

Python Projects for Kids

Unleash Python and take your small readers on an
adventurous ride through the world of programming

Jessica Ingrassellino

BIRMINGHAM - MUMBAI

Python Projects for Kids

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1070416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-506-3

www.packtpub.com

www.packtpub.com

Credits

Author
Jessica Ingrassellino

Reviewer
David Whale

Commissioning Editor
Veena Pagare

Acquisition Editor
Aaron Lazar

Content Development Editor
Sachin Karnani

Technical Editor
Rupali R. Shrawane

Copy Editor
Sonia Cheema

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Author

Jessica Ingrassellino is a multi-talented educator, business leader, and technologist.
She received her EdD from Teachers College, Columbia University for music education
with an emphasis on assessment.

Jessica is currently employed as the lead software engineer in testing at Bitly, New
York City. She transitioned from a teaching career of 10 years to a technology career
through a balance of freelance work and social media exposure. Jessica's current
work focuses on using Python to develop automated testing tools. She is an ASTQB
certified quality assurance engineer with experience in testing web, mobile, and
backend applications.

In addition to working at Bitly, Jessica remains committed to education and
has founded http://www.teachcode.org/, a nonprofit that teaches computer
programming skills to teachers and students in urban or underserved populations
through Python and 2D game programming. This new initiative will give teachers
the support they need through a standards-referenced curriculum, student-engaging
activities, and access to experts in the field of technology.

I would like to thank my students for allowing me to have such
fun teaching them Python and learning from their experiences as
new programmers. I would also like to thank Cathy Kross and
Alice McGowan for being willing to have me in their classes and
school and interrupting their daily lives with my code-teaching
experiments. Finally, I would like to thank my husband, Nick, for
believing in me and helping me through some major writer's block.
He never loses faith in me, and for that, I am eternally grateful.

http://www.teachcode.org/

About the Reviewer

David Whale is a software developer who lives in Essex, UK. He started coding
as a schoolboy aged 11, inspired by his school's science technician to build his own
computer from a kit. These early experiments lead to some of his code being used in
a saleable educational word game when he was only 13.

David has been developing software professionally ever since, mainly writing
embedded software that provides intelligence inside electronic products, including
automated machinery, electric cars, mobile phones, energy meters, and wireless
doorbells.

These days, David runs his own software consultancy called Thinking Binaries,
and he spends about half of his time helping customers design software for new
electronic products, many of which use Python. The rest of the time, he volunteers
for The Institution of Engineering and Technology, running training courses for
teachers, designing and running workshops and clubs for school children, running
workshops and talks at meet-up events all round the UK, and generally being busy
with his Raspberry Pi, BBC micro:bit, and Arduino.

David was the technical editor of Adventures in Raspberry Pi, John Wiley & Sons, the
coauthor of Adventures in Minecraft, and he is a regular reviewer and editor
of technical books for a number of book publishers.

I was really pleased to be asked to review this exciting new coding
book for children. Python is an excellent language for children to
learn from a young age, and Jessica has done a great job at helping
readers take their first few steps in coding with Python. I hope you
will be inspired by the code and ideas in this book and come up
with your own ideas to enhance and develop all of the programs
further—this is just the start of your exciting new creative journey
into coding with Python!

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface vii
Chapter 1: Welcome! Let's Get Started 1

Python projects for you 1
What can you do with Python? 1
Why you should learn Python 2

The prerequisites of Python 2
Setting up your computer 3

For Mac and Ubuntu Linux users 3
Python 2.7 3
For Windows users 5

Write and run your first program in the command line 7
Make yourself a work folder 9
A quick task for you 10
Summary 11

Chapter 2: Variables, Functions, and Users 13
Variables 13

Naming variables – conventions to follow 14
What can variables remember? 15

Strings 15
Integers 16
Floating point numbers (floats) 17

Combining strings, integers, and floats 18
Functions 19

Built-in functions 19
Parts of a function 20

Users interacting with your program 22
Using the text editor and the command line 23

Table of Contents

[ii]

Build your own function – name() 24
Set up your project file 24
Begin your project 25
Writing code 25
Running your program 27

Going the extra mile 27
A quick task for you 28
Summary 29

Chapter 3: Calculate This! 31
The calculator 31
Basic functions 32
Operations on two numbers 33

Convert data into numbers – int() and float() 34
Floating point to whole number conversion 34
Whole number to floating point conversion 35
Text strings fail in int() and float() 35
Creating our first calculator file 36

New functions – subtraction, multiplication, and division 37
Subtraction 37
Multiplication 38
Division 39

Finding a remainder – modulo 40
Running your program 41
A quick task for you 42
Summary 42

Chapter 4: Making Decisions – Python Control Flows 43
Is it equal, not equal, or something else? 44
Conditional statements – if, elif, else 45

Getting better input 46
if 46
elif 47
else 49

Loops 50
while 50

Global variables and the quit() function 50
Using the quit() function 51
Using the while loop to control the program 52

for 53
Bonus – count_to_ten() function 55

A quick task for you 56
Summary 57

Table of Contents

[iii]

Chapter 5: Loops and Logic 59
Higher or Lower 59

Game file set up 60
Importing libraries 61
Setting and initializing global variables 62
What is a Boolean? 62
Building the easy version 63

Compare numbers 64
play_again() 66

Start, stop, play again 67
start_game() 67
play_again() 68
Play testing 69

Building the hard version 71
Comparing numbers – the hard version 72
Play test the whole program! 74

A quick task for you 76
Summary 77

Chapter 6: Working with Data – Lists and Dictionaries 79
Lists 79

Parts of a list 80
Working with a list 81
Changing the list – adding and removing information 83

Adding items to the list 83
Removing items from the list 84

Lists and loops 84
Dictionaries 86

Key/value pairs in dictionaries 86
Changing the dictionary – adding and removing information 88

Adding items to the dictionary 88
Changing the value of an existing item 89

Removing items from the dictionary 90
List or dictionary 91
A quick task for you 92
Summary 93

Chapter 7: What's in Your Backpack? 95
Setting up our coding environment 95
Planning to program your game 96
Skills needed to make a program 97
Score, play again, or quit? 98

Table of Contents

[iv]

Getting and storing player information 98
Making a players list 98
Player profiles 99
Player profiles – how do they work? 101
Add players to profile 102

Adding items to the virtual backpack 103
Limiting items in a virtual backpack 103
Testing your code so far 104
A game loop 105
Bringing back the while loop 106
Comparing guesses with backpack items 107
Keeping score 108
Ending the game 108
Testing your game 109
A quick task for you 109
Summary 110

Chapter 8: pygame 113
What is pygame? 113
Installing pygame 115

Installing pygame – Windows 116
Installing pygame – Mac 118

Installing Xcode 118
Installing Homebrew 119

Installing pygame – Ubuntu Linux 120
Installing pygame – Raspberry Pi 120

pygame 120
Initializing pygame 121
Setting up the game screen – size 121
Setting up the game screen – color 122
Making stationary objects 123

while loop – viewing the screen 125
Making more shapes 125
Experimenting with shapes 127
More advanced shapes 127

Making moving objects 127
Moving objects with the keyboard 128

A quick task for you 128
Summary 129

Table of Contents

[v]

Chapter 9: Tiny Tennis 131
Introduction to game programming principles 131
The game plan 132
Creating an outline of game parts 132
Section 1 – imports, globals, and drawings 133

Importing libraries 133
Introducing globals 134
Defining a color 134
Adjusting the screen size 135
Drawing the screen 136
Creating screen labels 136
Ball – the starting location 136
Ball – setting the speed and direction 137
Ball – setting the size 137
Paddles – starting location and size 138

Initializing the score 139
Testing section 1 140
Section 2 – moving the paddles 141

Pre-loop actions 141
Creating the while loop 142
Moving the paddles – keyboard events 143
Exiting the game – escape key 144
Paddle control – player 1 144
Paddle control – player 2 144

The increase and decrease value (-= and +=) 145
Testing section 2 145
Section 3 – moving the ball 146

Moving the ball – updating the location 146
Collision detection 146

Collision of the ball with the top and the bottom of the screen 146
Collision of the paddle with the top and the bottom of screen 147
Collision of the ball with the paddles 148

Testing – section 3 149
Section 4 – draw screen and track the score 150

The render screen – show what's happened 151
Displaying player scores 152

Ending the program 152
Play Tiny Tennis! 153
Summary 154

Table of Contents

[vi]

Chapter 10: Keep Coding! 155
What we learned and your next steps 155
Classes and objects – very important next steps! 156
More fun with games 157
Adding music to games 157
Adding graphics to games 157
Remake or design games 158
Other games 158

PB-Ball 158
Snake 159

Other uses of Python 159
SciPy 160
iPython 160
MatPlotLib 161
Raspberry Pi 161

Coding challenges 162
Summary 163

Appendix: Quick Task Answers 165
Index 169

[vii]

Preface
As you can guess from the title, this book is designed to teach the basic concepts of
Python to kids. This book uses several mini projects so that kids can learn how to
solve problems using Python.

Python has grown to become a very popular language for programming web apps,
analyzing data, and teaching people how to write code. Python is known for being a
simple language to use because it is read much like natural languages, yet it is able
to do data analysis very quickly, making it a great language to create websites that
handle a lot of data. Another nice thing about Python that makes it fun to use is that
people have been working on game libraries, such as pygame, so that people can
create graphics programs with Python. The use of simple graphics to make short
games is a fun way to learn programming constructs and is especially good for
visual learners.

What this book covers
Chapter 1, Welcome! Let's Get Started, discusses Python and setting up a Python
development environment on Windows, Mac, and Linux operating systems.

Chapter 2, Variables, Functions, and Users, covers Python data types and functions,
as well as how to program Python to get information from the user, store that
information, and use it later.

Chapter 3, Calculate This!, uses Python to make a calculator that has multiple
mathematical functions. We also learn about working in our file structure and the
proper way to save code files.

Chapter 4, Making Decisions – Python Control Flows, covers the use of if, elif, and
else, as well as the use of for and while loops, in order to help create programs
that make decisions based on user actions.

Preface

[viii]

Chapter 5, Loops and Logic, builds upon what we have learned in the previous chapters
and allows us to build a number guessing game. We will build easy and difficult
versions of the game.

Chapter 6, Working with Data – Lists and Dictionaries, explains how to use lists
and dictionaries to store data. The differences between lists and dictionaries are
explained, and we spend time building small lists and dictionaries as well.

Chapter 7, What's in Your Backpack?, allows us to use functions, loops, logic, lists and
dictionaries to build a different kind of guessing game. We will also learn about
nesting dictionaries and lists.

Chapter 8, pygame, talks about a popular graphical library that is used in Python
to make small games. We will learn the fundamental aspects of this library and
experiment with some code.

Chapter 9, Tiny Tennis, this game is a clone of a popular game. We will re-create the
game using all of the skills that we have learned throughout the book. This is the
major project of the book.

Chapter 10, Keep Coding!, shows you all the opportunities that will arise once you read
this book.

Appendix, Quick Task Answers, has the answers to all the quick task questions within
the chapters.

What you need for this book
This book can be used with Windows 10, Mac OS X, or Ubuntu Linux operating
systems. Other versions of these operating systems may work; however, this book
has been written specifically to address these systems. Additionally, you will need
the Internet to download some tools, such as recommended text editors, for your
operating system. All recommended downloads are open source.

Who this book is for
This book is for kids who are ready to move from graphically-based programming
environments, such as Scratch, and into text-based environments. Kids who are
ready to create their own projects will engage with this book, especially those who
have played games. No prior programming experience is needed to complete the
projects in this book; this book is for kids aged 10 years and above, who are ready to
learn about Python programming.

Preface

[ix]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Why don't you try giving the computer the name variable with your name and then
the height variable with your height?"

A block of code is set as follows:

def name():
 first_name = input('What is your first name?')
 print('So nice to meet you, ' + first_name)

 name()

Any command-line input or output is written as follows:

python

>>>print("Hello, world!")

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[x]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by entering
the book's name in the Search box. Please note that you need to be logged in to your
Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/PythonProjectsforKids_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/PythonProjectsforKids_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/PythonProjectsforKids_ColorImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Welcome! Let's Get Started
If you've picked up this book, then you are taking your first step toward building
amazing projects using code. Some of you might want to make games, while others
might want to learn more about how all of your favorite websites and apps actually
work. If you follow the exercises in this book, you'll be able to do the following:

• Create fun games to play with your family and friends
• Learn about the inner workings of your apps
• Learn how to take charge of your computer

Python projects for you
In this book, you will learn Python code. Specifically, you will learn how to design
a computer program from the very beginning. It doesn't matter if you have never
coded before because each exercise in this book is designed to get you ready to
code. If you have coded before, you will find that this book has some really helpful
exercises that can help make your code even better. Additionally, there are some
more advanced projects toward the end of the book, which you should definitely
take a look at!

What can you do with Python?
If you take a look at the Web and search for Python jobs, you will find that many of
the highest paying jobs are in Python. Why?

Python is a very flexible and powerful language in the following ways:

• It can be used in order to go through millions of lines of data
• Python can search for information on a website without having to go to the

website itself
• It is even used to host and design websites

Welcome! Let's Get Started

[2]

So, what will it take to learn Python? If you have never programmed, you will
probably want to follow each lesson in order so that you can build the skills you
need to make a game or another kind of computer program. The final project in
this book will be a game. If you have some other programming experience, such as
making modifications to your computer games, using programs such as Scratch or
Logo or trying some of the free programming classes on the Internet, then you might
decide to skim this book first to see what you already know. It is still recommended
that you follow the contents of this book in the order they are presented, as each
project builds on the projects that were explained in the previous chapter.

Why you should learn Python
Python teaches all of the basics of an object-oriented programming language, and it
is still very powerful. In fact, many Internet companies, most notably Mozilla Firefox
and Google, use Python in part or all of their products! Python has also been used to
build Django, a free framework to make websites.

It has also been used to build many small video games by people learning about
it as well as more advanced programmers. Finally, Python can be used to quickly
read and analyze millions of lines of data very quickly! By learning Python, you will
be prepared to build a variety of interesting projects, and you will gain the skills
necessary to learn other programming languages if you choose to do so.

The prerequisites of Python
Before you get started, you need the following basic materials:

• A computer that can run Windows 7 or higher, Mac OS X 10.6 or higher,
or Ubuntu 12.4 or higher. You may also use a Raspberry Pi as it comes
preinstalled with Python, pygame, and the other software needed to
complete the projects in this book.

• An Internet connection is necessary as some of the software you need to
install on your computer might not be installed already. For example,
Windows operating systems do not come with Python preinstalled, so
an Internet connection will be needed; pygame is also not preinstalled on
Windows, Mac, or Linux systems.

• Along with an Internet connection, you will also need a web browser, such as
Firefox, Safari, Chrome, or Internet Explorer, which will allow you to visit the
Python documentation pages.

Chapter 1

[3]

All of the code samples in this book are available for download on
the Packt Publishing website.

Setting up your computer
There are many different computer operating systems, but the most common
operating systems are Macintosh (Mac), Windows, and Linux. You should follow
the installation steps that go with your operating system. There are some subtle but
important differences between the systems.

For the projects in this book, we will be using Python 2.7. While there are higher
versions than this (3.x), these versions do not work dependably with pygame on
Windows, Mac, or Ubuntu Linux as yet. However, this book will be written to
use conventions that work in both versions of Python so that projects are easily
completed on Raspberry Pi (which uses Python 3.x that's been specially configured
with pygame) with just a few modifications. These modifications will be duly noted.

For Mac and Ubuntu Linux users
Mac and Linux systems share enough similarities that people who use either Mac
or Linux can follow the same set of instructions. These instructions will make note
of any differences between Mac and Ubuntu Linux.

Python 2.7
At the time of writing, Mac OS X El Capitan comes with Python 2.7 preinstalled,
so nothing extra needs to be done at this point.

Ubuntu Linux 15.10 has Python 2.7.10 installed by default, so users of this latest
(as of writing this) version of Linux also need to do nothing extra at this point.

Terminal – the command line and the Python shell
Mac and Ubuntu Linux users have Python by default, but finding Python is tricky if
you don't know where to look. There is a program called Terminal on both Mac and
Linux operating systems. This program allows you to exercise a lot of control over
your computer in these ways:

• On a Mac, go to Finder | Applications | Utilities and click on Terminal.
The terminal application will open up, and you should see a small, white
window on your screen.

Welcome! Let's Get Started

[4]

• Ubuntu users can search for terminal on their desktops, and the program
will show up in their Start menu. When you click on the terminal, you will
see a small, black window on your screen.

• The terminal also functions as a Python shell when a command is given to
run Python. We will learn about this later.

Text editor
A text editor is a helpful tool for writing and editing Python programs. The terminal
is a nice place to test snippets of Python code, but when we want to edit and save the
code in order to use it over again, we will need a text editor. Although both Mac
and Linux systems come with a text editor, there are some very nice, free editors
that have good features. jEdit is one of these editors.

For Mac and Linux, go to http://www.jedit.org/ and download
jEdit. Follow the installation instructions.

To successfully complete all of the exercises in this book, you will often need to keep
both the terminal and text editor open at the same time on your screen.

http://www.jedit.org/

Chapter 1

[5]

This is what the text editor application, jEdit, looks like in Mac and Linux:

For Windows users
Windows users, this setup might require help from your parents. Since Python is
not installed by default on Windows, some system adjustments need to be made
to successfully run Python on your computer. If you are feeling uncertain about
performing these system changes yourself, make sure to ask for help:

1. First, you will need to download version 2.7.11 of Python.

Use the official Python website for the latest releases for Windows
at https://www.python.org/downloads/release/
python-2711/.
With Windows, you need to figure out if you are running 32-bit or
64-bit so that you can download the correct version of Python. To
help you to determine which one is correct, visit
http://windows.microsoft.com/en-gb/windows/32-bit-
and-64-bit-windows#1TC=windows-7.
Download x86only if your computer is running 32-bit Windows.
Most users will download the x86-64 version of Python.

https://www.python.org/downloads/release/python-2711/
https://www.python.org/downloads/release/python-2711/
http://windows.microsoft.com/en-gb/windows/32-bit-and-64-bit-windows#1TC=windows-7
http://windows.microsoft.com/en-gb/windows/32-bit-and-64-bit-windows#1TC=windows-7

Welcome! Let's Get Started

[6]

2. Choose the executable installer, and you will see the download progress.
3. When the download is complete, you will see a prompt to run Python.

Click on Run.
4. An install prompt will come up, and when it does, look at the bottom of the

window and click on the box next to Add Python 2.x to Path. Then, select
Install Now.

5. Follow the installation instructions. Each step may take a few minutes. Once
the installation is done, you will have an icon for Python 2.7.11, which you
can find by searching for Python in the Windows search bar. This will open a
special Python shell from where you can run and test the Python code.

Command prompt
In Windows 10, you will see a terminal called the command prompt. The command
prompt is significantly different in Windows than it is on Mac or Linux.

To find the command prompt in Windows 10, perform these steps:

1. Go to the search bar at the bottom of the screen and search for cmd
or command.

2. When you do, you will see the command prompt desktop app appear.
Click on this app to open the command prompt, which looks like this:

Text editor
In Windows, Notepad is the default text editor. However, Notepad++ is a much
better substitute.

Chapter 1

[7]

To get Notepad++, perform these steps:

1. Go to https://notepad-plus-plus.org/and download the latest version.
2. Once the program has been downloaded, click on Run.

Notepad++ looks like this:

Write and run your first program in the
command line
Now that you are set up, it is time to write your first line of code in Python!
This line of code is almost a tradition for people who are programming for the
first time, and it allows us to use one of the most basic, but most useful, functions
in the Python language.

First, you need to start running a Python shell. On Mac or Linux, open your terminal
and type this:

python

In the Mac or Ubuntu terminal, your resulting Python shell will look like this:

>>>

In Windows, type Python in the search bar at the bottom of the page. Then,
select Python 2.7.11 from your apps. You will also have a Python shell open:

>>>

Once you see this symbol, your computer is now ready to work with the Python
code. In your terminal or IDLE, type the following:

>>>print("Hello, world!")

https://notepad-plus-plus.org

Welcome! Let's Get Started

[8]

Once you have typed this, double-check to make sure that all of the spaces are
exactly as they've been written. In Python, every space actually matters. Every
punctuation mark matters. Once you have checked your code, hit Enter.

What is your result or the output of your code? If the output looks like the
following image, then great! You typed all of your code properly so the computer
will understand what you want it to do. The expected output will be similar to what
is shown here:

For Windows users, the output window will look like this:

So, if your output does not look like the preceding code, you need to figure out
what's wrong with it. Here are some of the reasons for this:

• Did you make a typing error?
• Did you forget to use parenthesis or round brackets () for the words 'Hello,

world!'?
• Did you forget to use the ''single quotation marks for Hello, world!?

If you still have a problem, compare your code to the sample input code and fix any
mistakes. Then, try to run the code again.

Chapter 1

[9]

Python is what is called a case-sensitive language. Python cares about
uppercase, lowercase, and whitespace. You need to watch what you
type. You might get some strange messages from your computer if
you make a typing mistake or a syntax error.

Make yourself a work folder
Before we get started on any large projects, we need to make a work folder. In the next
chapter, you will start writing whole files of code that need to be run; therefore, we
will need a place to put those files. Since you are setting up now, let's make a folder.

If you are very good at getting around your computer, you can put your folder
wherever you want to.

If you are not too good at getting around your computer, you will probably want to
put your folder on your desktop.

On both Mac and Windows machines, you can right-click somewhere on your
desktop wallpaper, and a box will pop up with several options. One of the options
will say New, and when you hover over New, you will get several other options.
Choose New Folder, and a new folder icon will appear on your desktop. It will be
named untitled, so you should give it a better name.

To find your folder in the Mac or Linux terminals, respectively, open one of them
and perform these steps:

1. Run the cd .. command until you are at the root, which is often the name
you have given to your computer. You may need to run the command three
or four times.

2. Now, you will be able to run python programs by typing
python3.5program.py.

To find your folder in the Windows command line, open the command prompt
and perform these steps:

1. Run the cd ..command until you are at the root or C:\>. You may need to
run the command three or four times.

2. Now, you will be able to run Python programs by typing python program.
py.

Welcome! Let's Get Started

[10]

A quick task for you
Now that you have finished this chapter, can you answer these questions?

Q1. What is a terminal (Mac/Linux) or command prompt (Windows)?

1. A terminal is used to put data into or get data out of a computer without
using the icons on the desktop.

2. A terminal can be used to write computer programs.
3. A terminal can be used to do complex work, such as giving hints on

Python code.
4. A terminal can do all of the above.

Q2. When you first open the terminal/command prompt, what do you need to do so
that you can start reading and writing the Python code?

1. Start typing the code.
2. Type the word python.
3. Wait for Python to start.
4. None of the above; do something different.

Q3. How is the Python shell different from the command line?

1. They are exactly the same.
2. The command line cannot run Python commands.
3. The Python shell is started by typing the word python into the

command line.
4. The Python shell can be used to test lines of Python code.

Compare your answers with those you find at the back of the book.

Chapter 1

[11]

Summary
If you are reading this, it is because you have made it through some of the tricky
work of getting ready to learn to program projects with Python. Congratulations!
Setting it up is always tough. Hopefully, you learned a bit more about the tools on
your computer, such as the text editor and terminal that every programmer uses
to do their daily work. Also, you learned about the Python print() function, and
you should now be able to print out messages in your Python shell. The fun is just
beginning as we have so much more to learn!

In the next chapter, you will learn about the building blocks of Python programs.
We'll start with variables and learn about all the different kinds of information we
can put in them. Then, we will build some functions that put these variables together
and help us make blocks of code that have special jobs. Finally, we will even learn
how to make a computer ask a user questions and store their answers so that our
programs can become interactive!

[13]

Variables, Functions,
and Users

In the previous chapter, you learned how to install Python on your computer.
You also learned how to use the print statement in Python and printed some
messages using your Python shell. We are now going to jump into a lot of details
so that we can build our first project together. It will include the following:

• Variables
• Variable names
• Strings, integers, and floats
• Functions

Variables
A variable is when one letter or word is used to represent a different letter,
word, number, or value. One way to think of a variable is to imagine that you are
programming a computer so that it can make memories. For example, my name is
Jessica. If I am writing a computer program and I want that program to remember
my name, I will assign my name to a variable. This will look like name = 'Jessica'.
The variable is name. Jessica in the memory.

Perhaps I would like the computer to remember something else about me as well.
Maybe I want the computer program to remember that I am 64 inches, or roughly
128 cm, tall. I will say height_inches = 64 or height_centimeters = 128. The
variables here are height_inches and height_centimeters. The memories are my
height in inches and my height in centimeters.

Why don't you try giving a computer the name variable with your name and then a
height variable with your height?

Variables, Functions, and Users

[14]

First, open your Python shell and type the following code:

name = 'yourname'

height = 'your height'

Now that the variables are stored, you can type print(name) or print(height).
Since you created a memory for the computer with your name and your height, the
computer will print the memory that you gave it. If you take a look at the screenshot
from my Python shell, you will see that the computer printed the memories that I
assigned it. Notice that we do not use single quotes around the variable names:

If the values, or memories, that you assigned to the variables are printed in your
Python terminal, then it is perfect. If not, you may have an error. There are a lot of
reasons due to which an error can occur. You may have typed your variable name or
your information in a way that breaks the Python convention. Some common errors
include using capital letters.

Naming variables – conventions to follow
There are some conventions that are used to name variables in Python. It might seem
silly to have guidelines about naming things, but following the conventions is really
important because it helps other people read your code. Also, the Python shell is
designed to work with the conventions.

To avoid errors, your variable names should use lowercase letters. If your variable
uses more than one word, such as the height_inches variable, then it should have
underscores to connect the words together.

Chapter 2

[15]

If you use two words to name your variable and do not connect them with an
underscore, you will get an error. Take a look at the following screenshot and see
where it says SyntaxError: invalid syntax. Notice this error occurred because
the height centimeters variable did not have an underscore to connect the words:

What can variables remember?
Python variables can be programmed to remember all kinds of information! You will
notice in our original example that we stored a word and then a number. There are
three different kinds of information that we will be using to build our calculator in
Chapter 3, Calculate This!, strings, integers, and floats. Each bit of information is input
and output a little differently.

Strings
In Python, a string is any piece of data that's captured between two single quote
marks, that is, these symbols ' '. Sometimes, double quotation marks are used.
For example, I can have a string variable that looks like this:

sentence = 'This is a sentence about Python.'

This string variable contains letters and words. Most string variables do. However,
you can store a number as a string also as long as that number is in single quotes:

 number_string = '40'

If we can store all kinds of information as strings, why do we need other data types?
Well, when we store numbers as strings, we cannot do math with the numbers! Type
this problem into your Python shell, and then you will see why we need data types
besides strings:
 first_number = '10'

 second_number = '20'

 print(first_number + second_number)

Variables, Functions, and Users

[16]

What happened in your Python shell? You might have expected the printed output
to be 30 since 10 plus 20 is equal to 30. However, Python saw each number as a text
string and simply put the two text strings next to each other. So, your result was
probably 1020. Here is how this looks in the Python shell:

Integers
Computers are really great at math, and math will allow us to execute more
complicated programs, such as games. Python stores whole number data as integers.

Let's start with integers:

• An integer is simply a plain whole number. If we want to make our variables
store integers, we would take away the quotes.

• Then, when we add the two variables and print the output, we will get a
mathematical result.

Try it out! Let's do some math with these variables:

1. Type the following two variables in your Python shell:
 first_number = 10

 second_number = 20

2. Then, print the output by typing print and the variables:
 print(first_number + second_number)

After completing step 2, press Enter. Your result should be 30. This is because
Python is reading the numbers as integers, and Python understands integers with
mathematical operators. In fact, Python understands math so well that you will
notice that no equals sign was needed to tell Python to output the answer. Take a
look at this screenshot:

Chapter 2

[17]

Floating point numbers (floats)
Hopefully, you now better understand how Python works with integers
(whole numbers). However, people and computers often need to work in
fractional numbers. In Python, these numbers are called floating point numbers,
but many people call them floats as a shortcut:

• Floats are actually a really fancy way of saying numbers using decimals
• Floats are called this because the decimal point can be anywhere among the

numbers, allowing for decimals of many different sizes
• Setting numbers as floats allows us to do more complicated math using

fractional numbers
• To set a variable to a float, you don't have to do anything special or different

from what you did to set the integers
• Python knows that a number input (a variable, for example) with a decimal

point is a float, and Python will output the answers as a float if the problem
is clear

In your Python shell, try this math problem using floating point numbers instead
of integers:

 first_number = 10.3

 second_number = 20.3

 print(first_number + second_number)

Variables, Functions, and Users

[18]

This time, in your Python shell, you should notice that Python recognized the variable
input as floating point numbers and was able to output the complete and correct
answer without us having to use additional instructions. The output from your print
statement should be 30.6, as you can see in this screenshot of the Python shell:

Combining strings, integers, and floats
So far, we have only attempted to combine items that share a data type. We have
added two strings, two integers, or two floats. What happens when you try to add
two different types of information, such as a string and an integer? In your Python
shell, type the following lines of code and pay attention to the output:

 first_number = '10'

 second_number = 20

 print(first_number + second_number)

You are likely to notice the error that you receive. The important line to pay attention
to is TypeError: cannot concatenate 'str' and 'int' objects. Python is
telling us that it cannot work with these two different data types and that makes
sense. So, if you do make a mistake in your typing or try to execute an operation in
two different data types, you may get an error like this:

Chapter 2

[19]

Functions
Once we have variables, we can use them to do some pretty interesting things. The
most interesting thing is to build functions. Python functions are blocks of code that
we can build to do a specific job. We build these functions once, and then we can
reuse them in our code just by typing the name. This is really helpful. For example,
if I need to write a program that adds two numbers (a calculator, for example), I do
not want to have to write three or four lines of code every time I want to add two
numbers. Instead, I want to write one function that can add two numbers together,
and then use that single line whenever I need to add numbers.

Before we begin building functions of our own, we need to also know that Python
has a lot of amazing functions that are built in. Some of Python's functions are things
we will use all the time. Others we won't talk about in this book, but as you become a
more skilled programmer, you will learn more about Python's built-in functions.

Built-in functions
Here's something about some built-in functions and what they do:

• int(): This converts a string or a float into an integer
• float(): This converts a string or an integer into a float
• raw_input(): This gets information from a user and stores it in the computer

to use later
• str(): This converts an integer, float, or other information into a string
• help(): This provides access to Python's help

Variables, Functions, and Users

[20]

We will be using these functions to help us build our first project in the next chapter.

If you are curious about what other functions are built in or if
you want to know more, you can go to the Python documents at
https://docs.python.org/2.7/library/functions.
html?highlight=built%20functions#.
Initially, the documents can seem overwhelming because they are very
detailed. The detail can make the documents difficult to understand
at times, but the documents are very helpful and are used by many
programmers.

Parts of a function
There are basic parts to think about when you want to build your own function.
First, here's the basic function to add two numbers:

 def addition():

 first_number = 30

 second_number = 60

 print(first_number + second_number)

The first line of this code is new, so we need to understand what it means:

• The first thing to notice is the word def. In Python, this is short for define,
and it is used to define a new function.

• The next thing to notice is the name of the function. The name of the function
has the same guidelines as the names of variables. A function needs to use
lowercase letters, and when it has many words, there need to be underscores
between each word.

• After the name of the addition() function, you will notice the parentheses
(). These are empty in this function, but sometimes they are not empty.
Even if they are, the parentheses must ALWAYS be a part of the function
that you create.

• Finally, the first line of the function ends with a colon. The colon (:), ends the
first line of the function.

A function can be short, such as this addition() function, which is only four lines in
total, or it can be really long. Every line after the first line in a Python function needs
to be indented using spaces. When we work on building our own functions in the
next section of this chapter, you will learn how to make indents in your Python shell.
We will also discuss proper spacing in the text editor.

https://docs.python.org/2.7/library/functions.html?highlight=built%20functions#
https://docs.python.org/2.7/library/functions.html?highlight=built%20functions#

Chapter 2

[21]

There are a lot of new details to remember in order to write a function. What
happens if you forget a detail? If you forget to indent a line, Python will let you
know and output an error. Your function will not run, and your code will not work.
Python's use of indentation is known as whitespace, and there are rules about
whitespace use in Python.

By now, you are very familiar with doing additions in Python, so we will keep
working with the addition code. There are special considerations in order to write
functions in the Python shell. Because a function is a block of code, we want to follow
these guidelines when we are trying to perform functions in the shell:

• After you type the first line and press Enter, make sure you press Tab before
you type each line

• When you have completed typing all the lines, hit Enter twice so that the
Python shell knows that you are done creating the function

In your Python shell, type the addition() function exactly as it appears here:

 def addition():

 first_number = 30

 second_number = 60

 print(first_number + second_number)

Notice how the function looks in the Python shell:

Now that you have typed your function, you need to learn how to use the function.
To use the function in the Python shell, type the name of the function and the
parentheses:

 addition()

Variables, Functions, and Users

[22]

Typing the function is also known as calling the function. When you call the
addition() function in the Python shell and then press Enter, you will get an
output as the answer to the problem. Notice how this is displayed here:

Compare your result to the results shown in the preceding screenshots. Once you
know that your function runs the way you want it to, you can show it to your parents
and friends by asking them to look at your code. It is a good idea to test your function
by retyping it with different numbers.

Users interacting with your program
We just built a function that adds two numbers together. Learning to make a
program that does math is interesting, but our function is limited because our
addition() function needs to have variables changed manually to calculate results
for different numbers.

What if there was a way to get information from the user and store THAT information
in a variable so that it could be used by addition or subtraction functions each time?
Anyone who has used a calculator of any kind already knows that this is possible.
Python has a function called raw_input() that allows us to tell the program to ask the
user a question. The raw_input() function is incredibly useful. We can get every kind
of information from the user this way, and we can make interactions between the user
and the computer based on the user input.

We can use the Python shell to test how the raw_input() function works. Try typing
these two lines of code into your Python shell:

 name = raw_input('What is your name?')

 print(name)

Chapter 2

[23]

What happened here? Let's have a look:

• What should have happened is that you should have had a prompt in
the terminal that asked 'What is your name?' Then, you can type your
response.

• Following your response, hit Enter. Nothing will happen (nothing should
happen yet!).

• You have given the computer information (a memory) to store in the name
variable, but now you need to get the information out of the name variable.

• You can get the output of the memory that the user entered by printing the
name variable.

In this screenshot, you can see the entire sequence in the Python shell:

Using the text editor and the command
line
So far, we have used the Python shell to write and test code. The shell is great
because we type a line of code or even a few lines of code, and then we run them
immediately to see whether they work. However, you may have noticed that there
isn't a way to save any of the code that we write.

For a program to run, it needs to have all of the code available. Using a text editor is
just like writing a report, an email, or a paper: we write our code and save it; then,
we go back to edit it if we want to. In order to make Python use and understand our
file, we need to use the command line and tell Python to run the file.

To perform our next task as well as the remaining tasks in the book, we will use our
text editor side by side with our terminal/command prompt. Let's walk through the
setup of the text editor and command line right now.

Variables, Functions, and Users

[24]

The first thing you need to do is as follows:

• Make a special folder where you can store your code files, and remember
how to find this folder! (Look back at Chapter 1, Welcome! Let's Get Started,
for instructions.)

• This folder, or directory, is very important, as it will be the place where you
put the work that you create for the rest of this book

• Python needs to be able to access this directory to run all the programs,
and soon, we will write files that will use other files; so, all of the files need
to live in the same place

Once you are certain that you have a special work folder, you can open the text
editor program we set up in Chapter 1, Welcome! Let's Get Started. You will also
open a new window in a terminal or in the command prompt.

Build your own function – name()
So, you have learned about variables and how they store information. You have
also learned about how these variables can be used inside of a function. Finally,
you have learned how to use special Python functions, such as input(), to help get
information from users and store it in the computer. You are ready to build your
own function using variables and input().

Set up your project file
The function that we will build now is called name(). The purpose of this function
will be to ask the user their name, store (remember) the name, and then print out a
friendly message to the user.

To start this function, do the following:

1. Open a new file in your text editor.
2. Go to Save and name the file name.py.

You need to use .py at the end of all of your code files so
that the files run in the terminal/command prompt. Python
only recognizes .py files.

3. Save the file in the folder you made for all of your Python work.

Chapter 2

[25]

Begin your project
Once you have set up a project file, the first thing you might want to do is add a
short comment to your file. A comment allows humans to quickly understand what
is happening in the code. Whenever you are writing something that is not code,
you should start the line with a hashtag, or hash. The hash is one way to tell the
computer, Ignore this!, yet it allows humans to read the text. Type the following
line in your file:

This is my first function called name. It will ask the name and
print a message.

Writing code
The next line you type will begin the computer-readable code. First, make
sure that there is a space between the comment you wrote and the first line of
computer-readable code. As we learned earlier, you will start the function using the
Python word def. Then, you will type one space and the name of the function:

 def name

Next, you will add parentheses () and a colon : to the first line:

 def name():

Now, it is time to go to the next line. For the next line, you will need to indent.
Use the spacebar to insert four spaces. In Python, spaces matter. Using the Tab key,
or mixing between tab and space, is a problem in Python and causes errors.

Since we are asking the user for their first name, you can use the words first_name
for the variable if you like:

 def name():

 first_name =

The first_name variable will store the answer to the question, What is your first
name? Remember, though, we have to use the raw_input() function to get the user
to answer the question! So, we will add the raw_input() function and question to
the code:

 def name():

 first_name = input('What is your first name?')

So far, we have programmed a way for the computer to ask the user for their first
name, and we have made a variable called first_name to remember the string of
information.

Variables, Functions, and Users

[26]

Even though we have a file that has some lines of code, if we were to run our code
right now, nothing at all would happen. We need a way to show the user their name,
and it would be even nicer if we sent the user a welcoming message. We need to
write the code for program output.

We have been using print to output our information from Chapter 1, Welcome!
Let's Get Started, and throughout this chapter, and print is also useful here.
We can tell our function to print the first_name information, and we can put
that together with a nice message. Add this line to your code:

 print('So nice to meet you, ' + first_name)

Your total code for the name() function should look like this:

def name():

 first_name = input('What is your first name?')

 print('So nice to meet you, ' + first_name)

Here is a sample of how the program looks in a text editor:

We need only to add the final line of code, which is to call the name() function. If
we do not call the function, it will not run. To call the function, you should leave an
empty line after print, and on a new line, unindent and type name(). Take a look at
this code sample, and add the name() function to your code:

def name():

 first_name = input('What is your first name?')

 print('So nice to meet you, ' + first_name)

name()

Now that we have created this function, we can use it to greet anybody because the
user is telling us each time what first_name should be. We have made a reusable
block of code.

Chapter 2

[27]

Running your program
Now you have to save your work:

1. Go to the Save option in your text editor and save the work for name.py.
2. Once you have saved this work, you should go to your terminal/command

prompt.
3. Make sure that you are in the correct folder.

If you are not sure, you can type pwd (Mac/Linux) or
echo %cd% (Windows) to find out what folder you are in.

4. When you are in the same folder as your work, type:
 python name.py

5. Then, press Enter. Your program should begin to run.

Once you type in the name, the output should look like this:

You now have a program to share with family and friends that will seem amazing,
especially if they have never programmed before!

Going the extra mile
So, if you really want to understand all of this, go the extra mile! Experiment with the
code that you just created so that you can see what works and what does not work.
If you get a strange error, you can always copy and paste the error into an Internet
search engine; most of the errors we've taken a look at so far have happened to other
people. Here are some tips to help you experiment and gain mastery:

• Change the input question
• Change the message to the user
• Change the function name

Variables, Functions, and Users

[28]

• Change the variable name
• Add a second variable and a second input question
• Add the second variable to the output question

A quick task for you
Now that you have finished this chapter, can you answer these questions?

Q1. What must a function begin with?

1. def
2. Function
3. Input
4. Whitespace

Q2. What are conventions that are used to name variables and functions?

1. Must use lowercase letters
2. Multiple words need to be connected with underscores
3. Cannot use a number to start a name
4. All of the above

Q3. Every line after the first line of a function must be?

1. Named using numbers
2. Have a colon, :
3. Indented
4. Use parentheses ()

Q4. If you want a code file to run in Python, you need to end it with?

1. .txt
2. .odt
3. .pdf
4. .py

Chapter 2

[29]

Q5. To run a code file in the terminal, what do you need to do?

1. Type the name of the file in the terminal
2. Type the name of the file in the terminal while running Python
3. In the correct folder, type Python and the name of the file
4. All of the above steps in order

Summary
In this chapter, we learned how to store information in variables so that a computer
could remember it later. We learned how to use variables to make a function that
could add two preprogrammed numbers together. Then, things got interesting
when we learned how to make the computer ask questions and remember the user's
answers! Using raw_input(), we learned how to store answers as variables to use
later in the name() function that we built together. We started saving our work in
.py files so that we could run and rerun our files in our terminal/command prompt
without having to retype the files all the time.

In the next chapter, you will build a four-function calculator to run in the command
line using all of the skills you learned in this chapter!

[31]

Calculate This!
In the previous chapter, you learned about the uses of variables, different data
types, and functions. You created your own function and learned how to get basic
information from a user with the raw_input() function. Using these building blocks,
you can begin to design basic programs.

The first program we make will be a five-function calculator that calculates two
numbers as input. The calculator will help us learn to understand the mathematical
functions that are a part of Python, which will be useful for our game at the end
of the book. In addition to this, this calculator will form the foundation for a more
complex calculator in Chapter 5, Loops and Logic.

The calculator
The first calculator was invented in 1966 at Texas Instruments (http://www.
ti.com/corp/docs/company/history/timeline/eps/1960/docs/67-handheld_
calc_invented.htm) and was able to do addition, subtraction, multiplication,
and division. The calculator had eighteen keys and could display twelve numbers
on the screen. While it doesn't seem like much at first, especially compared to the
technology we now enjoy, there is quite a lot of code and decision making that go
into the operations that a basic calculator performs.

When we want to figure out how something works, we need to break it down into
smaller parts. Let's take a look at how the calculator adds numbers together:

1. First, the calculator needs power.
2. The user enters the first number.
3. The user presses an operation key (+, -, *, or /).
4. The user enters a second number.
5. The user presses the = key.
6. Then, an answer is printed to the screen.

http://www.ti.com/corp/docs/company/history/timeline/eps/1960/docs/67-handheld_calc_invented.htm
http://www.ti.com/corp/docs/company/history/timeline/eps/1960/docs/67-handheld_calc_invented.htm
http://www.ti.com/corp/docs/company/history/timeline/eps/1960/docs/67-handheld_calc_invented.htm

Calculate This!

[32]

On a basic calculator, the computer does not keep all of the numbers on the screen.
The computer must store the first number that the user entered in its memory.

We will run our first calculator program inside of the terminal/command prompt,
so there are other things we must consider in addition to how the numbers will be
stored. For example:

• How will we prompt the user to get the information that we need?
• What happens if the user enters a text string instead of integers or floats?
• What happens if the user enters numbers as a string instead of as integers

or floats?

These are just some of the logical questions that need to be considered as we plan
how to write our own calculator program. Can you think of any other problems that
need to be solved?

Basic functions
We learned at the beginning of this chapter that the first electronic calculator had
four basic functions: addition, subtraction, multiplication, and division. We will
be working on programming each of these functions, and we will also learn a fifth
mathematical function that we can program for our calculator called modulo.

Through the beginning of this chapter, we will use the addition() function as our
example. Once we have created and tested an addition() function that does what
we want it to, we will then build our other functions.

Let's return to our example of the addition function in Chapter 2, Variables, Functions,
and Users. Recall how we programmed this function:

Chapter 3

[33]

The addition function in the preceding screenshot does perform proper addition
and prints the answer. However, there are problems with designing an addition()
function this way. One problem is that the program can only add the same two
numbers over and over again. Another problem is that, in this program, we are
only using one mathematical operation (addition). This addition() function is too
inflexible on its own; we need to design a function that is more user friendly.

To design a better mathematical function, we need to solve the problem of user-inputs
by letting the user change the numbers in the calculation. We also need to design a
calculator where the user has mathematical functions other than addition that can
be performed.

Operations on two numbers
We are going to use the raw_input() function that we learned about in Chapter
2, Variables, Functions, and Users. Recall that from this chapter, we cannot perform
addition on two strings. In fact, we cannot perform any kind of mathematical
operations on strings.

The following code asks for user input and stores the input in the computer as
strings. Type the following code in your Python shell to take a look at the results:

def addition():

 first = raw_input('I will add two numbers. Enter the first number')

 second = raw_input('Now enter the second number.')

 print(first + second)

What happens when you call the addition() function? If you call the addition()
function, you will see that the addition has NOT happened. This program just
prints the two numbers together, side by side, in the order that they were entered
by the user:

Calculate This!

[34]

While putting information side by side is useful to combine words into a phrase
or sentence, it is not very helpful in performing calculations with numbers, as
we discovered in Chapter 2, Variables, Functions, and Users. Instead, you will want
to convert the user's answer to a number so that you can perform mathematical
operations on the numbers. To convert the input() function to a number, you will
use int() or the float() functions.

Convert data into numbers – int() and float()
In order to change the user data entered in the raw_input() function from a string
to a number, we need to use the whole-number-integer, int(), or floating-point-
number, float(), functions to make the computer interpret the answer as a number.

Floating point to whole number conversion
To try an example, type the following in your Python shell, and pay attention to
the results:

a = int(44.5)

b = float(44.5)

print(a)

print(b)

In the preceding example, with 44.5, you should notice that the int() function
rounds up the number to 44, while the float() function keeps the number at
44.5. This is because int() likes whole numbers and rounds numbers down
automatically. Take a look at this screenshot from the Python shell:

Chapter 3

[35]

Whole number to floating point conversion
Now, try the reverse. Convert a whole number into an integer and a float using this
code in your Python shell:

 a = int(24)

 b = float(24)

 print(a)

 print(b)

In the preceding sample code, you see that the int() function keeps the number at
24, while the float() function adds a decimal place to the number, making it print
as 24.0. This is because float is designed to deal with numbers and their decimal
places. You can see the results in this screenshot of the Python shell:

Text strings fail in int() and float()
If you try to enter a text string into the int() or float() functions, you will get an
error. In fact, you will only be able to type the first line of these two lines into your
Python shell. This will immediately evaluate the int('hello') code as an error:

 int('hello')

 float('hello')

This happens because int() and float() apply specifically to numbers and do not
deal with things that cannot be changed into numbers. In the following screenshot,
notice that the Python shell returns something called a traceback with three lines of
error code:

Calculate This!

[36]

We will switch between using int() and float() throughout the book so that you
become used to using both functions:

• int(): This function converts data into a whole number
• float(): This function converts data into a number with decimal places

Now that we know about converting strings into numbers, let's rewrite our addition
function, get input from the user, and convert the input into decimal numbers using
the float() function. You can copy this code directly into your text editor:

 def addition():

 first = float(input('What is your first number?'))

 second = float(input('What is your second number?'))

 print(first + second)

In the following screenshot, you see the Python shell with the addition function
defined. You also see that when the addition function is called, each raw_input line
is printed and the user answers by typing in a number. The first and second input
have been converted into integers, so when the answer is added together you will
notice that the output is now correct according to the standard rules of addition:

Creating our first calculator file
Let's save your work before we continue. Open your text editor and make a file
called first_calc.py, then type the addition function that you just made into that
file. Make sure you save the file in your work folder that you made on your desktop
back in Chapter 1, Welcome! Let's Get Started. It is important to keep your work
organized so that you can run your code to test it and show it off:

Chapter 3

[37]

New functions – subtraction,
multiplication, and division
Now that we have created an addition() function that accepts data from the user
and converts it into numbers, we are ready to create functions for subtraction,
multiplication, and division.

If you are coming back to this after a break, perform the following steps:

1. Open your Python shell so that you can test your code as you write.
2. Next, open your text editor (jEdit in Mac/Linux and Notepad ++ in Windows).
3. Have both windows open on your desktop as you program.
4. When you successfully write and test a line or a few lines of code in the

Python shell, copy the lines into your text editor and then Save Your Work to
the first_calc.py file that you created earlier in this chapter.

Save your work early and as often as you can! Avoid
being upset by accidentally erasing your code!

Subtraction
For the next part of our calculator, we will make our subtraction function. We will
follow the same prompts as we used for the addition function to create a second
function that performs subtraction. In your Python shell, try these steps to create the
subtraction function:

1. Type def to start your function.
2. Name your function.
3. Add proper syntax, which is parenthesis () and :.
4. Tab the remaining lines in four spaces each.
5. Request the first number from the user.

Calculate This!

[38]

6. Request the second number from the user.
7. Print the output using the minus (-) symbol for subtraction.

Once you have tried creating this function in the Python shell, try calling the function
using this line of code:

 subtraction()

If the function call works, then you can type your code into your code file exactly as
it appears in your Python shell. If your subtraction() function does not run, make
sure you did not make any errors when typing your code in the shell. Double-check
your code and rerun it until it is smooth. If you are stuck, you can copy the lines of the
following code into your Python shell; they will perform subtraction on two integers:

def subtraction():

 first = int(raw_input('What is your first number?'))

 second = int(raw_input('What is your second number?'))

 print(first - second)

subtraction()

Once you have tested your code in the shell, you can then type it into your text
editor. Remember to save your work in your first_calc.py file. Your first_calc.
py file should now look something like this:

Multiplication
By now, you might have observed a pattern in our functions. The multiplication
function will follow the same format and logic rules as the addition and subtraction
functions. You can continue to ask the user to enter each number, and then the
computer will perform a proper calculation.

Chapter 3

[39]

The following code is for the multiplication function. You can copy it directly, but it
is a better idea to try to create the multiplication function on your own. If you try to
create your function, you will know how well you have learned the way to create a
function. When you are ready, you will see this code for the multiplication function:

def multiplication():

 first = int(raw_input('What is your first number?'))

 second = int(raw_input('What is your second number?'))

 print(first * second)

Once you have tested your code in your Python shell, remember to type the function
in your text editor and save your work in your first_calc.py file:

Division
Division is the final basic operation that we will program for our first calculator
program. As with multiplication, you have already done most of the work for the
division part of the calculator. See if you can recall how to create a division function
from scratch. Once you have tested your code, compare it to the following code and
see if it matches up:

def division():

 first = int(raw_input('What is your first number?'))

 second = int(raw_input('What is your second number?'))

 print(first / second)

Calculate This!

[40]

Once you have tested your code, remember to save your work in your
first_calc.py file:

Finding a remainder – modulo
Modulo can seem like a strange concept. In fact, unless you are a programmer, it is
likely that you have never heard of modulo. Modulo is a mathematical function that
allows us to do a division problem but only return the remainder. Why is this even
useful? Why is it a good idea, and why should we care?

Usually, we want to know the entire answer to a division problem—the quotient
and the remainder. There are times, though, when we will only want to know the
remainder of the division problem. We will only care about what is leftover. Modulo
is like a monster eating our dessert: we give the monster numbers to divide, and it
just gives us leftovers.

While modulo is not especially useful in the world of school arithmetic, it can be very
useful in moving objects in a game. So, it is good for us to build a modulo function
and learn how modulo works.

To build a modulo function, you will need to get user input, just like all of the other
functions you made. Then, you will call the modulo function. The symbol for modulo
is % You can place the modulo operator where you would normally place the division
sign. Copy the following code in your Python shell as an example:

Chapter 3

[41]

def modulo():

 first = int(raw_input('What is your first number?'))

 second = int(raw_input('What is your second number?'))

 print(first % second)

In the preceding screenshot, you can see how we added the modulo function to the
other functions. If you still find modulo confusing, don't worry right away. Just
know that it might come up as you are designing games, and you can check back
here, as well as do an Internet, search to better understand modulo.

Running your program
To run your program, enter your command line or terminal window and type the
following command:

python first_calc.py

Your program should run through addition, subtraction, multiplication, division,
and modulo, and print answers to the user for each set of numbers that they enter.
If there are errors when the program runs, the error messages from your computer
will usually tell you that something is wrong. The error message will even tell you
what line of code in your file has the problem so that it is easier to debug (find and
fix errors in) your code.

Calculate This!

[42]

A quick task for you
Q1. What kind of data does the input() function return?

1. Elements
2. Decimals
3. Strings
4. Integers

Q2. What does the int() function do?

1. Changes data to whole numbers
2. Changes data to a string
3. Does nothing
4. Changes a function into a different function

Q3. How is the float() function different from the int() function?

1. They are not different, they do the same thing
2. The float() function deals with strings only
3. The float() function converts data into floating point numbers only
4. float() converts words into numbers

Q4. If you make a function called addition() in your Python shell, how do you run
that addition function to test it?
1. Type addition in your Python shell
2. Type def addition in your Python shell
3. Type addition() in your Python shell
4. Type addition() in your Python shell

Summary
Now that you have read this chapter, you hopefully have a calculator program that
you can run! This program is more interactive and can do more things than your first
program, so you should share this program with your family and friends to show
them how you have improved your skills.

In the next chapter, we will learn about how decisions are made, and we will improve
our calculator program by teaching it how to let a user choose which operation to
perform as well as how many operands (numbers) to enter. We are going to get into
things that are a bit more complicated, but we will go through them step by step so
that you can understand each piece of what we are doing.

[43]

Making Decisions – Python
Control Flows

Congratulations! In Chapter 3, Calculate This!, you wrote a calculator program.
If you followed the instructions and corrected your errors, then you have a program
that runs all of the mathematical functions with two numbers. While this is great
for a first program, that sort of a limited calculator doesn't give a user much choice.
When the user runs the calculator, the program will not end until all five functions
have run or until the program ends due to an error.

What if, instead of doing the entire math, we could program our calculator to
perform certain operations based on the way the users answer our questions? As
programmers, we can use Python to interpret user data and change the way the
program operates. In this chapter, you will learn how to use control flows so that our
calculator program can make choices and only run the code that the user chooses.

At the end of this chapter, you will have a calculator program that can choose which
mathematical operations to perform based on what the user wants to do. You will be
able to customize this program on the basis of how you use the control flows.

Making Decisions – Python Control Flows

[44]

Is it equal, not equal, or something else?
Before you learn about conditional statements, you need to realize that computers
make decisions based on comparison operators. These help us compare two things
so that the computer can make a decision about what to do next. Here is a list of
operators:

Comparison Operators
Less than <
Less than or equal to <=
Greater than >
Greater than or equal to >=
Equal to ==
Not equal to !=

Each of these operators allows us to compare two values. The most confusing operator
is the equal to operator because it uses two equals signs. The reason for this is that
when we set a variable, we use one equal sign. We do not want the computer to get
confused when we are comparing two values, so we use two equals signs. When we
use the comparison operators with if, elif, and else, our program can be written to
make better decisions.

To take a look at how these operators work in real life, open up your Python shell
and type the following lines of code:

1 < 1

1 <= 1

1 > 1

1 >= 1

1 == 1

1 != 1

After each line of code, the words True or False will print. Take a look at the
following screenshot for answers to how the statements evaluate using the number
1. Experiment with other numbers to take a look at what happens and to learn about
the operators and what they do:

Chapter 4

[45]

Conditional statements – if, elif, else
There are three language constructs that are used frequently in Python to control the
outcome of a program. These constructs are if, elif, and else:

• The if statement tells the program that if the user does this, then execute this
part of the program.

• The else statement is used to catch anything that the user does and is not
in the program. For example, you can use if and else together: if the user
chooses add, do addition, else do another action.

The elif stands for else if, which means that if the first thing does not
happen, then do the next thing in the list of possibilities until the user choice
matches the possibility.

• elif is used when you want to give the program more than two choices. You
can use elif as many times as you like.

• else is a signal of the end of the possible choices to your computer program.
The else means that if none of the other things have taken place in your program,
OR if the user has done something unexpected, then end this block of code. else
statements are always at the end of a block of code that begins with if.

In the next section, you can take a look at how if, elif, and else are used. Then,
you will experiment with your calculator code, and add some of these statements to
make your calculator more flexible.

Making Decisions – Python Control Flows

[46]

Getting better input
In order for if, elif, and else to work, we will need to get better user input. For
this to happen, we need to ask better questions! You will see in each example of if,
elif, and else that we will be adding more raw_input() statements to get further
information from the user. Then, we will put that information to work using the if,
elif, and else statements so that our calculator program is more responsive to the
user's needs.

To practice asking better questions, let's open our Python shell and practice writing
the following code:

raw_input('add, subtract, multiply, divide, or modulo?')

So, we are now asking the user to choose what operation they want to execute by
typing the name of the operation as the answer to the question. When our program
runs, it will ask the user this question. How will our program know what to do with
the answer?

if
The if statement tells the program to do something special if the user makes a
choice. To better understand this, let's use this sample question and ask the user
what operation they would like the calculator to do:

For the purposes of practicing, let's imagine that our user types addition as their
answer. Right now, our program does not know or care that the user wants to do
addition. Our program has no way to do anything with that answer! We need to use
the if statement to tell our program what to do.

So, we will now create a special function, and we will tell the computer what to do
with this new information from the user. To do this, we will use our text editor to
add new code and our command prompt to run the code once we have saved the
code. As a reminder, the working directory of your command prompt should be set
to your project's folder.

Chapter 4

[47]

You can refer to Chapter 1, Welcome! Let's Get Started, in case you've
forgotten how to find your working directory.

Once you have opened your calculator program in your text editor, add this function
to the program:

def calc_run():

 op = raw_input('add, subtract, multiply, divide, or modulo?')

 if op == 'add':

 addition()

Then, call your new calc_run() function by adding this line to the end of your
program file:

calc_run()

Now, you will erase the calls you made to your addition, subtraction, multiplication,
and division functions throughout the program because we do not need them all the
time. We want them to happen only when the user makes the choice.

In the calc_run() function that we are creating now, we tell the calculator to ask a
question. Once the user answers the question, the computer will check whether the
answer is equal to addition. If it is, then the computer will run the addition function.

elif
The elif statement lets us give the user many choices, which is much more logical for
a user who might want to choose from the addition, subtraction, multiplication, and
division functions. Using elif allows us to give the user the choice between many
operations. There is no limit to how many times you can write the elif statement.

If you wanted to create a response to 100 different kinds of information, you could
write 100 elif statements. However, this is really tedious, so we won't do it. You can
take a look at some of the changes made in the following code, which will show how
you can use elif to give the user choices for each mathematical operation:

def calc_run():
 op = raw_input('add, subtract, multiply, divide, or modulo? ')
 if op == 'add':
 addition()
 elif op == 'subtract':
 subtraction()
 elif op == 'multiply':

Making Decisions – Python Control Flows

[48]

 multiplication()
 elif op == 'divide':
 division()
 elif op == 'modulo':
 modulo()

You will notice that we used four elif statements. Each elif matched the response
that we wanted. Now, we will test our program. Hopefully, you have saved your
work in your text editor. Always remember to save as often as you can!

Try running your program by following these steps:

1. Open your command prompt or terminal.
2. Navigate to your project folder.
3. Type python first_calc.py.

Chapter 4

[49]

else
else is a way to manage all the other things that a user might do that we cannot
predict. When the user enters something to trigger else, we can return a message to
them, or we can even end the program. Your program does not NEED to use an else
statement; however, it is nice to make the choices that you want for your users, and
make them as clear as possible. In the following example, we will print a message to
the user if they do NOT choose add, subtract, multiply, divide, or modulo:

def calc_run():
 op = raw_input('add, subtract, multiply, divide, or modulo? ')
 if op == 'add':
 addition()
 elif op == 'subtract':
 subtraction()
 elif op == 'multiply':
 multiplication()
 elif op == 'divide':
 division()
 elif op == 'modulo':
 modulo()
 else:
 print('Thank you. Goodbye')

Making Decisions – Python Control Flows

[50]

Now, when you run the code, if you type an answer that is not addition, subtraction,
multiplication, or division, your program should print Thank you. Goodbye. Test
your program to check whether your else statement works!

Loops
Loops are a kind of control flow, but they rerun the same block of code over and
over again until something else tells the loop to stop repeating itself. This is a bit
different from conditional statements since these only run the block of code once.
The two kinds of loop are while and for. Both types of loop are really useful.

while
while is one kind of loop. When we make a while loop, the program repeats itself
until a given block of code happens. When programming a while loop, we need to
create some rules, or our program will run forever.

For example, we can make this rule: when the calculator is on, perform the
following steps:

1. Run the calculator.
2. Prompt the user to keep calculating.
3. When the user hits the else statement, turn the calculator off.

Let's go through each of the code changes step by step; you will need these changes
in order to make the while loop work.

Global variables and the quit() function
We will create a global variable to use in our quit() function. Using the variable
in this way will allow us to let the quit () function act like an off switch, thus
stopping our calc_run() function from running. In the next section, we will write
our global variable, and then we will create our quit() function.

Chapter 4

[51]

First, we will make a global variable called calc_on. This is one way for us to make
an on button for our computer calculator. This global variable should be typed at the
top of the code file with the NO indentation:

calc_on = 1

Global variables can be used in any function we want throughout the program.
If you want to use a global variable in a function, you can type global next to the
name of the variable inside of the function. You will be shown an example of this
later on.

Now that we have an on button global variable that can be used anywhere in our
code, we will create the pieces needed for our while loop. We need to add a way
for our program to keep repeating itself so that the user can keep doing calculations
without restarting the program for each calculation. Also, we need to add a way for
the user to quit the program. We are going to work backward and make the quit()
function first:

def quit():

 global calc_on

 calc_on = 0

We just wrote the code for our quit() function. The first line uses our calc_on
global variable. The second line changes the value of calc_on to 0. By changing
the value from 1 to 0, we are telling the program to turn the calculator off and stop
running the code.

Using the quit() function
In our code, we are going to change our else statement so that it runs the quit()
function instead of printing a message. Take a look at this code sample to understand
the changes we make to else:

def calc_run():

 op = raw_input('add, subtract, multiply, divide, or modulo? ')

 if op == 'add':

 addition()

 elif op == 'subtract':

 subtraction()

 elif op == 'multiply':

 multiplication()

 elif op == 'divide':

 division()

Making Decisions – Python Control Flows

[52]

 elif op == 'modulo':

 modulo()

 else:

 quit()

Now that we have made the on button, calc_on, the off button, and quit(), we can
add the quit choice to our program. In the line of code where we get information
from the user, we will add the word quit as a choice:

op = raw_input('add, subtract, multiply, divide, modulo, quit?')

Using the while loop to control the program
Quitting is one choice that the user can make by simply typing quit. However, we
want to allow the user to keep the program running if they wish to. To do this, we
will use a while loop. At the bottom of the code, we will simply write this:

while calc_on == 1:

 calc_run()

The while loop is says that while the on button is on, run the calc_run() function.
If someone does something to change calc_on to a value that is not 1, then stop running
the calc_run() program.

Hopefully, you noticed that our quit() function changes the value of calc_on to
0, which means that our program stops running. while loops are very useful for
running run parts of a program, and they can use simple variables to start or stop
the loops, which is similar to what we did with this calculator:

Chapter 4

[53]

for
The for loop is another kind of loop. We will use the for loop to make a bonus
function for our calculator. The biggest difference between for and while is that the
for loop is used when a programmer knows exactly how many times they need the
loop to repeat. In the while loop, we do not know when the user will be done with
the calculator. The user might want to make one calculation or they might want to
make 10, and a while loop is flexible. A for loop is more rigid.

Why not just use while all the time, then? Well, there are times when we know just
what it will take to get a job done, and we do not want the program to keep going
any more after the job is done. The for loop is perfect for saying how many times to
repeat a loop. For example, let's say that you have a list of numbers, and you want
to print all the numbers in the list. Let's say that you want to print the numbers 1
through 10. If you had to write them out individually, it would look like this:

 print(1)

 print(2)

 print(3)

 print(4)

 print(5)

 print(6)

 print(7)

 print(8)

 print(9)

 print(10)

Making Decisions – Python Control Flows

[54]

This is a lot of lines of code, and they are all doing the same thing! What a waste of
space, and what a waste of time to type this all out. Instead of typing the preceding
code, type the code in the following for loop:

 for n in range(1, 11):

 print(n)

First, you see that we typed n in range(1, 11). This means every number between 1
and 11, not including 11.

You will also notice that we called a function named range(), which is a built-in
Python function that allows us to specify a range of numbers instead of writing them
all out. The range() function does NOT include the last number, so you can see that
the second number is 11, instead of 10.

You can experiment with these numbers in the range by expanding it to range
(1, 1000). What happens now? This is a basic for loop, but we will find that
using this for loop is very helpful when we want to repeat code for lists of numbers,
letters, words, or objects.

Chapter 4

[55]

Bonus – count_to_ten() function
To make our calculator a little more interesting, let's create a count function that
will print the numbers from 1 to 10. We can then add this function to our list of
choices. First, think about how we used the preceding for loop. Then, copy the
count_to_ten() function between the modulo() function and the quit() function
into your first_calc.py program:

 def count_to_ten()

 for number in range(1, 11):

 print(number)

Add the choice ten to your op variable, like this:

 op = raw_input('add, subtract, multiply, divide, modulo, ten, or
quit?')

Finally, add elif for ten to your control flow of if/elif/else:

 elif op == 'ten':

 count_to_ten()

This will print out the choice for your users, and then, when they type ten, the
calculator will print out all of the numbers from 1 to 10. This screenshot shows how
the code works:

Making Decisions – Python Control Flows

[56]

A quick task for you
In this chapter, you learned a lot about how to write programs that can make
decisions. Here are some questions to answer:

Q1. How many times can the elif statement appear in the if/elif/else flow?

1. Only once
2. Twice
3. As many times as it is needed
4. Ten

Q2. Which statement starts a conditional block of code that is used to make decisions?

1. else
2. if
3. elif
4. while

Q3. Which statement is only used at the end of a conditional block of code?

1. else
2. if
3. elif
4. while

Q4. What is a global variable?

1. A variable that is only used in one function
2. A variable that can be shared with many functions
3. A variable that uses global before its name if it is inside a function
4. Both 2 and 3

Q5. What is a while loop?

1. A loop that runs code only once
2. A loop that runs code a set number of times
3. A loop that repeats code until something different happens, and then it stops
4. A loop that does nothing

Chapter 4

[57]

Summary
In this chapter, you learned many new concepts. You learned about comparison
operators, the symbols that allow us to compare two items. You also learned about
if, elif, and else, which are three conditional words that let us tell our program
how to make different decisions based on the information that a user enters. You
learned about the for and while loops; both are very important in making programs
that give feedback. You also learned a bit about how to use global variables, which
can be shared with all the functions in a code file.

Hopefully, you are keeping up with everything we've talked about so far! It may feel
a little overwhelming, but we will continue to review the concepts we learned in this
chapter by building some new projects in the next chapter.

[59]

Loops and Logic
In the previous chapter, you learned how to use logic, such as if, elif, and else,
to help design programs that could respond to user input in many ways. Also, you
learned how to use the while and for loops. In this chapter, we will build our first
mini game, called Higher or Lower. The game is a number guessing game, and we will
use it to combine logic and loops to make a game that responds to many user requests.

Remember to save your work frequently so that you
can make corrections to your code!

Higher or Lower
Higher or Lower is a numbers guessing game. In this game, the computer chooses a
random number, and the user tries to guess what number the computer has chosen.
There are many different ways to build this game, and many versions of this game
have been built by different people.

Our version of the game will have two levels:

• An easy level
• A hard level

The computer will first choose a random, secret number between 1 and 100. In the
easy level, the user will get unlimited chances to guess the correct number. In the
hard level, the user will only get three chances to guess the correct number, and then
they will lose the game.

Loops and Logic

[60]

This game can be coded in different ways and still work well—this is one of the most
awesome things about writing code. However, we will focus on writing code that
uses a while loop for the easy version and a for loop for the hard version. This will
let us practice our loops and build a game that has different levels of challenge.

To be successful in this chapter, follow each section step by step, and make sure
that you understand what is happening before moving on to the next section. Test
your code by running your program when you are instructed in the text so that you
learn how things work. At the end of this chapter, you will have your first fully
functioning game!

Game file set up
When you start to think about a small game such as Higher or Lower, you can write
some of your code like an outline for a book, that is, you can use comments to place
all of the logic in your code, even if you are not certain how exactly the code works.
In our file, we need to set up code for the easy version and hard version, a function
to start the game, and a function to end the game.

To start planning the game, you need to keep your coding tools ready:

• Open up your Notepad++ (Windows) or jEdit (Mac/Linux) to write the code
• Open up your command prompt (Windows) or terminal (Mac/Linux),

and navigate to your project folder
• Open up your Python shell so that you can test code while you are working

In your text editor, make a new file, and save it with the name higher_lower.py.

Then, write comments for the easy version. Single line comments in the Python code
start with a pound sign or hashtag:

this is a comment

Write the following comments in your file, leaving some spaces between each
comment line, and then save your work:

imported libraries go here

global variables go here

function for easy version

Chapter 5

[61]

function for hard version

function to start game

function to stop game

function calls go here

Take a look at the following screenshot of what this will look like in your text editor:

Importing libraries
For this Higher or Lower game, we will import the random library. This library has
functions that we will use to choose a random number to start each game. Starting
with a random number each time means that the game experience will be new for
the player because they need to guess a different number each time they play. To
import a Python library, we use the import statement and the name of the library.
In your code file, replace # imported libraries go here and comment with
the following:

import random

Importing the random library allows us access to many functions that create random
numbers and strings in different ways. There are even ways to create secure strings
and numbers that would work well if you have to write a password-making program!

Loops and Logic

[62]

Setting and initializing global variables
Now that we have imported the library that we need, we will set our global
variables. As a reminder, a global variable is a variable that can be used anywhere
throughout the code file. Global variables are helpful, as we saw with our calculator,
because we can use them to define the status or state of a program and change the
state of the program in different functions.

For example, in our calculator, we had a global variable called calc_on. In this
Higher or Lower game, we will have a few global variables that we set. Replace
global variables go here and comment with these lines:

game_on = None

guesses = None

secret = None

The game_on variable keeps running the program. The guesses variable states how
many guesses users will get. The secret variable is the number that the computer
chooses at random, and it changes every time the game restarts.

These global variables are different than the ones we used for the previous chapter,
though. These global variables are set to equal None. Why? Well, setting the global
variables equal to none simply allows them to be reset from None or zero each time
that they are called in the program. You will take a look at the places where we call
global variables into a function, and then reset the value.

What is a Boolean?
We are going to be using the words True and False to help run our game programs
in both the easy and difficult versions of the game. In computer programming, in
most languages, these words have a special name: Boolean. What is a Boolean?

A Boolean can only have two values: true or false. Booleans are helpful when there
are only these two possibilities for a variable. For example, a game can be on or off.
We have a global variable called game_on. If this variable is set to True, it means that
our game is running. If it is set to False, it means that our game has stopped.

In Chapter 4, Making Decisions – Python Control Flows, you learned about how the
comparison of two statements can print out the True or False statements. In this
chapter, we are going to use the True and False conditions to control whether our
program is running or not.

Chapter 5

[63]

Building the easy version
Now that we have set up our global variables and imported our library, we can work
on the logic needed to make the easy version of our game. This block of code tells the
computer what to do if the user decides to play the easy version of the game.

First, we need to name and define the function:
 def difficulty_level_easy():

It is good to name your function so that you remember what it does. After naming
the function, the first thing we need is the information from our global variables.
We will set the global variables in this function for the secret variable. We bring in
these variables as the first two lines in the function, and we have to type global in
front of the names of the variable:

 def difficulty_level_easy():

 global secret

 secret = int(random.randrange(0,100))

We have reset the secret global variable from None to an integer between 0 and 99
using int (random.randrange(0,100)). This means that when the game starts, a
number between 0 and 99 will be selected as the secret number that the user must
guess. Now, we need to create what people call the win condition. In other words,
we need to program what winning and losing means. Let's think this through.

Can you talk through what it means to win the game and lose it?
Can you draw a diagram? Try it yourself before copying the code!

Hopefully, you attempted to figure out how the game will work before you looked
at this section of the book. Solving difficult problems is a key part of building games,
and problem solving is a skill that is developed with practice. So, we will now write
the code that decides whether the player wins or loses.

The win condition in the easy version of the game is that the user guesses the correct
number in as many guesses as they need. To keep our game running, we are going
to use a while loop, which we learned about in Chapter 4, Making Decisions – Python
Control Flows. while loops are helpful when we are running a loop but we do not
know how many times we need the loop to run. Our while loop will run as long as
game_on = True. For the easy game, we are going to assume that game_on is True.
We will write the function for game_on later:

 def difficulty_level_easy():

 secret = float(random.randrange(0,100))

 while game_on:

Loops and Logic

[64]

We have written the code to set a number and run the game. Now, we need to
put some commands into the while loop so that it knows what to do. The first thing
that we want the user to do is make a guess at the number, so we need to use the
raw_input() function to get information from the user. We will add this input line
to our function:

 def difficulty_level_easy():

 secret = float(random.randrange(0,100))

 while game_on:

 guess = int(input('Guess a number. '))

Look at the last line of code that we added. The variable guess is set equal to the user's
input. We are using int() to turn the user input from a string into a number because
the game is generating random numbers, NOT random strings. We want to compare
numbers to numbers. In fact, we HAVE to compare numbers to numbers. The program
will not work if you do not add int() around the raw_input() function. Make sure
you understand what the last line of code means before moving forward.

Also, you may notice that there is an extra space after the period in the raw input
statement: guess = int(input('Guess a number. ')). Adding a space after the
period and before the end of the string will tell the computer to print an extra space
so that it will be easier for the user to read their code. See the following screenshots
that show the difference the space makes.

Here is the code with no extra space:

Notice that the output is easier to read when we add an extra space after the period:

Compare numbers
Our next lines of code involve decision making. We have to tell the computer what to
do if the user gets the number too high or too low. We also have to tell the computer
what to do when the user wins. To tell the computer what to do, we can perform
three steps:

Chapter 5

[65]

1. Compare the user guess to the secret computer number.
2. Output instructions to the user based on whether they guessed too high,

too low, or just right.
3. To compare numbers, we will use the comparison operators that we learned

about in Chapter 4, Making Decisions – Python Control Flows. We will need
three operators: greater than (>), less than (<), and equal to (==).

Because there are three possible choices, we need to use if, elif, and else to tell the
computer what possible things can happen.

First, let's explain the logic using words. Then, we can convert this into code. It is
good to learn to think through these problems before you start coding. This helps
you know what outcome to expect:

• if the user's number is less than the secret computer number, print Your
guess is too low

• Or else (elif), if the user's number is higher than the secret computer
number, print Your guess is too high

• Or else, if the user's number is the same as the secret computer number,
then we print You win!

Can you draw, write, or imagine how this code will work before
looking at the next section?

Now that you have thought about the logic of the next section, here is what the code
looks like once it is added to the function:

 def difficulty_level_easy():

 global secret

 global gameOn

 while gameOn == 'true':

 guess = float(input('Guess a number. '))

 if guess > secret:

 print('your guess is too high. Try again.')

 elif guess < secret:

 print('your guess is too low. Try again.')

 elif guess == secret:

 print('You win!')

 play_again()

Loops and Logic

[66]

We have seven new lines of code that we are adding for each possibility that the user
can enter:

• If the user guess is too high, the user must enter another number, and the while
loop returns to run the code again

• If the user guess is too low, then the user must enter another number, and the
while loop returns to run the code again

Since this is the easy version, the while loop will run until the
user finally guesses the correct number no matter how many
incorrect guesses the user makes.

• When the user guess is the same as the computer number, then the program prints
You win! and calls a function called play_again()

play_again()
There is a function called play_again() that we added to the end of the
difficulty_level_easy() function. We are calling one function inside of another,
which we have done earlier. However, we have to make this play_again() function
because it doesn't exist yet.

The play_again() function will ask the users whether they want to play the game
again and then make a decision about running the program. When the while loop
finally runs the play_again() function, it ends the loop of code in the difficulty_
level_easy() function and goes on to run its own code. In the next section of the
chapter, we will create the functions needed to start, stop, and play again:

Chapter 5

[67]

Start, stop, play again
So, if you are here, it is because you built the easy version of the game, and you want
to test it out, play it, and see whether it actually works. If you try running the code
right now, one of two things will happen: if it is perfect, then nothing will happen.
If you have a problem in your code, you will get an error message. Either way, you
cannot run the program with the code as it is right now because your program has
no way to start itself!

Let's build some helper functions that will start our code and allow us to play the
game again. We will write two helper functions: start_game() and play_again().
We can end the loop and change the game_on Boolean to False at the end of the
start_game() and play_again() functions.

start_game()
In your higher_lower.py file, where you wrote the # function to start game
comment, write this instead:

 def start_game():

We have defined the function that will start our game. The next step is to invoke
(use) our game_on global variable, and then set the variable to True. This tells the
function that the game is in the on state:

 def start_game():

 global game_on

 game_on = True

Once we tell the computer to start, we need the user to tell the computer what they
want to do. Using the raw_input() function, we are ready to get information from
our player. We will make a variable called level. That variable will take input from
the user. We will give the user three choices: easy, hard, or quit. Add the following
lines of code in your file, and make sure to save your work:

 def start_game():

 global game_on

 game_on = True level = input('Welcome. Type easy, hard, or quit
.')

Loops and Logic

[68]

Now that we have information from the user stored in the level variable, we can
use it to inform the comparison operators, and we can use the if/elif logic to make
a decision about what to do in our program.

Here are some examples:

• If the user types easy, then the computer will run the difficulty_level_
easy() function

• Or else (elif), if the user types hard, then the computer will run the hard
version of the game (difficulty_level_hard() function)

• Or else (elif), if the user decides to quit, then we will stop the program from
running by changing the Boolean of game_on to equal False

Adding logic for the computer to start the correct game based on the user choice will
take six new lines of code:

 def start_game():

 global game_on

 level = input('Welcome. Type easy, hard, or quit. ')

 if level == 'easy':

 difficulty_level_easy()

 elif level == 'hard':

 difficulty_level_hard()

 elif level == 'quit':

 game_on = False

An important thing to notice about the last line of code is that we changed the
game_on global variable to False, causing the program to end. Also, notice how our
start_game() function calls the other functions inside of it. So, the difficulty_
level_easy() function that we made starts to run when someone types easy.

play_again()
The last helper function is the play_again() function. This function, which we used
at the end of the difficulty_level_easy() function, allows the user to make a
choice of whether to play again or not. By now, you are probably starting to see a
pattern with regard to what we do with information from raw_input in order to
help the computer make choices. We use if, elif, and else to compare the user's
choice to a set of choices that we have programmed. Then, we program the result of
the choice to be what we want.

Chapter 5

[69]

For the play_again() function, the user will be asked whether they would like to
play again. We will prompt the user to type Yes or No:

 def play_again():

 global game_on

 game_on = True

 play = input('Play again? Yes or No. ')

With our program, we are only accepting two user choices so that we can use if and
else to explain what should happen. If the user types Yes, then the start_game()
function will run and our program will continue. If the user types No, then the
game_on variable will be set to False and the program will stop. So, we will add
four more lines of code:

def play_again():

 global gameOn

 play = input('Play again? Yes or No.')

 if play == 'Yes':

 start_game()

 else:

 gameOn = 'false'

Play testing
Once you have made the play_again() function, you only need to add one more
line of code to test the easy version of your game! The last line of your code file will
be calling the start_game() function. Add this code to the bottom of your game file:

 start_game()

Once the start_game() line is added, you will be able to test the easy version of
your game. Now is a good point to stop, save, and test. Play the game many times
to make sure you fully understand how it works. Ask others to play it as well.

Loops and Logic

[70]

You might decide to change some of the input questions to add humor to make them
funny or get different results. It is up to you to test your code changes and to make
sure they work!

Save your work and test your code! Go to your terminal and navigate
to your project folder.

When you type the following code line, your code should begin to run inside of your
command prompt or terminal. To test the code, make sure you answer easy so that
you can run the version of the code that you have made:

 python higher_lower.py

Chapter 5

[71]

Building the hard version
The hard version of the game uses exactly the same win conditions as the easy version
of the game. There is only one difference.

The hard version only allows the player to make three guesses before it resets the game!
Therefore, we can use a for loop to define that we only want the program to run
three times if the player does not guess the correct number.

First, we will define the function for the hard version of the game:

 def difficulty_level_hard():

Next, we will add our global variables. In the hard version of the game, we need to
use the global variable guesses, which we will set to three for this program:

 def difficulty_level_hard():

 global guesses

 guesses = 3

Loops and Logic

[72]

Now, we need to create the logic. Here, we will use a for loop so that our loop only
runs the number of times that we wish it to run. So, we will add a line of code that
says i in range (guesses), which means that for every number in the range of
numbers of guesses, run our code.

First, let's add this line of code, and then we will go over each part:

 def difficulty_level_hard():

 global guesses

 guesses = 3

 for i in range(guesses):

The letter i is used to mean one single number. The word range is used to tell the
computer to go over the total number of guesses, which we set to 3.

Next, we will write the code to get user input, compare the user number to the secret
computer number, and use the if/elif logic to print output messages to the user
and run the loop again.

Before you copy the code of the for loop into your program, figure out if you can
write, draw, or explain how the for loop will work differently than the while loop
did. If you can understand the differences, you will learn a lot more about how your
for loop works.

Comparing numbers – the hard version
What exactly is the logic when using a for loop instead of a while loop? As we
noted earlier, the for loop is more defined to run a specific number of times.
So, with our for i in range(guesses), we are really saying this:

• For the first guess, do this thing
• For the second guess, do this thing
• For the third guess, if the player is still incorrect, stop the for loop, print the

message, and run the play_again() function

Chapter 5

[73]

Now that you have a better concept of the logic, let's add these lines of code to the
for loop in our difficulty_level_hard() function:

def difficulty_level_hard():

 global random

 global guesses

 for i in range(guesses):

 guess = float(input('Guess a number. '))

 if i == 2:

 print('Game over. Too many guesses.')

 play_again()

 elif guess > secret:

 print('your guess is too high. Try again.')

 elif guess < secret:

 print('your guess is too low. Try again.')

 elif guess == secret:

 print('You win!')

 play_again()

As you can see, in the first line of code beneath the for loop, we use a raw_input()
function that we assign to the variable guess to get information from the user. Then,
we make win conditions for the hard version of the game. In this case, if i (the number
of guesses) is equal to 2, then the game restarts. This is because the range function
we are using starts counting from zero, so the three computer numbers are 0, 1,
and 2. The first two lines of our for loop use a comparison operator (==) to check
whether the user has had too many guesses. If the user HAS tried too many times,
then the loop ends and the Game over. Too many guesses message is printed.

We have decided what happens if the user has too many guesses in the for loop.
Now, we will define what happens if a player is too high or too low in terms of their
guess. We use the same comparison operators of greater than (>), less than (<), and
equal to (==) that we used in the easy version, and we print a message if the user is
too high or too low.

Loops and Logic

[74]

Notice that we call the play_again() function twice. We offer the user the chance to
play_again() if they lose by guessing too many times or when they win. Losing and
winning are both times when the for loop will stop running, so we need to make
sure we have added the play_again() function after both of these conditions:

Play test the whole program!
Now you get to see exactly how you did! Go to your terminal and run your program
again by typing the following command:

 python higher_lower.py

First, make sure that the program works. If you get errors right away, double-check
your code to make sure it does not have any problems, such as:

• spacing or indents
• typos
• syntax (punctuation)

These are some common problems that people have with their programs. Usually,
you will get an error message called Trace or stacktrace that will tell you what line
in your code is causing the problem. Here is an example of what happens when the
user types the word three instead of the number 3:

Chapter 5

[75]

There are some things called test cases that you will want to try before letting other
people play your game. Good programmers need to think about how their program
works, and they also need to think about the things a user can do that might break the
program. The following are some tests you can run. Some might break your program:

• Does your game work in both the easy AND the hard version?
• What happens if you type quit?
• What happens if you enter a number higher than 99?
• What happens when you type the word three instead of the number 3?
• Can you force the program to print errors (there are ways to make your

program have errors, so be creative)? If so, notice your error messages,
and think about how to prevent errors.

There are some errors that you might not understand, and that is okay. You can
always perform an Internet search to look up the error message and check what
other people have learned about it.

Once you have tested the game and feel ready to share it, ask others to play it and
watch as they interact with your game. Ask yourself some questions while you
watch your user play:

• What was easy for the user to understand?
• What was hard for the user to understand?
• What errors did the user make?
• How could I change the game code to make the game better?

As a programmer, you will learn how to be a creative problem solver. If you see
something in this program that you want to rewrite, you should try it! Keep a
backup copy of your working code, and then start to experiment with some different
options. Some examples you can use are as follows:

• Make the range of the hard program larger so that it is more difficult for the
user to guess correctly (0, 1000)

• Add your own personal touch to each message
• Add a variable to take the username and print it

Loops and Logic

[76]

Each of the preceding examples are ways in which you can challenge yourself and
take the program further! Check your program against the following screenshot, and
figure out whether you can answer some quick questions about what you learned in
this chapter:

A quick task for you
Q1. What is a Boolean?

1. A statement that is either True or False
2. A statement with many possible outcomes
3. Used as a variable name
4. Used as a place

Chapter 5

[77]

Q2. Why are global variables helpful?

1. They are limited to what they can do
2. They can be used in any function in the file where they are set
3. They can be changed inside the function
4. Choice 2 and 3

Q3. for loops are similar to while loops. How is a for loop different from
a while loop?

1. for loops are used to loop a specified number of times
2. for loops are used only for text
3. for loops are used only for numbers
4. for loops can only work with dictionaries

Q4. What would be a good time to use a while loop in a game?

1. To run a game a specified number of times
2. To run a game forever
3. To keep a game going while a certain condition is true
4. To end the game

Q5. What symbol is used to write comments in the code that are not a part of
the code?

1. ?
2. *
3. ()
4. #

Summary
In this chapter, we learned how to build a game using loops and logic. The game,
Higher or Lower, has an easy version and a difficult version. Input from the player
is used by the game to make decisions about what code will run next.

In the next chapter, we will learn about how to work with some data, including how
to store and retrieve information. These skills will help us to learn how to do things
such as ask for player names, include player names in our games, and store scores
in the program. All of these skills are important to build a complete and interesting
game experience.

[79]

Working with Data – Lists
and Dictionaries

In the previous chapter, you learned how to write loops using detailed logic in order
to help you help your program to make decisions. So far, though, you have not yet
learned what to do with data. We have not created nor stored data. Yet, we know that
video games store data! Video games sometimes store the names of players as well
as the highest score that a player has achieved. How does one computer program
remember all of this information? In this chapter, you will learn about some ways
that Python can store and retrieve data, such as lists and dictionaries.

For the exercises and code in this chapter, your Python shell will be the best tool
to use so that you can type your lists and dictionaries and then check the outcome
of your coding. Otherwise, once your prompt is available, you can type lists and
dictionaries, your shell will remember the information that you enter, and then you
can test how to retrieve, add, and remove information.

If you shut down your Python shell at any time during this
chapter, all of your work will be lost. The Python shell does not
remember information between sessions, so lists and dictionaries
will not be saved.

Lists
Lists have many different uses when coding, and many different operations can be
performed on lists, thanks to Python. In this chapter, you will only learn about some
of the many uses of lists.

Working with Data – Lists and Dictionaries

[80]

If you wish to learn more about lists, the Python documentation is
very detailed and can be found at https://docs.python.org/3/
tutorial/datastructures.html?highlight=lists#more-on-
lists.

First, some facts about Python lists: Python lists are mutable. This means that the data
in a list can be changed around. Items can be added or removed using functions
that act directly on the list. Also, the items in a list can be mixed together. Numbers,
floats, and strings can all go together in the same list.

Parts of a list
Lists, like other kinds of data, are assigned to a variable. Then, the list items are
placed in []:

In your Python shell, type the following three lists, one on each line:

fruit = ['apple', 'banana', 'kiwi', 'dragonfruit']

years = [2012, 2013, 2014, 2015]

students_in_class = [30, 22, 28, 33]

https://docs.python.org/3/tutorial/datastructures.html?highlight=lists#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html?highlight=lists#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html?highlight=lists#more-on-lists

Chapter 6

[81]

Each of the lists you have typed has a particular kind of data inside it. The fruit list
contains strings, the years list contains integers, and the students_in_class list
also contains integers. However, one feature of lists is that they can mix up datatypes
within the same list. For example, I have made this list that combines strings and
integers:

computer_class = ['Cynthia', 78, 42, 'Raj', 98, 24, 35, 'Kadeem',
'Rachel']

Working with a list
Now that we have made the lists, we can work with the contents of the list in many
ways. In fact, once you create a list, the computer remembers the order of the list,
and the order stays constant until it is changed purposefully. The easiest way for us
to check whether the order of lists is maintained is to run tests on the fruit, years,
students_in_class, and computer_class lists that we have already made.

The first item of a Python list is always counted as 0 (zero). So, for our first test, let's
check whether asking for item 0 actually gives us the first item we entered in the list.
Using our fruit list, we will type the name of the list inside a print statement, and
then add square brackets [] with the number 0:

 print(fruit[0])

Your output should be apple since apple is the first fruit in the list we created earlier:

Working with Data – Lists and Dictionaries

[82]

Now, we have evidence that counting in Python does start with 0 and also that our
list is written correctly. Next, we can try to print the fourth item in the fruit list.
You will notice that we are entering 3 in our print command. This is because the
first item started at 0. Type this code into your Python shell:

 print(fruit[3])

What is your outcome? Did you expect dragonfruit to be the answer? If so, good,
you are learning to count items in lists. If not, remember that the first item in a list is
item 0. With practice, you will become better at counting items in short Python lists:

For extra practice, work with the other lists that we made earlier, and try printing
different items from these lists using this code sample:

Where the code says list_name, write the name of the list you want to use.
Where the code says item_number, write the number of the item you want
to print. Remember that lists begin counting at 0.

Chapter 6

[83]

Changing the list – adding and removing
information
Even though lists keep their order, they can be changed. Items can be added to a list,
removed from them, or changed in them. Again, there are many ways to interact
with lists. We will only discuss a few here, but you can always read the Python
documentation for more information.

Adding items to the list
To add an item to our fruit list, for example, we can use a method called list.
append(). To use this method, type the name of the list, a dot, the method name
append, and then parentheses with the item you would like to add inside. If the item
is a string, remember to use single quotes. Type the following code to add orange to
the list of fruits we have made:

 fruit.append('orange')

Then, print the list of fruit to check whether orange has been added to the list:

 print(fruit)

Working with Data – Lists and Dictionaries

[84]

Removing items from the list
Now, let's say that we no longer want dragonfruit to appear on our list. We will
use a method called list.remove(). To do this, we will type the name of our list, a
dot, the remove method name , and the name of the item that we wish to remove:

 fruit.remove('dragonfruit')

Then, print the list, confirm that dragonfruit has been removed:

 print(fruit)

If you have more than one of the same item in the list, list.remove() will only
remove the first instance of that item. The other items with the same name need
to be removed separately.

Lists and loops
Lists and for loops work very well together. With lists, we can do something called
an iteration. By itself, the word iteration means repeating a process. We know that
for loops repeat things for a limited and specific number of times. So, we can use
for loops to iterate over lists of items.

Chapter 6

[85]

In this sample, we have three colors in our list. Make this list in your Python shell:

colors = ['green', 'yellow', 'red']

Using our list, we may decide that for each color in the list, we want to print the
statement I see and add each color in our list. By using the for loop with the colors
list, we can type the print statement once and three sentences will be returned. Type
the following for loop in your Python shell:

 for color in colors:

 print('I see ' + color + '.')

You will notice that, in the second line of code, we add the strings together using the
plus sign operator (+). The first string, I see, starts each sentence. The second string,
color, comes from the variable that we made when we wrote the for loop. The third
string is a period (.) to end the sentence. Once you are done typing the print line
and you press Enter twice, your for loop will start running, and you should see the
following statements printed in your Python shell:

 I see green.

 I see yellow.

 I see red.

Notice that the sentences print the colors in the order that they appear in the list.
Order is preserved in lists:

Working with Data – Lists and Dictionaries

[86]

As you can imagine, lists and for loops are very powerful when used together.
Instead of having to type the line three times with three different pieces of code,
we only had to type two lines of code.

Our for loop, with only those two lines of code, would work if there were twenty
colors or even two hundred colors in the list. We will explore the power of using lists
more in the next chapter and mini-game.

Dictionaries
Dictionaries are a different way to organize data. At first glance, a dictionary may
look just like a list. However, dictionaries have different jobs, rules, and different
syntax than lists.

Parts of a dictionary like lists, dictionaries have different parts that need to be used
to make them work—names, use curly braces to store information. For example, if
we wanted to make a dictionary called numbers, we would put the dictionary entries
inside curly braces. Here is a simple example to type into your Python shell:

numbers = {'one': 1, 'two': 2, 'three': 3}

Key/value pairs in dictionaries
As you can see in the previous screenshot, the dictionary stores information with
things called keys and values. In a dictionary of items, for example, we might have
keys that tell us the names of each item and values that tell us how many of each
item we have in our inventory. Once we store these items in our dictionary, we can
add or remove new items (keys), add new amounts (values), or change the amounts
of existing items. If you have ever used a contact list in your e-mail or a smartphone,
you might recognize that it matches a key (the person's name) with a value (their
e-mail ID or phone number). Keys and values do not always have to be in the form
of strings and integers, but for our next example, we will use a dictionary to store all
the items that a video game hero might have on a quest.

Chapter 6

[87]

The following is an example of a dictionary that can hold some information for a
game. Let's suppose that the hero in our game has some items that are needed to
survive. Here is a dictionary of our hero's items; type this dictionary of items into
your Python shell:

items = {'arrows' : 200, 'rocks' : 25, 'food' : 15, 'lives' : 2}

Now we have a dictionary that gives us information about the items that our hero
has. Unlike a list, a dictionary does not keep items in the order that they were
entered. You can see this by printing out a small dictionary a few times and noticing
the results. To print a dictionary, we type print, and then we place the name of the
dictionary in the print statement:

print(items)

You will notice that the output of the code results in the dictionary being printed in a
different order from how you entered it. There is a possibility that it might print the
same order, but it is more likely to print differently than how you entered it. Take a
look at this screenshot for an example:

So, our dictionary has keys such as arrows, rocks, food, and lives. Each of the
numbers that is stored as a value tells us the number of items that our hero has.
To find out the value of a key, we use a print statement that contains the items
dictionary name with the arrows key . Notice that the arrows key is placed in square
brackets. The syntax is important. Type the following code in your Python shell to
return the value of arrows:

print(items['arrows'])

Working with Data – Lists and Dictionaries

[88]

The result of this print statement should output 200 as this is the number of arrows
our hero has in their inventory:

Changing the dictionary – adding and
removing information
Python has several ways of interacting with dictionary data. There are many
functions that we can use. For now, we will focus on those functions that allow
us to add and remove things from our dictionaries.

To learn about all the dictionary methods, visit http://www.
tutorialspoint.com/python/python_dictionary.htm.

Adding items to the dictionary
Consider a situation where, in our game, we allow the player to discover and collect
fireballs later in the game. To add an item to the dictionary, we will use what is
called the subscript method to add a new key and new value to our dictionary.

To create a subscript, we will use the name of the dictionary. Then, in square
brackets, we write the name of the item (key) that we wish to add. The item is a
string type, so it needs to be in single quotes. Finally, we will set the value to how
many of the item (key) that we want to put into our dictionary. To add fireballs to
your dictionary, copy the following code in your Python shell:

 items['fireball'] = 10

http://www.tutorialspoint.com/python/python_dictionary.htm
http://www.tutorialspoint.com/python/python_dictionary.htm

Chapter 6

[89]

If we print the entire dictionary of items, you will see that the fireball has been
added. Type this code in your Python shell:

 print(items)

Your outcome should include the fireball as one of the items. Remember,
however, that your code may not be in the same order as the code in this book
because dictionaries do not remember orders:

Changing the value of an existing item
We can also change the value of the keys in our dictionary. Suppose, for example,
that our hero is collecting rocks in the game and then loses the rocks because they
use them to build a rock wall. How would our game keep track of each rock added
to or removed from the game inventory?

The dict.update() method allows us to alter the values of keys in the dictionary.
For our dictionary, we will be changing the value of rocks as our hero collects or uses
the rocks. To use dict.update(), we replace dict with the name of our dictionary,
which is items. Then, in (), we use {} to type the name of the item whose value we
wish to update.

Working with Data – Lists and Dictionaries

[90]

We use a colon (:) and then write the new number of items that we want to see in the
dictionary. Try this in your Python shell:

 items.update({'rocks':10})

 print(items)

You will notice that if you have performed the print(items) function, you will now
have 10 rocks instead of 25. We have now successfully updated our number of items.

Removing items from the dictionary
To remove something from a dictionary, you must reference the key or the name of
the item, and then delete the item. By doing so, the value that goes with the item will
also be removed since the key and value are paired.

In Python, the del statement can be used to remove a key/value pair from the
dictionary. This means using del along with the name of the dictionary and the
name of the item (key) that you wish to remove.

Let's use the items dictionary as our example. We will use the del statement, the
name of the items dictionary, and the name of the lives key that's placed inside of
the square brackets. Hence, we can use a print statement to test and check whether
the lives key was removed along with the value of lives, which is 2:

 del items['lives']

 print(items)

Chapter 6

[91]

If your del statement worked, the lives key is no longer in the dictionary and
neither is the number of lives, which was 2. This is similar to taking a word out
of a printed dictionary. If you removed the word, you would need to remove the
definition as well. The items list will now look like this:

With dictionaries, information is stored and retrieved differently than in lists, but we
can still perform the same operations of adding and removing information as well as
making changes to the information.

List or dictionary
You have learned about two great Python data structures, lists and dictionaries.
Now, we need to know when to use these tools. While both tools store information,
they do so in very different ways. Let's compare these two structures so that we can
better understand how each structure can be used.

Lists are good to use when we want to keep track of items and need to remember
the order of those items. We use a lot of lists in everyday life that meet these criteria.

Some examples of lists are as follows:

• A grocery list with different food items
• A list of song titles in an MP3 player
• A list of fiction book titles that are available in a library
• A list of items that are available for purchase on a website

Each of these things has an order as a desirable characteristic, and items can be
added or removed from the lists. If we wanted to write a short program in Python
to keep track of our fiction book titles or find songs in an MP3 playlist, a list might
be a good place to start.

Working with Data – Lists and Dictionaries

[92]

Lists can be used with loops to do a lot of powerful things. Some of these include
making lists that create themselves using loops (yes, really) or making lists from lots
of user input. Lists are slower to search because they're automatically searched from
the beginning.

A dictionary is more useful when data does not need order but needs to be paired
with something else. For example, perhaps you own fiction and nonfiction books,
and you want to write a program that stores the title, author, and the genre. Using a
dictionary would be better for this task so that you can quickly figure out the author
of a book based on its title or for all the fiction books that you own. You can also
interact with your dictionary to make changes. Also, dictionaries can be searched
very quickly because they do not need to be searched from the beginning.

An example of a dictionary that is used in programming is a Thesaurus.
This is a dictionary of lists.

A quick task for you
Now that you are familiar with lists and dictionaries, here is a quick task for you to
review your knowledge.

Q1. What is the proper syntax to use when creating a dictionary?

1. ()
2. { }
3. " "
4. []

Q2. What kinds of data can be included in one list?

1. Strings only
2. Floats only
3. Integers and floats
4. All datatypes can be included a list

Q3. What is the proper syntax to use when creating a list?
1. ()
2. { }
3. " "
4. []

Chapter 6

[93]

Summary
In this chapter, you learned how to create your own lists and dictionaries. You also
tried to perform some basic operations with lists and dictionaries, including how to
add and remove data. Finally, you learned the syntax differences between lists and
dictionaries as well as the optimal uses of lists and dictionaries.

In the next chapter, we are going to move forward and make a game called What's
in my backpack? This game will be a simple, two-player game that will ask both users
to put some objects into a backpack and then allow each user to guess what is in the
other user's backpack.

We will write code to add items to a list, keep track of usernames, items, and scores
in a list and dictionary, and then use a for loop to keep track of the game. There are
a lot of moving parts in our next game, and it will be a lot of fun to make something
that has two players! Are you ready? Let's go!

[95]

What's in Your Backpack?
In Chapter 6, Working with Data – Lists and Dictionaries, we explored how to store,
retrieve, and change data using lists and dictionaries in Python. In this chapter,
we will build a two player game called What's in Your Backpack? This game will
require us to review all of the skills we have learned since the beginning of this
book. We use our skills to make loops, ask for information from the user with the
raw_input() function, and then store this information in lists or dictionaries.

Be prepared to also learn some new skills that might seem complicated. We will try
something called nesting or putting one thing inside another. With nesting lists and
dictionaries, we have more flexible data storage. Using this new nesting skill with the
other skills we have learned, we will create a game that can be played by two users
or adjusted to be played by many users.

Setting up our coding environment
This chapter will have the largest amount of code that we have written. Since we are
going to do a lot of coding, it is important to have our tools ready so that we can test
run our code frequently and save often.

Testing and saving the code as you go along allows you to try new
things and correct any mistakes!

To work on this game, it is recommended that you have your Python shell open so
that you can test out small lines of code before putting them into your text editor.

What's in Your Backpack?

[96]

Also, you will need to open your text editor (JEdit in Mac/Linux or Notepad++ in
Windows), and make a new file called backpack.py. Finally, you will need to open
your command prompt so that you can run the backpack.py program to test it out
while you are writing the game. Hopefully, you are feeling more at ease with the
different tools that are used to create a computer program. If you do not recall how
to open the Python shell or command prompt, refer to Chapter 1, Welcome! Let's
Get Started.

If you have questions or want to know more about the Python shell, command
prompt, or text editor that you are using on your computer, perform an Internet
search and learn more about the tools.

To learn about the tools, documentation, and the advanced
techniques used in this book, you can refer to the following links:
http://www.jedit.org/

https://notepad-plus-plus.org/

https://docs.python.org/3.5/library/idle.html

http://www.macworld.co.uk/feature/mac-software/get-
more-out-of-os-x-terminal-3608274/

http://windows.microsoft.com/en-US/windows-vista/
Open-a-Command-Prompt-window

Planning to program your game
Before we dive right into programming, we need to think critically about what we
are building and plan a bit ahead of time; this helps us figure out what programming
skills we need to use in order to make our program work.

So, let's imagine this game with each player having their own virtual backpack:

• Each player enters their name, and then places four items in their backpack.
• Then, each player gets a chance to guess what is in the other player's

backpack.
• If the player guesses correctly, a message is printed, and one point is added

to the score.
• If the player guesses incorrectly, a different message is printed, and no points

are added to the score.

http://www.jedit.org/
https://notepad-plus-plus.org/
https://docs.python.org/3.5/library/idle.html
http://www.macworld.co.uk/feature/mac-software/get-more-out-of-os-x-terminal-3608274/
http://www.macworld.co.uk/feature/mac-software/get-more-out-of-os-x-terminal-3608274/
http://windows.microsoft.com/en-US/windows-vista/Open-a-Command-Prompt-window
http://windows.microsoft.com/en-US/windows-vista/Open-a-Command-Prompt-window

Chapter 7

[97]

• Finally, a message asks the players whether they would like to play the
game again.

• If they type yes, the whole process takes place again. If they type no, then the
scores of each player are printed and the entire game stops.

Already, we have many things to do. Each of the points mentioned is a task that
needs to be solved using our coding skills. Before reading the code sample ahead,
ask yourself how you would try to solve each problem. Maybe make some drawings,
or type an outline of each thing that the program needs to do to succeed. Then, save
those ideas as you go through this chapter and write your backpack game. You
might try some of your ideas, and check whether your ideas work! If so, that is great.
You will discover that there is not one proper way to program. Some ways are better
than others, but it is never wrong to try something out.

Skills needed to make a program
Now, we will review our list of elements needed to make a successful game, and we
will brainstorm the solutions to program each element. Taking time now to figure
out how we want to solve the problem helps us create a program that works well
once the pieces are put together.

Each player enters their name, and then places four items in their backpack. In order
to get the player names into the computer, we will need to make a variable to hold
the name of each player. We will use raw_input() to get the items and store the
items in the computer:

What's in Your Backpack?

[98]

Each player gets a chance to guess what is in the other player's backpack.

Remember our game Higher or Lower? This function will be like higher and lower.
We will compare the first player's guesses to the items in the second player's
backpack. We will need to use raw_input to do prompt the guesses. Then, we will
need some if/elif/else logic to compare the guesses and give the user output.
The output will be printed to the screen using print.

If the player guesses correctly, a message is printed, and one point is added to
the score.

If the player guesses incorrectly, a different message is printed, and no points are
added to the score.

Score, play again, or quit?
When a player wins or uses up all of their guesses, we will use the if/elif/else
logic to output a message that asks the players whether they would like to play the
game again.

If player types yes, the game runs again.

If a player types no, then the scores of each player are printed and the game
stops running.

Getting and storing player information
Our first task is to figure out how we are going to get and store information from
those who play our game. There are a few steps we need to take, including asking
the player for their name, and then storing the player's name. We will also perform
some code in the background to store information about the player that we have not
yet asked for. This is a sneaky bit of coding that is quite fun and will let you expand
your game if you want to. Let's walk through each step.

Making a players list
The first thing that we will do is make an empty list to store information about each
player. We are going to name the list players, but we are not going to put anything
in our list yet. Why not? Well, our players might be different in each game, and
they will have different information too, so we need to allow our game to store this
information as our players enter it into the computer. Here is what the players list
looks like:

players = []

Chapter 7

[99]

Now that we have made this list, we can add players to this list. Recall that we will
also make a profile to store information about the players. In fact, the profile will be
stored in some tiny dictionaries that we make inside the lists!

New skill! Putting one item inside another item. This is called nesting. Next, we will
learn how to nest a dictionary inside of a list.

Player profiles
In this next step, we are going to make a dictionary for each player. The dictionary
that we make will have placeholders for the player name, the player's backpack
items, and the player's score:

What's in Your Backpack?

[100]

Imagine that all of the information in the dictionary is a player profile. The player
profile will be filled in by information that we get from the player's interactions with
our game. The code in the following screenshot is what the completed code for our
players will look like:

Before you write any code, let's read and break down the code. The first two lines are
comments to remind us of what we are doing, and line 5 is where we make an empty
list. The code in line 7, which is the first line of code that the computer cares about,
allows us to do the following:

• Set the number of players with the range() function: Since counting in Python
starts at zero, and the range() function does not include the last number, we
are creating profiles for player 0 and player 1 (refer to Chapter 6, Working
with Data – Lists and Dictionaries, where we spent time printing and counting
lists, to refresh your memory about how lists items are counted).

• The for loop to make profile for each player: For player 0 and player 1,
we will make a player profile with information.

• The player.append() function: This adds an information type to each
player profile. In this case, name is string, score is int, and backpack is an
empty list.

The backpack dictionary key is special because it is a list that will store all of the
backpack items inside of the profile. It allows the user to have many items stored in
the same place:

Chapter 7

[101]

Player profiles – how do they work?
Now, let's think about all the information in a player profile. We have a list called
players. Inside the players list, we have a dictionary for each player. The dictionary
is where the player profile information is stored. Inside the dictionary for each player,
we have made room for an item list. The item list is called backpack, and its job is to
remember all the list items in the player profile. Try to imagine the profile like a tree
that has more leaves as it breaks away from the trunk and branch:

What's in Your Backpack?

[102]

The name for what we have done is called nesting. Nesting is when we put one
thing inside something else. Here, we have nested one datatype (a dictionary) inside
another datatype (players list).

Save your code if you have not done so already!

Add players to profile
So, we have set up a data structure, called the player profile, as a way to store the
information about each player. Now, we need to write the code that will prompt the
players to enter their information into our program. We will use the raw_input()
function to get information from the players and store this information in the user
profile. Our request for user information will continue inside the for loop.

First, read through the code from lines 15-20 in this screenshot:

In line 15 of this code, you will notice our raw_input() command, which asks the
player to enter their name. Did you notice that the name dictionary key is used? Did
you notice that before the name key, players[i] is used? This means that the answer
to the Enter your name prompt will be stored in the dictionary under the name
key. A player profile will be created, and it will be waiting for information about the
backpack items and the game score.

Chapter 7

[103]

The player number is being set by i. The lowercase i represents one player. So, line
15 asks us for the name of player i. How does it know what number to choose?
Where is i getting that information? If you go back up to the for loop, you will
notice for i in range(2). This means for the first player of two players, do all the
things in the loop. When line 15 runs the for loop the first time, it asks for input
from player 1; when the for loop runs the second time, it asks for input from
player 2. A for loop with a range(2) only runs twice, so after getting and storing
input from player 2, the for loop stops looping.

Adding items to the virtual backpack
Now that we have added the player's name, we want to add four items to the
player's virtual backpack. The virtual backpack is really a list inside the dictionary.
We will store the list of each player's items in their virtual backpack, which is inside
each player's profile. Asking a player to answer the same question multiple times
presents a new programming challenge. How will we limit our program to ask for
only four items? How will we add each item to the backpack of the correct player?

Limiting items in a virtual backpack
To make sure that we only add four items to each virtual backpack, we are using
another for loop (inside our first for loop). The inside loop says for item in
range(4). This means for each item out of four items, do all the things in the loop.
In our backpack loop, this means that we will enter items 0, 1, 2, and 3 into the
backpack using the raw_input() function.

In the players[i]backpack dictionary, we append (add) items to the list inside of
the backpack by using append(backpack_item). Because we want four items, our
for loop runs four times after asking for the name and items of the player. When this
backpack_item code finishes running, the entire player loop will begin again, asking
for the name and items for the second player. In this process, we get the information
we need to fill out the player profiles that are stored in the dictionaries of player 1
and player 2:

What's in Your Backpack?

[104]

To review, when you run your code, you should expect to see the following:

1. Create a name and profile of player 1—Enter name for player 1.
2. Ask player 1 to put items in their backpack—Enter 4 items to put

into your backpack.
3. Player enters four items.
4. Create a name and profile of player 2—Enter name for player 2.
5. Ask player 2 to put items in their backpack—Enter 4 items to put

into your backpack.

Testing your code so far
You have now written all of the data storage elements of the game. Save your code
again if you have not done so already, and test what you have written.

First, do a visual test of your backpack.py code file. Make sure that your code
is indented properly. Look for syntax errors such as misplaced quotes, periods,
square brackets, curly braces, and parentheses. Make sure that everything is spelled
correctly. Save after each mistake that you fix.

Next, use your command prompt (Windows) or terminal (Mac/Linux) to test your
code by running your program. When you run your program, you should expect to
be asked to enter the name of player 1, enter four items, enter the name of player 2,
and enter four more items:

Chapter 7

[105]

If you want to make sure that the backpack items you enter are being properly
stored, you can use the test code from line 20 in the screenshot. Just uncomment
(erase the hashtag in front of) the code in line 20, and then run the code again. Use
the print statement from line 20 to check what the computer is storing. Sometimes,
the computer reads things differently than we think it will, so it is good to have a
print statement to double-check your work:

If you have a mistake, you will get an error message. Usually, the error message will
have a message that tells you where the problem is in the code. Look at your error
messages if you do something incorrectly, and use these messages to figure out what
is going wrong. When you correct an error, you can make a note or even make a
comment in your code so that you recall how you fixed the problem.

A game loop
We have planned and coded how to get information from players. Now, we need to
code a game loop. What is a game loop? The game loop keeps the game running by
starting the game using user actions to update the state of the game, if necessary,
and continuing to operate until the game is ended, stopping the loop.

Our game loop lets us start the game, use stored information from the players to
make changes to the game state, and print outputs so that we know whether the
guess was correct or incorrect or what the score is at the end of the game. Our game
loop also shuts off if conditions change to stop the game. We have already used a
game loop in our Higher or Lower game, and this game loop will be similar.
Using the game loop, we can write the code to complete our game.

What's in Your Backpack?

[106]

Bringing back the while loop
So, you may remember using the while loop back in Chapters 4, Making Decisions:
Python Control Flows, and Chapter 5, Loops and Logic. We will be using the while loop
again to set up the game loop. There is quite a lot happening in the game loop (the
while loop), so let's take a look at it step by step. First, look at this screenshot of all of
the code inside the game loop:

The first thing that you see is the comment telling anybody who reads the code what
the code is doing. Comments are not required, but sometimes they can be helpful
when you are writing a program. This comment simply tells us that the next section
is the game loop.

The game loop starts with the game_on variable. The game_loop variable is set to
equal True (remember, True is a Boolean). The next line says while game_on:; this
means that since the while loop is True, keep running the while loop until something
happens to make it False (untrue). Since while game_on: is True, the game will keep
running using the information that we gathered when the game started. The game
will end only when game_on = False.

Inside our game loop is another for loop. When one loop is inside another loop, they
are nested. You might notice that this for loop is almost the same as the for loop in
line 7. This code runs for i in range(2), which means that for each player in the two
players, do all the things in the loop.

In this for loop, from line 26 to line 36, the main part of the game takes place.
The things in this for loop include the following:

• Ask the first player to guess an item from the second player's backpack
• Print if the first player is correct or incorrect
• Add points to the first player's score if correct

Chapter 7

[107]

• Switch to the second player
• Ask the second player to guess an item from first player's backpack
• Print if the second player is correct or incorrect
• Add points to the second player's score if correct
• Ask the players if they want to play again
• If YES to play again, restart the loop and redo all actions

The preceding list has all of the events that take place inside of the for loop, which
starts in line 25 of the code. We will break down the code that makes this happen in
the next section of the chapter.

Comparing guesses with backpack items
In the math chapter, we learned about something called modulo. Now, it is coming
back. In the backpack game, we compare the items in one player's backpack to the
guess of another player. Then, the players switch places! How will the computer
keep track of which backpack to look at and what player should be chosen? We can
use modulo to help us always choose the correct player in the two-player version of
this game.

Here is the line of code that uses modulo (line 27):

other_player = players[(i+1) % 2]

This line of code uses modulo to identify the opposite player by looking for the
player in the players list we made in line 5. Here is the basic idea:

• Erin (player 1) = 0 and Tanvir (player 2) = 1.
• Whoever is playing needs to compare their answer to the backpack of the

other player.
• To get the backpack of the other player, we tell the computer Hey, we need the

backpack of the player who is NOT guessing right now. We do this with math.
• Erin needs to use Tanvir's backpack to make guesses. Remember that

Tanvir = 1.
 ° (0 + 1) % 2 = 1.
 ° This formula says (Erin + 1) modulo 2 = Tanvir's backpack.
 ° As you can see, this math formula is equal to 1, so it is asking for

Tanvir's backpack.
 ° Erin WANTS to guess what is in Tanvir's backpack, so this is correct.

What's in Your Backpack?

[108]

• Tanvir needs to guess what is in Erin's backpack. Remember, Erin = 0.
 ° (1 + 1) % 2 = 0.
 ° This formula says (Tanvir + 1) modulo 2 = Erin's backpack.
 ° As you can see, this formula is equal to 0, so it is asking for

Erin's backpack.
 ° Tanvir WANTS to guess what is in Erin's backpack, so this is correct.

Using the formula, we choose the player profile from the players list. You know
we are using a list because we use the name players, which we defined in line 5 of
the program, and we use square brackets, [], to say which list item we want to use.
Inside the square brackets, we put a math formula that is equal to one of the items in
our list.

Keeping score
To keep score in the game, the following line of code is used:

players[i]["score"] += 1

You will notice a new symbol, +=. The += symbol is a shortcut that lets us take a
value (score), add an amount to this value (we are adding 1 point), and then make
the value of score equal to the new value.

This line of code says that if the first player makes a match to an item in the second
player backpack, then the new score for the first player is score += 1. You will
remember that in the beginning of the game, we set each player to have a score of
zero in the dictionary. Now, we are updating that score to be score += 1. Each time
the first player scores, score will be updated by 1, and the computer will remember
the new score.

Ending the game
Once we are tired of playing the game, we can answer the question Do you
want to play again? Type YES or NO: with NO. Once we do this, you will notice that
game_on = False appears in the code to stop the while loop. As soon as the loop
stops, the last line of code is executed:

Chapter 7

[109]

This line of code prints out the scores of each player only AFTER the game loop is
completed. This line of code is outside of the for loop and the game loop. If you
only ran the game once, the highest score could only be one. However, if you ran
the game five or ten times, then your high scores could be as high as five or ten,
depending on how many items each player guessed correctly.

Testing your game
Now, the moment of truth! First, look at each line of code. Check for indentation
errors and syntax errors. Once you have proofread your code, save your work.
When you are ready, run your code and play the game against yourself to see
whether your code works. Run your code using your command prompt (Windows)
or your terminal (Mac/Linux).

The expected behavior is that each player will get one chance to guess the contents
of the other player's backpack. Then, you will be asked whether you would like to
continue. If you press yes, the guessing will start again. If you press no, then the
scores will print and the game will stop:

• If your game is working the way you expect it to, you can show it to someone
else and see how it works for them

• Print out different messages for correct or incorrect guesses
• Make an ending message, such as Thanks for playing

These are just a few of many ways that you can change the game. By playing with
the code, you can learn more about how it behaves, and gain a greater understanding
of why and how things work. You are encouraged to play the game many times, by
yourself and with others, to get ideas about how you might change your code to alter
the game as well as understand each line of code thoroughly.

A quick task for you
Q1. What is nesting?

1. When birds build a home
2. When one item is inside another item
3. When a game loop is used
4. When a dictionary is used

What's in Your Backpack?

[110]

Q2. What does the list called players organize in this game?

1. It organizes a scores
2. It organizes player names
3. It organizes all the items belonging to each player
4. It organizes a backpack

Q3. What kind of item is inside the players list?

1. Any item that the player wants
2. A string
3. An integer
4. A dictionary

Q4. What is a game loop?

1. A loop that keeps going forever
2. A loop that holds the logic of the game
3. A loop that keeps the game running
4. 2 and 3

Summary
This chapter has been a lot of work. We reviewed almost every skill that we learned
so far! We used logic in our if/else statements. We used Booleans, such as True
and False, to change our game state. We ran for loops to control how many times
certain events too place, and we ran a while loop as our game loop. Finally, we used
lists and dictionaries to store customized information and to allow for information,
such as the player score, to be changed during the game. We learned a new skill in
this chapter: nesting. Our backpack game used nested lists and dictionaries. We also
used nested loops, such as our while loop, with the for loop inside.

This chapter used one of many ways to make this game. Our purpose was to use
all of the tools we have in our Python toolbox. There are many different ways to
make a backpack game. Some might be simpler, others might be more complicated.
Something to explore before you go on is to try and make a variation of this game
before you go on. You can use this code as a starting point, and use Internet searches
and other books by Packt Publishing to help sharpen your Python skills.

Chapter 7

[111]

In the next chapter, we are going to learn about making graphics using Python.
We will learn some features of the graphics library that we can apply to develop
our final game. Some of the features that we will learn include how to make a game
screen, draw shapes, and move things around. We will even learn how to make one
object bounce off another (hint: it's an illusion!). The next chapter will also require
some software installation, which may require you to have password access to
your computer.

[113]

pygame
In the previous chapter, we got to use every skill we learned in the book to create
a simple, two-player guessing game. In this chapter, you will learn about pygame
modules and how they work to make game creation possible using Python.

What is pygame?
As stated on the most current pygame website, http://www.pygame.org/hifi.
html, pygame is a set of Python modules designed for writing games. pygame, like Python,
is free and open source, meaning that it can be used for free and shared with others.
The developers of pygame have made sure that it is compatible with several different
graphics display engines, so this means that the games developed using pygame
could be played in a variety of environments. Installing pygame is a careful process,
and you may need the help of your parents or another adult since there are a few
steps. We will discuss the installation for Windows, Mac, and Linux in the next
section of the chapter.

http://www.pygame.org/hifi.html
http://www.pygame.org/hifi.html

pygame

[114]

pygame is quite popular, and the website is undergoing revisions at the time of
writing this. Sometimes, you will see an older part of the site, while other times,
you will see a new part of the site. New parts of the pygame website look like this:

Chapter 8

[115]

Meanwhile, older parts of the pygame website have a green background, as follows:

You can always use the search bar on either part of the website to locate information
that you need.

Once you've installed pygame, you will learn about the features of pygame that
will be the most useful for our final project, in Chapter 9, Tiny Tennis. Since this is
our first game using visuals, we will not use all of the features offered by pygame
in our first project. We will use most of the basic features that are required to make
an interactive, two-player game. However, once you feel ready, you are encouraged
to look at the pygame website (http://www.pygame.org/hifi.html), the pygame
documentation (available in your installation of pygame as well as on the website),
and the more advanced pygame book published by Packt Publishing, Instant Pygame
for Python Game Development How-to, Ivan Idris, to gain a better understanding of the
more complex tools that pygame offers.

Installing pygame
pygame is installed a little differently on each operating system. The next section of
this chapter contains the instructions to install pygame on Windows, Mac, Linux,
and Raspberry Pi systems. You can skip to the section that has instructions on how
to install pygame on your operating system, and if you are not 100% sure of what
you are doing, go ahead and get some help for this section. Remember that you will
need an Internet connection to install pygame, and some parts of the installation
may take time.

http://www.pygame.org/hifi.html

pygame

[116]

Installing pygame – Windows
To install pygame on Windows, you will need to go to http://www.pygame.org/
hifi.html. If you do not know where the Windows version of pygame is, type
download in the search bar and go to the Downloads page. You should see a screen
with this information:

At the bottom of that screenshot, you will find the instructions for most Windows
computers. Follow these instructions:

1. Visit the pygame website.
2. Download this version of pygame: pygame-1.9.2a0.win32-py2.7.msi.
3. Go to your Downloads folder.
4. Double-click on the pygame-1.9.2a0.win32-py2.7.msi file.

http://www.pygame.org/hifi.html
http://www.pygame.org/hifi.html

Chapter 8

[117]

5. Choose Run:

6. Choose install Python from registry option:

7. Allow the installation to complete.

Finally, everything should be in place. To test whether the installation worked,
open your Python shell, and type this:

import pygame

If you have no error message, then your installation worked! Congratulations!
If it did not work, review your steps, and don't be afraid to ask for some help.

pygame

[118]

Installing pygame – Mac
We need to do some preparatory steps to make pygame work before we actually
install it on Mac. pygame requires a few dependencies or other programs to work
on a Mac:

• Xcode (free, available on the App Store)
• XQuartz (free, open source)
• Homebrew (free, open source)
• An Internet connection

You may also want to get an adult to help you with the installation, especially if you
are not 100% comfortable with the terminal. There are some brief instructions on the
pygame Mac Wiki, located at http://pygame.org/wiki/macintosh.

Installing Xcode
To start, open your terminal. Go to the directory where you first installed Python
(refer to Chapter 1, Welcome! Let's Get Started, if you have forgotten how to get to
your home directory). Once you are in your Python directory, you will install Xcode.
Xcode is a developer tool that has a lot of power, far beyond what we will do in
this book. If you are curious about Xcode, you can find the documentation at
https://developer.apple.com/xcode/.

For now, we will install Xcode by typing this into the terminal/command prompt:

xcode-select --install

If your computer already has Xcode installed, you will get an error message that says
it is already installed. If not, then Xcode will begin installing. Once Xcode is installed,
you can move on to the next step. Be patient, as Xcode takes some time to install. To
test whether the install worked, try entering the install command again. You will see
that it is already installed:

http://pygame.org/wiki/macintosh
https://developer.apple.com/xcode/

Chapter 8

[119]

Installing Homebrew
The next step is installing a package management system called Homebrew. This
sounds complicated, but all it means is that you are going to be able to get cool stuff
much more easily. Python has something called pip, and this installs Python packages.
We are going to install another system called homebrew. Homebrew is used to manage
many packages of different kinds, and it can also be used to troubleshoot.

Here is how to install homebrew using the curl command:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install

The preceding code should be typed in one command. The text will wrap on its own
if it needs more room in your terminal. Once you type that command, the homebrew
installation will begin. Homebrew asks you questions and gives good installation
suggestions along every step, so pay attention and it should work well. For more
information, you can go to the homebrew website for instructions:

brew.sh

Installing programs with homebrew
Once homebrew is installed, you can use it to install the rest of the dependencies
needed to install pygame. We need to have access to Mercurial and Git. Both of these
are version control systems, so every time code is changed, they keep track:

 brew install mercurial

 brew install git

 brew install sdl sdl_image sdl_mixer sdl_ttf portmidi

These packages will take a few minutes to install, and that's okay. Once they have
completed installing, then you will finally be able to install pygame. The command
to install pygame uses something called sudo at the beginning, and you will need to
know your computer's administrative password to use it.

If you do not know the password to your computer,
find a person who does.

sudo pip3 install hg+ http://bitbucket.org/pygame/pygame

Once this is installed, you should be ready to use pygame. Before we go any further,
let's test it out. Open a Python shell, and in the Python shell, type the following:

import pygame

pygame

[120]

If you notice import error: no module named pygame, on your screen, then
something has gone wrong with your installation. Check your installation, and don't
be afraid to ask for some help if you need to. If nothing happens when you hit Enter,
then the installation of pygame is correct!

Installing pygame – Ubuntu Linux
These installation instructions are for the newest version of Ubuntu Linux at the time
of writing this, which is version 15.04. First, you will want to install the pip package
manager, if it is not installed already:

sudo apt-get install python-pip

You will notice that sudo is used again, and this means that you will need
the administrative password for your computer. Next, we will use apt-get to
install pygame:

sudo apt-get install python-pygame

Now, to test and check whether pygame is installed correctly, you will open a Python
shell and type this command:

import pygame

If there is an error message, it means that something about your installation is not
correct. Reread the installation instructions and try again. Don't be afraid to ask for
help if you need to. If you have an empty line following the import pygame, it means
that everything is working and you are ready to move on to the next section!

Installing pygame – Raspberry Pi
If you are working with Raspberry Pi and using one of the operating systems for the
Pi, you are all set! Python and pygame are preinstalled on these systems. You can
learn the basic pygame functions and modules by reading the rest of this chapter.

pygame
To test the pygame functions, open your text editor, create a file called sample.py,
and save this file in your work folder. Once you have created this file, you are ready
to start learning pygame. To use pygame, we will import the pygame module in the
first line of our sample.py file:

import pygame

Chapter 8

[121]

Initializing pygame
Next, we need to take a look at the methods that we need in order to start our
instance of pygame. To start pygame, we need to initialize an instance of all the
pygame modules. We do this by calling the init() function:

pygame.init()

A pygame game loop is the same as the game loops that we used in previous projects.
In this chapter, it will be a while loop that uses while True in order to indicate that
the game loop should repeat itself over and over again until it is stopped:

Setting up the game screen – size
Once we have pygame set up and initialized, we will want to know how to make a
basic background screen. First, you will learn how to set the size of our screen. Then,
you will learn to set the background color. pygame has modules to do both, as well
as more advanced things, with the background.

For the tasks in this section, we will use the pygame.display and pygame.Surface
modules. Our first task is to set the display size. For this task, we will create a
screen_width and screen_height variable, and use the pygame.display.set_
mode() function. Write these three lines of code under pygame.init():

 screen_width = 400

 screen_height = 600

 pygame.display.set_mode((screen_width, screen_height))

This is the most basic way to set a display and pygame will be able to choose the
number of colors that are best for our system if we just use this basic setup.

Explore advanced background setting options at
https://www.pygame.org/docs/ref/display.
html#pygame.display.set_mode.

Compare your code with the code in the screenshot:

https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode
https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode

pygame

[122]

Setting up the game screen – color
First, we will create code so we can use colors throughout our game. In computer
programming, colors are represented by numbers. Every color is made up of three
numbers. Each number represents the saturation of red, green, and blue, in that order.
You can use numbers between 0 and 255. When all numbers are 0, game_screen will
be black. When all the choices are 255 (255, 255, 255), game_screen will be white,
(255, 0, 0) for red, (0, 255, 0) for green, and (0, 0, 255) for blue.

Rather than using numbers repeatedly in our code, we will make a global variable
for each color and use the name of the color instead. Let's add a list of global
variables to our code, starting from line five of our sample.py file:

 black = (0, 0, 0)

 white = (255, 255, 255)

 red = (255, 0, 0)

 green = (0, 255, 0)

 blue = (0, 0, 255)

For our next task, we will set our game surface color. In order to set the color,
we use the fill() function. There are a few ways in which we can set the color
of the background. We will make the game_screen = pygame.display.set_
mode((screen_width, screen_height)) variable. Then, we will use the variable
with the fill() function to set the screen color. Add the game_screen variable to
the code in line 14 of the sample.py file:

game_screen = pygame.display.set_mode((screen_width, screen_height))

Then, add the code to fill the screen color in line 15:

game_screen.fill(black)

Chapter 8

[123]

Making stationary objects
Now you will learn how to set stationary (still) items on the canvas. This is often
called drawing the objects. To know where to put the objects, we need to know about
grids and coordinates. If you have used grids such as an x axis and a y axis in math
class, it will be helpful as we will use the same. We will use the x and y coordinates
to set the location of each object on our grid.

In math class, the (0,0) coordinates are usually at the center of the grid. In pygame,
the (0,0) coordinates are at the top-left hand corner of the screen. As you move
from left to right along the x axis, the numbers become larger. So, for our screen that
is (400, 600), our x axis starts at 0 on the left and goes all the way up to 400, which
is our maximum screen width.

As you move from the top-left of the screen to the bottom-left of the screen along the
y axis, the numbers increase. So, our y axis starts at 0 on the top, and as we go to the
bottom of our screen, it goes to 600, which is our maximum screen height.

We need to know this to understand where objects will go when we draw them on
the screen. In order to draw a circle in the center of the screen, for example, the center
of the circle would need to fall at (200, 300). The code to draw this circle would be
as follows:

pygame.draw.circle(Surface, color, pos, radius)

You can see that there are many arguments that we need to define; let's have a look
at each:

• Surface would be game_screen, which identifies where to draw the circle.
• For color, we can use one of the global variables that we made for each

color. In this case, we can use green.

pygame

[124]

• The pos argument means the position where the center of the circle will be
located. Since it is (x, y), it will be two numbers in parentheses.

• The radius argument tells the computer the distance between the center
and the edge of the circle and it is used to determine the size.

Now that you know what each argument does, let's add a circle in line 18 of the
sample.py file:

pygame.draw.circle(game_screen, red, (250, 300), 20)

So, our preceding code will draw a red circle in the center of the main screen, which
is 40 pixels wide (20 pixels from the center of the circle to the outside), with a border,
which is 2 pixels wide. Then, the screen will update to show the circle.

We can draw a great number of shapes and objects using pygame, which is very
suitable for making games of all kinds. We can draw rectangles, polygons, circles, and
ellipses, as well as line segments of varying thicknesses and colors. The following is a
screenshot of a simple circle drawn from the code we wrote. You will be able to run it
as soon as we write the while loop:

Chapter 8

[125]

while loop – viewing the screen
It would be great if we could see the shapes that we are drawing, so let's add some
code that allows us to view our screen. We will make a while loop, and place all of
the actions, such as drawing and making the screen, inside of the while loop. First,
take a look at the screenshot of the while loop so that you can see what the finished
product looks like:

You will notice that we have created a while True loop in line 17. This uses the
True Boolean to keep all of the actions going while the loop is running. Add the
while loop to line 17 of the sample.py file:

while True:

Beneath the while loop, you have already written the code to draw the circle. Indent
it four spaces. On line 19, we will add the pygame.display.update() function:

pygame.display.update()

Now that the while loop is written, you should be able to run your code and see
your first visual screen! To test your code, open your terminal/command prompt,
and then run your code with the following command:

python sample.py

Making more shapes
Now that you know how to draw a circle, you are prepared to make other shapes.
We will review the code for some basic shapes. You can add the code for different
shapes to your while loop and make some great Python art to share with others.

Rectangle
To draw a rectangle, the basic function is pygame.draw.rect(Surface, color
(x, y, width, height)). The Surface argument is game_screen; the color can
be set to anything you like. The x and y variables will determine the placement of
the top-left corner of the rectangle. The width and height determine the size of
the rectangle in pixels. To add a rectangle to your code, copy this line into your
sample.py file on line 18:

pygame.draw.rect(game_screen, blue, (20, 20, 50, 80))

Place the code before the pygame.display.update() code. The pygame.display.
update() function should be the last line of code in your file for this exercise.

pygame

[126]

Ellipse
We can draw an ellipse by using the pygame.draw.ellipse(Surface, color,
(x, y, width, height)) function. You will notice that the ellipse function
accepts the same arguments as the rectangle function, except the ellipse will draw
a circle within the rectangle instead of filling up the whole rectangle. If you want to
add an ellipse to your code, copy the following line into line 19:

pygame.draw.ellipse(game_screen, white, (300, 200, 40, 80))

Save and try running your code to see the red circle, blue rectangle, and white ellipse
in the black background:

python sample.py

If you have written your code without error, you should expect to see something
like this:

Chapter 8

[127]

Experimenting with shapes
Now that you know how to make a circle, rectangle, and ellipse, you can start
experimenting with each of the arguments. Changing the radius, width, or height
of a shape will change the size. Changing the x axis, y axis, or both will change the
location of the shape on the screen. Here are some experiments to try:

• Change the radius of the circle
• Change the x and y coordinates of each shape
• Change the width and height of the rectangle and ellipse
• Change the color of each shape

More advanced shapes
There are some more advanced shapes that you can create with pygame, including
polygons with as many sides as you like. You can explore the different functions in
the pygame.draw module by visiting the pygame docs.

To know more about shapes in pygame, visit
https://www.pygame.org/docs/ref/draw.html.

Making moving objects
Now, video games worth playing have moving objects. Moving objects have a lot
more problems to solve than stationary objects. Here are some questions to ask
about moving objects:

• Where do you want the object to originate on the screen?
• How does the object move?
• How does the object know how fast to move?
• How does the object respond when it hits another object (collides)?
• How does the object respond when it hits the edge of the screen?
• How does the object know when to stop moving?

We create a moving object the same way that we create a stationary one—draw it on
the screen.

http:///h
http:///h

pygame

[128]

Moving objects with the keyboard
Let's suppose that we want to move our red circle around the screen. Something we
need to consider is that the objects do not actually move. Rather, the objects appear
to move. This is how you get an object to move:

• Draw an object
• Get the user's input from pressed keys
• Redraw the object based on user actions using pygame.display.update()

The pygame.key module contains methods to work with the keyboard. During the
game loop, we need to know whether the user is pressing a key to move the blue
rectangle. To figure out whether the user is pressing a key to move the rectangle,
we would use this line of code, for example:

pygame.key.get_pressed()

Now, if we want to control how the computer takes the input when a user presses
a key, we can use this line of code:

pygame.key.set_repeat()

This line tells the computer what to do when someone holds the key or presses it
repeatedly, which happens a lot in games. We would use these key functions to set
up some if/else logic about how our blue rectangles move when certain keys are
pressed. You will see this logic in the next chapter.

Now, there are a lot of keys on the keyboard. Before going on to the next chapter,
it is a good idea to review the documentation for pygame and learn how to select
your keys. For example, if you want to use the down arrow key, you would use
[pygame.K_DOWN] to identify that key, and then use other code to take a look at
what happens if the down key is being pressed.

The documentation for keys can be found at
https://www.pygame.org/docs/ref/key.html.

A quick task for you
Q1. How do you start pygame?

1. pygame.display.set_mode()

2. pygame.init()

https://www.pygame.org/docs/ref/key.html

Chapter 8

[129]

3. pygame.exit()

4. pygame.quit

Q2. How do objects move in pygame?

1. Objects move using speed
2. Objects move using gravity
3. Objects move using collision detection
4. Objects only appear to move, but they are actually constantly redrawn.

Q3. How is an object redrawn using pygame?

1. pygame.rerender()

2. pygame.display.object()

3. pygame.display.update()

4. pygame.rect()

Q4. What is the shorthand used to identify keys in pygame?

1. pygame.K_keyname
2. pygame.keyname
3. pygame.keys.K.name
4. pygame.key

Summary
In this chapter, you learned about the aspects of pygame that are needed to make
an interactive game. You started with finding and installing the software on your
operating system. Then, you learned to import and initialize pygame to interact with
the computer. You set the characteristics of your game screen, including size and
color. You added stationary objects to the game screen and learned some ways to
make changes to these objects. You got an explanation of code for moving objects,
which we will create in our final game.

In our next chapter, we will build a full-fledged game using all the skills that we
have built throughout this book. It is recommended that you through the book again,
and repeat any exercises that you do not fully understand. It is highly recommended
that you visit the pygame documentation as well and read as much as you are able to
understand. There are descriptions and examples of the methods used in this chapter
that will help you in the next chapter. Are you ready to put everything together?
Let's proceed to Chapter 9, Tiny Tennis.

[131]

Tiny Tennis
In the previous chapter, you learned about the basic modules, classes, and functions
in pygame. You learned about these functions so that you can build a new game
called Tiny Tennis. Tiny Tennis will be a two-player game that uses the keys on a
keyboard to control two paddles, which hit a ball back and forth. While this game
seems simple when you watch it, there are many different parts needed to make the
game playable.

Introduction to game programming
principles
There are many principles of game programming that apply to our project in this
chapter. First, remember that the movement of objects in space is an illusion that
we create. Unlike reality, objects that we create will appear to move because we will
regularly draw and then redraw the objects in different places.

Another principle that we have discussed is a game loop. The game loop is important
as it controls all of the things that need to happen in the game, including the moving
and redrawing of objects. The timing of the game loop is important as this will tell
the computer how many times to run the game loop. Each time a game loop runs is
also known as a frame, and the speed at which the game loop runs is known as the
frame rate.

Finally, considering how the player interacts with the game is an important part of
the game design. This means that we will consider how the player uses keys and has
their score stored in the program's memory and displayed somewhere on the screen.

Tiny Tennis

[132]

The game plan
Before we start to write any lines of code, we need to have our Python shell, terminal,
and text editor open. We will be switching back and forth between these tools as we
write and test lines of code throughout the chapter. Set up your monitor so that you
are comfortable switching between each window.

Once you set up your workspace, go to the text editor window. We are going to
outline our game in the text editor window using comments so that we can better
organize our work.

Creating an outline of game parts
We are going to work on this game in four sections. The sections of the game are
as follows:

• Section 1: imports, globals, and drawings
• Section 2: moving the paddles
• Section 3: moving the ball
• Section 4: draw screen and track the score

Create a file called tiny.py in your text editor. Then, type the following lines into
your tiny.py file:

imports, globals and drawing

moving the paddles

moving the ball

keeping score

Once you are done typing the preceding lines, save your file. This file now provides
a general outline of the work that needs to be done to create your game. Here is how
your file will look:

Chapter 9

[133]

We are following one particular approach to making this game of Tiny Tennis. It is
important to note that there are MANY possible ways to write this game code. The
way we are doing it here allows us to review all of the concepts that we learned
along the way in this book. At the end of this chapter as well as in the next chapter,
we will discuss some more advanced (and more streamlined) coding techniques that
you can use to make this game do more things and do them more efficiently. Right
now, though, let's start this game!

Section 1 – imports, globals, and
drawings
In this first section, we will write all of the code to set up the different parts of our
game. This includes importing libraries, defining all of our global variables, and
telling the computer how to draw the screen, ball, and paddles.

Importing libraries
The first lines of code we write will be used to import the necessary libraries into
the game, including pygame. We will be using three libraries in the game: pygame,
math, and random. pygame, as we discussed in the previous chapter, allows us to
have visual elements in our game. The random library, included with Python, gives
us the ability to select and use random numbers in our game. The math library, also
included with Python, allows for mathematics with floating point numbers. To use
these modules and libraries in your code, type the following lines into your tiny.py
file underneath the #imports, globals, and drawing comment:

import pygame

import random

import time

Make sure to save your tiny.py file now that you have added some
new lines. Be in the habit of saving your code as OFTEN as you can.

You can make comments in your code if it helps you to organize your thoughts. Now,
we will also initialize pygame so that we are able to use all of the capabilities, including
starting our screen, drawing graphics, and running our game loop. To initialize
pygame, we use the init() function. To initialize it, type these two lines of code
below your imports:

 # initialize pygame

 pygame.init()

Tiny Tennis

[134]

Using pygame.init() starts the pygame process, and the pygame process will keep
running until the program stops running when the player quits pygame. This allows
us to access everything inside of pygame throughout the game. You will see how
important this is as we continue to write our game. Right now, save your tiny.py
file again:

Introducing globals
Now that we have imported the libraries that we need, we will be making globals for
some parts of the game. As a reminder, globals, or global variables, are variables that
we can use throughout the entire file. We will set global variables for all of the colors
that we wish to use. We also set global variables for the screen, paddles, and ball.

Defining a color
First, we will make globals for each color. Colors, as we learned in Chapter 8, pygame,
are represented by three different numbers listed in parentheses, also called a tuple.
Instead of having to write these numbers repeatedly, we will make a global variable
for each color so that we can use the names of all of the colors throughout the game.

Depending on what colors you like, you might want to make global variables for all
the colors or only for a few. It is really up to you to decide what colors to add to your
code. Here is a list of common colors that you may wish to use in your game. You
should add the code for each color exactly as it appears here:

 red = (255, 0, 0)

 orange = (255, 127, 0)

 yellow = (255, 255, 0)

 green: (0, 255, 0)

 blue = (0, 0, 255)

 violet = (127, 0, 255)

 brown = (102, 51, 0)

 black = (0, 0, 0)

 white = (255, 255, 255)

Chapter 9

[135]

The preceding list shows the basic colors that you can include in your game code.
If you want to include more advanced colors, you can search for rgb color codes
chart in an Internet search engine, such as Google, and you will find that there are
different variations for each color that you can change to your liking, such as light
blue or dark blue. Once you have changed all the colors to your liking, make sure
that you save your work:

Adjusting the screen size
We will also use globals to define the parts of our screen display. This lets us show
the size, color, and text for the main screen. Here are the color globals; we will add
these lines of code for the width and height of the screen:

 # screen globals

 screen_width = 600

 screen_height = 400

Now that we have made the screen_width and screen_height variables, we
can use these variables throughout our code, which makes our code easier to read.
Also, if we do decide to change the screen width or screen height, we can change it
one at a time in this global variable, and all of our code will still run properly.

Tiny Tennis

[136]

Drawing the screen
So, the screen_width and screen_height variables are the basic information that
pygame needs so that it can set up the actual game screen. pygame has a function
called pygame.display.set_mode() that takes the variables of screen_width
and screen_height to make the screen display. Now, writing pygame.display.
set_mode ((screen_width, screen_height)) is really long, especially if we keep
doing it. Instead, we are going to set this to a global variable called game_screen:

 game_screen = pygame.display.set_mode((screen_width, screen_height))

Creating screen labels
The next set of functions that we use will set the text for the top of the screen and the
font for the game screen. The first line of code defines what string of text we want to
see, and in the following line, we define the font and size. If the font and the size are
not available, the font will, by default, use whatever is originally set on your system.
This is true for Windows, Mac, and Linux systems:

 pygame.display.set_caption("Tiny Tennis")

 font = pygame.font.SysFont("monospace", 75)

So, we have now set all of the basic variables needed to create a game screen.
Save your work and, when you are ready, move on to making the global variables
that we will need for the ball, paddles, and scoring. Your screen code should look
like this code sample:

Ball – the starting location
In Tiny Tennis, the ball is one of the most important parts of the game. We have a lot
to do to make it work. First, we need to give the ball some global characteristics so
that it can be drawn and redrawn to create the illusion of movement.

Chapter 9

[137]

First, we need to set the x, y coordinates of the ball. By making a global variable for
this, we can tell the computer where to redraw the ball without having to write special
code for each movement of the ball. We will set the default value of x and y so that the
ball starts in the center of the screen. Write the next lines into your tiny.py file:

 # ball globals

 ball_x = int(screen_width / 2)

 ball_y = int(screen_height / 2)

Ball – setting the speed and direction
Now that we have told the ball to start in the center of the screen as default, we need
to tell the ball how far to move by giving it x and y coordinates for movement:

 ball_xv = 3

 ball_yv = 3

The ball_xv = 3 means that the ball will move 3 pixels along the x axis each time it
is redrawn. The ball_yv = 3 means that the ball will move 3 pixels along the y axis
each time the screen redraws. This is great as it will help us keep the ball going in the
speed and direction that we like. Here, v = velocity which is the magnitude (speed)
and direction (x,y) of the ball. So, when we say ball_xv = 3, we are really saying
that the ball moves along the x axis at a speed of 3 pixels each time the screen is redrawn.

Ball – setting the size
The final thing that we will define about the ball is its radius. The radius is half of the
total width of the ball, as represented in pixels. By setting the radius, we set the size.
Write the following line of code into your tiny.py file to represent the ball radius:

 ball_r = 20

Now that we have defined the characteristics of the ball, make sure to save the file.
Nobody wants to rewrite lines of working code! Take a look at an example of this
section of code:

Tiny Tennis

[138]

Paddles – starting location and size
In our game, we will have two paddles. Recall that in the beginning of this chapter,
it was said that there is more than one way to do some of the things that we are
doing. There are more advanced ways to make the paddles, but it is important that
you understand each part of the paddle, so we are going to break our code down
very simply. Later, once you have completed this game, you can do some research
on creating objects and try creating paddles as objects.

We will give our paddle four qualities: a starting location on the x axis, a
starting location on the y axis, a width, and a height. Each of these numbers is a
representation in pixels. Below the ball globals, on line 34, add the next five lines
to your tiny.py file:

 # draw paddle 1

 paddle1_x = 10

 paddle1_y = 10

 paddle1_w = 25

 paddle1_h = 100

You probably noticed that the code we wrote is for paddle1. There are two paddles
required for Tiny Tennis. We want to give each player a fair start, so we will create
paddle2 so that it is equal in size, but it's located opposite paddle1. To make the
second paddle, start on line 40 and write the next five lines of code:

 # draw paddle 2

 paddle2_x = screen_width - 35

 paddle2_y = 10

 paddle2_w = 25

 paddle2_h = 100

Chapter 9

[139]

You will notice that the x coordinate for paddle 2 combines the screen_width
variable, which is the maximum x coordinate number (600) and then subtracts the
width of the paddle (25) + the x coordinate value of paddle 1 (10) as well. This math
allows us to make sure that the paddle is the same distance from the right-hand side
of the screen as it is from the left-hand side of the screen. If you are confused, copy
the code into your file and save it. You can play with the numbers and see how your
paddles change based on each value:

Initializing the score
In order to have a score, we are going to create a variable for each player that begins
at the default score, zero. As this is a global variable, like the other integers, it will
change as the game loop runs. For now, we just need to have placeholders for each
player. So, starting on line 46, add these lines of code to your game:

 # initialize score

 player1_score = 0

 player2_score = 0

Tiny Tennis

[140]

We have now created all of the global variables that we need to write code that is
easier to understand. Remember, these are called global variables because they can
be used throughout the entire code file. Save your file. Then, compare your code
with the completed code in this screenshot:

Testing section 1
Now that we have imported libraries, initialized pygame, and created globals for
colors, the screen, ball, and the paddles, we can run our first tests to check how things
are going. To test the game, you will need to locate the directory where you saved
your tiny.py file in your terminal/command prompt. In earlier games, we made this
directory on the desktop. Once you navigate to the directory where tiny.py is saved,
you can run the following commands from the terminal/command prompt to see
your game so far:

 python tiny.py

Chapter 9

[141]

When you run this command, you should see a window pop up and then close.
The window will not stay open because we have not written any of the code
that runs the game; however, if the code runs and there are NO ERRORS in your
terminal/command prompt, then you can keep moving forward with confidence.

If there are errors in your code, now is a good time to fix them. Some common errors
that can take place include syntax errors (using the wrong symbols), typos (spelling
something incorrectly, such as a Python keyword), or trying to run your file from
the wrong directory. If you have errors, check for these common errors, and fix the
mistakes in your code.

If you get an error that is not one of the aforementioned common errors, you can
always perform an Internet search to ask a question about the problem you are
having. It is very common for even experienced developers to use Internet searches
to find help to fix errors, and there are many websites and blogs that people maintain
in order to help others learn.

Section 2 – moving the paddles
Now we finally get to write the code that will make our paddles appear on the screen
and allow us to control the paddle.

This is where we get the chance to use the logic and loops that we learned about
in earlier chapters. In a game such as Tiny Tennis, many decisions are made very
quickly. Computers are great at making fast decisions based on our instructions.
Here are the parts of the code that will be in the next section:

• Creating the while loop
• Key events

We will code these next pieces step by step, and then test the code by running it to
check whether there are any errors. It is suggested that you read through this whole
section before you start coding so that you know what to expect. Once you have read
through everything, the fun starts!

Pre-loop actions
Before we actually create the while loop, there are two actions that we will code.
The first is to ensure that the cursor disappears when it goes over the game screen,
so it is not an interruption. There is a special function for this behavior in pygame:

 pygame.mouse.set_visible(0)

Tiny Tennis

[142]

By setting the visibility to 0, we make the mouse/cursor invisible to the game.
Since we do not need the mouse in the game, it is okay for us to do this.

The second action is to set the global variable for our while loop. We are going to
call our main game loop variable do_main. We will set do_main = True:

 do_main = True

Remember that syntax and case (uppercase or lowercase) are
important. Notice the CAPITAL letter T, and make sure to copy it
exactly as it is. Remember, True is a Boolean that needs to be written
with a capital T. Now, we are ready to write our while loop.

Creating the while loop
Our game loop will be a while loop. We will use do_main as our True statement.
So, you will have another line of code that looks like this:

 while do_main:

Make sure you place a colon (:) at the end of the line. Also, all of the other lines
of code in the game loop will be indented at least once because they all need to be
INSIDE of the loop to run. Here is a screenshot of the while loop:

Chapter 9

[143]

Moving the paddles – keyboard events
The first set of events in the while loop are keyboard events. These events take
place when a key or set of keys get pressed. The events use the if/elif logic. All of
them are indented on at least one tab, and some are indented on two tabs or more.
Remember that indents are an organizational tool in Python and help us keep track
of when certain code should be run.

Notice the code on line 54 of the screenshot. In line 54, we will create the pressed
variable, which we will set equal to the pygame.key.get_pressed() function.
This will give us a shorter reference to the function. Type this code in line 54:

 pressed = pygame.key.get_pressed()

In line 55, we use the pygame.key.set_repeat() function. This tells the computer
that once a key is pressed, the action that the key performs should continue until the
user lets the key go. Type the next line of code into line 55 of your tiny.py file:

 pygame.key.set_repeat()

Now that we have set the variable and characteristics for the keyboard events, we
will create our first loop, a for loop that looks for the player to quit. Using a for
loop, we will loop over each event that is found using the pygame.event.get()
function. If the event is a QUIT event, then the while loop will automatically end.
You will notice that we also use our if logic here so that we can tell the computer
to make a decision if it finds the quit event. To make this for loop, you will write
the following lines of code, starting on line 56 of your code file:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 do_main = False

Now that we have told the computer how and when to end the while loop, we can
tell the computer what to do when certain keys are pressed. For our Tiny Tennis
game, we need to assign keys to exit the game as well as ones to control paddle 1
and paddle 2.

Want to choose different keys than the ones we use in this book? You
can find an entire list of how to use every keyboard key on the pygame
website at http://www.pygame.org/docs/ref/key.html.

http://www.pygame.org/docs/ref/key.html

Tiny Tennis

[144]

Exiting the game – escape key
To exit the game, we will use the Esc key. You will notice that we use our pressed
variable followed by the key code for the Esc key. Starting from line 60, type these
two lines of code:

 if pressed[pygame.K_ESCAPE]:

 do_main = False

The lines of code tell the computer that if the Esc key is pressed, then the do_main
global variable should be set to False. When do_main is set to Boolean False, then
the while loop stops. We will write the code that ends the game a bit later.

Paddle control – player 1
For player 1's paddle to go up, we will use the W key. For player 1's paddle to go
down, we will use the S key. These are very typical keys to use for computer game
controls. Notice which letters are uppercase and which are lowercase, and be sure
to copy them exactly, starting from line 63:

 if pressed[pygame.K_w]:

 paddle1_y -= 5

 elif pressed[pygame.K_s]:

 paddle1_y += 5

Paddle control – player 2
Player 2 also needs to have keyboard controls that work to move his/her paddle up
and down at the same time as player 1. This means that we must assign different
keys for the second paddle. For this game, we are using the up arrow key to move
paddle 2 up and the down arrow key to move paddle 2 down. Type the following
lines of code into your tiny.py file, starting from line 68:

 if pressed[pygame.K_UP]:

 paddle2_y -= 5

 elif pressed[pygame.K_DOWN]:

 paddle2_y += 5

Save your work!

Chapter 9

[145]

The increase and decrease value
(-= and +=)
You will notice the -= and += symbols in this code. These symbols are used as
shortcuts to increase or decrease the value of something. In the code for moving the
paddles, we use these symbols to add or subtract values when the paddle keys are
pressed. Both the -= and += symbols are very important for setting the proper paddle
position each time the paddles are moved by the user.

Testing section 2
Time to test our code again. In your terminal/command prompt, locate the directory
where you saved your tiny.py file. In earlier games, we made this directory on the
desktop. Once you navigate to the directory where tiny.py is saved, you can run the
following command from the terminal/command prompt to see your game so far:

 python tiny.py

During this test, you will see a window open that says Tiny Tennis at the top and is
totally blank otherwise. See this screenshot:

If you are getting errors, remember to check your code for typos, syntax errors,
and case errors.

Tiny Tennis

[146]

Section 3 – moving the ball
Now that we have written and tested the code for the paddles, we need to write code
to move the ball. We will be changing the location of the ball with some of our code,
and we will create something called collision detection.

Moving the ball – updating the location
First, we need to be constantly calculating the x and y coordinates of the ball based
on the velocity of the ball that we set in the global variables. This allows us to make
constant updates as long as we are playing the game. To make sure that the x and y
coordinates of the ball update as the ball moves, you will type the following lines of
code, starting from line 74:

 # location of ball is updated

 ball_x += ball_xv

 ball_y += ball_yv

Collision detection
Our next job is to code something called collision detection. This means that we can
program the computer to know when two objects are hitting one another. We can
also tell the computer what we want it to do when the objects collide. In Tiny Tennis,
we have three kinds of collisions that we want to detect:

• Collision of the ball with the top and bottom of the screen
• Collision of the paddle with the top and bottom of the screen
• Collision of the ball with the paddle

Collision of the ball with the top and the bottom of
the screen
Next, we will use our if statement to define what happens if the ball hits the top
or the bottom of the screen. Basically, we want the ball to bounce back if it hits the
top or bottom of the screen. Type the following code starting from line 77 of your
tiny.py file:

 # collision of ball with top/bottom of screen

 if ball_y - ball_r <= 0 or ball_y + ball_r >= screen_height:

 ball_yv *= -1

Chapter 9

[147]

The first line, beginning with if, basically says If the radius is subtracted from the y
coordinate and that is less than or equal to zero OR if the radius is added to the y coordinate
and it is greater than the number of the screen height (400), then do something about it.

The second line of the code that comes after the colon tells us what to do: the velocity
of the y coordinate of the ball should be in the reverse direction. The second line of code,
ball_yv *= -1, means that the velocity of the y coordinate gets reversed because it
is multiplied by -1. Any number multiplied by -1 becomes opposite to its original
sign, and, in this case, reversing the sign means reversing the direction of the ball.

So, why does this code work? Let's think about it. The top y coordinate is zero. If the
ball tries to move past the top, its y value will be less than zero, which means that it
will be out of the screen. To make the ball stay on the screen, we change its direction
when the y coordinate value is less than zero.

The bottom y coordinate is 400. So, if the ball's y value is greater than 400, then we
change the direction of the ball to go back up. We make these directional changes by
multiplying the velocity of the ball by -1, resulting in a directional change.

Before moving on, compare your code to this code:

Collision of the paddle with the top and the bottom
of screen
We want the paddle to stop when it reaches the top or bottom of the screen. To make
this happen, we need to create a code that will recognize the y value of the paddle
and then stop the paddle from moving beyond the two y values that create the screen
borders. These two values are 0 for the top of the screen, and 400 for the bottom.
Copy the following lines of code into your program, starting from line 81. Check to
make sure that your indent level is correct:

 # collision of paddle with top/bottom of screen

 if paddle1_y < 0:

 paddle1_y = 0

Tiny Tennis

[148]

 elif paddle1_y + paddle1_h > screen_height:

 paddle1_y = screen_height - paddle1_h

 if paddle2_y < 0:

 paddle2_y = 0

 elif paddle2_y + paddle2_h > screen_height:

 paddle2_y = screen_height - paddle2_h

This code works differently from the ball code because we do not want the paddles
to bounce around! Instead, we want the paddles to stop when they hit the top or
bottom of the screen. So, you will notice that whenever paddle 1 or paddle 2 goes
beyond the barriers of the screen (0 and 400), the value of the paddle is reset to
EQUAL the boundary values of 0 or 400, depending on WHERE the paddle is located
(is it at the top of the screen or the bottom?). Save your work once you are done with
adding this code.

Collision of the ball with the paddles
The collision of the ball with the paddles will determine what happens when the
ball hits the paddle. There are two paddles, and it will be helpful if you add some
comment code using a hashtag to keep track of the code for the left-hand side paddle
(paddle 1) and the right-hand side paddle (paddle 2).

Now that we have done some collision detection, let's think about the ball and
paddle. When the ball hits the paddle, we want the ball to appear as though it has
bounced off of the paddle. Therefore, we need to make sure that the result of the
collision between the ball and the paddle is that the ball reverses itself and goes in
the opposite direction. This is actually the same behavior that we used to make the
ball bounce off the edges of the screen, except now we need to outline all the pieces
of paddle 1 and paddle 2. Copy these lines of code into your file:

 # left paddle

 if ball_x < paddle1_x + paddle1_w and ball_y >= paddle1_y and ball_y
<= paddle1_y + paddle1_h:

 ball_xv *= -1

 # right paddle

 if ball_x > paddle2_x and ball_y >= paddle2_y and ball_y <= paddle2_y
+ paddle2_h:

 ball_xv *= -1

Chapter 9

[149]

Take a look at this screenshot, and compare your code:

Testing – section 3
You are almost done writing the game! Now it's time to test our code again. In your
terminal/command prompt, locate the directory where you saved your tiny.py file.
You can run the following command from the terminal/command prompt to check
the progress of your game so far:

 python tiny.py

During this test, if everything is working correctly, your results will be the same
as the test from Section 2. A blank screen will open and will be called Tiny Tennis.
Congratulations!

If your program has some errors while running, look at the error messages to check
whether you can figure out what is going wrong. Look for syntax mistakes, spelling
mistakes, indentation mistakes, or any other errors in your code. Make sure that you
are using spaces for your indentations, not tabs, or else you might have problems
as well.

Tiny Tennis

[150]

Section 4 – draw screen and track
the score
So, we know that the ball bounces off the top and bottom of the screen as well as off
the paddles. However, if the user misses the ball with the paddle, what happens to
the ball? What happens to the player and their score?

In this section of the game, we use the location of the x coordinates to determine
whether the ball is on the screen or it has gone past the paddles and is outside
the screen. We use our if statement to tell the computer what to do. The x axis 0
coordinate is the left-most side of the screen. If the ball's x value is less than 0, then
the player on the other side (player 2) has scored a point because player 1 failed to
block the ball. If you read the lines of code, you will notice that we reset the ball_x
and ball_y coordinates to the center of the screen so that a new game can start.
Copy the next four lines of code to place this logic into the game:

 if ball_x <= 0:

 player2_score += 1

 ball_x = int(screen_width / 2)

 ball_y = int(screen_height / 2)

You will notice that the next four lines of code are almost identical, with only two
changes. The ball's x value is now being compared to the maximum screen width,
which is 600. If the ball's x value becomes greater than 600, it means that the player
has missed the ball and the ball is now outside of the screen. Now, player 1 has
scored because player 2 did not block the ball. To make sure that this logic is also in
the game, copy the next four lines of code into your file:

 elif ball_x >= screen_width:

 player1_score += 1

 ball_x = int(screen_width / 2)

 ball_y = int(screen_height / 2)

Chapter 9

[151]

Ensure that you save your work!

The render screen – show what's happened
The final code that we need to write is the code that redraws the screen and all of the
objects so that the movements appear to happen. The next lines of code draw the five
objects that are a part of our game. There is no need to use variable names to draw
the paddles, net, or the balls, except that it does make them easier to find if you want
to fix or change that part of the code. Again, these lines of code are indented so that
they are inside of the while loop:

 game_screen.fill(black)

 paddle_1 = pygame.draw.rect(game_screen, white, (paddle1_x, paddle1_y,
paddle1_w, paddle1_h), 0)

 paddle_2 = pygame.draw.rect(game_screen, white, (paddle2_x, paddle2_y,
paddle2_w, paddle2_h), 0)

 net = pygame.draw.line(game_screen, yellow, (300,5), (300,400))

 ball = pygame.draw.circle(game_screen, red, (ball_x, ball_y), ball_r,
0)

The game_screen.fill(black) code uses our game_screen variable and tells the
fill() function to make our screen black by putting the color black in parentheses.
Did you notice that we used two global variables, game_screen and black, in this
line of code? Imagine how much longer the code would be without these variables.
Imagine that it might be more difficult to read and to change.

You will notice that the pygame.draw.rect() function is used to draw the paddles,
since they are just rectangles. The paddles have the following characteristics:

• Game screen (tells you where they should go)
• Color
• An x coordinate
• A y coordinate (to provide a starting location)
• A width
• A height

Tiny Tennis

[152]

If you look at the line() and circle() objects, you will notice that they are not
too different from the rectangle. Both have a game_screen and color property.
The line object accepts arguments that define a length, width, and x value for the
line. The circle object accepts arguments that define game_screen, color, and ball
characteristics. Since we defined the ball characteristics early in the chapter with
global variables, we can use them in the circle() code.

Displaying player scores
Our next few lines of code will draw the player scores on the screen:

 score_text = font.render(str(player1_score) + " " + str(player2_
score), 1, white)

 game_screen.blit(score_text, (screen_width / 2 - score_text.get_
width() / 2, 10))

The top line of our game score code provides the definition for the score_text
variable, which is used in the second line of this code that we just added. The game_
screen.blit() function copies our score text each time our screen is redrawn, since
the score text may not change for a long time if neither player misses the ball.

Finally, the pygame.display.update() function updates the image with the
new information stored by our program. Because a computer can move at speeds
infinitely faster than a human, we have added a sleep option, allowing for the
update to occur at an interval that we can now control:

 pygame.display.update()

 time.sleep(0.016666667)

Ending the program
The final line of code will be to end the initialization of pygame, which we performed
at the start of the code. To end this, we will type pygame.quit() at the outermost
level of indentation in our code. This goes outside of the while loop so that it only
happens when the while loop stops running:

 pygame.quit()

Once you have typed this, your final game code lines should look like this:

Chapter 9

[153]

Once you have double-checked your code against the screenshots in the chapter,
make sure that you save your tiny.py file. Now you are ready to truly give your
game a test!

Play Tiny Tennis!
The best part about Tiny Tennis is that you can play it against yourself, making it
easy to test the game and experiment with different parts of the game. Now, when
you run the file from your terminal, a window that looks like this should pop up:

Tiny Tennis

[154]

The ball should start moving immediately toward one side or the other of the screen.
You can test the game by making sure that the paddles on each side of the screen are
able to hit the ball and that they do not go outside of the screen space. You can test
the scoring mechanism to make sure that the appropriate player is getting the points
for each shot that they make past the other player. Then, you can invite others to
play the game with you.

If you are not happy with parts of the game, you can change them. For example, you
might choose a different color for the ball, paddles, and the screen. Maybe you want
the paddles to be longer or shorter or, perhaps, thinner. Maybe you want to make the
ball bigger or smaller by changing the radius.

You might decide that you want the ball and paddles to move faster so that the game
is more challenging, or maybe you want the ball and paddles to move slower if you
are designing the game to be played by younger children. Design choices are made
for many reasons, and now that you have a playable game, you might decide to
make some different design decisions.

You can test your decisions by making a copy of your game code and then testing
any modifications in your copy. It is a good idea to keep a backup of your working
code so that if you write broken code, you have a place to return to and start again.

Summary
Congratulations on building your first game! There are so many things that you
learned to do. The greatest thing about code, though, is that there are many ways
to do everything. Some ways are easier to understand but not as efficient as other
ways. Some code is very efficient but might not be easily understood by another
programmer. The best code is both easy to understand and written in the most
efficient way possible.

Throughout the previous chapter, we used a combination of code that was easy to
understand, but may not have been as efficient as possible. This is because we were
learning many new principles in pygame, and things, such as collision detection, can
be challenging to code. You may decide to do things differently after you have a few
games under your belt!

In the next chapter, we will review all that we have learned in this book, and we will
also take a look at some other ways that Python is used out in the world, as Python is
a very useful language to know. See you in the last chapter!

[155]

Keep Coding!
In the previous chapter, we built a complete two-player game in a graphical
environment using pygame. In the final chapter of this book, we will review all that
you learned from the beginning of this journey, and then explore some other ideas
that you can try with your new coding skills. Many of these ideas will be games, but
some ideas will involve other ways in which Python can be used.

What we learned and your next steps
At the beginning of this book, you started out by learning about your computer.
You learned how to install Python and use different free tools such as text editors,
the Python shell, and a terminal/command line to run your games. Also, you
learned how to navigate to your desktop directory and save your work so that you
could work through each project. The next steps included the following:

• Navigating to other folders and directories on your computer
• Learning more terminal/command prompt commands

We then started our coding journey by making functions and variables, and using
different data types. We created some functions to do mathematics, and then we put
those functions together to create a calculator. You learned how to get information
from someone by giving them a prompt using the input() command.

We used logic such as if and else to teach the computer how to make decisions
based on what the user decided to do. We also used loops to help us perform
different jobs in games. The steps after this would include the following:

• Looking up and trying to understand nested if statements
• Using loops to work with large text or datasets

Keep Coding!

[156]

You learned about the different ways to use and store data in Python, such as
dictionaries and lists. It is helpful to know how things are stored in Python, and one
of the fastest features of Python is its capacity to store and retrieve data very quickly.

Throughout Chapter 1, Welcome! Let's Get Started, and Chapter 9, Tiny Tennis, we
built several projects to show how you could use the skills that you learned. It is
important to understand how to use the great features of Python to solve problems.
Knowing about each tool means that you can better imagine how to solve a problem
using your coding skills. For the remainder of the chapter, let's take a look at some of
the problems we can solve that will expand our Python skills.

Classes and objects – very important
next steps!
Immediately, you will need to start learning about classes and objects. These are
great ways to simplify what would otherwise be repeated code. For example, there
is a class in pygame called Sprites. The pygame.Sprites module has classes that
make it easier to manage different game objects.

To learn more about Sprites, it is best to refer to the documentation:
http://www.pygame.org/docs/tut/SpriteIntro.html.

To learn more about classes and objects, it is a good idea to search the Internet for
things such as object-oriented programming (this is the kind of programming that
Python uses) and, more specifically, classes and objects. If you find classes and
objects confusing, do not worry. This is a concept that takes some getting used to.

Here are some resources that will help you learn about classes and objects:
http://www.tutorialspoint.com/python/python_classes_
objects.htm

http://www.learnpython.org/en/Classes_and_Objects

http://www.pygame.org/docs/tut/SpriteIntro.html
http://www.tutorialspoint.com/python/python_classes_objects.htm
http://www.tutorialspoint.com/python/python_classes_objects.htm
http://www.learnpython.org/en/Classes_and_Objects

Chapter 10

[157]

More fun with games
Since the focus of this book was making game projects, we shall take a look at some
more complicated things that you can do with games once you explore pygame in
more detail. You can start by making Tiny Tennis more complicated in these ways:

• Adding a music file
• Adding graphics

Adding music to games
pygame allows you to add music to your games. There is a music module that allows
you to add music in a few formats to your game files. There are some limitations,
including file types. For example, using universally supported .ogg file types is
better than using file types such as .mp3, which are not natively supported on all
operating systems.

For more information, you can go to the pygame site at https://
www.pygame.org/docs/ref/music.html and learn how to add
your favorite sounds.

Adding graphics to games
While you learned how to make some basic shapes, our world would be pretty
boring if it only had rectangles, circles, and squares in basic colors. By experimenting
with modules such as the pygame.image() module you can learn how to work with
images that are created outside of pygame. If you have an artistic sibling or friend or
you are an artist yourself, you can create or scan artwork in your computer and then
add it to your games.

You can learn about the pygame.image() module at
http://www.pygame.org/docs/ref/image.html.

https://www.pygame.org/docs/ref/music.html
https://www.pygame.org/docs/ref/music.html
http://www.pygame.org/docs/ref/image.html

Keep Coding!

[158]

Remake or design games
If you want a brand new challenge, you can try remaking a classic game on your
own. There are a lot of classic games, such as PacMan, Asteroids, or Legend of Zelda.
A good challenge would be to try and remake a version of these games using your
skills. This practice exercise would require you to do some of these important things:

• Plan your program ahead of time
• Figure out if you need classes in your program
• Figure out how to use objects in your program
• Manage loops in your program
• Manage if/else decisions in your program
• Manage user information, such as the name and score, in your program

Once you make a few games that are based on classic games, you might have some
ideas for your own games. If you do have ideas, make notes of them in a file on your
computer. When you think about a new game, you need to do the same things that
you do to recreate a classic game, except that you need to make other decisions about
the purpose of the game, the win conditions of the game, and the controllers.

Other games
Many programmers have made small games in Python to practice their
programming skills. To start with, you can look at some other games that people
have made and posted on the pygame website. Navigate to http://pygame.org/
tags/pygame, and view some of the contributions people have made.

PB-Ball
PB-Ball is a basketball game that uses pygame and adds classes and objects. When
you navigate to the project page, you will see a few different links to the code. The
following links will help you find the game and look at the code. When you look
at the code, you will notice that there are folders for images and sounds. So, there
are many new skills to learn in order to create a game that has a more complicated
background. Here is a screenshot along with some links to the game so that you can
look at the code and learn it:

http://pygame.org/tags/pygame
http://pygame.org/tags/pygame

Chapter 10

[159]

Here's the link to the PB-Ball game:
http://pygame.org/project-PB-Ball-2963-.html

Here is a link to the main code, including two classes and source:
https://bitbucket.org/tjohnson2/pb-ball/src/8
8e324263a63eb97d6a2427f7ea719df85010dfe/main.
py?fileviewer=file-view-default

Here are some files that include images and sounds needed to play
the game:
https://bitbucket.org/tjohnson2/pb-ball/src

Snake
A game that many people have played is the snake game, where the player starts as
a short snake that becomes longer as the game goes on. The only rule to stay alive is
that the snake cannot touch its tail. There are many samples of this game available on
the Internet. You can view a few samples of code and check whether you are able to
recreate the game.

Learn more about the Snake games from the following links:
http://programarcadegames.com/python_examples/f.
php?file=snake.py

https://github.com/YesIndeed/SnakesForPython

https://github.com/xtur/SnakesAllAround (this is multiplayer!)

Apart from the preceding games, there are a few programmers who have worked
really hard to make Python game instructions available to new programmers! A few
such books are available for free on the Internet. Refer to:

Rapid Game Development with Python by Richard Jones (http://richard.
cgpublisher.com/product/pub.84/prod.11).

Other uses of Python
Python has many uses outside of making games. Learning Python can open doors
to careers in data science, web application development, or software testing, among
other things. If you really want to make a career in computer programming, then it is
a great idea to check out some of the different things you can do with Python.

http://pygame.org/project-PB-Ball-2963-.html
https://bitbucket.org/tjohnson2/pb-ball/src/88e324263a63eb97d6a2427f7ea719df85010dfe/main.py?fileviewer=file-view-default
https://bitbucket.org/tjohnson2/pb-ball/src/88e324263a63eb97d6a2427f7ea719df85010dfe/main.py?fileviewer=file-view-default
https://bitbucket.org/tjohnson2/pb-ball/src/88e324263a63eb97d6a2427f7ea719df85010dfe/main.py?fileviewer=file-view-default
https://bitbucket.org/tjohnson2/pb-ball/src
http://programarcadegames.com/python_examples/f.php?file=snake.py
http://programarcadegames.com/python_examples/f.php?file=snake.py
https://github.com/YesIndeed/SnakesForPython
https://github.com/xtur/SnakesAllAround
http://richard.cgpublisher.com/product/pub.84/prod.11
http://richard.cgpublisher.com/product/pub.84/prod.11

Keep Coding!

[160]

Curious about how Python is used in the real world? Learn about how
Python is used in many different fields! Visit https://www.python.
org/about/success/ for more details.

SciPy
The SciPy library has a suite of several programs that are open source (free) and can
be used for mathematics, science, and data analysis. Two of those programs will be
reviewed here. Although some of the programs are rather advanced in their abilities,
they can be used to do simple things. The suite of programs is worth knowing if you
want to use Python in work related to your math or science.

Learn about all the programs at http://www.scipy.org/.

iPython
iPython is a program that is similar to the Python shells that we used for our
projects, including IDLE or in the terminal. However, iPython has a server that uses
notebooks to keep track of your code as well as other notes that you make along with
your code. The project is undergoing some positive changes.

Learn about iPython notebook at http://ipython.org/.
Packt Publishing offers an introductory book called Learning IPython for
Interactive Computing and Data Visualization (2015) by Cyrille Rossant to
help you learn how to use iPython:
https://www.packtpub.com/big-data-and-business-
intelligence/learning-ipython-interactive-computing-
and-data-visualization.

https://www.python.org/about/success/
https://www.python.org/about/success/
http://www.scipy.org/
http://ipython.org/
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization

Chapter 10

[161]

MatPlotLib
MatPlotLib is an advanced tool that can be coded using Python to create simple
or complex charts, graphs, histograms, and even animations. It is an open source
project, so it is also free to use. There are many ways to use this tool, which is
especially useful for any 2D visualizations. All of the instructions for its download
and installation are on its website. There are a lot of dependencies, but if you are
keen on mathematics or 2D graphical representations (or both), then you should
check out the website and code samples.

Raspberry Pi
The popular Raspberry Pi is a small computer board designed for experimentation in
computing and robotics. Its operating system, which is different from Windows and
Mac, comes preinstalled with Python and pygame, so it is a very convenient way to
get started with gaming since you do not have to do all the work that we did in the
first chapter.

To use Raspberry Pi, you will need a power source, a monitor that has an HDMI
input, an HDMI cable, a keyboard and mouse, and a Wi-Fi dongle or Ethernet cable
if you plan to use the Internet. Additionally, you will need an SD card to install the
latest Raspberry Pi operating system. With these items, you can use Raspberry Pi as
your primary computer and experiment, knowing that if you crash your computer,
you can just make another copy of the operating system for free!

Many people have used Raspberry Pi to make games and even small, handheld
game systems! Aside from making games, people have used Raspberry Pi to make
robotics projects and media center projects. Something that's very neat about
Raspberry Pi is that you can learn more about building computers, and you can try
making computers for different uses. You can use Python and Raspberry Pi to write
code that controls light switches, door buzzers, and even household appliances! You
can visit the official Raspberry Pi website to learn more about its hardware and its
Linux-based operating system.

Keep Coding!

[162]

Visit https://www.raspberrypi.org/ and read Learning
Raspberry Pi by Samarth Shah (Packt Publishing, 2015) and Raspberry Pi
Cookbook for Python Programmers by Tim Cox (Packt Publishing, April
2014) for more details about Raspberry Pi.

Coding challenges
Aside from all of the neat things that you can do with Python code, you can practice
coding Python by finding coding challenges and completing them alone or with
friends. These challenges range from being short to long, easy to difficult, and are a
great way to keep your skills sharp between projects. The coding challenges usually
aim at one specific coding skill each, as follows:

• Printing
• Iterating over loops
• Creating variables, strings, and integers
• Data management
• Functions
• if/elif/else
• Nested if/elif/else
• Nested logic
• Recursing

https://www.raspberrypi.org/

Chapter 10

[163]

If you don't feel totally comfortable with these terms, look them up, read more about
them, and try some of the coding challenges to strengthen your skills. Here are some
websites that have coding challenges in Python:

• http://codingbat.com/python

• http://www.pythonchallenge.com/

• http://usingpython.com/python-programming-challenges/

• https://wiki.python.org/moin/ProblemSets

• https://www.hackerrank.com/login

You can find hundreds of practice problems in these links!

Summary
Hopefully, this book has provided you a solid introduction to basic Python concepts.
By no means are you an expert as Python is a powerful language that can do a lot
more than can be presented in one book. However, if you worked through each of the
games, you will have a solid Python foundation on which to build your next steps.

One way to keep using Python is to continue to work on challenges and games
while digging into code architecture, classes and objects, and more advanced game
coding using objects, custom images, sounds, and other effects. Python is not used in
traditional game systems, but game design concepts work well in any object-oriented
language. Once you are comfortable in Python, you can move toward more common
game design languages, such as C++, with a lot more ease.

Another way to use Python is to learn more about data applications and how to use
Python to work with different kinds of data and mathematics. This is a really great
way to get further into exploring Python and also create a portfolio of work to show
upper schools or even colleges. The Internet has large datasets about a variety of
topics, including population and weather, among other things.

Finally, you may decide that you want to learn about web applications that are
built using Python. If you choose to do so, you can look at places such as GitHub or
Bitbucket where programmers keep their code and sometimes allow it to be available
for free. Reading the code of other programmers is a fantastic way to learn new and
interesting ways to use code. Also, finding and helping build free programs, also called
open source, is a great way to help the community get better at programming. You can
ask great questions and get answers to them, too.

All the best in your quest to write better games and better code. Keep learning!

http://codingbat.com/python
http://www.pythonchallenge.com/
http://usingpython.com/python-programming-challenges/
https://wiki.python.org/moin/ProblemSets
https://www.hackerrank.com/login

[165]

Quick Task Answers
This appendix contains answers to all the quick task questions that appear at the end
of the chapters. Now, let's have a look at the answers to respective questions.

Chapter 1, Welcome! Let's Get Started
Questions Answers
Q1. What is a terminal (Mac/Linux) or
command prompt (Windows)?

A terminal can do all of the above.

Q2. When you first open the terminal/
command prompt, what do you need to do
so that you can start reading and writing the
Python code?

Type the word python.

Q3. How is the Python shell different from the
command line?

The Python shell is started by typing the
word python into the command line.

Chapter 2, Variables, Functions,
and Users

Questions Answers
Q1. What must a function begin with? def
Q2. What are conventions that are used to name
variables and functions?

All of the above

Q3. Every line after the first line of a function must
be?

Indented

Quick Task Answers

[166]

Questions Answers
Q4. If you want a code file to run in Python, you need
to end it with?

.py

Q5. To run a code file in the terminal, what do you
need to do?

In the correct folder, type python
and the name of the file

Chapter 3, Calculate This!
Questions Answers
Q1. What kind of data does the input()
function return?

Strings

Q2. What does the int() function do? Changes data to whole numbers
Q3. How is the float() function different
from the int() function?

The float() function converts data into
floating point numbers only

Q4. If you make a function called addition()
in your Python shell, how do you run that
addition function to test it?

Type addition() into your Python shell

Chapter 4, Making Decisions – Python
Control Flows

Questions Answers
Q1. How many times can the elif statement
appear in the if/elif/else flow?

As many times as it is needed

Q2. Which statement starts a conditional
block of code that is used to make decisions?

if

Q3. Which statement is only used at the end
of a conditional block of code?

else

Q4. What is a global variable? Both 2 and 3
Q5. What is a while loop? A loop that repeats code until something

different happens, and then it stops

Appendix

[167]

Chapter 5, Loops and Logic
Questions Answers
Q1. What is a Boolean? A statement that is either True or False
Q2. Why are global variables helpful? Choice 2 and 3
Q3. for loops are similar to while loops.
How is a for loop different from a while
loop?

for loops are used to loop a specified
number of times

Q4. What would be a good time to use a
while loop in a game?

to keep a game going while a certain
condition is True

Q5. What symbol is used to write comments
in the code that are not a part of the code?

#

Chapter 6, Working with Data – Lists and
Dictionaries

Questions Answers
Q1. What is the proper syntax to use when
creating a dictionary?

{ }

Q2. What kinds of data can be included in
one list?

All datatypes can be included a list

Q3. What is the proper syntax to use when
creating a list?

[]

Chapter 7, What's in Your Backpack?
Questions Answers
Q1. What is nesting? When one item is inside of another item
Q2. What does the list called players
organize in this game?

It organizes all items belonging to each
player

Q3. What kind of item is inside of the
players list?

A dictionary

Q4. What is a game loop? 2 and 3

Quick Task Answers

[168]

Chapter 8, pygame
Questions Answers
Q1. How do you start pygame? pygame.init()

Q2. How do objects move in pygame? Objects only appear to move, but they
are actually constantly redrawn

Q3. How is an object redrawn using pygame? pygame.display.update()

Q4. What is the shorthand used to identify
keys in pygame?

pygame.K_keyname

[169]

Index
A
advanced background setting options

reference link 121

B
backpack game

ending 108, 109
guesses, comparing 107, 108
programming 96
score, keeping 108
testing 109

ball
about 136
collision detection 146
direction, setting 137
location, updating 146
moving 146
size, setting 137
speed, setting 137

Boolean 62
built-in functions

float() 19
help() 19
int() 19
raw_input() 19
str() 19

C
calculator

defining 31, 32
reference 31

classes 156

code
experimenting with 27, 28
testing 104, 105

coding challenges
about 162, 163
online references 163

coding environment, backpack game
setting up 95, 96

collision detection
about 146
ball, colliding with top and bottom of

screen 146
paddle, colliding with ball 148
paddle, colliding with top and bottom of

screen 147
color

defining 134
command line

using 23
command prompt 6
comparison operators

about 44
equal to 44
greater than 44
greater than or equal to 44
less than 44
less than or equal to 44
not equal to 44

computer setup, for Python 2.7
about 3
Python shell 3, 4
Terminal 3, 4
text editor 4, 5

[170]

computer setup, for Windows users
about 5, 6
command prompt 6
text editor 7

conditional statements
about 45
elif statement 45-48
else statement 45-50
if statement 45, 46
user input, improving 46

D
dictionaries

about 86
existing item value, changing 89, 90
information, adding 88
information, modifying 88
information, removing 88
items, adding 88
items, removing 90, 91
key 86, 87
methods, URL 88
selecting 91
values 86, 87

division
defining 37, 39

drawings 133

E
easy version, Higher or Lower game

building 63, 64
numbers, comparing 64, 65
play_again() function 66

elif statement 45-48
else statement 45-50

F
first program

running, in command line 7, 8
writing, in command line 7, 8

for loop
about 53, 54
count_to_ten() function 55

frame 131
frame rate 131
functions

about 19
built-in functions 19, 20
defining 32, 33
parts 20-22

G
game loop 105
game programming principles 131
games

about 158
designing 158
exploring 157
graphics, adding 157
music, adding 157
PB-Ball 158
remaking 158
snake game 159

globals 133, 134

H
hard version, Higher or Lower game

building 71, 72
numbers, comparing 72, 73
play testing 74, 75

Higher or Lower game
about 59, 60
Boolean 62
easy version, building 63, 64
file set up 60
global variables, initializing 62
global variables, setting 62
hard version, building 71, 72
helper functions 67
libraries, importing 61
play_again() function 68, 69
play testing 69, 70
start_game() function 67, 68

Homebrew
installing 119
programs, installing with 119, 120

[171]

I
IDLE 160
if statement 45, 46
iPython

about 160
URL 160

items
adding, to list 83
adding, to virtual backpack 103
limiting, in virtual backpack 103
removing, from list 84

iteration 84

J
jEdit

about 4
download link 4

K
keyboard key

reference link 143
keys

about 86
URL 128

L
libraries

importing 133
lists

about 79
components 80, 81
examples 91
information, adding 83
items, adding 83
items, removing 84
modifying 83
reference link 80
selecting 91, 92
using, with loops 84-86
working with 81, 82

loops
about 50
for loop 53
using, with lists 85, 86
while loop 50

M
Mac

Homebrew, installing 119
pygame, installing 118
Xcode, installing 118

MatPlotLib 161
modulo

about 107
defining 40, 41

multiplication
defining 37, 38

music
adding, to games 157

N
notepad++

reference link 7

O
objects

about 156
moving, with keyboard 128

operations, on two numbers
data, converting into numbers 34
defining 33, 34
first calculator file, creating 36
floating point, to whole number

conversion 34
text string, entering in int()

and float() 35, 36
whole number, to floating point

conversion 35
own function, building

code, writing 25, 26
program, running 27
project file, setting up 24
project, starting 25

[172]

P
paddles

controlling 144
escape key, using 144
keyboard events 143
location 138
moving 141
pre-loop actions 141
size 138
while loop, creating 142

player
scores, tracking 150

player information
obtaining 98
player profiles 99, 100
player profiles, working 101, 102
players, adding to profile 102
players list, creating 98, 99
storing 98

prerequisites, Python
about 2
computer setup 3
for Mac users 3
for Ubuntu Linux users 3
for Windows users 5
Python 2.7 3

program
ending 152
running 41
skills, required for 97, 98
user interactions 22, 23

pygame
defining 113-120
game screen, setting up 121, 122
initializing 121
installing 115
installing, on Mac 118
installing, on Raspberry Pi 120
installing, on Ubuntu Linux 120
installing, on Windows 116, 117
moving objects, creating 127, 128
references 115
stationary objects, creating 123, 124
URL 113, 127

pygame Mac Wiki
URL 118

Python
benefits 1
concepts 2
iPython 160
MatPlotLib 161
prerequisites 2
projects 1
Raspberry Pi 161
reference link 5
SciPy 160
URL 160
uses 159
using 1, 2

R
Raspberry Pi

about 161
URL 162

remainder
finding 40, 41

S
SciPy

about 160
URL 160

score
initializing 139

screen
drawing 136, 150
labels, creating 136
size, adjusting 135

shapes
advanced shapes 127
experimenting 127

Sprites
reference link 156

stationary objects
creating 123, 124
ellipse 126
more shapes, creating 125
rectangle 125
while loop 125

[173]

subscript method 88
subtraction

defining 37

T
Terminal 3
text editor

using 23
Thesaurus 92
Tiny Tennis

about 131
ball, moving 146
ball, testing 149
decrease value 145
drawings 133
globals 133
imports 133
increase value 145
outline, creating 132
paddles, moving 141
paddles, testing 145
plan 132
player scores, displaying 152
player scores, drawing 150
playing 153, 154
program, ending 152
render screen 151, 152
score, initializing 139
screen, drawing 150
section, testing 140

V
values 86
variables

about 13, 14
floating point numbers (floats) 17, 18
integers 16
naming, conventions 14, 15
programming, for information memory 15
strings, building 15, 16
strings, combining with floats 18
strings, combining with integers 18

W
while loop

about 50, 106, 107
global variables 50
quit() function, using 51
used, for controlling program 52

whitespace 21
Windows

reference link 5
work folder

creating 9

X
Xcode

URL 118

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Welcome! Let's Get Started
	Python projects for you
	What can you do with Python?
	Why you should learn Python

	The prerequisites of Python
	Setting up your computer
	For Mac and Ubuntu Linux users
	Python 2.7
	For Windows users

	Write and run your first program in the command line
	Make yourself a work folder
	A quick task for you
	Summary

	Chapter 2: Variables, Functions, and Users
	Variables
	Naming variables – conventions to follow
	What can variables remember?
	Strings
	Integers
	Floating point numbers (floats)

	Combining strings, integers, and floats

	Functions
	Built-in functions
	Parts of a function

	Users interacting with your program
	Using the text editor and the command line
	Build your own function – name()
	Set up your project file
	Begin your project
	Writing code
	Running your program

	Going the extra mile
	A quick task for you
	Summary

	Chapter 3: Calculate This!
	The calculator
	Basic functions
	Operations on two numbers
	Convert data into numbers – int() and float()
	Floating point to whole number conversion
	Whole number to floating point conversion
	Text strings fail in int() and float()
	Creating our first calculator file

	New functions – subtraction, multiplication, and division
	Subtraction
	Multiplication
	Division

	Finding a remainder – modulo
	Running your program
	A quick task for you
	Summary

	Chapter 4: Making Decisions – Python Control Flows
	Is it equal, not equal, or something else?
	Conditional statements – if, elif, else
	Getting better input
	if
	elif
	else

	Loops
	While
	Global variables and the quit() function
	Using the quit() function
	Using the while loop to control the program

	for
	Bonus – count_to_ten() function

	A quick task for you
	Summary

	Chapter 5: Loops and Logic
	Higher or Lower
	Game file set up
	Importing libraries
	Setting and initializing global variables
	What is a boolean?
	Building the easy version
	Compare numbers
	play_again()

	Start, stop, play again
	start_game()
	play_again()
	Play testing

	Building the hard version
	Comparing numbers – the hard version
	Play test the whole program!

	A quick task for you
	Summary

	Chapter 6: Working with Data – Lists and Dictionaries
	Lists
	Parts of a list
	Working with a list
	Changing the list – adding and removing information
	Adding items to the list
	Removing items from the list

	Lists and loops

	Dictionaries
	Key/value pairs in dictionaries
	Changing the dictionary – adding and removing information
	Adding items to the dictionary

	Changing the value of an existing item
	Removing items from the dictionary

	List or dictionary
	A quick task for you
	Summary

	Chapter 7: What's In Your Backpack?
	Setting up our coding environment
	Planning to program your game
	Skills needed to make a program
	Score, play again, or quit?
	Getting and storing player information
	Making a players list
	Player profiles
	Player profiles – how do they work?
	Add players to profile

	Adding items to the virtual backpack
	Limiting items in a virtual backpack
	Testing your code so far
	A game loop
	Bringing back the while loop
	Comparing guesses with backpack items
	Keeping score
	Ending the game
	Testing your game
	A quick task for you
	Summary

	Chapter 8: Pygame
	What is pygame?
	Installing pygame
	Installing pygame – Windows
	Installing pygame – Mac
	Installing Xcode
	Installing Homebrew

	Installing pygame – Ubuntu Linux
	Installing pygame – Raspberry Pi

	pygame
	Initializing pygame
	Setting up the game screen – size
	Setting up the game screen – color
	Making stationary objects
	while loop – viewing the screen
	Making more shapes
	Experimenting with shapes
	More advanced shapes

	Making moving objects
	Moving objects with the keyboard

	A quick task for you
	Summary

	Chapter 9: Tiny Tennis
	Introduction to game programming principles
	The game plan
	Creating an outline of game parts
	Section 1 – imports, globals, and drawings
	Importing libraries
	Introducing globals
	Defining a color
	Adjusting the screen size
	Drawing the screen
	Creating screen labels
	Ball – the starting location
	Ball – setting the speed and direction
	Ball – setting the size
	Paddles – starting location and size

	Initializing the score
	Testing section 1
	Section 2 – moving the paddles
	Pre-loop actions
	Creating the while loop
	Moving the paddles – keyboard events
	Exiting the game – escape key
	Paddle control – player 1
	Paddle control – player 2

	The increase and decrease value
(-= and +=)
	Testing section 2
	Section 3 – moving the ball
	Moving the ball – updating the location
	Collision detection
	Collision of the ball with the top and the bottom of the screen
	Collision of the paddle with the top and the bottom of screen
	Collision of the ball with the paddles

	Testing – section 3
	Section 4 – draw screen and track
the score
	The render screen – show what's happened
	Displaying player scores

	Ending the program
	Play Tiny Tennis!
	Summary

	Chapter 10: Keep Coding!
	What we learned and your next steps
	Classes and objects – very important next steps!
	More fun with games
	Adding music to games
	Adding graphics to games
	Remake or design games
	Other games
	PB-Ball
	Snake

	Other uses of Python
	SciPy
	iPython
	MatPlotLib
	Raspberry Pi

	Coding challenges
	Summary

	Appendix: Quick Task Answers
	Index

