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Abstract 

This paper is devoted to a generalization of the notion of inverse system of a polynomial 
ideal as can be found in Macaulay’s treatise on Modular Systems. The definition of inverse 
system given here relates polynomial modules to modules of linear forms on polynomials. The 
most interesting results obtained by Macaulay on the inverse systems of polynomial ideals are 
particular cases of propositions proved in this article. 01998 Elsevier Science B.V. All rights 
reserved. 

1. Introduction 

The classical prototype of the dual of a polynomial module is the notion of inverse 

system of a polynomial ideal which has been given by Macaulay in his treatise on 

Modular Systems [4]. According to Macaulay the inverse system of a polynomial ideal 

A4 is the set of all negative formal power series C c~,,....~,(x~’ . . .x?)-’ such that 

c ap, ,.... p.cp, . . . . . p” = 0, 
PI . . . ..P” 

for every polynomial C a4 ,,..., 4”xy’ . .x,4 in M. From the point of view of this paper, 

the most interesting property of an inverse system is the one of being a module over 

the ring of all polynomials in xl,. . . , x, with complex coefficients. Here is Macaulay’s 
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definition of a scalar product: If E = C c~,,...,,~(x[~ . . . xP )-’ is a negative power series 
(no pi negative), and A any polynomial, the part of the expanded product AE which 

consists of a negative power series will be denoted by A.E and called the A-derivate 

of E [4, p. 691. 
The definition of inverse system may be cast in a linear algebraic setting: if we con- 

sider C[xi, . . . , x,] as a @-algebra, the inverse system of an ideal M & C[xi, . . . ,x,J is the 

subspace of Homc(@[xi,. . . , x,], C) consisting of all C-linear forms E: @[xl,. . . ,x,,] + 

@ whose kernel contains M. In this context, Macaulay’s scalar product A.E can be 

defined by (A-E)(B) = E(AB), B E C[xl, . . . ,x,1. 

This trivial observation indicates that Macaulay’s scalar product depends only on the 

linearity of E and on the product in @[xi,. . . , xn]. It follows that nothing prevents one 

from extending Macaulay’s definition to a more general context. Thus, in this paper we 

start by considering any algebra over an arbitrary field K. We then restrict ourselves to 

polynomial rings and show how certain properties of a Griibner basis for a polynomial 

module relate to existing results. 

2. Duality 

In this section we introduce some notations and elementary definitions. The objects 

we shall be most interested in are modules over some polynomial algebra; nevertheless 

it is convenient to give the basic definitions in a more general context. 

Let D6 be a field and let A be an associative K-algebra with unit element 1~. Let S 

be a basis of the vector space underlying A and let us represent each element PEA 
in the form CsEs a,s where a, = 0 for all but a finite number of indices. Moreover, 

A* := Homw(A, W) will denote the usual linear dual of the K-space A. 

A family (fa)ctEJ of elements of A* will be said to be a summable family if, for 

every P E A, the set of all indices CI E J such that f,(P) # 0 is finite. If (fa)agJ is a 

summable family of linear forms we will call the sum of the famiZy the linear form 

CaE., fN defined by 

( ) 
Cfm (P)= CUP). 
au UEJ 

In the following, we will consider the powers A’ and (A*)’ with their A-module struc- 

tures given by 

AxA’ +A’ 

(P, Pl,..., 9)) H (PPl,~. . ,PPI) 

and 

A x (A*)’ --+ (A*)’ 

(P, (fly.. ., fi))H(P.fi,...,P.f~), 
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respectively, where (P. f;:)(Q) = fi(QP), 1 5 i 5 1. Sometimes, using the canonical em- 

beddings ei , . . . , el of A into A’, we will write el(Pl)+. . .+er(Pl) instead of (PI,. . . , PI). 

For any submodule H of (A*)‘, we define 

9(H)={(Pl,... ,Pl)EA’IPl.fi +...+Pi.fi=O for all (fi,...,fi)EH}. 

It is easy to check that L?(H) is a submodule of A’. Our main goal now is to find a 

“convenient” answer to the following question: given a submodule M of A’, is there 

a submodule H of (A*)’ such that B(H) = M? 

Following old-fashioned terminology which had already been used in the case of 

polynomial ideals by Macaulay, any submodule H C(A*)’ such that B(H)=M will 

be called an inverse system of M. Let us prove that the answer to the previous question 

is affirmative (Proposition 2.1), so that we may claim that every submodule M c A’ 

has an inverse system. For the purpose of our discussion, we first fix a subset B of 

s x {l,..., I} such that the set {ej(t) +M 1 (t,j)EB} is a basis of the quotient space 

Al/M. For every 1 < i 5 I, let 

ei(P) + M = C f$(P)(ej(t) + M), P E A 
@,.i) E B 

(i.e. f&(P) = coeff. of ej(t) + M occurring in e;(P) + M), so that 

(Pl,...,P,)+M=~(ei(~)+M)= 5 c .$,(fi)(ej(t)+M) 
i=l i = 1 (t. j)EB 

= 1 C f:i(f?)(ej(t> + Ml- 
(t.j)EB i = I 

Note that for every PEA, there exist only finitely many pairs (t,j) E B such that 

fii(P) # 0. It follows that (f{;)(t,j)EB is a summable family of linear forms f& : 

A --f 06, P H f$(P). Moreover, if we denote by NFB(P~, . . . ,Pl) the unique element 

of Span&B) such that (Pl,...,Pt)-NFB(PI,...,P~)EM, then 

NFB(P~, . . . , pl)= 
( 

~~~r:i(S)t,...,C~~~i(4)t 9 
tET, i= 1 VET, i=l ) 

where Tj = {t E S 1 (t,j) E B}. Hence, 

(1) 

Wl,..., PI)EMwNFB(PI,...,PL)=O 

WPl.f$ +... + Pl.f$ = 0 for each (t,j) E B. 

As a straightforward consequence of these remarks we have the following proposition 

which proves the existence of a submodule H of (A’)’ such that B(H) =M. 
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Proposition 2.1. Let 92~(M) be the submodule of (A’)’ generated by the I-tuples 

($1 2.. .v f$MEB. Then .Y(WB(M)) = M, which implies the existence of at least one 
inverse system of M. 

In general, a module A4 has many non-isomorphic inverse systems. Let {&(M)},,J 

be the set of all inverse systems of the submodule M. It is easy to check that H(M) := 

CrEJHOL(M) is also an inverse system of M. Let us prove that H(M) = Y(M), 

where 

9(M) := {(j-i,... ,f,)~(A*)‘jPl.fi +...+Pt.fi=O for all (P~,...,P~)EM}. 

Evidently, Y(M) is a submodule of (A*)’ containing S?s(M). We now show that 

Y(M) is the largest inverse system of M. 

Proposition 2.2. Let M be a submodule of A’. Then Y(M) is an inverse system of 
M. Moreover, if H is an inverse system of M then H C Y(M). 

Proof. We have to prove .9(9(M)) =M. The inclusion M G 9(.9’(M)) is trivial. 

Conversely, suppose (Pi,. . . , P~)EP(Y(M)). Then Ci=,fi.fi=O for all (fi,...,ft)E 
Y(M). In particular, cf= 1 P.f$ = 0 for each (t,j) E B, i.e., (PI,. . . ,f’l) E 

9y9Q@4)) = hf. 

Finally, let H be any inverse system of M. If (fl, . . . , ft) E H then Pi + fi + . . + 

Pt.ft=O for every (PI,... ,P~)EM=Y(H). Hence (f, ,..., ft)EY(M). 0 

In conclusion, let us prove that the summable families (&)(t,j)Es, 1 < i 5 I, are a 

pseudo-basis of the K-linear space Y(M). 

Proposition 2.3. Let M be a submodule of A’. Then (fi,. . . , ft) E Y(M) if and only 
tf there exists a family (bt,j)(t,j)EB of elements of 06 such that 

(fl,..., ft)= C bt,j(f:‘l,...,fil’t). 
(t,.iW 

Proof. Let (bt,j)(t,j)EB be an arbitrary family of elements of K. 

1 5 i 5 2, is a summable family of linear forms on A, then for 

and each Q E A we have 

4 ’ C bt,jf;:‘, + .. . +Pl. C bt,j_$ <Q> 
WEB (VW 

Since (bt,jf(i)(t,j)EB, 
each (Pl,...,Pt)cM 
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i.e., 

Conversely, suppose (fi, . . . , fi) E Y(M). Since, for every P E A, 

we have 

J;.(P) = (@fl +...+P.f;:+...+o.fi)(lA)= ((t, j)EB ’ 

c ft,i(P)t.fi (1A) 
) 

Note that for many concrete problems the conditions given above allow an effective 

calculation of the linear forms f&. For instance, for finitely generated modules A4 

over a wide class of algebras (e.g. polynomial algebras, Weyl algebras, enveloping 

algebras of Lie algebras) there exists an effective procedure for computing f$(P) 

using Buchberger’s algorithm (cf. [6,7]). In these cases Proposition 2.3 turns out to 

be a handy computational tool. 

3. Inverse systems of polynomial modules 

This section is devoted to proving the existence of finitely generated inverse systems 

of polynomial modules. With regard to the polynomial ideals this fact was first stated 

by Macaulay in [4, p. 911. We will denote by W[x] the polynomial algebra in xl,. . . ,x,, 

and will make use of the notations 

i := (il,...,i,)E N” and xi :=x? . ..x? 

Let M be a submodule of W[x]‘. Fix a monomial order 5 on W[x]‘, that is a total 

order 5 on the set 

{ei(X’) 1 p E N”, 1 < i 5 I} 

such that 

ei(xP) 5 ej(xq) * ei(XP) 5 ei(xP+h) 3 ej(xq+h). 
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Under these assumptions we set 

B := {(p,j) E N” X { 1,. . . , I} 1 ej(X’) $ LT(M)} 

where LT(M) is the K[x]-module generated by the leading terms of the elements of 

A4 with respect to the order 3. It is well known that the set {ej(x”) + A4 1 (p,j) E B} 
forms a basis for the vector K-space W[x]‘/A4. Hence, by (l), it follows 

(4 Y..., pr) @ii”) ( c &(4)xP )...) ~yyf;,i(Pi)xp 
pEB1 i=l pe$i=l ) 

(2) 

where Bj={pE N" l(p,j)~B} an we have written $j(Pi) instead of f$,i(fl). Our d 

proof of the existence of finitely generated inverse systems of A4 relies on a charac- 

terization of the set B as a disjoint union of “nice” subsets. Since the module LT(M) 

may be written as 

LT(M)= 6 4 

j=l 

where 4 is the monomial ideal generated by the set {xp 1 q(xP) E LT(M)}, we have 

It follows that we can describe the set B through the complement of the monomial 

ideals 1j, 1 <j < 1. The description of the complement of a monomial ideal we will 

give in this section is due to Janet (see [l, 21). The following notion is central to 

Janet’s theory. 

Let X be a finite set of monomials of K[x]; we shall say that the indeterminate xk is 

multiplicative for xp’ ’ . . .x~~;‘x~ . . . xp E X if pk > qk, for each xf’ . . . x[L;‘xp . ’ .x,4 

E X. Moreover, for each 1 5 k 5 n we define 

c(k) := {x[’ . . .xPk 
k 1 pk<qk for some xi”’ ..~X~~;‘X~“‘X? EX 

and xp’ . . .x[L;‘xp . . .xp 9-X). 

The indeterminates xk+l , . . . , x, as well as the multiplicative indeterminates of xp’ . . . 

xkp1;‘, as elements of {xp’ . . .xlL;’ } UX, will be called multiplicative indeterminates 

of the monomial xip’ . . s X? E Cck). 

Note that, given the finite set X, the sets Cck) are uniquely determined and pairwise 

disjoint; thus, we can set 

/A( p,X) = {k 1 Xk multiplicative indeterminate for xp E X U C(l) U . . . U C(“)}. 

By the definition of a multiplicative indeterminate of a monomial belonging to Cck) it 

follows that 

#u( p,X) = 0 * xp E C’“‘, 
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Example. Suppose X = {x4y3,x2y5}. In the following tables we list the multiplicative 

indeterminates for the elements of X: 

Monomials Multiplicative 

indeterminates 

x4y3 x Y 
x2y5 . Y 

and those for the elements of C(l) and Cc2): 

Sets Monomials Multiplicative 

indeterminates 

c(l) x3, x, 1 . Y 
cC2) x4y2, x4y, x4 x . 

x2y4, x2y3, x2y2, x2y, 2 . 

Let I be a monomial ideal of W[x]. We shall say that a finite set X of generators of 

I is complete if it is possible to obtain any monomial of I multiplying an element of 

xp EX by a power product involving only multiplicative indeterminates of xp. Given a 

finite set of generators of a monomial ideal I, there exists an algorithm for computing 

a complete set of generators of I (see [l, p. 801) as well as the sets C@). 

Example. The set X = {x4y3,x2y5} is not a complete set of generators of the ideal 

I = (X): it is not possible to obtain the monomial x3 y5 E I as a product of an element 

of X by a power product involving only its multiplicative indeterminates. A complete 

set of generators of Z is {x4y3,x3y5,x2y5}. In this case we have: 

Monomials Multiplicative 

indeterminates 

x4y3 x Y 
x3y5 . Y 
x2y5 . Y 
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Sets Monomials Multiplicative 

indeterminates 

c(l) x, 1 Y 

e2) x4y2 x4y x4 
2 7 x ’ 

x3y4, x3y3, x3y2, x3y, x3 . . 

x2y4, x2y3, x2y2, x2y, x2 . . 

Finally, for each xh E C(l) U . . - U C(“), we set 

C(h) = sENG0 
, ifp(h,X)#@ 

otherwise. 

Proposition 3.1. If X is a complete set of generators of a monomial ideal I, then the 

complement of 1 can be written as the finite disjoint union of the sets C(h). 

Proof. See [ 1, p. 901. Cl 

Example. The complement of the ideal I = (x4 y3,x3y5,x2 y5) is 

C(O,O) u C( 1,O) u C(4,2) u C(4,l) u C(4,O) u 

{~3y4,x3y3,x3y2,x3y,x3,x2y4,x2y3,x2y2,x2y,x2}. 

Turning to the description of the set Bj, 1 5 j 5 I, let us denote by Xj the complete 

set of generators of Ij, computed by Janet’s algorithm, starting from the set {xp 1 

ej(xP) E LT(M)}. Thus, we set 

Cjk) = {q’ . . .xkp 1 J?k < qk for some Xp’ - - - X~~~‘x~ - q . xp E Xj 

and x~"***x,"~;'x~---x~ #Xj) 

and 

Cj(h) = 
xk=nX$, k,EN , if p(h,Xj)#@, 

sEp(h,Xj 1 

I {xh}, otherwise. 

Under these assumptions we consider the sets 

B,“’ = {h E N” 1 Xh E Cj”‘, p(h,Xj) = 8}, 

B”’ = {h E N” 1 Xh E Cj” U . . . U C,‘“‘, p(h,Xj) # 8}, 

$h’ = {k E Nn I xh+k E Cj(h), P(h,Xj) # 0). 
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Then, as a consequence of Proposition. 3.1, each component of (2) can be written 

in the form 

pEB, i=l pE~W i=l 
I 

&qm k E BJb) i=l 

h,&‘) i=l 
I 

(3) 

where 

iS an element of the polynomial ring rh in the indeterminates xk, k E ,u(h,Xj), with 

coefficients in K. 

Example. Let M be the submodule of K[x, y12 generated by the set {(x4y3,y), 

(x2y5,x)}. Let us denote by + the lexicographic ordering on W[x, y], x t y, and by 

~2 the monomial order on W[x,y12 defined by 

ei(Xhyk) F2 f?j(X’_V”) -3 Xhyk +X’yk or, if Xhyk =X’y’, i< j. 

Then 

IA(M) = (e1(x4y3),e1(x2y5),e2(x3)) =I1 @ 12 

with 11 = (x4y3,x2y5) and 12 = (x3). Hence, 

B(,O’=((3,4),(3,3),(3,2),(3,1),(3,0),(2,4),(2,3),(2,2),(2,1),(2,0)}, 

B(l) = ((0 0) (1 0) (4 2) (4 1) (4 0)) 1 ,,,,,>,,, , 

B(,o’O) =B(,“O) = {(O,k2) 1 k2 E N}, 

B(4,2) =BC4r1) =f+4,0) = {(kl,O) 1 kl E N}. 
1 1 1 

Thus, 

‘[O,Oj,i(fi) = c f10,k),i(8)yk, 

kEN 

‘~l,O),i(fl) = c ffl,k),i(8)yk, 

kEN 

‘af4,2,i(fi) = c ff4+k.2),i(8)Xk, ‘a,‘4,l,i(fi)= c ff4+k,J),i(fi)Xky 

kEN kEN 

‘:4,O),i(e) = c ff4+k,0),i(fl)Xk. 
kEN 
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In a similar way, 

B(O) = Q, 
2 ’ 

B(l) 2 = ((0 ,,,,, 0) (1 0) (2 0)) 3 

#‘O) = By) = By = ((0, k2) 1 k2 E N) 
2 

and 

‘tO,Ohi(fi) = C ffO,k),i(fi)Yk, @tl,Oj,i(9)= C ffl,k),i(fi)yk, 

kEN kEN 

#2,O,j(8)= c _ff2,k),i(fi)yk. 

PEN 

Turning to the general case, from formula (3) we deduce that there exists a finite set 

of rh-linear maps Qi,i, h E Bj”, 1 <j 5 I, 1 5 i 5 I, from W[x] into ‘IYt, defined by the 

correspondences P +-+ C&(P). The existence of such a finite set of linear forms and 

the fact that in W[x]*, as a K[x]-module, there exist linearly independent elements, 

imply the existence of finitely generated inverse systems of M. In order to make this 

paper self-contained we give an example of a Itb[x]-linearly independent element of 

w[x]*: 

tl: W[x] + K, 

’ { 

1, ifji=... 

xJ H 0, otherwise. 

=j,=p(p+3)/2, p=O,1,2... 

To prove that M is K[x]-linearly independent, consider any polynomial P = xi six’, il 5 

dl , . . . , in < d, and ad ,,..,, d, # 0. Let d = max{di,. . . , d,}. If k = d(d + 3)/2, a straight- 

forward calculation shows that 

(P.x) (x, 
k--d1 . . 

. dpd” ) = adI ,...,d. # 0. 

We now have all the ingredients for proving the main result. 

Proposition 3.2. Let M be a submodule of W[x]’ and let H the submodule of 

(W[x]*)’ generated by the l-tuples of linear forms (f$, . . . , f;,), p E Bj”, 1 5 j 5 I, 

andby (cq,o@i,,, ,..., cq,oQi,J, h+‘), 1 <j < 1, where tlh iS a rh-linearly indepen- 

dent element of ‘r:. Then H is an inverse system of M. 

Proof. Because of formula (2), if (PI,. . . ,Pl) EM, then 

PI&f... +P/.fL,=O, PEBj, 15 jll. 

Thus, 

PI.rb’,, +... +Pl.f’ =0 PEB!‘) l<j<l 
P>l ’ J’ __. 
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Moreover, by (3), for every Q E W[x], we have 

(b(~hO@~,1) + ... +fi+ho@;,~))(Q) 

= uh(@;,,(p,Q) + . . .+@;,JPIQ))=O, h+‘, lIj<Z. 

Hence, 

p, ‘(c(,, 0 @i,, ) + ’ ’ ’ +~&t,,O@;,~)=o, h#‘, l<j<l. 

It follows that (Pi , . . . ,I’[) E 9(H). Conversely, if (Pi,. . . ,I’,) E P(H) then 

(@i,r(P)) ‘ah(l) = xh (@,#)) 

=~~~(tlh~~jh,l)+~~‘+~~~(~hO~‘x~I)=~, h&), l<j<l. J 

Thus, keeping in mind that the maps @i i are Th-linear, we have 

for all x’ E rh. Since ah is Th-linearly independent, the polynomials 

i=l i=l kE#h’ 
I 

coincide with the zero polynomial. Hence, for each xa E KJx], 

hEB”‘, kEB/h),l<j<l. J 

It follows that 

q’fhj+k,l+“‘+P~‘fhi+k,[=O, hEB”), kEb$“, l<jll. 

On the other hand, 

Pi-j& +.. .+pI$,=o, PEB,(O), 1 <j<l, 

so, by (2) we can conclude that (Pi,. . . ,P[) E hf. 0 

4. Inverse systems and polynomial ideals 

If we assume Z= 1, every submodule A4 of W[x] is an ideal of W[x] and an inverse 

system of A4 is any submodule H of W[x]* such that Ann(H) =M. Thus we can state 

the following proposition. 
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Proposition 4.1 (Macaulay [4]). For every ideal I of W[x] there exists a finitely 
generated inverse system. 

An equivalent proposition can be found in [8, pp. 32, 521 

Proposition 4.2 (Oberst [S]). The H[x]-module W[x]* is a large injective cogenera- 

tor. 

Let W[x],’ be the submodule of K[x]* of the linear forms f such that f(x’) =0 
for all but a finite number of monomials xi of W[x]. The ideals I of W[x] which are 

contained in the ideal (xi , . . .,x,) are characterized by Y(I) II W[x],* # (0). 

Proposition 4.3. I 2 (xl, . . . ,x,) if and only if Y(I) f? W[x]z # (0). 

Proof. If I C (x1 , . . . ,x,) then the linear form 

W[x] -+ K; 

xi H 
1, if i=O, 

0, otherwise. 

is an element of Y(Z) n W[x],‘. Conversely, suppose that Y(Z) f? W[x]g # (0). If 

f is any nonzero element of Y(I) n W[x],” then P.f = 0 for every P ~1. Since 

f # 0, there exists p E N” such that f (xp) # 0 and f (xq) = 0 for every q E N” with ql 
+... +qn>pl f... + p,,. Therefore, if xi atxi E I we have 

(X'~aiX'/)(I)=oaf(x')=O. 

This implies that no polynomial P E I has a constant term, that is I C: (xi,. . . ,x,). 0 

The last result can be sharpened as follows (see [4, p. 751). 

Proposition 4.4. Ann(Y(1) n W[x],*) =ZK[[x]] n W[x]. 

Proof. Put 0 = (xi,. . . , xn) and note that W[x],’ = C,,i 9’(Ot). Then we have - 

=Ann C(Y(l)nY(o*)) ( 121 ) = n ~(Y(z) n Y(o~)) = n (I + 0’). 
t>1 tz1 
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Therefore Ann(Y(Z) n W[x];) is the closure of I in W[x], in the 0-adic topology. 

On the other hand, ZK[[x]] is the closure of Z in K[[x]] = KT]; thus Ann(Y(Z) rl 

W[X];> =zDd[[x]] n W[X]. 0 

Corollary 1. If Z = ni Qi is a minimal primary decomposition of Z where Qi c 

(Xl , . . . ,x,) for every i, then one of the inverse systems of Z is contained in K[x],“. 

Proof. From the hypothesis we see that Z = ZK[[x]] n K[x], so the corollary follows 

from Proposition. 4.4. 0 

Corollary 2 (Macaulay [4]). rf Z is a homogeneous ideal of W[x] then one of its 

inverse systems is contained in W[x]z. 
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