UPDATED FOR ANDROID 4

Professional

Android 4

Application Development

Reto Meier

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL
ANDROID™ 4 APPLICATION DEVELOPMENT

INTRODUCTION. ...ttt it ittt et iieeneneneenenennanennnns XXXVii
CHAPTER1 Hello, Android. o 1
CHAPTER 2 Getting Started. e 19
CHAPTER 3 Creating Applications and Activities 53
CHAPTER 4 BuildingUserlInterfaces......... 95
CHAPTER5 Intents and Broadcast Receivers 165
CHAPTER 6 Using Internet ReSOUrCesttt e 201
CHAPTER 7 Files, Saving State, and Preferences 221
CHAPTER 8 Databases and Content Providers 251
CHAPTER9 Workinginthe Background 0. .. 331
CHAPTER 10 Expandingthe UserExperience 359
CHAPTER 1 Advanced User EXperiencecouuiiinnnnanan. 425
CHAPTER 12 Hardware SeNSOrS.ottt e 481
CHAPTER 13 Maps, Geocoding, and Location-Based Services 513
CHAPTER 14 Invadingthe Home Screen....... i, 565
CHAPTER 15 Audio, Video, and UsingtheCamera............... 621
CHAPTER 16 Bluetooth, NFC, Networks,and Wi-Fi.......... 665
CHAPTER 17 Telephony and SMS. i 701
CHAPTER 18 Advanced Android Development............. 739
CHAPTER 19 Monetizing, Promoting, and Distributing Applications 771
L] 5 = 787

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

Android™ 4 Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

Android™ 4 Application Development

Reto Meier

WILEY
John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Professional Android™ 4 Application Development

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-10227-5
ISBN: 978-1-118-22385-7 (ebk)
ISBN: 978-1-118-23722-9 (ebk)
ISBN: 978-1-118-26215-3 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through pay-
ment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at http: / /booksupport
.wiley.com. For more information about Wiley products, visit www .wiley.com.

Library of Congress Control Number: 2011945019

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress

are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks

are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned
in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport
http://www.wiley.com
http://www.it-ebooks.info/

To Kris

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHOR

RETO MEIER grew up in Perth, Western Australia, and then lived in London for 6 years before
moving to the San Francisco Bay Area in 2011.

Reto currently works as a Developer Advocate on the Android team at Google, helping Android
developers create the best applications possible. Reto is an experienced software developer with
more than 10 years of experience in GUI application development. Before coming to Google, he
worked in various industries, including offshore oil and gas and finance.

Always interested in emerging technologies, Reto has been involved in Android since the initial
release in 2007.

You can find out entirely too much about Reto’s interests and hobbies on his web site, The
Radioactive Yak (http://blog.radiocactiveyak.com), or on Google+ (http://profiles
.google.com/reto.meier) or Twitter (www.twitter.com/retomeier), where he shares more than

he probably should.

www.it-ebooks.info

http://blog.radioactiveyak.com
http://profiles.google.com/reto.meier
http://profiles.google.com/reto.meier
http://www.twitter.com/retomeier
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE TECHNICAL EDITOR

DAN ULERY is a software engineer with experience in .NET, Java, and PHP development, as well as
in deployment engineering. He graduated from the University of Idaho with a Bachelor of Science
degree in computer science and a minor in mathematics.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CREDITS

EXECUTIVE EDITOR PRODUCTION MANAGER

Robert Elliott Tim Tate

PROJECT EDITOR VICE PRESIDENT AND EXECUTIVE GROUP
John Sleeva PUBLISHER

Richard Swadley
TECHNICAL EDITOR

Dan Ulery VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

PRODUCTION EDITOR

Kathleen Wisor ASSOCIATE PUBLISHER
Jim Minatel

COPY EDITOR
San Dee Phillips PROJECT COORDINATOR, COVER
Katie Crocker
EDITORIAL MANAGER
Mary Beth Wakefield PROOFREADER
Jen Larsen, Word One New York
FREELANCER EDITORIAL MANAGER
Rosemarie Graham INDEXER
Johnna VanHoose Dinse
ASSOCIATE DIRECTOR OF MARKETING
David Mayhew COVER DESIGNER
Ryan Sneed
MARKETING MANAGER
Ashley Zurcher COVER IMAGE
© Linda Bucklin / iStockPhoto
BUSINESS MANAGER
Amy Knies

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

FIRST, I'D LIKE TO THANK KRISTY, whose love, patience, and understanding are pushed to new limits
every time I forget what’s involved in writing a book and agree to do another one. Your support
makes everything I do possible.

A big thank you to my friends and colleagues at Google, particularly the Android engineers and my
colleagues in developer relations. The pace at which Android grows makes life difficult for those of
us who choose to write books, but the opportunities it creates for developers makes the stress and
rewrites easy to bear.

I also thank Dan Ulery for his sharp eye and valuable insights; Robert Elliot and John Sleeva for
their patience in waiting for me to get this book finished; San Dee Phillips; and the whole team at
Wrox for helping to get it done.

A special shout-out goes out to the entire Android developer community. Your passion, hard work,
and excellent applications have helped make Android the huge success that it is. Thank you.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION XXXVii
CHAPTER 1: HELLO, ANDROID 1
A Little Background 2
The Not-So-Distant Past 2
Living in the Future 3
What Android Isn’t 3
Android: An Open Platform for Mobile Development 4
Native Android Applications 5
Android SDK Features 6
Access to Hardware, Including Camera, GPS, and Sensors 6
Data Transfers Using Wi-Fi, Bluetooth, and NFC 7
Maps, Geocoding, and Location-Based Services 7
Background Services 7
SQLite Database for Data Storage and Retrieval 8
Shared Data and Inter-Application Communication 8
Using Widgets and Live Wallpaper to Enhance the Home Screen 9
Extensive Media Support and 2D/3D Graphics 9
Cloud to Device Messaging 9
Optimized Memory and Process Management 10
Introducing the Open Handset Alliance 10
What Does Android Run On? 10
Why Develop for Mobile? 1"
Why Develop for Android? 1"
Factors Driving Android’s Adoption 12
What Android Has That Other Platforms Don’t Have 12
The Changing Mobile Development Landscape 13
Introducing the Development Framework 14
What Comes in the Box 14
Understanding the Android Software Stack 15
The Dalvik Virtual Machine 16
Android Application Architecture 17
Android Libraries 18

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 2: GETTING STARTED 19
Developing for Android 20
What You Need to Begin 20
Downloading and Installing the Android SDK 21
Downloading and Installing Updates to the SDK 23
Developing with Eclipse 23
Using the Android Developer Tools Plug-In for Eclipse 24
Using the Support Package 27
Creating Your First Android Application 28
Creating a New Android Project 28
Creating an Android Virtual Device 30
Creating Launch Configurations 30
Running and Debugging Your Android Application 33
Understanding Hello World 33
Types of Android Applications 36
Foreground Applications 36
Background Applications 37
Intermittent Applications 37
Widgets and Live Wallpapers 37
Developing for Mobile and Embedded Devices 38
Hardware-Imposed Design Considerations 38
Be Efficient 38
Expect Limited Capacity 39
Design for Different Screens 39
Expect Low Speeds, High Latency 40

At What Cost? 41
Considering the User’s Environment 42
Developing for Android 43
Being Fast and Efficient 43
Being Responsive 44
Ensuring Data Freshness 45
Developing Secure Applications 45
Ensuring a Seamless User Experience 46
Providing Accessibility 47
Android Development Tools 47
The Android Virtual Device Manager 48
Android SDK Manager 49
The Android Emulator 50

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

The Dalvik Debug Monitor Service 50
The Android Debug Bridge 51
The Hierarchy Viewer and Lint Tool 51
Monkey and Monkey Runner 52
CHAPTER 3: CREATING APPLICATIONS AND ACTIVITIES 53
What Makes an Android Application? 54
Introducing the Application Manifest File 55
A Closer Look at the Application Manifest 56
Using the Manifest Editor 63
Externalizing Resources 64
Creating Resources 65
Simple Values 65
Styles and Themes 68
Drawables 68
Layouts 69
Animations 70
Menus 73
Using Resources 74
Using Resources in Code 74
Referencing Resources Within Resources 75
Using System Resources 76
Referring to Styles in the Current Theme 76
Creating Resources for Different Languages and Hardware 77
Runtime Configuration Changes 79
The Android Application Lifecycle 81
Understanding an Application’s Priority and Its Process’ States 82
Introducing the Android Application Class 83
Extending and Using the Application Class 83
Overriding the Application Lifecycle Events 84

A Closer Look at Android Activities 86
Creating Activities 86
The Activity Lifecycle 87
Activity Stacks 88
Activity States 88
Monitoring State Changes 89
Understanding Activity Lifetimes 91
Android Activity Classes 93

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 4: BUILDING USER INTERFACES 95
Fundamental Android Ul Design 96
Android User Interface Fundamentals 97

Assigning User Interfaces to Activities 97
Introducing Layouts o8
Defining Layouts 99
Using Layouts to Create Device Independent User Interfaces 100
Using a Linear Layout 100
Using a Relative Layout 101
Using a Grid Layout 102
Optimizing Layouts 103
Redundant Layout Containers Are Redundant 103
Avoid Using Excessive Views 105
Using Lint to Analyze Your Layouts 106
To-Do List Example 107
Introducing Fragments 14
Creating New Fragments 15
The Fragment Lifecycle 16
Fragment-Specific Lifecycle Events 19
Fragment States 19
Introducing the Fragment Manager 120
Adding Fragments to Activities 120
Using Fragment Transactions 121
Adding, Removing, and Replacing Fragments 122
Using the Fragment Manager to Find Fragments 122
Populating Dynamic Activity Layouts with Fragments 123
Fragments and the Back Stack 124
Animating Fragment Transactions 125
Interfacing Between Fragments and Activities 126
Fragments Without User Interfaces 126
Android Fragment Classes 128
Using Fragments for Your To-Do List 128
The Android Widget Toolbox 132
Creating New Views 133
Modifying Existing Views 133
Customizing Your To-Do List 135
Creating Compound Controls 138
Creating Simple Compound Controls Using Layouts 141
Creating Custom Views 141
Creating a New Visual Interface 142
Handling User Interaction Events 147

XX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Supporting Accessibility in Custom Views 148
Creating a Compass View Example 149
Using Custom Controls 155
Introducing Adapters 156
Introducing Some Native Adapters 156
Customizing the Array Adapter 156
Using Adapters to Bind Data to a View 158
Customizing the To-Do List Array Adapter 158
Using the Simple Cursor Adapter 162
CHAPTER 5: INTENTS AND BROADCAST RECEIVERS 165
Introducing Intents 166
Using Intents to Launch Activities 166
Explicitly Starting New Activities 167
Implicit Intents and Late Runtime Binding 167
Determining If an Intent Will Resolve 168
Returning Results from Activities 169
Native Android Actions 172
Introducing Linkify 174
Native Linkify Link Types 174
Creating Custom Link Strings 175
Using the Match Filter 176
Using the Transform Filter 176
Using Intents to Broadcast Events 177
Broadcasting Events with Intents 177
Listening for Broadcasts with Broadcast Receivers 178
Broadcasting Ordered Intents 180
Broadcasting Sticky Intents 181
Introducing the Local Broadcast Manager 182
Introducing Pending Intents 182
Creating Intent Filters and Broadcast Receivers 183
Using Intent Filters to Service Implicit Intents 183
How Android Resolves Intent Filters 185
Finding and Using Intents Received Within an Activity 186
Passing on Responsibility 187
Selecting a Contact Example 187
Using Intent Filters for Plug-Ins and Extensibility 193
Supplying Anonymous Actions to Applications 193
Discovering New Actions from Third-Party Intent Receivers 194
Incorporating Anonymous Actions as Menu Items 195
Listening for Native Broadcast Intents 196

www.it-ebooks.info

XXi

http://www.it-ebooks.info/

CONTENTS

Monitoring Device State Changes Using Broadcast Intents 197
Listening for Battery Changes 197
Listening for Connectivity Changes 198
Listening for Docking Changes 199

Managing Manifest Receivers at Run Time 199

CHAPTER 6: USING INTERNET RESOURCES 201
Downloading and Parsing Internet Resources 201

Connecting to an Internet Resource 202

Parsing XML Using the XML Pull Parser 203

Creating an Earthquake Viewer 205

Using the Download Manager 210

Downloading Files 21

Customizing Download Manager Notifications 213

Specifying a Download Location 213

Cancelling and Removing Downloads 214

Querying the Download Manager 215

Using Internet Services 217
Connecting to Google App Engine 218
Best Practices for Downloading Data Without Draining

the Battery 219

CHAPTER 7: FILES, SAVING STATE, AND PREFERENCES 221
Saving Simple Application Data 222
Creating and Saving Shared Preferences 222
Retrieving Shared Preferences 223
Creating a Settings Activity for the Earthquake Viewer 223
Introducing the Preference Framework and the

Preference Activity 231

Defining a Preference Screen Layout in XML 232
Native Preference Controls 234
Using Intents to Import System Preferences into Preference Screens 234

Introducing the Preference Fragment 235

Defining the Preference Fragment Hierarchy
Using Preference Headers 235

Introducing the Preference Activity 236

Backward Compatibility and Preference Screens 237

Finding and Using the Shared Preferences Set by Preference Screens 238

Introducing On Shared Preference Change Listeners 238

xXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Creating a Standard Preference Activity for the Earthquake Viewer 238
Persisting the Application Instance State 242
Saving Activity State Using Shared Preferences 242
Saving and Restoring Activity Instance State
Using the Lifecycle Handlers 242
Saving and Restoring Fragment Instance State
Using the Lifecycle Handlers 243
Including Static Files as Resources 245
Working with the File System 246
File-Management Tools 246
Using Application-Specific Folders to Store Files 246
Creating Private Application Files 247
Using the Application File Cache 248
Storing Publicly Readable Files 248
CHAPTER 8: DATABASES AND CONTENT PROVIDERS 251
Introducing Android Databases 252
SQLite Databases 252
Content Providers 252
Introducing SQLite 253
Content Values and Cursors 253
Working with SQLite Databases 254
Introducing the SQLiteOpenHelper 255
Opening and Creating Databases Without the SQLite Open Helper 257
Android Database Design Considerations 257
Querying a Database 257
Extracting Values from a Cursor 259
Adding, Updating, and Removing Rows 260
Inserting Rows 260
Updating Rows 261
Deleting Rows 261
Creating Content Providers 262
Registering Content Providers 262
Publishing Your Content Provider’s URI Address 263
Creating the Content Provider’s Database 264
Implementing Content Provider Queries 264
Content Provider Transactions 266
Storing Files in a Content Provider 268
A Skeleton Content Provider Implementation 270

www.it-ebooks.info

xxiii

http://www.it-ebooks.info/

CONTENTS

Using Content Providers 274
Introducing the Content Resolver 274
Querying Content Providers 274
Querying for Content Asynchronously Using the Cursor Loader 277

Introducing Loaders 277
Using the Cursor Loader 277
Adding, Deleting, and Updating Content 280
Inserting Content 280
Deleting Content 281
Updating Content 281
Accessing Files Stored in Content Providers 282
Creating a To-Do List Database and Content Provider 283

Adding Search to Your Application 290
Making Your Content Provider Searchable 291
Creating a Search Activity for Your Application 292
Making Your Search Activity the Default Search Provider

for Your Application 293
Performing a Search and Displaying the Results 294
Using the Search View Widget 297
Supporting Search Suggestions from a Content Provider 298
Surfacing Search Results in the Quick Search Box 301

Creating a Searchable Earthquake Content Provider 301
Creating the Content Provider 302
Using the Earthquake Provider 307
Searching the Earthquake Provider 310

Native Android Content Providers 316
Using the Media Store Content Provider 317
Using the Contacts Contract Content Provider 318

Introducing the Contacts Contract Content Provider 318
Reading Contact Details 319
Creating and Picking Contacts Using Intents 323
Modifying and Augmenting Contact Details Directly 324

Using the Calendar Content Provider 325
Querying the Calendar 325
Creating and Editing Calendar Entries Using Intents 327
Modifying Calendar Entries Directly 329
CHAPTER 9: WORKING IN THE BACKGROUND 331

Introducing Services 332
Creating and Controlling Services 332

Creating Services 332

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Executing a Service and Controlling Its Restart Behavior 333
Starting and Stopping Services 335
Self-Terminating Services 336
Binding Services to Activities 336
An Earthquake-Monitoring Service Example 338
Creating Foreground Services 343
Using Background Threads 345
Using AsyncTask to Run Asynchronous Tasks 345
Creating New Asynchronous Tasks 346
Running Asynchronous Tasks 347
Introducing the Intent Service 348
Introducing Loaders 349
Manual Thread Creation and GUI Thread Synchronization 349
Using Alarms 351
Creating, Setting, and Canceling Alarms 352
Setting Repeating Alarms 353
Using Repeating Alarms to Schedule Network Refreshes 354
Using the Intent Service to Simplify the Earthquake
Update Service 357
CHAPTER 10: EXPANDING THE USER EXPERIENCE 359
Introducing the Action Bar 360
Customizing the Action Bar 362
Modifying the Icon and Title Text 362
Customizing the Background 363
Enabling the Split Action Bar Mode 364
Customizing the Action Bar to Control Application Navigation Behavior 364
Configuring Action Bar Icon Navigation Behavior 365
Using Navigation Tabs 366
Using Drop-Down Lists for Navigation 368
Using Custom Navigation Views 370
Introducing Action Bar Actions 370
Adding an Action Bar to the Earthquake Monitor 370
Creating and Using Menus and Action Bar Action Items 377
Introducing the Android Menu System 377
Creating a Menu 379
Specifying Action Bar Actions 380
Menu Item Options 381
Adding Action Views and Action Providers 382
Adding Menu Items from Fragments 383
Defining Menu Hierarchies in XML 384

www.it-ebooks.info

XXV

http://www.it-ebooks.info/

CONTENTS

Updating Menu Items Dynamically 385
Handling Menu Selections 386
Introducing Submenus and Context Menus 387
Creating Submenus 387
Using Context Menus and Popup Menus 388
Refreshing the Earthquake Monitor 390
Going Full Screen 392
Introducing Dialogs 394
Creating a Dialog 395
Using the Alert Dialog Class 396
Using Specialized Input Dialogs 397
Managing and Displaying Dialogs Using Dialog Fragments 398
Managing and Displaying Dialogs Using Activity Event Handlers 400
Using Activities as Dialogs 401
Let’s Make a Toast 401
Customizing Toasts 402
Using Toasts in Worker Threads 404
Introducing Notifications 405
Introducing the Notification Manager 406
Creating Notifications 407
Creating a Notification and Configuring the Status Bar Display 407
Using the Default Notification Sounds, Lights, and Vibrations 408
Making Sounds 408
Vibrating the Device 409
Flashing the Lights 409
Using the Notification Builder 410
Setting and Customizing the Notification Tray Ul 410
Using the Standard Notification Ul an
Creating a Custom Notification Ul 412
Customizing the Ticker View 414
Configuring Ongoing and Insistent Notifications 415
Triggering, Updating, and Canceling Notifications 416
Adding Notifications and Dialogs to the Earthquake Monitor 418
CHAPTER 11: ADVANCED USER EXPERIENCE 425
Designing for Every Screen Size and Density 426
Resolution Independence 426
Using Density-Independent Pixels 426
Resource Qualifiers for Pixel Density 427

XXVi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Supporting and Optimizing for Different Screen Sizes
Creating Scalable Layouts
Optimizing Layouts for Different Screen Types
Specifying Supported Screen Sizes
Creating Scalable Graphics Assets
Color Drawables
Shape Drawables
Gradient Drawables
NinePatch Drawables
Creating Optimized, Adaptive, and Dynamic Designs
Testing, Testing, Testing
Using Emulator Skins
Testing for Custom Resolutions and Screen Sizes
Ensuring Accessibility
Supporting Navigation Without a Touch Screen
Providing a Textual Description of Each View
Introducing Android Text-to-Speech
Using Speech Recognition
Using Speech Recognition for Voice Input
Using Speech Recognition for Search
Controlling Device Vibration
Working with Animations
Tweened View Animations
Creating Tweened View Animations
Applying Tweened Animations
Using Animation Listeners
Animating Layouts and View Groups
Creating and Using Frame-by-Frame Animations
Interpolated Property Animations
Creating Property Animations
Creating Property Animation Sets
Using Animation Listeners
Enhancing Your Views
Advanced Canvas Drawing
What Can You Draw?
Getting the Most from Your Paint
Improving Paint Quality with Anti-Aliasing
Canvas Drawing Best Practice
Advanced Compass Face Example

www.it-ebooks.info

427
428
428
430

431
431
431
432
434
434
435
435
435

436
436
436
437

439
440

44
441

442
442
443
443
444
444
445
446
447
449
449

450
450
450

451
456
457
458

XXVii

http://www.it-ebooks.info/

CONTENTS

Hardware Acceleration 466
Managing Hardware Acceleration Use in Your Applications 466
Checking If Hardware Acceleration Is Enabled 467

Introducing the Surface View 467
When to Use a Surface View 467
Creating Surface Views 468
Creating 3D Views with a Surface View 470

Creating Interactive Controls 470
Using the Touch Screen 471
Using the Device Keys, Buttons, and D-Pad 475
Using the On Key Listener 475
Using the Trackball 476

Advanced Drawable Resources 476

Composite Drawables 476
Transformative Drawables 476
Layer Drawables 477
State List Drawables 478
Level List Drawables 479

Copy, Paste, and the Clipboard 479
Copying Data to the Clipboard 479
Pasting Clipboard Data 480

CHAPTER 12: HARDWARE SENSORS 481

Using Sensors and the Sensor Manager 482

Supported Android Sensors 482

Introducing Virtual Sensors 483

Finding Sensors 484

Monitoring Sensors 485

Interpreting Sensor Values 487

Monitoring a Device’s Movement and Orientation 489

Determining the Natural Orientation of a Device 490

Introducing Accelerometers 491

Detecting Acceleration Changes 492

Creating a Gravitational Force Meter 494

Determining a Device’s Orientation 497
Understanding the Standard Reference Frame 497
Calculating Orientation Using the Accelerometer and

Magnetic Field Sensors 498
Remapping the Orientation Reference Frame 500
Determining Orientation Using the Deprecated Orientation Sensor 501

xxviii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Creating a Compass and Artificial Horizon 502
Introducing the Gyroscope Sensor 505
Introducing the Environmental Sensors 506
Using the Barometer Sensor 506
Creating a Weather Station 508
CHAPTER 13: MAPS, GEOCODING, AND

LOCATION-BASED SERVICES 513
Using Location-Based Services 514
Using the Emulator with Location-Based Services 515
Updating Locations in Emulator Location Providers 515
Configuring the Emulator to Test Location-Based Services 516
Selecting a Location Provider 516
Finding Location Providers 517
Finding Location Providers by Specifying Criteria 517
Determining Location Provider Capabilities 518
Finding Your Current Location 519
Location Privacy 519
Finding the Last Known Location 519
Where Am | Example 519
Refreshing the Current Location 522
Tracking Your Location in Where Am | 525
Requesting a Single Location Update 527
Best Practice for Location Updates 527
Monitoring Location Provider Status and Availability 528
Using Proximity Alerts 530
Using the Geocoder 532
Reverse Geocoding 533
Forward Geocoding 534
Geocoding Where Am | 535
Creating Map-Based Activities 536
Introducing Map View and Map Activity 537
Getting Your Maps API Key 537
Getting Your Development/Debugging MD5 Fingerprint 537
Getting your Production/Release MD5 Fingerprint 538
Creating a Map-Based Activity 538
Maps and Fragments 540
Configuring and Using Map Views 541
Using the Map Controller 541
Mapping Where Am | 542

XXiX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Creating and Using Overlays 546
Creating New Overlays 546
Introducing Projections 547
Drawing on the Overlay Canvas 547
Handling Map Tap Events 548
Adding and Removing Overlays 549
Annotating Where Am | 549

Introducing My Location Overlay 553

Introducing Itemized Overlays and Overlay ltems 554

Pinning Views to the Map and Map Positions 556

Mapping Earthquakes Example 558
CHAPTER 14: INVADING THE HOME SCREEN 565
Introducing Home Screen Widgets 566
Creating App Widgets 567

Creating the Widget XML Layout Resource 567
Widget Design Guidelines 567
Supported Widget Views and Layouts 568

Defining Your Widget Settings 569

Creating Your Widget Intent Receiver and Adding It to the
Application Manifest 570

Introducing the App Widget Manager and Remote Views 572
Creating and Manipulating Remote Views 572
Applying Remote Views to Running App Widgets 574
Using Remote Views to Add Widget Interactivity 575

Refreshing Your Widgets 577
Using the Minimum Update Rate 577
Using Intents 578
Using Alarms 579

Creating and Using a Widget Configuration Activity 580

Creating an Earthquake Widget 582
Introducing Collection View Widgets 587

Creating Collection View Widget Layouts 589

Creating the Remote Views Service 591

Creating a Remote Views Factory 591

Populating Collection View Widgets Using a Remote Views Service 594

Adding Interactivity to the Items Within a Collection View Widget 595

Binding Collection View Widgets to Content Providers 596

Refreshing Your Collection View Widgets 598

Creating an Earthquake Collection View Widget 598

XXX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Introducing Live Folders 605
Creating Live Folders 606
The Live Folder Content Provider 606
The Live Folder Activity 608
Creating an Earthquake Live Folder 610
Surfacing Application Search Results Using the Quick Search Box 614
Surfacing Search Results to the Quick Search Box 614
Adding the Earthquake Example Search Results to the
Quick Search Box 615
Creating Live Wallpaper 616
Creating a Live Wallpaper Definition Resource 616
Creating a Wallpaper Service 617
Creating a Wallpaper Service Engine 618
CHAPTER 15: AUDIO, VIDEO, AND USING THE CAMERA 621
Playing Audio and Video 622
Introducing the Media Player 623
Preparing Audio for Playback 624
Initializing Audio Content for Playback 624
Preparing Video for Playback 625
Playing Video Using the Video View 625
Creating a Surface for Video Playback 626
Controlling Media Player Playback 629
Managing Media Playback Output 631
Responding to the Volume Controls 631
Responding to the Media Playback Controls 632
Requesting and Managing Audio Focus 635
Pausing Playback When the Output Changes 637
Introducing the Remote Control Client 637
Manipulating Raw Audio 640
Recording Sound with Audio Record 640
Playing Sound with Audio Track 642
Creating a Sound Pool 643
Using Audio Effects 645
Using the Camera for Taking Pictures 646
Using Intents to Take Pictures 646
Controlling the Camera Directly 648
Camera Properties 648
Camera Settings and Image Parameters 649
Controlling Auto Focus, Focus Areas, and Metering Areas 650

www.it-ebooks.info

XXXi

http://www.it-ebooks.info/

CONTENTS

Using the Camera Preview 651
Detecting Faces and Facial Features 653
Taking a Picture 654
Reading and Writing JPEG EXIF Image Details 655
Recording Video 656
Using Intents to Record Video 656
Using the Media Recorder to Record Video 657
Configuring the Video Recorder 658
Previewing the Video Stream 660
Controlling the Recording 660
Creating a Time-Lapse Video 661
Using Media Effects 661
Adding Media to the Media Store 662
Inserting Media Using the Media Scanner 662
Inserting Media Manually 663
CHAPTER 16: BLUETOOTH, NFC, NETWORKS, AND WI-FI 665
Using Bluetooth 666
Managing the Local Bluetooth Device Adapter 666
Being Discoverable and Remote Device Discovery 669
Managing Device Discoverability 669
Discovering Remote Devices 671
Bluetooth Communications 673
Opening a Bluetooth Server Socket Listener 674
Selecting Remote Bluetooth Devices for Communications 675
Opening a Client Bluetooth Socket Connection 676
Transmitting Data Using Bluetooth Sockets 677
Managing Network and Internet Connectivity 679
Introducing the Connectivity Manager 679
Supporting User Preferences for Background Data Transfers 679
Finding and Monitoring Network Connectivity 681
Managing Wi-Fi 682
Monitoring Wi-Fi Connectivity 683
Monitoring Active Wi-Fi Connection Details 684
Scanning for Hotspots 684
Managing Wi-Fi Configurations 685
Creating Wi-Fi Network Configurations 685
Transferring Data Using Wi-Fi Direct 686
Initializing the Wi-Fi Direct Framework 686
Enabling Wi-Fi Direct and Monitoring Its Status 688

XXXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Discovering Peers 689
Connecting with Peers 690
Transferring Data Between Peers 692
Near Field Communication 693
Reading NFC Tags 693
Using the Foreground Dispatch System 695
Introducing Android Beam 697
Creating Android Beam Messages 697
Assigning the Android Beam Payload 699
Receiving Android Beam Messages 699
CHAPTER 17: TELEPHONY AND SMS 701
Hardware Support for Telephony 701
Marking Telephony as a Required Hardware Feature 702
Checking for Telephony Hardware 702
Using Telephony 702
Initiating Phone Calls 703
Replacing the Native Dialer 703
Accessing Telephony Properties and Phone State 705
Reading Phone Device Details 705
Reading Network Details 706
Reading SIM Details 707
Reading Data Connection and Transfer State Details 707
Monitoring Changes in Phone State Using the Phone State Listener 708
Monitoring Incoming Phone Calls 709
Tracking Cell Location Changes 710
Tracking Service Changes 710
Monitoring Data Connectivity and Data Transfer Status Changes m
Using Intent Receivers to Monitor Incoming Phone Calls 712
Introducing SMS and MMS 713
Using SMS and MMS in Your Application 713
Sending SMS and MMS from Your Application Using Intents 713
Sending SMS Messages Using the SMS Manager 714
Sending Text Messages 715
Tracking and Confirming SMS Message Delivery 715
Conforming to the Maximum SMS Message Size 717
Sending Data Messages 717
Listening for Incoming SMS Messages 717
Simulating Incoming SMS Messages in the Emulator 719
Handling Data SMS Messages 719

www.it-ebooks.info

XXxiii

http://www.it-ebooks.info/

CONTENTS

Emergency Responder SMS Example 720
Automating the Emergency Responder 729
Introducing SIP and VOIP 737
CHAPTER 18: ADVANCED ANDROID DEVELOPMENT 739
Paranoid Android 740
Linux Kernel Security 740
Introducing Permissions 740
Declaring and Enforcing Permissions 741
Enforcing Permissions when Broadcasting Intents 742
Introducing Cloud to Device Messaging 743
C2DM Restrictions 743
Signing Up to Use C2DM 744
Registering Devices with a C2DM Server 744
Sending C2DM Messages to Devices 748
Receiving C2DM Messages 749
Implementing Copy Protection Using the License
Verification Library 750
Installing the License Verification Library 750
Finding Your License Verification Public Key 751
Configuring Your License Validation Policy 751
Performing License Validation Checks 752
Introducing In-App Billing 753
In-App Billing Restrictions 754
Installing the In-App Billing Library 754
Finding Your Public Key and Defining Your Purchasable Items 754
Initiating In-App Billing Transactions 755
Handling In-App Billing Purchase Request Responses 756
Using Wake Locks 757
Using AIDL to Support Inter-Process Communication for Services 759
Implementing an AIDL Interface 759
Making Classes Parcelable 759
Creating an AIDL Service Definition 762
Implementing and Exposing the AIDL Service Definition 762
Dealing with Different Hardware and Software Availability 765
Specifying Hardware as Required 766
Confirming Hardware Availability 766
Building Backward-Compatible Applications 766
Parallel Activities 767
Interfaces and Fragments 768
Optimizing Ul Performance with Strict Mode 769

XXXiV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 19: MONETIZING, PROMOTING, AND DISTRIBUTING

APPLICATIONS 7
Signing and Publishing Applications 772
Signing Applications Using the Export Android Application Wizard 772
Distributing Applications 774
Introducing the Google Play 774
Getting Started with Google Play 775
Publishing Applications 776
Application Reports Within the Developer Console 778
Accessing Application Error Reports 778
An Introduction to Monetizing Your Applications 779
Application Marketing, Promotion, and Distribution Strategies 780
Application Launch Strategies 781
Promotion Within Google Play 781
Internationalization 782
Analytics and Referral Tracking 783
Using Google Analytics for Mobile Applications 784
Referral Tracking with Google Analytics 786
INDEX 787

www.it-ebooks.info

XXXV

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

THIS IS AN EXCITING TIME FOR ANDROID DEVELOPERS. Mobile phones have never been more popu-
lar; powerful smartphones are now a regular choice for consumers; and the Android ecosystem
has expanded to include tablet and TV devices to further expand the audience of your Android
applications.

Hundreds of stylish and versatile devices — packing hardware features such as GPS, accelerometers,
NFC, and touch screens, combined with reasonably priced data plans — provide an enticing plat-
form upon which to create innovative applications for all Android devices.

Android offers an open alternative for mobile application development. Without artificial barriers,
Android developers are free to write applications that take full advantage of increasingly powerful
mobile hardware and distribute them in an open market. As a result, developer interest in Android
devices has exploded as handset sales have continued to grow. As of 2012, there are hundreds of
handset and tablet OEMs, including HTC, Motorola, LG, Samsung, ASUS, and Sony Ericsson.
More than 300 million Android devices have been activated, and that number is growing at a rate of
over 850,000 activations every day.

Using Google Play for distribution, developers can take advantage of an open marketplace, with no
review process, for distributing free and paid applications to all compatible Android devices. Built
on an open-source framework, and featuring powerful SDK libraries, Android has enabled more
than 450,000 applications to be launched in Google Play.

This book is a hands-on guide to building mobile applications using version 4 of the Android SDK.
Chapter by chapter, it takes you through a series of sample projects, each introducing new features
and techniques to get the most out of Android. It covers all the basic functionality to get started, as
well as the information for experienced mobile developers to leverage the unique features of Android
to enhance existing products or create innovative new ones.

Google’s philosophy is to release early and iterate often. Since Android’s first full release in
December 2008, there have been 19 platform and SDK releases. With such a rapid release cycle,
there are likely to be regular changes and improvements to the software and development libraries.
While the Android engineering team works hard to ensure backward compatibility, future releases
are likely to date some of the information provided in this book. Similarly, not all active Android
devices will be running the latest platform release.

Wherever possible, I have included details on which platform releases support the functionality
described, and which alternatives may exist to provide support for users of older devices. Further,
the explanations and examples included will give you the grounding and knowledge needed to write
compelling mobile applications using the current SDK, along with the flexibility to quickly adapt to
future enhancements.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

WHO THIS BOOK IS FOR

This book is for anyone interested in creating applications for the Android platform. It includes
information that will be valuable, whether you’re an experienced mobile developer or making your
first foray, via Android, into writing mobile applications.

It will help if you have used smartphones (particularly phones running Android), but it’s not neces-
sary, nor is prior experience in mobile application development.

It’s expected that you’ll have some experience in software development and be familiar with basic
object-oriented development practices. An understanding of Java syntax is a requirement, and
detailed knowledge and experience is a distinct advantage, though not a strict necessity.

Chapters 1 and 2 introduce mobile development and contain instructions to get you started in
Android. Beyond that, there’s no requirement to read the chapters in order, although a good under-
standing of the core components described in Chapters 3-9 is important before you venture into

the remaining chapters. Chapters 10 and 11 cover important details on how to create an application
that provides a rich and consistent user experience, while Chapters 12-19 cover a variety of optional
and advanced functionality and can be read in whatever order interest or need dictates.

WHAT THIS BOOK COVERS

Chapter 1 introduces Android, including what it is and how it fits into existing mobile development.
What Android offers as a development platform and why it’s an exciting opportunity for creating
mobile phone applications are then examined in greater detail.

Chapter 2 covers some best practices for mobile development and explains how to download the
Android SDK and start developing applications. It also introduces the Android Developer Tools and
demonstrates how to create new applications from scratch.

Chapters 3-9 take an in-depth look at the fundamental Android application components. Starting
with examining the pieces that make up an Android application and its lifecycle, you’ll quickly move
on to the application manifest and external resources before learning about “Activities,” their life-
times, and their lifecycles.

You’ll then learn how to create basic user interfaces with layouts, Views, and Fragments, before being
introduced to the Intent and Broadcast Receiver mechanisms used to perform actions and send mes-
sages between application components. Internet resources are then covered, followed by a detailed
look at data storage, retrieval, and sharing. You’ll start with the preference-saving mechanism and
then move on to file handling, databases, and Cursors. You’ll also learn how share application data
using Content Providers and access data from the native Content Providers. This section finishes with
an examination of how to work in the background using Services and background Threads.

Chapters 10 and 11 build on the Ul lessons you learned in Chapter 4, examining how to enhance
the user experience through the use of the Action Bar, Menu System, and Notifications. You’ll
learn how to make your applications display-agnostic (optimized for a variety of screen sizes and

XXXViii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

resolutions), how to make your applications accessible, and how to use speech recognition within
your applications.

Chapters 12-18 look at more advanced topics. You’ll learn how to use the compass, accelerometers,
and other hardware sensors to let your application react to its environment, and then look at maps
and location-based services. Next, you’ll learn how your applications can interact with users directly
from the home screen using dynamic Widgets, Live Wallpaper, and the Quick Search Box.

After looking at playing and recording multimedia, and using the camera, you’ll be introduced to
Android’s communication capabilities. Bluetooth, NFC, Wi-Fi Direct, and network management
(both Wi-Fi and mobile data connections) are covered, followed by the telephony APIs and the APIs
used to send and receive SMS messages.

Chapter 18 discusses several advanced development topics, including security, IPC, Cloud to Device
Messaging, the License Verification Library, and Strict Mode.

Finally, Chapter 19 examines the options and opportunities available for publishing, distributing,
and monetizing your applications — primarily within Google Play.

HOW THIS BOOK IS STRUCTURED

This book is structured in a logical sequence to help readers of different development backgrounds
learn how to write advanced Android applications. There’s no requirement to read each chapter
sequentially, but several of the sample projects are developed over the course of several chapters,
adding new functionality and other enhancements at each stage.

Experienced mobile developers with a working Android development environment can skim the first
two chapters — which are an introduction to mobile development and instructions for creating your
development environment — and then dive in at Chapters 3-9. These chapters cover the fundamentals
of Android development, so it’s important to have a solid understanding of the concepts they describe.

With this covered, you can move on to the remaining chapters, which look at maps, location-based
services, background applications, and more advanced topics, such as hardware interaction and
networking,.

WHAT YOU NEED TO USE THIS BOOK

To use the code samples in this book, you will need to create an Android development environment
by downloading the Android SDK, developer tools, and the Java Development Kit. You may also
want to download and install Eclipse and the Android Developer Tools plug-in to ease your develop-
ment, but neither is a requirement.

Android development is supported in Windows, Mac OS, and Linux, with the SDK available from
the Android web site.

You do not need an Android device to use this book or develop Android applications, though it can
be useful — particularly when testing.

XXXiX

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Chapter 2 outlines these requirements in more detail and describes where to
download and how to install each component.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

Boxes with a warning icon like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

As for styles in the text:

» We show file names, URLs, and code within the text like so: persistence.properties.

> To help readability, class names in text are often represented using a regular font but capital-

ized like so: Content Provider.
> We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

> In some code samples, you’ll see lines marked as follows:

[... previous code goes here ...]

or

[... implement something here ...]

These represent instructions to replace the entire line (including the square brackets) with
actual code, either from a previous code snippet (in the former case) or with your own
implementation (in the latter).

> To keep the code samples reasonably concise, I have not always included every import state-

ment required in the code samples. The downloadable code samples described below include
all the required import statements. Additionally, if you are developing using Eclipse, you can
use the keyboard shortcut Ctrl+Shift+O (Cmd+Shift+O) to insert the required import state-
ments automatically.

xl

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book. Code that is included on the web site is highlighted by the
following icon:

J

Available for
download on
Wrox.com

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

code snippet filename

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-1-118-10227-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

xli

www.it-ebooks.info

http://www.wrox.com
http://www.wrox.com/dynamic/books/download
http://www.wrox.com
http://www.wrox.com/misc-pages
http://www.it-ebooks.info/

INTRODUCTION

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fix the problem in sub-
sequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P

and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xlii

www.it-ebooks.info

http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://www.wrox.com/contact/techsup-port.shtml
http://p2p.wrox.com
http://www.it-ebooks.info/

PROFESSIONAL

Android™ 4 Application Development

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Hello, Android

WHAT’S IN THIS CHAPTER?

A background of mobile application development
What Android is (and what it isn’t)

An introduction to the Android SDK features
Which devices Android runs on

Why you should develop for mobile and Android

Y Y Y VY VY Y

An introduction to the Android SDK and development framework

Whether you’re an experienced mobile engineer, a desktop or web developer, or a complete
programming novice, Android represents an exciting new opportunity to write innovative
applications for an increasingly wide range of devices.

Despite the name, Android will not help you create an unstoppable army of emotionless

robot warriors on a relentless quest to cleanse the earth of the scourge of humanity. Instead,
Android is an open-source software stack that includes the operating system, middleware, and
key mobile applications, along with a set of API libraries for writing applications that can
shape the look, feel, and function of the devices on which they run.

Small, stylish, and versatile, modern mobile devices have become powerful tools that incorpo-
rate touchscreens, cameras, media players, Global Positioning System (GPS) receivers, and Near
Field Communications (NFC) hardware. As technology has evolved, mobile phones have become
about much more than simply making calls. With the introduction of tablets and Google TV,
Android has expanded beyond its roots as a mobile phone operating system, providing a consis-
tent platform for application development across an increasingly wide range of hardware.

In Android, native and third-party applications are written with the same APIs and executed
on the same run time. These APIs feature hardware access, video recording, location-based

www.it-ebooks.info

http://www.it-ebooks.info/

2 | CHAPTER1 HELLO, ANDROID

services, support for background services, map-based activities, relational databases, inter-application
communication, Bluetooth, NFC, and 2D and 3D graphics.

This book describes how to use these APIs to create your own Android applications. In this chapter
youw’ll learn some guidelines for mobile and embedded hardware development, as well as be intro-
duced to some of the platform features available for Android development.

Android has powerful APIs, excellent documentation, a thriving developer community, and no
development or distribution costs. As mobile devices continue to increase in popularity, and Android
devices expand into exciting new form-factors, you have the opportunity to create innovative appli-
cations no matter what your development experience.

A LITTLE BACKGROUND

In the days before Twitter and Facebook, when Google was still a twinkle in its founders’ eyes and
dinosaurs roamed the earth, mobile phones were just that — portable phones small enough to fit
inside a briefcase, featuring batteries that could last up to several hours. They did, however, offer
the freedom to make calls without being physically connected to a landline.

Increasingly small, stylish, and powerful, mobile phones are now ubiquitous and indispensable.
Hardware advancements have made mobiles smaller and more efficient while featuring bigger,
brighter screens and including an increasing number of hardware peripherals.

After first including cameras and media players, mobiles now feature GPS receivers, accelerometers,
NFC hardware, and high-definition touchscreens. These hardware innovations offer fertile ground
for software development, but until relatively recently the applications available for mobile phones
have lagged behind their hardware counterparts.

The Not-So-Distant Past

Historically, developers, generally coding in low-level C or C++, have needed to understand the spe-
cific hardware they were coding for, typically a single device or possibly a range of devices from a
single manufacturer. As hardware technology and mobile Internet access has advanced, this closed
approach has become outmoded.

Platforms such as Symbian were later created to provide developers with a wider target audience.
These systems proved more successful in encouraging mobile developers to provide rich applications
that better leveraged the hardware available.

Although these platforms did, and continue to, offer some access to the device hardware, they gener-
ally required developers to write complex C/C++ code and make heavy use of proprietary APIs that are
notoriously difficult to work with. This difficulty is amplified for applications that must work on differ-
ent hardware implementations and those that make use of a particular hardware feature, such as GPS.

In more recent years, the biggest advance in mobile phone development was the introduction of Java-
hosted MIDlets. MIDlets are executed on a Java virtual machine (JVM), a process that abstracts the
underlying hardware and lets developers create applications that run on the wide variety of devices
that support the Java run time. Unfortunately, this convenience comes at the price of restricted
access to the device hardware.

www.it-ebooks.info

http://www.it-ebooks.info/

What Android Isn’t | 3

In mobile development, it was long considered normal for third-party applications to receive dif-
ferent hardware access and execution rights from those given to native applications written by the
phone manufacturers, with MIDlets often receiving few of either.

The introduction of Java MIDlets expanded developers’ audiences, but the lack of low-level hardware
access and sandboxed execution meant that most mobile applications were regular desktop programs

or websites designed to render on a smaller screen, and didn’t take advantage of the inherent mobility
of the handheld platform.

Living in the Future

Android sits alongside a new wave of modern mobile operating systems designed to support applica-
tion development on increasingly powerful mobile hardware. Platforms like Microsoft’s Windows
Phone and the Apple iPhone also provide a richer, simplified development environment for mobile
applications; however, unlike Android, they’re built on proprietary operating systems. In some cases
they prioritize native applications over those created by third parties, restrict communication among
applications and native phone data, and restrict or control the distribution of third-party applica-
tions to their platforms.

Android offers new possibilities for mobile applications by offering an open development environ-
ment built on an open-source Linux kernel. Hardware access is available to all applications through
a series of API libraries, and application interaction, while carefully controlled, is fully supported.

In Android, all applications have equal standing. Third-party and native Android applications are
written with the same APIs and are executed on the same run time. Users can remove and replace
any native application with a third-party developer’s alternative; indeed, even the dialer and home
screens can be replaced.

WHAT ANDROID ISN’T

As a disruptive addition to a mature field, it’s not hard to see why there has been some confusion
about what exactly Android is. Android is not the following:

> A Java ME implementation — Android applications are written using the Java language,
but they are not run within a Java ME (Mobile Edition) VM, and Java-compiled classes and
executables will not run natively in Android.

> Part of the Linux Phone Standards Forum (LiPS) or the Open Mobile Alliance (OMA) —
Android runs on an open-source Linux kernel, but, while their goals are similar, Android’s
complete software stack approach goes further than the focus of these standards-defining
organizations.

> Simply an application layer (such as UIQ or S60) — Although Android does include an appli-
cation layer, “Android” also describes the entire software stack, encompassing the underlying
operating system, the API libraries, and the applications themselves.

> A mobile phone handset — Android includes a reference design for mobile handset manufac-
turers, but there is no single “Android phone.” Instead, Android has been designed to sup-
port many alternative hardware devices.

www.it-ebooks.info

http://www.it-ebooks.info/

4 | CHAPTER1 HELLO, ANDROID

Google’s answer to the iPhone — The iPhone is a fully proprietary hardware and software
platform released by a single company (Apple), whereas Android is an open-source
software stack produced and supported by the Open Handset Alliance (OHA) and designed
to operate on any compatible device.

ANDROID: AN OPEN PLATFORM FOR MOBILE DEVELOPMENT

Google’s Andy Rubin describes Android as follows:

The first truly open and comprebensive platform for mobile devices. It includes
an operating system, user-interface and applications — all of the software to run
a mobile phone but without the proprietary obstacles that have hindered mobile
innovation.

—WHERE’S MY GPHONE? (http://googleblog.blogspot.com/2007/11/
wheres-my-gphone.html)

More recently, Android has expanded beyond a pure mobile phone platform to provide a develop-
ment platform for an increasingly wide range of hardware, including tablets and televisions.

Put simply, Android is an ecosystem made up of a combination of three components:

>

>

>

A free, open-source operating system for embedded devices
An open-source development platform for creating applications

Devices, particularly mobile phones, that run the Android operating system and the applica-
tions created for it

More specifically, Android is made up of several necessary and dependent parts, including the
following:

>

A Compatibility Definition Document (CDD) and Compatibility Test Suite (CTS) that
describe the capabilities required for a device to support the software stack.

A Linux operating system kernel that provides a low-level interface with the hardware, mem-
ory management, and process control, all optimized for mobile and embedded devices.

Open-source libraries for application development, including SQLite, WebKit, OpenGL, and
a media manager.

A run time used to execute and host Android applications, including the Dalvik Virtual
Machine (VM) and the core libraries that provide Android-specific functionality. The run
time is designed to be small and efficient for use on mobile devices.

An application framework that agnostically exposes system services to the application layer,
including the window manager and location manager, databases, telephony, and sensors.

A user interface framework used to host and launch applications.

A set of core pre-installed applications.

www.it-ebooks.info

http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://googleblog.blogspot.com/2007/11/wheres-my-gphone.html
http://www.it-ebooks.info/

Native Android Applications | 5

> A software development kit (SDK) used to create applications, including the related tools,
plug-ins, and documentation.

What really makes Android compelling is its open philosophy, which ensures that you can fix any
deficiencies in user interface or native application design by writing an extension or replacement.
Android provides you, as a developer, with the opportunity to create mobile phone interfaces and
applications designed to look, feel, and function exactly as you imagine them.

NATIVE ANDROID APPLICATIONS

Android devices typically come with a suite of preinstalled applications that form part of
the Android Open Source Project (AOSP), including, but not necessarily limited to, the following:

> An e-mail client

An SMS management application

A full PIM (personal information management) suite, including a calendar and contacts list
A WebKit-based web browser

A music player and picture gallery

A camera and video recording application

A calculator

A home screen

Y Y Y VY VY Y VY

An alarm clock

In many cases Android devices also ship with the following proprietary Google mobile applications:
> The Google Play Store for downloading third-party Android applications

> A fully featured mobile Google Maps application, including StreetView, driving directions,
and turn-by-turn navigation, satellite views, and traffic conditions

The Gmail email client
The Google Talk instant-messaging client

> The YouTube video player

The data stored and used by many of these native applications — such as contact details — are also
available to third-party applications. Similarly, your applications can respond to events such as
incoming calls.

The exact makeup of the applications available on new Android phones is likely to vary based
on the hardware manufacturer and/or the phone carrier or distributor.

The open-source nature of Android means that carriers and OEMs can customize the user interface
and the applications bundled with each Android device. Several OEMs have done this, including
HTC with Sense, Motorola with MotoBlur, and Samsung with TouchWiz.

www.it-ebooks.info

http://www.it-ebooks.info/

6 | CHAPTER1 HELLO, ANDROID

It’s important to note that for compatible devices, the underlying platform and SDK remain consis-
tent across OEM and carrier variations. The look and feel of the user interface may vary, but your
applications will function in the same way across all compatible Android devices.

ANDROID SDK FEATURES

The true appeal of Android as a development environment lies in its APIs.

As an application-neutral platform, Android gives you the opportunity to create applications that
are as much a part of the phone as anything provided out-of-the-box. The following list highlights
some of the most noteworthy Android features:

>

Y Y Y VY VY VY VY VY VYYy \

\

GSM, EDGE, 3G, 4G, and LTE networks for telephony or data transfer, enabling you to
make or receive calls or SMS messages, or to send and retrieve data across mobile networks

Comprehensive APIs for location-based services such as GPS and network-based location
detection

Full support for applications that integrate map controls as part of their user interfaces
Wi-Fi hardware access and peer-to-peer connections

Full multimedia hardware control, including playback and recording with the camera and
microphone

Media libraries for playing and recording a variety of audio/video or still-image formats
APIs for using sensor hardware, including accelerometers, compasses, and barometers
Libraries for using Bluetooth and NFC hardware for peer-to-peer data transfer

IPC message passing

Shared data stores and APIs for contacts, social networking, calendar, and multi-media
Background Services, applications, and processes

Home-screen Widgets and Live Wallpaper

The ability to integrate application search results into the system searches

An integrated open-source HTML5 WebKit-based browser

Mobile-optimized, hardware-accelerated graphics, including a path-based 2D graphics library
and support for 3D graphics using OpenGL ES 2.0

Localization through a dynamic resource framework

An application framework that encourages the reuse of application components and the
replacement of native applications

Access to Hardware, Including Camera, GPS, and Sensors

Android includes API libraries to simplify development involving the underlying device hardware.
They ensure that you don’t need to create specific implementations of your software for different
devices, so you can create Android applications that work as expected on any device that supports
the Android software stack.

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Features | 7

The Android SDK includes APIs for location-based hardware (such as GPS), the camera, audio, net-
work connections, Wi-Fi, Bluetooth, sensors (including accelerometers), NFC, the touchscreen, and
power management. You can explore the possibilities of some of Android’s hardware APIs in more
detail in Chapters 12 and 15-17.

Data Transfers Using Wi-Fi, Bluetooth, and NFC

Android offers rich support for transferring data between devices, including Bluetooth, Wi-Fi
Direct, and Android Beam. These technologies offer a rich variety of techniques for sharing data
between paired devices, depending on the hardware available on the underlying device, allowing
you to create innovative collaborative applications.

In addition, Android offers APIs to manage your network connections, Bluetooth connections, and
NEFC tag reading.

Details on using Android’s communications APIs are available in Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi.”

Maps, Geocoding, and Location-Based Services

Embedded map support enables you to create a range of map-based applications that leverage the
mobility of Android devices. Android lets you design user interfaces that include interactive Google
Maps that you can control programmatically and annotate using Android’s rich graphics library.

Android’s location-based services manage technologies such as GPS and Google’s network-based
location technology to determine the device’s current position. These services enforce an abstrac-
tion from specific location-detecting technology and let you specify minimum requirements (e.g.,
accuracy or cost) rather than selecting a particular technology. This also means your location-based
applications will work no matter what technology the host device supports.

To combine maps with locations, Android includes an API for forward and reverse geocoding that
lets you find map coordinates for an address, and the address of a map position.

You'll learn the details of using maps, the geocoder, and location-based ser-
vices in Chapter 13, “Maps, Geocoding, and Location-Based Services.”

Background Services

Android supports applications and services designed to run in the background while your applica-
tion isn’t being actively used.

Modern mobiles and tablets are by nature multifunction devices; however, their screen sizes and
interaction models mean that generally only one interactive application is visible at any time.
Platforms that don’t support background execution limit the viability of applications that don’t need
your constant attention.

www.it-ebooks.info

http://www.it-ebooks.info/

8 | CHAPTER1 HELLO, ANDROID

Background services make it possible to create invisible application components that perform auto-
matic processing without direct user action. Background execution allows your applications to
become event-driven and to support regular updates, which is perfect for monitoring game scores
or market prices, generating location-based alerts, or prioritizing and prescreening incoming calls
and SMS messages.

Notifications are the standard means by which a mobile device traditionally alerts users to events that
have happened in a background application. Using the Notification Manager, you can trigger audible
alerts, cause vibration, and flash the device’s LED, as well as control status bar notification icons.

Learn more about how to use Notifications and get the most out of back-
ground services in Chapters 9 and 10.

SQLite Database for Data Storage and Retrieval

Rapid and efficient data storage and retrieval are essential for a device whose storage capacity is
relatively limited.

Android provides a lightweight relational database for each application via SQLite. Your applications
can take advantage of this managed relational database engine to store data securely and efficiently.

By default, each application database is sandboxed — its content is available only to the application
that created it — but Content Providers supply a mechanism for the managed sharing of these appli-
cation databases as well as providing an abstraction between your application and the underlying
data source.

Databases and Content Providers are covered in detail in Chapter 8, “Databases
and Content Providers.”

Shared Data and Inter-Application Communication

Android includes several techniques for making information from your applications available for use
elsewhere, primarily: Intents and Content Providers.

Intents provide a mechanism for message-passing within and between applications. Using Intents,
you can broadcast a desired action (such as dialing the phone or editing a contact) systemwide for
other applications to handle. Using the same mechanism, you can register your own application to
receive these messages or execute the requested actions.

You can use Content Providers to provide secure, managed access to your applications’ private data-
bases. The data stores for native applications, such as the contact manager, are exposed as Content
Providers so you can read or modify this data from within your own applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Android SDK Features | 9

Intents are a fundamental component of Android and are covered in depth in
Chapter 5, “Intents and Broadcast Receivers.”

Chapter 8 covers content providers in detail, including the native providers, and
demonstrates how to create and use providers of your own.

Using Widgets and Live Wallpaper to Enhance the Home Screen

Widgets and Live Wallpaper let you create dynamic application components that provide a window
into your applications, or offer useful and timely information, directly on the home screen.

Offering a way for users to interact with your application directly from the home screen increases
user engagement by giving them instant access to interesting information without needing to open
the application, as well as adding a dynamic shortcut into your application from their home screen.

You’ll learn how to create application components for the home screen in
Chapter 14, “Invading the Home Screen.”

Extensive Media Support and 2D/3D Graphics

Bigger screens and brighter, higher-resolution displays have helped make mobiles multimedia
devices. To help you make the most of the hardware available, Android provides graphics libraries
for 2D canvas drawing and 3D graphics with OpenGL.

Android also offers comprehensive libraries for handling still images, video, and audio files, includ-
ing the MPEG4, H.264, HTTP Live Streaming, VPS, WEBP, MP3, AAC, AMR, HLS, JPG, PNG,
and GIF formats.

@ 2D and 3D graphics are covered in depth in Chapter 11, “Advanced User
Experience,” and Android media management libraries are covered in Chapter 15,
“Audio, Video, and Using the Camera.”

Cloud to Device Messaging

The Android Cloud to Device Messaging (C2DM) service provides an efficient mechanism for devel-
opers to create event-driven applications based on server-side pushes.

Using C2DM you can create a lightweight, always-on connection between your mobile application
and your server, allowing you to send small amounts of data directly to your device in real time.

www.it-ebooks.info

http://www.it-ebooks.info/

10 | CHAPTER1 HELLO, ANDROID

The C2DM service is typically used to prompt applications of new data available on the server,
reducing the need for polling, decreasing the battery impact of an application’s updates, and improv-
ing the timeliness of those updates.

Optimized Memory and Process Management

Like Java and .NET, Android uses its own run time and VM to manage application memory. Unlike
with either of these other frameworks, the Android run time also manages the process lifetimes.
Android ensures application responsiveness by stopping and killing processes as necessary to free
resources for higher-priority applications.

In this context, the highest priority is given to the application with which the user is interacting.
Ensuring that your applications are prepared for a swift death but are still able to remain responsive,
and to update or restart in the background if necessary, is an important consideration in an environ-
ment that does not allow applications to control their own lifetimes.

You will learn more about the Android application lifecycle in Chapter 3,
“Creating Applications and Activities.”

INTRODUCING THE OPEN HANDSET ALLIANCE

The Open Handset Alliance (OHA) is a collection of more than 80 technology companies, includ-
ing hardware manufacturers, mobile carriers, software developers, semiconductor companies, and
commercialization companies. Of particular note are the prominent mobile technology companies,
including Samsung, Motorola, HTC, T-Mobile, Vodafone, ARM, and Qualcomm. In their own
words, the OHA represents the following:

A commitment to openness, a shared vision for the future, and concrete plans to
make the vision a reality. To accelerate innovation in mobile and offer consumers
a richer, less expensive, and better mobile experience.

—www. openhandsetalliance.com
The OHA hopes to deliver a better mobile software experience for consumers by providing the plat-

form needed for innovative mobile development at a faster rate and with higher quality than existing
platforms, without licensing fees for either software developers or handset manufacturers.

WHAT DOES ANDROID RUN ON?

The first Android mobile handset, the T-Mobile G1, was released in the United States in October
2008. By the beginning of 2012, more than 300 million Android-compatible devices have been sold
from more than 39 manufacturers, in more than 123 countries, on 231 different carrier networks.

Rather than being a mobile OS created for a single hardware implementation, Android is designed
to support a large variety of hardware platforms, from smartphones to tablets and televisions.

www.it-ebooks.info

http://www.openhandsetalliance.com
http://www.it-ebooks.info/

Why Develop for Android? | 11

With no licensing fees or proprietary software, the cost to handset manufacturers for providing
Android devices is comparatively low. Many people now expect that the advantages of Android as a
platform for creating powerful applications will encourage device manufacturers to produce increas-
ingly diverse and tailored hardware.

WHY DEVELOP FOR MOBILE?

In market terms, the emergence of modern mobile smartphones — multifunction devices including a
phone but featuring a full-featured web browser, cameras, media players, Wi-Fi, and location-based
services — has fundamentally changed the way people interact with their mobile devices and access
the Internet.

Mobile-phone ownership easily surpasses computer ownership in many countries, with more than

3 billion mobile phone users worldwide. 2009 marked the year that more people accessed the Internet
for the first time from a mobile phone rather than a PC. Many people believe that within the next

5 years more people will access the Internet by mobile phone rather than using personal computers.

The increasing popularity of modern smartphones, combined with the increasing availability of high-
speed mobile data and Wi-Fi hotspots, has created a huge opportunity for advanced mobile applications.

The ubiquity of mobile phones, and our attachment to them, makes them a fundamentally different
platform for development from PCs. With a microphone, camera, touchscreen, location detection,
and environmental sensors, a phone can effectively become an extra-sensory perception device.

Smartphone applications have changed the way people use their phones. This gives you, the applica-
tion developer, a unique opportunity to create dynamic, compelling new applications that become a
vital part of people’s lives.

WHY DEVELOP FOR ANDROID?

Android represents a clean break, a mobile framework based on the reality of modern mobile
devices designed by developers, for developers.

With a simple, powerful, and open SDK, no licensing fees, excellent documentation, and a thriving
developer community, Android represents an opportunity to create software that changes how and
why people use their mobile phones.

The barrier to entry for new Android developers is minimal:

> No certification is required to become an Android developer.

> Google Play provides free, up-front purchase, and in-app billing options for distribution and
monetization of your applications.

There is no approval process for application distribution.

> Developers have total control over their brands.

From a commercial perspective, more than 850,000 new Android devices are activated daily, with
many studies showing the largest proportion of new smartphone sales belonging to Android devices.

www.it-ebooks.info

http://www.it-ebooks.info/

12 | CHAPTER1 HELLO, ANDROID

As of March 2012, Google Play (formerly Android Market) has expanded its support for application
sales to 131 countries, supporting more than 10 billion installs at a growth rate of 1 billion downloads
per month.

Factors Driving Android’s Adoption

Developers have always been a critical element within the Android ecosystem, with Google and the
OHA betting that the way to deliver better mobile software to consumers is to make it easier for
developers to write it.

As a development platform, Android is powerful and intuitive, enabling developers who have never
programmed for mobile devices to create innovative applications quickly and easily. It’s easy to see how
compelling Android applications have created demand for the devices necessary to run them, particu-
larly when developers write applications for Android because they can’t write them for other platforms.

As Android expands into more form-factors, with increasingly powerful hardware, advanced sen-
sors, and new developer APIs, the opportunities for innovation will continue to grow.

Open access to the nuts and bolts of the underlying system is what’s always driven software develop-
ment and platform adoption. The Internet’s inherent openness has seen it become the platform for

a multibillion-dollar industry within 10 years of its inception. Before that, it was open systems such
as Linux and the powerful APIs provided as part of the Windows operating system that enabled the
explosion in personal computers and the movement of computer programming from the arcane to
the mainstream.

This openness and power ensure that anyone with the inclination can bring a vision to life at
minimal cost.

What Android Has That Other Platforms Don’t Have

Many of the features listed previously, such as 3D graphics and native database support, are also
available in other native mobile SDKs, as well as becoming available on mobile browsers.

The pace of innovation in mobile platforms, both Android and its competitors, makes an accurate
comparison of the available features difficult. The following noncomprehensive list details some of the
features available on Android that may not be available on all modern mobile development platforms:

> Google Maps applications — Google Maps for Mobile has been hugely popular, and
Android offers a Google Map as an atomic, reusable control for use in your applications. The
Map View lets you display, manipulate, and annotate a Google Map within your Activities to
build map-based applications using the familiar Google Maps interface.

> Background services and applications — Full support for background applications and ser-
vices lets you create applications based on an event-driven model, working silently while other
applications are being used or while your mobile sits ignored until it rings, flashes, or vibrates
to get your attention. Maybe it’s a streaming music player, an application that tracks the stock
market, alerting you to significant changes in your portfolio, or a service that changes your
ringtone or volume depending on your current location, the time of day, and the identity of
the caller. Android provides the same opportunities for all applications and developers.

www.it-ebooks.info

http://www.it-ebooks.info/

Why Develop for Android? | 13

> Shared data and inter-process communication — Using Intents and Content Providers,
Android lets your applications exchange messages, perform processing, and share data. You
can also use these mechanisms to leverage the data and functionality provided by the native
Android applications. To mitigate the risks of such an open strategy, each application’s pro-
cess, data storage, and files are private unless explicitly shared with other applications via
a full permission-based security mechanism, as detailed in Chapter 18, “Advanced Android
Development.”

> All applications are created equal — Android doesn’t differentiate between native applica-
tions and those developed by third parties. This gives consumers unprecedented power to
change the look and feel of their devices by letting them completely replace every native
application with a third-party alternative that has access to the same underlying data and
hardware.

> Wi-Fi Direct and Android Beam — Using these innovative new inter-device communication
APIs, you can include features such as instant media sharing and streaming. Android Beam is
an NFC-based API that lets you provide support for proximity-based interaction, while Wi-Fi
Direct offers a wider range peer-to-peer for reliable, high-speed communication between
devices.

> Home-screen Widgets, Live Wallpaper, and the quick search box — Using Widgets and Live
Wallpaper, you can create windows into your application from the phone’s home screen.
The quick search box lets you integrate search results from your application directly into the
phone’s search functionality.

The Changing Mobile Development Landscape

Existing mobile development platforms have created an aura of exclusivity around mobile develop-
ment. In contrast, Android allows, even encourages, radical change.

As consumer devices, Android handsets ship with a core set of the standard applications that
consumers expect on a new phone, but the real power lies in users’ ability to completely cus-
tomize their devices’ look, feel, and function — giving application developers an exciting
opportunity.

All Android applications are a native part of the phone, not just software that’s run in a sand-
box on top of it. Rather than writing small-screen versions of software that can be run on
low-power devices, you can now build mobile applications that change the way people use
their phones.

The field of mobile development is currently enjoying a period of rapid innovation and incredible
growth. This provides both challenges and opportunities for developers simply to keep up with the
pace of change, let alone identify the opportunities these changes make possible.

Android will continue to advance and improve to compete with existing and future mobile develop-
ment platforms, but as an open-source developer framework, the strength of the SDK is very much
in its favor. Its free and open approach to mobile application development, with total access to the
phone’s resources, represents an opportunity for any mobile developer looking to seize the opportu-
nities now available in mobile development.

www.it-ebooks.info

http://www.it-ebooks.info/

14 | CHAPTER1 HELLO, ANDROID

INTRODUCING THE DEVELOPMENT FRAMEWORK

With the “why” covered, let’s take a look at the “how.”

Android applications normally are written using Java as the programming language but executed by
means of a custom VM called Dalvik, rather than a traditional Java VM.

Later in this chapter you’ll be introduced to the framework, starting with a tech-
nical explanation of the Android software stack, followed by a look at what’s
included in the SDK, an introduction to the Android libraries, and a look at the
Dalvik VM.

Each Android application runs in a separate process within its own Dalvik instance, relinquishing

all responsibility for memory and process management to the Android run time, which stops and
kills processes as necessary to manage resources.

Dalvik and the Android run time sit on top of a Linux kernel that handles low-level hardware inter-
action, including drivers and memory management, while a set of APIs provides access to all the
underlying services, features, and hardware.

What Comes in the Box

The Android SDK includes everything you need to start developing, testing, and debugging Android
applications:

>

The Android APIs — The core of the SDK is the Android API libraries that provide developer
access to the Android stack. These are the same libraries that Google uses to create native
Android applications.

Development tools — The SDK includes several development tools that let you compile and
debug your applications so that you can turn Android source code into executable applica-
tions. You will learn more about the developer tools in Chapter 2, “Getting Started.”

The Android Virtual Device Manager and emulator — The Android emulator is a fully inter-
active mobile device emulator featuring several alternative skins. The emulator runs within
an Android Virtual Device (AVD) that simulates a device hardware configuration. Using the
emulator you can see how your applications will look and behave on a real Android device.
All Android applications run within the Dalvik VM, so the software emulator is an excellent
development environment — in fact, because it’s hardware-neutral, it provides a better inde-
pendent test environment than any single hardware implementation.

Full documentation — The SDK includes extensive code-level reference information detailing
exactly what’s included in each package and class and how to use them. In addition to the
code documentation, Android’s reference documentation and developer guide explains how
to get started, gives detailed explanations of the fundamentals behind Android development,
highlights best practices, and provides deep-dives into framework topics.

Sample code — The Android SDK includes a selection of sample applications that demonstrate
some of the possibilities available with Android, as well as simple programs that highlight
how to use individual API features.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Development Framework | 15

> Online support — Android has rapidly generated a vibrant developer community. The
Google Groups (http ://developer.android.com/resources/community-groups
.html#ApplicationDeveloperLists) are active forums of Android developers with regular
input from the Android engineering and developer relations teams at Google. Stack Overflow
(www . stackoverflow.com/questions/tagged/android) is also a hugely popular destina-
tion for Android questions and a great place to find answers to beginner questions.

For those of you using Eclipse, Android has released the Android Development Tools (ADT) plug-
in that simplifies project creation and tightly integrates Eclipse with the Android emulator and the
build and debugging tools. The features of the ADT plug-in are covered in more detail in Chapter 2.

Understanding the Android Software Stack

The Android software stack is, put simply, a Linux kernel and a collection of C/C++ libraries
exposed through an application framework that provides services for, and management of, the run
time and applications. The Android software stack is composed of the elements shown in Figure 1-1.

> Linux kernel — Core services (including hardware drivers, process and memory management,
security, network, and power management) are handled by a Linux 2.6 kernel. The kernel
also provides an abstraction layer between the hardware and the remainder of the stack.

> Libraries — Running on top of the kernel, Android includes various C/C++ core libraries
such as libc and SSL, as well as the following:

> A media library for playback of audio and video media

> A surface manager to provide display management

> Graphics libraries that include SGL and OpenGL for 2D and 3D graphics
> SQLite for native database support

> SSL and WeDbK:it for integrated web browser and Internet security

> Android run time — The run time is what makes an Android phone an Android phone rather
than a mobile Linux implementation. Including the core libraries and the Dalvik VM, the
Android run time is the engine that powers your applications and, along with the libraries,
forms the basis for the application framework.

> Core libraries — Although most Android application development is written using
the Java language, Dalvik is not a Java VM. The core Android libraries provide
most of the functionality available in the core Java libraries, as well as the Android-
specific libraries.

> Dalvik VM — Dalvik is a register-based Virtual Machine that’s been optimized to
ensure that a device can run multiple instances efficiently. It relies on the Linux ker-
nel for threading and low-level memory management.

> Application framework — The application framework provides the classes used to create
Android applications. It also provides a generic abstraction for hardware access and manages
the user interface and application resources.

> Application layer — All applications, both native and third-party, are built on the application
layer by means of the same API libraries. The application layer runs within the Android run
time, using the classes and services made available from the application framework.
www.it-ebooks.info

http://developer.android.com/resources/community-groups.html#ApplicationDeveloperLists
http://developer.android.com/resources/community-groups.html#ApplicationDeveloperLists
http://www.stackoverflow.com/questions/tagged/android
http://www.it-ebooks.info/

16 | CHAPTER1 HELLO, ANDROID

Application Layer

Native Apps

(Contacts, Maps, Browser, etc.)

7

Third-Party Apps

Developer Apps

Application Framework

Location-Based Content Window Activity Package
Services Providers Manager Manager Manager
Bluetooth / NFC / . . - Resource
{ Telephony Wi-Fi Direct Notifications Views Manager]
Libraries Android Run Time
Graphics i : i :
EopenGL’ SGL, FreeType) Media SSL & Webkit] Android Libraries
) : Surface Dalvik
[libe SQLite Manager] Virtual Machine
Linux Kernel
Hardware Drivers Power Process Memory
(USB, Display, Bluetooth, etc.) Management Management Management

FIGURE 1-1

The Dalvik Virtual Machine

One of the key elements of Android is the Dalvik VM. Rather than using a traditional Java VM such
as Java ME, Android uses its own custom VM designed to ensure that multiple instances run effi-

ciently on a single device.

The Dalvik VM uses the device’s underlying Linux kernel to handle low-level functionality, includ-
ing security, threading, and process and memory management. It’s also possible to write C/C++
applications that run closer to the underlying Linux OS. Although you can do this, in most cases

there’s no reason you should need to.

If the speed and efficiency of C/C++ is required for your application, Android provides a native

development kit (NDK). The NDK is designed to enable you to create C++ libraries using the libc
and libm libraries, along with native access to OpenGL.
www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Development Framework | 17

This book focuses exclusively on writing applications that run within Dalvik
using the SDK; NDK development is not within the scope of this book. If
your inclinations run toward NDK development, exploring the Linux kernel
and C/C++ underbelly of Android, modifying Dalvik, or otherwise tinkering
with things under the hood, check out the Android Internals Google Group at
http://groups.google.com/group/android-internals.

All Android hardware and system service access is managed using Dalvik as a middle tier. By using
a VM to host application execution, developers have an abstraction layer that ensures they should
never have to worry about a particular hardware implementation.

The Dalvik VM executes Dalvik executable files, a format optimized to ensure minimal memory
footprint. You create .dex executables by transforming Java language compiled classes using the
tools supplied within the SDK.

@ You'll learn more about how to create Dalvik executables in Chapter 2.

Android Application Architecture

Android’s architecture encourages component reuse, enabling you to publish and share Activities,
Services, and data with other applications, with access managed by the security restrictions you define.

The same mechanism that enables you to produce a replacement contact manager or phone dialer
can let you expose your application’s components in order to let other developers build on them by
creating new Ul front ends or functionality extensions.

The following application services are the architectural cornerstones of all Android applications,
providing the framework you’ll be using for your own software:

> Activity Manager and Fragment Manager — Control the lifecycle of your Activities and
Fragments, respectively, including management of the Activity stack (described in Chapters 3
and 4).

> Views — Used to construct the user interfaces for your Activities and Fragments, as described
in Chapter 4.

> Notification Manager — Provides a consistent and nonintrusive mechanism for signaling
your users, as described in Chapter 10.

Content Providers — Lets your applications share data, as described in Chapter 8.

Resource Manager — Enables non-code resources, such as strings and graphics, to be exter-
nalized, as shown in Chapter 3.

> Intents — Provides a mechanism for transferring data between applications and their compo-
nents, as described in Chapter 5.

www.it-ebooks.info

http://groups.google.com/group/android-internals
http://www.it-ebooks.info/

18 | CHAPTER1 HELLO, ANDROID

Android Libraries

Android offers a number of APIs for developing your applications. Rather than list them all here,
check out the documentation at http://developer.android.com/reference/packages. html,
which gives a complete list of packages included in the Android SDK.

Android is intended to target a wide range of mobile hardware, so be aware that the suitability and
implementation of some of the advanced or optional APIs may vary depending on the host device.

www.it-ebooks.info

http://developer.android.com/reference/packages.html
http://www.it-ebooks.info/

Getting Started

WHAT’S IN THIS CHAPTER?

> Installing the Android SDK, creating a development environment, and
debugging your projects

Understanding mobile design considerations
The importance of optimizing for speed and efficiency

Designing for small screens and mobile data connections

Y Y VY Y

Using Android Virtual Devices, the Emulator, and other development
tools

All you need to start writing your own Android applications is a copy of the Android SDK
and the Java Development Kit (JDK). Unless you’re a masochist, you’ll probably want a Java
integrated development environment (IDE) — Eclipse is particularly well supported — to make
development a little bit less painful.

The Android SDK, the JDK, and Eclipse are each available for Windows, Mac OS, and Linux,
so you can explore Android from the comfort of whatever operating system you favor. The SDK
tools and Emulator work on all three OS environments, and because Android applications are
run on a Dalvik virtual machine (VM), there’s no advantage to developing on any particular OS.

Android code is written using Java syntax, and the core Android libraries include most of the
features from the core Java APIs. Before you can run your projects, you must translate them
into Dalvik bytecode. As a result, you get the familiarity of Java syntax while your applica-
tions gain the advantage of running on a VM optimized for mobile devices.

The Android SDK starter package contains the SDK platform tools, including the SDK
Manager, which is necessary to download and install the rest of the SDK packages.

www.it-ebooks.info

http://www.it-ebooks.info/

20 | CHAPTER2 GETTING STARTED

The Android SDK Manager is used to download Android framework SDK libraries, optional add-
ons (including the Google APIs and the support library), complete documentation, and a series

of excellent sample applications. It also includes the platform and development tools you will use
to write and debug your applications, such as the Android Emulator to run your projects and the
Dalvik Debug Monitoring Service (DDMS) to help debug them.

By the end of this chapter, you’ll have downloaded the Android SDK starter package and used it to
install the SDK and its add-ons, the platform tools, documentation, and sample code. You’ll set up
your development environment, build your first Hello World application, and run and debug it using
the DDMS and the Emulator running on an Android Virtual Device (AVD).

If you’ve developed for mobile devices before, you already know that their small-form factor, lim-
ited battery life, and restricted processing power and memory create some unique design challenges.
Even if you’re new to the game, it’s obvious that some of the things you can take for granted on the
desktop or the Web aren’t going to work on mobile or embedded devices.

The user environment brings its own challenges, in addition to those introduced by hardware limi-
tations. Many Android devices are used on the move and are often a distraction rather than the
focus of attention, so your application needs to be fast, responsive, and easy to learn. Even if your
application is designed for devices more conducive to an immersive experience, such as tablets or
televisions, the same design principles can be critical for delivering a high-quality user experience.

This chapter examines some of the best practices for writing Android applications that overcome the
inherent hardware and environmental challenges associated with mobile development. Rather than
try to tackle the whole topic, we’ll focus on using the Android SDK in a way that’s consistent with
good design principles.

DEVELOPING FOR ANDROID

The Android SDK includes all the tools and APIs you need to write compelling and powerful mobile
applications. The biggest challenge with Android, as with any new development toolkit, is learning
the features and limitations of its APIs.

If you have experience in Java development, you’ll find that the techniques, syntax, and grammar
you’ve been using will translate directly into Android, although some of the specific optimization
techniques may seem counterintuitive.

If you don’t have experience with Java but have used other object-oriented languages (such as C#), you
should find the transition straightforward. The power of Android comes from its APIs, not the language
being used, so being unfamiliar with some of the Java-specific classes won’t be a big disadvantage.

What You Need to Begin

Because Android applications run within the Dalvik VM, you can write them on any platform that
supports the developer tools. This currently includes the following:

> Microsoft Windows (XP or later)
> Mac OS X 10.5.8 or later (Intel chips only)
> Linux (including GNU C Library 2.7 or later)

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 21

To get started, you’ll need to download and install the following:
> The Android SDK starter package
> Java Development Kit (JDK) 5 or 6

You can download the latest JDK from Sun at http://java.sun.com/javase/downloads/
index. jsp.

@ If you already have a | DK installed, make sure that it meets the preced-

ing requirements, and note that the Java Runtime Environment (JRE) is not
sufficient.

In most circumstances, you’ll also want to install an IDE. The following sections describe how to
install the Android SDK and use Eclipse as your Android IDE.

Downloading and Installing the Android SDK

There’s no cost to download or use the API, and Google doesn’t require your application to pass
a review to distribute your finished programs on the Google Play Store. Although the Google Play
Store requires a small one-time fee to publish applications, if you chose not to distribute via the
Google Play Store, you can do so at no cost.

You can download the latest version of the SDK starter package for your chosen development platform
from the Android development home page at http: //developer.android.com/sdk/index.html.

@ Unless otherwise noted, the version of the Android SDK used for writing this
book was version 4.0.3 (API level 15).

As an open-source platform, the Android SDK source is also available for you to
download and compile from http: //source.android.com.

The starter package is a ZIP file that contains the latest version of the Android tools required to
download the rest of the Android SDK packages. Install it by unzipping the SDK into a new folder.
Take note of this location, as you’ll need it later.

If you are developing from a Windows platform, an executable Windows installer is available (and
recommended) as an alternative to the ZIP file for installing the platform tools.

Before you can begin development, you need to download at least one SDK platform release. You
can do this on Windows by running the SDK Manager.exe executable, or on Mac OS or Linux by
running the “android” executable in the tools subfolder of the starter package download.

The screen that appears (see Figure 2-1) shows each of the packages available for the download. This
includes a node for the platform tools, each of the platform releases, and a collection of extras, such
as the Android Support Package and billing/licensing packages.

www.it-ebooks.info

http://java.sun.com/javase/downloads
http://developer.android.com/sdk/index.html
http://source.android.com
http://www.it-ebooks.info/

22 | CHAPTER2 GETTING STARTED

You can expand each platform release node to see a list of the packages included within it, including
the tools, documentation, and sample code packages.

To get started, simply check the boxes corresponding to the newest framework SDK and the latest
version of the tools, compatibility/support library, documentation, and sample code.

Telele) _Anc "
SDK Path: /Users/retomeier/Temp/android-sdk-macosx
Packages
' Name API Rev. Status
O *OTools
= I Android SDK Tools 15 Sinstalled
™ ‘% Android SDK Platform-tools - Not installed
& v Android 4.0 (APl 14)
™ Documentation for Android SDK 14 ¥ Not installed
™ i SDK Platform 14 § Not installed
] & Samples for SDK 14 ¥ Not installed
™ ‘%' ARM EABI v7a System Image 14 ¥ Not installed
™ & Google APIs by Google Inc. 14 ¥ Not installed

[] »Li Android 3.2 (API 13)
[» 2l Android 3.1 (API 12)
[»(=lAndroid 3.0 (API 11)
] »=lAndroid 2.3.3 (APl 10)
| » L= Android 2.2 (APl 8)
[} » Lzl Android 2.1 (API 7)

[} »izlAndroid 1.6 (API 4)
[] » (=lAndroid 1.5 (API 3)

[J v(ClExtras

™ (8 Android Support package § Not installed

O [Coogle Admob Ads Sdk package ¥ Not installed

d [# Google Market Billing package § Not installed

O [Google Market Licensing package ¥ Not installed

=) [Google USB Driver package & Not compatible with Mac 05 X
O [Google Webdriver package ¥ Not installed

Show: [Updates/New [installec [| Obsolete Select New or Updates
Sort by: (%) APl level () Repository Deselect All Delete packages..

B
A

Done loading packages.

FIGURE 2-1

For testing the backward compatibility of your applications, it can often be use-
ful to download the framework SDK for each version you intend to support.

To use the Google APIs (which contain the Maps APIs), you also need to select the Google APIs by
Google package from the platform releases you want to support.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 23

When you click the Install Packages button, the packages you’ve chosen will be downloaded to your
SDK installation folder. The result is a collection of framework API libraries, documentation, and
several sample applications.

The examples included in the SDK are well documented and are an excellent
source for full, working examples of applications written for Android. When you
finish setting up your development environment, it’s worth going through them.

Downloading and Installing Updates to the SDK

As new versions of the Android framework SDK, developer tools, sample code, documentation,
compatibility library, and third-party add-ons become available, you can use the Android SDK
Manager to download and install those updates.

All future packages and upgrades will be placed in the same SDK location.

Developing with Eclipse

The examples and step-by-step instructions in this book are targeted at developers using Eclipse
with the Android Developer Tools (ADT) plug-in. Neither is required, though; you can use any text
editor or Java IDE you’re comfortable with and use the developer tools in the SDK to compile, test,
and debug the code snippets and sample applications.

As the recommended development platform, using Eclipse with the ADT plug-in for your Android
development offers some significant advantages, primarily through the tight integration of many of
the Android build and debug tools into your IDE.

Eclipse is a particularly popular open-source IDE for Java development. It’s available for download
for each of the development platforms supported by Android (Windows, Mac OS, and Linux) from
the Eclipse foundation (www.eclipse.org/downloads).

Many variations of Eclipse are available, with Eclipse 3.5 (Galileo) or above required to use
the ADT plugin. The following is the configuration for Android used in the preparation of
this book:

> Eclipse 3.7 (Indigo) (Eclipse Classic download)
> Eclipse Java Development Tools (JDT) plug-in
> Web Standard Tools (WST)
The JDT plug-in and WST are included in most Eclipse IDE packages.

Installing Eclipse consists of uncompressing the download into a new folder, and then running the
eclipse executable. When it starts for the first time, you should create a new workspace for your
Android development projects.

www.it-ebooks.info

http://www.eclipse.org/downloads
http://www.it-ebooks.info/

24 | CHAPTER2 GETTING STARTED

Using the Android Developer Tools Plug-In for Eclipse

The ADT plug-in for Eclipse simplifies your Android development by integrating the developer
tools, including the Emulator and .class-to-.dex converter, directly into the IDE. Although you don’t
have to use the ADT plug-in, it can make creating, testing, and debugging your applications faster
and easier.

The ADT plug-in integrates the following into Eclipse:

>

An Android Project Wizard, which simplifies creating new projects and includes a basic
application template

Forms-based manifest, layout, and resource editors to help create, edit, and validate your
XML resources

Automated building of Android projects, conversion to Android executables (. dex), pack-
aging to package files (.apk), and installation of packages onto Dalvik VMs (running both
within the Emulator or on physical devices)

The Android Virtual Device manager, which lets you create and manage virtual devices to
host Emulators that run a specific release of the Android OS and with set hardware and
memory constraints

The Android Emulator, including the ability to control the Emulator’s appearance and net-
work connection settings, and the ability to simulate incoming calls and SMS messages

The Dalvik Debug Monitoring Service (DDMS), which includes port forwarding, stack, heap,
and thread viewing, process details, and screen-capture facilities

Access to the device or Emulator’s filesystem, enabling you to navigate the folder tree and
transfer files

Runtime debugging, which enables you to set breakpoints and view call stacks

All Android/Dalvik log and console outputs

Figure 2-2 shows the DDMS perspective within Eclipse with the ADT plug-in installed.

Installing the ADT Plug-In
Install the ADT plug-in by following these steps:

1.
2.
3.

Select Help = Install New Software from within Eclipse.
In the Available Software dialog box that appears, click the Add button.

In the next dialog, enter a name you will remember (e.g., Android Developer Tools) into the
Name field, and paste the following address into the Location text entry box: https://dl-
ssl.google.com/android/eclipse/.

Press OK and Eclipse searches for the ADT plug-in. When finished, it displays the available
plug-ins, as shown in Figure 2-3. Select it by clicking the check box next to the Developer
Tools root node, and then click Next.

www.it-ebooks.info

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
http://www.it-ebooks.info/

Developing for Android | 25

= o e e o [
| ey B8 &85 E |3 0-% | ™| 6T % Sy [|/ <DDMS> »
B Devices 52 = B |[if File Explorer 58 = 8% Threads 5 =
*‘ B |%g|@|@7 ﬁeﬂ|-‘+ = | D TidStatus | utime stime Name
N N Size|Date |7 1 96 native 35| 29 main i
i < = ize/Bate [Nl w3 97 ymwait 1061 1070 GC Q
v Bl emulator-5554 Online My AV 4 || P (=data 2000 1300 es] 101 vt 10 17 Signal Catcher
system_process 9% B 8600 | ¥ Emnt 201... 13| =4 102 running 43 49 jDWP e
com.android.systemui 282 8604 4 (= asec 201... 13 "‘; e e > = 1
TS ETEEEEEEE 3 o ¥ (= obb 201.. 13
= » (= sdcard 201.. 13
= Refresh Mon Nov 21 13:12:54 PST 2011
@ Emulator Control 52 kgﬁw'mduws‘ g (= secure 201.. 13
Telephony Seatils a || ¥z system 201 12| Class ~ Method File
| —a — o ¥ =app 201... 12| dalvik.system.NativeStart NativeStart.java
Voice: | home B Speed: Full » & bin 201... 12
— = g = >
Data: | home ‘a Latency: | Non |=| build_prop 1475 201... 12
¥ etc an.. 12 Allocation Tracker 53 Heap | ==
_Telephony Actions P (= fonts 201... 12
Incoming number: F@!mmework 201... 12
SNt F &b 201.. 12| (“Giop Tracking) [Get Allocations) Filter: B e
- » (= lost+found 201... 13:
) SMS ¥ (= media 201.. 12
Message: P E=us 201... 12| Alloc Order « Al Allocated Class Thr Alloca Alloca
» & usr 201... 12 499 & hyte]] 12 jav.. <in..
¥ (2= xbin 201... 12 437 8... byte]] 12 |jav... |<in...
Class Method (File —
Jjava.io.Bufferedinp... | <init> BufferedinputStream.java "
call Hang Up Jjavaio.Bufferedinp. . <init> BufferedinputStream. java m
2 android.content.p... loadCertificates PackageParser.java
" android.content.p... collectCertificates PackageParser.java
Location Control: %
oD e - com.android.serve... |collectCertificat... PackageManagerService.java -
[“Manual | GPX | KML LY ———] L T o —— I
[Bssniin, O conoe =0
saved Filters & = B | (Tsearch for messages, Accepts Java regexes. Prefix with pid:, app:, tag: or text: to limit scope | verbose \-'33 HE D
All messages (no filters)
Ley Time PID | Application Tag Text
W [11-21 13:14:25.301 |96 system_pr 55 ActivityMana. [Receiver during timeout: Resolvelnfo{419c47d8 com.andry
I [11-21 13:14:25.431 |96 system_process ActivityMana.. [Start proc com.android.deskclock for broadcast com.and:
g — S — | e
o* |

5.

for your review. Click Next.

6.

ADT plug-in is not signed, you’ll be prompted before the installation continues.

Restart and select Window > Preferences (or Eclipse & Preferences for Mac OS).

Select Android from the left panel.

Eclipse now downloads the plug-in. When it finishes, a list of the Developer Tools displays
Read and accept the terms of the license agreement, and click Next and then Finish. As the

When installation is complete, you need to restart Eclipse and update the ADT preferences.

Click Browse, navigate to the folder into which you installed the Android SDK, and then

click Apply. The list updates to display each available SDK target, as shown in Figure 2-4.
Click OK to complete the SDK installation.

If you move your SDK installation to a different location, you will need to
update the ADT preference, as described in steps 7 to 9 above, to reflect the new
path to the SDK against which the ADT should be building.

www.it-ebooks.info

http://www.it-ebooks.info/

26 | CHAPTER2 GETTING STARTED

Available Software

Check the items that you wish te install.

Work wilh:qAndmid Developer Tools - https:/ /dl-ssl.google.com/android /eclipse H (Add...)

Find more software by working with the "Available Software Sites® preferences.

[type filter text

|Version |]
E{.féAnerid DDMS 15.0.1.x201111031820-215398
‘;{EdAndroid Development Tools 15.0.1.v201111031820-219398
Android Hierarchy Viewer 15.0.1.v201111031820-219398
L Android Traceview 15.0.1.v201111031820-219398
(Select All J (Deselect All J 4 items selected

Details

E Show only the latest versions of available software] Hide items that are already installed
™ Group items by category What is already installed?
"] Show only software applicable to target environment

g Contact all update sites during install to find required software

® < Back (Next >) (Cancel) Finish

4

FIGURE 2-3

type filter text) Android O v -

b General =
A erefemnets

FAnt SDK Location: /Developer/android-sdk-macosx
b Help
¥ InstallfUpdate Note: The list of SDK Targets below is only reloaded once you hit 'Apply’ or 'OK'.
¥ Java - i il = 4
b Plug-in Development | Target Name |Vendor |Platform APl Lev
¥ Run/Debug |Android 4.0 Android Open Source Project 4.0 14
b Team Google APls Google Inc. 4.0 14
XML

(Restore Defaults) (Apply)

@ (Cancel) (oK)

A

FIGURE 2-4

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 27

Updating the ADT Plug-In

In most cases, you can update your ADT plug-in simply as follows:
1. Navigate to Help =& Check for Updates.

2. If there are any ADT updates available, they will be presented. Simply select them and choose
Install.

@ Sometimes a plug-in upgrade may be so significant that the dynamic update mecha-
nism can’t be used. In those cases you may have to remove the previous plug-in
completely before installing the newer version, as described in the previous section.

Using the Support Package

The support library package (previously known as the compatibility library) is a set of static librar-
ies that you can include as part of your projects to gain either convenience APIs that aren’t packaged
as part of the framework (such as the View Pager), or useful APIs that are not available on all plat-
form releases (such as Fragments).

The support package enables you to use framework API features that were introduced in recent
Android platform releases on any device running Android 1.6 (API level 4) and above. This helps
you provide a consistent user experience and greatly simplifies your development process by reduc-
ing the burden of supporting multiple platform versions.

@ It’s good practice to use the support library rather than the framework API
libraries when you want to support devices running earlier platform releases and
where the support library offers all the functionality you require.

In the interest of simplicity, the examples in this book target Android API level
15 and use the framework APls in preference to the support library, highlighting
specific areas where the support library would not be a suitable alternative.

To incorporate a support library into your project, perform the following steps:
1. Addanew /1ibs folder in the root of your project hierarchy.
2. Copy the support library JAR file from the /extras/android/support/ folder in your

Android SDK installation location.

You’ll note that the support folder includes multiple subfolders, each of which represents
the minimum platform version supported by that library. Simply use the corresponding JAR
file stored in the subfolder labeled as less than or equal to the minimum platform version
you plan to support.

For example, if you want to support all platform versions from Android 1.6 (API level 4)
and above, you would copy v4/android-support-v4.jar.

3. After copying the file into your project’s /1ibs folder, add it to your project build path by
right-clicking in the Package Explorer and selecting Build Path = Add to Build Path.

www.it-ebooks.info

http://www.it-ebooks.info/

28 | CHAPTER2 GETTING STARTED

y By design, the support library classes mirror the names of their framework
counterparts. Some of these classes (such as SimpleCursoradapter) have existed
since early platform releases. As a result, there’s a significant risk that the code
completion and automatic import-management tools in Eclipse (and other IDEs)

will select the wrong library — particularly when you’re building against newer
versions of the SDK.

It’s good practice to set your project build target to the minimum platform ver-
sion you plan to support, and to ensure the import statements are using the com-
patibility library for classes that also exist in the target framework.

Creating Your First Android Application

You’ve downloaded the SDK, installed Eclipse, and plugged in the plug-in. You are now ready to
start programming for Android. Start by creating a new Android project and setting up your Eclipse
run and debug configurations, as described in the following sections.

Creating a New Android Project
To create a new Android project using the Android New Project Wizard, do the following:

1. Select File ©» New > Project.

2. Select the Android Project application type from the Android folder, and click Next.

3. In the wizard that appears, enter the details for your new project. On the first page
(Figure 2-5), the Project Name is the name of your project file. You can also select the loca-
tion your project should be saved.

Ul u=) New Android Project

Create Android Project 3
Select project name and type of project

Project Name: PA4AD_Ch02_Hello_World

(®) Create new project in workspace
C‘, Create project from existing source

) Create project from existing sample

1 Use default location

Location: [Usersretomeier/ Android/Workspace/PA4AD_Cho2 I} (Browse...)

Working sets

] Add project to working sets

Working sets: % Select..
(‘?:I < Back (Next =) | Cancel) Finish
4
FIGURE 2-5

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 29

The next page (Figure 2-6) lets you select the build target for your application. The build tar-
get is the version of the Android framework SDK that you plan to develop with. In addition
to the open sourced Android SDK libraries available as part of each platform release, Google
offers a set of proprietary APIs that offer additional libraries (such as Maps). If you want to
use these Google-specific APIs, you must select the Google APIs package corresponding to the

platform release you want to target.

EOAR New Android Project

Select Build Target
Choose an SDK to target

o

Build Target

Target Name Vendor

Platform APl Level
™ Android 4.0 Android Open Source Project 4.0 14
[C] Google APIs Coogle Inc. 4.0 14
Standard Android platform 4.0
@ (< Back) (Next >) (_ Cancel) Finish
V.2
FIGURE 2-6

s

platform releases.

Your project’s build target does not need to correspond to its minimum SDK or
target SDK. For new projects it’s good practice to build against the newest ver-
sion of the SDK to take advantage of efficiency and Ul improvements in newer

The final page (Figure 2-7) allows you to specify the application properties. The Application

Name is the friendly name for your application;

the Package Name specifies its Java pack-

age; the Create Activity option lets you specify the name of a class that will be your initial
Activity; and setting the Minimum SDK lets you specify the minimum version of the SDK

that your application will run on.

- New Android Project

Application Info

Configure the new Android Project

o

Application Name: [PA4AD_Ch02_HeIIo_WorLd

Package Name: com.paad.helloworld

¥ Create Activity: | MyActivity

Minimum SDK: 14

@ < Back - “Next > ([Cancel

) €

Finish)

FIGURE 2-7

www.it-ebooks.info

http://www.it-ebooks.info/

30 | CHAPTER2 GETTING STARTED

@ Selecting the minimum SDK version requires you to choose the level of backward
compatibility you want to support to target a wider group of Android devices.
Your application will be available from the Google Play Store on any device
running the specified build or higher.

At the time of this writing, more than 98% of Android devices were running
at least Android 2.1 (API level 7). The latest Ice Cream Sandwich SDK is
4.0.3 (API level 15).

6. When you’ve entered the details, click Finish.

If you selected Create Activity, the ADT plug-in will create a new project that includes a class that
extends Activity. Rather than being completely empty, the default template implements Hello
World. Before modifying the project, take this opportunity to configure launch configurations for
running and debugging.

Creating an Android Virtual Device

AVDs are used to simulate the hardware and software configurations of different Android devices,
allowing you test your applications on a variety of hardware platforms.

There are no prebuilt AVDs in the Android SDK, so without a physical device, you need to create at
least one before you can run and debug your applications.

1. Select Window > AVD Manager (or select the AVD Manager icon on the Eclipse toolbar).

2. Select the New... button.

The resulting Create new Android Virtual Device (AVD) dialog allows you to configure a
name, a target build of Android, an SD card capacity, and device skin.

3. Create a new AVD called “My_AVD” that targets Android 4.0.3, includes a 16 MB SD Card,
and uses the Galaxy Nexus skin, as shown in Figure 2-8.

4. Click Create AVD and your new AVD will be created and ready to use.

Creating Launch Configurations

Launch configurations let you specify runtime options for running and debugging applications.
Using a launch configuration you can specify the following;:

> The Project and Activity to launch

> The deployment target (virtual or physical device)
> The Emulator’s launch parameters
>

Input/output settings (including console defaults)

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 31

™ 7 Create new Android Virtual Device (AVD)

Name: [MvJ‘WD]

Target: | Google APls (Google Inc.) — API Level 14 2=]

CPU/ABI: ARM (armeabi-v7a)

5D Card: -
@ size: |16 MiB | §
) File: Browse...

Snapshot:

i # Enabled

Skin: ——
® Built-in: | WXGA720 i+
() Resolution: ®

Hard :

AEWAE property Value

Hardware Back/Home keys no
Abstracted LCD density 320

Keyboard lid support no

Max VM application hea... 48

Device ram size 1024
Override the existing AVD with the same name

(" cancel) (Create AVD)

FIGURE 2-8

You can specify different launch configurations for running and debugging applications. The follow-
ing steps show how to create a launch configuration for an Android application:

1. Select Run Configurations... or Debug Configurations... from the Run menu.

2. Select your application from beneath the Android Application node on the project type list,
or right-click the Android Application node and select New.

3. Enter a name for the configuration. You can create multiple configurations for each project,
so create a descriptive title that will help you identify this particular setup.

4. Choose your start-up options. The first (Android) tab lets you select the project to run and
the Activity that you want to start when you run (or debug) the application. Figure 2-9
shows the settings for the project you created earlier.

5. Use the Target tab, as shown in Figure 2-10, to select the default virtual device to launch on,
or select Manual to select a physical or virtual device each time you run the application. You
can also configure the Emulator’s network connection settings and optionally wipe the user
data and disable the boot animation when launching a virtual device.

www.it-ebooks.info

http://www.it-ebooks.info/

32 | CHAPTER2 GETTING STARTED

Name: Chapter 2 Hello World
TTWE Target| B Common]
SErojeck
PA4AD_Ch02_Hello_World Browse.
Launch Action:
#) Launch Default Activity
() Launch:
() Do Nothing
(" Apply) (Revert)
FIGURE 2-9

chapter.

The Android SDK does not include a default AVD, so you need to create one
before you can run or debug your applications using the Emulator. If the Virtual
Device selection list in Figure 2-10 is empty, click Manager... to open the Android
Virtual Device Manager and create one as described in the previous section.

Further details on the Android Virtual Device Manager are available later in this

Set any additional properties in the Common tab.

Click Apply, and your launch configuration will be saved.

Name: Chapter 2 Hello World

Bl android (B Targets, I Commen|

_ Deployment Target Selection Mode

() Manual
() Automaric

Select a preferred Android Virtual Device for deployment:

AVD Name

™ My_avD Android 4.0 4.0

Target Name | Platform APl Level CPU/ABI

i Details...
14 ARM (armeabi-v7a)
Start...

Manager...

Emulator launch parameters:

Network Speed: | Full 9‘_

Network Latency: | None =

] Wipe User Data
"] Disable Boot Animation

Additional Emulator Command Line Options

(_Aely) (

Revert)

FIGURE 2-10

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 33

Running and Debugging Your Android Application

You've created your first project and created the run and debug configurations for it. Before making any
changes, test your installation and configurations by running and debugging the Hello World project.

From the Run menu, select Run or Debug to launch the most recently selected configuration, or
select Run Configurations... or Debug Configurations... to select a specific configuration.

If you’re using the ADT plug-in, running or debugging your application does the following:

> Compiles the current project and converts it to an Android executable (.dex)
Packages the executable and your project’s resources into an Android package (.apk)
Starts the virtual device (if you’ve targeted one and it’s not already running)

Installs your application onto the target device

Y Y VY VY

Starts your application

If you’re debugging, the Eclipse debugger will then be attached, allowing you to set breakpoints and
debug your code.

If everything is working correctly, you’ll see a new Activity running on the device or in the
Emulator, as shown in Figure 2-11.

B o461 ol

Helloworld

"'ﬂv

1 J2 5 o ls o 5.0 [s o

FIGURE 2-11
Understanding Hello World
Take a step back and have a good look at your first Android application.

Activity is the base class for the visual, interactive components of your application; it is roughly
equivalent to a Form in traditional desktop development (and is described in detail in Chapter 3,

www.it-ebooks.info

http://www.it-ebooks.info/

34 | CHAPTER2 GETTING STARTED

“Creating Applications and Activities”). Listing 2-1 shows the skeleton code for an Activity-based
class; note that it extends Activity and overrides the oncreate method.

) LISTING 2-1: Hello World

Available for ~ package com.paad.helloworld;

download on

Wrox.com . . o
import android.app.Activity;

import android.os.Bundle;

public class MyActivity extends Activity {
/** Called when the Activity is first created. **/
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

setContentView(R.layout.main) ;

code snippet PAAAD_Ch02_HelloWorld/src/MyActivity.java

In Android, visual components are called Views, which are similar to controls in traditional desktop
development. The Hello World template created by the wizard overrides the oncreate method to
call setcontentview, which lays out the UI by inflating a layout resource, as highlighted in bold in
the following snippet:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

The resources for an Android project are stored in the res folder of your project hierarchy, which
includes 1ayout, values, and a series of drawable subfolders. The ADT plug-in interprets these
resources to provide design-time access to them through the r variable, as described in Chapter 3.

Listing 2-2 shows the UI layout defined in the main.xm1 file created by the Android project template
and stored in the project’s res/layout folder.

LISTING 2-2: Hello World layout resource

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">
<TextView
android:layout_width="fill_parent"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Developing for Android | 35

android:layout_height="wrap_content"
android:text="@string/hello"
/>
</LinearLayout>

code snippet PAAAD_Ch02_HelloWorld/res/layout/main.xml

Defining your Ul in XML and inflating it is the preferred way of implementing your user interfaces
(Uls), as it neatly decouples your application logic from your UI design.

To get access to your Ul elements in code, you add identifier attributes to them in the XML definition.
You can then use the findviewByTId method to return a reference to each named item. The following
XML snippet shows an ID attribute added to the Text View widget in the Hello World template:

<TextView
android:id="@+id/myTextView"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>

And the following snippet shows how to get access to it in code:

TextView myTextView = (TextView)findViewById(R.id.myTextView) ;

Alternatively (although it’s not generally considered good practice), you can create your layout
directly in code, as shown in Listing 2-3.

) LISTING 2-3: Creating layouts in code

Available for public void onCreate (Bundle savedInstanceState) {
d&ﬂgrgg#" super.onCreate (savedInstanceState) ;
LinearLayout.LayoutParams lp;
lp = new LinearLayout.LayoutParams (LinearLayout.LayoutParams.FILL_PARENT,
LinearLayout.LayoutParams.FILL_PARENT) ;

LinearLayout.LayoutParams textViewLP;

textViewLP = new LinearLayout.LayoutParams (
LinearLayout.LayoutParams.FILL_PARENT,
LinearLayout.LayoutParams.WRAP_CONTENT) ;

LinearLayout 11 = new LinearLayout (this);
11.setOrientation (LinearLayout.VERTICAL) ;

TextView myTextView = new TextView(this);
myTextView.setText (getString (R.string.hello));

11.addvView (myTextView, textViewLP) ;
this.addContentView(1l1l, 1p);

code snippet PA4AD_Ch02_Manual_Layout/src/MyActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

36 | CHAPTER2 GETTING STARTED

All the properties available in code can be set with attributes in the XML layout.

More generally, keeping the visual design decoupled from the application code helps keep the code
concise. With Android available on hundreds of different devices of varying screen sizes, defining
your layouts as XML resources makes it easier for you to include multiple layouts optimized for dif-
ferent screens.

You’ll learn how to build your user interface by creating layouts and building
your own custom Views in Chapter 4, “Building User Interfaces.”

Types of Android Applications

Most of the applications you create in Android will fall into one of the following categories:

> Foreground — An application that’s useful only when it’s in the foreground and is effectively
suspended when it’s not visible. Games are the most common examples.

> Background — An application with limited interaction that, apart from when being config-
ured, spends most of its lifetime hidden. These applications are less common, but good exam-
ples include call screening applications, SMS auto-responders, and alarm clocks.

> Intermittent — Most well-designed applications fall into this category. At one extreme are
applications that expect limited interactivity but do most of their work in the background.
A common example would be a media player. At the other extreme are applications that are
typically used as foreground applications but that do important work in the background.
Email and news applications are great examples.

> Widgets and Live Wallpapers — Some applications are represented only as a home-screen
Widget or as a Live Wallpaper.

Complex applications are often difficult to pigeonhole into a single category and usually include ele-
ments of each of these types. When creating your application, you need to consider how it’s likely
to be used and then design it accordingly. The following sections look more closely at some of the
design considerations for each application type.

Foreground Applications

When creating foreground applications, you need to consider carefully the Activity lifecycle
(described in Chapter 3) so that the Activity switches seamlessly between the background and the
foreground.

Applications have little control over their lifecycles, and a background application with no running
Services is a prime candidate for cleanup by Android’s resource management. This means that you
need to save the state of the application when it leaves the foreground, and then present the same
state when it returns to the front.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Android | 37

It’s also particularly important for foreground applications to present a slick and intuitive user
experience. You’ll learn more about creating well-behaved and attractive foreground Activities in
Chapters 3, 4, 10, and 11.

Background Applications

These applications run silently in the background with little user input. They often listen for mes-
sages or actions caused by the hardware, system, or other applications, rather than relying on user
interaction.

You can create completely invisible services, but in practice it’s better to provide at least a basic level
of user control. At a minimum you should let users confirm that the service is running and let them
configure, pause, or terminate it, as needed.

@ Services and Broadcast Receivers, the driving forces of background applica-
tions, are covered in depth in Chapter 5, “Intents and Broadcast Receivers,” and
Chapter 9, “Working in the Background.”

Intermittent Applications

Often you’ll want to create an application that can accept user input and that also reacts to events
when it’s not the active foreground Activity. Chat and e-mail applications are typical examples.
These applications are generally a union of visible Activities and invisible background Services and
Broadcast Receivers.

Such an application needs to be aware of its state when interacting with the user. This might mean
updating the Activity UI when it’s visible and sending notifications to keep the user updated when
it’s in the background, as described in the section “Using Notifications” in Chapter 10.

You must be particularly careful to ensure that the background processes of applications of this type
are well behaved and have a minimal impact on the device’s battery life.

Widgets and Live Wallpapers

In some circumstances your application may consist entirely of a Widget or Live Wallpaper. By
creating Widgets and Live Wallpapers, you provide interactive visual components that can add func-
tionality to user’s home screens.

Widget-only applications are commonly used to display dynamic information, such as battery levels,
weather forecasts, or the date and time.

You’ll learn how to create Widgets and Live Wallpapers in Chapter 14,
“Invading the Home Screen.”

www.it-ebooks.info

http://www.it-ebooks.info/

38 | CHAPTER2 GETTING STARTED

DEVELOPING FOR MOBILE AND EMBEDDED DEVICES

Android does a lot to simplify mobile- or embedded-device software development, but you need to
understand the reasons behind the conventions. There are several factors to account for when writ-
ing software for mobile and embedded devices, and when developing for Android in particular.

In this chapter you’ll learn some of the techniques and best practices for writ-
ing efficient Android code. In later examples, efficiency is sometimes compro-
mised for clarity and brevity when new Android concepts or functionality are
introduced. In the best tradition of “Do as I say, not as I do,” the examples are
designed to show the simplest (or easiest-to-understand) way of doing some-
thing, not necessarily the best way of doing it.

Hardware-Imposed Design Considerations

Small and portable, mobile devices offer exciting opportunities for software development. Their lim-
ited screen size and reduced memory, storage, and processor power are far less exciting, and instead
present some unique challenges.

Compared to desktop or notebook computers, mobile devices have relatively:
> Low processing power

Limited RAM

Limited permanent storage capacity

Small screens with low resolution

High costs associated with data transfer

Intermittent connectivity, slow data transfer rates, and high latency

Unreliable data connections

Y YV Y Y Y Y Y

Limited battery life

Each new generation of phones improves many of these restrictions. In particular, newer phones
have dramatically improved screen resolutions and significantly cheaper data costs.

The introduction of tablet devices and Android-powered televisions has expanded the range of
devices on which your application may be running and eliminating some of these restrictions.
However, given the range of devices available, it’s always good practice to design to accommodate
the worst-case scenario to ensure your application provides a great user experience no matter what
the hardware platform it’s installed on.

Be Efficient

Manufacturers of embedded devices, particularly mobile devices, generally value small size and long
battery life over potential improvements in processor speed. For developers, that means losing the

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Mobile and Embedded Devices | 39

head start traditionally afforded thanks to Moore’s law (the doubling of the number of transistors
placed on an integrated circuit every two years). In desktop and server hardware, this usually results
directly in processor performance improvements; for mobile devices, it instead means thinner, more
power-efficient mobiles, with brighter, higher resolution screens. By comparison, improvements in
processor power take a back seat.

In practice, this means that you always need to optimize your code so that it runs quickly and
responsively, assuming that hardware improvements over the lifetime of your software are unlikely
to do you any favors.

Code efficiency is a big topic in software engineering, so I’'m not going to try and cover it extensively
here. Later in this chapter you’ll learn some Android-specific efficiency tips, but for now note that
efficiency is particularly important for resource-constrained platforms.

Expect Limited Capacity

Advances in flash memory and solid-state disks have led to a dramatic increase in mobile-device
storage capacities. (MP3 collections still tend to expand to fill the available storage.) Although an
8GB flash drive or SD card is no longer uncommon in mobile devices, optical disks offer more than
32GB, and terabyte drives are now commonly available for PCs. Given that most of the available
storage on a mobile device is likely to be used to store music and movies, many devices offer rela-
tively limited storage space for your applications.

Android lets you specify that your application can be installed on the SD card as an alternative to
using internal memory (described in detail in Chapter 3), but there are significant restrictions to this
approach and it isn’t suitable for all applications. As a result, the compiled size of your application is
an important consideration, though more important is ensuring that your application is polite in its
use of system resources.

You should carefully consider how you store your application data. To make life easier, you can use
the Android databases and Content Providers to persist, reuse, and share large quantities of data,
as described in Chapter 8, “Databases and Content Providers.” For smaller data storage, such as
preferences or state settings, Android provides an optimized framework, as described in Chapter 7,
“Files, Saving State, and Preferences.”

Of course, these mechanisms won’t stop you from writing directly to the filesystem when you want
or need to, but in those circumstances always consider how you’re structuring these files, and ensure
that yours is an efficient solution.

Part of being polite is cleaning up after yourself. Techniques such as caching, pre-fetching, and
lazy loading are useful for limiting repetitive network lookups and improving application respon-
siveness, but don’t leave files on the filesystem or records in a database when they’re no longer
needed.

Design for Different Screens

The small size and portability of mobiles are a challenge for creating good interfaces, particularly
when users are demanding an increasingly striking and information-rich graphical user experience.
Combined with the wide range of screen sizes that make up the Android device ecosystem, creating
consistent, intuitive, and pleasing user interfaces can be a significant challenge.

www.it-ebooks.info

http://www.it-ebooks.info/

40

CHAPTER 2 GETTING STARTED

Werite your applications knowing that users will often only glance at the screen. Make your applica-
tions intuitive and easy to use by reducing the number of controls and putting the most important
information front and center.

Graphical controls, such as the ones you’ll create in Chapter 4, are an excellent means of displaying
a lot of information in a way that’s easy to understand. Rather than a screen full of text with a lot of
buttons and text-entry boxes, use colors, shapes, and graphics to convey information.

You’ll also need to consider how touch input is going to affect your interface design. The time of the
stylus has passed; now it’s all about finger input, so make sure your Views are big enough to support
interaction using a finger on the screen. To support accessibility and non-touch screen devices such
as Google TV, you need to ensure your application is navigable without relying purely on touch.

Android devices are now available with a variety of screen sizes, from small-screen QVGA phones
to 10.1" tablets and 46" Google TVs. As display technology advances and new Android devices are
released, screen sizes and resolutions will be increasingly varied. To ensure that your application
looks good and behaves well on all the possible host devices, you need to design and test your appli-
cation on a variety of screens, optimizing for small screens and tablets, but also ensuring that your
Uls scale well on any display.

You’ll learn some techniques for optimizing your Ul for different screen sizes in
Chapters 3 and 4.

Expect Low Speeds, High Latency

The ability to incorporate some of the wealth
of online information within your applications
is incredibly powerful. Unfortunately, the

=] Android Target ___:‘ Common

Deployment Target Selection Mode

p
mobile Web isn’t as fast, reliable, or readily 5:‘::‘0“:;:

available as we would like; so, when you’re Select a preferred Android Virtual Device for deployment:
developing your Internet-based applications, ?’%‘:‘:‘:ﬁ JaigeL hamme [atforn|Af Leve churas 1| petais..
it’s best to assume that the network connection Start..
will be slow, intermittent, and expensive.

With unlimited 4G data plans and citywide

Wi-Fi, this is changing, but designing for the Refresh
worst case ensures that you always deliver a Mz
high-standard user experience. This also means Emulator launch parameters:

making sure that your applications can handle Network Speed: | EDGE __ |#

losing (or not finding) a data connection. Network Latency: | EDGE

.] Wipe User Data
The Android Emulator enables you to control O Disable Boot Anirmation

the speed and latency of your network con- Additional Emulator Command Line Options
nection. Figure 2-12 shows the Emulator’s net-

work connection speed and latency, simulating

a distinctly suboptimal EDGE connection. FIGURE 2-12

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Mobile and Embedded Devices | 41

Experiment to ensure seamlessness and responsiveness no matter what the speed, latency, and avail-
ability of network access. Some techniques include limiting the functionality of your application, or
reducing network lookups to cached bursts, when the available network connection supports only
limited data transfer capabilities.

é) In Chapter 6, “Using Internet Resources,” you’ll learn how to use Internet
resources in your applications.

Further details, including how to detect the kind of network connections avail-
able at run time, are included in Chapter 16, “Bluetooth, NFC, Networks, and
Wi-Fi.”

At What Cost?

If you’re a mobile device owner, you know all too well that some of your device’s functionality can
literally come at a price. Services such as SMS and data transfer can incur additional fees from your
service provider.

It’s obvious why any costs associated with functionality in your applications should be minimized,
and that users should be made aware when an action they perform might result in their being
charged.

It’s a good approach to assume that there’s a cost associated with any action involving an interac-
tion with the outside world. In some cases (such as with GPS and data transfer), the user can toggle
Android settings to disable a potentially costly action. As a developer, it’s important that you use
and respect those settings within your application.

In any case, it’s important to minimize interaction costs by doing the following;:

> Transferring as little data as possible
> Caching data and geocoding results to eliminate redundant or repetitive lookups

> Stopping all data transfers and GPS updates when your Activity is not visible in the fore-
ground (provided they’re only used to update the UI)

> Keeping the refresh/update rates for data transfers (and location lookups) as low as
practicable

> Scheduling big updates or transfers at off-peak times or when connected via Wi-Fi by using
Alarms and Broadcast Receivers, as shown in Chapter 9

> Respecting the user’s preferences for background data transfers

Often the best solution is to use a lower-quality option that comes at a lower cost.

When using location-based services, as described in Chapter 13, “Maps, Geocoding, and Location-
Based Services,” you can select a location provider based on whether there is an associated cost.
Within your location-based applications, consider giving users the choice of lower cost or greater
accuracy.

www.it-ebooks.info

http://www.it-ebooks.info/

42

CHAPTER 2 GETTING STARTED

In some circumstances costs are either hard to define or different for different users. Charges for ser-
vices vary between service providers and contract plans. Although some people will have free unlim-
ited data transfers, others will have free SMS.

Rather than enforcing a particular technique based on which seems cheaper, consider letting your
users choose. For example, when users are downloading data from the Internet, ask them if they
want to use any network available or limit their transfers to times when they’re connected via Wi-Fi.

Considering the User’s Environment

You can’t assume that your users will think of your application as the most important feature of
their device.

Although Android has already expanded beyond its roots as a mobile phone platform, most Android
devices are phones or tablet devices. For most people, such a device is first and foremost a phone,
secondly an SMS and email communicator, thirdly a camera, and fourthly an MP3 player. The
applications you write will most likely be in the fifth category of “useful stuff.”

That’s not a bad thing — they’ll be in good company with others, including Google Maps and the
web browser. That said, each user’s usage model will be different; some people will never use their
device to listen to music, some devices don’t support telephony, and some don’t include cameras —
but the multitasking principle inherent in a device as ubiquitous as it is indispensable is an important
consideration for usability design.

It’s also important to consider when and how your users will use your applications. People use their
mobiles all the time — on the train, walking down the street, or even while driving their cars. You
can’t make people use their phones appropriately, but you can make sure that your applications
don’t distract them any more than necessary.

What does this mean in terms of software design? Make sure that your application:

> Is predictable and well behaved — Start by ensuring that your Activities suspend when
they’re not in the foreground. Android fires event handlers when your Activity is paused or
resumed, so you can pause Ul updates and network lookups when your application isn’t visi-
ble — there’s no point updating your Ul if no one can see it. If you need to continue updating
or processing in the background, Android provides a Service class designed for this purpose,
without the UI overheads.

> Switches seamlessly from the background to the foreground — With the multitasking nature
of mobile devices, it’s likely that your applications will regularly move into and out of the
background. It’s important that they “come to life” quickly and seamlessly. Android’s nonde-
terministic process management means that if your application is in the background, there’s
every chance it will get killed to free resources. This should be invisible to the user. You can
ensure seamlessness by saving the application state and queuing updates so that your users
don’t notice a difference between restarting and resuming your application. Switching back
to it should be seamless, with users being shown the Ul and application state they last saw.

> Is polite — Your application should never steal focus or interrupt a user’s current Activity.
Instead, use Notifications (detailed in Chapter 10) to request your user’s attention when
your application isn’t in the foreground. There are several ways to alert users — for example,

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Mobile and Embedded Devices | 43

incoming calls are announced by a ringtone and/or vibration; when you have unread mes-
sages, the LED flashes; and when you have new voice mail, a small unread mail icon appears
in the status bar. All these techniques and more are available to your application using the
Notifications mechanism.

> Presents an attractive and intuitive Ul — Your application is likely to be one of several in
use at any time, so it’s important that the Ul you present is easy to use. Spend the time and
resources necessary to produce a Ul that is as attractive as it is functional, and don’t force
users to interpret and relearn your application every time they load it. Using it should be
simple, easy, and obvious — particularly given the limited screen space and distracting user
environment.

> Is responsive — Responsiveness is one of the most critical design considerations on a mobile
device. You’ve no doubt experienced the frustration of a “frozen” piece of software; the mul-
tifunctional nature of a mobile makes this even more annoying. With the possibility of delays
caused by slow and unreliable data connections, it’s important that your application use
worker threads and background Services to keep your Activities responsive and, more impor-
tant, to stop them from preventing other applications from responding promptly.

Developing for Android

Nothing covered so far is specific to Android; the preceding design considerations are just as
important in developing applications for any mobile device. In addition to these general guidelines,
Android has some particular considerations.

Take a few minutes to read the design best practices included in Google’s Android Dev Guide at
http://developer.android.com/guide/index.html.

The Android design philosophy demands that applications be designed for:

Performance
Responsiveness
Freshness
Security

Seamlessness

Y Y Y VY Y'Y

Accessibility

Being Fast and Efficient

In a resource-constrained environment, being fast means being efficient. A lot of what you already
know about writing efficient code will be applicable to Android, but the limitations of embedded
systems and the use of the Dalvik VM mean you can’t take things for granted.

The smart bet for advice is to go to the source. The Android team has published some specific
guidance on writing efficient code for Android, so rather than reading a rehash of its advice, visit
http://developer.android.com/guide/practices/design/performance.html for suggestions.

www.it-ebooks.info

http://developer.android.com/guide/index.html
http://developer.android.com/guide/practices/design/performance.html
http://www.it-ebooks.info/

44

CHAPTER 2 GETTING STARTED

You may find that some of these performance suggestions contradict established
design practices — for example, avoiding the use of internal setters and getters
or preferring virtual classes over using interfaces. When writing software for
resource-constrained systems such as embedded devices, there’s often a com-
promise between conventional design principles and the demand for greater

efficiency.

One of the keys to writing efficient Android code is not to carry over assumptions from desktop and
server environments to embedded devices.

At a time when 2 to 4GB of memory is standard for most desktop and server rigs, typical smart-
phones feature approximately 200MB of SDRAM. With memory such a scarce commodity, you
need to take special care to use it efficiently. This means thinking about how you use the stack and
heap, limiting object creation, and being aware of how variable scope affects memory use.

Being Responsive

Android takes responsiveness very seriously. Android enforces
responsiveness with the Activity Manager and Window

Badly Written App is not

Manager. If either service detects an unresponsive application, SEETIENE
it will display an “[Application] is not responding” dialog — Would you like to close it?
previously described as a force close error, as shown in

Figure 2-13. Wait oK

This alert is modal, steals focus, and won’t go away until you
press a button. It’s pretty much the last thing you ever want to
confront a user with.

FIGURE 2-13

Android monitors two conditions to determine responsiveness:

> An application must respond to any user action, such as a key press or screen touch, within
five seconds.

» A Broadcast Receiver must return from its onReceive handler within 10 seconds.

The most likely culprit in cases of unresponsiveness is a lengthy task being performed on the main
application thread. Network or database lookups, complex processing (such as the calculating of
game moves), and file I/O should all be moved off the main thread to ensure responsiveness. There
are a number of ways to ensure that these actions don’t exceed the responsiveness conditions, in par-
ticular by using Services and worker threads, as shown in Chapter 9.

Android 2.3 (API level 9) introduced Strict Mode — an API that makes it easier for you to discover
file I/O and network transfers being performed on the main application thread. Strict Mode is
described in more detail in Chapter 18.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing for Mobile and Embedded Devices | 45

The “[Application] is not responding” dialog is a last resort of usability; the gen-
erous five-second limit is a worst-case scenario, not a target. Users will notice

a regular pause of anything more than one-half second between key press and
action. Happily, a side effect of the efficient code you're already writing will be
more responsive applications.

Ensuring Data Freshness

The ability to multitask is a key feature in Android. One of the most important use cases for back-
ground Services is to keep your application updated while it’s not in use.

Where a responsive application reacts quickly to user interaction, a fresh application quickly dis-
plays the data users want to see and interact with. From a usability perspective, the right time to
update your application is immediately before the user plans to use it. In practice, you need to weigh
the update frequency against its effect on the battery and data usage.

When designing your application, it’s critical that you consider how often you will update the data
it uses, minimizing the time users are waiting for refreshes or updates, while limiting the effect of
these background updates on the battery life.

Developing Secure Applications

Android applications have access to networks and hardware, can be distributed independently, and
are built on an open-source platform featuring open communication, so it shouldn’t be surprising
that security is a significant consideration.

For the most part, users need to take responsibility for the applications they install and the permis-
sions requests they accept. The Android security model sandboxes each application and restricts
access to services and functionality by requiring applications to declare the permissions they require.
During installation users are shown the application’s required permissions before they commit to
installing it.

You can learn more about Android’s security model in Chapter 18, “Advanced
Android Development,” and at http: //developer.android.com/resources/
fag/security.html.

This doesn’t get you off the hook. You not only need to make sure your application is secure for its
own sake, but you also need to ensure that it doesn’t “leak” permissions and hardware access to
compromise the device. You can use several techniques to help maintain device security, and they’ll

www.it-ebooks.info

http://developer.android.com/resources
http://www.it-ebooks.info/

46 | CHAPTER2 GETTING STARTED

be covered in more detail as you learn the technologies involved. In particular, you should do the
following:

> Require permissions for any Services you publish or Intents you broadcast. Take special care
when broadcasting an Intent that you aren’t leaking secure information, such as location data.

> Take special care when accepting input to your application from external sources, such as the
Internet, Bluetooth, NFC, Wi-Fi Direct, SMS messages, or instant messaging (IM). You can
find out more about using Bluetooth, NFC, Wi-Fi Direct, and SMS for application messaging
in Chapters 16 and 17.

> Be cautious when your application may expose access to lower-level hardware to third-party
applications.

> Minimize the data your application uses and which permissions it requires.

For reasons of clarity and simplicity, many of the examples in this book take
a relaxed approach to security. When you’re creating your own applications,
particularly ones you plan to distribute, this is an area that should not be
overlooked.

Ensuring a Seamless User Experience

The idea of a seamless user experience is an important, if somewhat nebulous, concept. What do
we mean by seamless? The goal is a consistent user experience in which applications start, stop, and
transition instantly and without perceptible delays or jarring transitions.

The speed and responsiveness of a mobile device shouldn’t degrade the longer it’s on. Android’s
process management helps by acting as a silent assassin, killing background applications to free
resources as required. Knowing this, your applications should always present a consistent interface,
regardless of whether they’re being restarted or resumed.

With an Android device typically running several third-party applications written by different devel-
opers, it’s particularly important that these applications interact seamlessly. Using Intents, applica-
tions can provide functionality for each other. Knowing your application may provide, or consume,
third-party Activities provides additional incentive to maintain a consistent look and feel.

Use a consistent and intuitive approach to usability. You can create applications that are revolution-
ary and unfamiliar, but even these should integrate cleanly with the wider Android environment.

Persist data between sessions, and when the application isn’t visible, suspend tasks that use proces-
sor cycles, network bandwidth, or battery life. If your application has processes that need to con-
tinue running while your Activities are out of sight, use a Service, but hide these implementation
decisions from your users.

When your application is brought back to the front, or restarted, it should seamlessly return to its
last visible state. As far as your users are concerned, each application should be sitting silently, ready
to be used but just out of sight.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Development Tools | 47

You should also follow the best-practice guidelines for using Notifications and use generic Ul ele-
ments and themes to maintain consistency among applications.

There are many other techniques you can use to ensure a seamless user experience, and you’ll be
introduced to some of them as you discover more of the possibilities available in Android in the
upcoming chapters.

Providing Accessibility

When designing and developing your applications, it’s important not to assume that every user
will be exactly like you. This has implications for internationalization and usability but is critical
for providing accessible support for users with disabilities that require them to interact with their
Android devices in different ways.

Android provides facilities to help these users navigate their devices more easily using text-to-speech,
haptic feedback, and trackball or D-pad navigation.

To provide a good user experience for everyone — including people with visual, physical, or age-
related disabilities that prevent them from fully using or seeing a touchscreen — you can leverage
Android’s accessibility layer.

Best practices for making your application accessible are covered in detail in
Chapter 11, “Advanced User Experience.”

As a bonus, the same steps required to help make your touchscreen applications useful for users

with disabilities will also make your applications easier to use on non-touch screen devices, such as
GoogleTV.

ANDROID DEVELOPMENT TOOLS

The Android SDK includes several tools and utilities to help you create, test, and debug your proj-
ects. A detailed examination of each developer tool is outside the scope of this book, but it’s worth
briefly reviewing what’s available. For additional details, check out the Android documentation at
http://developer.android.com/guide/developing/tools/index.html.

As mentioned earlier, the ADT plug-in conveniently incorporates many of these tools into the
Eclipse IDE, where you can access them from the DDMS perspective, including the following:

> The Android Virtual Device and SDK Managers — Used to create and manage AVDs and to
download SDK packages, respectively. The AVD hosts an Emulator running a particular build
of Android, letting you specify the supported SDK version, screen resolution, amount of SD
card storage available, and available hardware capabilities (such as touchscreens and GPS).

> The Android Emulator — An implementation of the Android VM designed to run within
an AVD on your development computer. Use the Emulator to test and debug your Android
applications.

www.it-ebooks.info

http://developer.android.com/guide/developing/tools/index.html
http://www.it-ebooks.info/

48 | CHAPTER2 GETTING STARTED

Dalvik Debug Monitoring Service (DDMS) — Use the DDMS to monitor and control the
Emulators on which you’re debugging your applications.

Android Debug Bridge (ADB) — A client-server application that provides a link to virtual
and physical devices. It lets you copy files, install compiled application packages (.apk), and
run shell commands.

Logcat — A utility used to view and filter the output of the Android logging system.

Android Asset Packaging Tool (AAPT) — Constructs the distributable Android package
files (.apk).

The following additional tools are also available:

>

SQLite3 — A database tool that you can use to access the SQLite database files created and
used by Android.

Traceview and dmtracedump — Graphical analysis tools for viewing the trace logs from your
Android application.

Hprof-conv — A tool that converts HPROF profiling output files into a standard format to
view in your preferred profiling tool.

MKkSDCard — Creates an SD card disk image that can be used by the Emulator to simulate
an external storage card.

Dx — Converts Java .class bytecode into Android .dex bytecode.

Hierarchy Viewer — Provides both a visual representation of a layout’s View hierarchy to
debug and optimize your Ul, and a magnified display to get your layouts pixel-perfect.

Lint — A tool that analyzes your application and its resources to suggest improvements and
optimizations.

Draw9patch: A handy utility to simplify the creation of NinePatch graphics using a
WYSIWYG editor.

Monkey and Monkey Runner: Monkey runs within the VM, generating pseudo-random user
and system events. Monkey Runner provides an API for writing programs to control the VM
from outside your application.

ProGuard — A tool to shrink and obfuscate your code by replacing class, variable, and
method names with semantically meaningless alternatives. This is useful to make your code
more difficult to reverse engineer.

Now take a look at some of the more important tools in more detail.

The Android Virtual Device Manager

The Android Virtual Device Manager is used to create and manage the virtual devices that will host
instances of the Emulator.

AVDs are used to simulate the software builds and hardware configurations available on different
physical devices. This lets you test your application on a variety of hardware platforms without
needing to buy a variety of phones.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Development Tools | 49

The Android SDK doesn’t include any prebuilt virtual devices, so you will need
to create at least one device before you can run your applications within an

Emulator.
Each virtual device is configured with a name, a 7 7 7 Create new Android Virtual Device (AVD)
target build of Android (based on the SDK version it
. Name: Calaxy_Nexus
supports), an SD card capacity, and screen resolu- : =
Target: Google APIs (Google Inc.) - APl Level 14 . .-]

tion, as shown in the Create new Android Virtual
Device (AVD) dialog in Figure 2-14.

CPU/ABI: ARM (armeabi-v7a)

5D Card:

® size: 32 MB %
You can also choose to enable snapshots to save o E—
. . File: Browse...
the Emulator state when it’s closed. Starting a new
Emulator from a snapshot is significantly faster. Snapshor: (o
1 1 - kin:
Each virtual device also supports a number of spe i @ sl [WXGA720 B
cific hardware settings and restrictions that can be) vammitiion .
added in the form of name-value pairs (NVPs) in the o —
hardware table. Selecting one of the built-in skins Fopery Yalue [New...|
ardware Back/Home keys no
will automatically configure these additional settings s s i Delete
. . . eyboard lid support no
corresponding to the device the skin represents. Max VM application hea... 48
Device ram size 1024

The additional settings include the following:
Override the existing AVD with the same name

> Maximum VM heap size

Screen pixel density

SD card support (cancel) (CreateavD)

Y v VY

Existence of D-pad, touchscreen, keyboard,
and trackball hardware

FIGURE 2-14
Accelerometer, GPS, and proximity sensor support
Available device memory

Camera hardware (and resolution)

Support for audio recording

Y VYV VY Y Y

Existence of hardware back and home keys

Different hardware settings and screen resolutions will present alternative Ul skins to represent the
different hardware configurations. This simulates a variety of mobile device types. Some manufac-
turers have made hardware presets and virtual device skins available for their devices. Some, includ-
ing Samsung, are available as SDK packages.

Android SDK Manager

The Android SDK Manager can be used to see which version of the SDK you have installed and to
install new SDKs when they are released.

www.it-ebooks.info

http://www.it-ebooks.info/

50 | CHAPTER2 GETTING STARTED

Each platform release is displayed, along with the platform tools and a number of additional support
packages. Each platform release includes the SDK platform, documentation, tools, and examples
corresponding to that release.

The Android Emulator

The Emulator is available for testing and debugging your applications.

The Emulator is an implementation of the Dalvik VM, making it as valid a platform for running
Android applications as any Android phone. Because it’s decoupled from any particular hardware,
it’s an excellent baseline to use for testing your applications.

Full network connectivity is provided along with the ability to tweak the Internet connection speed
and latency while debugging your applications. You can also simulate placing and receiving voice
calls and SMS messages.

The ADT plug-in integrates the Emulator into Eclipse so that it’s launched automatically within the
selected AVD when you run or debug your projects. If you aren’t using the plug-in or want to use the
Emulator outside of Eclipse, you can telnet into the Emulator and control it from its console. (For
more details on controlling the Emulator, check out the documentation at http://developer
.android.com/guide/developing/tools/emulator.html.)

To execute the Emulator, you first need to create a virtual device, as described in the previous sec-
tion. The Emulator will launch the virtual device and run a Dalvik instance within it.

At the time of this writing, the Emulator doesn’t implement all the mobile hard-
ware features supported by Android. For example, it does not implement the
camera, vibration, LEDs, actual phone calls, accelerometer, USB connections,
audio capture, or battery charge level.

The Dalvik Debug Monitor Service

The Emulator enables you to see how your application will look, behave, and interact, but to actu-
ally see what’s happening under the surface, you need the Dalvik Debug Monitoring Service. The
DDMS is a powerful debugging tool that lets you interrogate active processes, view the stack and
heap, watch and pause active threads, and explore the filesystem of any connected Android device.

The DDMS perspective in Eclipse also provides simplified access to screen captures of the Emulator
and the logs generated by LogCat.

If you’re using the ADT plug-in, the DDMS tool is fully integrated into Eclipse and is available from
the DDMS perspective. If you aren’t using the plug-in or Eclipse, you can run DDMS from the com-
mand line (it’s available from the tools folder of the Android SDK), and it will automatically connect
to any running device or Emulator.

www.it-ebooks.info

http://developer
http://www.it-ebooks.info/

Android Development Tools | 51

The Android Debug Bridge

The Android Debug Bridge (ADB) is a client-service application that lets you connect with an
Android device (virtual or actual). It’s made up of three components:

> A daemon running on the device or Emulator
> A service that runs on your development computer

> Client applications (such as the DDMS) that communicate with the daemon through the
service

As a communications conduit between your development hardware and the Android device/
Emulator, the ADB lets you install applications, push and pull files, and run shell commands on the
target device. Using the device shell, you can change logging settings and query or modify SQLite
databases available on the device.

The ADT tool automates and simplifies a lot of the usual interaction with the ADB, includ-
ing application installation and updating, file logging, and file transfer (through the DDMS
perspective).

To learn more about what you can do with the ADB, check out the documenta-
tion at http://developer.android.com/guide/developing/tools/adb.html.

The Hierarchy Viewer and Lint Tool

To build applications that are fast and responsive, you need to optimize your UIL. The Hierarchy
Viewer and Lint tools help you analyze, debug, and optimize the XML layout definitions used
within your application.

The Hierarchy Viewer displays a visual representation of the structure of your UI layout. Starting at
the root node, the children of each nested View (including layouts) is displayed in a hierarchy. Each
View node includes its name, appearance, and identifier.

To optimize performance, the performance of the layout, measure, and draw steps of creating the
UI of each View at runtime is displayed. Using these values, you can learn the actual time taken to
create each View within your hierarchy, with colored “traffic light” indicators showing the relative
performance for each step. You can then search within your layout for Views that appear to be tak-
ing longer to render than they should.

The Lint tool helps you to optimize your layouts by checking them for a series of common
inefficiencies that can have a negative impact on your application’s performance. Common
issues include a surplus of nested layouts, a surplus of Views within a layout, and unnecessary
parent Views.

www.it-ebooks.info

http://developer.android.com/guide/developing/tools/adb.html
http://www.it-ebooks.info/

52 | CHAPTER2 GETTING STARTED

Although a detailed investigation into optimizing and debugging your Ul is beyond the scope of
this bOOk, you can find further details at http://developer.android.com/guide/developing/
debugging/debugging-ui.html.

Monkey and Monkey Runner
Monkey and Monkey Runner can be used to test your applications stability from a Ul perspective.

Monkey works from within the ADB shell, sending a stream of pseudo-random system and Ul
events to your application. It’s particularly useful to stress test your applications to investigate edge-
cases you might not have anticipated through unconventional use of the UL

Alternatively, Monkey Runner is a Python scripting API that lets you send specific Ul commands to
control an Emulator or device from outside the application. It’s extremely useful for performing UI,
functional, and unit tests in a predictable, repeatable fashion.

www.it-ebooks.info

http://developer.android.com/guide/developing
http://www.it-ebooks.info/

Creating Applications and
Activities

WHAT’S IN THIS CHAPTER?

> Introducing the Android application components and the different
types of applications you can build with them

> Understanding the Android application lifecycle
> Creating your application manifest

> Using external resources to provide dynamic support for locations,
languages, and hardware configurations

> Implementing and using your own Application class
> Creating new Activities

> Understanding an Activity’s state transitions and lifecycle

To write high-quality applications, it’s important to understand the components they consist
of and how those components are bound together by the Android manifest. This chapter intro-
duces each of the application components, with special attention paid to Activities.

Next, you’ll see why and how you should use external resources and the resource hierarchy to
create applications that can be customized and optimized for a variety of devices, countries,
and languages.

In Chapter 2, “Getting Started,” you learned that each Android application runs in a separate
process, in its own instance of the Dalvik virtual machine. In this chapter, you learn more
about the application lifecycle and how the Android run time can manage your application.
You are also introduced to the application and Activity states, state transitions, and event
handlers. The application’s state determines its priority, which, in turn, affects the likelihood
of its being terminated when the system requires more resources.

www.it-ebooks.info

http://www.it-ebooks.info/

54 |

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

You should always provide the best possible experience for users, no matter which country they’re in
or which of the wide variety of Android device types, form factors, and screen sizes they’re using.

In this chapter, you learn how to use the resource framework to provide optimized resources, ensur-
ing your applications run seamlessly on different hardware (particularly different screen resolutions

and pixel densities), in different countries, and supporting multiple languages.

The activity class forms the basis for all your user interface (UI) screens. You learn how to create
Activities and gain an understanding of their lifecycles and how they affect the application lifetime
and priority.

Finally, you are introduced to some of the activity subclasses that simplify resource management
for some common Ul patterns, such as map- and list-based Activities.

WHAT MAKES AN ANDROID APPLICATION?

Android applications consist of loosely coupled components, bound by the application manifest
that describes each component and how they interact. The manifest is also used to specify the
application’s metadata, its hardware and platform requirements, external libraries, and required
permissions.

The following components comprise the building blocks for all your Android applications:

> Activities — Your application’s presentation layer. The UI of your application is built around
one or more extensions of the Activity class. Activities use Fragments and Views to layout
and display information, and to respond to user actions. Compared to desktop development,
Activities are equivalent to Forms. You’ll learn more about Activities later in this chapter.

> Services — The invisible workers of your application. Service components run without a U,
updating your data sources and Activities, triggering Notifications, and broadcasting Intents.
They’re used to perform long running tasks, or those that require no user interaction (such
as network lookups or tasks that need to continue even when your application’s Activities
aren’t active or visible.) You’ll learn more about how to create and use services in Chapter 9,
“Working in the Background.”

> Content Providers — Shareable persistent data storage. Content Providers manage and persist
application data and typically interact with SQL databases. They’re also the preferred means
to share data across application boundaries. You can configure your application’s Content
Providers to allow access from other applications, and you can access the Content Providers
exposed by others. Android devices include several native Content Providers that expose
useful databases such as the media store and contacts. You’ll learn how to create and use
Content Providers in Chapter 8, “Databases and Content Providers.”

> Intents — A powerful interapplication message-passing framework. Intents are used exten-
sively throughout Android. You can use Intents to start and stop Activities and Services, to
broadcast messages system-wide or to an explicit Activity, Service, or Broadcast Receiver, or
to request an action be performed on a particular piece of data. Explicit, implicit, and broad-
cast Intents are explored in more detail in Chapter 5, “Intents and Broadcast Receivers.”

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Application Manifest File | 55

> Broadcast Receivers — Intent listeners. Broadcast Receivers enable your application to listen
for Intents that match the criteria you specify. Broadcast Receivers start your application
to react to any received Intent, making them perfect for creating event-driven applications.
Broadcast Receivers are covered with Intents in Chapter 5.

> Widgets — Visual application components that are typically added to the device home screen.
A special variation of a Broadcast Receiver, widgets enable you to create dynamic, interactive
application components for users to embed on their home screens. You’ll learn how to create
your own widgets in Chapter 14, “Invading the Home Screen.”

> Notifications — Notifications enable you to alert users to application events without steal-
ing focus or interrupting their current Activity. They’re the preferred technique for getting
a user’s attention when your application is not visible or active, particularly from within
a Service or Broadcast Receiver. For example, when a device receives a text message or
an email, the messaging and Gmail applications use Notifications to alert you by flash-
ing lights, playing sounds, displaying icons, and scrolling a text summary. You can trigger
these notifications from your applications, as discussed in Chapter 10, “Expanding the User
Experience.”

By decoupling the dependencies between application components, you can share and use individual
Content Providers, Services, and even Activities with other applications — both your own and those
of third parties.

INTRODUCING THE APPLICATION MANIFEST FILE

Each Android project includes a manifest file, AndroidMani fest.xml, stored in the root of its proj-
ect hierarchy. The manifest defines the structure and metadata of your application, its components,
and its requirements.

It includes nodes for each of the Activities, Services, Content Providers, and Broadcast Receivers
that make up your application and, using Intent Filters and Permissions, determines how they inter-
act with each other and with other applications.

The manifest can also specify application metadata (such as its icon, version number, or theme), and
additional top-level nodes can specify any required permissions, unit tests, and define hardware,
screen, or platform requirements (as described next).

The manifest is made up of a root manifest tag with a package attribute set to the project’s pack-
age. It should also include an xmlns:android attribute that supplies several system attributes used
within the file.

Use the versionCode attribute to define the current application version as an integer that increases
with each version iteration, and use the versionName attribute to specify a public version that will
be displayed to users.

You can also specify whether to allow (or prefer) for your application be installed on external stor-
age (usually an SD card) rather than internal storage using the installLocation attribute. To do

www.it-ebooks.info

http://www.it-ebooks.info/

56 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

this specify either preferExternal or auto, where the former installs to external storage whenever
possible, and the latter asks the system to decide.

If your application is installed on external storage, it will be immediately
killed if a user mounts the USB mass storage to copy files to/from a computer, or
ejects or unmounts the SD card.

If you don’t specify an install location attribute, your application will be installed in the internal
storage and users won’t be able to move it to external storage. The total amount of internal stor-
age is generally limited, so it’s good practice to let your application be installed on external storage
whenever possible.

There are some applications for which installation to external storage is not appropriate due to the
consequences of unmounting or ejecting the external storage, including:

> Applications with Widgets, Live Wallpapers, and Live Folders — Your Widgets, Live
Wallpapers, and Live Folders will be removed from the home screen and may not be avail-
able until the system restarts.

> Applications with ongoing Services — Your application and its running Services will be
stopped and won’t be restarted automatically.

> Input Method Engines — Any IME installed on external storage will be disabled and must be
reselected by the user after the external storage is once again available.

> Device administrators — Your DeviceAdminReceiver and any associated admin capabilities

will be disabled.

A Closer Look at the Application Manifest

The following XML snippet shows a typical manifest node:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.myapp"
android:versionCode="1"
android:versionName="0.9 Beta"
android:installLocation="preferExternal">
[... manifest nodes ...]

</manifest>

The manifest tag can include nodes that define the application components, security settings, test
classes, and requirements that make up your application. The following list gives a summary of the
available mani fest sub-node tags and provides an XML snippet demonstrating how each tag is
used:

> uses-sdk — This node enables you to define a minimum and maximum SDK version that
must be available on a device for your application to function properly, and target SDK for
which it has been designed using a combination of minSDKVersion, maxSDKVersion, and
targetSDKVersion attributes, respectively.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing the Application Manifest File | 57

The minimum SDK version specifies the lowest version of the SDK that includes the APIs you have
used in your application. If you fail to specify a minimum version, it defaults to 1, and your applica-
tion crashes when it attempts to access unavailable APIs.

The target SDK version attribute enables you to specify the platform against which you did your
development and testing. Setting a target SDK version tells the system that there is no need to apply
any forward- or backward-compatibility changes to support that particular version. To take advan-
tage of the newest platform Ul improvements, it’s considered good practice to update the target SDK
of your application to the latest platform release after you confirm it behaves as expected, even if
you aren’t making use of any new APIs.

It is usually unnecessary to specify a maximum SDK, and doing so is strongly discouraged. The maxi-
mum SDK defines an upper limit you are willing to support and your application will not be visible
on the Google Play Store for devices running a higher platform release. Devices running on platforms
higher than Android 2.0.1 (API level 6) will ignore any maximum SDK values at installation time.

<uses-sdk android:minSdkvVersion="6"
android:targetSdkVersion="15"/>

y The supported SDK version is not equivalent to the platform version and cannot
be derived from it. For example, Android platform release 4.0 supports the SDK
version 14. To find the correct SDK version for each platform, use the table at
http://developer.android.com/guide/appendix/api-levels.html.

> uses-configuration — The uses-configuration nodes specify each combination of
input mechanisms are supported by your application. You shouldn’t normally need to
include this node, though it can be useful for games that require particular input controls.
You can specify any combination of input devices that include the following:

> reqgFivelWayNav — Specify true for this attribute if you require an input device capa-
ble of navigating up, down, left, and right and of clicking the current selection. This
includes both trackballs and directional pads (D-pads).

» regHardKeyboard — If your application requires a hardware keyboard, specify
true.

> regKeyboardType — Lets you specify the keyboard type as one of nokeys, gwerty,
twelvekey, or undefined.

> regNavigation — Specify the attribute value as one of nonav, dpad, trackball,
wheel, or undefined as a required navigation device.

> regTouchScreen — Select one of notouch, stylus, finger, or undefined to spec-
ify the required touchscreen input.

You can specify multiple supported configurations, for example, a device with a finger
touchscreen, a trackball, and either a QUERTY or a twelve-key hardware keyboard, as
shown here:

<uses-configuration android:reqgTouchScreen="finger"
android:regNavigation="trackball"

www.it-ebooks.info

http://developer.android.com/guide/appendix/api-levels.html
http://www.it-ebooks.info/

58 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

android:regHardKeyboard="true"
android:regKeyboardType="qwerty" />

<uses-configuration android:regTouchScreen="finger"

android:regNavigation="trackball"
android:regHardKeyboard="true"
android:regKeyboardType="twelvekey" />

When specifying required configurations, be aware that your application won’t
be installed on any device that does not have one of the combinations specified.
In the preceding example, a device with a QWERTY keyboard and a D-pad
(but no touchscreen or trackball) would not be supported. Ideally, you should
develop your application to ensure it works with any input configuration, in
which case no uses-configuration node is required.

> uses-feature — Android is available on a wide variety of hardware platforms. Use
multiple uses-feature nodes to specify which hardware features your application requires.
This prevents your application from being installed on a device that does not include a
required piece of hardware, such as NFC hardware, as follows:

<uses-feature android:name="android.hardware.nfc" />

You can require support for any hardware that is optional on a compatible device.
Currently, optional hardware features include the following:

>

>

>

Audio — For applications that requires a low-latency audio pipeline. Note that at the
time of writing this book, no Android devices satisfied this requirement.

Bluetooth — Where a Bluetooth radio is required.

Camera — For applications that require a camera. You can also require (or set as
options) autofocus, flash, or a front-facing camera.

Location — If you require location-based services. You can also specify either net-
work or GPS support explicitly.

Microphone — For applications that require audio input.
NFC — Requires NFC (near-field communications) support.

Sensors — Enables you to specify a requirement for any of the potentially available
hardware sensors.

Telephony — Specify that either telephony in general, or a specific telephony radio
(GSM or CDMA) is required.

Touchscreen — To specify the type of touch-screen your application requires.
USB — For applications that require either USB host or accessory mode support.

Wi-Fi — Where Wi-Fi networking support is required.

As the variety of platforms on which Android is available increases, so too will

the optional hardware. You can find a full list of uses-feature hardware at
http://developer.android.com/guide/topics/manifest/uses-feature-element.
html#features-reference.

www.it-ebooks.info

http://developer.android.com/guide/topics/manifest/uses-feature-element
http://www.it-ebooks.info/

Introducing the Application Manifest File | 59

To ensure compatibility, requiring some permissions implies a feature requirement. In par-
ticular, requesting permission to access Bluetooth, the camera, any of the location service
permissions, audio recording, Wi-Fi, and telephony-related permissions implies the cor-
responding hardware features. You can override these implied requirements by adding a
required attribute and setting it to false — for example, a note-taking application that
supports recording an audio note:

<uses-feature android:name="android.hardware.microphone"
android:required="false" />

The camera hardware also represents a special case. For compatibility reasons requesting
permission to use the camera, or adding a uses-feature node requiring it, implies a require-
ment for the camera to support autofocus. You can specify it as optional as appropriate:
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"
android:required="false" />
<uses-feature android:name="android.hardware.camera.flash"
android:required="false" />

You can also use the uses-feature node to specify the minimum version of OpenGL
required by your application. Use the g1Esversion attribute, specifying the OpenGL ES
version as an integer. The higher 16 bits represent the major number and the lower 16 bits
represent the minor number, so version 1.1 would be represented as follows:

<uses-feature android:glEsVersion="0x00010001" />

supports-screens — The first Android devices were limited to 3.2" HVGA hardware.
Since then, hundreds of new Android devices have been launched including tiny 2.55"
QVGA phones, 10.1" tablets, and 42" HD televisions. The supports-screen node enables
you to specify the screen sizes your application has been designed and tested to. On devices
with supported screens, your application is laid out normally using the scaling properties
associated with the layout files you supply. On unsupported devices the system may apply a
“compatibility mode,” such as pixel scaling to display your application. It’s best practice to
create scalable layouts that adapt to all screen dimensions.

You can use two sets of attributes when describing your screen support. The first set is used
primarily for devices running Android versions prior to Honeycomb MR2 (API level 13).
Each attribute takes a Boolean specifying support. As of SDK 1.6 (API level 4), the default
value for each attribute is true, so use this node to specify the screen sizes you do not support.

» smallScreens — Screens with a resolution smaller than traditional HVGA
(typically, QVGA screens).

> normalScreens — Used to specify typical mobile phone screens of at least HVGA,
including WVGA and WQVGA.

> largeScreens — Screens larger than normal. In this instance a large screen is
considered to be significantly larger than a mobile phone display.

> xlargeScreens — Screens larger than large-typically tablet devices.

Honeycomb MR2 (API level 13) introduced additional attributes that provide a finer level
of control over the size of screen your application layouts can support. It is generally good
practice to use these in combination with the earlier attributes if your application is avail-
able to devices running platform releases earlier than API level 13.

www.it-ebooks.info

http://www.it-ebooks.info/

60

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

requiresSmallestWidthDp — Enables you to specify a minimum supported screen
width in device independent pixels. The smallest screen width for a device is the
lower dimension of its screen height and width. This attribute can potentially be
used to filter applications from the Google Play Store for devices with unsupported
screens, so when used it should specify the absolute minimum number of pixels
required for your layouts to provide a useable user experience.

compatiblewidthLimitDp — Specifies the upper bound beyond which your appli-
cation may not scale. This can cause the system to enable a compatibility mode on
devices with screen resolutions larger than you specify.

largestWidthLimitDp — Specifies the absolute upper bound beyond which you
know your application will not scale appropriately. Typically this results in the
system forcing the application to run in compatibility mode (without the ability for
users to disable it) on devices with screen resolutions larger than that specified.

It is generally considered a bad user experience to force your application into compatibility
mode. Wherever possible, ensure that your layouts scale in a way that makes them usable on
larger devices.

<supports-screens android:smallScreens="false"

android:normalScreens="true"
android:largeScreens="true"
android:xlargeScreens="true"
android:requiresSmallestWidthDp="480"
android:compatibleWidthLimitDp="600"
android:largestWidthLimitDp="720"/>

Where possible you should optimize your application for different screen reso-
lutions and densities using the resources folder, as shown later in this chapter,
rather than enforcing a subset of supported screens.

>

>

supports-gl-texture — Declares that the application is capable of providing texture

assets that are compressed using a particular GL texture compression format. You must use
multiple supports-gl-texture elements if your application is capable of supporting multiple
texture compression formats. You can find the most up-to-date list of supported GL texture
compression format values at http://developer.android.com/guide/topics/manifest/

supports-gl-texture-element.html.

<supports-gl-texture android:name="GL_OES_compressed_ETC1l_RGB8_texture" />

uses-permission — As part of the security model, uses-permission tags declare the user
permissions your application requires. Each permission you specify will be presented to the

user before the application is installed. Permissions are required for many APIs and method
calls, generally those with an associated cost or security implication (such as dialing, receiv-

ing SMS, or using the location-based services).

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

permission — Your application components can also create permissions to restrict access
to shared application components. You can use the existing platform permissions for this

www.it-ebooks.info

http://developer.android.com/guide/topics/manifest
http://www.it-ebooks.info/

Introducing the Application Manifest File | 61

purpose or define your own permissions in the manifest. To do this, use the permission tag
to create a permission definition.

Your application components can then create permissions by adding an android:permission
attribute. Then you can include a uses-permission tag in your manifest to use these pro-
tected components, both in the application that includes the protected component and any
other application that wants to use it.

Within the permission tag, you can specify the level of access the permission permits
(normal, dangerous, signature, signatureOrSystem), a label, and an external resource
containing the description that explains the risks of granting the specified permission. More
details on creating and using your own permissions can be found in Chapter 18, “Advanced
Android Development.”

<permission android:name="com.paad.DETONATE_DEVICE"
android:protectionLevel="dangerous"
android:label="Self Destruct"
android:description="@string/detonate_description">
</permission>

> instrumentation — Instrumentation classes provide a test framework for your application
components at run time. They provide hooks to monitor your application and its interaction
with the system resources. Create a new node for each of the test classes you’ve created for
your application.
<instrumentation android:label="My Test"
android:name=".MyTestClass"

android:targetPackage="com.paad.apackage">
</instrumentation>

Note that you can use a period (.) as shorthand for prepending the manifest package to a
class within your package.

> application — A manifest can contain only one application node. It uses attributes to
specify the metadata for your application (including its title, icon, and theme). During devel-
opment you should include a debuggable attribute set to true to enable debugging, then be
sure to disable it for your release builds.

The application node also acts as a container for the Activity, Service, Content Provider,
and Broadcast Receiver nodes that specify the application components. Later in this chapter
you’ll learn how to create and use your own Application class extension to manage applica-
tion state. You specify the name of your custom application class using the android:name
attribute.

<application android:icon="@drawable/icon"
android:logo="@drawable/logo"
android:theme="@android:style/Theme.Light"
android:name=".MyApplicationClass"
android:debuggable="true">
[... application nodes ...]
</application>

> activity — An activity tag is required for every Activity within your applica-
tion. Use the android:name attribute to specify the activity class name. You
must include the main launch Activity and any other Activity that may be displayed.
Trying to start an Activity that’s not defined in the manifest will throw a runtime

www.it-ebooks.info

mailto:theme=%E2%80%9D@android:style/Theme.Light%E2%80%9D
http://www.it-ebooks.info/

62

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

exception. Each Activity node supports intent-filter child tags that define the
Intents that can be used to start the Activity. Later in this chapter you’ll explore the
Activity manifest entry in more detail.

Note, again, that a period is used as shorthand for the application’s package name when
specifying the Activity’s class name.

<activity android:name=".MyActivity" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=»android.intent.category.LAUNCHER» />
</intent-filter>
</activity>
> service — As with the activity tag, add a service tag for each service class
used in your application. Service tags also support intent-filter child tags to

allow late runtime binding.

<service android:name=".MyService">
</service>

> provider — Provider tags specify each of your application’s Content Providers.
Content Providers are used to manage database access and sharing.

<provider android:name=".MyContentProvider"
android:authorities="com.paad.myapp.MyContentProvider" />

> receiver — By adding a receiver tag, you can register a Broadcast Receiver with-
out having to launch your application first. As you’ll see in Chapter 5, Broadcast
Receivers are like global event listeners that, when registered, will execute whenever
a matching Intent is broadcast by the system or an application. By registering a
Broadcast Receiver in the manifest you can make this process entirely autonomous. If
a matching Intent is broadcast, your application will be started automatically and
the registered Broadcast Receiver will be executed. Each receiver node supports
intent-filter child tags that define the Intents that can be used to trigger the

receiver:

<receiver android:name=".MyIntentReceiver">

<intent-filter>
<action android:name="com.paad.mybroadcastaction" />

</intent-filter>
</receiver>

> uses-library — Used to specify a shared library that this application requires. For
example, the maps APIs described in Chapter 13, “Maps, Geocoding, and Location-
Based Services,” are packaged as a separate library that is not automatically linked.
You can specify that a particular package is required — which prevents the appli-
cation from being installed on devices without the specified library — or optional,
in which case your application must use reflection to check for the library before
attempting to make use of it.

<uses-library android:name="com.google.android.maps"
android:required="false" />

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Manifest Editor | 63

You can find a more detailed description of the manifest and each of these
nodes at http: //developer.android.com/guide/topics/manifest/

manifest-intro.html.

The ADT New Project Wizard automatically creates a new manifest file when it creates a new proj-
ect. You’ll return to the manifest as each of the application components is introduced and explored.

USING THE MANIFEST EDITOR

The Android Development Tools (ADT) plug-in includes a Manifest Editor, so you don’t have to

manipulate the underlying XML directly.

To use the Manifest Editor in Eclipse, right-click the AndroidManifest.xm1 file in your project
folder, and select Open With &> Android Manifest Editor. This presents the Android Manifest
Overview screen, as shown in Figure 3-1. This screen gives you a high-level view of your application
structure, enabling you to set your application version information and root level manifest nodes,
including uses-sdk and uses-features, as described previously in this chapter. It also provides
shortcut links to the Application, Permissions, Instrumentation, and raw XML screens.

i Android Manifest

~ Manifest General Attributes
Defines general information about the AndroidManifest.xml

Package com.paad.myapp Browse...
Version code 1

Version name 0.9 Beta | Browse... ‘
Shared user id | Browse...
Shared user label | Browse...
Install location preferExternal :J
Manifest Extras Oe®O O @ O Az

() Uses Sdk i

Ad
() uses Configuration

@ Uses Configuration
@android.hardware.ﬂfc (Uses Feature)
@android.hardware.micmphone (Uses Feature) up
@andruid.hardware.camera {Uses Feature)

Remove...

@android.hardware.camera.aumiocus {Uses Feature) L
(U) android.hardware.camera.flash (Uses Feature)
() Uses Feature -
(5) Suppeorts Screens b
= Exporting
To export the application for distribution, you have the following options
® Use the Export Wizard to export and sign an
APK
® Expart an unsigned APK and sign it manually
b Links
= Manife:lJ @ Application | [E] Permissions ‘ @ Instrur i ‘ = iroidMani xml
FIGURE 3-1

www.it-ebooks.info

http://developer.android.com/guide/topics/manifest
http://www.it-ebooks.info/

64 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

Each of the next three tabs contains a visual interface for managing the application, security, and
instrumentation (testing) settings, while the last tab (labeled with the manifest’s filename) gives
access to the underlying XML.

Of particular interest is the Application tab, as shown in Figure 3-2. Use it to manage the applica-
tion node and the application component hierarchy, where you specify each of your application’s

Components.
= Application Attributes
Defines the attributes specific to the application.
Name MyApplicationClass | Browse... | Vm safe mode :ﬂ
Theme @android:style/Theme.Lig | Browse... | Hardware accelerated :’]
Label Browse... | Manage space activity Browse...
lcon @drawable/icon | Browse... | Allow clear user data j
Logo @drawable/logo Browse... | Test only | 1‘]
Description Browse... | Backup agent | Browse...
Permission :! Allow backup :-!
Process Browse... | Kill after restore :!
Task affinity | Browse... | Restore needs application :ﬂ
Allow task reparenting j Restare any version :ﬂ
Has code j Never encrypt ﬂ
Persistent 1} Large heap j
Enabled | 1] Cant save state 1‘!
Debuggable true :’ Ui options Select...
Application Nodes @ @ @ @ @ @ A=
» [A] MyActivity -m
(8] .Myservice
E] MyContentProvider Remove...
[2 @ MylintentReceiver
@com‘google,android.maus {Uses Library) Up
Down
-@ Manifest |[A] Application J [P] Permissions | [1] Instrumentation ‘ |= AndroidManifest.xml

FIGURE 3-2

You can specify an application’s attributes — including its icon, label, and theme — in the
Application Attributes panel. The Application Nodes tree beneath it lets you manage the application
components, including their attributes and any associated Intent Filters.

EXTERNALIZING RESOURCES

It’s always good practice to keep non-code resources, such as images and string constants, external
to your code. Android supports the externalization of resources, ranging from simple values such as
strings and colors to more complex resources such as images (Drawables), animations, themes, and
menus. Perhaps the most powerful externalizable resources are layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 65

By externalizing resources, you make them easier to maintain, update, and manage. This also
lets you easily define alternative resource values for internationalization and to include different
resources to support variations in hardware — particularly, screen size and resolution.

You’ll see later in this section how Android dynamically selects resources from resource trees that
contain different values for alternative hardware configurations, languages, and locations. When an
application starts, Android automatically selects the correct resources without you having to write a
line of code.

Among other things, this lets you change the layout based on the screen size and orientation,
images based on screen density, and customize text prompts based on a user’s language and
country.

Creating Resources

Application resources are stored under the res folder in your project hierarchy. Each of the available
resource types is stored in subfolders, grouped by resource type.

. . . . !
If you start a project using the ADT Wizard, it creates a res folder that '?gmmme_hdm
contains subfolders for the values, drawable-1dpi, drawable-mdpi, & ic_launcher.png
. . v d ble-ldpi
drawable-hdpi, and layout resources that contain the default string resource B Lot
definitions, application icon, and layouts respectively, as shown in Figure 3-3. 'Egzwalb'e-:dpi
&% IC_launcher.png

Note that three drawable resource folders contain three different icons: one ks 1 T

each for low, medium, and high density displays respectively. ¥ values

|| strings.xml|

Each resource type is stored in a different folder: simple values, Drawables,
colors, layouts, animations, styles, menus, XML files (including searchables),
and raw resources. When your application is built, these resources will be compiled and compressed
as efficiently as possible and included in your application package.

FIGURE 3-3

This process also generates an R class file that contains references to each of the resources you
include in your project. This enables you to reference the resources in your code, with the advantage
of design-time syntax checking.

The following sections describe many of the specific resource types available within these categories
and how to create them for your applications.

In all cases, the resource filenames should contain only lowercase letters, numbers, and the period

(.) and underscore (_) symbols.

Simple Values

Supported simple values include strings, colors, dimensions, styles, and string or integer arrays. All
simple values are stored within XML files in the res/values folder.

Within each XML file, you indicate the type of value being stored using tags, as shown in the
sample XML file in Listing 3-1.

www.it-ebooks.info

http://www.it-ebooks.info/

66 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

) LISTING 3-1: Simple values XML

Available for ~ <?xml version="1.0" encoding="utf-8"?>
d"mg!ggglg" <resources>
<string name="app_name">To Do List</string>
<plurals name="androidPlural">
<item quantity="one">One android</item>
<item quantity="other">%d androids</item>
</plurals>
<color name="app_background">#FF0000FF</color>
<dimen name="default_border">5px</dimen>
<string-array name="string_array">
<item>Item 1l</item>
<item>Item 2</item>
<item>Item 3</item>
</string-array>
<array name="integer_array">
<item>3</item>
<item>2</item>
<item>1l</item>
</array>
</resources>

code snippet PA4AD_Ch03_Manifest_and_Resources/res/values/simple_values.xml

This example includes all the simple value types. By convention, resources are generally stored in
separate files, one for each type; for example, res/values/strings.xml would contain only string
resources.

The following sections detail the options for defining simple resources.

Strings

Externalizing your strings helps maintain consistency within your application and makes it much
easier to internationalize them.

String resources are specified with the string tag, as shown in the following XML snippet:
<string name="stop_message">Stop.</string>

Android supports simple text styling, so you can use the HTML tags , <i>, and <u> to apply
bold, italics, or underlining, respectively, to parts of your text strings, as shown in the following
example:

<string name="stop_message">Stop.</string>

You can use resource strings as input parameters for the String. format method. However,
String. format does not support the text styling previously described. To apply styling to a format
string, you have to escape the HTML tags when creating your resource, as shown in the following
snippet:

<string name="stop_message">Stop. %1$s</string>

Within your code, use the Html . fromitml method to convert this back into a styled character
sequence.

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 67

String rString = getString(R.string.stop_message) ;
String fString = String.format (rString, "Collaborate and listen.");
CharSequence styledString = Html.fromHtml (fString) ;

You can also define alternative plural forms for your strings. This enables you to define different
strings based on the number of items you refer to. For example, in English you would refer to “one
Android” or “seven Androids.”

By creating a plurals resource, you can specify an alternative string for any of zero, one, multiple,
few, many, or other quantities. In English only the singular is a special case, but some languages
require finer detail:

<plurals name="unicornCount">
<item quantity="one">One unicorn</item>
<item quantity="other">%d unicorns</item>
</plurals>

To access the correct plural in code, use the getQuantityString method on your application’s
Resources object, passing in the resource ID of the plural resource, and specifying the number of
objects you want to describe:

Resources resources = getResources();
String unicornStr = resources.getQuantityString(
R.plurals.unicornCount, unicornCount, unicornCount) ;

The object count is passed in twice — once to return the correct plural string, and again as an input
parameter to complete the sentence.

Colors

Use the color tag to define a new color resource. Specify the color value using a # symbol followed
by the (optional) alpha channel, and then the red, green, and blue values using one or two hexadeci-
mal numbers with any of the following notations:

> #RGB

> #RRGGBB

> #ARGB

> #AARRGGBB

The following example shows how to specify a fully opaque blue and a partially transparent green:

<color name="opaque_blue">#00F</color>
<color name="transparent_green">#7700FF00</color>

Dimensions

Dimensions are most commonly referenced within style and layout resources. They’re useful for
creating layout constants, such as borders and font heights.

To specify a dimension resource, use the dimen tag, specifying the dimension value, followed by an
identifier describing the scale of your dimension:

> px (screen pixels)

> in (physical inches)

www.it-ebooks.info

http://www.it-ebooks.info/

68 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

pt (physical points)
mm (physical millimeters)

dp (density-independent pixels)

Y Y YV VY

sp (scale-independent pixels)

Although you can use any of these measurements to define a dimension, it’s best practice to use
either density- or scale-independent pixels. These alternatives let you define a dimension using rela-
tive scales that account for different screen resolutions and densities to simplify scaling on different
hardware.

Scale-independent pixels are particularly well suited when defining font sizes because they automati-
cally scale if the user changes the system font size.

The following XML snippet shows how to specify dimension values for a large font size and a
standard border:

<dimen name="standard_border">5dp</dimen>
<dimen name="large_font_size">16sp</dimen>

Styles and Themes

Style resources let your applications maintain a consistent look and feel by enabling you to specify
the attribute values used by Views. The most common use of themes and styles is to store the colors
and fonts for an application.

To create a style, use a style tag that includes a name attribute and contains one or more item tags.
Each item tag should include a name attribute used to specify the attribute (such as font size or color)
being defined. The tag itself should then contain the value, as shown in the following skeleton code.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="base_text">
<item name="android:textSize">1l4dsp</item>
<item name="android:textColor">#11ll</item>
</style>
</resources>

Styles support inheritance using the parent attribute on the style tag, making it easy to create simple
variations:
<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="small_ text" parent="base_text">
<item name="android:textSize">8sp</item>
</style>
</resources>

Drawables

Drawable resources include bitmaps and NinePatches (stretchable PNG images). They also include
complex composite Drawables, such as LevelListDrawables and StateListDrawables, that can be
defined in XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 69

Both NinePatch Drawables and complex composite resources are covered in
more detail in the next chapter.

All Drawables are stored as individual files in the res/drawable folder. Note that it’s good practice
to store bitmap image assets in the appropriate drawable -ldpi, -mdpi, -hdpi, and -xhdpi folders, as
described earlier in this chapter. The resource identifier for a Drawable resource is the lowercase file
name without its extension.

The preferred format for a bitmap resource is PNG, although JPG and GIF files
are also supported.

Layouts

Layout resources enable you to decouple your presentation layer from your business logic by design-
ing Ul layouts in XML rather than constructing them in code.

You can use layouts to define the Ul for any visual component, including Activities, Fragments,
and Widgets. Once defined in XML, the layout must be “inflated” into the user interface. Within
an Activity this is done using setContentView (usually within the oncreate method), whereas
Fragment Views are inflated using the inflate method from the Inflator object passed in to the
Fragment’s onCreateview handler.

For more detailed information on using and creating layouts in Activities and Fragments, see
Chapter 4, “Building User Interfaces.”

Using layouts to construct your screens in XML is best practice in Android. The decoupling of the
layout from the code enables you to create optimized layouts for different hardware configurations,
such as varying screen sizes, orientation, or the presence of keyboards and touchscreens.

Each layout definition is stored in a separate file, each containing a single layout, in the res/layout
folder. The filename then becomes the resource identifier.

A thorough explanation of layout containers and View elements is included in the next chapter, but
as an example Listing 3-2 shows the layout created by the New Project Wizard. It uses a Linear
Layout (described in more detail in Chapter 4) as a layout container for a Text View that displays
the “Hello World” greeting.

J LISTING 3-2: Hello World layout

Available for ~ <?xml version="1.0" encoding="utf-8"?>

dmggzg"':" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

continues

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

70 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

LISTING 3-2 (continued)

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>
</LinearLayout>

code snippet PA4AD_Ch03_Manifest_and_Resources/res/layout/main.xml

Animations

Android supports three types of animation:

> Property animations — A tweened animation that can be used to potentially animate any
property on the target object by applying incremental changes between two values. This can
be used for anything from changing the color or opacity of a View to gradually fade it in or
out, to changing a font size, or increasing a character’s hit points.

> View animations — Tweened animations that can be applied to rotate, move, and stretch
a View.

> Frame animations — Frame-by-frame “cell” animations used to display a sequence of
Drawable images.

A comprehensive overview of creating, using, and applying animations can be
found in Chapter 11, “Advanced User Experience.”

Defining animations as external resources enables you to reuse the same sequence in multiple places
and provides you with the opportunity to present different animations based on device hardware or
orientation.

Property Animations

Property animators were introduced in Android 3.0 (API level 11). It is a powerful framework that
can be used to animate almost anything.

Each property animation is stored in a separate XML file in the project’s res/animator folder. As
with layouts and Drawable resources, the animation’s filename is used as its resource identifier.

You can use a property animator to animate almost any property on a target object. You can define
animators that are tied to a specific property, or a generic value animator that can be allocated to
any property and object.

Property animators are extremely useful and are used extensively for animating Fragments in
Android. You will explore them in more detail in Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 71

The following simple XML snippet shows a property animator that changes the opacity of the target
object by calling its setalpha method incrementally between 0 and 1 over the course of a second:
<?xml version="1.0" encoding="utf-8"7?>
<objectAnimator xmlns:android="http://schemas.android.com/apk/res/android"
android:propertyName="alpha"
android:duration="1000"
android:valueFrom="0.0"

android:valueTo="1.0"
/>

View Animations

Each view animation is stored in a separate XML file in the project’s res/anim folder. As with
layouts and Drawable resources, the animation’s filename is used as its resource identifier.

An animation can be defined for changes in alpha (fading), scale (scaling), translate (movement),
or rotate (rotation).

Table 3-1 shows the valid attributes, and attribute values, supported by each animation type.

TABLE 3-1: Animation type attributes

ANIMATION TYPE ATTRIBUTES VALID VALUES
Alpha fromAlpha/toAlpha Float from O to 1
Scale fromXScale/toXScale Float from O to 1
fromYScale/toYScale Float from O to 1
pivotX/pivotY String of the percentage of graphic width/height

from 0% to 100%

Translate fromX/toX Float from O to 1
fromY/toY Float from O to 1
Rotate fromDegrees/toDegrees Float from O to 360
pivotX/pivotY String of the percentage of graphic width/height

from 0% to 100%

You can create a combination of animations using the set tag. An animation set contains one or
more animation transformations and supports various additional tags and attributes to customize
when and how each animation within the set is run.

The following list shows some of the set tags available:
» duration — Duration of the full animation in milliseconds.
> startoffset — Millisecond delay before the animation starts.

> fillBeforetrue — Applies the animation transformation before it begins.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

72 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

> fillAftertrue — Applies the animation transformation after it ends.

> interpolator — Sets how the speed of this effect varies over time. Chapter 11 explores
the interpolators available. To specify one, reference the system animation resources at

android:anim/interpolatorName.

If you do not use the startoffset tag, all the animation effects within a set will
execute simultaneously.

The following example shows an animation set that spins the target 360 degrees while it shrinks and

fades out:

<?xml version="1.0" encoding="utf-8"7?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="Candroid:anim/accelerate_interpolator">

<rotate
android:
android:
android:
android:
android:
android:

<scale
android:
android:
android:
android:
android:
android:
android:
android:

<alpha
android:
android:
android:
android:

</set>

fromDegrees="0"
toDegrees="360"
pivotX="50%"
pivoty="50%"
startOffset="500"
duration="1000" />

fromXScale="1.0"
toXScale="0.0"
fromyYScale="1.0"
toYScale="0.0"
pivotX="50%"
pivoty="50%"
startOffset="500"
duration="500" />

fromAlpha="1.0"
toAlpha="0.0"
startOffset="500"
duration="500" />

Frame-by-Frame Animations

Frame-by-frame animations produce a sequence of Drawables, each of which is displayed for a

specified duration.

Because frame-by-frame animations represent animated Drawables, they are stored in the res/
drawable folder and use their filenames (without the .xml extension) as their resource Ids.

The following XML snippet shows a simple animation that cycles through a series of bitmap
resources, displaying each one for half a second. To use this snippet, you need to create new image
resources androidl through android3:

<animation-list
xmlns:android="http://schemas.android.com/apk/res/android"
android:oneshot="false">

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Externalizing Resources | 73

<item android:drawable="@drawable/androidl" android:duration="500" />

<item android:drawable="@drawable/android2" android:duration="500" />

<item android:drawable="@drawable/android3" android:duration="500" />
</animation-list>

Note that in many cases you should include multiple resolutions of each of the drawables used
within the animation list in the drawable-1dpi, -mdi, -hdpi, and -xhdpi folders, as appropriate.

To play the animation, start by assigning the resource to a host View before getting a reference to
the Animation Drawable object and starting it:

ImageView androidIV = (ImageView)findViewById(R.id.iv_android);
androidIV.setBackgroundResource (R.drawable.android_anim) ;

AnimationDrawable androidAnimation =
(AnimationDrawable) androidIV.getBackground() ;

androidAnimation.start();

Typically, this is done in two steps; assigning the resource to the background should be done within
the oncreate handler.

Within this handler the animation is not fully attached to the window, so the animations can’t be
started; instead, this is usually done as a result to user action (such as a button press) or within the
onWindowFocusChanged handler.

Menus

Create menu resources to design your menu layouts in XML, rather than constructing them in code.

You can use menu resources to define both Activity and context menus within your applications,
and provide the same options you would have when constructing your menus in code. When defined
in XML, a menu is inflated within your application via the inflate method of the MenuInflator
Service, usually within the oncreateoptionsMenu method. You examine menus in more detail in

Chapter 10.

Each menu definition is stored in a separate file, each containing a single menu, in the res/menu
folder — the filename then becomes the resource identifier. Using XML to define your menus is best-
practice design in Android.

A thorough explanation of menu options is included in Chapter 10, but Listing 3-3 shows a simple
example.

) LISTING 3-3: Simple menu layout resource

Available for <?xml version="1.0" encoding="utf-8"?>
dwmwg&gn <menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/menu_refresh"
android:title="@string/refresh_mi" />
<item android:id="@+id/menu_settings"
android:title="@string/settings_mi" />
</menu>

code snippet PA4AD_Snippets_Chapter3/res/menu/menu.xml

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

74 |

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

Using Resources

In addition to the resources you supply, the Android platform includes several system resources that
you can use in your applications. All resources can be used directly from your application code and

can also be referenced from within other resources. For example, a dimension resource might be ref-
erenced in a layout definition.

Later in this chapter you learn how to define alternative resource values for different languages,
locations, and hardware. It’s important to note that when using resources, you shouldn’t choose a
particular specialized version. Android will automatically select the most appropriate value for a
given resource identifier based on the current hardware, device, and language configurations.

Using Resources in Code

Access resources in code using the static R class. R is a generated class based on your external
resources, and created when your project is compiled. The R class contains static subclasses for each
of the resource types for which you’ve defined at least one resource. For example, the default new
project includes the R.string and R.drawable subclasses.

If you use the ADT plug-in in Eclipse, the R class will be created automatically
when you make any change to an external resource file or folder. If you are not
using the plug-in, use the AAPT tool to compile your project and generate the R
class. R is a compiler-generated class, so don’t make any manual modifications
to it because they will be lost when the file is regenerated.

Each of the subclasses within R exposes its associated resources as variables, with the variable names
matching the resource identifiers — for example, R. string.app_name or R.drawable. icon.

The value of these variables is an integer that represents each resource’s location in the resource
table, not an instance of the resource itself.

Where a constructor or method, such as setContentview, accepts a resource identifier, you can
pass in the resource variable, as shown in the following code snippet:

// Inflate a layout resource.

setContentView(R.layout.main) ;

// Display a transient dialog box that displays the

// error message string resource.

Toast.makeText (this, R.string.app_error, Toast.LENGTH_LONG) .show() ;

When you need an instance of the resource itself, you need to use helper methods to extract them
from the resource table. The resource table is represented within your application as an instance of
the Resources class.

These methods perform lookups on the application’s current resource table, so these helper methods
can’t be static. Use the getResources method on your application context, as shown in the follow-
ing snippet, to access your application’s Resources instance:

Resources myResources = getResources();

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 75

The Resources class includes getters for each of the available resource types and generally works by
passing in the resource ID you’d like an instance of. The following code snippet shows an example
of using the helper methods to return a selection of resource values:

Resources myResources = getResources() ;

CharSequence styledText = myResources.getText (R.string.stop_message) ;
Drawable icon = myResources.getDrawable (R.drawable.app_icon) ;

int opaqueBlue = myResources.getColor (R.color.opaque_blue);
float borderWidth = myResources.getDimension (R.dimen.standard_border) ;

Animation tranOut;
tranOut = AnimationUtils.loadAnimation(this, R.anim.spin_shrink_fade);

ObjectAnimator animator =
(ObjectAnimator)AnimatorInflater.loadAnimator (this,
R.anim.my_animator) ;

String[] stringArray;
stringArray = myResources.getStringArray (R.array.string_array) ;

int[] intArray = myResources.getIntArray(R.array.integer_array) ;

Frame-by-frame animated resources are inflated into animationResources. You can return the
value using getDrawable and casting the return value, as shown here:

AnimationDrawable androidAnimation;
androidAnimation =
(AnimationDrawable)myResources.getDrawable (R.drawable. frame_by_frame) ;

Referencing Resources Within Resources

You can also use resource references as attribute values in other XML resources.

This is particularly useful for layouts and styles, letting you create specialized variations on themes
and localized strings and image assets. It’s also a useful way to support different images and spacing
for a layout to ensure that it’s optimized for different screen sizes and resolutions.

To reference one resource from another, use the @ notation, as shown in the following snippet:

attribute="@[packagename:]resourcetype/resourceidentifier"

Android assumes you use a resource from the same package, so you only

need to fully qualify the package name if you use a resource from a different
package.

Listing 3-4 shows a layout that uses color, dimension, and string resources.

www.it-ebooks.info

http://www.it-ebooks.info/

76 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

) LISTING 3-4: Using resources in a layout

Available for ~ <?xml version="1.0" encoding="utf-8"?>
dmgrgg"‘i" <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="@dimen/standard_border">
<EditText
android:id="@+id/myEditText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@string/stop_message"
android:textColor="@color/opaque_blue"
/>
</LinearLayout>

code snippet PAAAD_Ch03_Manifest_and_Resources/res/layout/reslayout.xml

Using System Resources

The Android framework makes many native resources available, providing you with various strings,
images, animations, styles, and layouts to use in your applications.

Accessing the system resources in code is similar to using your own resources. The difference is that
you use the native Android resource classes available from android.R, rather than the application-

specific R class. The following code snippet uses the getstring method available in the application

context to retrieve an error message available from the system resources:

CharSequence httpError = getString(android.R.string.httpErrorBadUrl) ;

To access system resources in XML, specify android as the package name, as shown in this XML
snippet:

<EditText
android:id="@+id/myEditText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@android:string/httpErrorBadUrl"
android:textColor="@android:color/darker_gray"
/>

Referring to Styles in the Current Theme

Using themes is an excellent way to ensure consistency for your application’s UL Rather than fully
define each style, Android provides a shortcut to enable you to use styles from the currently applied
theme.

To do this, use ?android: rather than @ as a prefix to the resource you want to use. The following
example shows a snippet of the preceding code but uses the current theme’s text color rather than a
system resource:

<EditText
android:id="@+id/myEditText"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Externalizing Resources | 77

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="@android:string/httpErrorBadUrl"
android:textColor="?android:textColor"

This technique enables you to create styles that change if the current theme changes, without you
modifying each individual style resource.

Creating Resources for Different Languages and Hardware

Using the directory structure described here, you can create different resource values for specific
languages, locations, and hardware configurations. Android chooses from among these values
dynamically at run time using its dynamic resource-selection mechanism.

You can specify alternative resource values using a parallel directory structure within the res folder.
A hyphen (-) is used to separate qualifiers that specify the conditions you provide alternatives for.

The following example hierarchy shows a folder structure that features default string values, with
French language and French Canadian location variations:

Project/

res/
values/
strings.xml
values-fr/
strings.xml
values-fr-rCa/
strings.xml

The following list gives the qualifiers you can use to customize your resource values:

>

Mobile Country Code and Mobile Network Code (MCC/MNC) — The country, and option-
ally the network, associated with the SIM currently used in the device. The MCC is specified
by mcc followed by the three-digit country code. You can optionally add the MNC using

mnc and the two- or three-digit network code (for example, mcc234-mnc20 or mcc310). You
can find a list of MCC/MNC codes on Wikipedia at http://en.wikipedia.org/wiki/
MobileNetworkCode.

Language and Region — Language specified by the lowercase two-letter ISO 639-1 language
code, followed optionally by a region specified by a lowercase r followed by the uppercase
two-letter ISO 3166-1-alpha-2 language code (for example, en, en-ruUs, or en-rGB).

Smallest Screen Width — The lowest of the device’s screen dimensions (height and width)
spedﬁedinthefornlsw<Dimension value>dp(forexanuﬂe,sw600dp,sw320dp,0r
sw720dp). This is generally used when providing multiple layouts, where the value specified
should be the smallest screen width that your layout requires in order to render

correctly. Where you supply multiple directories with different smallest screen width quali-
fiers, Android selects the largest value that doesn’t exceed the smallest dimension available on
the device.

Available Screen Width — The minimum screen width required to use the contained
resources, specified in the form w<Dimension value>dp (for example, w600dp, w320dp, or

www.it-ebooks.info

http://en.wikipedia.org/wiki
http://www.it-ebooks.info/

78 | CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

A\

Y Y Y VY

w720dp). Also used to supply multiple layouts alternatives, but unlike smallest screen width,
the available screen width changes to reflect the current screen width when the device orien-
tation changes. Android selects the largest value that doesn’t exceed the currently available
screen width.

Available Screen Height — The minimum screen height required to use the contained
resources, specified in the form h<Dimension value>dp (for example, h720dp, h480dp, or
h1280dp). Like available screen width, the available screen height changes when the device
orientation changes to reflect the current screen height. Android selects the largest value that
doesn’t exceed the currently available screen height.

Screen Size — One of small (smaller than HVGA), medium (at least HVGA and typically
smaller than VGA), 1arge (VGA or larger), or xlarge (significantly larger than HVGA).
Because each of these screen categories can include devices with significantly different screen
sizes (particularly tablets), it’s good practice to use the more specific smallest screen size,
and available screen width and height whenever possible. Because they precede this screen
size qualifier, where both are specified, the more specific qualifiers will be used in preference
where supported.

Screen Aspect Ratio — Specify 1ong or notlong for resources designed specifically for wide
screen. (For example, WVGA is 1ong; QVGA is notlong.)

Screen Orientation: One of port (portrait), 1and (landscape), or square (square).
Dock Mode — One of car or desk. Introduced in API level 8.

Night Mode — One of night (night mode) or notnight (day mode). Introduced in API level
8. Used in combination with the dock mode qualifier, this provides a simple way to change
the theme and/or color scheme of an application to make it more suitable for use at night in a
car dock.

Screen Pixel Density — Pixel density in dots per inch (dpi). Best practice is to supply 1dpi,
mdp1i, hdpi, or xhdpi to specify low (120 dpi), medium (160 dpi), high (240 dpi), or extra
high (320 dpi) pixel density assets, respectively. You can specify nodpi for bitmap resources
you don’t want scaled to support an exact screen density. To better support applications
targeting televisions running Android, you can also use the tvdpi qualifier for assets of
approximately 213dpi. This is generally unnecessary for most applications, where including
medium- and high-resolution assets is sufficient for a good user experience. Unlike with other
resource types, Android does not require an exact match to select a resource. When selecting
the appropriate folder, it chooses the nearest match to the device’s pixel density and scales
the resulting Drawables accordingly.

Touchscreen Type — One of notouch, stylus, or finger, allowing you to provide layouts
or dimensions optimized for the style of touchscreen input available on the host device.

Keyboard Availability — One of keysexposed, keyshidden, or keyssoft.
Keyboard Input Type — One of nokeys, awerty, or 12key.
Navigation Key Availability — One of navexposed or navhidden.

UI Navigation Type — One of nonav, dpad, trackball, or wheel.

www.it-ebooks.info

http://www.it-ebooks.info/

Externalizing Resources | 79

> Platform Version — The target API level, specified in the form v<APT Level> (for example,
v7). Used for resources restricted to devices running at the specified API level or higher.

You can specify multiple qualifiers for any resource type, separating each qualifier with a hyphen.
Any combination is supported; however, they must be used in the order given in the preceding list,
and no more than one value can be used per qualifier.

The following example shows valid and invalid directory names for alternative layout resources.

VALID
layout-large-land
layout-xlarge-port-keyshidden
layout-long-land-notouch-nokeys
INVALID

values-rUS-en (out of order)
values-rUS-rUK (multiple values for a single qualifier)

When Android retrieves a resource at run time, it finds the best match from the available alterna-
tives. Starting with a list of all the folders in which the required value exists, it selects the one with
the greatest number of matching qualifiers. If two folders are an equal match, the tiebreaker is based
on the order of the matched qualifiers in the preceding list.

ﬂ If no resource matches are found on a given device, your application throws an
exception when attempting to access that resource. To avoid this, you should
always include default values for each resource type in a folder that includes no
qualifiers.

Runtime Configuration Changes

Android handles runtime changes to the language, location, and hardware by terminating and
restarting the active Activity. This forces the resource resolution for the Activity to be reevaluated
and the most appropriate resource values for the new configuration to be selected.

In some special cases this default behavior may be inconvenient, particularly for applications that
don’t want to present a different Ul based on screen orientation changes. You can customize your
application’s response to such changes by detecting and reacting to them yourself.

To have an Activity listen for runtime configuration changes, add an android: configChanges attri-
bute to its manifest node, specifying the configuration changes you want to handle.

The following list describes some of the configuration changes you can specify:

> mcc and mnc — A SIM has been detected and the mobile country or network code (respec-
tively) has changed.

> locale — The user has changed the device’s language settings.

www.it-ebooks.info

http://www.it-ebooks.info/

80 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

> keyboardHidden — The keyboard, d-pad, or other input mechanism has been exposed or
hidden.

> keyboard — The type of keyboard has changed; for example, the phone may have a 12-key
keypad that flips out to reveal a full keyboard, or an external keyboard might have been
plugged in.

> fontScale — The user has changed the preferred font size.

> uiMode — The global Ul mode has changed. This typically occurs if you switch between car
mode, day or night mode, and so on.

orientation — The screen has been rotated between portrait and landscape.

> screenLayout — The screen layout has changed; typically occurs if a different screen has
been activated.

> screensize — Introduced in Honeycomb MR2 (API level 12), occurs when the available
screen size has changed, for example a change in orientation between landscape and portrait.

> smallestScreenSize — Introduced in Honeycomb MR2 (API level 12), occurs when the
physical screen size has changed, such as when a device has been connected to an external
display.

In certain circumstances multiple events will be triggered simultaneously. For example, when the
user slides out a keyboard, most devices fire both the keyboardHidden and orientation events,
and connecting an external display on a post-Honeycomb MR2 device is likely to trigger
orientation, screenLayout, screenSize, and smallestScreenSize events.

You can select multiple events you want to handle yourself by separating the values with a pipe (|),
as shown in Listing 3-5, which shows an activity node declaring that it will handle changes in screen
size and orientation, and keyboard visibility.

) LISTING 3-5: Activity definition for handling dynamic resource changes

Available for <activity
dm:mg;" android:name=".MyActivity"
android:label="@string/app_name"
android:configChanges="screenSize|orientation|keyboarddidden">
<intent-filter >
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

code snippet PAAAD_Ch03_Config_Changes/AndroidManifest.xml

Adding an android:configChanges attribute suppresses the restart for the specified configuration
changes, instead triggering the onConfigurationChanged handler in the associated Activity. Override
this method to handle the configuration changes yourself, using the passed-in configuration object

www.it-ebooks.info

http://www.it-ebooks.info/

The Android Application Lifecycle | 81

to determine the new configuration values, as shown in Listing 3-6. Be sure to call back to the super-
class and reload any resource values that the Activity uses, in case they’ve changed.

) LISTING 3-6: Handling configuration changes in code
Availablefor ~ @Override
d%glﬂgg,ﬂ" public void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged (newConfig) ;

// [... Update any UI based on resource values ...]

if (newConfig.orientation == Configuration.ORIENTATION_LANDSCAPE) {

// [... React to different orientation ...]

}

if (newConfig.keyboardHidden == Configuration.KEYBOARDHIDDEN_NO) {
// [... React to changed keyboard visibility ...]

code snippet PAAAD_Ch03_Config_Changes/src/MyActivity.java

When onconfigurationChanged is called, the Activity’s Resource variables have already been
updated with the new values, so they’ll be safe to use.

Any configuration change that you don’t explicitly flag as being handled by your application will
cause your Activity to restart, without a call to onConfigurationChanged.

THE ANDROID APPLICATION LIFECYCLE

Unlike many traditional application platforms, Android applications have limited control over their
own lifecycles. Instead, application components must listen for changes in the application state and
react accordingly, taking particular care to be prepared for untimely termination.

By default, each Android application runs in its own process, each of which is running a separate
instance of Dalvik. Memory and process management is handled exclusively by the run time.

y You can force application components within the same application to run in dif-
ferent processes or to have multiple applications share the same process using
the android:process attribute on the affected component nodes within the
manifest.

Android aggressively manages its resources, doing whatever’s necessary to ensure a smooth and
stable user experience. In practice that means that processes (and their hosted applications) will be
killed, in some case without warning, to free resources for higher-priority applications.

www.it-ebooks.info

http://www.it-ebooks.info/

82 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

UNDERSTANDING AN APPLICATION’S PRIORITY AND ITS
PROCESS’ STATES

The order in which processes are killed to reclaim resources is determined by the priority of their
hosted applications. An application’s priority is equal to that of its highest-priority component.

If two applications have the same priority, the process that has been at that priority longest will be
killed first. Process priority is also affected by interprocess dependencies; if an application has a
dependency on a Service or Content Provider supplied by a second application, the secondary appli-
cation has at least as high a priority as the application it supports.

All Android applications continue running and in memory until the system
needs resources for other applications.

Figure 3-4 shows the priority tree used to determine the
order of application termination. [

Critical Priority
1. Active Process]

It’s important to structure your application to ensure
that its priority is appropriate for the vyork it’s.do.ing.. If 7 Lo Prion
you don’t, your application could be killed while it’s in 5 Visible Process igh Priority
the middle of something important, or it could remain i

running when it is no longer needed. ‘L

The following list details each of the application states 3. Started Service Process

shown in Figure 3-4, explaining how the state is

determined by the application components of which it v Low Priority
comprises: [4. Background Process]
> Active processes — Active (foreground) processes ¢
have application components the user is interact- [5. Empty Process]

ing with. These are the processes Android tries

to keep responsive by reclaiming resources from
other applications. There are generally very few
of these processes, and they will be killed only as a last resort.

FIGURE 3-4

Active processes include the following:

> Activities in an active state — that is, those in the foreground responding to user
events. You will explore Activity states in greater detail later in this chapter.

> Broadcast Receivers executing onReceive event handlers as described in
Chapter S.

> Services executing onStart, onCreate, or onDestroy event handlers as described in

Chapter 9.

> Running Services that have been flagged to run in the foreground (also described in
Chapter 9.)

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Android Application Class | 83

> Visible processes — Visible but inactive processes are those hosting “visible” Activities.
As the name suggests, visible Activities are visible, but they aren’t in the foreground
or responding to user events. This happens when an Activity is only partially obscured
(by a non-full-screen or transparent Activity). There are generally very few visible pro-
cesses, and they’ll be killed only under extreme circumstances to allow active processes to
continue.

> Started Service processes — Processes hosting Services that have been started. Because these
Services don’t interact directly with the user, they receive a slightly lower priority than visible
Activities or foreground Services. Applications with running Services are still considered fore-
ground processes and won’t be killed unless resources are needed for active or visible pro-
cesses. When the system terminates a running Service it will attempt to restart them (unless
you specify that it shouldn’t) when resources become available. You’ll learn more about
Services in Chapter 9.

> Background processes — Processes hosting Activities that aren’t visible and that don’t have
any running Services. There will generally be a large number of background processes that
Android will kill using a last-seen-first-killed pattern in order to obtain resources for fore-
ground processes.

> Empty processes — To improve overall system performance, Android will often retain an
application in memory after it has reached the end of its lifetime. Android maintains this
cache to improve the start-up time of applications when they’re relaunched. These processes
are routinely killed, as required.

INTRODUCING THE ANDROID APPLICATION CLASS

Your application’s Application object remains instantiated whenever your application runs. Unlike
Activities, the Application is not restarted as a result of configuration changes. Extending the
Application class with your own implementation enables you to do three things:

> Respond to application level events broadcast by the Android run time such as low memory
conditions.

> Transfer objects between application components.
Manage and maintain resources used by several application components.
Of these, the latter two can be better achieved using a separate singleton class. When your
Application implementation is registered in the manifest, it will be instantiated when your
application process is created. As a result, your Application implementation is by nature a

singleton and should be implemented as such to provide access to its methods and member
variables.

Extending and Using the Application Class

Listing 3-7 shows the skeleton code for extending the aApplication class and implementing it as a
singleton.

www.it-ebooks.info

http://www.it-ebooks.info/

84 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

) LISTING 3-7: Skeleton Application class

Available for import android.app.Application;
dm:!ggglgn import android.content.res.Configuration;

public class MyApplication extends Application {
private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

@Override

public final void onCreate() {
super .onCreate () ;
singleton = this;

code snippet PAAAD_Ch03_Config_Changes/src/MyApplication.java

When created, you must register your new Application class in the manifest’s application node
using a name attribute, as shown in the following snippet:
<application android:icon="@drawable/icon"
android:name=".MyApplication">

[... Manifest nodes ...]
</application>

Your Application implementation will be instantiated when your application is started. Create new
state variables and global resources for access from within the application components:

MyObject value = MyApplication.getInstance().getGlobalStatevValue();
MyApplication.getInstance() .setGlobalStatevValue (myObjectValue) ;

Although this can be an effective technique for transferring objects between your loosely coupled
application components, or for maintaining application state or shared resources, it is often better
to create your own static singleton class rather than extending the Application class specifically
unless you are also handling the lifecycle events described in the following section.

Overriding the Application Lifecycle Events

The application class provides event handlers for application creation and termination, low
memory conditions, and configuration changes (as described in the previous section).

By overriding these methods, you can implement your own application-specific behavior for each of
these circumstances:

> onCreate — Called when the application is created. Override this method to initialize your
application singleton and create and initialize any application state variables or shared
resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Android Application Class | 85

> onLowMemory — Provides an opportunity for well-behaved applications to free additional
memory when the system is running low on resources. This will generally only be called when
background processes have already been terminated and the current foreground applications are
still low on memory. Override this handler to clear caches or release unnecessary resources.

> onTrimMemory — An application specific alternative to the onLowMemory handler introduced
in Android 4.0 (API level 13). Called when the run time determines that the current appli-
cation should attempt to trim its memory overhead — typically when it moves to the back-
ground. It includes a level parameter that provides the context around the request.

> onConfigurationChanged — Unlike Activities Application objects are not restarted due to
configuration changes. If your application uses values dependent on specific configurations,
override this handler to reload those values and otherwise handle configuration changes at an
application level.

As shown in Listing 3-8, you must always call through to the superclass event handlers when over-
riding these methods.

) LISTING 3-8: Overriding the Application Lifecycle Handlers

Available for public class MyApplication extends Application {
download on
Wrox.com . , , . .

private static MyApplication singleton;

// Returns the application instance
public static MyApplication getInstance() {
return singleton;

}

@Override

public final void onCreate() {
super.onCreate();
singleton = this;

@Override
public final void onLowMemory() {
super.onLowMemory () ;

}

@Ooverride

public final void onTrimMemory(int level) {
super.onTrimMemory (level) ;

}

@Ooverride
public final void onConfigurationChanged(Configuration newConfig) {
super.onConfigurationChanged (newConfig) ;

code snippet PA4AD_Snippets_Chapter3/MyApplication.java

www.it-ebooks.info

http://www.it-ebooks.info/

86 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

A CLOSER LOOK AT ANDROID ACTIVITIES

Each Activity represents a screen that an application can present to its users. The more complicated
your application, the more screens you are likely to need.

Typically, this includes at least a primary interface screen that handles the main UI functionality

of your application. This primary interface generally consists of a number of Fragments that make up
your Ul and is generally supported by a set of secondary Activities. To move between screens you start
a new Activity (or return from one).

Most Activities are designed to occupy the entire display, but you can also create semitransparent or
floating Activities.

Creating Activities

Extend Activity to create a new Activity class. Within this new class you must define the UI and
implement your functionality. Listing 3-9 shows the basic skeleton code for a new Activity.

) LISTING 3-9: Activity skeleton code

Availablefor package com.paad.activities;

download on

Wrox.com) , -
import android.app.Activity;

import android.os.Bundle;
public class MyActivity extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

}

code snippet PAAAD_Ch03_Activities/src/MyActivity.java

The base Activity class presents an empty screen that encapsulates the window display handling.
An empty Activity isn’t particularly useful, so the first thing you’ll want to do is create the Ul with
Fragments, layouts, and Views.

Views are the Ul controls that display data and provide user interaction. Android provides sev-
eral layout classes, called View Groups, which can contain multiple Views to help you layout
your Uls. Fragments are used to encapsulate segments of your UI, making it simple to create
dynamic interfaces that can be rearranged to optimize your layouts for different screen sizes and
orientations.

Chapter 4 discusses Views, View Groups, layouts, and Fragments in detail,
examining what’s available, how to use them, and how to create your own.

www.it-ebooks.info

http://www.it-ebooks.info/

A Closer Look at Android Activities

87

To assign a Ul to an Activity, call setContentview from the onCreate method of your Activity.

In this first snippet, an instance of a Textview is used as the activity’s UL

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
TextView textView = new TextView(this);
setContentView(textView);

}

Usually, you’ll want to use a more complex Ul design. You can create a layout in code using layout
View Groups, or you can use the standard Android convention of passing a resource ID for a
layout defined in an external resource, as shown in the following snippet:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

}

To use an Activity in your application, you need to register it in the manifest. Add a new
activity tag within the application node of the manifest; the activity tag includes attributes
for metadata, such as the label, icon, required permissions, and themes used by the Activity. An
Activity without a corresponding activity tag can’t be displayed — attempting to do so will
result in a runtime exception.

<activity android:label="@string/app_name"
android:name=".MyActivity">
</activity>

Within the activity tag you can add intent-filter nodes that specify the Intents that can be
used to start your Activity. Each Intent Filter defines one or more actions and categories that your
Activity supports. Intents and Intent Filters are covered in depth in Chapter 5, but it’s worth not-
ing that for an activity to be available from the application launcher, it must include an Intent
Filter listening for the MATN action and the LAUNCHER category, as highlighted in Listing 3-10.

) LISTING 3-10: Main Application Activity Definition

Available for <activity android:label="@string/app_name"
dow\A:l‘;Ll?ggl:n android:name=".MyActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

code snippet PAAAD_Ch03_Activities/AndroidManifest.xml

The Activity Lifecycle

A good understanding of the Activity lifecycle is vital to ensure that your application provides a
seamless user experience and properly manages its resources.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

As explained earlier, Android applications do not control their own process lifetimes; the Android
run time manages the process of each application, and by extension that of each Activity within it.

Although the run time handles the termination and management of an Activity’s process, the
Activity’s state helps determine the priority of its parent application. The application priority, in
turn, influences the likelihood that the run time will terminate it and the Activities running within it.

Activity Stacks

The state of each Activity is determined by its position on the Activity stack, a last-in—first-out col-
lection of all the currently running Activities. When a new Activity starts, it becomes active and is
moved to the top of the stack. If the user navigates back using the Back button, or the foreground
Activity is otherwise closed, the next Activity down on the stack moves up and becomes active.
Figure 3-5 illustrates this process.

New Activity }—F Active Activity
A

New Activity Back button
started pushed or
activity closed

\
Last Active Activity ’

| . Removed to
| free resources

Previous Activities

Activity Stack
FIGURE 3-5
As described previously in this chapter, an application’s priority is influenced by its highest-priority

Activity. When the Android memory manager is deciding which application to terminate to free
resources, it uses this Activity stack to determine the priority of applications.

Activity States

As Activities are created and destroyed, they move in and out of the stack, as shown in Figure 3-5.
As they do so, they transition through four possible states:

> Active — When an Activity is at the top of the stack it is the visible, focused, foreground
Activity that is receiving user input. Android will attempt to keep it alive at all costs, killing
Activities further down the stack as needed, to ensure that it has the resources it needs. When
another Activity becomes active, this one will be paused.

> Paused — In some cases your Activity will be visible but will not have focus; at this point
it’s paused. This state is reached if a transparent or non-full-screen Activity is active in front

www.it-ebooks.info

http://www.it-ebooks.info/

A Closer Look at Android Activities | 89

of it. When paused, an Activity is treated as if it were active; however, it doesn’t receive user
input events. In extreme cases Android will kill a paused Activity to recover resources for the
active Activity. When an Activity becomes totally obscured, it is stopped.

> Stopped — When an Activity isn’t visible, it “stops.” The Activity will remain in memory,
retaining all state information; however, it is now a candidate for termination when the sys-
tem requires memory elsewhere. When an Activity is in a stopped state, it’s important to save
data and the current Ul state, and to stop any non-critical operations. Once an Activity has
exited or closed, it becomes inactive.

> Inactive — After an Activity has been killed, and before it’s been launched, it’s inactive.
Inactive Activities have been removed from the Activity stack and need to be restarted before
they can be displayed and used.

State transitions are nondeterministic and are handled entirely by the Android memory manager.
Android will start by closing applications that contain inactive Activities, followed by those that are
stopped. In extreme cases, it will remove those that are paused.

@ To ensure a seamless user experience, transitions between states should be
invisible to the user. There should be no difference in an Activity moving from
a paused, stopped, or inactive state back to active, so it’s important to save all
Ul state and persist all data when an Activity is paused or stopped. Once an
Activity does become active, it should restore those saved values.

Similarly, apart from changes to the Activity’s priority, transitions between the
active, paused, and stopped states have little direct impact on the Activity itself.
It’s up to you to use these signals to pause and stop your Activities accordingly.

Monitoring State Changes

To ensure that Activities can react to state changes, Android provides a series of event handlers that
are fired when an Activity transitions through its full, visible, and active lifetimes. Figure 3-6 sum-
marizes these lifetimes in terms of the Activity states described in the previous section.

Activity Is Killable
'

r=>»
'
Activity. Activity. Activity. N Activity. Activity. Activity.
onCreate onRestorelnstanceState onStart onResume onSavelnstanceState onPause
Activity.
onRestart

Active Lifetime

Activity.
onStop

Activity.
onDestroy

Visible Lifetime

'
'
'
'
'
'
'
'
'
'
1
1
'
'
'
'
1
]
-
'

Full Lifetime

FIGURE 3-6

www.it-ebooks.info

http://www.it-ebooks.info/

90 | CHAPTER3 CREATING APPLICATIONS AND ACTIVITIES

The skeleton code in Listing 3-11 shows the stubs for the state change method handlers available
in an Activity. Comments within each stub describe the actions you should consider taking on each
state change event.

) LISTING 3-11: Activity state event handlers

Available for package com.paad.activities;

download on

Wrox.com . . o
import android.app.Activity;

import android.os.Bundle;
public class MyStateChangeActivity extends Activity {

// Called at the start of the full lifetime.
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
// Initialize Activity and inflate the UI.

// Called after onCreate has finished, use to restore UI state
@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
super .onRestoreInstanceState (savedInstanceState) ;
// Restore UI state from the savedInstanceState.
// This bundle has also been passed to onCreate.
// Will only be called if the Activity has been
// killed by the system since it was last visible.

// Called before subsequent visible lifetimes

// for an Activity process.

@Override

public void onRestart () {
super .onRestart () ;
// Load changes knowing that the Activity has already
// been visible within this process.

// Called at the start of the visible lifetime.
@Override
public void onStart () {
super.onStart () ;
// Apply any required UI change now that the Activity is visible.

// Called at the start of the active lifetime.

@Override

public void onResume () {
super .onResume () ;
// Resume any paused UI updates, threads, or processes required
// by the Activity but suspended when it was inactive.

www.it-ebooks.info

http://www.it-ebooks.info/

A Closer Look at Android Activities | 91

// Called to save UI state changes at the

// end of the active lifecycle.

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {
// Save UI state changes to the savedInstanceState.
// This bundle will be passed to onCreate and
// onRestoreInstanceState if the process is
// killed and restarted by the run time.
super.onSavelnstanceState (savedInstanceState) ;

}

// Called at the end of the active lifetime.

@Override

public void onPause () {
// Suspend UI updates, threads, or CPU intensive processes
// that don't need to be updated when the Activity isn't
// the active foreground Activity.
super.onPause () ;

}

// Called at the end of the visible lifetime.

@Override

public void onStop () {
// Suspend remaining UI updates, threads, or processing
// that aren't required when the Activity isn't visible.
// Persist all edits or state changes
// as after this call the process is likely to be killed.
super.onStop () ;

}

// Sometimes called at the end of the full lifetime.
@Override
public void onDestroy () {
// Clean up any resources including ending threads,
// closing database connections etc.
super .onDestroy () ;
}

code snippet PA4AD_Ch03_Activities/src/MyStateChangeActivity.java

As shown in the preceding code, you should always call back to the superclass when overriding these
event handlers.

Understanding Activity Lifetimes

Within an Activity’s full lifetime, between creation and destruction, it goes through one or more
iterations of the active and visible lifetimes. Each transition triggers the method handlers previously
described. The following sections provide a closer look at each of these lifetimes and the events that
bracket them.

www.it-ebooks.info

http://www.it-ebooks.info/

92 |

CHAPTER 3 CREATING APPLICATIONS AND ACTIVITIES

The Full Lifetime

The full lifetime of your Activity occurs between the first call to oncreate and the final call to
onDestroy. It’s not uncommon for an Activity’s process to be terminated without the onDestroy
method being called.

Use the oncreate method to initialize your Activity: inflate the user interface, get references to
Fragments, allocate references to class variables, bind data to controls, and start Services and
Timers. If the Activity was terminated unexpectedly by the runtime, the oncreate method is
passed a Bundle object containing the state saved in the last call to onsaveInstancestate. You
should use this Bundle to restore the Ul to its previous state, either within the oncreate method or
onRestoreInstanceState.

Override onDestroy to clean up any resources created in onCreate, and ensure that all external
connections, such as network or database links, are closed.

As part of Android’s guidelines for writing efficient code, it’s recommended that you avoid the cre-
ation of short-term objects. The rapid creation and destruction of objects force additional garbage
collection, a process that can have a direct negative impact on the user experience. If your Activity
creates the same set of objects regularly, consider creating them in the onCreate method instead, as
it’s called only once in the Activity’s lifetime.

The Visible Lifetime

An Activity’s visible lifetimes are bound between calls to onstart and onStop. Between these

calls your Activity will be visible to the user, although it may not have focus and may be partially
obscured. Activities are likely to go through several visible lifetimes during their full lifetime
because they move between the foreground and background. Although it’s unusual, in extreme cases
the Android run time will kill an Activity during its visible lifetime without a call to onstop.

The onstop method should be used to pause or stop animations, threads, Sensor listeners, GPS
lookups, Timers, Services, or other processes that are used exclusively to update the UL There’s little
value in consuming resources (such as CPU cycles or network bandwidth) to update the UI when it
isn’t visible. Use the onStart (or onRestart) methods to resume or restart these processes when the
Ul is visible again.

The onRestart method is called immediately prior to all but the first call to onstart. Use it to
implement special processing that you want done only when the Activity restarts within its
full lifetime.

The onstart/onstop methods are also used to register and unregister Broadcast Receivers used
exclusively to update the Ul

@ You'll learn more about using Broadcast Receivers in Chapter 5.

The Active Lifetime

The active lifetime starts with a call to onResume and ends with a corresponding call to onPause.

www.it-ebooks.info

http://www.it-ebooks.info/

A Closer Look at Android Activities | 93

An active Activity is in the foreground and is receiving user input events. Your Activity is likely to
go through many active lifetimes before it’s destroyed, as the active lifetime will end when a new
Activity is displayed, the device goes to sleep, or the Activity loses focus. Try to keep code in the
onPause and onResume methods relatively fast and lightweight to ensure that your application
remains responsive when moving in and out of the foreground.

Immediately before onPause, a call is made to onSaveInstancestate. This method provides an
opportunity to save the Activity’s Ul state in a Bundle that may be passed to the onCreate and
onRestoreInstanceState methods. Use onSaveInstanceState to save the Ul state (such as
checkbox states, user focus, and entered but uncommitted user input) to ensure that the Activity can
present the same UI when it next becomes active. You can safely assume that during the active life-
time onSaveInstanceState and onPause will be called before the process is terminated.

Most Activity implementations will override at least the onsaveInstancestate method to commit
unsaved changes, as it marks the point beyond which an Activity may be killed without warning.
Depending on your application architecture you may also choose to suspend threads, processes, or
Broadcast Receivers while your Activity is not in the foreground.

The onrResume method can be lightweight. You do not need to reload the Ul state here because this
is handled by the onCreate and onRestoreInstanceState methods when required. Use onResume
to reregister any Broadcast Receivers or other processes you may have suspended in onPause.

Android Activity Classes

The Android SDK includes a selection of activity subclasses that wrap up the use of common Ul
widgets. Some of the more useful ones are listed here:

> MapActivity — Encapsulates the resource handling required to support a Mapview widget
within an Activity. Learn more about Mapactivity and Mapview in Chapter 13.

> ListActivity — Wrapper class for Activities that feature a Listview bound to a data
source as the primary Ul metaphor, and expose event handlers for list item selection.

> ExpandableListActivity — Similar to the ListActivity but supports an
ExpandableListView.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building User Interfaces

WHAT’S IN THIS CHAPTER?

Using Views and layouts

Understanding Fragments

Optimizing layouts

Creating resolution-independent user interfaces

Extending, grouping, creating, and using Views

Y Y Y VY VY Y

Using Adapters to bind data to Views
To quote Stephen Fry on the role of style as part of substance in the design of digital devices:

As if a device can function if it bas no style. As if a device can be called
stylish that does not function superbly.... Yes, beauty matters. Boy, does it
matter. It is not surface, it is not an extra, it is the thing itself.

—STEPHEN FRY, THE GUARDIAN (OCTOBER 27, 2007)

Although Fry was describing the style of the devices themselves, the same can be said of the
applications that run on them. Bigger, brighter, and higher resolution displays with multitouch
support have made applications increasingly visual. The introduction of devices optimized for
a more immersive experience — including tablets and televisions — into the Android ecosys-
tem has only served to increase the importance of an application’s visual design.

In this chapter you’ll discover the Android components used to create Uls. You’ll learn how to
use layouts, Fragments, and Views to create functional and intuitive Uls for your Activities.

The individual elements of an Android Ul are arranged on screen by means of a variety of
Layout Managers derived from the viewGroup class. This chapter introduces several native

www.it-ebooks.info

http://www.it-ebooks.info/

96

CHAPTER 4 BUILDING USER INTERFACES

layout classes and demonstrates how to use them, how to create your own, and how to ensure your
use of layouts is as efficient as possible.

The range of screen sizes and display resolutions your application may be used on has expanded
along with the range of Android devices now available to buy. Android 3.0 introduced the Fragment
API to provide better support for creating dynamic layouts that can be optimized for tablets as well
as a variety of different smartphone displays.

You’ll learn how to use Fragments to create layouts that scale and adapt to accommodate a variety
of screen sizes and resolutions, as well as the best practices for developing and testing your Uls so
that they look great on all screens.

After being introduced to some of the visual controls available from the Android SDK, you’ll learn
how to extend and customize them. Using View Groups, you’ll combine Views to create atomic,
reusable Ul elements made up of interacting subcontrols. You’ll also create your own Views, to dis-
play data and interact with users in creative new ways.

Finally, you’ll examine Adapters and learn how to use them to bind your presentation layer to the
underlying data sources.

FUNDAMENTAL ANDROID Ul DESIGN

User interface (UI) design, user experience (UX), human computer interaction (HCI), and usability
are huge topics that can’t be covered in the depth they deserve within the confines of this book.
Nonetheless, the importance of creating a Ul that your users will understand and enjoy using can’t
be overstated.

Android introduces some new terminology for familiar programming metaphors that will be
explored in detail in the following sections:

> Views — Views are the base class for all visual interface elements (commonly known as con-
trols or widgets). All Ul controls, including the layout classes, are derived from view.

> View Groups — View Groups are extensions of the View class that can contain multiple child
Views. Extend the viewGroup class to create compound controls made up of interconnected
child Views. The viewGroup class is also extended to provide the Layout Managers that help
you lay out controls within your Activities.

> Fragments — Fragments, introduced in Android 3.0 (API level 11), are used to encapsulate
portions of your UL This encapsulation makes Fragments particularly useful when opti-
mizing your Ul layouts for different screen sizes and creating reusable UI elements. Each
Fragment includes its own Ul layout and receives the related input events but is tightly
bound to the Activity into which each must be embedded. Fragments are similar to Ul View
Controllers in iPhone development.

> Activities — Activities, described in detail in the previous chapter, represent the window,
or screen, being displayed. Activities are the Android equivalent of Forms in traditional
Windows desktop development. To display a UL you assign a View (usually a layout or
Fragment) to an Activity.

www.it-ebooks.info

http://www.it-ebooks.info/

Android User Interface Fundamentals

| 97

Android provides several common Ul controls, widgets, and Layout Managers.

For most graphical applications, it’s likely that you’ll need to extend and modify these
standard Views — or create composite or entirely new Views — to provide your own user
experience.

ANDROID USER INTERFACE FUNDAMENTALS

All visual components in Android descend from the view class and are referred to generically as
Views. You’ll often see Views referred to as controls or widgets (not to be confused with home

screen App Widgets described in Chapter 14, “Invading the Home Screen) — terms you’re probably

familiar with if you’ve previously done any GUI development.

The viewGroup class is an extension of View designed to contain multiple Views. View Groups
are used most commonly to manage the layout of child Views, but they can also be used to create
atomic reusable components. View Groups that perform the former function are generally referred
to as layouts.

In the following sections you’ll learn how to put together increasingly complex Uls, before being
introduced to Fragments, the Views available in the SDK, how to extend these Views, build your
own compound controls, and create your own custom Views from scratch.

Assigning User Interfaces to Activities

A new Activity starts with a temptingly empty screen onto which you place your UI. To do so,
call setCcontentview, passing in the View instance, or layout resource, to display. Because empty
screens aren’t particularly inspiring, you will almost always use setContentView to assign an
Activity’s UI when overriding its onCreate handler.

The setContentview method accepts either a layout’s resource ID or a single View instance. This
lets you define your Ul either in code or using the preferred technique of external layout resources.

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.main);
}

Using layout resources decouples your presentation layer from the application logic, providing the

flexibility to change the presentation without changing code. This makes it possible to specify differ-
ent layouts optimized for different hardware configurations, even changing them at run time based

on hardware changes (such as screen orientation changes).

You can obtain a reference to each of the Views within a layout using the findviewByTId method:

TextView myTextView = (TextView)findViewById(R.id.myTextView);

If you prefer the more #raditional approach, you can construct the Ul in code:

www.it-ebooks.info

http://www.it-ebooks.info/

98

CHAPTER 4 BUILDING USER INTERFACES

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

TextView myTextView = new TextView(this);
setContentView (myTextView);

myTextView.setText ("Hello, Android");
}

The setcontentview method accepts a single View instance; as a result, you use layouts to add
multiple controls to your Activity.

If you’re using Fragments to encapsulate portions of your Activity’s UI, the View inflated within
your Activity’s onCreate handler will be a layout that describes the relative position of each of your
Fragments (or their containers). The UI used for each Fragment is defined in its own layout and
inflated within the Fragment itself, as described later in this chapter.

Note that once a Fragment has been inflated into an Activity, the Views it contains become part of
that Activity’s View hierarchy. As a result you can find any of its child Views from within the parent
Activity, using findviewById as described previously.

INTRODUCING LAYOUTS

Layout Managers (or simply layouts) are extensions of the ViewGroup class and are used to position
child Views within your UI. Layouts can be nested, letting you create arbitrarily complex Uls using
a combination of layouts.

The Android SDK includes a number of layout classes. You can use these, modify them, or create
your own to construct the Ul for your Views, Fragments, and Activities. It’s up to you to select and
use the right combination of layouts to make your UI aesthetically pleasing, easy to use, and efficient
to display.

The following list includes some of the most commonly used layout classes available in the
Android SDK:

> FrameLayout — The simplest of the Layout Managers, the Frame Layout pins each child
view within its frame. The default position is the top-left corner, though you can use the
gravity attribute to alter its location. Adding multiple children stacks each new child on top
of the one before, with each new View potentially obscuring the previous ones.

> LinearLayout — A Linear Layout aligns each child View in either a vertical or a horizon-
tal line. A vertical layout has a column of Views, whereas a horizontal layout has a row of
Views. The Linear Layout supports a weight attribute for each child View that can control
the relative size of each child View within the available space.

> RelativeLayout — One of the most flexible of the native layouts, the Relative Layout
lets you define the positions of each child View relative to the others and to the screen
boundaries.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Layouts | 99

> GridrLayout — Introduced in Android 4.0 (API level 14), the Grid Layout uses a rectangular
grid of infinitely thin lines to lay out Views in a series of rows and columns. The Grid Layout
is incredibly flexible and can be used to greatly simplify layouts and reduce or eliminate the
complex nesting often required to construct Uls using the layouts described above. It’s good
practice to use the Layout Editor to construct your Grid Layouts rather than relying on
tweaking the XML manually.

Each of these layouts is designed to scale to suit the host device’s screen size by avoiding the use of
absolute positions or predetermined pixel values. This makes them particularly useful when design-
ing applications that work well on a diverse set of Android hardware.

The Android documentation describes the features and properties of each layout class in detail; so,
rather than repeat that information here, I’ll refer you to http: //developer.android.com/guide/
topics/ui/layout-objects.html.

You’ll see practical example of how these layouts should be used as they’re introduced in the exam-
ples throughout this book. Later in this chapter you’ll also learn how to create compound controls
by using and/or extending these layout classes.

Defining Layouts
The preferred way to define a layout is by using XML external resources.

Each layout XML must contain a single root element. This root node can contain as many nested
layouts and Views as necessary to construct an arbitrarily complex UL

The following snippet shows a simple layout that places a Textview above an EditText control
using a vertical LinearLayout.

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Enter Text Below"
/>
<EditText
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Text Goes Here!"
/>
</LinearLayout>

For each of the layout elements, the constants wrap_content and match_parent are used rather
than an exact height or width in pixels. These constants, combined with layouts that scale (such as
the Linear Layout, Relative Layout, and Grid Layout) offer the simplest, and most powerful, tech-
nique for ensuring your layouts are screen-size and resolution independent.

www.it-ebooks.info

http://developer.android.com/guide
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

100 | CHAPTER4 BUILDING USER INTERFACES

The wrap_content constant sets the size of a View to the minimum required to contain the contents
it displays (such as the height required to display a wrapped text string). The match_parent con-
stant expands the View to match the available space within the parent View, Fragment, or Activity.

Later in this chapter you’ll learn how to set the minimum height and width for your own controls,
as well as further best practices for resolution independence.

Implementing layouts in XML decouples the presentation layer from the View, Fragment, and
Activity controller code and business logic. It also lets you create hardware configuration-specific
variations that are dynamically loaded without requiring code changes.

When preferred, or required, you can implement layouts in code. When assigning Views to layouts
in code, it’s important to apply LayoutParameters using the setLayoutParams method, or by pass-
ing them in to the adaview call:

LinearLayout 11 = new LinearLayout (this);
11.setOrientation (LinearLayout.VERTICAL) ;

TextView myTextView new TextView(this);
EditText myEditText = new EditText (this);

myTextView.setText ("Enter Text Below");
myEditText.setText ("Text Goes Here!");

int lHeight = LinearLayout.LayoutParams.MATCH_PARENT;
int 1Width = LinearLayout.LayoutParams.WRAP_CONTENT;

11.addview (myTextView, new LinearLayout.LayoutParams (lHeight, 1width));
11.addView (myEditText, new LinearLayout.LayoutParams (1Height, 1Width));
setContentView(11);

Using Layouts to Create Device Independent User Interfaces

A defining feature of the layout classes described previously, and the techniques described for using
them within your apps, is their ability to scale and adapt to a wide range of screen sizes, resolutions,
and orientations.

The variety of Android devices is a critical part of its success. For developers, this diversity intro-
duces a challenge for designing Uls to ensure that they provide the best possible experience for users,
regardless of which Android device they own.

Using a Linear Layout

The Linear Layout is one of the simplest layout classes. It allows you to create simple Uls (or Ul ele-
ments) that align a sequence of child Views in either a vertical or a horizontal line.

The simplicity of the Linear Layout makes it easy to use but limits its flexibility. In most cases you
will use Linear Layouts to construct Ul elements that will be nested within other layouts, such as the
Relative Layout.

Listing 4-1 shows two nested Linear Layouts — a horizontal layout of two equally sized buttons
within a vertical layout that places the buttons above a List View.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Layouts | 101

) LISTING 4-1: Linear Layout

Available for <?xml version="1.0" encoding="utf-8"?>
dow“:gl('?ggrs" <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="5dp">
<Button
android:text="@string/cancel_button_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
<Button
android:text="@string/ok_button_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
</LinearLayout>
<ListView
android:layout_width="match_parent"
android:layout_height="match_parent"/>
</LinearLayout>

code snippet PAAAD_Ch4_Layouts/res/layout/linear layout.xml

If you find yourself creating increasingly complex nesting patterns of Linear Layouts, you will likely
be better served using a more flexible Layout Manager.

Using a Relative Layout

The Relative Layout provides a great deal of flexibility for your layouts, allowing you to define the
position of each element within the layout in terms of its parent and the other Views.

Listing 4-2 modifies the layout described in Listing 4-1 to move the buttons below the List View.

LISTING 4-2: Relative Layout

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<LinearLayout
android:id="@+id/button_bar"
android:layout_alignParentBottom="true"

continues

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

102 | CHAPTER4 BUILDING USER INTERFACES

LISTING 4-2 (continued)

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="5dp">
<Button
android:text="@string/cancel_button_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
<Button
android:text="@string/ok_button_text"
android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
</LinearLayout>
<ListView
android:layout_above="@id/button_bar"
android:layout_alignParentLeft="true"
android:layout_width="match_parent"
android:layout_height="match_parent">
</ListView>
</RelativeLayout>

code snippet PAAAD_Ch4_Layouts/res/layout/relative_layout.xml

Using a Grid Layout

The Grid Layout was introduced in Android 3.0 (API level 11) and provides the most flexibility of
any of the Layout Managers.

The Grid Layout uses an arbitrary grid to position Views. By using row and column spanning, the
Space View, and Gravity attributes, you can create complex without resorting to the often complex
nesting required to construct Uls using the Relative Layout described previously.

The Grid Layout is particularly useful for constructing layouts that require alignment in two direc-
tions — for example, a form whose rows and columns must be aligned but which also includes ele-
ments that don’t fit neatly into a standard grid pattern.

It’s also possible to replicate all the functionality provided by the Relative Layout by using the Grid
Layout and Linear Layout in combination. For performance reasons it’s good practice to use the
Grid Layout in preference to creating the same Ul using a combination of nested layouts.

Listing 4-3 shows the same layout as described in Listing 4-2 using a Grid Layout to replace the
Relative Layout.

) LISTING 4-3: Grid Layout
Available for <?xml version="1.0" encoding="utf-8"?>

dm:;‘?gg"ﬂ" <GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Layouts | 103

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">
<ListView
android:background="#FF444444"
android:layout_gravity="£ill">
</ListView>
<LinearLayout
android:layout_gravity="fill horizontal"
android:orientation="horizontal"
android:padding="5dp">
<Button
android:text="Cancel"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
<Button
android:text="0K"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_weight="1"/>
</LinearLayout>
</GridLayout>

code snippet PAAAD_Ch4_Layouts/res/layout/grid_layout.xml

Note that the Grid Layout elements do not require width and height parameters to be set. Instead,
each element wraps its content by default, and the 1ayout_gravity attribute is used to determine in
which directions each element should expand.

Optimizing Layouts

Inflating layouts is an expensive process; each additional nested layout and included View directly
impacts on the performance and responsiveness of your application.

To keep your applications smooth and responsive, it’s important to keep your layouts as simple as
possible and to avoid inflating entirely new layouts for relatively small UI changes.

Redundant Layout Containers Are Redundant

A Linear Layout within a Frame Layout, both of which are set to MaTCH_PARENT, does nothing but
add extra time to inflate. Look for redundant layouts, particularly if you’ve been making significant
changes to an existing layout or are adding child layouts to an existing layout.

Layouts can be arbitrarily nested, so it’s easy to create complex, deeply nested hierarchies. Although
there is no hard limit, it’s good practice to restrict nesting to fewer than 10 levels.

One common example of unnecessary nesting is a Frame Layout used to create the single root node
required for a layout, as shown in the following snippet:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

104 | CHAPTER4 BUILDING USER INTERFACES

<ImageView
android:
android
android:
android:
/>
<TextView
android:
android:
android:
android:
android:
android:
/>
</FramelLayou

id="@+id/myImageView"

:layout_width="match_parent"

layout_height="match_parent"
src="@drawable/myimage"

id="@+id/myTextView"
layout_width="match_parent"
layout_height="wrap_content"
text="@string/hello"
gravity="center_horizontal"
layout_gravity="bottom"

£>

In this example, when the Frame Layout is added to a parent, it will become redundant. A better
alternative is to use the Merge tag:

<?xml versio
<merge
xmlns:andr
<ImageView
android:
android:
android:
android:
/>
<TextView
android:
android:
android:
android:
android
android:
/>
</merge>

n="1.0" encoding="utf-8"7?>
oid="http://schemas.android.com/apk/res/android">

id="@+id/myImageView"
layout_width="match_parent"
layout_height="match_parent"
src="@drawable/myimage"

id="@+id/myTextView"
layout_width="match_parent"
layout_height="wrap_content"
text="@string/hello"

:gravity="center_horizontal"

layout_gravity="bottom"

When a layout containing a merge tag is added to another layout, the merge node is removed and its
child Views are added directly to the new parent.

The merge tag is particularly useful in conjunction with the include tag, which is used to insert the
contents of one layout into another:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayou
xmlns:andr
android:or

t
oid="http://schemas.android.com/apk/res/android"
ientation="vertical"

android:layout_width="match_parent"
android:layout_height="match_parent">
<include android:id="@+id/my_action_bar"

layout="@layout/actionbar"/>

<include android:id="@+id/my_image_text_layout"

layout="@layout/image_text_layout"/>

</LinearLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Layouts | 105

Combining the merge and include tags enables you to create flexible, reusable layout definitions
that don’t create deeply nested layout hierarchies. You’ll learn more about creating and using simple
and reusable layouts later in this chapter.

Avoid Using Excessive Views

Each additional View takes time and resources to inflate. To maximize the speed and responsiveness
of your application, none of its layouts should include more than 80 Views. When you exceed this
limit, the time taken to inflate the layout becomes significant.

To minimize the number of Views inflated within a complex layout, you can use a ViewStub.

A View Stub works like a lazy include — a stub that represents the specified child Views within the
parent layout — but the stub is only inflated explicitly via the inflate method or when it’s made
visible.

// Find the stub

View stub = findViewById(R.id. download_progress_panel_stub);
// Make it visible, causing it to inflate the child layout
stub.setVisibility (View.VISIBLE) ;

// Find the root node of the inflated stub layout
View downloadProgressPanel = findvViewById(R.id.download_progress_panel) ;

As a result, the Views contained within the child layout aren’t created until they are
required — minimizing the time and resource cost of inflating complex Uls.

When adding a View Stub to your layout, you can override the id and 1ayout parameters of the
root View of the layout it represents:

<?xml version="1.0" encoding="utf-8"7?>
<FrameLayout "xmlns:android=http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<ListView
android:id="@+id/myListView"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>
<ViewStub
android:id="@+id/download_progress_panel_stub"

android:layout="@layout/progress_overlay_panel"
android:inflatedId="@+id/download_progress_panel"

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="bottom"
/>
</FrameLayout>

This snippet modifies the width, height, and gravity of the imported layout to suit the requirements
of the parent layout. This flexibility makes it possible to create and reuse the same generic child lay-
outs in a variety of parent layouts.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

106 | CHAPTER4 BUILDING USER INTERFACES

An ID has been specified for both the stub and the View Group it will become when inflated using
the id and inflated1d attribute, respectively.

When the View Stub is inflated, it is removed from the hierarchy and replaced by
the root node of the View it imported. If you need to modify the visibility of the
imported Views, you must either use the reference to their root node (returned
by the inflate call) or find the View by using £indviewById, using the layout
ID assigned to it within the corresponding View Stub node.

Using Lint to Analyze Your Layouts

To assist you in optimizing your layout hierarchies, the Android SDK includes 1int — a power-
ful tool that can be used to detect problems within you application, including layout performance
issues.

The lint tool is available as a command-line tool or as a window within Eclipse supplied as part of
the ADT plug-in, as shown in Figure 4-1.

R =y
& J aR%H

0 errors, 12 warnings
Message File Line | [I18N] Hardcoded string "Implicit Start
& <uses-sdk> tag appears after <application> tag AndroidManife... 18 | Activity’, should use @string resource

wi [118N] Hardeoded string "Pick Contact®, should u... contactpickerte Y6 N e e for f i adad et art Aildiee
Wi [11BN] Hardcoded string "Explicit Start Activity”, ... main.xxml| 11 | which should be converted to resource lookup
% [118N] Hardcoded string "Implicit Start Activity”, ... |main.xm| l

T . = Hardcoding text atributes directly in layout
Wi [118N] Hardcoded string "Search”, should use @s... mainsxml| 231 N R TR s e
w [11BN] Hardcoded string "Start SubActivity”, sho... main.xml| 23
Wi [118N] Hardecoded string “Start SubActivity Implic.. main.xml| 29§ " WhEHI (;Eﬂtlnﬂ configuration V-lflﬂUD"LS (for
s i 3 example for landscape or portraitiyou have to

ut, [118N] Hardcoded str.mg -Hellfo this is QuAke 1 t... main.xml 35 Fepeat The STl Text ane Kewriiv 0p v Hale
uy [118N] Hardcoded string "OK", should use @strin... selector_layout.... 24 | \when making changes)
wi [118N] Hardcoded string "Cancel”, should use @s... selector_layout.... 31
wi Use a layout_height of O0dip instead of wrap_con... selector_layout.... 10 * The app\lcal!on Cannoe be translated to other

: K languages by just adding new transiations for
& Nested weights are bad for performance selector_layout..... 21 existing string resources.

FIGURE 4-1

In addition to using Lint to detect each optimization issue described previously in this section, you
can also use Lint to detect missing translations, unused resources, inconsistent array sizes, accessi-
bility and internationalization problems, missing or duplicated image assets, usability problems, and
manifest errors.

Lint is a constantly evolving tool, with new rules added regularly. A full list of the tests performed
by the Lint tool can be found at http://tools.android.com/tips/lint-checks.

www.it-ebooks.info

http://tools.android.com/tips/lint-checks
http://www.it-ebooks.info/

To-Do List Example | 107

TO-DO LIST EXAMPLE

In this example you’ll be creating a new Android application from scratch. This simple example cre-

ates a new to-do list application using native Android Views and layouts.

Don’t worry if you don’t understand everything that happens in this example.
Some of the features used to create this application, including ArrayAdapters,
ListViews, and KeyListeners, won't be introduced properly until later in this
and subsequent chapters, where they’ll be explained in detail. You’ll also return
to this example later to add new functionality as you learn more about Android.

Create a new Android project. Within Eclipse, select File &> New > Project, and then choose
Android Project within the Android node (as shown in Figure 4-2) before clicking Next.

AOO New Project

Select a wizard

&

Wizards:

type filter text

1% Java Project
-‘,ﬁja\fa Project from Existing Ant Buildfile
‘.fé-PIug—l'n Project
P = General
¥ (2= Android
E'ﬁﬁmdmid Sample Project
JEIAndmid Test Project
b=V
P = Java
¥ [Plug-in Development
P = Examples

@ < Back (Next >) (Cancel) Finish

FIGURE 4-2

Specify the project details for your new project.

2.1 Start by providing a project name, as shown in Figure 4-3, and then click Next.

2.2 Select the build target. Select the newest platform release, as shown in Figure 4-4, and

then click Next.

2.3 Enter the details for your new project, as shown in Figure 4-5. The Application name is
the friendly name of your application, and the Create Activity field lets you name your
Activity (ToDoListActivity). When the remaining details are entered, click Finish to cre-

ate your new project.

www.it-ebooks.info

http://www.it-ebooks.info/

108 | CHAPTER4 BUILDING USER INTERFACES

Create Android Project

Select project name and type of project

Project Name: I’TODDUSI
® Create new project in workspace
O Create project from existing source

() Create project from existing sample

™ Use default location
Location: [Volumes/Reto 1/Android/ProAndroid3/ToDolist

Working sets

|
[l Add project to working sets

Working sets: | (Select...)

|

@ (<Back) @ mNew>) (cancel) [Finish)
FIGURE 4-3

Select Build Target

Choose an SDK to target
Build Target
Target Name ‘Vendor Platform IAP_le:
[} Android 1.6 Android Open Source Project 1.6 4
[Android 4.0 Android Open Source Project 4.0 14
"] Google APIs Google Inc. 4.0 14
™ Android 4.0.3 Android Open Source Project 4.0.3 15
| Google APls Coogle Inc. 4.03 15

|

@ (<Back) CNext>=) (Cancel) ([Finish)

FIGURE 4-4

www.it-ebooks.info

http://www.it-ebooks.info/

To-Do List Example | 109

Application Info

Configure the new Android Project

Application Name: | ToDolist

Package Name: | com.paad.todolist

E Create Activity: ToDoListActivity
|4 (Android 1.6) =

Minimum SDK:

[Create a Test Project
Test Project Name: ToDolListTest
Test Application: ToDoListTest

Test Package: com.paad.todolist.test

< Back _) (Next>) (Cancel

©) (

) Finish)

FIGURE 4-5

Before creating your debug and run configurations, take this opportunity to create a virtual

device for testing your applications.

3.1 Select Window > AVD Manager. In the resulting dialog (see Figure 4-6), click the New

button.

List of existing Android Virtual Devices located at fUsers/retomeier/.android/avd

'Target Name Platform AP Level
Android 4.0

Google APls (Google Inc.) 4.0 14

AVD Name

~ My__AVD

| CPU/ABI
ARM (armeabi-v7a)
ARM (armeabi-v7a)

New...

Repair...

Refresh

“ A valid Android Virtual Device. & A repairable Android Virtual Device.

¥ An Android Virtual Device that failed to load. Click 'Details' to see the error.

FIGURE 4-6

www.it-ebooks.info

http://www.it-ebooks.info/

10 | CHAPTER4 BUILDING USER INTERFACES

3.2 In the dialog displayed in Figure 4-7, enter a name for your device and choose an SDK
target (use the same platform target as you selected for your project in step 2.2) and the
screen resolution. Set the SD Card size to larger than 8MB, enable snapshots, and then
press Create AVD.

™ 7 Create new Android Virtual Device (AVD)
Name: Galaxy_MNexus
Target: | Android 4.0.3 - API Level 15 %)
CPU/ABI: ARM (armeabi-v7a}
5D Card:
) Size: 12 | MiB .-:]
O File: ‘Browse...
Snapshot:
P E} Enabled
Skin:
@ Built-in: | WXGAT20)
() Resolution: %
Hard . —
ATGWATES property Value | Nows |
Hardware Back/Home keys no —
Abstracted LCD density 320 Delete
Keyboard lid support no
Max VM application hea... 48
Device ram size 1024
Override the existing AVD with the same name
(Cancel) (Cruae .AVDJ

FIGURE 4-7

Now create your debug and run configurations. Select Run = Debug Configurations and then
Run &> Run Configurations, creating a new configuration for each specifying the TodoList
project. If you want to debug using a virtual device, you can select the one you created in step
3 here; alternatively, if you want to debug on a device, you can select it here if it’s plugged

in and has debugging enabled. You can either leave the launch action as Launch Default
Activity or explicitly set it to launch the new ToDoListactivity.

In this example you want to present users with a list of to-do items and a text entry box to
add new ones. There’s both a list and a text-entry control available from the Android
libraries. (You’ll learn more about the Views available in Android, and how to create new
ones, later in this Chapter.)

The preferred method for laying out your Ul is to create a layout resource. Open the
main.xml layout file in the res/layout project folder and modify it layout to include a

www.it-ebooks.info

http://www.it-ebooks.info/

To-Do List Example | 111

ListView and an EditText within a LinearLayout. You must give both the EditText
and Listview an ID so that you can get references to them both in code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<EditText
android:id="@+1id/myEditText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/addItemHint"
android:contentDescription="@string/addItemContentDescription"
/>
<ListView
android:id="@+id/myListView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

6. You’ll also need to add the string resources that provide the hint text and content description
included in step 5 to the strings.xml resource stored in the project’s res/values folder.
You can take this opportunity to remove the default “hello” string value:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">ToDoList</string>

<string name="addItemHint">New To Do Item</string>

<string name="addItemContentDescription">New To Do Item</string>
</resources>

7. With your Ul defined, open the ToDoListActivity Activity from your project’s src folder.
Start by ensuring your Ul is inflated using setContentview. Then get references to the
ListView and EditText using findviewById:

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Inflate your View
setContentView(R.layout.main) ;

// Get references to UI widgets

ListView myListView = (ListView)findViewById(R.id.myListView) ;
final EditText myEditText = (EditText)findvViewById(R.id.myEditText) ;

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

112

| CHAPTER4 BUILDING USER INTERFACES

ﬂ When you add the code from step 7 into the ToDoListActivity, or when
you try to compile your project, your IDE or compiler will complain that the
ListView and EditText classes cannot be resolved into a type.

You need to add import statements to your class to include the libraries that
contain these Views (in this case, android.widget .EditText and android
.widget.ListView). To ensure the code snippets and example applications
listed in this book remain concise and readable, not all the necessary import
statements within the code listings are included within the text (however they are
all included in the downloadable source code).

If you are using Eclipse, classes with missing import statements are highlighted
with a red underline. Clicking each highlighted class will display a list of “quick
fixes,” which include adding the necessary import statements on your behalf.

Eclipse also includes a handy shortcut (Cirl+Shift+o) that will attempt to auto-
matically create all the import statements required for the classes used in your
code.

8. Still within onCreate, define an arrayList of Strings to store each to-do list item. You can
bind a ListView to an ArrayList using an ArrayAdapter. (This process is described in
more detail later in this chapter.) Create a new ArrayaAdapter instance to bind the to-do item
array to the ListView.

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Inflate your View
setContentView(R.layout.main) ;

// Get references to UI widgets
ListView myListView = (ListView)findViewById(R.id.myListView) ;
final EditText myEditText = (EditText)findViewById(R.id.myEditText) ;

// Create the Array List of to do items
final ArrayList<String> todoItems = new ArrayList<String>();

// Create the Array Adapter to bind the array to the List View
final ArrayAdapter<String> aa;

aa = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item 1,

todoItems) ;

// Bind the Array Adapter to the List View
myListView.setAdapter(aa);

9. Let users add new to-do items. Add an onKeyListener to the EditText that listens for
either a “D-pad center button” click or the Enter key being pressed. (You’ll learn more about

www.it-ebooks.info

http://www.it-ebooks.info/

To-Do List Example | 113

listening for key presses later in this chapter.) Either of these actions should add the contents
of the EditText to the to-do list array created in step 8, and notify the Arrayadapter of the
change. Finally, clear the EditText to prepare for the next item.

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Inflate your View
setContentView(R.layout.main) ;

// Get references to UI widgets
ListView myListView = (ListView)findViewById(R.id.myListView) ;
final EditText myEditText = (EditText)findViewById(R.id.myEditText) ;

// Create the Array List of to do items
final ArrayList<String> todoItems = new ArrayList<String>();

// Create the Array Adapter to bind the array to the List View
final ArrayAdapter<String> aa;

aa = new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_1,
todoItems) ;

// Bind the Array Adapter to the List View
myListView.setAdapter (aa) ;

myEditText.setOnKeyListener (new View.OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION_DOWN)
if ((keyCode == KeyEvent.KEYCODE_DPAD_CENTER) ||
(keyCode == KeyEvent.KEYCODE_ENTER)) {
todoItems.add (0, myEditText.getText ().toString());
aa.notifyDataSetChanged();
myEditText.setText ("");
return true;
}
return false;
}
});

10. Run or debug the application and you’ll see a text entry box above a list, as shown
in Figure 4-8.

11. You’ve now finished your first Android application. Try adding breakpoints to the code to
test the debugger and experiment with the DDMS perspective.

All code snippets in this example are part of the Chapter 4 To-Do List Part 1
project, available for download at www .wrox. com.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

114

CHAPTER 4 BUILDING USER INTERFACES

Write Android Book

qgqwer tyuiop

asdf ghj kI
&4 zZz x ¢c vb nme

FIGURE 4-8

As it stands, this to-do list application isn’t spectacularly useful. It doesn’t save to-do list items
between sessions; you can’t edit or remove an item from the list; and typical task-list items, such as
due dates and task priorities, aren’t recorded or displayed. On balance, it fails most of the criteria
laid out so far for a good mobile application design. You’ll rectify some of these deficiencies when
you return to this example.

INTRODUCING FRAGMENTS

Fragments enable you to divide your Activities into fully encapsulated reusable components, each
with its own lifecycle and Ul

The primary advantage of Fragments is the ease with which you can create dynamic and flexible UI
designs that can be adapted to suite a range of screen sizes — from small-screen smartphones to tablets.

Each Fragment is an independent module that is tightly bound to the Activity into which it is placed.
Fragments can be reused within multiple activities, as well as laid out in a variety of combinations to
suit multipane tablet Uls and added to, removed from, and exchanged within a running Activity to
help build dynamic Uls.

Fragments provide a way to present a consistent Ul optimized for a wide variety of Android device
types, screen sizes, and device densities.

Although it is not necessary to divide your Activities (and their corresponding layouts) into
Fragments, doing so will drastically improve the flexibility of your Ul and make it easier for you to
adapt your user experience for new device configurations.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Fragments | 115

@ Fragments were introduced to Android as part of the Android 3.0 Honeycomb
(API level 11) release. They are now also available as part of the Android sup-
port library, making it possible to take advantage of Fragments on platforms
from Android 1.6 (API level 4) onward.

To use Fragments using the support library, you must make your Activity extend
the FragmentActivity class:

public class MyActivity extends FragmentActivity

If you are using the compatibility library within a project that has a build target
of API level 11 or above, it’s critical that you ensure that all your Fragment-
related imports and class references are using only the support library classes.
The native and support library set of Fragment packages are closely related, but
their classes are not interchangeable.

Creating New Fragments

Extend the Fragment class to create a new Fragment, (optionally) defining the UI and implementing
the functionality it encapsulates.

In most circumstances you’ll want to assign a Ul to your Fragment. It is possible to create a
Fragment that doesn’t include a UI but instead provides background behavior for an Activity. This is
explored in more detail later in this chapter.

If your Fragment does require a UI, override the oncreateview handler to inflate and return the
required View hierarchy, as shown in the Fragment skeleton code in Listing 4-4.

) LISTING 4-4: Fragment skeleton code

Available for package com.paad.fragments;
download on
Wrox.com import android.app.Fragment;

import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment {
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
// Create, or inflate the Fragment's UI, and return it.
// If this Fragment has no UI then return null.
return inflater.inflate(R.layout.my_fragment, container, false);

}

code snippet PAAAD_Ch04_Fragments/src/MySkeletonFragment.java

www.it-ebooks.info

http://www.it-ebooks.info/

116 | CHAPTER4 BUILDING USER INTERFACES

You can create a layout in code using layout View Groups; however, as with Activities, the preferred
way to design Fragment Ul layouts is by inflating an XML resource.

Unlike Activities, Fragments don’t need to be registered in your manifest. This is because Fragments
can exist only when embedded into an Activity, with their lifecycles dependent on that of the
Activity to which they’ve been added.

The Fragment Lifecycle

The lifecycle events of a Fragment mirror those of its parent Activity; however, after the containing
Activity is in its active — resumed — state adding or removing a Fragment will affect its lifecycle
independently.

Fragments include a series of event handlers that mirror those in the Activity class. They are trig-
gered as the Fragment is created, started, resumed, paused, stopped, and destroyed. Fragments also
include a number of additional callbacks that signal binding and unbinding the Fragment from its
parent Activity, creation (and destruction) of the Fragment’s View hierarchy, and the completion of
the creation of the parent Activity.

Figure 4-9 summarizes the Fragment lifecycle.

Created Active

'
Fragmem.onAttachH FragmenLonCreateH Fragment.onCreateViewH Fragment.onActivityCreatedH Fragment.onStart H Fragmem.onResumeJ

Fragment returns to the
layout from the backstack

Fragment,onDetachH Fragment.anestroyH Fragment.onDestroyView

FIGURE 4-9

Y

i Fragment.onStop H Fragment.onPauseJ

The skeleton code in Listing 4-5 shows the stubs for the lifecycle handlers available in a Fragment.
Comments within each stub describe the actions you should consider taking on each state change event.

You must call back to the superclass when overriding most of these event
handlers.

) LISTING 4-5: Fragment lifecycle event handlers

W,

Available for package com.paad.fragments;
download on

Wrox.com import android.app.Activity;
import android.app.Fragment;

import android.os.Bundle;

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Fragments | 117

import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class MySkeletonFragment extends Fragment {

// Called when the Fragment is attached to its parent Activity.
@Override
public void onAttach(Activity activity) {

super.onAttach (activity) ;

// Get a reference to the parent Activity.

// Called to do the initial creation of the Fragment.
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
// Initialize the Fragment.

// Called once the Fragment has been created in order for it to
// create its user interface.
@Override
public View onCreateView(LayoutInflater inflater,
ViewGroup container,
Bundle savedInstanceState) {
// Create, or inflate the Fragment's UI, and return it.
// If this Fragment has no UI then return null.
return inflater.inflate(R.layout.my_fragment, container, false);

// Called once the parent Activity and the Fragment's UI have

// been created.

@Override

public void onActivityCreated(Bundle savedInstanceState) ({
super.onActivityCreated(savedInstanceState) ;
// Complete the Fragment initialization - particularly anything
// that requires the parent Activity to be initialized or the
// Fragment's view to be fully inflated.

// Called at the start of the visible lifetime.
@Override
public void onStart () {
super.onStart () ;
// Apply any required UI change now that the Fragment is visible.
}

// Called at the start of the active lifetime.
@Override
public void onResume () {
super.onResume () ;
// Resume any paused UI updates, threads, or processes required
continues

www.it-ebooks.info

http://www.it-ebooks.info/

18 | CHAPTER4 BUILDING USER INTERFACES

LISTING 4-5 (continued)

// by the Fragment but suspended when it became inactive.

}

// Called at the end of the active lifetime.

@Override

public void onPause () {
// Suspend UI updates, threads, or CPU intensive processes
// that don't need to be updated when the Activity isn't
// the active foreground activity.
// Persist all edits or state changes
// as after this call the process is likely to be killed.
super.onPause () ;

}

// Called to save UI state changes at the

// end of the active lifecycle.

@Override

public void onSaveInstanceState (Bundle savedInstanceState) {
// Save UI state changes to the savedInstanceState.
// This bundle will be passed to onCreate, onCreateView, and
// onCreatevView 1f the parent Activity is killed and restarted.
super .onSavelnstanceState (savedInstanceState) ;

}

// Called at the end of the visible lifetime.

@Override

public void onStop () {
// Suspend remaining UI updates, threads, or processing
// that aren't required when the Fragment isn't visible.
super.onStop () ;

}

// Called when the Fragment's View has been detached.
@Override
public void onDestroyView() {

// Clean up resources related to the View.

super .onDestroyView() ;

}

// Called at the end of the full lifetime.

@Override

public void onDestroy () {
// Clean up any resources including ending threads,
// closing database connections etc.
super .onDestroy () ;

}

// Called when the Fragment has been detached from its parent Activity.
@Override
public void onDetach() {

super.onDetach() ;

code snippet PA4AD_Ch04_Fragments/src/MySkeletonFragment.java

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Fragments | 119

Fragment-Specific Lifecycle Events

Most of the Fragment lifecycle events correspond to their equivalents in the Activity class, which
were covered in detail in Chapter 3. Those that remain are specific to Fragments and the way in
which they’re inserted into their parent Activity.

Attaching and Detaching Fragments from the Parent Activity

The full lifetime of your Fragment begins when it’s bound to its parent Activity and ends when it’s
been detached. These events are represented by the calls to onattach and onbetach, respectively.

As with any handler called after a Fragment/Activity has become paused, it’s possible that onDetach
will not be called if the parent Activity’s process is terminated without completing its full lifecycle.

The onAttach event is triggered before the Fragment’s UI has been created, before the Fragment
itself or its parent Activity have finished their initialization. Typically, the onAttach event is used to
gain a reference to the parent Activity in preparation for further initialization tasks.

Creating and Destroying Fragments

The created lifetime of your Fragment occurs between the first call to oncreate and the final call
to onDestroy. As it’s not uncommon for an Activity’s process to be terminated without the corre-
sponding onDestroy method being called, so a Fragment can’t rely on its onDestroy handler being
triggered.

As with Activities, you should use the oncreate method to initialize your Fragment. It’s good prac-
tice to create any class scoped objects here to ensure they’re created only once in the Fragment’s
lifetime.

@ Unlike Activities, the Ul is not initialized within onCreate.

Creating and Destroying User Interfaces

A Fragment’s Ul is initialized (and destroyed) within a new set of event handlers: onCreateview and
onDestroyView, respectively.

Use the onCreateview method to initialize your Fragment: Inflate the UI, get references (and bind
data to) the Views it contains, and then create any required Services and Timers.

Once you have inflated your View hierarchy, it should be returned from this handler:
return inflater.inflate(R.layout.my_fragment, container, false);
If your Fragment needs to interact with the UI of its parent Activity, wait until the

onActivityCreated event has been triggered. This signifies that the containing Activity has
completed its initialization and its Ul has been fully constructed.

Fragment States

The fate of a Fragment is inextricably bound to that of the Activity to which it belongs. As a result,
Fragment state transitions are closely related to the corresponding Activity state transitions.

www.it-ebooks.info

http://www.it-ebooks.info/

120 | CHAPTER4 BUILDING USER INTERFACES

Like Activities, Fragments are active when they belong to an Activity that is focused and in the
foreground. When an Activity is paused or stopped, the Fragments it contains are also paused and
stopped, and the Fragments contained by an inactive Activity are also inactive. When an Activity is
finally destroyed, each Fragment it contains is likewise destroyed.

As the Android memory manager nondeterministically closes applications to free resources, the
Fragments within those Activities are also destroyed.

While Activities and their Fragments are tightly bound, one of the advantages of using Fragments to
compose your Activity’s Ul is the flexibility to dynamically add or remove Fragments from an active
Activity. As a result, each Fragment can progress through its full, visible, and active lifecycle several
times within the active lifetime of its parent Activity.

Whatever the trigger for a Fragment’s transition through its lifecycle, managing its state transitions
is critical in ensuring a seamless user experience. There should be no difference in a Fragment mov-
ing from a paused, stopped, or inactive state back to active, so it’s important to save all Ul state and
persist all data when a Fragment is paused or stopped. Like an Activity, when a Fragment becomes
active again, it should restore that saved state.

Introducing the Fragment Manager

Each Activity includes a Fragment Manager to manage the Fragments it contains. You can access
the Fragment Manager using the get FragmentManager method:

FragmentManager fragmentManager = getFragmentManager () ;

The Fragment Manager provides the methods used to access the Fragments currently added to the
Activity, and to perform Fragment Transaction to add, remove, and replace Fragments.

Adding Fragments to Activities

The simplest way to add a Fragment to an Activity is by including it within the Activity’s layout
using the fragment tag, as shown in Listing 4-6.

) LISTING 4-6: Adding Fragments to Activities using XML layouts

Available for <?xml version="1.0" encoding="utf-8"?>
daﬂgrg&g" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">
<fragment android:name="com.paad.weatherstation.MyListFragment"
android:id="@+id/my_list_fragment"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
/>
<fragment android:name="com.paad.weatherstation.DetailsFragment"
android:id="@+id/details_fragment"
android:layout_width="match_parent"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Fragments | 121

android:layout_height="match_parent"
android:layout_weight="3"
/>
</LinearLayout>

code snippet PA4AD_Ch04_Fragments/res/layout/fragment_layout.xml

Once the Fragment has been inflated, it becomes a View Group, laying out and managing its UI
within the Activity.

This technique works well when you use Fragments to define a set of static layouts based on vari-
ous screen sizes. If you plan to dynamically modify your layouts by adding, removing, and replacing
Fragments at run time, a better approach is to create layouts that use container Views into which
Fragments can be placed at runtime, based on the current application state.

Listing 4-7 shows an XML snippet that you could use to support this latter approach.

) LISTING 4-7: Specifying Fragment layouts using container views

Available for <?xml version="1.0" encoding="utf-8"?>
dwmrga:" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">
<FrameLayout
android:id="@+id/ui_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
/>
<FrameLayout
android:id="@+id/details_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="3"
/>
</LinearLayout>

code snippet PAAAD_Ch04_Fragments/res/layout/fragment_container_layout.xml

You then need to create and add the corresponding Fragments to their appropriate parent containers
within the oncreate handler of your Activity using Fragment Transactions, as described in the next

section.

Using Fragment Transactions

Fragment Transactions can be used to add, remove, and replace Fragments within an Activity at run
time. Using Fragment Transactions, you can make your layouts dynamic — that is, they will adapt
and change based on user interactions and application state.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

122

| CHAPTER4 BUILDING USER INTERFACES

Each Fragment Transaction can include any combination of supported actions, including adding,
removing, or replacing Fragments. They also support the specification of the transition animations
to display and whether to include the Transaction on the back stack.

A new Fragment Transaction is created using the beginTransaction method from the Activity’s
Fragment Manager. Modify the layout using the add, remove, and replace methods, as required,
before setting the animations to display, and setting the appropriate back-stack behavior. When you
are ready to execute the change, call commit to add the transaction to the UI queue.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
// Add, remove, and/or replace Fragments.
// Specify animations.

// Add to back stack if required.

fragmentTransaction.commit () ;

Each of these transaction types and options will be explored in the following sections.

Adding, Removing, and Replacing Fragments

When adding a new UI Fragment, specify the Fragment instance to add, along with the container
View into which the Fragment will be placed. Optionally, you can specify a tag that can later be
used to find the Fragment by using the findFragmentByTag method:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.ui_container, new MyListFragment());
fragmentTransaction.commit () ;

To remove a Fragment, you first need to find a reference to it, usually using either the Fragment
Manager’s findFragmentById or findFragmentByTag methods. Then pass the found Fragment
instance as a parameter to the remove method of a Fragment Transaction:

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
Fragment fragment = fragmentManager.findFragmentById(R.id.details_fragment);
fragmentTransaction.remove (fragment) ;

fragmentTransaction.commit () ;

You can also replace one Fragment with another. Using the replace method, specify the container
ID containing the Fragment to be replaced, the Fragment with which to replace it, and (optionally) a
tag to identify the newly inserted Fragment.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction/();
fragmentTransaction.replace(R.id.details_fragment,

new DetailFragment (selected_index));
fragmentTransaction.commit () ;

Using the Fragment Manager to Find Fragments

To find Fragments within your Activity, use the Fragment Manager’s findFragmentByTd method. If
you have added your Fragment to the Activity layout in XML, you can use the Fragment’s resource
identifier:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Fragments | 123

MyFragment myFragment =
(MyFragment) fragmentManager. findFragmentById(R.id.MyFragment) ;

If you’ve added a Fragment using a Fragment Transaction, you should specify the resource identi-
fier of the container View to which you added the Fragment you want to find. Alternatively, you can
use the findFragmentByTag method to search for the Fragment using the tag you specified in the
Fragment Transaction:

MyFragment myFragment =
(MyFragment) fragmentManager. findFragmentByTag (MY_FRAGMENT_TAG) ;

Later in this chapter you’ll be introduced to Fragments that don’t include a UI. The £ind
FragmentByTag method is essential for interacting with these Fragments. Because they’re not part of
the Activity’s View hierarchy, they don’t have a resource identifier or a container resource identifier
to pass in to the findFragmentByTd method.

Populating Dynamic Activity Layouts with Fragments

If you’re dynamically changing the composition and layout of your Fragments at run time, it’s good
practice to define only the parent containers within your XML layout and populate it exclusively
using Fragment Transactions at run time to ensure consistency when configuration changes (such as
screen rotations) cause the Ul to be re-created.

Listing 4-8 shows the skeleton code used to populate an Activity’s layout with Fragments at run
time.

) LISTING 4-8: Populating Fragment layouts using container views

Available for public void onCreate (Bundle savedInstanceState) {
dwmrg&gn super.onCreate (savedInstanceState) ;
// Inflate the layout containing the Fragment containers
setContentView(R.layout.fragment_container_layout) ;

FragmentManager fm = getFragmentManager () ;

// Check to see if the Fragment back stack has been populated

// If not, create and populate the layout.

DetailsFragment detailsFragment =
(DetailsFragment) fm. findFragmentById(R.id.details_container) ;

if (detailsFragment == null) {
FragmentTransaction ft = fm.beginTransaction();
ft.add(R.id.details_container, new DetailsFragment());
ft.add(R.id.ui_container, new MyListFragment());
ft.commit () ;

code snippet PAAAD_Ch04_Fragments/src/MyFragmentActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

124 | CHAPTER4 BUILDING USER INTERFACES

You should first check if the UI has already been populated based on the previous state. To ensure a
consistent user experience, Android persists the Fragment layout and associated back stack when an
Activity is restarted due to a configuration change.

For the same reason, when creating alternative layouts for run time configuration changes, it’s con-
sidered good practice to include any view containers involved in any transactions in all the layout
variations. Failing to do so may result in the Fragment Manager attempting to restore Fragments to
containers that don’t exist in the new layout.

To remove a Fragment container in a given orientation layout, simply mark its visibility attribute
as gone in your layout definition, as shown in Listing 4-9.

) LISTING 4-9: Hiding Fragments in layout variations

Available for <?xml version="1.0" encoding="utf-8"?>
daﬂ:ys&g" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent"
android:layout_height="match_parent">
<FrameLayout
android:id="@+id/ui_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="1"
/>
<FrameLayout
android:id="@+id/details_container"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_weight="3"
android:visibility="gone"
/>
</LinearLayout>

code snippet PA4AD_Ch04_Fragments/res/layout-port/fragment_container_layout.xml

Fragments and the Back Stack

Chapter 3 described the concept of Activity stacks — the logical stacking of Activities that are no
longer visible — which allow users to navigate back to previous screens using the back button.

Fragments enable you to create dynamic Activity layouts that can be modified to present significant
changes in the Uls. In some cases these changes could be considered a new screen — in which case a
user may reasonably expect the back button to return to the previous layout. This involves reversing
previously executed Fragment Transactions.

Android provides a convenient technique for providing this functionality. To add the Fragment
Transaction to the back stack, call addToBackstack on a Fragment Transaction before calling
commit.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Fragments | 125

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
fragmentTransaction.add(R.id.ui_container, new MyListFragment());

Fragment fragment = fragmentManager.findFragmentById(R.id.details_fragment) ;
fragmentTransaction.remove (fragment) ;

String tag = null;
fragmentTransaction.addToBackStack(tag);

fragmentTransaction.commit () ;

Pressing the Back button will then reverse the previous Fragment Transaction and return the Ul to
the earlier layout.

When the Fragment Transaction shown above is committed, the Details Fragment is stopped and
moved to the back stack, rather than simply destroyed. If the Transaction is reversed, the List
Fragment is destroyed, and the Details Fragment is restarted.

Animating Fragment Transactions

To apply one of the default transition animations, use the setTransition method on any Fragment
Transaction, passing in one of the FragmentTransaction.TRANSIT FRAGMENT_* constants.

transaction.setTransition (FragmentTransaction.TRANSIT_ FRAGMENT_OPEN) ;

You can also apply custom animations to Fragment Transactions by using the setCustom
Animations method. This method accepts two animation XML resources: one for Fragments that
are being added to the layout by this transaction, and another for Fragments being removed:

fragmentTransaction.setCustomAnimations(R.animator.slide_in left,
R.animator.slide_out_right);

This is a particularly useful way to add seamless dynamic transitions when you are replacing
Fragments within your layout.

y The Android animation libraries were significantly improved in Android 3.0
(API level 11) with the inclusion of the Animator class. As a result, the anima-
tion resource passed in to the setCustomAnimations method is different for
applications built using the support library.

Applications built for devices running on API level 11 and above should use
Animator resources, whereas those using the support library to support earlier
platform releases should use the older View animation resources.

You can find more details on creating custom Animator and Animation resources in Chapter 11,
“Advanced User Experience.”

www.it-ebooks.info

http://www.it-ebooks.info/

126 | CHAPTER4 BUILDING USER INTERFACES

Interfacing Between Fragments and Activities

Use the getactivity method within any Fragment to return a reference to the Activity within
which it’s embedded. This is particularly useful for finding the current Context, accessing other
Fragments using the Fragment Manager, and finding Views within the Activity’s View hierarchy.

TextView textView = (TextView)getActivity().findViewById(R.id.textview);

Although it’s possible for Fragments to communicate directly using the host Activity’s Fragment
Manager, it’s generally considered better practice to use the Activity as an intermediary. This allows
the Fragments to be as independent and loosely coupled as possible, with the responsibility for
deciding how an event in one Fragment should affect the overall Ul falling to the host Activity.

Where your Fragment needs to share events with its host Activity (such as signaling UI selections), it’s
good practice to create a callback interface within the Fragment that a host Activity must implement.

Listing 4-10 shows a code snippet from within a Fragment class that defines a public event listener
interface. The onattach handler is overridden to obtain a reference to the host Activity, confirming
that it implements the required interface.

) LISTING 4-10: Defining Fragment event callback interfaces

Available for public interface OnSeasonSelectedListener {

daﬂgrg&g" public void onSeasonSelected(Season season);

private OnSeasonSelectedListener onSeasonSelectedListener;
private Season currentSeason;

@Override
public void onAttach(Activity activity) {
super.onAttach (activity) ;

try {
onSeasonSelectedlListener = (OnSeasonSelectedListener)activity;
} catch (ClassCastException e) {
throw new ClassCastException(activity.toString() +
" must implement OnSeasonSelectedListener");

}

private void setSeason(Season season) {
currentSeason = season;
onSeasonSelectedListener.onSeasonSelected (season) ;

code snippet PAAAD_Ch04_Fragments/src/SeasonFragment.java

Fragments Without User Interfaces

In most circumstances, Fragments are used to encapsulate modular components of the UI; however,
you can also create a Fragment without a Ul to provide background behavior that persists across

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Fragments | 127

Activity restarts. This is particularly well suited to background tasks that regularly touch the UI or
where it’s important to maintain state across Activity restarts caused by configuration changes.

You can choose to have an active Fragment retain its current instance when its parent Activity is re-
created using the setRetainInstance method. After you call this method, the Fragment’s lifecycle
will change.

Rather than being destroyed and re-created with its parent Activity, the same Fragment instance is
retained when the Activity restarts. It will receive the onDetach event when the parent Activity is
demxoyed,ﬁﬂknvﬂibytheonAttach,onCreateView,andonActivityCreatedeVﬂHsasthenew
parent Activity is instantiated.

Although you use this technique on Fragments with a Ul, this is generally not
recommended. A better alternative is to move the associated background task or
required state into a new Fragment, without a Ul, and have the two Fragments
interact as required.

The following snippet shows the skeleton code for a Fragment without a Ul:

public class NewltemFragment extends Fragment {
@Override
public void onAttach(Activity activity) {
super.onAttach (activity) ;

// Get a type-safe reference to the parent Activity.

}
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

// Create background worker threads and tasks.

}
@QOverride
public void onActivityCreated(Bundle savedInstanceState) {

super.onActivityCreated (savedInstanceState) ;

// Initiate worker threads and tasks.

To add this Fragment to your Activity, create a new Fragment Transaction, specifying a tag to use to
identify it. Because the Fragment has no UI, it should not be associated with a container View and
generally shouldn’t be added to the back stack.

FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction() ;
fragmentTransaction.add (workerFragment, MY FRAGMENT TAG);

fragmentTransaction.commit () ;

www.it-ebooks.info

http://www.it-ebooks.info/

128 | CHAPTER4 BUILDING USER INTERFACES

Use the findFragmentByTag from the Fragment Manager to find a reference to it later.

MyFragment myFragment =
(MyFragment) fragmentManager . findFragmentByTag (MY_FRAGMENT_TAG) ;

Android Fragment Classes

The Android SDK includes a number of Fragment subclasses that encapsulate some of the most
common Fragment implementations. Some of the more useful ones are listed here:

> DialogFragment — A Fragment that you can use to display a floating Dialog over the par-
ent Activity. You can customize the Dialog’s Ul and control its visibility directly via the
Fragment APL Dialog Fragments are covered in more detail in Chapter 10, “Expanding the
User Experience.”

> ListFragment — A wrapper class for Fragments that feature a Listview bound to a data
source as the primary Ul metaphor. It provides methods to set the Adapter to use and
exposes the event handlers for list item selection. The List Fragment is used as part of the
To-Do List example in the next section.

> webViewFragment — A wrapper class that encapsulates a WebView within a Fragment. The
child WebView will be paused and resumed when the Fragment is paused and resumed.

Using Fragments for Your To-Do List
The earlier to-do list example used a Linear Layout within an Activity to define its Ul

In this example you’ll break the Ul into a series of Fragments that represent its component
pieces — the text entry box and the list of to-do items. This will enable you to easily create opti-
mized layouts for different screen sizes.

1. Start by creating a new layout ﬁle, new_item_fragment.xml in the res/layout folder that
contains the Edit Text node from the main.xml.

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/myEditText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:hint="@string/addItemHint"
android:contentDescription="@string/addItemContentDescription"

/>

2. You’'ll need to create a new Fragment for each Ul component. Start by creating a
NewItemFragment that extends Fragment. Override the onCreateview handler to inflate the
layout you created in step 1.

package com.paad.todolist;
import android.app.Activity;

import android.app.Fragment;
import android.view.KeyEvent;

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Fragments | 129

import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.EditText;

public class NewltemFragment extends Fragment {

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
return inflater.inflate(R.layout.new_item_ fragment, container, false);

Each Fragment should encapsulate the functionality that it provides. In the case of the New

Item Fragment, that’s accepting new to-do items to add to your list. Start by defining an

interface that the ToDoListActivity can implement to listen for new items being added.
public interface OnNewItemAddedListener {

public void onNewItemAdded (String newlItem) ;
}

Now create a variable to store a reference to the parent ToDoListActivity that will imple-
ment this interface. You can get the reference as soon as the parent Activity has been bound
to the Fragment within the Fragment’s onattach handler.

private OnNewItemAddedListener onNewItemAddedListener;

@Override
public void onAttach(Activity activity) {
super.onAttach (activity) ;

try {
onNewItemAddedListener = (OnNewItemAddedListener)activity;
} catch (ClassCastException e) {
throw new ClassCastException(activity.toString() +
" must implement OnNewItemAddedListener");

}

}
Move the editText.onClickListener implementation from the ToDoListActivity into
your Fragment. When the user adds a new item, rather than adding the text directly to
an array, pass it in to the parent Activity’s OnNewItemAddedListener .onNewItemAdded
implementation.

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
View view = inflater.inflate(R.layout.new_item_fragment, container, false);

final EditText myEditText =
(EditText)view.findViewById(R.id.myEditText);

www.it-ebooks.info

http://www.it-ebooks.info/

130 | CHAPTER4 BUILDING USER INTERFACES

myEditText.setOnKeyListener (new View.OnKeyListener() {
public boolean onKey(View v, int keyCode, KeyEvent event) {
if (event.getAction() == KeyEvent.ACTION DOWN)
if ((keyCode == KeyEvent.KEYCODE DPAD_ CENTER) ||
(keyCode == KeyEvent.KEYCODE_ENTER)) {
String newItem = myEditText.getText().toString();
onNewItemAddedListener.onNewItemAdded (newItem) ;
myEditText.setText ("");
return true;
}
return false;
}
});

return view;

6. Next, create the Fragment that contains the list of to-do items. Android provides a
ListFragment class that you can use to easily create a simple List View based Fragment.
Create a new class that Extends ListFragment.

package com.paad.todolist;
import android.app.ListFragment;

public class ToDoListFragment extends ListFragment {

}

The List Fragment class includes a default Ul consisting of a single List View,
which is sufficient for this example. You can easily customize the default List
Fragment Ul by creating your own custom layout and inflating it within the
onCreateView handler. Any custom layout must include a List View node with
the ID specified as @android:id/1ist.

7. With your Fragments completed, it’s time to return to the Activity. Start by updating the
main.xml layout, replacing the List View and Edit Text with the ToDo List Fragment and
New Item Fragment, respectively.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<fragment android:name="com.paad.todolist.NewItemFragment"
android:id="@+id/NewItemFragment"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<fragment android:name="com.paad.todolist.ToDoListFragment"
android:id="@+id/TodoListFragment"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Fragments | 131

android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

8. Return to the ToDoListActivity. Within the onCreate method, use the Fragment Manager
to get a reference to the ToDo List Fragment before creating and assigning the adapter to it.
Because the List View and Edit Text Views are now encapsulated within fragments, you no
longer need to find references to them within your Activity. You’ll need to expand the scope
of the Array Adapter and Array List to class variables.

private ArrayAdapter<String> aa;
private ArrayList<String> todoItems;

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

// Inflate your view
setContentView(R.layout.main) ;

// Get references to the Fragments

FragmentManager fm = getFragmentManager();

ToDoListFragment todoListFragment =
(ToDoListFragment) fm. findFragmentById(R.id.TodoListFragment) ;

// Create the array list of to do items
todoItems = new ArrayList<String>();

// Create the array adapter to bind the array to the listview

aa = new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_1,
todoItems) ;

// Bind the array adapter to the listview.
todoListFragment.setListAdapter(aa);

9. Your List View is now connected to your Array List using an adapter, so all that’s left is to
add any new items created within the New Item Fragment. Start by declaring that your class
will implement the onNewTtemAddedListener you defined within the New Item Fragment in
step 3.

public class ToDoList extends Activity
implements NewItemFragment.OnNewItemAddedListener {

10. Finally, implement the listener by implementing an onNewI temadded handler. Add the
received string variable to the Array List before notifying the Array Adapter that the dataset
has changed.

public void onNewItemAdded (String newlItem) {

todoItems.add (newItem) ;
aa.notifyDataSetChanged() ;

www.it-ebooks.info

http://www.it-ebooks.info/

132 | CHAPTER4 BUILDING USER INTERFACES

All code snippets in this example are part of the Chapter 4 To-Do List Part 2
project, available for download at www .wrox. com.

THE ANDROID WIDGET TOOLBOX

Android supplies a toolbox of standard Views to help you create your Uls. By using these controls
(and modifying or extending them, as necessary), you can simplify your development and provide
consistency between applications.

The following list highlights some of the more familiar toolbox controls:

>

TextView— A standard read-only text label that supports multiline display, string format-
ting, and automatic word wrapping.

EditText — An editable text entry box that accepts multiline entry, word-wrapping, and
hint text.

Chronometer — A Text View extension that implements a simple count-up timer.

Listview — A View Group that creates and manages a vertical list of Views, displaying
them as rows within the list. The simplest List View displays the tostring value of each
object in an array, using a Text View for each item.

Spinner — A composite control that displays a Text View and an associated List View that
lets you select an item from a list to display in the textbox. It’s made from a Text View dis-

playing the current selection, combined with a button that displays a selection dialog when

pressed.

Button — A standard push button.

ToggleButton — A two-state button that can be used as an alternative to a check box. It’s
particularly appropriate where pressing the button will initiate an action as well as changing
a state (such as when turning something on or off).

TmageButton — A push button for which you can specify a customized background image
(Drawable).

CheckBox — A two-state button represented by a checked or unchecked box.

RadioButton — A two-state grouped button. A group of these presents the user with a num-
ber of possible options, of which only one can be enabled at a time.

viewFlipper — A View Group that lets you define a collection of Views as a horizontal row
in which only one View is visible at a time, and in which transitions between visible views
can be animated.

videoview — Handles all state management and display Surface configuration for playing
videos more simply from within your Activity.

QuickContactBadge — Displays a badge showing the image icon assigned to a contact you
specify using a phone number, name, email address, or URI. Clicking the image will display
the quick contact bar, which provides shortcuts for contacting the selected contact — includ-
ing calling and sending an SMS, email, and IM.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Creating New Views | 133

> viewPager — Released as part of the Compatibility Package, the View Pager implements a
horizontally scrolling set of Views similar to the Ul used in Google Play and Calendar. The
View Pager allows users to swipe or drag left or right to switch between different Views.

This is only a selection of the widgets available. Android also supports several more advanced View
implementations, including date-time pickers, auto-complete input boxes, maps, galleries, and tab
sheets. For a more comprehensive list of the available widgets, head to http://developer
.android.com/guide/tutorials/views/index.html.

CREATING NEW VIEWS

It’s only a matter of time before you, as an innovative developer, encounter a situation in which none
of the built-in controls meets your needs.

The ability to extend existing Views, assemble composite controls, and create unique new Views
makes it possible to implement beautiful Uls optimized for your application’s workflow. Android
lets you subclass the existing View toolbox or implement your own View controls, giving you total
freedom to tailor your Ul to optimize the user experience.

y When designing a Ul, it’s important to balance raw aesthetics and usability.
With the power to create your own custom controls comes the temptation to
rebuild all your controls from scratch. Resist that urge. The standard Views will
be familiar to users from other Android applications and will update in line with
new platform releases. On small screens, with users often paying limited atten-
tion, familiarity can often provide better usability than a slightly shinier control.

The best approach to use when creating a new View depends on what you want to achieve:

> Modify or extend the appearance and/or behavior of an existing View when it supplies the
basic functionality you want. By overriding the event handlers and/or ondraw, but still calling
back to the superclass’s methods, you can customize a View without having to re-implement
its functionality. For example, you could customize a Textview to display numbers using a
set number of decimal points.

> Combine Views to create atomic, reusable controls that leverage the functionality of several
interconnected Views. For example, you could create a stopwatch timer by combining a
TextView and a Button that resets the counter when clicked.

> Create an entirely new control when you need a completely different interface that you can’t
get by changing or combining existing controls.

Modifying Existing Views

The Android widget toolbox includes Views that provide many common Ul requirements, but the
controls are necessarily generic. By customizing these basic Views, you avoid re-implementing exist-
ing behavior while still tailoring the UI, and functionality, to your application’s needs.

www.it-ebooks.info

http://developer
http://www.it-ebooks.info/

134 |

CHAPTER 4 BUILDING USER INTERFACES

To create a new View based on an existing control, create a new class that extends it, as shown with
the Textview derived class shown in Listing 4-11. In this example you extend the Text View to cus-
tomize its appearance and behavior.

J

Available for
download on
Wrox.com

LISTING 4-11: Extending Text View

import android.content.Context;
import android.graphics.Canvas;
import android.util.AttributeSet;
import android.view.KeyEvent;
import android.widget.TextView;

public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet attrs, int defStyle)
{
super (context, attrs, defStyle);

public MyTextView (Context context) ({
super (context) ;

public MyTextView (Context context, AttributeSet attrs) {
super (context, attrs);

code snippet PAAAD_Ch04_Views/src/MyTextView.java

To override the appearance or behavior of your new View, override and extend the event handlers
associated with the behavior you want to change.

In the following extension of the Listing 4-11 code, the onDraw method is overridden to modify the
View’s appearance, and the onkeyDown handler is overridden to allow custom key-press handling.

public class MyTextView extends TextView {

public MyTextView (Context context, AttributeSet ats, int defStyle) {
super (context, ats, defStyle);

public MyTextView (Context context) ({
super (context) ;

public MyTextView (Context context, AttributeSet attrs) {
super (context, attrs);

@Override
public void onDraw(Canvas canvas) {
[... Draw things on the canvas under the text ...]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 135

// Render the text as usual using the TextView base class.
super.onDraw(canvas) ;

[... Draw things on the canvas over the text ...]
}

@Ooverride

public boolean onKeyDown (int keyCode, KeyEvent keyEvent) {
[... Perform some special processing ...]
[... based on a particular key press ...]

// Use the existing functionality implemented by
// the base class to respond to a key press event.
return super.onKeyDown (keyCode, keyEvent);

The event handlers available within Views are covered in more detail later in this chapter.

Customizing Your To-Do List

The to-do list example uses Textview controls to represent each row in a List View. You can cus-
tomize the appearance of the list by extending Text View and overriding the ondraw method.

In this example you’ll create a new TodoListItemview that will make each item appear as if on a
paper pad. When complete, your customized to-do list should look like Figure 4-10.

Write "Hello, World app®

Write next killer app

qgqwer r tyu.i

asdf ghj kI

&4 zZz x ¢c vb nme

FIGURE 4-10

www.it-ebooks.info

http://www.it-ebooks.info/

136 | CHAPTER4 BUILDING USER INTERFACES

1. Create a new ToDoListTItemView class that extends Textview. Include a stub for overriding
the onbraw method, and implement constructors that call a new init method stub.

package com.paad.todolist;

import android.content.Context;
import android.content.res.Resources;
import android.graphics.Canvas;
import android.graphics.Paint;

import android.util.AttributeSet;
import android.widget.TextView;

public class ToDoListItemView extends TextView {

public ToDoListItemView (Context context, AttributeSet ats, int ds) {
super (context, ats, ds);
init();

}

public ToDoListItemView (Context context) {
super (context) ;
init();

}

public ToDoListItemView (Context context, AttributeSet attrs) {
super (context, attrs);
init();

}

private void init() {

}

@Override

public void onDraw(Canvas canvas) {
// Use the base TextView to render the text.
super .onDraw (canvas) ;

2. Create a new colors.xml resource in the res/values folder. Create new color values for
the paper, margin, line, and text colors.

<?xml version="1.0" encoding="utf-8"7?>
<resources>
<color name="notepad_paper">#EEF8EOAO</color>
<color name="notepad_lines">#FF0000FF</color>
<color name="notepad_margin">#90FF0000</color>
<color name="notepad_text">#AA0000FF</color>
</resources>

3. Create a new dimens.xml resource file, and add a new value for the paper’s margin width.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<dimen name="notepad_margin">30dp</dimen>
</resources>

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 137

4.

5.

6.

With the resources defined, you’re ready to customize the ToDoListItemView appearance.
Create new private instance variables to store the Paint objects you’ll use to draw the paper
background and margin. Also create variables for the paper color and margin width values.
Fill in the init method to get instances of the resources you created in the last two steps, and

create the Paint objects.

private
private
private
private

private

Paint marginPaint;
Paint linePaint;
int paperColor;
float margin;

void init () {

// Get a reference to our resource table.
Resources myResources = getResources();

// Create the paint brushes we will use in the onDraw method.
marginPaint = new Paint (Paint.ANTI_ALIAS_FLAG) ;
marginPaint.setColor (myResources.getColor (R.color.notepad_margin)) ;
linePaint = new Paint (Paint.ANTI_ALIAS FLAG) ;

linePaint.setColor (myResources.getColor (R.color.notepad_lines)) ;

// Get the paper background color and the margin width.
paperColor = myResources.getColor (R.color.notepad_paper) ;
margin = myResources.getDimension (R.dimen.notepad_margin) ;

To draw the paper, override ondDraw and draw the image using the Paint objects you created
in step 4. After you’ve drawn the paper image, call the superclass’s ondDraw method and let it
draw the text as usual.

@Override
public void onDraw(Canvas canvas) {

// Color as paper
canvas.drawColor (paperColor) ;

// Draw ruled lines

canvas.drawLine (0, 0, 0, getMeasuredHeight(), linePaint);
canvas.drawLine (0, getMeasuredHeight (),
getMeasuredWidth (), getMeasuredHeight (),
linePaint) ;

// Draw margin
canvas.drawLine (margin, 0, margin, getMeasuredHeight (), marginPaint) ;

// Move the text across from the margin
canvas.save() ;
canvas.translate(margin, 0);

// Use the TextView to render the text

super .onDraw (canvas) ;
canvas.restore() ;

That completes the ToDoListTtemview implementation. To use it in the To-Do List
Activity, you need to include it in a new layout and pass that layout in to the Array Adapter

www.it-ebooks.info

http://www.it-ebooks.info/

138 | CHAPTER4 BUILDING USER INTERFACES

constructor. Start by creating a new todolist_item.xml resource in the res/layout folder.
It will specify how each of the to-do list items is displayed within the List View. For this
example, your layout need only consist of the new ToDoListItemvView, set to fill the entire
available area.

<?xml version="1.0" encoding="utf-8"7?>
<com.paad.todolist.ToDoListItemView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="10dp"
android:scrollbars="vertical"
android:textColor="@color/notepad_text"
android: fadingEdge="vertical"

7. The final step is to change the parameters passed in to the Arrayadapter in onCreate of the
ToDoListActivity class. Replace the reference to the default android.R.layout.simple_
list_item_1 with a reference to the new R.layout.todolist_item layout created in
step 6.

int resID = R.layout.todolist_item;
aa = new ArrayAdapter<String>(this, resID, todoItems);

All code snippets in this example are part of the Chapter 4 To-do List Part 3
project, available for download at wvw .wrox. com.

Creating Compound Controls

Compound controls are atomic, self-contained View Groups that contain multiple child Views laid
out and connected together.

When you create a compound control, you define the layout, appearance, and interaction of the
Views it contains. You create compound controls by extending a viewGroup (usually a layout). To
create a new compound control, choose the layout class that’s most suitable for positioning the child
controls and extend it:

public class MyCompoundView extends LinearLayout {
public MyCompoundView (Context context) {
super (context) ;
}

public MyCompoundView (Context context, AttributeSet attrs) {
super (context, attrs);

}

As with Activities, the preferred way to design compound View Ul layouts is by using an external
resource.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.wrox.com
http://www.it-ebooks.info/

Creating New Views | 139

Listing 4-12 shows the XML layout definition for a simple compound control consisting of an Edit
Text for text entry, with a Clear Text button beneath it.

)‘ LISTING 4-12: A compound View layout resource

Available for ~ <?xml version="1.0" encoding="utf-8"?>
d&ﬁg?gg;" <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content">
<EditText
android:id="@+id/editText"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<Button
android:id="@+id/clearButton"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Clear"
/>
</LinearLayout>

code snippet PAAAD_Ch04_Views/res/layout/clearable_edit_text.xml

To use this layout in your new compound View, override its constructor to inflate the layout
resource using the inflate method from the LayoutInflate system service. The inflate method
takes the layout resource and returns the inflated View.

For circumstances such as this, in which the returned View should be the class you’re creating, you
can pass in the parent View and attach the result to it automatically.

Listing 4-13 demonstrates this using the ClearableEditText class. Within the constructor it
inflates the layout resource from Listing 4-12 and then finds a reference to the Edit Text and Button
Views it contains. It also makes a call to hookupButton that will later be used to hook up the
plumbing that will implement the clear text functionality.

LISTING 4-13: Constructing a compound View

public class ClearableEditText extends LinearLayout {

EditText editText;
Button clearButton;

public ClearableEditText (Context context) {
super (context) ;

// Inflate the view from the layout resource.
String infService = Context.LAYOUT INFLATER_SERVICE;

LayoutInflater 1i;
continues

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

140 | CHAPTER4 BUILDING USER INTERFACES

LISTING 4-13 (continued)

1li = (LayoutInflater)getContext ().getSystemService(infService);
li.inflate(R.layout.clearable_edit_text, this, true);

// Get references to the child controls.
editText = (EditText)findViewById(R.id.editText);
clearButton = (Button)findviewById(R.id.clearButton);

// Hook up the functionality
hookupButton () ;

code snippet PA4AD_Ch04_Views/src/ClearableEditText.java

If you prefer to construct your layout in code, you can do so just as you would for an Activity:

public ClearableEditText (Context context) {
super (context) ;

// Set orientation of layout to vertical
setOrientation(LinearLayout.VERTICAL);

// Create the child controls.
editText = new EditText (getContext());
clearButton = new Button(getContext()):;
clearButton.setText ("Clear");

// Lay them out in the compound control.
int lHeight = LinearLayout.LayoutParams.WRAP_ CONTENT;
int 1width = LinearLayout.LayoutParams.MATCH PARENT;

addview(editText, new LinearLayout.LayoutParams (lWidth, lHeight));
addview(clearButton, new LinearLayout.LayoutParams (1lWidth, lHeight));

// Hook up the functionality
hookupButton () ;

After constructing the View layout, you can hook up the event handlers for each child control to
provide the functionality you need. In Listing 4-14, the hookupButton method is filled in to clear
the Edit Text when the button is pressed.

) LISTING 4-14: Implementing the Clear Text Button

Availablefor ~ private void hookupButton() {
dmg;‘?ggr:" clearButton.setOnClickListener (new Button.OnClickListener() {
public void onClick(View v) {
editText.setText ("");

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 141

code snippet PAAAD_Ch04_Views/src/ClearableEditText.java

Creating Simple Compound Controls Using Layouts

It’s often sufficient, and more flexible, to define the layout and appearance of a set of Views without
hard-wiring their interactions.

You can create a reusable layout by creating an XML resource that encapsulates the Ul pattern
you want to reuse. You can then import these layout patterns when creating the UI for Activities or
Fragments by using the include tag within their layout resource definitions.

<include layout="@layout/clearable_edit_text"/>

The include tag also enables you to override the 1d and 1ayout parameters of the root node of the
included layout:
<include layout="@layout/clearable_edit_text"
android:id="@+id/add_new_entry_input"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_gravity="top"/>

Creating Custom Views

Creating new Views gives you the power to fundamentally shape the way your applications
look and feel. By creating your own controls, you can create Uls that are uniquely suited to
your needs.

To create new controls from a blank canvas, you extend either the View or Surfaceview class.

The view class provides a canvas object with a series of draw methods and paint classes. Use them
to create a visual interface with bitmaps and raster graphics. You can then override user events,
including screen touches or key presses to provide interactivity.

In situations in which extremely rapid repaints and 3D graphics aren’t required, the view base class
offers a powerful lightweight solution.

The surfaceview class provides a Surface object that supports drawing from a background thread
and optionally using opencGL to implement your graphics. This is an excellent option for graphics-
heavy controls that are frequently updated (such as live video) or that display complex graphical
information (particularly, games and 3D visualizations).

@ This section focuses on building controls based on the View class. To learn more
about the surfaceview class and some of the more advanced Canvas paint fea-
tures available in Android, see Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

142 | CHAPTER4 BUILDING USER INTERFACES

Creating a New Visual Interface

The base view class presents a distinctly empty 100-pixel-by-100-pixel square. To change the size of
the control and display a more compelling visual interface, you need to override the onMeasure and
onDraw methods.

Within onMeasure your View will determine the height and width it will occupy given a set of
boundary conditions. The onbraw method is where you draw onto the Canvas.

Listing 4-15 shows the skeleton code for a new view class, which will be examined and developed
further in the following sections.

) LISTING 4-15: Creating a new View

Available for public class MyView extends View {
download on
Wrox.com ! , .
// Constructor required for in-code creation

public MyView (Context context) {
super (context) ;

// Constructor required for inflation from resource file
public MyView (Context context, AttributeSet ats, int defaultStyle) {
super (context, ats, defaultStyle);

//Constructor required for inflation from resource file
public MyView (Context context, AttributeSet attrs) {
super (context, attrs);

@Override

protected void onMeasure (int wMeasureSpec, int hMeasureSpec) {
int measuredHeight = measureHeight (hMeasureSpec) ;
int measuredWidth = measureWidth (wMeasureSpec) ;

// MUST make this call to setMeasuredDimension
// or you will cause a runtime exception when

// the control is laid out.
setMeasuredDimension (measuredHeight, measuredwidth) ;

private int measureHeight (int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec);

[... Calculate the view height ...]

return specSize;

private int measureWidth (int measureSpec) {

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 143

int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

[... Calculate the view width ...]

return specSize;

}

@Override
protected void onDraw(Canvas canvas) {
[... Draw your visual interface ...]

}

code snippet PA4AD_Ch04_Views/src/MyView.java

@ The onveasure method calls setMeasuredDimension. You must always call this
method within your overridden onMeasure method; otherwise, your control will
throw an exception when the parent container attempts to lay it out.

Drawing Your Control

The onbraw method is where the magic happens. If you’re creating a new widget from scratch, it’s
because you want to create a completely new visual interface. The Canvas parameter in the onbraw
method is the surface you’ll use to bring your imagination to life.

The Android Canvas uses the painter’s algorithm, meaning that each time you draw on to the can-
vas, it will cover anything previously drawn on the same area.

The drawing APIs provide a variety of tools to help draw your design on the Canvas using various
paint objects. The canvas class includes helper methods for drawing primitive 2D objects, includ-
ing circles, lines, rectangles, text, and Drawables (images). It also supports transformations that let
you rotate, translate (move), and scale (resize) the Canvas while you draw on it.

When these tools are used in combination with Drawables and the Paint class (which offer a vari-
ety of customizable fills and pens), the complexity and detail that your control can render are lim-
ited only by the size of the screen and the power of the processor rendering it.

Omne of the most important techniques for writing efficient code in Android is
to avoid the repetitive creation and destruction of objects. Any object created
in your onDraw method will be created and destroyed every time the screen
refreshes. Improve efficiency by making as many of these objects (particularly
instances of Paint and Drawable) class-scoped and by moving their creation
into the constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

144 | CHAPTER4 BUILDING USER INTERFACES

Listing 4-16 shows how to override the onDraw method to display a simple text string in the center
of the control.

) LISTING 4-16: Drawing a custom View

Available for @Override

daﬂ:ks&g" protected void onDraw(Canvas canvas) {
// Get the size of the control based on the last call to onMeasure.
int height = getMeasuredHeight () ;
int width = getMeasuredwidth() ;

// Find the center
int px = width/2;
int py = height/2;

// Create the new paint brushes.

// NOTE: For efficiency this should be done in

// the views's constructor

Paint mTextPaint = new Paint (Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor (Color.WHITE) ;

// Define the string.
String displayText = "Hello World!";

// Measure the width of the text string.
float textWidth = mTextPaint.measureText (displayText) ;

// Draw the text string in the center of the control.
canvas.drawText (displayText, px-textWidth/2, py, mTextPaint);
}

code snippet PA4AD_Ch04_Views/src/MyView.java

So that we don’t diverge too far from the current topic, a more detailed look at the Canvas and Paint
classes, and the techniques available for drawing more complex visuals is included in Chapter 10.

Android does not currently support vector graphics. As a result, changes to any
element of your Canvas require that the entire Canvas be repainted; modifying
the color of a brush will not change your View’s display until the control is inval-
idated and redrawn. Alternatively, you can use OpenGL to render graphics. For
more details, see the discussion on Surfaceview in Chapter 15, “Audio, Video,
and Using the Camera.”

Sizing Your Control

Unless you conveniently require a control that always occupies a space 100 pixels square, you will
also need to override onMeasure.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 145

The onMeasure method is called when the control’s parent is laying out its child controls. It asks the
question, “How much space will you use?” and passes in two parameters: widthMeasureSpec and
heightMeasureSpec. These parameters specify the space available for the control and some meta-
data to describe that space.

Rather than return a result, you pass the View’s height and width into the setMeasuredpimension
method.

The following snippet shows how to override onMeasure. The calls to the local method stubs
measureHeight and measureWidth, which are used to decode the widthHeightSpec and height
MeasureSpec values and calculate the preferred height and width values, respectively.

@Override
protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) ({

int measuredHeight = measureHeight (heightMeasureSpec) ;
int measuredWidth = measureWidth (widthMeasureSpec) ;

setMeasuredDimension (measuredHeight, measuredwidth) ;

private int measureHeight (int measureSpec) {
// Return measured widget height.

private int measureWidth (int measureSpec) {
// Return measured widget width.

The boundary parameters, widthMeasureSpec and heightMeasureSpec, are passed in as integers
for efficiency reasons. Before they can be used, they first need to be decoded using the static get-
Mode and getSize methods from the Measurespec class.

int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

Depending on the mode value, the size represents either the maximum space available for the con-
trol (in the case of AT_MOST), or the exact size that your control will occupy (for EXACTLY). In the
case of UNSPECTIFIED, your control does not have any reference for what the size represents.

By marking a measurement size as EXACT, the parent is insisting that the View will be placed into

an area of the exact size specified. The AT_MOST mode says the parent is asking what size the View
would like to occupy, given an upper boundary. In many cases the value you return will either be the
same, or the size required to appropriately wrap the Ul you want to display.

In either case, you should treat these limits as absolute. In some circumstances it may still be appro-
priate to return a measurement outside these limits, in which case you can let the parent choose how
to deal with the oversized View, using techniques such as clipping and scrolling.

Listing 4-17 shows a typical implementation for handling View measurements.

www.it-ebooks.info

http://www.it-ebooks.info/

146 | CHAPTER4 BUILDING USER INTERFACES

) LISTING 4-17: A typical View measurement implementation

Available for @Override

daﬂ:?g&gn protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) {
int measuredHeight = measureHeight (heightMeasureSpec) ;
int measuredWidth = measureWidth (widthMeasureSpec) ;

setMeasuredDimension (measuredHeight, measuredwidth) ;
}

private int measureHeight (int measureSpec) ({
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT MOST) {
// Calculate the ideal size of your
// control within this maximum size.
// I1f your control fills the available
// space return the outer bound.
result = specSize;
} else if (specMode == MeasureSpec.EXACTLY) {
// If your control can fit within these bounds return that value.
result = specSize;
}

return result;

private int measureWidth(int measureSpec) {
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

// Default size if no limits are specified.
int result = 500;

if (specMode == MeasureSpec.AT MOST) {
// Calculate the ideal size of your control
// within this maximum size.
// 1f your control fills the available space
// return the outer bound.
result = specSize;
} else if (specMode == MeasureSpec.EXACTLY) {
// I1If your control can fit within these bounds return that value.
result = specSize;
}

return result;

code snippet PAAAD_Ch04_Views/src/MyView.java

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 147

Handling User Interaction Events

For your new View to be interactive, it will need to respond to user-initiated events such as key
presses, screen touches, and button clicks. Android exposes several virtual event handlers that you
can use to react to user input:

> onKeyDown — Called when any device key is pressed; includes the D-pad, keyboard, hang-up,

call, back, and camera buttons
onKeyUp — Called when a user releases a pressed key

onTrackballEvent — Called when the device’s trackball is moved

> onTouchEvent — Called when the touchscreen is pressed or released, or when it detects

movement

Listing 4-18 shows a skeleton class that overrides each of the user interaction handlers in a View.

Available for

download on
Wrox.com

LISTING 4-18: Input event handling for Views

@Override

public boolean onKeyDown (int keyCode, KeyEvent keyEvent) {
// Return true if the event was handled.
return true;

@Override

public boolean onKeyUp (int keyCode, KeyEvent keyEvent) ({
// Return true if the event was handled.
return true;

@Override
public boolean onTrackballEvent (MotionEvent event) {
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

@Override

public boolean onTouchEvent (MotionEvent event) {
// Get the type of action this event represents
int actionPerformed = event.getAction();
// Return true if the event was handled.
return true;

code snippet PAAAD_Ch04_Views/src/MyView.java

www.it-ebooks.info

http://www.it-ebooks.info/

148 | CHAPTER4 BUILDING USER INTERFACES

Further details on using each of these event handlers, including greater detail on the parameters
received by each method and support for multitouch events, are available in Chapter 11.

Supporting Accessibility in Custom Views

Creating a custom View with a beautiful interface is only half the story. It’s just as important to cre-
ate accessible controls that can be used by users with disabilities that require them to interact with
their devices in different ways.

Accessibility APIs were introduced in Android 1.6 (API level 4). They provide alternative interaction
methods for users with visual, physical, or age-related disabilities that make it difficult to interact
fully with a touchscreen.

The first step is to ensure that your custom View is accessible and navigable using the trackball and
D-pad events, as described in the previous section. It’s also important to use the content descrip-
tion attribute within your layout definition to describe the input widgets. (This is described in more
detail in Chapter 11.)

To be accessible, custom Views must implement the AccessibilityEventSource
interface and broadcast AccessibilityEvents using the sendAccessibilityEvent
method.

The View class already implements the Accessibility Event Source interface, so you need to custom-
ize only the behavior to suit the functionality introduced by your custom View. Do this by passing
the type of event that has occurred — usually one of clicks, long clicks, selection changes, focus
changes, and text/content changes — to the sendaccessibilityEvent method. For custom Views
that implement a completely new Ul, this will typically include a broadcast whenever the displayed
content changes, as shown in Listing 4-19.

) LISTING 4-19: Broadcasting Accessibility Events

Available for public void setSeason(Season _season) {
download on _ .
Wrox.com season = _season;
sendAccessibilityEvent (AccessibilityEvent.TYPE_VIEW_TEXT_ CHANGED) ;
}

code snippet PAAAD_Ch04_Views/src/SeasonView.java

Clicks, long-clicks, and focus and selection changes typically will be broadcast by the underlying
View implementation, although you should take care to broadcast any additional events not cap-
tured by the base View class.

The broadcast Accessibility Event includes a number of properties used by the accessibility
service to augment the user experience. Several of these properties, including the View’s

class name and event timestamp, won’t need to be altered; however, by overriding the dispatch-
PopulateAccessibilityEvent handler, you can customize details such as the textual
representation of the View’s contents, checked state, and selection state of your View, as shown in
Listing 4-20.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 149

) LISTING 4-20: Customizing Accessibility Event properties

Available for @Override
dwmgggg" public boolean dispatchPopulateAccessibilityEvent (final

AccessibilityEvent event) {

super.dispatchPopulateAccessibilityEvent (event) ;
if (isShown()) {
String seasonStr = Season.valueOf (season) ;
if (seasonStr.length() > AccessibilityEvent.MAX_ TEXT LENGTH)
seasonStr = seasonStr.substring(0, AccessibilityEvent.MAX TEXT_ LENGTH-1);

event.getText () .add (seasonStr) ;
return true;

}

else
return false;

code snippet PAAAD_Ch04_Views/src/SeasonView.java

Creating a Compass View Example

In the following example you’ll create a new Compass View by extending the view class. This View
will display a traditional compass rose to indicate a heading/orientation. When complete, it should
appear as in Figure 4-11.

FIGURE 4-11

www.it-ebooks.info

http://www.it-ebooks.info/

150 | CHAPTER4 BUILDING USER INTERFACES

A compass is an example of a Ul control that requires a radically different visual display from the
Text Views and Buttons available in the SDK toolbox, making it an excellent candidate for building
from scratch.

In Chapter 11 you will learn some advanced techniques for Canvas drawing
that will let you dramatically improve its appearance. Then in Chapter 12,
“Hardware Sensors,” you'll use this Compass View and the device’s built-in
accelerometer to display the user’s current orientation.

1. Create a new Compass project that will contain your new Compassview, and create a
CompassActivity within which to display it. Within it, create a new Compassview class that
extends View and add constructors that will allow the View to be instantiated, either in code
or through inflation from a resource layout. Also add a new initCompassview method that
will be used to initialize the control and call it from each constructor.

package com.paad.compass;

import
import
import
import
import
import
import

android.

android
android

content.Context;

.content.res.Resources;
.graphics.Canvas;

android.
android.
android.
android.

graphics.Paint;

util.AttributeSet;

view.View;
view.accessibility.AccessibilityEvent;

public class CompassView extends View {
public CompassView (Context context) ({
super (context) ;
initCompassView () ;

public CompassView (Context context, AttributeSet attrs) {
super (context, attrs);
initCompassView () ;

public CompassView (Context context,

AttributeSet ats,
int defaultStyle) {

super (context, ats, defaultStyle);
initCompassView () ;

protected void initCompassView() {
setFocusable (true) ;

2. The Compass View should always be a perfect circle that takes up as much of the canvas as
this restriction allows. Override the onMeasure method to calculate the length of the shortest
side, and use setMeasuredDimension to set the height and width using this value.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 151

@Override

protected void onMeasure (int widthMeasureSpec, int heightMeasureSpec) ({
// The compass i1s a circle that fills as much space as possible.
// Set the measured dimensions by figuring out the shortest boundary,
// height or width.
int measuredWidth = measure (widthMeasureSpec) ;
int measuredHeight = measure (heightMeasureSpec) ;

int d = Math.min(measuredWidth, measuredHeight) ;

setMeasuredDimension(d, d);

private int measure(int measureSpec) {
int result = 0;

// Decode the measurement specifications.
int specMode = MeasureSpec.getMode (measureSpec) ;
int specSize = MeasureSpec.getSize (measureSpec) ;

if (specMode == MeasureSpec.UNSPECIFIED) {
// Return a default size of 200 if no bounds are specified.
result = 200;
} else {
// As you want to fill the available space
// always return the full available bounds.
result = specSize;
}

return result;

3. Modify the main.xml layout resource and replace the Textview reference with your new

CompassView:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>
</FrameLayout>

4. Create two new resource files that store the colors and text strings you’ll use to draw the
compass.

4.1 Create the text string resources by modifying the res/values/strings.xml file.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="app_name">Compass</string>
<string name="cardinal_north">N</string>
<string name="cardinal_east">E</string>

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

152

CHAPTER 4 BUILDING USER INTERFACES

<string name="cardinal_south">S</string>
<string name="cardinal_west">W</string>
</resources>

4.2 Create the color resource res/values/colors.xml.

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="background_color">#F555</color>
<color name="marker_color">#AFFF</color>
<color name="text_color">#AFFF</color>
</resources>

Return to the compassview class. Add a new property to store the displayed bearing, and
create get and set methods for it.

private float bearing;

public void setBearing(float _bearing) {
bearing = _bearing;

}

public float getBearing() {
return bearing;

Return to the initcompassview method and get references to each resource created in
step 4. Store the string values as instance variables, and use the color values to create new
class-scoped Paint objects. You’ll use these objects in the next step to draw the compass face.

private Paint markerPaint;
private Paint textPaint;

private Paint circlePaint;
private String northString;
private String eastString;
private String southString;
private String westString;
private int textHeight;

protected void initCompassView() {
setFocusable (true) ;

Resources r = this.getResources();

circlePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
circlePaint.setColor(r.getColor(R.color.background_color));
circlePaint.setStrokeWidth(1);
circlePaint.setStyle(Paint.Style.FILL AND_ STROKE);

northString = r.getString(R.string.cardinal north);
eastString = r.getString(R.string.cardinal_ east);
southString = r.getString(R.string.cardinal_south);
westString = r.getString(R.string.cardinal west);

textPaint = new Paint (Paint.ANTI_ ALIAS FLAG);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 153

textPaint.setColor(r.getColor(R.color.text_color));
textHeight = (int)textPaint.measureText ("yY");

markerPaint = new Paint (Paint.ANTI_ALIAS FLAG);
markerPaint.setColor(r.getColor (R.color.marker color));

The next step is to draw the compass face using the string and Paint objects you created in
step 6. The following code snippet is presented with only limited commentary. You can find
more detail about drawing on the Canvas and using advanced Paint effects in Chapter 11.

71 Start by overriding the onDraw method in the compassview class.

@Override
protected void onDraw(Canvas canvas) {

7.2 TFind the center of the control, and store the length of the smallest side as the compass’s
radius.

int mMeasuredWidth = getMeasuredWidth/() ;
int mMeasuredHeight = getMeasuredHeight () ;

mMeasuredwidth / 2;
mMeasuredHeight / 2 ;

int px
int py

int radius = Math.min(px, py);

7.3 Draw the outer boundary, and color the background of the Compass face using the
drawCircle method. Use the circlePaint object you created in step 6.

// Draw the background
canvas.drawCircle (px, py, radius, circlePaint);

7.4 This Compass displays the current heading by rotating the face so that the current
direction is always at the top of the device. To achieve this, rotate the canvas in the
opposite direction to the current heading.

// Rotate our perspective so that the 'top' is
// facing the current bearing.

canvas.save () ;

canvas.rotate(-bearing, px, py);

7.5 All that’s left is to draw the markings. Rotate the canvas through a full rotation, draw-
ing markings every 15 degrees and the abbreviated direction string every 45 degrees.
int textWidth = (int)textPaint.measureText ("W");

int cardinalX = px-textWidth/2;
int cardinalY = py-radius+textHeight;

// Draw the marker every 15 degrees and text every 45.
for (int 1 = 0; 1 < 24; 1i++) {
// Draw a marker.
canvas.drawLine (px, py-radius, px, py-radius+10, markerPaint);

canvas.save () ;

www.it-ebooks.info

http://www.it-ebooks.info/

154 | CHAPTER4 BUILDING USER INTERFACES

canvas.translate (0, textHeight);

// Draw the cardinal points
if (1 86 ==0) {
String dirString = "";
switch (i) {
case(0) : {
dirString = northString;
int arrowY = 2*textHeight;
canvas.drawLine (px, arrowY, px-5, 3*textHeight,

markerPaint) ;
canvas.drawLine (px, arrowY, px+5, 3*textHeight,
markerPaint) ;
break;
}
case(6) : dirString = eastString; break;
case(12) : dirString = southString; break;
case(18) : dirString = westString; break;

}
canvas.drawText (dirString, cardinalX, cardinalY, textPaint);

else if (1 % 3 == 0) {
// Draw the text every alternate 45deg
String angle = String.valueOf (i*15);
float angleTextWidth = textPaint.measureText (angle);

int angleTextX = (int) (px-angleTextWidth/2);

int angleTextY py-radius+textHeight;

canvas.drawText (angle, angleTextX, angleTextY, textPaint);
}

canvas.restore() ;

canvas.rotate (15, px, py);
}

canvas.restore() ;

8. The next step is to add accessibility support. The Compass View presents a heading visually,
so to make it accessible you need to broadcast an accessibility event signifying that the “text”
(in this case, content) has changed when the bearing changes. Do this by modifying the set-
Bearing method.
public void setBearing(float _bearing) {

bearing = _bearing;
sendAccessibilityEvent (AccessibilityEvent.TYPE_VIEW TEXT CHANGED);

9. Override the dispatchPopulateAccessibilityEvent to use the current heading as the
content value to be used for accessibility events.

@Override
public boolean dispatchPopulateAccessibilityEvent (final AccessibilityEvent event) {
super .dispatchPopulateAccessibilityEvent (event) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating New Views | 155

if (isShown()) {
String bearingStr = String.valueOf (bearing) ;
if (bearingStr.length() > AccessibilityEvent.MAX_TEXT_LENGTH)
bearingStr = bearingStr.substring(0, AccessibilityEvent.MAX_TEXT_LENGTH) ;

event.getText () .add (bearingStr) ;
return true;

}

else
return false;

All code snippets in this example are part of the Chapter 4 Compass project,
available for download at www.wrox . com.

Run the Activity, and you should see the compassview displayed. See Chapter 12 to learn how to
bind the compassview to the device’s compass sensor.

Using Custom Controls

Having created your own custom Views, you can use them within code and layouts as you would
any other View. Note that you must specify the fully qualified class name when you create a new
node in the layout definition.

<com.paad.compass.CompassView
android:id="@+id/compassView"
android:layout_width="match_parent"
android:layout_height="match_parent"
/>

You can inflate the layout and get a reference to the Compassview, as usual, using the
following code:

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);
CompassView cv = (CompassView)this.findViewById(R.id.compassView);
cv.setBearing (45) ;

}

You can also add your new view to a layout in code:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
CompassView cv = new CompassView(this);
setContentView(cv);
cv.setBearing (45) ;

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

156 | CHAPTER4 BUILDING USER INTERFACES

INTRODUCING ADAPTERS

Adapters are used to bind data to View Groups that extend the Adapterview class (such as List
View or Gallery). Adapters are responsible for creating child Views that represent the underlying
data within the bound parent View.

You can create your own Adapter classes and build your own Adapterview-derived
controls.

Introducing Some Native Adapters

In most cases you won’t have to create your own Adapters from scratch. Android supplies a set of
Adapters that can pump data from common data sources (including arrays and Cursors) into the
native controls that extend Adapter View.

Because Adapters are responsible both for supplying the data and for creating the Views that rep-
resent each item, Adapters can radically modify the appearance and functionality of the controls
they’re bound to.

The following list highlights two of the most useful and versatile native Adapters:

> ArrayaAdapter — The Array Adapter uses generics to bind an Adapter View to an array of
objects of the specified class. By default, the Array Adapter uses the tostring value of each
object in the array to create and populate Text Views. Alternative constructors enable you to
use more complex layouts, or you can extend the class (as shown in the next section) to bind
data to more complicated layouts.

> gimpleCursorAdapter — The Simple Cursor Adapter enables you to bind the Views
within a layout to specific columns contained within a Cursor (typically returned from a
Content Provider query). You specify an XML layout to inflate and populate to display
each child, and then bind each column in the Cursor to a particular View within that
layout. The adapter will create a new View for each Cursor entry and inflate the layout
into it, populating each View within the layout using the Cursor’s corresponding column
value.

The following sections delve into these Adapter classes. The examples provided bind data to List
Views, though the same logic will work just as well for other Adapter View classes, such as Spinners
and Galleries.

Customizing the Array Adapter

By default, the Array Adapter uses the tostring values of each item within an object array to popu-
late a Text View within the layout you specify.

In most cases you will need to customize the Array Adapter to populate the layout used for each
View to represent the underlying array data. To do so, extend Arrayadapter with a type-specific
variation, overriding the getview method to assign object properties to layout Views, as shown in
Listing 4-21.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Adapters | 157

)

Available for
download on

Wrox.com

LISTING 4-21: Customizing the Array Adapter

public class MyArrayAdapter extends ArrayAdapter<MyClass> {

int resource;

public MyArrayAdapter (Context context,
int _resource,
List<MyClass> items) {
super (context, _resource, items);
resource = _resource;

@Override

public View getView(int position, View convertView, ViewGroup parent) {
// Create and inflate the View to display
LinearLayout newView;

if (convertView == null) {
// Inflate a new view if this is not an update.
newView = new LinearLayout (getContext());
String inflater = Context.LAYOUT INFLATER_SERVICE;
LayoutInflater 1i;
1i = (LayoutInflater)getContext().getSystemService(inflater);
li.inflate(resource, newView, true);
} else {
// Otherwise we'll update the existing View
newView = (LinearLayout)convertView;

MyClass classInstance = getItem(position);

// TODO Retrieve values to display from the
// classInstance variable.

// TODO Get references to the Views to populate from the layout.
// TODO Populate the Views with object property values.

return newView;

code snippet PAAAD_Ch04_Adapters/src/MyArrayAdapter.java

The getview method is used to construct, inflate, and populate the View that will be added to the
parent Adapter View class (e.g., List View), which is being bound to the underlying array using this
Adapter.

The getview method receives parameters that describe the position of the item to be displayed, the
View being updated (or nul1), and the View Group into which this new View will be placed. A call
to getTtem will return the value stored at the specified index in the underlying array.

Return the newly created and populated (or updated) View instance as a result from this method.

www.it-ebooks.info

http://www.it-ebooks.info/

158 | CHAPTER4 BUILDING USER INTERFACES

Using Adapters to Bind Data to a View

To apply an Adapter to an adapterview-derived class, call the View’s setadapter method, passing
in an Adapter instance, as shown in Listing 4-22.

) LISTING 4-22: Creating and applying an Adapter

Availablefor ~ Arraylist<String> myStringArray = new ArrayList<String>();
download on
Wrox.com i . .

int layoutID = android.R.layout.simple_list_item 1;

ArrayAdapter<String> myAdapterInstance;
myAdapterInstance =

new ArrayAdapter<String> (this, layoutID, myStringArray);

myListView.setAdapter (myAdapterInstance);

code snippet PAAAD_Ch04_Adapters/src/MyActivity.java

This snippet shows the simplest case, in which the array being bound contains Strings and each List
View item is represented by a single Text View.

The following example demonstrates how to bind an array of complex objects to a List View using a

custom layout.

Customizing the To-Do List Array Adapter

This example extends the To-Do List project, storing each item as a ToDoTtem object that includes
the date each item was created.

You will extend Arrayadapter to bind a collection of ToboTtem objects to the Listview and cus-
tomize the layout used to display each to-do item within the List View.

1. Return to the To-Do List project. Create a new ToDoItem class that stores the task and its
creation date. Override the tostring method to return a summary of the item data.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

public class ToDoItem {

String task;
Date created;

public String getTask() {

return task;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Adapters | 159

3.

public Date getCreated() {
return created;

public ToDoItem(String _task) {
this(_task, new Date(java.lang.System.currentTimeMillis()));

public ToDoItem(String _task, Date _created) {
task = _task;
created = _created;

@Override

public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat ("dd/MM/yy");
String dateString = sdf.format (created) ;
return " (" + dateString + ") " + task;

Open the ToDoListActivity and modify the ArrayList and ArrayAdapter variable
types to store ToDoTtem objects rather than Strings. You then need to modify the oncreate
method to update the corresponding variable initialization.

private ArrayList<ToDoItem> todoItems;
private ArrayAdapter<ToDoItem> aa;

public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

// Inflate your view
setContentView(R.layout.main) ;

// Get references to the Fragments

FragmentManager fm = getFragmentManager () ;

ToDoListFragment todoListFragment =
(ToDoListFragment) fm. findFragmentById(R.id.TodoListFragment) ;

// Create the array list of to do items
todoItems = new ArrayList<ToDoItem>();

// Create the array adapter to bind the array to the listview
int resID = R.layout.todolist_item;

aa = new ArrayAdapter<ToDoItem>(this, resID, todoItems);

// Bind the array adapter to the listview.
todoListFragment.setListAdapter (aa);

Update the onNewTtemaAdded handler to support the ToDoTtem objects.

public void onNewItemAdded (String newItem) {

ToDoItem newTodoItem = new ToDoItem(newItem);

www.it-ebooks.info

http://www.it-ebooks.info/

160 | CHAPTER4 BUILDING USER INTERFACES

todoItems.add (0, newTodoItem);
aa.notifyDataSetChanged() ;

4. Now you can modify the todolist_item.xml layout to display the additional information
stored for each to-do item. Start by modifying the custom layout you created earlier in this
chapter to include a second Textview. It will be used to show the creation date of each to-do
item.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">
<TextView
android:id="@+id/rowDate"
android:background="@color/notepad_paper"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:padding="10dp"
android:scrollbars="vertical"
android: fadingEdge="vertical"
android:textColor="#F000"
android:layout_alignParentRight="true"
/>
<com.paad.todolist.ToDoListItemView
android:id="@+id/row"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding="10dp"
android:scrollbars="vertical"
android: fadingEdge="vertical"
android:textColor="@color/notepad_text"
android:layout_toLeftOf="@+id/rowDate"
/>
</RelativeLayout>

6. To assign the ToDoltem values to each ListView Item, create a new class (ToDoItemAdapter)
that extends an Arrayadapter with a ToDoTtem-specific variation. Override getview to
assign the task and date properties in the ToDoTtem object to the Views in the layout you cre-
ated in step 4.

package com.paad.todolist;

import java.text.SimpleDateFormat;
import java.util.Date;

import java.util.List;

import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.LinearLayout;
import android.widget.TextView;

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing Adapters | 161

public class ToDolItemAdapter extends ArrayAdapter<ToDoItem> {
int resource;

public ToDoItemAdapter (Context context,
int resource,
List<ToDoItem> items) {
super (context, resource, items);
this.resource = resource;

@Override
public View getView(int position, View convertView, ViewGroup parent) {
LinearLayout todoView;

ToDoItem item = getItem(position);

String taskString = item.getTask();

Date createdDate = item.getCreated();

SimpleDateFormat sdf = new SimpleDateFormat ("dd/MM/yy");
String dateString = sdf.format (createdDate) ;

if (convertView == null) {
todoView = new LinearLayout (getContext());
String inflater = Context.LAYOUT INFLATER_SERVICE;
LayoutInflater 1i;
1i = (LayoutInflater)getContext().getSystemService(inflater);
li.inflate(resource, todoView, true);

} else {
todoView = (LinearLayout) convertView;

TextView dateView = (TextView)todoView.findViewById(R.id.rowDate) ;
TextView taskView = (TextView)todoView.findViewById(R.id.row) ;

dateView.setText (dateString) ;
taskView.setText (taskString) ;

return todoView;

7. Return to the ToDoListActivity and replace the ArrayaAdapter declaration with a
ToDoIltemAdapter:

private ToDoItemAdapter aa;

8. Within onCreate, replace the Arrayadapter<ToDoItem> instantiation with the new
ToDoItemAdapter:

aa = new ToDolItemAdapter (this, resID, todoltems);

If you run your Activity and add some to-do items, it should appear as shown in Figure 4-12.

www.it-ebooks.info

http://www.it-ebooks.info/

162 | CHAPTER4 BUILDING USER INTERFACES

New To Do ltem

Get the Power. 17702112

Get the money. 17/02/12

FIGURE 4-12

@ All code snippets in this example are part of the Chapter 4 To-do List Part 4
project, available for download at www .wrox . com.

Using the Simple Cursor Adapter

The simplecursoradapter is used to bind a cursor to an Adapter View using a layout to define
the UT of each row/item. The content of each row’s View is populated using the column values of the
corresponding row in the underlying Cursor.

Construct a Simple Cursor Adapter by passing in the current context, a layout resource to use for
each item, a Cursor that represents the data to display, and two integer arrays: one that contains the
indexes of the columns from which to source the data, and a second (equally sized) array that con-
tains resource IDs to specify which Views within the layout should be used to display the contents of
the corresponding columns.

Listing 4-22 shows how to construct a Simple Cursor Adapter to display recent call information.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Introducing Adapters | 163

) LISTING 4-22: Creating a Simple Cursor Adapter

Available for LoaderManager .LoaderCallbacks<Cursor> loaded =
dwmtgg:n new LoaderManager.LoaderCallbacks<Cursor>() {
public Loader<Cursor> onCreateLoader (int id, Bundle args) {
CursorLoader loader = new CursorLoader (MyActivity.this,
CallLog.CONTENT_URI, null, null, null, null);
return loader;

public void onLoadFinished (Loader<Cursor> loader, Cursor cursor) {

String[] fromColumns = new String[] {CalllLog.Calls.CACHED_NAME,
CallLog.Calls.NUMBER};

int[] toLayoutIDs = new int[] { R.id.nameTextView, R.id.numberTextView};

SimpleCursorAdapter myAdapter;

myAdapter = new SimpleCursorAdapter (MyActivity.this,
R.layout.mysimplecursorlayout,
cursor,
fromColumns,
toLayoutlIDs);

myListView.setAdapter (myAdapter) ;

public void onLoaderReset (Loader<Cursor> loader) {}

Y

getLoaderManager () .initLoader (0, null, loaded);

code snippet PAAAD_Ch4_Adapters/src/MyActivity.java

You’ll learn more about Content Providers, Cursors, and Cursor Loaders in Chapter 8, “Databases
and Content Providers,” where you’ll also find more Simple Cursor Adapter examples.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Intents and Broadcast Receivers

WHAT’S IN THIS CHAPTER?

\

Introducing Intents

\

Starting Activities, sub-Activities, and Services using implicit and
explicit Intents

Using Linkify

Broadcasting events using Broadcast Intents

Using Pending Intents

An introduction to Intent Filters and Broadcast Receivers
Extending application functionality using Intent Filters
Listening for Broadcast Intents

Monitoring device state changes

Y Y Y VY Y VY VY'Y

Managing manifest Receivers at run time

This chapter looks at Intents — probably the most unique and important concept in
Android development. You’ll learn how to use Intents to broadcast data within and between
applications and how to listen for them to detect changes in the system state.

You’ll also learn how to define implicit and explicit Intents to start Activities or Services using
late runtime binding. Using implicit Intents, you’ll learn how to request that an action be
performed on a piece of data, enabling Android to determine which application components
can best service that request.

Broadcast Intents are used to announce events systemwide. You’ll learn how to transmit these
broadcasts and receive them using Broadcast Receivers.

www.it-ebooks.info

http://www.it-ebooks.info/

166

| CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

INTRODUCING INTENTS

Intents are used as a message-passing mechanism that works both within your application and
between applications. You can use Intents to do the following:

> Explicitly start a particular Service or Activity using its class name
> Start an Activity or Service to perform an action with (or on) a particular piece of data

> Broadcast that an event has occurred

You can use Intents to support interaction among any of the application components installed on
an Android device, no matter which application they’re a part of. This turns your device from a
platform containing a collection of independent components into a single, interconnected system.

One of the most common uses for Intents is to start new Activities, either explicitly (by specifying
the class to load) or implicitly (by requesting that an action be performed on a piece of data). In the
latter case the action does not need to be performed by an Activity within the calling application.

You can also use Intents to broadcast messages across the system. Applications can register
Broadcast Receivers to listen for, and react to, these Broadcast Intents. This enables you to create
event-driven applications based on internal, system, or third-party application events.

Android broadcasts Intents to announce system events, such as changes in Internet connectivity or
battery charge levels. The native Android applications, such as the Phone Dialer and SMS Manager,
simply register components that listen for specific Broadcast Intents — such as “incoming phone
call” or “SMS message received” — and react accordingly. As a result, you can replace many of the
native applications by registering Broadcast Receivers that listen for the same Intents.

Using Intents, rather than explicitly loading classes, to propagate actions — even within the same
application — is a fundamental Android design principle. It encourages the decoupling of compo-
nents to allow the seamless replacement of application elements. It also provides the basis of a simple
model for extending an application’s functionality.

Using Intents to Launch Activities

The most common use of Intents is to bind your application components and communicate between
them. Intents are used to start Activities, allowing you to create a workflow of different screens.

The instructions in this section refer to starting new Activities, but the same
details also apply to Services. Details on starting (and creating) Services are
available in Chapter 9, “Working in the Background.”

To create and display an Activity, call startactivity, passing in an Intent, as follows:

startActivity (myIntent) ;

The startactivity method finds and starts the single Activity that best matches your Intent.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 167

You can construct the Intent to explicitly specify the Activity class to open, or to include an action
that the target Activity must be able to perform. In the latter case, the run time will choose an
Activity dynamically using a process known as intent resolution.

When you use startActivity, your application won’t receive any notification when the newly
launched Activity finishes. To track feedback from a sub-Activity, use startActivityForResult, as
described later in this chapter.

Explicitly Starting New Activities

You learned in Chapter 3, “Creating Applications and Activities,” that applications consist of a
number of interrelated screens — Activities — that must be included in the application manifest. To
transition between them, you will often need to explicitly specify which Activity to open.

To select a specific Activity class to start, create a new Intent, specifying the current Activity’s
Context and the class of the Activity to launch. Pass this Intent into startactivity, as shown in
Listing 5-1.

) LISTING 5-1: Explicitly starting an Activity

Available for Intent intent = new Intent (MyActivity.this, MyOtherActivity.class);

dmg&ugg;n startActivity(intent) ;

code snippet PAAAD_ChO0S_Intents/src/MyActivity.java

After startActivity is called, the new Activity (in this example, MyotheraActivity) will be cre-
ated, started, and resumed — moving to the top of the Activity stack.

Calling finish on the new Activity, or pressing the hardware back button, closes it and removes it
from the stack. Alternatively, you can continue to navigate to other Activities by calling startac-
tivity. Note that each time you call startactivity, a new Activity will be added to the stack;
pressing back (or calling finish) will remove each of these Activities, in turn.

Impilicit Intents and Late Runtime Binding

An implicit Intent is a mechanism that lets anonymous application components service action
requests. That means you can ask the system to start an Activity to perform an action without
knowing which application, or Activity, will be started.

For example, to let users make calls from your application, you could implement a new dialer, or
you could use an implicit Intent that requests the action (dialing) be performed on a phone number
(represented as a URI).

if (somethingWeird && itDontLookGood) {
Intent intent =
new Intent (Intent.ACTION DIAL, Uri.parse("tel:555-2368"));

startActivity (intent);

www.it-ebooks.info

http://www.it-ebooks.info/

168 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

Android resolves this Intent and starts an Activity that provides the dial action on a telephone num-
ber — in this case, typically the Phone Dialer.

When constructing a new implicit Intent, you specify an action to perform and, optionally, supply
the URI of the data on which to perform that action. You can send additional data to the target
Activity by adding extras to the Intent.

Extras are a mechanism used to attach primitive values to an Intent. You can use the overloaded
putExtra method on any Intent to attach a new name / value pair (N'VP) that can then be retrieved
using the corresponding get [type] Extra method in the started Activity.

The extras are stored within the Intent as a Bundle object that can be retrieved using the getExtras
method.

When you use an implicit Intent to start an Activity, Android will — at run time — resolve it into
the Activity class best suited to performing the required action on the type of data specified. This
means you can create projects that use functionality from other applications without knowing
exactly which application you’re borrowing functionality from ahead of time.

In circumstances where multiple Activities can potentially perform a given action, the user is
presented with a choice. The process of intent resolution is determined through an analysis of the
registered Broadcast Receivers, which are described in detail later in this chapter.

Various native applications provide Activities capable of performing actions against specific data.
Third-party applications, including your own, can be registered to support new actions or to pro-
vide an alternative provider of native actions. You’ll be introduced to some of the native actions, as
well as how to register your own Activities to support them, later in this chapter.

Determining If an Intent Will Resolve

Incorporating the Activities and Services of a third-party application into your own is incredibly
powerful; however, there is no guarantee that any particular application will be installed on a
device, or that any application capable of handling your request is available.

As a result, it’s good practice to determine if your call will resolve to an Activity before calling
startActivity.

You can query the Package Manager to determine which, if any, Activity will be launched to
service a specific Intent by calling resolveactivity on your Intent object, passing in the Package
Manager, as shown in Listing 5-2.

) LISTING 5-2: Implicitly starting an Activity

Available for if (somethingWeird && itDontLookGood) {
daﬂ:ks&g" // Create the impliciy Intent to use to start a new Activity.
Intent intent =
new Intent (Intent.ACTION_DIAL, Uri.parse("tel:555-2368"));

// Check if an Activity exists to perform this action.
PackageManager pm = getPackageManager () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 169

ComponentName cn = intent.resolveActivity (pm) ;
if (cn == null) {
// If there is no Activity available to perform the action
// Check to see if the Google Play Store is available.
Uri marketUri =
Uri.parse("market://search?g=pname:com.myapp .packagename") ;
Intent marketIntent = new
Intent (Intent.ACTION_VIEW) .setData (marketUri) ;

// If the Google Play Store is available, use it to download an application
// capable of performing the required action. Otherwise log an

// error.

if (marketIntent.resolveActivity(pm) != null)
startActivity (marketIntent) ;

else

Log.d(TAG, "Market client not available.");
}
else
startActivity (intent) ;

code snippet PAAAD_ChO0S_Intents/src/MyActivity.java

If no Activity is found, you can choose to either disable the related functionality (and associated user
interface controls) or direct users to the appropriate application in the Google Play Store. Note that
Google Play is not available on all devices, nor the emulator, so it’s good practice to check for that
as well.

Returning Results from Activities

An Activity started via startactivity is independent of its parent and will not provide any feed-
back when it closes.

Where feedback is required, you can start an Activity as a sub-Activity that can pass results back

to its parent. Sub-Activities are actually just Activities opened in a different way. As such, you must
register them in the application manifest in the same way as any other Activity. Any manifest-regis-
tered Activity can be opened as a sub-Activity, including those provided by the system or third-party
applications.

When a sub-Activity is finished, it triggers the onActivityResult event handler within the calling
Activity. Sub-Activities are particularly useful in situations in which one Activity is providing data
input for another, such as a user selecting an item from a list.

Launching Sub-Activities

The startaActivityForResult method works much like startactivity, but with one important
difference. In addition to passing in the explicit or implicit Intent used to determine which Activity
to launch, you also pass in a request code. This value will later be used to uniquely identify the sub-
Activity that has returned a result.

Listing 5-3 shows the skeleton code for launching a sub-Activity explicitly.

www.it-ebooks.info

market://search?q=pname:com.myapp.packagename%E2%80%9D%00%00
http://www.it-ebooks.info/

170 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

) LISTING 5-3: Explicitly starting a sub-Activity for a result

Available for private static final int SHOW_SUBACTIVITY = 1;
download on
Wrox.com)) L

private void startSubActivity () {

Intent intent = new Intent(this, MyOtherActivity.class);
startActivityForResult (intent, SHOW_SUBACTIVITY) ;
}

code snippet PAAAD_Ch05_Intents/src/MyActivity.java

Like regular Activities, you can start sub-Activities implicitly or explicitly. Listing 5-4 uses an
implicit Intent to launch a new sub-Activity to pick a contact.

LISTING 5-4: Implicitly starting a sub-Activity for a result
private static final int PICK_CONTACT_SUBACTIVITY = 2;

private void startSubActivityImplicitly () {
Uri uri = Uri.parse("content://contacts/people");
Intent intent = new Intent (Intent.ACTION_PICK, uri);
startActivityForResult (intent, PICK_CONTACT_SUBACTIVITY) ;
}

code snippet PAAAD_Ch0S_Intents/src/MyActivity.java

Returning Results

When your sub-Activity is ready to return, call setResult before finish to return a result to the
calling Activity.

The setResult method takes two parameters: the result code and the result data itself, represented
as an Intent.

The result code is the “result” of running the sub-Activity — generally, either Activity.
RESULT_OK or Activity.RESULT_CANCELED. In some circumstances, where OK and
cancelled don’t sufficiently or accurately describe the available return results, you’ll want
to use your own response codes to handle application-specific choices; setResult supports
any integer value.

The Intent returned as a result often includes a data URI that points to a piece of content (such as
the selected contact, phone number, or media file) and a collection of extras used to return
additional information.

Listing 5-35, taken from a sub-Activity’s onCreate method, shows how an OK and Cancel button
might return different results to the calling Activity.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 171

) LISTING 5-5: Returning a result from a sub-Activity

Available for Button okButton = (Button) findViewById(R.id.ok_button);
d&ﬂgggg;" okButton.setOnClickListener (new View.OnClickListener () {
public void onClick(View view) {
long selected_horse_id = listView.getSelectedItemId();

Uri selectedHorse = Uri.parse("content://horses/" +
selected_horse_id);
Intent result = new Intent(Intent.ACTION_ PICK, selectedHorse);

setResult (RESULT_OK, result);
finish();
}
)

Button cancelButton = (Button) findViewById(R.id.cancel_button);
cancelButton.setOnClickListener (new View.OnClickListener () {
public void onClick(View view) {
setResult (RESULT_CANCELED) ;
finish();

code snippet PAAAD_ChO0S_Intents/src/SelectHorseActivity.java

If the Activity is closed by the user pressing the hardware back key, or finish is called without a prior
call to setResult, the result code will be set to RESULT_CANCELED and the result Intent set to null.

Handling Sub-Activity Results

When a sub-Activity closes, the onActivityResult event handler is fired within the calling Activity.
Override this method to handle the results returned by sub-Activities.

The onActivityResult handler receives a number of parameters:
> Request code — The request code that was used to launch the returning sub-Activity.

> Result code — The result code set by the sub-Activity to indicate its result. It can be any inte-
ger value, but typically will be either Activity.RESULT_OK or Activity.RESULT_CANCELED.

> Data — An Intent used to package returned data. Depending on the purpose of the
sub-Activity, it may include a URI that represents a selected piece of content. The sub-Activ-
ity can also return information as an extra within the returned data Intent.

If the sub-Activity closes abnormally or doesn’t specify a result code before it
closes, the result code is Activity.RESULT CANCELED.

www.it-ebooks.info

http://www.it-ebooks.info/

172 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

Listing 5-6 shows the skeleton code for implementing the onactivityResult event handler within

an Activity.

) LISTING 5-6: Implementing an On Activity Result handler

Available for private static final int SELECT_HORSE

download on

Wrox.com private static final int SELECT_GUN = 2;

1;

Uri selectedHorse = null;

Uri selectedGun = null;

@QOverride

public void onActivityResult (int requestCode,

int resultCode,
Intent data) {

super.onActivityResult (requestCode, resultCode, data);

switch (requestCode) {

case (SELECT_HORSE) :

if (resultCode ==
selectedHorse =
break;

case (SELECT_GUN) :
if (resultCode ==

Activity.RESULT_OK)
data.getDatal() ;

Activity.RESULT_OK)

selectedGun = data.getData() ;

break;

default: break;

Native Android Actions

code snippet PAAAD_Ch05_Intents/src/MyActivity.java

Native Android applications also use Intents to launch Activities and sub-Activities.

The following (noncomprehensive) list shows some of the native actions available as static string
constants in the Intent class. When creating implicit Intents, you can use these actions, known as
Activity Intents, to start Activities and sub-Activities within your own applications.

Later you will be introduced to Intent Filters and how to register your own
Activities as handlers for these actions.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 173

ACTTON_ALL_APPS — Opens an Activity that lists all the installed applications. Typically, this
is handled by the launcher.

ACTION_ANSWER — Opens an Activity that handles incoming calls. This is normally handled
by the native in-call screen.

ACTION_BUG_REPORT — Displays an Activity that can report a bug. This is normally handled
by the native bug-reporting mechanism.

ACTION_CALL — Brings up a phone dialer and immediately initiates a call using the num-
ber supplied in the Intent’s data URI. This action should be used only for Activities that
replace the native dialer application. In most situations it is considered better form to use
ACTION_DIAL.

ACTION_CALL_BUTTON — Triggered when the user presses a hardware “call button.” This
typically initiates the dialer Activity.

ACTION_DELETE — Starts an Activity that lets you delete the data specified at the Intent’s data
URIL

ACTION_DTAL — Brings up a dialer application with the number to dial prepopulated from
the Intent’s data URL. By default, this is handled by the native Android phone dialer. The
dialer can normalize most number schemas — for example, tel:555-1234 and tel: (212)
555 1212 are both valid numbers.

ACTION_EDIT — Requests an Activity that can edit the data at the Intent’s data URL

ACTION_INSERT — Opens an Activity capable of inserting new items into the Cursor specified
in the Intent’s data URL. When called as a sub-Activity, it should return a URI to the newly
inserted item.

ACTION_PTCK — Launches a sub-Activity that lets you pick an item from the Content
Provider specified by the Intent’s data URI. When closed, it should return a URI to the item
that was picked. The Activity launched depends on the data being picked — for example,
passing content://contacts/people will invoke the native contacts list.

ACTION_SEARCH — Typically used to launch a specific search Activity. When it’s fired with-
out a specific Activity, the user will be prompted to select from all applications that support
search. Supply the search term as a string in the Intent’s extras using SearchManager . QUERY
as the key.

ACTTION_SEARCH_LONG_PRESS — Enables you to intercept long presses on the hardware
search key. This is typically handled by the system to provide a shortcut to a voice search.

ACTTON_SENDTO — Launches an Activity to send data to the contact specified by the Intent’s
data URL

ACTTON_SEND — Launches an Activity that sends the data specified in the Intent. The recipi-
ent contact needs to be selected by the resolved Activity. Use setType to set the MIME
type of the transmitted data. The data itself should be stored as an extra by means of the

www.it-ebooks.info

http://www.it-ebooks.info/

174 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

key EXTRA_TEXT or EXTRA_STREAM, depending on the type. In the case of email, the native
Android applications will also accept extras via the EXTRA_EMATIL, EXTRA_CC, EXTRA_BCC,
and EXTRA_SUBJECT keys. Use the ACTION_SEND action only to send data to a remote recipi-
ent (not to another application on the device).

> acTION_VIEW— This is the most common generic action. View asks that the data supplied
in the Intent’s data URI be viewed in the most reasonable manner. Different applications
will handle view requests depending on the URI schema of the data supplied. Natively http:
addresses will open in the browser; tel: addresses will open the dialer to call the number;
geo: addresses will be displayed in the Google Maps application; and contact content will be
displayed in the Contact Manager.

> ACTION_WEB_SEARCH — Opens the Browser to perform a web search based on the query sup-
plied using the searchManager . QUERY key.

In addition to these Activity actions, Android includes a large number of broad-
cast actions to create Intents that are broadcast to announce system events.
These broadcast actions are described later in this chapter.

Introducing Linkify

Linkify is a helper class that creates hyperlinks within Text View (and Text View-derived) classes
through RegEx pattern matching.

Text that matches a specified RegEx pattern will be converted into a clickable hyperlink that implic-

itly fires startActivity (new Intent (Intent.ACTION_VIEW, uri)), using the matched text as the
target URI.

You can specify any string pattern to be treated as a clickable link; for convenience, the Linkify
class provides presets for common content types.

Native Linkify Link Types

The Linkify class has presets that can detect and linkify web URLs, email addresses, and phone
numbers. To apply a preset, use the static Linkify.addLinks method, passing in a View to Linkify
and a bitmask of one or more of the following self-describing Linki fy class constants: WEB_URLS,
EMATI,_ADDRESSES, PHONE_NUMBERS, and ALL.

TextView textView = (TextView)findViewById(R.id.myTextView) ;
Linkify.addLinks (textView, Linkify.WEB_URLS | Linkify.EMAIL_ADDRESSES) ;

Most Android devices have at least two email applications: Gmail and Email. In
situations in which multiple Activities are resolved as possible action consumers,
users are asked to select their preference. In the case of the emulator, you must
have the email client configured before it will respond to Linkified email addresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 175

You can also linkify Views directly within a layout using the android:autoLink attribute. It sup-
ports one or more of the following values: none, web, email, phone, and all.

<TextView
android:layout_width="match_parent"
android:layout_height="match_parent"
android:text="@string/linkify me"
android:autoLink="phone |email"

/>

Creating Custom Link Strings

To linkify your own data, you need to define your own linkify strings. Do this by creating a new
RegEx pattern that matches the text you want to display as hyperlinks.

As with the native types, you can linkify the target Text View by calling Linkify.addLinks;
however, rather than passing in one of the preset constants, pass in your RegEx pattern. You can
also pass in a prefix that will be prepended to the target URI when a link is clicked.

Listing 5-7 shows a View being linkified to support earthquake data provided by an Android
Content Provider (which you will create in Chapter 8, “Databases and Content Providers”). Note
that rather than include the entire schema, the specified RegEx matches any text that starts with
“quake” and is followed by a number, with optional whitespace. The full schema is then prepended
to the URI before the Intent is fired.

) LISTING 5-7: Creating custom link strings in Linkify

Available for // Define the base URI.
d&wg?:ggn String baseUri = "content://com.paad.earthquake/earthquakes/";

// Contruct an Intent to test if there is an Activity capable of

// viewing the content you are Linkifying. Use the Package Manager

// to perform the test.

PackageManager pm = getPackageManager () ;

Intent testIntent = new Intent (Intent.ACTION_VIEW, Uri.parse(baseUri));

boolean activityExists = testIntent.resolveActivity(pm) != null;

// If there is an Activity capable of viewing the content

// Linkify the text.

if (activityExists) {
int flags = Pattern.CASE_INSENSITIVE;
Pattern p = Pattern.compile("\\bquake[\\s]?[0-9]1+\\b", flags);
Linkify.addLinks (myTextView, p, baseUri);

}

code snippet PAAAD_ChO0S_Linkify/src/MyActivity.java

Note that in this example, including whitespace between “quake” and a number will return a
match, but the resulting URI won’t be valid. You can implement and specify one or both of a
TransformFilter and MatchFilter interface to resolve this problem. These interfaces, defined

www.it-ebooks.info

http://www.it-ebooks.info/

176 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

in detail in the following section, offer additional control over the target URI structure and the defi-
nition of matching strings, and are used as in the following skeleton code:

Linkify.addLinks (myTextView, p, baseUri,
new MyMatchFilter(), new MyTransformFilter());

Using the Match Filter

To add additional conditions to RegEx pattern matches, implement the acceptMatch method in a
Match Filter. When a potential match is found, acceptMatch is triggered, with the match start and
end index (along with the full text being searched) passed in as parameters.

Listing 5-8 shows a MatchFilter implementation that cancels any match immediately preceded by
an exclamation mark.

) LISTING 5-8: Using a Linkify Match Filter

Available for class MyMatchFilter implements MatchFilter {
umm;n public boolean acceptMatch(CharSequence s, int start, int end) {
return (start == || s.charAt(start-1) != "1');

}

code snippet PAAAD_ChO0S_Linkify/src/MyActivity.java

Using the Transform Filter

The Transform Filter lets you modify the implicit URI generated by matching link text. Decoupling
the link text from the target URI gives you more freedom in how you display data strings to your
users.

To use the Transform Filter, implement the transformurl method in your Transform Filter. When
Linkify finds a successful match, it calls transformurl, passing in the RegEx pattern used and the
matched text string (before the base URI is prepended). You can modify the matched string and
return it such that it can be appended to the base string as the data for a View Intent.

As shown in Listing 5-9, the TransformFilter implementation transforms the matched text into a
lowercase URI, having also removed any whitespace characters.

LISTING 5-9: Using a Linkify Transform Filter

class MyTransformFilter implements TransformFilter ({
public String transformUrl (Matcher match, String url) {
return url.toLowerCase().replace(" ", "");

}

code snippet PAAAD_ChO0S_Linkify/src/MyActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 177

Using Intents to Broadcast Events

So far, you’ve looked at using Intents to start new application components, but you can also use
Intents to broadcast messages anonymously between components via the sendBroadcast method.

As a system-level message-passing mechanism, Intents are capable of sending structured messages
across process boundaries. As a result, you can implement Broadcast Receivers to listen for, and
respond to, these Broadcast Intents within your applications.

Broadcast Intents are used to notify applications of system or application events, extending the
event-driven programming model between applications.

Broadcasting Intents helps make your application more open; by broadcasting an event using an
Intent, you let yourself and third-party developers react to events without having to modify your
original application. Within your applications you can listen for Broadcast Intents to to react to

device state changes and third-party application events.

Android uses Broadcast Intents extensively to broadcast system events, such as changes in network
connectivity, docking state, and incoming calls.

Broadcasting Events with Intents

Within your application, construct the Intent you want to broadcast and call sendBroadcast to send it.

Set the action, data, and category of your Intent in a way that lets Broadcast Receivers accurately
determine their interest. In this scenario, the Intent action string is used to identify the event being
broadcast, so it should be a unique string that identifies the event. By convention, action strings are
constructed using the same form as Java package names:

public static final String NEW_LIFEFORM_DETECTED =
"com.paad.action.NEW_LIFEFORM";

If you want to include data within the Intent, you can specify a URI using the Intent’s data prop-
erty. You can also include extras to add additional primitive values. Considered in terms of an event-
driven paradigm, the extras equate to optional parameters passed into an event handler.

Listing 5-10 shows the basic creation of a Broadcast Intent using the action defined previously, with
additional event information stored as extras.

) LISTING 5-10: Broadcasting an Intent

Available for Intent intent = new Intent (LifeformDetectedReceiver.NEW_LIFEFORM) ;
d&,":g;“ggm“" intent.putExtra (LifeformDetectedReceiver.EXTRA_LIFEFORM NAME,
detectedLifeform) ;
intent.putExtra (LifeformDetectedReceiver .EXTRA_LONGITUDE,
currentLongitude) ;
intent.putExtra (LifeformDetectedReceiver .EXTRA_LATITUDE,
currentLatitude) ;

sendBroadcast (intent) ;

code snippet PA4AD_Ch05_BroadcastIntents/src/MyActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

178 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

Listening for Broadcasts with Broadcast Receivers

Broadcast Receivers (commonly referred to simply as Receivers) are used to listen for Broadcast
Intents. For a Receiver to receive broadcasts, it must be registered, either in code or within the appli-
cation manifest — the latter case is referred to as a manifest Receiver. In either case, use an Intent
Filter to specify which Intent actions and data your Receiver is listening for.

In the case of applications that include manifest Receivers, the applications don’t have to be run-
ning when the Intent is broadcast for those receivers to execute; they will be started automatically
when a matching Intent is broadcast. This is excellent for resource management, as it lets you create
event-driven applications that will still respond to broadcast events even after they’ve been closed or

killed.

To create a new Broadcast Receiver, extend the BroadcastReceiver class and override the onRe-
ceive event handler:

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;

public class MyBroadcastReceiver extends BroadcastReceiver {
@Override
public void onReceive (Context context, Intent intent) {
//TODO: React to the Intent received.
}

The onReceive method will be executed on the main application thread when a Broadcast Intent
is received that matches the Intent Filter used to register the Receiver. The onReceive handler must
complete within five seconds; otherwise, the Force Close dialog will be displayed.

Typically, Broadcast Receivers will update content, launch Services, update Activity U, or notify the
user using the Notification Manager. The five-second execution limit ensures that major processing
cannot, and should not, be done within the Broadcast Receiver itself.

Listing 5-11 shows how to implement a Broadcast Receiver that extracts the data and several extras
from the broadcast Intent and uses them to start a new Activity. In the following sections you will
learn how to register it in code or in your application manifest.

) LISTING 5-11: Implementing a Broadcast Receiver

svmeﬁim public class LifeformDetectedReceiver
ownload on .
Wrox.com extends BroadcastReceiver {
public final static String EXTRA_LIFEFORM_NAME
= "EXTRA_LIFEFORM_NAME";
public final static String EXTRA_LATITUDE = "EXTRA_LATITUDE";
public final static String EXTRA_LONGITUDE = "EXTRA_LONGITUDE";

public static final String
ACTION_BURN = "com.paad.alien.action.BURN_IT WITH_FIRE";

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 179

public static final String
NEW_LIFEFORM = "com.paad.alien.action.NEW_LIFEFORM";

@Override
public void onReceive (Context context, Intent intent) {
// Get the lifeform details from the intent.
Uri data = intent.getData();
String type = intent.getStringExtra (EXTRA_LIFEFORM_NAME) ;
double lat = intent.getDoubleExtra (EXTRA_LATITUDE, O0);
double 1lng = intent.getDoubleExtra (EXTRA_LONGITUDE, 0);
Location loc = new Location("gps");
loc.setLatitude(lat) ;
loc.setLongitude (1ng) ;
if (type.equals ("facehugger")) {
Intent startIntent = new Intent (ACTION_BURN, data);
startIntent.putExtra (EXTRA_LATITUDE, lat);
startIntent.putExtra (EXTRA_LONGITUDE, 1ng);

context.startService (startIntent);

code snippet PA4AD_Ch05_BroadcastIntents/src/LifeformDetectedReceiver.java

Registering Broadcast Receivers in Code

Broadcast Receivers that affect the Ul of a particular Activity are typically registered in code. A
Receiver registered programmatically will respond to Broadcast Intents only when the application
component it is registered within is running.

This is useful when the Receiver is being used to update Ul elements in an Activity. In this case,

it’s good practice to register the Receiver within the onResume handler and unregister it during
onPause.

Listing 5-12 shows how to register and unregister a Broadcast Receiver in code using the
IntentFilter class.

) LISTING 5-12: Registering and unregistering a Broadcast Receiver in code

Available for ~ private IntentFilter filter =
d&ﬂgygg;" new IntentFilter (LifeformDetectedReceiver.NEW LIFEFORM);

private LifeformDetectedReceiver receiver =
new LifeformDetectedReceiver();

@Override
public void onResume() {
super .onResume () ;

// Register the broadcast receiver.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

180 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

LISTING 13-4 (continued)

registerReceiver (receiver, filter);

}

@Override

public void onPause() {
// Unregister the receiver
unregisterReceiver (receiver);

super .onPause () ;

}

code snippet PAAAD_Ch0S_BroadcastIntents/src/MyActivity.java

Registering Broadcast Receivers in Your Application Manifest

To include a Broadcast Receiver in the application manifest, add a receiver tag within the app1i-
cation node, specifying the class name of the Broadcast Receiver to register. The receiver node
needs to include an intent-filter tag that specifies the action string being listened for.

<receiver android:name=".LifeformDetectedReceiver">
<intent-filter>
<action android:name="com.paad.alien.action.NEW_LIFEFORM"/>
</intent-filter>
</receiver>

Broadcast Receivers registered this way are always active and will receive Broadcast Intents even
when the application has been killed or hasn’t been started.

Broadcasting Ordered Intents

When the order in which the Broadcast Receivers receive the Intent is important — particularly
where you want to allow Receivers to affect the Broadcast Intent received by future Receivers — you
Can.usesendOrderedBroadcast,asfoﬂowm:

String requiredPermission = "com.paad.MY_BROADCAST_PERMISSION";
sendOrderedBroadcast (intent, requiredPermission) ;

Using this method, your Intent will be delivered to all registered Receivers that hold the required
permission (if one is specified) in the order of their specified priority. You can specify the priority of
a Broadcast Receiver using the android:priority attribute within its Intent Filter manifest node,
where higher values are considered higher priority.

<receiver
android:name=".MyOrderedReceiver"
android:permission="com.paad.MY_BROADCAST PERMISSION">
<intent-filter
android:priority="100">
<action android:name="com.paad.action.ORDERED_BROADCAST" />
</intent-filter>
</receiver>

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Intents | 181

It’s good practice to send ordered broadcasts, and specify Receiver priorities, only for Receivers used
within your application that specifically need to impose a specific order of receipt.

One common use-case for sending ordered broadcasts is to broadcast Intents for which you want
to receive result data. Using the sendorderedBroadcast method, you can specify a Broadcast
Receiver that will be placed at the end of the Receiver queue, ensuring that it will receive

the Broadcast Intent after it has been handled (and modified) by the ordered set of registered
Broadcast Receivers.

In this case, it’s often useful to specify default values for the Intent result, data, and extras that may
be modified by any of the Receivers that receive the broadcast before it is returned to the final result
Receiver.

// Specify the default result, data, and extras.

// The may be modified by any of the Receivers who handle the broadcast
// before being received by the final Receiver.

int initialResult = Activity.RESULT_OK;

String initialData = null;

String initialExtras = null;

// A special Handler instance on which to receive the final result.
// Specify null to use the Context on which the Intent was broadcast.
Handler scheduler = null;

sendOrderedBroadcast (intent, requiredPermission, finalResultReceiver,
scheduler, initialResult, initialData, initialExtras);

Broadcasting Sticky Intents

Sticky Intents are useful variations of Broadcast Intents that persist the values associated with
their last broadcast, returning them as an Intent when a new Receiver is registered to receive the
broadcast.

When you call registerReceiver, specifying an Intent Filter that matches a sticky Broadcast
Intent, the return value will be the last Intent broadcast, such as the battery-level changed
broadcast:

IntentFilter battery = new IntentFilter (Intent.ACTION_BATTERY_CHANGED) ;

Intent currentBatteryCharge = registerReceiver (null, battery);

As shown in the preceding snippet, it is not necessary to specify a Receiver to obtain the current
value of a sticky Intent. As a result, many of the system device state broadcasts (such as battery and
docking state) use sticky Intents to improve efficiency. These are examined in more detail later in
this chapter.

To broadcast your own sticky Intents, your application must have the BROADCAST STICKY uses-per-
mission before calling sendstickyBroadcast and passing in the relevant Intent:

sendStickyBroadcast (intent) ;

To remove a sticky Intent, call removestickyBroadcast, passing in the sticky Intent to remove:

removeStickyBroadcast (intent) ;

www.it-ebooks.info

http://www.it-ebooks.info/

182

| CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

Introducing the Local Broadcast Manager

The Local Broadcast Manager was introduced to the Android Support Library to simplify the
process of registering for, and sending, Broadcast Intents between components within your
application.

Because of the reduced broadcast scope, using the Local Broadcast Manager is more efficient than
sending a global broadcast. It also ensures that the Intent you broadcast cannot be received by any
components outside your application, ensuring that there is no risk of leaking private or sensitive
data, such as location information.

Similarly, other applications can’t transmit broadcasts to your Receivers, negating the risk of these
Receivers becoming vectors for security exploits.

To use the Local Broadcast Manager, you must first include the Android Support Library in your
application, as described in Chapter 2.

Use the LocalBroadcastManager .getInstance method to return an instance of the Local
Broadcast Manager:

LocalBroadcastManager lbm = LocalBroadcastManager.getInstance (this);

To register a local broadcast Receiver, use the Local Broadcast Manager’s registerReceiver
method, much as you would register a global receiver, passing in a Broadcast Receiver and an
Intent Filter:

1bm.registerReceiver (new BroadcastReceiver () {
@Override
public void onReceive (Context context, Intent intent) {
// TODO Handle the received local broadcast
}
}, new IntentFilter (LOCAL_ACTION)) ;

Note that the Broadcast Receiver specified can also be used to handle global Intent broadcasts.

To transmit a local Broadcast Intent, use the Local Broadcast Manager’s sendBroadcast method,
passing in the Intent to broadcast:

1lbm.sendBroadcast (new Intent (LOCAL_ACTION)) ;

The Local Broadcast Manager also includes a sendBroadcastSync method that operates
synchronously, blocking until each registered Receiver has been dispatched.

Introducing Pending Intents

The PendingIntent class provides a mechanism for creating Intents that can be fired on your
application’s behalf by another application at a later time.

A Pending Intent is commonly used to package Intents that will be fired in response to a future
event, such as a Widget or Notification being clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 183

When used, Pending Intents execute the packaged Intent with the same per-
missions and identity as if you had executed them yourself, within your own
application.

The PendingIntent class offers static methods to construct Pending Intents used to start an
Activity, to start a Service, or to broadcast an Intent:

int requestCode = 0;
int flags = 0;

// Start an Activity
Intent startActivityIntent = new Intent (this, MyOtherActivity.class);
PendingIntent.getActivity(this, requestCode,

startActivityIntent, flags);

// Start a Service
Intent startServicelIntent = new Intent(this, MyService.class);
PendingIntent.getService(this, requestCode,

startServiceIntent , flags);

// Broadcast an Intent

Intent broadcastIntent = new Intent (NEW_LIFEFORM_DETECTED) ;

PendingIntent.getBroadcast (this, requestCode,
broadcastIntent, flags);

The PendingIntent class includes static constants that can be used to specify flags to update
or cancel any existing Pending Intent that matches your specified action, as well as to specify if
this Intent is to be fired only once. The various options will be examined in more detail when
Notifications and Widgets are introduced in Chapters 10 and 14, respectively.

CREATING INTENT FILTERS AND BROADCAST RECEIVERS

Having learned to use Intents to start Activities/Services and to broadcast events, it’s important to
understand how to create the Broadcast Receivers and Intent Filters that listen for Broadcast Intents
and allow your application to respond to them.

In the case of Activities and Services, an Intent is a request for an action to be performed on a set of
data, and an Intent Filter is a declaration that a particular application component is capable of per-
forming an action on a type of data.

Intent Filters are also used to specify the actions a Broadcast Receiver is interested in receiving.

Using Intent Filters to Service Implicit Intents

If an Intent is a request for an action to be performed on a set of data, how does Android know
which application (and component) to use to service that request? Using Intent Filters, application
components can declare the actions and data they support.

www.it-ebooks.info

http://www.it-ebooks.info/

184 | CHAPTERS5

INTENTS AND BROADCAST RECEIVERS

To register an Activity or Service as a potential Intent handler, add an intent-filter tag to its
manifest node using the following tags (and associated attributes):

> action— Uses the android:name attribute to specify the name of the action being serviced.
Each Intent Filter must have at least one action tag. Actions should be unique strings that are
self-describing. Best practice is to use a naming system based on the Java package naming
conventions.

> category — Uses the android:name attribute to specify under which circumstances
the action should be serviced. Each Intent Filter tag can include multiple category tags.

You can specify your own categories or use the following standard values provided by
Android:

>

ALTERNATTVE — This category specifies that this action should be available

as an alternative to the default action performed on an item of this data type. For
example, where the default action for a contact is to view it, the alternative could be
to edit it.

SELECTED_ALTERNATIVE — Similar to the ALTERNATIVE category, but whereas that
category will always resolve to a single action using the intent resolution described
next, SELECTED_ALTERNATIVE is used when a list of possibilities is required. As you’ll
see later in this chapter, one of the uses of Intent Filters is to help populate context
menus dynamically using actions.

BROWSABLE — Specifies an action available from within the browser. When an Intent
is fired from within the browser, it will always include the browsable category.

If you want your application to respond to actions triggered within the browser
(e.g., intercepting links to a particular website), you must include the browsable
category.

DEFAULT — Set this to make a component the default action for the data type
specified in the Intent Filter. This is also necessary for Activities that are launched
using an explicit Intent.

HOME — By setting an Intent Filter category as home without specifying an action,
you are presenting it as an alternative to the native home screen.

LAUNCHER — Using this category makes an Activity appear in the application
launcher.

> data— The data tag enables you to specify which data types your component can act on;
you can include several data tags as appropriate. You can use any combination of the
following attributes to specify the data your component supports:

>

>

android:host — Specifies a valid hostname (e.g., google.com).

android:mimetype — Specifies the type of data your component is capable of han-
dling. For example, <type android:value="vnd.android.cursor.dir/*"/>
would match any Android cursor.

android:path — Specifies valid path values for the URI (e.g., /transport/boats/).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 185

> android:port — Specifies valid ports for the specified host.
> android:scheme — Requires a particular scheme (e.g., content or http).

The following snippet shows an Intent Filter for an Activity that can perform the SHOW_DAMAGE
action as either a primary or an alternative action based on its mime type.

<intent-filter>

<action
android:name="com.paad.earthquake.intent.action.SHOW_DAMAGE"

/>

<category android:name="android.intent.category.DEFAULT" />

<category

android:name="android.intent.category.SELECTED_ALTERNATIVE" />
<data android:mimeType="vnd.earthquake.cursor.item/*"/>
</intent-filter>

You may have noticed that clicking a link to a YouTube video or Google Maps location on an
Android device prompts you to use YouTube or Google Maps, respectively, rather than the browser.
This is achieved by specifying the scheme, host, and path attributes within the data tag of an Intent
Filter, as shown in Listing 5-13. In this example, any link of the form that begins http://blog.
radioactiveyak.com can be serviced by this Activity.

) LISTING 5-13: Registering an Activity as an Intent Receiver for viewing content from a specific

website using an Intent Filter

Available for

download on - . . i
Wrox.com <activity android:name=".MyBlogViewerActivity">

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http"

android:host="blog.radioactiveyak.com"/>
</intent-filter>
</activity>

code snippet PAAAD_Ch0S_Intents/AndroidManifest.xml

Note that you must include the browsable category in order for links clicked within the browser to
trigger this behavior.

How Android Resolves Intent Filters

The process of deciding which Activity to start when an implicit Intent is passed in to start
Activity is called intent resolution. The aim of intent resolution is to find the best Intent Filter
match possible by means of the following process:

1. Android puts together a list of all the Intent Filters available from the installed packages.

2. Intent Filters that do not match the action or category associated with the Intent being
resolved are removed from the list.

www.it-ebooks.info

http://blog
http://www.it-ebooks.info/

186 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

> Action matches are made only if the Intent Filter includes the specified action. An
Intent Filter will fail the action match check if none of its actions matches the one
specified by the Intent.

> For category matching, Intent Filters must include all the categories defined in the
resolving Intent, but can include additional categories not included in the Intent. An
Intent Filter with no categories specified matches only Intents with no categories.

3. Each part of the Intent’s data URI is compared to the Intent Filter’s data tag. If the Intent
Filter specifies a scheme, host/authority, path, or MIME type, these values are compared to
the Intent’s URI. Any mismatch will remove the Intent Filter from the list. Specifying no data
values in an Intent Filter will result in a match with all Intent data values.

> The MIME type is the data type of the data being matched. When matching data
types, you can use wildcards to match subtypes (e.g., earthquakes/*). If the Intent
Filter specifies a data type, it must match the Intent; specifying no data types results
in a match with all of them.

> The scheme is the “protocol” part of the URI (e.g., http:, mailto:, or tel:).

The hostname or data authority is the section of the URI between the scheme and the
path (e.g., developer.android.com). For a hostname to match, the Intent Filter’s
scheme must also pass.

> The data path is what comes after the authority (e.g., /training). A path can match
only if the scheme and hostname parts of the data tag also match.

4. When you implicitly start an Activity, if more than one component is resolved from this
process, all the matching possibilities are offered to the user. For Broadcast Receivers, each
matching Receiver will receive the broadcast Intent.

Native Android application components are part of the intent-resolution process in exactly the same
way as third-party applications. They do not have a higher priority and can be completely replaced
with new Activities that declare Intent Filters that service the same actions.

Finding and Using Intents Received Within an Activity

When an application component is started through an implicit Intent, it needs to find the action it’s
to perform and the data to perform it on.

To find the Intent used to start the Activity, call getTntent, as shown in Listing 5-14.

) LISTING 5-14: Finding the launch Intent in an Activity
Availablefor ~ @Override
download on : .
Wrox.com public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.main) ;

Intent intent = getIntent();

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 187

String action = intent.getAction();
Uri data = intent.getData():;

code snippet PAAAD_ChO0S_Intents/src/MyOtherActivity.java

Use the getpata and getaction methods to find the data and action, respectively, associated with
the Intent. Use the type-safe get<type>Extra methods to extract additional information stored in
its extras Bundle.

The getIntent method will always return the initial Intent used to create the Activity. In some
circumstances your Activity may continue to receive Intents after it has been launched. You can use
widgets and Notifications to provide shortcuts to displaying data within your Activity that may still
be running, though not visible.

Override the onNewIntent handler within your Activity to receive and handle new Intents after the
Activity has been created.

@Override

public void onNewIntent (Intent newIntent) {

// TODO React to the new Intent
super .onNewIntent (newIntent) ;

Passing on Responsibility
To pass responsibility for action handling to the next best Activity, use

startNextMatchingActivity.

Intent intent = getIntent();
if (isDuringBreak)
startNextMatchingActivity(intent);

This lets you add additional conditions to your components that restrict their use beyond the ability
of the Intent Filter-based intent-resolution process.

Selecting a Contact Example

In this example you’ll create a new Activity that services ACTTON_PICK for contact data. It displays
each of the contacts in the contacts database and lets the user select one, before closing and return-
ing the selected contact’s URI to the calling Activity.

@ This example is somewhat contrived. Android already supplies an Intent Filter
for picking a contact from a list that can be invoked by means of the content :
//contacts/people/ URI in an implicit Intent. The purpose of this exercise is
to demonstrate the form, even if this particular implementation isn’t particularly
useful.

www.it-ebooks.info

http://www.it-ebooks.info/

188 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

1.

3.

Create a new ContactPicker project that includes a ContactPicker Activity:

package com.paad.contactpicker;

import android.app.Activity;

import android.content.Intent;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract.Contacts;
import android.view.View;

import android.widget.AdapterView;

import android.widget.ListView;

import android.widget.SimpleCursorAdapter;

public class ContactPicker extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Modify the main.xml layout resource to include a single Listview control. This control will
be used to display the contacts.

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">
<ListView android:id="@+id/contactListView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

Create a new listitemlayout.xml layout resource that includes a single Textview control.
This control will be used to display each contact in the List View.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<TextView
android:id="@+id/itemTextView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp"
android:textSize="16dp"
android:textColor="#FFF"
/>
</LinearLayout>

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 189

4. Return to the ContactPicker Activity. Override the onCreate method.

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

4.1 Create a new Cursor to retrieve the people stored in the contact list, and bind it to the
List View using a SimpleCursorArrayAdapter. Note that in this example the query is
executed on the main Ul thread. A better approach would be to use a Cursor Loader,
as shown in Chapter 8.

final Cursor c¢ = getContentResolver () .query (
ContactsContract.Contacts.CONTENT URI, null, null, null, null);

String[] from = new String[] { Contacts.DISPLAY_NAME_PRIMARY };
int[] to = new int[] { R.id.itemTextView };

SimpleCursorAdapter adapter = new SimpleCursorAdapter (this,
R.layout.listitemlayout,
c,
from,
to);

ListView 1lv = (ListView) findviewById(R.id.contactListView) ;

1v.setAdapter (adapter) ;

4.2 Add an onItemClickListener to the List View. Selecting a contact from the list
should return a path to the item to the calling Activity.

lv.setOnItemClickListener (new ListView.OnItemClickListener () {
public void onItemClick(AdapterView<?> parent, View view, int pos,
long id) {
// Move the cursor to the selected item
c.moveToPosition (pos) ;
// Extract the row id.
int rowId = c.getInt(c.getColumnIndexOrThrow("_id"));
// Construct the result URI.
Uri outURI =
ContentUris.withAppendedId(ContactsContract.Contacts.CONTENT_URI, rowId);
Intent outData = new Intent();
outData.setData (outURI) ;
setResult (Activity.RESULT OK, outData);
finish();
}
1)
C. Close off the onCcreate method:

5. Modify the application manifest and replace the intent-filter tag of the Activity to add
support for the ACTTON_PICK action on contact data:

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.contactpicker">

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

190 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

<application android:icon="@drawable/ic_launcher">
<activity android:name=".ContactPicker" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>
</intent-filter>
</activity>
</application>
</manifest>

6. This completes the sub-Activity. To test it, create a new test harness ContactPickerTester
Activity. Create a new layout resource — contactpickertester.xml — that includes a
TextView to display the selected contact and a Button to start the sub-Activity:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<TextView
android:id="@+id/selected_contact_textview"
android:layout_width="match_parent"
android:layout_height="wrap_content"
/>
<Button
android:id="@+id/pick_contact_button"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:text="Pick Contact"
/>
</LinearLayout>

7. Override the oncreate method of the ContactPickerTester to add a click listener to the
Button so that it implicitly starts a new sub-Activity by specifying the AcTION_PICK and the
contact database URI (content://contacts/):

package com.paad.contactpicker;

import android.app.Activity;

import android.content.Intent;

import android.database.Cursor;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.TextView;

public class ContactPickerTester extends Activity {

public static final int PICK_CONTACT = 1;

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 191

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.contactpickertester) ;

Button button = (Button)findViewById(R.id.pick_contact_button);

button.setOnClickListener (new OnClickListener() {
@Override
public void onClick(View _view) {
Intent intent = new Intent (Intent.ACTION_PICK,
Uri.parse("content://contacts/"));
startActivityForResult (intent, PICK_CONTACT);

1)

8. When the sub-Activity returns, use the result to populate the Text View with the selected
contact’s name:

@Override

public void onActivityResult (int regCode, int resCode, Intent data) {
super.onActivityResult (reqCode, resCode, data);

switch(reqgCode) {
case (PICK_CONTACT) : {
if (resCode == Activity.RESULT_OK) {
Uri contactData = data.getData();

Cursor c = getContentResolver().query(contactData, null, null, null, null);
c.moveToFirst () ;

String name = c.getString(c.getColumnIndexOrThrow (
ContactsContract.Contacts.DISPLAY_ NAME_PRIMARY)) ;

c.close();
TextView tv = (TextView)findViewById(R.id.selected_contact_textview) ;
tv.setText (name) ;

}

break;

}
default: break;

9. With your test harness complete, simply add it to your application manifest. You’ll also need
to add a READ_CONTACTS permission within a uses-permission tag to allow the application
to access the contacts database.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.paad.contactpicker">
<uses-permission android:name="android.permission.READ_CONTACTS"/>
<application android:icon="@drawable/ic_launcher">

<activity android:name=".ContactPicker" android:label="@string/app_name">
<intent-filter>

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

192 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

<action android:name="android.intent.action.PICK"></action>
<category android:name="android.intent.category.DEFAULT"></category>
<data android:path="contacts" android:scheme="content"></data>
</intent-filter>
</activity>
<activity android:name=".ContactPickerTester"
android:label="Contact Picker Test">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

</manifest>

@ All code snippets in this example are part of the Chapter 5 Contact Picker
project, available for download at wrox . com.

When your Activity is running, press the “pick contact” button. The contact picker Activity should
appear, as shown in Figure 5-1.

Richard
Kenton Price
Scott Meyers
Scott

Dennis Martin
Andy Rubin
Mark Womack
Attila

Dave Sparks

Aisling

Renata Sampaio

FIGURE 5-1

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 193

After you select a contact, the parent Activity should return to the foreground with the selected con-
tact name displayed (see Figure 5-2).

Contact Picker Test

Pick Contact

FIGURE 5-2

Using Intent Filters for Plug-Ins and Extensibility

Having used Intent Filters to declare the actions your Activities can perform on different types of
data, it stands to reason that applications can also query to find which actions are available to be
performed on a particular piece of data.

Android provides a plug-in model that lets your applications take advantage of functionality, pro-
vided anonymously from your own or third-party application components you haven’t yet conceived
of, without your having to modify or recompile your projects.

Supplying Anonymous Actions to Applications

To use this mechanism to make your Activity’s actions available anonymously for existing applica-
tions, publish them using intent-filter tags within their manifest nodes, as described earlier.

The Intent Filter describes the action it performs and the data upon which it can be performed.
The latter will be used during the intent-resolution process to determine when this action should be
available. The category tag must be either ALTERNATIVE or SELECTED_ALTERNATIVE, or both. The
android:label attribute should be a human-readable label that describes the action.

Listing 5-15 shows an example of an Intent Filter used to advertise an Activity’s capability to nuke
Moon bases from orbit.

) LISTING 5-15: Advertising supported Activity actions

Available for <activity android:name=".NostromoController">
download on <intent-filter
Wrox.com
android:label="@string/Nuke_From_ Orbit">
<action android:name="com.pad.nostromo.NUKE_FROM_ORBIT"/>
<data android:mimeType="vnd.moonbase.cursor.item/*"/>
<category android:name="android.intent.category.ALTERNATIVE"/>
<category
android:name="android.intent.category.SELECTED ALTERNATIVE"
/>
</intent-filter>
</activity>

code snippet PAAAD_Ch0S_Intents/AndroidManifest.xml

www.it-ebooks.info

http://www.it-ebooks.info/

194 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

Discovering New Actions from Third-Party Intent Receivers

Using the Package Manager, you can create an Intent that specifies a type of data and a category of
action, and have the system return a list of Activities capable of performing an action on that data.

The elegance of this concept is best explained by an example. If the data your Activity displays

is a list of places, you might include functionality to View them on a map or “Show directions

to” each. Jump a few years ahead and you’ve created an application that interfaces with your car,
allowing your phone to handle driving. Thanks to the runtime menu generation, when a new Intent
Filter — with a DRIVE_CaR action — is included within the new Activity’s node, Android will resolve
this new action and make it available to your earlier application.

This provides you with the ability to retrofit functionality to your application when you create new
components capable of performing actions on a given type of data. Many of Android’s native appli-
cations use this functionality, enabling you to provide additional actions to native Activities.

The Intent you create will be used to resolve components with Intent Filters that supply actions for
the data you specify. The Intent is being used to find actions, so don’t assign it one; it should specify
only the data to perform actions on. You should also specify the category of the action, either
CATEGORY_ALTERNATIVE Or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData (MyProvider .CONTENT URI) ;
intent.addCategory (Intent.CATEGORY_ALTERNATIVE) ;

Pass this Intent into the Package Manager method queryIntentActivityOptions, specifying any
options flags.

Listing 5-16 shows how to generate a list of actions to make available within your application.

) LISTING 5-16: Generating a list of possible actions to be performed on specific data

Available for PackageManager packageManager = getPackageManager () ;
download on
Wrox.com

// Create the intent used to resolve which actions

// should appear in the menu.

Intent intent = new Intent();

intent.setData (MoonBaseProvider.CONTENT_URI) ;
intent.addCategory (Intent.CATEGORY_SELECTED_ALTERNATIVE) ;

// Specify flags. In this case, to return only filters
// with the default category.
int flags = PackageManager.MATCH_DEFAULT_ONLY;

// Generate the list
List<ResolveInfo> actions;

actions = packageManager.queryIntentActivities(intent, flags);

// Extract the list of action names
ArrayList<String> labels = new ArrayList<String>();

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 195

Resources r = getResources();
for (ResolvelInfo action : actions)
labels.add(r.getString(action.labelRes));

code snippet PAAAD_Ch0S_Intents/src/MyActivity.java

Incorporating Anonymous Actions as Menu ltems

The most common way to incorporate actions from third-party applications is to include them
within your Menu Items or Action Bar Actions.

The addIntentoptions method, available from the Menu class, lets you specify an Intent that
describes the data acted upon within your Activity, as described previously; however, rather than
simply returning a list of possible Receivers, a new Menu Item will be created for each, with the text
populated from the matching Intent Filters’ labels.

To add Menu Items to your Menus dynamically at run time, use the addIntentOptions method on
the Menu object in question: Pass in an Intent that specifies the data for which you want to provide
actions. Generally, this will be handled within your Activities’ onCreateOptionsMenu or onCreate-
ContextMenu handlers.

As in the previous section, the Intent you create will be used to resolve components with Intent
Filters that supply actions for the data you specify. The Intent is being used to find actions, so don’t
assign it one; it should specify only the data to perform actions on. You should also specify the cat-
egory of the action, either CATEGORY_ALTERNATIVE or CATEGORY_SELECTED_ALTERNATIVE.

The skeleton code for creating an Intent for menu-action resolution is shown here:

Intent intent = new Intent();
intent.setData (MyProvider.CONTENT URI) ;
intent.addCategory (Intent.CATEGORY_ALTERNATIVE) ;

Pass this Intent in to addIntentOptions on the Menu you want to populate, as well as any options
flags, the name of the calling class, the Menu group to use, and the Menu ID values. You can also
specify an array of Intents youd like to use to create additional Menu Items.

Listing 5-17 gives an idea of how to dynamically populate an Activity Menu.

) LISTING 5-17: Dynamic Menu population from advertised actions

Available for @Override

download on . :

Wrox.com public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;

// Create the intent used to resolve which actions

// should appear in the menu.

Intent intent = new Intent();

intent.setData (MoonBaseProvider.CONTENT URI) ;
intent.addCategory (Intent.CATEGORY_SELECTED_ALTERNATIVE) ;

// Normal menu options to let you set a group and ID

continues

www.it-ebooks.info

http://www.it-ebooks.info/

196 |

CHAPTER 5

INTENTS AND BROADCAST RECEIVERS

LISTING 5-17 (continued)

// values for the menu items you're adding.

int menuGroup = 0;
int menultemId = 0;
int menulItemOrder = Menu.NONE;

// Provide the name of the component that's calling
// the action -- generally the current Activity.

ComponentName caller =

getComponentName () ;

// Define intents that should be added first.

Intent[] specificIntents = null;

// The menu items created from the previous Intents

// will populate this array.
Menultem[] outSpecificItems = null;

// Set any optional flags.

int flags = Menu.FLAG_APPEND_TO_GROUP;

// Populate the menu

menu.addIntentOptions (menuGroup,
menuItemId,
menuItemOrder,
caller,
specificIntents,
intent,
flags,
outSpecificItems);

return true;

code snippet PAAAD_Ch0S_Intents/src/MyActivity.java

Listening for Native Broadcast Intents

Many of the system Services broadcast Intents to signal changes. You can use these messages to add
functionality to your own projects based on system events, such as time-zone changes, data-connec-
tion status, incoming SMS messages, or phone calls.

The following list introduces some of the native actions exposed as constants in the Intent class;
these actions are used primarily to track device status changes:

>

ACTTON_BOOT_cOMPLETED — Fired once when the device has completed its startup sequence.
An application requires the RECEIVE_BOOT_COMPLETED permission to receive this broadcast.

ACTION_CAMERA_BUTTON — Fired when the camera button is clicked.

ACTION_DATE_CHANGED and ACTION_TIME_CHANGED — These actions are broadcast if the
date or time on the device is manually changed (as opposed to changing through the inexo-

rable progression of time).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 197

> ACTION_MEDIA_EJECT — If the user chooses to eject the external storage media, this event is
fired first. If your application is reading or writing to the external media storage, you should
listen for this event to save and close any open file handles.

> ACTION_MEDIA MOUNTED and ACTION_MEDIA UNMOUNTED — These two events are broadcast
whenever new external storage media are successfully added to or removed from the device,
respectively.

> ACTION_NEW_OUTGOING_CALL — Broadcast when a new outgoing call is about to be placed.
Listen for this broadcast to intercept outgoing calls. The number being dialed is stored in the
EXTRA_PHONE_NUMBER extra, whereas the resultbata in the returned Intent will be the num-
ber actually dialed. To register a Broadcast Receiver for this action, your application must
declare the PROCESS_OUTGOING_CALLS uses-permission.

» ACTION_SCREEN_OFF and ACTION_SCREEN_ON— Broadcast when the screen turns off or on,
respectively.

> ACTION_TIMEZONE_CHANGED — This action is broadcast whenever the phone’s current time
zone changes. The Intent includes a time-zone extra that returns the ID of the new java.
util.TimeZone.

@ A comprehensive list of the broadcast actions used and transmitted natively
by Android to notify applications of system state changes is available at htip://
developer.android.com/referencelandroid/content/Intent.html.

Android also uses Broadcast Intents to announce application-specific events, such as incoming SMS
messages, changes in dock state, and battery level. The actions and Intents associated with these events
will be discussed in more detail in later chapters when you learn more about the associated Services.

Monitoring Device State Changes Using Broadcast Intents

Monitoring the device state is an important part of creating efficient and dynamic applications
whose behavior can change based on connectivity, battery charge state, and docking status.

Android broadcasts Intents for changes in each of these device states. The following sections exam-
ine how to create Intent Filters to register Broadcast Receivers that can react to such changes, and
how to extract the device state information accordingly.

Listening for Battery Changes

To monitor changes in the battery level or charging status within an Activity, you can register a
Receiver using an Intent Filter that listens for the Intent .ACTTON_BATTERY_CHANGED broadcast by
the Battery Manager.

The Broadcast Intent containing the current battery charge and charging status is a sticky Intent,
so you can retrieve the current battery status at any time without needing to implement a Broadcast
Receiver, as shown in Listing 5-18.

www.it-ebooks.info

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://www.it-ebooks.info/

198 | CHAPTERS5 INTENTS AND BROADCAST RECEIVERS

) LISTING 5-18: Determining battery and charge state information

Available for IntentFilter batIntentFilter = new IntentFilter (Intent.ACTION_BATTERY_ CHANGED) ;
daﬂ:?g&gn Intent battery = context.registerReceiver (null, batIntentFilter);
int status = battery.getIntExtra (BatteryManager.EXTRA_STATUS, -1);
boolean isCharging =
status == BatteryManager.BATTERY_ STATUS_CHARGING ||
status == BatteryManager.BATTERY_ STATUS_FULL;

code snippet PAAAD_ChO0S_Intents/src/DeviceStateActivity.java

Note that you can’t register the battery changed action within a manifest Receiver; however, you can
monitor connection and disconnection from a power source and a low battery level using the follow-
ing action strings, each prefixed with android.intent.action:

> ACTION_BATTERY_LOW
> ACTION_BATTERY_OKAY
> ACTION_POWER_CONNECTED
>

ACTION_POWER_DISCONNECTED

Listening for Connectivity Changes

Changes in connectivity, including the bandwidth, latency, and availability of an Internet connec-
tion, can be significant signals for your application. In particular, you might choose to suspend
recurring updates when you lose connectivity or to delay downloads of significant size until you
have a Wi-Fi connection.

To monitor changes in connectivity, register a Broadcast Receiver (either within your appli-
cation or within the manifest) to listen for the android.net.conn.CONNECTIVITY_CHANGE
(ConnectivityManager .CONNECTIVITY_ACTION) action.

The connectivity change broadcast isn’t sticky and doesn’t contain any additional information
regarding the change. To extract details on the current connectivity status, you need to use the
Connectivity Manager, as shown in Listing 5-19.

LISTING 5-19: Determining connectivity state information

String svcName = Context.CONNECTIVITY_ SERVICE;
ConnectivityManager cm = (ConnectivityManager)context.getSystemService (svcName) ;

NetworkInfo activeNetwork = cm.getActiveNetworkInfol();

boolean isConnected = activeNetwork.isConnectedOrConnecting() ;

boolean isMobile = activeNetwork.getType() ==
ConnectivityManager.TYPE_MOBILE;

code snippet PAAAD_ChO0S_Intents/src/DeviceStateActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Intent Filters and Broadcast Receivers | 199

The Connectivity Manager is examined in more detail in Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi.”

Listening for Docking Changes

Android devices can be docked in either a car dock or desk dock. These, in term, can be either analog
or digital docks. By registering a Receiver to listen for the Intent .ACTION _DOCK_EVENT (android.
intent.action.ACTION_DOCK_EVENT), you can determine the docking status and type of dock.

Like the battery status, the dock event Broadcast Intent is sticky. Listing 5-20 shows how to extract
the current docking status from the Intent returned when registering a Receiver for docking events.

) LISTING 5-20: Determining docking state information

Available for IntentFilter dockIntentFilter =
dmg&“ggrg" new IntentFilter (Intent.ACTION_DOCK_EVENT) ;
Intent dock = registerReceiver (null, dockIntentFilter);

int dockState = dock.getIntExtra(Intent.EXTRA_DOCK_STATE,
Intent.EXTRA_DOCK_STATE_UNDOCKED) ;
boolean isDocked = dockState != Intent.EXTRA_DOCK_STATE_UNDOCKED;

code snippet PAAAD_Ch0S_Intents/src/DeviceStateActivity.java

Managing Manifest Receivers at Run Time

Using the Package Manager, you can enable and disable any of your application’s manifest Receivers
at run time using the setComponentEnabledSetting method. You can use this technique to enable

or disable any application component (including Activities and Services), but it is particularly useful

for manifest Receivers.

To minimize the footprint of your application, it’s good practice to disable manifest Receivers that
listen for common system events (such as connectivity changes) when your application doesn’t need
to respond to those events. This technique also enables you to schedule an action based on a system
event — such as downloading a large file when the device is connected to Wi-Fi — without gaining
the overhead of having the application launch every time a connectivity change is broadcast.

Listing 5-21 shows how to enable and disable a manifest Receiver at run time.

LISTING 5-21: Dynamically toggling manifest Receivers

ComponentName myReceiverName = new ComponentName (this, MyReceiver.class);
PackageManager pm = getPackageManager () ;

// Enable a manifest receiver
continues

www.it-ebooks.info

http://www.it-ebooks.info/

200 | CHAPTER5 INTENTS AND BROADCAST RECEIVERS

LISTING 5-21 (continued)

pm.setComponentEnabledSetting (myReceiverName,
PackageManager . COMPONENT_ENABLED_STATE_ENABLED,
PackageManager .DONT_KILL_APP) ;

// Disable a manifest receiver

pm.setComponentEnabledSetting (myReceiverName,
PackageManager . COMPONENT_ENABLED_STATE_DISABLED,
PackageManager .DONT_KILL_APP) ;

code snippet PA4AD_Ch0S_Intents/src/DeviceStateActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

Using Internet Resources

WHAT’S IN THIS CHAPTER?

Connecting to Internet resources
Parsing XML resources
Using the Download Manager to download files

Querying the Download Manager

Y Y Y Y Y

Using the Account Manager to authenticate with Google App Engine

This chapter introduces Android’s Internet connectivity model and some of the Java tech-
niques for parsing Internet data feeds. You’ll learn how to connect to an Internet resource and
how to use the SAX Parser and the XML Pull Parser to parse XML resources.

An earthquake-monitoring example will demonstrate how to tie together all these features,
and forms the basis of an ongoing example that you’ll improve and extend in later chapters.

This chapter introduces the Download Manager, and you learn how to use it to schedule
and manage long-running downloads. You’ll also learn how to customize its notifications and
query the Downloads Content Provider to determine the status of your downloads.

Finally, this chapter introduces how to use the Account Manager to make authenticated
requests from Google App Engine backends.

DOWNLOADING AND PARSING INTERNET RESOURCES

Android offers several ways to leverage Internet resources. At one extreme you can use a
WebView to include a WebKit-based browser within an Activity. At the other extreme you
can use client-side APIs, such as the Google APIs, to interact directly with server processes.

www.it-ebooks.info

http://www.it-ebooks.info/

202

| CHAPTER6 USING INTERNET RESOURCES

Somewhere in between, you can process remote XML feeds to extract and process data using a
Java-based XML parser, such as SAX or the XML Pull Parser.

With Internet connectivity and a WebKit browser, you might ask if there’s any reason to create
native Internet-based applications when you could make a web-based version instead.

There are a number of benefits to creating thick- and thin-client native applications rather than rely-
ing on entirely web-based solutions:

> Bandwidth — Static resources such as images, layouts, and sounds can be expensive on
devices with bandwidth restraints. By creating a native application, you can limit the band-
width requirements to changed data only.

> Caching — With a browser-based solution, a patchy Internet connection can result in inter-
mittent application availability. A native application can cache data and user actions to
provide as much functionality as possible without a live connection and synchronize with the
cloud when a connection is reestablished.

> Reducing battery drain — Each time your application opens a connection to a server, the
wireless radio will be turned on (or kept on). A native application can bundle its connections,
minimizing the number of connections initiated. The longer the period between network
requests, the longer the wireless radio can be left off.

> Native features — Android devices are more than simple platforms for running a browser.
They include location-based services, Notifications, widgets, camera hardware, background
Services, and hardware sensors. By creating a native application, you can combine the data
available online with the hardware features available on the device to provide a richer user
experience.

Modern mobile devices offer a number of alternatives for accessing the Internet. Broadly speaking,
Android provides two connection techniques for Internet connectivity. Each is offered transparently
to the application layer.

> Mobile Internet — GPRS, EDGE, 3G, 4G, and LTE Internet access is available through
carriers that offer mobile data.

> Wi-Fi — Wi-Fi receivers and mobile hotspots are becoming increasingly common.

If you use Internet resources in your application, remember that your users’ data connections
are dependent on the communications technology available to them. EDGE and GSM
connections are notoriously low-bandwidth, whereas a Wi-Fi connection may be unreliable in a
mobile setting.

Optimize the user experience by limiting the quantity of data transmitted and ensure that your
application is robust enough to handle network outages and bandwidth limitations.

Connecting to an Internet Resource

Before you can access Internet resources, you need to add an INTERNET uses-permission node to
your application manifest, as shown in the following XML snippet:

<uses-permission android:name="android.permission.INTERNET" />

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Parsing Internet Resources | 203

Listing 6-1 shows the basic pattern for opening an Internet data stream.

) LISTING 6-1: Opening an Internet data stream

Availablefor ~ String myFeed = getString(R.string.my_feed);
download on try {

Wrox.com
URL url = new URL (myFeed) ;

// Create a new HTTP URL connection
URLConnection connection = url.openConnection();
HttpURLConnection httpConnection = (HttpURLConnection)connection;

int responseCode = httpConnection.getResponseCode () ;
if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream() ;
processStream(in) ;
}
}
catch (MalformedURLException e) {
Log.d(TAG, "Malformed URL Exception.");
}
catch (IOException e) {
Log.d(TAG, "IO Exception.");
}

code snippet PAAAD_ChO06_Internet/src/MyActivity.java

Q Attempting to perform network operations on the main Ul thread will cause a
NetworkOnMainThreadException on the latest Android platform releases. Be
sure to execute code, such as that shown in Listing 6-1, in a background thread,
as described in Chapter 9, “Working in the Background.”

Android includes several classes to help you handle network communications. They are available in
the java.net.* and android.net. * packages.

Later in this chapter is a working example that shows how to obtain and process
an Internet feed to get a list of earthquakes felt in the last 24 hours. Chapter 16,
“Bluetooth, NFC, Networks, and Wi-Fi,” features more information on manag-
ing specific Internet connections, including monitoring connection status and
configuring Wi-Fi access point connections.

Parsing XML Using the XML Pull Parser

Although detailed instructions for parsing XML and interacting with specific web services are out-
side the scope of this book, it’s important to understand the available technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

204 | CHAPTER6 USINGINTERNET RESOURCES

This section provides a brief overview of the XML Pull Parser, whereas the next section demon-
strates the use of the DOM parser to retrieve earthquake details from the United States Geological
Survey (USGS).

The XML Pull Parser API is available from the following libraries:

import org.xmlpull.vl.XmlPullParser;
import org.xmlpull.vl.XmlPullParserException;
import org.xmlpull.vl.XmlPullParserFactory;

It enables you to parse an XML document in a single pass. Unlike the DOM parser, the Pull Parser
presents the elements of your document in a sequential series of events and tags.

Your location within the document is represented by the current event. You can determine the cur-
rent event by calling getEventType. Each document begins at the START_DOCUMENT event and ends
at END_DOCUMENT.

To proceed through the tags, simply call next, which causes you to progress through a series of
matched (and often nested) START_TAG and END_TAG events. You can extract the name of each tag by
calling getName and extract the text between each set of tags using getNextText.

Listing 6-2 demonstrates how to use the XML Pull Parser to extract details from the points of inter-
est list returned by the Google Places API.

) LISTING 6-2: Parsing XML using the XML Pull Parser

Availablefor private void processStream(InputStream inputStream) {
dmglgzgr:" // Create a new XML Pull Parser.
XmlPullParserFactory factory;
try {
factory = XmlPullParserFactory.newlInstance() ;
factory.setNamespaceAware (true) ;
XmlPullParser xpp = factory.newPullParser();

// Assign a new input stream.
Xpp.setInput (inputStream, null);
int eventType = xpp.getEventType () ;

// Continue until the end of the document is reached.
while (eventType != XmlPullParser.END_DOCUMENT) {
// Check for a start tag of the results tag.
if (eventType == XmlPullParser.START_TAG &&
xpp.getName () .equals ("result")) {
eventType = xpp.next();
String name = "";
// Process each result within the result tag.

while (! (eventType == XmlPullParser.END_TAG &&
xpp.getName () .equals ("result"))) {
// Check for the name tag within the results tag.
if (eventType == XmlPullParser.START_TAG &&

xpp.getName () .equals ("name"))
// Extract the POI name.
name = xpp.nextText () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Parsing Internet Resources | 205

// Move on to the next tag.
eventType = xpp.next();
}
// Do something with each POI name.
}
// Move on to the next result tag.
eventType = xXpp.next();
}
} catch (XmlPullParserException e) {
Log.d("PULLPARSER", "XML Pull Parser Exception", e);
} catch (IOException e) {
Log.d("PULLPARSER", "IO Exception", e);

code snippet PA4AD_ Ch6_Internet/src/MyActivity.java

Creating an Earthquake Viewer

In the following example you’ll create a tool that uses a USGS earthquake feed to display a list of
recent earthquakes. You will return to this earthquake application several times in the following
chapters, gradually adding more features and functionality.

The earthquake feed XML is parsed here by the DOM parser. Several alternatives exist, including
the XML Pull Parser described in the previous section. As noted, a detailed analysis of the alterna-
tive XML parsing techniques is beyond the scope of this book.

In this example you’ll create a list-based Activity that connects to an earthquake feed and displays
the location, magnitude, and time of the earthquakes it contains.

@ To simplify readability, each of these examples excludes the import statements.
If you are using Eclipse, you can press Ctrl+Shift+o (or Cmd+Shift+o on Mac)

to automatically populate the import statements required to support the classes
used in your code.

1. Start by creating an Earthquake project featuring an Earthquake Activity.
2. Create a new EarthquakeListFragment that extends ListFragment. This Fragment dis-

plays your list of earthquakes.

public class EarthquakeListFragment extends ListFragment {
}

3. Modify the main.xml layout resource to include the Fragment you created in Step 2. Be sure
to name it so that you can reference it from the Activity code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

206 | CHAPTER6 USINGINTERNET RESOURCES

android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent">

<fragment android:name="com.paad.earthquake.EarthquakeListFragment"
android:id="@+id/EarthquakeListFragment"
android:layout_width="match_parent"
android:layout_height="match_parent"

/>

</LinearLayout>

4. Create a new public Quake class. This class will be used to store the details (date, details,
location, magnitude, and link) of each earthquake. Override the tostring method to provide
the string that will be used to represent each quake in the List View.

package com.paad.earthquake;

import java.util.Date;
import java.text.SimpleDateFormat;
import android.location.Location;

public class Quake {
private Date date;
private String details;
private Location location;
private double magnitude;
private String link;

public Date getDate() { return date; }

public String getDetails() { return details; }
public Location getLocation() { return location; }
public double getMagnitude() { return magnitude; }
public String getLink() { return link; }

public Quake(Date _d, String _det, Location _loc, double _mag, String _link) {

date = _d;
details = _det;
location = _loc;
magnitude = _mag;

link = _link;

@Override

public String toString() {
SimpleDateFormat sdf = new SimpleDateFormat ("HH.mm") ;
String dateString = sdf.format (date);
return dateString + ": " + magnitude + " " + details;

5. In the EarthquakeListFragment, override the onactivityCreated method to store
an ArrayList of Quake objects, and bind that to the underlying 1.istview using an
ArrayAdapter:

public class EarthquakeListFragment extends ListFragment {

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Parsing Internet Resources | 207

7.

8.

ArrayAdapter<Quake> aa;
ArrayList<Quake> earthquakes = new ArrayList<Quake>();

@Override

public void onActivityCreated(Bundle savedInstanceState) ({
super.onActivityCreated (savedInstanceState) ;

int layoutID = android.R.layout.simple_ list_item 1;
aa = new ArrayAdapter<Quake> (getActivity(), layoutID , earthquakes);
setListAdapter(aa);

Start processing the earthquake feed. For this example, the feed used is the one-day USGS
feed for earthquakes with a magnitude greater than 2.5. Add the location of your feed as an

external string resource. This lets you potentially specify a different feed based on a user’s
location.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">Earthquake</string>
<string name="quake_feed">

http://earthquake.usgs.gov/eqgcenter/catalogs/lday-M2.5.xml
</string>

</resources>

Before your application can access the Internet, it needs to be granted permission for Internet
access. Add the Internet uses-permission to the manifest:

<uses-permission android:name="android.permission.INTERNET"/>

Returning to the Earthquake List Fragment, create a new refreshEarthquakes method that
connects to and parses the earthquake feed. Extract each earthquake and parse the details to
obtain the date, magnitude, link, and location. As you finish parsing each earthquake, pass it
in to a new addNewQuake method. Note that the adaNewguake method is executed within a
Runnable posted from a Handler object. This allows you to execute the refreshEarthquakes
method on a background thread before updating the Ul within addNewguake. This will be
explored in more detail in Chapter 9.

private static final String TAG = "EARTHQUAKE";
private Handler handler = new Handler();

public void refreshEarthquakes () {

// Get the XML

URL url;

try {
String quakeFeed = getString(R.string.quake_feed) ;
url = new URL(quakeFeed) ;

URLConnection connection;
connection = url.openConnection() ;

HttpURLConnection httpConnection = (HttpURLConnection)connection;
int responseCode = httpConnection.getResponseCode () ;

www.it-ebooks.info

http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
http://www.it-ebooks.info/

208 | CHAPTER6 USINGINTERNET RESOURCES

if (responseCode == HttpURLConnection.HTTP_OK) {
InputStream in = httpConnection.getInputStream() ;

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder () ;

// Parse the earthquake feed.
Document dom = db.parse(in);
Element docEle = dom.getDocumentElement () ;

// Clear the old earthquakes
earthquakes.clear () ;

// Get a list of each earthquake entry.
NodeList nl = docEle.getElementsByTagName ("entry");
if (nl !'= null && nl.getLength() > 0) {

for (int 1 = 0 ; i1 < nl.getLength(); i++) {
Element entry = (Element)nl.item(i);
Element title = (Element)entry.getElementsByTagName ("title").item(0);
Element g = (Element)entry.getElementsByTagName ("georss:point").item(0);
Element when = (Element)entry.getElementsByTagName ("updated").item(0) ;
Element link = (Element)entry.getElementsByTagName ("link").item(0);

String details = title.getFirstChild() .getNodeValue() ;
String hostname = "http://earthquake.usgs.gov";
String linkString = hostname + link.getAttribute("href");

String point = g.getFirstChild() .getNodeValue() ;

String dt = when.getFirstChild() .getNodevValue () ;

SimpleDateFormat sdf = new SimpleDateFormat ("yyyy-MM-dd'T'hh:mm:ss'Z'");
Date gdate = new GregorianCalendar(0,0,0).getTime() ;

try {
gdate = sdf.parse(dt);
} catch (ParseException e) {
Log.d(TAG, "Date parsing exception.", e);

String[] location = point.split(" ");

Location 1 = new Location ("dummyGPS") ;
1.setlLatitude (Double.parseDouble (location[0]));
1.setLongitude (Double.parseDouble (location[1]));

String magnitudeString = details.split(" ")[1];

int end = magnitudeString.length()-1;

double magnitude = Double.parseDouble (magnitudeString.substring(0, end));
details = details.split(",")[1].trim();

final Quake quake = new Quake(gdate, details, 1, magnitude, linkString);
// Process a newly found earthquake

handler.post (new Runnable() {
public void run() {

www.it-ebooks.info

http://earthquake.usgs.gov%E2%80%9D
http://www.it-ebooks.info/

Downloading and Parsing Internet Resources | 209

addNewQuake (quake) ;

} catch (MalformedURLException e) {
Log.d(TAG, "MalformedURLException");

} catch (IOException e) {
Log.d(TAG, "IOException");

} catch (ParserConfigurationException e) {
Log.d(TAG, "Parser Configuration Exception");

} catch (SAXException e) {
Log.d(TAG, "SAX Exception");

}

finally {

}

private void addNewQuake (Quake _quake) {
// TODO Add the earthquakes to the array list.

9. Update the addNewQuake method so that it takes each newly processed quake and adds it to
the earthquake Array List. It should also notify the Array Adapter that the underlying data
has changed.

private void addNewQuake (Quake _quake) {
// Add the new quake to our list of earthquakes.
earthquakes.add(_quake) ;

// Notify the array adapter of a change.
aa.notifyDataSetChanged() ;
}

10. Modify your onactivityCreated method to call refreshEarthquakes on startup
Network operations should always be performed in a background thread — a requirement
that is enforced in API level 11 onwards.

@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState) ;

int layoutID = android.R.layout.simple_list_item_1;
aa = new ArrayAdapter<Quake>(getActivity (), layoutID , earthquakes);
setListAdapter (aa);

Thread t = new Thread(new Runnable() {
public void run() {
refreshEarthquakes();
}
)i
t.start();

www.it-ebooks.info

http://www.it-ebooks.info/

210 | CHAPTER6 USING INTERNET RESOURCES

@

1".

If your application is targeting API level 11 or above, attempting to

perform network operations on the main Ul thread will cause a
NetworkOnMainThreadException. In this example a simple Thread is used to
post the refreshEarthquakes method on a background thread.

This will be explored in more detail in Chapter 9, where you will learn more
technique for moving expensive or time-consuming operations like this into a
Service and onto background threads.

When you run your project, you should see a List View that features the earthquakes from
the last 24 hours with a magnitude greater than 2.5 (Figure 6-1).

04.30: 5.2 Samar

02.43: 4.7 Region
Metropolitana

02.36: 3.6 Virgin Islands region

00.38: 2.6 Puerto Rico

21.26: 2.8 Kodiak Island region

19.58: 5.1 Vanuatu

19.35: 4.8 near the east coast
of Honshu

1IN1E-0 70O iy

FIGURE 6-1

All code snippets in this example are part of the Chapter 6 Earthquake project,
available for download at www.wrox . com.

USING THE DOWNLOAD MANAGER

The Download Manager was introduced in Android 2.3 (API level 9) as a Service to optimize the
handling of long-running downloads. The Download Manager handles the HTTP connection and
monitors connectivity changes and system reboots to ensure each download completes successfully.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

Using the Download Manager | 211

It’s good practice to use the Download Manager in most situations, particularly where a download
is likely to continue in the background between user sessions, or when successful completion is
important.

To access the Download Manager, request the DOWNLOAD_SERVICE using the getSystemService
method, as follows:
String serviceString = Context.DOWNLOAD_SERVICE;

DownloadManager downloadManager;
downloadManager = (DownloadManager)getSystemService (serviceString) ;

Downloading Files

To request a download, create a new DownloadManager .Request, specifying the URT of the
file to download and passing it in to the Download Manager’s enqueue method, as shown in
Listing 6-3.

) LISTING 6-3: Downloading files using the Download Manager

Availablefor String serviceString = Context.DOWNLOAD_SERVICE;
download on

Wrox.com DownloadManager downloadManager;

downloadManager = (DownloadManager)getSystemService (serviceString);

Uri uri = Uri.parse("http://developer.android.com/shareables/icon_templates-v4.0.zip");
DownloadManager .Request request = new Request (uri);
long reference = downloadManager.enqueue (request) ;

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

You can use the returned reference value to perform future actions or queries on the download,
including checking its status or canceling it.

You can add an HTTP header to your request, or override the mime type returned by the server, by
calling addrequestHeader and setMimeType, respectively, on your Request object.

You can also specify the connectivity conditions under which to execute the download. The setal-
lowedNetworkTypes method enables you to restrict downloads to either Wi-Fi or mobile networks,
whereas the setAllowedoverRoaming method predictably enables you to prevent downloads while
the phone is roaming.

The following snippet shows how to ensure a large file is downloaded only when
connected to Wi-Fi:

request.setAllowedNetworkTypes (Request . NETWORK_WIFI) ;

Android API level 11 introduced the getRecommendedMaxBytesOverMobile convenience method,
which is useful to determine if you should restrict a download to Wi-Fi by returning a recommended
maximum number of bytes to transfer over a mobile data connection.

After calling enqueue, the download begins as soon as connectivity is available and the Download
Manager is free.

www.it-ebooks.info

http://developer.android.com/shareables/icon_templates-v4.0.zip%E2%80%9D%00%00
http://www.it-ebooks.info/

212 | CHAPTER6 USINGINTERNET RESOURCES

To receive a notification when the download is completed, register a Receiver to receive an ACTION_
DOWNLOAD_COMPLETE broadcast. It will include an EXTRA_DOWNLOAD_ID extra that contains the
reference ID of the download that has completed, as shown in Listing 6-4.

) LISTING 6-4: Monitoring downloads for completion

G\vail%llbl%lor IntentFilter filter = new IntentFilter (DownloadManager .ACTION_DOWNLOAD_COMPLETE) ;
ownload on

Wrox.com .) .
BroadcastReceiver receiver = new BroadcastReceiver() {

@Override
public void onReceive (Context context, Intent intent) ({
long reference = intent.getLongExtra (DownloadManager.EXTRA_DOWNLOAD_ID, -1);
if (myDownloadReference == reference) {
// Do something with downloaded file.

}
}i

registerReceiver (receiver, filter);

code snippet PAAAD_ Ch6_DownloadManager/src/MyActivity.java

You can use Download Manager’s openDownloadedFile method to receive a Parcel File Descriptor
to your file, to query the Download Manager to obtain its location, or to manipulate it directly if
you’ve specified a filename and location yourself.

It’s also good practice to register a Receiver for the ACTION NOTIFICATION CLICKED action, as
shown in Listing 6-5. This Intent will be broadcast whenever a user selects a download from the
Notification tray or the Downloads app.

LISTING 6-5: Responding to download notification clicks

IntentFilter filter = new IntentFilter (DownloadManager .ACTION_NOTIFICATION_CLICKED) ;

BroadcastReceiver receiver = new BroadcastReceiver() {
@Override
public void onReceive (Context context, Intent intent) ({
String extraID = DownloadManager .EXTRA_NOTIFICATION_CLICK_DOWNLOAD_IDS;
long[] references = intent.getLongArrayExtra(extralD);
for (long reference : references)
if (reference == myDownloadReference) {
// Do something with downloading file.

}
Yi

registerReceiver (receiver, filter);

code snippet PAAAD_ Ch6_DownloadManager/src/MyActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Download Manager | 213

Customizing Download Manager Notifications

By default, ongoing Notifications will be displayed for each download managed by the Download
Manager. Each Notification will show the current download progress and the filename (Figure 6-2).

1 icon_templates-v4.0-3.zip 07:07

FIGURE 6-2

The Download Manager enables you to customize the Notification displayed for each download
request, including hiding it completely. The following snippet shows how to use the setTitle and
setDescription methods to customize the text displayed in the file download Notification.
Figure 6-3 shows the result.

request.setTitle ("Earthquakes") ;
request.setDescription ("Earthquake XML") ;

Earthquakes

Earthquake XML

FIGURE 6-3

The setNotificationvisibility method lets you control when, and if, a Notification should be
displayed for your request using one of the following flags:

> Request.VISIBILITY VISIBLE — An ongoing Notification will be visible for the duration
that the download is in progress. It will be removed when the download is complete. This is
the default option.

> Request.VISIBILITY VISIBLE_NOTIFY_ COMPLETED — An ongoing Notification will be
displayed during the download and will continue to be displayed (until selected or dismissed)
once the download has completed.

> Request.VISIBILITY VISIBLE NOTIFY ONLY_ COMPLETION — The notification will be dis-
played only after the download is complete.

> Request.VISIBILITY HIDDEN — No Notification will be displayed for this download. In
order to set this flag, your application must have the DOWNLOAD_WITHOUT NOTIFICATION
uses-permission specified in its manifest.

@ You will learn more about creating your own custom Notifications in Chapter 9.

Specifying a Download Location

By default, all Download Manager downloads are saved to the shared download cache using system-
generated filenames. Each Request object can specify a download location, though all downloads

www.it-ebooks.info

http://www.it-ebooks.info/

214 | CHAPTER6 USINGINTERNET RESOURCES

must be stored somewhere on external storage and the calling application must have the WRITE_
EXTERNAL_STORAGE uses-permission in its manifest:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

The following code snippet shows how to specify an arbitrary path on external storage:

request.setDestinationUri (Uri.fromFile(f));

If the downloaded file is to your application, you may want to place it in your application’s external
storage folder. Note that access control is not applied to this folder, and other applications will be
able to access it. If your application is uninstalled, files stored in these folders will also be removed.

The following snippet specifies storing a file in your application’s external downloads folder:

request.setDestinationInExternalFilesDir (this,
Environment .DIRECTORY_DOWNLOADS, "Bugdroid.png");

For files that can or should be shared with other applications — particularly those you want to scan
with the Media Scanner — you can specify a folder within the public folder on the external storage.
The following snippet requests a file be stored in the public music folder:

request.setDestinationInExternalPublicDir (Environment .DIRECTORY_MUSIC,
"Android_Rock.mp3");

See Chapter 7, “Files, Saving State, and Preferences,” for more details about
external storage and the Environment static variables you can use to specify
folders within it.

It’s important to note that by default files downloaded by the Download Manager are not scanned
by Media Scanner, so they might not appear in apps such as Gallery and Music Player.

To make downloaded files scannable, call allowScaningByMediaScanner on the Request object.

If you want your files to be visible and manageable by the system’s Downloads app, you need to call
setVisibleInDownloadsUi, passing in true.

Cancelling and Removing Downloads

The Download Manager’s remove method lets you cancel a pending download, abort a download in
progress, or delete a completed download.

As shown in the following code snippet, the remove method accepts download IDs as optional argu-
ments, enabling you to specify one or many downloads to cancel:

downloadManager.remove (REFERENCE_1, REFERENCE_2, REFERENCE_3);

It returns the number of downloads successfully canceled. If a download is canceled, all associated
files — both partial and complete — are removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Download Manager | 215

Querying the Download Manager

You can query the Download Manager to find the status, progress, and details of your download
requests by using the query method that returns a Cursor of downloads.

Cursors are a data construct used by Android to return data stored in a Content
Provider or SQLite database. You will learn more about Content Providers,
Cursors, and how to find data stored in them in Chapter 8, “Databases and
Content Providers.”

The query method takes a DownloadManager .Query Object as a parameter. Use the setFilterById
method on a Query object to specify a sequence of download reference IDs, or use the
setFilterByStatus method to filter on a download status using one of the DownloadManager
.STATUS_* constants to specify running, paused, failed, or successful downloads.

The Download Manager includes a number of coLuMy_* static String constants that you can use to
query the result Cursor. You can find details for each download, including the status, files size, bytes
downloaded so far, title, description, URI, local filename and URI, media type, and Media Provider
download URI.

Listing 6-6 expands on Listing 6-4 to demonstrate how to find the local filename and URI of a com-
pleted downloads from within a Broadcast Receiver registered to listen for download completions.

) LISTING 6-6: Finding details of completed downloads

Available for @Override
download on bl . . .
Wrox.com public void onReceive (Context context, Intent intent) {
long reference = intent.getLongExtra (DownloadManager .EXTRA_DOWNLOAD_ID, -1);

if (reference == myDownloadReference) {
Query myDownloadQuery = new Query () ;
myDownloadQuery.setFilterById(reference) ;

Cursor myDownload = downloadManager.query (myDownloadQuery) ;
if (myDownload.moveToFirst()) {
int fileNameIdx =
myDownload.getColumnIndex (DownloadManager .COLUMN_LOCAL_FILENAME) ;
int fileUriIdx =
myDownload.getColumnIndex (DownloadManager . COLUMN_LOCAL_URTI) ;

String fileName = myDownload.getString(fileNameIdx) ;
String fileUri = myDownload.getString(fileUriIdx) ;

// TODO Do something with the file.
}

myDownload.close() ;

}

code snippet PA4AD_ Ch6_DownloadManager/src/MyActivity.java

www.it-ebooks.info

http://www.it-ebooks.info/

216 | CHAPTER6 USING INTERNET RESOURCES

For downloads that are either paused or have failed, you can query the coLUMN_REASON column to
find the cause represented as an integer.

In the case of sTaTUs_pPauseD downloads, you can interpret the reason code by using one of the
DownloadManager . PAUSED_* static constants to determine if the download has been paused while
waiting for network connectivity, a Wi-Fi connection, or pending a retry.

For sTaTus_FATLED downloads, you can determine the cause of failure using the
DownloadManager . ERROR_* codes. Possible error codes include lack of a storage device, insufficient
free space, duplicate filenames, or HTTP errors.

Listing 6-7 shows how to find a list of the currently paused downloads, extracting the reason the
download was paused, the filename, its title, and the current progress.

J

Available for
download on
Wrox.com

LISTING 6-7: Finding details of paused downloads

// Obtain the Download Manager Service.

String serviceString = Context.DOWNLOAD_SERVICE;

DownloadManager downloadManager;

downloadManager = (DownloadManager)getSystemService (serviceString) ;

// Create a query for paused downloads.
Query pausedDownloadQuery = new Query();
pausedDownloadQuery.setFilterByStatus (DownloadManager.STATUS_PAUSED) ;

// Query the Download Manager for paused downloads.
Cursor pausedDownloads = downloadManager.query (pausedDownloadQuery) ;

// Find the column indexes for the data we require.

int reasonIdx = pausedDownloads.getColumnIndex (DownloadManager .COLUMN_REASON) ;

int titleIdx = pausedDownloads.getColumnIndex (DownloadManager.COLUMN_TITLE) ;

int fileSizeIdx =
pausedDownloads.getColumnIndex (DownloadManager .COLUMN_TOTAL_SIZE_BYTES) ;

int bytesDLIdx =
pausedDownloads.getColumnIndex (DownloadManager . COLUMN_BYTES_DOWNLOADED_SO_FAR) ;

// Iterate over the result Cursor.

while (pausedDownloads.moveToNext ()) {
// Extract the data we require from the Cursor.
String title = pausedDownloads.getString(titleIdx);
int fileSize = pausedDownloads.getInt(fileSizeIdx);
int bytesDL = pausedDownloads.getInt (bytesDLIdx) ;

// Translate the pause reason to friendly text.
int reason = pausedDownloads.getInt (reasonIdx) ;
String reasonString = "Unknown";
switch (reason) {

case DownloadManager.PAUSED_QUEUED_FOR_WIFI

reasonString = "Waiting for WiFi"; break;
case DownloadManager.PAUSED_WAITING_FOR_NETWORK :
reasonString = "Waiting for connectivity"; break;

case DownloadManager.PAUSED_WAITING_TO_RETRY :

www.it-ebooks.info

http://www.it-ebooks.info/

Using Internet Services | 217

reasonString = "Waiting to retry"; break;
default : break;

// Construct a status summary

StringBuilder sb = new StringBuilder();

sb.append(title) .append("\n") ;

sb.append (reasonString) .append ("\n") ;

sb.append ("Downloaded ") .append (bytesDL) .append(" / ").append(fileSize);

// Display the status
Log.d ("DOWNLOAD", sb.toString());

// Close the result Cursor.
pausedDownloads.close() ;

code snippet PAAAD_ Ch6_DownloadManager/src/MyActivity.java

USING INTERNET SERVICES

Software as a service (SaaS) and cloud computing are becoming increasingly popular as com-
panies try to reduce the cost overheads associated with installing, upgrading, and maintaining
deployed software. The result is a range of rich Internet services with which you can build thin
mobile applications that enrich online services with the personalization available from your
smartphone or tablet.

The idea of using a middle tier to reduce client-side load is not a novel one, and happily there are
many Internet-based options to supply your applications with the level of service you need.

The sheer volume of Internet services available makes it impossible to list them all here (let alone
look at them in any detail), but the following list shows some of the more mature and interesting
Internet services currently available.

>

Google Services APIs — In addition to the native Google applications, Google offers web
APIs for access to their Calendar, Docs, Blogger, and Picasa Web Albums platforms. These
APIs collectively make use of a form of XML for data communication.

Yahoo! Pipes — Yahoo! Pipes offers a graphical web-based approach to XML feed manipu-
lation. Using pipes, you can filter, aggregate, analyze, and otherwise manipulate XML feeds
and output them in a variety of formats to be consumed by your applications.

Google App Engine — Using the Google App Engine, you can create cloud-hosted web ser-
vices that shift complex processing away from your mobile client. Doing so reduces the load
on your system resources but comes at the price of Internet-connection dependency. Google
also offers Cloud Storage and Prediction API services.

Amazon Web Services — Amazon offers a range of cloud-based services, including a rich API
for accessing its media database of books, CDs, and DVDs. Amazon also offers a distributed
storage solution (S3) and Elastic Compute Cloud (EC2).

www.it-ebooks.info

http://www.it-ebooks.info/

218 | CHAPTER6 USINGINTERNET RESOURCES

CONNECTING TO GOOGLE APP ENGINE

To use the Google Play Store, users must be signed in to a Google account on their phones; there-
fore, if your application connects to a Google App Engine backend to store and retrieve data related

to a particular user, you can use the Account Manager to handle the authentication.

The Account Manager enables you to ask users for permission to retrieve an authentication token,

which, in turn, can be used to obtain a cookie from your server that can then be used to make
future authenticated requests.

To retrieve accounts and authentication tokens from the Account Manager, your application
requires the GET_ACCOUNTS uses-permission:

<uses-permission android:name="android.permission.GET_ACCOUNTS"/>
Making authenticated Google App Engine requests is a three-part process:
1. Request an auth token.
2. Use the auth token to request an auth cookie.
3. Use the auth cookie to make authenticated requests.

Listing 6-8 demonstrates how to request an auth token for Google accounts using the Account
Manager.

/ LISTING 6-8: Requesting an auth token

Availablefor ~ String acctSvce = Context.ACCOUNT_SERVICE;
download on

Wrox.com AccountManager accountManager = (AccountManager)getSystemService (acctSvce);

Account[] accounts = accountManager.getAccountsByType ("com.google") ;
if (accounts.length > 0)

accountManager.getAuthToken (accounts([0], "ah", false,
myAccountManagerCallback, null);

code snippet PA4AD_Ch6_AppEngine/src/MyActivity.java

The Account Manager then checks to see if the user has approved your request for an auth

token. The result is returned to your application via the Account Manager Callback you specified

when making the request.

In the following extension to Listing 6-8, the returned bundle is inspected for an Intent stored

against the AccountManager.KEY_TINTENT key. If this key’s value is null, the user has approved your

application’s request, and you can retrieve the auth token from the bundle.
private static int ASK_PERMISSION = 1;

private class GetAuthTokenCB implements AccountManagerCallback<Bundle> {
public void run(AccountManagerFuture<Bundle> result) ({

try {
Bundle bundle = result.getResult();
Intent launch = (Intent)bundle.get (AccountManager.KEY_INTENT) ;
if (launch !'= null)

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practices for Downloading Data Without Draining the Battery | 219

startActivityForResult (launch, ASK_PERMISSION) ;
else {
// Extract the auth token and request an auth cookie.
}
}
catch (Exception ex) {}
}
Y

If the key’s value is not null, you must start a new Activity using the bundled Intent to request the
user’s permission. The user will be prompted to approve or deny your request. After control has
been passed back to your application, you should request the auth token again.

The auth token is stored within the Bundle parameter against the AccountManager .KEY_
AUTHTOKEN, as follows:

String auth_token = bundle.getString(AccountManager.KEY_AUTHTOKEN) ;

You can use this token to request an auth cookie from Google App Engine by configuring an
httpClient and using it to transmit an HttpGet request, as follows:

DefaultHttpClient http_client = new DefaultHttpClient();
http_client.getParams () .setBooleanParameter (ClientPNames.HANDLE_REDIRECTS, false);

String getString = "https://[yourappsubdomain] .appspot.com/_ah/login?" +
"continue=http://localhost/&auth=" +
auth_token;

HttpGet get = new HttpGet (getString) ;

HttpResponse response = http_client.execute(get);

If the request was successful, simply iterate over the Cookies stored in the HTTP Client’s Cookie
Store to confirm the auth cookie has been set. The HTTP Client used to make the request has
the authenticated cookie, and all future requests to Google App Engine using it will be properly
authenticated.

if (response.getStatusLine().getStatusCode() != 302)
return false;
else {
for (Cookie cookie : http_client.getCookieStore().getCookies())
if (cookie.getName () .equals ("ACSID")) {

// Make authenticated requests to your Google App Engine server.

BEST PRACTICES FOR DOWNLOADING DATA WITHOUT
DRAINING THE BATTERY

The timing and techniques you use to download data can have a significant effect on battery

life. The wireless radio on mobile devices draws significant power when active, so it’s important to
consider how your application’s connectivity model may impact the operation of the underlying
radio hardware.

www.it-ebooks.info

http://localhost/&auth=%E2%80%9D
http://www.it-ebooks.info/

220

| CHAPTER6 USING INTERNET RESOURCES

Every time you create a new connection to download additional data, you risk waking the wireless
radio from standby mode to active mode. In general, it’s good practice to bundle your connections
and associated downloads to perform them concurrently and infrequently.

To use a converse example, creating frequent, short-lived connections that download small amounts
of data can have the most dramatic impact on the battery.

You can use the following techniques to minimize your application’s battery cost.

>

Aggressively prefetch — The more data you download in a single connection, the less fre-
quently the radio will need to be powered up to download more data. This will need to be
balanced with downloading too much data that won’t be used.

Bundle your connections and downloads — Rather than sending time-insensitive data
such as analytics as they’re received, bundle them together and schedule them to transmit
concurrently with other connections, such as when refreshing content or prefetching data.
Remember, each new connection has the potential of powering up the radio.

Reuse existing connections rather than creating new ones — Using existing connections
rather than initiating new ones for each transfer can dramatically improve network
performance, reduce latency, and allow the network to intelligently react to congestion
and related issues

Schedule repeated downloads as infrequently as possible — It’s good practice to set the
default refresh frequency to as low as usability will allow, rather than as fast as possible. For
users who require their updates to be more frequent, provide preferences that allow them to
sacrifice battery life in exchange for freshness.

www.it-ebooks.info

http://www.it-ebooks.info/

Files, Saving State,
and Preferences

WHAT’S IN THIS CHAPTER?

Persisting simple application data using Shared Preferences
Saving Activity instance data between sessions
Managing application preferences and building Preference Screens

Saving and loading files and managing the local filesystem

Y Y Y Y Y

Including static files as external resources

This chapter introduces some of the simplest and most versatile data-persistence techniques in
Android: Shared Preferences, instance-state Bundles, and local files.

Saving and loading data is essential for most applications. At a minimum, an Activity should
save its user interface (UI) state before it becomes inactive to ensure the same Ul is presented
when it restarts. It’s also likely that you’ll need to save user preferences and Ul selections.

Android’s nondeterministic Activity and application lifetimes make persisting UI state and
application data between sessions particularly important, as your application process may
have been killed and restarted before it returns to the foreground. Android offers several alter-
natives for saving application data, each optimized to fulfill a particular need.

Shared Preferences are a simple, lightweight name/value pair (NVP) mechanism for saving
primitive application data, most commonly a user’s application preferences. Android also
offers a mechanism for recording application state within the Activity lifecycle handlers, as
well as for providing access to the local filesystem, through both specialized methods and the
java.io classes.

Android also offers a rich framework for user preferences, allowing you to create settings
screens consistent with the system settings.

www.it-ebooks.info

http://www.it-ebooks.info/

222 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

SAVING SIMPLE APPLICATION DATA

The data-persistence techniques in Android provide options for balancing speed, efficiency,
and robustness.

> Shared Preferences — When storing Ul state, user preferences, or application settings, you
want a lightweight mechanism to store a known set of values. Shared Preferences let you save
groups of name/value pairs of primitive data as named preferences.

> Saved application Ul state — Activities and Fragments include specialized event handlers to
record the current Ul state when your application is moved to the background.

> Files — It’s not pretty, but sometimes writing to and reading from files is the only way to go.
Android lets you create and load files on the device’s internal or external media, providing
support for temporary caches and storing files in publicly accessible folders.

There are two lightweight techniques for saving simple application data for Android applications:

Shared Preferences and a set of event handlers used for saving Activity instance state. Both mecha-
nisms use an NVP mechanism to store simple primitive values. Both techniques support primitive

types Boolean, string, float, long, and integer, making them ideal means of quickly storing default
values, class instance variables, the current Ul state, and user preferences.

CREATING AND SAVING SHARED PREFERENCES

Using the Sharedpreferences class, you can create named maps of name/value pairs that can be
persisted across sessions and shared among application components running within the same appli-
cation sandbox.

To create or modify a Shared Preference, call getSharedpreferences on the current Context, pass-
ing in the name of the Shared Preference to change.

SharedPreferences mySharedPreferences = getSharedPreferences (MY_PREFS,
Activity.MODE_PRIVATE) ;

Shared Preferences are stored within the application’s sandbox, so they can be shared between an
application’s components but aren’t available to other applications.

To modify a Shared Preference, use the sharedPreferences.Editor class. Get the Editor object by
calling edit on the Shared Preferences object you want to change.

SharedPreferences.Editor editor = mySharedPreferences.edit();

Use the put<type> methods to insert or update the values associated with the specified name:

// Store new primitive types in the shared preferences object.
editor.putBoolean("isTrue", true);

editor.putFloat ("lastFloat", 1f);

editor.putInt ("wholeNumber", 2);

editor.putLong ("aNumber", 31);

editor.putString ("textEntryValue", "Not Empty");

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Settings Activity for the Earthquake Viewer | 223

To save edits, call apply or commit on the Editor object to save the changes asynchronously or syn-
chronously, respectively.

// Commit the changes.
editor.apply();

ﬂ The apply method was introduced in Android API level 9 (Android 2.3). Calling
it causes a safe asynchronous write of the Shared Preference Editor object to be
performed. Because it is asynchronous, it is the preferred technique for saving
Shared Preferences.

If you require confirmation of success or want to support earlier Android
releases, you can call the commit method, which blocks the calling thread and
returns true once a successful write has completed, or false otherwise.

RETRIEVING SHARED PREFERENCES

Accessing Shared Preferences, like editing and saving them, is done using the getSharedprefer-
ences method.

Use the type-safe get<type> methods to extract saved values. Each getter takes a key and a default
value (used when no value has yet been saved for that key.)

// Retrieve the saved values.

boolean isTrue = mySharedPreferences.getBoolean("isTrue", false);

float lastFloat = mySharedPreferences.getFloat ("lastFloat", 0f);

int wholeNumber = mySharedPreferences.getInt ("wholeNumber", 1);

long aNumber = mySharedPreferences.getLong ("aNumber", 0);

String stringPreference =

mySharedPreferences.getString ("textEntryvValue", "");

You can return a map of all the available Shared Preferences keys values by calling geta11, and
check for the existence of a particular key by calling the contains method.

Map<String, ?> allPreferences = mySharedPreferences.getAll();
boolean containsLastFloat = mySharedPreferences.contains("lastFloat");

CREATING A SETTINGS ACTIVITY FOR THE

EARTHQUAKE VIEWER
In the following example you build an Activity to set application preferences for the earthquake
viewer last seen in the previous chapter. The Activity lets users configure settings for a more person-

alized experience. You’ll provide the option to toggle automatic updates, control the frequency of
updates, and filter the minimum earthquake magnitude displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

224 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

Creating your own Activity to control user preferences is considered bad prac-
tice. Later in this chapter you’ll replace this Activity with a standard settings
screen using the Preferences Screen classes.

1. Open the Earthquake project you created in Chapter 6, “Using Internet Resources.” Add
new string resources to the res/values/strings.xml file for the labels to be displayed in
the Preference Screen. Also, add a string for the new Menu Item that will let users open the
Preference Screen:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Earthquake</string>
<string name="quake_feed">
http://earthquake.usgs.gov/eqgcenter/catalogs/lday-M2.5.xml

</string>

<string name="menu_update">Refresh Earthquakes</string>

<string name="auto_update_prompt">Auto Update?</string>

<string name="update_freq prompt">Update Frequency</string>

<string name="min quake_mag prompt">Minimum Quake Magnitude</string>
<string name="menu_preferences">Preferences</string>

</resources>

2. Create a new preferences.xml layout resource in the res/layout folder for the
Preferences Activity. Include a check box for indicating the "automatic update" toggle,
and spinners to select the update rate and magnitude filter:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:
android:
android:

<TextView

android:
android:
android:

/>
<CheckBox

android:
android:

/>
<TextView

android:
android:
android:

/>

orientation="vertical"
layout_width="fill_parent"
layout_height="fill_parent">

layout_width="£fill_parent"
layout_height="wrap_content"
text="@string/auto_update_prompt"

android:id="@+1id/checkbox_auto_update"
layout_width="fill_parent"
layout_height="wrap_content"

layout_width="fill_parent"
layout_height="wrap_content"
text="@string/update_freq prompt"

<Spinner android:id="@+id/spinner_update_freq"

android:
android:
android:

/>

layout_width="fill_parent"
layout_height="wrap_content"
drawSelectorOnTop="true"

www.it-ebooks.info

http://earthquake.usgs.gov/eqcenter/catalogs/1day-M2.5.xml
http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Creating a Settings Activity for the Earthquake Viewer | 225

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/min_qguake_mag_prompt"
/>
<Spinner android:id="@+id/spinner_quake_mag"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
<LinearLayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content">
<Button android:id="@+id/okButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/ok"
/>
<Button android:id="@+id/cancelButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@android:string/cancel"
/>
</LinearLayout>
</LinearLayout>

3. Create four array resources in a new res/values/arrays.xmnl file. They will provide the
values to use for the update frequency and minimum magnitude spinners:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="update_freq options">
<item>Every Minute</item>
<item>5 minutes</item>
<item>10 minutes</item>
<item>15 minutes</item>
<item>Every Hour</item>
</string-array>

<string-array name="magnitude">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>
</string-array>

<string-array name="magnitude_options">
<item>3</item>
<item>5</item>
<item>6</item>
<item>7</item>
<item>8</item>
</string-array>

www.it-ebooks.info

http://www.it-ebooks.info/

226 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

<string-array name="update_freq values">
<item>1l</item>
<item>5</item>
<item>10</item>
<item>15</item>
<item>60</item>

</string-array>

</resources>

4. Create a preferencesActivity Activity. Override onCreate to inflate the layout you cre-
ated in step 2, and get references to the check box and both the spinner controls. Then make
a call to the populateSpinners stub:

package com.paad.earthquake;

import android.app.Activity;

import android.content.Context;

import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.Bundle;

import android.preference.PreferenceManager;
import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.CheckBox;

import android.widget.Spinner;

public class PreferencesActivity extends Activity {

CheckBox autoUpdate;
Spinner updateFregSpinner;
Spinner magnitudeSpinner;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.preferences) ;

updateFregSpinner = (Spinner)findvViewById(R.id.spinner_update_freq) ;
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag) ;
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update) ;

populateSpinners () ;

}

private void populateSpinners() {

}

5. Fill in the populatespinners method, using Array Adapters to bind each spinner to its cor-
responding array:

private void populateSpinners() {
// Populate the update frequency spinner

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Settings Activity for the Earthquake Viewer | 227

ArrayAdapter<CharSequence> fAdapter;
fAdapter = ArrayAdapter.createFromResource (this, R.array.update_freqg options,
android.R.layout.simple_spinner_item) ;
int spinner_dd_item = android.R.layout.simple_spinner_dropdown_item;
fAdapter.setDropDownViewResource (spinner_dd_item) ;
updateFregSpinner.setAdapter (fAdapter) ;
// Populate the minimum magnitude spinner
ArrayAdapter<CharSequence> mAdapter;
mAdapter = ArrayAdapter.createFromResource (this,
R.array.magnitude_options,
android.R.layout.simple_spinner_item) ;
mAdapter.setDropDownViewResource (spinner_dd_item) ;
magnitudeSpinner.setAdapter (mAdapter) ;

Add public static string values that you’ll use to identify the Shared Preference keys you’ll use
to store each preference value. Update the oncreate method to retrieve the named prefer-
ence and call updateUIFromPreferences. The updateUIFromPreferences method uses the
get<type> methods on the Shared Preference object to retrieve each preference value and
apply it to the current UL

Use the default application Shared Preference object to save your settings values:

public static final String USER_PREFERENCE = "USER_PREFERENCE";

public static final String PREF_AUTO_UPDATE = "PREF_AUTO_UPDATE";

public static final String PREF_MIN MAG_INDEX = "PREF_MIN MAG_INDEX";

public static final String PREF_UPDATE_FREQ INDEX = "PREF UPDATE_FREQ INDEX";

SharedPreferences prefs;

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.preferences) ;

updateFregSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_quake_mag) ;
autoUpdate = (CheckBox)findViewById(R.id.checkbox_auto_update) ;

populateSpinners () ;

Context context = getApplicationContext();

prefs = PreferenceManager.getDefaultSharedPreferences (context);

updateUIFromPreferences();

private void updateUIFromPreferences() {
boolean autoUpChecked = prefs.getBoolean(PREF_AUTO_UPDATE,
int updateFreqgIndex = prefs.getInt (PREF_UPDATE_FREQ INDEX,
int minMagIndex = prefs.getInt (PREF _MIN MAG_INDEX, 0);

updateFreqgSpinner.setSelection(updateFreqIndex);
magnitudeSpinner.setSelection(minMagIndex);
autoUpdate.setChecked (autoUpChecked) ;

www.it-ebooks.info

false);
2);

http://www.it-ebooks.info/

228 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

7. Still in the oncreate method, add event handlers for the OK and Cancel buttons. The Cancel
button should close the Activity, whereas the OK button should call savePreferences first:

@QOverride

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.preferences) ;

updateFregSpinner = (Spinner)findViewById(R.id.spinner_update_freq);
magnitudeSpinner = (Spinner)findViewById(R.id.spinner_guake_mag) ;
autoUpdate = (CheckBox)findViewById(R.id.checkbox_ auto_update) ;
populateSpinners() ;

Context context = getApplicationContext();
prefs = PreferenceManager.getDefaultSharedPreferences (context) ;
updateUIFromPreferences () ;

Button okButton = (Button) findvViewById(R.id.okButton);
okButton.setOnClickListener (new View.OnClickListener() {

public void onClick(View view) {
savePreferences();
PreferencesActivity.this.setResult (RESULT OK);
finish();
}
1)

Button cancelButton = (Button) findViewById(R.id.cancelButton);
cancelButton.setOnClickListener (new View.OnClickListener() {

public void onClick(View view) {
PreferencesActivity.this.setResult (RESULT CANCELED) ;
finish();
}
});

private void savePreferences() {
}

8. Fillin the savePreferences method to record the current preferences, based on the UI selec-
tions, to the Shared Preference object:

private void savePreferences() {
int updateIndex = updateFregSpinner.getSelectedItemPosition();
int minMagIndex = magnitudeSpinner.getSelectedItemPosition();
boolean autoUpdateChecked = autoUpdate.isChecked() ;

Editor editor = prefs.edit();

editor.putBoolean (PREF_AUTO_UPDATE, autoUpdateChecked) ;
editor.putInt (PREF_UPDATE_FREQ_INDEX, updateIndex);
editor.putInt (PREF_MIN_MAG_INDEX, minMagIndex) ;
editor.commit () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Settings Activity for the Earthquake Viewer | 229

9.

10.

1.

private static final int SHOW_PREFERENCES = 1;

public boolean onOptionsItemSelected(Menultem item) {

12.

That completes the Preferences Activity. Make it accessible in the application by adding it
to the manifest:

<activity android:name=".PreferencesActivity"

android:label="Earthquake Preferences">
</activity>

Return to the Earthquake Activity, and add support for the new Shared Preferences
file and a Menu Item to display the Preferences Activity. Start by adding the new Menu
Item. Override the onCreateOptionsMenu method to include a new item that opens the
Preferences Activity and another to refresh the earthquake list:

static final private int MENU_PREFERENCES = Menu.FIRST+1;
static final private int MENU_UPDATE = Menu.FIRST+2;

@Override

public boolean onCreateOptionsMenu (Menu menu) {

super .onCreateOptionsMenu (menu) ;

menu.add (0, MENU_PREFERENCES, Menu.NONE, R.string.menu_preferences);

return true;

Override the onoptionsItemSelected method to
display the PreferencesaActivity Activity when the
new Menu Item is selected. To launch the Preferences
Activity, create an explicit Intent, and pass it in to the
startActivityForResult method. This will launch the
Activity and alert the Earthquake class when the prefer-
ences are saved through the onActivityResult handler:

super.onOptionsItemSelected (item) ;
switch (item.getItemId()) {

case (MENU_PREFERENCES) : {

Intent i = new Intent(this,
PreferencesActivity.class);

startActivityForResult (i, SHOW_PREFERENCES) ;
return true;

}

return false;

Launch your application and select Preferences from the
Activity menu. The Preferences Activity should be dis-
played, as shown in Figure 7-1. FIGURE 7-1

www.it-ebooks.info

http://www.it-ebooks.info/

230 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

13. All that’s left is to apply the preferences to the earthquake functionality. Implementing the
automatic updates will be left until Chapter 9, “Working in the Background,” where you’ll
learn to use Services and background threads. For now you can put the framework in place
and apply the magnitude filter. Start by creating a new updateFromPreferences method in
the Earthquake Activity that reads the Shared Preference values and creates instance variables
for each of them:

public int minimumMagnitude = 0;
public boolean autoUpdateChecked = false;
public int updateFreq = 0;

private void updateFromPreferences () {
Context context = getApplicationContext();
SharedPreferences prefs =
PreferenceManager.getDefaultSharedPreferences (context) ;

int minMagIndex = prefs.getInt (PreferencesActivity.PREF_MIN_MAG_INDEX, 0);
if (minMagIndex < 0)
minMagIndex = 0;

int fregIndex = prefs.getInt (PreferencesActivity.PREF_UPDATE_FREQ INDEX, 0);
if (fregIndex < 0)
freqgqIndex = 0;

autoUpdateChecked = prefs.getBoolean (PreferencesActivity.PREF_AUTO_UPDATE, false);

Resources r = getResources();

// Get the option values from the arrays.

String[] minMagValues = r.getStringArray(R.array.magnitude);
String[] fregValues = r.getStringArray(R.array.update_freqg values);

// Convert the values to ints.
minimumMagnitude = Integer.valueOf (minMagValues[minMagIndex]) ;
updateFreq = Integer.valueOf (fregValues|[fregIndex]) ;

14. Apply the magnitude filter by updating the addNewQuake method from the
EarthquakeListFragment to check a new earthquake’s magnitude before adding it to
the list:

private void addNewQuake (Quake _quake) {
Earthquake earthquakeActivity = (Earthquake)getActivity();
if (_quake.getMagnitude() > earthquakeActivity.minimumMagnitude) {

// Add the new quake to our list of earthquakes.
earthquakes.add (_quake) ;

// Notify the array adapter of a change.
aa.notifyDataSetChanged() ;

15. Return to the Earthquake Activity and override the onaActivityResult handler to call
updateFromPreferences and refresh the earthquakes whenever the Preferences Activity

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing the Preference Framework and the Preference Activity | 231

saves changes. Note that once again you are creating a new Thread on which to execute the
earthquake refresh code.

@Override
public void onActivityResult (int requestCode, int resultCode, Intent data) {
super.onActivityResult (requestCode, resultCode, data);

if (requestCode == SHOW_PREFERENCES)
if (resultCode == Activity.RESULT OK) {
updateFromPreferences () ;
FragmentManager fm = getFragmentManager () ;
final EarthquakeListFragment earthquakeList =

(EarthquakeListFragment) fm. findFragmentById(R.1id.EarthquakeListFragment) ;

Thread t = new Thread(new Runnable() {
public void run() {
earthquakeList.refreshEarthquakes() ;
}
1)
t.start();

16. Finally, call updateFromPreferences in onCreate of the Earthquake Activity to ensure the
preferences are applied when the Activity starts:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

updateFromPreferences();
}

All code snippets in this example are part of the Chapter 7 Earthquake Part 1
project, available for download at www.wrox.com.

INTRODUCING THE PREFERENCE FRAMEWORK AND THE
PREFERENCE ACTIVITY

Android offers an XML-driven framework to create system-style Preference Screens for your appli-
cations. By using this framework you can create Preference Activities that are consistent with those
used in both native and other third-party applications.

This has two distinct advantages:
> Users will be familiar with the layout and use of your settings screens.
> You can integrate settings screens from other applications (including system settings such as

location settings) into your application’s preferences.

www.it-ebooks.info

http://www.wrox.com
http://www.it-ebooks.info/

232 | CHAPTER7 FILES, SAVING STATE,AND PREFERENCES

The preference framework consists of four parts:

> Preference Screen layout — An XML file that defines the hierarchy of items displayed in your
Preference screens. It specifies the text and associated controls to display, the allowed values,
and the Shared Preference keys to use for each control.

> Preference Activity and Preference Fragment — Extensions of Preferenceactivity and
PreferenceFragment respectively, that are used to host the Preference Screens. Prior to
Android 3.0, Preference Activities hosted the Preference Screen directly; since then, Preference
Screens are hosted by Preference Fragments, which, in turn, are hosted by Preference
Activities.

> Preference Header definition — An XML file that defines the Preference Fragments for your
application and the hierarchy that should be used to display them.

> Shared Preference Change Listener — An implementation of the
OnSharedPreferenceChangeListener class used to listen for changes to Shared Preferences.

é) Android API level 11 (Android 3.0) introduced significant changes to the pref-
erence framework by introducing the concept of Preference Fragments and
Preference Headers. This is now the preferred technique for creating Activity
Preference screens.

As of the time of writing, Preference Fragments are not included in the support
library, restricting their use to devices Android 3.0 and above.

The following sections describe the best practice techniques for creating Activity
screens for Android 3.0+ devices, making note of how to achieve similar func-
tionality for older devices.

Defining a Preference Screen Layout in XML
Unlike in the standard UI layout, preference definitions are stored in the res/xml resources folder.

Although conceptually they are similar to the UI layout resources described in Chapter 4,
“Building User Interfaces,” Preference Screen layouts use a specialized set of controls designed
specifically for preferences. These native preference controls are described in the next

section.

Each preference layout is defined as a hierarchy, beginning with a single Preferencescreen
element:

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">

</PreferenceScreen>

You can include additional Preference Screen elements, each of which will be represented as a select-
able element that will display a new screen when clicked.

www.it-ebooks.info

http://schemas.android.com/apk/res/android%E2%80%9D
http://www.it-ebooks.info/

Introducing the Preference Framework and the Preference