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Abstract 

Given a nontrivial torsion-free abelian group (A, +, 0), a field F of characteristic 0, and a 
nondegenerate bi-additive skew-symmetric map cp : A x A -+ F, we study the Lie algebra _Y(A, cp) 

over F with basis {ex: x E A\(O)} an multiplication [ex,ey] = cp(x, y)e,+,. We show that d 
Y(A, ‘p) is simple, determine its derivations, and show that the locally finite derivations D have 
the form D(eX) = p(x)eX, p E Hom(A, F). We describe all isomorphisms between two such 
algebras. Finally, we compute H*(Y,F). @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Let F be a field of characteristic 0 and A an abelian group. Let L be the vector space 

over F with basis consisting of all symbols e,,x E A. Define a bilinear multiplication 

in L by 

where x, y E A are arbitrary and 

f(x, Y) = cp(x, Y) + 4x - Y> 
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for some skew-symmetric bi-additive function cp :AxA -+ F and some additive function 

CI : A + F. We denote the vector space L with this algebra structure by L(A, q, a). 

When cp # 0 and CI # 0, this algebra was studied by Block [2] and in our previous 

paper [4]. In that case L is a Lie algebra if and only if ye = tl A p for some additive 

function p : A --) F, i.e., 

co(x, Y) = @)P(u) - N(Y)P(X). 

Assume that ker(a) n ker(/3) = 0 and A # 0. In that case the Lie algebra L = 

L(A, cp, a) is close to being simple. More precisely, the derived algebra L* = [L, L] 

is either equal to L or has codimension 1 in L, the center Z of L is either 0 or 

has dimension 1, Z CL*, and the quotient algebra Y(A, cp, a) := L*/Z is simple. The 

algebras Y(A, cp, LY) are called generalized Block algebras. In [4] we have determined 

the derivation algebra of 2’(A, cp, a), described its automorphism group and computed 

its second cohomology group with coefficients in F. 

In the special case when ‘p = tl A p and P(A) = Z one can define a proper simple 

subalgebra of _Y(A, cp, a). These subalgebras were studied in detail in our paper [5]. 

If cp = 0 and tx # 0, then L is automatically a Lie algebra. In fact it is a special 

case of so called generalized Witt algebras. In this case L is simple if and only if a is 

injective. For the properties of generalized Witt algebras (in characteristic 0), we refer 

the reader to our paper [6]. 

In the present paper we study the remaining case where cp # 0 and CI = 0. Again 

L(A, cp, 0) is a Lie algebra, and we simplify the notation by writing just L(A, q) instead 

of L(A, cp, 0). Hence, we have 

[G, f+l = CP(G yk+, 

for all x, y E A. 

(1.1) 

Let Kq be the kernel of 40, i.e., Krp is the subgroup of A consisting of all x E A such 

that cp(x, JJ) = 0 for all y E A. The subspace Z CL spanned by all e, with x E Kq is the 

center of L = L(A, cp). Let 2 = A/K, and let $ :k x 2 + F be the (skew-symmetric) 

bilinear map induced by cp. It is easy to check that 

L(A, cp)/Z = L(& @)P’ca, 

where 0 = 0 + Z E i and Fe6 is the center of L(k, (p). Since we are interested only 

in studying the quotient algebra L(A, cp)/Z, the above isomorphism shows that, without 

any loss of generality, it suffices to consider the case where Kq = 0. 

Hence, we assume from now on that CJJ is non-degenerate (i.e., Kv = 0). Since F 

has characteristic 0, this assumption implies that A is torsion-free. To avoid the trivial 

case, we assume also that A # 0. The condition Krp # 0 implies that the rank 

at least 2. 

ofA is 

The one-dimensional subspace Fe0 is the center of L(A, cp). The subspace 

~(A,P) = c Fe, 

XEA\{O) 
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is an ideal of L(A, cp) and we have 

In Section 2 we show that the Lie algebra _Y(A, cp) is simple. In particular, it follows 

that _Y(A, cp) is the derived algebra of L(A, cp). We mention that the finite-dimensional 

version of the simple Lie algebra Y(A, q), but now over a field of prime charac- 

teristic, has been introduced long ago by Albert and Frank in their paper [l]. The 

algebras L(Z”, q) in characteristic 0 were studied by Koepp in his Ph.D. thesis [7]. He 

showed that S(Z”, cp) is simple under an additional condition on cp. It follows from 

our simplicity theorem (Theorem 2.1) that the additional condition used by Koepp is 

not needed. 

Note that 9(A, cp) and &4, cp) are A-graded Lie algebras: the homogeneous compo- 

nent of L(A, cp) of degree x is Fe,. In Section 3 we describe the derivations of Y’(A, q). 
In particular, we show that the derivations of degree x # 0 are inner, and that the 

derivations of degree 0 have the form e, H p(x)eX where p E Hom(A,F). The main 

result of that section is that the locally finite derivations of _.!?(A, q), rank(A) < co, 

are precisely the derivations of degree 0. 

In Section 4 we describe all isomorphisms between two simple algebras Y(A, cp) and 

_$?(B, $) when A and B have finite ranks. As a consequence we obtain a description 

of the automorphism group of 9(A, q) when A has finite rank. 

Finally in Section 5 we compute the second cohomology group H2(2’, F) for the 

simple Lie algebra 9 = Y(A, cp). 
More general Lie algebras (in characteristic 0) than the algebras studied in the present 

paper and [4] can be constructed by analogy with Block algebras in characteristic p 

described in [3]. 

2. Simplicity of 9(A, q) 

As mentioned before, we assume that A is a nonzero torsion-free abelian group and 

cp : A x A -+ F is a nondegenerate skew-symmetric bi-additive map. 

Theorem 2.1. The Lie algebra _!Z(A,rp) is simple. 

Proof. Let I be a nonzero ideal of 9’ = _!Z(A, cp). Let 

24 = ale,, + . . . + a,exs7 

be a nonzero element of I, where xl,. . . ,x, # 0 and al,. . . , a,, E F, and assume that u 

is chosen so that n is minimal. It follows that the xi’s are distinct and the ai’s are all 

nonzero. 

Assume that n > 1. Let y E A be arbitrary and let v = [u, eY]. Thus, 

u = &cl, y)e,,+, + . . . + cp(xn, y)exn+, E 1. (2.1) 
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We claim that 

&Xl - x2, v) = 0. (2.2) 

If cp(xt, y) = 0, then (2.1) and the minimality of n imply that also &x2, y) = 0, and 

so (2.2) holds. In particular, by taking y = xi, we conclude that q$xi,x2) = 0. 

If &xl, y) # 0, then u # 0 and the minimality of n implies that cp(xi, y) # 0 for 

all i’s. By replacing u with u, we conclude that &xi + y,x2 + y) = 0. Since also 

q(xi,xz) = 0 and cp is skew-symmetric and bi-additive, we conclude that (2.2) holds. 

Since q is nondegenerate and (2.2) holds for all y E A, we conclude that xi = x2, 

a contradiction. Hence n = 1, i.e., e,, E I. 

We claim that eY E I for all y # 0. If &,x1) # 0, then y - xi # 0 and the claim 

follows from 

[ey-x,, ex, 1 = CP(.J~ XI )e, E 1. 

Assume now that (p(y,xt ) = 0, y # 0,x*. Choose z E A such that cp(z,xt ) # 0 and 

cp(y,z) # 0. Since q(z,xt) # 0, we infer that e, E 1. As y # z and [e,_=,e,] = 

cp(y,z)eY E I, we conclude again that eY E I. Thus our claim is proved. 

So, we have I = 9, and 3’ is simple. 0 

In the case A = Z”, n > 2, the above theorem was proved by Koepp in his thesis 

[7], under the additional hypothesis: 

(H) Ifxi , . . . ,xk E A are independent and 1 5 k < n, then there exists y E A such 

that xi,... ,Xk, y are also independent and cp(xi, y) # 0 for some i E { 1,. . . ,k}. 

Since cp is assumed to be nondegenerate, the hypothesis (H) is automatically satisfied. 

Indeed, let xi,. . . , xk E A be independent and 1 5 k < n. Assume that Cp(Xi, y) = 0 for 

all i = 1 , . . . , k whenever y is chosen so that xi,. . . , xk, y are independent. Now assume 

that x1 , . . . ,xk, y are dependent and choose z E A, such that xi,. . . ,xk,z are independent. 

Then q(xi,z) = 0 and &Xi, y + Z) = 0 for all i. We conclude that &Xi,y) = 0 for 

all i = 1 , . . . , k and all y E A. This means that xl,. . . ,xk E I&, which contradicts the 

nondegeneracy of q. 

We conclude this section with an example of a simple Lie algebra LT(Z3, cp). 

Example 1. Let A = Z”, n 2 2. A bi-additive skew-symmetric map cp : A x A -+ F 

is given by a skew-symmetric n by n matrix over F, say the matrix M. Then q is 

nondegenerate (in our sense) if and only if 

Mv=O=sv=O 

for all v E Z”. Hence, rp can be nondegenerate even if det(M) = 0. 

For instance, if n = 3 and 

M=(:; _: 8) 
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with a, b, c E F linearly independent over Q, then cp is nondegenerate. In that case the 

Lie algebra 

Y(a, b, c) := Y(Z3, (p) 

is simple. 

3. Derivations of _Y(A,cp) 

Let D be a derivation of 2 = _Y(A, cp). We extend D to a derivation of L = L(A, q), 

and denote the extension again by D, by setting D(Q) = 0. For arbitrary y E A we 

have 

We,) = c 4x, Y)G+, 
XEA 

(3.1) 

for some scalars c(x, y) E F. The scalars c(x, y) satisfy the following condition: 

(F) for each y E A there are only finitely many x E A such that c(x, y) # 0. 

For each x E A we define the linear map D, :L -+ L by 

DX(eY) = 4x, y)e,+,, Y E A. (3.2) 

It is easy to verify that each D, is a derivation of L. Furthermore, 

D=cDx 

XEA 

(3.3) 

in the sense that for each y E A only finitely many terms Dx(ey) are nonzero and 

D(q) = c &(e,). 
XEA 

Since D(eo) = 0, we have 

c(x,O) = 0, Vx E A. (3.4) 

Since D(T) c 9, we also have 

c(x, -x) = 0, Vx E A. (3.5) 

Lemma 3.1. If x # 0, then D, is an inner derivation, i.e., Dx = Aad for some 

A E F. 

Proof. As x is fixed, we shall write cy instead of c(x, y). By applying D, to [e,, eZ] = 

cp( y, z)ey+Z, we obtain 

CJJ+z’p(YJ) = cydx + YJ) + WP(YJ + z). 

By replacing z with ky, k E Z, we obtain 

cp(x, Y> . icky - &I = 0. 

(3.6) 
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Hence, if cp(x, y) # 0, then 

cky = kc,, k E Z. (3.7) 

We now choose y,z E A such that &x, y), cp(x,z), and cp(x, y + z) are all nonzero. 

By replacing y with ky and z with kz in (3.6), we obtain that 

k3q(y,z). [cy+r - cy - ~1 = k2Mx,zk, - cp(x, r>czl 

holds for all integers k. We deduce that 

(3.8) 

c1. c, -= 
cp(-% Y) cpkz) 

(3.9) 

holds. We claim that (3.9) remains valid when we remove the restriction cp(x, y+ 

z) # 0. 
Thus assume that cp(x, y + z) = 0. We can choose u E A such that the numbers 

q(x, u), cp(x, y + u), and cp(x,z f U) are nonzero. Consequently, we have 

CY Cl4 CZ 
-=-=-3 
cp(x, Y) 40(x, u) cp(% z) 

and so (3.9) holds. 

Let 1 be the common value of all numbers cyq(x, y)-’ with cp(x, y) #O. Let D’ = 

D, - 2 ad (eX). For y E A such that cp(x, y) # 0 we have 

D’(e,) = Q(e,) - Ale,, eyl = [cy - hP(x, y)l~+~ = 0. 

The elements e,, such that cp(x, y) # 0 

i.e., D, = Aad( 0 

In the next lemma we determine the 

DO(G) = @)en, XEA, 

where p(x) = c(O,x). 

generate 2 as a Lie algebra, and so D’ = 0, 

derivation DO. By (3.2) we have 

Lemma 3.2. The map ,u : A + F is additive. 

Proof. We have to show that 

P(X + y) = P(X) + P(Y) (3.10) 

holds for all x, y E A. If cp(x, y) # 0, this follows by applying Do to (1.1). Since 

~(0) = c(O,O) = 0 by (3.4), it follows that (3.10) also holds if x = 0 or y = 0. 

Now let y = -x # 0. Choose z EA such that cp(x,z) # 0. Then we have 

P(Z) = P(Z -x) + P(X) = AZ) + P(-x) + P(X). 

Hence, p(x) + p(-x) = 0, i.e., (3.10) holds also when x + y = 0. 
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Finally, let x, y, x+y # 0 and cp(x, y) = 0. We choose z EA such that cp(x,z), cp(y,z), 

and &x + y,z) are all nonzero. It follows that also cp(x +z, y -2) # 0. Hence, we can 

apply (3.10) to each of the pairs (x + z, y - z), (x,z), and (y, -z). So, we obtain that 

P(X + Y) = P(X + z) + P(Y - z) = P(X) + P(Y) + P(Z) + P(--z). 

Since p(z) + p(-z) = 0, (3.10) is proved. q 

Let q : A -+ Hom(A,F) be the map such that y(x)(y) = cp(x, y) for all x, y E A. 
Since cp is non-degenerate, the homomorphism q is injective. We denote by (q(A)) the 

F-subspace of Hom(A,F) spanned by the subgroup q(A). 

Lemma 3.3. If dimF(v(A)) = n < CQ, then D’ := D - DO is an inner derivation. 

Proof. By (3.3) and Lemma 3.1 we have 

D’ = c & ad (eX) 

x#O 

for some AX EF. Let B c A consist of all x # 0 such that & # 0. 

Choose al, . . . , a, EA such that their images under Q form a basis of (q(A)) over F. 
Let Bi consist of all x E B such that cp(x,ai) # 0. Since c(x,ai) = &q(x,ai), the 

finiteness condition (F) implies that Bi is a finite set. 

Assume that there exists an x E B such that x @ Bi for all i = 1,. . . ,n. Thus, 

cp(x, ai) = 0 for all i’s. For arbitrary y E A there exist tl, . . . , tn E F such that 

y](y) = tir(ai ) + . . . + &da,). 

It follows that 

for all y E A. As 9 is non-degenerate, we conclude that x = 0. As x E B, we have a 

contradiction. 

Hence, we have shown that B is the union of the Bi’s, and so B is a finite set. 

Consequently, D’ is an inner derivation. 0 

Proposition 3.4. Suppose that rank (A) < CCL If D is a locally jinite derivation of 9, 
then there exists p~Horn(A,F) such that D(eX) = p(x)eX for all x. 

Proof. By (3.3) and Lemma 3.1, we have 

D = DO + c &ad(e,) 

x+0 

for some scalars 3L, E F. By Lemma 3.3, the set B = {x E A \ (0) : AX # 0) is finite. 

Assume that B is not empty. We can choose a total ordering “2” on A, compatible 
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with its group structure, and such that the maximal element u of B is z=- 0. Choose 

z EA such that cp(u,z) # 0. By induction on k 2 1, it is easy to show that 

ok(%) = &(%z)keZ+k, + ok, 

where vk is a linear combination of e,‘s with x < z + ku. It follows that D is not locally 

finite. 

Hence, if D is locally finite, then B = (b and so D = Do. It remains to apply 

Lemma 3.2. 0 

We do not know whether or not the restriction on the rank of A can be removed 

from the above proposition. 

Corollary 3.5. A simple Lie algebra _%‘(A, q) (with no restriction on the rank of A) is 
not isomorphic to any generalized Block algebra or simple generalized Witt algebra. 

Proof. It follows from the proof of Proposition 3.4 that _Y(A, cp) has no ad-semisimple 

elements except 0. On the other hand, all generalized Block algebras and simple gen- 

eralized Witt algebras have non-trivial tori. 0 

4. The isomorphism theorem 

We shall determine all isomorphisms 

0 : -%4 cp> --f -W, $1 (4.1) 

between two simple algebras 6P(A, ~0) and _Y(B, Ic/), assuming that A and B have finite 

ranks. Clearly, 0 extends to an isomorphism, again denoted by 8, of the Lie algebras 

L(A, cp) and L(B, II/) by defining &es) = es. 

Theorem 4.1. The Lie algebra isomorphisms (4.1) are precisely the linear maps 8 
such that 

fJ(e,) = ax(x)e+), VXEA\{OI, (4.2) 

where x E Hom(A, F*), 0 : A + B is an isomorphism, and the constant a E F* satisfies 

cp(x, Y) = a$(+), o(y)), vxk, Y EA. (4.3) 

Proof. Assume that the map (4.1) is an isomorphism of Lie algebras. For every 

fl E Hom(A, F), the linear map D, : Y(A, rp) --t B(A, cp) defined by 

D,(e,) = &)eX, XEA\{O}, 

is a derivation of degree 0 (with respect to the A-gradation of Y(A, cp)). 
By Proposition 3.1 we know that the derivations DP are exactly the locally finite 

derivations of _Y(A, cp). Furthermore, the vectors e,, x E A, are the only common 
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eigenvectors (up to scalar multiple) of all D,‘s. Analogous statements are of course 
valid for 2’(B, $). Consequently, there is a bijection D : A + B such that 

&e,) = c,e,(,), x EA 

for some scalars c, E F*. Clearly, a(O) = 0. 
By applying 8 to ( 1.1) we obtain 

cX+,P(x, y)e,o+,) = c~+ti(c(x), n(y))e+)+a(y). 

If ~(x, y) # 0, we derive that 

0(x + y) = a(x) + o(y). 

Let x # 0 and choose y GA 

(4.4) 

(4.5) 

such that rp(x, y) # 0. By (4.5) we have 

u(y) = u(x) + o(y -x) = a(x) + o(y) + a(-x). 

Consequently, (4.5) also holds for y = -x. 
Obviously, (4.5) holds if x = 0 or y = 0. Assume now that x # 0,y # 0, while 

&x, y) = 0. We choose z E A such that the numbers cp(x,z), ~(y, z), and cp(n + y, z) 
are all nonzero. Then we can apply (4.5) to each of the pairs (x - z, y + z), (x, -z), 
and (y,z). So, we obtain that 

a(x + y) = a(x - z) + o(y + 2) = (T(x) -t (i( -z> + o(y) + u(z)* 

As a(z) + a(-~) = 0, we infer that (4.5) holds also for the pair (x, y). 
Hence we have shown that D : A -+ B is a homomorphism, and consequently an 

isomorphism. 
Eq. (4.4) now implies that 

G+y4D(X, Y) = V+JfKc(x), O(Y)) (4.6) 

holds for all X, y E A. 

We claim that the ratio 

2 = t+K+>, a(r)) 

&x3 Y) 
(4.7) 

is independent of x and y. Of course, we have to assume that cp(x, y) # 0, and so, by 

(4.6), also ti(c(x), D(Y)) # 0. 
By replacing x with 2x in (4.6) we obtain that 

By replacing y with x + y in (4.6), we obtain that 

c2x+y&, Y)2 = &JMx), c(vN2. 

The above two equations imply that 1= c&c, -‘. Since the expression (4.7) is symmetric 
in n and y, we also have II = CZ,,C;~. Hence, we have shown that 

-2 
c2xc, 

-2 
= czycy (4.8) 
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if cp(x, y) # 0. The restriction cp(x, y) # 0 can easily be removed, i.e., (4.8) holds for 

all nonzero x and y. In particular, our claim is proved. 

If a = il-‘, then (4.6) shows that 

a . c,,, = cxcy (4.9) 

holds whenever &x, y) # 0. 

Suppose that x, y,x + y # 0 while cp(x, y) = 0. Choose z EA such that the numbers 

cp(x,z), cp(y,z), and cp(x - y,z) are all nonzero. We can apply (4.9) to each of the pairs 

(x + z, -z), (x,z), (y, -z), and (x + z,x - z). 

Hence, we have 

a 2 c, = acx+zc_, = c,c,c_, 

and 
a3cx+, = a 2 cx+zcy_-z = cxczcpc_,. 

Consequently, (4.9) holds whenever x, y,x + y # 0. 

If we define x : A + F* by x(O) = 1 and x(x) = AC, for x # 0, then (4.9) implies 

that x is a homomorphism. Furthermore, (4.2) and (4.3) hold. 

The converse is straightforward. 0 

We now apply Theorem 4.1 to obtain a description of the automorphism group of 

_5? = 5?(4, cp), assuming that A has finite rank. Every character x E Horn@, F*) = X(A) 

determines an automorphism 9, of _5P by 

e,(e,) = x(x)ex, x # 0. 

The map x H Bx is an injective homomorphism X(A) + Aut($P) and we shall identify 

the character group X(A) of A with its image in Aut(Z). 

Let d = d(Y) be the subgroup of Aut(A) consisting of all automorphisms 0 of A 

for which there is a constant a, E F* such that 

&dX),4Y)) = wP(x,y), V&Y EA. (4.10) 

Clearly, such constant a, is unique. 

Each GE d determines an automorphism e0 of _!Z by 

e&e,) = a;‘e,(,), x # 0. 

The homomorphism sending o H 8, is injective and we identify JZ? with its image in 

Aut( 2). 

The following corollary follows immediately from Theorem 4.1. 

Corollary 4.2. If Y = Z(A, cp) is simple and rank (A) < co, then 

Aut(T) = X(.4) x d(P) 

(semidirect product, with X(A) normal in Aut(_fZ)). 
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Example 2. Let A = Z* and let ei = (1,0) and e2 = (0,l) be the standard basis 

vectors. A bi-additive skew-symmetric map cp : A x A + F is uniquely determined by 

the scalar ct = cp(el,e;!)EF. We shall write (Pi for this rp. Clearly, 9% is nondegenerate 

if and only if a # 0. We set 

9% := 9(ZQ&), a # 0. 

If a/? # 0, then the linear map 8 : YE + S?p defined by t?(e,) = c@‘ex,x~Z2\{O} is 

an isomorphism of Lie algebras. Hence, in the case A = Z*, there is only one (up to 

isomorphism) simple Lie algebra 9(Z*, cp). 

Assume now that cp = cpi, i.e., cp(ei,ez) = 1. We claim that d(9) = GLz(Z) holds 

in this case. A simple computation shows that if 

fJ= E GL2(Z), 

then a’Ja = det(o)J, where 0’ is the transpose of c. Hence, (4.10) holds with a,, = 

det(a) = f 1, This proves our claim. 

Consequently, Aut(9) N X(Z2) M GLz(Z). 

5. Computation of H2(Y, F) 

In this section we compute the second cohomology group H2(9,F) of the simple 

Lie algebra 9 = 9(A, q). 

Let $ : 6p x 9 -+ F be an arbitrary 2-cocycle, i.e., a skew-symmetric bilinear form 

satisfying the identity 

Il/([u, VI, w> + $([%Wl, u) + KJ% ul, 0) = 0. 

We set 

(5.1) 

G, Y) = +(ex, ey) (5.2) 

for x,Y # 0. By setting u = e,,v = ey,w = e, in (5.1), we obtain that 

4$.x, Y)@ + Y,Z) + cp(Y,Z)l(Y + ZJ) + cp(z,x)@ +x, Y) = 0 (5.3) 

holds for x, y,z # 0. If x+Y = 0, then A(x+Y,z) is not defined. In that case cp(x, Y) = 0 

and the first term in (5.3) should be interpreted as 0. Similar interpretations should be 

used for the second and third terms if Y + z = 0 and z + x = 0, respectively. 

Since II/ is skew-symmetric, it follows from (5.2) that 

A(% Y) + JxY,X) = 0. (5.4) 

For UEA define n,(x) = J.(x,u -x) for x # 0,~. From (5.4) we deduce that 

&(u - x) = -A,(x), x # 0,U. (5.5) 
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By setting z = u -x - y in (5.3), we obtain that 

(5.6) 

Assume that u # 0. By setting y = 2x in (5.6), we obtain that 

;t,f~) = 2&(x) 

holds if qo(u,x) f” 0. 

If cp(u,n), cp(u, y), and qo(u,x + y) are all nonzero, then by replacing x and y in 
(5.6) with 2x and 2y, respectively, and by using (53, we obtain that 

and 

V(V)UY) = cp(% Y)&(X). (5.9) 

If q$u,x), q$u, y) f 0 and ~J(ZJ,X + y) = 0 then q$u,x + 2~) # 0 and so (5.9) is valid 
if we replace y with 2y. By invoking (5.7), we conclude that (5.9) is valid as written. 

It follows from (5.9) that the ratio 

is independent of x, provided that q(u,x) # 0. In other words, there is a constant 

a, E F such that 

ux> = wP(% x> 
holds whenever q(u,x) # 0. 

(5.10) 

Let x # 0, it and q(u,x) = 0. Choose y E A such that rpfx, y) and ~;)(a, y) are both 

nonzero. By replacing x in (5.8) with x - y, we infer that 

&(x> = AAx - Y) + AL(y) = au[(P(w - Y) -t P(% Y>l = 0. 

Hence, (5.10) is valid for all x # 0,~. 

Let I : 9 + F be the linear function defined by l(e,) = a, for x # 0. Let $ be the 

2-cocycle defined by 

If x, y,x + y # 0, then we have 

li* (ex,ey) = d(x,y> + cp(&Y)G+, = A+,(x) -G+,& + YJ) = 0. 

Hence, by replacing 11/ with the cohomol~gous Z-cocycle 6, we may assume that Au = 0 

for all 24 # 0. 
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It remains to determine 20. For u = 0, (5.6) becomes 

cp(X,Y)~ [~o(x + Y) - Ao(x) - idol = 0. 

Hence, 

lo@ + y) = no(x) + lo(Y) 

holds if cp(x, y) # 0. 

(5.11) 

Now assume that x, y,x + y # 0 while cp(x, y) = 0. We choose z E A such that the 

numbers cp(x,z), cp(y, z), and cp(x + y,z) are all nonzero. Then we have 

Ilo(x + y) = 20(x + z> + lo(Y - z> 

= A,(x) + EbO(Y) + &o(z) + h-z> 

and 

&j(x) = 1&K + z) + A,( -z) = L,(x) + Lo(z) + A,( -z). 

Consequently, (5.11) holds whenever x, y,x + y # 0. 

Let p : A + F be defined by p(x) = LO(X) if x # 0 and ~(0) = 0. It follows from 

(5.11) that pEHom(A,F). 

Hence, we have proved the following result. 

Theorem 5.1. For the simple Lie algebra 9 = _!?(A, cp), H2(5Z, F) is spanned by the 

cohomology classes [$,,I where p~Horn(A,F) and the 2-cocycle &, is defined by 

&(exY e,) = h-+y,~Hx)T 4 Y # 0. 
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