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Abstract 

We propose a method to solve some polynomial systems whose equations are invariant by the 
action of a finite matrix multiplicative group G. It consists of expressing the polynomial equations 
in terms of some primary invariants II1 ,. . .,ZZ, (e.g., the elementary symmetric polynomials), 
and one single “primitive” secondary invariant. The primary invariants are a transcendence 
basis of the algebra of invariants of the group G over the ground field k, and the powers of 
the primitive invariant give a basis of the field of invariants considered as a vector space over 
k(fli, , l7,). The solutions of the system are given as roots of polynomials whose coefficients 
themselves are given as roots of some other polynomials: the representation of the solutions 
(Xl , . .,x,) breaks the field extension k(xr, ,xn) : k in two parts (or more). @ 1997 Published 
by Elsevier Science B.V. 

1991 Math. Subj. Class.. 12-04, 12E12, 12F10, 12YO5, 13-04, 13B02, 13C10, 13H10, 13P10, 
14-04, 20B35, 2OC10, 2OC30, 2OC33, 2OC40, 20F29 

1. Introduction 

Let (F) be a system of p polynomial equations F$ft, . . . ,X,) E k[Xl,. . . ,A?,] where k 

is a commutative field. Solving (F) can mean many different things. For the numerical 

mathematicians it means finding approximated values of the isolated points of the 

variety defined by (F). Our point of view is computer algebra and we shall not deal 

here with the numerical mathematician’s point of view; we just quote [20], where it is 

shown how the symmetries can be taken into account in the numerical methods using 

homotopies. 
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In computer algebra, solving (F) is usually meant to be finding a “convenient” 

system of generators of the ideal I = (Pi,. . . , F,), or of any ideal that has the same 

radical as I (and hence defines the same sub-variety of I@‘, where k is an algebraic 

closure of k). A “convenient” system of generators is usually understood to be a 

triangular system with degrees as low as possible. Standard bases (see [8, Ch. 21) 

are such systems, but they break the symmetries of the system. Yet, Karin Gatermann 

is working on decreasing the complexity of standard bases by using symmetries (see 

[9, 101). 
Here, we shall not try to give generators of the ideal I. We shall try to express the 

points of the variety defined by I in k” in successive steps, by introducing some inter- 

mediate field extensions between k and the extension of k generated by the coordinates 

of the solutions of (F). 

For this, we shall use the symmetries of (F) and express the polynomials P, of 

our system (F) as algebraic elements over a transcendental extension of k. The way 

we express the Pi in terms of other polynomials using the symmetries of (F) can be 

seen as an application of a more general problem: how to express the invariants of 

a group in terms of a small number of them, in fact thanks to a primitive element. 

This idea was developed in [7], where it was used to compute relative resolvents, in 

computational Galois theory. 

Invariant theory is what we begin with, in Section 3. In Section 4, we apply invariant 

theory to solve algebraic systems with symmetries. Then in Section 5, we compute a 

few examples using different variants of the method. 

2. Preliminaries 

2.1. A few dejinitions 

Let k be a commutative field of characteristic zero. Let n E N* be a positive integer, 

X1 , . . . ,X, some indeterminates on k, and X = (Xi,. . . ,X,). 

The general linear group GL,(k) acts faithfully on the left on k[X] (and k(X)) as 

follows: if AE GL,(k) and PE k[X] (or PE k(X)) are given, we define A.P(X) = 

P(bl,~Xi + . ‘. + bl,,X,,. .,~,,IXI + . + b,,,X,), where B = A-’ = (bi,j),,jgN;. We 

denote by StabL(P) the stabilizer of an element, or a subset P in a subgroup L of 

GL,(k), and by L.P the L-orbit of P. In particular, the symmetric group 6, can be 

identified to a subgroup of GL,(k) by associating the matrix A, = (c$,~(~))(~,,)~(N~)z 
(where 6 is Kronecker’s symbol) to a permutation r E 6,. By the induced action, G, 

acts on k[X] and on k(X) with r.Xi = Xc(i), i E N,* = { 1,. . . , n}, z E 6,. 

Definition 1. Let G be a subgroup of GL,(k). We say that a polynomial P E k[X] 
(resp. a fraction P E k(X)) is an invariant of G if and only if for all A E G, we 

have A.P = P. We denote by k[XIG (resp. k(X)‘) the algebra of polynomial (resp. 

fractional) invariants of G. 
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If L is another subgroup of GL,(k) such that G c L, P is called a primitive invariant 
of G relative to L if and only if StabL(P) = G (see Proposition 15 for the explanation 

of this terminology). 

Example 2. Let Z = (Cl ,..., Z,), where Ci = Et< j,<,,,<j as@ nf=rXj, for all in N,* 

(elementary symmetric polynomials). Then, k[X]“n = k[Z] and k(X)“n = k(Z). More 

generally, if L is a product of symmetric groups 6,, x . . . x G,,?, with CT=, nj = n 

and each 6, acting on the indeterminates &,+...++,+k, 1 < k 5 nj, then k[XIL = 

k[C”‘,. . . ,Z’“‘] and k(X)L = k(Z”‘,. . .,Z’“‘) where for all j E N:, Z”’ denotes the 

family (Z(j) , , . . , I$‘) of the elementary symmetric polynomials in the variables 

&,++n,_,+k, 1 < k < n,j (see a proof in [ 121). 

A converse of the result of Example 2 will be found in Corollary 8. 

Proposition 3. For any finite subgroup G of GL,(k), k(X)G has transcendence degree 
n over k, and therefore k[XIG has Krull dimension n over k. 

Proof. This proposition is well-known; see [17, Proposition 2.1.11 for instance. 0 

2.2. What is a system with symmetries? 

Let i be an algebraic closure of k. Let us consider a system of p, p E N*, polynomial 

equations 

(F): ViE Nlf, Fi(Xl,...,Xj)=O 

with F, E k[X], for all i E N’f. Let us define the ideal I(F) = (Fr, _. . , Fr) of k[X], its 

radical J(F), the ideal j(F) = k@kZ(F) of k[X] generated by the polynomials 1 @k Fi, 
and the manifold V(F) defined in ,@ by i(F). 

Definition 4. We define the following subgroups of GL,(k): 

l The symmetry group of the system: G(F) = n*E, StabCL,ck,(F,). 

a The vector space symmetry group of(F) as the group associated to the vector space 

L(F) = @:=I k.Fi: GL(F) = StabGL,(k)(L(F)). 

l The ideal symmetry group of (F) as the group associated to the ideal Z(F): GI(F) = 

StabCL,(kj(Z(F)) = {A E GL,(k)/VP EL(F), A.P EL(F)}. 
l The mantfold symmetry group Gv(F) of (F) as the group associated to the radical 

ideal J(F) of I(F): Gv(F) = StabCL~~,,(J(F)). 

For each of the different groups G above, we can define the associated permutation 

group as 6, n G. The following obviously holds: 
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Instead of solving (F), we could solve any system (F’) such that V(F’) = Y(F) 

(or Z(F) = Z(F’) if we pay attention to the multiplicities). And we may choose (F’) 

such that G~,v’) be bigger than GcFJ (the more symmetries we have is the best: see 

Proposition 15). The best we could hope would be G(F~) = GY(,R). 

We shall not deal here with the problem of finding such a system (F’). We just men- 

tion the notion of equiuariant, more general than that of invariant (see [lo] or [21]); 

equivariants can take into account some group action on the image space k”. Through- 

out the following, the system (F) is given; and as symmetries, we shall consider the 

permutations of a fixed finite subgroup G of G(F). 

3. Description of the invariants of a group 

Here we describe the algebra of the invariants of a finite group, i.e., we study how 

to express these invariants in terms of a small number of them. 

3.1. An especially simple case: If G is a rejection group 

Let us recall the definition of a reflection group and Chevalley’s theorem. 

Definition 5. A matrix A E GL,(k) is called a rejection if and only if precisely one of 

its n eigenvalues is not equal to 1. A finite subgroup G of GL,(k) is called a rejection 
group if and only if it is generated by reflections. 

Remark 6. Being a reflection group is not a property of the abstract group underlying 

G but it depends on its faithful representation G c GL,(k). 

Theorem 7 (Chevalley [6]). The invariant ring k[XIG of a finite matrix group G c 

GL,(k) is generated by n algebraically independent homogeneous invariants if and 

only tf G is a reflection group. 

Proof. See [6] for the “if” part, and [17, Theorem 2.4.11 for the converse. 0 

Corollary 8. The invariant ring k[XIG of a finite permutation group G c 6, is gen- 
erated by n algebraically independent homogeneous invariants if and only if G is a 

product of symmetric groups 6,, x . . ’ x G,,$ with Cg=, nj = n and each 6, acting 

on the indeterminates X,,,+..+,_,+k, 1 5 k 5 nj. 

Proof. For the “if” part, see Example 2 or [12]. For the “only-if” part, we have at first 

to notice that the matrix A, associated to a permutation r E 6, is always diagonalizable, 

and that its characteristic polynomial is n(;=i( 1 - Z’J) where Z(r) = (Ii,. . . , I,) is the 

cycle type (lengths of the cycles) of r (it is easy to see from the block decomposition 

of A, associated to the cycle decomposition of 2). So, such a permutation r acts as a 

reflection if and only if l(r) = ( 1,. . . , 1,2), or in other words, if and only if r is a 
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transposition. So, from Theorem 7, G must be generated by transpositions. But it is 

then easy to see that such a group must be a product of symmetric groups. q 

Example 9. Here, we shall use the representation of the invariants of a reflection 

group G given by Chevalley’s theorem to solve an algebraic system whose equations 

are invariant by the action of G. We apply here in fact the general algorithm of 

Section 5.1 to a particular case. The following system is quoted by K. Gatermann 

from [16]: 

P, =l-X,(cr+X.+X;)=o, 

(Noo) 

i 

P2 = 1 -&(cI +Xj+X;) = 0, 

P3 = 1 -X&+X; +x,‘> = 0, 

where CI is an independent parameter. The system (Noo) is equivalent to the following: 

1 

Q, =P,+PZ+Ps =O, 

(Noo’) Qz = P1P2 + P2P3 + P,P, = 0, 

Q3 = PlP2P3 = 0. 

Each equation of this new system is invariant by the action of the symmetric group 

&, hence can be expressed in terms of Z3 = X,X2X3, C2 = Xl& +X2X3 + X34 and 

C, =X, +X2 +X3: we get 

Q, = 3C3 - (C, + a)Cl + 3 = 0 

which gives C3 in terms of C, and CZ. We use this equation to eliminate C3 in Q2 and 

Q3: we get respectively the polynomials R2(C,, &) and R3(C,, Cz). We then eliminate 

C2 between R2 and R3 by computing a resultant; we get the following 3 families of 

solutions: 

1 

c, = 0, 

(Nool) & = CI, (Noo2) Z2 = (f)Z:, 

c3 = -1, 
1 

0 = 2C; + 9ctC, - 27, 

C3 = (;) - (4W1, 

I 

0 = 2aC; - 2.Z; + 9a=C; - 36d, + 4a3 + 27, 

(Noo3) (9%~~ - 54)x2 = (42~~ - 18)CT + 93cr2C, + 70a4 - 243a, 

13 = (f)(& + cl)ZI - 1. 

For each solution (rr,,rs~, 03) of one of the systems (No01 ), (Noo2) or (NOON), we 

get corresponding solutions (x, ,x2,x3) of (Noo): x,, x2 and x3 are the 3 roots, sorted 

in any order, of the polynomial T3 - a, T2 + a2T - a3. And by this process, we get 

all the solutions of (Noo) (it follows from Theorem 23). 

3.2. The Cohen-Macaulay algebra point of view 

This point of view gives a very accurate description of polynomial invariants. It is 

in some way similar to the description of fractional invariants in Proposition 15. But 
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it involves usually more fundamental invariants than the description of Proposition 15 

does, except for groups of index 2 ([L : G] = 2) which is the best case to apply this 

proposition to solve algebraic systems (see Remark 26). 

Proposition 10. Let G be a jinite subgroup of GL,(k). Then, k[XIG is a Cohen- 

Macaulay algebra over k, with Krull-dimension n. This means that we can find a 

family (IZ,,...,II,,)E(~[X]~)” of h omogeneous polynomials such that k[XIG be a 

finitely generated module over k[Il,, . . .,L‘,]; and for any such choice (Ill,. . .,Zl,), 

WIG is a free module of dimension (nfzl deg(IIi))/lG/ over k[IIl,. . . ,IZ,]. 

Proof. See [17, Theorems 2.3.1 and 2.3.51. q 

The polynomials ni are called primary invariants of G. A basis (Sl,. . . ,S,) of 

WIG as a module over k[IIl,. . . , II,] is called a family of secondary invariants of 

G. Together, they make up a set of fundamental invariants of G. So, we can write 

k[XIG =&k[fl,,...,II.]J’i: 
i=l 

where the Si are linearly independent over k[IIl, . . . , II,] and the ZIi are algebraically 

independent over k: this is the most accurate description of k[XIG we could dream of! 

According to [ 171, it is called the Hironaka decomposition of invariants. Algorithms 

are given in [17, 141 to find a system of fundamental invariants. 

The following proposition will be helpful to link Proposition 10 to field theory. 

Therefore, it will enable us to apply the algorithm of field theory, based on linear 

algebra, to get the Hironaka decomposition of an invariant (see Proposition 12). 

Proposition 11. If L c GL,(k) is a finite reJlection group, then for any subgroup 

G c L, k[XIG is a free module over k[XIL of dimension [L : G]. 

Proof. The ring k[XIG is integral over k[XIL because every PE k[XIG is a root of 

the manic polynomial nQELS( T - Q) E k[XILIT]; and k[XIG is finitely generated as 

a k[XIL-algebra. So, it is finitely generated as a k[XIL-module. Now, from Theorem 7, 

k[XIL is generated by n algebraically independent homogeneous polynomials. There- 

fore, from Proposition 10, k[XIG is a free k[XIL-module. Its dimension is of course 

that of k(X)G over k(X)L, i.e., [L : G] from Proposition 15. 0 

Consequently, applying Theorem 7, we can find a system of fundamental invariants 

(ZZ,, . , IT,,&, . . . ,S,) of G, where e = [L : G], such that k[XIL = k[IZl,. . . ,IZ,] and 

k[X]’ = @FE, k[XIL& 

Proposition 12 (Effective Hironaka decomposition). With the hypotheses of Propo- 
sition 11 and the previous notations, the coordinates (Al,. . .,A,) E (k[XIL)e of an 
FEk[XIG in (Sl , . . . ,S,) are the solutions of a linear Cramer system whose 
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c0efJicient.s are the traces over k[XIL (or “Reynolds projections”) of the SiSj and 
FSi, i, j E N,*. 

Proof. See after Proposition 19. 0 

Let us state two useful examples (notations of the example of Section 2.1). 

Example 13. If G c G,, then from Proposition 11 and Corollary 8 we can choose 

Di = Ci for all i E N,*. Then, k[XIG is a free module over k[XIGfl = k[Z] of dimension 

e = [6, : G]. 

Example 14. For the same reasons, if G c G,, x. . x G,, then k[X]’ is a free module 

over k[X] 6, X.-X6,, = k[$” 
, . . .,Z’“‘] of dimension nJ=, nj!/]G]. 

3.3. The field theory point of view 

The results (propositions and algorithms) of this section are extracted from the Galois 

theory article [7], where they are used, in the frame of permutation groups, to compute 

relative Lagrange resolvents (defined in [l] or [7]). 

Proposition 15. Let L and G beJinite subgroups ofGL,(k) with G CL, and 0 Ek(X)’ 

a primitive invariant (see Definition 1) of G relatively to L. Then, we have k(X)G = 

k(X)LIO], and (1,O ,..., O”-’ ) is a basis of k(X)G as a k(X)L-vector space, where 
e = [L : G]. 

Proof. See [19, Lemma 11. Other proof: k(X) : k(X)L is a Galois extension with 

Galois group L, because L acts faithfully and automorphically on k(X). Now, we have 

Gal(k(X) : k(X)LIO]) = StabL(O) = G = Gal(k(X) : k(X)G). From Galois’ duality 

theorem, we conclude that k(X)L[O] = k(X)G. 0 

Such a primitive invariant 0 of G relative to L can be computed thanks to an 

algorithm due to K. Girstmair (see [ 1 l]), which yields an invariant of lowest possible 

degree. This algorithm was implemented by Ines Abdeljaoued in AXIOM (see [2]). 

When k(X)L is a purely transcendental extension of k (i.e., when we can write 

k(X)L = k( IL,, . . . , ZI,), see Remark 18), we have the following analogy with Hironaka’s 

decomposition of polynomial invariants: 

e-l 

k(X)’ = @ k(ZZ,, . . . J,)@‘. 
i=o 

Remark 16. It happens of course when L is a reflection group (from Theorem 7 and by 

taking the fraction fields of the rings), but not only, as proves the following proposition, 

where 04 does not act like a reflection group (see Corollary 8). 
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Proposition 17. We have ~(XI,&,X~,X~)~~ = k(C,,C3,C4,Z), where 04 

subgroup of G.4 generated by ( 12) and ( 13 2 4) and I = X,X, +X+X,. 

Proof. From Proposition 15, k(X)oj = k(X)““(Z) = k(Ci,&,Cs,&)(Z). 

denotes the 

So, we just 

need to prove that C2 E k(Ci, Cs, &, Z). Indeed, computing the minimal polynomial of 

I over k(X)G4, we find & = Z + (ZCiCj - C: - ,JCT&)/(Z’ - 4C4). Another pure basis 

of k(X)o” can also be found in [13, Section 2.4.21. 0 

Beware. Yet, k[XlD4 is not a module of finite type over the ring R=k[Ci,C3,&,1]. 

Indeed, R is a polynomial ring (because from Proposition 17 and 3, the elements 

Ci, Cs, C4,Z are algebraically independent over k). So, R is integrally closed. Now, & 

does not belong to R, but we saw in Proposition 17 that it belongs to its fraction field 

k(C1, Cj,&,Z). So, C2 is not integral over R; hence R[Cz] is not finitely generated as 

a module over R. Now, R[Cz] C k[X]b4, and R is Noetherian, so that k[XlD4 is not 

either finitely generated over R. 

Remark 18. More generally, the problem of deciding whether the invariant field k(X)L 

of a finite group L c GL,(k) is purely transcendental over k or not is known as 

Noether’s Problem, and was addressed by Kemper in [ 131. 

The following is an algorithmical version of Proposition 15. 

Proposition 19. The coordinates (Ao, . . . , A,_l)~(k(X)~)e of an FEN’ in the ba- 

sis ( 1, 0, . . . , Be-‘) ouer the$eZd k(X)L, with the hypothesis of Proposition 15, are the 
solutions of a linear Cramer system, whose coeficients belong to k[XIL and are the 
traces over k(X)L of 1, 0,. . . , 02e-2 and P,PO,. ,P@-‘. 

Proof. Let Tr denote the trace function on k(X)G over k(X)L, i.e., the function de- 

fined by 

‘dF E k(X)‘, Tr(F)=h xA.F 
AEL 

(the application [L : G]-‘Tr is sometimes called the Reynolds projection from k(X)G 

onto k(X)L). 
We are looking for fractions Ao, . , A,_1 E k(X)L such 

us multiply this equation by O’, for iE FV_1, and apply the 

following linear system: 

e-l 

(ES) ViE NE_1 Tr(F.O’)= CAjTr(O’+‘). 
j=O 

that F = z;Ii A/ Oj. Let 

trace function; we get the 

The extension k(X)G : k(X)L is separable (as a subextension of the Galois extension 

k(X) : k(X)L); so, the trace bilinear k(X)L-form (F,, Fz) ++ Tr(FiF2) is not degener- 

ated on k(X)G (see [5, A V.47 Proposition lc]). Therefore, as (l,O,. . , Be-‘) is a 
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k(X)L-basis of k(X)G, the system (Ts) is Cramer over the field k(X)L, and we get 

the Ai by solving it. 0 

Proof of Proposition 12. We look for the family (Ai,. . .,A,) E (k[XIL)e such that 

F= C,‘=, AjSj. Such polynomials Ai must satisfy: Vi E Nz, Tr(FSi)= C,“=, Aj Tr(SiS,). 

This system is Cramer for the same reason as in Proposition 19 (we embed the al- 

gebras k[XIG and k[XIL in their fraction fields; (Si, . . . , Se) is then a basis of k(X)G 

as a k(X)L-vector space). Therefore, (Al , . . . ,A,) is the single solution of this 

system. 0 

Example 20. Examples 13 and 14 can obviously be transfered in terms of field theory. 

For instance, with n=3, L=& and O=Xi +X2, we have StabL(O)=G={Id,(l,2)}; 

so, from Proposition 15, k(X)G =k(Cl, &,C3)[0]. Let us consider F=XiX2, which be- 

longs to k(X)G. Thanks to the algorithm of Proposition 19, we find F = 0’ - Cl 0 + CZ. 

Iterating the Propositions 15 and 19, we get the following propositions. 

Proposition 21. Let (L = Go,. , G, = G) be a jizmily of jinite subgroups of GL,(k) 

such that L=Go > Gl> . . > G, =G, and for all iE N:, Oi an invariant of Gi relu- 

tive to Gi-1. Then we have k(X)L[@~,...,O,.]=k(X)G; and ij’ we let ei=[Gi_l:Gi], 

then (n,‘=, @$‘)I si, <e,,vjc rm: is a basis of k(X)’ as a vector space over k(X)L. Its 

dimension is e= [L : G] = ni=, ej. 

Proposition 22. With the hypothesis of Proposition 21, we have an algorithm, based 

on linear algebra, to compute the coordinates of an FE k(X)G in the k(X)L-basis 

(I&, q&<,,,V~Eh;. 

Proof. We iterate r times the algorithm of Proposition 19. More accurately, at the 

level r, if we look for the decomposition F= CT=;’ AjO; of an FEk(X)‘, with 

Aj E k(X)LIOl,. . . , Or-i], we just need to write the linear system 

.?-I 

Vi E NC?-1 Trrlr-i(F.O,!)= c AjTr,/r-I(@:+‘> 
j=O 

where Tr+_i denotes the trace function on k(X)Gr over k(X)Gr-l, and before solving 

this system, to use the algorithm at level r - 1 to express its coefficients Tr,/,-I(&:‘+‘) 

(with 0 < i + j < e; it’s enough because the coefficients Tr,,,- 1 ( ok) with e <k 5 2e - 2 
can be deduced from the Tr,,,_ I (ok) with 1 <k <e thanks to Newton’s formulae) and 

Tr,ir-r (F.0:) as a polynomial in 01,. . . , Or-1 with coefficients in k(X)L. By induction, 

we are reduced to r = 1, in which case we apply Proposition 19. 
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4. Solving algebraic systems with symmetries 

Let us consider the system (6’) defined in Section 2.2. As mentioned in that section, 

the equations F, =0 in (F) satisfy A.F; =4 for every AE G. Let L be a subgroup 

of GL,(K) such that GcL and that &X)L be a purely transcendental extension of 

k, fl, , . . . , Ii’, polynomials such that k(X)L = k(ZIl,. . . , Ii’,,), and 0 E k[XIG a primitive 

polynomial invariant of G relatively to L. When it is possible, it is convenient to 

choose 0 among the polynomials E of the system. 

Then thanks to the algorithm of Proposition 19, we can express each polynomial fi 

as an algebraic fraction in ZZt , . . . , I&, and 0, polynomial in 0: 

V’iE Nj+ ~(X)=Hi(nl,...,n,,O). 

Now, let L be the minimal polynomial of 0 over k[XIL; we have 

L(X, T)= n (T - O’)Ek[X]LIT] 
0’ E L.0 

(see [l] or [7], where L is called a generic Lagrange resolvent). 

As k(LL,,...,LI~)=k(X)L, we can write 

L(X, 73=Ho(fl1,. . .,a, T) 

where HO is some rational fraction. The equation Ho(ZIt, . . . , IT,, O)= 0 is always satis- 

fied because 0 is a root of L. Then, we solve the system of (p + 1) algebraic equations 

Vi E Nr, Hi(L’, , . . . , I&,, O)=O, in IIt,. . . , II,,, 0 seen as indeterminates. 

The following theorem is then obvious: 

Theorem 23. Let DE k[II] , . . . ,I&,] be the LCM of the denominators of all the 
fractions Hi, i E Nr,, and let H,! =DHi. For every solution (xl,. . . ,xn) of the system 

(F):V~EN:, 4(X)=0, there exists a solution (z~,...,rc~,Q of the system (H’):KE 

&,p’ H:(D,,..., II,, O)=O such that (XI , . . . ,x,) is a solution of the system (Pn) : ViE 
N,*, ZIi(X)=ni and of the equation o(X)=@ Conversely, for any solution (xl,..., 

n,,,g) of the system (H’) such that D(ZI ,..., n,)#O, tf x=(x, ,..., xn) is a solution 
of the system (P,) relative to (~1,. . ., q,), then there exists some A EL such that 
O(A.x) = 0, and then for all BEG, BA.x is a solution of the system (F). 

Proof. If x=(x,, . ,x,) is a solution of F, then let rti =ZIi(X) for all iE Nt and 

e=@(x). For all iE N,*, E(x)=0 implies: D(zI,. ,rc,)fi(x)=O, and as D(IZl(X),. . . , 

II,(X))&(X)=H~(Z& ,..., I&,@) in k[X], we have H’(nl,. ..,n,,g)=O. And for i=O, 

Ho(xl,...,n,,e)=L(x,e)= &L.@ (0 - O’(x))=O. So, x is solution of (P,) and (ret, 

. . . , n,, 0) is a solution of (H’). 
Conversely, if (7rr , . . . , n,, 6) is a solution of (H’) and x is a solution of (P,), then 

n (e - o’(~))=L(~,~)=H~(~ ,,.. +,,e)=o. 
0’ E LB 
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So, there exists 0’ E L.O such that O’(x) = 8. There exists A EL such that 0’ =A-’ .O; 
then, O(A.x)=8. Now, for all iE f+; and for all BEG, we have D(rc,, . . . ,z,)fi(BA.x) 

=D(7Li,. . . ,7t,)hTi(71,, . . . ,71x, e)=.F$:(rt,, . . . , rt,,, 0) = 0; so if we assume that D(n,, . . . , 

rc,)#O, then fl(BA.x)=O. 0 

Remark 24. If we choose for 0 one of the 8, then we can substitute 0 =0 in the 

Hi and get a system in the inde&minates fl,, . . , Ii’,. Then, the polynomial Hs(n,, . . , 

IT,,, 0) is reduced to fl,, EL,O @‘~k[Xl~, i.e., the norm of 0 over k(X)L, in terms of 

n I,..., II,. 

Using Proposition 21 instead ‘of Proposition 15,yheorem 23 is based on Proposi- 

tion 15, where we use a primitive element of k(X)G : k(X)L. We can break this exten- 

sion of fields, as in Proposition 21, whose notations we keep, and modify consequently 

Theorem 23. 

So, we define fractions E;; that are polynomial in 0,). . . , 0, such that 

KEN* p ~(X)=Hi(n,,...,n,,Ol,...,O,). 

We define, for all Jo N:, the polynomial Lj(X, T)= &r,Eo,_,,o,(T-O’). It belongs to 

k[XIG,-I [T] c k(&, . . . , lI,)[Ol,. . . , Oj_l][T]. Let A$ be defined by: Lj(X,T)=?$(171, 
. . . , IT,, 01,. . , Oj_,, T), polynomial in O,, . . . , O,., T and fractional in the Iii. Then, we 

get the following variant of Theorem 23: 

Theorem 25. Let DE k[I&, . . , Zl,,] be the LCM of the denominators of all the frac- 
tions Hi, iE N:, and Nj, jE N,*. Let H: =DH, for all i and Nj=DNj for all j. For 

every solution x=(x1,. . ,x,) of the system (F) : (Vi E FYI;, fi(X) = 0), there exists a so- 

lution (711,. . .,n,,tll,. . . , O,.)ofthesystem(H’,N’):(Vi~~~,H~(lI~ ,..., I&,,@~ ,..., 0,) 
=0 and VjENf,J,$(n, ,..., n,,O, ,..., Oi)=O) such that X be a solution of the sys- 
tem (P,):Vi~N,*,l’li(X)=ni and of the equations @(X)=0~,...,0,(X)=& Conuer- 
sely, for any solution (7cl,..., z,,, 01,. . .,O,) of the system (H’,N’) such that D(nl, 
. . . . n,)#O, if x is a solution of the system (P,) relative to (TCI,..., z,), then there 
exists A E GL,(k) such that Vjc iV,*, Oj(A.x)= Qj, and then for every BEG, BA.x is a 

solution of the system (F). 

Proof. It is roughly the same as that of Theorem 23. 0 

5. Examples 

5.1. Sum-up of the method 

Here, we reca!l the different steps of the general algorithm, either by using the 

Cohen-Macaulay algebra point of view (denoted infra by (CMA)) or by using field 
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theory (denoted infru by (FT)). With the aim to simplify, we consider here Theorem 23, 

not Theorem 25 (see in Section 5.4 an example with Theorem 25). 

Input: A system (F) : ViE N:, 4(X1,. . .,X,)=0, and a finite subgroup G of GL,(k) 

such that V’~E N:, fi E~[X]‘. 

Successive steps: 
(i) Find, if possible, a finite subgroup L of GL,(R) such that GcL and that either 

L be a reflection group (case (CMA), see Definition 5) either L satisfy Noether’s 

problem, (case (FT), see Remark 18). 

(ii) Compute a pure transcendent basis (ni,. . . , ZZ,) of k[XIL (case (CMA)) or of 

k(X)L (case (FT)), and then the whole Hironaka decomposition @F=, k[Ui,. . . , I17,,]Si 

of k[XIG (case (CMA), see the algorithms in Section 3.2) or @I,i k(Z&,. . .,Il,)O’ 

of k(X)’ (case (FT), see Section 3.3). 

(iii) Express the polynomials fi, 1 <i 5 p, in terms of the fundamental invariants 

thanks to Proposition 12 (Case (CMA)) or 19 (case (FT)). 

(iv) In the case (CMA), we assume that e < 2 and Si = 1. We are then reduced to 

the case (FT), by letting 0 =Sz if e=2. In both cases (CMA) or (FT), compute the 

minimal polynomial of 0 over k[XIL, and then solve the system (H’) (see Theorem 23) 

in the variables Ul,. . , II,,, 0. 

Remark 26. In the case (CMA) with e >2, we should add to the system (H’) the 

generators of the ideal of the syzygies between the secondary invariants. We shall not 

deal with this case in this article. 

(v) For each solution (~1,. . ,TC,, tl) of (H’), solve the corresponding system 

(P,): Vi E N,*,Q(X)=zi, and in each orbit of L in the set of the solutions of (P,), 

keep one solution x=(x,, . . .,x,) such that @(x)=0 (it costs at most [L: G] tries for 

each orbit). Let S be the set of all these solutions x. 

Remark 27. Solving (P,) when L is a product of symmetric groups is particularly 

easy. For instance, when L= 6,,, we can choose U, =Ci for every i E IV’,*, so that 

the solutions of (&) are exactly the families of roots, taken in some order, of the 

polynomial T” + cF=,(- 1 )iqT”-‘. 

(vi) For every x in S, check whether D cancels on x. If it does not, we can keep 

x; if it does, we have to check that x satisfies (F), and we throw it if it does not. Let 

S’ be the set of all the x we have kept. 

Output: The set of all solutions of (F) is {A.x/A E G, XES’}. 

Implementation: The algorithm is implemented in the AXIOM computer algebra 

language (see [2]), when L = 6, and the principal invariants are the elementary sym- 

metric polynomials Zi, . . , Z,. We implemented a domain that computes on symmetric 
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polynomials, represented either as polynomials in the Ci, or as linear combinations 

of the polynomials A4i = xrEG, I-&, Xi’(‘). Then, we implemented the algorithms of 

Propositions 19 and 22. Besides, computation in /c[X]‘~I x”.x5ns is implemented in 

SYM (see [IS]), with many operations on symmetric polynomials. 

5.2. With a group of matrices, using the CMA point of view 

Let us consider the following system: 

(Rot) 
p,=xp+x; - l=O, 

fi =X:X;(Xp -X,“) - 2=0. 

If we try to eliminate Xl between the two equations thanks to a resultant, we get a 

horrible irreducible polynomial in Xi of degree 48, which depends only on Xf; so, we 

have to find the roots of an irreducible polynomial of degree 12 and then to extract their 

fourth roots. Using the symmetries, we will show that we are reduced to a polynomial 

of degree 6 and extracting fourth roots. 

Each equation of the system is invariant by the matrix 

A= 0-l ( ) 1 0 ’ 

hence by the action of the cyclic group G = {Id, A, -Id, -A} generated by A. We com- 

pute the following family of primary invariants of G : Ill =Xf +X,2 and I& =(X&2)‘, 

and the corresponding single secondary invariant S=XiX# - X,“) (they are given 

in [17, Example 2.2.4]), so that k[X]G=k[DirZI~] @k[IIi,172]S. Then, we express the 

system in terms of the fundamental invariants, thanks to the algorithm of Proposi- 

tion 19. We get: PI =IIf - 2IIz - 1 and P2=(IItl72 - II,‘)S - 2. Besides, we compute 

S* - IZtl72 + 4IZt =0 (minimal polynomial of S over k[ni, JI,]). So, (Rot) is equiva- 

lent to 

(Rot’) 
II: -an, - l=O, 

s2 - II:& + 4n,2 =o, 

We eliminate ni in the first and the third equations thanks to the second one, and then 

we eliminate I&, getting 

S6+3S4+8S3-6S+16=0. 

For each solution s of this equation of degree 6, we compute the values ni and n2 

of ZIi and q s.t. (s, rcl, 7~) satisfy (Rot’). Then, the solutions (x1,x2) of (Rot) must 

satisfy (XT - xi)’ =s2/n2. So, we know x: - xi up to the sign and XT + x; = n: 1, from 

which we deduce all the solutions (x1,x2) of (Rot). 

So, we have reduced the problem from degree 12 to degree 6. 
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5.3. Using (FT) with a simple extension of k(Z) 

Cyclic roots systems come from the problem of finding bi-equimodular vectors 

(see [3,4], where these systems are solved for n = 4, 5,6,7). In this paragraph, we 

apply Theorem 23 to the following Sth-cyclic roots system, with L = 65, I& = Ci, Vi E 

NT, and G=&=((12345),(25)(34)): 

X~X2X3&X5 - 1 =O. 

Let 0=X1X2 +&X3 +X3& +X&s +X&r. Then (Ss) is equivalent to 

<s;>: (c,=o,o=o,P=o,c4=o,c5 - I=()), 

where P=X$C2X3 + &x3& + x3x&5 + x&=jxl + x5x1&. 
Let us use Remark 24: as 0 =0 is one of the equations of (Ss), we can compute, 

instead of the polynomial L, the norm C(Zi, . . . , Z,) of 0 over k(Z), i.e., the product 

of the 12 elements of 65.0. 

Now, thanks to the algorithm of Section 3.3, we find the polynomials Ai and Bi with 

gcd(Ai,Bi)= 1, 0 5 i < 11, such that 

Let D(Z) = nl?,&(Z). Replacing Zi and C4 by 0 and Cs by 1, we get &(&,Cs) = 

AO(0,~2j~3,0, I), BO(C2,C3)=BO(O,C2,C3,0, I), ~(~2,~3)~c(o,~2,~3,0, 1) and 
~(C2,C3)=D(O,~2,~3,0,1), We compute 

k. = 2C;C; + 89C2C36 + 125C; + 41C;C; + 55OC;Z; - 55Z;C; 

+ (189C; - 6250Z2)E3 - 1125,X;, 

& = 2c;C; + 58C2C; + 31z;C; + 325C;C; - 625Z;Z3 + 108,Z; + 55&, 

c = -27C; - 4x@; - 150C$$ + (-12x; + S5)C; - 125c$& + C;, 

Resrz(&, c) = - C~“(C~ + 55)6(24(6C2)5 - 55)(27Zio + 797423: - 55)2. 

From Theorem 23, we know that a necessary condition satisfied by a solution x of (&) 

is that ko&a2, c3) = C(a2, as) = 0, where CJZ = Z,(x) and ~3 = Z;,(x), which implies 

that o2 be a root of Resr,(&$, c) = Resr, (20, c)Resr,@, c). Now, this condition is 

not sufficient, because the solutions cancel the denominator D, as shows the following 
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resultant: 

Resz,(&, c) = - Z;(Cz + 55)5(24(6Z2)5 - 55)(27Cio + 7974Zz - 55)2. 

In fact, the roots of Resz,@, c) give no solution of (S;) that be not already a solution 

coming from Resx3(k0, I?‘>; and in Resz3(&, c), the only factors that lead to solutions 

of (&) are C2 and Ci + 55: we could prove this by an argument of multiplicity (see 

a forthcoming paper), but we can also simply verify it by computing all those candidate 

solutions and see that they do not satisfy (&). So, the only solutions are given by 

C2 =0 or Ci =(-5)5. 

Case 1: Cz = (-5)5. The solutions for C2 are: 02 = - 502, where o is a fifth root of 

unity. To each solution ~2 for C2 corresponds a single solution for C3: (~3 = - 50~; and 

we know that the only values for Z1, &, C5 are ~1 = 0, 04 = 0 and ~5 = 1. The corre- 

sponding values xi for the xj are the solutions of the system: Ci(Xl,X2,X3,&,X5) = gj, 

for i = 1,2,3,4,5 (which are of course the roots of the polynomial T5 -5m2T3 +5m3T2- 

1 ), i.e., w, 0, w, o( -3 - JJ)/2, o( -3 + &)/2, ordered so that @(x, ,x2,x3&,x5) = 0. 

For each of the 5 values of w, 10 different orders are allowed. It leads to the following 

50 solutions: 
w 

where o is one of the five fifth roots of unity, and the vertices of the pentagon denote 

the roots, in the order x1, x2, x3, x4, x5, beginning with any vertex and going along 

either clockwise or anticlockwise. 

Case 2: C2 = 0. If we replace C2 by 02 = 0 in C(&, C,), we get .& = 0. 

responding values xi for the Xi are the roots of T5 - 1, i.e., the fifth roots 

ordered so that @(x~,x~,x3,x4,x5)=0; we get the following 20 solutions: 

The cor- 

of unity, 

where o is either ezix15 or e4iz’5 (the values e8in/5 and e6irr/5 of w would lead to the 

same solutions up to a symmetry). 

Hence, (&) has exactly the 50 + 20 = 70 solutions written above. 
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5.4. Breaking the simple extension of k(Z) 

Here, we look for an improvement of the method of Section 5.3, the notation of 

which we keep: we study the same system (SS), but we use Theorem 25 instead of 

Theorem 23. 

We notice that the alternating group Gr =A5 = ((I 2 3), (1 2 4),( 1 2 5)) satisfies 

G c G, c Go = G5. 

From Proposition 21, to this group corresponds the following field extension: 

k(X)GS = k(Z) c k(X)A5 = k(Z)[V] c k(X)’ = k(Z)[O] = k(Z)[V][O], 

where V is the following (primitive) invariant of Ag: V = nicj(q -Xi). 

Then we do as in Section 5.3; the only difference is the way we express l? Here, 

we use the algorithm of Proposition 22 to express P as 

where the Ai, A: and Bi are polynomials. Let &(CZ, Cs), &‘(&, Cs) and &(&, Cs) 

be the evaluations of respectively Ao, A; and Bo on (O,C2,&,0,1). We compute 

A0 = 210C2C; + 6OOOC; + 3OC;C; + 2375C;Z;f: + 25 0OOC;C; 

+ (270,X; + 250 OOOC,)C; + (- 1125Z; - 390 625)C3 + 140 625Z; 

& = 216C:’ + 86Z;C; + 759OZ;C,s + (8C; - 48 OOOC,)C: 

+ (199OC; + 175 OOO)C! + 42 075C;C; + (144C; - 71875C;)C; 

+ (873OC; - 3 53125OC;)C; + (138 375C; + 12 890 625C2)C: 

+ (486Z;’ - 140625OZ; - 9 765 625)C3 + 12 15OZ; + 703 125C; 

& = 1458,X;’ + 216C:C; + 24 3OOC:C; + 8C;C; + (3168Z; + 185625O)C; 

+ 120 OOOC!C; + (118C,s + 450 OOOC;)C; + (114OOC; 

+ 187 5OOc;& + 432C;’ + 350 OOOC: - 19 53 1250. 

Now, we apply Theorem 25. We compute (notations of Theorem 

t 3 750 000c~>c~ 

25) the polynomials 

NI (Z, V) and N2(Z, V, 0). Let Ct and C, denote the residues of these polynomials 

modulo (Cl = 0, C4 = 0, Cs = 1, 0 = 0). We find 

C, = v2 - lo@ - 16C;C; - 825C;C: + 3750&& - 108Z; - 3125, 

C, = .&v - 2cf: - 15z;& + 125&. 
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Then, we compute 

Resz,(Resv(&V + A’o, G),Resv(C1,C;!)) = $“<-f$ + 55)7fif~h_hr 

where 

f, =27c; - 1, 

f2 = 27C;’ + 7974C; - 3 125, 

f3 = 256C;’ + 21089 952&O + 1587 890625C; + 30 517 578 125 

f4 = 5 038 848C;’ + 1941472 800 OOOC;’ + 81696 996 562 500 OOOC;” 

+ 910 077 209 472 656 250 OOOC; - 298 023 223 876 953 125. 

We conclude like in Section 5.3: CZ = 0 or Cz = (-5)5. 

Bewure. The polynomial C2 in Section 5.4 is the norm of 0 over k(X)A5, whereas 

in Section 5.3 we used the norm C of 0 over k(X)@. If we had used here the norm 

over k(X)G5, a big irreducible parasite factor of degree 60 would have appeared in the 

resultant Resr, (Res&& V + &‘, Ci ), C). Indeed, the polynomials Cl, . . , C5, V, 0 are 

not algebraically independent; if we want to lift the solutions in Cl,. . . , Cg, V, 0 back 

to solutions in Xi,. . ,X,,, we need to check that they satisfy the algebraic relations 

between these polynomials. It is sufficient that they satisfy (Cl and Cz), but (Cl and 

C) is not enough. This is implicit in Theorem 25. I would like to thank Marc Giusti 

here for pointing out to me this difficulty. 

5.5. Using (CMA) with a simple extension of k(X)Gnl x”‘xGny 

In this example, the system is dehomogenized, which destroys some of its symmetries 

but yet simplifies its resolution. This idea and a computation on (A’s) which inspired 

the following one are due to Daniel Lazard [ 151, whom I would like to thank here for 

his help. 

Here, we solve the following system (&,): 
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By dehomogenizing through the variable X4, (S6) becomes (SL): 

The permutation group corresponding to (SL) is G = {Id, (2 6)(3 5)). We choose 

L = {Id, (2 6), (3 5), (2 6)(3 5)). Then G c L, and a system of principal invariants of L 

is 

S=X2 +X6, T=X3 +x5, P=x2&, Q=X3X5, X=X,. 

Then, k[XIL = k[S, T, P, Q, X]. The polynomial 0 =X2X3 +X5X6 is a primitive invariant 

of G relative to L. Its orbit under L is LO = { 0, O’}, where 0’ =X2X5 +X3X6. So, 

the equation “Ho” of Theorem 23 is O2 - (0 + 0’)O + 00’ = 0, where 

0 + 0’ = ST, 00’ = Q(S2 - 2P) + P(T2 - 2Q). 

So, we compute easily the system (H’) of Theorem 23: 

‘S+T+X+l=O, 

XS+T+O=O, 

(S,,) Q+XP+(X+ l)@ =O, 

6 QS+X@+XPT =O, 

(X+l)PQ+X<QS+PT)=O, 

,02-STO+QS2+PT2-4PQ=0. 

As there is no denominator, Theorem 23 proves that solving (S[) will give us exactly 

the solutions of (SL). Now, the 3 first equations in (,I$‘) give T, 0 and Q in terms of 

P, S and X. So, (St) is equivalent to 

-S-X-l=T, 

s+x+ 1 -xs=o, 

S(X2- l)-XP-X2-Z- l=Q, 

(-2xS-X2-X)P+(X2- 1)sZ-(2X2+x+ l)S+X2+X=O, 

(x+ l)((X2-X)S2+((X2-X- l)P-x2-X)S 

-XP2 -(x2+3x+ l)P)=O, 

(X2-X)S3+((1-X)P-X2-3X+2)S2+((6+2X-4X’)P 

-xZ+2X+3)s+4xP2+(5P+ 1)(x+ +o. 
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The fifth equation has two factors; it leads to two different cases. In each one, we 

eliminate thanks to resultants the remaining variable. We get the following 5 solutions: 

(i) T=l, O=-2, Q=l, P=l, S=-1, X=-l, 

(ii) T=-S, 0=2S, Q=l, P=l, S2+2S-2=0, X=-l, 

(iii) T = - S-2, 0=2, Q=-S-3, P=S-1, S2+2S-2x0, X=1, 

(iv) T=-X-S-1, O=(l-S)X+S+l, Q=(l-29-S P=SX+2S+l, 

S2+(3-X)S+2X+2=0, X2+4X+1=0, 

(v) T=X3+5X*-3X-3, 20=x*+1, 4Q=-X3-5X*+3X)-l, 4p=x3+ 

3X2-3X-1, 4S=-X3-5X2-X-l, X4+4X3-6X2+4X+1. 

Now, we study successively these 5 cases. 

Case (i). We find the following 12 solutions, where CI=~~~/~. 

Case (ii). We find 72 solutions partitioned in 2 families: 

uw- 1+&+&G 

2 
cIo- l+v9--im 

2 

CK9 l-&-i&Z 

0 

clo l-&+&B 

2 2 

where we let still CI = (&+ i)/2, and where o is one of the elements 1, -j* = u*, j = a4. 

We do not let o run along all the sixth roots of 1, because the 3 other values correspond 

to the 3 given ones up to a symmetry on the xi. 
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Besides, we notice that by permuting circularly the xi, we find the values of S, T, P, 

Q,X, 0 corresponding to the case number (v). So, case number (v) yields no other 

solution. 

Case (iii): We find these 12 x 6= 72 solutions, where w runs along the six sixth 

roots of unity: 

w 

0 0 (-2+4)0 

0 (-24)w 

w 

Besides, we notice that by permuting circularly the xi, we find the values of S, T, P, 

Q,X, 0 corresponding to the case number (iv). 

So, we have found all the solutions of (Se): we have proved that (Se) has exactly 

156 solutions, written supra. 
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