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Foreword

Welivein aworld today in which software playsacritica part. The most critical soft wareis not running on large
systems and PCs. Rather, it runsingde the infrastructure and in the devices that we use every day. Our
transportation, communications, and energy syslemswon't work if the embedded software contained in our cars,
phones, routers and power plants crashes.

The design of thisinvisible, embedded softwareis crucia to al of us. Y &, there has been ared shortage of good
informetion asto effective design and implementation practices specific to thisvery different world. Make no mistake,
itisindeed different and often more difficult to design embedded software than more traditiona programs. Time, and
theinteraction of multiple tasksin rea-time, must be managed. Seemingly esoteric concepts, such as priority
inversion, can become concrete in ahurry when they bring adevice to its knees. Efficiency-a smal memory footprint
and the ability to run on lower cost hardware-become key design considerations because they directly affect cog,
power usage, size, and battery life. Of course, rdiability is paramount when so much is a stake-company and
product reputations, critica infrastructure functions, and, sometimes, even lives.

Mr. Li has done amarvelousjob of pulling together the relevant information. He lays out the issues, the decision and
design process, and the avail able tools and methods. The latter part of the book provides vauable ingghts and
practica experiences in understanding application devel opment, common design problems, and solutions. The book
will be helpful to anyone embarking on an embedded design project, but will be of par ticular help to engineerswho
are experienced in software development but not yet in real-time and embedded software development. Itisdsoa
wonderful text or reference volume for academic use.

The quality of the pervasive, invisible software surrounding us will determine much about the world being crested
today. Thisbook will have apositive effect on that quality and is awelcome addition to the engineering bookshelf.

Jerry Fiddler
Chairman and Co-Founder, Wind River



This document is created with the unregistered version of CHM2PDF Pilot

Preface

Embedded systems are omnipresent and play significant rolesin modern-day life. Embed ded sysemsare dso
diverse and can be found in consumer dectronics, such asdigita cameras, DVD playersand printers; in industria
robots; in advanced avionics, such as missile guidance systems and flight control systems; in medica equipment, such
as cardiac arrhythmia monitors and cardiac pacemakers; in automotive designs, such asfud injection systems and
auto-braking systems. Embedded systems have significantly improved the way we live today-and will continue to
change the way we live tomorrow.

Programming embedded systemsis a specia discipline, and demands that embedded sys tems devel opers have
working knowledge of amultitude of technology areas. These areas range from low-level hardware devices, compiler
technology, and debugging tech niques, to the inner workings of red-time operating systems and multithreaded
gpplication design. These requirements can be overwheming to programmers new to the embedded world. The
learning process can belong and stressful. As such, | felt com pelled to share my knowledge and experiences through
practicd discussonsand illugtrationsin jumpstarting your embedded systems projects.

Some books use amore traditional approach, focusing solely on programming low-level drivers and software that
control the underlying hardware devices. Other books provide ahigh-level abstract approach using object-oriented
methodol ogies and modeling lan guages. This book, however, concentrates on bridging the gap between the
higher-level abstract modeling concepts and the lower-level fundamental programming aspects of embedded systems
development. The discussions carried throughout this book are based on years of experience gained from design and
implementation of commercia embedded systems, lessons learnt from previous mistakes, wisdom passed down from
others, and results obtained from academic research. These e ementsjoin together to form useful insights, guiddines,
and recommendeations that you can actudly usein your red-time embedded systems projects.

Thisbook provides asolid understanding of real-time embedded systems with detailed practica examplesand
industry knowledge on key concepts, design issues, and solu tions. This book suppliesarich set of ready-to-use
embedded design building blocks that can accelerate your devel opment efforts and increase your productivity.

| hope that Real-Time Concepts for Embedded Systems will become akey reference for you as you embark upon
your development endeavors.

If you would like to sign up for email news updates, please send ablank e-mail to:
rtconcepts@news.cmphbooks.com. If you have a suggestion, correction, or addition to make to the book, e-mail me

a gingli @speskeasy.net

Audiencefor this Book

Thisbook is oriented primarily toward junior to intermediate software developerswork ing in the realm of
embedded computing.
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If you are an experienced developer but new to rea-time embedded systems develop ment, you will aso find the
approach to design in this book quite useful. If you are a technical manager who isactive in software design
reviews of red-time systems, you can refer to thisbook to become better informed regarding the design and
implementation phases. Thisbook can aso be used as complementary reference materid if you are an engineering or
computer science student.

Before using this book, you should be proficient in at least one programming language and should have some
exposure to the software-devel opment process.
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Chapter 1. Introduction

Overview

Inways virtually unimaginable just afew decades ago, embedded systems are reshaping the way people live, work,
and play. Embedded systems come in an endless variety of types, each exhibiting unique characteristics. For
example, most vehicles driven today embed intelligent computer chipsthat perform value-added tasks, which make
the vehicles easier, cleaner, and more fun to drive. Telephone systemsrely on mulltiple integrated hardware and
software systems to connect people around the world. Even private homes are being filled with intelligent appliances
and integrated systems built around embedded systems, which facilitate and enhance everyday life.

Often referred to as pervasive or ubiquitous computers, embedded systems represent a class of dedicated
computer systems designed for specific purposes. Many of these embedded systems are reliable and predictable.
The devices that embed them are convenient, user-friendly, and dependable.

One specid class of embedded systemsiis distinguished from the rest by its requirement to respond to externd events
inred time. Thiscategory is classfied asthe real-time embedded system.

Asan introduction to embedded systems and redl-time embedded systems, this chapter focuses on:
examples of embedded systems,
defining embedded systems,

defining embedded systems with redl-time behavior, and

current trends in embedded systems.
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1.1 Real Life Examples of Embedded Systems

Even though often nearly invisible, embedded systems are ubiquitous. Embedded systems are present in many
industries, including industria automation, defense, transportation, and aerospace. For example, NASA sMars Path
Finder, Lockheed Martin s missile guidance system, and the Ford automobile al contain numerous embedded
sysems.

Every day, people throughout the world use embedded systems without even knowing it. In fact, the embedded
sysem sinvighility isits very beauty: users regp the advantages without having to understand the intricacies of the
technology.

Remarkably adaptable and versatile, embedded systems can be found at home, at work, and even in recreational
devices. Indeed, it isdifficult to find asegment of daily life that does not involve embedded systemsin some way.
Some of the more visible examples of embedded systems are provided in the next sections.

1.1.1 Embedded Systemsin the Home Environment

Hidden conveniently within numerous household appliances, embedded systems are found al over the house.
Consumers enjoy the effort-saving advanced features and benefits provided by these embedded technologies.

Asshown in Figure 1.1 embedded systemsin the home assume many forms, including security systems, cable and
satdllite boxes for televisons, home theater systems, and telephone answering machines. As advancesin
microprocessors continue to improve the functionality of ordinary products, embedded systems are helping drive the
development of additional home-based innovations.

Figure 1.1: Embedded systems at home.

1.1.2 Embedded Systemsin the Work Environment

Embedded systems have also changed the way people conduct business. Perhaps the most significant exampleisthe
Internet, whichisredly just avery large collection of embedded systemsthat are interconnected using various
networking technologies. Figure 1.2 illustrates what asmall segment of the Internet might look like.
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Figure 1.2: Embedded systems at work.

From variousindividua network end-points (for example, printers, cable modems, and enterprise network routers)
to the backbone gigabit switches, embedded technology has hel ped make use of the Internet necessary to any
business moded. The network routers and the backbone gigabit switches are examples of rea-time embedded
systems. Advancementsin red-time embedded technology are making Internet connectivity both religble and
responsive, despite the enormous amount of voice and datatraffic carried over the network.

1.1.3 Embedded Systemsin Leisure Activities

At home, at work, even a play, embedded systemsare flourishing. A child stoy unexpectedly springsto life with
unabashed liveliness. Automobiles equipped with in-car navigation systems transport people to destinations safely
and efficiently. Listening to favorite tunes with anytime-anywhere freedom is readily achievable, thanks to embedded
systems buried deep within sophisticated portable music players, as shown in Figure 1.3.

2-

Figure 1.3: Navigation system and portable music player.

Even the portable computing device, called a web tablet, shownin Figure 1.4, is an embedded system.
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Figure 1.4: A web tablet.

Embedded systems dso have teamed with other technologies to deliver benefitsto the traditionaly low-tech world.
GPStechnology, for example, uses satdllites to pinpoint locations to centimeter-level accuracy, which alows hikers,
cycligts, and other outdoor enthusiasts to use GPS handheld devicesto enjoy vast spaces without getting lost. Even
fishermen use GPS devicesto store the locations of their favorite fishing holes.

Embedded systems a so have taken traditiona radio-controlled airplanes, racecars, and boats to new heights and
speeds. As complex embedded systems in disguise, these devices take command inputs from joysticks and pass
them wirelesdy to the device sreceiver, enabling the model arplane, racecar, or boat to engage in speedy and
complex maneuvers. In fact, the introduction of embedded technology has rendered these sports safer and more
enjoyable for model owners by virtualy €liminating the once-common threat of crashing dueto signd interference.

1.1.4 Defining the Embedded System

Some texts define embedded systems as computing systems or devices without a keyboard, display, or mouse.
Thesetextsusethe look characterigtic asthe differentiating factor by saying, embedded systems do not ook like
ordinary persond computers, they look like digital cameras or smart toasters. These satementsare dl mideading.

A genard definition of embedded systems is. embedded systems are computing systems with tightly coupled
hardware and software integration, that are designed to perform a dedicated function. The word embedded reflects
thefact that these systems are usualy an integral part of alarger system, known as the embedding system. Multiple
embedded systems can coexist in an embedding system.

This definition isgood but subjective. In the mgority of cases, embedded systems are truly embedded, i.e., they are
sysemswithin systems. They ether cannot or do not function on their own. Take, for example, the digital set-top
box (DST) found in many home entertainment systems nowadays. The digita audio/video decoding system, cdled
the A/V decoder, which isan integral part of the DST, is an embedded system. The A/V decoder acceptsasingle
multimedia stream and produces sound and video frames as output. The sgnasreceived from the satdllite by the
DST contain multiple streams or channels. Therefore, the A/V decoder worksin conjunction with the transport
stream decoder, which isyet another embedded system. The transport stream decoder de-multiplexes theincoming
multimedia streams into separate channds and feeds only the sdlected channd to the A/V decoder.

In some cases, embedded systems can function as standalone systems. The network router illustrated in Figure 1.2 is
a standa one embedded system. It is built using a speciaized communication processor, memory, a number of
network accessinterfaces (known as network ports), and specia software that implements packet routing algorithms.
In other words, the network router is a standalone embedded system that routes packets coming from one port to
another, based on a programmed routing agorithm.

The definition also does not necessarily provide answers to some often-asked questions. For example: Cana
persona computer be classified as an embedded system? Why? Can an AppleiBook that isused only asaDVD
player be called an embedded system?

A single comprehensive definition does not exist. Therefore, we need to focus on the char-acteristics of embedded

systems from many different perspectivesto gain area under-standing of what embedded systems are and what
makes embedded systems specidl.

1.1.5 Embedded Processor and Application Awar eness



This document is created with the unregistered version of CHM2PDF Pilot

The processors found in common personal computers (PC) are general-purpose or universal processors. They are
complex in design because these processors provide afull scale of features and awide spectrum of functiondities.
They are designed to be suitable for avariety of applications. The systems using these universal processors are
programmed with amultitude of applications. For example, modern processors have a built-in memory management
unit (MMU) to provide memory protection and virtua memory for multitasking-capable, genera-purpose operating
systems. These universal processors have advanced cache logic. Many of these processors have a built-in math
co-processor capable of performing fast floating-point operations. These processors provide interfaces to support a
variety of externa peripherd devices. These processorsresult in large power consumption, heat production, and size.
The complexity means these processors are dso expensive to fabricate. In the early days, embedded syssemswere
commonly built using genera-purpose processors.

Because of the quantum legp in advancements made in microprocessor technology in recent years, embedded
sysems are increasingly being built using embedded processors instead of genera-purpose processors. These
embedded processors are specia-purpose processors designed for a specific class of applications. Thekey is
gpplication awareness, i.e., knowing the nature of the applications and meeting the requirement for those gpplications
that it isdesigned to run.

One class of embedded processors focuses on size, power consumption, and price. Therefore, some embedded
processors are limited in functiondity, i.e., aprocessor is good enough for the class of gpplications for which it was
designed but islikely inadequate for other classes of applications. Thisis one reason why many embedded
processors do not have fast CPU speeds. For example, the processor chosen for apersona digital assistant (PDA)
device does not have a floating-point co-processor because floating-point operations are either not needed or
software emulation is sufficient. The processor might have a 16-bit addressing architecture instead of 32-bit, dueto
itslimited memory storage capacity. It might have a200MHz CPU speed because the mgjority of the applications
areinteractive and display-intensive, rather than computation-intensive. This class of embedded processorsis smal
because the overdl PDA deviceisdim and fitsin the pam of your hand. Thelimited functionality means reduced
power consumption and long-lasting battery life. The smaler size reducesthe overal cost of processor fabrication.

On the other hand, another class of embedded processors focuses on performance. These embedded processors are
powerful and packed with advanced chip-design technologies, such as advanced pipeline and parald processing
architecture. These processors are designed to satisfy those gpplications with intensive computing requirements not
achievable with generd-purpose processors. An emerging class of highly specidized and high-performance
embedded processors includes network processors devel oped for the network equipment and telecommunications
industry. Overal, system and application peeds are the main concerns.

Y et another class of embedded processors focuses on dl four requirements performance, size, power consumption,
and price. Take, for example, the embedded digita signal processor (DSP) used in cdll phones. Red-time voice
communication involvesdigital Sgnal processing and cannot tolerate delays. A DSP has specidized arithmetic units,
optimized design in the memory, and addressing and bus architectures with multiprocessing capability that alow the
DSPto perform complex calculations extremely fast in red time. A DSP outperforms a generd-purpose processor
running at the same clock speed many times over comesto digital sgnal processing. These reasons are why DSPs,
instead of general-purpose processors, are chosen for cell phone designs. Even though DSPs are incredibly fast and
powerful embedded processors, they are reasonably priced, which keepsthe overall prices of cell phones
competitive. The battery from which the DSP draws power lasts for hours and hours. A cell phone under $100 fitsin
half the palm-size of an average person at the time this book was written.

System-on-a-chip (SoC) processors are especidly attractive for embedded systems. The SoC processor is
comprised of a CPU core with built-in peripheral modules, such as a programmable genera-purpose timer,
programmable interrupt controller, DMA controller, and possibly Ethernet interfaces. Such a self-contained design
allows these embedded processors to be used to build avariety of embedded applications without needing additional
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externd periphera devices, again reducing the overdl cost and size of thefind product.

Sometimes agray area exists when using processor type to differentiate between embedded and non-embedded
systems. It isworth noting that, in large-scale, high-performance embedded systems, the choice between embedded
processors and universal microprocessorsisadifficult one.

In high-end embedded systems, system performance in a predefined context outweighs power consumption and cost.
The choice of ahigh-end, genera purpose processor is as good as the choice of a high-end, specialized embedded
processor in some designs. Therefore, using processor type aloneto classify embedded systems may result in wrong
classfications.

1.1.6 Hardwar e and Software Co-Design M odel

Commonly both the hardware and the software for an embedded system are developed in parallel. Constant design
feedback between the two design teams should occur in this devel opment modd . The result isthat each Sde can take
advantage of what the other can do. The software component can take advantage of specid hardware festuresto
gain performance. The hardware component can smplify module design if functiondity can be achieved in software
that reduces overdl hardware complexity and cost. Often design flaws, in both the hardware and software, are
uncovered during this close collaboration.

The hardware and software co-design model reemphasizes the fundamental characteristic of embedded systemsthey
are gpplication-specific. An embedded system is usudly built on custom hardware and software. Therefore, using this
development modd is both permissible and beneficid.

1.1.7 Cross-Platform Development

Another typica characteristic of embedded systemsisits method of software development, called cross-platform
devel opment, for both system and application software. Software for an embedded system is devel oped on one
platform but runs on another. In this context, the platform isthe combination of hardware (such as particular type of
processor), operating system, and software devel opment tools used for further devel opment.

The host system isthe system on which the embedded softwareis developed. The target system is the embedded
system under devel opment.

The main software tool that makes cross-platform development possibleisacross compiler. A cross compiler isa
compiler that runs on one type of processor architecture but produces object code for a different type of processor
architecture. A cross compiler is used because the target system cannot host its own compiler. For example, the
DIAB compiler from Wind River Systemsis such a cross compiler. The DIAB compiler runs on the Microsoft
Windows operating system (OS) on the | A-32 architecture and runs on various UNIX operating systems, such as
the Solaris OS on the SPARC architecture. The compiler can produce object code for numerous processor types,
such as Motorola s 68000, MIPS, and ARM. We discuss more cross-development toolsin Chapter 2.

1.1.8 Softwar e Storage and Upgradeability
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Code for embedded systems (such as the real-time embedded operating system, the system software, and the
application software) is commonly stored in ROM and NVRAM memory devices. In Chapter 3, we discussthe
embedded system booting process and the stepsinvolved in extracting code from these storage devices. Upgrading
an embedded system can mean building new PROM, deploying specid equipment and/or aspeciad method to
reprogram the EPROM, or reprogramming the flash memory.

The choice of software storage device has an impact on development. The process to reprogram an EPROM when
small changes are made in the software can be tedious and time-consuming, and this occurrence is common during
development. Removing an EPROM device from its socket can damage the EPROM; worse yet, the system itsalf
can be damaged if careful handling is not exercised.

The choice of the storage device can aso have an impact on the overall cost of maintenance. Although PROM and
EPROM devices are inexpensive, the cost can add up if alarge volume of shipped systemsisin thefield. Upgrading
an embedded system in these cases means shipping replacement PROM and EPROM chips. The embedded system
can be upgraded without the need for chip replacement and can be upgraded dynamicaly over anetwork if flash
memory or EEPROM is used as the code storage device (see the following sidebar).

Armed with the information presented in the previous sections, we can now attempt to answer the questions raised
earlier. A persona computer is not an embedded system becauseit is built using a genera-purpose processor and is
built independently from the software that runs on it. The software applications devel oped for persona computers,
which run operating systems such as FreeBSD or Windows, are devel oped natively (as opposed to

cross-devel oped) on those operating systems. For the same reasons, an AppleiBook used only asaDVD player is
used like an embedded system but is not an embedded system.

Read Only Memory (ROM)

With non-volatile content and without the need for an external power source.

Mask Programmed ROM the memory content is programmed during the manufacturing process. Once
programmed, the content cannot be changed. It cannot be reprogrammed.

Field Programmable ROM (PROM ) the memory content can be custom-programmed onetime. The
memory content cannot change once programmed.

Erasable Programmable ROM (EPROM ) an EPROM device can be custom-programmed, erased, and
reprogrammed as often as required within itslifetime (hundreds or even thousands of times). The memory
content is non-volatile once programmed. Traditional EPROM devices are erased by exposure to ultraviolet
(UV) light. An EPROM device must be removed from its housing unit first. It isthen reprogrammed using a
specia hardware device caled an EPROM programmer.

Electrically Erasable Programmable ROM (EEPROM or E2PROM) modern EPROM devices are
erased eectrically and are thus called EEPROM. One important difference between an EPROM and an
EEPROM deviceisthat with the EEPROM device, memory content of asingle byte can be selectively
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erased and reprogrammed. Therefore, with an EEPROM device, incremental changes can be made. Another
differenceisthe EEPROM can be reprogrammed without a specid programmer and can stay in the device
while being reprogrammed. The versatility of byte-level programmability of the EEPROM comesat aprice,
however, as programming an EEPROM deviceisadow process.

Flash Memory the flash memory isavariation of EEPROM, which dlowsfor block-leve (e.g., 512-byte)
programmability that is much faster than EEPROM.

Random Access Memory (RAM)

Also called Read/Write Memory, requires external power to maintain memory content. The term random access
refersto the ability to access any memory cdll directly. RAM is much faster than ROM. Two typesof RAM that are
of interest:

Dynamic RAM (DRAM) DRAM isaRAM devicethat requires periodic refreshing to retain its content.

Static RAM (SRAM) SRAM isaRAM device that retainsits content as long as power is supplied by an
externa power source. SRAM does not require periodic refreshing and it is faster than DRAM.

Non-Volatile RAM (NVRAM) NVRAM isaspecial type of SRAM that has backup battery power so it
can retain its content after the main system power is shut off. Another variation of NVARM combines
SRAM and EEPROM <0 that its content is written into the EEPROM when power is shut off and isread
back from the EEPROM when power isrestored.
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1.2 Real-Time Embedded Systems

In the smplest form, real-time systems can be defined as those systems that respond to externa eventsin atimely
fashion, asshownin Figure 1.5. Theresponse time is guaranteed. We revisit this definition after presenting some
examples of red-time systems.
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Figure 1.5: A smpleview of red-time systems.

Externd events can have synchronous or asynchronous characteristics. Responding to externd eventsincludes
recognizing when an event occurs, performing the required processing as aresult of the event, and outputting the
necessary results within agiven time congraint. Timing congtraintsinclude finishtime, or both start time and finish time.

A good way to understand the relationship between real-time systems and embedded systemsisto view them astwo
intersecting circles, asshownin Figure 1.6. It can be seen that not al embedded systems exhibit real-time behaviors
nor are dl red-time systems embedded. However, the two systems are not mutually exclusive, and the areain which
they overlap creates the combination of systems known as real-time embedded systems.
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Figure 1.6 Red-time embedded systems.

Knowing this fact and because we have covered the various aspects of embedded systemsiin the previous sections,
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we can now focus our atention on red-time systems. v

Figure 1.7: Structure of real-time systems.

1.2.1 Real-Time Systems
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The environment of the real-time system creates the external events. These events are received by one or more
components of the redl-time system. The response of the red-time system is then injected into its environment
through one or more of its components. Decomposition of the real-time system, as shown in Figure 1.5, leadsto the
generd dructure of red-time systems.

The dtructure of ared-time system, as shown in Figure 1.7, isacontrolling system and at |east one controlled system.
The contralling system interacts with the controlled system in various ways. Firg, the interaction can be periodic, in
which communication isinitiated from the controlling system to the controlled system. In this case, the communication
Is predictable and occurs at predefined intervals. Second, the interaction can be aperiodic, in which communication
isinitiated from the controlled system to the controlling system. In this case, the communication isunpredictableand is
determined by the random occurrences of externa eventsin the environment of the controlled system. Findly, the
communication can be acombination of both types. The controlling system must process and respond to the events
and information generated by the controlled system in a guaranteed time frame.

Imagine ared-time weapons defense system whose role isto protect anaval destroyer by shooting down incoming
missles. Theideaisto shred an incoming missile into pieces with bullets before it reaches the ship. The wegpons
system is comprised of aradar system, acommand-and-decision (C& D) system, and wegpons firing control system.
The controlling system isthe C& D system, whereas the controlled systems are the radar system and the wegpons
firing control system.

The radar system scans and searches for potentia targets. Coordinates of a potentia target are sent to the
C&D system periodicdly with high frequency after the target is acquired.

The C&D system must first determine the threst level by threst classfication and evaluation, based on the
target information provided by the radar system. If athreat isimminent, the C&D system mugt, at aminimum,
calculate the speed and flight path or trgectory, aswell as estimate the impact location. Becauseamissile
tendsto drift off itsflight path with the degree of drift dependent on the precision of its guidance system, the
C& D system calculates an area (abox) around the flight path.

The C& D system then activates the wegpons firing control system closest to the anticipated impact location
and guides the weapons system to fire continuoudy within the moving areaor box until thetarget is
destroyed. The weaponsfiring control system is comprised of large-cdiber, multi-barre, high-muzzle
veocity, high-power machine guns.

In this weapons defense system example, the communi cation between the radar system and the C& D systemiis
aperiodic, because the occurrence of apotentia target is unpredictable and the potential target can appear at any
time. The communication between the C& D system and the wegpons firing control system is, however, periodic
because the C& D system feeds the firing coordinates into the weapons control system periodicdly (with an extremey
high frequency). Initia firing coordinates are based on a pre-computed flight path but are updated in red-time
according to the actud location of theincoming missile.

Congder another example of area-time system-the cruise missile guidance system. A cruise missileflies a subsonic
speed. It can travel at about 10 meters above water, 30 meters above flat ground, and 100 meters above mountain
terrains. A modern cruise missile can hit atarget within a50-meter range. All these capabilities are dueto the
high-precison, red-time guidance system built into the nose of acruise missile. Inasmplified view, the guidance
system is comprised of the radar system (both forward-looking and look-down radars), the navigation system, and
the divert-and-dtitude-control system. The navigation system contains digital maps covering the missileflight path.
Theforward-looking radar scans and maps out the gpproaching terrains. Thisinformation isfed to the navigation



This document is created with the unregistered version of CHM2PDF Pilot

syseminred time. The navigation system must then reca culate flight coordinates to avoid terrain obstacles. The new
coordinates areimmediately fed to the divert-and-dtitude-control system to adjust the flight path. The look-down
radar periodically scansthe ground terrain dong itsflight path. The scanned datais compared with the estimated
section of the pre-recorded maps. Corrective adjustments are made to the flight coordinates and sent to the
divert-and-altitude-control system if data comparison indicates that the missile has drifted off the intended flight path.

In this example, the controlling system is the navigation system. The controlled systems are the radar system and the
divert-and-dtitude-control system. We can observe both periodic and aperiodic communicationsin this example.
The communication between the radars and the navigation system is aperiodic. The communication between the
navigation system and the diver-and-dtitude-control system isperiodic.

L et us congder one more example of ared-time syssem-aDVD player. The DVD player must decode both the
video and the audio streams from the disc smultaneoudy. Whileamovieis being played, the viewer can activate the
on-screen display using aremote control. On-screen display isauser menu that alows the user to change
parameters, such asthe audio output format and language options. The DVD player isthe controlling system, and the
remote control isthe controlled system. In this case, the remote control isviewed as a sensor because it feeds events,
such as pause and language sdection, into the DVD player.

1.2.2 Characteristics of Real-Time Systems

The C&D system in the weapons defense system must cal culate the anticipated flight path of theincoming missile
quickly and guide the firing system to shoot the missile down before it reaches the destroyer. Assume T1 isthetime
the missile takes to reach the ship and isafunction of the missl€s distance and velocity. Assume T2 isthetimethe
C&D system takesto activate the wegponsfiring control system and includes transmitting the firing coordinates plus
thefiring delay. The difference between T1 and T2 ishow long the computation may take. The missile would reach
itsintended target if the C& D system took too long in computing the flight path. The missilewould till reach itstarget
if the computation produced by the C& D system wasinaccurate. The navigation system in the cruise missile must
respond to the changing terrain fast enough so that it can re-compute coordinates and guide the atitude control
system to anew flight path. The missile might collide with amountain if the navigation system cannot compute new
flight coordinates fast enough, or if the new coordinates do not steer the missile out of the collision course.

Therefore, we can extract two essential characteristics of red-time systems from the examples given earlier. These
characterigtics are that real-time systems must produce correct computationa results, called logical or functional
correctness, and that these computations must conclude within a predefined period, called timing correctness.

Real-time systems are defined as those systems in which the overal correctness of the system depends on both the
functional correctness and the timing correctness. Thetiming cor-rectnessis at least asimportant as the functiona
correctness.

It isimportant to note that we said the timing correctnessis at least asimportant as the functiona correctness. In
some red-time systems, functiona correctnessis sometimes sacrificed for timing correctness. We address this point
shortly after we introduce the classifications of redl-time systems.

Similar to embedded systems, redl-time systems d so have substantial knowledge of the environment of the controlled
system and the applications running on it. Thisreason is one why many red-time systems are said to be deterministic,
because in those redl-time systems, the response time to a detected event is bounded. The action (or actions) taken
in responseto an eventisknown apriori. A deterministic red-time system implies that each component of the system
must have a deterministic behavior that contributesto the overal determinism of the system. As can be seen, a
determinigtic red-time system can be less adaptabl e to the changing environment. The lack of adaptability can result
in alessrobust system. The levels of determinism and of robustness must be balanced. The method of balancing
between the two is system- and application-specific. This discussion, however, isbeyond the scope of this book.
Conault the reference materia for additional coverage on thistopic.
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1.2.3 Hard and Soft Real-Time Systems

In the previous section, we said computation must complete before reaching a given deadline. In other words,
redl-time systems have timing constraints and are deadline-driven. Redl-time systems can be classfied, therefore, as
either hard real-time systems or soft redl-time systems.

What differentiates hard redl-time systems and soft real-time systems are the degree of tolerance of missed deadlines,
usefulness of computed results after missed deadlines, and severity of the pendty incurred for failing to meet
deadlines.

For hard redl-time systems, the level of tolerance for amissed deadline is extremely smdll or zero tolerance. The
computed results after the missed deadline are likely usdessfor many of these systems. The pendty incurred for a
missed deadline is catastrophe. For soft real-time systems, however, the level of toleranceis non-zero. The
computed results after the missed deadline have arate of depreciation. The usefulness of the results does not reach
zero immediately passing the deadline, asin the case of many hard real-time systems. The physical impact of amissed
deadline is non-catastrophic.

A hard real-time system isared-time system that must meet its deadlines with anear-zero degree of flexibility. The
deadlines must be met, or catastrophes occur. The cost of such catastropheis extremely high and can involve human
lives. The computation results obtained after the deadline have either azero-leve of usefulness or have ahigh rate of

depreciation as time moves further from the missed deadline before the system produces aresponse.

A soft real-time system isared-time system that must meet its deadlines but with a degree of flexibility. The
deadlines can contain varying levels of tolerance, average timing deadlines, and even statistical distribution of
response times with different degrees of acceptability. In a soft real-time system, a missed deadline does not result in
system failure, but costs can rise in proportion to the delay, depending on the gpplication.

Penalty is an important aspect of hard real-time systemsfor severd reasons.

What is meant by 'must meet the deadline?

It means something catastrophic occursif the deadlineis not met. It isthe pendty that sets the requirement.

Missing the deadline means a system failure, and no recovery is possble other than areset, so the deadline
must be met. Isthisahard red-time system?

That depends. If a system failure means the systern must be reset but no cost is associated with thefailure,
the deadlineis not a hard deadline, and the system is not a hard redl-time system. On the other hand, if a cost
isassociated, either in human lives or financid pendty such asa$50 million lawsuit, the deadlineisahard
deadline, and it isahard red-time system. It isthe pendty that makesthis determination.

What defines the deadline for a hard red-time system?
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It isthe pendlty. For ahard rea-time system, the deadline is adeterministic value, and, for a soft redl-time
system, the value can be estimation.

Onething worth noting isthat the length of the deadline does not make aredl-time system hard or soft, but itisthe
requirement for meeting it within that time,

The weapons defense and the missile guidance systems are hard redl-time systems. Using the missile guidance system
for an example, if the navigation system cannot compute the new coordinates in response to approaching mountain
terrain before or at the deadline, not enough distance is|eft for the missile to change dtitude. This system has zero
tolerance for amissed deadline. The new coordinates obtained after the deadline are no longer useful because at
subsonic speed the distance istoo short for the atitude control system to navigate the missile into the new flight path
intime. The pendty isa catastrophic event in which the missile collides with the mountain. Similarly, the wegpons
defense system is d so a zero-tolerance system. The missed deadline resultsin the missile sinking the destroyer, and
human lives potentialy being lost. Again, the penalty incurred is catastrophic.

On the other hand, the DV D player is a soft redl-time system. The DVD player decodes the video and the audio
streams while responding to user commandsin rea time. The user might send a series of commandsto the DVD
player rapidly causing the decoder to missits deadline or deadlines. The result or penalty is momentary but visible
video distortion or audible audio distortion. The DVD player hasahigh level of tolerance becauseit continuesto
function. The decoded data obtained after the deadlineis till useful.

Timing correctnessis critica to most hard red-time systems. Therefore, hard real-time systems make every effort
possiblein predicting if a pending deadline might be missed. Returning to the wegpons defense system, let us discuss
how a hard redl-time system takes corrective actions when it antici pates a deadline might be missed. In the wegpons
defense system example, the C& D system cal cul ates afiring box around the projected missleflight path. The missile
must be destroyed a certain distance away from the ship or the shrapnel can till cause damage. If the C&D system
anticipates amissed deadline (for example, if by the time the precise firing coordinates are computed, the missile
would have flown past the safe zone), the C& D system must take corrective action immediately. The C&D system
enlargesthe firing box and computes imprecise firing coordinates by methods of estimation instead of computing for
precisevalues. The C&D system then activates additional weaponsfiring systems to compensate for thisimprecision.
Theresult isthat additiona guns are brought online to cover the larger firing box. Theideaisthat it is better to waste
bullets than snk a destroyer.

This example showswhy sometimesfunctiona correctness might be sacrificed for timing correctness for many
redl-time systems.

Because one or afew missed deadlines do not have a detrimental impact on the operations of soft redl-time systems,
asoft red-time system might not need to predict if a pending deadline might be missed. Insteed, the soft redl-time
system can begin arecovery process after a missed deadline is detected.

For example, using the real-time DV D player, after amissed deadlineis detected, the decodersin the DVD player
use the computed results obtained after the deadline and use the data to make a decision on what future video frames
and audio data must be discarded to re-synchronize the two streams. In other words, the decoders find waysto
catch up.

So far, we have focused on meeting the deadline or the finish time of somework or job, e.g., acomputation. At
times, meeting the start time of the job is just asimportant. The lack of required resources for the job, such as CPU
or memory, can prevent ajob from starting and can lead to missing the job completion deadline. Ultimately this
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problem becomes a resource-scheduling problem. The scheduling agorithms of ared-time system must schedule
system resources so that jobs created in response to both periodic and aperiodic events can obtain the resources at
the gppropriate time. This process affords each job the ability to meet its specific timing congraints. Thistopicis

addressed in detail in Chapter 14.
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1.3 The Future of Embedded Systems

Until the early 1990s, embedded systems were generaly smple, autonomous devices with long product lifecycles. In
recent years, however, the embedded industry has experienced drametic transformation, as reported by the Gartner
Group, an independent research and advisory firm, aswell as by other sources:

Product market windows now dictate feverish six- to nine-month turnaround cycles.

Globalization is redefining market opportunities and expanding application space.

Connectivity is now arequirement rather than abonusin both wired and emerging wireless technologies.
Electronics-based products are more complex.

I nterconnecting embedded systems are yielding new applications that are dependent on networking
infrastructures.

The processing power of microprocessorsisincreasing at arate predicted by Moore s Law, which states
that the number of transstors per integrated circuit doubles every 18 months.

If past trends give any indication of the future, then as technology evolves, embedded software will continue to
proliferate into new applications and lead to smarter classes of products. With an ever-expanding marketplace
fortified by growing consumer demand for devicesthat can virtualy run themselves aswell asthe seemingly limitless
opportunities created by the Internet, embedded systems will continue to reshape the world for yearsto come.
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1.4 Pointsto Remember

An embedded system is built for a specific gpplication. As such, the hardware and software components are
highly integrated, and the development modd isthe hardware and software co-design modd.

Embedded systems are generdly built using embedded processors.

An embedded processor is a specialized processor, such asaDSP, that is cheaper to design and produce,

can have built-in integrated devices, islimited in functiondity, produceslow hesat, consumes low power, and
does not necessarily have the fastest clock speed but meets the requirements of the specific applications for
whichitisdesigned.

Redl-time systems are characterized by the fact that timing correctnessisjust asimportant as functiona or
logical correctness.

The severity of the pendty incurred for not satisfying timing congraints differentiates hard red-time systems
from soft red-time systems.

Real-time systems have a significant amount of application awareness smilar to embedded systems.

Redl-time embedded systems are those embedded system with redl-time behaviors.
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Chapter 2. Basics Of Developing
For Embedded Systems

2.1 Introduction

Chapter 1 states that one characteristic of embedded systemsis the cross-platform development methodology. The
primary components in the development environment are the host system, the target embedded system, and
potentialy many connectivity solutions available between the host and the target embedded system, as shown in
Figure2.1.
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Figure2.1: Typica cross-platform development environment.

The essentia development tools offered by the host system are the cross compiler, linker, and source-level debugger.
The target embedded system might offer adynamic loader, alink loader, amonitor, and a debug agent. A set of
connections might be available between the host and the target system. These connections are used for downloading
program images from the host system to the target system. These connections can aso be used for transmitting
debugger information between the host debugger and the target debug agent.

Programs including the system software, the redl-time operating system (RTOS), the kerndl, and the application code
must be developed first, compiled into object code, and linked together into an executable image. Programmers
writing applications that execute in the same environment as used for development, called native development, do
not need to be concerned with how an executable image is loaded into memory and how execution control is
transferred to the application. Embedded devel opers doing cross-platform development, however, are required to
understand the target system fully, how to store the program image on the target embedded system, how and where
to load the program image during runtime, and how to develop and debug the system iteratively. Each of these
aspects can impact how the code is devel oped, compiled, and most importantly linked.

The areas of focusin this chapter are

the ELF object file format,
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thelinker and linker command file, and

mapping the executable image onto the target embedded system.

This chapter does not provide full coverage on each tool, such as the compiler and the linker, nor does this chapter
fully describe a specific object file format. Instead, this chapter focuses on providing in-depth coverage on the
aspects of each tool and the object file format that are most relevant to embedded system development. Thegod is
to offer the embedded devel oper practical insights on how the components relate to one another. Knowing the big
picture alows an embedded developer to put it al together and ask the specific questions if and when necessary.
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2.2 Overview of Linkersand the Linking Process

Figure 2.2 illustrates how different tools take various input files and generate gppropriate output filesto ultimately be
usedin buildirp an executableimage.
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Figure 2.2: Creating an imagefilefor thetarget system.

The devel oper writes the program in the C/C++ source files and header files. Some parts of the program can be
written in assembly language and are produced in the corresponding assembly sourcefiles. The developer createsa
mekefile for the make utility to facilitate an environment that can easily track the file modifications and invoke the
compiler and the assembler to rebuild the source files when necessary. From these source files, the compiler and the
assembler produce object filesthat contain both machine binary code and program data. The archive utility
concatenates a collection of object filesto form alibrary. The linker takes these object files asinput and produces
ether an executable image or an object file that can be used for additional linking with other object files. The linker
command file ingtructs the linker on how to combine the object files and where to place the binary code and dataiin
the target embedded system.

The main function of the linker isto combine multiple object filesinto alarger relocatable object file, ashared object
file, or afina executableimage. In atypical program, asection of code in one source file can reference variables
defined in another sourcefile. A function in one sourcefile can cal afunction in another sourcefile. The globa
variables and non-gtatic functions are commonly referred to as global symbols. In sourcefiles, these symbols have
various names, for example, agloba variable caled foo_bar or aglobal function called func_a. In thefina executable
binary image, asymbol refersto an address |ocation in memory. The content of this memory location is either datafor
variables or executable code for functions.

The compiler creates asymbol table containing the symbol name to address mappings as part of the object fileit
produces. When creating rel ocatable output, the compiler generates the address that, for each symbol, isrelative to
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thefile being compiled. Consequently, these addresses are generated with respect to offset 0. The symbol table
containsthe globa symbols defined in the file being compiled, aswell asthe externa symbolsreferenced inthefile
that the linker needsto resolve. Thelinking process performed by the linker involves symbaol resolution and symbol
relocation.

Symbol resolution isthe processin which the linker goes through each object file and determines, for the object file,
inwhich (other) object file or files the external symbols are defined. Sometimes the linker must processthelist of
object filesmultiple timeswhiletrying to resolve dl of the external symbols. When external symbolsaredefinedina
datic library, the linker copiesthe object files from the library and writes them into the fina image.

Symbol relocation isthe processin which the linker maps a symbol referenceto its definition. The linker modifiesthe
machine code of the linked object files so that code references to the symbolsreflect the actual addresses assigned to
these symbols. For many symbals, the relative offsets change after multiple object files are merged. Symbol

rel ocation requires code modification because the linker adjusts the machine code referencing these symbolsto

reflect their finalized addresses. The relocation table tells the linker where in the program code to apply the relocation
action. Each entry in the relocation table contains areference to the symbal table. Using this reference, the linker can
retrieve the actual address of the symbol and apply it to the program location as specified by the relocation entry. It is
possible for the rel ocation table to contain both the address of the symbol and the information on the relocation entry.
In this case, there is no reference between the rel ocation table and the symbal table.

Figure 2'355,” ﬁg&th&e two conceptsin asmplified view and serves as an example for the following discussions.
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Figure 2.3: Relationship between the symbal table and the rel ocation table.

For an executable image, al external symbols must be resolved so that each symbol has an absolute memory address
because an executable image is ready for execution. The exception to thisruleis that those symbols defined in shared
libraries may Hill contain relative addresses, which are resolved at runtime (dynamic linking).

A relocatable object file may contain unresolved externa symbols. Similar to alibrary, alinker-reproduced

rel ocatable object fileis a concatenation of multiple object fileswith one main difference thefileis partidly resolved
and is used for further linking with other object filesto create an executable image or ashared object file. A shared
object file has dua purposes. It can be used to link with other shared object files or rel ocatable object modules, or it
can be used as an executable image with dynamic linking.
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2.3 Executable and Linking Format

Typicaly an object file contains

generd information about the object file, such asfile Sze, binary code and data size, and source file name
from which it was created,

meachine-architecture-specific binary instructions and data
symbol table and the symbal relocation table, and

debug information, which the debugger uses.

The manner in which thisinformation is organized in the object fileisthe object file format. Theideabehind a
standard object file format isto alow development tools which might be produced by different vendors-such asa
compiler, assembler, linker, and debugger that conform to the well-defined standard-to interoperate with each other.

Thisinteroperability means a developer can choose a compiler from vendor A to produce object code used to form
afina executableimage by alinker from vendor B. This concept givesthe end developer grest flexibility in choice for
devel opment tool's because the devel oper can select atool based on its functional strength rather than its vendor.

Two common object file formats are the common object file format (COFF) and the executable and linking format
(ELF). Thesefile formats are incompatible with each other; therefore, be sure to sdect the tools, including the
debugger, that recognize the format chosen for development.

We focus our discussion on ELF because it supersedes COFF. Understanding the object file format allowsthe
embedded devel oper to map an executable image into the target embedded system for static storage, aswell asfor
runtime loading and execution. To do so, we need to discuss the specifics of ELF, aswell ashow it relatesto the
linker.

Using the ELF object file format, the compiler organizes the compiled program into various system-defined, aswell
as user-defined, content groupings called sections. The program's binary ingtructions, binary data, symboal table,
relocation table, and debug information are organized and contained in various sections. Each section hasatype.
Content is placed into asection if the section type matches the type of the content being stored.

A section a so contains important information such as the load address and the run address. The concept of load
address versus run addressis important because the run address and the load address can be different in embedded
systems. This knowledge can aso be helpful in understanding embedded system loader and link loader concepts
introduced in Chapter 3.



This document is created with the unregistered version of CHM2PDF Pilot

Chapter 1 discusses the ideathat embedded systemstypically have some form of ROM for non-volétile storage and
that the software for an embedded system can be stored in ROM. Modifiable datamust resdein RAM. Programs
that require fast execution speed aso execute out of RAM. Commonly therefore, asmall programin ROM, cdled a
loader, copiestheinitialized variablesinto RAM, transfers the program code into RAM, and begins program
execution out of RAM. This physical ROM storage address is referred to as the section's load address. The
section's run address refersto the location where the section is at the time of execution. For example, if asectionis
copied into RAM for execution, the section's run address refers to an addressin RAM, which isthe destination
address of the loader copy operation. The linker usesthe program's run address for symbol resolutions.

The ELF fileformat hastwo different interpretations, as shown in Figure 2.4. The linker interpretsthefileasa
linkable module described by the section header table, while the loader interprets the file as an executable module
described by the program header table.

Linkable File Executable File
ELF Header ELF Header
Frogram Header Table Program Header Table

{optional )
Section 1 data Segment 1 data
Section 2 data
S-a:ainn' nData Segman.t nData
Section Header Table Section Header Table
(optianal)

Figure 2.4 Executable and linking format.

Ligting 2.1 shows both the section header and the program header, as represented in C programming structures. We
describe the relevant fields during the course of this discussion.

Listi ni 2.1. Section header and program header.

n header Program header
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typedef struct { typedef struct {
Elf32 Word sh_name; EIf32_Word p_type;
Elf32_ Word sh_type; Elf32_Off p_offst;
Elf32 Word sh flags, Elf32_Addr p_vaddr;
Elf32 Addr sh_addr,; EIf32_Addr p_paddr;
ElIf32_Off sh offsat; Elf32 Word p filesz;
Elf32 Word sh _sze; Elf32_ Word p_memsz,
ElIf32_Word sh_link; Elf32 Word p_flags,
Elf32 Word sh _info; Elf32 Word p_dign;

. } EIf32_Phdr;

Elf32 Word sh_addrdign;

Elf32_Word sh_entsize;

} EIf32_Shdr;

A section header table isan array of section header structures describing the sections of an object file. A program
header table isan array of program header structures describing aloadable segment of animage that dlowsthe
loader to prepare the image for execution. Program headers are applied only to executable images and shared object
files

One of thefiddsin the section header structureis sh_type, which specifiesthe type of asection. Table 2.1 ligssome

section types.
Table 2.1: Section types.

NULL | nactive header without a section.

PROGBITS Codeor initidlized data.
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SYMTAB Symbol tablefor gatic linking.
STRTAB String table.

RELA/REL Relocation entries,

HASH Run-time symbol hash table,
DYNAMIC Information used for dynamic linking.
NOBITS Uninitialized deta

DYNSYM Symboal tablefor dynamic linking.

The sh flags field in the section header specifiesthe attribute of a section. Table 2.2 lists some of these attributes.
Table 2.2: Section attributes.

WRITE Section contains writeable data.
ALLOC Section contains dlocated data.
EXECINSTR Section contains executable ingtructions.

Some common system-created default sections with predefined namesfor the PROGBITS are .text, .sdata, .data,
.gbss, and .bss. Program code and constant data are contained in the .text section. This section is read-only because
code and congtant data are not expected to change during the lifetime of the program execution. The .sbss and .bss
sections contain uninitialized data. The .sbss section stores small data, which isthe data such as variables with szes
that fit into aspecific Sze. Thissizelimit is architecture-dependent. The result isthat the compiler and the assembler
can generate smdler and more efficient code to access these dataitems. The .sdata and .data sections contain
initidized dataitems. The small data concept described for .shss appliesto .sdata. A .text section with executable
code hasthe EXECINSTR attribute. The .sdata and .data sections have the WRITE attribute. The .sbss and .bss
sections have both the WRITE and the ALLOC attributes.

Other common system-defined sections are .symtab containing the symbal table, .strtab containing the string table for
the program symbals, .shstrtab containing the string table for the section names, and .relaname containing the
relocation information for the section named name. We have discussed the role of the symbol table (SYMTAB)
previoudy. In Figure 2.3, the symbol name is shown as part of the symbol table. In practice, each entry in the symbol
table contains areference to the string table (STRTAB) where the character representation of the name is stored.

The developer can define custom sections by invoking the linker command .section. For example, where the source
filesdates

.section ny_section
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the linker creates anew section called my_section. The reasonsfor creating custom named sections are explained
shortly.

The sh_addr isthe address where the program section should reside in the target memory. The p_paddr isthe
address where the program segment should reside in the target memory. The sh_addr and the p_paddr fieldsrefer to
the load addresses. The loader uses the load address field from the section header asthe starting address for the
image transfer from non-volatile memory to RAM.

For many embedded applications, the run addressis the same as the load address. These embedded applications are
directly downloaded into the target system memory for immediate execution without the need for any code or data
transfer from one memory type or location to another. This practice is common during the devel opment phase. We
revist thistopicin Chapter 3, which coversthetopic of image transfer from the host system to the target system.
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2.4 M apping Executable Imagesinto Target
Embedded Systems

After multiple sourcefiles (C/C++ and assembly files) have been compiled and assembled into ELF object files, the
linker must combine these object files and merge the sections from the different object filesinto program segments.
This process creates a Single executable image for the target embedded system. The embedded devel oper useslinker
commands (caled linker directives) to control how the linker combines the sections and allocates the segmentsinto
the target system. Thelinker directives are kept in the linker command file. The ultimate god of creating alinker
command fileisfor the embedded devel oper to map the executable image into the target system accurately and
effidently.

2.4.1 Linker Command File

Theformat of the linker command file, aswell asthe linker directives, vary from linker to linker. It isbest to consult
the programmer sreference manua from the vendor for specific linker commands, syntaxes, and extensions. Some
common directives, however, are found among the mgority of the available linkers used for building embedded
gpplications. Two of the more common directives supported by most linkersare MEMORY and SECTION.

The MEMORY directive can be used to describe the target system s memory map. The memory map liststhe
different types of memory (such as RAM, ROM, and flash) that are present on the target system, dong with the
ranges of addresses that can be accessed for storing and running an executable image. An embedded devel oper
needsto be familiar with the addressable physica memory on atarget system before creating alinker command file.
One of the best waysto do this process, other than having direct access to the hardware engineering team that built
the target system, isto look at the target system s schematics, as shown in Figure 2.5, and the hardware
documentation. Typicaly, the hardware documentation describes the target systerm s memory map.

Schematic Memory Map
Mimmory Typs  Memory Addriss
Processor

OO0

ROM
T ® Acdrass Bus Ox0001Fh
: Data Bus Flash OmDO0400
? 1 ‘ Cwi103Fh
RAM Flash ROM DA BG00H

FAM
Ox1FFFFR

Figure 2.5: Simplified schematic and memory map for atarget system.

Thelinker combinesinput sections having the same name into asingle output section with that name by default. The
developer-created, custom-named sections appear in the object file as independent sections. Sometimes devel opers
might want to change this default linker behavior of only coaescing sections with the same name. The embedded
developer might also need to ingtruct the linker on where to map the sections, in other words, what addresses should
the linker use when performing symbol resolutions. The embedded developer can usethe SECTION directiveto
achievethese godls.

The MEMORY directive defines the types of physical memory present on the target system and the address range
occupied by each physical memory block, as specified in the following generaized syntax
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MEMORY  {
area-nane : org = start-address, |en = nunber-of-bytes

}

In the example shown in Figure 2.5, three physica blocks of memory are present:

aROM chip mapped to address space location 0, with 32 bytes,

some flash memory mapped to address space location 0x40, with 4,096 bytes, and

ablock of RAM that starts at origin 0x10000, with 65,536 bytes.

Trandating thismemory map into the MEMORY directiveisshownin Ligting 2.2. The named areas are ROM,
FLASH, and RAM.

Ligting 2.2: Memory map.

Y {

ROM origin
FLASH. ori gi
RAM origin

0x0000h, length = 0x0020h
= 0x0040h, length = 0x1000h
0x1000h, length = 0x10000h

> 1

The SECTION directive tdlsthe linker which input sections are to be combined into which output section, which
output sections are to be grouped together and dlocated in contiguous memory, and where to place each section, as
well as other information. A generd notation of the SECTION command isshownin Listing 2.3,

Listing 2.3: SECTION command.
ON {
out put-section-nanme : { contents } > area-nane

GROUP {
[ ALI GN( expression)]
section-definition

} > area-nane

Theexample shown in Figure 2.6 contains three default sections (.text, .data, and .bss), aswell astwo
devel oper-specified sections (loader and my_section), contained in two object files generated by acompiler or
assembler (fileL.o and file2.0). Trandating thisexampleinto the MEMORY directiveisshown in Liging 2.4.
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Executable Image

“loader” secbon
filel.o | codaidata (fle1.0)

“loader” section Aext section file2.o
= o
tat section Aext (file2.0) [ | code |
my_section (file2.0) -(—I_ i mition®
Jdata section data section coda
| s g
Jbss section huin (a2 0} '
.bss section S

s (file.0) [ P
bss (file2 o) 4—J

Figure 2.6: Combining input sectionsinto an executable image.

Listing 2.4. Example code.
ON {
.text

{

my_section
*(.text)
}
| oader : > FLASH
GROUP ALI GN (4)
{
. text,
.data : {}
. bss {}
} >RAM

The SECTION command in the linker command file ingtructs the linker to combine the input section named
my_section and the default .text sectionsfrom al object filesinto the final output .text section. The loader sectionis
placed into flash memory. The sections .text, .data, and .bss are grouped together and allocated in contiguous
physicad RAM memory aigned on the 4-byte boundary, as shownin Figure 2.7.

Executable Image Target Memory
“loader™ section ROM Oee00000R
| coderdata (fle1.0) | ]»— 0x0001Fh
JAext section Flash 0x00040R

Stext (filel.o v

: : 0x0103Fh
text (fila2.6)
my_section (file2.0) 0100000
—™ RAM

.data section

-data (file1.0) 1 0x1FFFFh

data (file2.0) |
.bas section

Ibss (file1.0) ‘l

Jbss (file2.0) J

Figure 2.7: Mapping an executable image into the target system.
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Tips on section alocation include the following:

allocate sections according to size to fully use available memory, and

examine the nature of the underlying physica memory, the attributes, and the purpose of asection to
determine which physical memory isbest suited for allocation.

2.4.2 Mapping Executable | mages

Various reasons exist why an embedded devel oper might want to define custom sections, aswell asto map these
sectionsinto different target memory areas as shown in the last example. The following sections list some of these
reasons.

Module Upgradeability

Chapter 1 discusses the storage options and upgradability of software on embedded systems. Software can be easily
upgraded when stored in non-volatile memory devices, such as flash devices. It is possible to upgrade the software
dynamically whilethe sysemistill running. Upgrading the software can involve downloading the new program image
over ether aserid line or anetwork and then re-programming the flash memory. The loader in the example could be
such an gpplication. Theinitid version of the loader might be capable of transferring an image from ROM to RAM. A
newer version of the loader might be capable of transferring an image from the host over the serial connection to
RAM. Therefore, the loader code and data section would be created in a custom loader section. The entire section
then would be programmed into the flash memory for easy upgradeshility in the future.

Memory Size Limitation

Thetarget system usudly has different types of physical memory, but eachislimited in size. At times, itisimpossible
tofit all of the code and datainto one type of memory, for example, the SDRAM. Because SDRAM has faster
accesstimethan DRAM, it isaways desirable to map code and data into it. The available physica SDRAM might
not be large enough to fit everything, but plenty of DRAM isavailablein the system. Therefore, the Strategy isto
divide the program into multiple sections and have some sections alocated into the SDARM, whiletherest is

mapped into the DRAM. For example, an often-used function aong with a frequently searched lookup table might be
mapped to the SDRAM. The remaining code and datais dlocated into the DRAM.

Data Protection

Programs usualy have various types of constants, such asinteger constants and string constants. Sometimes these
congants are kept in ROM to avoid accidental modification. In this case, these constants are part of aspecid data
section, which isalocated into ROM.

2.4.3 Examplein Practice

Congder an example system containing 256 bytes of ROM, 16K B of flash memory, and two blocks of RAM.
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RAMBOis128KB of SDRAM, and RAMB1 is2MB of DRAM. An embedded application with anumber of
sections, aslisted in Table 2.3, needs to be mapped into thistarget system.

Table 2.3: Example embedded application with sections.

Sections Size Attribute? Description

_loader 10KB RD Contains the loader code

_wflash 2KB RD Containsthe flash memory programmer

rodata 128 bytes RD Contains non-volatile default initidization
parameters and data, such as copyright
information

Sbss 10KB RW Contains uninitidized datalessthan 64KB (eg.,
globd variables)

Sdata 2KB RW Containsinitialized datalessthan 64KB

bss 128KB RW Contains uninitialized datalarger than 64KB

data 512KB RW Containsinitialized datalarger than 64KB

_monitor 54KB RD Contains the monitor code

text 512KB RD Contains other program code

1. RD = read only; R/W = readable and writegble

Onepossbledlocationisshownin Liging 2.5; it considers why an embedded engineer might want greater section
alocation control.

Listing 2.5: Possble section alocation.

Y {
ROM origin = 0x00000h, |length = 0x000100h
FLASH: origin 0x00110h, length = 0x004000h
RAMBO: origin 0x05000h, length = 0x020000h
RAMBL: origin 0x25000h, | ength = 0x200000h

}
SECTI ON {



This document is created with the unregistered version of CHM2PDF Pilot

.rodata : > ROM

| oader : > FLASH

_wflash : > FLASH
_nmonitor : > RAMBO

.Sbss (ALIGN 4) : > RAMBO
.sdata (ALIGN 4) : > RAMBO
.text : > RAMBL

.bss (ALIGN 4) : > RAMBL
.data (ALIGN 4) : > RAMBL

Thisprogram dlocation is shown in Figure 2.8 (page 34). The section alocation strategies applied include the

following;

The .rodata section contains system initidization parameters. Mogt likely these default values never change;
therefore, allocate this section to ROM.

The loader program isusually part of the system program that executes at startup. The _loader and the
_wflash sections are dlocated into flash memory because the loader code can be updated with new versions
that understand more object formats. Y ou need the flash memory programmer for this purpose, which can
aso be updated. Therefore, section _wflash isalocated into the flash memory aswell.

The embedded programmer interacts with the monitor program to probe system execution states and help
debug application code; therefore, it should be responsive to user commands. SDRAM isfaster than
DRAM, with shorter accesstime. Therefore, section _monitor isalocated into RAMBO.

RAMBO still has space |eft to accommodate both sections .sbss and .sdata. The alocation strategy for these
two sectionsisto usethe leftover fast memory fully.

The remaining sections (.text, .bss, and .data) are dlocated into RAMBL, which isthe only memory that can
accommodate al of these large sections.

> - 0xD0000h
| } _— CQ00FFR

Ox00 110k

T | |—" FLASH

_wilash J wl410Fh
_monitor 1 T ] ox05000h
shas e FANMDY
0x24FFFh

sdata J Dx25000h

" RAMEB1
Jaxt
bss -
data |

A

Ox224FFFh

Figure 2.8: Mapping an executable image into the target system.
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2.5 Pointsto Remember

Some points to remember include the following:

Thelinker performs symbol resolution and symbol relocation.

An embedded programmer must understand the exact memory layout of the target system towards which
development isaimed.

An executable target image is comprised of multiple program sections.

The programmer can describe the physica memory, such asits Size and its mapping address, to the linker
using the linker command file. The programmer can aso ingruct the linker on combining input sectionsinto
output sections and placing the output program sections using the linker command file.

Each program section can reside in different types of physical memory, based on how the section is used.
Program code (or .text section) can stay in ROM, flash, and RAM during execution. Program data (or .data
section) must stay in RAM during execution.
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Chapter 3. Embedded System
Initialization

3.1 Introduction

It takes just minutes for adeveloper to compile and runa Hello World! gpplication on a non-embedded system. On
the other hand, for an embedded developer, the task is not so trivid. It might take days before seeing a successful
result. This process can be afrustrating experience for a devel oper new to embedded system devel opment.

Booting the target system, whether athird-party evaluation board or acustom design, can be amystery to many
newcomers. Indeed, it is daunting to pick up aprogrammer s reference manual for the target board and pore over
tables of memory addresses and registers or to review the hardware component interconnection diagrams, wondering
what it all means, what to do with the information (some of which makeslittle sense), and how to relate the
information to running an image on the target system.

Questionsto resolve a thisstage are

how to load the image onto the target system,
wherein memory to load theimage,
how to initiate program execution, and

how the program produces recognizable output.

We answer these questionsin this chapter and hopefully reduce frustration by demy<tifying the booting and
initidization process of embedded systems.

Chapter 2 discusses congtructing an executable image with multiple program sections according to the target system
memory layout. After thefind imageis successfully built and residing on the host system, the next step isto execute it
on thetarget.
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Thefocus of this chapter is

image transfer from the host to the target system,

the embedded monitor and debug agent,

the target system loader,

the embedded system booting process,

variousinitidization procedures, and

an introduction to BDM and JTAG interfaces.
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3.2 Target System Toolsand Image Transfer

An executable image built for atarget embedded system can be transferred from the host development system onto
thetarget, whichiscaled loading the image, by:

Programming the entireimage into the EEPROM or flash memory.

Downloading the image over either aserid (typicaly RS-232) or network connection. This process requires
the presence of adatatransfer utility program on the host system, as well as the presence of atarget |oader,
an embedded monitor, or atarget debug agent on the target system.

Downloading the image through either aJTAG or BDM interface (discussed in section 3.5).
These gpproaches are the most common, and thislist is by no means comprehensive. Some of the possible

host-to-target connectivity solutions are shown in Figure 2.1. Figure 3.1 exemplifies atarget embedded system. We
refer to the ELF image format (i ntroduced in Chapter 2) exclusvdy throughout this chapter.

Boot ROM —_ @ LE R
ﬁm/ s Y

\"1.
Hardwara '|.'|.|nng .Iurnpcr Pins

Microprocassor

Figure 3.1: View of the target embedded system.

The embedded software for the final product is commonly stored in either ROM or the flash memory. The entire
executable image is burned into the ROM or flash memory using specid equipment. If ROM is used, the ROM chip
isset into its socket on the target board. For embedded system boards that have both ROM and flash memory, the
next step isto set the necessary jumpers. Jumpers are the part of the target board's wiring that controls which
memory chip the processor usesto start executing itsfirst set of instructions upon reboot. For example, if theimageis
stored in the flash memory and the jumpers are set to use the flash memory, the processor fetchesitsfirgt ingtruction
from the arting address where the flash is mapped. Therefore, set the jumpers appropriately according to theimage
storage.

Thisfina production method, however, isimpractica during the development stage because devel opers construct
softwarein incrementa steps with high frequency. The processisinteractivein that a portion of the code iswritten,
debugged, and tested, and the entire process then repeats for the new code. Reprogramming the EEPROM or the
flash memory each time the code changes due to bugs or code addition istime consuming. The methods for
downloading the image over aserid or anetwork connection or for downloading the image through a JTAG or BDM
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interface solve this problem by transferring theimage directly into the target sysem's RAM memory.

3.2.1 Embedded L oader

A common approach taken at the early development phaseisto write aloader program for the target Side, whichis
called the loader, and use the |oader to download the image from the host system. In the scenario shown in Figure
3.1, the loader has asmal memory footprint, so it typically can be programmed into aROM chip. A datatransfer
utility resides on the host system side. The loader worksin conjunction with its host utility counterpart to perform the
imegetrander.

After the loader iswritten, it is programmed into the ROM. Part of the same ROM chip is occupied by the boot
image. At aminimum, this boot image (typically written by a hardware engineer) consists of the code that executeson
system power up. This codeinitidizes the target hardware, such asthe memory system and the physical RAM, into a
known state. In other words, the boot image prepares the system to execute the loader. The loader begins execution
after this boot image completes the necessary initiaization work.

For thistransfer method to work, a datatransfer protocol, as well as the communication parameters, must be agreed
upon between the host utility and the target |oader. The datatransfer protocol refersto the transfer rules. For
example, atransfer protocol might be that the image transfer request should be initiated from the loader to the host
utility; in which case, the host utility sends out the image file szefollowed by the actua image, and the loader sendsan
acknowledgement to the host utility upon completion. Datatransfer rate, such asthe baud rate for the serid
connection, and per packet Size are examples of communication parameters. The loader and the utility program
operate as a unit, which is often cgpable of using more than one type of connection. At aminimum, the transfer takes
place over the serid connection. M ore sophisticated |oaders can download images over the network, for example,
over the Ethernet using protocols such asthe Trivid File Transfer Protocol (TFTP) or the File Transfer Protocol
(FTP). Inthis case, the host utility program is either the TFTP server or the FTP server respectively.

Both proprietary and well-known transfer protocols can be applied in either the serid or the network connection, but
more commonly proprietary protocols are used with aseria connection.

The loader downloads the image directly into the RAM memory. The loader needs to understand the object file
format (for example, the ELF format) because, as discussed in Chapter 2, the object file containsinformation such as
the load address, which the loader uses for section placement.

Theloader transfers control to the downloaded image after the transfer completes. A loader with flash programming
capability can dso transfer theimage into the flash memory. In that case, the board jumpers must be set appropriately
S0 that the processor executes out of flash memory after the image download compl etes.

A loader can be part of the fina application program, and it can perform other functionsin addition to downloading
images, as discussed in more detall later in this chapter.

3.2.2 Embedded M onitor

An dternative to the boot image plus loader approach isto use an embedded monitor. A monitor isan embedded
software gpplication commonly provided by the target system manufacturer for its evauation boards. The monitor
enables devel opers to examine and debug the target system at run time. Similar to the boot image, the monitor is
executed on power up and performs system initiaization such as
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initializing the required peripherd devices, for example, the serid interface and the system timer chip for
memory refresh, & aminimum,

initidizing the memory system for downloading the image, and

initidizing the interrupt controller and ingtaling default interrupt handlers.

The monitor has awell-defined user interface ble through atermina emulation program over the sevid
interface. The monitor defines a set of commands alowing the developer to

download theimage,

read from and write to system memory locations,

read and write system registers,

set and clear different types of breakpoints,

sngle-step ingtructions, and

reset the system.

The way in which the monitor downloads the image from the host system over the serid or network connectionis
smilar to how the loader doesit. The monitor is capable of downloading the imageinto either the RAM memory or
the flash memory. In essence, the monitor has both the boot image and the loader functiondities incorporated but
with the added interactive debug capability. The monitor is still present while the newly downloaded image executes.
A specid keystroke on the host system, for example, CTRL+D, interrupts the program execution and reectivates the
monitor user interface so the developer can conduct interactive debugging activities.

The monitor is generaly devel oped by the hardware engineers and is also used by the hardware engineersto perform

both system device diagnostics and low-level code debugging. Some manufactures give the monitor source code to
their customers. In that case, the code can be extracted and modified to work with a custom-designed target board.

3.2.3 Target Debug Agent
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Thetarget debug agent functions much like the monitor does but with one added fegture: the target agent givesthe
host debugger enough information to provide visua source-level debug capability. Again, an agreed-upon
communication protocol must be established between the host debugger and the target agent. The host debugger is
something that the host tools vendor offers. Sometimes a RTOS vendor offers ahost-based debugger smply
because the debug agent isan integra part of the RTOS. The host debugger vendor works closely with the RTOS
vendor to provide afully compatible tool. The debug agent has built-in knowledge of the RTOS objects and services,
which alows the devel oper to explore such objects and servicesfully and visudly.
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3.3 Target Boot Scenarios

We have described the software components involved in transferring images from the host to the target. In this
section, we describe the details of the loading processitsalf and how control istransferred to the newly acquired

image.

Embedded processors, after they are powered on, fetch and execute code from a predefined and hard-wired
address offset. The code contained at this memory location is called the reset vector . The reset vector isusudly a
jump ingtruction into another part of the memory space where thered initidization codeisfound. The reason for
jumping to another part of memory isto keep the reset vector small. The reset vector belongsto asmdl range of
memory space reserved by the system for specia purposes. The reset vector, aswell as the system boot startup
code, must bein permanent storage. Because of thisissue, the system startup code, called the bootstrap code,
residesin the system ROM, the on-board flash memory, or other types of non-volatile memory devices. Wewill
revisit theloader program from the system-bootstrapping perspective. In the discussionsto follow, the loader refers
to the code that performs system bootstrapping, image downloading, and initialization.

The concepts are best explained through an example. In this example, assume an embedded loader has been

devel oped and programmed into the on-board flash memory. Also, assume that the target image contains various
program sections. Each section has a designated ocation in the memory map. The reset vector is contained in asmdl
ROM, which is mapped to location 0x0h of the address space. The ROM contains some essentid initial values
required by the processor on reset. These vaues are the reset vector, the initial stack pointer, and the usable RAM
address.

In the example shown in Figure 3.2, the reset vector isajump ingtruction to memory location 0x00040h; the reset
vector transfers program control to theingtruction at this address. Startup initidization code begins at thisflash
memory address. This system initidization code contains, among other things, the target image |oader program and
the default system exception vectors. The system exception vectors point to ingtructions that reside in the flash
memory. See Chapter 10 for detailed discussions on interrupts, exceptions, and exception vectors and handlers.
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Figure 3.2: Example bootstrap overview.
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Thefirgt part of the system bootstrap process is putting the system into aknown state. The processor registers are
set with appropriate default values. The stack pointer is set with the value found in the ROM. Theloader disablesthe
system interrupts because the system is not yet prepared to handle the interrupts. The loader dso initidizesthe RAM
memory and possibly the on-processor caches. At this point, the loader performs limited hardware diagnostics on
those devices needed for its operation.

Asdiscussed in Chapter 2, program execution isfaster in RAM than if the executable code runs directly out of the
flash memory. To thisend, the loader optionally can copy the code from the flash memory into the RAM. Because of
this capability, a program section can have both aload address and arun address. The load addressisthe addressin
which the program sections reside, while the run address is the address to which the loader program copiesthe
program sections and prepares it for execution. Enabling runtime debugging is another main reason for aprogram to
execute out of the RAM. For example, the debugger must be able to modify the runtime code in order to insert
breakpoints.

An executable image containsinitidized and uninitiaized data sections. These sections are both readable and
writeable. These sections must residein RAM and therefore are copied out of the flash memory into RAM as part of
syseminitidization. Theinitidized data sections (.data and .sdata) contain theinitial vauesfor the global and satic
variables. The content of these sections, therefore, is part of the find executable image and istransferred verbatim by
the loader. On the other hand, the content for the uninitialized data sections .bss and .sbss) isempty. The linker
reserves space for these sectionsin the memory map. The alocation information for these sections, such asthe
section size and the section run address, is part of the section header. It isthe loader sjob to retrieve thisinformation
from the section header and dlocate the same amount of memory in RAM during the loading process. The loader
places these sectionsinto RAM according to the section s run address.

An executable imageislikely to have congtants. Congtant datalis part of the .const section, which isread-only.
Therefore, it ispossible to keep the .const section in read-only memory during program execution. Frequently
accessed constants, such aslookup tables, should be transferred into RAM for performance gain.

The next step in the boot processis for the loader program to initiaize the system devices. Only the necessary
devicesthat the loader requires areinitiaized at this stage. In other words, aneeded deviceisinitiaized to the extent
that arequired subset of the device capabilities and features are enabled and operationd. In the mgjority of cases,
these devices are part of the /O system; therefore, these devices are fully initialized when the downloaded image
performs 1/O system initidization as part of the Startup sequence.

Now theloader program is ready to transfer the application image to the target system. The gpplication image
containsthe RTOS, the kerndl, and the application code written by the embedded developer. The application image
can come from two places:

the read-only memory devices on the target, or

the host development system.

We describe three common image execution scenarios.
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execute from ROM whileusing RAM for data,

execute from RAM after being copied from ROM, and

execute from RAM éafter being downloaded from a host system.

In the discussionsto follow, the term ROM refersto read-only memory devicesin generdl.

3.3.1 Executing from ROM Using RAM for Data

Some embedded devices have such limited memory resources that the program image executes directly out of the
ROM. Sometimes the board vendor provides the boot ROM, and the code in the boot ROM does not copy
instructions out to RAM for execution. In these cases, however, the data sections must till resdein RAM. Figure 3.3
shows this boot scenario.

CPU
IP
@ ROM SP
—»| Reset
Vector
RAM
@ | text @
Boot data ,.{“__':9?1&_5_ ..... | data
Image = @
bss ,-???Eﬁsl---r bss
@ stack "‘

Figure 3.3: Boot sequence for an image running from ROM.

Two CPU registers are of concern: the Instruction Pointer (1P) register and the Stack Pointer (SP) register. TheIP
points to the next ingtruction (code in the .text section) that the CPU must execute, while the SP points to the next
free addressin the stack. The C programming language uses the stack to pass function parameters during function

invocation. The stack is created from aspace in RAM, and the system stack pointer registers must be set
appropriately at sart up.

The boot sequence for animage running from ROM isasfollows:

1.

The CPU sIPishardwired to execute the first instruction in memory (the reset vector).



This document is created with the unregistered version of CHM2PDF Pilot

2.

The reset vector jumpsto the first ingtruction of the .text section of the boot image. The .text section remains
in ROM; the CPU usesthe | P to execute .text. The code initidizes the memory system, including the RAM.

The .data section of the boot imageis copied into RAM becauseiit is both readable and writeable.

Spaceisreserved in RAM for the .bss section of the boot image because it is both readable and writeable.
Thereisnothing to transfer because the content for the .bss section is empty.

Stack spaceisreserved in RAM.

The CPU s SPregigter is set to point to the beginning of the newly created stack. At this point, the boot
completes. The CPU continues to execute the code in the .text section until it is complete or until the system
Is shut down.

Note that the boot image is not in the EL F format but contains binary machine code ready for execution. The boot
imageis created in the ELF format. The EEPROM programmer software, however, removes the EL F-specific data,
such as the program header table and the section header table, when programming the boot image into the ROM, so
that it is ready for execution upon processor reset.

The boot image needs to keep internd information in its program, which iscriticd to initidizing the data sections,
because the section header table is not present. As shown in Figure 3.3, the .data section is copied into RAM inits
entirety. Therefore, the boot image must know the starting address of its data section and how big the data sectionis.
One gpproach to thisissueisto insert two specid labelsinto the .data section: one labdl placed at the section s
beginning and the other placed at the end. Specia assembly code iswritten to retrieve the addresses of these labels.
These are the load addresses of the labdls. The linker reference manual should contain the specific program code
syntax and link commander file syntax used for retrieving the load address of a symbol. The difference between these
two addressesisthe size of the section. A similar approach istaken for the .bss section.

If the .text section is copied into RAM, two dummy functions can be defined. These dummy functions do nothing
other than return from function. One function is placed at the beginning of the .text section, while the other is placed at
the end. Thisreason is one why an embedded developer might create custom sections and instruct the linker on
whereto place asection, aswell as how to combine the various sections into a single output section through the
linker command file.

3.3.2 Executing from RAM after Image Transfer from ROM

In the second boot scenario, the boot |oader transfers an application image from ROM to RAM for execution. The
large application imageis stored in ROM in a compressed form to reduce the storage space required. The loader
must decompressthisimage beforeit can initialize the sections of that image. Depending on the compression
agorithm used and whether enough space isleft in the ROM, some state information produced from the compression
work can be stored to smplify image decompression. The loader needs awork areain RAM for the decompression
process. It is common and good practice to perform checksum calculations over the boot image to ensure the image



This document is created with the unregistered version of CHM2PDF Pilot
integrity before loading and execution.
Thefirg Sx stepsare identica to the previous boot scenario. After completing those steps, the process continues as
folows
7. The compressed gpplication imageis copied from ROM to RAM.

8 10. Initidization stepsthat are part of the decompression procedure are completed.

11. Theloader trandfers control to theimage. Thisisdoneby jumping to the beginning address of the initiaized
image using a processor-gpecific jump indruction. This jump ingruction effectively setsanew vaueinto the
ingruction pointer.

12. Asshown in Figure 3.4, the memory areathat the loader program occupiesis recycled. Specificaly, the stack
pointer isreinitiaized (see the dotted line) to point to thisarea, so it can be used asthe stack for the new program.
The decompression W(c)% areaisadso recycled into the available memory spaceimplicitly.
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Figure 3.4: Boot sequence for an image executing from RAM éafter transfer from ROM.

Note that the loader program is till available for use because it is stored in ROM. Making the loader available for
later useis often intentiona on the designer s part. Imagine atuation in which the loader program has abuilt-in
monitor. As mentioned earlier, part of the monitor startup sequenceisto ingtall default interrupt handlers. Thisissueis
extremely important because during the devel opment phase the program under construction isincompleteand is
being congtantly updated. As such, this program might not be able to handle certain system interrupts and exceptions.
It isbeneficia to have the monitor conduct default processing in such cases. For example, aprogram avoids
processing memory access exceptions by not ingtalling an exception handler for it. In this case, the monitor takes
control of the system when the program execution triggers such an exception, for example, when the program
crashes. The devel oper then gets the opportunity to debug and back-trace the execution sequence through the
monitor inter- face. Asindicated earlier, amonitor alows the developer to modify the processor registers. Therefore,
as soon asthe bug is uncovered and anew program image is built, the developer can set the instruction pointer
register to the sarting address of the loader program in ROM, effectively transferring control to the loader. The result
isthat the loader beginsto download the new image and reinitiaizes the entire system without having to power cycle
on the system.
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Smilarly, another benefit of running the loader out of the ROM isto prevent aprogram that is behaving badly from
corrupting its code in systemswithout protection from the MMU.

In this example, theloader imageisin an executable machine code format. The gpplication imageisin the ELF format
but has been compressed through an agorithm that works independently of the object file format. The gpplication
imageisin the ELF format so that the loader can be written as ageneric utility, able to load many application
program images. If the application image isin the ELF format, the loader program can extract the necessary
information from theimage for initiaization.

3.3.3 Executing from RAM after Image Transfer from Host

In the third boot scenario, the target debug agent transfers an application image from the host system into RAM for
execution. This practiceistypical during the later development phases when the mgority of the device drivers have
been fully implemented and debugged. The system can handle interrupts and exceptions correctly. At this stage, the
target system facilitates a stable environment for further gpplication development, allowing the embedded devel oper
to focus on application design and implementation rather than the low-level hardware details.

The debug agent is RTOS-aware and understands RTOS objects and services. The debug agent can communicate
with ahost debugger and transfer target images through the host debugger. The debug agent can dso function asa
standalone monitor. The developer can access the command line interface for the target debug agent through asmple
terminal program over the serid link. The developer can issue commands over the command line interface to instruct
the debug agent on the target image slocation on the host system and to initiate the transfer.

The debug agent downloads theimage into atemporary areain RAM fird. After the download is complete and the
image integrity verified, the debug agent initidizes the image according to the information presented in the program
section heeder table. This boot scg;n{ajrio isshownin Figure 3.5.

| B ]
@L T
Resat
|: il RAM
@by
Dah Coples @
Executable .ﬁ@:ﬁ. S . @F g
Image bss _F_tE.E’?_r'f??_...-. .bss
et e
Stack
®
bss
\ ..... F.*’.E:Ff..... et '@
I"::-'.."_;‘_--_-,\__i Cwq@* .data Final
Fosrvess Executable
’lflg ra SRR .bss Image
S, "f_.--"__.
— :'-"":.'-""'_
E:___‘_I___J =da=mna= “becd
Initial
-_ - .data Executable
i Irmagpe
T e T .bss
Download '_'l - @_
@ = Q o -_

Figure 3.5: Boot sequence for an image executing from RAM éfter transfer from the host system.



This document is created with the unregistered version of CHM2PDF Pilot

Thefirst Sx stepsareidentica to theinitia boot scenario. After completing those steps, the process continues as
folows

7. The gpplication image is downloaded from the host devel opment system.

8. Theimage integrity isverified.

9. Theimage is decompressed if necessary.

10 12. The debug agent |oads the image sections into their respective run addressesin RAM.

13. The debug agent transfers control to the download image.

Thereisagood reason why the memory area used by the debug agent is not recycled. In thisexample, the
downloaded image contains an RTOS, whichisintroduced in Chapter 4. One of the core components of aRTOS is
ascheduler, which facilitates the s multaneous existence and execution of multiple programs, called tasks or threads.
The scheduler can save the execution state information of the debug agent and revive the agent later. Thus, the debug
agent can continue to communicate with the host debugger while the downloaded image executes, providing
interactive, visud, source-level debugging.
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3.4 Target System Software Initialization Sequence

Thetarget image referred to repeatedly in the |ast section is acombination of sophisticated software components and
modules as shown in Figure 3.6. The software components include the following: the board support package (BSP),
which contains afull spectrum of driversfor the system hardware components and devices, the RTOS, which
provides basic services, such as resource synchronization services, 1/0 services, and scheduling services needed by
the embedded applications, and the other components, which provide additiond services, such asfile system services
and network services.

Application A
.
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| Other Embedded ComponentsiModules

BIEMYOS

|
[ Protocol Stacks (i.e. TCP/IP) |
‘ Real-Time Operating System (RTOS) ‘

|
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Figure 3.6: Software components of atarget image.

These software components perform full system initialization after the target image gains control from the loading
program.

Assuming the target imageis structured as shown in Figure 3.6, then Figure 3.7 illustrates the steps required to
initidize most target systems. The main degesare

hardwareinitidization,
RTOS nitidization, and
goplication initidization.
Note that these steps are not dl that are required to initidize the target system. Rather, this summary providesa

high-level example from which to learn. Each stage is discussed more thoroughly in the following sections.

3.4.1 Hardware I nitialization



This document is created with the unregistered version of CHM2PDF Pilot

The previous sections described aspects of steps 1 and 2 in Figure 3.7 in which aboot image executes after the CPU
begins executing ingructions from the reset vector. Typicaly at this stage, the minimum hardware initiaization
required to get the boot image to execute is performed, which includes:

1.

starting execution at the reset vector

putting the processor into aknown state by setting the appropriate registers:

(0]

getting the processor type

getting or setting the CPU s clock speed

disabling interrupts and caches

initiaizing memory controller, memory chips, and cache units:

0

getting the start addresses for memory

getting the Size of memory

performing preliminary memory tests, if required
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Figure 3.7: The software initiaization process.

After the boot sequence initializes the CPU and memory, the boot sequence copies and decompresses, if necessary,
the sections of code that need to run. It also copies and decompressesits datainto RAM.

Most of the early initidization codeisin low-level assembly language that is specific to the target sysem s CPU
architecture. Later-stageinitidization code might be written in ahigher-level programming language, such as C.

Asthe boot code executes, the code calls the gppropriate functionsto initialize other hardware components, if
present, on the target system. Eventually, dl devices on the target board areinitialized (as shown in step 3 of Fgure
3.7). These might include the following:

Setting up execution handlers,

initidizing interrupt handlers;

initidizing bus interfaces, such as VME, PCI, and USB; and

initiizing board peripherals such as serid, LAN, and SCSl.



This document is created with the unregistered version of CHM2PDF Pilot

Most embedded systems developers consider steps 1 and 2 in Figure 3.7 astheinitial boot sequence, and steps 1 to
3 asthe BSPinitidization phase. Steps 1 to 3 are a so cdled the hardware initialization stage.

Writing aBSP for aparticular target system isnot trivia. The developer must have agood understanding of the

underlying hardware components. Along with understanding the target system s block diagrams, data flow, memory
map, and interrupt map, the devel oper must also know the assembly language for the target system s microprocessor.

Developers can save agreat ded of time and effort by using sample BSPsif they come with the target evaluation
board or from the RTOS vendor. Typicaly, the microprocessor registers that a developer needsto program are
listed in these BSPs, aong with the sequence in which to work with them to properly initialize target-system
hardware.

A completed BSP initiaization phase hasinitialized dl of the target-system hardware and has provided a et of

function callsthat upper layers of software (for example, the RTOS) can use to communicate with the hardware
components of the target system.

3.4.2 RTOS Initialization

Step 4 of Figure 3.7 beginsthe RTOS software initidization. Key things that can happen in steps4 to 6 include:
1.

initidizing the RTOS

initidizing different RTOS objects and services, if present (usualy controlled with auser-configurable header
file):

(0]

task objects

semaphore objects

message-queue objects

timer sarvices

interrupt services

memory-management Services
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cresting necessary stacksfor RTOS

initidizing additiond RTOS extensons, such as
0

TCP/IP stack

filesystems

darting the RTOS and itsinitia tasks

The components of an RTOS (for example, tasks, semaphores, and message queues) are discussed in more detail in
later chapters of this book. For now, note that the RTOS abstracts the application code from the hardware and
provides software objects and services that facilitate embedded-systems application development.

3.4.3 Application Softwar e I nitialization

After the RTOS s initialized and running with the required components, control istransferred to a user-defined
application. Thistransfer takes place when the RTOS code cals a predefined function (that is RTOS dependent)
which isimplemented by the user-defined application. At this point, the RTOS services are available. This application
a so goes through initialization, during which al necessary objects, services, data structures, variables, and other
congtructs are declared and implemented. For asimple, user gpplication such asthe helloworld application, al the
work can be donein thisfunction. This user-defined gpplication (maybethe hello world application) might finaly
produce itsimpressive output. On the other hand, for acomplex application, it will create task or tasksto perform
the work. These gpplication-crested tasks will execute once the kerndl scheduler runs. The kerndl scheduler runs
when this control-transfer function exits.
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3.5 On-Chip Debugging

Many silicon vendors recognize the need for built-in microprocessor debugging, caled on-chip debugging (OCD).
BDM and JTAG are two types of OCD solutions that allow direct access and control over the microprocessor and
system resources without needing software debug agents on the target or expensive in-circuit emulators. Asshown in
Figure 3.1, the embedded processor with OCD capability provides an externa interface. The developer can usethe
externd interface to download code, read or write processor registers, modify system memory, and command the
processor to execute one instruction and halt, thus facilitating single-step debugging. Depending on the sdlected
processor, it might be possible to disable the on-chip peripheraswhile OCD isin effect. It might aso be possbleto
gain anear real-timeview of the executing system state. OCD is used to solve the chicken-and-egg problem often
encountered at the beginning development stage-if the monitor isthetool for debugging arunning program, what
debugs the monitor whileit's devel oped? The powerful debug capabilities offered by the OCD combined with the
quick turnaround time required to set up the connection means that software engineersfind OCD solutionsinvauable
when writing hardware initidization code, low-level drivers, and even applications.

JTAG standsfor Joint Test Action Group, which was founded by € ectronics manufacturers to devel op anew and
cost-effective test solution. The result, produced by the JTAG consortium, is sanctioned by the IEEE1149.1 standard.

BDM stands for background debug mode. It refers to the microprocessor debug inter- face introduced by Motorola
and found on its processor chips. The term a so describes the non-intrusive nature (on the executing system) of the
debug method provided by the OCD solutions.

An OCD solution is comprised of both hardware and software. Specia hardware devices, called personality
modules, are built for the specific processor type and are required to connect between the OCD interface on the
target system and the host development system. The interface on the target system isusualy an 8- or 10-pin
connector. The host side of the connection can be the parald port, the serid port, or the network interface. The
OCD-aware host debugger displays system state information, such as the contents of the processor registers, the
system memory dump, and the current executing instruction. The host debugger provides the interface between the
embedded software developer and the target processor and its resources.
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3.6 Pointsto Remember

Some points to remember include the following:

Deveopers have many choicesfor downloading an executable image to atarget system. They can use
target-monitor-based, debug-agent-based, or hardware-assisted connections.

The boot ROM can contain aboot image, loader image, monitor image, debug agent, or even executable
image.

Hardware-assisted connections are ideal, both when firgt initidizing aphysical target system aswell aslater,
for programming thefina executableimageinto ROM or flash memory.

Some of the different waysto boot atarget system include running an image out of ROM, running an image
out of RAM after copying it from ROM, and running an image out of RAM after downloading it from ahost.

A sysemtypicaly undergoesthree digtinct initidization sages. hardwareinitidization, OSinitidization
(RTOS), and gpplication initiaization.

After thetarget system isinitidized, gpplication developers can use this platform to download, test, and
debug applications that use an underlying RTOS.
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Chapter 4. Introduction To
Real-Time Operating Systems

4.1 Introduction

A red-time operating system (RTOS) iskey to many embedded systems today and, provides a software platform
upon which to build applications. Not al embedded systems, however, are designed with an RTOS. Some
embedded systemswith relaively smple hardware or asmall amount of software gpplication code might not require
an RTOS. Many embedded systems, however, with moderate-to-large software applications require some form of
scheduling, and these systems require an RTOS.

This chapter setsthe stage for dl subsequent chaptersin this section. It describes the key concepts upon which most
redl-time operating systems are based. Specificaly, this chapter provides

abrief history of operating systems,

adefinition of an RTOS,

adescription of the scheduler,

adiscussion of objects,

adiscusson of sarvices, and

the key characteristics of an RTOS.
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4.2 A Brief History of Operating Systems

Inthe early days of computing, developers created software applications that included low-level machine codeto
initidize and interact with the system's hardware directly. Thistight integration between the software and hardware
resulted in non-portable applications. A smal changein the hardware might result in rewriting much of the gpplication
itself. Obvioudy, these sysems were difficult and costly to maintain.

Asthe software industry progressed, operating systemsthat provided the basic software foundation for computing
systems evolved and facilitated the abstraction of the underlying hardware from the application code. In addition, the
evolution of operating systems hel ped shift the design of software applications from large, monoalithic gpplicationsto
more modular, interconnected gpplications that could run on top of the operating system environment.

Over the years, many versions of operating systems evolved. These ranged from general-purpose operating systems
(GPOS), such as UNIX and Microsoft Windows, to smaller and more compact real-time operating systems, such as
VxWorks. Eachis briefly discussed next.

In the 60s and 70s, when mid-sized and mainframe computing wasin its prime, UNIX was devel oped to facilitate
multi-user accessto expensive, limited-availability computing systems. UNIX alowed many users performing a
variety of tasksto share these large and costly computers. multi-user access was very efficient: one user could print
files, for example, while another wrote programs. Eventualy, UNIX was ported to al types of machines, from
microcomputers to supercomputers.

In the 80s, Microsoft introduced the Windows operating system, which emphasized the persona computing
environment. Targeted for residential and business usersinteracting with PCsthrough agraphica user interface, the
Microsoft Windows operating system helped drive the personal-computing era.

L ater in the decade, momentum started building for the next generation of computing: the post-PC,
embedded-computing era. To meet the needs of embedded computing, commercial RTOSes, such as VxWorks,
were developed. Although some functional smilarities exist between RTOSes and GPOSes, many important
differences occur as well. These differences help explain why RTOSes are better suited for red-time embedded
systems.

Some core functiond smilarities between atypicd RTOS and GPOS include:

somelevd of multitasking,
software and hardware resource management,
provison of underlying OS servicesto applications, and

abgtracting the hardware from the software application.

On the other hand, some key functiond differences that set RTOSes apart from GPOSesinclude:

better reliability in embedded application contexts,
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the ability to scale up or down to meet gpplication needs,

faster performance,

reduced memory requirements,

scheduling policiestailored for red-time embedded systems,

support for diskless embedded systems by allowing executables to boot and run from ROM or RAM, and

better portability to different hardware platforms.

Today, GPOSes target genera-purpose computing and run predominantly on systems such as persona computers,
workstations, and mainframes. In some cases, GPOSes run on embedded devices that have ample memory and very
soft redl-time requirements. GPOSes typically require alot more memory, however, and are not well suited to
redl-time embedded devices with limited memory and high performance requirements.

RTOSes, on the other hand, can meet these requirements. They are reliable, compact, and scaable, and they
perform well in real-time embedded systems. In addition, RTOSes can be easly tailored to use only those
components required for a particular gpplication.

Again, remember that today many smaller embedded devices are ill built without an RTOS. These smple devices
typicaly contain asmall-to-moderate amount of gpplication code. The focus of this book, however, remainson
embedded devices that use an RTOS.
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4.3 Defining an RTOS

A red-time operating system (RTOS) isaprogram that schedules execution in atimely manner, manages system
resources, and provides a cons stent foundation for devel oping application code. Application code designed on an
RTOS can be quite diverse, ranging from asimple gpplication for adigita stopwatch to amuch more complex
gpplication for aircraft navigation. Good RTOSes, therefore, are scalable in order to meet different sets of
requirementsfor different gpplications.

For example, in some applications, an RTOS comprises only akernd, which isthe core supervisory software that
provides minimal logic, scheduling, and resource-management dgorithms. Every RTOS has akernd. On the other
hand, an RTOS can be acombination of various modules, including the kerndl, afile system, networking protocol
stacks, and other components required for a particular gpplication, asillustrated at ahigh level in Figure 4.1.

Application
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Networking File Other
Protocols System Components
g g
C/C++ Suppnl‘t ! Kernel ) POSIX
Libraries M _~" Support
Device Debugging Device
Drivers Facilities I/O
BSP
Target Hardware

Figure4.1: High-level view of an RTOS, itskerndl, and other components found in embedded systems.

Although many RTOSes can scale up or down to meet application requirements, this book focuses on the common
element at the heart of al RTOSes-the kernd. Most RTOS kernels contain the following components:

Scheduler -is contained within each kernd and follows a set of algorithmsthat determines which task
executes when. Some common examples of scheduling agorithmsinclude round-robin and preemptive
scheduling.

Objects-are specid kernel congtructs that help devel opers creste gpplications for real-time embedded
systems. Common kernel objects include tasks, semaphores, and message queues.
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Services-are operations that the kernel performs on an object or, generdly operations such astiming,
interrupt handling, and resource management.

Figure 4.2 illustrates these components, each of which is described next.

Mutex Objects Message
Semaphores Evants Teaks Queues
C::luntlng Scheduler % ""a"mm
® S'E""EP'W'E'E, ASRs
Ko ~" Services e, P.pe.s
EH'IEIDhI:II-'IGﬁ Time Management $Enln;es ‘_
o Interrupt Handling Services "-‘,_.‘

Memory Management Services
Davice Managament Services
Other Services

Figure 4.2: Common componentsin an RTOS kernel that including objects, the scheduler, and some services.

Thisdiagram ishighly simplified; remember that not all RTOS kernel's conform to this exact set of objects, scheduling
agorithms, and services.
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4.4 The Scheduler

The scheduler is at the heart of every kerndl. A scheduler provides the agorithms needed to determine which task
executes when. To understand how scheduling works, this section describes the following topics.

schedulable entities,
multitasking,
context switching,
dispatcher, and

scheduling dgorithms.

4.4.1 Schedulable Entities

A schedulable entity isakerndl object that can compete for execution time on a system, based on a predefined
scheduling agorithm. Tasks and processes are dl examples of schedulable entitiesfound in most kernels.

A task is an independent thread of execution that contains a sequence of independently schedulable ingtructions.
Some kernels provide another type of a schedulable object called a process. Processes are similar to tasksin that
they can independently compete for CPU execution time. Processes differ from tasksin that they provide better
memory protection features, at the expense of performance and memory overhead. Despite these differences, for the
sake of smplicity, this book uses task to mean either atask or aprocess.

Note that message queues and semaphores are not schedulable entities. These items are inter-task communication
objects used for synchronization and communication. Chapter 6 discusses semaphores, and Chapter 7 discusses
message queuesin more detail.

So, how exactly does a scheduler handle multiple schedulable entities that need to run smultaneoudy? The answer is
by multitasking. The multitasking discussons are carried out in the context of uniprocessor environments.

4.4.2 Multitasking

Multitasking isthe ability of the operating system to handle multiple activities within set deadlines. A red-timekerne
might have multiple tasks tht it has to schedule to run. One such multitasking scenarioisillusirated in Figure 4.3.
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Fgure 4.3: Multitasking using acontext switch.

In this scenario, the kernd multitasksin such away that many threads of execution gppear to be running concurrently;
however, the kernel is actudly interleaving executions sequentially, based on a preset scheduling algorithm (see
Scheduling Algorithms on page 59). The scheduler must ensure that the gppropriate task runs at the right time.

An important point to note hereisthat the tasks follow the kernel s scheduling agorithm, while interrupt service
routines (ISR) are triggered to run because of hardware interrupts and their established priorities.

Asthe number of tasksto schedule increases, so do CPU performance requirements. Thisfact is dueto increased
switching between the contexts of the different threads of execution.

4.4.3 The Context Switch

Each task hasits own context, which is the state of the CPU registers required each timeit is scheduled to run. A
context switch occurs when the scheduler switches from one task to another. To better understand what happens
during a context switch, let sexamine further what atypica kernel doesin this scenario.

Every time anew task is created, the kerndl also creates and maintains an associated task control block (TCB).
TCBs are system data structures that the kernel usesto maintain task-specific information. TCBs contain everything a
kernel needsto know about a particular task. When atask isrunning, its context is highly dynamic. Thisdynamic
context ismaintained in the TCB. When the task is not running, its context is frozen within the TCB, to be restored
the next time the task runs. A typica context switch scenarioisillustrated in Figure 4.3.

Asshown in Figure 4.3, when the kernel s scheduler determinesthat it needs to stop running task 1 and start running
task 2, it takesthe following steps.
1.

Thekernd savestask 1 scontext information in its TCB.
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It loads task 2 s context information from its TCB, which becomes the current thread of execution.
3.

The context of task 1 isfrozen while task 2 executes, but if the scheduler needsto run task 1 again, task 1
continues from whereit |eft off just before the context switch.

Thetimeit takesfor the scheduler to switch from one task to another isthe context switch time. It isrelatively
inggnificant compared to most operationsthat atask performs. If an application s design includes frequent context
switching, however, the gpplication can incur unnecessary performance overhead. Therefore, design gpplicationsina
way that does not involve excess context switching.

Every time an application makes asystem cdll, the scheduler has an opportunity to determineif it needsto switch
contexts. When the scheduler determines a context switch is necessary, it relies on an associated module, called the
dispatcher, to make that switch happen.

4.4.4 The Dispatcher

The dispatcher isthe part of the scheduler that performs context switching and changes the flow of execution. At any
time an RTOS isrunning, the flow of execution, also known asflow of contral, is passing through one of three areas.
through an application task, through an ISR, or through the kernel. When atask or ISR makes a system call, the flow
of control passesto the kernel to execute one of the system routines provided by the kernel. When it istimeto leave
the kerndl, the dispatcher isresponsible for passing control to one of the tasksin the user sapplication. It will not
necessarily be the same task that made the system call. It is the scheduling algorithms (to be discussed shortly) of the
scheduler that determines which task executes next. It isthe dispatcher that does the actua work of context switching
and passing execution control.

Depending on how the kernd isfirst entered, digpatching can happen differently. When atask makes syslem calls,
the dispatcher isused to exit the kernel after every system call completes. In this case, the dispatcher isused on a
cal-by-cdl basis so that it can coordinate task-state trangitions that any of the system calls might have caused. (One
or more tasks may have become ready to run, for example.)

On the other hand, if an ISR makes system cdls, the dispatcher is bypassed until the ISR fully completesits
execution. This processistrue even if some resources have been freed that would normaly trigger acontext switch
between tasks. These context switches do not take place because the | SR must complete without being interrupted

by tasks. After the ISR completes execution, the kerndl exits through the dispatcher so that it can then dispatch the
correct task.

4.4.5 Scheduling Algorithms

Asmentioned earlier, the scheduler determineswhich task runs by following a scheduling agorithm (also known as
scheduling policy). Most kernelstoday support two common scheduling algorithms:

preemptive priority-based scheduling, and
round-robin scheduling.

The RTOS manufacturer typicaly predefines these agorithms; however, in some cases, devel opers can create and
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define their own scheduling agorithms. Each agorithm is described next.

Preemptive Priority-Based Scheduling

Of the two scheduling agorithmsintroduced here, most red-time kernels use preemptive priority-based scheduling
by default. Asshownin Figure 4.4 with thistype of scheduling, the task that getsto run at any point isthe task with
the highest priority among al other tasks ready to runin the system.
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Figure 4.4: Preemptive priority-based scheduling.

Redl-time kerndls generaly support 256 priority levels, in which O isthe highest and 255 the lowest. Some kernels
appoint the prioritiesin reverse order, where 255 isthe highest and O the lowest. Regardless, the concepts are
basicaly the same. With apreemptive priority-based scheduler, each task has apriority, and the highest-priority task
runsfirg. If atask with apriority higher than the current task becomes ready to run, the kernel immediately savesthe
current task s context in its TCB and switches to the higher-priority task. Asshownin Figure 4.4 task 1 is preempted
by higher-priority task 2, which isthen preempted by task 3. When task 3 completes, task 2 resumes; likewise, when
task 2 completes, task 1 resumes.

Although tasks are assigned a priority when they are created, atask spriority can be changed dynamically using
kernd-provided calls. The ability to change task priorities dynamicaly alows an embedded application theflexibility
to adjust to external events asthey occur, creating atrue real-time, responsive system. Note, however, that misuse of
this capability can lead to priority inversions, deadlock, and eventua system failure.

Round-Robin Scheduling

Round-robin scheduling provides each task an equa share of the CPU execution time. Pure round-robin scheduling
cannot satisfy red-time system requirements because in real-time systems, tasks perform work of varying degrees of
importance. Instead, preemptive, priority-based scheduling can be augmented with round-robin scheduling which
usestime dicing to achieve equa alocation of the CPU for tasks of the same priority as shown in Figure 4.5.
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Figure 4.5: Round-robin and preemptive scheduling.

With time dicing, each task executes for adefined interva, or time dice, in an ongoing cycle, which isthe round
robin. A run-time counter tracks the time dice for each task, incrementing on every clock tick. When onetask stime
dice completes, the counter is cleared, and the task is placed at the end of the cycle. Newly added tasks of the same
priority are placed a the end of the cycle, with their run-time countersinitialized to O.

If atask in around-robin cycle is preempted by a higher-priority task, its run-time count is saved and then restored
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when theinterrupted task isagain digible for execution. Thisideaisillusrated in Figure 4.5, inwhich task 1is
preempted by a higher-priority task 4 but resumes whereit |eft off when task 4 completes.

(< reeviovs [ e
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4.5 Objects

Kernd objects are specia congtructs that are the building blocks for gpplication development for redl-time
embedded systems. The most common RTOS kernel objects are

Tasks are concurrent and independent threads of execution that can compete for CPU execution time.

Semaphores are token-like objects that can be incremented or decremented by tasks for synchronization or
mutua exclusion.

M essage Queues are buffer-like data structures that can be used for synchronization, mutual exclusion, and
data exchange by passing messages between tasks. Developers cresting real-time embedded applications
can combine these basic kernel objects (aswdll as others not mentioned here) to solve common red-time
design problems, such as concurrency, activity synchronization, and data communication. These design
problems and the kernel objects used to solve them are discussed in more detail in later chapters.
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4.6 Services

Along with objects, most kerndls provide services that help devel opers create gpplications for red-time embedded
systems. These services comprise sets of API callsthat can be used to perform operations on kernel objects or can
be used in generd to facilitate timer management, interrupt handling, device 1/0, and memory management. Again,
other services might be provided; these services are those most commonly found in RTOS kernels.
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4.7 Key Characteristicsof an RTOS

An gpplication's requirements define the requirements of its underlying RTOS. Some of the more common attributes
are

rdiability,
predictability,
performance,
compactness, and

scdlbility.

These attributes are discussed next; however, the RTOS attribute an application needs depends on the type of
gpplication being built.

4.7.1 Reliability

Embedded systems must be reliable. Depending on the gpplication, the system might need to operate for long periods
without human intervention.

Different degrees of reliability may be required. For example, adigital solar-powered caculator might reset itself if it
does not get enough light, yet the calculator might still be considered acceptable. On the other hand, atelecom switch
cannot reset during operation without incurring high associated cogts for down time. The RTOSes in these
goplications require different degrees of rdiability.

Although different degrees of reliability might be acceptable, in generd, ardiable system isonethat isavailable
(continuesto provide service) and does not fail. A common way that devel opers categorize highly reliable sysemsis
by quantifying their downtime per year, asshownin Table 4.1. The percentages under the 'Number of 9s column
indicate the percent of the tota time that asystem must be available.

While RTOSes must bereliable, note that the RTOS by itsdlf is not what is measured to determine system rdliability.
It isthe combination of al system elements-including the hardware, BSP, RTOS, and application-that determinesthe

religbility of asystem.
Table 4.1: Categorizing highly available sysems by dlowable downtime.1

Number of 9s Downtime per year Typical application

3 Nines (99.9%) ~9 hours Desktop
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4 Nines (99.99%) ~1 hour Enterprise Server
5 Nines (99.999%) ~5 minutes Carrier-Class Server
6 Nines (99.9999%) ~31 seconds Carrier Switch Equipment

1 Source: 'Providing Open Architecture High Availability Solutions” Revison 1.0, Published by HA Forum,
February 2001.

4.7.2 Predictability

Because many embedded systems are also redl-time systems, meeting time requirementsis key to ensuring proper
operation. The RTOS used in this case needs to be predictable to a certain degree. The term deterministic describes
RTOSes with predictable behavior, in which the completion of operating system calls occurs within known
timeframes.

Deve opers can write smple benchmark programsto vaidate the determinism of an RTOS. The result is based on
timed responses to specific RTOS calls. In agood deterministic RTOS, the variance of the response timesfor each
typeof sysemcdl isvery smal.

4.7.3 Performance

Thisrequirement dictates that an embedded system must perform fast enough to fulfill itstiming requirements.
Typicdly, the more deadlines to be met-and the shorter the time between them-the faster the system's CPU must be.
Although underlying hardware can dictate a system's processing power, its software can aso contribute to system
performance. Typicaly, the processor's performance is expressed in million instructions per second (MIPS).

Throughput also measures the overal performance of asystem, with hardware and software combined. One
definition of throughput isthe rate a which a system can generate output based on the inputs coming in. Throughput
aso meansthe amount of datatransferred divided by the time taken to transfer it. Datatransfer throughput istypicaly
measured in multiples of bits per second (bps).

Sometimes developers measure RTOS performance on acdl-by-call basis. Benchmarks are written by producing
timestamps when asystem call starts and when it completes. Although this step can be helpful in the andysis stages of
design, true performance testing is achieved only when the system performance is measured asawhole.

4.7.4 Compactness

Application design congtraints and cost congtraints hel p determine how compact an embedded system can be. For
example, acel phone clearly must be smal, portable, and low cost. These design requirements limit system memory,
whichin turn limitsthe size of the application and operating system.

In such embedded systems, where hardware real estate islimited due to size and costs, the RTOS clearly must be
smdll and efficient. In these cases, the RTOS memory footprint can be an important factor. To meet tota system
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requirements, designers must understand both the static and dynamic memory consumption of the RTOS and the
aoplication that will runonit.

4.7.5 Scalability

Because RTOSes can be used in awide variety of embedded systems, they must be able to scale up or down to
meet gpplication-specific requirements. Depending on how much functionality isrequired, an RTOS should be
capable of adding or deleting modular components, including file systems and protocol stacks.

If an RTOS does not scale up well, development teams might have to buy or build the missing pieces. Supposethat a
development team wants to use an RTOS for the design of acellular phone project and a base station project. If an
RTOS scdeswell, the same RTOS can be used in both projects, instead of two different RTOSes, which saves
consderable time and money.
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4.8 Pointsto Remember

Some points to remember include the following:

RTOSes are best suited for real-time, application-specific embedded systems, GPOSes are typically used
for generd-purpose systems.

RTOSes are programs that schedule execution in atimely manner, manage System resources, and provide a
cons gtent foundation for devel oping application code.

Kernels are the core module of every RTOS and typically contain kernel objects, services, and scheduler.

Kernels can deploy different dgorithmsfor task scheduling. The most common two agorithms are
preemptive priority-based scheduling and round-robin scheduling.

RTOSesfor red-time embedded systems should be religble, predictable, high performance, compact, and
scaable.
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Chapter 5. Tasks

5.1 Introduction

Simple software gpplications are typicaly designed to run sequentialy , oneingtruction at atime, in a pre-determined
chain of ingructions. However, this scheme isingppropriate for red-time embedded applications, which generdly
handle multiple inputs and outputs within tight time congtraints. Red-time embedded software applications must be
designed for concurrency.

Concurrent design requires devel opers to decompaose an gpplication into small, schedulable, and sequentia
program units. When done correctly, concurrent design alows system multitasking to meet performance and timing
requirements for area-time system. Most RTOS kernels provide task objects and task management servicesto
facilitate designing concurrency within an gpplication.

This chapter discussesthefollowing topics.
task definition,
task states and scheduling,
typical task operations,

typicdl task Structure, and

task coordination and concurrency.
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5.2 Defining a Task

A task isan independent thread of execution that can compete with other concurrent tasks for processor execution
time. As mentioned earlier, devel opers decompose gpplications into multiple concurrent tasks to optimize the
handling of inputs and outputs within set time congraints.

A task is schedulable. As Chapter 4 discusses, the task is able to compete for execution time on a system, based on
apredefined scheduling agorithm. A task is defined by itsdistinct set of parameters and supporting data structures.
Specificdly, upon creation, each task has an associated name, aunique ID, apriority (if part of a preemptive
scheduling plan), atask control block (TCB), astack, and atask routine, as shown in Figure 5.1). Together, these

Task Control Block Task Stack
TCA STACK
Highest
Task —  Pricrity
Mame/ ID Laval
——Hwint tMyTaski)
Task — { ¢
Routine while (1) | Task
POt 130 Priority
}
}
-
Lceaersi
. . Pricii
components make up what is known asthe task object. Sy

Figure5.1: A task, its associated parameters, and supporting data structures.

When the kernel first sarts, it createsits own set of system tasks and allocates the appropriate priority for each from
aset of reserved priority levels. The reserved priority levelsrefer to the priorities used internally by the RTOS for
Its system tasks. An gpplication should avoid using these priority levelsfor its tasks because running application tasks
at such level may affect the overall system performance or behavior. For most RTOSes, these reserved prioritiesare
not enforced. The kernel needsits system tasks and their reserved priority levelsto operate. These priorities should
not be modified. Examples of system tasksinclude:

initialization or startup task initidizesthe system and creates and starts system tasks,

idle task uses up processor idle cycleswhen no other activity is present,

logging task logs system messages,

exception-handling task handles exceptions, and

debug agent task alows debugging with ahost debugger. Note that other system tasks might be created
during initidization, depending on what other components are included with the kerndl.
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Theidletask, which is created at kernd startup, is one system task that bears mention and should not be ignored.
Theidletask is st to the lowest priority, typicaly executesin an endless|oop, and runs when either no other task can
run or when no other tasks exist, for the sole purpose of using idle processor cycles. Theidle task is necessary
because the processor executes the ingtruction to which the program counter register pointswhileit isrunning. Unless
the processor can be suspended, the program counter must till point to valid ingtructions even when no tasks exist in
the system or when no tasks can run. Therefore, the idle task ensures the processor program counter isawaysvaid
when no other tasks are running.

In some cases, however, the kerng might alow a user-configured routine to run instead of theidletask in order to
implement specid requirements for a particular application. One example of aspecia requirement is power
conservation. When no other tasks can run, the kernel can switch control to the user-supplied routineinstead of to
theidletask. Inthis case, the user-supplied routine acts like the idle task but instead initiates power conservation
code, such as system suspension, after aperiod of idletime.

After the kernd hasinitialized and created al of the required tasks, the kernel jumpsto a predefined entry point (such
as apredefined function) that serves, in effect, asthe beginning of the gpplication. From the entry point, the devel oper
caninitidize and cregte other gpplication tasks , aswell as other kernel objects, which the application design might
require.

Asthe developer creates new tasks, the developer must assign each atask name, priority, stack size, and atask
routine. The kernel does the rest by assigning each task a unique 1D and creating an associated TCB and stack space
in memory for it.
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5.3 Task States and Scheduling

Whether it's a system task or an gpplication task, at any time each task existsin one of asmall number of States,
including ready, running, or blocked. Asthe red-time embedded system runs, each task moves from one state to
another, according to thelogic of asmplefinite state machine (FSM). Figure 5.2 illustrates atypical FSM for task

Task is mitalized and
enlers the finite stabe
maching.

Task is unblocked
hut i5 not the Task nd longer bk

e o
Task is unblocked
and i tha
highast-priod
Blocked Nghestpriory @
Task i3 blocked
due o 8 request
. . . .. . for an unavailable
execution states, with brief descriptions of Sate trangtions. resource.

Figure5.2: A typicdl finite state machine for task execution states.

Although kernels can define task-tate groupings differently, generdly three main states are used in most typical
preemptive-scheduling kernels, including:

ready state-thetask isready to run but cannot because ahigher priority task is executing.

blocked state-the task has requested aresource that is not available, has requested to wait until some event
occurs, or has delayed itself for some duration.

running state-the task isthe highest priority task and isrunning.

Note some commercia kernels, such asthe VxWorks kernel, define other, more granular states, such as suspended,
pended, and delayed. In this case, pended and delayed are actually sub-states of the blocked state. A pended task is
waiting for aresource that it needsto be freed; adelayed task iswaiting for atiming delay to end. The suspended
sate exists for debugging purposes. For more detailed information on the way a particular RTOS kernel implements
its FSM for each task, refer to the kerndl's user manual.

Regardless of how akernel implements atask's FSM, it must maintain the current Sate of dl tasksin arunning
sysem. Ascalls are made into the kerndl by executing tasks, the kernel's scheduler first determines which tasks need
to change states and then makes those changes.

In some cases, the kerndl changes the states of some tasks, but no context switching occurs because the state of the
highest priority task is unaffected. In other cases, however, these state changes result in a context switch because the
former highest priority task either gets blocked or isno longer the highest priority task. When this process happens,
the former running task is put into the blocked or ready state, and the new highest priority task startsto execute.

The following describe the ready, running, and blocked states in more detail. These descriptions are based on a
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single-processor system and akernel using a priority-based preemptive scheduling agorithm.

5.3.1 Ready State

When atask isfirst created and made ready to run, the kernd putsit into the ready state. In this state, the task
actively competeswith al other ready tasks for the processor's execution time. As Figure 5.2 shows, tasksin the
ready state cannot move directly to the blocked state. A task first needsto run so it can make a blocking call ,
whichisacdl to afunction that cannot immediately run to completion, thus putting the task in the blocked state.
Ready tasks, therefore, can only move to the running state. Because many tasks might bein the ready state, the
kernd's scheduler usesthe priority of each task to determine which task to move to the running state.

For akernd that supports only onetask per priority level, the scheduling agorithm is straightforward-the highest
priority task that isready runs next. In thisimplementation, the kernd limits the number of tasksin an application to
the number of priority levels.

However, most kernels support more than one task per priority level, alowing many more tasksin an gpplication. In
this case, the scheduling dgorithm is more complicated and involves maintaining atask-ready list . Some kernels
maintain a separate task-ready list for each priority level; others have one combined list.

Figure 5.3 illudtrates, in afive-step scenario, how akernd scheduler might use atask-ready list to move tasks from
the ready state to the running state. This example assumes asingle-processor system and a priority-based preemptive
scheduling agorithm in which 255 isthe lowest priority and O isthe highest. Note that for smplicity this example does

First-Step: State of Task-Ready List

Task 1 Task 2 Task 3 Task 4 Task §
Priority=70 Priority=80 Priority=80 Priovity=80 | || Priovity =80

a Second-Step: State of Task -Ready List

Task 2 Task 3 Task 4 Task5 ||
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©) Firtn-Stop: Stato of Task-Ready List

Task 2
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Task 4
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|

not show system tasks, such astheidletask. ‘
Figure 5.3: Five steps showing the way atask-ready list works.

Inthisexample, tasks 1, 2, 3, 4, and 5 are ready to run, and the kerndl queuesthem by priority in atask-ready list.
Task 1isthe highest priority task (70); tasks 2, 3, and 4 are at the next-highest priority level (80); and task 5isthe
lowest priority (90). Thefollowing steps explains how akernd might use the task-ready list to move tasksto and
from thereedy Sate:

1.

Tasks 1, 2, 3, 4, and 5 are ready to run and are waiting in the task-ready li<t.
2.
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Becausetask 1 hasthe highest priority (70), it isthefirst task ready to run. If nothing higher isrunning, the
kernd removestask 1 from theready list and movesit to the running state.
3.

During execution, task 1 makes ablocking call. Asaresult, the kernel movestask 1 to the blocked state;
takestask 2, whichisfirg intheligt of the next-highest priority tasks (80), off the ready list; and movestask 2
to the running date.

Next, task 2 makes ablocking cal. The kernel movestask 2 to the blocked state; takestask 3, which is next
inline of the priority 80 tasks, off the ready list; and movestask 3 to the running state.

Astask 3 runs, freesthe resource that task 2 requested. The kernd returnstask 2 to the ready state and
insertsit a the end of thelist of tasksready to run at priority level 80. Task 3 continues as the currently
running task.

Although not illustrated here, if task 1 became unblocked at this point in the scenario, the kernel would move task 1
to the running state becauseits priority is higher than the currently running task (task 3). Aswith task 2 earlier, task 3
at this point would be moved to the ready state and inserted after task 2 (same priority of 80) and before task 5 (next
priority of 90).

5.3.2 Running State

On asingle-processor system, only onetask can run a atime. In this case, when atask is moved to the running state,
the processor loads its registers with this task's context. The processor can then execute the task's instructions and
manipul ate the associated stack.

Asdiscussed in the previous section, atask can move back to the ready state whileit is running. When atask moves
from the running state to the ready state, it is preempted by a higher priority task. In this case, the preempted task is
put in the appropriate, priority-based location in the task-ready list, and the higher priority task is moved from the
ready state to the running state.

Unlike aready task, arunning task can move to the blocked state in any of the following ways.
by making acall that requests an unavailable resource,
by making acal that requeststo wait for an event to occur, and

by making acal to delay the task for some duration.

In each of these cases, the task is moved from the running state to the blocked state, as described next.

5.3.3 Blocked State

The possibility of blocked statesis extremely important in red-time systems because without blocked states, lower
priority tasks could not run. If higher priority tasks are not designed to block, CPU starvation can result.
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CPU starvation occurs when higher priority tasksuse dl of the CPU execution time and lower priority tasks do not
get torun.

A task can only moveto the blocked state by making a blocking cal, requesting that some blocking condition be
met. A blocked task remains blocked until the blocking condition is met. (It probably ought to be called the un
blocking condition, but blocking isthe terminology in common use amnong red-time programmers.) Examples of how
blocking conditions are met include the following:

asemaphore token (described later) for which atask iswaiting is released,

amessage, on which the task iswaiting, arrivesin amessage queue, or

atime delay imposed on the task expires.

When atask becomes unblocked, the task might move from the blocked state to the ready stateif it isnot the highest
priority task. The task isthen put into the task-ready list at the appropriate priority-based location, as described
edlier.

However, if the unblocked task isthe highest priority task, the task moves directly to the running state (without going
through the ready state) and preempts the currently running task. The preempted task is then moved to the ready
state and put into the appropriate priority-based location in the task-ready li<t.
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5.4 Typical Task Operations

In addition to providing atask object, kernels aso provide task-management services . Task-management services
include the actions that akernel performs behind the scenes to support tasks, for example, creating and maintaining
the TCB and task stacks.

A kernd, however, also provides an AP that allows devel opers to manipulate tasks. Some of the more common
operationsthat developers can perform with atask object from within the application include:

creating and deleting tasks,
controlling task scheduling, and
obtaining task information.

Developers should learn how to perform each of these operations for the kernel selected for the project. Each
operation is briefly discussed next.

5.4.1 Task Creation and Deletion

The most fundamental operations that devel opers must learn are creating and deleting tasks, asshownin Table 5.1.
Table5.1: Operations for task creation and deletion.

Operation Description
Create Creates atask
Delete Deetesatask

Developerstypicaly create atask using one or two operations, depending on the kernel s API. Some kernels allow
developersfirst to create atask and then art it. In this case, the task isfirst created and put into a suspended State;
then, the task ismoved to the ready state when it is Started (made readly to run).

Cregting tasksin this manner might be useful for debugging or when specid initidization needsto occur between the
timesthat atask is created and started. However, in most cases, it is sufficient to create and start atask using one
kernd cdl.

The suspended state is similar to the blocked State, in that the suspended task is neither running nor ready to run.
However, atask does not move into or out of the suspended state via the same operations that move atask to or
from the blocked state. The exact nature of the suspended state varies between RTOSes. For the present purpose, it
issufficient to know that the task is not yet ready to run.
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Starting atask does not make it run immediately; it puts the task on the task-ready li<t.

Many kernels also provide user-configurable hooks , which are mechanisms that execute programmer-supplied
functions, at the time of specific kernel events. The programmer registers the function with the kernd by passng a
function pointer to akernd-provided API . The kernd executes this function when the event of interest occurs. Such
events can include:

when atask isfirst created,

when atask is suspended for any reason and a context switch occurs, and

when atask is deleted.
Hooks are ussful when executing specid initidization code upon task creation, implementing status tracking or
monitoring upon task context switches, or executing clean-up code upon task deletion.
Carefully consder how tasks are to be deleted in the embedded application. Many kernel implementations allow any
task to delete any other task. During the deletion process, akernel terminates the task and frees memory by deleting
the task s TCB and stack.
However, when tasks execute, they can acquire memory or access resources using other kernd objects. If thetask is
deleted incorrectly, the task might not get to release these resources. For example, assume that atask acquiresa

semaphore token to get exclusive access to ashared data structure. While the task is operating on this data structure,
the task gets deleted. If not handled appropriately, this abrupt deletion of the operating task can result in:

acorrupt data structure, due to an incomplete write operation,
an unrel eased semaphore, which will not be available for other tasks that might need to acquire it, and
an inaccessible data structure, due to the unreleased semaphore.

Asaresult, premature deletion of atask can result in memory or resource lesks.

A memory leak occurs when memory is acquired but not released, which causes the system to run out of memory
eventudly. A resource leak occurswhen aresourceis acquired but never released, which resultsin amemory lesk
because each resource takes up space in memory. Many kernels provide task-del etion locks, apair of calsthat
protect atask from being prematurely deleted during a critica section of code.

This book discusses these conceptsin more detail later. At this point, however, note that any tasks to be del eted
must have enough time to clean up and release resources or memory before being deleted.

5.4.2 Task Scheduling

From thetime atask is created to the time it is del eted, the task can move through various states resulting from
program execution and kernel scheduling. Although much of this state changing is automatic, many kernelsprovide a
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st of AP calsthat allow developersto control when atask movesto adifferent state, as shownin Table 5.2. This
capability iscaled manual scheduling .
Table 5.2: Operations for task scheduling.

Operation Description

Suspend Suspends atask

Resume Resumes atask

Dday Delaysatask

Restart Restarts atask

Get Priority Getsthe current task spriority

Set Priority Dynamicaly setsatask s priority

Preemption lock Locks out higher priority tasks from preempting the current task
Preemption unlock Unlocks a preemption lock

Using manua scheduling, developers can suspend and resume tasks from within an gpplication. Doing so might be
important for debugging purposes or, as discussed earlier, for suspending ahigh-priority task so that lower priority
tasks can execute.

A developer might want to delay (block) atask, for example, to alow manua scheduling or to wait for an external
condition that does not have an associated interrupt. Delaying atask causesit to reinquish the CPU and dlow
another task to execute. After the delay expires, the task isreturned to the task-ready list after al other ready tasks
a itspriority level. A delayed task waiting for an externa condition can wake up after aset timeto check whether a
specified condition or event has occurred, which iscaled polling.

A developer might also want to restart atask, which is not the same as resuming a suspended task. Restarting atask
beginsthe task asif it had not been previoudy executing. Theinterna state the task possessed at the time it was
suspended (for example, the CPU registers used and the resources acquired) islost when atask is restarted. By
contrast, resuming atask beginsthe task in the same internal state it possessed when it was suspended.

Regarting atask is useful during debugging or when reinitializing atask after a catastrophic error. During debugging, a
developer can restart atask to step through its code again from start to finish. In the case of catastrophic error, the
devel oper can restart atask and ensure that the system continues to operate without having to be completely
reinitidized.

Getting and setting atask s priority during execution |ets devel opers control task scheduling manualy. This processis
hepful during a priority inverson , in which alower priority task has a shared resource that a higher priority task
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requires and is preempted by an unrelated medium-priority task. (Priority inverson isdiscussed in more detail in
Chapter 16). A smplefix for this problem isto free the shared resource by dynamically incressing the priority of the
lower priority task to that of the higher priority task alowing the task to run and rel ease the resource that the higher
priority task requires and then decreasing the former lower priority task toitsorigind priority.

Finaly, the kernel might support preemption locks , apair of calls used to disable and enable preemptionin
aoplications. Thisfeature can be useful if atask isexecutingina critical section of code : onein which the task must
not be preempted by other tasks.

5.4.3 Obtaining Task Information

Kernds provide routinesthat alow devel opersto access task information within their applications, asshownin Table
5.3. Thisinformation is useful for debugging and monitoring.
Table 5.3: Task-informeation operations.

Operation Description
Get 1D Get the current task sID
Get TCB Get the current task sSTCB

Oneuseisto obtain aparticular task s 1D, which is used to get more information about the task by getting its TCB.
Obtaining a TCB, however, only takes a snapshot of the task context. If atask isnot dormant (e.g., suspended), its
context might be dynamic, and the snapshot information might change by thetimeit isused. Hence, usethis
functiondity wisdly, so that decisons aren t made in the application based on querying a congtantly changing task
context.
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5.5 Typical Task Structure

When writing code for tasks, tasks are structured in one of two ways:

run to completion, or
endlessloop.

Both task structures are relaively smple. Run-to-completion tasks are most useful for initidization and startup. They
typicaly run once, when the system first powers on. Endless-loop tasks do the mgjority of the work in the application
by handling inputs and outputs. Typicaly, they run many times while the system is powered on.

5.5.1 Run-to-Completion Tasks

An example of arun-to-completion task isthe gpplication-level initidization task, shownin Listing 5.1. The
initialization task initidizes the application and creates additiona services, tasks, and needed kernel objects.

Listing 5.1: Pseudo code for arun-to-compl etion task.
.gCoerI etionTask ()

Initialize application

Create endless |oop tasks'

Create kernel objects

Del ete or suspend this task

The gpplication initidization task typically hasahigher priority than the application tasksit creastes so that its
initialization work is not preempted. In the simplest case, the other tasks are one or more lower priority endless-loop
tasks. The gpplication initidization task iswritten so that it suspends or deletesitself after it completesitswork so the
newly created tasks can run.

5.5.2 Endless-Loop Tasks

Aswith the ructure of the gpplication initidization task, the structure of an endless |oop task can adso contain
initidization code. The endlessloop'sinitidization code, however, only needs to be executed when the task first runs,
after which the task executesin an endlessloop, asshownin Liging 5.2.

The critica part of the design of an endless-loop task is the one or more blocking calls within the body of the loop.
These blocking calls can result in the blocking of this endless-loop task, alowing lower priority tasksto run.

Ligting 5.2: Pseudo code for an endless-loop task.
.gssLoopTask @)

Initialization code
Loop Forever
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{
Body of | oop
Make one or nore blocking calls
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5.6 Synchronization, Communication, and
Concurrency

Tasks synchronize and communicate amongst themselves by using intertask primitives , which are kernd objects
that facilitate synchronization and communication between two or more threads of execution. Examples of such
objects include semaphores, message queues, sSignals, and pipes, aswell as other types of objects. Each of theseis
discussed in detail in later chapters of this book.

The concept of concurrency and how an application is optimally decomposed into concurrent tasksis also discussed
inmore detail later in thisbook. For now, remember that the task object isthe fundamental construct of most kernels.
Tasks, along with task-management services, alow developersto design applications for concurrency to meet
multiple time congtraints and to address various design problems inherent to real-time embedded applications.
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5.7 Pointsto Remember

Some points to remember include the following:

Most redl-time kernel's provide task objects and task-management servicesthat alow devel opersto meet the
requirements of red-time gpplications.

Applications can contain system tasks or user-created tasks, each of which hasaname, auniquelID, a
priority, atask control block (TCB), a stack, and atask routine.

A red-time application is composed of multiple concurrent tasks that are independent threads of execution,
competing on their own for processor execution time.

Tasks can bein one of three primary states during their lifetime: ready, running, and blocked.

Priority-based, preemptive scheduling kerndsthat alow multiple tasks to be assigned to the same priority use
task-ready liststo help scheduled tasks run.

Tasks can run to completion or can run in an endless loop. For tasks that run in endless loops, structure the
code so that the task blocks, which alowslower priority tasksto run.

Typicd task operationsthat kernels provide for gpplication development include task creation and deletion,
manud task scheduling, and dynamic acquisition of task informetion.
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Chapter 6. Semaphores

6.1 Introduction

Multiple concurrent threads of execution within an application must be able to synchronize their execution and
coordinate mutually exclusive access to shared resources. To address these requirements, RTOS kernels provide a
semaphore object and associated semaphore management services.

This chapter discussesthe following:

defining asemaphore,

typical semaphore operations, and

common semaphore use.
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6.2 Defining Semaphores

A semaphore (sometimes caled a semaphor e token) isakernel object that one or more threads of execution can
acquire or release for the purposes of synchronization or mutud exclusion.

When asemaphoreisfirst created, the kernel assignsto it an associated semaphore control block (SCB), aunique
ID, avaue (binary or acount), and atask-waiting list, as shown in Figure 6.1.

Semaphora-
Control Block
|
|
| Semaphore
| Hamepur D Task-Waiting List
l
| P
— >

Value j\.\‘

Binary or a
Count

Determines how many
samaphore tokens are
available.

Figure 6.1: A semaphore, its associated parameters, and supporting data structures.

A semaphoreislike akey that allows atask to carry out some operation or to access aresource. If the task can
acquire the semaphore, it can carry out the intended operation or access the resource. A single semaphore can be
acquired afinite number of times. In this sense, acquiring a semaphoreislike acquiring the duplicate of akey froman
gpartment manager when the gpartment manager runs out of duplicates, the manager can give out no more keys.
Likewise, when a semaphore slimit isreached, it can no longer be acquired until someone gives akey back or
releases the semaphore.

The kernd tracks the number of times a semaphore has been acquired or released by maintaining atoken count,
whichisinitidized to avaue when the semaphore is created. As atask acquires the semaphore, the token count is
decremented; as atask releases the semaphore, the count isincremented.

If the token count reaches O, the semaphore has no tokensleft. A requesting task, therefore, cannot acquire the
semaphore, and the task blocksif it choosesto wait for the semaphore to become available. (This chapter discusses
dates of different semaphore variants and blocking in more detail in "Typica Semaphore Operations' on page 84,
Section 6.3.)

Thetask-waiting list tracks al tasks blocked while waiting on an unavailable semaphore. These blocked tasks are
kept in the task-waiting list in ether firgt in/first out (FIFO) order or highest priority first order.

When an unavail able semaphore becomes available, the kernd alowsthefirst task in the task-waiting list to acquire
it. The kerndl movesthis unblocked task either to the running state, if it isthe highest priority task, or to the ready
date, until it becomesthe highest priority task and is able to run. Note that the exact implementation of atask-waiting
list can vary from one kerndl to another.

A kernd can support many different types of semaphores, including binary, counting, and mutua-exclusion (mutex)
semaphores.

6.2.1 Binary Semaphores
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A binary semaphore can have avaue of either 0 or 1. When abinary semaphore svaueisO0, the ssmaphoreis
considered unavailable (or empty); when thevalueis 1, the binary semaphoreis consdered available (or full ).
Note that when abinary semaphoreisfirst created, it can beinitialized to either available or unavailable (1 or O,
respectively). The state diagram of abinary semaphoreisshownin Figure 6.2.

Aoquire
ruaiE =0)
Initial Available Unavailable Initiat
value = value =0
Release

fwalue = 1)
Figure 6.2: The state diagram of abinary semaphore.

Binary semaphores are treated as global resources, which meansthey are shared among al tasks that need them.
Making the semaphore a global resource alows any task to releaseit, even if thetask did not initialy acquireit.

6.2.2 Counting Semaphores

A counting semaphore usesacount to dlow it to be acquired or released multiple times. When creating a counting
semaphore, assign the semaphore a count that denotes the number of semaphore tokensit hasinitidly. If theinitia
count is 0, the counting semaphore is created in the unavailable Sate. If the count is greater than O, the semaphoreis
cregted inthe aval I?Egl e dtate, and the number of tokensit has equasits count, as shown in Figure 6.3.

Release
foount = courd + 1)

N

( | Release
" d (count = 1)

Initial count > @ Unavallable Frvitizal eounl = 0
S

Acquire
I| {count = 0)

I'\__‘__.___/'

Acquire
{count = count -1)

Figure 6.3: The state diagram of a counting semaphore.

One or more tasks can continue to acquire atoken from the counting semaphore until no tokens are left. When al the
tokens are gone, the count equals 0, and the counting semaphore moves from the available Sate to the unavailable
state. To move from the unavail able state back to the available state, a semaphore token must be released by any
task.

Note that, as with binary semaphores, counting semaphores are global resources that can be shared by all tasks that
need them. Thisfeature alows any task to release a counting semaphore token. Each rel ease operation increments
the count by one, even if the task making thiscall did not acquire atoken in thefirst place.

Some implementations of counting semaphores might alow the count to be bounded. A bounded count isacount in
which theinitia count set for the counting semaphore, determined when the semaphore wasfirst created, acts asthe
maximum count for the semaphore. An unbounded count alows the counting semaphore to count beyond theinitia
count to the maximum value that can be held by the count s datatype (e.g., an unsigned integer or an unsigned long
vaue).

6.2.3 Mutual Exclusion (Mutex) Semaphores
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A mutual exclusion (mutex) semaphore isaspecia binary semaphore that supports ownership, recursive access,
task deletion safety, and one or more protocols for avoiding problemsinherent to mutual excluson. Figure 6.4
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. {lock count = lock count +1)
Acqguire

{fock cowrt = 1) .'/-“ﬁ\'.

e

Initial Unlocked
(fock court = Q)
-

e e
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flock count =0) \___ j
. . Relzase (recursive)
illugtrates the gtate diagram of amutex. lock count = lock count - 1)

Figure 6.4: The gate diagram of amutua exclusion (mutex) semaphore.

As opposed to the avail able and unavail able states in binary and counting semaphores, the states of amutex are
unlocked or locked (0 or 1, respectively). A mutex isinitidly created in the unlocked state, in which it can be
acquired by atask. After being acquired, the mutex movesto the locked state. Conversely, when the task releases
the mutex, the mutex returnsto the unlocked state. Note that some kernels might use the terms lock and unlock for a
mutex ingtead of acquire and release.

Depending on the implementation, amutex can support additiona features not found in binary or counting
semaphores. These key differentiating features include ownership, recursive locking, task deletion safety, and priority
inversion avoidance protocols.

Mutex Owner ship

Ownership of amutex isgained when atask first locks the mutex by acquiring it. Conversdly, atask loses ownership
of the mutex when it unlocksit by releasing it. When atask owns the mute, it isnot possible for any other task to
lock or unlock that mutex. Contrast this concept with the binary semaphore, which can be released by any task, even
atask that did not originaly acquire the ssmaphore.

Recursive Locking

Many mutex implementations also support recursive locking , which allows the task that owns the mutex to acquire
it multipletimesin the locked state. Depending on the implementation, recursion within amutex can be automatically
built into the mutex, or it might need to be enabled explicitly when the mutex isfirst created.

The mutex with recursive locking is called a recursive mutex . Thistype of mutex is most useful when atask
requiring exclusive access to ashared resource calls one or more routines that a so require accessto the same
resource. A recursive mutex allows nested attempts to lock the mutex to succeed, rather than cause deadlock ,
which isacondition in which two or more tasks are blocked and are waiting on mutually locked resources. The
problem of recursion and deadlocks is discussed later in this chapter, aswell aslater in this book.

Asshown in Figure 6.4, when arecursive mutex isfirst locked, the kernel registersthe task that locked it asthe
owner of the mutex. On successve attempts, the kernel uses an interna lock count associated with the mutex to track
the number of timesthat the task currently owning the mutex has recursively acquired it. To properly unlock the
mutex, it must be released the same number of times.
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Inthisexample, alock count tracks the two states of amutex (0 for unlocked and 1 for locked), aswell asthe
number of timesit has been recursvely locked (lock count > 1). In other implementations, amutex might maintain
two counts: abinary valueto track its state, and a separate lock count to track the number of timesit has been
acquired inthe lock gtate by the task that ownsiit.

Do not confuse the counting facility for alocked mutex with the counting facility for a counting semaphore. The count
used for the mutex tracks the number of times that the task owning the mutex has locked or unlocked the mutex. The
count used for the counting semaphore tracks the number of tokens that have been acquired or released by any task.
Additiondly, the count for the mutex is aways unbounded, which alows multiple recursive accesses.

Task Deletion Safety

Some mutex implementations aso have built-in task del etion safety. Premature task deletion isavoided by using task
deletion locks when atask locks and unlocks amutex. Enabling this capability within amutex ensuresthat whilea
task owns the mutex, the task cannot be deleted. Typically protection from premature deletion is enabled by setting
the appropriate initidization options when creating the mutex.

Priority Inversion Avoidance

Priority inverson commonly happensin poorly designed red-time embedded applications. Priority inverson occurs
when ahigher priority task is blocked and iswaiting for aresource being used by alower priority task, which has
itself been preempted by an unrdated medium-priority task. In this Stuation, the higher priority task spriority leve
has effectively been inverted to the lower priority task slevel.

Enabling certain protocolsthat are typicaly built into mutexes can help avoid priority inverson. Two common
protocols used for avoiding priority inversion include:

priority inheritance protocol ensuresthat the priority level of the lower priority task that has acquired the
mutex israised to that of the higher priority task that has requested the mutex when inversion happens. The
priority of theraised task islowered to its origina value after the task rel eases the mutex that the higher
priority task requires.

celing priority protocol ensuresthat the priority level of the task that acquires the mutex is automatically set
to the highest priority of al possible tasksthat might request that mutex when it isfirst acquired until itis
rel eased.

When the mutex isreleased, the priority of thetask islowered to itsoriginal value.
Chapter 16 discusses priority inverson and both the priority inheritance and ceiling priority protocolsin more detail.

For now, remember that a mutex supports ownership, recursive locking, task deletion safety, and priority inversion
avoidance protocols; binary and counting semaphores do not.
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6.3 Typical Semaphore Operations

Typical operationsthat devel opers might want to perform with the semaphoresin an application include:
creating and deleting semaphores,
acquiring and releasing semaphores,
clearing a semaphore stask-waiting list, and

getting semaphore information.

Each operation is discussed next.

6.3.1 Creating and Deleting Semaphores

Table 6.1 identifies the operations used to create and del ete semaphores.
Table 6.1: Semaphore creation and del etion operations.

Operation Description
Create Creates a semaphore
Delete Deletes a semaphore

Severd things must be considered, however, when creating and deleting semaphores. If akernd supports different
types of semaphores, different calls might be used for creating binary, counting, and mutex semaphores, asfollows:

binary specify theinitid semaphore state and the task-waiting order.
counting specify theinitid semaphore count and the task-waiting order.

mutex specify the task-waiting order and enable task del etion safety, recursion, and priority-inversion
avoidance protocols, if supported.

Semaphores can be deleted from within any task by specifying their IDs and making semaphore-deletion cdlls.
Deleting a semaphoreis not the same asreleasing it. When a semaphore is deleted, blocked tasksin its task-waiting
list are unblocked and moved ether to the ready state or to the running state (if the unblocked task has the highest
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priority). Any tasks, however, that try to acquire the deleted semaphore return with an error because the semaphore
no longer exigs,

Additiondly, do not delete a semaphore whileit isin use (e.g., acquired). Thisaction might result in data corruption
or other serious problemsif the semaphoreis protecting a shared resource or acritical section of code.

6.3.2 Acquiring and Releasing Semaphores

Table 6.2 identifies the operations used to acquire or release semaphores.
Table 6.2: Semaphore acquire and rel ease operations.

Operation Description
Acquire Acquire asemaphore token
Release Rel ease a semaphore token

The operationsfor acquiring and releasing a semaphore might have different names, depending on the kerndl: for
example, take and give , sm_p and sm v, pend and post , and lock and unlock . Regardless of the name, they all
effectively acquire and rel ease semaphores.

Taskstypicaly make areguest to acquire asemaphorein one of the following ways:

Wait forever task remains blocked until it is able to acquire a semaphore.

Wait with atimeout task remains blocked until it is able to acquire a semaphore or until aset interval of
time, cdled the timeout interval , passes. At this point, the task is removed from the semaphore s
task-waiting list and put in either the ready state or the running state.

Do not wait task makes arequest to acquire a semaphore token, but, if oneisnot available, the task does
not block.

Note that |SRs can also release binary and counting semaphores. Note that most kernels do not support 1SRs
locking and unlocking mutexes, asit is not meaningful to do so from an ISR. It isaso not meaningful to acquire either
binary or counting semaphoresinsdean ISR.

Any task can release abinary or counting semaphore; however, amutex can only be released (unlocked) by the task
that first acquired (locked) it. Note that incorrectly releasing abinary or counting semaphore can result inlosing
mutually exclusive accessto ashared resource or in an 1/O device mafunction.

For example, atask can gain accessto a shared data structure by acquiring an associated semaphore. If a second
task accidentaly releases that semaphore, this step can potentidly free athird task waiting for that same semaphore,
alowing that third task to aso gain accessto the same data tructure. Having multiple tasks trying to modify the same
datastructure at the same time results in corrupted data.

6.3.3 Clearing Semaphore Task-Waiting Lists
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To clear dl tasks waiting on a semaphore task-waiting list, some kernels support a flush operation, asshownin Table
6.3.
Table 6.3: Semaphore unblock operations.

Operation Description
Hush Unblocks dl tasks waiting on a semaphore

The flush operation is useful for broadcast signaling to agroup of tasks. For example, a developer might design
multiple tasks to complete certain activities first and then block while trying to acquire acommon semaphorethat is
made unavailable. After the last task finishes doing what it needsto, the task can execute a semaphore flush operation
on the common semaphore. This operation frees dl tasks waiting in the semaphore stask waiting list. The
synchronization scenario just described isaso cdled thread rendezvous, when multiple tasks executions need to
meet a some point in time to synchronize execution control.

6.3.4 Getting Semaphor e | nfor mation

At some point in the gpplication design, devel opers need to obtain semaphore information to perform monitoring or
debugging. In these cases, use the operations shown in Table 6.4.
Table 6.4: Semaphore information operations.

Operation Description
Show info Show generd information about ssmaphore
Show blocked tasks Get aligt of IDs of tasks that are blocked on a semaphore

These operations are rdatively straightforward but should be used judicioudy, as the semaphore information might be
dynamic at thetimeit isrequested.
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6.4 Typical Semaphore Use

Semaphores are useful ether for synchronizing execution of multiple tasks or for coordinating access to ashared
resource. Thefollowing examples and genera discussionsillustrate using different types of semaphoresto address
common synchronization design requirements effectively, aslisted:

wait-and-signd synchronization,

multiple-task wait-and-signa synchronization,
credit-tracking synchronization,

s ngle shared-resource-access synchronization,
recursive shared-resource-access synchronization, and
multiple shared-resource-access synchroni zation.

Notethat, for the sake of smplicity, not al uses of semaphores are listed here. Also, later chapters of this book
contain more advanced discussons on the different ways that mutex semaphores can handle priority inversion.

6.4.1 Wait-and-Signal Synchronization

Two tasks can communicate for the purpose of synchronization without exchanging data. For example, abinary
semaphore can be used between two tasks to coordinate the transfer of execution control, as shown in Figure 6.5.

tSignalTask _... tWaitTask

Binary Semaphore
(Initial value = 0)

Figure 6.5: Wait-and-signal synchronization between two tasks.

InthisStuation, the binary semaphoreisinitialy unavailable (value of 0). tWaitTask has higher priority and runsfirst.
The task makes a request to acquire the semaphore but is blocked because the semaphore is unavailable. This step
givesthe lower priority tSignd Task achanceto run; at some point, tSigna Task releases the binary semaphore and
unblocks tWaitTask. The pseudo code for this scenario isshownin Listing 6.1.

Listing 6.1: Pseudo code for wait-and-signal synchronization
-Task ()

Acqui re binary senmaphore token
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}

t Si gnal Task ( )
{

Rel ease binary senmaphore token

Because tWaitTask's priority is higher than tSignal Task's priority, as soon as the semaphoreis released, tWaitTask
preempts tSigna Task and starts to execute.

6.4.2 Multiple-Task Wait-and-Signal Synchronization

When coordinating the synchronization of more than two tasks, use the flush operation on the task-waiting list of a

tWaitTask 1
tSignalTask tWaitTask 2
Binary Semaphore i
- - (Initial value = 0) WaitTask 3
binary semaphore, as shown in Figure 6.6.

Figure 6.6: Wait-and-signa synchronization between multiple tasks.

Asinthe previous case, the binary semaphoreisinitialy unavailable (vaue of 0). The higher priority tWaitTasks 1, 2,
and 3 al do some processing; when they are done, they try to acquire the unavailable semaphore and, as aresult,
block. Thisaction givestSignd Task a chance to complete its processing and execute a flush command on the
semaphore, effectively unblocking the three tWaitTasks, asshownin Listing 6.2. Note that smilar codeis used for
tWaitTask 1, 2, and 3.

Listing 6.2: Pseudo code for wait-and-signd synchronization.
-Task O

Do sone processing specific to task Acquire binary semaphore token

}

t Si gnal Task ()
{

Do sone processing Flush binary semaphore's task-waiting |ist

Because the tWaitTasks priorities are higher than tSigna Task's priority, as soon as the semaphoreis released, one of
the higher priority tWaitTasks preempts tSignal Task and starts to execute,

Notethet in the wait-and-signa synchronization shown in Figure 6.6 the value of the binary semaphore after the flush

operation isimplementation dependent. Therefore, the return vaue of the acquire operation must be properly
checked to seeif either areturn-from-flush or an error condition has occurred.

6.4.3 Credit-Tracking Synchronization
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Sometimes the rate at which the signaling task executesis higher than that of the signaled task. Inthiscase, a
mechanism is heeded to count each signaling occurrence. The counting semaphore providesjust thisfacility. Witha
counting semaphore, the signaling task can continue to execute and increment acount at its own pace, while the wait
task, when unblocked, executes at its own pace, as shown in Figure 6.7.

iSignalTask E— tWaitTask

Counting Semaphore
(Initial value = 0)

Figure 6.7: Credit-tracking synchronization between two tasks.

Again, the counting semaphore's count isinitialy 0, making it unavailable. The lower priority tWaitTask triesto
acquire this semaphore but blocks until tSignal Task makes the semaphore available by performing ardease onit.
Even then, tWaitTask will waitsin the reedy state until the higher priority tSigna Task eventually relinquishes the CPU
by making ablocking call or delaying itsdlf, asshownin Listing 6.3.

Listing 6.3: Pseudo codefor credit-tracking synchronization.
-Tas k ()

Acqui re counting semaphore token

t Si gnal Task ()
{

Rel ease counting semaphore token

BecausetSignd Task is set to ahigher priority and executes at its own rate, it might increment the counting semaphore
multiple times before tWaitTask starts processing the first request. Hence, the counting semaphore alows a credit
buildup of the number of timesthat the tWaitTask can execute before the semaphore becomes unavailable.

Eventudly, when tSigna Task's rate of rel easing the semaphore tokens dows, tWaitTask can catch up and eventually
deplete the count until the counting semaphore is empty. At this point, tWaitTask blocks again at the counting
semaphore, waiting for tSigna Task to release the semaphore again.

Note that this credit-tracking mechanismis useful if tSignd Task rel eases semaphoresin burdts, giving tWaitTask the
chance to catch up every oncein awhile.

Using this mechanism with an ISR that actsin asmilar way to the signding task can be quite useful. Interrupts have
higher priorities than tasks. Hence, an interrupt's associated higher priority 1SR executes when the hardware interrupt
istriggered and typically offloads some work to alower priority task waiting on a semaphore.

6.4.4 Single Shar ed-Resour ce-Access Synchronization

One of the more common uses of semaphoresisto provide for mutualy exclusive accessto a shared resource. A
shared resource might be amemory location, a data structure, or an 1/O device-essentidly anything that might have to
be shared between two or more concurrent threads of execution. A semaphore can be used to seridize accessto a
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tAccessTask 1 v 5“‘\‘
@ Shared 1,
Resource 3
tAccessTask 2 Binary . Py
Semaphore™--._ —
shared resource, as shown in Figure 6.8. (Initial value = 1) i

Figure 6.8: Single shared-resource-access synchronization.

In this scenario, abinary semaphoreisinitialy created in the available state (value = 1) and is used to protect the
shared resource. To access the shared resource, task 1 or 2 needsto first successfully acquire the binary semaphore
before reading from or writing to the shared resource. The pseudo code for both tAccessTask 1 and 2 issimilar to

Liging 64.

Listing 6.4: Pseudo code for tasks accessing a shared resource.
.gssTask ()

Acqui re binary senmaphore token
Read or wite to shared resource
Rel ease bi nary semaphore token

This code seridizes the access to the shared resource. If tAccessTask 1 executesfird, it makes arequest to acquire
the semaphore and is successful because the semaphoreis available. Having acquired the semaphore, thistask is
granted access to the shared resource and can read and writeto it.

Meanwhile, the higher priority tAccessTask 2 wakes up and runs due to atimeout or some externd event. It triesto
access the same semaphore but is blocked because tAccessTask 1 currently has accessto it. After tAccessTask 1
rel eases the semaphore, tAccessTask 2 is unblocked and starts to execute.

One of the dangersto thisdesignisthat any task can accidentaly release the binary semaphore, even one that never
acquired the semaphore in thefirst place. If thisissue were to happen in this scenario, both tAccessTask 1 and
tAccessTask 2 could end up acquiring the semaphore and reading and writing to the shared resource at the same
time, which would lead to incorrect program behavior.

To ensure that this problem does not happen, use amutex semaphore instead. Because a mutex supports the concept
of ownership, it ensuresthat only the task that successfully acquired (locked) the mutex can release (unlock) it.

6.4.5 Recur sive Shar ed-Resour ce-Access Synchronization

Sometimes a developer might want atask to access a shared resource recursvely. Thissituation might exist if
tAccessTask calls Routine A that calls Routine B, and all three need access to the same shared resource, as shownin

tAccassTask [e.

Recursive ™-.._
Mutex

Figure 6.9.

Figure 6.9: Recursive shared- resource-access synchronization.
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If asemaphore were used in this scenario, the task would end up blocking, causing adeadiock. When aroutineis
caled from atask, the routine effectively becomes a part of the task. When Routine A runs, therefore, it isrunning as
apart of tAccessTask. Routine A trying to acquire the semaphore is effectively the same astAccessTask trying to
acquire the same semaphore. In this case, tAccessTask would end up blocking while waiting for the unavailable
semaphorethat it aready has.

One solution to this Situation isto use arecursive mutex. After tAccessTask locks the mutex, the task ownsit.
Additiona atemptsfrom thetask itsdf or from routinesthat it callsto lock the mutex succeed. Asaresult, when
Routines A and B attempt to lock the mutex, they succeed without blocking. The pseudo code for tAccessTask,
Routine A, and Routine B aresimilar to Ligting 6.5.

Listing 6.5. Pseudo code for recursively accessing ashared resource.
.gssTask 0

Acqui re rmut ex

Access shared resource
Call Routine A

Rel ease nmut ex

}
Routine A ()
{
Acqui re rmut ex
Access shared resource
Call Routine B
Rel ease nut ex
}
Routine B ()
{

Acqui re rmut ex
Access shared resource
Rel ease nut ex

6.4.6 M ultiple Shar ed-Resour ce-Access Synchronization

For casesin which multiple equivaent shared resources are used, a counting sesmaphore comesin handy, as shownin

- =,

tAccessTask 1 Equivalent | ™.
Shared
Resource
tAccessTask 2 :
] Equivalent !
Countingx Shared !
tAccessTask 3 \ !
Semaphore™, Resource
Figure 6.10. S

Figure 6.10: Single shared-resource-access Synchronization.
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Note that this scenario does not work if the shared resources are not equivaent. The counting semaphore's count is
initialy set to the number of equivalent shared resources: in thisexample, 2. Asaresult, thefirst two tasks requesting
asemaphore token are successful. However, the third task ends up blocking until one of the previous two tasks

rel eases a semaphore token, as shown in Ligting 6.6. Note that smilar codeis used for tAccessTask 1, 2, and 3.

ssTask ()

Ligti nr 6.6: Pseudo code for multiple tasks accessing equivalent shared resources.

Acquire a counting semaphore token
Read or Wite to shared resource
Rel ease a counting senmaphore token

Aswith the binary semaphores, this design can cause problemsif atask releases asemaphorethat it did not originaly
acquire. If the codeisrdatively smple, thisissue might not be a problem. If the codeis more elaborate, however,
with many tasks ng shared devices using multiple semaphores, mutexes can provide built-in protection in the
goplication design.

Asshown in Figure 6.9, a separate mutex can be assigned for each shared resource. When trying to lock a mutex,
each task triesto acquire the first mutex in anon-blocking way. If unsuccessful, each task then triesto acquire the
second mutex in ablocking way.

Thecodeissimilar to Listing 6.7. Note that smilar code is used for tAccessTask 1, 2, and 3.

Listing 6.7: Pseudo code for multiple tasks ng equivalent shared resources using mutexes.
-s sTask ()

Acquire first nutex in non-bl ocking way

I f not successful then acquire 2nd nutex in a bl ocki ng way
Read or Wite to shared resource
Rel ease the acquired mutex

Using this scenario, task 1 and 2 each is successful in locking a mutex and therefore having accessto ashared
resource. When task 3 runs, it triesto lock the first mutex in anon-blocking way (in casetask 1 is done with the
mutex). If thisfirst mutex isunlocked, task 3 locksit and is granted accessto thefirst shared resource. If thefirst
mutex is still locked, however, task 3 tries to acquire the second mutex, except that thistime, it would do soina
blocking way. If the second mutex is also locked, task 3 blocks and waits for the second mutex until it is unlocked.
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6.5 Pointsto Remember

Some points to remember include the following:

Using semaphores dlows multiple tasks, or ISRsto tasks, to synchronize execution to synchronize execution
or coordinate mutually exclusive access to ashared resource.

Semaphores have an associated semaphore control block (SCB), aunique ID, a user-assigned vaue (binary
or acount), and atask-waiting list.

Three common types of semaphores are binary, counting, and mutud excluson (mutex), each of which can
be acquired or released.

Binary semaphores are either available (1) or unavailable (0). Counting semaphores are dso either available
(count =1) or unavailable (0). Mutexes, however, are either unlocked (0) or locked (lock count =1).

Acquiring abinary or counting semaphore resultsin decrementing its value or count, except when the
semaphore svalueisaready 0. In this case, the requesting task blocksif it choosesto wait for the
semaphore.

Releasing abinary or counting semaphore resultsin incrementing the value or count, unlessitisabinary
semaphore with avalue of 1 or abounded semaphore at its maximum count. In this case, the release of
additiond semaphoresistypicaly ignored.

Recursive mutexes can be locked and unlocked multiple times by the task that owns them. Acquiring an
unlocked recursive mutex increments itslock count, while releasing it decrements the lock count.

Typical semaphore operations that kernels provide for application devel opment include creating and deleting
semaphores, acquiring and releasing semaphores, flushing semaphore stask-waiting list, and providing
dynamic access to semaphore information.
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Chapter 7: Message Queues

7.1 Introduction

Chapter 6 discusses activity synchronization of two or more threads of execution. Such synchronization helpstasks
cooperate in order to produce an efficient red-time system. In many cases, however, task activity synchronization
alone does not yield asufficiently responsive application. Tasks must aso be able to exchange messages. To fecilitate
inter-task data communication, kernels provide a message queue object and message queue management Services.

This chapter discussesthe following:
defining message queues,
message queue states,
message gueue content,

typica message queue operations, and

typica message queue use.
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7.2 Defining M essage Queues

A message queue is a buffer-like object through which tasks and 1 SRs send and receive messages to communicate
and synchornize with data. A message queueislike apipdine. It temporarily holds messages from a sender until the
intended receiver isready to read them. Thistemporary buffering decouples asending and receiving task; that is, it
freesthe tasks from having to send and receive messages smultaneoudly.

Aswith semaphore introduced in Chapter 6, amessage queue has several associated components that the kernel
uses to manage the queue. When amessage queue isfirst created, it is assigned an associated queue control block
(QCB), amessage queue name, aunique | D, memory buffers, aqueue length, a maximum message length, and one

Quaus Contral Memary
Block (System Pool or
Privale Bulfers)
= e 1]

e

i ] R ing Task
Sending Task ! Queve NameD | prosstes firs

Waiting Lizt ]
T =¥
Maximum
(LT Takk -T-B&k -— H!nge -‘-i ::l Task
Length 4 -
N T >
\
Queid Langih
.l . . . . Quevs
or moretask-waiting lists, asillustrated in Figure 7.1. s Head  Elament

Figure 7.1: A message queue, its associated parameters, and supporting data structures.

Itisthekernd sjob to assign aunique ID to amessage queue and to create its QCB and task-waiting list. The kernel
al so takes devel oper-supplied parameters such as the length of the queue and the maximum message length to
determine how much memory is required for the message queue. After the kernel hasthisinformation, it alocates
memory for the message queue from either apool of system memory or some private memory space.

The message queueitself conssts of anumber of eements, each of which can hold asingle message. The eements
holding the first and last messages are cdlled the head and tail respectively. Some eements of the queue may be
empty (not containing amessage). Thetotal number of e ements (empty or not) in the queueisthe total length of the
gueue . The developer specified the queue length when the queue was created.

As Figure 7.1 shows, a message queue has two associated task-waiting lists. The receiving task-waiting list conssts
of tasksthat wait on the queue when it isempty. The sending list consists of tasks that wait on the queue whenitis
full. Empty and full message-queue states, aswell as other key concepts, are discussed in more detail next.
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7.3 Message Queue States

Aswith other kernel objects, message queues follow thelogic of asimple FSM, asshown in Figure 7.2 When a
message queueisfirst created, the FSM isin the empty state. If atask attempts to receive messages from this
message queue while the queue is empty, the task blocks and, if it choosesto, is held on the message queue's

Message Delvered
fmsgs m,ggs =1)

Quewe Crealed Meassape Davverad I Massage Delivered

msgs = ﬂ'..' rmws I.'J,'- i rmsg-.; ms;r.s 1)
el .'.a‘assage Armived

M Arread
ﬁﬁ?;: ”::'- (mags = Quaue Length)

Ml.r*-r.‘.'lqu .l'irru.-'ur.l'

task-waiting list, in either aFIFO or priority-based order. (msgs = msgs +1)
Figure 7.2: The state diagram for amessage queve.

In this scenario, if another task sends a message to the message queue, the message is delivered directly to the
blocked task. The blocked task isthen removed from the task-waiting list and moved to either the ready or the
running state. The message queue in this case remains empty because it has successfully ddlivered the message.

If another message is sent to the same message queue and no tasks are waiting in the message queue's task-waiting
list, the message queue's state becomes not empty.

As additional messages arrive at the queue, the queue eventualy fills up until it has exhausted its free space. At this
point, the number of messagesin the queue is equa to the queue's length, and the message queue's state becomes
full. While amessage queueisin this state, any task sending messagesto it will not be successful unless some other
task firgt requests amessage from that queue, thus freeing a queue € ement.

In some kerndl implementations when atask attempts to send a message to afull message queue, the sending function
returns an error code to that task. Other kernel implementations allow such atask to block, moving the blocked task
into the sending task-waiting list, which is separate from the receiving task-waiting list.

tSendingTask —» — » tReceivingTask
Messagal| ‘—— —__| Message 1 :
1 ::npy "‘“I _,_.-"'znd i P!r
! Sending lask's : Messaga queLE s : Receiving task’s |
i memory area ¢ : _memary area : ; mamary area

Figure 7.3: Message copying and memory use for sending and receiving messages.
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7.4 M essage Queue Content

Message queues can be used to send and receive avariety of data. Some examplesinclude:

atemperature value from a sensor,
abitmap to draw on adisplay,

atext messageto print to an LCD,
akeyboard event, and

adata packet to send over the network.

Some of these messages can be quite long and may exceed the maximum message length, which is determined when
the queueis created. (Maximum message length should not be confused with total queue length, whichisthetotal
number of messages the queue can hold.) One way to overcome the limit on message length isto send a pointer to
the data, rather than the dataitsalf. Even if along message might fit into the queue, it is sometimes better to send a
pointer ingtead in order to improve both performance and memory utilization.

When atask sends amessage to another task, the message normally is copied twice, as shown in Figure 7.3 Thefirst
time, the message is copied when the message is sent from the sending task s memory areato the message queue s
memory area. The second copy occurs when the message is copied from the message queue s memory areato the
receiving task smemory area.

An exception to thisstuation isif the receiving task is dready blocked waiting at the message queue. Depending ona
kernel simplementation, the message might be copied just oncein this case from the sending task smemory areato
the recelving task s memory area, bypassing the copy to the message queue s memory area.

Because copying data can be expensive in terms of performance and memory requirements, keep copying to a
minimum in ared-time embedded system by keeping messages smdll or, if that is not feasible, by using apointer
instead.
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7.5 Message Queue Storage

Different kernels store message queues in different locationsin memory. One kernd might use a system pool, in
which the messages of al queues are stored in one large shared area of memory. Another kernel might use separate
memory aress, called private buffers, for each message queue.

7.5.1 System Pools

Using asystem pool can be advantageousif it is certain that all message queueswill never befilled to capacity at the
sametime. The advantage occurs because system poolstypicaly save on memory use. The downsideisthat a
message queue with large messages can easily use most of the pooled memory, not leaving enough memory for other
message queues. Indications that this problem is occurring include amessage queue that is not full that startsreecting
messages sent to it or afull message queue that continues to accept more messages.

7.5.2 Private Buffers

Using private buffers, on the other hand, requires enough reserved memory areafor the full capacity of every
message queue that will be created. This approach clearly uses up more memory; however, it aso ensuresthat
messages do not get overwritten and that room isavailable for all messages, resulting in better reliability than the pool
approach.
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7.6 Typical Message Queue Operations

Typica message queue operationsinclude the following:
creating and deleting message queues,
sending and receiving messages, and

obtaining message queue informetion.

7.6.1 Creating and Deleting M essage Queues

Message queues can be created and deleted by using two smple cals, asshownin Table 7.1.
Table 7.1: Message queue creation and deletion operations.

Operation Description
Credte Creates a message queue
Ddete Deletes amessage queue

When created, message queues are treated as global objects and are not owned by any particular task. Typicdly, the
gueue to be used by each group of tasks or ISRsis assigned in the design.

When creating amessage queue, adeveloper needs to make someinitial decisions about the length of the message
gueue, the maximum size of the messages it can handle, and the waiting order for tasks when they block on a

message queLe.

Ddeting amessage queue automaticaly unblocks waiting tasks. The blocking cal in each of these tasks returns with
an error. Messages that were queued are lost when the queue is del eted.

7.6.2 Sending and Receiving M essages

The most common uses for amessage queue are sending and receiving messages. These operations are performed in
different ways, some of which arelisted in Table 7.2 .
Table 7.2: Sending and recelving messages.

Operation Description
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Send Sends a message to amessage queue
Receive Receives a message from a message queue
Broadcast Broadcasts messages

Sending M essages

Wh ki ly fill fromh linFIF =
en sending messages, akernel typicaly fillsamessage queue rorBrJ1I dim Eg !}g ) E|i n Hm% Ol-[ggnf Eﬂ%“,’!;‘. r|d r; r gure

Message Queus Recaiving Task
Waiting List

e i meg2 r-.isx_;'l] ‘ Eu.

Msg 3

Sending Messages — Last-ln, First-Out [LIFO) Order

Message Queus Receiving Task
Waiting List

PN Sunns

Msg 1 Msg 2

7.4. Each new message is placed a the end of the queue. L2

Figure 7.4: Sending messagesin FIFO or LIFO order.

Many message-queue implementations allow urgent messagesto go straight to the head of the queue. If dl arriving
messages are urgent, they al go to the head of the queue, and the queuing order effectively becomes last-in/ffirst-out

(LIFO). Many message-queue implementations aso alow 1SRs to send messages to a message queue. In any case,
messages are sent to a message queue in the following ways:

not block (1SRs and tasks),
block with atimeout (tasks only), and
block forever (tasks only).

At times, messages must be sent without blocking the sender. If amessage queueisaready full, the send call returns
with an error, and the task or ISR making the call continues executing. Thistype of gpproach to sending messagesis
the only way to send messages from ISRs, because | SRs cannot block.

Most times, however, the system should be designed so that atask will block if it attemptsto send amessageto a
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queuethat isfull. Setting the task to block either forever or for a specified timeout accomplishesthis step. (Figure 7.5
). The blocked task is placed in the message quwestadx-waitir:gelist, whichisset upin either FIFO or

Task Waiting List — First-In, First-Out [FIFO) O

Sending Task Waiting List Message Cuews Receiving Task
Wwaiting List

x| T T T} CT

i| Thsk3 Tassk 2
i| Medium Low

m;h Fj
High
Bilocking Task

Task Waiting List — Priority-Based Order

Sending Task Waiting List Massage Cueve R;llc?win:: Task
laiting List
AE N Em O ET TR : i
Madlum (| Mool Low |1 o i
Task 4
High

priority-based order.  Blocking Task
Figure 7.5: FIFO and priority-based task-waiting lists.

In the case of atask set to block forever when sending a message, the task blocks until a message queue e ement
becomesfree (e.g., areceiving task takes amessage out of the queue). In the case of atask set to block for a
specified time, the task is unblocked if either a queue e ement becomes free or the timeout expires, in which case an
error isreturned.

Receiving M essages

Aswith sending messages, tasks can receive messages with different blocking policies the same way asthey send
them with apolicy of not blocking, blocking with atimeout, or blocking forever. Note, however, that in this case, the
blocking occurs due to the message queue being empty, and the receiving taskswait in either aFIFO or
prioritybased order. The diagram for the receiving tasksissimilar to Figure 7.5, except that the blocked receiving
tasksarewhat fillsthetask list.

For the message queue to become full, either the receiving task list must be empty or the rate at which messages are
posted in the message queue must be greater than the rate at which messages are removed. Only when the message
queueisfull doesthetask-waiting list for sending tasks art to fill. Conversaly, for the task-waiting list for receiving
tasksto Start to fill, the message queue must be empty.

Messages can be read from the head of amessage queuein two different ways:
destructive read, and
non-destructive read.

In adestructive read, when atask successfully receives amessage from a queue, the task permanently removesthe
message from the message queue s storage buffer. In anon-destructive read, areceiving task peeks at the message
at the head of the queue without removing it. Both ways of reading amessage can be useful; however, not al kernel
implementations support the non-destructive read.
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Some kernels support additional ways of sending and receiving messages. One way isthe example of peeking at a
message. Other kernels allow broadcast messaging, explained later in this chapter.

7.6.3 Obtaining M essage Queue | nfor mation

Obtaining message queue information can be done from an application by using the operationslisted in Table 7.3.

Table 7.3: Obtaining message queue information operations.

Operation Description
Show queueinfo Getsinformation on amessage queue
Show queue stask-waiting list Getsalig of tasksin the queue stask-waiting list

Different kernels dlow devel opersto obtain different types of information about a message queue, including the
message queue | D, the queuing order used for blocked tasks (FIFO or priority-based), and the number of messages
queued. Some calls might even alow developersto get afull list of messagesthat have been queued up.

Aswith other calsthat get information about aparticular kernel object, be careful when using these cdls. The
information is dynamic and might have changed by thetimeit sviewed. These types of calls should only be used for

debugging purposes.



This document is created with the unregistered version of CHM2PDF Pilot

7.7 Typical Message Queue Use

Thefollowing aretypica waysto use message queues within an application:
non-interlocked, one-way data communication,
interlocked, one-way data communication,
interlocked, two-way data communication, and

broadcast communication.

Notethat thisis not an exhaudtive list of the data communication patternsinvolving message queues. Thefollowing
sections discuss each of these smple cases.

7.7.1 Non-Interlocked, One-Way Data Communication

One of the smplest scenarios for message-based communications requires a sending task (also caled the message
source), amessage queue, and areceiving task (also called amessage sink), asillustrated in Figure 7.6.

tSourceTask —m —»| TSinkTask

Figure 7.6: Non-interlocked, one-way data communication.

Thistype of communication isaso called non-interlocked (or loosely coupled), one-way data communication. The
activities of tSourceTask and tSinkTask are not synchronized. TSourceTask smply sends amessage; it does not
require acknowledgement from tSinkTask.

The pseudo code for thisscenariois provided in Ligting 7.1.

ceTask ()

Ligi nr 7.1: Pseudo code for non-interlocked, one-way data communication.

Send nmessage to nessage queue

}

t Si nkTask ()
{

Recei ve nessage from nessage queue
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If tSinkTask is set to ahigher priority, it runsfirst until it blocks on an empty message queue. As soon as
tSourceTask sends the message to the queue, tSinkTask receives the message and starts to execute again.

If tSnkTask isset to alower priority, tSourceTask fills the message queue with messages. Eventuadly, tSourceTask
can be made to block when sending a message to afull message queue. This action makes tSinkTask wake up and
sart taking messages out of the message queue.

ISRstypicaly use non-interlocked, one-way communication. A task such astSinkTask runs and waits on the
message queue. When the hardware triggers an I SR to run, the ISR puts one or more messages into the message
queue. After the ISR completes running, tSinkTask gets an opportunity to run (if it sthe highest-priority task) and
takes the messages out of the message queue.

Remember, when | SRs send messages to the message queue, they must do so in anon-blocking way. If the message
queue becomes full, any additional messages that the | SR sends to the message queue are lost.

7.7.2 Interlocked, One-Way Data Communication

In some designs, a sending task might require a handshake (acknowledgement) that the receiving task has been
successful in receiving the message. This processis called interlocked communication, in which the sending task
sends amessage and waits to see if the message isreceived.

This requirement can be useful for reliable communications or task synchronization. For example, if the message for
some reason is not received correctly, the sending task can resend it. Using interlocked communication can close a
synchronization loop. To do so, you can congtruct a continuous loop in which sending and receiving tasks operatein
lockstep with each other. An example of one-way, interlocked data communication isillustrated in Figure 7.7.

tSourceTask 1_—:. —®  tSinkTask
-®-

Figure 7.7: Interlocked, one-way data communication.

- —

Inthis case, tSourceTask and tSinkTask use a binary semaphoreinitialy set to 0 and a message queue with alength
of 1 (also called amailbox). tSourceTask sends the message to the message queue and blocks on the binary
semaphore. tSinkTask receives the message and increments the binary semaphore. The semaphore that has just been
meade available wakes up tSourceTask. tSourceTask, which executes and posts another message into the message
queue, blocking again afterward on the binary semaphore.

The pseudo code for interlocked, one-way data communication is provided in Listing 7.2.
The semaphore in this case acts as a s mple synchronization object that ensures that tSourceTask and tSinkTask are

in lockstep. This synchronization mechanism aso acts as a s mple acknowledgement to tSourceTask that it s okay to
send the next message.

7.7.3 Interlocked, Two-Way Data Communication

Sometimes data must flow bidirectionally between tasks, which is called interlocked, two-way data communication
(aso cdled full-duplex or tightly coupled communication). Thisform of communication can be useful when designing
aclient/server-based system. A diagram isprovided in Figure 7.8.



This document is created with the unregistered version of CHM2PDF Pilot

t ClientTask 4_L I" t ServerTask

Figure 7.8: Interlocked, two-way data communication.
Ligting 7.2: Pseudo code for interlocked, one-way data communication.

ceTask ()

Send nessage to nessage queue
Acqui re binary semaphore

}

t Si nkTask ()
{

Recei ve nessage from nessage queue
G ve binary semaphore

Inthis case, tClientTask sends arequest to tServerTask viaamessage queue. tServer-Task fulfillsthat request by
sending amessage back to tClientTask.

The pseudo codeisprovided in Ligting 7.3.

nt Task ()

Ligi nr 7.3. Pseudo code for interlocked, two-way data communication.

Send a nessage to the requests queue
Wait for nessage fromthe server queue

}

t Server Task ()
{

Recei ve a nmessage fromthe requests queue
Send a nessage to the client queue

Note that two separate message queues are required for full-duplex communication. If any kind of data needsto be
exchanged, message queues are required; otherwise, a S mple semaphore can be used to synchronize
acknowledgement.

Inthe smple client/server example, tServerTask istypicaly set to ahigher priority, dlowing it to quickly fulfill client

requedts. If multiple clients need to be set up, dl clients can use the client message queue to post requests, while
tServerTask uses a separate message queue to fulfill the different clients requests.

7.7.4 Broadcast Communication
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Some message-queue implementations alow devel opers to broadcast a copy of the same message to multiple tasks,
—#| tSinkTask 1

tBroadcastTask —» —| {SinkTask 2

—®| tSinkTask 3

asshownin Figure7.9.

Figure 7.9: Broadcasting messages.

M essage broadcasting is a one-to-many-task relationship. tBroadcastTask sends the message on which multiple
tSink-Task arewaiting.

Pseudo code for broadcasting messagesis provided in Listing 7.4.

Listing 7.4 Pseudo code for broadcasting messages.
.gdcast Task ()

Send broadcast nessage to queue
}
Note: simlar code for tSignal Tasks 1, 2, and 3.

t Si gnal Task ()
{

Recei ve message on queue

In this scenario, tSinkTask 1, 2, and 3 have all made callsto block on the broadcast message queue, waiting for a
message. When tBroadcastTask executes, it sends one message to the message queue, resulting in al three waiting
tasks exiting the blocked state.

Note that not al message queue implementations might support the broadcasting facility. Refer to the RTOS manua
to see what types of message-queue-management services and operations are supported.
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7.8 Pointsto Remember

Some points to remember include the following:

Message queues are buffer-like kernel objects used for data communi cation and synchroni zation between
two tasks or between an ISR and atask.

Message queues have an associated message queue control block (QCB), aname, aunique 1D, memory
buffers, amessage queue length, amaximum message length, and one or more task-waiting ligts.

The beginning and end of message queues are called the head and tail, respectively; each buffer that can hold
one message is caled amessage-queue e ement.

Message queues are empty when created, full when al message queue elements contain messages, and not
empty when some elements are still available for holding new messages.

Sending messages to full message queues can cause the sending task to block, and receiving messages from
an empty message queue can cause areceiving task to block

Tasks can send to and receive from message queues without blocking, via blocking with atimeout, or via
blocking forever. An 1SR can only send messages without blocking.

The task-waiting list associated with a message-queue can rel ease tasks (unblock them) in FIFO or
priority-based order.When messages are sent from one task to another, the messageistypically copied
twice: once from the sending task s memory area to the message queue s and a second time from the
message queue Smemory areato thetask s.

The dataitsdlf can either be sent as the message or as a pointer to the data as the message. Thefirst caseis
better suited for smaller messages, and the latter caseis better suited for large messages.

Common message-queue operationsinclude creating and del eting message queues, sending to and receiving
from message queues, and obtaining message queue information.

Urgent messages are inserted at the head of the queueif urgent messages are supported by the
message-queue implementation.

Some common ways to use message queues for data based communication include non-interlocked and
interlocked queues providing one-way or two-way data communication.
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Chapter 8. Other Kernel Objects

8.1 Introduction

In addition to the key kernd objects, such as tasks, semaphores, and message queues, kernels provide many other
important objects aswell. Because every kernd isdifferent, the number of objects agiven kernel supports can vary
from oneto another. This chapter explores additiona kernel objects common to embedded systems devel opment,
athough the ligt presented hereis certainly not dl-inclusive. Specificaly, this chapter focuses on:

other kernd objects, including pipes, event registers, sgnds, and condition variables,
object definitions and genera descriptions,

associated operations, and

typica applications of each.
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8.2 Pipes

Pipes are kernd objectsthat provide unstructured data exchange and facilitate synchronization among tasks. Ina
traditiona implementation, apipeisaunidirectiond dataexchange facility, as shown in Figure 8.1. Two descriptors,
onefor each end of the pipe (one end for reading and one for writing), are returned when the pipeis created. Datais
written via one descriptor and read viathe other. The data rema nsin the pipe as an unstructured byte stream. Dataiis

] w ([ )-p

Writing Reading
data to '/ =ik data from
Pipe Data ma[ntamad in the pipe Pipe
read from the p| pe in FIFO order. ene descriptor the other descriptor

Figure 8.1: A common pipe unidirectiond.
A pipe provides asmple data flow facility so that the reader becomes blocked when the pipe is empty, and the

writer becomes blocked when the pipeisfull. Typicaly, apipeisused to exchange data between a data-producing
task and adata-consuming task, asshown in Figure 8.2. Itisaso permissi ble to have severd writersfor the pipe

%ﬁ“ Pie

-) ( ) -b ~—» [ | -
with multiple readersoniit.

Figure 8.2: Common pipe operation.

Notethat a pipeis conceptualy similar to amessage queue but with sgnificant differences. For example, unlikea
message queue, a pipe does not store multiple messages. Instead, the datathat it storesis not structured, but consists
of agtream of bytes. Also, the datain a pipe cannot be prioritized; the dataflow is strictly firgt-in, first-out FIFO.
Findly, asis described below, pipes support the powerful select operation, and message queues do not.

8.2.1 Pipe Control Blocks

Pipes can be dynamically created or destroyed. The kernd creates and maintains pipe-specific information in an
internal data structure called a pipe control block . The structure of the pipe control block variesfrom one
implementation to another. Inits genera form, a pipe control block contains akernd-allocated data buffer for the
pipe sinput and output operation. The Size of this buffer ismaintained in the control block and is fixed when the pipe
is created; it cannot be dtered at run time. The current data byte count, a ong with the current input and output
position indicators, are part of the pipe control block. The current data byte count indicates the amount of readable
datain the pipe. Theinput position specifies where the next write operation beginsin the buffer. Smilarly, the output
position specifies where the next read operation begins. The kernel creates two descriptors that are unique within the
system |/O space and returns these descriptors to the creating task. These descriptors identify each end of the pipe
uniquely.

Two task-waiting lists are associated with each pipe, as shown in Figure 8.3. Onewaiting list kegpstrack of tasks
that are waiting to writeinto the pipe whileit isfull; the other kegpstrack of tasks that are waiting to read from the
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Figure 8.3: Pipe control block.

8.2.2 Pipe States

A pipe hasalimited number of states associated with it from the time of its creation to itstermination. Each state
corresponds to the data transfer state between the reader and the writer of the pipe, asillustrated in Figure 8.4.

Dby wans Résind
(more dals rmmas)
Data was Read

|
) {more space far writing)

ISHCNC

Fipe Croaled Daly was Rasd
(o cfata writton) (raz mone disdar ief)

Dada was Written

L\_/l {no mane space for wriling)

Dhata was Wrillan
[mare space for writing)

Figure 8.4: States of apipe.

8.2.3 Named and Unnamed Pipes

A kernd typicaly supports two kinds of pipe objects: named pipes and unnamed pipes. A named pipe , aso known
as FIFO, hasaname smilar to afile name and appearsin thefile syssem asif it were afile or adevice. Any task or
ISR that needs to use the named pipe can reference it by name. The unnamed pipe does not have aname and does
not appear in the file system. It must be referenced by the descriptors that the kernel returns when the pipeis created,
asexplained in more detail in the following sections.

8.2.4 Typical Pipe Operations

The following set of operations can be performed on a pipe:
create and destroy apipe,
read from or writeto apipe,

issue control commands on the pipe, and

select onapipe.
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Create and Destroy

Create and destroy operations are available, asshownin Table 8.1.
Table 8.1: Create and destroy operations.

Operation Description

Pipe Createsapipe

Open Opensapipe

Close Deletesor closesapipe

The pipe operation creates an unnamed pipe. This operation returns two descriptors to the calling task, and
subsequent calls reference these descriptors. One descriptor is used only for writing, and the other descriptor is used
only for reading.

Creating anamed pipeisamilar to creating afile; the specific call isimplementation-dependent. Some common
namesfor such acdl are mknod and mkfifo. Because anamed pipe has arecognizable namein thefile system after it
is created, the pipe can be opened using the open operation. The caling task must specify whether it is opening the

pipe for the read operation or for the write operation; it cannot be both.

The close operation is the counterpart of the open operation. Similar to open, the close operation can only be

performed on anamed pipe. Some implementations will delete the named pipe permanently once the close operation
completes.

Read and Write

Read and write operations are available, as shown in Table 8.2.
Table 8.2: Read and write operations.

Operation Description
Read Reads from the pipe
Write Writesto apipe

The read operation returns data from the pipe to the calling task. The task specifies how much datato read. The task
may choose to block waiting for the remaining datato arrive if the Sze specified exceeds what is available in the pipe.
Remember that aread operation on a pipe is adestructive operation because data is removed from a pipe during this
operation, making it unavailable to other readers. Therefore, unlike a message queue, a pipe cannot be used for
broadcasting data to multiple reader tasks.

A task, however, can consume ablock of data originating from multiple writers during one read operation.
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The write operation agppends new data to the existing byte stream in the pipe. The calling task specifies the amount of
datato writeinto the pipe. The task may choose to block waiting for additiona buffer space to become free when
the amount to write exceeds the available space.

No message boundaries exist in a pipe because the datamaintained in it is unstructured. Thisissue representsthe
main structural difference between a pipe and a message queue. Because there are no message headers, it is
impossible to determine the original producer of the data bytes. As mentioned earlier, another important difference
between message queues and pipesisthat data written to a pipe cannot be prioritized. Because each byte of datain
apipe hasthe same priority, a pipe should not be used when urgent data must be exchanged between tasks.

Control

Control operations are available, as shownin Table 8.3.
Table 8.3: Control operations.

Operation Description
Fentl Provides control over the pipe descriptor

The Fentl operation provides generic control over a pipe s descriptor using various commands, which control the
behavior of the pipe operation. For example, acommonly implemented command is the non-blocking command. The
command controls whether the calling task is blocked if aread operation is performed on an empty pipe or when a
write operation is performed on afull pipe.

Another common command that directly affectsthe pipeisthe flush command. The flush command removesdl data
from the pipe and clears al other conditionsin the pipe to the same state as when the pipe was created. Sometimesa
task can be preempted for too long, and when it finaly getsto read datafrom the pipe, the data might no longer be
useful. Therefore, the task can flush the data from the pipe and reset its Sate.

Select

Sedlect operations are available, asshownin Table 8.4.
Table 8.4: Sdlect operations.

Operation Description
Sdect Waitsfor conditionsto occur on apipe

The select operation alows atask to block and wait for a specified condition to occur on one or more pipes. The
wait condition can be waiting for data to become available or waiting for datato be emptied from the pipe(s). Figure
8.5 illugtrates a scenario in which asingle task iswaiting to read from two pipes and write to athird. In this case, the
select cdl returns when data becomes available on either of the top two pipes. The same sdlect call aso returns when
gpace for writing becomes available on the bottom pipe. In generd, atask reading from multiple pipes can perform a
select operation on those pipes, and the select call returns when any one of them has data available. Smilarly, atask
writing to multiple pipes can perform a select operation on the pipes, and the select call returns when space becomes
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available on any one of them.
Figure 8.5: The select operation on multiple pipes.

In contrast to pipes, message queues do not support the select operation. Thus, while atask can have accessto
multiple message queues, it cannot block-wait for datato arrive on any one of agroup of empty message queues.
The same redtriction appliesto awriter. In this case, atask can write to multiple message queues, but atask cannot
block-wait on agroup of full message queues, while waiting for space to become available on any one of them.

It becomes clear then that the main advantage of using a pipe over amessage queue for intertask communication is
that it allowsfor the select operation.

8.2.5 Typical Usesof Pipes

Because apipeisasmple datachannd, it ismainly used for task-to-task or | SR-to-task datatransfer, asillustrated
inFigure 8.1 and Figure 8.2. Another common use of pipesisfor inter-task synchronization.

I nter-task synchronization can be made asynchronous for both tasks by using the select operation.

In Figure 8.6, task A and task B open two pipes for inter-task communication. The first pipeis opened for data
transfer from task A to task B. The second pipeis opened for acknowledgement (another data transfer) from task B
to task A. Both tasksissue the select operation on the pipes. Task A can wait asynchronoudy for the data pipeto
become writeable (task B has read some data from the pipe). That is, task A can issue anon-blocking cal to writeto
the pipe and perform other operations until the pipe becomeswritesble. Task A can aso wait asynchronoudy for the
arrival of the transfer acknowledgement from task B on the other pipe. Smilarly, task B can wait asynchronoudy for
the arrival of data on the data pipe and wait fol[‘ Ithe other pipe to become writeable before sending the transfer

pe P
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N

| i i
Task ! i T Task
A i i i i B
: i ] ;
V(L i ‘.D.‘
h : " /-
acknowledgement. Select operation Sefect operation

Figure 8.6: Using pipesfor inter-task synchronization.
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8.3 Event Registers

Some kernels provide aspecia register as part of each task s control block, as shown in Figure 8.7. Thisregister,
cdled an event register, isan object belonging to atask and consists of agroup of binary event flags used to track
the occurrence of specific events. Depending on agiven kernel simplementation of this mechanism, an event register
can be 8-, 16-, or 32-bitswide, maybe even more. Each bit in the event register istreated like abinary flag (aso
called an event flag) and can be elther set or cleared.

Through the event register, atask can check for the presence of particular eventsthat can control its execution. An
external source, such asanother task or an ISR, can set bitsin the event register to inform the task that a particular
event has occurred.

Applications define the event associated with an event flag. This defiani on Ergtﬁ be agreed upon between the event
ttimg

Evenis
] 8. 16, or 32 bil Event Regisiar
™ [STeT Te]e]o ool o]ofe]e]* ee] 0]
— _T_ !
Checking Events

Conditional
Chistks
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sender and receiver using the event regidter.

Figure 8.7: Event regider.

8.3.1 Event Register Control Blocks

Typicaly, when the underlying kernd supports the event register mechanism, the kernd creates an event register
control block as part of the task control block when creating atask, as shown in Figure 8.8.

Event Register Control Block

wanted events

received events

timeout value

notification conditions

Task Control Block

Figure 8.8: Event register control block.
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Thetask specifiesthe set of eventsit wishesto receive. Thisset of eventsis maintained in the wanted events register.
Similarly, arrived events are kept in the received events register. The task indicates atimeout to specify how long it
wishesto wait for the arriva of certain events. The kernd wakes up the task when this timeout has e gpsed if no
specified events have arrived at the task.

Using the natification conditions, the task directsthe kernel asto when it wishesto be notified (awakened) upon
event arrivals. For example, the task can specify the notification conditionsas send notification when both event type
1 and event type 3 arrive or when event type 2 arrives. This option provides flexibility in defining complex
notification patterns.

8.3.2 Typical Event Register Operations

Two main operations are associated with an event register, the sending and the receiving operations, asshownin
Table85.
Table 8.5: Event register operations.

Operation Description
Send Sends events to atask
Recave Receives events

The receive operation dlowsthe calling task to receive events from external sources. The task can specify if it wishes
to wait, aswdll asthelength of timeto wait for the arriva of desired events before giving up. The task can wait
forever or for agpecified interva. Specifying a set of events when issuing the receive operation alows atask to
block-wait for the arrival of multiple events, athough events might not necessarily dl arrive smultaneoudy. The kerndl
trandates this event st into the notification conditions. The receive operation returns either when the notification
conditions are satisfied or when the timeout has occurred. Any received eventsthat are not indicated in the receive
operation are left pending in the recelved events register of the event register control block. The recelve operation
returnsimmediately if the desired events are dready pending.

The event st is constructed using the bit-wise AND/OR operation. With the AND operation, the task resumes
execution only after every event bit from the setison. A task can adso block-wait for the arrival of asingle event from
an event set, which is congtructed using the bit-wise OR operation. In this case, the task resumes execution when any
one event bit from the setison.

The send operation alows an external source, either atask or an ISR, to send events to another task. The sender can
send multiple events to the designated task through a single send operation. Events that have been sent and are
pending on the event bits but have not been chosen for reception by the task remain pending in the received events
register of the event register control block.

Eventsin the event register are not queued. An event register cannot count the occurrences of the same event whileit
IS pending; therefore, subsequent occurrences of the same event arelost. For example, if an ISR sendsan event to a
task and the event is | eft pending; and later another task sends the same event again to the same task whileit is il
pending, thefirst occurrence of the eventislost.

8.3.3 Typical Uses of Event Registers
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Event registers are typicaly used for unidirectiona activity synchronization. It isunidirectiona because theissuer of
the receive operation determines when activity synchronization should take place. Pending eventsin the event register
do not change the execution state of the receiving task.

Infollowing the diagram, at the time task 1 sends the event X to task 2, no effect occurs to the execution state of task

Send Event X 1o Task 2
Raceiva Event X

Task 2

2 if task 2 has not yet attempted to receive the event. | L

No datais associated with an event when events are sent through the event register. Other mechanisms must be used
when data needs to be conveyed along with an event. Thislack of associated data can sometimes create difficulties
because of the noncumulative nature of eventsin the event register. Therefore, the event register by itsdf isan
inefficient mechanism if used beyond smple activity synchronization.

Another difficulty in usng an event register isthat it does not have abuilt-in mechanism for identifying the source of an
event if multiple sources are possible. One way to overcome this problem isfor atask to divide the event bitsin the
event register into subsets.

The task can then associate each subset with aknown source. In thisway, the task can identify the source of an
event if each relative bit position of each subset is assigned to the same event type.

In Figure 8.9, an event register is divided into 4-bit groups. Each group is assigned to a source, regardless of whether
itisatask or an ISR. Each bit of the group is assigned to an event type.

Figure 8.9: Identifying an event source.



This document is created with the unregistered version of CHM2PDF Pilot

8.4 Signals

A signal isasoftware interrupt that is generated when an event has occurred. It divertsthe sgna receiver fromits
normal execution path and triggers the associated asynchronous processing.

Essentidly, signals notify tasks of eventsthat occurred during the execution of other tasks or ISRs. Aswith normal
interrupts, these events are asynchronous to the notified task and do not occur at any predetermined point in the task
sexecution. The difference between asigna and anormal interrupt isthat sgnas are so-called software interrupts,
which are generated via the execution of some software within the system. By contrast, normal interrupts are usudly
generated by the arrival of an interrupt signa on one of the CPU s external pins. They are not generated by software
within the system but by external devices. Chapter 10 discusses interrupts and exceptionsin detail.

The number and type of signals defined is both system-dependent and RTOS-dependent. An easy way to
understand signasisto remember that each signd is associated with an event. The event can be ether unintentiond,
such asanillegd ingtruction encountered during program execution, or the event may beintentiond, such asa
notification to one task from another that it is about to terminate. While atask can specify the particular actionsto
undertake when asigna arrives, the task has no control over when it receives signas. Consequently, the signal

arrivals often appear quite random, as sslﬂ;lmﬂrgg |Fn F glEJE[rer _% }Q.
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Figure8.10: Signdls.
When asgnd arrives, thetask isdiverted from its normal execution path, and the corresponding Sgnd routineis
invoked. Theterms signal routine, signal handler, asynchronous event handler, and asynchronous signal

routine are interchangeable. Thisbook uses asynchronous signal routine (ASR). Each signal isidentified by an
integer vaue, which isthe signal number or vector number .

8.4.1 Signal Control Blocks

If the underlying kernel providesasignd facility, it createsthe signd control block as part of the task control block as
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Signal Control Block

wanted signals

signal handler
ignored signals
o 2 signal handler

pending signals signal handler
blocked signals signal handler
shownin Figure 8.11. Task Control Block

Figure 8.11: Signd control block.

Thesigna control block maintains aset of signals the wanted signaswhich thetask is prepared to handle. When a
task is prepared to handleasignd, it isoften said, thetask is ready to catch thesgnd. Whenasgnd interruptsa
task, itisoften said, thesignd israised to thetask. Thetask can provide asignal handler for each signal to be
processed, or it can execute adefault handler that the kernel provides. It is possible to have asingle handler for
multipletypesof sgnds.

Signals can be ignored, made pending, processed (handled), or blocked.

The sgndsto beignored by the task are maintained in the ignored signals set. Any signd in this set does not interrupt
the task.

Other dgnas can arrive while the task isin the midst of processing another sgnd. The additiond signd arrivalsare
kept in the pending Sgnas set. The Sgnasin this set are raised to the task as soon as the task compl etes processing
the previous sgnd. The pending signals set is a subset of the wanted signal's .

To processaparticular sgnd, ether the task-supplied signal handler can be used for signal processing or the default
handler supplied by the underlying kernel can be used to processit. It isaso possble for the task to process the
signd firgt and then passit on for additiona processing by the default handler.

A fourth kind of responseto asignal ispossible. Inthis case, atask does not ignore the signal but blocksthe signal
from delivery during certain stages of the task s execution when it iscritical that the task not be interrupted.

Blocking asignd issimilar to the concept of entering acritical section, discussed in Chapter 15. The task can instruct
the kerndl to block certain sgnals by setting the blocked signals set. The kernel does not ddliver any signd from this
set until that Sgnd iscleared from the .

8.4.2 Typical Signal Operations

Signd operationsare available, asshown in Table 8.6.
Table 8.6: Signa operations.

Operation Description

Catch Ingalsasgna handler

Release Removesaprevioudy ingdled handler
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Send Sendsasignd to another task

Ignore Preventsasigna from being ddivered

Block Blocksaset of signal from being delivered
Unblock Unblocksthe signals so they can be ddivered

A task can catch asigna after the task has specified ahandler (ASR) for the signa. The catch operation ingtallsa
handler for aparticular sgnd. The kernd interrupts the task s execution upon the arrival of the signdl, and the handler
isinvoked. Thetask can ingtal the kernel-supplied default handler, the default actions, for any sgnd. The
task-ingtalled handler has the options of ether processing the signal and returning control to the kernel or processing
the signd and passing control to the default handler for additiond processing. Handling sgnadsissmilar to handling
hardware interrupts, and the nature of the ASR issimilar to that of the interrupt service routine.

After ahandler has been ingtalled for aparticular sgnd, the handler isinvoked if the same type of Sgnd isreceived
by any task, not just the onethat ingtaled it. In addition, any task can change the handler installed for a particular
sgna. Therefore, it isgood practice for atask to save the previoudy ingtdled handler beforeingalling its own and
then to restore that handler after it finishes catching the handler s corresponding Sgnd.

Figure 8.12 showsthe signa vector table, which the kernel maintains. Each element in the vector tableisapointer or
offset to an ASR. For sgnasthat don t have handlers assigned, the corresponding e ementsin the vector table are
NULL . The example shows the table after three catch operations have been performed. Each catch operation ingtalls
one ASR, by writing a pointer or offset to the ASR into an element of the vector table.

Signal
Number/Vector
Signal Register/Viector Table
’ LY
([1]2]s]ofofofofofofofofot-»

oy [

Length = 8, 16,
32 elements or

ASR #1 ASR #2 ASR #3 longer
{ { {

: 4 -

Signal Routines
Figure 8.12: The catch operation.

The release operation de-ingtallsasignal handler. It isgood practice for atask to restore the previoudy installed
sgnd handler after caling release.

The send operation alows one task to send asignal to another task. Signals are usually associated with hardware
eventsthat occur during execution of atask, such as generation of an unaligned memory address or a floating-point
exception. Such signas are generated automatically when their corresponding events occur. The send operation, by
contrast, enables atask to explicitly generateasignd.

Theignore operation alows atask to instruct the kerndl that a particular set of sgnals should never be delivered to
that task. Some signa's, however, cannot be ignored; when these signals are generated, the kernd cals the default
handler.
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The block operation does not cause signalsto beignored but temporarily prevents them from being delivered to a
task. The block operation protects critical sections of code from interruption. Another reason to block asignd isto
prevent conflict when the signal handler is dready executing and isin the midst of processing thesamesgndl. A signd
remains pending whileit s blocked.

The unblock operation allows a previoudy blocked signal to pass. The signd isddivered immediately if it isaready
pending.

8.4.3 Typical Usesof Signals

Some signals are associated with hardware events and thus are usua ly sent by hardware ISRs. The ISR is
responsible for immediately responding to these events. The ISR, however, might also send asigna o that tasks
affected by these hardware events can conduct further, task-specific processing.

Asdepicted in Figure 8.10, signals can aso be used for synchronization between tasks. Signal's, however, should be
used sparingly for the following reasons.

Using signals can be expensive due to the complexity of the signa facility when used for inter-task
synchronization. A signa atersthe execution State of its destination task. Because signal's occur
asynchronoudy, the receiving task becomes nondeterministic, which can be undesirable in ared-time system.

Many implementations do not support queuing or counting of signas. In these implementations, multiple
occurrences of the same signd overwrite each other. For example, asignal delivered to atask multiple times
beforeits handler isinvoked has the same effect asa single delivery. The task hasno way to determineif a
sgnd hasarrived multipletimes.

Many implementations do not support signal delivery that carriesinformation, so data cannot be attached to a
sgnd during itsgeneration.

Many implementations do not support asignd delivery order, and sgnas of various types are treated as
having equd priority, which isnot idedl. For example, asignd triggered by apage fault is obviousy more
important than asigna generated by atask indicating it is about to exit. On an equa-priority system, the page
fault might not be handled first.

Many implementations do not guarantee when an unblocked pending signd will be ddlivered to the
destination task.

Some kernds do implement redl-time extensionsto traditional sgna handling, which alows
for the prioritized delivery of asigna based on the signal number,

each sgnd to carry additiond information, and

multiple occurrences of the same signd to be queued.
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8.5 Condition Variables

Tasks often use shared resources, such asfiles and communication channels. When atask needsto use such a
resource, it might need to wait for the resource to be in a particular state. The way the resource reaches that Sate can
be through the action of another task. In such a scenario, atask needs some way to determine the condition of the
resource. One way for tasks to communicate and determine the condition of ashared resource is through a condition
variable. A condition variable isakernd object that is associated with a shared resource, which alows onetask to
wait for other task(s) to create a desired condition in the shared resource. A condition variable can be associated
with multiple conditions.

Asshown in Figure 8.13, a condition variable implements a predicate. The predicateis a set of logica expressons
concerning the conditions of the shared resource. The predicate evaluatesto either true or false. A task evauatesthe
predicate. If the evaluation istrue, the task assumes that the conditions are satisfied, and it continues execution.

Otherwise, the task must wait for other tasks to create the desired conditions.
[ Tosk 1 | | Teskm | [ Tosk #n |
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Figure 8.13: Condition variable.

When atask examines a condition variable, the task must have exclusive accessto that condition variable. Without
exclusive access, another task could ater the condition variable's conditions at the same time, which could cause the
firgt task to get an erroneous indication of the variable's state. Therefore, amutex isaways used in conjunction with a
condition variable. The mutex ensures that one task has exclusive access to the condition variable until that task is
finished with it. For example, if atask acquires the mutex to examine the condition variable, no other task can
smultaneously modify the condition variable of the shared resource.

A task must firgt acquire the mutex before eva uating the predicate. This task must subsequently rel ease the mutex
and then, if the predicate evaluates to false, wait for the crestion of the desired conditions. Using the condition
variable, the kernel guarantees that the task can release the mutex and then block-wait for the condition in one atomic
operation, which isthe essence of the condition variable. An atomic operation is an operation that cannot be
interrupted.

Remember, however, that condition variables are not mechanisms for synchronizing access to ashared resource.
Rather, most devel opers use them to alow tasks waiting on a shared resource to reach a desired value or state.

8.5.1 Condition Variable Control Blocks
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The kernel maintains a set of information associated with the condition variable when the varidbleisfirdt crested. As
stated previoudly, tasks must block and wait when a condition variabl€'s predicate evaluates to false. These waiting
tasks are maintained in the task-waiting list. The kernel guarantees for each task that the combined operation of
releasing the associated mutex and performing a block-wait on the condition will be atomic. After the desired
conditions have been crested, one of the waiting tasksis awakened and resumes execution. The criteriafor selecting
which task to awaken can be priority-based or FIFO-based, but it is kernel-defined. The kernel guarantees that the
selected task isremoved from the task-waiting list, reacquires the guarding mutex, and resumes its operation in one
atomic operation. The essence of the condition variableisthe atomicity of the unlock-and-wait and the
resume-and-lock operations provided by the kernel. Figure 8.14 illustrates a condition variable control block.

reference to the
guarding mutex

Task-Waiting List

f-

Task\J Task mEE
—

Figure 8.14: Condition variable control block.

The cooperating tasks define which conditions apply to which shared resources. Thisinformation is not part of the
condition variable because each task has adifferent predicate or condition for which the task looks. The conditionis
specific to the task. Chapter 15 presents adetailed example on the usage of the condition variable, which further
illustratesthisissue,

8.5.2 Typical Condition Variable Operations

A st of operationsisallowed for acondition variable, asshown in Table 8.7.
Table 8.7: Condition variable operations.

Operation Description

Create Creates and initializes a condition variable

Wait Waits on acondition variable

Sgnd Signd s the condition variable on the presence of acondition
Broadcast Signdsto dl waiting tasks the presence of acondition

The create operation creates a condition variable and initidizesitsinterna control block.
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The wait operation alows atask to block and wait for the desired conditions to occur in the shared resource. To
invoke this operation, the task must first successfully acquire the guarding mutex. The wait operation putsthe caling
task into the task-waiting queue and rel eases the associated mutex in asingle atomic operation.

The signd operation alows atask to modify the condition variable to indicate that a particular condition has been
created in the shared resource. To invoke this operation, the signaing task must first successfully acquire the guarding
mutex. The signal operation unblocks one of the tasks waiting on the condition variable. The sdlection of thetask is
based on predefined criteria, such as execution priority or system-defined scheduling attributes. At the completion of
the sgnal operation, the kernel reacquires the mutex associated with the condition variable on behaf of the selected
task and unblocks the task in one atomic operation.

The broadcast operation wakes up every task on the task-waiting list of the condition variable. One of thesetasksis

chosen by the kernd and is given the guarding mutex. Every other task isremoved from the task-waiting list of the
condition variable, and instead, those tasks are put on the task-waiting list of the guarding mutex.

8.5.3 Typical Uses of Condition Variables

Ligting 8.1 illugtrates the usage of the wait and the Signal operations.
Listing 8.1: Pseudo code for wait and the Signal operations.

1
0CK mut ex
Exani ne shared resource
Wil e (shared resource is Busy)
VWAI'T (condition variable)
Mar k shared resource as Busy
Unl ock mut ex

Task 2

Lock mut ex
Mar k shared resource as Free
SI GNAL (condition variable)

Unl ock nut ex

Task 1 on theleft locks the guarding mutex asitsfirst step. It then examines the sate of the shared resource and finds
that the resource is busy. It issuesthe wait operation to walit for the resource to become available, or free. Thefree
condition must be created by task 2 on the right after it is done using the resource. To create the free condition, task
2 firgt locks the mutex; creates the condition by marking the resource asfree, and findly, invokesthe signal operation,
which informstask 1 that the free condition is now present.

A dgnd on the condition variableislost when nothing iswaiting on it. Therefore, atask should dways check for the
presence of the desired condition before waiting on it. A task should aso always check for the presence of the
desired condition after awakeup as a safeguard against improperly generated signals on the condition variable. This
Issueisthe reason that the pseudo code includes awhile loop to check for the presence of the desired condition. This
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exampleisshownin Figure 8.15.

Figure 8.15: Execution sequence of wait and signd operations.
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8.6 Pointsto Remember

Some points to remember include the following:
Pipes provide unstructured data exchange between tasks.
The sdlect operation isdlowed on pipes.
Event registers can be used to communi cate application-defined events between tasks.

Events of the same type are not accumulated in the event regidter.

The occurrence of an event in the event register does not change the execution state of the receiving task,
unlessthetask isaready waiting on that event.

Tasksreceive sgnds synchronoudy.

The occurrence of asignal changes the execution state of the receiving task.

Signas can be handled by user-defined actions or by system-defined default actions.
Multiple occurrences of the same signal are not cumulétive,

A condition variable allows one task to wait until another task has placed a shared resource in adesired state
or condition.

A condition variable is used to synchronize between tasks but is not used as amechanism to synchronize
access to shared resources.
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Chapter 9: Other RTOS Services

0.1 Introduction

A good red-time embedded operating system avoidsimplementing the kernel asalarge, monalithic program. The
kernd isdevel oped instead asamicro-kernd. The god of the micro-kerndl design approach isto reduce essentia
kernel servicesinto asmall set and to provide aframework in which other optional kernel services can be
implemented as independent modules. These modules can be placed outside the kerndl. Some of these modules are
part of specia server tasks. This structured approach makesit possible to extend the kernel by adding additiona
sarvices or to modify existing services without affecting users. Thisleve of implementation flexibility ishighly
desirable. The resulting benefit isincreased system configurability because each embedded application requiresa
specific set of system services with respect to its characteristics. This combination can be quite different from
gpplication to application.

The micro-kernd provides core services, including task-related services, the scheduler service, and synchronization
primitives. This chapter discusses other common building blocks, as shownin Figure9.1.
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Figure 9.1: Overview.
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9.2 Other Building Blocks

These other common building blocks make up the additiona kernd servicesthat are part of various embedded
gpplications. The other building blocksinclude the following:

TCP/IP protocol stack,

file syslem componernt,

remote procedure call component,
command shell,

target debut agent, and

other components.

9.2.1 TCP/IP Protocol Stack

The network protocol stacks and components, asillustrated in Figure 9.2, provide useful system servicesto an
embedded application in anetworked environment. The TCP/IP protocol stack provides transport servicesto both
higher layer, well-known protocoals, including Simple Network Management Protocol (SNMP), Network File
System (NFS), and Telnet, and to user-defined protocols. The transport service can be elther reliable
connection-oriented service over the TCP protocol or unreliable connectionless service over the UDP protocol. The
TCP/IP protocol stack can operate over various types of physical connections and networks, including Ethernet,
FrameReay, ATM, and ISDN networks using different frame encapsul ation protocols, including the point-to-point
protocol. It is common to find the transport services offered through standard Berkeley socket interfaces.
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Figure 9.2: TCP/IP protocol stack component.

9.2.2 File System Component

Thefile syslem component, asillustrated in Figure 9.3, provides efficient access to both local and network mass
storage devices. These storage devicesinclude but are not limited to CD-ROM, tape, floppy disk, hard disk, and
flash memory devices. Thefile syslem component structures the storage device into supported formats for writing
information to and for ng information from the storage device. For example, CD-ROMs are formatted and
managed according to 1SO 9660 standard file system specifications; floppy disks and hard disks are formatted and
managed according to MS-DOS FAT file system conventions and specifications, NFS allows loca gpplicationsto
access files on remote systems as an NFS client. Files located on an NFS server are treated exactly asthough they
wereon aloca disk. Because NFSisaprotocol, not afile system format, local applications can access any format
files supported by the NFS server. File system components found in some red-time RTOS provide high-speed
proprietary file sysemsin place of common storage devices.
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Figure 9.3: File system component.

9.2.3 Remote Procedure Call Component

The remote procedure call (RPC) component dlowsfor distributed computing. The RPC server offers servicesto
externa systems as remotely callable procedures. A remote RPC client can invoke these procedures over the
network using the RPC protocol. To use a service provided by an RPC server, aclient application calls routines,
known as stubs, provided by the RPC client resding on the local machine,

The RPC client in turn invokes remote procedure cals residing in the RPC server on behdf of the caling application.
The primary goa of RPC isto make remote procedure calls transparent to gpplications invoking the local call stubs.
To the client application, caling astub appears no different from calling aloca procedure. The RPC client and server
can run on top of different operating systems, aswell as different types of hardware. Asan example of such
trangparency, note that NFS relies directly upon RPC calsto support theillusion that al filesareloca to the client
mechine,

To hide both the server remoteness, aswell as platform differences from the client application, data that flows
between the two computing systemsin the RPC call must be trandated to and from acommon format. Externa data
representation (XDR) isamethod that represents datain an OS- and machine-independent manner. The RPC client
trand ates data passed in as procedure parameters into X DR format before making the remote procedure call. The
RPC server trandates the XDR datainto machine-specific dataformat upon receipt of the procedure cal request.
The decoded data is then passed to the actual procedure to be invoked on the server machine. This procedure's
output detais formatted into XDR when returning it to the RPC client. The RPC concept isillustrated in Figure 9.4.
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Figure 9.4: Remote procedure cals.

9.2.4 Command Shdll

The command shell , aso caled the command interpreter , isan interactive component that provides an interface
between the user and the real-time operating system. The user can invoke commands, such asping, Is, loader , and
route through the shell. The shdll interprets these commands and makes corresponding callsinto RTOS routines.
These routines can be in the form of |oadable program images, dynamicaly created programs (dynamic tasks), or
direct systlem function cdlsif supported by the RTOS. The programmer can experiment with different globa system
cdlsif the command shell supportsthisfeature. With thisfesture, the shell can become agreat learning tool for the
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e Cosmrman library funchons
L cuslom functions
» and commands I

Shell

RTOSinwhichit executes, asillustrated in Figure 9.5.

Figure 9.5: RTOS command shell.

Some command shell implementations provide a programming interface. A programmer can extend the shell's
functiondity by writing additional commands or functions using the shell's gpplication program interface (AP!). The
shdl isusudly accessed from the host system using atermina emulation program over aserid interface. It ispossible
to accessthe shell over the network, but thisfeature is highly implementation-dependent. The shell becomesagood
debugging tool when it supports available debug agent commands. A host debugger is not always available and can
be tedious to set up. On the other hand, the programmer can immediately begin debugging when adebug agent is
present on the target system, aswell as acommand shell.

9.2.5 Target Debug Agent

Every good RTOS provides atarget debug agent. Through ether the target shell component or asmple serid
connection, the debug agent offers the programmer arich set of debug commands or capabilities. The debug agent
allowsthe programmer to set up both execution and data access break points. In addition, the programmer can use
the debug agent to examine and modify system memory, system registers, and system objects, such astasks,
semaphores, and message queues. The host debugger can provide source-level debug capability by interacting with
the target debug agent. With ahost debugger, the user can debug the target system without having to understand the
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native debug agent commands. The target debug agent commands are mapped into host debugger commands that
are more descriptive and easier to understand. Using an established debug protocol, the host debugger sendsthe
user-issued debug commands to the target debug agent over the serid cable or the Ethernet network. The target
debug agent acts on the commands and sends the results back to the host debugger. The host debugger displaysthe
resultsin its user-friendly debug interface. The debug protocol is specific to the host debugger and its supported
debug agent. Be sure to check the host debugging tools against the supported RTOS debug agents before making a
purchase.

9.2.6 Other Components

What has been presented so far isavery small set of components commonly found in available RTOS. Other service
componentsinclude the SNM P component. The target system can be remotely managed over the network by using
SNMP. The standard 1/O library provides acommon interface to write to and read from system 1/0 devices. The
standard system library provides common interfaces to applications for memory functions and string manipulation
functions. These library components make it straightforward to port applications written for other operating systems
aslong asthey use standard interfaces. The possible services components that an RTOS can provide are limited only
by imagination. The more an embedded RTOS matures the more components and optionsit providesto the

devel oper. These components enable powerful embedded applications programming, while at the sametime save
overdl development codts. Therefore, choosethe RTOS wisely.
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9.3 Component Configuration

The available syslem memory in many embedded systemsislimited. Therefore, only the necessary service
components are selected into the final application image. Frequently programmers ask how to configure aservice
component into an embedded application. In asmplified view, the selection and consequently the configuration of
service components are accomplished through a set of system configuration files. Look for thesefilesin the RTOS
development environment to gain a better understanding of available components and gpplicable configuration
parameters.

Thefirst leve of configuration is donein acomponent inclusion header file. For example, call it sys comp.h, as
shownin Liging 9.1.
Ligting 9.1: Thesys comp.h inclusion header file.

ne | NCLUDE_TCPI P 1
ne | NCLUDE_FI LE_SYS 0
erine | NCLUDE_SHELL 1

1

#defi ne | NCLUDE DBG AGENT

In thisexample, the target image includes the TCP/IP protocol stack, the command shell, and the debug agent. The
file system is excluded because the sample target system does not have a mass storage device. The programmer
s ects the desired components through sys_comp.h.

The second leve of configuration is donein acomponent-specific configuration file, sometimes called the component
description file. For example, the TCP/IP component configuration file could be called net_conf.h, and the debug
agent configuration file might be called the dbg_conf.h. The component-specific configuretion file containsthe
user-configurable, component-specific operating parameters. These parameters contain default values. Listing 9.2
uses net_conf.h.

Ligting 9.2: Thenet conf.h configuration file.

ne NUM PKT_BUFS 100
ne NUM SOCKETS 20
el ne NUM _ROUTES 35
#defi ne NUM_NI CS 40

In this example, four user-configurable parameters are present: the number of packet buffersto be alocated for
transmitting and receiving network packets; the number of socketsto be alocated for the gpplications; the number of
routing entries to be created in the routing table used for forwarding packets; and the number of network interface
datastructuresto be allocated for ingtaling network devices. Each parameter contains adefault value, and the
programmer is allowed to change the value of any parameter present in the configuration file. These parameters are
applicable only to the TCP/IP protocol stack component.

Component-specific parameters must be passed to the component during the initialization phase. The component
parameters are set into adata structure called the component configuration table. The configuration table is passed
into the component initidization routine. Thisleve isthethird configuration level. Ligting 9.3 showsthe configuration
file named net_conf.c , which continues to use the network component as the example.

ude "net _conf.h"

Ligting 9.3: Thenet conf.c configuration file.
iude "sys_conp. h"

#i f (1 NCLUDE_TCPI P)
struct net_conf_parns parans;
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par ams. num pkt bufs NUM PKT_BUFS;

par ams. num sockets = NUM SOCKETS;
par ans. num rout es = NUM _ROUTES;
par ams. num NI CS = NUM_ NI CS;

tcpi p_init(&parans);

#endi f

The components are pre-built and archived. The function tcpip_init is part of the component. If INCLUDE _TCPIPis
defined as 1 at the time the gpplication is built, the cal to this function triggersthe linker to link the component into the
find executableimage. At this point, the TCP/IP protocol stack isincluded and fully configured.

Obvioudy, the examples presented here are Smple, but the conceptsvary littlein red systems. Manua configuration,
however, can be tediouswhen it is required to wading through directories and files to get to the configuration files.
When the configuration file does not offer enough or clear documentation on the configuration parameters, the
processis even harder. Some host development tools offer an interactive and visud dternative to manua component
configuration. The visua component configuration tool alows the programmer to select the offered components
visualy. The configurable parameters are dso laid out visudly and are easily editable. The outputs of the configuration
tool are automatically generated filessmilar to sys comp.h and net_conf.h. Any modification completed through the
configuration tool regeneratesthesefiles.



This document is created with the unregistered version of CHM2PDF Pilot

9.4 Pointsto Remember

Some points to remember include the following:

Micro-kerndl design promotes aframework in which additional service components can be devel oped to
extend the kernd's functionaities easlly.

Debug agents allow programmersto debug every piece of code running on target systems.
Devel opers should choose a host debugger that understands many different RTOS debug agents.
Components can be included and configured through a set of system configuration files.

Deve opers should only include the necessary components to safeguard memory efficiency.
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Chapter 10: Exceptions and
| nterrupts

10.1 Introduction

Exceptions and interrupts are part of amechanism provided by the mgjority of embedded processor architecturesto
alow for the disruption of the processor's normal execution path. This disruption can be triggered either intentionally
by application software or by an error, unusua condition, or some unplanned externa event.

Many red-time operating systems provide wrapper functions to handle exceptions and interrupts in order to shield
the embedded systems programmer from the low-level details. This application-programming layer dlowsthe
programmer to focus on high-level exception processing rather than on the necessary, but tedious, prologue and
epilogue system-leve processing for that exception. Thisisolation, however, can create misunderstanding and
become an obstacle when the programmer is transformed from an embedded applications programmer into an
embedded systems programmer.

Understanding the inner workings of the processor exception facility aids the programmer in making better decisons
about when to best use this powerful mechanism, aswel asin designing software that handles exceptions correctly.
Theam of thischapter isto arm the programmer with this knowledge.

This chapter focuses on:

the definitions of exception and interrupt,

the gpplications of exceptions and interrupts,

acloser look at exceptions and interrupts in terms of hardware support, classifications, priorities, and causes
of spurious interrupts, and

adetailed discussion on how to handle exceptions and interrupts.
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10.2 What are Exceptionsand I nterrupts?

An exception isany event that disrupts the normal execution of the processor and forces the processor into
execution of specid ingructionsin aprivileged state. Exceptions can be classified into two categories: synchronous
exceptions and asynchronous exceptions.

Exceptions raised by internd events, such as events generated by the execution of processor instructions, are caled
synchronous exceptions. Examples of synchronous exceptionsinclude thefollowing:

On some processor architectures, the read and the write operations must start at an even memory address
for certain data Szes. Read or write operations that begin at an odd memory address cause amemory access
error event and raise an exception (called an alignment exception ).

An arithmetic operation that resultsin adivision by zero raises an exception.

Exceptionsraised by external events, which are eventsthat do not relate to the execution of processor instructions,
are caled asynchronous exception s. In generd, these externd events are associated with hardware signals. The
sources of these hardware signas are typicaly externa hardware devices. Examples of asynchronous exceptions
indudethefollowing:

Pushing the reset button on the embedded board triggers an asynchronous exception (called the system reset
exception ).

The communications processor module that has become an integra part of many embedded designsis
another example of an externa device that can raise asynchronous exceptions when it receives data packets.

Aninterrupt, sometimes caled an external interrupt, isan asynchronous exception triggered by an event that an
externa hardware device generates. Interrupts are one class of exception. What differentiates interrupts from other
types of exceptions, or more precisaly what differentiates synchronous exceptions from asynchronous exceptions, is
the source of the event. The event source for asynchronous exception isinternaly generated from the processor due
to the execution of some instruction. On the other hand, the event source for an asynchronous exceptionisan
external hardware device.

Because theterm interrupt has been used extensively in other texts, therefore, the text that follows uses exceptions
to mean synchronous exceptions and interrupts to mean asynchronous exceptions. The book uses general
exceptions to mean both. Theterm interrupts and external interrupts are used interchangeably throughout the text.

Exceptions and interrupts are the necessary evilsthat exist in the mgority of embedded systems. Thisfacility, specific
to the processor architecture, if misused, can become the source of troubled designs. While exceptions and interrupts
introduce chalenging design complications and impose drict coding requirements, they are nearly indispensablein
embedded applications. The following sections describe the most common and important uses of these mechanisms.
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10.3 Applications of Exceptionsand Interrupts

From an application's perspective, exceptions and externa interrupts provide afacility for embedded hardware
(either interna or external to the processor) to gain the attention of application code. Interrupts are a means of
communi cating between the hardware and an application currently running on an embedded processor.

In generd, exceptions and interrupts help the embedded engineer in three aress.

internal errors and specia conditions management,
hardware concurrency, and

service requests management.

10.3.1 Internal Errorsand Special Conditions M anagement

Handling and appropriately recovering from awide range of errors without coming to ahalt is often necessary inthe
gpplication areas in which embedded systems are typically employed.

Exceptions are either error conditions or specia conditions that the processor detects while executing ingtructions.
Error conditions can occur for avariety of reasons. The embedded systern might be implementing an agorithm, for
example, to caculate heat exchange or velocity for acruise control. If some unanticipated condition occurs that
causes adivison by zero, over-flow, or other math error, the application must be warned. In this case, the execution
of the task performing the calculation hats, and a specia exception service routine begins. This process givesthe
gpplication an opportunity to evauate and appropriately handle the error. Other types of errorsinclude memory read
or write failures (acommon symptom of astray pointer), or attempts to access floating-point hardware when not
ingtalled.

Many processor architectures have two modes of execution: norma and privileged. Someingtructions, called
privileged instructions, are alowed to execute only when the processor isin the privileged execution mode. An
exception israised when a privileged ingtruction isissued while the processor isin norma execution mode.

Specia conditions are exceptions that are generated by specid ingtructions, such asthe TRAP ingruction onthe
Motorola 68K processor family. Theseingtructions alow a program to force the processor to move into privileged
execution mode, consequently gaining accessto a privileged instruction set. For example, the ingtruction used to
disable externd interrupts must be issued in privileged mode.

Another example of aspecid condition isthe trace exception generated by the break point feature available on many
processor architectures. The debugger agent, a specia software program running on the embedded device, handles
this exception, which makes using a host debugger to perform software break point and code stepping possible.

Although not al microcontrollers or embedded processors define the same types of exceptions or handlethem inthe
same way, an exception facility isavailable and can assst the embedded systems engineer design a controlled
response to these internal errors and specia conditions.
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10.3.2 Hardwar e Concurrency and Service Request M anagement

The ability to perform different types of work smultaneoudy isimportant in embedded systems. Many externd
hardware devices can perform device-specific operationsin paralé to the core processor. These devicesrequire
minimum intervention from the core processor. The key to concurrency is knowing when the device has completed
thework previoudy issued so that additional jobs can be given. Externa interrupts are used to achieve thisgod.

For example, an embedded application running on a core processor issues work commandsto adevice. The
embedded application continues execution, performing other functions while the device tries to complete the work
issued. After the work is complete, the device triggers an externd interrupt to the core processor, which indicates
that the deviceis now ready to accept more commands. This method of hardware concurrency and use of external
interruptsis common in embedded design.

Another use of externd interruptsisto provide acommunication mechanism to sgna or aert an embedded

processor that an external hardware deviceis requesting service. For example, aninitidized programmable interval
timer chip communicates with the embedded processor through an interrupt when a preprogrammed time interva has
expired. (Chapter 11 discusses programmableintervad timersin detail.) Smilarly, the network interface device uses
an interrupt to indicate the arrival of packets after the received packets have been stored into memory.

The capabilities of exceptions and their close cousins, externa interrupts, empower embedded designs. Applying the
genera exception facility to an embedded design, however, requires properly handling general exceptions according
to the source and associated cause of each particular genera exception in question. The following section provides
the needed background knowledge.
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10.4 A Closer Look at Exceptions and I nterrupts

Genera exceptions have classfications and are prioritized based on the classifications. It is possible there exists
another leve of priorities, imposed and enforced by the interrupt hardware, among the externa interrupts.
Understanding the hardware sources that can trigger generd exceptions, the hardware that implements the transfer of
control, and the mechanismsfor determining where control vectorsreside aredl critica to properly ingtaling generd
exception handlers and to writing correct genera exception handlers.

10.4.1 Programmable Interrupt Controllersand External Interrupts

Most embedded designs have more than one source of externd interrupts, and these multiple externd interrupt
sources are prioritized. To understand how this processis handled, aclear understanding of the concept of a
programmable interrupt controller (PIC) isrequired.

The PIC isimplementation-dependent. It can gppear in avariety of forms and is sometimes given different names,
however, dl serve the same purpose and provide two main functiondities:

Prioritizing multiple interrupt sources so that a any time the highest priority interrupt is presented to the core
CPU for processing.

Offloading the core CPU with the processing required to determine an interrupt's exact source.

The PIC hasa st of interrupt request lines. An externa source generates interrupts by asserting aphysical sgna on
theinterrupt request line. Each interrupt request line has apriority assgned toit. Figure 10.1 illustratesa PIC used in
conjunction with four interrupt sources. Each interrupt source connects to one distinct interrupt request line: the airbag
deployment sensor, the break deployment sensor, the fudl-level sensor detecting the amount of gasolinein the system,
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Core
CPU
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—
- =S
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and areal-time clock. rearime Giock
Figure 10.1: Programmable interrupt controller.

Figure 10.1 trandaesinto an interrupt table that captures thisinformation more concisely. The interrupt table ligsadl
availableinterruptsin the embedded system. In addition, severa other properties help define the dynamic
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characterigtics of theinterrupt source. Table 10.1 isan example of an interrupt table for the hypothetical example
shownin Figure 10.1. Theinformation in the tableillustrates dl of the sources of externd interruptsthat the
embedded system must handle.

Why isit important to know thisinformation? Understanding the priorities of the interrupt sources enablesthe
embedded systems programmer to better understand the concept of nested interrupts. Theterm refersto the ability
of ahigher priority interrupt source to preempt the processing of alower priority interrupt. It iseasy to see how
low-priority interrupt sources are affected by higher priority interrupts and their execution times and frequency if this
interrupt table is ordered by overal system priority. Thisinformation aids the embedded systems programmer in
designing and implementing better ISRsthat alow for nested interrupts.

The maximum frequency column of the interrupt table specifies the process time congtraint placed on al |SRsthat
have the smallest impact on the overal system.
Table 10.1: Interrupt table.

Source Priority  |Vector Address IRQ Max Freg. |Description

Airbag Sensor Highest 14h 8 N/A Deploysairbag

Break Sensor High 18h 7 N/A Deploysthe breaking system
Fuel Leve Sensor Med 1Bh 6 20Hz Detectstheleve of gasoline
Redl-Time Clock Low 1Dh 5 100Hz Clock runsat 10msticks

The vector address column specifieswherein memory the ISR must be ingtalled. The processor automatically fetches
theingtruction from one of these known addresses based on the interrupt number, which is specified in the IRQ
column. Thisingruction begins the interrupt-specific service routine. In this example, the interrupt table containsa
vector address column, but these values are dependent on processor and hardware design. In some designs, a
column of indexesis applied to aformula used to calculate an actual vector address. In other designs, the processor
uses amore complex formulation to obtain avector address before fetching the ingtructions. Consult the hardware
manua for pecific details. Later sections of this chapter discussthe interrupt service routinein detail. In generd, the
vector table dso coversthe service routines for synchronous exceptions. The service routines are dso called vectors
in short.

10.4.2 Classification of General Exceptions

Although not al embedded processorsimplement exceptionsin the same manner, most of the more recent
processors have these types of exceptions:

L J
asynchronous-non-maskabl e,

asynchronous-maskable,

synchronous-precise, and
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synchronous-imprecise.

Asynchronous exceptions are classified into maskable and non-maskabl e exceptions. External interrupts are
asynchronous exceptions. Asynchronous exceptions that can be blocked or enabled by software are called maskable
exceptions. Similarly, asynchronous exceptions that cannot be blocked by software are caled non-maskable
exceptions. Non-maskable exceptions are aways acknowledged by the processor and processed immediately.
Hardware-reset exceptions are aways non-maskable exceptions. Many embedded processors have a dedicated
non-maskable interrupt (NMI) request line. Any device connected to the NMI request lineis allowed to generate an
NMI.

External interrupts, with the exception of NMIs, are the only asynchronous exceptions that can be disabled by
software.

Synchronous exceptions can be classfied into precise and impreci se exceptions. With precise exception s, the
processor's program counter points to the exact instruction that caused the exception, which isthe offending
instruction, and the processor knows where to resume execution upon return from the exception. With modern
architectures that incorporate instruction and data pipelining, exceptions are raised to the processor in the order of
written indruction, not in the order of execution. In particular, the architecture ensures that the instructions that follow
the offending ingtruction and that were started in the instruction pipeline during the exception do not affect the CPU
state. This chapter is concerned with precise exceptions.

Silicon vendors employ anumber of advanced techniques (such as predictive instruction and data loading, instruction
and data pipdining, and caching mechanisms) to streamline overal execution in order to increase chip performance.
For example, the processor can do floating point and integer memory operations out of order with the non-sequential
memory access mode. If an embedded processor implements heavy pipdining or pre-fetch agorithms, it can often be
impossible to determine the exact instruction and associated data that caused an exception. Thisissue indicates an
impr ecise exception. Consequently, when some exceptions do occur, the reported program counter does not point
to the offending instruction, which makes the program counter meaningless to the exception handler.

Why isit important to know thisinformation? Knowing the type of exception for which an exception handler is
written hel ps the programmer determine how the system isto recover from the exception, if the exceptionisat al
recoverable.

10.4.3 General Exception Priorities

All processors handle exceptions in adefined order. Although not every silicon vendor uses the exact same order of
exception processing, generaly exceptions are handled according to these priorities, as shown in Table 10.2.
Table 10.2: Exception priorities.

Highest Asynchronous Non-maskable
* Synchronous Precise
Synchronous Imprecise
Lowest Asynchronous Maskable

The highest priority level of exceptionsis usually reserved for system resets, other sgnificant events, or errorsthat
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warrant the overall system to reset. In many cases, hardware implementations for this exception aso cause much, if
not al, of the surrounding hardware to reset to aknown state and condition. For this reason, this exception istrested
asthehighest leve.

The next two priority levelsreflect aset of errors and specia execution conditions internal to the processor. A
synchronous exception is generated and acknowledged only at certain states of the interna processor cycle. The
sources of these errors are rooted in either the instructions or data that is passed along to be processed.

Typicdly, the lowest priority isan asynchronous exception externa to the core processor. External interrupts (except
NMIs) are the only exceptions that can be disabled by software.

From an gpplication point of view, al exceptions have processing priority over operating system objects, including
tasks, queues, and semaphores. Figure 10.2 illustrates agenerd priority framework observed in most embedded
Highest ( Exceplions )

y (Asynchronous Mon-maskabla)
b L g

-

Exceplions
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Exacution Order Conrollad By Ksmad
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(Programmabie)

computing architectures, -owest

Figure 10.2: System-wide priority scheme.
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10.5 Processing General Exceptions

Having introduced the fundamentals of exceptions and externa interrupts, it istime to discuss processing exceptions
and externd interrupts. The overal exception handling mechanism is similar to the mechanism for interrupt handling.
Inasmplified view, the processor takes the following steps when an exception or an externd interrupt israised:

Save the current processor state information.

Load the exception or interrupt handling function into the program counter.
Transfer contral to the handler function and begin execution.

Restore the processor state informeation after the handler function completes.

Return from the exception or interrupt and resume previous execution.

A typica handler function doesthe following:
Switch to an exception frame or an interrupt stack.
Save additional processor state information.
Mask the current interrupt level but allow higher priority interruptsto occur.

Perform aminimum amount of work so that a dedicated task can complete the main processing.

10.5.1 Installing Exception Handlers

Exception service routines (ESRS) and interrupt service routines (1SRs) must be ingtdled into the system before
exceptions and interrupts can be handled. Theingtalation of an ESR or ISR requires knowledge of the exception and
interrupt table (caled the general exception table).

The generd exception table, asexemplified in Table 10.1, has a vector address column, which is sometimes also
cdled the vector table. Each vector address points to the beginning of an ESR or ISR. Ingtalling an ESR or ISR
requires replacing the appropriate vector table entry with the address of the desired ESR or ISR.

The embedded system startup code typicaly ingtdlsthe ESRs at the time of system initiaization. Hardware device
driverstypically ingdl the gppropriate ISRs a the time of driver initidization.
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If either an exception or an interrupt occurs when no associated handler function isingalled, the system suffersa
system fault and may halt. To prevent this problem, it is common for an embedded RTOSto ingtall default handler
functions (i.e., functions that perform small amounts of work to ensure the proper reception of and the proper return
from exceptions) into the vector table for every possible exception and interrupt in the system. Many RTOSes
provide a mechanism that the embedded systems programmer can use to overwrite the default handler function with
hisor her own or to alow the programmer to insert further processing in addition to the default actions. If alowed,
the embedded systems programmer can code specific actions before and after the default action is completed.

In this book, the generd term service routine means either an ESR or an | SR when the digtinction is not important.

10.5.2 Saving Processor States

When an exception or interrupt comesinto context and before invoking the service routine, the processor must
perform a set of operationsto ensure a proper return of program execution after the service routine is complete. Just
astasks save information in task control blocks, exception and interrupt service routines also need to store blocks of
information, called processor state information, somewherein memory. The processor typically savesaminimum
amount of its state information, including the satus register (SR) that contains the current processor execution status
bits and the program counter (PC) that contains the returning address, which isthe instruction to resume execution
after the exception. The ESR or the ISR, however, must do more to preserve more complete state information in
order to properly resume the program execution that the exception preempted. A later section discussesthisissuein
more detail.

So, whose stack is used during the exception and interrupt processing?

Stacks are used for the storage requirement of saving processor state information. In an embedded operating system
environment, a stack isadtatically reserved block of memory and an active dynamic pointer called a stack pointer,
asshown in Figure 10.3. In some embedded architectures, such as Motorolas 68000 microprocessors, two
separate stacks-the user stack (USP) and the supervisor stack (SSP)-are used. The USP is used when the
processor execthes in non-privileged mgde. The SSPis used when the processor executesin privileged mode.

direction of
stack growth

Resarved Mamaory
’

stack pointer h Stored Data

Stack
Figure 10.3: Store processor state information onto stack.

Section 10.3.1, 'Internal Errors and Special Conditions Management' on page 145, discusses processor execution
modes. On thistype of architecture, the processor conscioudy selects SSP to storeits state information during
generd exception handling. While some architectures offer specia support for stack switching, the baance of this
chapter assumes asmple environment with just one run-time stack.

Asdatais saved on the stack, the stack pointer isincremented to reflect the number of bytes copied onto the stack.
This processis often caled pushing values on the stack. When values are copied off the stack, the stack pointer is
decremented by the equivalent number of bytes copied from the stack. This processis called popping values off the
stack. The stack pointer always pointsto thefirst vaid location in order to store data onto the stack. For purposes
of this book, the stack grows up; however, a stack can grow in the opposite direction. Note that atypica stack does
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not store identifiers for the contents. Stack users are required to push and pop items onto and off the stack ina
symmetric order. If thisruleis not followed during exception or interrupt processing, unintended results are likely to
occur.

As Chapter 5 discusses, in an embedded operating system environment, all task objects have atask control block
(TCB). During task crestion, ablock of memory isreserved as astack for task use, as shownin Figure 10.4.
High-level programming languages, such as C and C++, typicaly use the stack space asthe primary vehicle to pass

Task N TCB and Stack

Task 3 TCB and Stack

Active stack pointer Task 2 TCB and Stack

e

Task 1 TCB and Stack

variables between functions and objects of the language.
Figure 10.4: Task TCB and stack.

The active stack pointer (SP) isreinitidized to that of the active task each time atask context switch occurs. The
underlying redl-time kernel performsthiswork. As mentioned earlier, the processor uses whichever stack the SP
pointsto for storing its minimum state information before invoking the exception handler.

Although not al embedded architecturesimplement exception or interrupt processing in the same way, the genera
idea of Sizing and reserving exception stack spaceisthe same. In many cases, when genera exceptions occur and a
task isrunning, the task's stack is used to handle the exception or interrupt. If alower priority ESR or ISR isrunning
at the time of exception or interrupt, whichever stack the ESR or ISR isusing is aso the stack used to handle the new
exception or interrupt. This default approach on stack usage can be problematic with nested exceptions or interrupts,
which are discussed in detail shortly.

10.5.3 Loading and Invoking Exception Handlers

Asdiscussed earlier, some differences exist between an ESR and an ISR in the precursory work the processor
performs. Thisissueis caused by the fact that an externa interrupt is the only exception type that can be disabled by
software. In many embedded processor architectures, externa interrupts can be disabled or enabled through a
processor control register. This control register directly controls the operation of the PIC and determines which
interrupts the PIC raises to the processor. In these architectures, al external interrupts are raised to the PIC. The
PIC filtersinterrupts according to the setting of the control register and determines the necessary action. This book
assumes this architecture modd in the following discussions.

Formally spesking, an interrupt can be disabled, active, or pending. A disabled interrupt isaso cadled a masked
interrupt. The PIC ignores adisabled interrupt. A pending interrupt isan unacknowledged interrupt, which occurs
when the processor is currently processing ahigher priority interrupt. The pending interrupt is acknowledged and
processed after al higher priority interrupts that were pending have been processed. An active interrupt isthe one
that the processor is acknowledging and processing. Being aware of the existence of apending interrupt and raising
thisinterrupt to the processor at the appropriate time is accomplished through hardware and is outside the concern of
an embedded systems devel oper.
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For synchronous exceptions, the processor first determines which exception has occurred and then calculates the
correct index into the vector table to retrieve the ESR. This ca culation is dependent on implementation. When an
asynchronous exception occurs, an extrastep isinvolved. The PIC must determineif the interrupt has been disabled
(or masked). If so, the PIC ignores the interrupt and the processor execution state is not affected. If the interrupt is
not masked, the PIC raisesthe interrupt to the processor and the processor calculates the interrupt vector address
and then |loads the exception vector for execution, as shown in Figure 10.5.
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Figure 10.5: Loading exception vector.

Some silicon vendorsimplement the table lookup in hardware, while others rely on software approaches. Regardless,
the mechanisms are the same. When an exception occurs, avaue or index is caculated for the table. The content of
thetable a thisindex or offset reflects the address of a service routine. The program counter isinitidized with this
vector address, and execution begins at this location. Before examining the genera approach to an exception handler,
let'sfirst examine nested interrupts and their effect on the stack.

10.5.4 Nested Exceptions and Stack Overflow

Nested exceptions refer to the ability for higher priority exceptionsto preempt the processing of lower priority
exceptions. Much like a context switch for tasks when ahigher priority one becomes ready, the lower priority
exception is preempted, which alowsthe higher priority ESR to execute. When the higher priority serviceroutineis
complete, the earlier running service routine returns to execution. Figure 10.6 illustrates this process.

SR (High) | --------

ISR (Medium)

Tirme

Figure 10.6: Interrupt nesting.

Thetask block in the diagram in this example shows agroup of tasks executing. A low-priority interrupt then
becomes active, and the associated service routine comesinto context. While this service routineis running, a
high-priority interrupt becomes active, and the lower priority service routineis preempted. The high-priority service
routine runsto completion, and control returnsto the low-priority service routine. Before the low-priority service
routine completes, another interrupt becomes active. As before, the low-priority serviceroutineis preempted to
alow the medium-priority service routine to complete. Again, before the low-priority routine can finish, another
high-priority interrupt becomes active and runsto completion. The low-priority service routineisfindly ableto runto
completion. At that point, the previoudy running task can resume execution.
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When interrupts can nest, the application stack must be large enough to accommodate the maximum requirements for
the application's own nested function invocation, aswell asthe maximum exception or interrupt nesting possble, if the
gpplication executes with interrupts enabled. Thisissue is exactly where the effects of interrupt nesting on the
application stack are most commonly observed.
Asexemplifiedin Figure 10.4, N tasks have been created, each with itsown TCB and statically alocated stack.
Assuming the stack of the executing task is used for exceptions, a sample scenario, as shown in Figure 10.7, might
look asfollows:

1.

Task 2iscurrently running.

2.

A low-priority interrupt is received.

Task 2 is preempted while exception processing sarts for alow-priority interrupt.

The stack grows to handle exception processing storage needs.

A medium-priority interrupt is received before exception processing is complete.

The stack grows again to handle medium-priority interrupt processing storage requirements.

A high-priority interrupt is received before execution processing of the medium interrupt is complete.

The stack growsto handle high-priority interrupt processing storage needs.

_ - . -
I
INT Mad Max Exception or Infennupd
Stnck Space Roguired
INT Low
Max Application Stack ‘:
Space Allocated Application Data
¥

Figure 10.7: Nested interrupts and stack overflow.

In each case of exception processing, the size of the stack grows as has been discussed. Note that without aMMU,
no bounds checking is performed when using astack as astorage medium. As depicted in this example, the sum of
the application stack space requirement and the exception stack space requirement is less than the actual stack space
alocated by Task 2. Consequently, when datais copied onto the stack past the atically defined limitsin this
example, Task 3's TCB is corrupted, which isa stack overflow. Unfortunately, the corrupted TCB isnot likely to be
noticed until Task 3 is scheduled to run. Thesetypes of errors can be very hard to detect. They are afunction of the
combination of the running task and the exact frequency, timing, and sequence of interrupts or exceptions presented
to the operating environment. This Stuation often gives auser or testing team the sense of asporadic or flaky system.
Sometimes, dependably recresting errorsisamost impossible.
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Two solutionsto the problem are available: increasing the gpplication’'s stack size to accommodate al possibilitiesand
the deepest levels of exception and interrupt nesting, or having the ESR or ISR switch to its own exception stack,
cdled an exception frame.

The maximum exception stack sizeisadirect function of the number of exceptions, the number of externa devices
connected to each distinct IRQ line, and the priority levels supported by the PIC. The smple solution is having the
application alocate alarge enough stack space to accommodate the worst case, which isif the lowest priority
exception handler executes and is preempted by al higher priority exceptions or interrupts. A better approach,
however, is using an independent exception frame ingde the ESR or the ISR. This approach requires far lesstotal
memory than increasing every task stack by the necessary amount.

10.5.5 Exception Handlers

After control istransferred to the exception handler, the ESR or the ISR performs the actua work of exception
processing. Usually the exception handler has two parts. The firgt part executesin the exception or interrupt context.
The second half executesin atask context.

Exception Frames

The exception frame isadso caled the interrupt stack in the context of asynchronous exceptions.

Two main reasons exist for needing an exception frame. One reason isto handle nested exceptions. The other reason
isthat, as embedded architecture becomes more complex, the ESR or ISR consequently increasesin complexity.
Commonly, exception handlers are written in both machine assembly language and in ahigh-level programming
language, such as C or C++. Asmentioned earlier, the portion of the ESR or ISR writtenin C or C++ requiresa
stack to which to pass function parameters during invocation. Thisfact isaso trueif the ESR or ISR wereto invoke
alibrary function writtenin ahigh-level language.

The common approach to the exception frameisfor the ESR or the ISR to dlocate ablock of memory, either
daticaly or dynamicaly, beforeingtaling itsdlf into the system. The exception handler then saves the current stack
pointer into temporary memory storage, reinitializes the stack pointer to this private stack, and begins processing.

Exception

Exception Handler

Save SP = temporary variable
Set SP - to private stack
Bagin axception processing
Sat SP < temporary variable

LN

Privately allocated
memory to be used as the
exception frame

Active new Stack Pointer —————————

Thisisdepicted in Figure 10.8. Qid &8

Figure 10.8: Switching SP to exception frame.

The exception handler can perform more housekeeping work, such as storing additiona processor state information,
onto this stack.
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Differences between ESR and | SR

One difference between an ESR and an ISR isin the additiona processor state information saved.

The three ways of masking interrupts are:

Disable the device so that it cannot assert additiond interrupts. Interrupts at dl levels can till occur.

Mask theinterrupts of equa or lower priority levels, while dlowing higher priority interruptsto occur. The
device can continue to generate interrupts, but the processor ignores them.

Disable the globa system-wide interrupt request line to the processor (the line between the PIC and the core
processor), as exemplified in Figure 10.1. Interrupts of any priority level do not reach the processor. This
sep isequivaent to masking interrupts of the highest priority leve.

An ISR would typicaly deploy one of these three methods to disable interrupts for one or dl of these reasons:

the ISR triesto reduce the total number of interrupts raised by the device,

the ISR is non-reentrant, and

the ISR needs to perform some atomic operations.

Some processor architectures keep the information on which interrupts or interrupt levels are disabled insde the
gystem status register. Other processor architectures use an interrupt mask register (IMR). Therefore, an ISR needs
to save the current IMR onto the stack and disable interrupts according to its own requirements by setting new mask
vauesinto theIMR. The IMR only applies to maskable asynchronous exceptions and, therefore, is not saved by
synchronous exception routines.

One other related difference between an ESR and an ISR isthat an exception handler in many cases cannot prevent
other exceptions from occurring, while an ISR can prevent interrupts of the same or lower priority from occurring.

Exception Timing

Discussions about the ESR or I SR, however, often mention keeping the ESR or I SR short. How so and how short
should it be? To answer this question, let's focus the discussion on the externd interrupts and the ISR.

It isthe hardware designer'sjob to use the proper interrupt priority at the PIC level, but it isthe ISR programmer's
respong bility to know the timing requirements of each device when an ISR runswith ether the sameleve or dl
interrupts disabled.

The embedded systems programmer, when designing and implementing an ISR, should be aware of the interrupt
frequency of each devicethat can assert an interrupt. Table 10.1 containsacolumn called Maximum Frequency,
which indicates how often a device can assert an interrupt when the device operates at maximum capacity. The

alowed duration for an ISR to execute with interrupts disabled without affecting the system can beinferred from
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Table 10.1.

Without going into detail, an ISR, when executing with interrupts disabled, can cause the system to missinterruptsif
the ISR takes too long. Interrupt miss isthe Stuation in which an interrupt is asserted but the processor could not
record the occurrence due to some busy condition. The interrupt service routine, therefore, is not invoked for that
particular interrupt occurrence. Thisissueistypicaly true for adevice that uses the edge-triggering mechanism to
assart interrupts. The edge-triggering mechanism isdiscussed in 'The Nature of Spurious Interrupts on page 163,
section 10.6.

The RTOS kernel scheduler cannot run when an ISR disables dl system interrupts whileit runs. Asindicated earlier,
interrupt processing has higher priority than task processing. Therefore, real-time tasks that have stringent deadlines
can aso be affected by a poorly designed ISR.

Figure 10.9 illustrates a number of concepts asthey relate to asTi ngleinterrupt. In Figure 10.9, thevaueof TA is
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Figure 10.9: Exception timing.

Theinterrupt latency, TB, refersto the interval between the time when the interrupt is raised and the time when the
ISR beginsto execute. Interrupt latency is attributed to:

The amount of timeit takes the processor to acknowledge the interrupt and perform theinitia housekeeping
work.

A higher priority interrupt is active a thetime.

Theinterrupt is disabled and then later re-enabled by software.

Thefirgt caseisaways a contributing factor to interrupt latency. As can be seen, interrupt latency can be unbounded.
Therefore, the response time can aso be unbounded. The interrupt latency is outside the control of the ISR. The
processing time TC, however, is determined by how the ISR isimplemented.

Theinterrupt responsetimeis TD = TB + TC.

It is possible for the entire processing to be done within the context of the interrupt, that is, with interrupts disabled.
Notice, however, that the processing time for ahigher priority interrupt isasource of interrupt latency for the lower
priority interrupt. Another approach isto have one section of 1SR running in the context of the interrupt and another
section running in the context of atask. The firgt section of the ISR code services the device so that the service
request is acknowledged and the device is put into aknown operationa state so it can resume operation. This portion
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of the ISR packages the device service request and sendsit to the remaining section of the ISR that executes within
the context of atask. Thislatter part of the ISR istypically implemented as a dedicated daemon task.

There are two main reasons to partition the ISR into two pieces. Oneisto reduce the processing time within the
interrupt context. The other isabit more complex in that the architecture treats the interrupt as having higher priority
than arunning task, but in practice that might not be the case. For example, if the device that controls the blinking of
an LED reportsafailure, it isdefinitely lower in priority than atask that must send acommunication reply to maintain
its connection with the peer. If the ISR for this particular interrupt were partitioned into two sections, the daemon
task that continuesthe LED interrupt processing can have alower task priority than the other task. Thisfactor alows
the other higher priority task to complete with limited impact. Figure 10.10 illustrates this concept.
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Figure 10.10: Interrupt processing in two contexts.

The benefitsto this concept are the following:

Lower priority interrupts can be handled with less priority than more critical tasks running in the system.

This gpproach reduces the chance of missing interrupts.

This approach affords more concurrency because devices are being serviced minimally so that they can
continue operations while their previous requests are accumul ated without loss to the extent dlowed by the
System.

On the other hand, the interrupt response time increases, because now the interrupt responsetimeis TD = TB + TC
+ TE + TF. Theincreasein response timeis attributed to the scheduling delay, and the daemon task might haveto
yield to higher priority tasks.

The scheduling delay happens when other higher priority tasks are either running or are scheduled to run. The
scheduling delay dso includes the amount of time needed to perform a context switch after the daemon task is moved
from the ready queue to the run queue.

In conclusion, the duration of the ISR running in the context of the interrupt depends on the number of interrupts and
the frequency of each interrupt source existing in the system. Although genera approachesto designing an ISR exig,
no one solution exigts to implement an ISR so that it worksin al embedded designs. Rather the embedded systems
devel oper must design an I SR according to the considerations discussed in this section.

General Guides
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On architectures where interrupt nesting is alowed:

An ISR should disable interrupts of the samelevd if the ISR is non-reentrant.

An ISR should mask dl interruptsif it needs to execute a sequence of code as one atomic operation.

An ISR should avoid calling non-reentrant functions. Some standard library functions are non-reentrant, such
as many implementations of malloc and printf. Because interrupts can occur in the middle of task execution
and because tasks might bein the midst of the "malloc” function call, the resulting behavior can be
catastrophic if the ISR cdlsthis same non-reentrant function.

An ISR must never make any blocking or suspend cdls. Making such acal might hat the entire system.

If an ISR is partitioned into two sections with one section being a daemon task, the daemon task does not have a
high priority by default. The priority should be set with respect to the rest of the system.
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10.6 The Nature of Spurious|nterrupts

A spurious interrupt isasigna of very short duration on one of theinterrupt input lines, and it islikely caused by a
sgnd glitch.

An externa device uses atriggering mechanism to raise interrupts to the core processor. Two types of triggering
mechanismsare level triggering and edge triggering. Figure 10.11 illustrates the variants of edge triggers (risng
edge or fdling edge). Thiskind of triggering istypicaly used with adigitd sgnd.
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>
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Figure 10.11: Edgetriggering on ether risng or faling edge.

In contradt, level triggering iscommonly used in conjunction with an analog signal. Figure 10.12 illustrates how level
triggering might be implemented in adesign. It isimportant to note that when using leve triggering, the PIC or
microcontroller slicon typicaly definesthetrigger threshold vaue.

Threshold

Trigger Point
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Fgure 10.12: Levd triggering.

How do spuriousinterrupts occur? In real-world Situations, digital and analog signals are not as clean as portrayed
here. The environment, types of sensors or transducers, and the method in which wiring islaid out in an embedded
design dl have aconsderable effect on how clean the sgnad might appear. For example, adigital sgna from aswitch
might require debouncing, or an analog sgna might need filtering. Figure 10.13 provides agood illustration of how
both digital and andlog signds can redlly look. While eectronic methods for debouncing and filtering fall beyond the
realm of thisbook, it isimportant nonethel ess to understand that input signas, whether for interrupts or other inputs,

might not be as clean as adeveloper mightumxids;bon them. These Sgndls, therefore, can represent a potential source
L1 ouncing
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Figure 10.13: Red sgndis.

As can be seen, one reason for the occurrence of spuriousinterruptsis unstableness of the interrupt sgna. Spurious
interrupts can be caused when the processor detects errors while processing an interrupt request. The embedded
systems programmer must be aware of spurious interrupts and know that spurious interrupts can occur and that this
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type of interrupt must be handled as any other type of interrupts. The default action from the kernd isusudly
aufficient.

(< reeviovs [ e
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10.7 Pointsto Remember

Some points to remember include the following:
Exceptions are classified into synchronous and asynchronous exceptions.
Exceptions are prioritized.
Externd interrupts belong to the category of asynchronous exceptions.
External interrupts are the only exceptions that can be disabled by software.

Exceptions can be nested.

Using adedicated exception frame is one solution to solving the stack overflow problem that nested
exceptions cause.

Exception processing should consider the overdl timing requirements of the system devices and tasks.

Spurious interrupts can occur and should be handled as any other interrupts.
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Chapter 11: Timer and Timer
Services

11.1 Introduction

In embedded systems, system tasks and user tasks often schedule and perform activities after some time has elapsed.
For example, aRTOS scheduler must perform a context switch of a preset timeinterva periodically-among tasks of
equa priorities-to ensure execution fairness when conducting around-robin scheduling agorithm. A software-based
memory refresh mechanism must refresh the dynamic memory every so often or datalosswill occur. In embedded
networking devices, various communication protocols schedule activities for data retransmission and protocol
recovery. Thetarget monitor software sends system information to the host-based andysistool periodicaly to
provide sysem-timing diagrams for visudization and debugging.

In any case, embedded applications need to schedule future events. Scheduling future activitiesis accomplished
through timersusing timer services.

Timersare an integra part of many real-time embedded systems. A timer isthe scheduling of an event according to a
predefined time vauein the future, Smilar to setting an darm clock.

A complex embedded system is comprised of many different software modules and components, each requiring
timers of varying timeout vaues. Most embedded systems use two different forms of timersto drivetime-sensitive
activities: hard timers and soft timers. Hard timers are derived from physicd timer chipsthat directly interrupt the
processor when they expire. Operations with demanding requirements for precision or latency need the predictable
performance of ahard timer. Soft timers are software events that are scheduled through a software fecility.

A soft-timer facility dlowsfor efficiently scheduling of non-high-precision software events. A practica design for the
soft-timer handling facility should have the following properties:

efficient timer maintenance, i.e., counting down atimer,
efficient timer ingalation, i.e,, darting atimer, and
efficient timer removadl, i.e., Sopping atimer.

While an application might require severa high-precision timerswith resolutions on the order of microseconds or
even nanoseconds, not al of the time requirements have to be high precison. Even demanding applications dso have
some timing functions for which resol utions on the order of milliseconds, or even of hundreds of milliseconds, are
sufficient. Agpects of gpplications requiring timeouts with course granularity (for example, with tolerance for bounded
inaccuracy) should use soft timers. Examplesinclude the Transmission Control Protocol module, the Redl-time
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Trangport Protocol module, and the Address Resolution Protocol module.
Another reason for using soft timersis to reduce system-interrupt overhead. The physical timer chip rateisusually set
so that theinterval between consecutive timer interruptsis within tens of milliseconds or even within tens of
microseconds. The interrupt latency and overhead can be substantial and can grow with the increasing number of
outstanding timers. Thisissue particularly occurs when each timer isimplemented by being directly interfaced with the
physicad timer hardware.

This chapter focuses on:
redl-time clocks versus system clocks,
programmableinterva timers,
timer interrupt service routines,
timer-related operations,

soft timers, and

implementing soft-timer handling facilities.
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11.2 Real-Time Clocks and System Clocks

In some references, the term real-time clock isinterchangesble with the term system clock . Within the context of
this book, however, these terminologies are separate, asthey are different on various architectures.

Redl-time clocks exist in many embedded systems and track time, date, month, and year. Commonly, they are
integrated with battery-powered DRAM asshown in Figure 11.1. Thisintegrated real-time clock becomes
independent of the CPU and the programmable interva timer, making the maintenance of red time between system

RTC F————- B------

11:30 AM 6

8/1/2001

power cyclespossible.
Figure 11.1: A red-time clock.

Thejob of the system clock isidentical to that of the red-time clock: to track either real-time or elgpsed time
following system power up (depending on implementation). Theinitid value of the system clock istypicaly retrieved
from the redl-time clock at power up or is set by the user. The programmable interva timer drives the system clock,
I.e. the system clock incrementsin vaue per timer interrupt. Therefore, an important function performed at the timer
interrupt is maintaining the system clock, asshown in Figure 11.2.
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Figure 11.2: System clock initiaization.
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11.3 Programmable Interval Timers

The programmable interval timer (PIT), aso known asthe timer chip , isadevice designed mainly to function as
an event counter, elgpsed time indicator, rate-controllable periodic event generator, as well as other applications for
solving system-timing control problems.

Thefunctiondity of the PIT iscommonly incorporated into the embedded processor, whereit is caled an on-chip
timer . Dedicated stand-alone timer chips are available to reduce processor overhead. As different asthe various
timer chips can be, some genera characteristics exist among them. For example, timer chips feature an input clock
source with afixed frequency, aswell asaset of programmable timer control registers. The timer interrupt rate is
the number of timer interrupts generated per second. Thetimer interrupt rate is caculated as afunction of the input
clock frequency and is set into atimer control register.

A related valueisthe timer countdown value, which determines when the next timer interrupt occurs. It isloaded in
one of thetimer control registers and decremented by one every input clock cycle. The remaining timer control
registers determine the other modes of timer operation, such aswhether periodic timer interrupts are generated and
whether the countdown vaue should be automatically reloaded for the next timer interrupt.

Customized embedded systems come with schemeatics detailing the interconnection of the system components. From
these schematics, adeveloper can determine which external components are dependent on the timer chip asthe input
clock source. For example, if atimer chip output pin interconnects with the control input pin of the DMA chip, the
timer chip controlsthe DRAM refresh rate.
Timer-chipinitidization is performed as part of the systlem startup. Generaly, initidization of thetimer chip involves
the following Steps

Restting and bringing the timer chip into aknown hardware state.

Cdculating the proper vaue to obtain the desired timer interrupt frequency and programming thisvaueinto
the appropriate timer control register.

Programming other timer control registersthat are related to the earlier interrupt frequency with correct
vaues. Thisstep is dependent on the timer chip and is specified in detail by the timer chip hardware reference
manud.

Programming the timer chip with the proper mode of operation.
Ingtdling the timer interrupt service routine into the system.
Enabling the timer interrupt.

The behavior of thetimer chip output is programmable through the control registers, the most important of whichis
the timer interrupt-rate register (TINTR), whichisasfollows
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TINTR = F(X)
where x = frequency of theinput crysta

Manufacturers of timer chips provide this function and the informetion is readily available in the programmer's
reference manual.

Thetimer interrupt rate equals the number of timer interrupt occurrences per second. Each interrupt is called a tick,
which represents a unit of time. For example, if the timer rate is 100 ticks, each tick represents an elgpsed time of 10
milliseconds.

The periodic event generation capability of the PIT isimportant to many rea-time kernels. At the heart of many
redl-time kernelsis the announcement of the timer interrupt occurrence, or the tick announcement, from the ISR to
the kerndl, aswell asto the kerndl scheduler, if one exists. Many of these kernel schedulers run through their
agorithms and conduct task scheduling at each tick.



This document is created with the unregistered version of CHM2PDF Pilot

11.4 Timer Interrupt Service Routines

Part of thetimer chipinitidization involvesingaling an interrupt serviceroutine (I1SR) that is called when the timer
interrupt occurs. Typicaly, the ISR performsthese duties:

Updating the system clock -Both the absolute time and el gpsed time is updated. Absolute time istime kept
in caendar date, hours, minutes, and seconds. Elapsed time isusualy kept in ticks and indicates how long
the system has been running since power up.

Calling aregistered kernel function to notify the passage of a preprogrammed period-For the
following discussion, the registered kernd function is called announce_time tick.

Acknowledging theinterrupt, renitializing the necessary timer control register (s), and returning

from interrupt.

The announce _time _tick function isinvoked in the context of the ISR; therefore, dl of the restrictions placed on an
ISR are applicable to announce_time tick. In redity, announce _time tick ispart of thetimer ISR. The
announce_time _tick function is called to notify the kerndl scheduler about the occurrence of atimer tick. Equally
important is the announcement of the ;Lrnpg tick to the soft-timer handling facility. These concepts areillustrated in
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Figure 11.3: Stepsin servicing the timer interrupt.

The soft-timer handling facility is responsible for maintaining the soft timers at each timer tick.
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11.5 A Mode for Implementing the Soft-Timer
Handling Facility

The functions performed by the soft-timer facility, caled the timer facility from now on, include:

alowing applicationsto sart atimer,
alowing applicationsto stop or cance aprevioudy ingtaled timer, and
internaly maintaining the gpplication timers.

The soft-timer facility is comprised of two components: one component liveswithin the timer tick ISR and the other
component livesin the context of atask.

Thisapproach isused for severa reasons. If dl of the soft-timer processing is done with the ISR and if the work
spans multipleticks (i.e., if thetimer tick handler does not complete work before the next clock tick arrives), the
system clock might appear to drift as seen by the software that tracks time. Worse, the timer tick events might be
lost. Therefore, the timer tick handler must be short and must be conducting the least amount of work possible.
Processing of expired soft timersis delayed into adedicated processing task because applications using soft timers
can tolerate a bounded timer inaccuracy. The bounded timer inaccuracy refersto theimprecision thetimer may
take on any vaue. Thisvalueis guaranteed to be within a specific range.

Therefore, aworkable modd for implementing a soft-timer handling facility isto create a dedicated processing task
and call it aworker task, in conjunction with its counter part that is part of the system timer ISR. The ISR counterpart
isgiven afictiiousnameof ISR _timeout_fn for this discusson.

The system timer chip is programmed with aparticular interrupt rate, which must accommodate various aspects of
the system operation. The associated timer tick granularity istypicaly much smaler than the granularity required by

the application-level soft timers. The ISR_timeout_fn function must work with this value and notify the worker task
[
InvoRs

ISR ISR_iimeowi_fn

B | decrements

’—7— W enunt_towe = 0
e
count down = 10 Gves semaphore H WRRGT

a5k

Task context

TISFtcuan‘l reades task | 0

D Real Work T
appropriately.

Fgure11.4: A mode for soft-timer handling facility.

In the following example, assume that an application requires three soft timers. The timeout values equa 200ms,
300ms, and 500ms. The least common denominator is 100ms. If each hardware timer tick represents 10ms, then
100mstrandatesinto a countdown vaue of 10. The ISR _timeout_fn keepstrack of this countdown vaue and
decrementsit by one during each invocation. The ISR_timeout_fn notifies the worker task by a"give' operation on
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the worker task's semaphore after the countdown val ue reaches zero, effectively alowing the task to be scheduled
for execution. The ISR_timeout_fn then reinitializes the countdown value back to 10. This concept isillustrated in

Figure114.

In the | SR-to-processing-task model, the worker task must maintain an gpplication-level, timer-countdown table
based on 100ms granularity. In this example, the timer table has three countdown values: 2, 3, and 5 representing the
200ms, 300ms, and the 500ms application-requested timers. An gpplication-installed, timer-expiration function is
associated with each timer. This concept isillustrated in Figure 11.5.
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Figure 11.5: Servicing the timer interrupt in the task context.

The three soft timers, which are smply called timers unless specified otherwise, are decremented by the worker task
each timeit runs. When the counter reaches zero, the application timer has expired. In this example, the 200mstimer
and the associated function App_timeout_fn_1, which the gpplication ingals, isinvoked. Asshown in Figures 11.4
and 11.5, asingle ISR-leve timer drives three gpplication timers at the task-level, providing agood reason why these
timers are called soft timers. The decrease in the number of 1SR timersingtalled improvesthe overall system
performance.

These gpplication-ingtaled timers are called soft timers because processing is not synchronized with the hardware
timer tick. It isagood ideato explore this concept further by examining possible delaysthat can occur dong the
delivery path of thetimer tick.

11.5.1 Possible Processing Delays

Thefirgt delay isthe event-driven, task-scheduling delay. As shown in the previous example, the maintenance of soft
timersispart of ISR_timeout_fn and involves decrementing the expiration time value by one. When the expiration
time reaches zero, the timer expires and the associated function isinvoked. Because ISR _timeout_fn ispart of the
ISR, it must perform the smallest amount of work possible and postpone major work to alater stage outsde the
context of the ISR. Typica implementations perform real work either insde aworker task that is adedicated
daemon task or within the gpplication that origindly ingtaled the timer. The minimum amount of work completed
within the ISR by the ingtaled function involves triggering an asynchronous event to the worker task, which typicaly
trandatesinto the kernd cal event_send, should one exist. Alternatively, the triggering can dso trandate into the

rel ease of a semaphore on which the worker task is currently blocked. The notification delay caused by event
generation from the | SR to the daemon task isthefirst level of delay, asshown in Figure 11.6. Note that the
hypothetica kernd function event_send and the semaphore release function must be callable from within an ISR.
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Figure 11.6: Leve 1 ddays-timer event notification delay.

The second delay is the priority-based, task-scheduling delay. In atypical RTOS, tasks can execute at different
levels of execution priorities. For example, aworker task that performstimer expiration-rel ated functions might not
have the highest execution priority. In apriority-based, kernd-scheduling scheme, aworker task must wait until dl
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other higher priority tasks complete execution before being allowed to continue. With around-robin scheduler, the
worker task must walit for its scheduling cycle in order to execute. This process represents the second level of delay

worker Lk nikgh peiceity tasks high pricity tsks wearkar Ik
raadiod xeculing completes uns
} | | [
tima
asshownin Figure11.7. 1 ey 2

Figure 11.7: Leve 2 delays-priority-based, task-scheduling delays.

Another ddlay isintroduced when an application ingtals many soft timers. Thisissueis explored further in the next
section when discussing the concept of timing whedls.

11.5.2 Implementation Consider ations

A soft-timer facility should dlow for efficient timer insertion, timer deletion and cancellation, and timer update. These
requirements, however, can conflict with each other in practice. For example, imagine the linked list-timer
implementation shown in Figure 11.8. The fastest way to Start atimer isto insert it ether at the head of thetimer list
or a thetall of thetimer list if the timer entry data structure contains adouble-linked list.

Head f———9 ot e L -J
Tad - . prEnvious L 1 previous
Expiration = 20 Expiratisn = 16
calout functacd calloud funclion 1—|
J &
r L
¥ ¥
timer inserdicn point timar inserion point

Figure 11.8: Maintaining soft timers.

Becausethetimer list isnot sorted in any particular order, maintaining timer ticks can prove costly. Updating the timer
list at each tick requires the worker task to traverse the entire linked list and update each timer entry. When the
counter reaches zero, the callout function isinvoked. A timer handle is returned to the application in asuccessful timer
ingalation. The cancelation of atimer dso requiresthe worker task to traverse the entire list. Each timer entry is
compared to the timer handle, and, when amatch isfound, that particular timer entry isremoved from thetimer list.

Asshownin Figure 11.9, whiletimer installation can be performed in congtant time, timer cancellation and timer
20 |10 (43 |9 |9 |11 |25 {18 |19 |12 ] ..

1] !
update might require O(N) in the worst case. T """"""""""""""""""""""""""""""""" >
Figure 11.9: Unsorted soft timers.

Sorting expiration timesin ascending order resultsin efficient timer bookkeeping. In the example, only thefirst
timer-entry update is necessary, because al the other timers are decremented implicitly. In other words, when
inserting new timers, the timeout value is modified according to the first entry beforeinsarting the timer into thelist.

Asshownin Figure 11.10, while timer bookkeeping is performed in constant time, timer install ation requires search
and insertion. The cost is O(log(N)), where N isthe number of entriesin thetimer list. The cost of timer cancellation
8 |9 |10 |1 |12 |18 |19 |20 |25 |43 .. |..

isdso O(log(N)).

Figure 11.10: Sorted soft timers.
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11.6 Timing Wheels

Asshownin Figure 11.11, the timing wheel isacongtruct with afixed-size array in which each dot represents a unit
of time with respect to the precision of the soft-timer facility. The timing whed gpproach has the advantage of the
sorted timer ligt for updating the timers efficiently, and it dso provides efficient operations for timer ingtalation and

time line

past
clock dial

each time slot
contains a list of
timers to expire

at this time

v
cancdlation. ey

Figure 11.11: Timing whed.

The soft-timer facility instals a periodic timeout (a clock tick) using the underlying timer hardware. This
hardware-based periodic timer, drivesdl of the soft timersingtaled within the facility. The frequency of the timeout
determines the precision of the soft-timer facility. For example, if the precison defines atick occurrence every 50ms,
each dot represents the passing of 50ms, which isthe smalest timeout that can be ingtaled into the timer facility. In
addition, adoubly linked list of timeout event handlers (also named callback functions or callbacks for short) is
stored within each dot, which isinvoked upon timer expiration. Thislist of timers represents events with the same
expirdiontime.

Lw—ﬁ wvenl handier vent handier et hander
& | & &

Each timer dot isrepresented in Figure 11.12.
Figure 11.12: Timeout event handlers.

The clock dia incrementsto the next time dot on each tick and wrapsto the beginning of the time-dot array when it
increments past the final array entry. Theidea of the timing whedl is derived from this property. Therefore, when
ingtalling anew timer event, the current location of the clock did is used asthe reference point to determine thetime
dot in which the new event handler will be stored. Consider the following example as depicted in Figure 11.13.
Assume each time dot represents the passing of 50ms, which means that 50ms has el gpsed between ticks.

time line
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naw evant

v futura

firme unit - ms

Figure 11.13: Ingaling atimeout event.
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Thetimedot marked +200 isthe dot in which to store an event handler if the devel oper wantsto schedule a200ms
timeout in the future. Thelocation of the clock did isthe 'beginning of time' on thetimeline, in other words, the
reference point. At aminimum, the timer handle returned to the calling gpplication isthe array index.

11.6.1 Issues

A number of issues are associated with the timing whedl gpproach. The number of dotsin thetiming whed hasalimit,
whatever that might befor the system. The examplein Figure 11.13 makesthis problem obvious. The maximum
schedulable event is 350ms. How can a400mstimer be scheduled? Thisissue causes an overflow condition in the
timing whedl. One gpproach isto deny ingtalation of timers outside the fixed range. A better solution isto accumulate
the events causing the overflow condition in atemporary event buffer until the clock dia hasturned enough so that
these events become schedulable. Thissolutionisillustrated in Figure 11.14.

time line

past

clock dial

¥ future

i H event overflow buffer

I 4ﬂﬂlms ] ED{:ms | event | levent |

Figure 11.14: Timing whed overflow event buffer.

For example, in order to schedule a400ms timeout when the clock did isat location 1, this event must be saved in
the event overflow buffer until the clock dia reaches |ocation 2. To schedule a 500mstimer when clock did isat
location 1, this event must be saved in the event overflow buffer until the clock dia reacheslocation 3. The expired
events at location 2 and location 3 must be serviced first, and then the new eventsingtaled. The event overflow buffer
must be examined to see if new events need to be scheduled when the clock dia moves at each clock tick to the next
dot. This processimpliesthat the eventsin the overflow buffer must be sorted in increasing order. New events are
inserted in order and can be expensiveif the overflow buffer contains alarge number of entries.

Another issue associated with the timing wheel approach isthe precison of theingalled timeouts. Consider the
Stuation in which a150mstimer event is being scheduled while the clock isticking but before the tick announcement
reaches the timing whedl. Should the timer event be added to the +150ms dot or placed in the +200msdot? On
average, the error is gpproximately haf the size of thetick. In thisexample, the error is about 25ms.

One other important issue relates to the invocation time of the callbacksinstaled at each time dot. In theory, the
calbacks should dl beinvoked at the sametime at expiration, but in redlity, thisisimpossible. The work performed
by each callback is unknown; therefore, the execution length of each callback is unknown. Consequently, no
guarantee or predictable measures exist concerning when acalback in alater position of thelist can be called, even
in aworst-case scenario. Thisissue introduces non-determinism into the system and isundesirable. Figure 11.15
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Figure 11.15: Unbounded soft-timer handler invocation.

Event handler 1isinvoked at t1 when thetimeout has just expired. Similarly, event handler n isinvoked a th when
the previous (n -1) event handlers have finished execution. Theinterva x and y is non-deterministic because the
length of execution of each handler isunknown. Theseintervals are aso unbounded.

Idedlly, the timer facility could guarantee an upper bound; for example, regardless of the number of timersdready
ingtaled in the system, event handler n isinvoked no later than 200ms from the actua expiration time,

Thisproblemisdifficult, and the solution is gpplication specific.

11.6.2 Hierarchical Timing Wheels

Thetimer overflow problem presented in the last section can be solved using the hierarchical timing wheel
approach.

The soft-timer facility needs to accommodate timer events spanning arange of vaues. Thisrange can bevery large.
For example accommodeating timers ranging from 100msto 5 minutes requires atiming wheel with 3,000 (5?60 ?
10) entries. Because the timer facility needsto have agranularity of at least 100msand thereisasingle array
representing the timing whed,

10 ?7100ms =1 sec
10 entries/sec

60 sec = 1 minute

60 ? 10 entries/ min

therefore:

57?60 ?10 = tota number of entries needed for the timing whed with agranularity of 100ms.

A hierarchicd timingwhed issmilar to adigita dock. Instead of having asingle timing whed, multiple timing whedls
areorganized in ahierarchical order. Each timing whedl in the hierarchy set hasadifferent granularity. A clock did is
associated with each timing whed. The clock did turns by one unit when the clock did at the lower level of the
hierarchy wraps around. Using a hierarchica timing whed requiresonly 75 (10 + 60 + 5) entriesto dlow for
timeouts with 100ms resolution and duration of up to 5 minutes.

With ahierarchicd timing wheds, there are multiple arrays, therefore

10 ?7100ms =1 sec
10 entries/sec
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the 1t array (leftmost array as shown in Figure 11.16)
Figure 11.16: A hierarchicd timing whed.

60 sec = 1 minute
60 entries/ min
the 2nd array (middle array shown in Figure 11.16)

5 entriesfor 5 minutes
3rd array

therefore:
5+ 60 + 10 = tota number of entries needed for the hierarchal timing wheels.

The reduction in space dlows for the congtruction of higher precision timer facilitieswith alarge range of timeout
values. Figure 11.16 depicts this concept.

For example, it ispossbleto ingtal timeouts of 2 minutes, 4 seconds, and 300 milliseconds. Thetimeout handler is
ingaled a the 2-minute dot first. The timeout handler determinesthat there are ill 4.3 secondsto go when the 2
minutesisup. The handler ingtallsitsdlf at the 4-second timeout dot. Again, when 4 seconds have elapsed, the same
handler determines that 300 milliseconds are left before expiring the timer. Findly, the handler isreingtdled at the
300-millisecond timeout dot. The red required work is performed by the handler when the last 300ms expire.
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11.7 Soft Timersand Timer Related Oper ations

Many RTOSs provide aset of timer-related operations for externa software components and applications through
API sets. These common operations can be cataloged into these groups:

group 1-provideslow-level hardware related operations,
group 2-provides soft-timer-rel ated services, and

group 3-provides access either to the storage of the real-time clock or to the system clock.

Not al of the operationsin each of these three groups, however, are offered by all RTOSs, and some RTOSs
provides additiona operations not mentioned here.

Thefirst group of operationsis developed and provided by the BSP devel opers. The group is considered low-level
systemn operations. Each operation in the group is given afictitious function namefor this discussion. Actud function
names are implementation dependen.

Table 11.1: Group 1 Operations.

Typical Operations Description

gys timer_enable Enables the system timer chip interrupts. As soon asthis operationis
invoked, the timer interrupts occur at the preprogrammed frequency,
assuming that the timer chip has been properly initidized with the desired
vaues. Only after this operation is complete can kernel task scheduling
take place.

gys timer_disable Disablesthe system timer chip interrupts. After this operation is complete,
the kerndl scheduler isno longer in effect. Other system-offered services
based on timeticks are disabled by this operation aswell.

Sys timer_connect Ingtdlsthe system timer interrupt service routine into the system exception
vector table. The new timer ISR isinvoked automaticaly on the next timer
interrupt. Theingtalled function is either part of the BSP or the kernel code
and representsthe 'timer ISR’ depicted in Figure 11.3, page 172.

Input Parameters:

1. New timer interrupt service routine

Sys timer_getrate Returns the system clock rate as the number of ticks per second that the
timer chip is programmed to generate.
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Output Parameter:

1. Ticks per second

Sys timer_setrate Sets the system clock rate as the number of ticks per second the timer
chip generates. Internaly, this operation reprogramsthe PIT to obtain the
desired frequency.

Input Parameters:

1. Ticks per second

Sys timer_getticks Returns the elapsed timer ticks since system power up. Thisfigureisthe
total number of elgpsed timer ticks since the system was first powered on.

Output Parameters.

1. Total number of elapsed timer ticks

The second group of timer-rel ated operations includes the core timer operations that are heavily used by both the
system modules and gpplications. Either an independent timer-handling facility or abuilt-in onethat is part of the
kernel offersthese operations. Each operation in the group is given afictitious function namefor this discussion.
Actua function names are implementation dependent.

Thetimer_create and timer_start operations alow the caller to start atimer that expires sometimein the future. The
cdler-supplied function isinvoked at the time of expiration, which is specified as atime relative with respect to when
thetimer_start operation isinvoked. Through these timer operations, gpplications can ingtd| soft timersfor various
purposes. For example, the TCP protocol layer can ingtdl retransmission timers, the | P protocol layer can ingtall
packet-reassembly discard timers, and adevice driver can poll an 1/O device for input a predefined intervals.
Table 11.2: Group 2 Operations.

Typical Operations Description

timer_create Creates atimer. This operation alocates a soft-timer structure. Any software
module intending to ingtall asoft timer must first create atimer structure. The
timer structure contains control information that alows the timer-handling facility
to update and expire soft timers. A timer created by this operation refersto an
entry in the soft-timers array depicted in Figure 11.3.

Input Parameter :

Expiraiontime

User function to be called at the timer expiration

Output Parameter:

An 1D identifying the newly crested timer structure
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Note: Thistimer structureisimplementation dependent. Thereturned timer ID is
aso implementation dependent.

timer_deete Deletesatimer. This operation deletes a previoudy created soft timer, freeing the
memory occupied by the timer structure.

Input Parameter:

1. AnID identifying aprevioudy created timer structure
Note: Thistimer ID isimplementation dependent.

timer_dart Startsatimer. Thisoperation ingtals aprevioudy created soft timer into the
timer-handling facility. The timer begins running at the completion of this
operation.

Input Parameter:

1. AnID identifying aprevioudy created timer structure

timer_cancd Cancelsacurrently running timer. This operation cancelsatimer by removing the
currently running timer from thetimer-handling fadility.

Input Parameter:

1. AnID identifying aprevioudy created timer structure

Thethird group ismainly used by user-level gpplications. The operationsin this group interact either with the system
clock or with thereal-time clock. A system utility library offers these operations. Each operation in the group isgiven
afictitiousfunction namefor this discusson. Actua function names are implementation dependent.

Table 11.3: Group 3 Operations.

Typical Operations Description

clock get time Getsthe current clock time, which isthe current running vaue either
from the system clock or from the redl-time clock.

Output Parameter:

A time structure contai ning seconds, minutes, or hoursl

clock set time Setsthe clock to aspecified time. The new timeis set either into the
system clock or into the real-time clock.

Input Parameter:

A time structure contai ning seconds, minutes, or hoursl

1. Thetime structure isimplementation dependent.
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11.8 Pointsto Remember

Some points to remember include the following:

Hardware timers (hard timers) are handled within the context of the ISR. The timer handler must conform to
generd redtrictions placed on the ISR.

The kernd scheduler depends on the announcement of time passing per tick.
Soft timers are built on hard timers and are less accurate because of various delays.
A soft-timer handling facility should alow for efficient timer ingtdlation, cancellation, and timer bookkeeping.

A soft-timer facility built using the timing-whedl approach provides efficient operationsfor instdlation,
cancdllation, and timer bookkeeping.
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Chapter 12: |/O Subsystem

12.1 Introduction

All embedded systems include some form of input and output (1/0) operations. These 1/O operations are performed
over different types of 1/O devices. A vehicle dashboard display, atouch screen on aPDA, the hard disk of afile
server, and anetwork interface card are al examples of 1/0 devices found in embedded systems. Often, an
embedded system is designed specifically to handle the specia requirements associated with adevice. A cell phone,
pager, and ahandheld MP3 player are afew examples of embedded systems built explicitly to ded with 1/O devices.

I/0O operations are interpreted differently depending on the viewpoint taken and place different requirements on the
level of understanding of the hardware details.

From the perspective of asystem software developer, I/0O operationsimply communicating with the device,
programming the deviceto initiate an 1/0 request, performing actua datatransfer between the device and the system,
and notifying the requestor when the operation completes. The system software engineer must understand the
physical properties, such asthe register definitions, and access methods of the device. Locating the correct instance
of the deviceis part of the device communications when multiple instances of the same device are present. The
system engineer is aso concerned with how the device isintegrated with rest of the system. The system engineer is
likely adevice driver devel oper because the system engineer must know to handle any errorsthat can occur during
the I/O operations.

From the perspective of the RTOS, 1/0 operationsimply locating the right device for the 1/0 request, locating the
right device driver for the device, and issuing the request to the device driver. Sometimes the RTOS isrequired to
ensure synchronized access to the device. The RTOS must facilitate an abstraction that hides both the device
characteristics and specifics from the application developers.

From the perspective of an application developer, the god isto find asmple, uniform, and elegant way to
communicate with al types of devices present in the system. The gpplication developer ismost concerned with
presenting the data to the end user in auseful way.

Each perspectiveis equaly important and is examined in this chapter. This chapter focuses on:
basic hardware 1/0O concepts,
the structure of the I/O subsystem, and

aspecific implementation of an 1/0 subsystem.
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12.2 Basic |/O Concepts

The combination of 1/0 devices, associated device drivers, and the I/0O subsystem comprisesthe overal 1/0 system
in an embedded environment. The purpose of the 1/0O subsystem isto hide the device-specific information from the
kernel aswell asfrom the gpplication developer and to provide a uniform access method to the periphera 1/0
devices of the system. This section discusses some fundamenta concepts from the perspective of the device driver
developer.

Figure 12.1 illugtrates the I/O subsystem in relation to the rest of the system in alayered software model. As shown,

each descending layer adds additional detailed information to the architecture needed to manage a given device.
Application Softwars Generic

O Subsystem

Interrupt Handlers

"0 Device Hardware Specific Details

Figure 12.1: 1/0O subsystem and the layered modedl.

12.2.1 Port-M apped vs. Memory-Mapped 1/O and DM A

The bottom layer contains the 1/0 device hardware. The /O device hardware can range from low-bit rate serid lines
to hard drives and gigabit network interface adaptors. All 1/0 devices must be initiaized through device contral
registers, which are usually externd to the CPU. They arelocated on the CPU board or in the devices themselves.
During operation, the device registers are accessed again and are programmed to process data transfer requests,
whichiscdled device control . To accessthese devices, it is necessary for the devel oper to determine if the deviceis
port mapped or memory mapped. This information determines which of two methods, port-mapped 1/0 or
memory-mapped 1/0, is deployed to access an 1/0 device.

When the I/O device address space is separate from the system memory address space, specia processor
ingtructions, such asthe IN and OUT instructions offered by the Intel processor, are used to transfer data between
the 1/O device and amicroprocessor register or memory.

The /O device addressisreferred to as the port number when specified for these speciad ingtructions. Thisform of

System address space
F——
Ayailable for
application use
0 address space
OxFFFFI— | | OxFFFF
: 4
e LCD
[fin] fr.".-ic,e;:-
.| Sardal Line
I/Oiscalled port-mapped 1/0, asshown in Figure 12.2. woooo L | \ 00000

Figure 12.2: Port-mapped 1/0.

The devices are programmed to occupy arangein the 1/0O address space. Each deviceis on adifferent 1/0O port. The
1/O ports are accessed through specia processor ingtructions, and actua physica accessis accomplished through
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specia hardware circuitry. This1/O method isalso caled isolated 1/0O because the memory spaceisisolated from the
1/O space, thus the entire memory address space is available for application use.

The other form of device access is memory-mapped 1/0, as shown in Figure 12.3. In memory-mapped 1/0O, the
device addressis part of the system memory address space. Any machine instruction that is encoded to transfer data
between amemory location and the processor or between two memory |ocations can potentialy be used to access
the 1/O device. Thel/O deviceistreated asif it were another memory location. Because the 1/0O address space

occupies arange in the syslem memory address space, thisregion of the memory address spaceis not available for
System address space

'

Available for
application use

I/O address space OxFFFF [
LCD
Reserved for /O
address space {
Serial Line
an application to use. 0x0000

Figure 12.3: Memory-mapped 1/O.

The memory-mapped 1/0 space does not necessarily begin at offset 0 in the system address space, asillugtrated in
Figure 12.3. It can be mapped anywhere insde the address space. Thisissueis dependent on the system
implementation.

Commonly, tables describing the mapping of adevicesinternd registers are available in the device hardware data
book. The device registers appear at different offsetsin this map. Sometimes the information is presented in the 'base
+ offset’ format. Thisformat indicates that the addressesin the map are rlative, i.e., the offset must be added to the
start address of the 1/0 space for port-mapped 1/O or the offset must be added to the base address of the system
memory space for memory-mapped 1/0 in order to access a particular register on the device.

The processor has to do some work in both of these I/O methods. Data transfer between the device and the system
involves transferring data between the device and the processor register and then from the processor register to
memory. The transfer speed might not meet the needs of high-speed 1/0 devices because of the additional data copy
involved. Direct memory access (DMA) chips or controllers solve this problem by alowing the device to accessthe
memory directly without involving the processor, asshownin Figure 12.4. The processor is used to set up the DMA
controller before a data transfer operation begins, but the processor is bypassed during data transfer, regardless of
whether it isaread or write operation. The transfer speed depends on the transfer speed of the 1/O device, the speed
of the memory device, and the speed of the DMA controller.

oMa
cru Contralior

Main o
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Figure 12.4: DMA 1/O.

In essence, the DMA controller provides an dternative data path between the 1/0 device and the main memory. The
processor sets up the transfer operation by specifying the source address, the destination memory address, and the
length of the transfer to the DMA controller.

12.2.2 Character-M ode vs. Block-M ode Devices

1/0 devices are classified as either character-mode devices or block-mode devices. The classification refersto how
the device handles data transfer with the system.

Character-mode devices alow for unstructured data transfers. The data transferstypically take place in seria fashion,
one byte at atime. Character-mode devices are usualy smple devices, such asthe serid interface or the keypad.
The driver buffersthe datain cases where the transfer rate from system to the deviceis faster than what the device
can handle.

Block-mode devicestransfer data one block at time, for example, 1,024 bytes per datatransfer. The underlying
hardware imposes the block size. Some structure must be imposed on the data or some transfer protocol enforced.
Otherwise an error islikely to occur. Therefore, sometimesit is necessary for the block-mode device driver to

orm additional work for each read or write operation, as shown in Figure 12.5.

Block mode /O device

Figure 12.5: Servicing awrite operation for a block-mode device.

Asillugrated in Figure 12.5, when servicing awrite operation with large amounts of data, the device driver must first
divide the input datainto multiple blocks, each with a device-specific block size. In thisexample, theinput datais
divided into four blocks, of which al but the last block is of the required block size. In practice, the last partition often
issmaller than the normal device block size.

Each block istransferred to the device in separate write requests. Thefirst three are straightforward write operations.
The device driver must handle the last block differently from the firgt three because the last block has a different size.
The method used to processthislast block is device specific. In some cases, the driver pads the block to the
required Sze. The examplein Figure 12.5 is based on a hard-disk drive. In this case, the device driver first performs
aread operation of the affected block and replaces the affected region of the block with the new data. The modified
block isthen written back.

Another gtrategy used by block-mode device drivers for smal write operationsisto accumulate the dataiin the driver
cache and to perform the actual write after enough data has accumulated for arequired block size. Thistechnique
also minimizes the number of device accesses. Some disadvantages occur with this gpproach. Firg, the device driver
Is more complex. For example, the block-mode device driver for ahard disk must know if the cached data can
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satisfy aread operation. The delayed write associated with caching can also cause datalossif afallure occurs and if
the driver is shut down and unloaded ungracefully. Data caching in this case implies data copying that can result in
lower 1/O performance.
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12.3 Thel/O Subsystem

Each 1/0 device driver can provide adriver-specific set of 1/0 application programming interfacesto the
gpplications. This arrangement requires each application to be aware of the nature of the underlying I/O device,
including the restrictionsimposed by the device. The APl set isdriver and implementation specific, which makesthe
gpplicationsusing this APl set difficult to port. To reduce thisimplementation-dependence, embedded systems often
incdludean 1/0 subsystem.

The 1/0 subsystem defines a standard set of functionsfor I/O operationsin order to hide device peculiaritiesfrom
applications. All 1/0 device drivers conform to and support this function set because the god isto provide uniform
1/0 to gpplications across awide spectrum of 1/O devices of varying types.

The following steps must take place to accomplish uniform /O operations at the gpplication-level.
1

The I/O subsystem definesthe APl <.
The device driver implements each function in the set.
The device driver exportsthe set of functionsto the /0 subsystem.

The device driver does the work necessary to prepare the device for use. In addition, the driver setsup an
association between the I/0 subsystem APl set and the corresponding device-specific I/O cdlls.

The device driver loads the device and makes this driver and device association known to the I/O subsystem.
This action enables the 1/0 subsystem to present theillusion of an abstract or virtual instance of the deviceto
goplications.

This section discusses one approach to uniform 1/0. This approach is general, and the god isto offer ingght into the
I/0 subsystem layer and itsinteraction with the gpplication layer above and the device driver layer below. Another
god isto give the reader an opportunity to observe how the pieces are put together to provide uniform /O capability
in an embedded environment.

12.3.1 Standard I/O Functions

The I/O subsystem presented in the examplein this section defines a set of functions asthe standard 1/0 function set.
Table 12.1 ligts those functions that are considered part of the set in the genera approach to uniform I/0O. Again,
remember that the example approach is used for illustration purposesin describing and discussing the 1/0 subsystem
in generd. The number of functionsin the standard I/0 API s&t, function names, and functionality of eechis
dependent on the embedded system and implementation. The next few sections put these functionsinto perspective.
Table 12.1: 1/O functions.

Function Description
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Create Createsavirtud instance of an 1/0 device

Destroy Deeesavirtud instance of an 1/O device

Open Prepares an |/O device for use.

Close Communicatesto the device that its services are no longer required, which typicaly initiates

device-specific cleanup operations.

Read Reads datafrom an 1/0O device
Write Writes datainto an I/O device
loctl I ssues control commands to the /0O device (1/0 control)

Notethat all these functions operate on a so-caled 'virtua instance' of the /O device. In other words, these functions
do not act directly on the 1/O device, but rather on the driver, which passes the operations to the I/O device. When
the open, read, write, and close operations are described, these operations should be understood as acting indirectly
on an 1/O device through the agency of avirtua instance.

The create function creates avirtua instance of an I/O device in the 1/0O subsystem, making the device available for
subsequent operations, such as open, read, write, and ioctl. Thisfunction givesthe driver an opportunity to prepare
the device for use. Preparations might include mapping the device into the system memory space, dlocating an
avallableinterrupt request line (IRQ) for the device, ingaling an ISR for the IRQ, and initidizing the device into a
known state. The driver alocates memory to store instance-specific information for subsequent operations. A
reference to the newly created device instanceis returned to the cdler.

The destroy function deletes a virtual instance of an 1/0 device from the 1/0 subsystem. No more operations are
alowed on the device after thisfunction completes. Thisfunction givesthe driver an opportunity to perform cleanup
operations, such as un-mapping the device from the system memory space, de-alocating the IRQ, and removing the
ISR from the system. The driver frees the memory that was used to store instance-specific information.

The open function prepares an |/O device for subsequent operations, such as read and write. The device might have
been in adisabled state when the create function was called. Therefore, one of the operations that the open function
might perform is enabling the device. Typicaly, the open operation can aso specify modes of use; for example, a
device might be opened for read-only operations or write-only operations or for receiving control commands. The
reference to the newly opened 1/0O deviceisreturned to the caller. In some implementations, the I/O subsystem might
supply only one of the two functions, creste and open, which implements most of the functionalities of both create
and open due to functiond overlaps between the two operations.

The close function informs a previoudy opened 1/0 device that its services are no longer required. This process
typicaly initiates device-specific cleanup operations. For example, closing adevice might causeit to go to a standby
datein which it consumeslittle power. Commonly, the 1/0 subsystem supplies only one of the two functions, destroy
and close, which implements most of the functionalities of both destroy and close, in the case where one function
implements both the create and open operations.

The read function retrieves data from a previoudy opened I/O device. The caller specifiesthe amount of datato
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retrieve from the device and the location in memory where the dataisto be stored. The caler iscompletely isolated
from the device details and is not concerned with the I/O restrictions imposed by the device.

The write function transfers data from the application to a previoudy opened I/O device. The cdler specifiesthe
amount of datato transfer and the location in memory holding the datato be transferred. Again, the cdler isisolated
from the device I/O details.

The loctl function is used to manipulate the device and driver operating parameters a runtime.

An gpplication is concerned with only two thingsin the context of uniform I1/O: the device on which it wishesto

perform |/O operations and the functions presented in this section. The I/O subsystem exportsthis APl set for
goplication use.

12.3.2 Mapping Generic Functionsto Driver Functions

Theindividua device drivers provide the actual implementation of each function in theuniform 1/0 API s&t. Figure
12.6 gives an overview of the relationship between the I/O API set and driver internal function set.

VO System Device Driver

| Creats{) driver_Create {

Open () driver_Open ()

Application [ Read (] — driver_Read | ) " Dovos

Write () driver_Write { )

Closa | ) driver_Close ()

loctl { driver_loct! | )

i Destroy () driver_Destroy (]

Figure 12.6: 1/0 function mapping.

Asillugrated in Figure 12.6, the 1/0O subsystem-defined APl set needs to be mapped into afunction set that is
specific to the device driver for any driver that supports uniform I/O. The functionsthat begin with the driver _ prefix
in Figure 12.6 refer to implementations that are specific to adevice driver. The uniform 1/O AP set can be
represented in the C programming language syntax as astructure of function pointers, as shown in the left-hand sde

of Liging 12.1.

ef struct

Lidt nf 12.1: C gructure defining the uniform 1/0O APl s&t.

int (*Create)( );
int (*Open) ( );
int (*Read)( );

int (*Wite) ( );
int (*Cose) ();
int (*loctl) ( );
int (*Destroy) ( );

I UNI FORM | O DRV;

The mapping processinvolvesinitiaizing each function pointer with the address of an associated internd driver
function, asshown in Ligting 12.2. Theseinterna driver functions can have any name aslong asthey are correctly

mapped.
Listing 12.2: Mapping uniform 1/O API to specific driver functions.

110 DRV ttyl Odrv;
rv.Create = tty_Create;

y rv.Open = tty_Qpen;
ttylOdrv. Read = tty_Read,;
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ttylQdrv. Wite = tty Wite;
ttylQdrv. d ose = tty O ose;
ttylQdrv.loctl = tty_loctl;

ttyl Odrv. Destroy = tty Destroy;

An1/O subsystem usualy maintainsa uniform 1/O driver table. Any driver can beingtaled into or removed from
this driver table by using the utility functionsthat the 1/0 subsystem provides. Figure 12.7 illustrates this concept.

Driver Table
Create Destroy Open Close Read Write loctl

“fal™ 1

-" int feli Openi)

int tty Createi)
{ I

I

Figure 12.7: Uniform /O driver table.

Each row in the table represents aunique 1/0 driver that supports the defined API set. The first column of thetableis
ageneric name used to associate the uniform 1/O driver with aparticular type of device. In Figure 12.7, auniform

I/O driver isprovided for aserid linetermina device, tty. The table element at the second row and column contains a
pointer to theinternd driver function, tty Create(). This pointer, in effect, congtitutes an association between the
generic create function and the driver-specific create function. The association is used later when cregting virtual
instances of adevice.

These pointers are written to the table when adriver isingtaled in the 1/0 subsystem, typically by cdling autility
function for driver ingalation. When this utility functionis caled, areference to the newly created driver tebleentry is
returned to the caller.

12.3.3 Associating Devices with Device Drivers

Asdiscussed in the section on standard 1/0O functions, the create function is used to create avirtua instance of a
device. The 1/O subsystem tracks these virtual instances using the device table. A newly created virtud instanceis
given aunique name and isinserted into the device table, asshown in Figure 12.8. Figure 12.8 dsoilludtratesthe
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Davice Tabla

device table's relationship to the driver table. Deiver Table
Figure 12.8: Associating deviceswith drivers.

Each entry in the device table holds generic information, as well asinstance-specific information. The generic part of
the device entry can include the unique name of the device instance and areference to the device driver. In Figure
12.8, adeviceingtance nameis constructed using the generic device name and the instance number. The device
named tty0 impliesthat this1/O deviceisaserid termind device and isthefirst instance created in the system. The
driver-dependent part of the device entry isablock of memory dlocated by the driver for each instance to hold
indtance-specific data. The driver initidizes and maintainsit. The content of thisinformation is dependent on the driver
implementation. The driver isthe only entity that accesses and interpretsthis data.

A referenceto the newly created device entry isreturned to the caller of the create function. Subsequent cdlsto the
open and destroy functions use this reference.

[« erevious [ nexr |
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12.4 Pointsto Remember

Some points to remember include the following:
| nterfaces between a device and the main processor occur in two ways. port mapped and memory mapped.
DMA controllers allows datatransfer bypassing the main processor.
1/0 subsystems must be flexible enough to handle awide range of 1/0 devices.
Uniform 1/O hides device peculiarities from gpplications.

The 1/O subsystem maintains a driver table that associates uniform 1/0 calls with driver-specific 1/0 routines.

The1/0O subsystem maintains a device table and forms an association between this table and the driver table.
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Chapter 13: Memory
M anagement

13.1 Introduction

Embedded systems devel opers commonly implement custom memory-management facilities on top of what the
underlying RTOS provides. Understanding memory management is therefore an important aspect of developing for
embedded systems.

Knowing the capability of the memory management system can aid gpplication design and help avoid pitfals. For
example, in many existing embedded applications, the dynamic memory alocation routine, maloc, is caled often. It
can create an undesirable side effect called memory fragmentation. This generic memory alocation routine, depending
on itsimplementation, might impact an gpplication's performance. In addition, it might not support the alocation
behavior required by the application.

Many embedded devices (such as PDAS, cell phones, and digital cameras) have alimited number of applications
(tasks) that can runin parale at any given time, but these devices have smdl amounts of physical memory onboard.
Larger embedded devices (such as network routers and web servers) have more physical memory installed, but
these embedded systems a so tend to operate in amore dynamic environment, therefore making more demands on
memory. Regardless of the type of embedded system, the common requirements placed on a memory management
system are minimd fragmentation, minima management overhead, and determinitic dlocation time.

This chapter focuses on:
memory fragmentation and memory compaction,
an exampleimplementation of the maloc and free functions,
fixed-sze, pool-based memory management,

blocking vs. non-blocking memory functions, and

the hardware memory management unit (MMU).
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13.2 Dynamic Memory Allocation in Embedded
Systems

Chapter 3 shows that the program code, program data, and system stack occupy the physical memory after program
initidization completes. Either the RTOS or the kernel typically usesthe remaining physica memory for dynamic
memory alocation. Thismemory areais caled the heap . Memory management in the context of this chapter refers
to the management of a contiguous block of physical memory, athough the conceptsintroduced in this chapter apply
to the management of non-contiguous memory blocks aswell. These concepts aso apply to the management of
varioustypes of physica memory. In generd, amemory management facility maintainsinterna information for ahegp
in areserved memory areacaled the control block. Typicd internad information includes:

the starting address of the physica memory block used for dynamic memory alocation,
the overadl size of this physical memory block, and

the dlocation table that indicates which memory areas arein use, which memory areas are free, and the size
of each freeregion.

This chapter examines agpects of memory management through an example implementation of the mdloc and free
functions for an embedded system.

13.2.1 Memory Fragmentation and Compaction

In the example implementation, the hegp is broken into small, fixed-size blocks. Each block hasaunit szethat is
power of two to ease trandating arequested Size into the corresponding required number of units. In this example,
the unit Sizeis 32 bytes. The dynamic memory dlocation function, maloc, has an input parameter that specifiesthe
gzeof the alocation request in bytes. mdloc alocates alarger block, which is made up of one or more of the smaller,
fixed-sze blocks. The size of thislarger memory block isat least aslarge asthe requested size; it isthe closest to the
multiple of the unit Size. For example, if the alocation requests 100 bytes, the returned block has asize of 128 bytes
(4 unitsx 32 bytes/unit). Asaresult, the requestor does not use 28 bytes of the alocated memory, whichiscalled
memory fragmentation. This specific form of fragmentation is caled internd fragmentation becauseit isinternd to the
allocated block.

The allocation table can be represented as a bitmap, in which each bit represents a 32-byte unit. Figure 13.1 shows
the states of the alocation table after a series of invocations of the maloc and free functions. In thisexample, the heap
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Figure 13.1: States of amemory alocation map.

Step 6 shows two free blocks of 32 bytes each. Step 7, instead of maintaining three separate free blocks, shows that
all three blocks are combined to form a 128-byte block. Because these blocks have been combined, afuture
alocation request for 96 bytes should succeed.

Figure 13.2 shows another example of the state of an allocation table. Note that two free 32-byte blocks are shown.
One block is at address 0x10080, and the other at address 0x101CO0, which cannot be used for any memory
allocation requests larger than 32 bytes. Because these isolated blocks do not contribute to the contiguous free space
needed for alarge alocation request, their existence makes it morelikely that alarge request will fail or take too long.
The existence of these two trapped blocksis consdered externa fragmentation because the fragmentation existsin
the table, not within the blocks themsalves. One way to eliminate this type of fragmentation isto compact the area
adjacent to these two blocks. The range of memory content from address 0x100A0 (immediately following thefirgt
free block) to address Ox101BF (immediately preceding the second free block is shifted 32 bytes |ower in memory,
to the new range of 0x10080 to Ox1019F, which effectively combines the two free blocks into one 64-byte block.
Thisnew free block is<till considered memory fragmentation if future locations are potentiadly larger than 64 bytes.
Therefore, memory compaction conti nug until al of the free blocks are combined into one large chunk.
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Figure 13.2: Memory dlocation map with possible fragmentation.

Severa problems occur with memory compaction. It istime-consuming to transfer memory content from onelocation
to another. The cost of the copy operation depends on the length of the contiguous blocksin use. The tasksthat
currently hold ownership of those memory blocks are prevented from ng the contents of those memory
locations until the transfer operation completes. Memory compaction isamost never done in practice in embedded
designs. The free memory blocks are combined only if they areimmediate neighbors, asillustrated in Figure 13.1.

Memory compaction isalowed if the tasks that own those memory blocks reference the blocks using virtud
addresses. Memory compaction is not permitted if tasks hold physical addresses to the allocated memory blocks.
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In many cases, memory management systems should aso be concerned with architecture-specific memory aignment
requirements. Memory alignment refersto architecture-specific constraints imposed on the address of adataitemin
memory. Many embedded processor architectures cannot access multi-byte data items at any address. For example,
some architecture requires multi-byte dataitems, such asintegers and long integers, to be alocated at addresses that
are apower of two. Unaigned memory addresses result in bus errors and are the source of memory access
exceptions.

Some conclusions can be drawn from this example. An efficient memory manager needsto perform the following
chores quickly:

Determineif afree block that islarge enough exists to satisfy the alocation request. Thiswork is part of the
malloc operation.

Update the internal management information. Thiswork is part of both the malloc and free operations.

Determineif the just-freed block can be combined with its neighboring free blocksto form alarger piece.
Thiswork is part of the free operation.

The structure of the dlocation table is the key to efficient memory management because the structure determines how
the operations listed earlier must be implemented. The dlocation tableis part of the overhead because it occupies
memory space that is excluded from application use. Consequently, one other requirement isto minimize the
management overhead.

13.2.2 An Example of malloc and free

Thefallowing isan exampleimplementation of malloc's alocation agorithm for an embedded system. A static array
of integers, called the allocation array, is used to implement the alocation map. The main purpose of the dlocation
array isto decide if neighboring free blocks can be merged to form alarger free block. Each entry inthisarray
represents a corresponding fixed-size block of memory. In this sense, thisarray issmilar to the map shown in Fgure
13.2, but this one uses a different encoding scheme. The number of entries contained in the array isthe number of
fixed-sze blocks available in the managed memory area. For example, IMB of memory can be divided into 32,768
32-byte blocks. Therefore, in this case, the array has 32,768 entries.

To smplify the example for better understanding of the dgorithmli involved, just 2112 units of memnory areused. Figure

o | 12 |

8 7 3
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[ 1 frea 4 4
. . . 2 |
— = |2 |
2 0 | o |
r =3 -3 | -3
| atocated s || —
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13.3 showsthe example dlocation array. Allocation for 3 units 2 units 4 units

Figure 13.3: Static array implementation of the alocation map.
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In Figure 13.3, let the allocation-array index start at 0. Before any memory has been alocated, one large free block
IS present, which consgts of al 12 units of available memory. The dlocation array uses asmple encoding schemeto
keep track of alocated and free blocks of memory. To indicate arange of contiguous free blocks, a positive number
isplaced in the firgt and last entry representing the range. This number isequa to the number of free blocksin the
range. For example, in thefirst array shown on theleft, the number of free units (12 in thiscase) isplaced in the
entriesat index 0 and index 11.

Placing a negative number in the first entry and azero in the last entry indicates arange of allocated blocks. The
number placed in the first entry isequal to -1 timesthe number of alocated blocks.

In thisexample, thefirst allocation request isfor three units. The array labeled 1 in Figure 13.3 represents the state of
the dlocation array after thisfirgt alocation request is made. The vaue of -3 a index 9 and thevaue of O a index 11
marks the range of the alocated block. The size of the free block is now reduced to nine. Step 3in Figure 13.3
showsthe state of the allocation array at the completion of three alocation requests. Thisarray arrangement and the
marking of alocated blocks smplify the merging operation that takes place during the free operation, as explained
later in this chapter.

Not only doesthis alocation array indicate which blocks are free, but it dso implicitly indicates the starting address of

each block, because asmple relationship exists between array indices and starting addresses, as shown
starting address = offset + unit_size*i ndex

When dlocating ablock of memory, maloc usesthisformulato calculate the starting address of the block. For
example, in Figure 13.3, thefirgt dlocation for three units begins at index 9. If the offset in the formulais 0x10000 and

theunit 9zeis 0x20 (32 decimadl), the address returned for index 9is
0x10000 + 0x20*9 = 0x10120

13.2.3 Finding Free Blocks Quickly

In this memory management scheme, mdloc always alocates from the largest available range of free blocks. The
allocation array described is not arranged to help maloc perform thistask quickly. The entries representing free
ranges are not sorted by size. Finding the largest range aways entails an end-to-end search. For thisreason, a
second data structure is used to speed up the search for the free block that can satisfy the dlocation request. The
szesof free blockswithin the dlocation array are maintained using the hegp data structure, as shown in Figure 13.4.
The heap data structure is a complete binary tree with one prohe vaue contained a anodeisno smaler than

&
@ @

1 2 3 4 3 G

implementing the Heap l 20 ] 12 | 18 ] 4 | 9 | 1 | |
using a static array : | E §

The left child of a node k ks at position 2k.
thevauein any of its child nodes. The right child of a node k is at position 2k+1.

Figure 13.4: Free blocksin a hegp arrangement.

The size of each free block isthe key used for arranging the heap. Therefore, the largest free block isaways at the
top of the heap. The mdloc dgorithm carvesthe dlocation out of the largest available free block. The remaining
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portion is reinserted into the heap. The heap isrearranged as the last step of the memory allocation process.

Although the size of each free range isthe key that organizes the heap, each node in the heap is actualy a data
structure containing at least two pieces of information: the Sze of afreerange and its starting index in the dlocation
array. The maloc operation involvesthefollowing steps:

1

Examine the hegp to determineif afree block that is large enough for the allocation request exigs.
2.

If no such block exigts, return an error to the caler.
Retrieve the garting alocation-array index of the free range from the top of the heap.
Update the dlocation array by marking the newly alocated block, asillustrated in Figure 13.3.

If the entire block is used to satisfy the alocation, update the hegp by deleting the largest node. Otherwise
update the size.

Rearrange the heap array.

Before any memory has been dlocated, the hegp has just one node, signifying that the entire memory regionis
avallable as one, large, free block. The hegp continuesto have a single node elther if memory isdlocated
consecutively without any free operations or if each memory free operation resultsin the dedllocated block merging
with itsimmediate neighbors. The hesp structurein Figure 13.4 represents free blocks interleaved with blocksin use
and issimilar to thememory map in Figure 13.2.

The hesp can be implemented using another static array, called the heap array, asshown in Figure 13.4. The array
index beginsat 1 instead of 0to smplify codingin C. Inthisexample, sx free blocks of 20, 18, 12, 11, 9, and 4
blocks are available. The next memory alocation uses the 20-block range regardless of the size of the dlocation
request. Note that the hegp array is a compact way to implement abinary tree. The heap array stores no pointersto
child nodes; instead, child-parent relationships are indicated by the positions of the nodeswithin the array.

13.2.4 Thefree Operation

Note that the bottom layer of the madloc and free implementationisshownin Figure 13.3 and Figure 13.4. In other
words, another layer of software tracks, for example, the address of an alocated block and its size. Let's assume that
this software layer exists and that the exampleis not concerned with it other than that thislayer feeds the necessary
information into the free function.

The main operation of the free function isto determineif the block being freed can be merged with its neighbors. The
merging rulesare
1

If the tarting index of the block isnot O, check for the value of the array at (index -1). If thevaueis positive
(not anegative value or 0), this neighbor can be merged.
2.
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If (index + number of blocks) does not exceed the maximum array index vaue, check for the value of the
array at (index + number of blocks). If the valueis positive, this neighbor can be merged.

Theserulesareillustrated best through an example, asshown in Figure 13.5.
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Figure 13.5: The free operation.

Figure 13.5 shows two scenarios worth discussion. In the first scenario, the block starting at index 3 is being freed.
Following rule#1, look at the value a index 2. The valueis 3; therefore, the neighboring block can be merged. The
vaue of 3indicatesthat the neighboring block is 3 unitslarge. The block being freed is4 unitslarge, so following rule
#2, ook at the value at index 7. The valueis-2; therefore, the neighboring block is till in use and cannot be merged.
Theresult of the free operation in the first scenario is shown as the second tablein Figure 13.5.

In the second scenario, the block at index 7 isbeing freed. Following rule #1, look at the value at index 6, whichisO.
Thisvdueindicates the neighboring block is il in use. Following rule#2, look at the value a index 9, whichis-3.
Again, thisvaueindicatesthat thisblock isaso in use. The newly freed block remains asindependent piece. After
applying the two merge rules, the next free operation of the block starting at index 3 resultsin the dlocation table
shown asthelast tablein Figure 13.5.

When ablock isfreed, the heap must be updated accordingly. Therefore, the free operation involvesthefollowing

steps:
1.

Update the dlocation array and merge neighboring blocks if possible.

If the newly freed block cannot be merged with any of its neighbors, insert anew entry into the heap array.

If the newly freed block can be merged with one of its neighbors, the hegp entry representing the neighboring
block must be updated, and the updated entry rearranged according to its new size.

If the newly freed block can be merged with both of its neighbors, the hegp entry representing one of the
neighboring blocks must be del eted from the heap, and the heap entry representing the other neighboring
block must be updated and rearranged according to its new size.
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13.3 Fixed-Size Memory Management in
Embedded Systems

Another gpproach to memory management uses the method of fixed-size memory pools. This approach iscommonly
found in embedded networking code, such asin embedded protocol stacks implementation.

Asshownin Figure 13.6, the available memory spaceisdivided into varioudy sized memory pools. All blocks of the
same memory pool have the same size. In this example, the memory spaceis divided into three pools of block sizes
32, 50, and 128 respectively. Each memory-pool control structure maintains information such asthe block size, tota
number of blocks, and number of free blocks. In this example, the memory pools are linked together and sorted by
size. Finding the smallest size adequate for an alocation requires searching through thislink and examining eech
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control structure for the first adequate block size.

Figure 13.6: Management based on memory pools.

A successful alocation resultsin an entry being removed from the memory pool. A successful dedllocation resultsin
an entry being inserted back into the memory pool. The memory pool structure shown in Figure 13.6 isasingly
linked list. Therefore, memory alocation and dedllocation takes place a the beginning of thisligt.

Thismethod is not asflexible asthe dgorithm introduced earlier in 'Dynamic Memory Allocation in Embedded
Systems on page 200 and aso has some drawbacks. In real-time embedded systems, atask's memory requirement
often depends on its operating environment. This environment can be quite dynamic. This method does not work well
for embedded applications that congtantly operate in dynamic environments becauseit is nearly impossibleto
anticipate the memory block sizesthat the task might commonly use. Thisissue resultsin increased internal memory
fragmentation per dlocation. In addition, the number of blocksto alocate for each sizeisaso impossbleto predict.
In many cases, the memory pools are constructed based on anumber of assumptions. Theresult isthat some
memory pools are under used or not used at all, while others are overused.

On the other hand, this memory allocation method can actudly reduce interna fragmentation and provide high
utilization for static embedded gpplications. These applications are those with predictable environments, aknown
number of running tasks at the start of gpplication execution, and initidly known required memory block sizes.

One advantage of this memory management method isthet it is more determinigtic than the heap method agorithm. In
the heap method, each mdloc or free operation can potentialy trigger arearrangement of the heap. Inthe
memory-pool method, memory blocks are taken or are returned from the beginning of the list so the operation takes
constant time. The memory pool does not require restructuring.
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13.4 Blocking vs. Non-Blocking Memory Functions

The maloc and free functions do not alow the calling task to block and wait for memory to become available. In
many red-time embedded systems, tasks compete for the limited systern memory available. Oftentimes, the memory
exhaugtion condition is only temporary. For some tasks when amemory alocation request fails, the task must
backtrack to an execution checkpoint and perhaps restart an operation. Thisissueis undesirable as the operation can
be expensive. If tasks have built-in knowledge that the memory congestion condition can occur but only momentarily,
the tasks can be designed to be more flexible. If such tasks can tolerate the allocation delay, the tasks can choose to
wait for memory to become availableinstead of ether failing entirely or backtracking.

For example, the network traffic pattern on an Ethernet network is bursty. An embedded networking node might
receive few packets for a period and then suddenly be flooded with packets at the highest allowable bandwidth of
the physical network. During thistraffic burgt, tasks in the embedded node that are in the process of sending data can
experience temporary memory exhaustion problems because much of the available memory isused for packet
reception. These sending tasks can wait for the condition to subside and then resume their operations.

In practice, awell-designed memory dlocation function should alow for dlocation that permits blocking forever,
blocking for atimeout period, or no blocking at dl. This chapter uses the memory-pool approach to demonstrate
how to implement a blocking memory alocation function.

Asshown in Figure 13.7, ablocking memory alocation function can be implemented using both a counting
semaphore and amutex lock. These synchronization primitives are created for each memory pool and are kept in the
control structure. The counting semaphoreisinitidized with the tota number of available memory blocks at the
crestion of the memory pool. Memory blocks are alocated and freed from the beginning of thelist.

counting
mutax kock samaphora

Figure 13.7: Implementing a blocking alocation function usng amutex and a counting semaphore.

Multiple tasks can access the free-blocks list of the memory pool. The control structure is updated each time an
allocation or adedllocation occurs. Therefore, amutex lock is used to guarantee atask exclusive accessto both the
free-blocksligt and the control structure. A task might wait for ablock to become available, acquire the block, and
then continue its execution. In this case, a counting semaphoreis used.

For an allocation request to succeed, the task must first successfully acquire the counting semaphore, followed by a
successful acquisition of the mutex lock.

The successful acquisition of the counting semaphore reserves a piece of the available blocks from the pool. A task
firgt triesto acquire the counting semaphore. If no blocks are available, the task blocks on the counting semaphore,
assuming thetask is prepared to wait for it. If aresourceisavailable, the task acquires the counting semaphore
successfully. The counting semaphore token count is now one lessthan it was. At this point, the task hasreserved a
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piece of the available blocks but has yet to obtain the block.
Next, the task triesto lock the mutex. If another task is currently getting ablock out of the memory pool or if another
task is currently freeing ablock back into the memory pool, the mutex isin the locked state. The task blocks waiting
for the mutex to unlock. After the task locks the mutex, the task retrieves the resource from thelist.
The counting semaphore is released when the task finishes using the memory block.

The pseudo code for memory dlocation using a.counting semaphore and mutex lock isprovided in Listing 13.1.
Listing 13.1: Pseudo code for memory alocation.

re( Counti ng_Senaphore)
nut ex)
etrieve the nenory block fromthe pool

Unl ock( mut ex)

The pseudo code for memory deallocation using amutex lock and counting semaphoreisprovided in Listing 13.2.
Listing 13.2: Pseudo code for memory dedlocation.

nut ex)
se the nmenory bl ock back to into the pool
N ock( mut ex)

Rel ease( Counti ng Semaphor e)

Thisimplementation shownin Ligting 13.1 and 13.2 enables the memory allocation and deallocation functions to be
safe for multitasking. The deployment of the counting semaphore and the mutex lock diminatesthe priority inverson
problem when blocking memory alocation is enabled with these synchronization primitives. Chapter 6 discusses
semaphores and mutexes. Chapter 16 discusses priority inversions.
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13.5 Hardware Memory Management Units

Thusfar, the discuss on on memory management focuses on the management of physical memory. Another topicis
the management of virtual memory. Virtua memory isatechniquein which mass sorage (for example, ahard disk) is
made to appear to an application asif the mass storage were RAM. Virtual memory address space (also caled
logical address space) islarger than the actud physica memory space. Thisfeature alows aprogram larger than the
physica memory to execute. The memory management unit (MMU) provides several functions. First, the MMU
trandatesthe virtua addressto aphysica addressfor each memory access. Second, the MMU provides memory
protection.

The address trand ation function differs from one MMU design to another. Many commercial RTOSes do not
support implementation of virtual addresses, so this chapter does not discuss address trand ation. Instead, the chapter
discusses the MMU's memory protection feature, as many RTOSes do support it.

If an MMU is enabled on an embedded system, the physicd memory istypicdly divided into pages. A set of
attributesis associated with each memory page. Information on attributes can include the following:

whether the page contains code (i.e., executable instructions) or data,
whether the page is readable, writable, executable, or acombination of these, and

whether the page can be accessed when the CPU isnot in privileged execution mode, accessed only when
the CPU isin privileged mode, or both.

All memory accessis done through MMU when it is enabled. Therefore, the hardware enforces memory access
according to page attributes. For example, if atask triesto write to amemory region that only allows for read access,
the operation is consdered illegal, and the MMU does not dlow it. The result isthat the operation triggers amemory
access exception.
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13.6 Pointsto Remember

Some points to remember include the following:

Dynamic memory alocation in embedded systems can be built using afixed-sze blocks approach.

Memory fragmentation can be classified into either external memory fragmentation or internal memory
fragmentation.

Memory compaction is generaly not performed in real-time embedded systems.

Management based on memory poolsis commonly found in networking-related code.

A well-designed memory alocation function should alow for blocking alocation.

Blocking memory alocation function can be designed using both a counting semaphore and amutex.
Many red-time embedded RTOSes do not implement virtual addressing when the MMU is present.

Many of these RTOSes do take advantage of the memory protection feature of the MMU.
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Chapter 14: Modularizing An
Application For Concurrency

14.1 Introduction

Many activities need to be completed when designing applications for red-time systems. One group of activities
requiresidentifying certain eements. Some of the more important eementsto identify include:

1. systemn requirements,

2. inputs and outputs,

3. redl-time deadlines,

4. events and event response times,

5. event arrival patterns and frequencies,

6. required objects and other components,

7. tasks that need to be concurrent,

8. system schedulability, and

9. useful or needed synchronization protocols for inter-task communications.

Depending on the design methodol ogies and modeling toolsthat adesign team isusing, thelist of stepsto be taken
canvary, aswdl asthe execution order. Regardless of the methodology, eventually a design team must consider how
to decompose the gpplication into concurrent tasks (Step 7).

This chapter provides guidelines and discussions on how real-time embedded applications can be decomposed.
Many design teams use formaized object-oriented devel opment techniques and modeling languages, such asUML,
to modd their red-time systemsinitialy. The concepts discussed in this section are complementary to object-oriented
design approaches, much emphasisis placed on decomposing the application into separate tasks to achieve
concurrency. Through examples, approaches to decomposing applications into concurrent tasks are discussed. In
addition, generd guidelines for designing concurrency in areal-time gpplication are provided.

These guiddines and recommendations are based on a combination of things-lessons learned from current
engineering design practices, work done by H. Gomaa, current UML modeling approaches, and work done by other
researchersin the rea-timefield. Our guiddines provide high-level strategies on proceeding with decomposing

redl-time applications for concurrency. Our recommendations, on the other hand, are specific strategies focusing on
the implementation of concurrency. Both the guiddines and recommendations might not necessarily cover every
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exception that can arise when designing a red-time embedded application. If two guiddines or recommendations
appear to contain opposing thoughts, they should be treated as constituting a tradeoff that the designer needsto
consider.

At the completion of the application decomposition process, robust systems must vaidate the schedul ability of the
newly formed tasks. Quantitative schedulability andysis on ared-time systemn determines whether the system as
designed isschedulable. A redl-time system is considered schedulableif every task in the system can mest its
deadline.

This chapter aso focuses on the schedulability analysis (Step 8). In particular, the chapter introduces aforma method
known as Rate Monotonic Analysis (RMA).



This document is created with the unregistered version of CHM2PDF Pilot

14.2 An Outside-In Approach to Decomposing
Applications

In most cases, designersingst on aset of requirements before beginning work on ared-time embedded system. If
the requirements are not fully defined, one of thefirs activitiesisto ensure that many of these requirementsare
solidified. Ambiguous areas aso need to be fleshed out. The detailed requirements should be captured ina
document, such as a Software Requirements Specification (SRS). Only then can an engineering team make a
reasonable attempt at designing asystem. A high-level example of amobile phone design is provided to show how to
decompose an application into concurrent units of execution.

Commonly, decomposing an gpplication is performed using an outside-in approach . This gpproach followsa
process of identifying the inputs and outputs of a system and expressing them in asmple high-level context diagram.
A context diagram for the mobile applicationisillustrated in Figure 14.1. Thecirclein the center of the diagram
represents the software gpplication. Rectangular boxes represent the input and output devices for thisgpplication. In
addition, arrows, labeled with meaningful names, represent the flow of the input and output communications. For the
sake of smplicity, not al components (i.e., battery, input for hmdsfr%gmeg plug, input for externa power, and
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Figure 14.1: High-leve context diagram of amobile handheld unit.

The diagram shows that mobile handset application providesinterfaces for the following I/O devices:

antenna,

Speaker,

volume control,

keypad,

microphone, and

LCD.

Thefallowing inputs are identified:
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RF input,

volumeinput,

keypad input, and

microphoneinput.

Thefollowing outputs are identified:

RF output,

speaker output, and

LCD output.

After theinputs and outputs are identified, afirst cut at decomposing the application can be made. Figure 14.2 shows
an expanded diagram of the circle identifying some of the potentia tasksinto which the gpplication can decompose.
These tasks are dong the edges of the newly drawn application, which means they probably must interact with the
outsde world. Note that these tasks are not the only ones required, but the process provides agood starting point.
Upon further andlys's, additional tasks may beidentified, or existing tasks may be combined as more details are
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Figure 14.2: Using the outside-in approach to decompose an application into tasks.

Some inputs and outputs in a handheld mobile device can require more than one dedi cated task to handle processing.
Conversdly, in some cases, asingle task can handle multiple devices. Looking at the example, the antenna can have
two tasks assgned to it-one for handling the incoming voice channd and one for handling the outgoing voice channd.
Printing to the LCD can be ardatively smple activity and can be handled with one task. Similarly, sampling the input
voice from the microphone can aso be handled with one task for now but might require another task if heavy
computation is required for sampling accuracy. Note that one task can handle the input keys and the volume control.
Findly, atask is designated for sending the output to the speaker.

Thisexampleillustrates why the decomposition method is called outside-in: an engineering team can continue thisway
to decompose the overal application into tasks from the outsidein.
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14.3 Guiddines and Recommendations for
| dentifying Concurrency

The outsde-in gpproach to decomposing an application is an example of one practical way to identify types of
concurrent tasks that are dependent on or interact with 1/0O devices. The mobile handset example expands a
high-level context diagram to determine some of the obvious tasks required to handle certain events or actions.
Further refinement of this diagram would yield additional tasks. More formaized ways of identifying concurrency
exist, however. Many guiddines are provided in this section to help the reader identify concurrency in an gpplication.
Fird, let'sintroduce a couple of concepts that are important to understanding concurrency.

14.3.1 Units of Concurrency

It isimportant to encapsul ate concurrency within an application into manageable units. A unit of concurrency can be
atask or aprocess; it can be any schedulable thread of execution that can compete for the CPU's processing time.
Although ISRs are not scheduled to run concurrently with other routines, they should aso be considered in designing
for concurrency because they follow a preemptive policy and are units of execution competing for CPU processing
time. The primary objective of this decomposition processisto optimize parald execution to maximize ared-time
application's performance and responsiveness. If done correctly, the result can be a system that meetsall of its
deadlines robustly and responsively. If doneincorrectly, red-time deadlines can be compromised, and the system'’s
design may not be acceptable.

14.3.2 Pseudo versus True Concurrent Execution

Concurrent tasksin areal-time application can be scheduled to run on asingle processor or multiple processors.
Single-processor systems can achieve pseudo concurrent execution, in which an gpplication is decomposed into
multiple tasks maximizing the use of asingle CPU. It isimportant to note that on asingle-CPU system, only one
program counter (also cdled an instruction pointer ) isused, and, hence, only one instruction can be executed a
any time. Mog gpplicationsin this environment use an underlying scheduler's multitasking capabilitiesto interleave the
execution of multiple tasks; therefore, the term pseudo concurrent execution is used.

In contrast, true concurrent execution can be achieved when multiple CPUs are used in the designs of redl-time
embedded systems. For example, if two CPUs are used in asystem, two concurrent tasks can execute in paralle at
onetime, asshownin Figure 14.3. This parallelism is possible because two program counters (one for each CPU)

are used, which alowsfor two different instructions to execute Smultaneoudy.
“Pseudo” Concurrent Execution “True” Concurrent Execution

Task 1 Task 2 Task 1 Task 2
i

[ RTOS | | RTOS |
[ CPU | [cpui || cruz |

Figure 14.3: Pseudo and true concurrent (paralel) execution.
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In the case of multiple CPU systems, the underlying RTOS typically is distributed, which meansthat various
components, or copies of RTOS components, can execute on different CPUs. On such systems, multiple tasks can
be assigned to run on each CPU, just asthey do on single-CPU systems. In this case, even though two or more
CPUs allow true concurrent execution, each CPU might actualy be executing in a pseudo-concurrent fashion.

Unless explicitly stated, thisbook refersto both pseudo and true parale execution as concurrent execution for the
sakeof smplicity.

Following the outside-in approach, certain types of tasks can be identified near the application edge (i.e., where an
application needsto create an interface with an 1/0 device), whereas other tasks can beinterna to the application.
From the mobile handheld example, if adesign team were to further decompose the gpplication, theseinterna tasks
would beidentified. Applications, such as calculator or caendar programs, are some examples of interna tasks or

groupings of tasksthat can exist within the overal handheld mobile application. Theseinternd tasks are decoupled
from the I/O devices; they need no device-specific information in order to run

14.3.3 Some Guidédlines

Guiddine 1: Identify Device Dependencies

Guiddine 1a: Identify Active I/O Devices

Guiddine 1b: Identify Passve /O Devices
Guiddine 2: I1dentify Event Dependencies

Guiddine 3: Identify Time Dependencies

Guideine 3a: Identify Critical and Urgent Activities

Guiddine 3b: Identify Different Periodic Execution Retes

Guiddine 3c: Identify Tempord Cohesion
Guideline 4: Identify Computationaly Bound Activities
Guiddine5: Identify Functional Cohesion
Guiddline 6: 1dentify Tasksthat Serve Specific Purposes

Guiddine 7: 1dentify Sequentid Cohesion
Guideline 1: Identify Device Dependencies
All redl-time systems interface with the physica world through some devices, such as sensors, actuators, keyboards,

or displays. An gpplication can have anumber of 1/0 devicesinterfacing to it. Not al devices, however, act as both
input and output devices. Some devices can act just asinputs or just as outputs. Other devices can act asboth. The
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discussionsin thisbook refer to al of these devices as 1/O devices.
The outside-in gpproach focuses on looking at the /0O devicesin asystem and assigning atask to each device. The
basic concept isthat unsynchronized devices need separate handling. For smple deviceinteractions, processing
within an ISR may suffice; however, for additional device processing, aseparate task or set of tasks may be
assigned. Both active and passive 1/0 devices should be considered for identifying potentia areas of an application
that can be decomposed into concurrent tasks.

Asshown in Figure 14.4, hardware |/O devices can be categorized as two types:

Activel/O devices

Passve I/O devices

Active Devices
Produce (nterrupls

e me

[ Input Devices | IDuh;;;[Jmm‘s |

lSmihm_nFuu_s_ |I.ﬂ|.53,ln|:ﬂ1m|wus | |mnmunuus Hﬁ.s_yl_\c;_mm

Passive Devices
Do Not Produce

————
e ———

|Inpull]a_:-_FMs | |Du1;.rt[lavm |

Figure 14.4. Some generd properties of active and passve devices.

Active 1/0O devices generate interrupts to communi cate with an gpplication. These devices can generate interruptsin
aperiodic fashion or in synch with other active devices. These devices are referred to in thisbook as synchronous .
Active devices can aso generate interrupts aperiodicaly, or asynchronoudy, with respect to other devices. These
devices are referred to in this book as asynchronous .

Passive I/0O devices do not generate interrupts. Therefore, the application must initiate communicationswith a
passive |/O device. Applications can communicate with passive devicesin aperiodic or aperiodic fashion.

Active devices generate interrupts whether they are sending input to or receiving output from the CPU. Active input
devices send an interrupt to the CPU when the device has new input ready to be processed. The new input can bea
large buffer of data, asmall unit of data, or even no dataat al. An example of the latter isasensor that generates an
interrupt every timeit detects some event. On the other hand, an active output device sends an interrupt to the CPU
when the device hasfinished ddivering the previous output from the CPU to the physica world. Thisinterrupt
announces to the CPU and the gpplication that the output device has completed the last request and isready to
handle the next request.

Passive input or output devices require the application to generate the necessary requestsin order to interact with
them. Passive input devices produce an input only when the gpplication requests. The application can make these
requests either periodicaly or aperiodicaly. In the case of the former, the gpplication runsin a periodic loop and
makes arequest every time through the loop, called polling a device . For aperiodic requests, the application makes
the request only when it needs the data, based on an event asynchronous to the application itsalf, such asan interrupt
from another device or amessage from another executing task.

Specid care must be taken when polling apassive input device, especialy when sampling asignd that has sharp
valeysor peaks. If the polling frequency istoo low, achance existsthat avalley or peak might be missed. If the
polling frequency istoo high, extra performance overhead might be incurred that uses unnecessary CPU cycles.
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Guideline 1a: Identify Active Devices

Active input or output 1/0 devices use interrupts to communicate with red-time applications. Every time an active
input device needs to send data or notification of an event to ared-time application, the device generates an
interrupt. Theinterrupt triggers an 1SR that executes the minimum code needed to handle the input. If alot of
processing isrequired, the ISR usualy hands off the process to an associated task through an inter-task
communication mechanism.

Similarly, active output devices dso generate interrupts when they need to communicate with gpplications. However,
interrupts from active output devices are generated when they are ready to receive the next piece of dataor
notification of some event from the gpplication. Theinterruptstrigger the appropriate | SR that hands off the required
processing to an associated task using an inter-task communication mechanism.

The diagram for both an active 1/0 device acting as an input or an output to an application and for adevice
generaing interruptsin asynchronous or asynchronous manner issimilar to the oneillustrated in Figure 14.5.

i ; Synchronous or
- Mvie U Asynchronous
Active o Task
Deavice AT

)

ISR E-DmE
communication
machanism

Figure 14.5: Genera communication mechanismsfor active 1/0 devices.

Sometypical tasksthat can result from identifying an active 1/O devicein aredl-time application arelisted in Table
14.1.
Table 14.1: Common tasks that interface with active 1/0 devices.

Task Type Description

Asynchronous Active Device | Assigned to active 1/0 devicesthat generate aperiodic interrupts or whose
1/0 Task operation is asynchronous with respect to other 1/0 devices.

Synchronous Active Device Assigned to active I/O devices that generate periodic interrupts or whose
I/O Task operation is synchronous with respect to other 1/O devices.

Resource Control Devicel/O |Assigned for controlling the accessto ashared I/O device or agroup of devices.
Task

Event Dispatch Device /O Assigned for dispatching events to other tasks from one or more I/O devices.
Task

Recommendation 1: Assign separ ate tasksfor separate active asynchronous /O devices. Activel/O
devicesthat interact with real-time gpplications do so at their own rate. Each hardware device that uses interruptsto
communicate with an application and whose operation is asynchronous with respect to other 1/0 devices should be
considered to have their own separate tasks.

Recommendation 2: Combinetasksfor I/O devicesthat generateinfrequent interrupts having long
deadlines. Intheinitia design, each active 1/0 device can have a separate task assigned to handle processing.
Sometimes, however, combining the processing of two 1/0 devicesinto asingle task makes sense. For example, if
two 1/0 devices generate gperiodic or asynchronous interrupts infrequently and have relaively long deadlines, a
sngletask might suffice,
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Recommendation 3: Assign separ ate tasksto devicesthat have different input and output rates. Generdly
speaking, atask that handles adevice with ahigh 1/0 frequency should have ahigher task priority than atask that
handles a device with alower frequency. Higher 1/0O frequency implies shorter, alowable processing time. However,
the importance of the I/O operation, and the consequences of delayed 1/0, should be taken into account when
assigning task priorities with respect to 1/0O frequency.

Recommendation 4: Assign higher prioritiesto tasksassociated with interrupt-generating devices. A task
that needsto interface with a particular 1/0 device must be set to a high-enough priority level so that the task can
keep up with the device. This requirement exists because the task's execution speed is usudly congtrained by the
speed of the interrupts that an associated 1/0 device generates and not necessarily the processor on which the
goplication isrunning.

For /O devicesthat generate periodic interrupts, the interrupt period dictates how long atask must handle
processing. If the period is very short, tasks associated with these devices need to be set at high priorities.

For /0O devicesthat generate aperiodic interrupts, it can be difficult to predict how long an associated task will have
to process the request before the next interrupt comesin. In some cases, interrupts can occur rapidly. In other cases,
however, the interrupts can occur with longer time intervals between them. A rule of thumb isthat these types of
tasks need their priorities set high to ensure that al interrupt requests can be handled, including ones that occur within
short timeintervas. If an associated task's priority is set too low, the task might not be able to execute fast enough to
meet the hardware device's needs.

Recommendation 5: Assign a resour ce control task for controlling accessto I/O devices. Sometimes
multiple tasks need to access asingle hardware /O device. In this case, the device can only serve onetask at atime;
otherwise, datamay belogt or corrupted. An efficient approach isto assign a resource control task to that device
(also known as a resource monitor task ). Thistask can be used to receive multiple I/O requests from different
tasks, so that the resource control task can send the 1/0 requestsin a controlled and sequential manner to the 1/0
device,

This resource control task is not limited to working with just one I/O device. In some cases, one resource task can
handle multiple requests that might need to be dispatched to one or more /O devices.

Recommendation 6: Assign an event dispatch task for 1/0 device requeststhat need to be handed off to
multiple tasks. Events or requests that come from an 1/0 device can be propagated across multiple tasks. A single
task assigned as an event dispatch task can receive al requests from 1/0 devices and can dispatch them to the
appropriate tasks accordingly.

Guideline 1b: Identify Passive Devices

Passive devices are different from active devices because passive devices do not generate interrupts. They Sit
passively until an gpplication's task requests them to do something meaningful. Whether the request isfor an input or
an output, an application'stask needsto initiate the event or data transfer sequence. The ways that tasks
communicate with these devicesis ether by polling them in aperiodic manner or by making arequest whenever the
task needsto perform input or output.

The diagram either for apassive I/O device acting as an input or an output to an application or for communicating
with the gpplication periodicaly or aperiodicaly issmilar to the oneillustrated in Figure 14.6.
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Figure 14.6: Generd communication mechanismsfor passive I/O devices.

Sometypical tasksthat can result from identifying apassive 1/0 devicein ared-time gpplication arelisted in Table
14.2.
Table 14.2: Common tasksthat interface with passive /0 devices.

Task Type Description

Aperiodic Passve Device l/O Assigned to passive |/O devices and issues requests to those devices on an
Task as-needed basis.

Periodic Passive Devicel/O Assigned to passive 1/0 devices and polls those devicesin a periodic fashion.
Task

Resource Control Device I/O Assigned for controlling the access to a shared hardware |/O device or agroup
Task of devices.

Event Digpatch Device l/O Task | Assigned for digpatching events to other tasks from one or more 1/0 devices.

Recommendation 1. Assign a singletask to interface with passive I/O devices when communication with
such devicesisaperiodic and when deadlines are not ur gent. Some applications need to communicate with a
passive 1/0 device gperiodically. This device might be asensor or display. If the deadlines are relatively long, these
requests for one or more passive 1/0 devices can be handled with one task.

Recommendation 2: Assign separate polling tasksto send periodic requeststo passive |/O devices.
Commonly, ared-time application might need to sample asigna or some data repestedly from apassive I/O device.
This process can be done effectively in aperiodic polling loop. In order to avoid over-sampling or under-sampling
the data, assign a separate task to each passive |/O device that needsto be polled at different rates.

Recommendation 3: Trigger polling requestsviatimer events. More than one way existsto perform
timing-based polling loops. One common mistake is using atime delay within the loop that isequa to the period of
the sampling rate. This method can be problemeatic because the loop won't take exactly the same amount of timeto
execute each time through-the loop is subject to interrupts and preemption from higher priority tasks. A better
processisto use atimer to trigger an event after every cycle. A more accurate periodic rate can be maintained using
this approach.

Recommendation 4: Assign a high relative priority to polling tasks with relatively short periods. Tasksthat
are set up to pall passive 1/0 devicesfor inputs may do so at different rates. If the period is very short, lesstimeis
available to processincoming data before the next cycle. In this case, these tasks with faster polling loops need to be
set with higher priorities. Designers, however, need to remember that this process must be done carefully, as heavy
polling can use extra CPU cycles and result in increased overhead.

Guideline 2: I dentify Event Dependencies
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Eventsin ared-time application can propagate across multiple tasks. Whether an event is generated externdly from
an 1/0 device or internally from within the application, aneed existsfor creating atask or agroup of tasksthat can
properly handle the event asit is propagated through the application. Externaly generated events are discussed in the
pervious sections, so the focus hereison internally generated events. Examples of eventsthat can be generated
internaly to an gpplication include when error conditions arise or faults are detected. An event inthiscaseis
generated and propagated outward to an I/O device or an interna corrective action is taken.

Guideline 3: Identify Time Dependencies

Before designing ared-time gpplication, take time to understand and itemize each of the timing deadlines required for
the application. After the timing deadlines have been identified, separate tasks can be assigned to handle the separate
deadlines. Task priorities can be assgned based on the criticality or urgency of each deadline.

Guideline 3a: Identify Critical and Urgent Activities

Note the difference between criticdity and urgency. Critical tasks are tasks whose failure would be disastrous. The
deadline might be long or short but must dways be met, or € se the system does not fulfill the specifications. An
urgent task isatask whosetiming deadlineisrelatively short. Meeting this deadline might or might not be critical.
Both urgent and critical tasks are usualy set to higher rdative priorities.

Guideline 3b: Identify Different Periodic Execution Rates

Each rate-driven activity runsindependently of any other rate. Periodic activities can be identified, and activities can
be grouped into tasks with Ssmilar rates.

Guideline 3c: Identify Temporal Cohesion

Redl-time systems may contain sequences of code that ways execute at the same time, although they are
functionaly unrelated. Such sequences exhibit temporal cohesion. Examples are different activitiesdriven by the
same externd stimulus (i.e., atimer). Grouping such sequencesinto one task reduces system overhead.

Guideline 4: Identify Computationally Bound Activities

Some activitiesin ared-time application require alot of CPU time compared to the time required for other
operations, such as performing I/0O. These activities, known as computationally bound activities, can be
number-crunching activities and typicaly have rdatively long deadlines. Thesetypesof activitiesare usudly set to
lower relative priorities so that they do not monopolize the CPU. In some cases, these types of tasks can be
time-diced at acommon priority level, where each getstime to execute when tasks that are more critica don't need
torun.

Guideline 5: Identify Functional Cohesion

Functional cohesion requires collecting groups of functions or sequences of code that perform closely related
activitiesinto asingletask. In addition, if two tasks are closely coupled (pass lots of data between each other), they
should also be considered for combination into one task. Grouping these closely related or closely coupled activities
into asingetask can help diminate synchronization and communication overhead.
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Guideline 6: Identify Tasksthat Serve Specific Purposes

Tasks can a so be grouped according to the specific purposesthey serve. One example of atask serving aclear
purposeisasafety task. Detection of possible problems, setting larms, and sending notifications to the user, aswell
as setting up and executing corrective measures, are just some examples that can be coordinated in a safety task or
group of tasks. Other tasks can also exist in areal-time system that can serve a specific purpose.

Guideline 7: I dentify Sequential Cohesion

Sequential cohesion groups activities that must occur in a given sequence into one task to further emphasize the
requirement for sequentia operation. A typical exampleisasequence of computations that must be carried outin a
predefined order. For example, the result of the first computation provides input to the next computation and so on.
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14.4 Schedulability Analysis-Rate M onotonic
Analysis

After an embedded application has been decomposed into | SRs and tasks, the tasks must be scheduled to runin
order to perform required system functiondity. Schedulability analysis determinesif al tasks can be scheduled to run
and meet their deadlines based on the deployed scheduling agorithm while still achieving optimal processor utilization.
Note that schedulability analysislooks only at how systems meet tempora requirements, not functiona requirements.
The commonly practiced andytical method for redl-time systemsis Rate Monotonic Analysis (RMA). Liuand
Layland initidly developed the mathematical model for RMA in 1973. (Thisbook calstheir RMA model the basic
RMA becauseit has since been extended by later researchers.) The mode is developed over a scheduling
mechanism called Rate Monotonic Scheduling (RMS), which isthe preemptive scheduling algorithm with rate
monotonic priority assgnment asthe task priority assgnment policy. Rate monotonic priority assignment isthe
method of assgning atask its priority asamonotonic function of the execution rate of that task. In other words, the
shorter the period between each execution, the higher the priority assigned to atask.

A st of assumptionsis associated with the basic RMA. These assumptions are that:

all of thetasksare periodic,

the tasks are independent of each other and that no interactions occur among tasks,
atask's deadlineisthe beginning of its next period,

each task has a constant execution time that does not vary over time,

al of thetasks havethe samelevd of criticaity, and

gperiodic tasks are limited to initialization and failure recovery work and that these gperiodic tasks do not
have hard deadlines.

14.4.1 Basic RM A Schedulability Test

Equation 14.1 is used to perform the basic RMA schedul ability test on asystem.

+ L g Lim)= ni2 1 Eq. 14.1
I

Ci = worst-case execution time associated with periodic task |
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Ti = period associated with task i
n = number of tasks
U( n) isthe utilization factor. The right Sde of the equation isthe theoretical processor utilization bound. If the
processor utilization for agiven set of tasksislessthan the theoretical utilization bound, this set of tasksis

schedulable. The value of U decreases as n increases and eventually converges to 69% when n becomesinfinite,

Let'slook at asample problem and see how the formulaisimplemented. Table 14.3 summarizesthe properties of
three tasks that are scheduled using the RMS.
Table 14.3: Properties of tasks.

Periodic Task Execution Time Period (milliseconds)
Task 1 20 100
Task 2 30 150
Task 3 50 300

Using Equation 14.1, the processor utilization for this sample problem is calculated asfollows

173

20 30 50 orres 3
e < L(3)= 3(2 7 =1)
100 150 300

56.67% < U(3)= 77.98%

Totd utilization for the sample problem is at 57%, which is below the theoretica bound of 77%. This system of three
tasksis schedulable, i.e., every task can meet its deadline.

14.4.2 Extended RAM Schedulability Test

The basc RMA islimiting. The second assumption associated with basc RMA isimpractica becausetasksin
redl-time systems have inter-dependencies, and task synchronization methods are part of many redl-time designs.
Task synchronization, however, lies outside the scope of basic RMA.

Deploying inter-task synchronization methods implies some tasksin the system will experience blocking, which isthe
suspension of task execution because of resource contention. Therefore, the basic RMA is extended to account for
task synchronization. Equation 14.2 provides the equation for the extended RMA schedulability test.

— Frystin= | 1< m Eq. 14.2
T !

where
Ci = wordt case execution time associated with periodic task |
Ti = period associated with task i

Bi = thelongest duration of blocking that can be experienced by |
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n = number of tasks

Thisequation is best demonstrated with an example. This example uses the same three tasks provided in Table 14.3
and inserts two shared resources, as shown in Figure 14.7. In this case, the two resources represent a shared

Taslk 1
C = 30 ms
T =100 ms

Task 2
C=3ms
T = 150 s

;-:‘nga Hf! Task1-15 ms
T = 30 ms B Task 2= 10 ms

memory (resource #1) and an /O bus (resource #2). Task 3~ 18 ms

Figure 14.7: Example setup for extended RMA.

Task #1 makes use of resource #2 for 15ms at arate of once every 100ms. Task #2 isalittle more complex. Itisthe
only task that uses both resources. Resource #1 is used for 5ms, and resource #2 is used for 10ms. Task #2 must
run at arate of once every 150ms.

Task #3 hasthe lowest frequency of the tasks and runs once every 300ms. Task #3 also uses resource #2 for 18ms,

Now looking at schedulability, Equation 14.2 yields three separate equations that must be verified againg a utility

£+ﬁ{,{j{”: [{(2—1)

100 100

- . 38%=<U %
bound. Let's take acloser look at the first equation ~° = U(1)= 100%

Either task #2 or task #3 can block task #1 by using resource #2. The blocking factor Bl isthe greater of thetimes
task #2 or task #3 holds the resource, which is 18ms, from task #3. Applying the numbersto Equation 14.2, the
result is below the utility bound of 100% for task #1. Hence, task #1 is schedulable.

Looking at the second equation, task #2 can be blocked by task #3. The blocking factor B2 is 18ms, whichisthe

20 B 18 =221y

100 150 150

time task #3 has control of resource #2, as shown 52% < U(2)= 82.84%
Task #2 isaso schedulable as the result is below the utility bound for two tasks. Now looking at the last equation,

note that Bn isaways equa to 0. The blocking factor for the lowest level task isaways 0, as no other tasks can

0 30 , 50 ; 1/3
Eea I O ) PR o B e 3(2 1}
100 150 300 )=

block it (they all preempt it if they need to), asshown 00776 = U(3)= 77.98%%
Again, theresult is below the utility bound for the three tasks, and, therefore, dl tasks are schedulable.
Other extensions are made to basic RMA for dedling with the rest of the assumptions associated with basic RMA,

such as accounting for aperiodic tasksin red-time systems. Consult the listed references for additiona readingson
RMA and related materids.
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14.5 Pointsto Remember

Some points to remember include the following:
An outside-in approach can be used to decompose applications a the top level.
Device dependencies can be used to decompose applications.
Event dependencies can be used to decompose applications.
Timing dependencies can be used to decompose applications.

Levesof criticality of workload involved can be used to decompose gpplications.

Functional cohesion, temporal cohesion, or sequentia cohesion can be used either to form atask or to
combine tasks.

Rate M onotonic Scheduling can be summarized by stating that atask's priority depends on its period-the
shorter the period, the higher the priority. RMS, when implemented appropriately, produces stable and
predictable performance.

Schedulability analysis only looks at how systems meet tempora requirements, not functiona requirements.
Six assumptions are associated with the basic RMA:
o]

al of thetasks are periodic,

the tasks are independent of each other and that no interactions occur among tasks,

atask’'s deadline isthe beginning of its next period,

each task has a constant execution time that does not vary over time,

al of thetasks havethe samelevd of criticadity, and
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gperiodic tasks are limited to initialization and failure recovery work and that these gperiodic tasks do not
have hard deadlines.

Basic RMA does not account for task synchronization and aperiodic tasks.
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Chapter 15: Synchronization And
Communication

15.1 Introduction

Software gpplications for real-time embedded systems use concurrency to maximize efficiency. Asaresult, an
gpplication's design typicaly involves multiple concurrent threads, tasks, or processes. Coordinating these activities
requires inter-task synchronization and communication.

This chapter focuses on:
resource synchronization,
activity synchronization,

inter-task communication, and

ready-to-use embedded design patterns.
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15.2 Synchronization

Synchronization is classfied into two categories: resource synchronization and activity synchronization . Resource
synchronization determines whether access to a shared resource is safe, and, if not, when it will be safe. Activity
synchronization determines whether the execution of amultithreaded program has reached acertain state and, if it
hasn't, how to wait for and be notified when this Sate is reached.

15.2.1 Resour ce Synchronization

Access by multiple tasks must be synchronized to maintain the integrity of a shared resource. This processis called
resour ce synchronization , aterm closay associated with critical sections and mutua exclusions.

Mutual exclusion isaprovision by which only onetask a atime can access ashared resource. A critical section is
the section of code from which the shared resource is accessed.

As an example, consider two tasks trying to access shared memory. One task (the sensor task) periodically receives
datafrom a sensor and writes the data to shared memory. Meanwhile, a second task (the display task) periodically
reads from shared memory and sends the data to adisplay. The common design pattern of using shared memory is

illugrated in Figure 15.1..
Eog IR

Inputs from
110 Devics ———

Figure 15.1: Multiple tasks ng shared memory.

Problems arise if accessto the shared memory isnot exclusive, and multiple tasks can smultaneoudy accessit. For
example, if the sensor task has not completed writing data to the shared memory area before the display task triesto
display the data, the display would contain amixture of data extracted at different times, leading to erroneous data
interpretation.

The section of code in the sensor task that writesinput data to the shared memory isacritical section of the sensor
task. The section of code in the display task that reads data from the shared memory isacritica section of the
display task. Thesetwo critical sectionsare called competing critical sections because they access the same shared
resource.

A mutua excluson agorithm ensuresthat one task's execution of acritical section isnot interrupted by the competing
critica sections of other concurrently executing tasks.

Oneway to synchronize access to shared resources isto use a client-server modd, in which acentral entity called a
resource server isresponsblefor synchronization. Access requests are made to the resource server, which must
grant permission to the requestor before the requestor can access the shared resource. The resource server
determinesthe eigibility of the requestor based on pre-assigned rules or run-time heurigtics.

While thismodd smplifies resource synchronization, the resource server isa bottleneck. Synchronization primitives,
such as semaphores and mutexes, and other methods introduced in alater section of this chapter, alow developersto
implement complex mutud exclusion agorithms. These dgorithmsin turn alow dynamic coordination among
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competing tasks without intervention from athird party.

15.2.2 Activity Synchronization

In general, atask must synchronize its activity with other tasks to execute amultithreaded program properly. Activity
synchronization isaso caled condition synchronization or sequence control . Activity synchronization ensures

that the correct execution order among cooperating tasksis used. Activity synchronization can be either synchronous
or asynchronous.

One representative of activity synchronization methodsis barrier synchronization . For example, in embedded
control systems, acomplex computation can be divided and distributed among multiple tasks. Some parts of this
complex computation are I/O bound, other parts are CPU intensive, and still others are mainly floating-point
operaionsthat rely heavily on specialized floating-point coprocessor hardware. These partid results must be

collected from the various tasks for the final calculation. The result determines what other partid computations each
task isto perform next.

The point a which the partid results are collected and the duration of the final computationisa barrier . One task

canfinishits partial computation before other tasks complete theirs, but this task must wait for al other tasksto
complete their computations before the task can continue.

Barrier synchronization comprisesthree actions:

atask postsitsarriva at the barrier,
the task waits for other participating tasks to reach the barrier, and
the task receives notification to proceed beyond the barrier.

A later section of this chapter shows how to implement barrier synchronization using mutex locks and condition
variables.

Asshown in Figure 15.2, agroup of five tasks participates in barrier synchronization. Tasks in the group complete
their partial execution and reach the barrier at various times, however, each task in the group must wait at the barrier
until al other tasks have reached the barrier. The last task to reach the barrier (in this example, task T5) broadcasts a
notification to the other tasks. All tasks crossthe barrier a the same time ( conceptually in a uniprocessor
environment due to task scheduling. We say 'conceptually' because in a uniprocessor environment, only onetask can
execute a any given time. Even though al five tasks have crossed the barrier and may continue execution, the task

Lxsk conBinuation
/' point

Tasks tasks ramcheng the Damar barrier
al diflerant timas  ——

TS

Td

T3 II'1

T2 s T

T

with the highest priority will execute next. Time t
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Figure 15.2: Visudization of barrier synchronization.

Another representative of activity synchronization mechanismsis rendezvous synchronization , which, asitsname
implies, isan execution point where two tasks meet. The main difference between the barrier and the rendezvousis
that the barrier alows activity synchronization among two or more tasks, while rendezvous synchronization is
between two tasks.

In rendezvous synchronization, a synchronization and communication point caled an entry is constructed asa
function call. Onetask definesits entry and makesit public. Any task with knowledge of thisentry can cdl it asan
ordinary function call. The task that defines the entry acceptsthe call, executesit, and returnsthe resultsto the cdler.
Theissuer of the entry cal establishes arendezvous with the task that defined the entry.

Rendezvous synchronization issmilar to synchronization using event-registers, which Chapter 8 introduces, in that
both are synchronous. Theissuer of the entry call isblocked if that call is not yet accepted; smilarly, the task that
accepts an entry call is blocked when no other task hasissued the entry call. Rendezvous differs from event-register
in that bidirectiona data movement (input parameters and output results) is possible.

A derivative form of rendezvous synchronization, called simple rendezvous in this book, useskernd primitives, such

as semaphores or message queues, instead of the entry call to achieve synchronization. Two tasks can implement a
smple rendezvous without data Eam; r119 by using two binary semaphores, as shown in Figure 15.3.
ore

bimary semap

@‘& Task

#2

binary semaphy
@ "

Figure 15.3: Smple rendezvous without data passng.

Both binary semaphores areinitidized to 0 . When task #1 reaches the rendezvous, it gives semaphore #2, and then
it gets on semaphore #1. When task #2 reaches the rendezvous, it gives semaphore #1, and then it getson
semaphore #2. Task #1 hasto wait on semaphore #1 before task #2 arrives, and vice versa, thus achieving
rendezvous synchronization.

15.2.3 Implementing Barriers

Barrier synchronization is used for activity synchronization. Ligting 15.1 shows how to implement a
barrier-synchronization mechanism usng amutex and a condition variable.

ef struct {
mut ex_t br | ock; [ * guardi ng nutex */

Lidti nr 15.1: Pseudo code for barrier synchronization.

cond_t br _cond; /* condition variable */
i nt br _count; /* num of tasks at the barrier */
i nt br _n_t hreads; /* num of tasks participating in the barrier

synchroni zati on */
} barrier_t;

barrier(barrier_t *br)
{
mut ex_| ock( &r->br | ock);
br->br_count ++;
if (br->br_count < br->br_n_threads)
cond_wait ( &r->br_cond, &br->br_ I ock);
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{
br->br_count = 0;
cond_br oadcast ( &r->br _cond);

}

mut ex_unl ock( &br - >br | ock);

}

Each participating task invokes the function barrier for barrier synchronization. The guarding mutex for br_count and
br_n_threadsisacquired on line#2. The number of waiting tasks at the barrier is updated on line #3. Line#4 checks
to seeif dl of the participating tasks have reached the barrier.

If moretasks areto arrive, the caler waits at the barrier (the blocking wait on the condition varigble at line #5). If the
caler isthelast task of the group to enter the barrier, thistask resetsthe barrier on line #6 and notifies al other tasks
that the barrier synchronization is complete. Broadcasting on the condition variable on line #7 completes the barrier
synchronization.
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15.3 Communication

Tasks communicate with one another so that they can passinformation to each other and coordinate their activitiesin
amultithreaded embedded application. Communication can be signa-centric, data-centric, or both. In signal-centric
communication , al necessary information is conveyed within the event sgnd itsdlf. In data-centric communication
, iInformation is carried within the transferred data. VWWhen the two are combined, data transfer accompanies event
notification.

When communication involves data flow and is unidirectiond, this communication moded iscaled |oosely coupled
communication. Inthis modd, the data producer does not require aresponse from the consumer. Figure 15.4

Interrupt
‘ Message Queue
Interrupt L .| Task
Service W o 0 I
Routine

illustrates an example of loosely coupled communication.

Figure 15.4: Loosely coupled | SR-to-task communication using message queues.

For example, an ISR for an 1/O device retrieves data from a device and routes the data to a dedicated processing
task. The ISR neither solicits nor requires feedback from the processing task. By contragt, in tightly coupled

communication , the datamovement is bidirectional. The data producer synchronoudy waits for aresponseto its
datatransfer before resuming execution, or the response is returned asynchronously while the data producer

Message Queue #1

Task 2] [ I i 1] Task
#1 #2
Message Queue #2/'
[ ]
] B

Figure 15.5: Tightly coupled task-to-task communication using message queues.

continuesitsfunction.

In tightly coupled communication, asshownin Figure 15.5, task #1 sends data to task #2 using message queue #2
and waitsfor confirmation to arrive at message queue #1. The datacommunication isbidirectiond. It is necessary to
use amessage queue for confirmations because the confirmation should contain enough information in case task #1
needs to re-send the data. Task #1 can send multiple messagesto task #2, i.e., task #1 can continue sending
messages while waiting for confirmation to arrive on message queue #2.

Communication has severd purposes, including the following:

transferring data from one task to another,

signaling the occurrences of events between tasks,
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alowing one task to control the execution of other tasks,

synchronizing activities, and

implementing custom synchronization protocols for resource sharing.

Thefirg purpose of communication isfor one task to transfer data to another task. Between the tasks, there can exist
data dependency, in which one task is the data producer and another task isthe data consumer. For example,
consder aspecidized processing task that iswaiting for data to arrive from message queues or pipes or from shared
memory. In this case, the data producer can be either an ISR or another task. The consumer isthe processing task.
The data source can be an 1/0O device or another task.

The second purpose of communication isfor onetask to Sgna the occurrences of eventsto another task. Either
physical devices or other tasks can generate events. A task or an ISR that is responsible for an event, such asan 1/0
event, or aset of events can signa the occurrences of these eventsto other tasks. Data might or might not
accompany event Sgnas. Congder, for example, atimer chip ISR that notifies another task of the passing of atime
tick.

Thethird purpose of communication isfor one task to control the execution of other tasks. Tasks can have a
measter/d ave relationship, known as process control . For example, in acontrol system, amaster task that hasthe full
knowledge of the entire running system controlsindividual subordinate tasks. Each subtask isresponsiblefor a
component, such as various sensors of the control system. The master task sends commands to the subordinate tasks
to enable or disable sensors. In this scenario, dataflow can be elther unidirectiona or bidirectiond if feedback is
returned from the subordinate tasks.

The fourth purpose of communication isto synchronize activities. The computation example givenin'Activity
Synchronization' on page 233, section 15.2.2, shows that when multiple tasks are waiting at the execution barrier,
each task waitsfor asignal from the last task that entersthe barrier, so that each task can continue its own execution.
Inthisexample, it isinsufficient to notify the tasksthat the final computation has completed; additiond information,
such asthe actual computation results, must also be conveyed.

Thefifth purpose of communication isto implement additional synchronization protocols for resource sharing. The
tasks of amultithreaded program can implement custom, more-complex resource synchronization protocols on top of
the system-supplied synchronization primitives.
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15.4 Resour ce Synchronization Methods

Chapter 6 discusses semaphores and mutexes that can be used as resource synchronization primitives. Two other
methods, interrupt locking and preemption locking, can aso be deployed in accomplishing resource synchronization.

15.4.1 Interrupt Locks

Interrupt locking (disabling system interrupts) is the method used to synchronize exclusive access to shared
resources between tasks and | SRs. Some processor architecture designs alow for afine-grained, interrupt-level

lock, i.e., aninterrupt lock level is specified so that asynchronous events at or below the level of the disabled interrupt
are blocked for the duration of the lock. Other processor architecture designs alow only coarse-grained locking, i.e.,
al sysem interrupts are disabled.

When interrupts are disabled at certain levels, even the kernel scheduler cannot run because the system becomes
non-respongive to those external eventsthat can trigger task re-scheduling. This process guarantees that the current
task continuesto execute until it voluntarily relinquishes control. As such, interrupt locking can aso be used to
synchronize access to shared resources between tasks.

Interrupt locking is smpleto implement and involves only afew ingtructions. However, frequent use of interrupt locks
can dter overd| system timing, with side effectsincluding missed externd events (resulting in data overflow) and
clock drift (resulting in missed deadlines). Interrupt locks, although the most powerful and the most effective
synchronization method, can introduce indeterminism into the system when used indiscriminately. Therefore, the
duration of interrupt locks should be short, and interrupt locks should be used only when necessary to guard a
task-leve critical region from interrupt activities.

A task that enabled interrupt locking must avoid blocking. The behavior of atask making ablocking call (such as
acquiring asemaphore in blocking mode) while interrupts are disabled is dependent on the RTOS implementation.
Some RTOSes block the caling task and then re-enable the system interrupts. The kernel disablesinterrupts again on
behaf of the task after the task isready to be unblocked. The system can hang forever in RTOSes that do not
support thisfeature.

15.4.2 Preemption Locks

Preemption locking (disabling the kernd scheduler) is another method used in resource synchronization. Many
RTOS kernels support priority-based, preemptive task scheduling. A task disablesthe kernel preemption when it
entersits critical section and re-enables the preemption when finished. The executing task cannot be preempted while
the preemption lock isin effect.

On the surface, preemption locking appears to be more acceptable than interrupt locking. Closer examination reveals
that preemption locking introduces the possibility for priority inverson. Even though interrupts are enabled while
preemption locking isin effect, actud servicing of the event isusually delayed to a dedicated task outside the context
of the ISR. The ISR must notify that task that such an event has occurred.

This dedicated task usualy executes at ahigh priority. Thishigher priority task, however, cannot run while another
task isingde acritica region that a preemption lock isguarding. In this case, the result is not much different from
using an interrupt lock. The priority inversion, however, isbounded. Chapter 16 discusses priority inverson in detail.
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The problem with preemption locking isthat higher priority tasks cannot execute, even when they aretotaly unrelated
to the critical section that the preemption lock is guarding. This process can introduce indeterminism in asimilar
manner to that caused by the interrupt lock. Thisindeterminism is unacceptable to many systems requiring consstent
red-time response.

For example, consder two medium-priority tasksthat share a critical section and that use preemption locking asthe
synchronization primitive. An unrelated print server daemon task runs at amuch higher priority; however, the printer
daemon cannot send acommand to the printer to gect one page and feed the next while either of the medium tasksis
inddethe critical section. Thisissue resultsin garbled output or output mixed from multiple print jobs.

The benefit of preemption locking isthat it dlows the accumulation of asynchronous eventsinstead of deleting them.
Thel/O deviceis maintained in aconsstent Sate because its ISR can execute. Unlike interrupt locking, preemption
locking can be expensive, depending on itsimplementation.

In the mgority of RTOSes when atask makes ablocking cal while preemption is disabled, another task is scheduled
to run, and the scheduler disables preemption after the original task isready to resume execution.
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15.5 Critical Section Revisited

Many sources give the impression that amutua exclusion agorithm similar to either the interrupt lock or the
preemption lock should be used to guard a critical section. One implication isthat the critical section should be kept
short. Thisidea bearsfurther examination.

The critical section of atask isasection of code that accesses a shared resource. A competing critical sectionisa
section of code in another task that accesses the same resource. If these tasks do not have real-time deadlines and
guarding the critica section is used only to ensure exclusive access to the shared resource without side effects, then
the duration of the critical section is not important.

Imagine that a system hastwo tasks. one that performs some calculations and stores the resultsin ashared varigble
and another that reads that shared variable and displaysits vaue. Using achosen mutua exclusion agorithm to guard
the critical section ensures that each task has exclusive access to the shared variable. These tasks do not have
redl-time requirements, and the only constraint placed on these two tasksis that the write operation precedes the
read operation on the shared variable.

If another task without a competing critical section exigtsin the system but does have red-time deadlines to mest, the
task must be allowed to interrupt either of the other two tasks, regardless of whether the task to be interrupted isin
itscritical section, in order to guarantee overall system correctness. Therefore, in this particular example, the duration
of the critica sections of thefirst two tasks can belong, and higher priority task should be alowed to interrupt.

If the first two tasks have red-time deadlines and the time needed to complete their associated critical sections
impacts whether the tasks meet their deadlines, this critical section should run to completion without interruption. The
preemption lock becomes useful in this Situation.

Therefore, it isimportant to evaluate the criticality of the critica section and the overal system impact before deciding
on which mutud excluson dgorithm to use for guarding acritical section. The solution to the mutua excluson
problem should satisfy the following conditions:

only onetask can enter itscritica section a any giventime,
fair accessto the shared resource by multiple competing tasks is provided, and

onetask executing itscritical section must not prevent another task executing a non-competing critica
Section.
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15.6 Common Practical Design Patterns

This section presents aset of common inter-tasks synchronization and communication patterns designed from redl-life
scenarios. These design patterns are ready to be used in rea-world embedded designs.

In these design patterns, the operation of event register manipulation is considered an atomic operation. The
numberings shown in these design patterns indicate the execution orders.

15.6.1 Synchronous Activity Synchronization

Multiple ways of implementing synchronous activity synchronization are available, including:

task-to-task synchronization using binary semaphores,

| SR-to-task synchronization usng binary semaphores,
task-to-task synchronization using event registers,

| SR-to-task synchronization using event registers,

| SR-to-task synchronization using counting semaphores, and

smple rendezvous with data passing.

Task-to-Task Synchronization Using Binary Semaphores

In this design pattern, two tasks synchronize their activities usng a binary semaphore, asshownin Figure 15.6. The
initia vaue of the binary semaphoreis 0. Task #2 hasto wait for task #1 to reach an execution point, at which time,
task #1 sgnasto task #2 itsarriva at the execution point by giving the ssmaphore and changing the vaue of the
binary semaphoreto 1. At this point, depending on their execution priorities, task #2 can runif it has higher priority.
The vaue of the binary semaphoreisreset to O after the synchronization. In this design pattern, task #2 has execution

binary Task
samaphore itz
dependency on task #1. M

Figure 15.6: Task-to-task synchronization using binary semaphores.
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| SR-to-Task Synchronization Using Binary Semaphor es

In this design pattern, atask and an ISR synchronize their activities using abinary semaphore, as shownin Figure 15.7
. Theinitia value of the binary semaphoreis0. Thetask hasto wait for the ISR to Sgnd the occurrence of an
asynchronous event. When the event occurs and the associated | SR runs, it signasto the task by giving the
semaphore and changing the value of the binary semaphoreto 1. The ISR runsto completion before the task getsthe

f:hance to resume execution. The vaue of the binary semaphoreisreset to O after the task resumes execution.
nterrupt

binary

semaphore
1_ Task

Figure 15.7: 1SR-to-task synchronization using binary semaphores.

Task-to-Task Synchronization Using Event Registers

In this design paitern, two tasks synchronize their activities using an event register, asshown in Figure 15.8. Thetasks
agree on abit location in the event register for sgnaing. In thisexample, the bit location isthefirg bit. Theinitid vaue
of theevent hitis0. Task #2 hasto wait for task #1 to reach an execution point. Task #1 sgnasto task #2 itsarriva

at that point by setting the event bit to 1. At this point, depending on execution priority, task #2 can runiif it has higher

priority. The vadue of the event bit isreseat to O after synchronization.
event register

<

Figure 15.8: Task-to-task synchronization using event registers.

| SR-to-Task Synchronization Using Event Registers

In this design pattern, atask and an ISR synchronize their activities using an event register, asshown in Figure 15.9.
Thetask and the | SR agree on an event bit location for sgnaing. In this example, the bit location isthefirst bit. The
initid vaue of the event bit is0. The task hasto wait for the ISR to signa the occurrence of an asynchronous event.
When the event occurs and the associated ISR runs, it signalsto the task by changing the event bit to 1. The ISR runs
to completion before the task gets the chance to resume execution. The value of the event bit isreset to O after the
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task resume execution. v
Figure 15.9: 1 SR-to-task synchronization using event registers.

| SR-to-Task Synchronization Using Counting Semaphores

In Figures 15.6, 15.7, 15.8, and 15.9, multiple occurrences of the same event cannot accumulate. A counting
semaphore, however, isused in Figure 15.10 to accumulate event occurrences and for task signaling. The value of
the counting semaphore increments by one each time the I SR gives the semaphore. Smilarly, itsvaueis decremented
by one each time the task gets the semaphore. The task runs as long as the counting semaphore is non-zero.

Interrupt

counting
semaphora

Figure 15.10: 1SR-to-task synchronization using counting semaphores.

Simple Rendezvous with Data Passing

Two tasks can implement asimple rendezvous and can exchange data at the rendezvous point using two message
queues, asshown in Figure 15.11. Each message queue can hold a maximum of one message. Both message queues
areinitidly empty. When task #1 reaches the rendezvous, it puts datainto message queue #2 and waitsfor a
message to arrive on message queue #1. When task #2 reaches the rendezvous, it puts data into message queue #1
and waits for data to arrive on message queue #2. Task #1 hasto wait on message queue #1 before task #2 arrives,
and vice versa, thus achieving rendezvous synchronization with data passing.

message queue #1

Task B_— I 1 Task
#1 —_| #2

"

message queus #2/'
1] \x‘ l A

Figure 15.11: Task-to-task rendezvous using two message queues.

15.6.2 Asynchronous Event Notification Using Signals



This document is created with the unregistered version of CHM2PDF Pilot
Onetask can synchronize with another task in urgent mode using the signal facility. The signaled task processesthe

event natification asynchronoudy. In Figure 15.12, atask generates asignal to another task. The receiving task
divertsfrom its normal execution path and executes its asynchronous signd routine,

Tank
g = Sigrial
= .| ——

Figure 15.12: Using Sgnasfor urgent data communication.

15.6.3 Resour ce Synchronization

Multiple ways of accomplishing resource synchronization are available. These methodsi