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Abstract 

GivenanidealIcIW{r~,..., x,,y}andfE[W{x~,... ,x,,,,y}, we study the subset {p.f 1 &(P) 
E I}. This idea comes from the classification of singularities of illuminated surfaces. We prove a 
(Hironaka-type) division theorem for subsets of this form and give a Buchberger-like reduction 
algorithm. @ 1997 Elsevier Science B.V. 

1991 Muth. Subj. Class.: 68Q40, 32B05, 32B30 

1. Introduction 

The classification of singularities of illuminated surfaces (see [3-S, 71) needs the 

search of real analytic functions g&y) such that the set of series which can be written 

like 

with the condition 

is of finite codimension in the ring [w{x, y} of convergent power series (d(y, g) is any 

convergent power series in two variables y and z computed in z = g(n, y)). 

In the present paper we study subsets of the ring [w{xl, . . .,x,, y} of the form 
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where I is any ideal of R{xi,. . . ,x,, y} and f is any convergent power series in 

the same ring. This is a partial generalization of the original problem: with m = 1, 

S = ag/ax and I = (ag/ay) we get the first part of Eq. (1). In [3] we used the division 

by the set X as a first step to study the whole of Eq. (1). Notice that 1 do not 

need to be of finite codimension (in the case I = (ag/@) it is not), so we will have 

infinite-dimensional vector spaces. 

Note that the membership problem is easily solved via Griibner basis and the tangent 

cone algorithm [2, 8, 91. Our purpose is to prove a division theorem in the sense of 

Weierstrass for ideals of analytic functions. Notice that X’ is not an ideal in our case; 

if we call 

98 = {P ) a#) E I}, 

then B is a subring of R{xi , . . . ,xnz, y} so .%” is a B-module generated by f. More 

interesting, X is a R{x, , . . . ,x,)-module: although it is not in general finitely generated, 

this structure will be useful for the division theorem. 

We will show the existence of an infinite-dimensional vector space .Y? subset of 

~R{xi,...,x~,y} such that 

R{Xl ,...,&,Y}l~-~. 

This will be the subject of Section 2, whereas in Section 3 we show that the projection 

R{x, , . . . ,x,, y} --+ X can be effectively computed via a kind of tangent cone algorithm. 

In Section 4, as a conclusion, we review some possible generalizations of these ideas 

to broader contexts. 

Remark. (1) The base field IR of the ring may be replaced by @ or any other complete- 

valued field without any modification of the results. 

(2) The key point of the following theory is convergence: the same results in the 

ring of formal power series are much more easy to obtain, whereas a special care 

is needed to deal with convergent power series because of the derivative a,, in the 

definition of X 

2. Division theorem 

From now on, we will use the following notations: call [w(X) := R{xi, . . . ,x,} and 

R(Z) := R{x, , . . .,x,, y} = lR{X, y}. So let I be an ideal of the ring R(Z), f E R(Z) 

and 

x={f .qa,(zyEz). 

Let < be any monomial ordering on R(Z) such that for all i = 1,. . . , m, xi < y (this 

condition is not strictly necessary and can be replaced by a weaker one, see the proof 

of Lemma 3), and let (gi, . . . , gk) be a Griibner basis of I with respect to this ordering. 
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We will moreover suppose that f and all gi, i = 1,. . . ,k have a leading coefficient 

equal to 1. Call in(g) the initial monomial of g with respect to the term ordering < . 

For i= l,...,k, call 

ZE’ = in(gi), 

and 

D= CDi. 

1=l 

Then it is well known (see, for instance, [2]) that the set of initial exponent of the 

elements of I, in(Z), is equal to D. 

We prove a similar result for X. 

Proposition 1. Let ZF = in( f ); then 

4,X> = (F + (0,. . ,0,1> + D) u (F + N” + (0)). 

Proof. Call A := F + (0,. . . , 0,l) + D, A0 := F t N” + (0) and AK their union. 

Let h E X and ZA = in(h); since f divides h, we can write A = F + B with 

B E NJm+’ = in(h/f). Now either a,,(h/f) is zero or belongs to I. In the first case 

h/f’E R(X) thus BE N” + {0}, so A E do. In the second case in(a,(h/f)) = in(h/f) - 

(O,..., O,l)cD, thus AEA. 

Conversely, let AEA% IfAEA, then B=A-F-(0,...,0,1)~D; let i such that 

B E D; and write 

g = f 
s 

gi. ZB-’ dy. 

Then g E Y and in(g) = ZA. If A E do, then 

g=f .xA-F 

has the good properties. Cl 

We can now state the main division theorem: 

Theorem 2. Given any g E R(Z), there exists a unique pair (q, r) of series of R(Z) 

such that 

q=f.q+r, a,q E I, Supp(r) c Nm+‘\AK. 

The technique of the proof is inspired by a paper of Briancon (“Weierstrass prepare 

h la Hironaka” [l], see also [6]) from a course of Houzel: we use a perturbation of 

linear isomorphisms of Banach spaces. 
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Proof. Call~={(rEIW{Z}/Supp(r)~N~~~\d~},and,fori=1,...,k,d~=D~+F+ 

(0,. . . ,O,l) and E,‘=E,+F+(O ,..., 0,l). Remark that the subsets As, AI,. . . , Ak and 

N”+’ \AK are a partition of IV”‘+‘. 

Consider the linear map cpt : 

(ho,h ,...,hk;r) H $ (Zi/hiZE’d_Y)+ZF.ho+r. 

Then cpt is injective because the initial exponents of the terms on the left belong to 

distinct sectors of N”‘+t. This map is also surjective because for any series u E [w(Z), 

we can write 

u= UAZA. 

Define 

r= 
c uAzA, 

AEN”‘+‘\A” 

ho = c UAZA-F; 

AEAo 

then I-E% and hoER{X}. On the other hand, for i=l,...,k, 

(2) 

(3) 

c &,zA = zF c UAzA-F 
AEA, AEA, 

zA-F 

UA(h+l - &+ I )- dy 
Y 

=ZF z& .I c uA(h+l - et+l )zApE: dy, 

AEA, 

where a,,,+ I and e;,, are the (m + I)th element of A and Ei, respectively (those cor- 

responding to the y variable). Call 

hi = c UA(U,+l - eL+,)ZA-E:, 

AEA, 

(4) 

then h, E R{X, y} and ql(ho, hl,. . . , hk;r) =u. 

We have thus proved Theorem 2 when f and the gi are monomials. 0 

To prove Theorem 2 in the general case we have to make a deformation of cpl. We 

will use Banach spaces techniques to show that such a deformation exists. 
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* Let P=(PI,...,~+I)E(R+) mf’ be a poly-radius and R(Z), be the Banach algebra 

of power series converging for radius p with the following norm: 

c UAZA = c lUAIPA. 
AEN”‘+’ 

P AEW+' 

The restriction of cpt to ~p~~(iw{Z},,) is obviously a bijection onto R(Z),. The subspace 

cp;‘(R{Z},) is made of (hs,ht,...,hk;r) such that 

(i) ho E lK{X} and XF.h 0 E R{X, Y}~, which means ho E R(X),; 

(ii) for i=l,..., k, hi E R(Z) and ZF J” hiZEf dy E R(Z),, i.e., 

;(ZF/hZEidy~(p ~00, 

call 

R(Z),* := {.tW(1), /IZ”SuZ’dy~Ip<co, i=I,...,k}, 

we have easily that R(Z), C [w(Z),* and if p’ is a multi-index such that pk+r < pm+1 

and p: 5 pj for j= l,..., m, we have R(Z),* c R(Z),/; 

(iii) r E X and r E R(Z), so that r E X fl W(Z), =: y%. 

So if H*(p) = R(X), x (R{X, y}p*)* x Xp then q_q is a linear bijection from H*(p) 

onto lR{X, y},. Moreover, if we give H*(p) the norm induced by cpt, that is 

ll(ho,h,,...,h~;r)llq* := pF)lho(lp + 2 ZF i=l (1 /kiZE’ dyiIp + IIrIIp, 

then H*(p) becomes a Banach space and llqtll= IIq;‘\1= 1. 

To demonstrate Theorem 2 we have to prove that the map 

cp : W} x uqx, Y)>” x Jf - qx, Y), 

(ho, h ,...,hk;r)- $ (//hi.grdy)+/.ho+r 

is also a bijection. Note that for the same reasons as for cpt, this map is injective. 

Ifwe writecp=cpt+q2,f=XF+nand, fori=l,...,k,gi=XE1+ni,wehave 

(p2 : [w(X) x (lqx,Y})m x 2 - wx, Y), 

(ho,h,...rkr) - $ (u/hiZE1dY) + $ @/hi.uidY) 

+ 2 (U/hi.Lzdy) +u.ho 
i=l 
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Suppose U, Ui E [w(Z),, then (~2 E (H*(p)) C R(Z), because we have 

< Cf=, [IuJhiZEl dylIp + C lIZFJhOid~llp + C IluJhuidyllp + IIu.hoIIp 
Et, IIZF JhiZEl dylIp + pF. llhllp + Ilrllp 

and 

Lemma 3. For i = I , , . . , k, the following inequalities hold: 

IIU .Lhiui dYIIp 
(IZF s hiZEl dyll, ’ ‘-- 

Er-FJI~llp~IIUillp~ 

so that 

k PE’JJutlp +PFllvillp + ll”llp~lluiltp 
lI(P2II 5 y + c (8) 

i=l 
@, +F 

5 p-F((~(I, k + 1 + 2 p-E,IIuiI[p + & P-E’Iluillp* 

i=l i=l 

Proof of Lemma 3. Inequality (5) is straightforward since 

and 

(5) 

(7) 

(9) 

To prove (6), let us write 

z+ = 
c viz”, hi = C hiZB, 

A>F BEN”‘+’ 
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then 

The monomial order we choose on Nmf’ is such that A > F+a,+l 2 fm+l so 

thus 

lJZFJhividYIlp _ II JkvidYIIp < CA I6lpA 
llZF J hiZ” dyllp - II JhiZEg dyllp - pE’ ’ 

and inequality (6) is proved. 

Combining the results of the first two inequalities, one easily gets the proof 

of (7). 17 

Now suppose U, Ui are in R(Z),, with v = (v,. . . , v) E BP+‘. Let L = (I~,lz,. . . , Im+l ) 

be a positive linear form such that VA > F, L(A) > L(F) and for i = 1,. . . , k, VA > Ei, 

L(A) > L(E,), there exist positive real numbers ~0, ~11,. . . , ak such that A > F =+ L(A - 

F) > a0 and for i= l,..., k,A>Ei+L(A-Ei)>ai. 

For 0 < q < 1, let us take 

p = (v$ ) vfp, . . . ) Vf+“” ). 

Then U, vi E R(Z), and, for i = 1,. . . , k, 

(10) 

= c 
L(A-Es)>0 
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and in the same way 

P-Fl141, 5 v-FPJJ4. 

If we choose q > 0 such that, for i = 1 , . . , , k, the following inequalities hold: 

(11) 

(12) 

then from Eq. (9) with p given by (lo), we get 

The map 40~ is a bijection between H*(p) and R(Z), (p given by (10) depending on 
q such that (11) and (12) hold) so 

(cpl f (P2) 0 cP;’ =I + (p2 0 cp+ 

Since 11~~~2 o C&‘/I < ~IcJQ[/ < 1, the map Z + (~2 o rp;’ is invertible; then 

(W + 432) O VT1 0(z+4I20p~‘)-‘=z, 

so that that rp = 401 + (~2 is a bijection between H*(p) = ([W{X,Y}~)~ x R(X), x &$ 

and R{X, Y},,. 
More precisely, when f and gi, . . . , gk belong to R{X, y}“, if we take q > 0 such 

that Eqs. (11) and (12) hold then for 

p = (WI”) vi+, . . . ) vt+ ), 

any cp E WX ~1~ can be written in a unique way as 

where ho E R(X),, hiER{X,y}p* for i=l,..., k and r E &. Notice that hi E 

R{X, y},*, implies that for any p’ < p, h, E R{X, Y}~!. 

For any V < v we have ((u((i 5 I(u(I, and llvll; < IIull,,; then we can choose f < q and 
thus the above decomposition holds for the corresponding @ and R{X, Y}~ c R{X, Y}~. 

At the limit we have the decomposition in the ring R(Z). 

3. Division algorithm 

From Theorem 2 we obtain the isomorphism 
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Call Y the projection map from R(Z) to .X; in the present section we give an algorithm 

to compute r(h) for any h E R(Z). More precisely, we suppose that the ideal I is given 

by a polynomial Griibner basis qi and that f E R[xl, . . .,x,, y]. In this hypothesis, r(h) 

is not a polynomial even if h is: for this reason our algorithm only gives the initial 

term of the remainder r(h). 

For A E do, call 

d~=f.X~ where A=F+B x {0}, 

and for i= l,...,k, for AE Ak 

4A=f J ZBqidy where A=F+Ei+(O,...,O,l)+B. 

Then, for each A E AK, we have a polynomial 4A such that 

4AEXX, in( 4.4 ) = ZA . 

Thus, a straightforward method to reduce a polynomial h consists in repeatedly sub- 

tracting real multiples of 4A as long as the leading term of h is in AK. This method 

is not convergent because even if the leading term increases strictly (with respect to 

the term ordering <) there is no reason for the leading term of h to leave AK after 

a finite number of iterations. The situation is similar to classical Buchberger reduc- 

tion algorithm [2] in the local case for which tangent cone algorithm [8, 91 gives the 

solution. 

We propose the following algorithm, adapting the tangent cone algorithm in our 

situation, and using the fact that X is a R(X)-module. Consider q in R(Z) as an 

element of R(X)(y), i.e., as a power series in y with coefficients in R(X); since our 

term ordering is such that x, < y for i = 1 , . . . , m we have that the leading term of q is 

the leading term (as an element of [w(X) with induced ordering) of the coefficients of 

the lowest degree (in y) term of q. 

With the following notations: let in,,(q) be the lowest y-degree term of q as an 

element of R(X)(y), deg,(g) be its degree and coeff,(g) be its coefficient (an 

element of R(X)); thus: iny(g)=coeff,(q)~ydeg.~(g); call inx(q) the leading term 

of coeff,(q), with the induced ordering, such that in(q)= inx(q).ydegj(g); define 

ecartx(g) as the &art of coef fy(g) E R(X), i.e., the difference between its greatest 

and lowest exponent: 

The algorithm is the following: 

Input: h E R(Z) 

Output : q such that q - h E 3f and in(q)= in(r(h)). 

01 ho:=h; i:=O; LIST := 0; 

02 while in(hi) E AK do 

03 A := in(hi); 
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04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

put 4~ in LIST; 

find q in LIST such that: 

dog,(q) = dagY(ZA) 

dagx(q) < dogx(ZA) 
ecartx(q) is minimal 

hi+i := simpIify(hi,q) ; 

if deg,(hi+i) > deg,(hi) then 

LIST := 0; 

else 

put hi in LIST; 

fi 

i:=i+l; 

od 

return g := h, . 

Comments. (i) The simplify step (line 09) corresponds to 

hi+1 I= hi - c.XB.q 

where c E [w and BE Nm are chosen in order to simplify in(hi). 

(ii) At any step we have 

hi+, E hi (mod X). 

(iii) After a finite number of iterations of the while loop either the degree in y of 

hi increases strictly or in(hi) leaves the sector A K. Suppose the degree in y is stationary 

then the &cart decreases strictly and that can happen only a finite number of times. 

Thus, if we know a priori that h does not belong to X (this can easily be checked, 

see Section 1 ), then r(h) exists and is different from zero. Let d be the degree in y 

of its leading term; then the degree in y of h; cannot exceed d (otherwise we would 

have hi -r(h) E X with in(hi - r(h)) = in(r(h)) E NJm+’ \AK which is impossible from 

Proposition 1). Thus, from Comment (iii), there exists i such that in(hi)+!AK thus 

in(hi) = in(r(h)). 

4. Generalizations and conclusion 

The problem that generalizes this situation is the following: for a given differential 

operator D and an ideal I E R(Z), consider D-‘(I) when this makes sense, i.e., when 

for every g E I the equation 

D(f) = q 

has a solution in R{Z}. 
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After D = a,, the next simpler operator is D = a. 8, where a is any element of 

R(Z). This problem can be reduced to the first one, with the ideal J := (I : a). Next, 

if D = ~3, + b with b E R(Z), the problem can still be solved with the same techniques. 

For general operators, even regular, we think that the problem is far from being that 

simple. 

In any case we have shown that classical techniques of computational commutative 

algebra can be applied with appropriate changes in some situation involving differential 

relations. 
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