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1. INTRODUCTION

The theory of nonnegative irreducible matrices, which was initiated
by Perron [11] and Frobenius [4], is of fundamental importance in the
theory of the iterative solution of matrix equations (cf. [7, 15]), derived
from the discretization of elliptic boundary value problems. This is not
only valid for the standard discretizations, such as those described in
[15], but also for more refined methods (cf. [1, 2, 12, 14]).

We shall not be concerned here explicitly with such applications.
However, our results give some criteria for deciding whether a matrix
(or its inverse) is a nonnegative irreducible matrix (cf. Theorems 1, 2,
4, and 5) and as such, they might be of interest in view of possible applica-
tions to numerical analysis.

Theorem 1 as well as the second part of Theorem 4 are extensions of
similar results proved in the case of positive stochastic matrices in [13],
and in the case of positive matrices in {8] and [9]. In this paper we extend
those results to the case of nonnegative irreducible matrices, among other
things.

For completeness, we mention that Fiedler and Ptdk (cf. {4]) have
recently given a necessary and sufficient condition for a matrix to be
monotone with a positive inverse, although their methods are different in
essence.

2. A NECESSARY AND SUFFICIENT CONDITION FOR A LINEAR OPERATOR TO
BE REPRESENTABLE BY A NONNEGATIVE IRREDUCIBLE MATRIX

We first recall a few definitions: An # X » real matrix 4 = (a;) is

said to be mommegative, or positive, iff a; =0, or >0, respectively, for
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140 P. G. CIARLET

alll <{ 4,7 < n. Ann X n matrix 4 is reducible iff there exists an # X n
permutation matrix P such that

PAPT: JAII ‘412
L0 Ay,

’

where 4;; is an 7 X  submatrix and Ay, is an (n —7) X (» — 7) sub-
matrix, for some 1 <{ # <{ » — 1. If no such permutation exists, then 4 is
trreducible (for detailed accounts on the theory of irreducible nonnegative
matrices, we refer to [6], [7], or [15]).

The spectral radius p(A) of a matrix A is the greatest modulus of its
eigenvalues.

A collection of (# + 1) points p; in a vector space E, of dimension »
forms the vertices of an n-simplex S, if and only if the (n + 1) X (» + 1)
determinant whose first # rows are formed with the coordinates of the
vectors p; over a basis in E, and whose last row is composed of 1’s is
different from zero; the n-simplex S, itself is the collection of all vectors
of theformx = D7 1ap, 0 <o, < LI i< n+ 1, il =1(e,
is the convex hull of the vertices p;). A face of the » simplex S, is any
m-simplex S,, formed with a subcollection of m of the vertices p;(1 <m < n)
of the n-simplex S,. For details, we refer to [10].

A stochastic matrix 4 is a nonnegative matrix such that the sum of
the elements of each row of 4 is 1 (cf. [6, p. 83]).

Let there be given a real Euclidean space E, | ;, of dimension # - 1.
Let o7 be a linear operator acting from E, ,; into itself. We denote by
{x;,,1 < ¢ < n+ 1} a canonical basis in E, ,,, and by 4 the (»n + 1) X
(» + 1) real matrix which represents the linear operator in the above
basis {x;, 1 <{7<{n + 1}. We begin with

LEmMMa 1. Let the matrix A be nonnegative and irreductble. Then
the space E, | can be written as the divect sum E,_ | = E, @ E,, where
both the subspaces E, and E, are tnvariant under the operator o7, and E,
and E, have the dimensions n and 1, respectively.

Proof. Since A is a nonnegative irreducible matrix, its spectral
radius p(4) is a simple eigenvalue (cf. [15, p. 30]); hence by a standard
result in matrix theory (cf. [6]), the space E, ; can be written as the
direct sum of the subspace E,, spanned by the eigenvector e corresponding
to the eigenvalue p(4), and of the subspace E, which is a subspace of
dimension # of E, ,, also invariant under «/. Q.E.D.
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In what follows, we shall assume that the eigenvector e is chosen
so as to have all its coordinates positive; that this is indeed possible
follows from [15, p. 301.

LEmMA 2. Let the matrix A be nonnegative and irreducible. Denote
by C the cone gemeraled by the basis vectors {x;, 1 i <{n + 1}, e, C =
(XeE, . ; x=2D7r"16x,8=201<i<n+1}. Then E,NC = 0, where
E, s the subspace introduced in Lemma 1, and O denotes the zero vector
of E, .

Proof. Assume the conclusion of Lemma 2 is false, i.e., let C =
{xeE, ;;x#0,xeE,, xeC} be nonempty. Given any vector X € C,
AX e C since A is nonnegative, 4 X =~ 0 since A4 is irreducible, and finally
AXeE, since E, is an invariant subspace. Therefore AC . Using
the Brouwer’s fixed point theorem as in [3], there exists an eigenvector,
say ¢, of 4 in C, hence also in C. Howe‘ver, since the matrix A4 is nonneg-
ative andirreducible, the only eigenvector of 4 in C is the vector e introduced
in Lemma 1 (cf. [15, p. 34]). This is a contradiction, since e € E,;. Q.E.D.

LEMMA 3. Given any basts vector X;, 1 <1 << n + 1, we can wrile X, in
a unique way as X; = ;¢ + p,, where y; >0, and p,e E,,.

Proof. That the above decomposition is possible in a unique fashion
follows from the decomposition E,  , = E, @ E; of Lemma 1. Hence
it remains to prove that u; > 0. Let us first observe that u; 3 0, since
X; is not in the subspace E,, by Lemma 2.

Since E,, is a subspace of dimension # of E, ,, it can be written as
E,={xeE,_ |;F,(x) =0}, where F (x) is a linear and homogeneous
expression in the coordinates of x. Since x; = ;e + p,, it follows by
linearity that F,(x;) = w;f,(e) + F, (p;) = wF,(e), since p, € E,. Finally,
the vectors x; and e are in the same half-space determined by E, (since
both are in C and E£,N C = 0 by Lemma 2). Hence F,(x;) and F,(e)
are of the same sign, ie., y; >0, for any 7. Q.E.D.

For convenience, we henceforth assume that all the coefficients u;
are equal to 1. This is no loss of generality: it amounts to performing
a positive scalar multiplication on each basis vector.

LemMMA 4. With the above assumption, each basis vector X; can be
wrilten as X, = e + p, 1 <i<<n+ 1. Then, the (n + 1) points p, are the
vertices of an n-simplex S, in E,.
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Proof. To show that the (» + 1) points p, are actually the vertices
of an n-simplex, it suffices to prove that the (n + 1) x (# + 1) deter-
minant, where the # first elements of each column represent the coordinates
of the p;s over any given basis in £, and whose last row is composed of
I’s, is different from zero. But this is nothing else than the determinant
of the basis vectors x;, 1 <{ ¢ < n + 1, expressed over a basis of £, @ E;:
hence, it is different from zero. Q.E.D.

Consider now any vector x in C N (e 4 £,). Since it is in C, it can be
written as X = > 7F] X, all the o,;’s being > 0, and since it isin (e + E,),

it can also be written as x = e 4 x,, for some x, € E,. On the other hand,
by Lemma 3, we have

n+41 n+1l n+41
X = Z oX; =<Z oci)e + Z oup;-
i=1 =1 i=1
Hence, by the uniqueness of the decomposition of the vector x, we must
have D7t =1, and x, = D 7"l ap;. Since the «s are all >0, it
follows that x, belongs to the n-simplex S,. Conversely, given any point
x,€S,, any point of the form ¢ + x, belongs to CN (e + E,) and it is
clear that this correspondence is one-to-one.
As a consequence let us observe that the s#-simplex S, contains the

origin O strictly in its interior. We have thus proved

LeMMA 5. There exists a bijection between the n-simplex S, and the
set CN(e + E).

We now achieve the series of lemmas with the key result:

LEMMA 6. Let the linear operator o7 in E, | be represented by a non-
negative and irveducible matrix A over the basis {x;, 1 < i< n}. Then,

the restriction of p(A)le/ to the subspace E, maps the n-simplex S, into
ttself, 1.e.,

p(A)1/5,C S, (1)

Moreover, it maps the n-simplex S, strictly into its interior if and only if
the matrix A is positive.

Proof. Since the matrix 4 is nonnegative and irreducible, it easily
follows from Lemma 3 that Ax e C whenever xe CN{e 4 E,). Such a
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vector X can be written (Lemma 5) as x = e + x,, where x, € S,. Recalling
that p(4) > 0, we can write: Ax = Ae + Ax, = p(d)(e + p(4d)14x,).
Thus, the vector p(4)~14x, belongs to the n-simplex S, since Axe C.
The last statement of Lemma 6 follows by observing that the matrix
A is positive if and only if Ax, is a vector with all its components strictly
positive, for any 1 <7 <{n + 1. Q.ED.
We are now able to prove

THEOREM 1. In the Euclidean space E, .., let <7 be a linear operator
represented by a monmegative irreducible matrix A. Then,

(1) the space E,, _, can be decomposed as the direct sum E, _, = E, D E,,
where both E, and E, (of dimensions n and 1, vespectively) are invariant under
A (E, ts spanned by the eigenvector e corresponding to the simple eigenvalue
p(d) > 0);

(2) tn the subspace E,, there exists an n-simplex S, containing the origin
0 strictly in its interior, which is mapped inside itself under the vestriction
of L[p(A) to the subspace E, (and inside its interior if the matrix A is
positive) ;

(8) no face of the n-simplex S, is invariant under this transformation.

Conversely, let there be given a linear operator < in the Euclidean space

E Assume that:

n+1°

(4) the space E,, | can be decomposed as the divect sum E, | = E, D E,,
where both the subspaces E, and E, (of dimensions n and 1, vespecitvely)
are invariant under of. The subspace E, 1s spanned by an eigenvector e
corvesponding to a positive eigenvalue A. Moreover, tn the subspace E,,
there exists an n-simplex S, of vertices p;, 1 < i << n + 1, and containing
the origin 0, which is mapped inside itself under the vestriction of A1/ to
the subspace E

(B) no face of the n-simplex S, is invariant under the restriction of A1/
to the subspace E,.

and [inally,

n’

Then, the operator o7 1s representable by a nonnegative 1rreducible matrix
A, with spectral radius p(A) = A, in any basis of the form {x, = e + up,,
1 <o <Km + 1}, where p is an avbitrary positive scalar.

Proof. The first part follows readily from Lemmas 1 to 6.
Conversely, let there be given a basis of the form Xx; = e 4 up,, 1 <
i << n + 1, where u is an arbitrary positive scalar. Consider a nonzero
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vector X in the cone C generated by the x;’s. Then a simple computation
using hypothesis 4 alone shows that Axe C. Finally, condition 5 will
guarantee irreducibility. In particular, it implies that the moduli of the
eigenvalues of the operator .7 corresponding to eigenvectors contained
in the subspace E, are less than or equal to A (cf. [15, p. 30}). Q.E.D.

Remark. 1In our geometrical interpretation, the concept of a p-cyclic
nonnegative irreducible matrix (cf. [15, p. 35]) can be formulated as

follows:
In addition to properties 1, 2, and 3, there exists a partition
TR 1S TR S N pfp} of the vertices of the n-simplex

S, such that the associated faces &, 1 <k <{p (the face &, being
generated by the vertices {p,*, ..., p}}) satisfy

.52/9’;;C9”k+1(m0d.j>+1), 1<k<j>

Remark. 1t is clear that condition 4 alone is sufficient to guarantee
the representation of the operator &/ by a nonnegative matrix, which
is not necessarily irreducible. However, nothing can be said in general
about the converse, since the results of Lemmas 1 and 2 depended essen-
tially on the assumption of irreducibility.

Example. Let the operator & be represented in E, by the matrix
2 -2 —1 0

—2 2 0 — 1

—1 0o 2 -2

;0 -1 =2 2

A=

The eigenvectors and eigenvalues of the operator &/ are respectively

e={1,—1,—L1}, pd) =5,

e, = {1,1,1,1}, A= —1,
e, ={—1,—1,1,1}, Ay =1,
ey ={l,—1,1,— 1}, Jy = 3.

Hence, we let E, = span{e}, and E; = span{e,, e,, e;}. In E,, the
following are the vertices of a 3-simplex S; (in fact, a regular tetrahedron):

1
b= *ez_v—gca)
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P =€ — V__ €3,
Py = ¢ + 5=
1
Pa= — ¢+ ](_5 C3.

As a new basis, we choose X, = p, -+ (I/Vé)e, 1 <7< 4. Then in
that basis, the operator ./ is represented by the positive matrix

i5311‘
3 5 1 1]
TR
A=3 1 3 5
1 1 5 3

It can be readily checked that each vertex p,, 1 <7 < 4, is mapped
strictly in the interior of the 3-simplex S, under the restriction of &7/5 to £,.
As a complement to Theorem 1, we have

COROLLARY 1. Assume that the linear operator o/ is representable by
a nonnegative (or positive) trreducible matrix A'. Then the operator o7 is
also representable by the tramnspose of a stochastic (or positive stochastic)
matrix A, up to a multiplicative factor equal to the spectral radius of the
operator .

Proof. By Theorem 1, the operator .27 can be represented as follows,
after we have chosen, once and for all, a basis in E,:

0
0
4, components on £,,
A =p(d)  (nxn)
|
0]
/0 0 --- 0 1}components on E,.

The vertices p, of the n-simplex S, in E, can accordingly be represented
by the column vectors
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pi=1" 1<<i<{n+1, in the same basis.

By Theorem 1, it follows that
n+1
A'p; = p(4 Z“typh I<i<n+1, (2)
where «; >0, 1 <7 <7+ 1, and
n+1
Daai=1, 1<i<n+1 (3)
i=1

(all the ;s being positive if 4 is a positive matrix).
Let the matrix P be defined as

;]511 Por* " Putin

Pin Pon Putin
1 1 PR 1

Then the above relations (2) and (3) can be rewritten in matrix form as
A'P = p(4)P4, (4)

where A = («;) is the transpose of a stochastic matrix. The proof is
achieved by observing that the matrix P is nonsingular (cf. Lemma 4).
Q.ED.

Remark. Corollary 1 is a generalization of a result of [10].

3. A NECESSARY AND SUFFICIENT CONDITION FOR AN IRREDUCIBLE MATRIX
TO BE MONOTONE

An (n + 1) X (» 4+ 1) matrix A4 is said to be monotone if and only
if its inverse 41 exists and is a nonnegative matrix. Monotone matrices
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theory plays a fundamental role in the derivation of finite difference
schemes for elliptic operators (cf. [1, 2, 7, 12, 14, 15)).

Before stating Theorem 2, let us observe the obvious fact that a
nonsingular matrix 4 is irreducible if and only if its inverse 41 is irreduc-
ible.

THEOREM 2. Let there be given an (n + 1) X (n + 1) irreducible and
monotone matrix A, representing a linear operator o7 in a basts {x;, 1 <
i< n+ 1} of the real Euclidean space E,  ,. Then,

(1) the space E, | can be wrillen as the divect sum E, , = E, @ E,,
where both E, and E,| ave invariant under A, and the subspace E| is spanned
by the eigenvector e corresponding to the simple eigenvalue g(A) = p(A4~1);

(2) E, N C = 0, where C s the cone generated by the basis vectors {x;, 1 <
i< n+ 1}

(3) Let the positive numbers x; be uniquely determined by the condition
that ax, —ec E_ 1 <1< n + 1. Then, in the subspace E,, the n-simplex
S, of vertices p; = a,x; — ¢, 1 <1 << n + 1, is contained in its image under
the restriction of the operator o(A)A to E,.

Conversely, let there be given an iyrveducible matriz A in the basis {x;, 1 <

i< n+ 1} of the space E Assume that

n+41*

(4) the space E,, , | can be decomposed as the divect sum E, | = E, D E,,
where both the subspaces E, and E, (of dimensions n and 1, vespectively)
are invariant under A. Moreover, the subspace L is generated by an eigen-
vector € corresponding to a positive eigenvalie c(A) of the matrix A. Further,

(8) condition 2 holds, and finaily,

(6) condition 3 holds.

Then the matrix A 1is monotone.

Proof. 1t is an immediate consequence of Theorem 1 applied to the
matrix A~ (conditions 4, 5, and 6 imply that A1 exists). Q.E.D.

Example. Let

=3 22
Ad=p 2 -3 2,
2 2 —3
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One can easily check that ¢(4) = p(4-1) =1, and e = {1, 1, 1}. The
subspace E, is the plane {X; x, 4 %, 4 x5 = 0} and the restriction of
A to E; amounts to a scalar multiplication by — 5. The 2-simplex S,
of vertices p,, P, P3 is an equilateral triangle and clearly S; € — 5S,.
Since it is even strictly contained in S,, it follows that A—1is a positive
matrix and, actually, the inverse matrix A1 is given by

o2 2|
AV =142 1 2|
2 2 1/

In Section 4, we shall give some sufficient criteria allowing us to use
the results of Theorems 1 and 2. However, we need first to describe the
“regular” n-simplex and this is the purpose of the first part of Section 4.

4. THE REGULAR #-SIMPLEX AND ITS APPLICATIONS

Let E, |, be metrized by the usual Euclidean metric: d(x,y) =
{2:‘;% }xi - yi|2}1/2'
In any space of dimension = #, an n#-simplex T, of vertices p;, 1 <
1 << n 4 1, is said to be regular with center at the ortgin if and only if the
following conditions are satisfied:
dp;, 0) = d(p;, 0) = 8,  1<ii<n+l i#j, (5)
A, pj) = dPr, P) = 0, 1 <d7<n+ 1, 157, (6)
1<kI<n+ 1, ks#1L
Observe that a regular n#-simplex is the generalization of an equilateral
triangle in E,, 2 > 2, or of a regular tetrahedron in E,, ¥ > 3.

The previous results will allow- us to construct such an #n-simplex.
This is the purpose of

THEOREM 3. There exists a regular n-simplex T, with center at the
origin in an n-dimensional subspace E,, of the Euclidean space E,, . . More-
over, the following metric properties hold:

_ [%’*‘_1)}1/2 5, &)

y =
n
Theradii R, andr, of the circumscribed and inscribed spheres, respectively,
are given by
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On
R,= 0, and Py = — - (8)

”n

Finally, we have that
- - . . 1
al,CT, if and onlv if 7;<a.<1, W
and

- y . 1

aT,Cint T, if and only if — - <a<<l. (10}

Proof. 1n the Euclidean space E, , | provided with the usual canonical
basis {x;; 1 < i < n}, consider the (n - 1) x (» + 1) matrix

il+n<x l—o - 1—u
‘1,,a 1+ne -+ 1—a
1
A = - ' 11
(@) 7+ 1 . (1
l—a 1 —a -+ 1+ na

for any real . It is readily seen that we can decompose the space £, ;
as E, , = E, @ E,, where both the subspaces E; and E, ,  are invariant
under A; E, is spanned by e ={1,1,...,1} and E, is its orthogonal
complement: E, = {x; 3"} x, = 0}. The vector ¢ is an eigenvector
corresponding to the eigenvalue 1, and the restriction of A(x) to E,
merely amounts to a scalar multiplication by a.

Clearly, the following properties hold:

o« > 1: A has alternate signs among its coefficients,

o=1: A =1 (hence 4 is a reducible nonnegative matrix),

—
w

1 . " . . .
— 77< a<<l: 4 a positive matrix (hence irreducible),

(12)

=
I
|
2|
o

is a nonnegative irreducible matrix,

o < — A has alternate signs among its coefficients.

Linear Algebva and [ts Applications 1, 139—152 (1968)



150 P. G. CIARLET

Call T, the n-simplex associated with the matrix 4 along the lines
of Section 2 (notice that it is independent of «). As an immediate con-
sequence of Theorem 1 and relations (12), it follows that the inclusion
relations (9) and (10) are wvalid.

Next, it is easily verified that each vertex p, of 7', has coordinates
p={—1—1 ..., —1Ln—1,...,—1} ie, p,= @+ 1)x —e.
From this, the formulas (5), (6), and (7) directly follow, proving that
the z-simplex T, is regular.

Finally, we compute the radii of the circumscribed and inscribed
spheres, respectively: each point x, on the boundary a7, of T, can be
written as

n+1 741
Xo = 2, b, D=1 =20 1<i<n+]1, (13)
i=1 t=1
where at most n of the coefficients «, are different from zero. Clearly
then, R, = SUPx,ear, d(x;,0)andr, = infxae”n d(x;, 0). An easy computa-
tion yields that d(x, 0) = — (o + 1) + (n + 1)2 D712, from the
expression of x, as given in (13). A simple argument will then give the
formulas (8).

Remark. For o + 0, the inverse of the matrix 4(x) as given in (11)
is explicitly given by

10L+n a—1 .- a411
«—1 a+n - a1
1 ‘ .
) -1 . 14
A (n+ 1) | : 14
a—1 a—1 - odmn

Moreover, the following properties hold:
oo >1: {(a}]~! is a positive matrix,
«)]~! = I is a reducible nonnegative matrix,

A
[A(
—n<a<<l: [A(a)]"! has alternate signs among its coefficients, (15)
[A(x))~1 is a nonnegative irreducible matrix,
(4

(
o< — n: (0)]7' is a positive matrix,
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all properties that could have been derived directly from the results
of Section 3 coupled with those of Theorem 3.

As applications, we now state, without proofs, the two following
results, which are easy consequences of Theorems 1, 2, and 3:

THEOREM 4 (Sufficient comdition for a diagomalizable mairix to be
similar to a nonnegative matrix). Let the diagonal matrix D be of the form

D = diag{l, A}, 49, . . ., Au}, (16)

where all the A's ave real numbers. Then,

() dif 4] < Un, 1 <i< n, the diagonal matrix D is similar to a
nonnegative matrix;

@) if |4 <ln, 1 <i<n, the diagonal matrix D 1is similar to a
positive matrix.

THEOREM 5 (Sufficient condition for a symmetric matrix to be monotone).
Let A be a symmetric matrix with eigenvalue 1 corvesponding to the eigenvector
e={1,1,...,1}, and let 1, 1 <<i<n, be its other eigenvalues. Then,

(L) of |&] = n, 1 <i<n, the matrix A is monotone;
(2) of Mii >n, 1 <1< n, the matrix A is monotone; wmoreover the
tnverse matrix A~L is positive.
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