,g4_, we find that

g+t gyt 8a0 =Ko,
heiice

gi 1 =184l

This gives a contradiction with the existence of infinitely many complete g}’s on C.
This completes the proof of the proposition.

Notation 4. Let C be a smooth curve of genus 2=2. In what follows, we assume
that we have choosen a base point P, on C. Let Pic™(C) be the Picard variety of

VSN &S YRS LU S I

" whose C-rational points correspond to isomorphism classes of invertible O-

modules of degree 0.
If L is an invertible O~-module of degree 0, then we write [L] for the correspon-

ding C-rational point on Pic®(C). Consider the morphisrns
I(d): C'Y) > Pic%(C): D~[Op(D - dP,)].

The miorphism /(1) is a closed immersion and it is also the Albanese mapping of C
(see e.g. [14, (0.5)]). We call Pic%(C) the Jacobian variety of C and we denote it by
JC). Let ndeZ.,,. Let

Wi:={xeJ(C): dim([/(d)] '(x)=r}.

Those are Zariski closed subsets of J(C). We also write W, instead of W,). We write
k for the C-rational poinst [On(K - (2g - 2)Py)], on J(C) where K is a canonical
divisor on C.

Lemma$5. Ler C be asmooth curve of genus g. Assume that Y is an irreducible com-
ponent of W, such that YZ W} + W,. Let e=dim Y and let De C'® such that
{H(d)(DYe Y. Then, dim(.2D))=2+e.

Froof. Let M, , be the fine moduli space of the smooth curves of genus g with a
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level-n-structure and let n: 7, ,—M, , be the universal family. Let xe M, , such
that C=n"'(x). Let ¢: H, , ;—M, , be the fine moduli space of the couples (, f)
where xe M, , and f is a covering C,—~P' of degree d.

Let De C? such that

H(@ND)e Y \(W,_,+ W)).

Let f: C— P! be a covering of degree d such that D is a fibre of f. Let x be a poini
on M, , such that C,=C and let y be the point on H,, ; corresponding to (x, f).
Consider the exact sequence

0~ Te = f¥(Tp1) >N, =0

Because of the deformation theory of holomorphic maps (see [7]), there exists a
canonical isomorphism

T, (Hg n.0)=H’(C, Ny)
and the tangent map d,(¢) corresponds to the coboundary map
d: HYC, N)—HYC, Tp).

But the dimension of the irreducible component of ¢ '(x) containing y equals
e+ 3. Moreover,

dim(ker(d,(#))) = dim(ker(d)) = dim(H°(C, f*(T+)))
and f*(Tr')=Oc(2D), hence

dim(H°(C, O, (2D)))=e+ 3.
This proves the lemma.

Assumption A. Let fe Z.; and let C be a smooth curve of genus g. Assume that
there exists no covering ¢ : C—C such that 1 <deg(¢)</f.

In Theorem 6 and Lemma 7-10, we assume that assumption A holds.

Theorem 6. Let f'=2(f— 1) and assume that g>5f'(f'—1). One has:
(a) If there exist r,de 7, so that

d-2r-f+2=20 and d-r<g-f
and

dim(W))=d-2r—f+2,
then

dim(W))=d-2r—f+2,

and C is f-gonal,
(b) C is d-gonal for each d=g—f+2.



. Assertion (b) is proved in [10] ard in [8]. Assertion (a) is proved

Assume from now on thdt S>3 and assume that the theorem is true for f—t, with
reZ and 1 <t<f-2, instead of f.
Let r,deZ., so that

J

3 ~ £~ N R | - L
d-2r-f+2=0 and rsg-—j.

Because C is not (f— 1)-gonal, we know that

y and assume that, for 1<e<r—1, one has

dim(W, Sy<(d-e)-2(r—e)—f+2.
if
1 swErrN ] ~ L ~
ammwy2d—24r—J+sa,
ihen,
3 varl N T a1 £
am{wy ., J=a-r+1-—j.
Drnnf Tha lomma trivially halde far »— 1 Accnima that »=?Y and that tha lamma
R IUUR,. A 1IN IN1LLIIIA L1lviAll)Y 1IVIMD 1V 7 = 1. J7LWQOULLIV LilAal 7T & Allu Lliat tiiv asviiina
holds for r— ! instead of r. Because of Proposition 3 in 81, one has
S i\ :oauswtvau s 7 LLAUSY Ul D IVUPUSIUIVIL J L (U] ULV LIRS

dim(W/ =zd-2r-f+3.

But, because of the assurnptions, one has

swewr )l —~

Cllm(Wd l)<a 2r— J+J

(SIS Fo2 e BN I Y

1 - £ 7 1\ ~Ny o L Y L0
ami{w, [J=a-2r—j+3=@a@-1)-2r—-1)—jf+2

and the lemma follows.

Continuation of the proof of Theorem 6. Because of Lemma 7, we can assume that
there exist d'€ Z,, such that

d'-y=0 and d’'sg-f+1

4

and
dim(W, ) d -/

Lemma 8. Ler g=4f—-4. Assume that, for d,reZ ., such that

¥ s I Fa Fay ]
a—2r—j+

32z0 and d-r=sg-f+1,
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one has
dim(Wy)<d-2r-f+3.

Let d’€ Z,y5_; such that
d-fz0 and d'sg-f+1.

Assume that Y is an irreducible component of W} of dimension d’'-f. Then,
YCWys_a+ Wy _area.

Proof. The lemma trivially holds for d’=2f—2. Assume that d'—2f+2=0 and

that the lemma holds for d’—1 instead of d’. Assume that Y¢ W,._, + W,.
If xe Y so that x¢ W, _,+ W,, then

2xe Wz‘f,','f +2 (see Lemma 4).
(@) If d’'=sg-2f+3, then
dim(Wi < f-1
(because of our assumption), hence
d-f<f-2 and d'=s2f-2.
(b) If d’>g—-2f+3, then
Wa I WL
If d’<g-f, then we obtain that
dim(Wy, 7t )< f-1
(again because of our assumption), hence
d-f<f-2 and d's2f-2.
If d’=g-f+1, then we obtain

-2f+3
Wzi_2f+2—k"‘ sz_4,
hence

dim(wg ¥ ) =214,

hence g<4f-35, which is a contradiction with the assumption.

Continuation of the proof of Theorem 6. Because of Lemma 8, one can assume that
there exist d” such that f<d”<2f-2 and Y, an irreducible component of W}, such
that dim(Y)=d”"-/f. In Lemma 9, we prove that there exists o€ Wf' such that
Y={e}+ Wy

Lemma 9. Let deZ such thet f<d<2f-2 and assume that g> (¢). Assume that Y
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is an i‘reducible component of W, of dimension d— f. Then, there exists ¢ € Wy
such that

Y= {Q} + Wd-f'
Proof. Lemma 9 holds for d=/. Assume that d>f and that Lemma 9 holds for
d -1 instead of d. Assume that

YZ W) +W,.
Because there exists no covering ¢ : C = C with 1 <deg(@) </, we know that C has
infinitely many g,‘,’s so that any two of them are not compounded by the same in-

volution on C. This is a contradiction with g>(‘§) (see Proposition 3). Hence, if Y
is an irreducible component of W, so that

dim(Y)=d-/f,
then
YCW,) |+ W,

and therefore, W, | has an irreducible component Y’ of dimension d -1 - f such
that Y:= Y’'+ W,. Because of our induction hypothesis, there exists g€ Wf' such
that

Yi={o}+ Wy st

hence Y={o}+ W, ,.

Contir ation of the proof of Theorem 6. Now, because W," #0, C is f-gonal and
assertion (a) is proved.

Because of our inductionhypothesis, we can assume that C is d-gonal for each
d=zg-f+3. Because W' | =0, we know that

dim(W, ,,:)=g-2f+2.

But, because of {5],
dim(¥, ,.)=g-2f+2.

Hence, W, 7.2 1s equidimensional of dimension g-2f+2. If C is not f-gonal,
then

dim(W, . )=g-2f
and therefore
”E/d¢u9r4+”L

which proves that C is (g —f+ 2)-gonal.
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Lemma 10. Assume that

dim(W,"_ 7, 2) =dim(W,"_;, ) =g - 2f+2.
Assume that, for de Z ., such that d<g—f+1, one has the following property: if
Y is an irreducit:le component of Wd‘ of dimension d - f, then there exists ¢ € Wf'
such that Y={o}+ W,_;. Then, the curve C is (g—f+2)— gonal.
Proof. Assume that

ng—f+2= ng—f+ 1+ W

For each irreducible component Y’ of Wg'_ r+2 there exists an irreducible com-
ponent Y of W,_,,, of dimension g—2f+1 so that

Y=Y+ W,.
Because of the assumption, there exist g€ Wfl such that
Y={o}+ Wg—2f+l’
and therefore
Y'={o}+ W o4z
Hence, from our assumptions, it follows that
W gea= Wi+ We_ara.
Let f<d<g-f+2 and assume that
WitW,)_  +W,.

Let R be an effective divisor on C of degree d with dim(|R|)=1 and such that |R]
has no fixed points. Assume that C is canonically embedded. Then

dim({RY)=d - 2.
There exist A =g-f-d -2 points xi,...,x; on C, so that

dim(R+x;+ - +x))=g—1,
hence
dim(|R+x,+--+x;])=1

because of the geometric Riemann-Roch Theorem. But there exists a linear system
g/ on C and A'=g—-2f+2 points y,..., y; on C so that

R+x+--+x eg}+yl+---+y,1f.
This gives a contradiction to f<d. This means that, for f<u<g-f+1, one has
W) =w, |+ W,.

Fence, there exist exactly f—2 integers a<g, such that there exists a morphism
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p:C— P! of degree a. From the results of [5], it follows that
g<(f-17
(see e.g. [10], p. 69(v)). Hence,

wl 2l W/
We ri2F W _rey ™ W)

and therefore, C is (g — f+ 2)-gonal.

Continuation of the proof of Theorem 6. Because of Lemmas 8 and 9, the assump-
tions of Lemma 10 are fulfilled. This proves assertion (b).

In order to get better results than those obtained in Theorem 6, it would be in-
teresting if one knows more about curves having infinitely many g}’s. In some
examples, we are going to give refinements of Theorem 6.

Theorem ii. Let gel,,, del ,and aelZ,,. If
Jdim(W))=2a and W}=0,

then W} +0.

d u

Proof. Consider J(C) x C and the projection morphisms
p i JIC)XC—=J(C) and q':J(C)xC—-C.

Let xe J(C) and let F be an O, .,. ~-Module. The fibre of p’ over x gives a closed

“ Jli‘\l“\ &
immersion C—=J(C)Xx C. We¢ write F, for the inverse image of F by this closed
immersion. Consider the universal invertible sheat L’ on J(C) X C so that

L.=0q(D-dPy)
it De Y so that [{d)}(D)=x. Let
L:=L'®(@q"y Oc(dPy)).

Let Y be an irreducible component of W)} so that dim(Y)=2a. Le L, be the
inverse image of L by the closed immersion Y X CCJ(CYxC. Let p and ¢ be the
restriction of p’resp. ¢ to Y x C. The Oy-Module

Ei=puly)
is a locally free Oy-Module of rank 2. From [13, Proposition 7], it tollows that
P(EY—Y

is obtained from I' d) by making the base extension Y CJ(C). Here, P(E) is the pro-
jectivized geometiic bundle on Y associated to F, i.c. it equals ™(EP) as it is
defined in 2, 114 11, Let

M :=p(@™O,up,) R Ly).
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It is a locally free O)-Module of rank a. On Y xC, we have a natural Oy -
Module homomorphism

Ly=q*(Oup,)BLy
which gives rise to an Oy-Module homomorphism
o.:E-M.

From [3, Lemma (2.7)), it follows that E’® M is ample, hence from [3, Theorem
I]. it follows that

Dy(0)={ye Y :rk(a(») =0}

is not empty. Here, if y is a C-rational point on Y, we write a( y) for the morphism
obtained from o by making the base extension Spec(C)— Y corresponding to y. This
proves that W, ,#0.

Examples 12. (a) Let C be a smooth curve of genus g=13. Assume that there exists
no covering ¢: C—C with 1 <deg(¢)<4.

We prove that the assertions (a) and (b) of Theorem 4, with f=4, are true under
these assumptions.

If there exist r,de Z ., so that

dim(W;)=d-2r-2=20 and d-r<g-4
then, because of Lemmas 7 and 8,
dim(W)=2.

If we prove that for each 2-dimensional irreducible component Y of W one has
YC W+ W,, then, because of Lemma 9, C is (g~ 2)-gonal. Hence, it is enough to
prove that for each 2-dimensional irreducible compu.ent Y of W one has
YC W, + W,. Because there exist no covering ¢:C—C with 1<deg(¢)<4, the
assumptions of Proposition 3 — with d=5 — are fulfilled if there exists a one-
dimensional irreducible component Y’ of W' such that Y’'¢ W, + W,. Eence, for
each one-dimensional irreducible component Y’ of W one has Y'C W, + W,.

Assume that there exists a 2-dimensional irreducible component Y of W' so that
Y¢ W, + W,. I: follows that there exists a non-empty Zariski open subset U of Y
so that each C-rational point on U corresponds to a complete linear system g on
C withoui fixed points. Moreover, because of Lemma 5,

dim(|2g4|) = 4.

Applying Theorem 11, we know that C bas a g4 which is complete. Let g, be a
complete g! on C and let g, be a complete g¢ without fixed points on C satisfying
dim(|2g,|)=4. Because of Lemma 2, one has

dim(j 2, +g,})=3.
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Hence, because of Lemma 2, one has
dim(ig, +2g.)=7.

Hence dim(W,})=2. Because of Lemma 7, we obtain
dim(W5) = 8.

It follows from [12] that there exists a covering ¢ : C—=C with 1<deg(¢)<4. This
is a contradiction with the assumptions. Hence, there exists no 2-dimensional ir-
reducible component Y of Wﬁ’ unless YC W, + W,.

(b) Let C be a smooth curve of genus g=21. Assume that there exists no covering
@ : C—C with 1 <deg(¢)<S5. We prove that the assertions (a) and (%) of Theorem
4, with f=35, are true under these assumptions.

If there exist r,deZ., so that

dim!W,])=d-2r-3=0 and d-r=<g-5
then, because of Lemmas 7 and 8.
dim(Wy) =3.

If we prove that for each 3-dimensional irreducible component Y of W' one has
YC W+ Wi, then, because of lemma 10, C is (g - 3)-gonal. Hence it is enough to
prove that for each 3-dimensional irreducible component Y of Wy one has
YC W + W,. Assume that there exists a 3-dimensional irreducible component Y of
Wy

Assume that there exists a non-empty Zariski open subset U of Y so that each
C-rational point on U corresponds to a complete linear system gi on C without
fixed pcints. Hence, because of Lemma §,

dim(i2gs)=5.

Applying Theorem 11. we know that C has a g1, which has to be complete because
there exist no coverings ¢ : C—C with 1 <deg(¢)<5. Let g, be a complete g} on C
and let g, and g; be two different complete linear systems g} on C without fixed
points so that dim(]2g;/)=5 for /e {2,3}. Because of Lemma 2, one has

dim(:g, +g,)=3.

Hence, because of Lemma 2, one has

dim( g,+2¢g,)=8,
and

dim( g, + g, +&:]) 26.
Again, because of Lemma 2, one has

dim( g, +2g,+g;))=12.
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Also
dim(|g, + g, + 2g;])=12.

Hence, because of lemma 2, one has
dim(]g, + 22, +2g;/)=19.

Hence dim(W,})=3. Because of Lemma 7,
dim(W,))=21.

This is impossible because g=21. Hence, there exists no 2-dimensional irreducible
component Y of W unless YC W3 + W,.

Assume that g=22. Assume that Y’ is an irreducible component of W3 of
dimension 2. Because of Lemme 9, one has Y'C W' + W,. Hence, if g=22, then
every irreducible component Y of Wy of dimension 3 satisfies YC W{ + W;. On
the other hand, assume that g=21. If WZ#8, then C is isomorphic to a plane
curve of degree 8. Hence, dim(W5')=1. Therefore, if Y is an irreducible compo-
nent of W, of dimension 2, then Wy =0. Assume that there exists a 2-dimensional
irreducible component Y of W-' so that

Y'e Wi+ w,.

But, if d,ge Z ., so that g=1d(d - 1) and if C is a smooth curve of genus g haviag
infinitely many g)’s so that any two of them are not compounded of the same
involution on C, then C is isomorpktic to a smooth plane curve of degree d+ 1. This
will be proved in the author’s Ph.D. Thesis. A proof can also be found in E.K.
Hoff’s Master of Science thesis entitled ‘‘Polygonal curves’’, following ideas of G.
Martens. But, if Y is a 2-dimensional irreducible component of W, such that
YC W + W,, then, because oi Proposition 3, YC W' + W,. Hence, if g=21 and if
Y is an irreducible componen: of W cf dimension 3, then YC W + W;.

In Example 6(c), we are goir3 to give another argument that can be used to
examine the case g=21.

(c) Let C be a smooth curve of gznus g=33. Assume that there exists no covering
¢:C—C with 1<deg(@)<6. W= nrove that the assertions (a) and (b) of Theorem
4, with f=6, are true under thcese assumptions.

If there exist ndeZ, so that

dim(W;)=d-2r-4=0 and d-r<g-6
then, because of Lemmas 7 and 8,
dim(W,,) = 4.

If we prove that for each 4-dimensional irreducible component Y of W}, one has
YC W(,' + W,, then, because of Lemma 10, C is (g —4)-gonal. Hencz, it is enough
to prove that for each 4-dimensional irreducible component Y of W one has
YC W, + W,. Let Y be a 4-dimensional irreducible component of Wy,
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Assume that there exists a non-emp:y Zariski open subset U of Y so that each
C-rational point on U corresponds to a complete linear system g/, on C without
fixed points. Because of Lemma §,

dim(|2gl,))=6.

Applying Theorem 5, we know that C has a g}, which has to be complete because
there exists no covering ¢ : C—C such that 1 <deg(¢)<6. Let g, be a complete g}
on C and let g, and g; be two different complete linear systems g}, on C without
fixed points and o that dim(|2g,;|)=6 for i€ {2,3]. Using Lemma 2 in exactly the
same manner as +e did in Example 6(b), one can prove that

dimf|g, +2g, +2g;]) = 21.
Hence .
dim W )=4=43-42-4+2.

We can apply Theorem 4 to conclude that C is 4-gonal. This gives a contradiction
with the fact that there exists no covering ¢ : C—C with 1 <deg(¢)<6. Hence,
YC W, + W,

Assume that g=37. Assume that Y’ is an irreducible component of Wy of dimen-
sion 3. Because of Lemma % one has Y'C W/ + W;. Hence, if g=37, then every
irreducible component Y of .#} of dimension 4 satisfies YC W{ + W,. If g=36,
then one can repeat the arguments of the case g =22 in Example (b). Let g=35. In
the author’s Ph.D. Thesis, the following statement will be proved. If d,geZ., so
that g=1d(d - 1)-1 and if C is a smooth curve of genus g having infinitely many
g}’s so that any two of them are not compounded of the same involution on C,
then C is birationally equivalent to a plane c.rve of degree d+ 1. Using this, one
can again argue as in the case g =36.

One can also argue as follows. Let Y be an irreducible component of W, of
dimension 3 such that Y& W' + W,. If YC Wi, then, because of Theorem 6, one
has that C is trigonal, which is a contradiction to the fact that there exist no mor-
phisms :C—C such that 1<deg(¢)<6. Because of Lemma 9, if YC W'+ W,,
then ¥C W+ W;. Hence, Y contains a non-empty Zariski open subset V of Y’ so
that each C-rational point on V corresponds to a complete linear system gé without
fixed point. Moreover, because of Lemma 3§,

dim(:2g! )=5.

Because of Theorem 10, it follews that C has a g, which is complete because g =22
and there exist no coverings ¢ : C —C with 1 <deg(¢)<6. Let g, be a complete g
on C and let g, g, and g, be three different complete linear systems g4 on C
without fixed points so that dim(,2g;)=5 for i€ {2,3,4}. Using Lemma 2, one can
prove that

dim( g, +2g> + 2g1+ g41) =24,
hence

dim(#W 3 =3,

3
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and because g=33, we conclude that C is 4-gonal which is a contradiction with the
fact that there exists no covering ¢ : C—C with 1<deg(¢)<6. Hence, if g=33 and
if Y is an irreducible component of W} of dimension 4, then YC W + W,.
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Note added in proof

Some of the results are also obtained in R. Horiuchi’s paper: ‘““Gap orders of
meromorphic functions on Riemann surfaces’’, J. Reine Angew. Math. 336 (1982)
213-220.
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