

1. Preface

a. Conventions Used in This Book

b. Using Code Examples

c. O’Reilly Online Learning

d. How to Contact Us

e. Acknowledgments

2. 1. Exploratory Data Analysis

a. Elements of Structured Data

i. Further Reading

b. Rectangular Data

i. Data Frames and Indexes

ii. Nonrectangular Data

Structures

iii. Further Reading

c. Estimates of Location

i. Mean

ii. Median and Robust

Estimates

iii. Example: Location

Estimates of Population

and Murder Rates

iv. Further Reading

d. Estimates of Variability

i. Standard Deviation and

Related Estimates

ii. Estimates Based on

Percentiles

iii. Example: Variability

Estimates of State

Population

iv. Further Reading

e. Exploring the Data Distribution

i. Percentiles and Boxplots

ii. Frequency Tables and

Histograms

iii. Density Plots and

Estimates

iv. Further Reading

f. Exploring Binary and Categorical

Data

i. Mode

ii. Expected Value

iii. Probability

iv. Further Reading

g. Correlation

i. Scatterplots

ii. Further Reading

h. Exploring Two or More Variables

i. Hexagonal Binning and

Contours (Plotting

Numeric Versus Numeric

Data)

ii. Two Categorical Variables

iii. Categorical and Numeric

Data

iv. Visualizing Multiple

Variables

v. Further Reading

i. Summary

3. 2. Data and Sampling Distributions

a. Random Sampling and Sample

Bias

i. Bias

ii. Random Selection

iii. Size Versus Quality: When

Does Size Matter?

iv. Sample Mean Versus

Population Mean

v. Further Reading

b. Selection Bias

i. Regression to the Mean

ii. Further Reading

c. Sampling Distribution of a Statistic

i. Central Limit Theorem

ii. Standard Error

iii. Further Reading

d. The Bootstrap

i. Resampling Versus

Bootstrapping

ii. Further Reading

e. Confidence Intervals

i. Further Reading

f. Normal Distribution

i. Standard Normal and QQ-

Plots

g. Long-Tailed Distributions

i. Further Reading

h. Student’s t-Distribution

i. Further Reading

i. Binomial Distribution

i. Further Reading

j. Chi-Square Distribution

i. Further Reading

k. F-Distribution

i. Further Reading

l. Poisson and Related Distributions

i. Poisson Distributions

ii. Exponential Distribution

iii. Estimating the Failure Rate

iv. Weibull Distribution

v. Further Reading

m. Summary

4. 3. Statistical Experiments and Significance

Testing

a. A/B Testing

i. Why Have a Control

Group?

ii. Why Just A/B? Why Not C,

D,…?

iii. Further Reading

b. Hypothesis Tests

i. The Null Hypothesis

ii. Alternative Hypothesis

iii. One-Way Versus Two-Way

Hypothesis Tests

iv. Further Reading

c. Resampling

i. Permutation Test

ii. Example: Web Stickiness

iii. Exhaustive and Bootstrap

Permutation Tests

iv. Permutation Tests: The

Bottom Line for Data

Science

v. Further Reading

d. Statistical Significance and p-

Values

i. p-Value

ii. Alpha

iii. Type 1 and Type 2 Errors

iv. Data Science and p-Values

v. Further Reading

e. t-Tests

i. Further Reading

f. Multiple Testing

i. Further Reading

g. Degrees of Freedom

i. Further Reading

h. ANOVA

i. F-Statistic

ii. Two-Way ANOVA

iii. Further Reading

i. Chi-Square Test

i. Chi-Square Test: A

Resampling Approach

ii. Chi-Square Test: Statistical

Theory

iii. Fisher’s Exact Test

iv. Relevance for Data Science

v. Further Reading

j. Multi-Arm Bandit Algorithm

i. Further Reading

k. Power and Sample Size

i. Sample Size

ii. Further Reading

l. Summary

5. 4. Regression and Prediction

a. Simple Linear Regression

i. The Regression Equation

ii. Fitted Values and

Residuals

iii. Least Squares

iv. Prediction Versus

Explanation (Profiling)

v. Further Reading

b. Multiple Linear Regression

i. Example: King County

Housing Data

ii. Assessing the Model

iii. Cross-Validation

iv. Model Selection and

Stepwise Regression

v. Weighted Regression

vi. Further Reading

c. Prediction Using Regression

i. The Dangers of

Extrapolation

ii. Confidence and Prediction

Intervals

d. Factor Variables in Regression

i. Dummy Variables

Representation

ii. Factor Variables with Many

Levels

iii. Ordered Factor Variables

e. Interpreting the Regression

Equation

i. Correlated Predictors

ii. Multicollinearity

iii. Confounding Variables

iv. Interactions and Main

Effects

f. Regression Diagnostics

i. Outliers

ii. Influential Values

iii. Heteroskedasticity, Non-

Normality, and Correlated

Errors

iv. Partial Residual Plots and

Nonlinearity

g. Polynomial and Spline Regression

i. Polynomial

ii. Splines

iii. Generalized Additive

Models

iv. Further Reading

h. Summary

6. 5. Classification

a. Naive Bayes

i. Why Exact Bayesian

Classification Is

Impractical

ii. The Naive Solution

iii. Numeric Predictor

Variables

iv. Further Reading

b. Discriminant Analysis

i. Covariance Matrix

ii. Fisher’s Linear

Discriminant

iii. A Simple Example

iv. Further Reading

c. Logistic Regression

i. Logistic Response Function

and Logit

ii. Logistic Regression and the

GLM

iii. Generalized Linear Models

iv. Predicted Values from

Logistic Regression

v. Interpreting the

Coefficients and Odds

Ratios

vi. Linear and Logistic

Regression: Similarities

and Differences

vii. Assessing the Model

viii. Further Reading

d. Evaluating Classification Models

i. Confusion Matrix

ii. The Rare Class Problem

iii. Precision, Recall, and

Specificity

iv. ROC Curve

v. AUC

vi. Lift

vii. Further Reading

e. Strategies for Imbalanced Data

i. Undersampling

ii. Oversampling and

Up/Down Weighting

iii. Data Generation

iv. Cost-Based Classification

v. Exploring the Predictions

vi. Further Reading

f. Summary

7. 6. Statistical Machine Learning

a. K-Nearest Neighbors

i. A Small Example:

Predicting Loan Default

ii. Distance Metrics

iii. One Hot Encoder

iv. Standardization

(Normalization, z-Scores)

v. Choosing K

vi. KNN as a Feature Engine

b. Tree Models

i. A Simple Example

ii. The Recursive Partitioning

Algorithm

iii. Measuring Homogeneity or

Impurity

iv. Stopping the Tree from

Growing

v. Predicting a Continuous

Value

vi. How Trees Are Used

vii. Further Reading

c. Bagging and the Random Forest

i. Bagging

ii. Random Forest

iii. Variable Importance

iv. Hyperparameters

d. Boosting

i. The Boosting Algorithm

ii. XGBoost

iii. Regularization: Avoiding

Overfitting

iv. Hyperparameters and

Cross-Validation

e. Summary

8. 7. Unsupervised Learning

a. Principal Components Analysis

i. A Simple Example

ii. Computing the Principal

Components

iii. Interpreting Principal

Components

iv. Correspondence Analysis

v. Further Reading

b. K-Means Clustering

i. A Simple Example

ii. K-Means Algorithm

iii. Interpreting the Clusters

iv. Selecting the Number of

Clusters

c. Hierarchical Clustering

i. A Simple Example

ii. The Dendrogram

iii. The Agglomerative

Algorithm

iv. Measures of Dissimilarity

d. Model-Based Clustering

i. Multivariate Normal

Distribution

ii. Mixtures of Normals

iii. Selecting the Number of

Clusters

iv. Further Reading

e. Scaling and Categorical Variables

i. Scaling the Variables

ii. Dominant Variables

iii. Categorical Data and

Gower’s Distance

iv. Problems with Clustering

Mixed Data

f. Summary

9. Bibliography

10. Index

Practical Statistics for
Data Scientists

SECOND EDITION

50+ Essential Concepts Using R and
Python

Peter Bruce, Andrew Bruce, and
Peter Gedeck

Practical Statistics for Data Scientists

by Peter Bruce, Andrew Bruce, and Peter Gedeck

Copyright © 2020 Peter Bruce, Andrew Bruce, and
Peter Gedeck. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational,
business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For
more information, contact our corporate/institutional
sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Nicole Tache

Production Editor: Kristen Brown

Copyeditor: Piper Editorial

Proofreader: Arthur Johnson

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

May 2017: First Edition

May 2020: Second Edition

http://oreilly.com/

Revision History for the Second Edition

2020-04-10: First Release

See http://oreilly.com/catalog/errata.csp?
isbn=9781492072942 for release details.

The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Practical Statistics for Data Scientists, the
cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the
authors, and do not represent the publisher’s views.
While the publisher and the authors have used good
faith efforts to ensure that the information and
instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for
errors or omissions, including without limitation
responsibility for damages resulting from the use of or
reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If
any code samples or other technology this work contains
or describes is subject to open source licenses or the
intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-492-07294-2

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492072942

Dedication

Peter Bruce and Andrew Bruce would like to dedicate
this book to the memories of our parents, Victor G.
Bruce and Nancy C. Bruce, who cultivated a passion for
math and science; and to our early mentors John W.
Tukey and Julian Simon and our lifelong friend Geoff
Watson, who helped inspire us to pursue a career in
statistics.

Peter Gedeck would like to dedicate this book to Tim
Clark and Christian Kramer, with deep thanks for their
scientific collaboration and friendship.

Preface

This book is aimed at the data scientist with some
familiarity with the R and/or Python programming
languages, and with some prior (perhaps spotty or
ephemeral) exposure to statistics. Two of the authors
came to the world of data science from the world of
statistics, and have some appreciation of the
contribution that statistics can make to the art of data
science. At the same time, we are well aware of the
limitations of traditional statistics instruction: statistics
as a discipline is a century and a half old, and most
statistics textbooks and courses are laden with the
momentum and inertia of an ocean liner. All the
methods in this book have some connection—historical
or methodological—to the discipline of statistics.
Methods that evolved mainly out of computer science,
such as neural nets, are not included.

Two goals underlie this book:

To lay out, in digestible, navigable, and easily
referenced form, key concepts from statistics
that are relevant to data science.

To explain which concepts are important and
useful from a data science perspective, which
are less so, and why.

Conventions Used in This Book

The following typographical conventions are used in
this book:

Italic

Indicates new terms, URLs, email addresses,
filenames, and file extensions.

Constant width

Used for program listings, as well as within
paragraphs to refer to program elements such as
variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed
literally by the user.

KEY TERMS
Data science is a fusion of multiple disciplines, including statistics, computer
science, information technology, and domain-specific fields. As a result, several
different terms could be used to reference a given concept. Key terms and their
synonyms will be highlighted throughout the book in a sidebar such as this.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
In all cases, this book gives code examples first in R and
then in Python. In order to avoid unnecessary repetition,

we generally show only output and plots created by the
R code. We also skip the code required to load the
required packages and data sets. You can find the
complete code as well as the data sets for download at
https://github.com/gedeck/practical-statistics-for-data-
scientists.

This book is here to help you get your job done. In
general, if example code is offered with this book, you
may use it in your programs and documentation. You do
not need to contact us for permission unless you’re
reproducing a significant portion of the code. For
example, writing a program that uses several chunks of
code from this book does not require permission. Selling
or distributing examples from O’Reilly books does
require permission. Answering a question by citing this
book and quoting example code does not require
permission. Incorporating a significant amount of
example code from this book into your product’s
documentation does require permission.

We appreciate, but do not require, attribution. An
attribution usually includes the title, author, publisher,
and ISBN. For example: “Practical Statistics for Data
Scientists by Peter Bruce, Andrew Bruce, and Peter
Gedeck (O’Reilly). Copyright 2020 Peter Bruce,
Andrew Bruce, and Peter Gedeck, 978-1-492-07294-2.”

If you feel your use of code examples falls outside fair
use or the permission given above, feel free to contact us
at permissions@oreilly.com.

https://github.com/gedeck/practical-statistics-for-data-scientists
mailto:permissions@oreilly.com

O’Reilly Online Learning
NOTE

For more than 40 years, O’Reilly Media has provided
technology and business training, knowledge, and insight to
help companies succeed.

Our unique network of experts and innovators share
their knowledge and expertise through books, articles,
and our online learning platform. O’Reilly’s online
learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive
coding environments, and a vast collection of text and
video from O’Reilly and 200+ other publishers. For
more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this
book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can

http://oreilly.com/
http://oreilly.com/

access this page at
https://oreil.ly/practicalStats_dataSci_2e.

Email bookquestions@oreilly.com to comment or ask
technical questions about this book.

For news and more information about our books and
courses, see our website at http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube:
http://www.youtube.com/oreillymedia

Acknowledgments
The authors acknowledge the many people who helped
make this book a reality.

Gerhard Pilcher, CEO of the data mining firm Elder
Research, saw early drafts of the book and gave us
detailed and helpful corrections and comments.
Likewise, Anya McGuirk and Wei Xiao, statisticians at
SAS, and Jay Hilfiger, fellow O’Reilly author, provided
helpful feedback on initial drafts of the book. Toshiaki
Kurokawa, who translated the first edition into Japanese,
did a comprehensive job of reviewing and correcting in
the process. Aaron Schumacher and Walter Paczkowski
thoroughly reviewed the second edition of the book and
provided numerous helpful and valuable suggestions for
which we are extremely grateful. Needless to say, any
errors that remain are ours alone.

https://oreil.ly/practicalStats_dataSci_2e
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

At O’Reilly, Shannon Cutt has shepherded us through
the publication process with good cheer and the right
amount of prodding, while Kristen Brown smoothly
took our book through the production phase. Rachel
Monaghan and Eliahu Sussman corrected and improved
our writing with care and patience, while Ellen
Troutman-Zaig prepared the index. Nicole Tache took
over the reins for the second edition and has both guided
the process effectively and provided many good
editorial suggestions to improve the readability of the
book for a broad audience. We also thank Marie
Beaugureau, who initiated our project at O’Reilly, as
well as Ben Bengfort, O’Reilly author and
Statistics.com instructor, who introduced us to O’Reilly.

We, and this book, have also benefited from the many
conversations Peter has had over the years with Galit
Shmueli, coauthor on other book projects.

Finally, we would like to especially thank Elizabeth
Bruce and Deborah Donnell, whose patience and
support made this endeavor possible.

Chapter 1. Exploratory Data
Analysis

This chapter focuses on the first step in any data science project:
exploring the data.

Classical statistics focused almost exclusively on inference, a
sometimes complex set of procedures for drawing conclusions
about large populations based on small samples. In 1962, John W.
Tukey (Figure 1-1) called for a reformation of statistics in his
seminal paper “The Future of Data Analysis” [Tukey-1962]. He
proposed a new scientific discipline called data analysis that
included statistical inference as just one component. Tukey forged
links to the engineering and computer science communities (he
coined the terms bit, short for binary digit, and software), and his
original tenets are surprisingly durable and form part of the
foundation for data science. The field of exploratory data analysis
was established with Tukey’s 1977 now-classic book Exploratory
Data Analysis [Tukey-1977]. Tukey presented simple plots (e.g.,
boxplots, scatterplots) that, along with summary statistics (mean,
median, quantiles, etc.), help paint a picture of a data set.

With the ready availability of computing power and expressive data
analysis software, exploratory data analysis has evolved well
beyond its original scope. Key drivers of this discipline have been
the rapid development of new technology, access to more and
bigger data, and the greater use of quantitative analysis in a variety
of disciplines. David Donoho, professor of statistics at Stanford
University and former undergraduate student of Tukey’s, authored
an excellent article based on his presentation at the Tukey
Centennial workshop in Princeton, New Jersey [Donoho-2015].
Donoho traces the genesis of data science back to Tukey’s
pioneering work in data analysis.

https://oreil.ly/LQw6q

Figure 1-1. John Tukey, the eminent statistician whose ideas developed over 50 years ago
form the foundation of data science

Elements of Structured Data
Data comes from many sources: sensor measurements, events, text,
images, and videos. The Internet of Things (IoT) is spewing out
streams of information. Much of this data is unstructured: images
are a collection of pixels, with each pixel containing RGB (red,
green, blue) color information. Texts are sequences of words and
nonword characters, often organized by sections, subsections, and
so on. Clickstreams are sequences of actions by a user interacting
with an app or a web page. In fact, a major challenge of data science
is to harness this torrent of raw data into actionable information. To
apply the statistical concepts covered in this book, unstructured raw
data must be processed and manipulated into a structured form. One
of the commonest forms of structured data is a table with rows and
columns—as data might emerge from a relational database or be
collected for a study.

There are two basic types of structured data: numeric and
categorical. Numeric data comes in two forms: continuous, such as
wind speed or time duration, and discrete, such as the count of the
occurrence of an event. Categorical data takes only a fixed set of
values, such as a type of TV screen (plasma, LCD, LED, etc.) or a
state name (Alabama, Alaska, etc.). Binary data is an important
special case of categorical data that takes on only one of two values,
such as 0/1, yes/no, or true/false. Another useful type of categorical

data is ordinal data in which the categories are ordered; an example
of this is a numerical rating (1, 2, 3, 4, or 5).

Why do we bother with a taxonomy of data types? It turns out that
for the purposes of data analysis and predictive modeling, the data
type is important to help determine the type of visual display, data
analysis, or statistical model. In fact, data science software, such as
R and Python, uses these data types to improve computational
performance. More important, the data type for a variable
determines how software will handle computations for that variable.

KEY TERMS FOR DATA TYPES

Numeric

Data that are expressed on a numeric scale.

Continuous

Data that can take on any value in an interval. (Synonyms: interval, float, numeric)

Discrete

Data that can take on only integer values, such as counts. (Synonyms: integer, count)

Categorical

Data that can take on only a specific set of values representing a set of possible categories.
(Synonyms: enums, enumerated, factors, nominal)

Binary

A special case of categorical data with just two categories of values, e.g., 0/1, true/false.
(Synonyms: dichotomous, logical, indicator, boolean)

Ordinal

Categorical data that has an explicit ordering. (Synonym: ordered factor)

Software engineers and database programmers may wonder why we
even need the notion of categorical and ordinal data for analytics.
After all, categories are merely a collection of text (or numeric)
values, and the underlying database automatically handles the
internal representation. However, explicit identification of data as
categorical, as distinct from text, does offer some advantages:

Knowing that data is categorical can act as a signal telling
software how statistical procedures, such as producing a
chart or fitting a model, should behave. In particular,

ordinal data can be represented as an ordered.factor
in R, preserving a user-specified ordering in charts, tables,
and models. In Python, scikit-learn supports ordinal
data with the
sklearn.preprocessing.OrdinalEncoder.

Storage and indexing can be optimized (as in a relational
database).

The possible values a given categorical variable can take
are enforced in the software (like an enum).

The third “benefit” can lead to unintended or unexpected behavior:
the default behavior of data import functions in R (e.g.,
read.csv) is to automatically convert a text column into a
factor. Subsequent operations on that column will assume that
the only allowable values for that column are the ones originally
imported, and assigning a new text value will introduce a warning
and produce an NA (missing value). The pandas package in
Python will not make such a conversion automatically. However,
you can specify a column as categorical explicitly in the
read_csv function.

KEY IDEAS

Data is typically classified in software by type.

Data types include numeric (continuous, discrete) and categorical (binary, ordinal).

Data typing in software acts as a signal to the software on how to process the data.

Further Reading
The pandas documentation describes the different data
types and how they can be manipulated in Python.

Data types can be confusing, since types may overlap, and
the taxonomy in one software may differ from that in
another. The R Tutorial website covers the taxonomy for R.
The pandas documentation describes the different data
types and how they can be manipulated in Python.

Databases are more detailed in their classification of data
types, incorporating considerations of precision levels,

https://oreil.ly/UGX-4
https://oreil.ly/2YUoA
https://oreil.ly/UGX-4

fixed- or variable-length fields, and more; see the
W3Schools guide to SQL.

Rectangular Data
The typical frame of reference for an analysis in data science is a
rectangular data object, like a spreadsheet or database table.

Rectangular data is the general term for a two-dimensional matrix
with rows indicating records (cases) and columns indicating
features (variables); data frame is the specific format in R and
Python. The data doesn’t always start in this form: unstructured data
(e.g., text) must be processed and manipulated so that it can be
represented as a set of features in the rectangular data (see
“Elements of Structured Data”). Data in relational databases must
be extracted and put into a single table for most data analysis and
modeling tasks.

KEY TERMS FOR RECTANGULAR DATA

Data frame

Rectangular data (like a spreadsheet) is the basic data structure for statistical and machine
learning models.

Feature

A column within a table is commonly referred to as a feature.

Synonyms

attribute, input, predictor, variable

Outcome

Many data science projects involve predicting an outcome—often a yes/no outcome (in Table 1-
1, it is “auction was competitive or not”). The features are sometimes used to predict the
outcome in an experiment or a study.

Synonyms

dependent variable, response, target, output

Records

A row within a table is commonly referred to as a record.

Synonyms

case, example, instance, observation, pattern, sample

https://oreil.ly/cThTM

Table 1-1. A typical data frame format

Category

curr
enc
y

seller
Rating

Dur
atio
n

end
Day

Close
Price

Open
Price

Compet
itive?

Music/Mov
ie/Game

US 3249 5 Mon 0.01 0.01 0

Music/Mov
ie/Game

US 3249 5 Mon 0.01 0.01 0

Automotiv
e

US 3115 7 Tue 0.01 0.01 0

Automotiv
e

US 3115 7 Tue 0.01 0.01 0

Automotiv
e

US 3115 7 Tue 0.01 0.01 0

Automotiv
e

US 3115 7 Tue 0.01 0.01 0

Automotiv
e

US 3115 7 Tue 0.01 0.01 1

Automotiv
e

US 3115 7 Tue 0.01 0.01 1

In Table 1-1, there is a mix of measured or counted data (e.g.,
duration and price) and categorical data (e.g., category and
currency). As mentioned earlier, a special form of categorical
variable is a binary (yes/no or 0/1) variable, seen in the rightmost
column in Table 1-1—an indicator variable showing whether an
auction was competitive (had multiple bidders) or not. This
indicator variable also happens to be an outcome variable, when the
scenario is to predict whether an auction is competitive or not.

Data Frames and Indexes

Traditional database tables have one or more columns designated as
an index, essentially a row number. This can vastly improve the
efficiency of certain database queries. In Python, with the pandas
library, the basic rectangular data structure is a DataFrame object.
By default, an automatic integer index is created for a DataFrame
based on the order of the rows. In pandas, it is also possible to set
multilevel/hierarchical indexes to improve the efficiency of certain
operations.

In R, the basic rectangular data structure is a data.frame object.
A data.frame also has an implicit integer index based on the
row order. The native R data.frame does not support user-
specified or multilevel indexes, though a custom key can be created
through the row.names attribute. To overcome this deficiency,
two new packages are gaining widespread use: data.table and
dplyr. Both support multilevel indexes and offer significant
speedups in working with a data.frame.

TERMINOLOGY DIFFERENCES
Terminology for rectangular data can be confusing. Statisticians and data
scientists use different terms for the same thing. For a statistician, predictor
variables are used in a model to predict a response or dependent variable. For
a data scientist, features are used to predict a target. One synonym is
particularly confusing: computer scientists will use the term sample for a
single row; a sample to a statistician means a collection of rows.

Nonrectangular Data Structures
There are other data structures besides rectangular data.

Time series data records successive measurements of the same
variable. It is the raw material for statistical forecasting methods,
and it is also a key component of the data produced by devices—the
Internet of Things.

Spatial data structures, which are used in mapping and location
analytics, are more complex and varied than rectangular data
structures. In the object representation, the focus of the data is an
object (e.g., a house) and its spatial coordinates. The field view, by

contrast, focuses on small units of space and the value of a relevant
metric (pixel brightness, for example).

Graph (or network) data structures are used to represent physical,
social, and abstract relationships. For example, a graph of a social
network, such as Facebook or LinkedIn, may represent connections
between people on the network. Distribution hubs connected by
roads are an example of a physical network. Graph structures are
useful for certain types of problems, such as network optimization
and recommender systems.

Each of these data types has its specialized methodology in data
science. The focus of this book is on rectangular data, the
fundamental building block of predictive modeling.

GRAPHS IN STATISTICS
In computer science and information technology, the term graph typically
refers to a depiction of the connections among entities, and to the underlying
data structure. In statistics, graph is used to refer to a variety of plots and
visualizations, not just of connections among entities, and the term applies
only to the visualization, not to the data structure.

KEY IDEAS

The basic data structure in data science is a rectangular matrix in which rows are records
and columns are variables (features).

Terminology can be confusing; there are a variety of synonyms arising from the different
disciplines that contribute to data science (statistics, computer science, and information
technology).

Further Reading
Documentation on data frames in R

Documentation on data frames in Python

Estimates of Location
Variables with measured or count data might have thousands of
distinct values. A basic step in exploring your data is getting a
“typical value” for each feature (variable): an estimate of where
most of the data is located (i.e., its central tendency).

https://oreil.ly/NsONR
https://oreil.ly/oxDKQ

KEY TERMS FOR ESTIMATES OF LOCATION

Mean

The sum of all values divided by the number of values.

Synonym

average

Weighted mean

The sum of all values times a weight divided by the sum of the weights.

Synonym

weighted average

Median

The value such that one-half of the data lies above and below.

Synonym

50th percentile

Percentile

The value such that P percent of the data lies below.

Synonym

quantile

Weighted median

The value such that one-half of the sum of the weights lies above and below the sorted data.

Trimmed mean

The average of all values after dropping a fixed number of extreme values.

Synonym

truncated mean

Robust

Not sensitive to extreme values.

Synonym

resistant

Outlier

A data value that is very different from most of the data.

Synonym

extreme value

At first glance, summarizing data might seem fairly trivial: just take
the mean of the data. In fact, while the mean is easy to compute and
expedient to use, it may not always be the best measure for a central
value. For this reason, statisticians have developed and promoted
several alternative estimates to the mean.

METRICS AND ESTIMATES
Statisticians often use the term estimate for a value calculated from the data at
hand, to draw a distinction between what we see from the data and the
theoretical true or exact state of affairs. Data scientists and business analysts
are more likely to refer to such a value as a metric. The difference reflects the
approach of statistics versus that of data science: accounting for uncertainty
lies at the heart of the discipline of statistics, whereas concrete business or
organizational objectives are the focus of data science. Hence, statisticians
estimate, and data scientists measure.

Mean
The most basic estimate of location is the mean, or average value.
The mean is the sum of all values divided by the number of values.
Consider the following set of numbers: {3 5 1 2}. The mean is (3 +
5 + 1 + 2) / 4 = 11 / 4 = 2.75. You will encounter the symbol x
(pronounced “x-bar”) being used to represent the mean of a sample
from a population. The formula to compute the mean for a set of n
values x1, x2, ..., xn is:

Mean = x =
∑n

i=1 xi

n

NOTE
N (or n) refers to the total number of records or observations. In statistics it is
capitalized if it is referring to a population, and lowercase if it refers to a
sample from a population. In data science, that distinction is not vital, so you
may see it both ways.

A variation of the mean is a trimmed mean, which you calculate by
dropping a fixed number of sorted values at each end and then
taking an average of the remaining values. Representing the sorted
values by x(1), x(2), ..., x(n) where x(1) is the smallest value and

x(n) the largest, the formula to compute the trimmed mean with p
smallest and largest values omitted is:

Trimmed mean = x =
∑n−p

i=p+1 x(i)

n − 2p

A trimmed mean eliminates the influence of extreme values. For
example, in international diving the top score and bottom score
from five judges are dropped, and the final score is the average of
the scores from the three remaining judges. This makes it difficult
for a single judge to manipulate the score, perhaps to favor their
country’s contestant. Trimmed means are widely used, and in many
cases are preferable to using the ordinary mean—see “Median and
Robust Estimates” for further discussion.

Another type of mean is a weighted mean, which you calculate by
multiplying each data value xi by a user-specified weight wi and
dividing their sum by the sum of the weights. The formula for a
weighted mean is:

Weighted mean = xw =
∑n

i=1 wixi

∑n
i=1 wi

There are two main motivations for using a weighted mean:

Some values are intrinsically more variable than others,
and highly variable observations are given a lower weight.
For example, if we are taking the average from multiple
sensors and one of the sensors is less accurate, then we
might downweight the data from that sensor.

The data collected does not equally represent the different
groups that we are interested in measuring. For example,
because of the way an online experiment was conducted,
we may not have a set of data that accurately reflects all
groups in the user base. To correct that, we can give a
higher weight to the values from the groups that were
underrepresented.

Median and Robust Estimates

https://oreil.ly/uV4P0

The median is the middle number on a sorted list of the data. If
there is an even number of data values, the middle value is one that
is not actually in the data set, but rather the average of the two
values that divide the sorted data into upper and lower halves.
Compared to the mean, which uses all observations, the median
depends only on the values in the center of the sorted data. While
this might seem to be a disadvantage, since the mean is much more
sensitive to the data, there are many instances in which the median
is a better metric for location. Let’s say we want to look at typical
household incomes in neighborhoods around Lake Washington in
Seattle. In comparing the Medina neighborhood to the Windermere
neighborhood, using the mean would produce very different results
because Bill Gates lives in Medina. If we use the median, it won’t
matter how rich Bill Gates is—the position of the middle
observation will remain the same.

For the same reasons that one uses a weighted mean, it is also
possible to compute a weighted median. As with the median, we
first sort the data, although each data value has an associated
weight. Instead of the middle number, the weighted median is a
value such that the sum of the weights is equal for the lower and
upper halves of the sorted list. Like the median, the weighted
median is robust to outliers.

OUTLIERS

The median is referred to as a robust estimate of location since it is
not influenced by outliers (extreme cases) that could skew the
results. An outlier is any value that is very distant from the other
values in a data set. The exact definition of an outlier is somewhat
subjective, although certain conventions are used in various data
summaries and plots (see “Percentiles and Boxplots”). Being an
outlier in itself does not make a data value invalid or erroneous (as
in the previous example with Bill Gates). Still, outliers are often the
result of data errors such as mixing data of different units
(kilometers versus meters) or bad readings from a sensor. When
outliers are the result of bad data, the mean will result in a poor

estimate of location, while the median will still be valid. In any
case, outliers should be identified and are usually worthy of further
investigation.

ANOMALY DETECTION
In contrast to typical data analysis, where outliers are sometimes informative
and sometimes a nuisance, in anomaly detection the points of interest are the
outliers, and the greater mass of data serves primarily to define the “normal”
against which anomalies are measured.

The median is not the only robust estimate of location. In fact, a
trimmed mean is widely used to avoid the influence of outliers. For
example, trimming the bottom and top 10% (a common choice) of
the data will provide protection against outliers in all but the
smallest data sets. The trimmed mean can be thought of as a
compromise between the median and the mean: it is robust to
extreme values in the data, but uses more data to calculate the
estimate for location.

OTHER ROBUST METRICS FOR LOCATION
Statisticians have developed a plethora of other estimators for location,
primarily with the goal of developing an estimator more robust than the mean
and also more efficient (i.e., better able to discern small location differences
between data sets). While these methods are potentially useful for small data
sets, they are not likely to provide added benefit for large or even moderately
sized data sets.

Example: Location Estimates of Population and
Murder Rates
Table 1-2 shows the first few rows in the data set containing
population and murder rates (in units of murders per 100,000 people
per year) for each US state (2010 Census).

Table 1-2. A few rows of the data.frame state of population and
murder rate by state

State Population Murder rate Abbreviation

1 Alabama 4,779,736 5.7 AL

2 Alaska 710,231 5.6 AK

3 Arizona 6,392,017 4.7 AZ

4 Arkansas 2,915,918 5.6 AR

5 California 37,253,956 4.4 CA

6 Colorado 5,029,196 2.8 CO

7 Connecticut 3,574,097 2.4 CT

8 Delaware 897,934 5.8 DE

Compute the mean, trimmed mean, and median for the population
using R:

> state <- read.csv('state.csv')

> mean(state[['Population']])

[1] 6162876

> mean(state[['Population']], trim=0.1)

[1] 4783697

> median(state[['Population']])

[1] 4436370

To compute mean and median in Python we can use the pandas
methods of the data frame. The trimmed mean requires the
trim_mean function in scipy.stats:

state = pd.read_csv('state.csv')

state['Population'].mean()

trim_mean(state['Population'], 0.1)

state['Population'].median()

The mean is bigger than the trimmed mean, which is bigger than the
median.

This is because the trimmed mean excludes the largest and smallest
five states (trim=0.1 drops 10% from each end). If we want to
compute the average murder rate for the country, we need to use a
weighted mean or median to account for different populations in the
states. Since base R doesn’t have a function for weighted median,
we need to install a package such as matrixStats:

> weighted.mean(state[['Murder.Rate']],

w=state[['Population']])

[1] 4.445834

> library('matrixStats')

> weightedMedian(state[['Murder.Rate']],

w=state[['Population']])

[1] 4.4

Weighted mean is available with NumPy. For weighted median, we
can use the specialized package wquantiles:

np.average(state['Murder.Rate'],

weights=state['Population'])

wquantiles.median(state['Murder.Rate'],

weights=state['Population'])

In this case, the weighted mean and the weighted median are about
the same.

KEY IDEAS

The basic metric for location is the mean, but it can be sensitive to extreme values
(outlier).

Other metrics (median, trimmed mean) are less sensitive to outliers and unusual
distributions and hence are more robust.

Further Reading
The Wikipedia article on central tendency contains an
extensive discussion of various measures of location.

John Tukey’s 1977 classic Exploratory Data Analysis
(Pearson) is still widely read.

https://oreil.ly/4SIPQ
https://oreil.ly/qUW2i

Estimates of Variability
Location is just one dimension in summarizing a feature. A second
dimension, variability, also referred to as dispersion, measures
whether the data values are tightly clustered or spread out. At the
heart of statistics lies variability: measuring it, reducing it,
distinguishing random from real variability, identifying the various
sources of real variability, and making decisions in the presence of
it.

KEY TERMS FOR VARIABILITY METRICS

Deviations

The difference between the observed values and the estimate of location.

Synonyms

errors, residuals

Variance

The sum of squared deviations from the mean divided by n – 1 where n is the number of data
values.

Synonym

mean-squared-error

Standard deviation

The square root of the variance.

Mean absolute deviation

The mean of the absolute values of the deviations from the mean.

Synonyms

l1-norm, Manhattan norm

Median absolute deviation from the median

The median of the absolute values of the deviations from the median.

Range

The difference between the largest and the smallest value in a data set.

Order statistics

Metrics based on the data values sorted from smallest to biggest.

Synonym

ranks

Percentile

The value such that P percent of the values take on this value or less and (100–P) percent take
on this value or more.

Synonym

quantile

Interquartile range

The difference between the 75th percentile and the 25th percentile.

Synonym

IQR

Just as there are different ways to measure location (mean, median,
etc.), there are also different ways to measure variability.

Standard Deviation and Related Estimates
The most widely used estimates of variation are based on the
differences, or deviations, between the estimate of location and the
observed data. For a set of data {1, 4, 4}, the mean is 3 and the
median is 4. The deviations from the mean are the differences: 1 – 3
= –2, 4 – 3 = 1, 4 – 3 = 1. These deviations tell us how dispersed the
data is around the central value.

One way to measure variability is to estimate a typical value for
these deviations. Averaging the deviations themselves would not tell
us much—the negative deviations offset the positive ones. In fact,
the sum of the deviations from the mean is precisely zero. Instead, a
simple approach is to take the average of the absolute values of the
deviations from the mean. In the preceding example, the absolute
value of the deviations is {2 1 1}, and their average is (2 + 1 + 1) / 3
= 1.33. This is known as the mean absolute deviation and is
computed with the formula:

Mean absolute deviation =
∑n

i=1|xi − x|

n

where x is the sample mean.

The best-known estimates of variability are the variance and the
standard deviation, which are based on squared deviations. The
variance is an average of the squared deviations, and the standard
deviation is the square root of the variance:

Variance = s2 =
∑n

i=1 (xi − x)2

n − 1

Standard deviation = s = √Variance

The standard deviation is much easier to interpret than the variance
since it is on the same scale as the original data. Still, with its more
complicated and less intuitive formula, it might seem peculiar that
the standard deviation is preferred in statistics over the mean
absolute deviation. It owes its preeminence to statistical theory:
mathematically, working with squared values is much more
convenient than absolute values, especially for statistical models.

DEGREES OF FREEDOM, AND N OR N – 1?
In statistics books, there is always some discussion of why we have n – 1 in the denominator in the
variance formula, instead of n, leading into the concept of degrees of freedom. This distinction is not
important since n is generally large enough that it won’t make much difference whether you divide
by n or n – 1. But in case you are interested, here is the story. It is based on the premise that you
want to make estimates about a population, based on a sample.

If you use the intuitive denominator of n in the variance formula, you will underestimate the true
value of the variance and the standard deviation in the population. This is referred to as a biased
estimate. However, if you divide by n – 1 instead of n, the variance becomes an unbiased estimate.

To fully explain why using n leads to a biased estimate involves the notion of degrees of freedom,
which takes into account the number of constraints in computing an estimate. In this case, there are
n – 1 degrees of freedom since there is one constraint: the standard deviation depends on
calculating the sample mean. For most problems, data scientists do not need to worry about
degrees of freedom.

Neither the variance, the standard deviation, nor the mean absolute
deviation is robust to outliers and extreme values (see “Median and
Robust Estimates” for a discussion of robust estimates for location).
The variance and standard deviation are especially sensitive to
outliers since they are based on the squared deviations.

A robust estimate of variability is the median absolute deviation
from the median or MAD:

Median absolute deviation = Median(|x1 − m|, |x2 − m|, ..., |xN − m|)

where m is the median. Like the median, the MAD is not influenced
by extreme values. It is also possible to compute a trimmed standard
deviation analogous to the trimmed mean (see “Mean”).

NOTE
The variance, the standard deviation, the mean absolute deviation, and the
median absolute deviation from the median are not equivalent estimates, even
in the case where the data comes from a normal distribution. In fact, the
standard deviation is always greater than the mean absolute deviation, which
itself is greater than the median absolute deviation. Sometimes, the median
absolute deviation is multiplied by a constant scaling factor to put the MAD
on the same scale as the standard deviation in the case of a normal
distribution. The commonly used factor of 1.4826 means that 50% of the
normal distribution fall within the range ± MAD (see, e.g.,
https://oreil.ly/SfDk2).

Estimates Based on Percentiles
A different approach to estimating dispersion is based on looking at
the spread of the sorted data. Statistics based on sorted (ranked) data
are referred to as order statistics. The most basic measure is the
range: the difference between the largest and smallest numbers. The
minimum and maximum values themselves are useful to know and
are helpful in identifying outliers, but the range is extremely
sensitive to outliers and not very useful as a general measure of
dispersion in the data.

To avoid the sensitivity to outliers, we can look at the range of the
data after dropping values from each end. Formally, these types of
estimates are based on differences between percentiles. In a data set,
the Pth percentile is a value such that at least P percent of the values
take on this value or less and at least (100 – P) percent of the values
take on this value or more. For example, to find the 80th percentile,
sort the data. Then, starting with the smallest value, proceed 80
percent of the way to the largest value. Note that the median is the
same thing as the 50th percentile. The percentile is essentially the
same as a quantile, with quantiles indexed by fractions (so the .8
quantile is the same as the 80th percentile).

A common measurement of variability is the difference between the
25th percentile and the 75th percentile, called the interquartile
range (or IQR). Here is a simple example: {3,1,5,3,6,7,2,9}. We
sort these to get {1,2,3,3,5,6,7,9}. The 25th percentile is at 2.5, and
the 75th percentile is at 6.5, so the interquartile range is 6.5 – 2.5 =

https://oreil.ly/SfDk2

4. Software can have slightly differing approaches that yield
different answers (see the following tip); typically, these differences
are smaller.

For very large data sets, calculating exact percentiles can be
computationally very expensive since it requires sorting all the data
values. Machine learning and statistical software use special
algorithms, such as [Zhang-Wang-2007], to get an approximate
percentile that can be calculated very quickly and is guaranteed to
have a certain accuracy.

PERCENTILE: PRECISE DEFINITION
If we have an even number of data (n is even), then the percentile is
ambiguous under the preceding definition. In fact, we could take on any value
between the order statistics x(j) and x(j+1) where j satisfies:

100*
j

n
≤ P < 100*

j + 1

n

Formally, the percentile is the weighted average:

Percentile (P) = (1 − w)x(j) + wx(j+1)

for some weight w between 0 and 1. Statistical software has slightly differing
approaches to choosing w. In fact, the R function quantile offers nine
different alternatives to compute the quantile. Except for small data sets, you
don’t usually need to worry about the precise way a percentile is calculated.
At the time of this writing, Python’s numpy.quantile supports only one
approach, linear interpolation.

Example: Variability Estimates of State Population
Table 1-3 (repeated from Table 1-2 for convenience) shows the first
few rows in the data set containing population and murder rates for
each state.

Table 1-3. A few rows of the data.frame state of population and
murder rate by state

State Population Murder rate Abbreviation

1 Alabama 4,779,736 5.7 AL

2 Alaska 710,231 5.6 AK

3 Arizona 6,392,017 4.7 AZ

4 Arkansas 2,915,918 5.6 AR

5 California 37,253,956 4.4 CA

6 Colorado 5,029,196 2.8 CO

7 Connecticut 3,574,097 2.4 CT

8 Delaware 897,934 5.8 DE

Using R’s built-in functions for the standard deviation, the
interquartile range (IQR), and the median absolute deviation from
the median (MAD), we can compute estimates of variability for the
state population data:

> sd(state[['Population']])

[1] 6848235

> IQR(state[['Population']])

[1] 4847308

> mad(state[['Population']])

[1] 3849870

The pandas data frame provides methods for calculating standard
deviation and quantiles. Using the quantiles, we can easily
determine the IQR. For the robust MAD, we use the function
robust.scale.mad from the statsmodels package:

state['Population'].std()

state['Population'].quantile(0.75) -

state['Population'].quantile(0.25)

robust.scale.mad(state['Population'])

The standard deviation is almost twice as large as the MAD (in R,
by default, the scale of the MAD is adjusted to be on the same scale
as the mean). This is not surprising since the standard deviation is
sensitive to outliers.

KEY IDEAS

Variance and standard deviation are the most widespread and routinely reported statistics
of variability.

Both are sensitive to outliers.

More robust metrics include mean absolute deviation, median absolute deviation from the
median, and percentiles (quantiles).

Further Reading
David Lane’s online statistics resource has a section on
percentiles.

Kevin Davenport has a useful post on R-Bloggers about
deviations from the median and their robust properties.

Exploring the Data Distribution
Each of the estimates we’ve covered sums up the data in a single
number to describe the location or variability of the data. It is also
useful to explore how the data is distributed overall.

https://oreil.ly/o2fBI
https://oreil.ly/E7zcG

KEY TERMS FOR EXPLORING THE DISTRIBUTION

Boxplot

A plot introduced by Tukey as a quick way to visualize the distribution of data.

Synonym

box and whiskers plot

Frequency table

A tally of the count of numeric data values that fall into a set of intervals (bins).

Histogram

A plot of the frequency table with the bins on the x-axis and the count (or proportion) on the y-
axis. While visually similar, bar charts should not be confused with histograms. See “Exploring
Binary and Categorical Data” for a discussion of the difference.

Density plot

A smoothed version of the histogram, often based on a kernel density estimate.

Percentiles and Boxplots
In “Estimates Based on Percentiles”, we explored how percentiles
can be used to measure the spread of the data. Percentiles are also
valuable for summarizing the entire distribution. It is common to
report the quartiles (25th, 50th, and 75th percentiles) and the deciles
(the 10th, 20th, …, 90th percentiles). Percentiles are especially
valuable for summarizing the tails (the outer range) of the
distribution. Popular culture has coined the term one-percenters to
refer to the people in the top 99th percentile of wealth.

Table 1-4 displays some percentiles of the murder rate by state. In
R, this would be produced by the quantile function:

quantile(state[['Murder.Rate']], p=c(.05, .25, .5, .75,

.95))

 5% 25% 50% 75% 95%

1.600 2.425 4.000 5.550 6.510

The pandas data frame method quantile provides it in Python:

state['Murder.Rate'].quantile([0.05, 0.25, 0.5, 0.75,

0.95])

Table 1-4. Percentiles of murder rate by state

5% 25% 50% 75% 95%

1.60 2.42 4.00 5.55 6.51

The median is 4 murders per 100,000 people, although there is quite
a bit of variability: the 5th percentile is only 1.6 and the 95th
percentile is 6.51.

Boxplots, introduced by Tukey [Tukey-1977], are based on
percentiles and give a quick way to visualize the distribution of
data. Figure 1-2 shows a boxplot of the population by state
produced by R:

boxplot(state[['Population']]/1000000, ylab='Population

(millions)')

pandas provides a number of basic exploratory plots for data
frame; one of them is boxplots:

ax = (state['Population']/1_000_000).plot.box()

ax.set_ylabel('Population (millions)')

Figure 1-2. Boxplot of state populations

From this boxplot we can immediately see that the median state
population is about 5 million, half the states fall between about 2
million and about 7 million, and there are some high population
outliers. The top and bottom of the box are the 75th and 25th
percentiles, respectively. The median is shown by the horizontal line
in the box. The dashed lines, referred to as whiskers, extend from
the top and bottom of the box to indicate the range for the bulk of
the data. There are many variations of a boxplot; see, for example,
the documentation for the R function boxplot [R-base-2015]. By
default, the R function extends the whiskers to the furthest point
beyond the box, except that it will not go beyond 1.5 times the IQR.
Matplotlib uses the same implementation; other software may use a
different rule.

Any data outside of the whiskers is plotted as single points or
circles (often considered outliers).

Frequency Tables and Histograms
A frequency table of a variable divides up the variable range into
equally spaced segments and tells us how many values fall within
each segment. Table 1-5 shows a frequency table of the population
by state computed in R:

breaks <- seq(from=min(state[['Population']]),

 to=max(state[['Population']]), length=11)

pop_freq <- cut(state[['Population']], breaks=breaks,

 right=TRUE, include.lowest=TRUE)

table(pop_freq)

The function pandas.cut creates a series that maps the values
into the segments. Using the method value_counts, we get the
frequency table:

binnedPopulation = pd.cut(state['Population'], 10)

binnedPopulation.value_counts()

Table 1-5. A frequency table of population by state

BinN
umb
er BinRange

C
o
u
nt States

1 563,626–
4,232,658

24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,
WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OR

2 4,232,659–
7,901,691

14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,M
A,WA

3 7,901,692–
11,570,724

6 VA,NJ,NC,GA,MI,OH

4 11,570,725
–
15,239,757

2 PA,IL

5 15,239,758
–
18,908,790

1 FL

6 18,908,791
–
22,577,823

1 NY

7 22,577,824
–
26,246,856

1 TX

8 26,246,857
–
29,915,889

0

9 29,915,890
–
33,584,922

0

10 33,584,923
–
37,253,956

1 CA

The least populous state is Wyoming, with 563,626 people, and the
most populous is California, with 37,253,956 people. This gives us

a range of 37,253,956 – 563,626 = 36,690,330, which we must
divide up into equal size bins—let’s say 10 bins. With 10 equal size
bins, each bin will have a width of 3,669,033, so the first bin will
span from 563,626 to 4,232,658. By contrast, the top bin,
33,584,923 to 37,253,956, has only one state: California. The two
bins immediately below California are empty, until we reach Texas.
It is important to include the empty bins; the fact that there are no
values in those bins is useful information. It can also be useful to
experiment with different bin sizes. If they are too large, important
features of the distribution can be obscured. If they are too small,
the result is too granular, and the ability to see the bigger picture is
lost.

NOTE
Both frequency tables and percentiles summarize the data by creating bins. In
general, quartiles and deciles will have the same count in each bin (equal-
count bins), but the bin sizes will be different. The frequency table, by
contrast, will have different counts in the bins (equal-size bins), and the bin
sizes will be the same.

A histogram is a way to visualize a frequency table, with bins on the
x-axis and the data count on the y-axis. In Figure 1-3, for example,
the bin centered at 10 million (1e+07) runs from roughly 8 million
to 12 million, and there are six states in that bin. To create a
histogram corresponding to Table 1-5 in R, use the hist function
with the breaks argument:

hist(state[['Population']], breaks=breaks)

pandas supports histograms for data frames with the
DataFrame.plot.hist method. Use the keyword argument
bins to define the number of bins. The various plot methods return
an axis object that allows further fine-tuning of the visualization
using Matplotlib:

ax = (state['Population'] / 1_000_000).plot.hist(figsize=

(4, 4))

ax.set_xlabel('Population (millions)')

The histogram is shown in Figure 1-3. In general, histograms are
plotted such that:

Empty bins are included in the graph.

Bins are of equal width.

The number of bins (or, equivalently, bin size) is up to the
user.

Bars are contiguous—no empty space shows between bars,
unless there is an empty bin.

Figure 1-3. Histogram of state populations

STATISTICAL MOMENTS
In statistical theory, location and variability are referred to as the first and
second moments of a distribution. The third and fourth moments are called
skewness and kurtosis. Skewness refers to whether the data is skewed to
larger or smaller values, and kurtosis indicates the propensity of the data to
have extreme values. Generally, metrics are not used to measure skewness
and kurtosis; instead, these are discovered through visual displays such as
Figures 1-2 and 1-3.

Density Plots and Estimates
Related to the histogram is a density plot, which shows the
distribution of data values as a continuous line. A density plot can
be thought of as a smoothed histogram, although it is typically
computed directly from the data through a kernel density estimate
(see [Duong-2001] for a short tutorial). Figure 1-4 displays a
density estimate superposed on a histogram. In R, you can compute
a density estimate using the density function:

hist(state[['Murder.Rate']], freq=FALSE)

lines(density(state[['Murder.Rate']]), lwd=3, col='blue')

pandas provides the density method to create a density plot.
Use the argument bw_method to control the smoothness of the
density curve:

ax = state['Murder.Rate'].plot.hist(density=True, xlim=

[0,12], bins=range(1,12))

state['Murder.Rate'].plot.density(ax=ax)

ax.set_xlabel('Murder Rate (per 100,000)')

Plot functions often take an optional axis (ax) argument, which
will cause the plot to be added to the same graph.

A key distinction from the histogram plotted in Figure 1-3 is the
scale of the y-axis: a density plot corresponds to plotting the
histogram as a proportion rather than counts (you specify this in R
using the argument freq=FALSE). Note that the total area under
the density curve = 1, and instead of counts in bins you calculate

areas under the curve between any two points on the x-axis, which
correspond to the proportion of the distribution lying between those
two points.

Figure 1-4. Density of state murder rates

DENSITY ESTIMATION
Density estimation is a rich topic with a long history in statistical literature. In
fact, over 20 R packages have been published that offer functions for density
estimation. [Deng-Wickham-2011] give a comprehensive review of R
packages, with a particular recommendation for ASH or KernSmooth. The
density estimation methods in pandas and scikit-learn also offer good
implementations. For many data science problems, there is no need to worry
about the various types of density estimates; it suffices to use the base
functions.

KEY IDEAS

A frequency histogram plots frequency counts on the y-axis and variable values on the x-
axis; it gives a sense of the distribution of the data at a glance.

A frequency table is a tabular version of the frequency counts found in a histogram.

A boxplot—with the top and bottom of the box at the 75th and 25th percentiles,
respectively—also gives a quick sense of the distribution of the data; it is often used in
side-by-side displays to compare distributions.

A density plot is a smoothed version of a histogram; it requires a function to estimate a
plot based on the data (multiple estimates are possible, of course).

Further Reading
A SUNY Oswego professor provides a step-by-step guide
to creating a boxplot.

Density estimation in R is covered in Henry Deng and
Hadley Wickham’s paper of the same name.

R-Bloggers has a useful post on histograms in R, including
customization elements, such as binning (breaks).

R-Bloggers also has a similar post on boxplots in R.

Matthew Conlen published an interactive presentation that
demonstrates the effect of choosing different kernels and
bandwidth on kernel density estimates.

Exploring Binary and Categorical Data
For categorical data, simple proportions or percentages tell the story
of the data.

https://oreil.ly/wTpnE
https://oreil.ly/TbWYS
https://oreil.ly/Ynp-n
https://oreil.ly/0DSb2
https://oreil.ly/bC9nu

KEY TERMS FOR EXPLORING CATEGORICAL DATA

Mode

The most commonly occurring category or value in a data set.

Expected value

When the categories can be associated with a numeric value, this gives an average value
based on a category’s probability of occurrence.

Bar charts

The frequency or proportion for each category plotted as bars.

Pie charts

The frequency or proportion for each category plotted as wedges in a pie.

Getting a summary of a binary variable or a categorical variable
with a few categories is a fairly easy matter: we just figure out the
proportion of 1s, or the proportions of the important categories. For
example, Table 1-6 shows the percentage of delayed flights by the
cause of delay at Dallas/Fort Worth Airport since 2010. Delays are
categorized as being due to factors under carrier control, air traffic
control (ATC) system delays, weather, security, or a late inbound
aircraft.

Table 1-6. Percentage of delays by cause at Dallas/Fort Worth
Airport

Carrier ATC Weather Security Inbound

23.02 30.40 4.03 0.12 42.43

Bar charts, seen often in the popular press, are a common visual tool
for displaying a single categorical variable. Categories are listed on
the x-axis, and frequencies or proportions on the y-axis. Figure 1-5
shows the airport delays per year by cause for Dallas/Fort Worth
(DFW), and it is produced with the R function barplot:

barplot(as.matrix(dfw) / 6, cex.axis=0.8, cex.names=0.7,

 xlab='Cause of delay', ylab='Count')

pandas also supports bar charts for data frames:

ax = dfw.transpose().plot.bar(figsize=(4, 4),

legend=False)

ax.set_xlabel('Cause of delay')

ax.set_ylabel('Count')

Figure 1-5. Bar chart of airline delays at DFW by cause

Note that a bar chart resembles a histogram; in a bar chart the x-axis
represents different categories of a factor variable, while in a
histogram the x-axis represents values of a single variable on a
numeric scale. In a histogram, the bars are typically shown touching
each other, with gaps indicating values that did not occur in the
data. In a bar chart, the bars are shown separate from one another.

Pie charts are an alternative to bar charts, although statisticians and
data visualization experts generally eschew pie charts as less
visually informative (see [Few-2007]).

NUMERICAL DATA AS CATEGORICAL DATA
In “Frequency Tables and Histograms”, we looked at frequency tables based
on binning the data. This implicitly converts the numeric data to an ordered
factor. In this sense, histograms and bar charts are similar, except that the
categories on the x-axis in the bar chart are not ordered. Converting numeric
data to categorical data is an important and widely used step in data analysis
since it reduces the complexity (and size) of the data. This aids in the
discovery of relationships between features, particularly at the initial stages of
an analysis.

Mode
The mode is the value—or values in case of a tie—that appears
most often in the data. For example, the mode of the cause of delay
at Dallas/Fort Worth airport is “Inbound.” As another example, in
most parts of the United States, the mode for religious preference
would be Christian. The mode is a simple summary statistic for
categorical data, and it is generally not used for numeric data.

Expected Value
A special type of categorical data is data in which the categories
represent or can be mapped to discrete values on the same scale. A
marketer for a new cloud technology, for example, offers two levels
of service, one priced at $300/month and another at $50/month. The
marketer offers free webinars to generate leads, and the firm figures
that 5% of the attendees will sign up for the $300 service, 15% will
sign up for the $50 service, and 80% will not sign up for anything.
This data can be summed up, for financial purposes, in a single

“expected value,” which is a form of weighted mean, in which the
weights are probabilities.

The expected value is calculated as follows:

1. Multiply each outcome by its probability of occurrence.

2. Sum these values.

In the cloud service example, the expected value of a webinar
attendee is thus $22.50 per month, calculated as follows:

The expected value is really a form of weighted mean: it adds the
ideas of future expectations and probability weights, often based on
subjective judgment. Expected value is a fundamental concept in
business valuation and capital budgeting—for example, the
expected value of five years of profits from a new acquisition, or
the expected cost savings from new patient management software at
a clinic.

Probability
We referred above to the probability of a value occurring. Most
people have an intuitive understanding of probability, encountering
the concept frequently in weather forecasts (the chance of rain) or
sports analysis (the probability of winning). Sports and games are
more often expressed as odds, which are readily convertible to
probabilities (if the odds that a team will win are 2 to 1, its
probability of winning is 2/(2+1) = 2/3). Surprisingly, though, the
concept of probability can be the source of deep philosophical
discussion when it comes to defining it. Fortunately, we do not need
a formal mathematical or philosophical definition here. For our
purposes, the probability that an event will happen is the proportion
of times it will occur if the situation could be repeated over and
over, countless times. Most often this is an imaginary construction,
but it is an adequate operational understanding of probability.

EV = (0. 05)(300) + (0. 15)(50) + (0. 80)(0) = 22. 5

KEY IDEAS

Categorical data is typically summed up in proportions and can be visualized in a bar
chart.

Categories might represent distinct things (apples and oranges, male and female), levels
of a factor variable (low, medium, and high), or numeric data that has been binned.

Expected value is the sum of values times their probability of occurrence, often used to
sum up factor variable levels.

Further Reading
No statistics course is complete without a lesson on misleading
graphs, which often involves bar charts and pie charts.

Correlation
Exploratory data analysis in many modeling projects (whether in
data science or in research) involves examining correlation among
predictors, and between predictors and a target variable. Variables X
and Y (each with measured data) are said to be positively correlated
if high values of X go with high values of Y, and low values of X go
with low values of Y. If high values of X go with low values of Y,
and vice versa, the variables are negatively correlated.

KEY TERMS FOR CORRELATION

Correlation coefficient

A metric that measures the extent to which numeric variables are associated with one another
(ranges from –1 to +1).

Correlation matrix

A table where the variables are shown on both rows and columns, and the cell values are the
correlations between the variables.

Scatterplot

A plot in which the x-axis is the value of one variable, and the y-axis the value of another.

Consider these two variables, perfectly correlated in the sense that
each goes from low to high:

v1: {1, 2, 3}

v2: {4, 5, 6}

https://oreil.ly/rDMuT

The vector sum of products is 1 ⋅ 4 + 2 ⋅ 5 + 3 ⋅ 6 = 32. Now try
shuffling one of them and recalculating—the vector sum of products
will never be higher than 32. So this sum of products could be used
as a metric; that is, the observed sum of 32 could be compared to
lots of random shufflings (in fact, this idea relates to a resampling-
based estimate; see “Permutation Test”). Values produced by this
metric, though, are not that meaningful, except by reference to the
resampling distribution.

More useful is a standardized variant: the correlation coefficient,
which gives an estimate of the correlation between two variables
that always lies on the same scale. To compute Pearson’s
correlation coefficient, we multiply deviations from the mean for
variable 1 times those for variable 2, and divide by the product of
the standard deviations:

r =
∑n

i=1 (xi − x) (yi − y)

(n − 1)sxsy

Note that we divide by n – 1 instead of n; see “Degrees of Freedom,
and n or n – 1?” for more details. The correlation coefficient always
lies between +1 (perfect positive correlation) and –1 (perfect
negative correlation); 0 indicates no correlation.

Variables can have an association that is not linear, in which case
the correlation coefficient may not be a useful metric. The
relationship between tax rates and revenue raised is an example: as
tax rates increase from zero, the revenue raised also increases.
However, once tax rates reach a high level and approach 100%, tax
avoidance increases and tax revenue actually declines.

Table 1-7, called a correlation matrix, shows the correlation
between the daily returns for telecommunication stocks from July
2012 through June 2015. From the table, you can see that Verizon
(VZ) and ATT (T) have the highest correlation. Level 3 (LVLT),
which is an infrastructure company, has the lowest correlation with
the others. Note the diagonal of 1s (the correlation of a stock with

itself is 1) and the redundancy of the information above and below
the diagonal.

Table 1-7. Correlation between telecommunication stock returns

T CTL FTR VZ LVLT

T 1.000 0.475 0.328 0.678 0.279

CTL 0.475 1.000 0.420 0.417 0.287

FTR 0.328 0.420 1.000 0.287 0.260

VZ 0.678 0.417 0.287 1.000 0.242

LVLT 0.279 0.287 0.260 0.242 1.000

A table of correlations like Table 1-7 is commonly plotted to
visually display the relationship between multiple variables.
Figure 1-6 shows the correlation between the daily returns for major
exchange-traded funds (ETFs). In R, we can easily create this using
the package corrplot:

etfs <- sp500_px[row.names(sp500_px) > '2012-07-01',

 sp500_sym[sp500_sym$sector == 'etf',

'symbol']]

library(corrplot)

corrplot(cor(etfs), method='ellipse')

It is possible to create the same graph in Python, but there is no
implementation in the common packages. However, most support
the visualization of correlation matrices using heatmaps. The
following code demonstrates this using the seaborn.heatmap
package. In the accompanying source code repository, we include
Python code to generate the more comprehensive visualization:

etfs = sp500_px.loc[sp500_px.index > '2012-07-01',

 sp500_sym[sp500_sym['sector'] ==

'etf']['symbol']]

sns.heatmap(etfs.corr(), vmin=-1, vmax=1,

 cmap=sns.diverging_palette(20, 220,

as_cmap=True))

The ETFs for the S&P 500 (SPY) and the Dow Jones Index (DIA)
have a high correlation. Similarly, the QQQ and the XLK,
composed mostly of technology companies, are positively
correlated. Defensive ETFs, such as those tracking gold prices
(GLD), oil prices (USO), or market volatility (VXX), tend to be
weakly or negatively correlated with the other ETFs. The
orientation of the ellipse indicates whether two variables are
positively correlated (ellipse is pointed to the top right) or
negatively correlated (ellipse is pointed to the top left). The shading
and width of the ellipse indicate the strength of the association:
thinner and darker ellipses correspond to stronger relationships.

Figure 1-6. Correlation between ETF returns

Like the mean and standard deviation, the correlation coefficient is
sensitive to outliers in the data. Software packages offer robust
alternatives to the classical correlation coefficient. For example, the

R package robust uses the function covRob to compute a robust
estimate of correlation. The methods in the scikit-learn
module sklearn.covariance implement a variety of approaches.

OTHER CORRELATION ESTIMATES
Statisticians long ago proposed other types of correlation coefficients, such as
Spearman’s rho or Kendall’s tau. These are correlation coefficients based on
the rank of the data. Since they work with ranks rather than values, these
estimates are robust to outliers and can handle certain types of nonlinearities.
However, data scientists can generally stick to Pearson’s correlation
coefficient, and its robust alternatives, for exploratory analysis. The appeal of
rank-based estimates is mostly for smaller data sets and specific hypothesis
tests.

Scatterplots
The standard way to visualize the relationship between two
measured data variables is with a scatterplot. The x-axis represents
one variable and the y-axis another, and each point on the graph is a
record. See Figure 1-7 for a plot of the correlation between the daily
returns for ATT and Verizon. This is produced in R with the
command:

plot(telecom$T, telecom$VZ, xlab='ATT (T)', ylab='Verizon

(VZ)')

The same graph can be generated in Python using the pandas
scatter method:

ax = telecom.plot.scatter(x='T', y='VZ', figsize=(4, 4),

marker='$\u25EF$')

ax.set_xlabel('ATT (T)')

ax.set_ylabel('Verizon (VZ)')

ax.axhline(0, color='grey', lw=1)

ax.axvline(0, color='grey', lw=1)

The returns have a positive relationship: while they cluster around
zero, on most days, the stocks go up or go down in tandem (upper-
right and lower-left quadrants). There are fewer days where one
stock goes down significantly while the other stock goes up, or vice
versa (lower-right and upper-left quadrants).

https://oreil.ly/isORz
https://oreil.ly/su7wi

While the plot Figure 1-7 displays only 754 data points, it’s already
obvious how difficult it is to identify details in the middle of the
plot. We will see later how adding transparency to the points, or
using hexagonal binning and density plots, can help to find
additional structure in the data.

Figure 1-7. Scatterplot of correlation between returns for ATT and Verizon

KEY IDEAS

The correlation coefficient measures the extent to which two paired variables (e.g., height
and weight for individuals) are associated with one another.

When high values of v1 go with high values of v2, v1 and v2 are positively associated.

When high values of v1 go with low values of v2, v1 and v2 are negatively associated.

The correlation coefficient is a standardized metric, so that it always ranges from –1
(perfect negative correlation) to +1 (perfect positive correlation).

A correlation coefficient of zero indicates no correlation, but be aware that random
arrangements of data will produce both positive and negative values for the correlation
coefficient just by chance.

Further Reading
Statistics, 4th ed., by David Freedman, Robert Pisani, and Roger
Purves (W. W. Norton, 2007) has an excellent discussion of
correlation.

Exploring Two or More Variables
Familiar estimators like mean and variance look at variables one at
a time (univariate analysis). Correlation analysis (see
“Correlation”) is an important method that compares two variables
(bivariate analysis). In this section we look at additional estimates
and plots, and at more than two variables (multivariate analysis).

KEY TERMS FOR EXPLORING TWO OR MORE VARIABLES

Contingency table

A tally of counts between two or more categorical variables.

Hexagonal binning

A plot of two numeric variables with the records binned into hexagons.

Contour plot

A plot showing the density of two numeric variables like a topographical map.

Violin plot

Similar to a boxplot but showing the density estimate.

Like univariate analysis, bivariate analysis involves both computing
summary statistics and producing visual displays. The appropriate

type of bivariate or multivariate analysis depends on the nature of
the data: numeric versus categorical.

Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)
Scatterplots are fine when there is a relatively small number of data
values. The plot of stock returns in Figure 1-7 involves only about
750 points. For data sets with hundreds of thousands or millions of
records, a scatterplot will be too dense, so we need a different way
to visualize the relationship. To illustrate, consider the data set
kc_tax, which contains the tax-assessed values for residential
properties in King County, Washington. In order to focus on the
main part of the data, we strip out very expensive and very small or
large residences using the subset function:

kc_tax0 <- subset(kc_tax, TaxAssessedValue < 750000 &

 SqFtTotLiving > 100 &

 SqFtTotLiving < 3500)

nrow(kc_tax0)

432693

In pandas, we filter the data set as follows:

kc_tax0 = kc_tax.loc[(kc_tax.TaxAssessedValue < 750000) &

 (kc_tax.SqFtTotLiving > 100) &

 (kc_tax.SqFtTotLiving < 3500), :]

kc_tax0.shape

(432693, 3)

Figure 1-8 is a hexagonal binning plot of the relationship between
the finished square feet and the tax-assessed value for homes in
King County. Rather than plotting points, which would appear as a
monolithic dark cloud, we grouped the records into hexagonal bins
and plotted the hexagons with a color indicating the number of
records in that bin. In this chart, the positive relationship between
square feet and tax-assessed value is clear. An interesting feature is
the hint of additional bands above the main (darkest) band at the
bottom, indicating homes that have the same square footage as
those in the main band but a higher tax-assessed value.

Figure 1-8 was generated by the powerful R package ggplot2,
developed by Hadley Wickham [ggplot2]. ggplot2 is one of
several new software libraries for advanced exploratory visual
analysis of data; see “Visualizing Multiple Variables”:

ggplot(kc_tax0, (aes(x=SqFtTotLiving,

y=TaxAssessedValue))) +

 stat_binhex(color='white') +

 theme_bw() +

 scale_fill_gradient(low='white', high='black') +

 labs(x='Finished Square Feet', y='Tax-Assessed Value')

In Python, hexagonal binning plots are readily available using the
pandas data frame method hexbin:

ax = kc_tax0.plot.hexbin(x='SqFtTotLiving',

y='TaxAssessedValue',

 gridsize=30, sharex=False,

figsize=(5, 4))

ax.set_xlabel('Finished Square Feet')

ax.set_ylabel('Tax-Assessed Value')

Figure 1-8. Hexagonal binning for tax-assessed value versus finished square feet

Figure 1-9 uses contours overlaid onto a scatterplot to visualize the
relationship between two numeric variables. The contours are
essentially a topographical map to two variables; each contour band

represents a specific density of points, increasing as one nears a
“peak.” This plot shows a similar story as Figure 1-8: there is a
secondary peak “north” of the main peak. This chart was also
created using ggplot2 with the built-in geom_density2d
function:

ggplot(kc_tax0, aes(SqFtTotLiving, TaxAssessedValue)) +

 theme_bw() +

 geom_point(alpha=0.1) +

 geom_density2d(color='white') +

 labs(x='Finished Square Feet', y='Tax-Assessed Value')

The seaborn kdeplot function in Python creates a contour plot:

ax = sns.kdeplot(kc_tax0.SqFtTotLiving,

kc_tax0.TaxAssessedValue, ax=ax)

ax.set_xlabel('Finished Square Feet')

ax.set_ylabel('Tax-Assessed Value')

Figure 1-9. Contour plot for tax-assessed value versus finished square feet

Other types of charts are used to show the relationship between two
numeric variables, including heat maps. Heat maps, hexagonal
binning, and contour plots all give a visual representation of a two-

dimensional density. In this way, they are natural analogs to
histograms and density plots.

Two Categorical Variables
A useful way to summarize two categorical variables is a
contingency table—a table of counts by category. Table 1-8 shows
the contingency table between the grade of a personal loan and the
outcome of that loan. This is taken from data provided by Lending
Club, a leader in the peer-to-peer lending business. The grade goes
from A (high) to G (low). The outcome is either fully paid, current,
late, or charged off (the balance of the loan is not expected to be
collected). This table shows the count and row percentages. High-
grade loans have a very low late/charge-off percentage as compared
with lower-grade loans.

Table 1-8. Contingency table of loan grade and status

Grade Charged off Current Fully paid Late Total

A 1562 50051 20408 469 72490

0.022 0.690 0.282 0.006 0.161

B 5302 93852 31160 2056 132370

0.040 0.709 0.235 0.016 0.294

C 6023 88928 23147 2777 120875

0.050 0.736 0.191 0.023 0.268

D 5007 53281 13681 2308 74277

0.067 0.717 0.184 0.031 0.165

E 2842 24639 5949 1374 34804

0.082 0.708 0.171 0.039 0.077

F 1526 8444 2328 606 12904

0.118 0.654 0.180 0.047 0.029

G 409 1990 643 199 3241

0.126 0.614 0.198 0.061 0.007

Total 22671 321185 97316 9789 450961

Contingency tables can look only at counts, or they can also include
column and total percentages. Pivot tables in Excel are perhaps the
most common tool used to create contingency tables. In R, the
CrossTable function in the descr package produces

contingency tables, and the following code was used to create
Table 1-8:

library(descr)

x_tab <- CrossTable(lc_loans$grade, lc_loans$status,

 prop.c=FALSE, prop.chisq=FALSE,

prop.t=FALSE)

The pivot_table method creates the pivot table in Python. The
aggfunc argument allows us to get the counts. Calculating the
percentages is a bit more involved:

crosstab = lc_loans.pivot_table(index='grade',

columns='status',

 aggfunc=lambda x: len(x),

margins=True)

df = crosstab.loc['A':'G',:].copy()

df.loc[:,'Charged Off':'Late'] = df.loc[:,'Charged

Off':'Late'].div(df['All'],

axis=0)

df['All'] = df['All'] / sum(df['All'])

perc_crosstab = df

The margins keyword argument will add the column and row
sums.

We create a copy of the pivot table, ignoring the column sums.

We divide the rows with the row sum.

We divide the 'All' column by its sum.

Categorical and Numeric Data
Boxplots (see “Percentiles and Boxplots”) are a simple way to
visually compare the distributions of a numeric variable grouped
according to a categorical variable. For example, we might want to
compare how the percentage of flight delays varies across airlines.

Figure 1-10 shows the percentage of flights in a month that were
delayed where the delay was within the carrier’s control:

boxplot(pct_carrier_delay ~ airline, data=airline_stats,

ylim=c(0, 50))

The pandas boxplot method takes the by argument that splits
the data set into groups and creates the individual boxplots:

ax = airline_stats.boxplot(by='airline',

column='pct_carrier_delay')

ax.set_xlabel('')

ax.set_ylabel('Daily % of Delayed Flights')

plt.suptitle('')

Figure 1-10. Boxplot of percent of airline delays by carrier

Alaska stands out as having the fewest delays, while American has
the most delays: the lower quartile for American is higher than the
upper quartile for Alaska.

A violin plot, introduced by [Hintze-Nelson-1998], is an
enhancement to the boxplot and plots the density estimate with the
density on the y-axis. The density is mirrored and flipped over, and
the resulting shape is filled in, creating an image resembling a
violin. The advantage of a violin plot is that it can show nuances in
the distribution that aren’t perceptible in a boxplot. On the other
hand, the boxplot more clearly shows the outliers in the data. In
ggplot2, the function geom_violin can be used to create a
violin plot as follows:

ggplot(data=airline_stats, aes(airline,

pct_carrier_delay)) +

 ylim(0, 50) +

 geom_violin() +

 labs(x='', y='Daily % of Delayed Flights')

Violin plots are available with the violinplot method of the
seaborn package:

ax = sns.violinplot(airline_stats.airline,

airline_stats.pct_carrier_delay,

 inner='quartile', color='white')

ax.set_xlabel('')

ax.set_ylabel('Daily % of Delayed Flights')

The corresponding plot is shown in Figure 1-11. The violin plot
shows a concentration in the distribution near zero for Alaska and,
to a lesser extent, Delta. This phenomenon is not as obvious in the
boxplot. You can combine a violin plot with a boxplot by adding
geom_boxplot to the plot (although this works best when colors
are used).

Figure 1-11. Violin plot of percent of airline delays by carrier

Visualizing Multiple Variables

The types of charts used to compare two variables—scatterplots,
hexagonal binning, and boxplots—are readily extended to more
variables through the notion of conditioning. As an example, look
back at Figure 1-8, which showed the relationship between homes’
finished square feet and their tax-assessed values. We observed that
there appears to be a cluster of homes that have higher tax-assessed
value per square foot. Diving deeper, Figure 1-12 accounts for the
effect of location by plotting the data for a set of zip codes. Now the
picture is much clearer: tax-assessed value is much higher in some
zip codes (98105, 98126) than in others (98108, 98188). This
disparity gives rise to the clusters observed in Figure 1-8.

We created Figure 1-12 using ggplot2 and the idea of facets, or a
conditioning variable (in this case, zip code):

ggplot(subset(kc_tax0, ZipCode %in% c(98188, 98105, 98108,

98126)),

 aes(x=SqFtTotLiving, y=TaxAssessedValue)) +

 stat_binhex(color='white') +

 theme_bw() +

 scale_fill_gradient(low='white', high='blue') +

 labs(x='Finished Square Feet', y='Tax-Assessed Value') +

 facet_wrap('ZipCode')

Use the ggplot functions facet_wrap and facet_grid
to specify the conditioning variable.

Figure 1-12. Tax-assessed value versus finished square feet by zip code

Most Python packages base their visualizations on Matplotlib.
While it is in principle possible to create faceted graphs using
Matplotlib, the code can get complicated. Fortunately,

seaborn has a relatively straightforward way of creating these
graphs:

zip_codes = [98188, 98105, 98108, 98126]

kc_tax_zip =

kc_tax0.loc[kc_tax0.ZipCode.isin(zip_codes),:]

kc_tax_zip

def hexbin(x, y, color, **kwargs):

 cmap = sns.light_palette(color, as_cmap=True)

 plt.hexbin(x, y, gridsize=25, cmap=cmap, **kwargs)

g = sns.FacetGrid(kc_tax_zip, col='ZipCode', col_wrap=2)

g.map(hexbin, 'SqFtTotLiving', 'TaxAssessedValue',

 extent=[0, 3500, 0, 700000])

g.set_axis_labels('Finished Square Feet', 'Tax-Assessed

Value')

g.set_titles('Zip code {col_name:.0f}')

Use the arguments col and row to specify the conditioning
variables. For a single conditioning variable, use col together
with col_wrap to wrap the faceted graphs into multiple rows.

The map method calls the hexbin function with subsets of the
original data set for the different zip codes. extent defines the
limits of the x- and y-axes.

The concept of conditioning variables in a graphics system was
pioneered with Trellis graphics, developed by Rick Becker, Bill
Cleveland, and others at Bell Labs [Trellis-Graphics]. This idea has
propagated to various modern graphics systems, such as the
lattice [lattice] and ggplot2 packages in R and the seaborn
[seaborn] and Bokeh [bokeh] modules in Python. Conditioning
variables are also integral to business intelligence platforms such as
Tableau and Spotfire. With the advent of vast computing power,
modern visualization platforms have moved well beyond the
humble beginnings of exploratory data analysis. However, key
concepts and tools developed a half century ago (e.g., simple
boxplots) still form a foundation for these systems.

KEY IDEAS

Hexagonal binning and contour plots are useful tools that permit graphical examination of
two numeric variables at a time, without being overwhelmed by huge amounts of data.

Contingency tables are the standard tool for looking at the counts of two categorical
variables.

Boxplots and violin plots allow you to plot a numeric variable against a categorical
variable.

Further Reading
Modern Data Science with R by Benjamin Baumer, Daniel
Kaplan, and Nicholas Horton (Chapman & Hall/CRC
Press, 2017) has an excellent presentation of “a grammar
for graphics” (the “gg” in ggplot).

ggplot2: Elegant Graphics for Data Analysis by Hadley
Wickham (Springer, 2009) is an excellent resource from
the creator of ggplot2.

Josef Fruehwald has a web-based tutorial on ggplot2.

Summary
Exploratory data analysis (EDA), pioneered by John Tukey, set a
foundation for the field of data science. The key idea of EDA is that
the first and most important step in any project based on data is to
look at the data. By summarizing and visualizing the data, you can
gain valuable intuition and understanding of the project.

This chapter has reviewed concepts ranging from simple metrics,
such as estimates of location and variability, to rich visual displays
that explore the relationships between multiple variables, as in
Figure 1-12. The diverse set of tools and techniques being
developed by the open source community, combined with the
expressiveness of the R and Python languages, has created a
plethora of ways to explore and analyze data. Exploratory analysis
should be a cornerstone of any data science project.

https://oreil.ly/zB2Dz

Chapter 2. Data and
Sampling Distributions

A popular misconception holds that the era of big data
means the end of a need for sampling. In fact, the
proliferation of data of varying quality and relevance
reinforces the need for sampling as a tool to work
efficiently with a variety of data and to minimize bias.
Even in a big data project, predictive models are
typically developed and piloted with samples. Samples
are also used in tests of various sorts (e.g., comparing
the effect of web page designs on clicks).

Figure 2-1 shows a schematic that underpins the
concepts we will discuss in this chapter—data and
sampling distributions. The lefthand side represents a
population that, in statistics, is assumed to follow an
underlying but unknown distribution. All that is
available is the sample data and its empirical
distribution, shown on the righthand side. To get from
the lefthand side to the righthand side, a sampling
procedure is used (represented by an arrow). Traditional
statistics focused very much on the lefthand side, using
theory based on strong assumptions about the
population. Modern statistics has moved to the
righthand side, where such assumptions are not needed.

In general, data scientists need not worry about the
theoretical nature of the lefthand side and instead should

focus on the sampling procedures and the data at hand.
There are some notable exceptions. Sometimes data is
generated from a physical process that can be modeled.
The simplest example is flipping a coin: this follows a
binomial distribution. Any real-life binomial situation
(buy or don’t buy, fraud or no fraud, click or don’t click)
can be modeled effectively by a coin (with modified
probability of landing heads, of course). In these cases,
we can gain additional insight by using our
understanding of the population.

Figure 2-1. Population versus sample

Random Sampling and Sample
Bias

A sample is a subset of data from a larger data set;
statisticians call this larger data set the population. A
population in statistics is not the same thing as in
biology—it is a large, defined (but sometimes
theoretical or imaginary) set of data.

Random sampling is a process in which each available
member of the population being sampled has an equal
chance of being chosen for the sample at each draw. The
sample that results is called a simple random sample.
Sampling can be done with replacement, in which
observations are put back in the population after each
draw for possible future reselection. Or it can be done
without replacement, in which case observations, once
selected, are unavailable for future draws.

Data quality often matters more than data quantity when
making an estimate or a model based on a sample. Data
quality in data science involves completeness,
consistency of format, cleanliness, and accuracy of
individual data points. Statistics adds the notion of
representativeness.

KEY TERMS FOR RANDOM SAMPLING

Sample

A subset from a larger data set.

Population

The larger data set or idea of a data set.

N (n)

The size of the population (sample).

Random sampling

Drawing elements into a sample at random.

Stratified sampling

Dividing the population into strata and randomly sampling from each strata.

Stratum (pl., strata)

A homogeneous subgroup of a population with common characteristics.

Simple random sample

The sample that results from random sampling without stratifying the
population.

Bias

Systematic error.

Sample bias

A sample that misrepresents the population.

The classic example is the Literary Digest poll of 1936
that predicted a victory of Alf Landon over Franklin
Roosevelt. The Literary Digest, a leading periodical of
the day, polled its entire subscriber base plus additional
lists of individuals, a total of over 10 million people, and
predicted a landslide victory for Landon. George Gallup,
founder of the Gallup Poll, conducted biweekly polls of
just 2,000 people and accurately predicted a Roosevelt

victory. The difference lay in the selection of those
polled.

The Literary Digest opted for quantity, paying little
attention to the method of selection. They ended up
polling those with relatively high socioeconomic status
(their own subscribers, plus those who, by virtue of
owning luxuries like telephones and automobiles,
appeared in marketers’ lists). The result was sample
bias; that is, the sample was different in some
meaningful and nonrandom way from the larger
population it was meant to represent. The term
nonrandom is important—hardly any sample, including
random samples, will be exactly representative of the
population. Sample bias occurs when the difference is
meaningful, and it can be expected to continue for other
samples drawn in the same way as the first.

SELF-SELECTION SAMPLING BIAS
The reviews of restaurants, hotels, cafés, and so on that you
read on social media sites like Yelp are prone to bias because
the people submitting them are not randomly selected; rather,
they themselves have taken the initiative to write. This leads
to self-selection bias—the people motivated to write reviews
may have had poor experiences, may have an association with
the establishment, or may simply be a different type of person
from those who do not write reviews. Note that while self-
selection samples can be unreliable indicators of the true state
of affairs, they may be more reliable in simply comparing one
establishment to a similar one; the same self-selection bias
might apply to each.

Bias

Statistical bias refers to measurement or sampling errors
that are systematic and produced by the measurement or
sampling process. An important distinction should be
made between errors due to random chance and errors
due to bias. Consider the physical process of a gun
shooting at a target. It will not hit the absolute center of
the target every time, or even much at all. An unbiased
process will produce error, but it is random and does not
tend strongly in any direction (see Figure 2-2). The
results shown in Figure 2-3 show a biased process—
there is still random error in both the x and y direction,
but there is also a bias. Shots tend to fall in the upper-
right quadrant.

Figure 2-2. Scatterplot of shots from a gun with true aim

Figure 2-3. Scatterplot of shots from a gun with biased aim

Bias comes in different forms, and may be observable or
invisible. When a result does suggest bias (e.g., by
reference to a benchmark or actual values), it is often an
indicator that a statistical or machine learning model has
been misspecified, or an important variable left out.

Random Selection
To avoid the problem of sample bias that led the
Literary Digest to predict Landon over Roosevelt,
George Gallup (shown in Figure 2-4) opted for more
scientifically chosen methods to achieve a sample that
was representative of the US voting electorate. There are
now a variety of methods to achieve representativeness,
but at the heart of all of them lies random sampling.

Figure 2-4. George Gallup, catapulted to fame by the Literary Digest’s
“big data” failure

Random sampling is not always easy. Proper definition
of an accessible population is key. Suppose we want to
generate a representative profile of customers and we
need to conduct a pilot customer survey. The survey
needs to be representative but is labor intensive.

First, we need to define who a customer is. We might
select all customer records where purchase amount > 0.
Do we include all past customers? Do we include
refunds? Internal test purchases? Resellers? Both billing
agent and customer?

Next, we need to specify a sampling procedure. It might
be “select 100 customers at random.” Where a sampling
from a flow is involved (e.g., real-time customer
transactions or web visitors), timing considerations may
be important (e.g., a web visitor at 10 a.m. on a weekday
may be different from a web visitor at 10 p.m. on a
weekend).

In stratified sampling, the population is divided up into
strata, and random samples are taken from each stratum.
Political pollsters might seek to learn the electoral

preferences of whites, blacks, and Hispanics. A simple
random sample taken from the population would yield
too few blacks and Hispanics, so those strata could be
overweighted in stratified sampling to yield equivalent
sample sizes.

Size Versus Quality: When Does Size
Matter?
In the era of big data, it is sometimes surprising that
smaller is better. Time and effort spent on random
sampling not only reduces bias but also allows greater
attention to data exploration and data quality. For
example, missing data and outliers may contain useful
information. It might be prohibitively expensive to track
down missing values or evaluate outliers in millions of
records, but doing so in a sample of several thousand
records may be feasible. Data plotting and manual
inspection bog down if there is too much data.

So when are massive amounts of data needed?

The classic scenario for the value of big data is when the
data is not only big but sparse as well. Consider the
search queries received by Google, where columns are
terms, rows are individual search queries, and cell
values are either 0 or 1, depending on whether a query
contains a term. The goal is to determine the best
predicted search destination for a given query. There are
over 150,000 words in the English language, and
Google processes over one trillion queries per year. This
yields a huge matrix, the vast majority of whose entries
are “0.”

This is a true big data problem—only when such
enormous quantities of data are accumulated can
effective search results be returned for most queries.
And the more data accumulates, the better the results.
For popular search terms this is not such a problem—
effective data can be found fairly quickly for the handful
of extremely popular topics trending at a particular time.
The real value of modern search technology lies in the
ability to return detailed and useful results for a huge
variety of search queries, including those that occur with
a frequency, say, of only one in a million.

Consider the search phrase “Ricky Ricardo and Little
Red Riding Hood.” In the early days of the internet, this
query would probably have returned results on the
bandleader Ricky Ricardo, the television show I Love
Lucy in which that character appeared, and the
children’s story Little Red Riding Hood. Both of those
individual items would have had many searches to refer
to, but the combination would have had very few. Later,
now that trillions of search queries have been
accumulated, this search query returns the exact I Love
Lucy episode in which Ricky narrates, in dramatic
fashion, the Little Red Riding Hood story to his infant
son in a comic mix of English and Spanish.

Keep in mind that the number of actual pertinent records
—ones in which this exact search query, or something
very similar, appears (together with information on what
link people ultimately clicked on)—might need only be
in the thousands to be effective. However, many trillions
of data points are needed to obtain these pertinent

records (and random sampling, of course, will not help).
See also “Long-Tailed Distributions”.

Sample Mean Versus Population Mean
The symbol x (pronounced “x-bar”) is used to represent
the mean of a sample from a population, whereas μ is
used to represent the mean of a population. Why make
the distinction? Information about samples is observed,
and information about large populations is often inferred
from smaller samples. Statisticians like to keep the two
things separate in the symbology.

KEY IDEAS

Even in the era of big data, random sampling remains an important
arrow in the data scientist’s quiver.

Bias occurs when measurements or observations are systematically in
error because they are not representative of the full population.

Data quality is often more important than data quantity, and random
sampling can reduce bias and facilitate quality improvement that would
otherwise be prohibitively expensive.

Further Reading
A useful review of sampling procedures can be
found in Ronald Fricker’s chapter “Sampling
Methods for Online Surveys” in The SAGE
Handbook of Online Research Methods, 2nd
ed., edited by Nigel G. Fielding, Raymond M.
Lee, and Grant Blank (SAGE Publications,
2016). This chapter includes a review of the
modifications to random sampling that are
often used for practical reasons of cost or
feasibility.

The story of the Literary Digest poll failure can
be found on the Capital Century website.

https://oreil.ly/iSoQT

Selection Bias
To paraphrase Yogi Berra: if you don’t know what
you’re looking for, look hard enough and you’ll find it.

Selection bias refers to the practice of selectively
choosing data—consciously or unconsciously—in a way
that leads to a conclusion that is misleading or
ephemeral.

KEY TERMS FOR SELECTION BIAS

Selection bias

Bias resulting from the way in which observations are selected.

Data snooping

Extensive hunting through data in search of something interesting.

Vast search effect

Bias or nonreproducibility resulting from repeated data modeling, or modeling
data with large numbers of predictor variables.

If you specify a hypothesis and conduct a well-designed
experiment to test it, you can have high confidence in
the conclusion. This is frequently not what occurs,
however. Often, one looks at available data and tries to
discern patterns. But are the patterns real? Or are they
just the product of data snooping—that is, extensive
hunting through the data until something interesting
emerges? There is a saying among statisticians: “If you
torture the data long enough, sooner or later it will
confess.”

The difference between a phenomenon that you verify
when you test a hypothesis using an experiment and a
phenomenon that you discover by perusing available

data can be illuminated with the following thought
experiment.

Imagine that someone tells you they can flip a coin and
have it land heads on the next 10 tosses. You challenge
them (the equivalent of an experiment), and they
proceed to toss the coin 10 times, with all flips landing
heads. Clearly you ascribe some special talent to this
person—the probability that 10 coin tosses will land
heads just by chance is 1 in 1,000.

Now imagine that the announcer at a sports stadium asks
the 20,000 people in attendance each to toss a coin 10
times, and to report to an usher if they get 10 heads in a
row. The chance that somebody in the stadium will get
10 heads is extremely high (more than 99%—it’s 1
minus the probability that nobody gets 10 heads).
Clearly, selecting after the fact the person (or persons)
who gets 10 heads at the stadium does not indicate they
have any special talent—it’s most likely luck.

Since repeated review of large data sets is a key value
proposition in data science, selection bias is something
to worry about. A form of selection bias of particular
concern to data scientists is what John Elder (founder of
Elder Research, a respected data mining consultancy)
calls the vast search effect. If you repeatedly run
different models and ask different questions with a large
data set, you are bound to find something interesting.
But is the result you found truly something interesting,
or is it the chance outlier?

We can guard against this by using a holdout set, and
sometimes more than one holdout set, against which to
validate performance. Elder also advocates the use of
what he calls target shuffling (a permutation test, in
essence) to test the validity of predictive associations
that a data mining model suggests.

Typical forms of selection bias in statistics, in addition
to the vast search effect, include nonrandom sampling
(see “Random Sampling and Sample Bias”), cherry-
picking data, selection of time intervals that accentuate a
particular statistical effect, and stopping an experiment
when the results look “interesting.”

Regression to the Mean
Regression to the mean refers to a phenomenon
involving successive measurements on a given variable:
extreme observations tend to be followed by more
central ones. Attaching special focus and meaning to the
extreme value can lead to a form of selection bias.

Sports fans are familiar with the “rookie of the year,
sophomore slump” phenomenon. Among the athletes
who begin their career in a given season (the rookie
class), there is always one who performs better than all
the rest. Generally, this “rookie of the year” does not do
as well in his second year. Why not?

In nearly all major sports, at least those played with a
ball or puck, there are two elements that play a role in
overall performance:

Skill

Luck

Regression to the mean is a consequence of a particular
form of selection bias. When we select the rookie with
the best performance, skill and good luck are probably
contributing. In his next season, the skill will still be
there, but very often the luck will not be, so his
performance will decline—it will regress. The
phenomenon was first identified by Francis Galton in
1886 [Galton-1886], who wrote of it in connection with
genetic tendencies; for example, the children of
extremely tall men tend not to be as tall as their father
(see Figure 2-5).

Figure 2-5. Galton’s study that identified the phenomenon of regression to
the mean

WARNING
Regression to the mean, meaning to “go back,” is distinct
from the statistical modeling method of linear regression, in
which a linear relationship is estimated between predictor
variables and an outcome variable.

KEY IDEAS

Specifying a hypothesis and then collecting data following
randomization and random sampling principles ensures against bias.

All other forms of data analysis run the risk of bias resulting from the
data collection/analysis process (repeated running of models in data
mining, data snooping in research, and after-the-fact selection of
interesting events).

Further Reading
Christopher J. Pannucci and Edwin G. Wilkins’
article “Identifying and Avoiding Bias in
Research” in (surprisingly not a statistics
journal) Plastic and Reconstructive Surgery
(August 2010) has an excellent review of
various types of bias that can enter into
research, including selection bias.

Michael Harris’s article “Fooled by
Randomness Through Selection Bias” provides
an interesting review of selection bias
considerations in stock market trading schemes,
from the perspective of traders.

Sampling Distribution of a
Statistic
The term sampling distribution of a statistic refers to the
distribution of some sample statistic over many samples
drawn from the same population. Much of classical
statistics is concerned with making inferences from
(small) samples to (very large) populations.

https://oreil.ly/v_Q0u

KEY TERMS FOR SAMPLING DISTRIBUTION

Sample statistic

A metric calculated for a sample of data drawn from a larger population.

Data distribution

The frequency distribution of individual values in a data set.

Sampling distribution

The frequency distribution of a sample statistic over many samples or
resamples.

Central limit theorem

The tendency of the sampling distribution to take on a normal shape as
sample size rises.

Standard error

The variability (standard deviation) of a sample statistic over many samples
(not to be confused with standard deviation, which by itself, refers to
variability of individual data values).

Typically, a sample is drawn with the goal of measuring
something (with a sample statistic) or modeling
something (with a statistical or machine learning
model). Since our estimate or model is based on a
sample, it might be in error; it might be different if we
were to draw a different sample. We are therefore
interested in how different it might be—a key concern is
sampling variability. If we had lots of data, we could
draw additional samples and observe the distribution of
a sample statistic directly. Typically, we will calculate
our estimate or model using as much data as is easily
available, so the option of drawing additional samples
from the population is not readily available.

WARNING
It is important to distinguish between the distribution of the
individual data points, known as the data distribution, and the
distribution of a sample statistic, known as the sampling
distribution.

The distribution of a sample statistic such as the mean is
likely to be more regular and bell-shaped than the
distribution of the data itself. The larger the sample the
statistic is based on, the more this is true. Also, the
larger the sample, the narrower the distribution of the
sample statistic.

This is illustrated in an example using annual income for
loan applicants to LendingClub (see “A Small Example:
Predicting Loan Default” for a description of the data).
Take three samples from this data: a sample of 1,000
values, a sample of 1,000 means of 5 values, and a
sample of 1,000 means of 20 values. Then plot a
histogram of each sample to produce Figure 2-6.

Figure 2-6. Histogram of annual incomes of 1,000 loan applicants (top),
then 1,000 means of n=5 applicants (middle), and finally 1,000 means of

n=20 applicants (bottom)

The histogram of the individual data values is broadly
spread out and skewed toward higher values, as is to be
expected with income data. The histograms of the means
of 5 and 20 are increasingly compact and more bell-
shaped. Here is the R code to generate these histograms,
using the visualization package ggplot2:

library(ggplot2)

take a simple random sample

samp_data <-

data.frame(income=sample(loans_income, 1000),

 type='data_dist')

take a sample of means of 5 values

samp_mean_05 <- data.frame(

 income = tapply(sample(loans_income, 1000*5),

 rep(1:1000, rep(5, 1000)),

FUN=mean),

 type = 'mean_of_5')

take a sample of means of 20 values

samp_mean_20 <- data.frame(

 income = tapply(sample(loans_income, 1000*20),

 rep(1:1000, rep(20, 1000)),

FUN=mean),

 type = 'mean_of_20')

bind the data.frames and convert type to a

factor

income <- rbind(samp_data, samp_mean_05,

samp_mean_20)

income$type = factor(income$type,

 levels=c('data_dist',

'mean_of_5', 'mean_of_20'),

 labels=c('Data', 'Mean of

5', 'Mean of 20'))

plot the histograms

ggplot(income, aes(x=income)) +

 geom_histogram(bins=40) +

 facet_grid(type ~ .)

The Python code uses seaborn’s FacetGrid to
show the three histograms:

import pandas as pd

import seaborn as sns

sample_data = pd.DataFrame({

 'income': loans_income.sample(1000),

 'type': 'Data',

})

sample_mean_05 = pd.DataFrame({

 'income': [loans_income.sample(5).mean() for

_ in range(1000)],

 'type': 'Mean of 5',

})

sample_mean_20 = pd.DataFrame({

 'income': [loans_income.sample(20).mean()

for _ in range(1000)],

 'type': 'Mean of 20',

})

results = pd.concat([sample_data,

sample_mean_05, sample_mean_20])

g = sns.FacetGrid(results, col='type',

col_wrap=1, height=2, aspect=2)

g.map(plt.hist, 'income', range=[0, 200000],

bins=40)

g.set_axis_labels('Income', 'Count')

g.set_titles('{col_name}')

Central Limit Theorem
The phenomenon we’ve just described is termed the
central limit theorem. It says that the means drawn from
multiple samples will resemble the familiar bell-shaped
normal curve (see “Normal Distribution”), even if the
source population is not normally distributed, provided
that the sample size is large enough and the departure of
the data from normality is not too great. The central
limit theorem allows normal-approximation formulas
like the t-distribution to be used in calculating sampling

distributions for inference—that is, confidence intervals
and hypothesis tests.

The central limit theorem receives a lot of attention in
traditional statistics texts because it underlies the
machinery of hypothesis tests and confidence intervals,
which themselves consume half the space in such texts.
Data scientists should be aware of this role; however,
since formal hypothesis tests and confidence intervals
play a small role in data science, and the bootstrap (see
“The Bootstrap”) is available in any case, the central
limit theorem is not so central in the practice of data
science.

Standard Error
The standard error is a single metric that sums up the
variability in the sampling distribution for a statistic.
The standard error can be estimated using a statistic
based on the standard deviation s of the sample values,
and the sample size n:

Standard error = SE =
s

√n

As the sample size increases, the standard error
decreases, corresponding to what was observed in
Figure 2-6. The relationship between standard error and
sample size is sometimes referred to as the square root
of n rule: to reduce the standard error by a factor of 2,
the sample size must be increased by a factor of 4.

The validity of the standard error formula arises from
the central limit theorem. In fact, you don’t need to rely

on the central limit theorem to understand standard
error. Consider the following approach to measuring
standard error:

1. Collect a number of brand-new samples from
the population.

2. For each new sample, calculate the statistic
(e.g., mean).

3. Calculate the standard deviation of the statistics
computed in step 2; use this as your estimate of
standard error.

In practice, this approach of collecting new samples to
estimate the standard error is typically not feasible (and
statistically very wasteful). Fortunately, it turns out that
it is not necessary to draw brand new samples; instead,
you can use bootstrap resamples. In modern statistics,
the bootstrap has become the standard way to estimate
standard error. It can be used for virtually any statistic
and does not rely on the central limit theorem or other
distributional assumptions.

STANDARD DEVIATION VERSUS
STANDARD ERROR

Do not confuse standard deviation (which measures the
variability of individual data points) with standard error
(which measures the variability of a sample metric).

KEY IDEAS

The frequency distribution of a sample statistic tells us how that metric
would turn out differently from sample to sample.

This sampling distribution can be estimated via the bootstrap, or via
formulas that rely on the central limit theorem.

A key metric that sums up the variability of a sample statistic is its
standard error.

Further Reading
David Lane’s online multimedia resource in statistics
has a useful simulation that allows you to select a
sample statistic, a sample size, and the number of
iterations and visualize a histogram of the resulting
frequency distribution.

The Bootstrap
One easy and effective way to estimate the sampling
distribution of a statistic, or of model parameters, is to
draw additional samples, with replacement, from the
sample itself and recalculate the statistic or model for
each resample. This procedure is called the bootstrap,
and it does not necessarily involve any assumptions
about the data or the sample statistic being normally
distributed.

KEY TERMS FOR THE BOOTSTRAP

Bootstrap sample

A sample taken with replacement from an observed data set.

Resampling

The process of taking repeated samples from observed data; includes both
bootstrap and permutation (shuffling) procedures.

Conceptually, you can imagine the bootstrap as
replicating the original sample thousands or millions of
times so that you have a hypothetical population that
embodies all the knowledge from your original sample
(it’s just larger). You can then draw samples from this

https://oreil.ly/pe7ra

hypothetical population for the purpose of estimating a
sampling distribution; see Figure 2-7.

Figure 2-7. The idea of the bootstrap

In practice, it is not necessary to actually replicate the
sample a huge number of times. We simply replace each
observation after each draw; that is, we sample with
replacement. In this way we effectively create an infinite
population in which the probability of an element being
drawn remains unchanged from draw to draw. The
algorithm for a bootstrap resampling of the mean, for a
sample of size n, is as follows:

1. Draw a sample value, record it, and then
replace it.

2. Repeat n times.

3. Record the mean of the n resampled values.

4. Repeat steps 1–3 R times.

5. Use the R results to:

a. Calculate their standard deviation (this
estimates sample mean standard error).

b. Produce a histogram or boxplot.

c. Find a confidence interval.

R, the number of iterations of the bootstrap, is set
somewhat arbitrarily. The more iterations you do, the
more accurate the estimate of the standard error, or the
confidence interval. The result from this procedure is a
bootstrap set of sample statistics or estimated model
parameters, which you can then examine to see how
variable they are.

The R package boot combines these steps in one
function. For example, the following applies the
bootstrap to the incomes of people taking out loans:

library(boot)

stat_fun <- function(x, idx) median(x[idx])

boot_obj <- boot(loans_income, R=1000,

statistic=stat_fun)

The function stat_fun computes the median for a
given sample specified by the index idx. The result is
as follows:

Bootstrap Statistics :

 original bias std. error

t1* 62000 -70.5595 209.1515

The original estimate of the median is $62,000. The
bootstrap distribution indicates that the estimate has a
bias of about –$70 and a standard error of $209. The
results will vary slightly between consecutive runs of
the algorithm.

The major Python packages don’t provide
implementations of the bootstrap approach. It can be
implemented using the scikit-learn method
resample:

results = []

for nrepeat in range(1000):

 sample = resample(loans_income)

 results.append(sample.median())

results = pd.Series(results)

print('Bootstrap Statistics:')

print(f'original: {loans_income.median()}')

print(f'bias: {results.mean() -

loans_income.median()}')

print(f'std. error: {results.std()}')

The bootstrap can be used with multivariate data, where
the rows are sampled as units (see Figure 2-8). A model
might then be run on the bootstrapped data, for example,
to estimate the stability (variability) of model
parameters, or to improve predictive power. With
classification and regression trees (also called decision
trees), running multiple trees on bootstrap samples and
then averaging their predictions (or, with classification,
taking a majority vote) generally performs better than

using a single tree. This process is called bagging (short
for “bootstrap aggregating”; see “Bagging and the
Random Forest”).

Figure 2-8. Multivariate bootstrap sampling

The repeated resampling of the bootstrap is conceptually
simple, and Julian Simon, an economist and
demographer, published a compendium of resampling
examples, including the bootstrap, in his 1969 text Basic
Research Methods in Social Science (Random House).

However, it is also computationally intensive and was
not a feasible option before the widespread availability
of computing power. The technique gained its name and
took off with the publication of several journal articles
and a book by Stanford statistician Bradley Efron in the
late 1970s and early 1980s. It was particularly popular
among researchers who use statistics but are not
statisticians, and for use with metrics or models where
mathematical approximations are not readily available.
The sampling distribution of the mean has been well
established since 1908; the sampling distribution of
many other metrics has not. The bootstrap can be used
for sample size determination; experiment with different
values for n to see how the sampling distribution is
affected.

The bootstrap was met with considerable skepticism
when it was first introduced; it had the aura to many of
spinning gold from straw. This skepticism stemmed
from a misunderstanding of the bootstrap’s purpose.

WARNING
The bootstrap does not compensate for a small sample size; it
does not create new data, nor does it fill in holes in an existing
data set. It merely informs us about how lots of additional
samples would behave when drawn from a population like our
original sample.

Resampling Versus Bootstrapping
Sometimes the term resampling is used synonymously
with the term bootstrapping, as just outlined. More
often, the term resampling also includes permutation
procedures (see “Permutation Test”), where multiple

samples are combined and the sampling may be done
without replacement. In any case, the term bootstrap
always implies sampling with replacement from an
observed data set.

KEY IDEAS

The bootstrap (sampling with replacement from a data set) is a
powerful tool for assessing the variability of a sample statistic.

The bootstrap can be applied in similar fashion in a wide variety of
circumstances, without extensive study of mathematical approximations
to sampling distributions.

It also allows us to estimate sampling distributions for statistics where
no mathematical approximation has been developed.

When applied to predictive models, aggregating multiple bootstrap
sample predictions (bagging) outperforms the use of a single model.

Further Reading
An Introduction to the Bootstrap by Bradley
Efron and Robert Tibshirani (Chapman & Hall,
1993) was the first book-length treatment of the
bootstrap. It is still widely read.

The retrospective on the bootstrap in the May
2003 issue of Statistical Science (vol. 18, no.
2), discusses (among other antecedents, in Peter
Hall’s “A Short Prehistory of the Bootstrap”)
Julian Simon’s initial publication of the
bootstrap in 1969.

See An Introduction to Statistical Learning by
Gareth James, Daniela Witten, Trevor Hastie,
and Robert Tibshirani (Springer, 2013) for
sections on the bootstrap and, in particular,
bagging.

Confidence Intervals

Frequency tables, histograms, boxplots, and standard
errors are all ways to understand the potential error in a
sample estimate. Confidence intervals are another.

KEY TERMS FOR CONFIDENCE INTERVALS

Confidence level

The percentage of confidence intervals, constructed in the same way from
the same population, that are expected to contain the statistic of interest.

Interval endpoints

The top and bottom of the confidence interval.

There is a natural human aversion to uncertainty; people
(especially experts) say “I don’t know” far too rarely.
Analysts and managers, while acknowledging
uncertainty, nonetheless place undue faith in an estimate
when it is presented as a single number (a point
estimate). Presenting an estimate not as a single number
but as a range is one way to counteract this tendency.
Confidence intervals do this in a manner grounded in
statistical sampling principles.

Confidence intervals always come with a coverage
level, expressed as a (high) percentage, say 90% or
95%. One way to think of a 90% confidence interval is
as follows: it is the interval that encloses the central
90% of the bootstrap sampling distribution of a sample
statistic (see “The Bootstrap”). More generally, an x%
confidence interval around a sample estimate should, on
average, contain similar sample estimates x% of the time
(when a similar sampling procedure is followed).

Given a sample of size n, and a sample statistic of
interest, the algorithm for a bootstrap confidence

interval is as follows:

1. Draw a random sample of size n with
replacement from the data (a resample).

2. Record the statistic of interest for the resample.

3. Repeat steps 1–2 many (R) times.

4. For an x% confidence interval, trim [(100-x) /
2]% of the R resample results from either end
of the distribution.

5. The trim points are the endpoints of an x%
bootstrap confidence interval.

Figure 2-9 shows a 90% confidence interval for the
mean annual income of loan applicants, based on a
sample of 20 for which the mean was $62,231.

Figure 2-9. Bootstrap confidence interval for the annual income of loan
applicants, based on a sample of 20

The bootstrap is a general tool that can be used to
generate confidence intervals for most statistics, or

model parameters. Statistical textbooks and software,
with roots in over a half century of computerless
statistical analysis, will also reference confidence
intervals generated by formulas, especially the t-
distribution (see “Student’s t-Distribution”).

NOTE
Of course, what we are really interested in when we have a
sample result is, “What is the probability that the true value
lies within a certain interval?” This is not really the question
that a confidence interval answers, but it ends up being how
most people interpret the answer.

The probability question associated with a confidence interval
starts out with the phrase “Given a sampling procedure and a
population, what is the probability that…” To go in the
opposite direction, “Given a sample result, what is the
probability that (something is true about the population)?”
involves more complex calculations and deeper
imponderables.

The percentage associated with the confidence interval
is termed the level of confidence. The higher the level of
confidence, the wider the interval. Also, the smaller the
sample, the wider the interval (i.e., the greater the
uncertainty). Both make sense: the more confident you
want to be, and the less data you have, the wider you
must make the confidence interval to be sufficiently
assured of capturing the true value.

NOTE
For a data scientist, a confidence interval is a tool that can be
used to get an idea of how variable a sample result might be.
Data scientists would use this information not to publish a
scholarly paper or submit a result to a regulatory agency (as a
researcher might) but most likely to communicate the
potential error in an estimate, and perhaps to learn whether a
larger sample is needed.

KEY IDEAS

Confidence intervals are the typical way to present estimates as an
interval range.

The more data you have, the less variable a sample estimate will be.

The lower the level of confidence you can tolerate, the narrower the
confidence interval will be.

The bootstrap is an effective way to construct confidence intervals.

Further Reading
For a bootstrap approach to confidence
intervals, see Introductory Statistics and
Analytics: A Resampling Perspective by Peter
Bruce (Wiley, 2014) or Statistics: Unlocking
the Power of Data, 2nd ed., by Robin Lock and
four other Lock family members (Wiley, 2016).

Engineers, who have a need to understand the
precision of their measurements, use
confidence intervals perhaps more than most
disciplines, and Modern Engineering Statistics
by Thomas Ryan (Wiley, 2007) discusses
confidence intervals. It also reviews a tool that
is just as useful and gets less attention:
prediction intervals (intervals around a single
value, as opposed to a mean or other summary
statistic).

Normal Distribution
The bell-shaped normal distribution is iconic in
traditional statistics. The fact that distributions of
sample statistics are often normally shaped has made it a
powerful tool in the development of mathematical
formulas that approximate those distributions.

1

KEY TERMS FOR NORMAL DISTRIBUTION

Error

The difference between a data point and a predicted or average value.

Standardize

Subtract the mean and divide by the standard deviation.

z-score

The result of standardizing an individual data point.

Standard normal

A normal distribution with mean = 0 and standard deviation = 1.

QQ-Plot

A plot to visualize how close a sample distribution is to a specified
distribution, e.g., the normal distribution.

In a normal distribution (Figure 2-10), 68% of the data
lies within one standard deviation of the mean, and 95%
lies within two standard deviations.

WARNING
It is a common misconception that the normal distribution is
called that because most data follows a normal distribution—
that is, it is the normal thing. Most of the variables used in a
typical data science project—in fact, most raw data as a whole
—are not normally distributed: see “Long-Tailed
Distributions”. The utility of the normal distribution derives
from the fact that many statistics are normally distributed in
their sampling distribution. Even so, assumptions of normality
are generally a last resort, used when empirical probability
distributions, or bootstrap distributions, are not available.

Figure 2-10. Normal curve

NOTE
The normal distribution is also referred to as a Gaussian
distribution after Carl Friedrich Gauss, a prodigious German
mathematician from the late 18th and early 19th centuries.
Another name previously used for the normal distribution was
the “error” distribution. Statistically speaking, an error is the
difference between an actual value and a statistical estimate
like the sample mean. For example, the standard deviation
(see “Estimates of Variability”) is based on the errors from the
mean of the data. Gauss’s development of the normal
distribution came from his study of the errors of astronomical
measurements that were found to be normally distributed.

Standard Normal and QQ-Plots

A standard normal distribution is one in which the units
on the x-axis are expressed in terms of standard
deviations away from the mean. To compare data to a
standard normal distribution, you subtract the mean and
then divide by the standard deviation; this is also called
normalization or standardization (see “Standardization
(Normalization, z-Scores)”). Note that “standardization”
in this sense is unrelated to database record
standardization (conversion to a common format). The
transformed value is termed a z-score, and the normal
distribution is sometimes called the z-distribution.

A QQ-Plot is used to visually determine how close a
sample is to a specified distribution—in this case, the
normal distribution. The QQ-Plot orders the z-scores
from low to high and plots each value’s z-score on the y-
axis; the x-axis is the corresponding quantile of a normal
distribution for that value’s rank. Since the data is
normalized, the units correspond to the number of
standard deviations away from the mean. If the points
roughly fall on the diagonal line, then the sample
distribution can be considered close to normal. Figure 2-
11 shows a QQ-Plot for a sample of 100 values
randomly generated from a normal distribution; as
expected, the points closely follow the line. This figure
can be produced in R with the qqnorm function:

norm_samp <- rnorm(100)

qqnorm(norm_samp)

abline(a=0, b=1, col='grey')

In Python, use the method scipy.stats.probplot
to create the QQ-Plot:

fig, ax = plt.subplots(figsize=(4, 4))

norm_sample = stats.norm.rvs(size=100)

stats.probplot(norm_sample, plot=ax)

Figure 2-11. QQ-Plot of a sample of 100 values drawn from a standard
normal distribution

WARNING
Converting data to z-scores (i.e., standardizing or normalizing
the data) does not make the data normally distributed. It just
puts the data on the same scale as the standard normal
distribution, often for comparison purposes.

KEY IDEAS

The normal distribution was essential to the historical development of
statistics, as it permitted mathematical approximation of uncertainty and
variability.

While raw data is typically not normally distributed, errors often are, as
are averages and totals in large samples.

To convert data to z-scores, you subtract the mean of the data and
divide by the standard deviation; you can then compare the data to a
normal distribution.

Long-Tailed Distributions
Despite the importance of the normal distribution
historically in statistics, and in contrast to what the name
would suggest, data is generally not normally
distributed.

KEY TERMS FOR LONG-TAILED DISTRIBUTIONS

Tail

The long narrow portion of a frequency distribution, where relatively extreme
values occur at low frequency.

Skew

Where one tail of a distribution is longer than the other.

While the normal distribution is often appropriate and
useful with respect to the distribution of errors and
sample statistics, it typically does not characterize the

distribution of raw data. Sometimes, the distribution is
highly skewed (asymmetric), such as with income data;
or the distribution can be discrete, as with binomial data.
Both symmetric and asymmetric distributions may have
long tails. The tails of a distribution correspond to the
extreme values (small and large). Long tails, and
guarding against them, are widely recognized in
practical work. Nassim Taleb has proposed the black
swan theory, which predicts that anomalous events, such
as a stock market crash, are much more likely to occur
than would be predicted by the normal distribution.

A good example to illustrate the long-tailed nature of
data is stock returns. Figure 2-12 shows the QQ-Plot for
the daily stock returns for Netflix (NFLX). This is
generated in R by:

nflx <- sp500_px[,'NFLX']

nflx <- diff(log(nflx[nflx>0]))

qqnorm(nflx)

abline(a=0, b=1, col='grey')

The corresponding Python code is:

nflx = sp500_px.NFLX

nflx = np.diff(np.log(nflx[nflx>0]))

fig, ax = plt.subplots(figsize=(4, 4))

stats.probplot(nflx, plot=ax)

Figure 2-12. QQ-Plot of the returns for Netflix (NFLX)

In contrast to Figure 2-11, the points are far below the
line for low values and far above the line for high
values, indicating the data are not normally distributed.
This means that we are much more likely to observe
extreme values than would be expected if the data had a
normal distribution. Figure 2-12 shows another common
phenomenon: the points are close to the line for the data
within one standard deviation of the mean. Tukey refers
to this phenomenon as data being “normal in the
middle” but having much longer tails (see [Tukey-
1987]).

NOTE
There is much statistical literature about the task of fitting
statistical distributions to observed data. Beware an
excessively data-centric approach to this job, which is as
much art as science. Data is variable, and often consistent, on
its face, with more than one shape and type of distribution. It
is typically the case that domain and statistical knowledge
must be brought to bear to determine what type of distribution
is appropriate to model a given situation. For example, we
might have data on the level of internet traffic on a server over
many consecutive five-second periods. It is useful to know
that the best distribution to model “events per time period” is
the Poisson (see “Poisson Distributions”).

KEY IDEAS

Most data is not normally distributed.

Assuming a normal distribution can lead to underestimation of extreme
events (“black swans”).

Further Reading

The Black Swan, 2nd ed., by Nassim Nicholas
Taleb (Random House, 2010)

Handbook of Statistical Distributions with
Applications, 2nd ed., by K. Krishnamoorthy
(Chapman & Hall/CRC Press, 2016)

Student’s t-Distribution
The t-distribution is a normally shaped distribution,
except that it is a bit thicker and longer on the tails. It is
used extensively in depicting distributions of sample
statistics. Distributions of sample means are typically
shaped like a t-distribution, and there is a family of t-
distributions that differ depending on how large the
sample is. The larger the sample, the more normally
shaped the t-distribution becomes.

KEY TERMS FOR STUDENT’S T-DISTRIBUTION

n

Sample size.

Degrees of freedom

A parameter that allows the t-distribution to adjust to different sample sizes,
statistics, and numbers of groups.

The t-distribution is often called Student’s t because it
was published in 1908 in Biometrika by W. S. Gosset
under the name “Student.” Gosset’s employer, the
Guinness brewery, did not want competitors to know
that it was using statistical methods, so it insisted that
Gosset not use his name on the article.

Gosset wanted to answer the question “What is the
sampling distribution of the mean of a sample, drawn

from a larger population?” He started out with a
resampling experiment—drawing random samples of 4
from a data set of 3,000 measurements of criminals’
height and left-middle-finger length. (This being the era
of eugenics, there was much interest in data on
criminals, and in discovering correlations between
criminal tendencies and physical or psychological
attributes.) Gosset plotted the standardized results (the z-
scores) on the x-axis and the frequency on the y-axis.
Separately, he had derived a function, now known as
Student’s t, and he fit this function over the sample
results, plotting the comparison (see Figure 2-13).

Figure 2-13. Gosset’s resampling experiment results and fitted t-curve
(from his 1908 Biometrika paper)

A number of different statistics can be compared, after
standardization, to the t-distribution, to estimate
confidence intervals in light of sampling variation.
Consider a sample of size n for which the sample mean
x has been calculated. If s is the sample standard
deviation, a 90% confidence interval around the sample
mean is given by:

x ± tn−1 (0. 05) ⋅
s

√n

where tn−1 (. 05) is the value of the t-statistic, with (n –
1) degrees of freedom (see “Degrees of Freedom”), that
“chops off” 5% of the t-distribution at either end. The t-
distribution has been used as a reference for the
distribution of a sample mean, the difference between
two sample means, regression parameters, and other
statistics.

Had computing power been widely available in 1908,
statistics would no doubt have relied much more heavily
on computationally intensive resampling methods from
the start. Lacking computers, statisticians turned to
mathematics and functions such as the t-distribution to
approximate sampling distributions. Computer power
enabled practical resampling experiments in the 1980s,
but by then, use of the t-distribution and similar
distributions had become deeply embedded in textbooks
and software.

The t-distribution’s accuracy in depicting the behavior
of a sample statistic requires that the distribution of that
statistic for that sample be shaped like a normal
distribution. It turns out that sample statistics are often
normally distributed, even when the underlying
population data is not (a fact which led to widespread
application of the t-distribution). This brings us back to
the phenomenon known as the central limit theorem (see
“Central Limit Theorem”).

NOTE
What do data scientists need to know about the t-distribution
and the central limit theorem? Not a whole lot. The t-
distribution is used in classical statistical inference but is not
as central to the purposes of data science. Understanding and
quantifying uncertainty and variation are important to data
scientists, but empirical bootstrap sampling can answer most
questions about sampling error. However, data scientists will
routinely encounter t-statistics in output from statistical
software and statistical procedures in R—for example, in A/B
tests and regressions—so familiarity with its purpose is
helpful.

KEY IDEAS

The t-distribution is actually a family of distributions resembling the
normal distribution but with thicker tails.

The t-distribution is widely used as a reference basis for the distribution
of sample means, differences between two sample means, regression
parameters, and more.

Further Reading
The original W.S. Gosset paper as published in
Biometrika in 1908 is available as a PDF.

A standard treatment of the t-distribution can be
found in David Lane’s online resource.

Binomial Distribution
Yes/no (binomial) outcomes lie at the heart of analytics
since they are often the culmination of a decision or
other process; buy/don’t buy, click/don’t click,
survive/die, and so on. Central to understanding the
binomial distribution is the idea of a set of trials, each
trial having two possible outcomes with definite
probabilities.

https://oreil.ly/J6gDg
https://oreil.ly/QxUkA

For example, flipping a coin 10 times is a binomial
experiment with 10 trials, each trial having two possible
outcomes (heads or tails); see Figure 2-14. Such yes/no
or 0/1 outcomes are termed binary outcomes, and they
need not have 50/50 probabilities. Any probabilities that
sum to 1.0 are possible. It is conventional in statistics to
term the “1” outcome the success outcome; it is also
common practice to assign “1” to the more rare
outcome. Use of the term success does not imply that
the outcome is desirable or beneficial, but it does tend to
indicate the outcome of interest. For example, loan
defaults or fraudulent transactions are relatively
uncommon events that we may be interested in
predicting, so they are termed “1s” or “successes.”

Figure 2-14. The tails side of a buffalo nickel

KEY TERMS FOR BINOMIAL DISTRIBUTION

Trial

An event with a discrete outcome (e.g., a coin flip).

Success

The outcome of interest for a trial.

Synonym

“1” (as opposed to “0”)

Binomial

Having two outcomes.

Synonyms

yes/no, 0/1, binary

Binomial trial

A trial with two outcomes.

Synonym

Bernoulli trial

Binomial distribution

Distribution of number of successes in x trials.

Synonym

Bernoulli distribution

The binomial distribution is the frequency distribution
of the number of successes (x) in a given number of
trials (n) with specified probability (p) of success in
each trial. There is a family of binomial distributions,
depending on the values of n and p. The binomial
distribution would answer a question like:

If the probability of a click converting to a sale is
0.02, what is the probability of observing 0 sales in
200 clicks?

The R function dbinom calculates binomial
probabilities. For example:

dbinom(x=2, size=5, p=0.1)

would return 0.0729, the probability of observing
exactly x = 2 successes in size = 5 trials, where the
probability of success for each trial is p = 0.1. For our
example above, we use x = 0, size = 200, and p = 0.02.
With these arguments, dbinom returns a probability of
0.0176.

Often we are interested in determining the probability of
x or fewer successes in n trials. In this case, we use the
function pbinom:

pbinom(2, 5, 0.1)

This would return 0.9914, the probability of observing
two or fewer successes in five trials, where the
probability of success for each trial is 0.1.

The scipy.stats module implements a large variety
of statistical distributions. For the binomial distribution,
use the functions stats.binom.pmf and
stats.binom.cdf:

stats.binom.pmf(2, n=5, p=0.1)

stats.binom.cdf(2, n=5, p=0.1)

The mean of a binomial distribution is n × p; you can
also think of this as the expected number of successes in
n trials, for success probability = p.

The variance is n × p(1 − p). With a large enough
number of trials (particularly when p is close to 0.50),
the binomial distribution is virtually indistinguishable
from the normal distribution. In fact, calculating
binomial probabilities with large sample sizes is
computationally demanding, and most statistical
procedures use the normal distribution, with mean and
variance, as an approximation.

KEY IDEAS

Binomial outcomes are important to model, since they represent,
among other things, fundamental decisions (buy or don’t buy, click or
don’t click, survive or die, etc.).

A binomial trial is an experiment with two possible outcomes: one with
probability p and the other with probability 1 – p.

With large n, and provided p is not too close to 0 or 1, the binomial
distribution can be approximated by the normal distribution.

Further Reading
Read about the “quincunx”, a pinball-like
simulation device for illustrating the binomial
distribution.

The binomial distribution is a staple of
introductory statistics, and all introductory
statistics texts will have a chapter or two on it.

Chi-Square Distribution
An important idea in statistics is departure from
expectation, especially with respect to category counts.

https://oreil.ly/nmkcs

Expectation is defined loosely as “nothing unusual or of
note in the data” (e.g., no correlation between variables
or predictable patterns). This is also termed the “null
hypothesis” or “null model” (see “The Null
Hypothesis”). For example, you might want to test
whether one variable (say, a row variable representing
gender) is independent of another (say, a column
variable representing “was promoted in job”), and you
have counts of the number in each of the cells of the
data table. The statistic that measures the extent to
which results depart from the null expectation of
independence is the chi-square statistic. It is the
difference between the observed and expected values,
divided by the square root of the expected value,
squared, then summed across all categories. This
process standardizes the statistic so it can be compared
to a reference distribution. A more general way of
putting this is to note that the chi-square statistic is a
measure of the extent to which a set of observed values
“fits” a specified distribution (a “goodness-of-fit” test).
It is useful for determining whether multiple treatments
(an “A/B/C… test”) differ from one another in their
effects.

The chi-square distribution is the distribution of this
statistic under repeated resampled draws from the null
model—see “Chi-Square Test” for a detailed algorithm,
and the chi-square formula for a data table. A low chi-
square value for a set of counts indicates that they
closely follow the expected distribution. A high chi-
square indicates that they differ markedly from what is

expected. There are a variety of chi-square distributions
associated with different degrees of freedom (e.g.,
number of observations—see “Degrees of Freedom”).

KEY IDEAS

The chi-square distribution is typically concerned with counts of
subjects or items falling into categories.

The chi-square statistic measures the extent of departure from what
you would expect in a null model.

Further Reading
The chi-square distribution owes its place in
modern statistics to the great statistician Karl
Pearson and the birth of hypothesis testing—
read about this and more in David Salsburg’s
The Lady Tasting Tea: How Statistics
Revolutionized Science in the Twentieth
Century (W. H. Freeman, 2001).

For a more detailed exposition, see the section
in this book on the chi-square test (“Chi-Square
Test”).

F-Distribution
A common procedure in scientific experimentation is to
test multiple treatments across groups—say, different
fertilizers on different blocks of a field. This is similar to
the A/B/C test referred to in the chi-square distribution
(see “Chi-Square Distribution”), except we are dealing
with measured continuous values rather than counts. In
this case we are interested in the extent to which
differences among group means are greater than we
might expect under normal random variation. The F-

statistic measures this and is the ratio of the variability
among the group means to the variability within each
group (also called residual variability). This comparison
is termed an analysis of variance (see “ANOVA”). The
distribution of the F-statistic is the frequency
distribution of all the values that would be produced by
randomly permuting data in which all the group means
are equal (i.e., a null model). There are a variety of F-
distributions associated with different degrees of
freedom (e.g., numbers of groups—see “Degrees of
Freedom”). The calculation of F is illustrated in the
section on ANOVA. The F-statistic is also used in linear
regression to compare the variation accounted for by the
regression model to the overall variation in the data. F-
statistics are produced automatically by R and Python as
part of regression and ANOVA routines.

KEY IDEAS

The F-distribution is used with experiments and linear models involving
measured data.

The F-statistic compares variation due to factors of interest to overall
variation.

Further Reading
George Cobb’s Introduction to Design and Analysis of
Experiments (Wiley, 2008) contains an excellent
exposition of the decomposition of variance
components, which helps in understanding ANOVA and
the F-statistic.

Poisson and Related
Distributions
Many processes produce events randomly at a given
overall rate—visitors arriving at a website, or cars
arriving at a toll plaza (events spread over time);
imperfections in a square meter of fabric, or typos per
100 lines of code (events spread over space).

KEY TERMS FOR POISSON AND RELATED
DISTRIBUTIONS

Lambda

The rate (per unit of time or space) at which events occur.

Poisson distribution

The frequency distribution of the number of events in sampled units of time or
space.

Exponential distribution

The frequency distribution of the time or distance from one event to the next
event.

Weibull distribution

A generalized version of the exponential distribution in which the event rate is
allowed to shift over time.

Poisson Distributions
From prior aggregate data (for example, number of flu
infections per year), we can estimate the average
number of events per unit of time or space (e.g.,
infections per day, or per census unit). We might also
want to know how different this might be from one unit
of time/space to another. The Poisson distribution tells
us the distribution of events per unit of time or space
when we sample many such units. It is useful when

addressing queuing questions such as “How much
capacity do we need to be 95% sure of fully processing
the internet traffic that arrives on a server in any five-
second period?”

The key parameter in a Poisson distribution is λ, or
lambda. This is the mean number of events that occurs
in a specified interval of time or space. The variance for
a Poisson distribution is also λ.

A common technique is to generate random numbers
from a Poisson distribution as part of a queuing
simulation. The rpois function in R does this, taking
only two arguments—the quantity of random numbers
sought, and lambda:

rpois(100, lambda=2)

The corresponding scipy function is
stats.poisson.rvs:

stats.poisson.rvs(2, size=100)

This code will generate 100 random numbers from a
Poisson distribution with λ = 2. For example, if
incoming customer service calls average two per
minute, this code will simulate 100 minutes, returning
the number of calls in each of those 100 minutes.

Exponential Distribution
Using the same parameter λ that we used in the Poisson
distribution, we can also model the distribution of the
time between events: time between visits to a website or

between cars arriving at a toll plaza. It is also used in
engineering to model time to failure, and in process
management to model, for example, the time required
per service call. The R code to generate random numbers
from an exponential distribution takes two arguments: n
(the quantity of numbers to be generated) and rate (the
number of events per time period). For example:

rexp(n=100, rate=0.2)

In the function stats.expon.rvs, the order of the
arguments is reversed:

stats.expon.rvs(0.2, size=100)

This code would generate 100 random numbers from an
exponential distribution where the mean number of
events per time period is 0.2. So you could use it to
simulate 100 intervals, in minutes, between service
calls, where the average rate of incoming calls is 0.2 per
minute.

A key assumption in any simulation study for either the
Poisson or exponential distribution is that the rate, λ,
remains constant over the period being considered. This
is rarely reasonable in a global sense; for example,
traffic on roads or data networks varies by time of day
and day of week. However, the time periods, or areas of
space, can usually be divided into segments that are
sufficiently homogeneous so that analysis or simulation
within those periods is valid.

Estimating the Failure Rate
In many applications, the event rate, λ, is known or can
be estimated from prior data. However, for rare events,
this is not necessarily so. Aircraft engine failure, for
example, is sufficiently rare (thankfully) that, for a given
engine type, there may be little data on which to base an
estimate of time between failures. With no data at all,
there is little basis on which to estimate an event rate.
However, you can make some guesses: if no events have
been seen after 20 hours, you can be pretty sure that the
rate is not 1 per hour. Via simulation, or direct
calculation of probabilities, you can assess different
hypothetical event rates and estimate threshold values
below which the rate is very unlikely to fall. If there is
some data but not enough to provide a precise, reliable
estimate of the rate, a goodness-of-fit test (see “Chi-
Square Test”) can be applied to various rates to
determine how well they fit the observed data.

Weibull Distribution
In many cases, the event rate does not remain constant
over time. If the period over which it changes is much
longer than the typical interval between events, there is
no problem; you just subdivide the analysis into the
segments where rates are relatively constant, as
mentioned before. If, however, the event rate changes
over the time of the interval, the exponential (or
Poisson) distributions are no longer useful. This is likely
to be the case in mechanical failure—the risk of failure
increases as time goes by. The Weibull distribution is an

extension of the exponential distribution in which the
event rate is allowed to change, as specified by a shape
parameter, β. If β > 1, the probability of an event
increases over time; if β < 1, the probability decreases.
Because the Weibull distribution is used with time-to-
failure analysis instead of event rate, the second
parameter is expressed in terms of characteristic life,
rather than in terms of the rate of events per interval.
The symbol used is η, the Greek letter eta. It is also
called the scale parameter.

With the Weibull, the estimation task now includes
estimation of both parameters, β and η. Software is used
to model the data and yield an estimate of the best-
fitting Weibull distribution.

The R code to generate random numbers from a Weibull
distribution takes three arguments: n (the quantity of
numbers to be generated), shape, and scale. For
example, the following code would generate 100
random numbers (lifetimes) from a Weibull distribution
with shape of 1.5 and characteristic life of 5,000:

rweibull(100, 1.5, 5000)

To achieve the same in Python, use the function
stats.weibull_min.rvs:

stats.weibull_min.rvs(1.5, scale=5000, size=100)

KEY IDEAS

For events that occur at a constant rate, the number of events per unit
of time or space can be modeled as a Poisson distribution.

You can also model the time or distance between one event and the
next as an exponential distribution.

A changing event rate over time (e.g., an increasing probability of
device failure) can be modeled with the Weibull distribution.

Further Reading
Modern Engineering Statistics by Thomas
Ryan (Wiley, 2007) has a chapter devoted to the
probability distributions used in engineering
applications.

Read an engineering-based perspective on the
use of the Weibull distribution here and here.

Summary
In the era of big data, the principles of random sampling
remain important when accurate estimates are needed.
Random selection of data can reduce bias and yield a
higher quality data set than would result from just using
the conveniently available data. Knowledge of various
sampling and data-generating distributions allows us to
quantify potential errors in an estimate that might be due
to random variation. At the same time, the bootstrap
(sampling with replacement from an observed data set)
is an attractive “one size fits all” method to determine
possible error in sample estimates.

1 The bell curve is iconic but perhaps overrated. George W. Cobb, the
Mount Holyoke statistician noted for his contribution to the
philosophy of teaching introductory statistics, argued in a November
2015 editorial in the American Statistician that the “standard

https://oreil.ly/1x-ga
https://oreil.ly/9bn-U

introductory course, which puts the normal distribution at its center,
had outlived the usefulness of its centrality.”

Chapter 3. Statistical
Experiments and
Significance Testing

Design of experiments is a cornerstone of the practice of
statistics, with applications in virtually all areas of
research. The goal is to design an experiment in order to
confirm or reject a hypothesis. Data scientists often need
to conduct continual experiments, particularly regarding
user interface and product marketing. This chapter
reviews traditional experimental design and discusses
some common challenges in data science. It also covers
some oft-cited concepts in statistical inference and
explains their meaning and relevance (or lack of
relevance) to data science.

Whenever you see references to statistical significance,
t-tests, or p-values, it is typically in the context of the
classical statistical inference “pipeline” (see Figure 3-1).
This process starts with a hypothesis (“drug A is better
than the existing standard drug,” or “price A is more
profitable than the existing price B”). An experiment (it
might be an A/B test) is designed to test the hypothesis
—designed in such a way that it hopefully will deliver
conclusive results. The data is collected and analyzed,
and then a conclusion is drawn. The term inference
reflects the intention to apply the experiment results,

which involve a limited set of data, to a larger process or
population.

Figure 3-1. The classical statistical inference pipeline

A/B Testing
An A/B test is an experiment with two groups to
establish which of two treatments, products, procedures,
or the like is superior. Often one of the two treatments is
the standard existing treatment, or no treatment. If a
standard (or no) treatment is used, it is called the
control. A typical hypothesis is that a new treatment is
better than the control.

KEY TERMS FOR A/B TESTING

Treatment

Something (drug, price, web headline) to which a subject is exposed.

Treatment group

A group of subjects exposed to a specific treatment.

Control group

A group of subjects exposed to no (or standard) treatment.

Randomization

The process of randomly assigning subjects to treatments.

Subjects

The items (web visitors, patients, etc.) that are exposed to treatments.

Test statistic

The metric used to measure the effect of the treatment.

A/B tests are common in web design and marketing,
since results are so readily measured. Some examples of
A/B testing include:

Testing two soil treatments to determine which
produces better seed germination

Testing two therapies to determine which
suppresses cancer more effectively

Testing two prices to determine which yields
more net profit

Testing two web headlines to determine which
produces more clicks (Figure 3-2)

Testing two web ads to determine which
generates more conversions

Figure 3-2. Marketers continually test one web presentation against
another

A proper A/B test has subjects that can be assigned to
one treatment or another. The subject might be a person,
a plant seed, a web visitor; the key is that the subject is
exposed to the treatment. Ideally, subjects are
randomized (assigned randomly) to treatments. In this

way, you know that any difference between the
treatment groups is due to one of two things:

The effect of the different treatments

Luck of the draw in which subjects are assigned
to which treatments (i.e., the random
assignment may have resulted in the naturally
better-performing subjects being concentrated
in A or B)

You also need to pay attention to the test statistic or
metric you use to compare group A to group B. Perhaps
the most common metric in data science is a binary
variable: click or no-click, buy or don’t buy, fraud or no
fraud, and so on. Those results would be summed up in
a 2×2 table. Table 3-1 is a 2×2 table for an actual price
test (see “Statistical Significance and p-Values” for
further discussion of these results).

Table 3-1. 2×2 table for ecommerce experiment
results

Outcome Price A Price B

Conversion 200 182

No conversion 23,539 22,406

If the metric is a continuous variable (purchase amount,
profit, etc.) or a count (e.g., days in hospital, pages
visited), the result might be displayed differently. If one
were interested not in conversion but in revenue per

page view, the results of the price test in Table 3-1 might
look like this in typical default software output:

Revenue/page view with price A: mean = 3.87, SD =
51.10

Revenue/page view with price B: mean = 4.11, SD =
62.98

“SD” refers to the standard deviation of the values
within each group.

WARNING
Just because statistical software—including R and Python—
generates output by default does not mean that all the output is
useful or relevant. You can see that the preceding standard
deviations are not that useful; on their face they suggest that
numerous values might be negative, when negative revenue is
not feasible. This data consists of a small set of relatively high
values (page views with conversions) and a huge number of 0-
values (page views with no conversion). It is difficult to sum
up the variability of such data with a single number, though
the mean absolute deviation from the mean (7.68 for A and
8.15 for B) is more reasonable than the standard deviation.

Why Have a Control Group?
Why not skip the control group and just run an
experiment applying the treatment of interest to only
one group, and compare the outcome to prior
experience?

Without a control group, there is no assurance that “all
other things are equal” and that any difference is really
due to the treatment (or to chance). When you have a
control group, it is subject to the same conditions
(except for the treatment of interest) as the treatment
group. If you simply make a comparison to “baseline”

or prior experience, other factors, besides the treatment,
might differ.

BLINDING IN STUDIES
A blind study is one in which the subjects are unaware of
whether they are getting treatment A or treatment B.
Awareness of receiving a particular treatment can affect
response. A double-blind study is one in which the
investigators and facilitators (e.g., doctors and nurses in a
medical study) also are unaware which subjects are getting
which treatment. Blinding is not possible when the nature of
the treatment is transparent—for example, cognitive therapy
from a computer versus a psychologist.

A/B testing in data science is typically used in a web
context. Treatments might be the design of a web page,
the price of a product, the wording of a headline, or
some other item. Some thought is required to preserve
the principles of randomization. Typically the subject in
the experiment is the web visitor, and the outcomes we
are interested in measuring are clicks, purchases, visit
duration, number of pages visited, whether a particular
page is visited, and the like. In a standard A/B
experiment, you need to decide on one metric ahead of
time. Multiple behavior metrics might be collected and
be of interest, but if the experiment is expected to lead
to a decision between treatment A and treatment B, a
single metric, or test statistic, needs to be established
beforehand. Selecting a test statistic after the experiment
is conducted opens the door to researcher bias.

Why Just A/B? Why Not C, D,…?
A/B tests are popular in the marketing and ecommerce
worlds, but are far from the only type of statistical

experiment. Additional treatments can be included.
Subjects might have repeated measurements taken.
Pharmaceutical trials where subjects are scarce,
expensive, and acquired over time are sometimes
designed with multiple opportunities to stop the
experiment and reach a conclusion.

Traditional statistical experimental designs focus on
answering a static question about the efficacy of
specified treatments. Data scientists are less interested in
the question:

Is the difference between price A and price B
statistically significant?

than in the question:

Which, out of multiple possible prices, is best?

For this, a relatively new type of experimental design is
used: the multi-arm bandit (see “Multi-Arm Bandit
Algorithm”).

GETTING PERMISSION
In scientific and medical research involving human subjects, it
is typically necessary to get their permission, as well as obtain
the approval of an institutional review board. Experiments in
business that are done as a part of ongoing operations almost
never do this. In most cases (e.g., pricing experiments, or
experiments about which headline to show or which offer
should be made), this practice is widely accepted. Facebook,
however, ran afoul of this general acceptance in 2014 when it
experimented with the emotional tone in users’ newsfeeds.
Facebook used sentiment analysis to classify newsfeed posts
as positive or negative, and then altered the positive/negative
balance in what it showed users. Some randomly selected
users experienced more positive posts, while others
experienced more negative posts. Facebook found that the
users who experienced a more positive newsfeed were more
likely to post positively themselves, and vice versa. The
magnitude of the effect was small, however, and Facebook
faced much criticism for conducting the experiment without
users’ knowledge. Some users speculated that Facebook might
have pushed some extremely depressed users over the edge if
they got the negative version of their feed.

KEY IDEAS

Subjects are assigned to two (or more) groups that are treated exactly
alike, except that the treatment under study differs from one group to
another.

Ideally, subjects are assigned randomly to the groups.

Further Reading
Two-group comparisons (A/B tests) are a staple
of traditional statistics, and just about any
introductory statistics text will have extensive
coverage of design principles and inference
procedures. For a discussion that places A/B
tests in more of a data science context and uses
resampling, see Introductory Statistics and

Analytics: A Resampling Perspective by Peter
Bruce (Wiley, 2014).

For web testing, the logistical aspects of testing
can be just as challenging as the statistical ones.
A good place to start is the Google Analytics
help section on experiments.

Beware advice found in the ubiquitous guides
to A/B testing that you see on the web, such as
these words in one such guide: “Wait for about
1,000 total visitors and make sure you run the
test for a week.” Such general rules of thumb
are not statistically meaningful; see “Power and
Sample Size” for more detail.

Hypothesis Tests
Hypothesis tests, also called significance tests, are
ubiquitous in the traditional statistical analysis of
published research. Their purpose is to help you learn
whether random chance might be responsible for an
observed effect.

KEY TERMS FOR HYPOTHESIS TESTS

Null hypothesis

The hypothesis that chance is to blame.

Alternative hypothesis

Counterpoint to the null (what you hope to prove).

One-way test

Hypothesis test that counts chance results only in one direction.

Two-way test

Hypothesis test that counts chance results in two directions.

https://oreil.ly/mAbqF

An A/B test (see “A/B Testing”) is typically constructed
with a hypothesis in mind. For example, the hypothesis
might be that price B produces higher profit. Why do we
need a hypothesis? Why not just look at the outcome of
the experiment and go with whichever treatment does
better?

The answer lies in the tendency of the human mind to
underestimate the scope of natural random behavior.
One manifestation of this is the failure to anticipate
extreme events, or so-called “black swans” (see “Long-
Tailed Distributions”). Another manifestation is the
tendency to misinterpret random events as having
patterns of some significance. Statistical hypothesis
testing was invented as a way to protect researchers
from being fooled by random chance.

MISINTERPRETING RANDOMNESS
You can observe the human tendency to underestimate randomness in this
experiment. Ask several friends to invent a series of 50 coin flips: have them write
down a series of random Hs and Ts. Then ask them to actually flip a coin 50 times
and write down the results. Have them put the real coin flip results in one pile, and
the made-up results in another. It is easy to tell which results are real: the real
ones will have longer runs of Hs or Ts. In a set of 50 real coin flips, it is not at all
unusual to see five or six Hs or Ts in a row. However, when most of us are
inventing random coin flips and we have gotten three or four Hs in a row, we tell
ourselves that, for the series to look random, we had better switch to T.

The other side of this coin, so to speak, is that when we do see the real-world
equivalent of six Hs in a row (e.g., when one headline outperforms another by
10%), we are inclined to attribute it to something real, not just to chance.

In a properly designed A/B test, you collect data on
treatments A and B in such a way that any observed
difference between A and B must be due to either:

Random chance in assignment of subjects

A true difference between A and B

A statistical hypothesis test is further analysis of an A/B
test, or any randomized experiment, to assess whether
random chance is a reasonable explanation for the
observed difference between groups A and B.

The Null Hypothesis
Hypothesis tests use the following logic: “Given the
human tendency to react to unusual but random
behavior and interpret it as something meaningful and
real, in our experiments we will require proof that the
difference between groups is more extreme than what
chance might reasonably produce.” This involves a
baseline assumption that the treatments are equivalent,
and any difference between the groups is due to chance.
This baseline assumption is termed the null hypothesis.
Our hope, then, is that we can in fact prove the null
hypothesis wrong and show that the outcomes for
groups A and B are more different than what chance
might produce.

One way to do this is via a resampling permutation
procedure, in which we shuffle together the results from
groups A and B and then repeatedly deal out the data in
groups of similar sizes, and then observe how often we
get a difference as extreme as the observed difference.
The combined shuffled results from groups A and B,
and the procedure of resampling from them, embodies
the null hypothesis of groups A and B being equivalent
and interchangeable and is termed the null model. See
“Resampling” for more detail.

Alternative Hypothesis
Hypothesis tests by their nature involve not just a null
hypothesis but also an offsetting alternative hypothesis.
Here are some examples:

Null = “no difference between the means of
group A and group B”; alternative = “A is
different from B” (could be bigger or smaller)

Null = “A ≤ B”; alternative = “A > B”

Null = “B is not X% greater than A”;
alternative = “B is X% greater than A”

Taken together, the null and alternative hypotheses must
account for all possibilities. The nature of the null
hypothesis determines the structure of the hypothesis
test.

One-Way Versus Two-Way Hypothesis
Tests
Often in an A/B test, you are testing a new option (say,
B) against an established default option (A), and the
presumption is that you will stick with the default option
unless the new option proves itself definitively better. In
such a case, you want a hypothesis test to protect you
from being fooled by chance in the direction favoring B.
You don’t care about being fooled by chance in the other
direction, because you would be sticking with A unless
B proves definitively better. So you want a directional
alternative hypothesis (B is better than A). In such a
case, you use a one-way (or one-tail) hypothesis test.

This means that extreme chance results in only one
direction count toward the p-value.

If you want a hypothesis test to protect you from being
fooled by chance in either direction, the alternative
hypothesis is bidirectional (A is different from B; could
be bigger or smaller). In such a case, you use a two-way
(or two-tail) hypothesis. This means that extreme chance
results in either direction count toward the p-value.

A one-tail hypothesis test often fits the nature of A/B
decision making, in which a decision is required and one
option is typically assigned “default” status unless the
other proves better. Software, however, including R and
scipy in Python, typically provides a two-tail test in its
default output, and many statisticians opt for the more
conservative two-tail test just to avoid argument. One-
tail versus two-tail is a confusing subject, and not that
relevant for data science, where the precision of p-value
calculations is not terribly important.

KEY IDEAS

A null hypothesis is a logical construct embodying the notion that
nothing special has happened, and any effect you observe is due to
random chance.

The hypothesis test assumes that the null hypothesis is true, creates a
“null model” (a probability model), and tests whether the effect you
observe is a reasonable outcome of that model.

Further Reading
The Drunkard’s Walk by Leonard Mlodinow
(Pantheon, 2008) is a readable survey of the
ways in which “randomness rules our lives.”

David Freedman, Robert Pisani, and Roger
Purves’s classic statistics text Statistics, 4th ed.
(W. W. Norton, 2007), has excellent
nonmathematical treatments of most statistics
topics, including hypothesis testing.

Introductory Statistics and Analytics: A
Resampling Perspective by Peter Bruce (Wiley,
2014) develops hypothesis testing concepts
using resampling.

Resampling
Resampling in statistics means to repeatedly sample
values from observed data, with a general goal of
assessing random variability in a statistic. It can also be
used to assess and improve the accuracy of some
machine-learning models (e.g., the predictions from
decision tree models built on multiple bootstrapped data
sets can be averaged in a process known as bagging—
see “Bagging and the Random Forest”).

There are two main types of resampling procedures: the
bootstrap and permutation tests. The bootstrap is used to
assess the reliability of an estimate; it was discussed in
the previous chapter (see “The Bootstrap”). Permutation
tests are used to test hypotheses, typically involving two
or more groups, and we discuss those in this section.

KEY TERMS FOR RESAMPLING

Permutation test

The procedure of combining two or more samples together and randomly (or
exhaustively) reallocating the observations to resamples.

Synonyms

Randomization test, random permutation test, exact test

Resampling

Drawing additional samples (“resamples”) from an observed data set.

With or without replacement

In sampling, whether or not an item is returned to the sample before the next
draw.

Permutation Test
In a permutation procedure, two or more samples are
involved, typically the groups in an A/B or other
hypothesis test. Permute means to change the order of a
set of values. The first step in a permutation test of a
hypothesis is to combine the results from groups A and
B (and, if used, C, D,…). This is the logical embodiment
of the null hypothesis that the treatments to which the
groups were exposed do not differ. We then test that
hypothesis by randomly drawing groups from this
combined set and seeing how much they differ from one
another. The permutation procedure is as follows:

1. Combine the results from the different groups
into a single data set.

2. Shuffle the combined data and then randomly
draw (without replacement) a resample of the
same size as group A (clearly it will contain
some data from the other groups).

3. From the remaining data, randomly draw
(without replacement) a resample of the same
size as group B.

4. Do the same for groups C, D, and so on. You
have now collected one set of resamples that
mirror the sizes of the original samples.

5. Whatever statistic or estimate was calculated
for the original samples (e.g., difference in
group proportions), calculate it now for the
resamples, and record; this constitutes one
permutation iteration.

6. Repeat the previous steps R times to yield a
permutation distribution of the test statistic.

Now go back to the observed difference between groups
and compare it to the set of permuted differences. If the
observed difference lies well within the set of permuted
differences, then we have not proven anything—the
observed difference is within the range of what chance
might produce. However, if the observed difference lies
outside most of the permutation distribution, then we
conclude that chance is not responsible. In technical
terms, the difference is statistically significant. (See
“Statistical Significance and p-Values”.)

Example: Web Stickiness
A company selling a relatively high-value service wants
to test which of two web presentations does a better
selling job. Due to the high value of the service being
sold, sales are infrequent and the sales cycle is lengthy;
it would take too long to accumulate enough sales to
know which presentation is superior. So the company

decides to measure the results with a proxy variable,
using the detailed interior page that describes the
service.

TIP
A proxy variable is one that stands in for the true variable of
interest, which may be unavailable, too costly, or too time-
consuming to measure. In climate research, for example, the
oxygen content of ancient ice cores is used as a proxy for
temperature. It is useful to have at least some data on the true
variable of interest, so the strength of its association with the
proxy can be assessed.

One potential proxy variable for our company is the
number of clicks on the detailed landing page. A better
one is how long people spend on the page. It is
reasonable to think that a web presentation (page) that
holds people’s attention longer will lead to more sales.
Hence, our metric is average session time, comparing
page A to page B.

Due to the fact that this is an interior, special-purpose
page, it does not receive a huge number of visitors. Also
note that Google Analytics, which is how we measure
session time, cannot measure session time for the last
session a person visits. Instead of deleting that session
from the data, though, Google Analytics records it as a
zero, so the data requires additional processing to
remove those sessions. The result is a total of 36
sessions for the two different presentations, 21 for page
A and 15 for page B. Using ggplot, we can visually
compare the session times using side-by-side boxplots:

ggplot(session_times, aes(x=Page, y=Time)) +

 geom_boxplot()

The pandas boxplot command uses the keyword
argument by to create the figure:

ax = session_times.boxplot(by='Page',

column='Time')

ax.set_xlabel('')

ax.set_ylabel('Time (in seconds)')

plt.suptitle('')

The boxplot, shown in Figure 3-3, indicates that page B
leads to longer sessions than page A. The means for
each group can be computed in R as follows:

mean_a <-

mean(session_times[session_times['Page'] ==

'Page A', 'Time'])

mean_b <-

mean(session_times[session_times['Page'] ==

'Page B', 'Time'])

mean_b - mean_a

[1] 35.66667

In Python, we filter the pandas data frame first by
page and then determine the mean of the Time column:

mean_a = session_times[session_times.Page ==

'Page A'].Time.mean()

mean_b = session_times[session_times.Page ==

'Page B'].Time.mean()

mean_b - mean_a

Page B has session times that are greater than those of
page A by 35.67 seconds, on average. The question is
whether this difference is within the range of what
random chance might produce, i.e., is statistically
significant. One way to answer this is to apply a
permutation test—combine all the session times together

and then repeatedly shuffle and divide them into groups
of 21 (recall that nA = 21 for page A) and 15 (nB = 15

for page B).

To apply a permutation test, we need a function to
randomly assign the 36 session times to a group of 21
(page A) and a group of 15 (page B). The R version of
this function is:

perm_fun <- function(x, nA, nB)

{

 n <- nA + nB

 idx_b <- sample(1:n, nB)

 idx_a <- setdiff(1:n, idx_b)

 mean_diff <- mean(x[idx_b]) - mean(x[idx_a])

 return(mean_diff)

}

The Python version of this permutation test is the
following:

def perm_fun(x, nA, nB):

 n = nA + nB

 idx_B = set(random.sample(range(n), nB))

 idx_A = set(range(n)) - idx_B

 return x.loc[idx_B].mean() -

x.loc[idx_A].mean()

Figure 3-3. Session times for web pages A and B

This function works by sampling (without replacement)
nB indices and assigning them to the B group; the
remaining nA indices are assigned to group A. The
difference between the two means is returned. Calling
this function R = 1,000 times and specifying nA = 21

and nB = 15 leads to a distribution of differences in the
session times that can be plotted as a histogram. In R
this is done as follows using the hist function:

perm_diffs <- rep(0, 1000)

for (i in 1:1000) {

 perm_diffs[i] = perm_fun(session_times[,

'Time'], 21, 15)

}

hist(perm_diffs, xlab='Session time differences

(in seconds)')

abline(v=mean_b - mean_a)

In Python, we can create a similar graph using
matplotlib:

perm_diffs = [perm_fun(session_times.Time, nA,

nB) for _ in range(1000)]

fig, ax = plt.subplots(figsize=(5, 5))

ax.hist(perm_diffs, bins=11, rwidth=0.9)

ax.axvline(x = mean_b - mean_a, color='black',

lw=2)

ax.text(50, 190, 'Observed\ndifference', bbox=

{'facecolor':'white'})

ax.set_xlabel('Session time differences (in

seconds)')

ax.set_ylabel('Frequency')

The histogram, in Figure 3-4 shows that mean difference
of random permutations often exceeds the observed
difference in session times (the vertical line). For our
results, this happens in 12.6% of the cases:

mean(perm_diffs > (mean_b - mean_a))

0.126

As the simulation uses random numbers, the percentage
will vary. For example, in the Python version, we got
12.1%:

np.mean(perm_diffs > mean_b - mean_a)

0.121

This suggests that the observed difference in session
time between page A and page B is well within the
range of chance variation and thus is not statistically
significant.

Figure 3-4. Frequency distribution for session time differences between
pages A and B; the vertical line shows the observed difference

Exhaustive and Bootstrap Permutation
Tests
In addition to the preceding random shuffling procedure,
also called a random permutation test or a
randomization test, there are two variants of the
permutation test:

An exhaustive permutation test

A bootstrap permutation test

In an exhaustive permutation test, instead of just
randomly shuffling and dividing the data, we actually
figure out all the possible ways it could be divided. This
is practical only for relatively small sample sizes. With a
large number of repeated shufflings, the random
permutation test results approximate those of the
exhaustive permutation test, and approach them in the
limit. Exhaustive permutation tests are also sometimes
called exact tests, due to their statistical property of
guaranteeing that the null model will not test as
“significant” more than the alpha level of the test (see
“Statistical Significance and p-Values”).

In a bootstrap permutation test, the draws outlined in
steps 2 and 3 of the random permutation test are made
with replacement instead of without replacement. In this
way the resampling procedure models not just the
random element in the assignment of treatment to
subject but also the random element in the selection of

subjects from a population. Both procedures are
encountered in statistics, and the distinction between
them is somewhat convoluted and not of consequence in
the practice of data science.

Permutation Tests: The Bottom Line for
Data Science
Permutation tests are useful heuristic procedures for
exploring the role of random variation. They are
relatively easy to code, interpret, and explain, and they
offer a useful detour around the formalism and “false
determinism” of formula-based statistics, in which the
precision of formula “answers” tends to imply
unwarranted certainty.

One virtue of resampling, in contrast to formula
approaches, is that it comes much closer to a one-size-
fits-all approach to inference. Data can be numeric or
binary. Sample sizes can be the same or different.
Assumptions about normally distributed data are not
needed.

KEY IDEAS

In a permutation test, multiple samples are combined and then shuffled.

The shuffled values are then divided into resamples, and the statistic of
interest is calculated.

This process is then repeated, and the resampled statistic is tabulated.

Comparing the observed value of the statistic to the resampled
distribution allows you to judge whether an observed difference
between samples might occur by chance.

Further Reading

Randomization Tests, 4th ed., by Eugene
Edgington and Patrick Onghena (Chapman &
Hall/CRC Press, 2007)—but don’t get too
drawn into the thicket of nonrandom sampling

Introductory Statistics and Analytics: A
Resampling Perspective by Peter Bruce (Wiley,
2014)

Statistical Significance and p-
Values
Statistical significance is how statisticians measure
whether an experiment (or even a study of existing data)
yields a result more extreme than what chance might
produce. If the result is beyond the realm of chance
variation, it is said to be statistically significant.

KEY TERMS FOR STATISTICAL SIGNIFICANCE AND
P-VALUES

p-value

Given a chance model that embodies the null hypothesis, the p-value is the
probability of obtaining results as unusual or extreme as the observed results.

Alpha

The probability threshold of “unusualness” that chance results must surpass
for actual outcomes to be deemed statistically significant.

Type 1 error

Mistakenly concluding an effect is real (when it is due to chance).

Type 2 error

Mistakenly concluding an effect is due to chance (when it is real).

Consider in Table 3-2 the results of the web test shown
earlier.

Table 3-2. 2×2 table for ecommerce experiment
results

Outcome Price A Price B

Conversion 200 182

No conversion 23,539 22,406

Price A converts almost 5% better than price B
(0.8425% = 200/(23539+200)*100, versus 0.8057% =
182/(22406+182)*100—a difference of 0.0368
percentage points), big enough to be meaningful in a
high-volume business. We have over 45,000 data points
here, and it is tempting to consider this as “big data,” not
requiring tests of statistical significance (needed mainly
to account for sampling variability in small samples).
However, the conversion rates are so low (less than 1%)
that the actual meaningful values—the conversions—are
only in the 100s, and the sample size needed is really
determined by these conversions. We can test whether
the difference in conversions between prices A and B is
within the range of chance variation, using a resampling
procedure. By chance variation, we mean the random
variation produced by a probability model that embodies
the null hypothesis that there is no difference between
the rates (see “The Null Hypothesis”). The following
permutation procedure asks, “If the two prices share the
same conversion rate, could chance variation produce a
difference as big as 5%?”

1. Put cards labeled 1 and 0 in a box: this
represents the supposed shared conversion rate
of 382 ones and 45,945 zeros = 0.008246 =
0.8246%.

2. Shuffle and draw out a resample of size 23,739
(same n as price A), and record how many 1s.

3. Record the number of 1s in the remaining
22,588 (same n as price B).

4. Record the difference in proportion of 1s.

5. Repeat steps 2–4.

6. How often was the difference >= 0.0368?

Reusing the function perm_fun defined in “Example:
Web Stickiness”, we can create a histogram of randomly
permuted differences in conversion rate in R:

obs_pct_diff <- 100 * (200 / 23739 - 182 /

22588)

conversion <- c(rep(0, 45945), rep(1, 382))

perm_diffs <- rep(0, 1000)

for (i in 1:1000) {

 perm_diffs[i] = 100 * perm_fun(conversion,

23739, 22588)

}

hist(perm_diffs, xlab='Conversion rate

(percent)', main='')

abline(v=obs_pct_diff)

The corresponding Python code is:

obs_pct_diff = 100 * (200 / 23739 - 182 / 22588)

print(f'Observed difference:

{obs_pct_diff:.4f}%')

conversion = [0] * 45945

conversion.extend([1] * 382)

conversion = pd.Series(conversion)

perm_diffs = [100 * perm_fun(conversion, 23739,

22588)

 for _ in range(1000)]

fig, ax = plt.subplots(figsize=(5, 5))

ax.hist(perm_diffs, bins=11, rwidth=0.9)

ax.axvline(x=obs_pct_diff, color='black', lw=2)

ax.text(0.06, 200, 'Observed\ndifference', bbox=

{'facecolor':'white'})

ax.set_xlabel('Conversion rate (percent)')

ax.set_ylabel('Frequency')

See the histogram of 1,000 resampled results in
Figure 3-5: as it happens, in this case the observed
difference of 0.0368% is well within the range of chance
variation.

Figure 3-5. Frequency distribution for the difference in conversion rates
between prices A and B

p-Value
Simply looking at the graph is not a very precise way to
measure statistical significance, so of more interest is
the p-value. This is the frequency with which the chance
model produces a result more extreme than the observed
result. We can estimate a p-value from our permutation
test by taking the proportion of times that the
permutation test produces a difference equal to or
greater than the observed difference:

mean(perm_diffs > obs_pct_diff)

[1] 0.308

np.mean([diff > obs_pct_diff for diff in

perm_diffs])

Here, both R and Python use the fact that true is
interpreted as 1 and false as 0.

The p-value is 0.308, which means that we would expect
to achieve a result as extreme as this, or a more extreme
result, by random chance over 30% of the time.

In this case, we didn’t need to use a permutation test to
get a p-value. Since we have a binomial distribution, we
can approximate the p-value. In R code, we do this using
the function prop.test:

> prop.test(x=c(200, 182), n=c(23739, 22588),

alternative='greater')

 2-sample test for equality of

proportions with continuity correction

data: c(200, 182) out of c(23739, 22588)

X-squared = 0.14893, df = 1, p-value = 0.3498

alternative hypothesis: greater

95 percent confidence interval:

 -0.001057439 1.000000000

sample estimates:

 prop 1 prop 2

0.008424955 0.008057376

The argument x is the number of successes for each
group, and the argument n is the number of trials.

The method scipy.stats.chi2_contingency
takes the values as shown in Table 3-2:

survivors = np.array([[200, 23739 - 200], [182,

22588 - 182]])

chi2, p_value, df, _ =

stats.chi2_contingency(survivors)

print(f'p-value for single sided test: {p_value

/ 2:.4f}')

The normal approximation yields a p-value of 0.3498,
which is close to the p-value obtained from the
permutation test.

Alpha
Statisticians frown on the practice of leaving it to the
researcher’s discretion to determine whether a result is
“too unusual” to happen by chance. Rather, a threshold
is specified in advance, as in “more extreme than 5% of
the chance (null hypothesis) results”; this threshold is
known as alpha. Typical alpha levels are 5% and 1%.
Any chosen level is an arbitrary decision—there is
nothing about the process that will guarantee correct

decisions x% of the time. This is because the probability
question being answered is not “What is the probability
that this happened by chance?” but rather “Given a
chance model, what is the probability of a result this
extreme?” We then deduce backward about the
appropriateness of the chance model, but that judgment
does not carry a probability. This point has been the
subject of much confusion.

P-VALUE CONTROVERSY

Considerable controversy has surrounded the use of the
p-value in recent years. One psychology journal has
gone so far as to “ban” the use of p-values in submitted
papers on the grounds that publication decisions based
solely on the p-value were resulting in the publication of
poor research. Too many researchers, only dimly aware
of what a p-value really means, root around in the data,
and among different possible hypotheses to test, until
they find a combination that yields a significant p-value
and, hence, a paper suitable for publication.

The real problem is that people want more meaning
from the p-value than it contains. Here’s what we would
like the p-value to convey:

The probability that the result is due to chance.

We hope for a low value, so we can conclude that we’ve
proved something. This is how many journal editors
were interpreting the p-value. But here’s what the p-
value actually represents:

The probability that, given a chance model, results as
extreme as the observed results could occur.

The difference is subtle but real. A significant p-value
does not carry you quite as far along the road to “proof”
as it seems to promise. The logical foundation for the
conclusion “statistically significant” is somewhat
weaker when the real meaning of the p-value is
understood.

In March 2016, the American Statistical Association,
after much internal deliberation, revealed the extent of
misunderstanding about p-values when it issued a
cautionary statement regarding their use. The ASA
statement stressed six principles for researchers and
journal editors:

1. P-values can indicate how incompatible the
data are with a specified statistical model.

2. P-values do not measure the probability that
the studied hypothesis is true, or the
probability that the data were produced by
random chance alone.

3. Scientific conclusions and business or policy
decisions should not be based only on
whether a p-value passes a specific
threshold.

4. Proper inference requires full reporting and
transparency.

5. A p-value, or statistical significance, does
not measure the size of an effect or the
importance of a result.

6. By itself, a p-value does not provide a good
measure of evidence regarding a model or
hypothesis.

PRACTICAL SIGNIFICANCE

https://oreil.ly/WVfYU

Even if a result is statistically significant, that does not
mean it has practical significance. A small difference
that has no practical meaning can be statistically
significant if it arose from large enough samples. Large
samples ensure that small, non-meaningful effects can
nonetheless be big enough to rule out chance as an
explanation. Ruling out chance does not magically
render important a result that is, in its essence,
unimportant.

Type 1 and Type 2 Errors
In assessing statistical significance, two types of error
are possible:

A Type 1 error, in which you mistakenly
conclude an effect is real, when it is really just
due to chance

A Type 2 error, in which you mistakenly
conclude that an effect is not real (i.e., due to
chance), when it actually is real

Actually, a Type 2 error is not so much an error as a
judgment that the sample size is too small to detect the
effect. When a p-value falls short of statistical
significance (e.g., it exceeds 5%), what we are really
saying is “effect not proven.” It could be that a larger
sample would yield a smaller p-value.

The basic function of significance tests (also called
hypothesis tests) is to protect against being fooled by
random chance; thus they are typically structured to
minimize Type 1 errors.

Data Science and p-Values
The work that data scientists do is typically not destined
for publication in scientific journals, so the debate over
the value of a p-value is somewhat academic. For a data
scientist, a p-value is a useful metric in situations where
you want to know whether a model result that appears
interesting and useful is within the range of normal
chance variability. As a decision tool in an experiment, a
p-value should not be considered controlling, but merely
another point of information bearing on a decision. For
example, p-values are sometimes used as intermediate
inputs in some statistical or machine learning models—a
feature might be included in or excluded from a model
depending on its p-value.

KEY IDEAS

Significance tests are used to determine whether an observed effect is
within the range of chance variation for a null hypothesis model.

The p-value is the probability that results as extreme as the observed
results might occur, given a null hypothesis model.

The alpha value is the threshold of “unusualness” in a null hypothesis
chance model.

Significance testing has been much more relevant for formal reporting
of research than for data science (but has been fading recently, even
for the former).

Further Reading
Stephen Stigler, “Fisher and the 5% Level,”
Chance 21, no. 4 (2008): 12. This article is a
short commentary on Ronald Fisher’s 1925
book Statistical Methods for Research Workers
(Oliver & Boyd), and on Fisher’s emphasis on
the 5% level of significance.

See also “Hypothesis Tests” and the further
reading mentioned there.

t-Tests
There are numerous types of significance tests,
depending on whether the data comprises count data or
measured data, how many samples there are, and what’s
being measured. A very common one is the t-test, named
after Student’s t-distribution, originally developed by W.
S. Gosset to approximate the distribution of a single
sample mean (see “Student’s t-Distribution”).

KEY TERMS FOR T-TESTS

Test statistic

A metric for the difference or effect of interest.

t-statistic

A standardized version of common test statistics such as means.

t-distribution

A reference distribution (in this case derived from the null hypothesis), to
which the observed t-statistic can be compared.

All significance tests require that you specify a test
statistic to measure the effect you are interested in and
help you determine whether that observed effect lies
within the range of normal chance variation. In a
resampling test (see the discussion of permutation in
“Permutation Test”), the scale of the data does not
matter. You create the reference (null hypothesis)
distribution from the data itself and use the test statistic
as is.

In the 1920s and 1930s, when statistical hypothesis
testing was being developed, it was not feasible to
randomly shuffle data thousands of times to do a
resampling test. Statisticians found that a good
approximation to the permutation (shuffled) distribution
was the t-test, based on Gosset’s t-distribution. It is used
for the very common two-sample comparison—A/B test
—in which the data is numeric. But in order for the t-
distribution to be used without regard to scale, a
standardized form of the test statistic must be used.

A classic statistics text would at this stage show various
formulas that incorporate Gosset’s distribution and
demonstrate how to standardize your data to compare it
to the standard t-distribution. These formulas are not
shown here because all statistical software, as well as R
and Python, includes commands that embody the
formula. In R, the function is t.test:

> t.test(Time ~ Page, data=session_times,

alternative='less')

 Welch Two Sample t-test

data: Time by Page

t = -1.0983, df = 27.693, p-value = 0.1408

alternative hypothesis: true difference in means

is less than 0

95 percent confidence interval:

 -Inf 19.59674

sample estimates:

mean in group Page A mean in group Page B

 126.3333 162.0000

The function scipy.stats.ttest_ind can be
used in Python:

res =

stats.ttest_ind(session_times[session_times.Page

== 'Page A'].Time,

session_times[session_times.Page == 'Page

B'].Time,

 equal_var=False)

print(f'p-value for single sided test:

{res.pvalue / 2:.4f}')

The alternative hypothesis is that the session time mean
for page A is less than that for page B. The p-value of
0.1408 is fairly close to the permutation test p-values of
0.121 and 0.126 (see “Example: Web Stickiness”).

In a resampling mode, we structure the solution to
reflect the observed data and the hypothesis to be tested,
not worrying about whether the data is numeric or
binary, whether or not sample sizes are balanced, sample
variances, or a variety of other factors. In the formula
world, many variations present themselves, and they can
be bewildering. Statisticians need to navigate that world
and learn its map, but data scientists do not—they are
typically not in the business of sweating the details of
hypothesis tests and confidence intervals the way a
researcher preparing a paper for presentation might.

KEY IDEAS

Before the advent of computers, resampling tests were not practical,
and statisticians used standard reference distributions.

A test statistic could then be standardized and compared to the
reference distribution.

One such widely used standardized statistic is the t-statistic.

Further Reading

Any introductory statistics text will have
illustrations of the t-statistic and its uses; two
good ones are Statistics, 4th ed., by David
Freedman, Robert Pisani, and Roger Purves (W.
W. Norton, 2007), and The Basic Practice of
Statistics, 8th ed., by David S. Moore, William
I. Notz, and Michael A. Fligner (W. H.
Freeman, 2017).

For a treatment of both the t-test and
resampling procedures in parallel, see
Introductory Statistics and Analytics: A
Resampling Perspective by Peter Bruce (Wiley,
2014) or Statistics: Unlocking the Power of
Data, 2nd ed., by Robin Lock and four other
Lock family members (Wiley, 2016).

Multiple Testing
As we’ve mentioned previously, there is a saying in
statistics: “Torture the data long enough, and it will
confess.” This means that if you look at the data through
enough different perspectives and ask enough questions,
you almost invariably will find a statistically significant
effect.

For example, if you have 20 predictor variables and one
outcome variable, all randomly generated, the odds are
pretty good that at least one predictor will (falsely) turn
out to be statistically significant if you do a series of 20
significance tests at the alpha = 0.05 level. As
previously discussed, this is called a Type 1 error. You
can calculate this probability by first finding the
probability that all will correctly test nonsignificant at

the 0.05 level. The probability that one will correctly
test nonsignificant is 0.95, so the probability that all 20
will correctly test nonsignificant is 0.95 × 0.95 ×
0.95…, or 0.95 = 0.36. The probability that at least
one predictor will (falsely) test significant is the flip side
of this probability, or 1 – (probability that all will be
nonsignificant) = 0.64. This is known as alpha inflation.

This issue is related to the problem of overfitting in data
mining, or “fitting the model to the noise.” The more
variables you add, or the more models you run, the
greater the probability that something will emerge as
“significant” just by chance.

KEY TERMS FOR MULTIPLE TESTING

Type 1 error

Mistakenly concluding that an effect is statistically significant.

False discovery rate

Across multiple tests, the rate of making a Type 1 error.

Alpha inflation

The multiple testing phenomenon, in which alpha, the probability of making a
Type 1 error, increases as you conduct more tests.

Adjustment of p-values

Accounting for doing multiple tests on the same data.

Overfitting

Fitting the noise.

In supervised learning tasks, a holdout set where models
are assessed on data that the model has not seen before
mitigates this risk. In statistical and machine learning
tasks not involving a labeled holdout set, the risk of
reaching conclusions based on statistical noise persists.

20 1

In statistics, there are some procedures intended to deal
with this problem in very specific circumstances. For
example, if you are comparing results across multiple
treatment groups, you might ask multiple questions. So,
for treatments A–C, you might ask:

Is A different from B?

Is B different from C?

Is A different from C?

Or, in a clinical trial, you might want to look at results
from a therapy at multiple stages. In each case, you are
asking multiple questions, and with each question, you
are increasing the chance of being fooled by chance.
Adjustment procedures in statistics can compensate for
this by setting the bar for statistical significance more
stringently than it would be set for a single hypothesis
test. These adjustment procedures typically involve
“dividing up the alpha” according to the number of tests.
This results in a smaller alpha (i.e., a more stringent bar
for statistical significance) for each test. One such
procedure, the Bonferroni adjustment, simply divides
the alpha by the number of comparisons. Another, used
in comparing multiple group means, is Tukey’s “honest
significant difference,” or Tukey’s HSD. This test applies
to the maximum difference among group means,
comparing it to a benchmark based on the t-distribution
(roughly equivalent to shuffling all the values together,
dealing out resampled groups of the same sizes as the
original groups, and finding the maximum difference
among the resampled group means).

However, the problem of multiple comparisons goes
beyond these highly structured cases and is related to the
phenomenon of repeated data “dredging” that gives rise
to the saying about torturing the data. Put another way,
given sufficiently complex data, if you haven’t found
something interesting, you simply haven’t looked long
and hard enough. More data is available now than ever
before, and the number of journal articles published
nearly doubled between 2002 and 2010. This gives rise
to lots of opportunities to find something interesting in
the data, including multiplicity issues such as:

Checking for multiple pairwise differences
across groups

Looking at multiple subgroup results (“we
found no significant treatment effect overall,
but we did find an effect for unmarried women
younger than 30”)

Trying lots of statistical models

Including lots of variables in models

Asking a number of different questions (i.e.,
different possible outcomes)

FALSE DISCOVERY RATE
The term false discovery rate was originally used to describe
the rate at which a given set of hypothesis tests would falsely
identify a significant effect. It became particularly useful with
the advent of genomic research, in which massive numbers of
statistical tests might be conducted as part of a gene
sequencing project. In these cases, the term applies to the
testing protocol, and a single false “discovery” refers to the
outcome of a hypothesis test (e.g., between two samples).
Researchers sought to set the parameters of the testing process
to control the false discovery rate at a specified level. The
term has also been used for classification in data mining; it is
the misclassification rate within the class 1 predictions. Or,
put another way, it is the probability that a “discovery”
(labeling a record as a “1”) is false. Here we typically are
dealing with the case where 0s are abundant and 1s are
interesting and rare (see Chapter 5 and “The Rare Class
Problem”).

For a variety of reasons, including especially this
general issue of “multiplicity,” more research does not
necessarily mean better research. For example, the
pharmaceutical company Bayer found in 2011 that when
it tried to replicate 67 scientific studies, it could fully
replicate only 14 of them. Nearly two-thirds could not
be replicated at all.

In any case, the adjustment procedures for highly
defined and structured statistical tests are too specific
and inflexible to be of general use to data scientists. The
bottom line for data scientists on multiplicity is:

For predictive modeling, the risk of getting an
illusory model whose apparent efficacy is
largely a product of random chance is mitigated
by cross-validation (see “Cross-Validation”)
and use of a holdout sample.

For other procedures without a labeled holdout
set to check the model, you must rely on:

Awareness that the more you query
and manipulate the data, the greater the
role that chance might play.

Resampling and simulation heuristics
to provide random chance benchmarks
against which observed results can be
compared.

KEY IDEAS

Multiplicity in a research study or data mining project (multiple
comparisons, many variables, many models, etc.) increases the risk of
concluding that something is significant just by chance.

For situations involving multiple statistical comparisons (i.e., multiple
tests of significance), there are statistical adjustment procedures.

In a data mining situation, use of a holdout sample with labeled
outcome variables can help avoid misleading results.

Further Reading
For a short exposition of one procedure
(Dunnett’s test) to adjust for multiple
comparisons, see David Lane’s online statistics
text.

Megan Goldman offers a slightly longer
treatment of the Bonferroni adjustment
procedure.

For an in-depth treatment of more flexible
statistical procedures for adjusting p-values, see
Resampling-Based Multiple Testing by Peter
Westfall and Stanley Young (Wiley, 1993).

For a discussion of data partitioning and the use
of holdout samples in predictive modeling, see
Chapter 2 of Data Mining for Business

https://oreil.ly/hd_62
https://oreil.ly/Dt4Vi

Analytics, by Galit Shmueli, Peter Bruce, Nitin
Patel, Peter Gedeck, Inbal Yahav, and Kenneth
Lichtendahl (Wiley, 2007–2020, with editions
for R, Python, Excel, and JMP).

Degrees of Freedom
In the documentation and settings for many statistical
tests and probability distributions, you will see a
reference to “degrees of freedom.” The concept is
applied to statistics calculated from sample data, and
refers to the number of values free to vary. For example,
if you know the mean for a sample of 10 values, there
are 9 degrees of freedom (once you know 9 of the
sample values, the 10th can be calculated and is not free
to vary). The degrees of freedom parameter, as applied
to many probability distributions, affects the shape of
the distribution.

The number of degrees of freedom is an input to many
statistical tests. For example, degrees of freedom is the
name given to the n – 1 denominator seen in the
calculations for variance and standard deviation. Why
does it matter? When you use a sample to estimate the
variance for a population, you will end up with an
estimate that is slightly biased downward if you use n in
the denominator. If you use n – 1 in the denominator, the
estimate will be free of that bias.

KEY TERMS FOR DEGREES OF FREEDOM

n or sample size

The number of observations (also called rows or records) in the data.

d.f.

Degrees of freedom.

A large share of a traditional statistics course or text is
consumed by various standard tests of hypotheses (t-
test, F-test, etc.). When sample statistics are
standardized for use in traditional statistical formulas,
degrees of freedom is part of the standardization
calculation to ensure that your standardized data
matches the appropriate reference distribution (t-
distribution, F-distribution, etc.).

Is it important for data science? Not really, at least in the
context of significance testing. For one thing, formal
statistical tests are used only sparingly in data science.
For another, the data size is usually large enough that it
rarely makes a real difference for a data scientist
whether, for example, the denominator has n or n – 1.
(As n gets large, the bias that would come from using n
in the denominator disappears.)

There is one context, though, in which it is relevant: the
use of factored variables in regression (including logistic
regression). Some regression algorithms choke if exactly
redundant predictor variables are present. This most
commonly occurs when factoring categorical variables
into binary indicators (dummies). Consider the variable
“day of week.” Although there are seven days of the
week, there are only six degrees of freedom in

specifying day of week. For example, once you know
that day of week is not Monday through Saturday, you
know it must be Sunday. Inclusion of the Mon–Sat
indicators thus means that also including Sunday would
cause the regression to fail, due to a multicollinearity
error.

KEY IDEAS

The number of degrees of freedom (d.f.) forms part of the calculation to
standardize test statistics so they can be compared to reference
distributions (t-distribution, F-distribution, etc.).

The concept of degrees of freedom lies behind the factoring of
categorical variables into n – 1 indicator or dummy variables when
doing a regression (to avoid multicollinearity).

Further Reading
There are several web tutorials on degrees of freedom.

ANOVA
Suppose that, instead of an A/B test, we had a
comparison of multiple groups, say A/B/C/D, each with
numeric data. The statistical procedure that tests for a
statistically significant difference among the groups is
called analysis of variance, or ANOVA.

https://oreil.ly/VJyts

KEY TERMS FOR ANOVA

Pairwise comparison

A hypothesis test (e.g., of means) between two groups among multiple
groups.

Omnibus test

A single hypothesis test of the overall variance among multiple group means.

Decomposition of variance

Separation of components contributing to an individual value (e.g., from the
overall average, from a treatment mean, and from a residual error).

F-statistic

A standardized statistic that measures the extent to which differences among
group means exceed what might be expected in a chance model.

SS

“Sum of squares,” referring to deviations from some average value.

Table 3-3 shows the stickiness of four web pages,
defined as the number of seconds a visitor spent on the
page. The four pages are switched out so that each web
visitor receives one at random. There are a total of five
visitors for each page, and in Table 3-3, each column is
an independent set of data. The first viewer for page 1
has no connection to the first viewer for page 2. Note
that in a web test like this, we cannot fully implement
the classic randomized sampling design in which each
visitor is selected at random from some huge population.
We must take the visitors as they come. Visitors may
systematically differ depending on time of day, time of
week, season of the year, conditions of their internet,
what device they are using, and so on. These factors
should be considered as potential bias when the
experiment results are reviewed.

Table 3-3. Stickiness (in seconds) of four web pages

Page 1 Page 2 Page 3 Page 4

164 178 175 155

172 191 193 166

177 182 171 164

156 185 163 170

195 177 176 168

Average 172 185 176 162

Grand average 173.75

Now we have a conundrum (see Figure 3-6). When we
were comparing just two groups, it was a simple matter;
we merely looked at the difference between the means
of each group. With four means, there are six possible
comparisons between groups:

Page 1 compared to page 2

Page 1 compared to page 3

Page 1 compared to page 4

Page 2 compared to page 3

Page 2 compared to page 4

Page 3 compared to page 4

The more such pairwise comparisons we make, the
greater the potential for being fooled by random chance
(see “Multiple Testing”). Instead of worrying about all
the different comparisons between individual pages we
could possibly make, we can do a single overall test that
addresses the question, “Could all the pages have the
same underlying stickiness, and the differences among
them be due to the random way in which a common set
of session times got allocated among the four pages?”

Figure 3-6. Boxplots of the four groups show considerable differences
among them

The procedure used to test this is ANOVA. The basis for
it can be seen in the following resampling procedure
(specified here for the A/B/C/D test of web page
stickiness):

1. Combine all the data together in a single box.

2. Shuffle and draw out four resamples of five
values each.

3. Record the mean of each of the four groups.

4. Record the variance among the four group
means.

5. Repeat steps 2–4 many (say, 1,000) times.

What proportion of the time did the resampled variance
exceed the observed variance? This is the p-value.

This type of permutation test is a bit more involved than
the type used in “Permutation Test”. Fortunately, the
aovp function in the lmPerm package computes a
permutation test for this case:

> library(lmPerm)

> summary(aovp(Time ~ Page, data=four_sessions))

[1] "Settings: unique SS "

Component 1 :

 Df R Sum Sq R Mean Sq Iter Pr(Prob)

Page 3 831.4 277.13 3104 0.09278

.

Residuals 16 1618.4 101.15

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

'.' 0.1 ' ' 1

The p-value, given by Pr(Prob), is 0.09278. In other
words, given the same underlying stickiness, 9.3% of
the time the response rate among four pages might differ
as much as was actually observed, just by chance. This
degree of improbability falls short of the traditional
statistical threshold of 5%, so we conclude that the
difference among the four pages could have arisen by
chance.

The column Iter lists the number of iterations taken in
the permutation test. The other columns correspond to a
traditional ANOVA table and are described next.

In Python, we can compute the permutation test using
the following code:

observed_variance =

four_sessions.groupby('Page').mean().var()[0]

print('Observed means:',

four_sessions.groupby('Page').mean().values.rave

l())

print('Variance:', observed_variance)

def perm_test(df):

 df = df.copy()

 df['Time'] =

np.random.permutation(df['Time'].values)

 return df.groupby('Page').mean().var()[0]

perm_variance = [perm_test(four_sessions) for _

in range(3000)]

print('Pr(Prob)', np.mean([var >

observed_variance for var in perm_variance]))

F-Statistic
Just like the t-test can be used instead of a permutation
test for comparing the mean of two groups, there is a

statistical test for ANOVA based on the F-statistic. The
F-statistic is based on the ratio of the variance across
group means (i.e., the treatment effect) to the variance
due to residual error. The higher this ratio, the more
statistically significant the result. If the data follows a
normal distribution, then statistical theory dictates that
the statistic should have a certain distribution. Based on
this, it is possible to compute a p-value.

In R, we can compute an ANOVA table using the aov
function:

> summary(aov(Time ~ Page, data=four_sessions))

 Df Sum Sq Mean Sq F value Pr(>F)

Page 3 831.4 277.1 2.74 0.0776 .

Residuals 16 1618.4 101.2

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

‘.’ 0.1 ‘ ’ 1

The statsmodels package provides an ANOVA
implementation in Python:

model = smf.ols('Time ~ Page',

data=four_sessions).fit()

aov_table = sm.stats.anova_lm(model)

aov_table

The output from the Python code is almost identical to
that from R.

Df is “degrees of freedom,” Sum Sq is “sum of
squares,” Mean Sq is “mean squares” (short for mean-
squared deviations), and F value is the F-statistic. For
the grand average, sum of squares is the departure of the

grand average from 0, squared, times 20 (the number of
observations). The degrees of freedom for the grand
average is 1, by definition.

For the treatment means, the degrees of freedom is 3
(once three values are set, and then the grand average is
set, the other treatment mean cannot vary). Sum of
squares for the treatment means is the sum of squared
departures between the treatment means and the grand
average.

For the residuals, degrees of freedom is 20 (all
observations can vary), and SS is the sum of squared
difference between the individual observations and the
treatment means. Mean squares (MS) is the sum of
squares divided by the degrees of freedom.

The F-statistic is MS(treatment)/MS(error). The F value
thus depends only on this ratio and can be compared to a
standard F-distribution to determine whether the
differences among treatment means are greater than
would be expected in random chance variation.

DECOMPOSITION OF VARIANCE
Observed values in a data set can be considered sums of
different components. For any observed data value within a
data set, we can break it down into the grand average, the
treatment effect, and the residual error. We call this a
“decomposition of variance”:

1. Start with grand average (173.75 for web page
stickiness data).

2. Add treatment effect, which might be negative
(independent variable = web page).

3. Add residual error, which might be negative.

Thus the decomposition of the variance for the top-left value
in the A/B/C/D test table is as follows:

1. Start with grand average: 173.75.

2. Add treatment (group) effect: –1.75 (172 – 173.75).

3. Add residual: –8 (164 – 172).

4. Equals: 164.

Two-Way ANOVA
The A/B/C/D test just described is a “one-way”
ANOVA, in which we have one factor (group) that is
varying. We could have a second factor involved—say,
“weekend versus weekday”—with data collected on
each combination (group A weekend, group A weekday,
group B weekend, etc.). This would be a “two-way
ANOVA,” and we would handle it in similar fashion to
the one-way ANOVA by identifying the “interaction
effect.” After identifying the grand average effect and
the treatment effect, we then separate the weekend and
weekday observations for each group and find the
difference between the averages for those subsets and
the treatment average.

You can see that ANOVA and then two-way ANOVA
are the first steps on the road toward a full statistical
model, such as regression and logistic regression, in
which multiple factors and their effects can be modeled
(see Chapter 4).

KEY IDEAS

ANOVA is a statistical procedure for analyzing the results of an
experiment with multiple groups.

It is the extension of similar procedures for the A/B test, used to assess
whether the overall variation among groups is within the range of
chance variation.

A useful outcome of ANOVA is the identification of variance
components associated with group treatments, interaction effects, and
errors.

Further Reading
Introductory Statistics and Analytics: A
Resampling Perspective by Peter Bruce (Wiley,
2014) has a chapter on ANOVA.

Introduction to Design and Analysis of
Experiments by George Cobb (Wiley, 2008) is a
comprehensive and readable treatment of its
subject.

Chi-Square Test
Web testing often goes beyond A/B testing and tests
multiple treatments at once. The chi-square test is used
with count data to test how well it fits some expected
distribution. The most common use of the chi-square
statistic in statistical practice is with r × c contingency
tables, to assess whether the null hypothesis of

independence among variables is reasonable (see also
“Chi-Square Distribution”).

The chi-square test was originally developed by Karl
Pearson in 1900. The term chi comes from the Greek
letter Χ used by Pearson in the article.

KEY TERMS FOR CHI-SQUARE TEST

Chi-square statistic

A measure of the extent to which some observed data departs from
expectation.

Expectation or expected

How we would expect the data to turn out under some assumption, typically
the null hypothesis.

NOTE
r × c means “rows by columns”—a 2 × 3 table has two rows
and three columns.

Chi-Square Test: A Resampling Approach
Suppose you are testing three different headlines—A, B,
and C—and you run them each on 1,000 visitors, with
the results shown in Table 3-4.

Table 3-4. Web testing results for three different
headlines

Headline A Headline B Headline C

Click 14 8 12

No-click 986 992 988

https://oreil.ly/cEubO

The headlines certainly appear to differ. Headline A
returns nearly twice the click rate of B. The actual
numbers are small, though. A resampling procedure can
test whether the click rates differ to an extent greater
than chance might cause. For this test, we need to have
the “expected” distribution of clicks, and in this case,
that would be under the null hypothesis assumption that
all three headlines share the same click rate, for an
overall click rate of 34/3,000. Under this assumption,
our contingency table would look like Table 3-5.

Table 3-5. Expected if all three headlines have the
same click rate (null hypothesis)

Headline A Headline B Headline C

Click 11.33 11.33 11.33

No-click 988.67 988.67 988.67

The Pearson residual is defined as:

R =
Observed − Expected

√Expected

R measures the extent to which the actual counts differ
from these expected counts (see Table 3-6).

Table 3-6. Pearson residuals

Headline A Headline B Headline C

Click 0.792 –0.990 0.198

No-click –0.085 0.106 –0.021

The chi-square statistic is defined as the sum of the
squared Pearson residuals:

X =
r

∑
i

c

∑
j

R2

where r and c are the number of rows and columns,
respectively. The chi-square statistic for this example is
1.666. Is that more than could reasonably occur in a
chance model?

We can test with this resampling algorithm:

1. Constitute a box with 34 ones (clicks) and
2,966 zeros (no clicks).

2. Shuffle, take three separate samples of 1,000,
and count the clicks in each.

3. Find the squared differences between the
shuffled counts and the expected counts and
sum them.

4. Repeat steps 2 and 3, say, 1,000 times.

5. How often does the resampled sum of squared
deviations exceed the observed? That’s the p-
value.

The function chisq.test can be used to compute a
resampled chi-square statistic in R. For the click data,
the chi-square test is:

> chisq.test(clicks, simulate.p.value=TRUE)

 Pearson's Chi-squared test with

simulated p-value (based on 2000 replicates)

data: clicks

X-squared = 1.6659, df = NA, p-value = 0.4853

The test shows that this result could easily have been
obtained by randomness.

To run a permutation test in Python, use the following
implementation:

box = [1] * 34

box.extend([0] * 2966)

random.shuffle(box)

def chi2(observed, expected):

 pearson_residuals = []

 for row, expect in zip(observed, expected):

 pearson_residuals.append([(observe -

expect) ** 2 / expect

 for observe in

row])

 # return sum of squares

 return np.sum(pearson_residuals)

expected_clicks = 34 / 3

expected_noclicks = 1000 - expected_clicks

expected = [34 / 3, 1000 - 34 / 3]

chi2observed = chi2(clicks.values, expected)

def perm_fun(box):

 sample_clicks = [sum(random.sample(box,

1000)),

 sum(random.sample(box,

1000)),

 sum(random.sample(box,

1000))]

 sample_noclicks = [1000 - n for n in

sample_clicks]

 return chi2([sample_clicks,

sample_noclicks], expected)

perm_chi2 = [perm_fun(box) for _ in range(2000)]

resampled_p_value = sum(perm_chi2 >

chi2observed) / len(perm_chi2)

print(f'Observed chi2: {chi2observed:.4f}')

print(f'Resampled p-value:

{resampled_p_value:.4f}')

Chi-Square Test: Statistical Theory
Asymptotic statistical theory shows that the distribution
of the chi-square statistic can be approximated by a chi-
square distribution (see “Chi-Square Distribution”). The
appropriate standard chi-square distribution is
determined by the degrees of freedom (see “Degrees of
Freedom”). For a contingency table, the degrees of
freedom are related to the number of rows (r) and
columns (c) as follows:

degrees of freedom = (r − 1) × (c − 1)

The chi-square distribution is typically skewed, with a
long tail to the right; see Figure 3-7 for the distribution
with 1, 2, 5, and 20 degrees of freedom. The further out
on the chi-square distribution the observed statistic is,
the lower the p-value.

The function chisq.test can be used to compute the
p-value using the chi-square distribution as a reference:

> chisq.test(clicks, simulate.p.value=FALSE)

 Pearson's Chi-squared test

data: clicks

X-squared = 1.6659, df = 2, p-value = 0.4348

In Python, use the function
scipy.stats.chi2_contingency:

chisq, pvalue, df, expected =

stats.chi2_contingency(clicks)

print(f'Observed chi2: {chi2observed:.4f}')

print(f'p-value: {pvalue:.4f}')

The p-value is a little less than the resampling p-value;
this is because the chi-square distribution is only an
approximation of the actual distribution of the statistic.

Figure 3-7. Chi-square distribution with various degrees of freedom

Fisher’s Exact Test
The chi-square distribution is a good approximation of
the shuffled resampling test just described, except when
counts are extremely low (single digits, especially five
or fewer). In such cases, the resampling procedure will

yield more accurate p-values. In fact, most statistical
software has a procedure to actually enumerate all the
possible rearrangements (permutations) that can occur,
tabulate their frequencies, and determine exactly how
extreme the observed result is. This is called Fisher’s
exact test after the great statistician R. A. Fisher. R code
for Fisher’s exact test is simple in its basic form:

> fisher.test(clicks)

 Fisher's Exact Test for Count Data

data: clicks

p-value = 0.4824

alternative hypothesis: two.sided

The p-value is very close to the p-value of 0.4853
obtained using the resampling method.

Where some counts are very low but others are quite
high (e.g., the denominator in a conversion rate), it may
be necessary to do a shuffled permutation test instead of
a full exact test, due to the difficulty of calculating all
possible permutations. The preceding R function has
several arguments that control whether to use this
approximation (simulate.p.value=TRUE or
FALSE), how many iterations should be used (B=...),
and a computational constraint (workspace=...)
that limits how far calculations for the exact result
should go.

There is no implementation of Fisher’s exact test easily
available in Python.

DETECTING SCIENTIFIC FRAUD
An interesting example is provided by the case of Tufts University researcher
Thereza Imanishi-Kari, who was accused in 1991 of fabricating data in her
research. Congressman John Dingell became involved, and the case eventually
led to the resignation of her colleague, David Baltimore, from the presidency of
Rockefeller University.

One element in the case rested on statistical evidence regarding the expected
distribution of digits in her laboratory data, where each observation had many
digits. Investigators focused on the interior digits (ignoring the first digit and last
digit of a number), which would be expected to follow a uniform random
distribution. That is, they would occur randomly, with each digit having equal
probability of occurring (the lead digit might be predominantly one value, and the
final digits might be affected by rounding). Table 3-7 lists the frequencies of
interior digits from the actual data in the case.

Table 3-7. Frequency of interior digits in laboratory data

Digit Frequency

0 14

1 71

2 7

3 65

4 23

5 19

6 12

7 45

8 53

9 6

The distribution of the 315 digits, shown in Figure 3-8, certainly looks nonrandom.

Investigators calculated the departure from expectation (31.5—that’s how often
each digit would occur in a strictly uniform distribution) and used a chi-square test
(a resampling procedure could equally have been used) to show that the actual
distribution was well beyond the range of normal chance variation, indicating the

data might have been fabricated. (Note: Imanishi-Kari was ultimately exonerated
after a lengthy proceeding.)

Figure 3-8. Frequency histogram for Imanishi-Kari lab data

Relevance for Data Science
The chi-square test, or Fisher’s exact test, is used when
you want to know whether an effect is for real or might
be the product of chance. In most classical statistical
applications of the chi-square test, its role is to establish
statistical significance, which is typically needed before
a study or an experiment can be published. This is not so
important for data scientists. In most data science
experiments, whether A/B or A/B/C…, the goal is not
simply to establish statistical significance but rather to
arrive at the best treatment. For this purpose, multi-
armed bandits (see “Multi-Arm Bandit Algorithm”)
offer a more complete solution.

One data science application of the chi-square test,
especially Fisher’s exact version, is in determining
appropriate sample sizes for web experiments. These
experiments often have very low click rates, and despite
thousands of exposures, count rates might be too small
to yield definitive conclusions in an experiment. In such
cases, Fisher’s exact test, the chi-square test, and other
tests can be useful as a component of power and sample
size calculations (see “Power and Sample Size”).

Chi-square tests are used widely in research by
investigators in search of the elusive statistically
significant p-value that will allow publication. Chi-
square tests, or similar resampling simulations, are used
in data science applications more as a filter to determine

whether an effect or a feature is worthy of further
consideration than as a formal test of significance. For
example, they are used in spatial statistics and mapping
to determine whether spatial data conforms to a
specified null distribution (e.g., are crimes concentrated
in a certain area to a greater degree than random chance
would allow?). They can also be used in automated
feature selection in machine learning, to assess class
prevalence across features and identify features where
the prevalence of a certain class is unusually high or
low, in a way that is not compatible with random
variation.

KEY IDEAS

A common procedure in statistics is to test whether observed data
counts are consistent with an assumption of independence (e.g.,
propensity to buy a particular item is independent of gender).

The chi-square distribution is the reference distribution (which
embodies the assumption of independence) to which the observed
calculated chi-square statistic must be compared.

Further Reading
R. A. Fisher’s famous “Lady Tasting Tea”
example from the beginning of the 20th century
remains a simple and effective illustration of
his exact test. Google “Lady Tasting Tea,” and
you will find a number of good writeups.

Stat Trek offers a good tutorial on the chi-
square test.

Multi-Arm Bandit Algorithm

https://oreil.ly/77DUf

Multi-arm bandits offer an approach to testing,
especially web testing, that allows explicit optimization
and more rapid decision making than the traditional
statistical approach to designing experiments.

KEY TERMS FOR MULTI-ARM BANDITS

Multi-arm bandit

An imaginary slot machine with multiple arms for the customer to choose
from, each with different payoffs, here taken to be an analogy for a
multitreatment experiment.

Arm

A treatment in an experiment (e.g., “headline A in a web test”).

Win

The experimental analog of a win at the slot machine (e.g., “customer clicks
on the link”).

A traditional A/B test involves data collected in an
experiment, according to a specified design, to answer a
specific question such as, “Which is better, treatment A
or treatment B?” The presumption is that once we get an
answer to that question, the experimenting is over and
we proceed to act on the results.

You can probably perceive several difficulties with that
approach. First, our answer may be inconclusive: “effect
not proven.” In other words, the results from the
experiment may suggest an effect, but if there is an
effect, we don’t have a big enough sample to prove it (to
the satisfaction of the traditional statistical standards).
What decision do we take? Second, we might want to
begin taking advantage of results that come in prior to
the conclusion of the experiment. Third, we might want
the right to change our minds or to try something

different based on additional data that comes in after the
experiment is over. The traditional approach to
experiments and hypothesis tests dates from the 1920s
and is rather inflexible. The advent of computer power
and software has enabled more powerful flexible
approaches. Moreover, data science (and business in
general) is not so worried about statistical significance,
but concerned more with optimizing overall effort and
results.

Bandit algorithms, which are very popular in web
testing, allow you to test multiple treatments at once and
reach conclusions faster than traditional statistical
designs. They take their name from slot machines used
in gambling, also termed one-armed bandits (since they
are configured in such a way that they extract money
from the gambler in a steady flow). If you imagine a slot
machine with more than one arm, each arm paying out
at a different rate, you would have a multi-armed bandit,
which is the full name for this algorithm.

Your goal is to win as much money as possible and,
more specifically, to identify and settle on the winning
arm sooner rather than later. The challenge is that you
don’t know at what overall rate the arms pay out—you
only know the results of individual pulls on the arms.
Suppose each “win” is for the same amount, no matter
which arm. What differs is the probability of a win.
Suppose further that you initially try each arm 50 times
and get the following results:

Arm A: 10 wins out of 50

Arm B: 2 win out of 50

Arm C: 4 wins out of 50

One extreme approach is to say, “Looks like arm A is a
winner—let’s quit trying the other arms and stick with
A.” This takes full advantage of the information from
the initial trial. If A is truly superior, we get the benefit
of that early on. On the other hand, if B or C is truly
better, we lose any opportunity to discover that. Another
extreme approach is to say, “This all looks to be within
the realm of chance—let’s keep pulling them all
equally.” This gives maximum opportunity for alternates
to A to show themselves. However, in the process, we
are deploying what seem to be inferior treatments. How
long do we permit that? Bandit algorithms take a hybrid
approach: we start pulling A more often, to take
advantage of its apparent superiority, but we don’t
abandon B and C. We just pull them less often. If A
continues to outperform, we continue to shift resources
(pulls) away from B and C and pull A more often. If, on
the other hand, C starts to do better, and A starts to do
worse, we can shift pulls from A back to C. If one of
them turns out to be superior to A and this was hidden in
the initial trial due to chance, it now has an opportunity
to emerge with further testing.

Now think of applying this to web testing. Instead of
multiple slot machine arms, you might have multiple
offers, headlines, colors, and so on being tested on a
website. Customers either click (a “win” for the
merchant) or don’t click. Initially, the offers are shown

randomly and equally. If, however, one offer starts to
outperform the others, it can be shown (“pulled”) more
often. But what should the parameters of the algorithm
that modifies the pull rates be? What “pull rates” should
we change to, and when should we change?

Here is one simple algorithm, the epsilon-greedy
algorithm for an A/B test:

1. Generate a uniformly distributed random
number between 0 and 1.

2. If the number lies between 0 and epsilon
(where epsilon is a number between 0 and 1,
typically fairly small), flip a fair coin (50/50
probability), and:

a. If the coin is heads, show offer A.

b. If the coin is tails, show offer B.

3. If the number is ≥ epsilon, show whichever
offer has had the highest response rate to date.

Epsilon is the single parameter that governs this
algorithm. If epsilon is 1, we end up with a standard
simple A/B experiment (random allocation between A
and B for each subject). If epsilon is 0, we end up with a
purely greedy algorithm—one that chooses the best
available immediate option (a local optimum). It seeks
no further experimentation, simply assigning subjects
(web visitors) to the best-performing treatment.

A more sophisticated algorithm uses “Thompson’s
sampling.” This procedure “samples” (pulls a bandit
arm) at each stage to maximize the probability of
choosing the best arm. Of course you don’t know which

is the best arm—that’s the whole problem!—but as you
observe the payoff with each successive draw, you gain
more information. Thompson’s sampling uses a
Bayesian approach: some prior distribution of rewards is
assumed initially, using what is called a beta distribution
(this is a common mechanism for specifying prior
information in a Bayesian problem). As information
accumulates from each draw, this information can be
updated, allowing the selection of the next draw to be
better optimized as far as choosing the right arm.

Bandit algorithms can efficiently handle 3+ treatments
and move toward optimal selection of the “best.” For
traditional statistical testing procedures, the complexity
of decision making for 3+ treatments far outstrips that of
the traditional A/B test, and the advantage of bandit
algorithms is much greater.

KEY IDEAS

Traditional A/B tests envision a random sampling process, which can
lead to excessive exposure to the inferior treatment.

Multi-arm bandits, in contrast, alter the sampling process to incorporate
information learned during the experiment and reduce the frequency of
the inferior treatment.

They also facilitate efficient treatment of more than two treatments.

There are different algorithms for shifting sampling probability away
from the inferior treatment(s) and to the (presumed) superior one.

Further Reading
An excellent short treatment of multi-arm
bandit algorithms is found in Bandit Algorithms
for Website Optimization, by John Myles White
(O’Reilly, 2012). White includes Python code,

as well as the results of simulations to assess
the performance of bandits.

For more (somewhat technical) information
about Thompson sampling, see “Analysis of
Thompson Sampling for the Multi-armed
Bandit Problem” by Shipra Agrawal and Navin
Goyal.

Power and Sample Size
If you run a web test, how do you decide how long it
should run (i.e., how many impressions per treatment
are needed)? Despite what you may read in many guides
to web testing, there is no good general guidance—it
depends, mainly, on the frequency with which the
desired goal is attained.

KEY TERMS FOR POWER AND SAMPLE SIZE

Effect size

The minimum size of the effect that you hope to be able to detect in a
statistical test, such as “a 20% improvement in click rates.”

Power

The probability of detecting a given effect size with a given sample size.

Significance level

The statistical significance level at which the test will be conducted.

One step in statistical calculations for sample size is to
ask “Will a hypothesis test actually reveal a difference
between treatments A and B?” The outcome of a
hypothesis test—the p-value—depends on what the real
difference is between treatment A and treatment B. It
also depends on the luck of the draw—who gets selected

https://oreil.ly/OgWrG

for the groups in the experiment. But it makes sense that
the bigger the actual difference between treatments A
and B, the greater the probability that our experiment
will reveal it; and the smaller the difference, the more
data will be needed to detect it. To distinguish between a
.350 hitter and a .200 hitter in baseball, not that many at-
bats are needed. To distinguish between a .300 hitter and
a .280 hitter, a good many more at-bats will be needed.

Power is the probability of detecting a specified effect
size with specified sample characteristics (size and
variability). For example, we might say (hypothetically)
that the probability of distinguishing between a .330
hitter and a .200 hitter in 25 at-bats is 0.75. The effect
size here is a difference of .130. And “detecting” means
that a hypothesis test will reject the null hypothesis of
“no difference” and conclude there is a real effect. So
the experiment of 25 at-bats (n = 25) for two hitters,
with an effect size of 0.130, has (hypothetical) power of
0.75, or 75%.

You can see that there are several moving parts here, and
it is easy to get tangled up in the numerous statistical
assumptions and formulas that will be needed (to
specify sample variability, effect size, sample size,
alpha-level for the hypothesis test, etc., and to calculate
power). Indeed, there is special-purpose statistical
software to calculate power. Most data scientists will not
need to go through all the formal steps needed to report
power, for example, in a published paper. However, they
may face occasions where they want to collect some
data for an A/B test, and collecting or processing the

data involves some cost. In that case, knowing
approximately how much data to collect can help avoid
the situation where you collect data at some effort, and
the result ends up being inconclusive. Here’s a fairly
intuitive alternative approach:

1. Start with some hypothetical data that
represents your best guess about the data that
will result (perhaps based on prior data)—for
example, a box with 20 ones and 80 zeros to
represent a .200 hitter, or a box with some
observations of “time spent on website.”

2. Create a second sample simply by adding the
desired effect size to the first sample—for
example, a second box with 33 ones and 67
zeros, or a second box with 25 seconds added
to each initial “time spent on website.”

3. Draw a bootstrap sample of size n from each
box.

4. Conduct a permutation (or formula-based)
hypothesis test on the two bootstrap samples
and record whether the difference between
them is statistically significant.

5. Repeat the preceding two steps many times and
determine how often the difference was
significant—that’s the estimated power.

Sample Size
The most common use of power calculations is to
estimate how big a sample you will need.

For example, suppose you are looking at click-through
rates (clicks as a percentage of exposures), and testing a

new ad against an existing ad. How many clicks do you
need to accumulate in the study? If you are interested
only in results that show a huge difference (say, a 50%
difference), a relatively small sample might do the trick.
If, on the other hand, even a minor difference would be
of interest, then a much larger sample is needed. A
standard approach is to establish a policy that a new ad
must do better than an existing ad by some percentage,
say, 10%; otherwise, the existing ad will remain in
place. This goal, the “effect size,” then drives the sample
size.

For example, suppose current click-through rates are
about 1.1%, and you are seeking a 10% boost to 1.21%.
So we have two boxes: box A with 1.1% ones (say, 110
ones and 9,890 zeros), and box B with 1.21% ones (say,
121 ones and 9,879 zeros). For starters, let’s try 300
draws from each box (this would be like 300
“impressions” for each ad). Suppose our first draw
yields the following:

Box A: 3 ones

Box B: 5 ones

Right away we can see that any hypothesis test would
reveal this difference (5 versus 3) to be well within the
range of chance variation. This combination of sample
size (n = 300 in each group) and effect size (10%
difference) is too small for any hypothesis test to
reliably show a difference.

So we can try increasing the sample size (let’s try 2,000
impressions), and require a larger improvement (50%
instead of 10%).

For example, suppose current click-through rates are
still 1.1%, but we are now seeking a 50% boost to
1.65%. So we have two boxes: box A still with 1.1%
ones (say, 110 ones and 9,890 zeros), and box B with
1.65% ones (say, 165 ones and 9,868 zeros). Now we’ll
try 2,000 draws from each box. Suppose our first draw
yields the following:

Box A: 19 ones

Box B: 34 ones

A significance test on this difference (34–19) shows it
still registers as “not significant” (though much closer to
significance than the earlier difference of 5–3). To
calculate power, we would need to repeat the previous
procedure many times, or use statistical software that
can calculate power, but our initial draw suggests to us
that even detecting a 50% improvement will require
several thousand ad impressions.

In summary, for calculating power or required sample
size, there are four moving parts:

Sample size

Effect size you want to detect

Significance level (alpha) at which the test will
be conducted

Power

Specify any three of them, and the fourth can be
calculated. Most commonly, you would want to
calculate sample size, so you must specify the other
three. With R and Python, you also have to specify the
alternative hypothesis as “greater” or “larger” to get a
one-sided test; see “One-Way Versus Two-Way
Hypothesis Tests” for more discussion of one-way
versus two-way tests. Here is R code for a test involving
two proportions, where both samples are the same size
(this uses the pwr package):

effect_size = ES.h(p1=0.0121, p2=0.011)

pwr.2p.test(h=effect_size, sig.level=0.05,

power=0.8, alternative='greater’)

--

 Difference of proportion power calculation

for binomial distribution

(arcsine transformation)

 h = 0.01029785

 n = 116601.7

 sig.level = 0.05

 power = 0.8

 alternative = greater

NOTE: same sample sizes

The function ES.h calculates the effect size. We see
that if we want a power of 80%, we require a sample
size of almost 120,000 impressions. If we are seeking a
50% boost (p1=0.0165), the sample size is reduced to
5,500 impressions.

The statsmodels package contains several methods
for power calculation. Here, we use

proportion_effectsize to calculate the effect
size and TTestIndPower to solve for the sample size:

effect_size =

sm.stats.proportion_effectsize(0.0121, 0.011)

analysis = sm.stats.TTestIndPower()

result =

analysis.solve_power(effect_size=effect_size,

 alpha=0.05,

power=0.8, alternative='larger')

print('Sample Size: %.3f' % result)

--

Sample Size: 116602.393

KEY IDEAS

Finding out how big a sample size you need requires thinking ahead to
the statistical test you plan to conduct.

You must specify the minimum size of the effect that you want to detect.

You must also specify the required probability of detecting that effect
size (power).

Finally, you must specify the significance level (alpha) at which the test
will be conducted.

Further Reading
Sample Size Determination and Power by
Thomas Ryan (Wiley, 2013) is a comprehensive
and readable review of this subject.

Steve Simon, a statistical consultant, has
written a very engaging narrative-style post on
the subject.

Summary
The principles of experimental design—randomization
of subjects into two or more groups receiving different
treatments—allow us to draw valid conclusions about

https://oreil.ly/18mtp

how well the treatments work. It is best to include a
control treatment of “making no change.” The subject of
formal statistical inference—hypothesis testing, p-
values, t-tests, and much more along these lines—
occupies much time and space in a traditional statistics
course or text, and the formality is mostly unneeded
from a data science perspective. However, it remains
important to recognize the role that random variation
can play in fooling the human brain. Intuitive
resampling procedures (permutation and bootstrap)
allow data scientists to gauge the extent to which chance
variation can play a role in their data analysis.

1 The multiplication rule states that the probability of n independent
events all happening is the product of the individual probabilities.
For example, if you and I each flip a coin once, the probability that
your coin and my coin will both land heads is 0.5 × 0.5 = 0.25.

Chapter 4. Regression
and Prediction

Perhaps the most common goal in statistics is to answer
the question “Is the variable X (or more likely,
X1, ...,Xp) associated with a variable Y, and if so, what
is the relationship and can we use it to predict Y?”

Nowhere is the nexus between statistics and data science
stronger than in the realm of prediction—specifically,
the prediction of an outcome (target) variable based on
the values of other “predictor” variables. This process of
training a model on data where the outcome is known,
for subsequent application to data where the outcome is
not known, is termed supervised learning. Another
important connection between data science and statistics
is in the area of anomaly detection, where regression
diagnostics originally intended for data analysis and
improving the regression model can be used to detect
unusual records.

Simple Linear Regression
Simple linear regression provides a model of the
relationship between the magnitude of one variable and
that of a second—for example, as X increases, Y also
increases. Or as X increases, Y decreases. Correlation is
another way to measure how two variables are related—
see the section “Correlation”. The difference is that

1

while correlation measures the strength of an association
between two variables, regression quantifies the nature
of the relationship.

KEY TERMS FOR SIMPLE LINEAR REGRESSION

Response

The variable we are trying to predict.

Synonyms

dependent variable, Y variable, target, outcome

Independent variable

The variable used to predict the response.

Synonyms

X variable, feature, attribute, predictor

Record

The vector of predictor and outcome values for a specific individual or case.

Synonyms

row, case, instance, example

Intercept

The intercept of the regression line—that is, the predicted value when X = 0
.

Synonyms

b0, β0

Regression coefficient

The slope of the regression line.

Synonyms

slope, b1, β1, parameter estimates, weights

Fitted values

The estimates Ŷi obtained from the regression line.

Synonym

predicted values

Residuals

The difference between the observed values and the fitted values.

Synonym

errors

Least squares

The method of fitting a regression by minimizing the sum of squared
residuals.

Synonyms

ordinary least squares, OLS

The Regression Equation
Simple linear regression estimates how much Y will
change when X changes by a certain amount. With the
correlation coefficient, the variables X and Y are
interchangeable. With regression, we are trying to
predict the Y variable from X using a linear relationship
(i.e., a line):

Y = b0 + b1X

We read this as “Y equals b times X, plus a constant
b .” The symbol b0 is known as the intercept (or
constant), and the symbol b1 as the slope for X. Both
appear in R output as coefficients, though in general use
the term coefficient is often reserved for b1. The Y
variable is known as the response or dependent variable
since it depends on X. The X variable is known as the
predictor or independent variable. The machine learning
community tends to use other terms, calling Y the target

1

0

and X a feature vector. Throughout this book, we will
use the terms predictor and feature interchangeably.

Consider the scatterplot in Figure 4-1 displaying the
number of years a worker was exposed to cotton dust
(Exposure) versus a measure of lung capacity (PEFR
or “peak expiratory flow rate”). How is PEFR related to
Exposure? It’s hard to tell based just on the picture.

Figure 4-1. Cotton exposure versus lung capacity

Simple linear regression tries to find the “best” line to
predict the response PEFR as a function of the predictor
variable Exposure:

PEFR = b0 + b1Exposure

The lm function in R can be used to fit a linear
regression:

model <- lm(PEFR ~ Exposure, data=lung)

lm stands for linear model, and the ~ symbol denotes
that PEFR is predicted by Exposure. With this model
definition, the intercept is automatically included and
fitted. If you want to exclude the intercept from the
model, you need to write the model definition as
follows:

PEFR ~ Exposure - 1

Printing the model object produces the following
output:

Call:

lm(formula = PEFR ~ Exposure, data = lung)

Coefficients:

(Intercept) Exposure

 424.583 -4.185

The intercept, or b0, is 424.583 and can be interpreted as
the predicted PEFR for a worker with zero years
exposure. The regression coefficient, or b1, can be

interpreted as follows: for each additional year that a
worker is exposed to cotton dust, the worker’s PEFR
measurement is reduced by –4.185.

In Python, we can use LinearRegression from the
scikit-learn package. (the statsmodels
package has a linear regression implementation that is
more similar to R (sm.OLS); we will use it later in this
chapter):

predictors = ['Exposure']

outcome = 'PEFR'

model = LinearRegression()

model.fit(lung[predictors], lung[outcome])

print(f'Intercept: {model.intercept_:.3f}')

print(f'Coefficient Exposure:

{model.coef_[0]:.3f}')

The regression line from this model is displayed in
Figure 4-2.

Figure 4-2. Slope and intercept for the regression fit to the lung data

Fitted Values and Residuals
Important concepts in regression analysis are the fitted
values (the predictions) and residuals (prediction
errors). In general, the data doesn’t fall exactly on a line,
so the regression equation should include an explicit
error term ei:

Yi = b0 + b1Xi + ei

The fitted values, also referred to as the predicted
values, are typically denoted by Ŷi (Y-hat). These are
given by:

Ŷi = b̂0 + b̂1Xi

The notation b̂0 and b̂1 indicates that the coefficients are
estimated versus known.

HAT NOTATION: ESTIMATES
VERSUS KNOWN VALUES

The “hat” notation is used to differentiate between estimates
and known values. So the symbol ̂b (“b-hat”) is an estimate of
the unknown parameter b. Why do statisticians differentiate
between the estimate and the true value? The estimate has
uncertainty, whereas the true value is fixed.

We compute the residuals êi by subtracting the predicted
values from the original data:

êi = Yi − Ŷi

In R, we can obtain the fitted values and residuals using
the functions predict and residuals:

2

fitted <- predict(model)

resid <- residuals(model)

With scikit-learn’s LinearRegression
model, we use the predict method on the training
data to get the fitted values and subsequently the
residuals. As we will see, this is a general pattern
that all models in scikit-learn follow:

fitted = model.predict(lung[predictors])

residuals = lung[outcome] - fitted

Figure 4-3 illustrates the residuals from the regression
line fit to the lung data. The residuals are the length of
the vertical dashed lines from the data to the line.

Figure 4-3. Residuals from a regression line (to accommodate all the data,
the y-axis scale differs from Figure 4-2, hence the apparently different

slope)

Least Squares
How is the model fit to the data? When there is a clear
relationship, you could imagine fitting the line by hand.
In practice, the regression line is the estimate that
minimizes the sum of squared residual values, also
called the residual sum of squares or RSS:

The estimates b̂0 and b̂1 are the values that minimize
RSS.

The method of minimizing the sum of the squared
residuals is termed least squares regression, or ordinary
least squares (OLS) regression. It is often attributed to
Carl Friedrich Gauss, the German mathematician, but
was first published by the French mathematician
Adrien-Marie Legendre in 1805. Least squares
regression can be computed quickly and easily with any
standard statistical software.

Historically, computational convenience is one reason
for the widespread use of least squares in regression.
With the advent of big data, computational speed is still
an important factor. Least squares, like the mean (see
“Median and Robust Estimates”), are sensitive to

RSS =
n

∑
i=1

(Yi − Ŷi)
2

=
n

∑
i=1

(Yi − b̂0 − b̂1Xi)
2

outliers, although this tends to be a significant problem
only in small or moderate-sized data sets. See “Outliers”
for a discussion of outliers in regression.

REGRESSION TERMINOLOGY
When analysts and researchers use the term regression by
itself, they are typically referring to linear regression; the
focus is usually on developing a linear model to explain the
relationship between predictor variables and a numeric
outcome variable. In its formal statistical sense, regression
also includes nonlinear models that yield a functional
relationship between predictors and outcome variables. In the
machine learning community, the term is also occasionally
used loosely to refer to the use of any predictive model that
produces a predicted numeric outcome (as opposed to
classification methods that predict a binary or categorical
outcome).

Prediction Versus Explanation (Profiling)
Historically, a primary use of regression was to
illuminate a supposed linear relationship between
predictor variables and an outcome variable. The goal
has been to understand a relationship and explain it
using the data that the regression was fit to. In this case,
the primary focus is on the estimated slope of the
regression equation, b̂. Economists want to know the
relationship between consumer spending and GDP
growth. Public health officials might want to understand
whether a public information campaign is effective in
promoting safe sex practices. In such cases, the focus is
not on predicting individual cases but rather on
understanding the overall relationship among variables.

With the advent of big data, regression is widely used to
form a model to predict individual outcomes for new
data (i.e., a predictive model) rather than explain data in
hand. In this instance, the main items of interest are the
fitted values Ŷ . In marketing, regression can be used to
predict the change in revenue in response to the size of
an ad campaign. Universities use regression to predict
students’ GPA based on their SAT scores.

A regression model that fits the data well is set up such
that changes in X lead to changes in Y. However, by
itself, the regression equation does not prove the
direction of causation. Conclusions about causation
must come from a broader understanding about the
relationship. For example, a regression equation might
show a definite relationship between number of clicks
on a web ad and number of conversions. It is our
knowledge of the marketing process, not the regression
equation, that leads us to the conclusion that clicks on
the ad lead to sales, and not vice versa.

KEY IDEAS

The regression equation models the relationship between a response
variable Y and a predictor variable X as a line.

A regression model yields fitted values and residuals—predictions of
the response and the errors of the predictions.

Regression models are typically fit by the method of least squares.

Regression is used both for prediction and explanation.

Further Reading
For an in-depth treatment of prediction versus
explanation, see Galit Shmueli’s article “To Explain or

https://oreil.ly/4fVUY

to Predict?”.

Multiple Linear Regression
When there are multiple predictors, the equation is
simply extended to accommodate them:

Y = b0 + b1X1 + b2X2 + ... + bpXp + e

Instead of a line, we now have a linear model—the
relationship between each coefficient and its variable
(feature) is linear.

https://oreil.ly/4fVUY

KEY TERMS FOR MULTIPLE LINEAR REGRESSION

Root mean squared error

The square root of the average squared error of the regression (this is the
most widely used metric to compare regression models).

Synonym

RMSE

Residual standard error

The same as the root mean squared error, but adjusted for degrees of
freedom.

Synonym

RSE

R-squared

The proportion of variance explained by the model, from 0 to 1.

Synonyms

coefficient of determination, R2

t-statistic

The coefficient for a predictor, divided by the standard error of the coefficient,
giving a metric to compare the importance of variables in the model. See “t-
Tests”.

Weighted regression

Regression with the records having different weights.

All of the other concepts in simple linear regression,
such as fitting by least squares and the definition of
fitted values and residuals, extend to the multiple linear
regression setting. For example, the fitted values are
given by:

Ŷi = b̂0 + b̂1X1,i + b̂2X2,i + ... + b̂pXp,i

Example: King County Housing Data
An example of using multiple linear regression is in
estimating the value of houses. County assessors must
estimate the value of a house for the purposes of
assessing taxes. Real estate professionals and home
buyers consult popular websites such as Zillow to
ascertain a fair price. Here are a few rows of housing
data from King County (Seattle), Washington, from the
house data.frame:

head(house[, c('AdjSalePrice', 'SqFtTotLiving',

'SqFtLot', 'Bathrooms',

 'Bedrooms', 'BldgGrade')])

Source: local data frame [6 x 6]

 AdjSalePrice SqFtTotLiving SqFtLot Bathrooms

Bedrooms BldgGrade

 (dbl) (int) (int) (dbl)

(int) (int)

1 300805 2400 9373 3.00

6 7

2 1076162 3764 20156 3.75

4 10

3 761805 2060 26036 1.75

4 8

4 442065 3200 8618 3.75

5 7

5 297065 1720 8620 1.75

4 7

6 411781 930 1012 1.50

2 8

The head method of pandas data frame lists the top
rows:

subset = ['AdjSalePrice', 'SqFtTotLiving',

'SqFtLot', 'Bathrooms',

 'Bedrooms', 'BldgGrade']

house[subset].head()

https://zillow.com/

The goal is to predict the sales price from the other
variables. The lm function handles the multiple
regression case simply by including more terms on the
righthand side of the equation; the argument
na.action=na.omit causes the model to drop
records that have missing values:

house_lm <- lm(AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade,

 data=house, na.action=na.omit)

scikit-learn’s LinearRegression can be used
for multiple linear regression as well:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade']

outcome = 'AdjSalePrice'

house_lm = LinearRegression()

house_lm.fit(house[predictors], house[outcome])

Printing house_lm object produces the following
output:

house_lm

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade, data = house,

na.action = na.omit)

Coefficients:

 (Intercept) SqFtTotLiving SqFtLot

Bathrooms

 -5.219e+05 2.288e+02 -6.047e-02

-1.944e+04

 Bedrooms BldgGrade

 -4.777e+04 1.061e+05

For a LinearRegression model, intercept and
coefficients are the fields intercept_ and coef_ of
the fitted model:

print(f'Intercept: {house_lm.intercept_:.3f}')

print('Coefficients:')

for name, coef in zip(predictors,

house_lm.coef_):

 print(f' {name}: {coef}')

The interpretation of the coefficients is as with simple
linear regression: the predicted value Ŷ changes by the
coefficient bj for each unit change in Xj assuming all
the other variables, Xk for k ≠ j, remain the same. For
example, adding an extra finished square foot to a house
increases the estimated value by roughly $229; adding
1,000 finished square feet implies the value will increase
by $228,800.

Assessing the Model
The most important performance metric from a data
science perspective is root mean squared error, or
RMSE. RMSE is the square root of the average squared
error in the predicted ŷi values:

RMSE = √ ∑n
i=1 (yi − ŷi)

2

n

This measures the overall accuracy of the model and is a
basis for comparing it to other models (including models
fit using machine learning techniques). Similar to

RMSE is the residual standard error, or RSE. In this
case we have p predictors, and the RSE is given by:

RSE =
∑n

i=1 (yi − ŷi)
2

(n − p − 1)

The only difference is that the denominator is the
degrees of freedom, as opposed to number of records
(see “Degrees of Freedom”). In practice, for linear
regression, the difference between RMSE and RSE is
very small, particularly for big data applications.

The summary function in R computes RSE as well as
other metrics for a regression model:

summary(house_lm)

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade, data = house,

na.action = na.omit)

Residuals:

 Min 1Q Median 3Q Max

-1199479 -118908 -20977 87435 9473035

Coefficients:

 Estimate Std. Error t value

Pr(>|t|)

(Intercept) -5.219e+05 1.565e+04 -33.342 <

2e-16 ***

SqFtTotLiving 2.288e+02 3.899e+00 58.694 <

2e-16 ***

SqFtLot -6.047e-02 6.118e-02 -0.988

0.323

Bathrooms -1.944e+04 3.625e+03 -5.363

8.27e-08 ***

Bedrooms -4.777e+04 2.490e+03 -19.187 <

2e-16 ***

BldgGrade 1.061e+05 2.396e+03 44.277 <

⎷

2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

‘.’ 0.1 ‘ ’ 1

Residual standard error: 261300 on 22681 degrees

of freedom

Multiple R-squared: 0.5406, Adjusted R-

squared: 0.5405

F-statistic: 5338 on 5 and 22681 DF, p-value:

< 2.2e-16

scikit-learn provides a number of metrics for
regression and classification. Here, we use
mean_squared_error to get RMSE and
r2_score for the coefficient of determination:

fitted = house_lm.predict(house[predictors])

RMSE =

np.sqrt(mean_squared_error(house[outcome],

fitted))

r2 = r2_score(house[outcome], fitted)

print(f'RMSE: {RMSE:.0f}')

print(f'r2: {r2:.4f}')

Use statsmodels to get a more detailed analysis of
the regression model in Python:

model = sm.OLS(house[outcome],

house[predictors].assign(const=1))

results = model.fit()

results.summary()

The pandas method assign, as used here, adds a
constant column with value 1 to the predictors. This is
required to model the intercept.

Another useful metric that you will see in software
output is the coefficient of determination, also called the

R-squared statistic or R2. R-squared ranges from 0 to 1
and measures the proportion of variation in the data that
is accounted for in the model. It is useful mainly in
explanatory uses of regression where you want to assess
how well the model fits the data. The formula for R2 is:

R2 = 1 −
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − y)2

The denominator is proportional to the variance of Y.
The output from R also reports an adjusted R-squared,
which adjusts for the degrees of freedom, effectively
penalizing the addition of more predictors to a model.
Seldom is this significantly different from R-squared in
multiple regression with large data sets.

Along with the estimated coefficients, R and
statsmodels report the standard error of the
coefficients (SE) and a t-statistic:

tb =
b̂

SE(b̂)

The t-statistic—and its mirror image, the p-value—
measures the extent to which a coefficient is
“statistically significant”—that is, outside the range of
what a random chance arrangement of predictor and
target variable might produce. The higher the t-statistic
(and the lower the p-value), the more significant the
predictor. Since parsimony is a valuable model feature,
it is useful to have a tool like this to guide choice of

¯

variables to include as predictors (see “Model Selection
and Stepwise Regression”).

WARNING
In addition to the t-statistic, R and other packages will often
report a p-value (Pr(>|t|) in the R output) and F-statistic.
Data scientists do not generally get too involved with the
interpretation of these statistics, nor with the issue of
statistical significance. Data scientists primarily focus on the t-
statistic as a useful guide for whether to include a predictor in
a model or not. High t-statistics (which go with p-values near
0) indicate a predictor should be retained in a model, while
very low t-statistics indicate a predictor could be dropped. See
“p-Value” for more discussion.

Cross-Validation
Classic statistical regression metrics (R , F-statistics,
and p-values) are all “in-sample” metrics—they are
applied to the same data that was used to fit the model.
Intuitively, you can see that it would make a lot of sense
to set aside some of the original data, not use it to fit the
model, and then apply the model to the set-aside
(holdout) data to see how well it does. Normally, you
would use a majority of the data to fit the model and use
a smaller portion to test the model.

This idea of “out-of-sample” validation is not new, but it
did not really take hold until larger data sets became
more prevalent; with a small data set, analysts typically
want to use all the data and fit the best possible model.

Using a holdout sample, though, leaves you subject to
some uncertainty that arises simply from variability in
the small holdout sample. How different would the

2

assessment be if you selected a different holdout
sample?

Cross-validation extends the idea of a holdout sample to
multiple sequential holdout samples. The algorithm for
basic k-fold cross-validation is as follows:

1. Set aside 1/k of the data as a holdout sample.

2. Train the model on the remaining data.

3. Apply (score) the model to the 1/k holdout, and
record needed model assessment metrics.

4. Restore the first 1/k of the data, and set aside
the next 1/k (excluding any records that got
picked the first time).

5. Repeat steps 2 and 3.

6. Repeat until each record has been used in the
holdout portion.

7. Average or otherwise combine the model
assessment metrics.

The division of the data into the training sample and the
holdout sample is also called a fold.

Model Selection and Stepwise Regression
In some problems, many variables could be used as
predictors in a regression. For example, to predict house
value, additional variables such as the basement size or
year built could be used. In R, these are easy to add to
the regression equation:

house_full <- lm(AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade +

PropertyType + NbrLivingUnits +

 SqFtFinBasement + YrBuilt +

YrRenovated +

 NewConstruction,

 data=house, na.action=na.omit)

In Python, we need to convert the categorical and
boolean variables into numbers:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade',

 'PropertyType', 'NbrLivingUnits',

'SqFtFinBasement', 'YrBuilt',

 'YrRenovated', 'NewConstruction']

X = pd.get_dummies(house[predictors],

drop_first=True)

X['NewConstruction'] = [1 if nc else 0 for nc in

X['NewConstruction']]

house_full = sm.OLS(house[outcome],

X.assign(const=1))

results = house_full.fit()

results.summary()

Adding more variables, however, does not necessarily
mean we have a better model. Statisticians use the
principle of Occam’s razor to guide the choice of a
model: all things being equal, a simpler model should be
used in preference to a more complicated model.

Including additional variables always reduces RMSE
and increases R2 for the training data. Hence, these are
not appropriate to help guide the model choice. One
approach to including model complexity is to use the
adjusted R2:

R2
adj = 1 − (1 − R2)

n − 1

n − P − 1

Here, n is the number of records and P is the number of
variables in the model.

In the 1970s, Hirotugu Akaike, the eminent Japanese
statistician, developed a metric called AIC (Akaike’s
Information Criteria) that penalizes adding terms to a
model. In the case of regression, AIC has the form:

AIC = 2P + n log(RSS/n)

where P is the number of variables and n is the number
of records. The goal is to find the model that minimizes
AIC; models with k more extra variables are penalized
by 2k.

AIC, BIC, AND MALLOWS CP
The formula for AIC may seem a bit mysterious, but in fact it
is based on asymptotic results in information theory. There are
several variants to AIC:

AICc

A version of AIC corrected for small sample sizes.

BIC or Bayesian information criteria

Similar to AIC, with a stronger penalty for including
additional variables to the model.

Mallows Cp

A variant of AIC developed by Colin Mallows.

These are typically reported as in-sample metrics (i.e., on the
training data), and data scientists using holdout data for model
assessment do not need to worry about the differences among
them or the underlying theory behind them.

How do we find the model that minimizes AIC or
maximizes adjusted R2? One way is to search through

all possible models, an approach called all subset
regression. This is computationally expensive and is not
feasible for problems with large data and many
variables. An attractive alternative is to use stepwise
regression. It could start with a full model and
successively drop variables that don’t contribute
meaningfully. This is called backward elimination.
Alternatively one could start with a constant model and
successively add variables (forward selection). As a
third option we can also successively add and drop
predictors to find a model that lowers AIC or adjusted
R2. The MASS in R package by Venebles and Ripley
offers a stepwise regression function called stepAIC:

library(MASS)

step <- stepAIC(house_full, direction="both")

step

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving +

Bathrooms + Bedrooms +

 BldgGrade + PropertyType + SqFtFinBasement +

YrBuilt, data = house,

 na.action = na.omit)

Coefficients:

 (Intercept)

SqFtTotLiving

 6.179e+06

1.993e+02

 Bathrooms

Bedrooms

 4.240e+04

-5.195e+04

 BldgGrade PropertyTypeSingle

Family

 1.372e+05

2.291e+04

 PropertyTypeTownhouse

SqFtFinBasement

 8.448e+04

7.047e+00

 YrBuilt

 -3.565e+03

scikit-learn has no implementation for stepwise
regression. We implemented functions
stepwise_selection, forward_selection,
and backward_elimination in our dmba
package:

y = house[outcome]

def train_model(variables):

 if len(variables) == 0:

 return None

 model = LinearRegression()

 model.fit(X[variables], y)

 return model

def score_model(model, variables):

 if len(variables) == 0:

 return AIC_score(y, [y.mean()] * len(y),

model, df=1)

 return AIC_score(y,

model.predict(X[variables]), model)

best_model, best_variables =

stepwise_selection(X.columns, train_model,

score_model, verbose=True)

print(f'Intercept: {best_model.intercept_:.3f}')

print('Coefficients:')

for name, coef in zip(best_variables,

best_model.coef_):

 print(f' {name}: {coef}')

Define a function that returns a fitted model for a
given set of variables.

Define a function that returns a score for a given
model and set of variables. In this case, we use the
AIC_score implemented in the dmba package.

The function chose a model in which several variables
were dropped from house_full: SqFtLot,
NbrLivingUnits, YrRenovated, and
NewConstruction.

Simpler yet are forward selection and backward
selection. In forward selection, you start with no
predictors and add them one by one, at each step adding
the predictor that has the largest contribution to R2, and
stopping when the contribution is no longer statistically
significant. In backward selection, or backward
elimination, you start with the full model and take away
predictors that are not statistically significant until you
are left with a model in which all predictors are
statistically significant.

Penalized regression is similar in spirit to AIC. Instead
of explicitly searching through a discrete set of models,
the model-fitting equation incorporates a constraint that
penalizes the model for too many variables
(parameters). Rather than eliminating predictor variables
entirely—as with stepwise, forward, and backward
selection—penalized regression applies the penalty by
reducing coefficients, in some cases to near zero.
Common penalized regression methods are ridge
regression and lasso regression.

Stepwise regression and all subset regression are in-
sample methods to assess and tune models. This means
the model selection is possibly subject to overfitting
(fitting the noise in the data) and may not perform as
well when applied to new data. One common approach
to avoid this is to use cross-validation to validate the
models. In linear regression, overfitting is typically not a
major issue, due to the simple (linear) global structure
imposed on the data. For more sophisticated types of
models, particularly iterative procedures that respond to
local data structure, cross-validation is a very important
tool; see “Cross-Validation” for details.

Weighted Regression
Weighted regression is used by statisticians for a variety
of purposes; in particular, it is important for analysis of
complex surveys. Data scientists may find weighted
regression useful in two cases:

Inverse-variance weighting when different
observations have been measured with different
precision; the higher variance ones receiving
lower weights.

Analysis of data where rows represent multiple
cases; the weight variable encodes how many
original observations each row represents.

For example, with the housing data, older sales are less
reliable than more recent sales. Using the
DocumentDate to determine the year of the sale, we
can compute a Weight as the number of years since
2005 (the beginning of the data):

R

library(lubridate)

house$Year = year(house$DocumentDate)

house$Weight = house$Year - 2005

Python

house['Year'] = [int(date.split('-')[0]) for

date in house.DocumentDate]

house['Weight'] = house.Year - 2005

We can compute a weighted regression with the lm
function using the weight argument:

house_wt <- lm(AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade,

 data=house, weight=Weight)

round(cbind(house_lm=house_lm$coefficients,

 house_wt=house_wt$coefficients),

digits=3)

 house_lm house_wt

(Intercept) -521871.368 -584189.329

SqFtTotLiving 228.831 245.024

SqFtLot -0.060 -0.292

Bathrooms -19442.840 -26085.970

Bedrooms -47769.955 -53608.876

BldgGrade 106106.963 115242.435

The coefficients in the weighted regression are slightly
different from the original regression.

Most models in scikit-learn accept weights as the
keyword argument sample_weight in the call of the
fit method:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade']

outcome = 'AdjSalePrice'

house_wt = LinearRegression()

house_wt.fit(house[predictors], house[outcome],

sample_weight=house.Weight)

KEY IDEAS

Multiple linear regression models the relationship between a response
variable Y and multiple predictor variables X1, ...,Xp.

The most important metrics to evaluate a model are root mean squared
error (RMSE) and R-squared (R).

The standard error of the coefficients can be used to measure the
reliability of a variable’s contribution to a model.

Stepwise regression is a way to automatically determine which
variables should be included in the model.

Weighted regression is used to give certain records more or less weight
in fitting the equation.

Further Reading
An excellent treatment of cross-validation and
resampling can be found in An Introduction to Statistical
Learning by Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani (Springer, 2013).

Prediction Using Regression
The primary purpose of regression in data science is
prediction. This is useful to keep in mind, since
regression, being an old and established statistical
method, comes with baggage that is more relevant to its
traditional role as a tool for explanatory modeling than
to prediction.

2

KEY TERMS FOR PREDICTION USING REGRESSION

Prediction interval

An uncertainty interval around an individual predicted value.

Extrapolation

Extension of a model beyond the range of the data used to fit it.

The Dangers of Extrapolation
Regression models should not be used to extrapolate
beyond the range of the data (leaving aside the use of
regression for time series forecasting.). The model is
valid only for predictor values for which the data has
sufficient values (even in the case that sufficient data is
available, there could be other problems—see
“Regression Diagnostics”). As an extreme case, suppose
model_lm is used to predict the value of a 5,000-
square-foot empty lot. In such a case, all the predictors
related to the building would have a value of 0, and the
regression equation would yield an absurd prediction of
–521,900 + 5,000 × –.0605 = –$522,202. Why did this
happen? The data contains only parcels with buildings—
there are no records corresponding to vacant land.
Consequently, the model has no information to tell it
how to predict the sales price for vacant land.

Confidence and Prediction Intervals
Much of statistics involves understanding and
measuring variability (uncertainty). The t-statistics and
p-values reported in regression output deal with this in a
formal way, which is sometimes useful for variable

selection (see “Assessing the Model”). More useful
metrics are confidence intervals, which are uncertainty
intervals placed around regression coefficients and
predictions. An easy way to understand this is via the
bootstrap (see “The Bootstrap” for more details about
the general bootstrap procedure). The most common
regression confidence intervals encountered in software
output are those for regression parameters (coefficients).
Here is a bootstrap algorithm for generating confidence
intervals for regression parameters (coefficients) for a
data set with P predictors and n records (rows):

1. Consider each row (including outcome
variable) as a single “ticket” and place all the n
tickets in a box.

2. Draw a ticket at random, record the values, and
replace it in the box.

3. Repeat step 2 n times; you now have one
bootstrap resample.

4. Fit a regression to the bootstrap sample, and
record the estimated coefficients.

5. Repeat steps 2 through 4, say, 1,000 times.

6. You now have 1,000 bootstrap values for each
coefficient; find the appropriate percentiles for
each one (e.g., 5th and 95th for a 90%
confidence interval).

You can use the Boot function in R to generate actual
bootstrap confidence intervals for the coefficients, or
you can simply use the formula-based intervals that are
a routine R output. The conceptual meaning and
interpretation are the same, and not of central

importance to data scientists, because they concern the
regression coefficients. Of greater interest to data
scientists are intervals around predicted y values (Ŷi).
The uncertainty around Ŷi comes from two sources:

Uncertainty about what the relevant predictor
variables and their coefficients are (see the
preceding bootstrap algorithm)

Additional error inherent in individual data
points

The individual data point error can be thought of as
follows: even if we knew for certain what the regression
equation was (e.g., if we had a huge number of records
to fit it), the actual outcome values for a given set of
predictor values will vary. For example, several houses
—each with 8 rooms, a 6,500-square-foot lot, 3
bathrooms, and a basement—might have different
values. We can model this individual error with the
residuals from the fitted values. The bootstrap algorithm
for modeling both the regression model error and the
individual data point error would look as follows:

1. Take a bootstrap sample from the data (spelled
out in greater detail earlier).

2. Fit the regression, and predict the new value.

3. Take a single residual at random from the
original regression fit, add it to the predicted
value, and record the result.

4. Repeat steps 1 through 3, say, 1,000 times.

5. Find the 2.5th and the 97.5th percentiles of the
results.

KEY IDEAS

Extrapolation beyond the range of the data can lead to error.

Confidence intervals quantify uncertainty around regression
coefficients.

Prediction intervals quantify uncertainty in individual predictions.

Most software, R included, will produce prediction and confidence
intervals in default or specified output, using formulas.

The bootstrap can also be used to produce prediction and confidence
intervals; the interpretation and idea are the same.

PREDICTION INTERVAL OR
CONFIDENCE INTERVAL?

A prediction interval pertains to uncertainty around a single
value, while a confidence interval pertains to a mean or other
statistic calculated from multiple values. Thus, a prediction
interval will typically be much wider than a confidence
interval for the same value. We model this individual value
error in the bootstrap model by selecting an individual residual
to tack on to the predicted value. Which should you use? That
depends on the context and the purpose of the analysis, but, in
general, data scientists are interested in specific individual
predictions, so a prediction interval would be more
appropriate. Using a confidence interval when you should be
using a prediction interval will greatly underestimate the
uncertainty in a given predicted value.

Factor Variables in Regression
Factor variables, also termed categorical variables, take
on a limited number of discrete values. For example, a
loan purpose can be “debt consolidation,” “wedding,”
“car,” and so on. The binary (yes/no) variable, also
called an indicator variable, is a special case of a factor
variable. Regression requires numerical inputs, so factor
variables need to be recoded to use in the model. The

most common approach is to convert a variable into a
set of binary dummy variables.

KEY TERMS FOR FACTOR VARIABLES

Dummy variables

Binary 0–1 variables derived by recoding factor data for use in regression and
other models.

Reference coding

The most common type of coding used by statisticians, in which one level of
a factor is used as a reference and other factors are compared to that level.

Synonym

treatment coding

One hot encoder

A common type of coding used in the machine learning community in which
all factor levels are retained. While useful for certain machine learning
algorithms, this approach is not appropriate for multiple linear regression.

Deviation coding

A type of coding that compares each level against the overall mean as
opposed to the reference level.

Synonym

sum contrasts

Dummy Variables Representation
In the King County housing data, there is a factor
variable for the property type; a small subset of six
records is shown below:

R:

head(house[, 'PropertyType'])

Source: local data frame [6 x 1]

 PropertyType

 (fctr)

1 Multiplex

2 Single Family

3 Single Family

4 Single Family

5 Single Family

6 Townhouse

Python:

house.PropertyType.head()

There are three possible values: Multiplex, Single
Family, and Townhouse. To use this factor variable,
we need to convert it to a set of binary variables. We do
this by creating a binary variable for each possible value
of the factor variable. To do this in R, we use the
model.matrix function:

prop_type_dummies <- model.matrix(~PropertyType

-1, data=house)

head(prop_type_dummies)

 PropertyTypeMultiplex PropertyTypeSingle

Family PropertyTypeTownhouse

1 1

0 0

2 0

1 0

3 0

1 0

4 0

1 0

5 0

1 0

6 0

0 1

The function model.matrix converts a data frame
into a matrix suitable to a linear model. The factor
variable PropertyType, which has three distinct
levels, is represented as a matrix with three columns. In

3

the machine learning community, this representation is
referred to as one hot encoding (see “One Hot
Encoder”).

In Python, we can convert categorical variables to
dummies using the pandas method get_dummies:

pd.get_dummies(house['PropertyType']).head()

pd.get_dummies(house['PropertyType'],

drop_first=True).head()

By default, returns one hot encoding of the
categorical variable.

The keyword argument drop_first will return P
– 1 columns. Use this to avoid the problem of
multicollinearity.

In certain machine learning algorithms, such as nearest
neighbors and tree models, one hot encoding is the
standard way to represent factor variables (for example,
see “Tree Models”).

In the regression setting, a factor variable with P distinct
levels is usually represented by a matrix with only P – 1
columns. This is because a regression model typically
includes an intercept term. With an intercept, once you
have defined the values for P – 1 binaries, the value for
the Pth is known and could be considered redundant.
Adding the Pth column will cause a multicollinearity
error (see “Multicollinearity”).

The default representation in R is to use the first factor
level as a reference and interpret the remaining levels

relative to that factor:

lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot +

Bathrooms +

 Bedrooms + BldgGrade + PropertyType,

data=house)

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade + PropertyType, data =

house)

Coefficients:

 (Intercept)

SqFtTotLiving

 -4.468e+05

2.234e+02

 SqFtLot

Bathrooms

 -7.037e-02

-1.598e+04

 Bedrooms

BldgGrade

 -5.089e+04

1.094e+05

PropertyTypeSingle Family

PropertyTypeTownhouse

 -8.468e+04

-1.151e+05

The method get_dummies takes the optional keyword
argument drop_first to exclude the first factor as
reference:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms',

 'BldgGrade', 'PropertyType']

X = pd.get_dummies(house[predictors],

drop_first=True)

house_lm_factor = LinearRegression()

house_lm_factor.fit(X, house[outcome])

print(f'Intercept:

{house_lm_factor.intercept_:.3f}')

print('Coefficients:')

for name, coef in zip(X.columns,

house_lm_factor.coef_):

 print(f' {name}: {coef}')

The output from the R regression shows two coefficients
corresponding to PropertyType:
PropertyTypeSingle Family and
PropertyTypeTownhouse. There is no coefficient
of Multiplex since it is implicitly defined when
PropertyTypeSingle Family == 0 and
PropertyTypeTownhouse == 0. The coefficients
are interpreted as relative to Multiplex, so a home
that is Single Family is worth almost $85,000 less,
and a home that is Townhouse is worth over $150,000
less.

DIFFERENT FACTOR CODINGS
There are several different ways to encode factor variables,
known as contrast coding systems. For example, deviation
coding, also known as sum contrasts, compares each level
against the overall mean. Another contrast is polynomial
coding, which is appropriate for ordered factors; see the
section “Ordered Factor Variables”. With the exception of
ordered factors, data scientists will generally not encounter
any type of coding besides reference coding or one hot
encoder.

Factor Variables with Many Levels
Some factor variables can produce a huge number of
binary dummies—zip codes are a factor variable, and
there are 43,000 zip codes in the US. In such cases, it is

4

useful to explore the data, and the relationships between
predictor variables and the outcome, to determine
whether useful information is contained in the
categories. If so, you must further decide whether it is
useful to retain all factors, or whether the levels should
be consolidated.

In King County, there are 80 zip codes with a house
sale:

table(house$ZipCode)

98001 98002 98003 98004 98005 98006 98007 98008

98010 98011 98014 98019

 358 180 241 293 133 460 112 291

56 163 85 242

98022 98023 98024 98027 98028 98029 98030 98031

98032 98033 98034 98038

 188 455 31 366 252 475 263 308

121 517 575 788

98039 98040 98042 98043 98045 98047 98050 98051

98052 98053 98055 98056

 47 244 641 1 222 48 7 32

614 499 332 402

98057 98058 98059 98065 98068 98070 98072 98074

98075 98077 98092 98102

 4 420 513 430 1 89 245 502

388 204 289 106

98103 98105 98106 98107 98108 98109 98112 98113

98115 98116 98117 98118

 671 313 361 296 155 149 357 1

620 364 619 492

98119 98122 98125 98126 98133 98136 98144 98146

98148 98155 98166 98168

 260 380 409 473 465 310 332 287

40 358 193 332

98177 98178 98188 98198 98199 98224 98288 98354

 216 266 101 225 393 3 4 9

The value_counts method of pandas data frames
returns the same information:

pd.DataFrame(house['ZipCode'].value_counts()).tr

anspose()

ZipCode is an important variable, since it is a proxy
for the effect of location on the value of a house.
Including all levels requires 79 coefficients
corresponding to 79 degrees of freedom. The original
model house_lm has only 5 degrees of freedom; see
“Assessing the Model”. Moreover, several zip codes
have only one sale. In some problems, you can
consolidate a zip code using the first two or three digits,
corresponding to a submetropolitan geographic region.
For King County, almost all of the sales occur in 980xx
or 981xx, so this doesn’t help.

An alternative approach is to group the zip codes
according to another variable, such as sale price. Even
better is to form zip code groups using the residuals
from an initial model. The following dplyr code in R
consolidates the 80 zip codes into five groups based on
the median of the residual from the house_lm
regression:

zip_groups <- house %>%

 mutate(resid = residuals(house_lm)) %>%

 group_by(ZipCode) %>%

 summarize(med_resid = median(resid),

 cnt = n()) %>%

 arrange(med_resid) %>%

 mutate(cum_cnt = cumsum(cnt),

 ZipGroup = ntile(cum_cnt, 5))

house <- house %>%

 left_join(select(zip_groups, ZipCode,

ZipGroup), by='ZipCode')

The median residual is computed for each zip, and the
ntile function is used to split the zip codes, sorted by
the median, into five groups. See “Confounding
Variables” for an example of how this is used as a term
in a regression improving upon the original fit.

In Python we can calculate this information as follows:

zip_groups = pd.DataFrame([

 *pd.DataFrame({

 'ZipCode': house['ZipCode'],

 'residual' : house[outcome] -

house_lm.predict(house[predictors]),

 })

 .groupby(['ZipCode'])

 .apply(lambda x: {

 'ZipCode': x.iloc[0,0],

 'count': len(x),

 'median_residual': x.residual.median()

 })

]).sort_values('median_residual')

zip_groups['cum_count'] =

np.cumsum(zip_groups['count'])

zip_groups['ZipGroup'] =

pd.qcut(zip_groups['cum_count'], 5,

labels=False,

 retbins=False)

to_join = zip_groups[['ZipCode',

'ZipGroup']].set_index('ZipCode')

house = house.join(to_join, on='ZipCode')

house['ZipGroup'] =

house['ZipGroup'].astype('category')

The concept of using the residuals to help guide the
regression fitting is a fundamental step in the modeling
process; see “Regression Diagnostics”.

Ordered Factor Variables
Some factor variables reflect levels of a factor; these are
termed ordered factor variables or ordered categorical
variables. For example, the loan grade could be A, B, C,
and so on—each grade carries more risk than the prior
grade. Often, ordered factor variables can be converted
to numerical values and used as is. For example, the
variable BldgGrade is an ordered factor variable.
Several of the types of grades are shown in Table 4-1.
While the grades have specific meaning, the numeric
value is ordered from low to high, corresponding to
higher-grade homes. With the regression model
house_lm, fit in “Multiple Linear Regression”,
BldgGrade was treated as a numeric variable.

Table 4-1. Building grades and numeric equivalents

Value Description

1 Cabin

2 Substandard

5 Fair

10 Very good

12 Luxury

13 Mansion

Treating ordered factors as a numeric variable preserves
the information contained in the ordering that would be
lost if it were converted to a factor.

KEY IDEAS

Factor variables need to be converted into numeric variables for use in
a regression.

The most common method to encode a factor variable with P distinct
values is to represent them using P – 1 dummy variables.

A factor variable with many levels, even in very big data sets, may need
to be consolidated into a variable with fewer levels.

Some factors have levels that are ordered and can be represented as a
single numeric variable.

Interpreting the Regression
Equation
In data science, the most important use of regression is
to predict some dependent (outcome) variable. In some
cases, however, gaining insight from the equation itself
to understand the nature of the relationship between the
predictors and the outcome can be of value. This section
provides guidance on examining the regression equation
and interpreting it.

KEY TERMS FOR INTERPRETING THE REGRESSION
EQUATION

Correlated variables

When the predictor variables are highly correlated, it is difficult to interpret the
individual coefficients.

Multicollinearity

When the predictor variables have perfect, or near-perfect, correlation, the
regression can be unstable or impossible to compute.

Synonym

collinearity

Confounding variables

An important predictor that, when omitted, leads to spurious relationships in a
regression equation.

Main effects

The relationship between a predictor and the outcome variable, independent
of other variables.

Interactions

An interdependent relationship between two or more predictors and the
response.

Correlated Predictors
In multiple regression, the predictor variables are often
correlated with each other. As an example, examine the
regression coefficients for the model step_lm, fit in
“Model Selection and Stepwise Regression”.

R:

step_lm$coefficients

 (Intercept)

SqFtTotLiving Bathrooms

 6.178645e+06

1.992776e+02 4.239616e+04

 Bedrooms

BldgGrade PropertyTypeSingle Family

 -5.194738e+04

1.371596e+05 2.291206e+04

 PropertyTypeTownhouse

SqFtFinBasement YrBuilt

 8.447916e+04

7.046975e+00 -3.565425e+03

Python:

print(f'Intercept: {best_model.intercept_:.3f}')

print('Coefficients:')

for name, coef in zip(best_variables,

best_model.coef_):

 print(f' {name}: {coef}')

The coefficient for Bedrooms is negative! This implies
that adding a bedroom to a house will reduce its value.
How can this be? This is because the predictor variables
are correlated: larger houses tend to have more
bedrooms, and it is the size that drives house value, not
the number of bedrooms. Consider two homes of the
exact same size: it is reasonable to expect that a home
with more but smaller bedrooms would be considered
less desirable.

Having correlated predictors can make it difficult to
interpret the sign and value of regression coefficients
(and can inflate the standard error of the estimates). The
variables for bedrooms, house size, and number of
bathrooms are all correlated. This is illustrated by the
following example in R, which fits another regression
removing the variables SqFtTotLiving,
SqFtFinBasement, and Bathrooms from the
equation:

update(step_lm, . ~ . - SqFtTotLiving -

SqFtFinBasement - Bathrooms)

Call:

lm(formula = AdjSalePrice ~ Bedrooms + BldgGrade

+ PropertyType +

 YrBuilt, data = house, na.action = na.omit)

Coefficients:

 (Intercept)

Bedrooms

 4913973

27151

 BldgGrade PropertyTypeSingle

Family

 248998

-19898

 PropertyTypeTownhouse

YrBuilt

 -47355

-3212

The update function can be used to add or remove
variables from a model. Now the coefficient for
bedrooms is positive—in line with what we would
expect (though it is really acting as a proxy for house
size, now that those variables have been removed).

In Python, there is no equivalent to R’s update
function. We need to refit the model with the modified
predictor list:

predictors = ['Bedrooms', 'BldgGrade',

'PropertyType', 'YrBuilt']

outcome = 'AdjSalePrice'

X = pd.get_dummies(house[predictors],

drop_first=True)

reduced_lm = LinearRegression()

reduced_lm.fit(X, house[outcome])

Correlated variables are only one issue with interpreting
regression coefficients. In house_lm, there is no
variable to account for the location of the home, and the
model is mixing together very different types of regions.
Location may be a confounding variable; see
“Confounding Variables” for further discussion.

Multicollinearity
An extreme case of correlated variables produces
multicollinearity—a condition in which there is
redundance among the predictor variables. Perfect
multicollinearity occurs when one predictor variable can
be expressed as a linear combination of others.
Multicollinearity occurs when:

A variable is included multiple times by error.

P dummies, instead of P – 1 dummies, are
created from a factor variable (see “Factor
Variables in Regression”).

Two variables are nearly perfectly correlated
with one another.

Multicollinearity in regression must be addressed—
variables should be removed until the multicollinearity
is gone. A regression does not have a well-defined
solution in the presence of perfect multicollinearity.
Many software packages, including R and Python,
automatically handle certain types of multicollinearity.
For example, if SqFtTotLiving is included twice in
the regression of the house data, the results are the
same as for the house_lm model. In the case of

nonperfect multicollinearity, the software may obtain a
solution, but the results may be unstable.

NOTE
Multicollinearity is not such a problem for nonlinear
regression methods like trees, clustering, and nearest-
neighbors, and in such methods it may be advisable to retain P
dummies (instead of P – 1). That said, even in those methods,
nonredundancy in predictor variables is still a virtue.

Confounding Variables
With correlated variables, the problem is one of
commission: including different variables that have a
similar predictive relationship with the response. With
confounding variables, the problem is one of omission:
an important variable is not included in the regression
equation. Naive interpretation of the equation
coefficients can lead to invalid conclusions.

Take, for example, the King County regression equation
house_lm from “Example: King County Housing
Data”. The regression coefficients of SqFtLot,
Bathrooms, and Bedrooms are all negative. The
original regression model does not contain a variable to
represent location—a very important predictor of house
price. To model location, include a variable ZipGroup
that categorizes the zip code into one of five groups,
from least expensive (1) to most expensive (5):

lm(formula = AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade + PropertyType +

ZipGroup, data = house,

 na.action = na.omit)

5

Coefficients:

 (Intercept)

SqFtTotLiving

 -6.666e+05

2.106e+02

 SqFtLot

Bathrooms

 4.550e-01

5.928e+03

 Bedrooms

BldgGrade

 -4.168e+04

9.854e+04

PropertyTypeSingle Family

PropertyTypeTownhouse

 1.932e+04

-7.820e+04

 ZipGroup2

ZipGroup3

 5.332e+04

1.163e+05

 ZipGroup4

ZipGroup5

 1.784e+05

3.384e+05

The same model in Python:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms',

 'BldgGrade', 'PropertyType',

'ZipGroup']

outcome = 'AdjSalePrice'

X = pd.get_dummies(house[predictors],

drop_first=True)

confounding_lm = LinearRegression()

confounding_lm.fit(X, house[outcome])

print(f'Intercept:

{confounding_lm.intercept_:.3f}')

print('Coefficients:')

for name, coef in zip(X.columns,

confounding_lm.coef_):

 print(f' {name}: {coef}')

ZipGroup is clearly an important variable: a home in
the most expensive zip code group is estimated to have a
higher sales price by almost $340,000. The coefficients
of SqFtLot and Bathrooms are now positive, and
adding a bathroom increases the sale price by $5,928.

The coefficient for Bedrooms is still negative. While
this is unintuitive, this is a well-known phenomenon in
real estate. For homes of the same livable area and
number of bathrooms, having more and therefore
smaller bedrooms is associated with less valuable
homes.

Interactions and Main Effects
Statisticians like to distinguish between main effects, or
independent variables, and the interactions between the
main effects. Main effects are what are often referred to
as the predictor variables in the regression equation. An
implicit assumption when only main effects are used in
a model is that the relationship between a predictor
variable and the response is independent of the other
predictor variables. This is often not the case.

For example, the model fit to the King County Housing
Data in “Confounding Variables” includes several
variables as main effects, including ZipCode. Location
in real estate is everything, and it is natural to presume
that the relationship between, say, house size and the
sale price depends on location. A big house built in a
low-rent district is not going to retain the same value as
a big house built in an expensive area. You include

interactions between variables in R using the * operator.
For the King County data, the following fits an
interaction between SqFtTotLiving and
ZipGroup:

lm(formula = AdjSalePrice ~ SqFtTotLiving *

ZipGroup + SqFtLot +

 Bathrooms + Bedrooms + BldgGrade +

PropertyType, data = house,

 na.action = na.omit)

Coefficients:

 (Intercept)

SqFtTotLiving

 -4.853e+05

1.148e+02

 ZipGroup2

ZipGroup3

 -1.113e+04

2.032e+04

 ZipGroup4

ZipGroup5

 2.050e+04

-1.499e+05

 SqFtLot

Bathrooms

 6.869e-01

-3.619e+03

 Bedrooms

BldgGrade

 -4.180e+04

1.047e+05

PropertyTypeSingle Family

PropertyTypeTownhouse

 1.357e+04

-5.884e+04

 SqFtTotLiving:ZipGroup2

SqFtTotLiving:ZipGroup3

 3.260e+01

4.178e+01

 SqFtTotLiving:ZipGroup4

SqFtTotLiving:ZipGroup5

 6.934e+01

2.267e+02

The resulting model has four new terms:
SqFtTotLiving:ZipGroup2,
SqFtTotLiving:ZipGroup3, and so on.

In Python, we need to use the statsmodels package
to train linear regression models with interactions. This
package was designed similar to R and allows defining
models using a formula interface:

model = smf.ols(formula='AdjSalePrice ~

SqFtTotLiving*ZipGroup + SqFtLot + ' +

 'Bathrooms + Bedrooms + BldgGrade +

PropertyType', data=house)

results = model.fit()

results.summary()

The statsmodels package takes care of categorical
variables (e.g., ZipGroup[T.1],
PropertyType[T.Single Family]) and
interaction terms (e.g.,
SqFtTotLiving:ZipGroup[T.1]).

Location and house size appear to have a strong
interaction. For a home in the lowest ZipGroup, the
slope is the same as the slope for the main effect
SqFtTotLiving, which is $118 per square foot (this
is because R uses reference coding for factor variables;
see “Factor Variables in Regression”). For a home in the
highest ZipGroup, the slope is the sum of the main
effect plus SqFtTotLiving:ZipGroup5, or $115 +
$227 = $342 per square foot. In other words, adding a
square foot in the most expensive zip code group boosts
the predicted sale price by a factor of almost three,

compared to the average boost from adding a square
foot.

MODEL SELECTION WITH
INTERACTION TERMS

In problems involving many variables, it can be challenging to
decide which interaction terms should be included in the
model. Several different approaches are commonly taken:

In some problems, prior knowledge and intuition can
guide the choice of which interaction terms to
include in the model.

Stepwise selection (see “Model Selection and
Stepwise Regression”) can be used to sift through the
various models.

Penalized regression can automatically fit to a large
set of possible interaction terms.

Perhaps the most common approach is to use tree
models, as well as their descendants, random forest
and gradient boosted trees. This class of models
automatically searches for optimal interaction terms;
see “Tree Models”.

KEY IDEAS

Because of correlation between predictors, care must be taken in the
interpretation of the coefficients in multiple linear regression.

Multicollinearity can cause numerical instability in fitting the regression
equation.

A confounding variable is an important predictor that is omitted from a
model and can lead to a regression equation with spurious
relationships.

An interaction term between two variables is needed if the relationship
between the variables and the response is interdependent.

Regression Diagnostics
In explanatory modeling (i.e., in a research context),
various steps, in addition to the metrics mentioned
previously (see “Assessing the Model”), are taken to
assess how well the model fits the data; most are based

on analysis of the residuals. These steps do not directly
address predictive accuracy, but they can provide useful
insight in a predictive setting.

KEY TERMS FOR REGRESSION DIAGNOSTICS

Standardized residuals

Residuals divided by the standard error of the residuals.

Outliers

Records (or outcome values) that are distant from the rest of the data (or the
predicted outcome).

Influential value

A value or record whose presence or absence makes a big difference in the
regression equation.

Leverage

The degree of influence that a single record has on a regression equation.

Synonym

hat-value

Non-normal residuals

Non-normally distributed residuals can invalidate some technical
requirements of regression but are usually not a concern in data science.

Heteroskedasticity

When some ranges of the outcome experience residuals with higher variance
(may indicate a predictor missing from the equation).

Partial residual plots

A diagnostic plot to illuminate the relationship between the outcome variable
and a single predictor.

Synonym

added variables plot

Outliers

Generally speaking, an extreme value, also called an
outlier, is one that is distant from most of the other
observations. Just as outliers need to be handled for
estimates of location and variability (see “Estimates of
Location” and “Estimates of Variability”), outliers can
cause problems with regression models. In regression,
an outlier is a record whose actual y value is distant
from the predicted value. You can detect outliers by
examining the standardized residual, which is the
residual divided by the standard error of the residuals.

There is no statistical theory that separates outliers from
nonoutliers. Rather, there are (arbitrary) rules of thumb
for how distant from the bulk of the data an observation
needs to be in order to be called an outlier. For example,
with the boxplot, outliers are those data points that are
too far above or below the box boundaries (see
“Percentiles and Boxplots”), where “too far” = “more
than 1.5 times the interquartile range.” In regression, the
standardized residual is the metric that is typically used
to determine whether a record is classified as an outlier.
Standardized residuals can be interpreted as “the number
of standard errors away from the regression line.”

Let’s fit a regression to the King County house sales
data for all sales in zip code 98105 in R:

house_98105 <- house[house$ZipCode == 98105,]

lm_98105 <- lm(AdjSalePrice ~ SqFtTotLiving +

SqFtLot + Bathrooms +

 Bedrooms + BldgGrade,

data=house_98105)

In Python:

house_98105 = house.loc[house['ZipCode'] ==

98105,]

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade']

outcome = 'AdjSalePrice'

house_outlier = sm.OLS(house_98105[outcome],

house_98105[predictors].assign(const=1))

result_98105 = house_outlier.fit()

We extract the standardized residuals in R using the
rstandard function and obtain the index of the
smallest residual using the order function:

sresid <- rstandard(lm_98105)

idx <- order(sresid)

sresid[idx[1]]

 20429

-4.326732

In statsmodels, use OLSInfluence to analyze
the residuals:

influence = OLSInfluence(result_98105)

sresiduals =

influence.resid_studentized_internal

sresiduals.idxmin(), sresiduals.min()

The biggest overestimate from the model is more than
four standard errors above the regression line,
corresponding to an overestimate of $757,754. The
original data record corresponding to this outlier is as
follows in R:

house_98105[idx[1], c('AdjSalePrice',

'SqFtTotLiving', 'SqFtLot',

 'Bathrooms', 'Bedrooms',

'BldgGrade')]

AdjSalePrice SqFtTotLiving SqFtLot Bathrooms

Bedrooms BldgGrade

 (dbl) (int) (int) (dbl)

(int) (int)

20429 119748 2900 7276 3

6 7

In Python:

outlier = house_98105.loc[sresiduals.idxmin(),

:]

print('AdjSalePrice', outlier[outcome])

print(outlier[predictors])

In this case, it appears that there is something wrong
with the record: a house of that size typically sells for
much more than $119,748 in that zip code. Figure 4-4
shows an excerpt from the statutory deed from this sale:
it is clear that the sale involved only partial interest in
the property. In this case, the outlier corresponds to a
sale that is anomalous and should not be included in the
regression. Outliers could also be the result of other
problems, such as a “fat-finger” data entry or a
mismatch of units (e.g., reporting a sale in thousands of
dollars rather than simply in dollars).

Figure 4-4. Statutory warrany deed for the largest negative residual

For big data problems, outliers are generally not a
problem in fitting the regression to be used in predicting
new data. However, outliers are central to anomaly
detection, where finding outliers is the whole point. The
outlier could also correspond to a case of fraud or an
accidental action. In any case, detecting outliers can be a
critical business need.

Influential Values
A value whose absence would significantly change the
regression equation is termed an influential observation.
In regression, such a value need not be associated with a
large residual. As an example, consider the regression
lines in Figure 4-5. The solid line corresponds to the
regression with all the data, while the dashed line
corresponds to the regression with the point in the
upper-right corner removed. Clearly, that data value has
a huge influence on the regression even though it is not
associated with a large outlier (from the full regression).
This data value is considered to have high leverage on
the regression.

In addition to standardized residuals (see “Outliers”),
statisticians have developed several metrics to determine
the influence of a single record on a regression. A
common measure of leverage is the hat-value; values
above 2(P + 1)/n indicate a high-leverage data value.6

Figure 4-5. An example of an influential data point in regression

Another metric is Cook’s distance, which defines
influence as a combination of leverage and residual size.
A rule of thumb is that an observation has high
influence if Cook’s distance exceeds 4/(n − P − 1).

An influence plot or bubble plot combines standardized
residuals, the hat-value, and Cook’s distance in a single
plot. Figure 4-6 shows the influence plot for the King
County house data and can be created by the following
R code:

std_resid <- rstandard(lm_98105)

cooks_D <- cooks.distance(lm_98105)

hat_values <- hatvalues(lm_98105)

plot(subset(hat_values, cooks_D > 0.08),

subset(std_resid, cooks_D > 0.08),

 xlab='hat_values', ylab='std_resid',

 cex=10*sqrt(subset(cooks_D, cooks_D >

0.08)), pch=16, col='lightgrey')

points(hat_values, std_resid,

cex=10*sqrt(cooks_D))

abline(h=c(-2.5, 2.5), lty=2)

Here is the Python code to create a similar figure:

influence = OLSInfluence(result_98105)

fig, ax = plt.subplots(figsize=(5, 5))

ax.axhline(-2.5, linestyle='--', color='C1')

ax.axhline(2.5, linestyle='--', color='C1')

ax.scatter(influence.hat_matrix_diag,

influence.resid_studentized_internal,

 s=1000 *

np.sqrt(influence.cooks_distance[0]),

 alpha=0.5)

ax.set_xlabel('hat values')

ax.set_ylabel('studentized residuals')

There are apparently several data points that exhibit
large influence in the regression. Cook’s distance can be
computed using the function cooks.distance, and
you can use hatvalues to compute the diagnostics.
The hat values are plotted on the x-axis, the residuals are
plotted on the y-axis, and the size of the points is related
to the value of Cook’s distance.

Figure 4-6. A plot to determine which observations have high influence;
points with Cook’s distance greater than 0.08 are highlighted in grey

Table 4-2 compares the regression with the full data set
and with highly influential data points removed (Cook’s
distance > 0.08).

The regression coefficient for Bathrooms changes
quite dramatically.

Table 4-2. Comparison of regression coefficients with
the full data and with influential data removed

Original Influential removed

(Intercept) –772,550 –647,137

SqFtTotLiving 210 230

SqFtLot 39 33

Bathrooms 2282 –16,132

Bedrooms –26,320 –22,888

BldgGrade 130,000 114,871

For purposes of fitting a regression that reliably predicts
future data, identifying influential observations is useful
only in smaller data sets. For regressions involving
many records, it is unlikely that any one observation
will carry sufficient weight to cause extreme influence
on the fitted equation (although the regression may still
have big outliers). For purposes of anomaly detection,

7

though, identifying influential observations can be very
useful.

Heteroskedasticity, Non-Normality, and
Correlated Errors
Statisticians pay considerable attention to the
distribution of the residuals. It turns out that ordinary
least squares (see “Least Squares”) are unbiased, and in
some cases are the “optimal” estimator, under a wide
range of distributional assumptions. This means that in
most problems, data scientists do not need to be too
concerned with the distribution of the residuals.

The distribution of the residuals is relevant mainly for
the validity of formal statistical inference (hypothesis
tests and p-values), which is of minimal importance to
data scientists concerned mainly with predictive
accuracy. Normally distributed errors are a sign that the
model is complete; errors that are not normally
distributed indicate the model may be missing
something. For formal inference to be fully valid, the
residuals are assumed to be normally distributed, have
the same variance, and be independent. One area where
this may be of concern to data scientists is the standard
calculation of confidence intervals for predicted values,
which are based upon the assumptions about the
residuals (see “Confidence and Prediction Intervals”).

Heteroskedasticity is the lack of constant residual
variance across the range of the predicted values. In
other words, errors are greater for some portions of the

range than for others. Visualizing the data is a
convenient way to analyze residuals.

The following code in R plots the absolute residuals
versus the predicted values for the lm_98105
regression fit in “Outliers”:

df <- data.frame(resid = residuals(lm_98105),

pred = predict(lm_98105))

ggplot(df, aes(pred, abs(resid))) + geom_point()

+ geom_smooth()

Figure 4-7 shows the resulting plot. Using
geom_smooth, it is easy to superpose a smooth of the
absolute residuals. The function calls the loess
method (locally estimated scatterplot smoothing) to
produce a smoothed estimate of the relationship between
the variables on the x-axis and y-axis in a scatterplot
(see “Scatterplot Smoothers”).

In Python, the seaborn package has the regplot
function to create a similar figure:

fig, ax = plt.subplots(figsize=(5, 5))

sns.regplot(result_98105.fittedvalues,

np.abs(result_98105.resid),

 scatter_kws={'alpha': 0.25},

line_kws={'color': 'C1'},

 lowess=True, ax=ax)

ax.set_xlabel('predicted')

ax.set_ylabel('abs(residual)')

Figure 4-7. A plot of the absolute value of the residuals versus the
predicted values

Evidently, the variance of the residuals tends to increase
for higher-valued homes but is also large for lower-
valued homes. This plot indicates that lm_98105 has
heteroskedastic errors.

WHY WOULD A DATA SCIENTIST
CARE ABOUT

HETEROSKEDASTICITY?
Heteroskedasticity indicates that prediction errors differ for
different ranges of the predicted value, and may suggest an
incomplete model. For example, the heteroskedasticity in
lm_98105 may indicate that the regression has left
something unaccounted for in high- and low-range homes.

Figure 4-8 is a histogram of the standardized residuals
for the lm_98105 regression. The distribution has
decidedly longer tails than the normal distribution and
exhibits mild skewness toward larger residuals.

Figure 4-8. A histogram of the residuals from the regression of the housing
data

Statisticians may also check the assumption that the
errors are independent. This is particularly true for data
that is collected over time or space. The Durbin-Watson
statistic can be used to detect if there is significant
autocorrelation in a regression involving time series
data. If the errors from a regression model are
correlated, then this information can be useful in making
short-term forecasts and should be built into the model.
See Practical Time Series Forecasting with R, 2nd ed.,
by Galit Shmueli and Kenneth Lichtendahl (Axelrod
Schnall, 2018) to learn more about how to build
autocorrelation information into regression models for
time series data. If longer-term forecasts or explanatory
models are the goal, excess autocorrelated data at the
microlevel may distract. In that case, smoothing, or less
granular collection of data in the first place, may be in
order.

Even though a regression may violate one of the
distributional assumptions, should we care? Most often
in data science, the interest is primarily in predictive
accuracy, so some review of heteroskedasticity may be
in order. You may discover that there is some signal in
the data that your model has not captured. However,
satisfying distributional assumptions simply for the sake
of validating formal statistical inference (p-values, F-
statistics, etc.) is not that important for the data scientist.

SCATTERPLOT SMOOTHERS
Regression is about modeling the relationship between the
response and predictor variables. In evaluating a regression
model, it is useful to use a scatterplot smoother to visually
highlight relationships between two variables.

For example, in Figure 4-7, a smooth of the relationship
between the absolute residuals and the predicted value shows
that the variance of the residuals depends on the value of the
residual. In this case, the loess function was used; loess
works by repeatedly fitting a series of local regressions to
contiguous subsets to come up with a smooth. While loess
is probably the most commonly used smoother, other
scatterplot smoothers are available in R, such as super smooth
(supsmu) and kernel smoothing (ksmooth). In Python, we
can find additional smoothers in scipy (wiener or sav)
and statsmodels (kernel_regression). For the
purposes of evaluating a regression model, there is typically
no need to worry about the details of these scatterplot
smooths.

Partial Residual Plots and Nonlinearity
Partial residual plots are a way to visualize how well
the estimated fit explains the relationship between a
predictor and the outcome. The basic idea of a partial
residual plot is to isolate the relationship between a
predictor variable and the response, taking into account
all of the other predictor variables. A partial residual
might be thought of as a “synthetic outcome” value,
combining the prediction based on a single predictor
with the actual residual from the full regression
equation. A partial residual for predictor Xi is the
ordinary residual plus the regression term associated
with Xi:

Partial residual = Residual + b̂iXi

where b̂i is the estimated regression coefficient. The
predict function in R has an option to return the
individual regression terms b̂iXi:

terms <- predict(lm_98105, type='terms')

partial_resid <- resid(lm_98105) + terms

The partial residual plot displays the Xi predictor on the
x-axis and the partial residuals on the y-axis. Using
ggplot2 makes it easy to superpose a smooth of the
partial residuals:

df <- data.frame(SqFtTotLiving = house_98105[,

'SqFtTotLiving'],

 Terms = terms[,

'SqFtTotLiving'],

 PartialResid = partial_resid[,

'SqFtTotLiving'])

ggplot(df, aes(SqFtTotLiving, PartialResid)) +

 geom_point(shape=1) + scale_shape(solid =

FALSE) +

 geom_smooth(linetype=2) +

 geom_line(aes(SqFtTotLiving, Terms))

The statsmodels package has the method
sm.graphics.plot_ccpr that creates a similar
partial residual plot:

sm.graphics.plot_ccpr(result_98105,

'SqFtTotLiving')

The R and Python graphs differ by a constant shift. In R,
a constant is added so that the mean of the terms is zero.

The resulting plot is shown in Figure 4-9. The partial
residual is an estimate of the contribution that

SqFtTotLiving adds to the sales price. The
relationship between SqFtTotLiving and the sales
price is evidently nonlinear (dashed line). The
regression line (solid line) underestimates the sales price
for homes less than 1,000 square feet and overestimates
the price for homes between 2,000 and 3,000 square
feet. There are too few data points above 4,000 square
feet to draw conclusions for those homes.

Figure 4-9. A partial residual plot for the variable SqFtTotLiving

This nonlinearity makes sense in this case: adding 500
feet in a small home makes a much bigger difference
than adding 500 feet in a large home. This suggests that,
instead of a simple linear term for SqFtTotLiving, a
nonlinear term should be considered (see “Polynomial
and Spline Regression”).

KEY IDEAS

While outliers can cause problems for small data sets, the primary
interest with outliers is to identify problems with the data, or locate
anomalies.

Single records (including regression outliers) can have a big influence
on a regression equation with small data, but this effect washes out in
big data.

If the regression model is used for formal inference (p-values and the
like), then certain assumptions about the distribution of the residuals
should be checked. In general, however, the distribution of residuals is
not critical in data science.

The partial residuals plot can be used to qualitatively assess the fit for
each regression term, possibly leading to alternative model
specification.

Polynomial and Spline
Regression
The relationship between the response and a predictor
variable isn’t necessarily linear. The response to the
dose of a drug is often nonlinear: doubling the dosage
generally doesn’t lead to a doubled response. The
demand for a product isn’t a linear function of
marketing dollars spent; at some point, demand is likely
to be saturated. There are many ways that regression can
be extended to capture these nonlinear effects.

KEY TERMS FOR NONLINEAR REGRESSION

Polynomial regression

Adds polynomial terms (squares, cubes, etc.) to a regression.

Spline regression

Fitting a smooth curve with a series of polynomial segments.

Knots

Values that separate spline segments.

Generalized additive models

Spline models with automated selection of knots.

Synonym

GAM

NONLINEAR REGRESSION
When statisticians talk about nonlinear regression, they are
referring to models that can’t be fit using least squares. What
kind of models are nonlinear? Essentially all models where the
response cannot be expressed as a linear combination of the
predictors or some transform of the predictors. Nonlinear
regression models are harder and computationally more
intensive to fit, since they require numerical optimization. For
this reason, it is generally preferred to use a linear model if
possible.

Polynomial
Polynomial regression involves including polynomial
terms in a regression equation. The use of polynomial
regression dates back almost to the development of
regression itself with a paper by Gergonne in 1815. For
example, a quadratic regression between the response Y
and the predictor X would take the form:

Y = b0 + b1X + b2X
2 + e

Polynomial regression can be fit in R through the poly
function. For example, the following fits a quadratic
polynomial for SqFtTotLiving with the King
County housing data:

lm(AdjSalePrice ~ poly(SqFtTotLiving, 2) +

SqFtLot +

 BldgGrade + Bathrooms +

Bedrooms,

 data=house_98105)

Call:

lm(formula = AdjSalePrice ~ poly(SqFtTotLiving,

2) + SqFtLot +

 BldgGrade + Bathrooms + Bedrooms, data =

house_98105)

Coefficients:

 (Intercept) poly(SqFtTotLiving, 2)1

poly(SqFtTotLiving, 2)2

 -402530.47 3271519.49

776934.02

 SqFtLot BldgGrade

Bathrooms

 32.56 135717.06

-1435.12

 Bedrooms

 -9191.94

In statsmodels, we add the squared term to the
model definition using I(SqFtTotLiving**2):

model_poly = smf.ols(formula='AdjSalePrice ~

SqFtTotLiving + ' +

 '+ I(SqFtTotLiving**2) + ' +

 'SqFtLot + Bathrooms + Bedrooms

+ BldgGrade', data=house_98105)

result_poly = model_poly.fit()

result_poly.summary()

The intercept and the polynomial coefficients are
different compared to R. This is due to different
implementations. The remaining coefficients and the
predictions are equivalent.

There are now two coefficients associated with
SqFtTotLiving: one for the linear term and one for
the quadratic term.

The partial residual plot (see “Partial Residual Plots and
Nonlinearity”) indicates some curvature in the
regression equation associated with SqFtTotLiving.
The fitted line more closely matches the smooth (see
“Splines”) of the partial residuals as compared to a
linear fit (see Figure 4-10).

The statsmodels implementation works only for
linear terms. The accompanying source code gives an
implementation that will work for polynomial regression
as well.

Figure 4-10. A polynomial regression fit for the variable
SqFtTotLiving (solid line) versus a smooth (dashed line; see the

following section about splines)

Splines
Polynomial regression captures only a certain amount of
curvature in a nonlinear relationship. Adding in higher-
order terms, such as a cubic quartic polynomial, often
leads to undesirable “wiggliness” in the regression
equation. An alternative, and often superior, approach to
modeling nonlinear relationships is to use splines.
Splines provide a way to smoothly interpolate between
fixed points. Splines were originally used by draftsmen
to draw a smooth curve, particularly in ship and aircraft
building.

The splines were created by bending a thin piece of
wood using weights, referred to as “ducks”; see
Figure 4-11.

Figure 4-11. Splines were originally created using bendable wood and
“ducks” and were used as a draftsman’s tool to fit curves (photo courtesy

of Bob Perry)

The technical definition of a spline is a series of
piecewise continuous polynomials. They were first

developed during World War II at the US Aberdeen
Proving Grounds by I. J. Schoenberg, a Romanian
mathematician. The polynomial pieces are smoothly
connected at a series of fixed points in a predictor
variable, referred to as knots. Formulation of splines is
much more complicated than polynomial regression;
statistical software usually handles the details of fitting a
spline. The R package splines includes the function
bs to create a b-spline (basis spline) term in a regression
model. For example, the following adds a b-spline term
to the house regression model:

library(splines)

knots <- quantile(house_98105$SqFtTotLiving,

p=c(.25, .5, .75))

lm_spline <- lm(AdjSalePrice ~ bs(SqFtTotLiving,

knots=knots, degree=3) +

 SqFtLot + Bathrooms + Bedrooms + BldgGrade,

data=house_98105)

Two parameters need to be specified: the degree of the
polynomial and the location of the knots. In this case,
the predictor SqFtTotLiving is included in the
model using a cubic spline (degree=3). By default,
bs places knots at the boundaries; in addition, knots
were also placed at the lower quartile, the median
quartile, and the upper quartile.

The statsmodels formula interface supports the use
of splines in a similar way to R. Here, we specify the b-
spline using df, the degrees of freedom. This will create
df – degree = 6 – 3 = 3 internal knots with positions
calculated in the same way as in the R code above:

formula = 'AdjSalePrice ~ bs(SqFtTotLiving,

df=6, degree=3) + ' +

 'SqFtLot + Bathrooms + Bedrooms +

BldgGrade'

model_spline = smf.ols(formula=formula,

data=house_98105)

result_spline = model_spline.fit()

In contrast to a linear term, for which the coefficient has
a direct meaning, the coefficients for a spline term are
not interpretable. Instead, it is more useful to use the
visual display to reveal the nature of the spline fit.
Figure 4-12 displays the partial residual plot from the
regression. In contrast to the polynomial model, the
spline model more closely matches the smooth,
demonstrating the greater flexibility of splines. In this
case, the line more closely fits the data. Does this mean
the spline regression is a better model? Not necessarily:
it doesn’t make economic sense that very small homes
(less than 1,000 square feet) would have higher value
than slightly larger homes. This is possibly an artifact of
a confounding variable; see “Confounding Variables”.

Figure 4-12. A spline regression fit for the variable SqFtTotLiving
(solid line) compared to a smooth (dashed line)

Generalized Additive Models
Suppose you suspect a nonlinear relationship between
the response and a predictor variable, either by a priori
knowledge or by examining the regression diagnostics.
Polynomial terms may not be flexible enough to capture
the relationship, and spline terms require specifying the
knots. Generalized additive models, or GAM, are a
flexible modeling technique that can be used to
automatically fit a spline regression. The mgcv package
in R can be used to fit a GAM model to the housing
data:

library(mgcv)

lm_gam <- gam(AdjSalePrice ~ s(SqFtTotLiving) +

SqFtLot +

 Bathrooms + Bedrooms +

BldgGrade,

 data=house_98105)

The term s(SqFtTotLiving) tells the gam function
to find the “best” knots for a spline term (see Figure 4-
13).

Figure 4-13. A GAM regression fit for the variable SqFtTotLiving
(solid line) compared to a smooth (dashed line)

In Python, we can use the pyGAM package. It provides
methods for regression and classification. Here, we use
LinearGAM to create a regression model:

predictors = ['SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade']

outcome = 'AdjSalePrice'

X = house_98105[predictors].values

y = house_98105[outcome]

gam = LinearGAM(s(0, n_splines=12) + l(1) + l(2)

+ l(3) + l(4))

gam.gridsearch(X, y)

The default value for n_splines is 20. This leads
to overfitting for larger SqFtTotLiving values.
A value of 12 leads to a more reasonable fit.

KEY IDEAS

Outliers in a regression are records with a large residual.

Multicollinearity can cause numerical instability in fitting the regression
equation.

A confounding variable is an important predictor that is omitted from a
model and can lead to a regression equation with spurious
relationships.

An interaction term between two variables is needed if the effect of one
variable depends on the level or magnitude of the other.

Polynomial regression can fit nonlinear relationships between
predictors and the outcome variable.

Splines are series of polynomial segments strung together, joining at
knots.

We can automate the process of specifying the knots in splines using
generalized additive models (GAM).

Further Reading

For more on spline models and GAMs, see The
Elements of Statistical Learning, 2nd ed., by
Trevor Hastie, Robert Tibshirani, and Jerome
Friedman (2009), and its shorter cousin based
on R, An Introduction to Statistical Learning by
Gareth James, Daniela Witten, Trevor Hastie,
and Robert Tibshirani (2013); both are Springer
books.

To learn more about using regression models
for time series forecasting, see Practical Time
Series Forecasting with R by Galit Shmueli and
Kenneth Lichtendahl (Axelrod Schnall, 2018).

Summary
Perhaps no other statistical method has seen greater use
over the years than regression—the process of
establishing a relationship between multiple predictor
variables and an outcome variable. The fundamental
form is linear: each predictor variable has a coefficient
that describes a linear relationship between the predictor
and the outcome. More advanced forms of regression,
such as polynomial and spline regression, permit the
relationship to be nonlinear. In classical statistics, the
emphasis is on finding a good fit to the observed data to
explain or describe some phenomenon, and the strength
of this fit is how traditional in-sample metrics are used
to assess the model. In data science, by contrast, the goal
is typically to predict values for new data, so metrics
based on predictive accuracy for out-of-sample data are
used. Variable selection methods are used to reduce
dimensionality and create more compact models.

1 This and subsequent sections in this chapter © 2020 Datastats, LLC,
Peter Bruce, Andrew Bruce, and Peter Gedeck; used by permission.

2 In Bayesian statistics, the true value is assumed to be a random
variable with a specified distribution. In the Bayesian context,
instead of estimates of unknown parameters, there are posterior and
prior distributions.

3 The -1 argument in the model.matrix produces one hot
encoding representation (by removing the intercept, hence the “-”).
Otherwise, the default in R is to produce a matrix with P – 1 columns
with the first factor level as a reference.

4 This is unintuitive, but can be explained by the impact of location as
a confounding variable; see “Confounding Variables”.

5 There are 80 zip codes in King County, several with just a handful of
sales. An alternative to directly using zip code as a factor variable,
ZipGroup clusters similar zip codes into a single group. See
“Factor Variables with Many Levels” for details.

6 The term hat-value comes from the notion of the hat matrix in
regression. Multiple linear regression can be expressed by the
formula Ŷ = HY where H is the hat matrix. The hat-values
correspond to the diagonal of H.

7 The coefficient for Bathrooms becomes negative, which is
unintuitive. Location has not been taken into account, and the zip
code 98105 contains areas of disparate types of homes. See
“Confounding Variables” for a discussion of confounding variables.

Chapter 5. Classification

Data scientists are often tasked with automating decisions for business problems. Is
an email an attempt at phishing? Is a customer likely to churn? Is the web user likely
to click on an advertisement? These are all classification problems, a form of
supervised learning in which we first train a model on data where the outcome is
known and then apply the model to data where the outcome is not known.
Classification is perhaps the most important form of prediction: the goal is to predict
whether a record is a 1 or a 0 (phishing/not-phishing, click/don’t click, churn/don’t
churn), or in some cases, one of several categories (for example, Gmail’s filtering of
your inbox into “primary,” “social,” “promotional,” or “forums”).

Often, we need more than a simple binary classification: we want to know the
predicted probability that a case belongs to a class. Rather than having a model
simply assign a binary classification, most algorithms can return a probability score
(propensity) of belonging to the class of interest. In fact, with logistic regression, the
default output from R is on the log-odds scale, and this must be transformed to a
propensity. In Python’s scikit-learn, logistic regression, like most classification
methods, provides two prediction methods: predict (which returns the class) and
predict_proba (which returns probabilities for each class). A sliding cutoff can
then be used to convert the propensity score to a decision. The general approach is as
follows:

1. Establish a cutoff probability for the class of interest, above which we
consider a record as belonging to that class.

2. Estimate (with any model) the probability that a record belongs to the class
of interest.

3. If that probability is above the cutoff probability, assign the new record to the
class of interest.

The higher the cutoff, the fewer the records predicted as 1—that is, as belonging to
the class of interest. The lower the cutoff, the more the records predicted as 1.

This chapter covers several key techniques for classification and estimating
propensities; additional methods that can be used both for classification and for
numerical prediction are described in the next chapter.

MORE THAN TWO CATEGORIES?
The vast majority of problems involve a binary response. Some classification problems, however, involve a response with more
than two possible outcomes. For example, at the anniversary of a customer’s subscription contract, there might be three
outcomes: the customer leaves or “churns” (Y = 2), goes on a month-to-month contract (Y = 1), or signs a new long-term
contract (Y = 0). The goal is to predict Y = j for j = 0, 1, or 2. Most of the classification methods in this chapter can be applied,
either directly or with modest adaptations, to responses that have more than two outcomes. Even in the case of more than two
outcomes, the problem can often be recast into a series of binary problems using conditional probabilities. For example, to
predict the outcome of the contract, you can solve two binary prediction problems:

Predict whether Y = 0 or Y > 0.

Given that Y > 0, predict whether Y = 1 or Y = 2.

In this case, it makes sense to break up the problem into two cases: (1) whether the customer churns; and (2) if they don’t
churn, what type of contract they will choose. From a model-fitting viewpoint, it is often advantageous to convert the multiclass
problem to a series of binary problems. This is particularly true when one category is much more common than the other
categories.

Naive Bayes
The naive Bayes algorithm uses the probability of observing predictor values, given
an outcome, to estimate what is really of interest: the probability of observing
outcome Y = i, given a set of predictor values.

KEY TERMS FOR NAIVE BAYES

Conditional probability

The probability of observing some event (say, X = i) given some other event (say, Y = i), written as P(Xi|Yi).

Posterior probability

The probability of an outcome after the predictor information has been incorporated (in contrast to the prior probability of
outcomes, not taking predictor information into account).

To understand naive Bayesian classification, we can start out by imagining complete
or exact Bayesian classification. For each record to be classified:

1. Find all the other records with the same predictor profile (i.e., where the
predictor values are the same).

2. Determine what classes those records belong to and which class is most
prevalent (i.e., probable).

3. Assign that class to the new record.

The preceding approach amounts to finding all the records in the sample that are
exactly like the new record to be classified in the sense that all the predictor values
are identical.

NOTE
Predictor variables must be categorical (factor) variables in the standard naive Bayes algorithm. See
“Numeric Predictor Variables” for two workarounds for using continuous variables.

Why Exact Bayesian Classification Is Impractical
When the number of predictor variables exceeds a handful, many of the records to be
classified will be without exact matches. Consider a model to predict voting on the
basis of demographic variables. Even a sizable sample may not contain even a single
match for a new record who is a male Hispanic with high income from the US
Midwest who voted in the last election, did not vote in the prior election, has three
daughters and one son, and is divorced. And this is with just eight variables, a small
number for most classification problems. The addition of just a single new variable
with five equally frequent categories reduces the probability of a match by a factor of
5.

The Naive Solution
In the naive Bayes solution, we no longer restrict the probability calculation to those
records that match the record to be classified. Instead, we use the entire data set. The
naive Bayes modification is as follows:

1. For a binary response Y = i (i = 0 or 1), estimate the individual conditional
probabilities for each predictor P(Xj|Y = i); these are the probabilities that
the predictor value is in the record when we observe Y = i. This probability is

1

estimated by the proportion of X values among the Y = i records in the
training set.

2. Multiply these probabilities by each other, and then by the proportion of
records belonging to Y = i.

3. Repeat steps 1 and 2 for all the classes.

4. Estimate a probability for outcome i by taking the value calculated in step 2
for class i and dividing it by the sum of such values for all classes.

5. Assign the record to the class with the highest probability for this set of
predictor values.

This naive Bayes algorithm can also be stated as an equation for the probability of
observing outcome Y = i, given a set of predictor values X1, ⋯ , Xp:

P(Y = i|X1, X2, … , Xp)

Here is the full formula for calculating class probabilities using exact Bayes
classification:

P(Y = i|X1, X2, … , Xp) =
P(Y = i)P(X1, … , Xp|Y = i)

P(Y = 0)P(X1, … , Xp|Y = 0) + P(Y = 1)P(X1, … , Xp|Y = 1)

Under the naive Bayes assumption of conditional independence, this equation
changes into:

P(Y = i|X1, X2, … , Xp) =
P(Y = i)P(X1|Y = i) … P(Xp|Y = i)

P(Y = 0)P(X1|Y = 0) … P(Xp|Y = 0) + P(Y = 1)P(X1|Y = 1) …

Why is this formula called “naive”? We have made a simplifying assumption that the
exact conditional probability of a vector of predictor values, given observing an
outcome, is sufficiently well estimated by the product of the individual conditional
probabilities P(Xj|Y = i). In other words, in estimating P(Xj|Y = i) instead of
P(X1, X2, ⋯ Xp|Y = i), we are assuming Xj is independent of all the other
predictor variables Xk for k ≠ j.

Several packages in R can be used to estimate a naive Bayes model. The following
fits a model to the loan payment data using the klaR package:

library(klaR)

naive_model <- NaiveBayes(outcome ~ purpose_ + home_ + emp_len_,

 data = na.omit(loan_data))

naive_model$table

$purpose_

 var

grouping credit_card debt_consolidation home_improvement major_purchase

 paid off 0.18759649 0.55215915 0.07150104 0.05359270

 default 0.15151515 0.57571347 0.05981209 0.03727229

 var

grouping medical other small_business

 paid off 0.01424728 0.09990737 0.02099599

 default 0.01433549 0.11561025 0.04574126

$home_

 var

grouping MORTGAGE OWN RENT

 paid off 0.4894800 0.0808963 0.4296237

 default 0.4313440 0.0832782 0.4853778

$emp_len_

j

 var

grouping < 1 Year > 1 Year

 paid off 0.03105289 0.96894711

 default 0.04728508 0.95271492

The output from the model is the conditional probabilities P(Xj|Y = i).

In Python we can use sklearn.naive_bayes.MultinomialNB from
scikit-learn. We need to convert the categorical features to dummy variables
before we fit the model:

predictors = ['purpose_', 'home_', 'emp_len_']

outcome = 'outcome'

X = pd.get_dummies(loan_data[predictors], prefix='', prefix_sep='')

y = loan_data[outcome]

naive_model = MultinomialNB(alpha=0.01, fit_prior=True)

naive_model.fit(X, y)

It is possible to derive the conditional probabilities from the fitted model using the
property feature_log_prob_.

The model can be used to predict the outcome of a new loan. We use the last value of
the data set for testing:

new_loan <- loan_data[147, c('purpose_', 'home_', 'emp_len_')]

row.names(new_loan) <- NULL

new_loan

 purpose_ home_ emp_len_

 1 small_business MORTGAGE > 1 Year

In Python, we get this value as follows:

new_loan = X.loc[146:146, :]

In this case, the model predicts a default (R):

predict(naive_model, new_loan)

$class

[1] default

Levels: paid off default

$posterior

 paid off default

[1,] 0.3463013 0.6536987

As we discussed, scikit-learn’s classification models have two methods—
predict, which returns the predicted class, and predict_proba, which returns
the class probabilities:

print('predicted class: ', naive_model.predict(new_loan)[0])

probabilities = pd.DataFrame(naive_model.predict_proba(new_loan),

 columns=loan_data[outcome].cat.categories)

print('predicted probabilities', probabilities)

--

predicted class: default

predicted probabilities

 default paid off

0 0.653696 0.346304

The prediction also returns a posterior estimate of the probability of default. The
naive Bayesian classifier is known to produce biased estimates. However, where the
goal is to rank records according to the probability that Y = 1, unbiased estimates of
probability are not needed, and naive Bayes produces good results.

Numeric Predictor Variables
The Bayesian classifier works only with categorical predictors (e.g., with spam
classification, where the presence or absence of words, phrases, characters, and so on
lies at the heart of the predictive task). To apply naive Bayes to numerical predictors,
one of two approaches must be taken:

Bin and convert the numerical predictors to categorical predictors and apply
the algorithm of the previous section.

Use a probability model—for example, the normal distribution (see “Normal
Distribution”)—to estimate the conditional probability P(Xj|Y = i).

CAUTION
When a predictor category is absent in the training data, the algorithm assigns zero probability to the
outcome variable in new data, rather than simply ignoring this variable and using the information
from other variables, as other methods might. Most implementations of Naive Bayes use a smoothing
parameter (Laplace Smoothing) to prevent this.

KEY IDEAS

Naive Bayes works with categorical (factor) predictors and outcomes.

It asks, “Within each outcome category, which predictor categories are most probable?”

That information is then inverted to estimate probabilities of outcome categories, given predictor values.

Further Reading
The Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman (Springer, 2009).

There is a full chapter on naive Bayes in Data Mining for Business Analytics
by Galit Shmueli, Peter Bruce, Nitin Patel, Peter Gedeck, Inbal Yahav, and
Kenneth Lichtendahl (Wiley, 2007–2020, with editions for R, Python, Excel,
and JMP).

Discriminant Analysis
Discriminant analysis is the earliest statistical classifier; it was introduced by R. A.
Fisher in 1936 in an article published in the Annals of Eugenics journal.

KEY TERMS FOR DISCRIMINANT ANALYSIS

Covariance

A measure of the extent to which one variable varies in concert with another (i.e., similar magnitude and direction).

Discriminant function

The function that, when applied to the predictor variables, maximizes the separation of the classes.

Discriminant weights

The scores that result from the application of the discriminant function and are used to estimate probabilities of belonging
to one class or another.

2

While discriminant analysis encompasses several techniques, the most commonly
used is linear discriminant analysis, or LDA. The original method proposed by Fisher
was actually slightly different from LDA, but the mechanics are essentially the same.
LDA is now less widely used with the advent of more sophisticated techniques, such
as tree models and logistic regression.

However, you may still encounter LDA in some applications, and it has links to other
more widely used methods (such as principal components analysis; see “Principal
Components Analysis”).

WARNING
Linear discriminant analysis should not be confused with Latent Dirichlet Allocation, also referred to
as LDA. Latent Dirichlet Allocation is used in text and natural language processing and is unrelated
to linear discriminant analysis.

Covariance Matrix
To understand discriminant analysis, it is first necessary to introduce the concept of
covariance between two or more variables. The covariance measures the relationship
between two variables x and z. Denote the mean for each variable by x and z (see
“Mean”). The covariance sx,z between x and z is given by:

sx,z =
∑n

i=1 (xi − x) (zi − z)

n − 1

where n is the number of records (note that we divide by n – 1 instead of n; see
“Degrees of Freedom, and n or n – 1?”).

As with the correlation coefficient (see “Correlation”), positive values indicate a
positive relationship and negative values indicate a negative relationship. Correlation,
however, is constrained to be between –1 and 1, whereas covariance scale depends on
the scale of the variables x and z. The covariance matrix Σ for x and z consists of the
individual variable variances, s2

x and s2
z , on the diagonal (where row and column are

the same variable) and the covariances between variable pairs on the off-diagonals:

Σ̂ = []

NOTE
Recall that the standard deviation is used to normalize a variable to a z-score; the covariance matrix is
used in a multivariate extension of this standardization process. This is known as Mahalanobis
distance (see “Other Distance Metrics”) and is related to the LDA function.

Fisher’s Linear Discriminant
For simplicity, let’s focus on a classification problem in which we want to predict a
binary outcome y using just two continuous numeric variables (x, z). Technically,
discriminant analysis assumes the predictor variables are normally distributed
continuous variables, but, in practice, the method works well even for nonextreme
departures from normality, and for binary predictors. Fisher’s linear discriminant
distinguishes variation between groups, on the one hand, from variation within groups
on the other. Specifically, seeking to divide the records into two groups, linear

¯̄

¯̄

s2
x sx,z

sz,x s2
z

discriminant analysis (LDA) focuses on maximizing the “between” sum of squares
SSbetween (measuring the variation between the two groups) relative to the “within”
sum of squares SSwithin (measuring the within-group variation). In this case, the two
groups correspond to the records (x0, z0) for which y = 0 and the records (x1, z1) for
which y = 1. The method finds the linear combination wxx + wzz that maximizes that
sum of squares ratio:

SSbetween

SSwithin

The between sum of squares is the squared distance between the two group means,
and the within sum of squares is the spread around the means within each group,
weighted by the covariance matrix. Intuitively, by maximizing the between sum of
squares and minimizing the within sum of squares, this method yields the greatest
separation between the two groups.

A Simple Example
The MASS package, associated with the book Modern Applied Statistics with S by W.
N. Venables and B. D. Ripley (Springer, 1994), provides a function for LDA with R.
The following applies this function to a sample of loan data using two predictor
variables, borrower_score and payment_inc_ratio, and prints out the
estimated linear discriminator weights:

library(MASS)

loan_lda <- lda(outcome ~ borrower_score + payment_inc_ratio,

 data=loan3000)

loan_lda$scaling

 LD1

borrower_score 7.17583880

payment_inc_ratio -0.09967559

In Python, we can use LinearDiscriminantAnalysis from
sklearn.discriminant_analysis. The scalings_ property gives the
estimated weights:

loan3000.outcome = loan3000.outcome.astype('category')

predictors = ['borrower_score', 'payment_inc_ratio']

outcome = 'outcome'

X = loan3000[predictors]

y = loan3000[outcome]

loan_lda = LinearDiscriminantAnalysis()

loan_lda.fit(X, y)

pd.DataFrame(loan_lda.scalings_, index=X.columns)

USING DISCRIMINANT ANALYSIS FOR FEATURE
SELECTION

If the predictor variables are normalized prior to running LDA, the discriminator weights are
measures of variable importance, thus providing a computationally efficient method of feature
selection.

The lda function can predict the probability of “default” versus “paid off”:

pred <- predict(loan_lda)

head(pred$posterior)

 paid off default

1 0.4464563 0.5535437

2 0.4410466 0.5589534

3 0.7273038 0.2726962

4 0.4937462 0.5062538

5 0.3900475 0.6099525

6 0.5892594 0.4107406

The predict_proba method of the fitted model returns the probabilities for the
“default” and “paid off” outcomes:

pred = pd.DataFrame(loan_lda.predict_proba(loan3000[predictors]),

 columns=loan_lda.classes_)

pred.head()

A plot of the predictions helps illustrate how LDA works. Using the output from the
predict function, a plot of the estimated probability of default is produced as
follows:

center <- 0.5 * (loan_lda$mean[1,] + loan_lda$mean[2,])

slope <- -loan_lda$scaling[1] / loan_lda$scaling[2]

intercept <- center[2] - center[1] * slope

ggplot(data=lda_df, aes(x=borrower_score, y=payment_inc_ratio,

 color=prob_default)) +

 geom_point(alpha=.6) +

 scale_color_gradientn(colors=c('#ca0020', '#f7f7f7', '#0571b0')) +

 scale_x_continuous(expand=c(0,0)) +

 scale_y_continuous(expand=c(0,0), lim=c(0, 20)) +

 geom_abline(slope=slope, intercept=intercept, color='darkgreen')

A similar graph is created in Python using this code:

Use scalings and center of means to determine decision boundary

center = np.mean(loan_lda.means_, axis=0)

slope = - loan_lda.scalings_[0] / loan_lda.scalings_[1]

intercept = center[1] - center[0] * slope

payment_inc_ratio for borrower_score of 0 and 20

x_0 = (0 - intercept) / slope

x_20 = (20 - intercept) / slope

lda_df = pd.concat([loan3000, pred['default']], axis=1)

lda_df.head()

fig, ax = plt.subplots(figsize=(4, 4))

g = sns.scatterplot(x='borrower_score', y='payment_inc_ratio',

 hue='default', data=lda_df,

 palette=sns.diverging_palette(240, 10, n=9,

as_cmap=True),

 ax=ax, legend=False)

ax.set_ylim(0, 20)

ax.set_xlim(0.15, 0.8)

ax.plot((x_0, x_20), (0, 20), linewidth=3)

ax.plot(*loan_lda.means_.transpose())

The resulting plot is shown in Figure 5-1. Data points on the left of the diagonal line
are predicted to default (probability greater than 0.5).

Figure 5-1. LDA prediction of loan default using two variables: a score of the borrower’s creditworthiness and the
payment-to-income ratio

Using the discriminant function weights, LDA splits the predictor space into two
regions, as shown by the solid line. The predictions farther away from the line in both
directions have a higher level of confidence (i.e., a probability further away from 0.5).

EXTENSIONS OF DISCRIMINANT ANALYSIS
More predictor variables: while the text and example in this section used just two predictor variables,
LDA works just as well with more than two predictor variables. The only limiting factor is the
number of records (estimating the covariance matrix requires a sufficient number of records per
variable, which is typically not an issue in data science applications).

There are other variants of discriminant analysis. The best known is quadratic discriminant analysis
(QDA). Despite its name, QDA is still a linear discriminant function. The main difference is that in
LDA, the covariance matrix is assumed to be the same for the two groups corresponding to Y = 0 and
Y = 1. In QDA, the covariance matrix is allowed to be different for the two groups. In practice, the
difference in most applications is not critical.

KEY IDEAS

Discriminant analysis works with continuous or categorical predictors, as well as with categorical outcomes.

Using the covariance matrix, it calculates a linear discriminant function, which is used to distinguish records
belonging to one class from those belonging to another.

This function is applied to the records to derive weights, or scores, for each record (one weight for each possible
class), which determines its estimated class.

Further Reading
Both The Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman (Springer, 2009), and its shorter cousin, An
Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani (Springer, 2013), have a section on
discriminant analysis.

Data Mining for Business Analytics by Galit Shmueli, Peter Bruce, Nitin
Patel, Peter Gedeck, Inbal Yahav, and Kenneth Lichtendahl (Wiley, 2007–
2020, with editions for R, Python, Excel, and JMP) has a full chapter on
discriminant analysis.

For historical interest, Fisher’s original article on the topic, “The Use of
Multiple Measurements in Taxonomic Problems,” as published in 1936 in
Annals of Eugenics (now called Annals of Genetics), can be found online.

Logistic Regression
Logistic regression is analogous to multiple linear regression (see Chapter 4), except
the outcome is binary. Various transformations are employed to convert the problem
to one in which a linear model can be fit. Like discriminant analysis, and unlike K-
Nearest Neighbor and naive Bayes, logistic regression is a structured model approach
rather than a data-centric approach. Due to its fast computational speed and its output
of a model that lends itself to rapid scoring of new data, it is a popular method.

KEY TERMS FOR LOGISTIC REGRESSION

Logit

The function that maps class membership probability to a range from ± ∞ (instead of 0 to 1).

Synonym

Log odds (see below)

Odds

The ratio of “success” (1) to “not success” (0).

Log odds

The response in the transformed model (now linear), which gets mapped back to a probability.

Logistic Response Function and Logit
The key ingredients for logistic regression are the logistic response function and the
logit, in which we map a probability (which is on a 0–1 scale) to a more expansive
scale suitable for linear modeling.

The first step is to think of the outcome variable not as a binary label but as the
probability p that the label is a “1.” Naively, we might be tempted to model p as a

https://oreil.ly/_TCR8

linear function of the predictor variables:

p = β0 + β1x1 + β2x2 + ⋯ + βqxq

However, fitting this model does not ensure that p will end up between 0 and 1, as a
probability must.

Instead, we model p by applying a logistic response or inverse logit function to the
predictors:

p =
1

1 + e−(β0+β1x1+β2x2+⋯+βqxq)

This transform ensures that the p stays between 0 and 1.

To get the exponential expression out of the denominator, we consider odds instead of
probabilities. Odds, familiar to bettors everywhere, are the ratio of “successes” (1) to
“nonsuccesses” (0). In terms of probabilities, odds are the probability of an event
divided by the probability that the event will not occur. For example, if the probability
that a horse will win is 0.5, the probability of “won’t win” is (1 – 0.5) = 0.5, and the
odds are 1.0:

Odds (Y = 1) =
p

1 − p

We can obtain the probability from the odds using the inverse odds function:

p =
Odds

1 + Odds

We combine this with the logistic response function, shown earlier, to get:

Odds (Y = 1) = eβ0+β1x1+β2x2+⋯+βqxq

Finally, taking the logarithm of both sides, we get an expression that involves a linear
function of the predictors:

log (Odds (Y = 1)) = β0 + β1x1 + β2x2 + ⋯ + βqxq

The log-odds function, also known as the logit function, maps the probability p from
(0, 1) to any value (−∞, +∞)—see Figure 5-2. The transformation circle is
complete; we have used a linear model to predict a probability, which we can in turn
map to a class label by applying a cutoff rule—any record with a probability greater
than the cutoff is classified as a 1.

Figure 5-2. Graph of the logit function that maps a probability to a scale suitable for a linear model

Logistic Regression and the GLM
The response in the logistic regression formula is the log odds of a binary outcome of
1. We observe only the binary outcome, not the log odds, so special statistical
methods are needed to fit the equation. Logistic regression is a special instance of a
generalized linear model (GLM) developed to extend linear regression to other
settings.

In R, to fit a logistic regression, the glm function is used with the family parameter
set to binomial. The following code fits a logistic regression to the personal loan
data introduced in “K-Nearest Neighbors”:

logistic_model <- glm(outcome ~ payment_inc_ratio + purpose_ +

 home_ + emp_len_ + borrower_score,

 data=loan_data, family='binomial')

logistic_model

Call: glm(formula = outcome ~ payment_inc_ratio + purpose_ + home_ +

 emp_len_ + borrower_score, family = "binomial", data = loan_data)

Coefficients:

 (Intercept) payment_inc_ratio

 1.63809 0.07974

purpose_debt_consolidation purpose_home_improvement

 0.24937 0.40774

 purpose_major_purchase purpose_medical

 0.22963 0.51048

 purpose_other purpose_small_business

 0.62066 1.21526

 home_OWN home_RENT

 0.04833 0.15732

 emp_len_ > 1 Year borrower_score

 -0.35673 -4.61264

Degrees of Freedom: 45341 Total (i.e. Null); 45330 Residual

Null Deviance: 62860

Residual Deviance: 57510 AIC: 57540

The response is outcome, which takes a 0 if the loan is paid off and a 1 if the loan
defaults. purpose_ and home_ are factor variables representing the purpose of the
loan and the home ownership status. As in linear regression, a factor variable with P
levels is represented with P – 1 columns. By default in R, the reference coding is
used, and the levels are all compared to the reference level (see “Factor Variables in
Regression”). The reference levels for these factors are credit_card and
MORTGAGE, respectively. The variable borrower_score is a score from 0 to 1
representing the creditworthiness of the borrower (from poor to excellent). This
variable was created from several other variables using K-Nearest Neighbor—see
“KNN as a Feature Engine”.

In Python, we use the scikit-learn class LogisticRegression from
sklearn.linear_model. The arguments penalty and C are used to prevent
overfitting by L1 or L2 regularization. Regularization is switched on by default. In
order to fit without regularization, we set C to a very large value. The solver
argument selects the used minimizer; the method liblinear is the default:

predictors = ['payment_inc_ratio', 'purpose_', 'home_', 'emp_len_',

 'borrower_score']

outcome = 'outcome'

X = pd.get_dummies(loan_data[predictors], prefix='', prefix_sep='',

 drop_first=True)

y = loan_data[outcome]

logit_reg = LogisticRegression(penalty='l2', C=1e42, solver='liblinear')

logit_reg.fit(X, y)

In contrast to R, scikit-learn derives the classes from the unique values in y
(paid off and default). Internally, the classes are ordered alphabetically. As this is the
reverse order from the factors used in R, you will see that the coefficients are
reversed. The predict method returns the class label and predict_proba
returns the probabilities in the order available from the attribute
logit_reg.classes_.

Generalized Linear Models

Generalized linear models (GLMs) are characterized by two main components:

A probability distribution or family (binomial in the case of logistic
regression)

A link function—i.e., a transformation function that maps the response to the
predictors (logit in the case of logistic regression)

Logistic regression is by far the most common form of GLM. A data scientist will
encounter other types of GLMs. Sometimes a log link function is used instead of the
logit; in practice, use of a log link is unlikely to lead to very different results for most
applications. The Poisson distribution is commonly used to model count data (e.g.,
the number of times a user visits a web page in a certain amount of time). Other
families include negative binomial and gamma, often used to model elapsed time
(e.g., time to failure). In contrast to logistic regression, application of GLMs with
these models is more nuanced and involves greater care. These are best avoided
unless you are familiar with and understand the utility and pitfalls of these methods.

Predicted Values from Logistic Regression
The predicted value from logistic regression is in terms of the log odds:
Ŷ =log (Odds (Y = 1)). The predicted probability is given by the logistic response
function:

p̂ =
1

1 + e−Ŷ

For example, look at the predictions from the model logistic_model in R:

pred <- predict(logistic_model)

summary(pred)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.704774 -0.518825 -0.008539 0.002564 0.505061 3.509606

In Python, we can convert the probabilities into a data frame and use the describe
method to get these characteristics of the distribution:

pred = pd.DataFrame(logit_reg.predict_log_proba(X),

 columns=loan_data[outcome].cat.categories)

pred.describe()

Converting these values to probabilities is a simple transform:

prob <- 1/(1 + exp(-pred))

> summary(prob)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

0.06269 0.37313 0.49787 0.50000 0.62365 0.97096

The probabilities are directly available using the predict_proba methods in
scikit-learn:

pred = pd.DataFrame(logit_reg.predict_proba(X),

 columns=loan_data[outcome].cat.categories)

pred.describe()

These are on a scale from 0 to 1 and don’t yet declare whether the predicted value is
default or paid off. We could declare any value greater than 0.5 as default. In practice,
a lower cutoff is often appropriate if the goal is to identify members of a rare class
(see “The Rare Class Problem”).

Interpreting the Coefficients and Odds Ratios
One advantage of logistic regression is that it produces a model that can be scored to
new data rapidly, without recomputation. Another is the relative ease of interpretation
of the model, as compared with other classification methods. The key conceptual idea
is understanding an odds ratio. The odds ratio is easiest to understand for a binary
factor variable X:

odds ratio =
Odds(Y = 1|X = 1)

Odds(Y = 1|X = 0)

This is interpreted as the odds that Y = 1 when X = 1 versus the odds that Y = 1 when
X = 0. If the odds ratio is 2, then the odds that Y = 1 are two times higher when X = 1
versus when X = 0.

Why bother with an odds ratio rather than probabilities? We work with odds because
the coefficient βj in the logistic regression is the log of the odds ratio for Xj.

An example will make this more explicit. For the model fit in “Logistic Regression
and the GLM”, the regression coefficient for purpose_small_business is
1.21526. This means that a loan to a small business compared to a loan to pay off
credit card debt reduces the odds of defaulting versus being paid off by
exp(1.21526) ≈ 3.4. Clearly, loans for the purpose of creating or expanding a small
business are considerably riskier than other types of loans.

Figure 5-3 shows the relationship between the odds ratio and the log-odds ratio for
odds ratios greater than 1. Because the coefficients are on the log scale, an increase of
1 in the coefficient results in an increase of exp(1) ≈ 2.72 in the odds ratio.

Figure 5-3. The relationship between the odds ratio and the log-odds ratio

Odds ratios for numeric variables X can be interpreted similarly: they measure the
change in the odds ratio for a unit change in X. For example, the effect of increasing
the payment-to-income ratio from, say, 5 to 6 increases the odds of the loan defaulting
by a factor of exp(0.08244) ≈ 1.09. The variable borrower_score is a score on
the borrowers’ creditworthiness and ranges from 0 (low) to 1 (high). The odds of the
best borrowers relative to the worst borrowers defaulting on their loans is smaller by a
factor of exp(−4.61264) ≈ 0.01. In other words, the default risk from the borrowers
with the poorest creditworthiness is 100 times greater than that of the best borrowers!

Linear and Logistic Regression: Similarities and Differences
Linear regression and logistic regression share many commonalities. Both assume a
parametric linear form relating the predictors with the response. Exploring and
finding the best model are done in very similar ways. Extensions to the linear model,

like the use of a spline transform of a predictor (see “Splines”), are equally applicable
in the logistic regression setting. Logistic regression differs in two fundamental ways:

The way the model is fit (least squares is not applicable)

The nature and analysis of the residuals from the model

FITTING THE MODEL

Linear regression is fit using least squares, and the quality of the fit is evaluated using
RMSE and R-squared statistics. In logistic regression (unlike in linear regression),
there is no closed-form solution, and the model must be fit using maximum likelihood
estimation (MLE). Maximum likelihood estimation is a process that tries to find the
model that is most likely to have produced the data we see. In the logistic regression
equation, the response is not 0 or 1 but rather an estimate of the log odds that the
response is 1. The MLE finds the solution such that the estimated log odds best
describes the observed outcome. The mechanics of the algorithm involve a quasi-
Newton optimization that iterates between a scoring step (Fisher’s scoring), based on
the current parameters, and an update to the parameters to improve the fit.

MAXIMUM LIKELIHOOD ESTIMATION
Here is a bit more detail, if you like statistical symbols: start with a set of data (X1, X2, ⋯ , Xn) and a probability model

Pθ (X1, X2, ⋯ , Xn) that depends on a set of parameters θ. The goal of MLE is to find the set of parameters θ̂ that
maximizes the value of Pθ (X1, X2, ⋯ , Xn); that is, it maximizes the probability of observing (X1, X2, ⋯ , Xn) given the
model P . In the fitting process, the model is evaluated using a metric called deviance:

deviance = −2 log (P
θ̂

(X1, X2, ⋯ , Xn))

Lower deviance corresponds to a better fit.

Fortunately, most practitioners don’t need to concern themselves with the details of
the fitting algorithm since this is handled by the software. Most data scientists will
not need to worry about the fitting method, other than understanding that it is a way
to find a good model under certain assumptions.

HANDLING FACTOR VARIABLES
In logistic regression, factor variables should be coded as in linear regression; see “Factor Variables
in Regression”. In R and other software, this is normally handled automatically, and generally
reference encoding is used. All of the other classification methods covered in this chapter typically
use the one hot encoder representation (see “One Hot Encoder”). In Python’s scikit-learn, it is
easiest to use one hot encoding, which means that only n – 1 of the resulting dummies can be used in
the regression.

Assessing the Model
Like other classification methods, logistic regression is assessed by how accurately
the model classifies new data (see “Evaluating Classification Models”). As with linear
regression, some additional standard statistical tools are available to examine and
improve the model. Along with the estimated coefficients, R reports the standard error
of the coefficients (SE), a z-value, and a p-value:

summary(logistic_model)

Call:

glm(formula = outcome ~ payment_inc_ratio + purpose_ + home_ +

 emp_len_ + borrower_score, family = "binomial", data = loan_data)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.51951 -1.06908 -0.05853 1.07421 2.15528

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.638092 0.073708 22.224 < 2e-16 ***

payment_inc_ratio 0.079737 0.002487 32.058 < 2e-16 ***

purpose_debt_consolidation 0.249373 0.027615 9.030 < 2e-16 ***

purpose_home_improvement 0.407743 0.046615 8.747 < 2e-16 ***

purpose_major_purchase 0.229628 0.053683 4.277 1.89e-05 ***

purpose_medical 0.510479 0.086780 5.882 4.04e-09 ***

purpose_other 0.620663 0.039436 15.738 < 2e-16 ***

purpose_small_business 1.215261 0.063320 19.192 < 2e-16 ***

home_OWN 0.048330 0.038036 1.271 0.204

home_RENT 0.157320 0.021203 7.420 1.17e-13 ***

emp_len_ > 1 Year -0.356731 0.052622 -6.779 1.21e-11 ***

borrower_score -4.612638 0.083558 -55.203 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 62857 on 45341 degrees of freedom

Residual deviance: 57515 on 45330 degrees of freedom

AIC: 57539

Number of Fisher Scoring iterations: 4

The package statsmodels has an implementation for generalized linear model
(GLM) that provides similarly detailed information:

y_numbers = [1 if yi == 'default' else 0 for yi in y]

logit_reg_sm = sm.GLM(y_numbers, X.assign(const=1),

 family=sm.families.Binomial())

logit_result = logit_reg_sm.fit()

logit_result.summary()

Interpretation of the p-value comes with the same caveat as in regression and should
be viewed more as a relative indicator of variable importance (see “Assessing the
Model”) than as a formal measure of statistical significance. A logistic regression
model, which has a binary response, does not have an associated RMSE or R-squared.
Instead, a logistic regression model is typically evaluated using more general metrics
for classification; see “Evaluating Classification Models”.

Many other concepts for linear regression carry over to the logistic regression setting
(and other GLMs). For example, you can use stepwise regression, fit interaction
terms, or include spline terms. The same concerns regarding confounding and
correlated variables apply to logistic regression (see “Interpreting the Regression
Equation”). You can fit generalized additive models (see “Generalized Additive
Models”) using the mgcv package in R:

logistic_gam <- gam(outcome ~ s(payment_inc_ratio) + purpose_ +

 home_ + emp_len_ + s(borrower_score),

 data=loan_data, family='binomial')

The formula interface of statsmodels also supports these extensions in Python:

import statsmodels.formula.api as smf

formula = ('outcome ~ bs(payment_inc_ratio, df=4) + purpose_ + ' +

 'home_ + emp_len_ + bs(borrower_score, df=4)')

model = smf.glm(formula=formula, data=loan_data,

family=sm.families.Binomial())

results = model.fit()

ANALYSIS OF RESIDUALS

One area where logistic regression differs from linear regression is in the analysis of
the residuals. As in linear regression (see Figure 4-9), it is straightforward to compute
partial residuals in R:

terms <- predict(logistic_gam, type='terms')

partial_resid <- resid(logistic_model) + terms

df <- data.frame(payment_inc_ratio = loan_data[, 'payment_inc_ratio'],

 terms = terms[, 's(payment_inc_ratio)'],

 partial_resid = partial_resid[, 's(payment_inc_ratio)'])

ggplot(df, aes(x=payment_inc_ratio, y=partial_resid, solid = FALSE)) +

 geom_point(shape=46, alpha=0.4) +

 geom_line(aes(x=payment_inc_ratio, y=terms),

 color='red', alpha=0.5, size=1.5) +

 labs(y='Partial Residual')

The resulting plot is displayed in Figure 5-4. The estimated fit, shown by the line,
goes between two sets of point clouds. The top cloud corresponds to a response of 1
(defaulted loans), and the bottom cloud corresponds to a response of 0 (loans paid
off). This is very typical of residuals from a logistic regression since the output is
binary. The prediction is measured as the logit (log of the odds ratio), which will
always be some finite value. The actual value, an absolute 0 or 1, corresponds to an
infinite logit, either positive or negative, so the residuals (which get added to the
fitted value) will never equal 0. Hence the plotted points lie in clouds either above or
below the fitted line in the partial residual plot. Partial residuals in logistic regression,
while less valuable than in regression, are still useful to confirm nonlinear behavior
and identify highly influential records.

There is currently no implementation of partial residuals in any of the major Python
packages. We provide Python code to create the partial residual plot in the
accompanying source code repository.

Figure 5-4. Partial residuals from logistic regression

WARNING
Some of the output from the summary function can effectively be ignored. The dispersion parameter
does not apply to logistic regression and is there for other types of GLMs. The residual deviance and
the number of scoring iterations are related to the maximum likelihood fitting method; see
“Maximum Likelihood Estimation”.

KEY IDEAS

Logistic regression is like linear regression, except that the outcome is a binary variable.

Several transformations are needed to get the model into a form that can be fit as a linear model, with the log of the
odds ratio as the response variable.

After the linear model is fit (by an iterative process), the log odds is mapped back to a probability.

Logistic regression is popular because it is computationally fast and produces a model that can be scored to new
data with only a few arithmetic operations.

Further Reading

The standard reference on logistic regression is Applied Logistic Regression,
3rd ed., by David Hosmer, Stanley Lemeshow, and Rodney Sturdivant
(Wiley, 2013).

Also popular are two books by Joseph Hilbe: Logistic Regression Models
(very comprehensive, 2017) and Practical Guide to Logistic Regression
(compact, 2015), both from Chapman & Hall/CRC Press.

Both The Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert
Tibshirani, and Jerome Friedman (Springer, 2009), and its shorter cousin, An
Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani (Springer, 2013), have a section on logistic
regression.

Data Mining for Business Analytics by Galit Shmueli, Peter Bruce, Nitin
Patel, Peter Gedeck, Inbal Yahav, and Kenneth Lichtendahl (Wiley, 2007–
2020, with editions for R, Python, Excel, and JMP) has a full chapter on
logistic regression.

Evaluating Classification Models
It is common in predictive modeling to train a number of different models, apply each
to a holdout sample, and assess their performance. Sometimes, after a number of
models have been evaluated and tuned, and if there are enough data, a third holdout
sample, not used previously, is used to estimate how the chosen model will perform
with completely new data. Different disciplines and practitioners will also use the
terms validation and test to refer to the holdout sample(s). Fundamentally, the
assessment process attempts to learn which model produces the most accurate and
useful predictions.

KEY TERMS FOR EVALUATING CLASSIFICATION MODELS

Accuracy

The percent (or proportion) of cases classified correctly.

Confusion matrix

A tabular display (2×2 in the binary case) of the record counts by their predicted and actual classification status.

Sensitivity

The percent (or proportion) of all 1s that are correctly classified as 1s.

Synonym

Recall

Specificity

The percent (or proportion) of all 0s that are correctly classified as 0s.

Precision

The percent (proportion) of predicted 1s that are actually 1s.

ROC curve

A plot of sensitivity versus specificity.

Lift

A measure of how effective the model is at identifying (comparatively rare) 1s at different probability cutoffs.

A simple way to measure classification performance is to count the proportion of
predictions that are correct, i.e., measure the accuracy. Accuracy is simply a measure
of total error:

accuracy =
∑True Positive + ∑True Negative

Sample Size

In most classification algorithms, each case is assigned an “estimated probability of
being a 1.” The default decision point, or cutoff, is typically 0.50 or 50%. If the
probability is above 0.5, the classification is “1”; otherwise it is “0.” An alternative
default cutoff is the prevalent probability of 1s in the data.

Confusion Matrix
At the heart of classification metrics is the confusion matrix. The confusion matrix is
a table showing the number of correct and incorrect predictions categorized by type
of response. Several packages are available in R and Python to compute a confusion
matrix, but in the binary case, it is simple to compute one by hand.

To illustrate the confusion matrix, consider the logistic_gam model that was
trained on a balanced data set with an equal number of defaulted and paid-off loans
(see Figure 5-4). Following the usual conventions, Y = 1 corresponds to the event of
interest (e.g., default), and Y = 0 corresponds to a negative (or usual) event (e.g., paid
off). The following computes the confusion matrix for the logistic_gam model
applied to the entire (unbalanced) training set in R:

pred <- predict(logistic_gam, newdata=train_set)

pred_y <- as.numeric(pred > 0)

true_y <- as.numeric(train_set$outcome=='default')

true_pos <- (true_y==1) & (pred_y==1)

true_neg <- (true_y==0) & (pred_y==0)

false_pos <- (true_y==0) & (pred_y==1)

false_neg <- (true_y==1) & (pred_y==0)

conf_mat <- matrix(c(sum(true_pos), sum(false_pos),

 sum(false_neg), sum(true_neg)), 2, 2)

colnames(conf_mat) <- c('Yhat = 1', 'Yhat = 0')

rownames(conf_mat) <- c('Y = 1', 'Y = 0')

conf_mat

 Yhat = 1 Yhat = 0

Y = 1 14295 8376

Y = 0 8052 14619

In Python:

pred = logit_reg.predict(X)

pred_y = logit_reg.predict(X) == 'default'

true_y = y == 'default'

true_pos = true_y & pred_y

true_neg = ~true_y & ~pred_y

false_pos = ~true_y & pred_y

false_neg = true_y & ~pred_y

conf_mat = pd.DataFrame([[np.sum(true_pos), np.sum(false_neg)],

 [np.sum(false_pos), np.sum(true_neg)]],

 index=['Y = default', 'Y = paid off'],

 columns=['Yhat = default', 'Yhat = paid off'])

conf_mat

3

The predicted outcomes are columns and the true outcomes are the rows. The
diagonal elements of the matrix show the number of correct predictions, and the off-
diagonal elements show the number of incorrect predictions. For example, 14,295
defaulted loans were correctly predicted as a default, but 8,376 defaulted loans were
incorrectly predicted as paid off.

Figure 5-5 shows the relationship between the confusion matrix for a binary response
Y and different metrics (see “Precision, Recall, and Specificity” for more on the
metrics). As with the example for the loan data, the actual response is along the rows
and the predicted response is along the columns. The diagonal boxes (upper left,
lower right) show when the predictions Ŷ correctly predict the response. One
important metric not explicitly called out is the false positive rate (the mirror image
of precision). When 1s are rare, the ratio of false positives to all predicted positives
can be high, leading to the unintuitive situation in which a predicted 1 is most likely a
0. This problem plagues medical screening tests (e.g., mammograms) that are widely
applied: due to the relative rarity of the condition, positive test results most likely do
not mean breast cancer. This leads to much confusion in the public.

Figure 5-5. Confusion matrix for a binary response and various metrics

WARNING
Here, we present the actual response along the rows and the predicted response along the columns,
but it is not uncommon to see this reversed. A notable example is the popular caret package in R.

The Rare Class Problem
In many cases, there is an imbalance in the classes to be predicted, with one class
much more prevalent than the other—for example, legitimate insurance claims versus
fraudulent ones, or browsers versus purchasers at a website. The rare class (e.g., the
fraudulent claims) is usually the class of more interest and is typically designated 1,
in contrast to the more prevalent 0s. In the typical scenario, the 1s are the more
important case, in the sense that misclassifying them as 0s is costlier than
misclassifying 0s as 1s. For example, correctly identifying a fraudulent insurance

claim may save thousands of dollars. On the other hand, correctly identifying a
nonfraudulent claim merely saves you the cost and effort of going through the claim
by hand with a more careful review (which is what you would do if the claim were
tagged as “fraudulent”).

In such cases, unless the classes are easily separable, the most accurate classification
model may be one that simply classifies everything as a 0. For example, if only 0.1%
of the browsers at a web store end up purchasing, a model that predicts that each
browser will leave without purchasing will be 99.9% accurate. However, it will be
useless. Instead, we would be happy with a model that is less accurate overall but is
good at picking out the purchasers, even if it misclassifies some nonpurchasers along
the way.

Precision, Recall, and Specificity
Metrics other than pure accuracy—metrics that are more nuanced—are commonly
used in evaluating classification models. Several of these have a long history in
statistics—especially biostatistics, where they are used to describe the expected
performance of diagnostic tests. The precision measures the accuracy of a predicted
positive outcome (see Figure 5-5):

precision =
∑True Positive

∑True Positive + ∑False Positive

The recall, also known as sensitivity, measures the strength of the model to predict a
positive outcome—the proportion of the 1s that it correctly identifies (see Figure 5-5).
The term sensitivity is used a lot in biostatistics and medical diagnostics, whereas
recall is used more in the machine learning community. The definition of recall is:

recall =
∑True Positive

∑True Positive + ∑False Negative

Another metric used is specificity, which measures a model’s ability to predict a
negative outcome:

specificity =
∑True Negative

∑True Negative + ∑False Positive

We can calculate the three metrics from conf_mat in R:

precision

conf_mat[1, 1] / sum(conf_mat[,1])

recall

conf_mat[1, 1] / sum(conf_mat[1,])

specificity

conf_mat[2, 2] / sum(conf_mat[2,])

Here is the equivalent code to calculate the metrics in Python:

conf_mat = confusion_matrix(y, logit_reg.predict(X))

print('Precision', conf_mat[0, 0] / sum(conf_mat[:, 0]))

print('Recall', conf_mat[0, 0] / sum(conf_mat[0, :]))

print('Specificity', conf_mat[1, 1] / sum(conf_mat[1, :]))

precision_recall_fscore_support(y, logit_reg.predict(X),

 labels=['default', 'paid off'])

scikit-learn has a custom method
precision_recall_fscore_support that calculates precision and
recall/specificity all at once.

ROC Curve
You can see that there is a trade-off between recall and specificity. Capturing more 1s
generally means misclassifying more 0s as 1s. The ideal classifier would do an
excellent job of classifying the 1s, without misclassifying more 0s as 1s.

The metric that captures this trade-off is the “Receiver Operating Characteristics”
curve, usually referred to as the ROC curve. The ROC curve plots recall (sensitivity)
on the y-axis against specificity on the x-axis. The ROC curve shows the trade-off
between recall and specificity as you change the cutoff to determine how to classify a
record. Sensitivity (recall) is plotted on the y-axis, and you may encounter two forms
in which the x-axis is labeled:

Specificity plotted on the x-axis, with 1 on the left and 0 on the right

1-Specificity plotted on the x-axis, with 0 on the left and 1 on the right

The curve looks identical whichever way it is done. The process to compute the ROC
curve is:

1. Sort the records by the predicted probability of being a 1, starting with the
most probable and ending with the least probable.

2. Compute the cumulative specificity and recall based on the sorted records.

Computing the ROC curve in R is straightforward. The following code computes
ROC for the loan data:

idx <- order(-pred)

recall <- cumsum(true_y[idx] == 1) / sum(true_y == 1)

specificity <- (sum(true_y == 0) - cumsum(true_y[idx] == 0)) / sum(true_y

== 0)

roc_df <- data.frame(recall = recall, specificity = specificity)

ggplot(roc_df, aes(x=specificity, y=recall)) +

 geom_line(color='blue') +

 scale_x_reverse(expand=c(0, 0)) +

 scale_y_continuous(expand=c(0, 0)) +

 geom_line(data=data.frame(x=(0:100) / 100), aes(x=x, y=1-x),

 linetype='dotted', color='red')

In Python, we can use the scikit-learn function
sklearn.metrics.roc_curve to calculate the required information for the
ROC curve. You can find similar packages for R, e.g., ROCR:

fpr, tpr, thresholds = roc_curve(y, logit_reg.predict_proba(X)[:,0],

 pos_label='default')

roc_df = pd.DataFrame({'recall': tpr, 'specificity': 1 - fpr})

ax = roc_df.plot(x='specificity', y='recall', figsize=(4, 4),

legend=False)

4

ax.set_ylim(0, 1)

ax.set_xlim(1, 0)

ax.plot((1, 0), (0, 1))

ax.set_xlabel('specificity')

ax.set_ylabel('recall')

The result is shown in Figure 5-6. The dotted diagonal line corresponds to a classifier
no better than random chance. An extremely effective classifier (or, in medical
situations, an extremely effective diagnostic test) will have an ROC that hugs the
upper-left corner—it will correctly identify lots of 1s without misclassifying lots of 0s
as 1s. For this model, if we want a classifier with a specificity of at least 50%, then
the recall is about 75%.

Figure 5-6. ROC curve for the loan data

PRECISION-RECALL CURVE
In addition to ROC curves, it can be illuminating to examine the precision-recall (PR) curve. PR
curves are computed in a similar way except that the data is ordered from least to most probable and
cumulative precision and recall statistics are computed. PR curves are especially useful in evaluating
data with highly unbalanced outcomes.

AUC
The ROC curve is a valuable graphical tool, but by itself doesn’t constitute a single
measure for the performance of a classifier. The ROC curve can be used, however, to
produce the area underneath the curve (AUC) metric. AUC is simply the total area
under the ROC curve. The larger the value of AUC, the more effective the classifier.
An AUC of 1 indicates a perfect classifier: it gets all the 1s correctly classified, and it
doesn’t misclassify any 0s as 1s.

A completely ineffective classifier—the diagonal line—will have an AUC of 0.5.

Figure 5-7 shows the area under the ROC curve for the loan model. The value of
AUC can be computed by a numerical integration in R:

sum(roc_df$recall[-1] * diff(1 - roc_df$specificity))

 [1] 0.6926172

In Python, we can either calculate the accuracy as shown for R or use scikit-
learn’s function sklearn.metrics.roc_auc_score. You will need to
provide the expected value as 0 or 1:

print(np.sum(roc_df.recall[:-1] * np.diff(1 - roc_df.specificity)))

print(roc_auc_score([1 if yi == 'default' else 0 for yi in y],

 logit_reg.predict_proba(X)[:, 0]))

The model has an AUC of about 0.69, corresponding to a relatively weak classifier.

https://oreil.ly/_89Pr

Figure 5-7. Area under the ROC curve for the loan data

FALSE POSITIVE RATE CONFUSION
False positive/negative rates are often confused or conflated with specificity or sensitivity (even in
publications and software!). Sometimes the false positive rate is defined as the proportion of true
negatives that test positive. In many cases (such as network intrusion detection), the term is used to
refer to the proportion of positive signals that are true negatives.

Lift
Using the AUC as a metric to evaluate a model is an improvement over simple
accuracy, as it can assess how well a classifier handles the trade-off between overall
accuracy and the need to identify the more important 1s. But it does not completely
address the rare-case problem, where you need to lower the model’s probability cutoff
below 0.5 to avoid having all records classified as 0. In such cases, for a record to be
classified as a 1, it might be sufficient to have a probability of 0.4, 0.3, or lower. In
effect, we end up overidentifying 1s, reflecting their greater importance.

Changing this cutoff will improve your chances of catching the 1s (at the cost of
misclassifying more 0s as 1s). But what is the optimum cutoff?

The concept of lift lets you defer answering that question. Instead, you consider the
records in order of their predicted probability of being 1s. Say, of the top 10%
classified as 1s, how much better did the algorithm do, compared to the benchmark of
simply picking blindly? If you can get 0.3% response in this top decile instead of the
0.1% you get overall by picking randomly, the algorithm is said to have a lift (also
called gains) of 3 in the top decile. A lift chart (gains chart) quantifies this over the
range of the data. It can be produced decile by decile, or continuously over the range
of the data.

To compute a lift chart, you first produce a cumulative gains chart that shows the
recall on the y-axis and the total number of records on the x-axis. The lift curve is the
ratio of the cumulative gains to the diagonal line corresponding to random selection.
Decile gains charts are one of the oldest techniques in predictive modeling, dating
from the days before internet commerce. They were particularly popular among direct
mail professionals. Direct mail is an expensive method of advertising if applied
indiscriminately, and advertisers used predictive models (quite simple ones, in the
early days) to identify the potential customers with the likeliest prospect of payoff.

UPLIFT
Sometimes the term uplift is used to mean the same thing as lift. An alternate meaning is used in a
more restrictive setting, when an A/B test has been conducted and the treatment (A or B) is then used
as a predictor variable in a predictive model. The uplift is the improvement in response predicted for
an individual case with treatment A versus treatment B. This is determined by scoring the individual
case first with the predictor set to A, and then again with the predictor toggled to B. Marketers and
political campaign consultants use this method to determine which of two messaging treatments
should be used with which customers or voters.

A lift curve lets you look at the consequences of setting different probability cutoffs
for classifying records as 1s. It can be an intermediate step in settling on an
appropriate cutoff level. For example, a tax authority might have only a certain
amount of resources that it can spend on tax audits, and it wants to spend them on the
likeliest tax cheats. With its resource constraint in mind, the authority would use a lift
chart to estimate where to draw the line between tax returns selected for audit and
those left alone.

KEY IDEAS

Accuracy (the percent of predicted classifications that are correct) is but a first step in evaluating a model.

Other metrics (recall, specificity, precision) focus on more specific performance characteristics (e.g., recall measures
how good a model is at correctly identifying 1s).

AUC (area under the ROC curve) is a common metric for the ability of a model to distinguish 1s from 0s.

Similarly, lift measures how effective a model is in identifying the 1s, and it is often calculated decile by decile, starting
with the most probable 1s.

Further Reading
Evaluation and assessment are typically covered in the context of a particular model
(e.g., K-Nearest Neighbors or decision trees); three books that handle the subject in its
own chapter are:

Data Mining, 3rd ed., by Ian Whitten, Eibe Frank, and Mark Hall (Morgan
Kaufmann, 2011).

Modern Data Science with R by Benjamin Baumer, Daniel Kaplan, and
Nicholas Horton (Chapman & Hall/CRC Press, 2017).

Data Mining for Business Analytics by Galit Shmueli, Peter Bruce, Nitin
Patel, Peter Gedeck, Inbal Yahav, and Kenneth Lichtendahl (Wiley, 2007–
2020, with editions for R, Python, Excel, and JMP).

Strategies for Imbalanced Data
The previous section dealt with evaluation of classification models using metrics that
go beyond simple accuracy and are suitable for imbalanced data—data in which the
outcome of interest (purchase on a website, insurance fraud, etc.) is rare. In this
section, we look at additional strategies that can improve predictive modeling
performance with imbalanced data.

KEY TERMS FOR IMBALANCED DATA

Undersample

Use fewer of the prevalent class records in the classification model.

Synonym

Downsample

Oversample

Use more of the rare class records in the classification model, bootstrapping if necessary.

Synonym

Upsample

Up weight or down weight

Attach more (or less) weight to the rare (or prevalent) class in the model.

Data generation

Like bootstrapping, except each new bootstrapped record is slightly different from its source.

z-score

The value that results after standardization.

K

The number of neighbors considered in the nearest neighbor calculation.

Undersampling
If you have enough data, as is the case with the loan data, one solution is to
undersample (or downsample) the prevalent class, so the data to be modeled is more
balanced between 0s and 1s. The basic idea in undersampling is that the data for the
dominant class has many redundant records. Dealing with a smaller, more balanced
data set yields benefits in model performance, and it makes it easier to prepare the
data and to explore and pilot models.

How much data is enough? It depends on the application, but in general, having tens
of thousands of records for the less dominant class is enough. The more easily

distinguishable the 1s are from the 0s, the less data needed.

The loan data analyzed in “Logistic Regression” was based on a balanced training set:
half of the loans were paid off, and the other half were in default. The predicted
values were similar: half of the probabilities were less than 0.5, and half were greater
than 0.5. In the full data set, only about 19% of the loans were in default, as shown in
R:

mean(full_train_set$outcome=='default')

[1] 0.1889455

In Python:

print('percentage of loans in default: ',

 100 * np.mean(full_train_set.outcome == 'default'))

What happens if we use the full data set to train the model? Let’s see what this looks
like in R:

full_model <- glm(outcome ~ payment_inc_ratio + purpose_ + home_ +

 emp_len_+ dti + revol_bal + revol_util,

 data=full_train_set, family='binomial')

pred <- predict(full_model)

mean(pred > 0)

[1] 0.003942094

And in Python:

predictors = ['payment_inc_ratio', 'purpose_', 'home_', 'emp_len_',

 'dti', 'revol_bal', 'revol_util']

outcome = 'outcome'

X = pd.get_dummies(full_train_set[predictors], prefix='', prefix_sep='',

 drop_first=True)

y = full_train_set[outcome]

full_model = LogisticRegression(penalty='l2', C=1e42, solver='liblinear')

full_model.fit(X, y)

print('percentage of loans predicted to default: ',

 100 * np.mean(full_model.predict(X) == 'default'))

Only 0.39% of the loans are predicted to be in default, or less than 1/47 of the
expected number. The loans that were paid off overwhelm the loans in default
because the model is trained using all the data equally. Thinking about it intuitively,
the presence of so many nondefaulting loans, coupled with the inevitable variability
in predictor data, means that, even for a defaulting loan, the model is likely to find
some nondefaulting loans that it is similar to, by chance. When a balanced sample
was used, roughly 50% of the loans were predicted to be in default.

Oversampling and Up/Down Weighting
One criticism of the undersampling method is that it throws away data and is not
using all the information at hand. If you have a relatively small data set, and the rarer
class contains a few hundred or a few thousand records, then undersampling the
dominant class has the risk of throwing out useful information. In this case, instead of

5

downsampling the dominant case, you should oversample (upsample) the rarer class
by drawing additional rows with replacement (bootstrapping).

You can achieve a similar effect by weighting the data. Many classification
algorithms take a weight argument that will allow you to up/down weight the data.
For example, apply a weight vector to the loan data using the weight argument to
glm in R:

wt <- ifelse(full_train_set$outcome=='default',

 1 / mean(full_train_set$outcome == 'default'), 1)

full_model <- glm(outcome ~ payment_inc_ratio + purpose_ + home_ +

 emp_len_+ dti + revol_bal + revol_util,

 data=full_train_set, weight=wt, family='quasibinomial')

pred <- predict(full_model)

mean(pred > 0)

[1] 0.5767208

Most scikit-learn methods allow specifying weights in the fit function using
the keyword argument sample_weight:

default_wt = 1 / np.mean(full_train_set.outcome == 'default')

wt = [default_wt if outcome == 'default' else 1

 for outcome in full_train_set.outcome]

full_model = LogisticRegression(penalty="l2", C=1e42, solver='liblinear')

full_model.fit(X, y, sample_weight=wt)

print('percentage of loans predicted to default (weighting): ',

 100 * np.mean(full_model.predict(X) == 'default'))

The weights for loans that default are set to 1
p

, where p is the probability of default.

The nondefaulting loans have a weight of 1. The sums of the weights for the
defaulting loans and nondefaulting loans are roughly equal. The mean of the predicted
values is now about 58% instead of 0.39%.

Note that weighting provides an alternative to both upsampling the rarer class and
downsampling the dominant class.

ADAPTING THE LOSS FUNCTION
Many classification and regression algorithms optimize a certain criteria or loss function. For
example, logistic regression attempts to minimize the deviance. In the literature, some propose to
modify the loss function in order to avoid the problems caused by a rare class. In practice, this is hard
to do: classification algorithms can be complex and difficult to modify. Weighting is an easy way to
change the loss function, discounting errors for records with low weights in favor of records with
higher weights.

Data Generation
A variation of upsampling via bootstrapping (see “Oversampling and Up/Down
Weighting”) is data generation by perturbing existing records to create new records.
The intuition behind this idea is that since we observe only a limited set of instances,
the algorithm doesn’t have a rich set of information to build classification “rules.” By
creating new records that are similar but not identical to existing records, the
algorithm has a chance to learn a more robust set of rules. This notion is similar in
spirit to ensemble statistical models such as boosting and bagging (see Chapter 6).

The idea gained traction with the publication of the SMOTE algorithm, which stands
for “Synthetic Minority Oversampling Technique.” The SMOTE algorithm finds a
record that is similar to the record being upsampled (see “K-Nearest Neighbors”) and
creates a synthetic record that is a randomly weighted average of the original record
and the neighboring record, where the weight is generated separately for each
predictor. The number of synthetic oversampled records created depends on the
oversampling ratio required to bring the data set into approximate balance with
respect to outcome classes.

There are several implementations of SMOTE in R. The most comprehensive package
for handling unbalanced data is unbalanced. It offers a variety of techniques,
including a “Racing” algorithm to select the best method. However, the SMOTE
algorithm is simple enough that it can be implemented directly in R using the FNN
package.

The Python package imbalanced-learn implements a variety of methods with
an API that is compatible with scikit-learn. It provides various methods for
over- and undersampling and support for using these techniques with boosting and
bagging classifiers.

Cost-Based Classification
In practice, accuracy and AUC are a poor man’s way to choose a classification rule.
Often, an estimated cost can be assigned to false positives versus false negatives, and
it is more appropriate to incorporate these costs to determine the best cutoff when
classifying 1s and 0s. For example, suppose the expected cost of a default of a new
loan is C and the expected return from a paid-off loan is R. Then the expected return
for that loan is:

expected return = P(Y = 0) × R + P(Y = 1) × C

Instead of simply labeling a loan as default or paid off, or determining the probability
of default, it makes more sense to determine if the loan has a positive expected return.
Predicted probability of default is an intermediate step, and it must be combined with
the loan’s total value to determine expected profit, which is the ultimate planning
metric of business. For example, a smaller value loan might be passed over in favor
of a larger one with a slightly higher predicted default probability.

Exploring the Predictions
A single metric, such as AUC, cannot evaluate all aspects of the suitability of a model
for a situation. Figure 5-8 displays the decision rules for four different models fit to
the loan data using just two predictor variables: borrower_score and
payment_inc_ratio. The models are linear discriminant analysis (LDA),
logistic linear regression, logistic regression fit using a generalized additive model
(GAM), and a tree model (see “Tree Models”). The region to the upper left of the
lines corresponds to a predicted default. LDA and logistic linear regression give
nearly identical results in this case. The tree model produces the least regular rule,

with two steps. Finally, the GAM fit of the logistic regression represents a
compromise between the tree model and the linear model.

Figure 5-8. Comparison of the classification rules for four different methods

It is not easy to visualize the prediction rules in higher dimensions or, in the case of
the GAM and the tree model, even to generate the regions for such rules.

In any case, exploratory analysis of predicted values is always warranted.

KEY IDEAS

Highly imbalanced data (i.e., where the interesting outcomes, the 1s, are rare) are problematic for classification
algorithms.

One strategy for working with imbalanced data is to balance the training data via undersampling the abundant case
(or oversampling the rare case).

If using all the 1s still leaves you with too few 1s, you can bootstrap the rare cases, or use SMOTE to create synthetic
data similar to existing rare cases.

Imbalanced data usually indicates that correctly classifying one class (the 1s) has higher value, and that value ratio
should be built into the assessment metric.

Further Reading
Tom Fawcett, author of Data Science for Business, has a good article on
imbalanced classes.

For more on SMOTE, see Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer, “SMOTE: Synthetic Minority Over-
sampling Technique,” Journal of Artificial Intelligence Research 16 (2002):
321–357.

Also see the Analytics Vidhya Content Team’s “Practical Guide to Deal with
Imbalanced Classification Problems in R,” March 28, 2016.

Summary
Classification, the process of predicting which of two or more categories a record
belongs to, is a fundamental tool of predictive analytics. Will a loan default (yes or
no)? Will it prepay? Will a web visitor click on a link? Will they purchase something?
Is an insurance claim fraudulent? Often in classification problems, one class is of
primary interest (e.g., the fraudulent insurance claim), and in binary classification,
this class is designated as a 1, with the other, more prevalent class being a 0. Often, a
key part of the process is estimating a propensity score, a probability of belonging to
the class of interest. A common scenario is one in which the class of interest is
relatively rare. When evaluating a classifier, there are a variety of model assessment
metrics that go beyond simple accuracy; these are important in the rare-class
situation, when classifying all records as 0s can yield high accuracy.

1 This and subsequent sections in this chapter © 2020 Datastats, LLC, Peter Bruce, Andrew Bruce, and Peter
Gedeck; used with permission.

2 It is certainly surprising that the first article on statistical classification was published in a journal devoted to
eugenics. Indeed, there is a disconcerting connection between the early development of statistics and
eugenics.

3 Not all methods provide unbiased estimates of probability. In most cases, it is sufficient that the method
provide a ranking equivalent to the rankings that would result from an unbiased probability estimate; the
cutoff method is then functionally equivalent.

4 The ROC curve was first used during World War II to describe the performance of radar receiving stations,
whose job was to correctly identify (classify) reflected radar signals and alert defense forces to incoming
aircraft.

5 Due to differences in implementation, results in Python differ slightly: 1%, or about 1/18 of the expected
number.

https://oreil.ly/us2rd
https://oreil.ly/bwaIQ
https://oreil.ly/gZUDs
https://oreil.ly/eUJvR

Chapter 6. Statistical
Machine Learning

Recent advances in statistics have been devoted to
developing more powerful automated techniques for
predictive modeling—both regression and classification.
These methods, like those discussed in the previous
chapter, are supervised methods—they are trained on
data where outcomes are known and learn to predict
outcomes in new data. They fall under the umbrella of
statistical machine learning and are distinguished from
classical statistical methods in that they are data-driven
and do not seek to impose linear or other overall
structure on the data. The K-Nearest Neighbors method,
for example, is quite simple: classify a record in
accordance with how similar records are classified. The
most successful and widely used techniques are based
on ensemble learning applied to decision trees. The
basic idea of ensemble learning is to use many models
to form a prediction, as opposed to using just a single
model. Decision trees are a flexible and automatic
technique to learn rules about the relationships between
predictor variables and outcome variables. It turns out
that the combination of ensemble learning with decision
trees leads to some of the best performing off-the-shelf
predictive modeling techniques.

The development of many of the techniques in statistical
machine learning can be traced back to the statisticians

Leo Breiman (see Figure 6-1) at the University of
California at Berkeley and Jerry Friedman at Stanford
University. Their work, along with that of other
researchers at Berkeley and Stanford, started with the
development of tree models in 1984. The subsequent
development of ensemble methods of bagging and
boosting in the 1990s established the foundation of
statistical machine learning.

Figure 6-1. Leo Breiman, who was a professor of statistics at UC Berkeley,
was at the forefront of the development of many techniques in a data

scientist’s toolkit today

MACHINE LEARNING VERSUS
STATISTICS

In the context of predictive modeling, what is the difference
between machine learning and statistics? There is not a bright
line dividing the two disciplines. Machine learning tends to be
focused more on developing efficient algorithms that scale to
large data in order to optimize the predictive model. Statistics
generally pays more attention to the probabilistic theory and
underlying structure of the model. Bagging, and the random
forest (see “Bagging and the Random Forest”), grew up firmly
in the statistics camp. Boosting (see “Boosting”), on the other
hand, has been developed in both disciplines but receives
more attention on the machine learning side of the divide.
Regardless of the history, the promise of boosting ensures that
it will thrive as a technique in both statistics and machine
learning.

K-Nearest Neighbors
The idea behind K-Nearest Neighbors (KNN) is very
simple. For each record to be classified or predicted:

1. Find K records that have similar features (i.e.,
similar predictor values).

2. For classification, find out what the majority
class is among those similar records and assign
that class to the new record.

3. For prediction (also called KNN regression),
find the average among those similar records,
and predict that average for the new record.

KEY TERMS FOR K-NEAREST NEIGHBORS

Neighbor

A record that has similar predictor values to another record.

Distance metrics

Measures that sum up in a single number how far one record is from another.

Standardization

Subtract the mean and divide by the standard deviation.

Synonym

Normalization

z-score

The value that results after standardization.

K

The number of neighbors considered in the nearest neighbor calculation.

KNN is one of the simpler prediction/classification
techniques: there is no model to be fit (as in regression).
This doesn’t mean that using KNN is an automatic

1

procedure. The prediction results depend on how the
features are scaled, how similarity is measured, and how
big K is set. Also, all predictors must be in numeric
form. We will illustrate how to use the KNN method
with a classification example.

A Small Example: Predicting Loan Default
Table 6-1 shows a few records of personal loan data
from LendingClub. LendingClub is a leader in peer-to-
peer lending in which pools of investors make personal
loans to individuals. The goal of an analysis would be to
predict the outcome of a new potential loan: paid off
versus default.

Table 6-1. A few records and columns for
LendingClub loan data

Out
co
me

Loan
amou
nt

Inc
o
me

Purpos
e

Years
employ
ed

Home
ownersh
ip

S
ta
te

Paid
off

10000 79
10
0

debt_con
solidatio
n

11 MORTG
AGE

N
V

Paid
off

9600 48
00
0

moving 5 MORTG
AGE

T
N

Paid
off

18800 12
00
36

debt_con
solidatio
n

11 MORTG
AGE

M
D

Defa
ult

15250 23
20
00

small_bu
siness

9 MORTG
AGE

C
A

Paid
off

17050 35
00
0

debt_con
solidatio
n

4 RENT M
D

Paid
off

5500 43
00
0

debt_con
solidatio
n

4 RENT K
S

Consider a very simple model with just two predictor
variables: dti, which is the ratio of debt payments
(excluding mortgage) to income, and
payment_inc_ratio, which is the ratio of the loan
payment to income. Both ratios are multiplied by 100.
Using a small set of 200 loans, loan200, with known
binary outcomes (default or no-default, specified in the

predictor outcome200), and with K set to 20, the
KNN estimate for a new loan to be predicted,
newloan, with dti=22.5 and
payment_inc_ratio=9 can be calculated in R as
follows:

newloan <- loan200[1, 2:3, drop=FALSE]

knn_pred <- knn(train=loan200[-1, 2:3],

test=newloan, cl=loan200[-1, 1], k=20)

knn_pred == 'paid off'

[1] TRUE

The KNN prediction is for the loan to default.

While R has a native knn function, the contributed R
package FNN, for Fast Nearest Neighbor, scales more
effectively to big data and provides more flexibility.

The scikit-learn package provides a fast and
efficient implementation of KNN in Python:

predictors = ['payment_inc_ratio', 'dti']

outcome = 'outcome'

newloan = loan200.loc[0:0, predictors]

X = loan200.loc[1:, predictors]

y = loan200.loc[1:, outcome]

knn = KNeighborsClassifier(n_neighbors=20)

knn.fit(X, y)

knn.predict(newloan)

Figure 6-2 gives a visual display of this example. The
new loan to be predicted is the cross in the middle. The
squares (paid off) and circles (default) are the training
data. The large black circle shows the boundary of the
nearest 20 points. In this case, 9 defaulted loans lie

2

https://oreil.ly/RMQFG

within the circle, as compared with 11 paid-off loans.
Hence the predicted outcome of the loan is paid off.
Note that if we consider only three nearest neighbors,
the prediction would be that the loan defaults.

Figure 6-2. KNN prediction of loan default using two variables: debt-to-
income ratio and loan-payment-to-income ratio

NOTE
While the output of KNN for classification is typically a
binary decision, such as default or paid off in the loan data,
KNN routines usually offer the opportunity to output a
probability (propensity) between 0 and 1. The probability is
based on the fraction of one class in the K nearest neighbors.
In the preceding example, this probability of default would
have been estimated at 9

20
, or 0.45. Using a probability score

lets you use classification rules other than simple majority
votes (probability of 0.5). This is especially important in
problems with imbalanced classes; see “Strategies for
Imbalanced Data”. For example, if the goal is to identify
members of a rare class, the cutoff would typically be set
below 50%. One common approach is to set the cutoff at the
probability of the rare event.

Distance Metrics
Similarity (nearness) is determined using a distance
metric, which is a function that measures how far two
records (x , x , …, x) and (u , u , …, u) are from one
another. The most popular distance metric between two
vectors is Euclidean distance. To measure the Euclidean
distance between two vectors, subtract one from the
other, square the differences, sum them, and take the
square root:

√(x1 − u1)2 + (x2 − u2)2 + ⋯ + (xp − up)2.

Another common distance metric for numeric data is
Manhattan distance:

|x1 − u1| + |x2 − u2| + ⋯ + |xp − up|

1 2 p 1 2 p

Euclidean distance corresponds to the straight-line
distance between two points (e.g., as the crow flies).
Manhattan distance is the distance between two points
traversed in a single direction at a time (e.g., traveling
along rectangular city blocks). For this reason,
Manhattan distance is a useful approximation if
similarity is defined as point-to-point travel time.

In measuring distance between two vectors, variables
(features) that are measured with comparatively large
scale will dominate the measure. For example, for the
loan data, the distance would be almost solely a function
of the income and loan amount variables, which are
measured in tens or hundreds of thousands. Ratio
variables would count for practically nothing in
comparison. We address this problem by standardizing
the data; see “Standardization (Normalization, z-
Scores)”.

OTHER DISTANCE METRICS
There are numerous other metrics for measuring distance
between vectors. For numeric data, Mahalanobis distance is
attractive since it accounts for the correlation between two
variables. This is useful since if two variables are highly
correlated, Mahalanobis will essentially treat these as a single
variable in terms of distance. Euclidean and Manhattan
distance do not account for the correlation, effectively placing
greater weight on the attribute that underlies those features.
Mahalanobis distance is the Euclidean distance between the
principal components (see “Principal Components Analysis”).
The downside of using Mahalanobis distance is increased
computational effort and complexity; it is computed using the
covariance matrix (see “Covariance Matrix”).

One Hot Encoder

The loan data in Table 6-1 includes several factor
(string) variables. Most statistical and machine learning
models require this type of variable to be converted to a
series of binary dummy variables conveying the same
information, as in Table 6-2. Instead of a single variable
denoting the home occupant status as “owns with a
mortgage,” “owns with no mortgage,” “rents,” or
“other,” we end up with four binary variables. The first
would be “owns with a mortgage—Y/N,” the second
would be “owns with no mortgage—Y/N,” and so on.
This one predictor, home occupant status, thus yields a
vector with one 1 and three 0s that can be used in
statistical and machine learning algorithms. The phrase
one hot encoding comes from digital circuit
terminology, where it describes circuit settings in which
only one bit is allowed to be positive (hot).

Table 6-2. Representing home ownership factor data
in Table 6-1 as a numeric dummy variable

OWNS_WITH_MO
RTGAGE

OWNS_WITHOUT_MO
RTGAGE

OTH
ER

RE
NT

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

NOTE
In linear and logistic regression, one hot encoding causes
problems with multicollinearity; see “Multicollinearity”. In
such cases, one dummy is omitted (its value can be inferred
from the other values). This is not an issue with KNN and
other methods discussed in this book.

Standardization (Normalization, z-Scores)
In measurement, we are often not so much interested in
“how much” but in “how different from the average.”
Standardization, also called normalization, puts all
variables on similar scales by subtracting the mean and
dividing by the standard deviation; in this way, we
ensure that a variable does not overly influence a model
simply due to the scale of its original measurement:

z =
x − x

s

The result of this transformation is commonly referred
to as a z-score. Measurements are then stated in terms of
“standard deviations away from the mean.”

CAUTION
Normalization in this statistical context is not to be confused
with database normalization, which is the removal of
redundant data and the verification of data dependencies.

For KNN and a few other procedures (e.g., principal
components analysis and clustering), it is essential to
consider standardizing the data prior to applying the
procedure. To illustrate this idea, KNN is applied to the
loan data using dti and payment_inc_ratio (see
“A Small Example: Predicting Loan Default”) plus two
other variables: revol_bal, the total revolving credit
available to the applicant in dollars, and revol_util,
the percent of the credit being used. The new record to
be predicted is shown here:

newloan

 payment_inc_ratio dti revol_bal revol_util

1 2.3932 1 1687 9.4

The magnitude of revol_bal, which is in dollars, is
much bigger than that of the other variables. The knn
function returns the index of the nearest neighbors as an
attribute nn.index, and this can be used to show the
top-five closest rows in loan_df:

loan_df <- model.matrix(~ -1 + payment_inc_ratio

+ dti + revol_bal +

 revol_util,

data=loan_data)

newloan <- loan_df[1, , drop=FALSE]

loan_df <- loan_df[-1,]

outcome <- loan_data[-1, 1]

knn_pred <- knn(train=loan_df, test=newloan,

cl=outcome, k=5)

loan_df[attr(knn_pred, "nn.index"),]

 payment_inc_ratio dti revol_bal

revol_util

35537 1.47212 1.46 1686

10.0

33652 3.38178 6.37 1688

8.4

25864 2.36303 1.39 1691

3.5

42954 1.28160 7.14 1684

3.9

43600 4.12244 8.98 1684

7.2

Following the model fit, we can use the kneighbors
method to identify the five closest rows in the training
set with scikit-learn:

predictors = ['payment_inc_ratio', 'dti',

'revol_bal', 'revol_util']

outcome = 'outcome'

newloan = loan_data.loc[0:0, predictors]

X = loan_data.loc[1:, predictors]

y = loan_data.loc[1:, outcome]

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X, y)

nbrs = knn.kneighbors(newloan)

X.iloc[nbrs[1][0], :]

The value of revol_bal in these neighbors is very
close to its value in the new record, but the other

predictor variables are all over the map and essentially
play no role in determining neighbors.

Compare this to KNN applied to the standardized data
using the R function scale, which computes the z-
score for each variable:

loan_df <- model.matrix(~ -1 + payment_inc_ratio

+ dti + revol_bal +

 revol_util,

data=loan_data)

loan_std <- scale(loan_df)

newloan_std <- loan_std[1, , drop=FALSE]

loan_std <- loan_std[-1,]

loan_df <- loan_df[-1,]

outcome <- loan_data[-1, 1]

knn_pred <- knn(train=loan_std,

test=newloan_std, cl=outcome, k=5)

loan_df[attr(knn_pred, "nn.index"),]

 payment_inc_ratio dti revol_bal

revol_util

2081 2.61091 1.03 1218

9.7

1439 2.34343 0.51 278

9.9

30216 2.71200 1.34 1075

8.5

28543 2.39760 0.74 2917

7.4

44738 2.34309 1.37 488

7.2

We need to remove the first row from loan_df as
well, so that the row numbers correspond to each
other.

The
sklearn.preprocessing.StandardScaler

method is first trained with the predictors and is

subsequently used to transform the data set prior to
training the KNN model:

newloan = loan_data.loc[0:0, predictors]

X = loan_data.loc[1:, predictors]

y = loan_data.loc[1:, outcome]

scaler = preprocessing.StandardScaler()

scaler.fit(X * 1.0)

X_std = scaler.transform(X * 1.0)

newloan_std = scaler.transform(newloan * 1.0)

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(X_std, y)

nbrs = knn.kneighbors(newloan_std)

X.iloc[nbrs[1][0], :]

The five nearest neighbors are much more alike in all
the variables, providing a more sensible result. Note that
the results are displayed on the original scale, but KNN
was applied to the scaled data and the new loan to be
predicted.

TIP
Using the z-score is just one way to rescale variables. Instead
of the mean, a more robust estimate of location could be used,
such as the median. Likewise, a different estimate of scale
such as the interquartile range could be used instead of the
standard deviation. Sometimes, variables are “squashed” into
the 0–1 range. It’s also important to realize that scaling each
variable to have unit variance is somewhat arbitrary. This
implies that each variable is thought to have the same
importance in predictive power. If you have subjective
knowledge that some variables are more important than
others, then these could be scaled up. For example, with the
loan data, it is reasonable to expect that the payment-to-
income ratio is very important.

NOTE
Normalization (standardization) does not change the
distributional shape of the data; it does not make it normally
shaped if it was not already normally shaped (see “Normal
Distribution”).

Choosing K
The choice of K is very important to the performance of
KNN. The simplest choice is to set K = 1, known as the
1-nearest neighbor classifier. The prediction is intuitive:
it is based on finding the data record in the training set
most similar to the new record to be predicted. Setting
K = 1 is rarely the best choice; you’ll almost always
obtain superior performance by using K > 1-nearest
neighbors.

Generally speaking, if K is too low, we may be
overfitting: including the noise in the data. Higher
values of K provide smoothing that reduces the risk of
overfitting in the training data. On the other hand, if K is
too high, we may oversmooth the data and miss out on
KNN’s ability to capture the local structure in the data,
one of its main advantages.

The K that best balances between overfitting and
oversmoothing is typically determined by accuracy
metrics and, in particular, accuracy with holdout or
validation data. There is no general rule about the best K
—it depends greatly on the nature of the data. For highly
structured data with little noise, smaller values of K
work best. Borrowing a term from the signal processing
community, this type of data is sometimes referred to as

having a high signal-to-noise ratio (SNR). Examples of
data with a typically high SNR are data sets for
handwriting and speech recognition. For noisy data with
less structure (data with a low SNR), such as the loan
data, larger values of K are appropriate. Typically,
values of K fall in the range 1 to 20. Often, an odd
number is chosen to avoid ties.

BIAS-VARIANCE TRADE-OFF
The tension between oversmoothing and overfitting is an
instance of the bias-variance trade-off, a ubiquitous problem
in statistical model fitting. Variance refers to the modeling
error that occurs because of the choice of training data; that is,
if you were to choose a different set of training data, the
resulting model would be different. Bias refers to the
modeling error that occurs because you have not properly
identified the underlying real-world scenario; this error would
not disappear if you simply added more training data. When a
flexible model is overfit, the variance increases. You can
reduce this by using a simpler model, but the bias may
increase due to the loss of flexibility in modeling the real
underlying situation. A general approach to handling this
trade-off is through cross-validation. See “Cross-Validation”
for more details.

KNN as a Feature Engine
KNN gained its popularity due to its simplicity and
intuitive nature. In terms of performance, KNN by itself
is usually not competitive with more sophisticated
classification techniques. In practical model fitting,
however, KNN can be used to add “local knowledge” in
a staged process with other classification techniques:

1. KNN is run on the data, and for each record, a
classification (or quasi-probability of a class) is
derived.

2. That result is added as a new feature to the
record, and another classification method is
then run on the data. The original predictor
variables are thus used twice.

At first you might wonder whether this process, since it
uses some predictors twice, causes a problem with
multicollinearity (see “Multicollinearity”). This is not an
issue, since the information being incorporated into the
second-stage model is highly local, derived only from a
few nearby records, and is therefore additional
information and not redundant.

NOTE
You can think of this staged use of KNN as a form of
ensemble learning, in which multiple predictive modeling
methods are used in conjunction with one another. It can also
be considered as a form of feature engineering in which the
aim is to derive features (predictor variables) that have
predictive power. Often this involves some manual review of
the data; KNN gives a fairly automatic way to do this.

For example, consider the King County housing data. In
pricing a home for sale, a realtor will base the price on
similar homes recently sold, known as “comps.” In
essence, realtors are doing a manual version of KNN: by
looking at the sale prices of similar homes, they can
estimate what a home will sell for. We can create a new
feature for a statistical model to mimic the real estate
professional by applying KNN to recent sales. The
predicted value is the sales price, and the existing
predictor variables could include location, total square
feet, type of structure, lot size, and number of bedrooms
and bathrooms. The new predictor variable (feature) that
we add via KNN is the KNN predictor for each record

(analogous to the realtors’ comps). Since we are
predicting a numerical value, the average of the K-
Nearest Neighbors is used instead of a majority vote
(known as KNN regression).

Similarly, for the loan data, we can create features that
represent different aspects of the loan process. For
example, the following R code would build a feature
that represents a borrower’s creditworthiness:

borrow_df <- model.matrix(~ -1 + dti + revol_bal

+ revol_util + open_acc +

 delinq_2yrs_zero +

pub_rec_zero, data=loan_data)

borrow_knn <- knn(borrow_df, test=borrow_df,

cl=loan_data[, 'outcome'],

 prob=TRUE, k=20)

prob <- attr(borrow_knn, "prob")

borrow_feature <- ifelse(borrow_knn ==

'default', prob, 1 - prob)

summary(borrow_feature)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 0.000 0.400 0.500 0.501 0.600 0.950

With scikit-learn, we use the predict_proba
method of the trained model to get the probabilities:

predictors = ['dti', 'revol_bal', 'revol_util',

'open_acc',

 'delinq_2yrs_zero',

'pub_rec_zero']

outcome = 'outcome'

X = loan_data[predictors]

y = loan_data[outcome]

knn = KNeighborsClassifier(n_neighbors=20)

knn.fit(X, y)

loan_data['borrower_score'] =

knn.predict_proba(X)[:, 1]

loan_data['borrower_score'].describe()

The result is a feature that predicts the likelihood a
borrower will default based on his credit history.

KEY IDEAS

K-Nearest Neighbors (KNN) classifies a record by assigning it to the
class that similar records belong to.

Similarity (distance) is determined by Euclidian distance or other related
metrics.

The number of nearest neighbors to compare a record to, K, is
determined by how well the algorithm performs on training data, using
different values for K.

Typically, the predictor variables are standardized so that variables of
large scale do not dominate the distance metric.

KNN is often used as a first stage in predictive modeling, and the
predicted value is added back into the data as a predictor for second-
stage (non-KNN) modeling.

Tree Models
Tree models, also called Classification and Regression
Trees (CART), decision trees, or just trees, are an
effective and popular classification (and regression)
method initially developed by Leo Breiman and others
in 1984. Tree models, and their more powerful
descendants random forests and boosted trees (see
“Bagging and the Random Forest” and “Boosting”),
form the basis for the most widely used and powerful
predictive modeling tools in data science for regression
and classification.

3

KEY TERMS FOR TREES

Recursive partitioning

Repeatedly dividing and subdividing the data with the goal of making the
outcomes in each final subdivision as homogeneous as possible.

Split value

A predictor value that divides the records into those where that predictor is
less than the split value, and those where it is more.

Node

In the decision tree, or in the set of corresponding branching rules, a node is
the graphical or rule representation of a split value.

Leaf

The end of a set of if-then rules, or branches of a tree—the rules that bring
you to that leaf provide one of the classification rules for any record in a tree.

Loss

The number of misclassifications at a stage in the splitting process; the more
losses, the more impurity.

Impurity

The extent to which a mix of classes is found in a subpartition of the data (the
more mixed, the more impure).

Synonym

Heterogeneity

Antonyms

Homogeneity, purity

Pruning

The process of taking a fully grown tree and progressively cutting its
branches back to reduce overfitting.

A tree model is a set of “if-then-else” rules that are easy
to understand and to implement. In contrast to linear and
logistic regression, trees have the ability to discover
hidden patterns corresponding to complex interactions
in the data. However, unlike KNN or naive Bayes,

simple tree models can be expressed in terms of
predictor relationships that are easily interpretable.

DECISION TREES IN OPERATIONS
RESEARCH

The term decision trees has a different (and older) meaning in
decision science and operations research, where it refers to a
human decision analysis process. In this meaning, decision
points, possible outcomes, and their estimated probabilities are
laid out in a branching diagram, and the decision path with the
maximum expected value is chosen.

A Simple Example
The two main packages to fit tree models in R are
rpart and tree. Using the rpart package, a model
is fit to a sample of 3,000 records of the loan data using
the variables payment_inc_ratio and
borrower_score (see “K-Nearest Neighbors” for a
description of the data):

library(rpart)

loan_tree <- rpart(outcome ~ borrower_score +

payment_inc_ratio,

 data=loan3000,

control=rpart.control(cp=0.005))

plot(loan_tree, uniform=TRUE, margin=0.05)

text(loan_tree)

The
sklearn.tree.DecisionTreeClassifier

provides an implementation of a decision tree. The
dmba package provides a convenience function to
create a visualization inside a Jupyter notebook:

predictors = ['borrower_score',

'payment_inc_ratio']

outcome = 'outcome'

X = loan3000[predictors]

y = loan3000[outcome]

loan_tree =

DecisionTreeClassifier(random_state=1,

criterion='entropy',

min_impurity_decrease=0.003)

loan_tree.fit(X, y)

plotDecisionTree(loan_tree,

feature_names=predictors,

 class_names=loan_tree.classes_)

The resulting tree is shown in Figure 6-3. Due to the
different implementations, you will find that the results
from R and Python are not identical; this is expected.
These classification rules are determined by traversing
through a hierarchical tree, starting at the root and
moving left if the node is true and right if not, until a
leaf is reached.

Typically, the tree is plotted upside-down, so the root is
at the top and the leaves are at the bottom. For example,
if we get a loan with borrower_score of 0.6 and a
payment_inc_ratio of 8.0, we end up at the
leftmost leaf and predict the loan will be paid off.

Figure 6-3. The rules for a simple tree model fit to the loan data

A nicely printed version of the tree is also easily
produced in R:

loan_tree

n= 3000

node), split, n, loss, yval, (yprob)

 * denotes terminal node

1) root 3000 1445 paid off (0.5183333 0.4816667)

 2) borrower_score>=0.575 878 261 paid off

(0.7027335 0.2972665) *

 3) borrower_score< 0.575 2122 938 default

(0.4420358 0.5579642)

 6) borrower_score>=0.375 1639 802 default

(0.4893228 0.5106772)

 12) payment_inc_ratio< 10.42265 1157 547

paid off (0.5272256 0.4727744)

 24) payment_inc_ratio< 4.42601 334 139

paid off (0.5838323 0.4161677) *

 25) payment_inc_ratio>=4.42601 823 408

paid off (0.5042527 0.4957473)

 50) borrower_score>=0.475 418 190

paid off (0.5454545 0.4545455) *

 51) borrower_score< 0.475 405 187

default (0.4617284 0.5382716) *

 13) payment_inc_ratio>=10.42265 482 192

default (0.3983402 0.6016598) *

 7) borrower_score< 0.375 483 136 default

(0.2815735 0.7184265) *

The depth of the tree is shown by the indent. Each node
corresponds to a provisional classification determined
by the prevalent outcome in that partition. The “loss” is
the number of misclassifications yielded by the
provisional classification in a partition. For example, in
node 2, there were 261 misclassifications out of a total
of 878 total records. The values in the parentheses
correspond to the proportion of records that are paid off

or in default, respectively. For example, in node 13,
which predicts default, over 60 percent of the records
are loans that are in default.

The scikit-learn documentation describes how to
create a text representation of a decision tree model. We
included a convenience function in our dmba package:

print(textDecisionTree(loan_tree))

--

node=0 test node: go to node 1 if 0 <=

0.5750000178813934 else to node 6

 node=1 test node: go to node 2 if 0 <=

0.32500000298023224 else to node 3

 node=2 leaf node: [[0.785, 0.215]]

 node=3 test node: go to node 4 if 1 <=

10.42264986038208 else to node 5

 node=4 leaf node: [[0.488, 0.512]]

 node=5 leaf node: [[0.613, 0.387]]

 node=6 test node: go to node 7 if 1 <=

9.19082498550415 else to node 10

 node=7 test node: go to node 8 if 0 <=

0.7249999940395355 else to node 9

 node=8 leaf node: [[0.247, 0.753]]

 node=9 leaf node: [[0.073, 0.927]]

 node=10 leaf node: [[0.457, 0.543]]

The Recursive Partitioning Algorithm
The algorithm to construct a decision tree, called
recursive partitioning, is straightforward and intuitive.
The data is repeatedly partitioned using predictor values
that do the best job of separating the data into relatively
homogeneous partitions. Figure 6-4 shows the partitions
created for the tree in Figure 6-3. The first rule, depicted
by rule 1, is borrower_score >= 0.575 and
segments the right portion of the plot. The second rule is

borrower_score < 0.375 and segments the left
portion.

Figure 6-4. The first three rules for a simple tree model fit to the loan data

Suppose we have a response variable Y and a set of P
predictor variables X for j = 1, ⋯ , P . For a partition A
of records, recursive partitioning will find the best way
to partition A into two subpartitions:

1. For each predictor variable X :

a. For each value s of X :

i. Split the records in A with X
values < s as one partition,
and the remaining records
where X ≥ s as another
partition.

ii. Measure the homogeneity of
classes within each
subpartition of A.

b. Select the value of s that produces
maximum within-partition
homogeneity of class.

2. Select the variable X and the split value s that
produces maximum within-partition
homogeneity of class.

Now comes the recursive part:

1. Initialize A with the entire data set.

2. Apply the partitioning algorithm to split A into
two subpartitions, A and A .

3. Repeat step 2 on subpartitions A and A .

4. The algorithm terminates when no further
partition can be made that sufficiently improves
the homogeneity of the partitions.

j

j

j j

j

j

j j

j

j j

1 2

1 2

The end result is a partitioning of the data, as in
Figure 6-4, except in P-dimensions, with each partition
predicting an outcome of 0 or 1 depending on the
majority vote of the response in that partition.

NOTE
In addition to a binary 0/1 prediction, tree models can produce
a probability estimate based on the number of 0s and 1s in the
partition. The estimate is simply the sum of 0s or 1s in the
partition divided by the number of observations in the
partition:

Prob (Y = 1) =
Number of 1s in the partition

Size of the partition

The estimated Prob(Y = 1) can then be converted to a
binary decision; for example, set the estimate to 1 if Prob(Y =
1) > 0.5.

Measuring Homogeneity or Impurity
Tree models recursively create partitions (sets of
records), A, that predict an outcome of Y = 0 or Y = 1.
You can see from the preceding algorithm that we need
a way to measure homogeneity, also called class purity,
within a partition. Or equivalently, we need to measure
the impurity of a partition. The accuracy of the
predictions is the proportion p of misclassified records
within that partition, which ranges from 0 (perfect) to
0.5 (purely random guessing).

It turns out that accuracy is not a good measure for
impurity. Instead, two common measures for impurity
are the Gini impurity and entropy of information. While
these (and other) impurity measures apply to
classification problems with more than two classes, we

focus on the binary case. The Gini impurity for a set of
records A is:

I(A) = p(1 − p)

The entropy measure is given by:

I (A) = −p log2 (p) − (1 − p) log2 (1 − p)

Figure 6-5 shows that Gini impurity (rescaled) and
entropy measures are similar, with entropy giving higher
impurity scores for moderate and high accuracy rates.

Figure 6-5. Gini impurity and entropy measures

GINI COEFFICIENT
Gini impurity is not to be confused with the Gini coefficient.
They represent similar concepts, but the Gini coefficient is
limited to the binary classification problem and is related to
the AUC metric (see “AUC”).

The impurity metric is used in the splitting algorithm
described earlier. For each proposed partition of the
data, impurity is measured for each of the partitions that
result from the split. A weighted average is then
calculated, and whichever partition (at each stage) yields
the lowest weighted average is selected.

Stopping the Tree from Growing
As the tree grows bigger, the splitting rules become
more detailed, and the tree gradually shifts from
identifying “big” rules that identify real and reliable
relationships in the data to “tiny” rules that reflect only
noise. A fully grown tree results in completely pure
leaves and, hence, 100% accuracy in classifying the data
that it is trained on. This accuracy is, of course, illusory
—we have overfit (see “Bias-Variance Trade-off”) the
data, fitting the noise in the training data, not the signal
that we want to identify in new data.

We need some way to determine when to stop growing a
tree at a stage that will generalize to new data. There are
various ways to stop splitting in R and Python:

Avoid splitting a partition if a resulting
subpartition is too small, or if a terminal leaf is
too small. In rpart (R), these constraints are

controlled separately by the parameters
minsplit and minbucket, respectively,
with defaults of 20 and 7. In Python’s
DecisionTreeClassifier, we can
control this using the parameters
min_samples_split (default 2) and
min_samples_leaf (default 1).

Don’t split a partition if the new partition does
not “significantly” reduce the impurity. In
rpart, this is controlled by the complexity
parameter cp, which is a measure of how
complex a tree is—the more complex, the
greater the value of cp. In practice, cp is used
to limit tree growth by attaching a penalty to
additional complexity (splits) in a tree.
DecisionTreeClassifier (Python) has
the parameter min_impurity_decrease,
which limits splitting based on a weighted
impurity decrease value. Here, smaller values
will lead to more complex trees.

These methods involve arbitrary rules and can be useful
for exploratory work, but we can’t easily determine
optimum values (i.e., values that maximize predictive
accuracy with new data). We need to combine cross-
validation with either systematically changing the model
parameters or modifying the tree through pruning.

CONTROLLING TREE COMPLEXITY IN R

With the complexity parameter, cp, we can estimate
what size tree will perform best with new data. If cp is
too small, then the tree will overfit the data, fitting noise
and not signal. On the other hand, if cp is too large,
then the tree will be too small and have little predictive

power. The default in rpart is 0.01, although for larger
data sets, you are likely to find this is too large. In the
previous example, cp was set to 0.005 since the
default led to a tree with a single split. In exploratory
analysis, it is sufficient to simply try a few values.

Determining the optimum cp is an instance of the bias-
variance trade-off. The most common way to estimate a
good value of cp is via cross-validation (see “Cross-
Validation”):

1. Partition the data into training and validation
(holdout) sets.

2. Grow the tree with the training data.

3. Prune it successively, step by step, recording
cp (using the training data) at each step.

4. Note the cp that corresponds to the minimum
error (loss) on the validation data.

5. Repartition the data into training and validation,
and repeat the growing, pruning, and cp
recording process.

6. Do this again and again, and average the cps
that reflect minimum error for each tree.

7. Go back to the original data, or future data, and
grow a tree, stopping at this optimum cp value.

In rpart, you can use the argument cptable to
produce a table of the cp values and their associated
cross-validation error (xerror in R), from which you
can determine the cp value that has the lowest cross-
validation error.

CONTROLLING TREE COMPLEXITY IN
PYTHON

Neither the complexity parameter nor pruning is
available in scikit-learn’s decision tree
implementation. The solution is to use grid search over
combinations of different parameter values. For
example, we can vary max_depth in the range 5 to 30
and min_samples_split between 20 and 100. The
GridSearchCV method in scikit-learn is a
convenient way to combine the exhaustive search
through all combinations with cross-validation. An
optimal parameter set is then selected using the cross-
validated model performance.

Predicting a Continuous Value
Predicting a continuous value (also termed regression)
with a tree follows the same logic and procedure, except
that impurity is measured by squared deviations from
the mean (squared errors) in each subpartition, and
predictive performance is judged by the square root of
the mean squared error (RMSE) (see “Assessing the
Model”) in each partition.

scikit-learn has the
sklearn.tree.DecisionTreeRegressor

method to train a decision tree regression model.

How Trees Are Used
One of the big obstacles faced by predictive modelers in
organizations is the perceived “black box” nature of the

methods they use, which gives rise to opposition from
other elements of the organization. In this regard, the
tree model has two appealing aspects:

Tree models provide a visual tool for exploring
the data, to gain an idea of what variables are
important and how they relate to one another.
Trees can capture nonlinear relationships
among predictor variables.

Tree models provide a set of rules that can be
effectively communicated to nonspecialists,
either for implementation or to “sell” a data
mining project.

When it comes to prediction, however, harnessing the
results from multiple trees is typically more powerful
than using just a single tree. In particular, the random
forest and boosted tree algorithms almost always
provide superior predictive accuracy and performance
(see “Bagging and the Random Forest” and “Boosting”),
but the aforementioned advantages of a single tree are
lost.

KEY IDEAS

Decision trees produce a set of rules to classify or predict an outcome.

The rules correspond to successive partitioning of the data into
subpartitions.

Each partition, or split, references a specific value of a predictor
variable and divides the data into records where that predictor value is
above or below that split value.

At each stage, the tree algorithm chooses the split that minimizes the
outcome impurity within each subpartition.

When no further splits can be made, the tree is fully grown and each
terminal node, or leaf, has records of a single class; new cases
following that rule (split) path would be assigned that class.

A fully grown tree overfits the data and must be pruned back so that it
captures signal and not noise.

Multiple-tree algorithms like random forests and boosted trees yield
better predictive performance, but they lose the rule-based
communicative power of single trees.

Further Reading
Analytics Vidhya Content Team, “Tree Based
Algorithms: A Complete Tutorial from Scratch
(in R & Python)”, April 12, 2016.

Terry M. Therneau, Elizabeth J. Atkinson, and
the Mayo Foundation, “An Introduction to
Recursive Partitioning Using the RPART
Routines”, April 11, 2019.

Bagging and the Random Forest
In 1906, the statistician Sir Francis Galton was visiting a
county fair in England, at which a contest was being
held to guess the dressed weight of an ox that was on
exhibit. There were 800 guesses, and while the
individual guesses varied widely, both the mean and the
median came out within 1% of the ox’s true weight.
James Surowiecki has explored this phenomenon in his

https://oreil.ly/zOr4B
https://oreil.ly/6rLGk

book The Wisdom of Crowds (Doubleday, 2004). This
principle applies to predictive models as well: averaging
(or taking majority votes) of multiple models—an
ensemble of models—turns out to be more accurate than
just selecting one model.

KEY TERMS FOR BAGGING AND THE RANDOM
FOREST

Ensemble

Forming a prediction by using a collection of models.

Synonym

Model averaging

Bagging

A general technique to form a collection of models by bootstrapping the data.

Synonym

Bootstrap aggregation

Random forest

A type of bagged estimate based on decision tree models.

Synonym

Bagged decision trees

Variable importance

A measure of the importance of a predictor variable in the performance of the
model.

The ensemble approach has been applied to and across
many different modeling methods, most publicly in the
Netflix Prize, in which Netflix offered a $1 million prize
to any contestant who came up with a model that
produced a 10% improvement in predicting the rating

that a Netflix customer would award a movie. The
simple version of ensembles is as follows:

1. Develop a predictive model and record the
predictions for a given data set.

2. Repeat for multiple models on the same data.

3. For each record to be predicted, take an average
(or a weighted average, or a majority vote) of
the predictions.

Ensemble methods have been applied most
systematically and effectively to decision trees.
Ensemble tree models are so powerful that they provide
a way to build good predictive models with relatively
little effort.

Going beyond the simple ensemble algorithm, there are
two main variants of ensemble models: bagging and
boosting. In the case of ensemble tree models, these are
referred to as random forest models and boosted tree
models. This section focuses on bagging; boosting is
covered in “Boosting”.

Bagging
Bagging, which stands for “bootstrap aggregating,” was
introduced by Leo Breiman in 1994. Suppose we have a
response Y and P predictor variables
X = X1, X2, ⋯ , XP with N records.

Bagging is like the basic algorithm for ensembles,
except that, instead of fitting the various models to the
same data, each new model is fitted to a bootstrap

resample. Here is the algorithm presented more
formally:

1. Initialize M, the number of models to be fit, and
n, the number of records to choose (n < N). Set
the iteration m = 1.

2. Take a bootstrap resample (i.e., with
replacement) of n records from the training data
to form a subsample Ym and Xm (the bag).

3. Train a model using Ym and Xm to create a set
of decision rules f̂m (X).

4. Increment the model counter m = m + 1. If m
<= M, go to step 2.

In the case where f̂m predicts the probability Y = 1, the
bagged estimate is given by:

f̂ =
1

M
(f̂1 (X) + f̂2 (X) + ⋯ + f̂M (X))

Random Forest
The random forest is based on applying bagging to
decision trees, with one important extension: in addition
to sampling the records, the algorithm also samples the
variables. In traditional decision trees, to determine
how to create a subpartition of a partition A, the
algorithm makes the choice of variable and split point
by minimizing a criterion such as Gini impurity (see
“Measuring Homogeneity or Impurity”). With random
forests, at each stage of the algorithm, the choice of
variable is limited to a random subset of variables.
Compared to the basic tree algorithm (see “The

4

Recursive Partitioning Algorithm”), the random forest
algorithm adds two more steps: the bagging discussed
earlier (see “Bagging and the Random Forest”), and the
bootstrap sampling of variables at each split:

1. Take a bootstrap (with replacement) subsample
from the records.

2. For the first split, sample p < P variables at
random without replacement.

3. For each of the sampled variables
Xj(1), Xj(2), ..., Xj(p), apply the splitting
algorithm:

a. For each value sj(k) of Xj(k):

i. Split the records in partition
A, with X < s as one
partition and the remaining
records where Xj(k) ≥ sj(k)

as another partition.

ii. Measure the homogeneity of
classes within each
subpartition of A.

b. Select the value of sj(k) that produces
maximum within-partition
homogeneity of class.

4. Select the variable Xj(k) and the split value
sj(k) that produces maximum within-partition
homogeneity of class.

5. Proceed to the next split and repeat the previous
steps, starting with step 2.

6. Continue with additional splits, following the
same procedure until the tree is grown.

j(k) j(k)

7. Go back to step 1, take another bootstrap
subsample, and start the process over again.

How many variables to sample at each step? A rule of
thumb is to choose √P where P is the number of
predictor variables. The package randomForest
implements the random forest in R. The following
applies this package to the loan data (see “K-Nearest
Neighbors” for a description of the data):

rf <- randomForest(outcome ~ borrower_score +

payment_inc_ratio,

 data=loan3000)

rf

Call:

 randomForest(formula = outcome ~ borrower_score

+ payment_inc_ratio,

 data = loan3000)

 Type of random forest:

classification

 Number of trees: 500

No. of variables tried at each split: 1

 OOB estimate of error rate: 39.17%

Confusion matrix:

 default paid off class.error

default 873 572 0.39584775

paid off 603 952 0.38778135

In Python, we use the method
sklearn.ensemble.RandomForestClassifi

er:

predictors = ['borrower_score',

'payment_inc_ratio']

outcome = 'outcome'

X = loan3000[predictors]

y = loan3000[outcome]

rf = RandomForestClassifier(n_estimators=500,

random_state=1, oob_score=True)

rf.fit(X, y)

By default, 500 trees are trained. Since there are only
two variables in the predictor set, the algorithm
randomly selects the variable on which to split at each
stage (i.e., a bootstrap subsample of size 1).

The out-of-bag (OOB) estimate of error is the error rate
for the trained models, applied to the data left out of the
training set for that tree. Using the output from the
model, the OOB error can be plotted versus the number
of trees in the random forest in R:

error_df =

data.frame(error_rate=rf$err.rate[,'OOB'],

 num_trees=1:rf$ntree)

ggplot(error_df, aes(x=num_trees, y=error_rate))

+

 geom_line()

The RandomForestClassifier implementation
has no easy way to get out-of-bag estimates as a
function of number of trees in the random forest. We can
train a sequence of classifiers with an increasing number
of trees and keep track of the oob_score_ values.
This method is, however, not efficient:

n_estimator = list(range(20, 510, 5))

oobScores = []

for n in n_estimator:

 rf = RandomForestClassifier(n_estimators=n,

criterion='entropy',

 max_depth=5,

random_state=1, oob_score=True)

 rf.fit(X, y)

 oobScores.append(rf.oob_score_)

df = pd.DataFrame({ 'n': n_estimator,

'oobScore': oobScores })

df.plot(x='n', y='oobScore')

The result is shown in Figure 6-6. The error rate rapidly
decreases from over 0.44 before stabilizing around
0.385. The predicted values can be obtained from the
predict function and plotted as follows in R:

pred <- predict(rf, prob=TRUE)

rf_df <- cbind(loan3000, pred = pred)

ggplot(data=rf_df, aes(x=borrower_score,

y=payment_inc_ratio,

 shape=pred, color=pred,

size=pred)) +

 geom_point(alpha=.8) +

 scale_color_manual(values = c('paid

off'='#b8e186', 'default'='#d95f02')) +

 scale_shape_manual(values = c('paid off'=0,

'default'=1)) +

 scale_size_manual(values = c('paid off'=0.5,

'default'=2))

In Python, we can create a similar plot as follows:

predictions = X.copy()

predictions['prediction'] = rf.predict(X)

predictions.head()

fig, ax = plt.subplots(figsize=(4, 4))

predictions.loc[predictions.prediction=='paid

off'].plot(

 x='borrower_score', y='payment_inc_ratio',

style='.',

 markerfacecolor='none',

markeredgecolor='C1', ax=ax)

predictions.loc[predictions.prediction=='default

'].plot(

 x='borrower_score', y='payment_inc_ratio',

style='o',

 markerfacecolor='none',

markeredgecolor='C0', ax=ax)

ax.legend(['paid off', 'default']);

ax.set_xlim(0, 1)

ax.set_ylim(0, 25)

ax.set_xlabel('borrower_score')

ax.set_ylabel('payment_inc_ratio')

Figure 6-6. An example of the improvement in accuracy of the random
forest with the addition of more trees

The plot, shown in Figure 6-7, is quite revealing about
the nature of the random forest.

The random forest method is a “black box” method. It
produces more accurate predictions than a simple tree,
but the simple tree’s intuitive decision rules are lost. The
random forest predictions are also somewhat noisy: note
that some borrowers with a very high score, indicating
high creditworthiness, still end up with a prediction of
default. This is a result of some unusual records in the
data and demonstrates the danger of overfitting by the
random forest (see “Bias-Variance Trade-off”).

Figure 6-7. The predicted outcomes from the random forest applied to the
loan default data

Variable Importance
The power of the random forest algorithm shows itself
when you build predictive models for data with many
features and records. It has the ability to automatically
determine which predictors are important and discover
complex relationships between predictors corresponding
to interaction terms (see “Interactions and Main
Effects”). For example, fit a model to the loan default
data with all columns included. The following shows
this in R:

rf_all <- randomForest(outcome ~ .,

data=loan_data, importance=TRUE)

rf_all

Call:

 randomForest(formula = outcome ~ ., data =

loan_data, importance = TRUE)

 Type of random forest:

classification

 Number of trees: 500

No. of variables tried at each split: 4

 OOB estimate of error rate: 33.79%

Confusion matrix:

 paid off default class.error

paid off 14676 7995 0.3526532

default 7325 15346 0.3231000

And in Python:

predictors = ['loan_amnt', 'term', 'annual_inc',

'dti', 'payment_inc_ratio',

 'revol_bal', 'revol_util',

'purpose', 'delinq_2yrs_zero',

 'pub_rec_zero', 'open_acc',

'grade', 'emp_length', 'purpose_',

 'home_', 'emp_len_',

'borrower_score']

outcome = 'outcome'

X = pd.get_dummies(loan_data[predictors],

drop_first=True)

y = loan_data[outcome]

rf_all =

RandomForestClassifier(n_estimators=500,

random_state=1)

rf_all.fit(X, y)

The argument importance=TRUE requests that the
randomForest store additional information about the
importance of different variables. The function
varImpPlot will plot the relative performance of the
variables (relative to permuting that variable):

varImpPlot(rf_all, type=1)

varImpPlot(rf_all, type=2)

mean decrease in accuracy

mean decrease in node impurity

In Python, the RandomForestClassifier collects
information about feature importance during training
and makes it available with the field
feature_importances_:

importances = rf_all.feature_importances_

The “Gini decrease” is available as the
feature_importance_ property of the fitted

classifier. Accuracy decrease, however, is not available
out of the box for Python. We can calculate it (scores)
using the following code:

rf = RandomForestClassifier(n_estimators=500)

scores = defaultdict(list)

cross-validate the scores on a number of

different random splits of the data

for _ in range(3):

 train_X, valid_X, train_y, valid_y =

train_test_split(X, y, test_size=0.3)

 rf.fit(train_X, train_y)

 acc = metrics.accuracy_score(valid_y,

rf.predict(valid_X))

 for column in X.columns:

 X_t = valid_X.copy()

 X_t[column] =

np.random.permutation(X_t[column].values)

 shuff_acc =

metrics.accuracy_score(valid_y, rf.predict(X_t))

 scores[column].append((acc-

shuff_acc)/acc)

The result is shown in Figure 6-8. A similar graph can
be created with this Python code:

df = pd.DataFrame({

 'feature': X.columns,

 'Accuracy decrease':

[np.mean(scores[column]) for column in

X.columns],

 'Gini decrease':

rf_all.feature_importances_,

})

df = df.sort_values('Accuracy decrease')

fig, axes = plt.subplots(ncols=2, figsize=(8,

4.5))

ax = df.plot(kind='barh', x='feature',

y='Accuracy decrease',

 legend=False, ax=axes[0])

ax.set_ylabel('')

ax = df.plot(kind='barh', x='feature', y='Gini

decrease',

 legend=False, ax=axes[1])

ax.set_ylabel('')

ax.get_yaxis().set_visible(False)

There are two ways to measure variable importance:

By the decrease in accuracy of the model if the
values of a variable are randomly permuted
(type=1). Randomly permuting the values has
the effect of removing all predictive power for
that variable. The accuracy is computed from
the out-of-bag data (so this measure is
effectively a cross-validated estimate).

By the mean decrease in the Gini impurity
score (see “Measuring Homogeneity or
Impurity”) for all of the nodes that were split on
a variable (type=2). This measures how much
including that variable improves the purity of
the nodes. This measure is based on the training
set and is therefore less reliable than a measure
calculated on out-of-bag data.

Figure 6-8. The importance of variables for the full model fit to the loan
data

The top and bottom panels of Figure 6-8 show variable
importance according to the decrease in accuracy and in
Gini impurity, respectively. The variables in both panels
are ranked by the decrease in accuracy. The variable
importance scores produced by these two measures are
quite different.

Since the accuracy decrease is a more reliable metric,
why should we use the Gini impurity decrease measure?
By default, randomForest computes only this Gini
impurity: Gini impurity is a byproduct of the algorithm,
whereas model accuracy by variable requires extra
computations (randomly permuting the data and
predicting this data). In cases where computational
complexity is important, such as in a production setting
where thousands of models are being fit, it may not be
worth the extra computational effort. In addition, the
Gini decrease sheds light on which variables the random
forest is using to make its splitting rules (recall that this
information, readily visible in a simple tree, is
effectively lost in a random forest).

Hyperparameters
The random forest, as with many statistical machine
learning algorithms, can be considered a black-box
algorithm with knobs to adjust how the box works.
These knobs are called hyperparameters, which are
parameters that you need to set before fitting a model;
they are not optimized as part of the training process.

While traditional statistical models require choices (e.g.,
the choice of predictors to use in a regression model),
the hyperparameters for random forest are more critical,
especially to avoid overfitting. In particular, the two
most important hyperparameters for the random forest
are:

nodesize/min_samples_leaf

The minimum size for terminal nodes (leaves in the
tree). The default is 1 for classification and 5 for
regression in R. The scikit-learn
implementation in Python uses a default of 1 for
both.

maxnodes/max_leaf_nodes

The maximum number of nodes in each decision
tree. By default, there is no limit and the largest tree
will be fit subject to the constraints of nodesize.
Note that in Python, you specify the maximum
number of terminal nodes. The two parameters are
related:

maxnodes = 2max _ leaf _ nodes − 1

It may be tempting to ignore these parameters and
simply go with the default values. However, using the
defaults may lead to overfitting when you apply the
random forest to noisy data. When you increase
nodesize/min_samples_leaf or set
maxnodes/max_leaf_nodes, the algorithm will fit
smaller trees and is less likely to create spurious
predictive rules. Cross-validation (see “Cross-

Validation”) can be used to test the effects of setting
different values for hyperparameters.

KEY IDEAS

Ensemble models improve model accuracy by combining the results
from many models.

Bagging is a particular type of ensemble model based on fitting many
models to bootstrapped samples of the data and averaging the models.

Random forest is a special type of bagging applied to decision trees. In
addition to resampling the data, the random forest algorithm samples
the predictor variables when splitting the trees.

A useful output from the random forest is a measure of variable
importance that ranks the predictors in terms of their contribution to
model accuracy.

The random forest has a set of hyperparameters that should be tuned
using cross-validation to avoid overfitting.

Boosting
Ensemble models have become a standard tool for
predictive modeling. Boosting is a general technique to
create an ensemble of models. It was developed around
the same time as bagging (see “Bagging and the
Random Forest”). Like bagging, boosting is most
commonly used with decision trees. Despite their
similarities, boosting takes a very different approach—
one that comes with many more bells and whistles. As a
result, while bagging can be done with relatively little
tuning, boosting requires much greater care in its
application. If these two methods were cars, bagging
could be considered a Honda Accord (reliable and
steady), whereas boosting could be considered a Porsche
(powerful but requires more care).

In linear regression models, the residuals are often
examined to see if the fit can be improved (see “Partial

Residual Plots and Nonlinearity”). Boosting takes this
concept much further and fits a series of models, in
which each successive model seeks to minimize the
error of the previous model. Several variants of the
algorithm are commonly used: Adaboost, gradient
boosting, and stochastic gradient boosting. The latter,
stochastic gradient boosting, is the most general and
widely used. Indeed, with the right choice of parameters,
the algorithm can emulate the random forest.

KEY TERMS FOR BOOSTING

Ensemble

Forming a prediction by using a collection of models.

Synonym

Model averaging

Boosting

A general technique to fit a sequence of models by giving more weight to the
records with large residuals for each successive round.

Adaboost

An early version of boosting that reweights the data based on the residuals.

Gradient boosting

A more general form of boosting that is cast in terms of minimizing a cost
function.

Stochastic gradient boosting

The most general algorithm for boosting that incorporates resampling of
records and columns in each round.

Regularization

A technique to avoid overfitting by adding a penalty term to the cost function
on the number of parameters in the model.

Hyperparameters

Parameters that need to be set before fitting the algorithm.

The Boosting Algorithm
There are various boosting algorithms, and the basic
idea behind all of them is essentially the same. The
easiest to understand is Adaboost, which proceeds as
follows:

1. Initialize M, the maximum number of models to
be fit, and set the iteration counter m = 1.
Initialize the observation weights wi = 1/N

for i = 1, 2, ..., N . Initialize the ensemble
model F̂0 = 0.

2. Using the observation weights w1, w2, ..., wN ,
train a model f̂m that minimizes the weighted
error em defined by summing the weights for
the misclassified observations.

3. Add the model to the ensemble:
F̂m = F̂m−1 + αmf̂m where αm = log1−em

em
.

4. Update the weights w1, w2, ..., wN so that the
weights are increased for the observations that
were misclassified. The size of the increase
depends on αm, with larger values of αm

leading to bigger weights.

5. Increment the model counter m = m + 1. If
m ≤ M , go to step 2.

The boosted estimate is given by:

F̂ = α1f̂1 + α2f̂2 + ⋯ + αM f̂M

By increasing the weights for the observations that were
misclassified, the algorithm forces the models to train
more heavily on the data for which it performed poorly.

The factor αm ensures that models with lower error
have a bigger weight.

Gradient boosting is similar to Adaboost but casts the
problem as an optimization of a cost function. Instead of
adjusting weights, gradient boosting fits models to a
pseudo-residual, which has the effect of training more
heavily on the larger residuals. In the spirit of the
random forest, stochastic gradient boosting adds
randomness to the algorithm by sampling observations
and predictor variables at each stage.

XGBoost
The most widely used public domain software for
boosting is XGBoost, an implementation of stochastic
gradient boosting originally developed by Tianqi Chen
and Carlos Guestrin at the University of Washington. A
computationally efficient implementation with many
options, it is available as a package for most major data
science software languages. In R, XGBoost is available
as the package xgboost and with the same name also
for Python.

The method xgboost has many parameters that can,
and should, be adjusted (see “Hyperparameters and
Cross-Validation”). Two very important parameters are
subsample, which controls the fraction of
observations that should be sampled at each iteration,
and eta, a shrinkage factor applied to αm in the
boosting algorithm (see “The Boosting Algorithm”).
Using subsample makes boosting act like the random

https://xgboost.readthedocs.io/

forest except that the sampling is done without
replacement. The shrinkage parameter eta is helpful to
prevent overfitting by reducing the change in the
weights (a smaller change in the weights means the
algorithm is less likely to overfit to the training set). The
following applies xgboost in R to the loan data with
just two predictor variables:

predictors <- data.matrix(loan3000[,

c('borrower_score', 'payment_inc_ratio')])

label <- as.numeric(loan3000[,'outcome']) - 1

xgb <- xgboost(data=predictors, label=label,

objective="binary:logistic",

 params=list(subsample=0.63,

eta=0.1), nrounds=100)

[1] train-error:0.358333

[2] train-error:0.346333

[3] train-error:0.347333

...

[99] train-error:0.239333

[100] train-error:0.241000

Note that xgboost does not support the formula
syntax, so the predictors need to be converted to a
data.matrix and the response needs to be converted
to 0/1 variables. The objective argument tells
xgboost what type of problem this is; based on this,
xgboost will choose a metric to optimize.

In Python, xgboost has two different interfaces: a
scikit-learn API and a more functional interface
like in R. To be consistent with other scikit-learn
methods, some parameters were renamed. For example,

eta is renamed to learning_rate; using eta will
not fail, but it will not have the desired effect:

predictors = ['borrower_score',

'payment_inc_ratio']

outcome = 'outcome'

X = loan3000[predictors]

y = loan3000[outcome]

xgb = XGBClassifier(objective='binary:logistic',

subsample=0.63)

xgb.fit(X, y)

--

XGBClassifier(base_score=0.5, booster='gbtree',

colsample_bylevel=1,

 colsample_bynode=1, colsample_bytree=1,

gamma=0, learning_rate=0.1,

 max_delta_step=0, max_depth=3,

min_child_weight=1, missing=None,

 n_estimators=100, n_jobs=1, nthread=None,

objective='binary:logistic',

 random_state=0, reg_alpha=0,

reg_lambda=1, scale_pos_weight=1, seed=None,

 silent=None, subsample=0.63, verbosity=1)

The predicted values can be obtained from the
predict function in R and, since there are only two
variables, plotted versus the predictors:

pred <- predict(xgb, newdata=predictors)

xgb_df <- cbind(loan3000, pred_default = pred >

0.5, prob_default = pred)

ggplot(data=xgb_df, aes(x=borrower_score,

y=payment_inc_ratio,

 color=pred_default,

shape=pred_default, size=pred_default)) +

 geom_point(alpha=.8) +

 scale_color_manual(values =

c('FALSE'='#b8e186', 'TRUE'='#d95f02')) +

 scale_shape_manual(values =

c('FALSE'=0, 'TRUE'=1)) +

 scale_size_manual(values =

c('FALSE'=0.5, 'TRUE'=2))

The same figure can be created in Python using the
following code:

fig, ax = plt.subplots(figsize=(6, 4))

xgb_df.loc[xgb_df.prediction=='paid off'].plot(

 x='borrower_score', y='payment_inc_ratio',

style='.',

 markerfacecolor='none',

markeredgecolor='C1', ax=ax)

xgb_df.loc[xgb_df.prediction=='default'].plot(

 x='borrower_score', y='payment_inc_ratio',

style='o',

 markerfacecolor='none',

markeredgecolor='C0', ax=ax)

ax.legend(['paid off', 'default']);

ax.set_xlim(0, 1)

ax.set_ylim(0, 25)

ax.set_xlabel('borrower_score')

ax.set_ylabel('payment_inc_ratio')

The result is shown in Figure 6-9. Qualitatively, this is
similar to the predictions from the random forest; see
Figure 6-7. The predictions are somewhat noisy in that
some borrowers with a very high borrower score still
end up with a prediction of default.

Figure 6-9. The predicted outcomes from XGBoost applied to the loan
default data

Regularization: Avoiding Overfitting
Blind application of xgboost can lead to unstable
models as a result of overfitting to the training data. The
problem with overfitting is twofold:

The accuracy of the model on new data not in
the training set will be degraded.

The predictions from the model are highly
variable, leading to unstable results.

Any modeling technique is potentially prone to
overfitting. For example, if too many variables are
included in a regression equation, the model may end up
with spurious predictions. However, for most statistical
techniques, overfitting can be avoided by a judicious
selection of predictor variables. Even the random forest
generally produces a reasonable model without tuning
the parameters.

This, however, is not the case for xgboost. Fit
xgboost to the loan data for a training set with all of
the variables included in the model. In R, you can do
this as follows:

seed <- 400820

predictors <- data.matrix(loan_data[, -

which(names(loan_data) %in%

'outcome')])

label <- as.numeric(loan_data$outcome) - 1

test_idx <- sample(nrow(loan_data), 10000)

xgb_default <- xgboost(data=predictors[-

test_idx,], label=label[-test_idx],

objective='binary:logistic', nrounds=250,

verbose=0)

pred_default <- predict(xgb_default,

predictors[test_idx,])

error_default <- abs(label[test_idx] -

pred_default) > 0.5

xgb_default$evaluation_log[250,]

mean(error_default)

-

iter train_error

1: 250 0.133043

[1] 0.3529

We use the function train_test_split in Python
to split the data set into training and test sets:

predictors = ['loan_amnt', 'term', 'annual_inc',

'dti', 'payment_inc_ratio',

 'revol_bal', 'revol_util',

'purpose', 'delinq_2yrs_zero',

 'pub_rec_zero', 'open_acc',

'grade', 'emp_length', 'purpose_',

 'home_', 'emp_len_',

'borrower_score']

outcome = 'outcome'

X = pd.get_dummies(loan_data[predictors],

drop_first=True)

y = pd.Series([1 if o == 'default' else 0 for o

in loan_data[outcome]])

train_X, valid_X, train_y, valid_y =

train_test_split(X, y, test_size=10000)

xgb_default =

XGBClassifier(objective='binary:logistic',

n_estimators=250,

 max_depth=6,

reg_lambda=0, learning_rate=0.3,

 subsample=1)

xgb_default.fit(train_X, train_y)

pred_default =

xgb_default.predict_proba(valid_X)[:, 1]

error_default = abs(valid_y - pred_default) >

0.5

print('default: ', np.mean(error_default))

The test set consists of 10,000 randomly sampled
records from the full data, and the training set consists
of the remaining records. Boosting leads to an error rate
of only 13.3% for the training set. The test set, however,
has a much higher error rate of 35.3%. This is a result of
overfitting: while boosting can explain the variability in
the training set very well, the prediction rules do not
apply to new data.

Boosting provides several parameters to avoid
overfitting, including the parameters eta (or
learning_rate) and subsample (see
“XGBoost”). Another approach is regularization, a
technique that modifies the cost function in order to
penalize the complexity of the model. Decision trees are
fit by minimizing cost criteria such as Gini’s impurity
score (see “Measuring Homogeneity or Impurity”). In
xgboost, it is possible to modify the cost function by
adding a term that measures the complexity of the
model.

There are two parameters in xgboost to regularize the
model: alpha and lambda, which correspond to
Manhattan distance (L1-regularization) and squared
Euclidean distance (L2-regularization), respectively (see

“Distance Metrics”). Increasing these parameters will
penalize more complex models and reduce the size of
the trees that are fit. For example, see what happens if
we set lambda to 1,000 in R:

xgb_penalty <- xgboost(data=predictors[-

test_idx,], label=label[-test_idx],

 params=list(eta=.1,

subsample=.63, lambda=1000),

objective='binary:logistic', nrounds=250,

verbose=0)

pred_penalty <- predict(xgb_penalty,

predictors[test_idx,])

error_penalty <- abs(label[test_idx] -

pred_penalty) > 0.5

xgb_penalty$evaluation_log[250,]

mean(error_penalty)

-

iter train_error

1: 250 0.30966

[1] 0.3286

In the scikit-learn API, the parameters are called
reg_alpha and reg_lambda:

xgb_penalty =

XGBClassifier(objective='binary:logistic',

n_estimators=250,

 max_depth=6,

reg_lambda=1000, learning_rate=0.1,

 subsample=0.63)

xgb_penalty.fit(train_X, train_y)

pred_penalty =

xgb_penalty.predict_proba(valid_X)[:, 1]

error_penalty = abs(valid_y - pred_penalty) >

0.5

print('penalty: ', np.mean(error_penalty))

Now the training error is only slightly lower than the
error on the test set.

The predict method in R offers a convenient
argument, ntreelimit, that forces only the first i
trees to be used in the prediction. This lets us directly
compare the in-sample versus out-of-sample error rates
as more models are included:

error_default <- rep(0, 250)

error_penalty <- rep(0, 250)

for(i in 1:250){

 pred_def <- predict(xgb_default,

predictors[test_idx,], ntreelimit=i)

 error_default[i] <- mean(abs(label[test_idx] -

pred_def) >= 0.5)

 pred_pen <- predict(xgb_penalty,

predictors[test_idx,], ntreelimit=i)

 error_penalty[i] <- mean(abs(label[test_idx] -

pred_pen) >= 0.5)

}

In Python, we can call the predict_proba method
with the ntree_limit argument:

results = []

for i in range(1, 250):

 train_default =

xgb_default.predict_proba(train_X,

ntree_limit=i)[:, 1]

 train_penalty =

xgb_penalty.predict_proba(train_X,

ntree_limit=i)[:, 1]

 pred_default =

xgb_default.predict_proba(valid_X,

ntree_limit=i)[:, 1]

 pred_penalty =

xgb_penalty.predict_proba(valid_X,

ntree_limit=i)[:, 1]

 results.append({

 'iterations': i,

 'default train': np.mean(abs(train_y -

train_default) > 0.5),

 'penalty train': np.mean(abs(train_y -

train_penalty) > 0.5),

 'default test': np.mean(abs(valid_y -

pred_default) > 0.5),

 'penalty test': np.mean(abs(valid_y -

pred_penalty) > 0.5),

 })

results = pd.DataFrame(results)

results.head()

The output from the model returns the error for the
training set in the component
xgb_default$evaluation_log. By combining
this with the out-of-sample errors, we can plot the errors
versus the number of iterations:

errors <- rbind(xgb_default$evaluation_log,

 xgb_penalty$evaluation_log,

 ata.frame(iter=1:250,

train_error=error_default),

 data.frame(iter=1:250,

train_error=error_penalty))

errors$type <- rep(c('default train', 'penalty

train',

 'default test', 'penalty

test'), rep(250, 4))

ggplot(errors, aes(x=iter, y=train_error,

group=type)) +

 geom_line(aes(linetype=type, color=type))

We can use the pandas plot method to create the line
graph. The axis returned from the first plot allows us to

overlay additional lines onto the same graph. This is a
pattern that many of Python’s graph packages support:

ax = results.plot(x='iterations', y='default

test')

results.plot(x='iterations', y='penalty test',

ax=ax)

results.plot(x='iterations', y='default train',

ax=ax)

results.plot(x='iterations', y='penalty train',

ax=ax)

The result, displayed in Figure 6-10, shows how the
default model steadily improves the accuracy for the
training set but actually gets worse for the test set. The
penalized model does not exhibit this behavior.

Figure 6-10. The error rate of the default XGBoost versus a penalized
version of XGBoost

RIDGE REGRESSION AND THE LASSO
Adding a penalty on the complexity of a model to help avoid overfitting dates back
to the 1970s. Least squares regression minimizes the residual sum of squares
(RSS); see “Least Squares”. Ridge regression minimizes the sum of squared
residuals plus a penalty term that is a function of the number and size of the
coefficients:

n

∑
i=1

(Yi − b̂0 − b̂1Xi − ⋯ b̂Xp)
2

+ λ(b̂2
1 + ⋯ + b̂2

p)

The value of λ determines how much the coefficients are penalized; larger values
produce models that are less likely to overfit the data. The Lasso is similar, except
that it uses Manhattan distance instead of Euclidean distance as a penalty term:

n

∑
i=1

(Yi − b̂0 − b̂1Xi − ⋯ b̂Xp)
2

+ α(b̂1 + ⋯ + b̂p)

The xgboost parameters lambda (reg_lambda) and alpha (reg_alpha)
are acting in a similar manner.

Using Euclidean distance is also known as L2 regularization, and using
Manhattan distance as L1 regularization. The xgboost parameters lambda
(reg_lambda) and alpha (reg_alpha) are acting in a similar manner.

Hyperparameters and Cross-Validation
xgboost has a daunting array of hyperparameters; see
“XGBoost Hyperparameters” for a discussion. As seen
in “Regularization: Avoiding Overfitting”, the specific
choice can dramatically change the model fit. Given a
huge combination of hyperparameters to choose from,
how should we be guided in our choice? A standard
solution to this problem is to use cross-validation; see
“Cross-Validation”. Cross-validation randomly splits up
the data into K different groups, also called folds. For
each fold, a model is trained on the data not in the fold
and then evaluated on the data in the fold. This yields a
measure of accuracy of the model on out-of-sample∣ ∣ ∣ ∣

data. The best set of hyperparameters is the one given by
the model with the lowest overall error as computed by
averaging the errors from each of the folds.

To illustrate the technique, we apply it to parameter
selection for xgboost. In this example, we explore two
parameters: the shrinkage parameter eta
(learning_rate—see “XGBoost”) and the
maximum depth of trees max_depth. The parameter
max_depth is the maximum depth of a leaf node to
the root of the tree with a default value of six. This gives
us another way to control overfitting: deep trees tend to
be more complex and may overfit the data. First we set
up the folds and parameter list. In R, this is done as
follows:

N <- nrow(loan_data)

fold_number <- sample(1:5, N, replace=TRUE)

params <- data.frame(eta = rep(c(.1, .5, .9),

3),

 max_depth = rep(c(3, 6,

12), rep(3,3)))

Now we apply the preceding algorithm to compute the
error for each model and each fold using five folds:

error <- matrix(0, nrow=9, ncol=5)

for(i in 1:nrow(params)){

 for(k in 1:5){

 fold_idx <- (1:N)[fold_number == k]

 xgb <- xgboost(data=predictors[-fold_idx,],

label=label[-fold_idx],

 params=list(eta=params[i,

'eta'],

max_depth=params[i, 'max_depth']),

 objective='binary:logistic',

nrounds=100, verbose=0)

 pred <- predict(xgb, predictors[fold_idx,])

 error[i, k] <- mean(abs(label[fold_idx] -

pred) >= 0.5)

 }

}

In the following Python code, we create all possible
combinations of hyperparameters and fit and evaluate
models with each combination:

idx = np.random.choice(range(5), size=len(X),

replace=True)

error = []

for eta, max_depth in product([0.1, 0.5, 0.9],

[3, 6, 9]):

 xgb =

XGBClassifier(objective='binary:logistic',

n_estimators=250,

 max_depth=max_depth,

learning_rate=eta)

 cv_error = []

 for k in range(5):

 fold_idx = idx == k

 train_X = X.loc[~fold_idx]; train_y =

y[~fold_idx]

 valid_X = X.loc[fold_idx]; valid_y =

y[fold_idx]

 xgb.fit(train_X, train_y)

 pred = xgb.predict_proba(valid_X)[:, 1]

 cv_error.append(np.mean(abs(valid_y -

pred) > 0.5))

 error.append({

 'eta': eta,

 'max_depth': max_depth,

 'avg_error': np.mean(cv_error)

 })

 print(error[-1])

errors = pd.DataFrame(error)

We use the function itertools.product from
the Python standard library to create all possible
combinations of the two hyperparameters.

Since we are fitting 45 total models, this can take a
while. The errors are stored as a matrix with the models
along the rows and folds along the columns. Using the
function rowMeans, we can compare the error rate for
the different parameter sets:

avg_error <- 100 * round(rowMeans(error), 4)

cbind(params, avg_error)

 eta max_depth avg_error

1 0.1 3 32.90

2 0.5 3 33.43

3 0.9 3 34.36

4 0.1 6 33.08

5 0.5 6 35.60

6 0.9 6 37.82

7 0.1 12 34.56

8 0.5 12 36.83

9 0.9 12 38.18

Cross-validation suggests that using shallower trees with
a smaller value of eta/learning_rate yields more
accurate results. Since these models are also more
stable, the best parameters to use are eta=0.1 and
max_depth=3 (or possibly max_depth=6).

XGBOOST HYPERPARAMETERS
The hyperparameters for xgboost are primarily used to balance overfitting with
the accuracy and computational complexity. For a complete discussion of the
parameters, refer to the xgboost documentation.

eta/learning_rate

The shrinkage factor between 0 and 1 applied to α in the boosting algorithm.
The default is 0.3, but for noisy data, smaller values are recommended (e.g.,
0.1). In Python, the default value is 0.1.

nrounds/n_estimators

The number of boosting rounds. If eta is set to a small value, it is important
to increase the number of rounds since the algorithm learns more slowly. As
long as some parameters are included to prevent overfitting, having more
rounds doesn’t hurt.

max_depth

The maximum depth of the tree (the default is 6). In contrast to the random
forest, which fits very deep trees, boosting usually fits shallow trees. This has
the advantage of avoiding spurious complex interactions in the model that
can arise from noisy data. In Python, the default is 3.

subsample and colsample_bytree

Fraction of the records to sample without replacement and the fraction of
predictors to sample for use in fitting the trees. These parameters, which are
similar to those in random forests, help avoid overfitting. The default is 1.0.

lambda/reg_lambda and alpha/reg_alpha

The regularization parameters to help control overfitting (see “Regularization:
Avoiding Overfitting”). Default values for Python are reg_lambda=1 and
reg_alpha=0. In R, both values have default of 0.

https://oreil.ly/xC_OY

KEY IDEAS

Boosting is a class of ensemble models based on fitting a sequence of
models, with more weight given to records with large errors in
successive rounds.

Stochastic gradient boosting is the most general type of boosting and
offers the best performance. The most common form of stochastic
gradient boosting uses tree models.

XGBoost is a popular and computationally efficient software package
for stochastic gradient boosting; it is available in all common languages
used in data science.

Boosting is prone to overfitting the data, and the hyperparameters need
to be tuned to avoid this.

Regularization is one way to avoid overfitting by including a penalty
term on the number of parameters (e.g., tree size) in a model.

Cross-validation is especially important for boosting due to the large
number of hyperparameters that need to be set.

Summary
This chapter has described two classification and
prediction methods that “learn” flexibly and locally
from data, rather than starting with a structural model
(e.g., a linear regression) that is fit to the entire data set.
K-Nearest Neighbors is a simple process that looks
around at similar records and assigns their majority class
(or average value) to the record being predicted. Trying
various cutoff (split) values of predictor variables, tree
models iteratively divide the data into sections and
subsections that are increasingly homogeneous with
respect to class. The most effective split values form a
path, and also a “rule,” to a classification or prediction.
Tree models are a very powerful and popular predictive
tool, often outperforming other methods. They have
given rise to various ensemble methods (random forests,
boosting, bagging) that sharpen the predictive power of
trees.

1 This and subsequent sections in this chapter © 2020 Datastats, LLC,
Peter Bruce, Andrew Bruce, and Peter Gedeck; used with
permission.

2 For this example, we take the first row in the loan200 data set as
the newloan and exclude it from the data set for training.

3 The term CART is a registered trademark of Salford Systems related
to their specific implementation of tree models.

4 The term random forest is a trademark of Leo Breiman and Adele
Cutler and licensed to Salford Systems. There is no standard
nontrademark name, and the term random forest is as synonymous
with the algorithm as Kleenex is with facial tissues.

Chapter 7.
Unsupervised Learning

The term unsupervised learning refers to statistical
methods that extract meaning from data without training
a model on labeled data (data where an outcome of
interest is known). In Chapters 4 to 6, the goal is to
build a model (set of rules) to predict a response
variable from a set of predictor variables. This is
supervised learning. In contrast, unsupervised learning
also constructs a model of the data, but it does not
distinguish between a response variable and predictor
variables.

Unsupervised learning can be used to achieve different
goals. In some cases, it can be used to create a predictive
rule in the absence of a labeled response. Clustering
methods can be used to identify meaningful groups of
data. For example, using the web clicks and
demographic data of a user on a website, we may be
able to group together different types of users. The
website could then be personalized to these different
types.

In other cases, the goal may be to reduce the dimension
of the data to a more manageable set of variables. This
reduced set could then be used as input into a predictive
model, such as regression or classification. For example,
we may have thousands of sensors to monitor an

industrial process. By reducing the data to a smaller set
of features, we may be able to build a more powerful
and interpretable model to predict process failure than
could be built by including data streams from thousands
of sensors.

Finally, unsupervised learning can be viewed as an
extension of the exploratory data analysis (see
Chapter 1) to situations in which you are confronted
with a large number of variables and records. The aim is
to gain insight into a set of data and how the different
variables relate to each other. Unsupervised techniques
allow you to sift through and analyze these variables and
discover relationships.

UNSUPERVISED LEARNING AND
PREDICTION

Unsupervised learning can play an important role in
prediction, both for regression and classification problems. In
some cases, we want to predict a category in the absence of
any labeled data. For example, we might want to predict the
type of vegetation in an area from a set of satellite sensory
data. Since we don’t have a response variable to train a model,
clustering gives us a way to identify common patterns and
categorize the regions.

Clustering is an especially important tool for the “cold-start
problem.” In this type of problem, such as launching a new
marketing campaign or identifying potential new types of
fraud or spam, we initially may not have any response to train
a model. Over time, as data is collected, we can learn more
about the system and build a traditional predictive model. But
clustering helps us start the learning process more quickly by
identifying population segments.

Unsupervised learning is also important as a building block
for regression and classification techniques. With big data, if a
small subpopulation is not well represented in the overall
population, the trained model may not perform well for that
subpopulation. With clustering, it is possible to identify and
label subpopulations. Separate models can then be fit to the
different subpopulations. Alternatively, the subpopulation can
be represented with its own feature, forcing the overall model
to explicitly consider subpopulation identity as a predictor.

Principal Components Analysis
Often, variables will vary together (covary), and some
of the variation in one is actually duplicated by variation
in another (e.g., restaurant checks and tips). Principal
components analysis (PCA) is a technique to discover
the way in which numeric variables covary.1

KEY TERMS FOR PRINCIPAL COMPONENTS
ANALYSIS

Principal component

A linear combination of the predictor variables.

Loadings

The weights that transform the predictors into the components.

Synonym

Weights

Screeplot

A plot of the variances of the components, showing the relative importance of
the components, either as explained variance or as proportion of explained
variance.

The idea in PCA is to combine multiple numeric
predictor variables into a smaller set of variables, which
are weighted linear combinations of the original set. The
smaller set of variables, the principal components,
“explains” most of the variability of the full set of
variables, reducing the dimension of the data. The
weights used to form the principal components reveal
the relative contributions of the original variables to the
new principal components.

PCA was first proposed by Karl Pearson. In what was
perhaps the first paper on unsupervised learning,
Pearson recognized that in many problems there is
variability in the predictor variables, so he developed
PCA as a technique to model this variability. PCA can
be viewed as the unsupervised version of linear
discriminant analysis; see“Discriminant Analysis”.

A Simple Example

https://oreil.ly/o4EeC

For two variables, X1 and X2, there are two principal
components Zi (i = 1 or 2):

Zi = wi,1X1 + wi,2X2

The weights (wi,1,wi,2) are known as the component
loadings. These transform the original variables into the
principal components. The first principal component, Z1

, is the linear combination that best explains the total
variation. The second principal component, Z2, is
orthogonal to the first and explains as much of the
remaining variation as it can. (If there were additional
components, each additional one would be orthogonal to
the others.)

NOTE
It is also common to compute principal components on
deviations from the means of the predictor variables, rather
than on the values themselves.

You can compute principal components in R using the
princomp function. The following performs a PCA on
the stock price returns for Chevron (CVX) and
ExxonMobil (XOM):

oil_px <- sp500_px[, c('CVX', 'XOM')]

pca <- princomp(oil_px)

pca$loadings

Loadings:

 Comp.1 Comp.2

CVX -0.747 0.665

XOM -0.665 -0.747

 Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0

In Python, we can use the scikit-learn
implementation sklearn.decomposition.PCA:

pcs = PCA(n_components=2)

pcs.fit(oil_px)

loadings = pd.DataFrame(pcs.components_,

columns=oil_px.columns)

loadings

The weights for CVX and XOM for the first principal
component are –0.747 and –0.665, and for the second
principal component they are 0.665 and –0.747. How to
interpret this? The first principal component is
essentially an average of CVX and XOM, reflecting the
correlation between the two energy companies. The
second principal component measures when the stock
prices of CVX and XOM diverge.

It is instructive to plot the principal components with the
data. Here we create a visualization in R:

loadings <- pca$loadings

ggplot(data=oil_px, aes(x=CVX, y=XOM)) +

 geom_point(alpha=.3) +

 stat_ellipse(type='norm', level=.99) +

 geom_abline(intercept = 0, slope =

loadings[2,1]/loadings[1,1]) +

 geom_abline(intercept = 0, slope =

loadings[2,2]/loadings[1,2])

The following code creates a similar visualization in
Python:

def abline(slope, intercept, ax):

 """Calculate coordinates of a line based on

slope and intercept"""

 x_vals = np.array(ax.get_xlim())

 return (x_vals, intercept + slope * x_vals)

ax = oil_px.plot.scatter(x='XOM', y='CVX',

alpha=0.3, figsize=(4, 4))

ax.set_xlim(-3, 3)

ax.set_ylim(-3, 3)

ax.plot(*abline(loadings.loc[0, 'CVX'] /

loadings.loc[0, 'XOM'], 0, ax),

 '--', color='C1')

ax.plot(*abline(loadings.loc[1, 'CVX'] /

loadings.loc[1, 'XOM'], 0, ax),

 '--', color='C1')

The result is shown in Figure 7-1.

Figure 7-1. The principal components for the stock returns for Chevron
(CVX) and ExxonMobil (XOM)

The dashed lines show the direction of the two principal
components: the first one is along the long axis of the
ellipse, and the second one is along the short axis. You
can see that a majority of the variability in the two stock
returns is explained by the first principal component.
This makes sense since energy stock prices tend to move
as a group.

NOTE
The weights for the first principal component are both
negative, but reversing the sign of all the weights does not
change the principal component. For example, using weights
of 0.747 and 0.665 for the first principal component is
equivalent to the negative weights, just as an infinite line
defined by the origin and 1,1 is the same as one defined by the
origin and –1, –1.

Computing the Principal Components
Going from two variables to more variables is
straightforward. For the first component, simply include
the additional predictor variables in the linear
combination, assigning weights that optimize the
collection of the covariation from all the predictor
variables into this first principal component (covariance
is the statistical term; see “Covariance Matrix”).
Calculation of principal components is a classic
statistical method, relying on either the correlation
matrix of the data or the covariance matrix, and it
executes rapidly, not relying on iteration. As noted
earlier, principal components analysis works only with

numeric variables, not categorical ones. The full process
can be described as follows:

1. In creating the first principal component, PCA
arrives at the linear combination of predictor
variables that maximizes the percent of total
variance explained.

2. This linear combination then becomes the first
“new” predictor, Z .

3. PCA repeats this process, using the same
variables with different weights, to create a
second new predictor, Z . The weighting is
done such that Z and Z are uncorrelated.

4. The process continues until you have as many
new variables, or components, Z as original
variables X .

5. Choose to retain as many components as are
needed to account for most of the variance.

6. The result so far is a set of weights for each
component. The final step is to convert the
original data into new principal component
scores by applying the weights to the original
values. These new scores can then be used as
the reduced set of predictor variables.

Interpreting Principal Components
The nature of the principal components often reveals
information about the structure of the data. There are a
couple of standard visualization displays to help you
glean insight about the principal components. One such
method is a screeplot to visualize the relative
importance of principal components (the name derives

1

2

1 2

i

i

from the resemblance of the plot to a scree slope; here,
the y-axis is the eigenvalue). The following R code
shows an example for a few top companies in the S&P
500:

syms <- c('AAPL', 'MSFT', 'CSCO', 'INTC',

'CVX', 'XOM',

 'SLB', 'COP', 'JPM', 'WFC', 'USB', 'AXP',

'WMT', 'TGT', 'HD', 'COST')

top_sp <- sp500_px[row.names(sp500_px)>='2005-

01-01', syms]

sp_pca <- princomp(top_sp)

screeplot(sp_pca)

The information to create a loading plot from the
scikit-learn result is available in
explained_variance_. Here, we convert it into a
pandas data frame and use it to make a bar chart:

syms = sorted(['AAPL', 'MSFT', 'CSCO', 'INTC',

'CVX', 'XOM', 'SLB', 'COP',

 'JPM', 'WFC', 'USB', 'AXP',

'WMT', 'TGT', 'HD', 'COST'])

top_sp = sp500_px.loc[sp500_px.index >= '2011-

01-01', syms]

sp_pca = PCA()

sp_pca.fit(top_sp)

explained_variance =

pd.DataFrame(sp_pca.explained_variance_)

ax =

explained_variance.head(10).plot.bar(legend=Fals

e, figsize=(4, 4))

ax.set_xlabel('Component')

As seen in Figure 7-2, the variance of the first principal
component is quite large (as is often the case), but the

other top principal components are significant.

Figure 7-2. A screeplot for a PCA of top stocks from the S&P 500

It can be especially revealing to plot the weights of the
top principal components. One way to do this in R is to
use the gather function from the tidyr package in
conjunction with ggplot:

library(tidyr)

loadings <- sp_pca$loadings[,1:5]

loadings$Symbol <- row.names(loadings)

loadings <- gather(loadings, 'Component',

'Weight', -Symbol)

ggplot(loadings, aes(x=Symbol, y=Weight)) +

 geom_bar(stat='identity') +

 facet_grid(Component ~ ., scales='free_y')

Here is the code to create the same visualization in
Python:

loadings = pd.DataFrame(sp_pca.components_[0:5,

:], columns=top_sp.columns)

maxPC = 1.01 *

np.max(np.max(np.abs(loadings.loc[0:5, :])))

f, axes = plt.subplots(5, 1, figsize=(5, 5),

sharex=True)

for i, ax in enumerate(axes):

 pc_loadings = loadings.loc[i, :]

 colors = ['C0' if l > 0 else 'C1' for l in

pc_loadings]

 ax.axhline(color='#888888')

 pc_loadings.plot.bar(ax=ax, color=colors)

 ax.set_ylabel(f'PC{i+1}')

 ax.set_ylim(-maxPC, maxPC)

The loadings for the top five components are shown in
Figure 7-3. The loadings for the first principal
component have the same sign: this is typical for data in

which all the columns share a common factor (in this
case, the overall stock market trend). The second
component captures the price changes of energy stocks
as compared to the other stocks. The third component is
primarily a contrast in the movements of Apple and
CostCo. The fourth component contrasts the movements
of Schlumberger (SLB) to the other energy stocks.
Finally, the fifth component is mostly dominated by
financial companies.

Figure 7-3. The loadings for the top five principal components of stock
price returns

HOW MANY COMPONENTS TO
CHOOSE?

If your goal is to reduce the dimension of the data, you must
decide how many principal components to select. The most
common approach is to use an ad hoc rule to select the
components that explain “most” of the variance. You can do
this visually through the screeplot, as, for example, in
Figure 7-2. Alternatively, you could select the top components
such that the cumulative variance exceeds a threshold, such as
80%. Also, you can inspect the loadings to determine if the
component has an intuitive interpretation. Cross-validation
provides a more formal method to select the number of
significant components (see “Cross-Validation” for more).

Correspondence Analysis
PCA cannot be used for categorical data; however, a
somewhat related technique is correspondence analysis.
The goal is to recognize associations between
categories, or between categorical features. The
similarities between correspondence analysis and
principal components analysis are mainly under the
hood—the matrix algebra for dimension scaling.
Correspondence analysis is used mainly for graphical
analysis of low-dimensional categorical data and is not
used in the same way that PCA is for dimension
reduction as a preparatory step with big data.

The input can be seen as a table, with rows representing
one variable and columns another, and the cells
representing record counts. The output (after some
matrix algebra) is a biplot—a scatterplot with axes
scaled (and with percentages indicating how much

variance is explained by that dimension). The meaning
of the units on the axes is not intuitively connected to
the original data, and the main value of the scatterplot is
to illustrate graphically variables that are associated with
one another (by proximity on the plot). See for example,
Figure 7-4, in which household tasks are arrayed
according to whether they are done jointly or solo
(vertical axis), and whether wife or husband has primary
responsibility (horizontal axis). Correspondence analysis
is many decades old, as is the spirit of this example,
judging by the assignment of tasks.

There are a variety of packages for correspondence
analysis in R. Here, we use the package ca:

ca_analysis <- ca(housetasks)

plot(ca_analysis)

In Python, we can use the prince package, which
implements correspondence analysis using the
scikit-learn API:

ca = prince.CA(n_components=2)

ca = ca.fit(housetasks)

ca.plot_coordinates(housetasks, figsize=(6, 6))

Figure 7-4. Graphical representation of a correspondence analysis of
house task data

KEY IDEAS

Principal components are linear combinations of the predictor variables
(numeric data only).

Principal components are calculated so as to minimize correlation
between components, reducing redundancy.

A limited number of components will typically explain most of the
variance in the outcome variable.

The limited set of principal components can then be used in place of
the (more numerous) original predictors, reducing dimensionality.

A superficially similar technique for categorical data is correspondence
analysis, but it is not useful in a big data context.

Further Reading
For a detailed look at the use of cross-validation in
principal components, see Rasmus Bro, K. Kjeldahl,
A.K. Smilde, and Henk A. L. Kiers, “Cross-Validation
of Component Models: A Critical Look at Current
Methods”, Analytical and Bioanalytical Chemistry 390,
no. 5 (2008).

K-Means Clustering
Clustering is a technique to divide data into different
groups, where the records in each group are similar to
one another. A goal of clustering is to identify
significant and meaningful groups of data. The groups
can be used directly, analyzed in more depth, or passed
as a feature or an outcome to a predictive regression or
classification model. K-means was the first clustering
method to be developed; it is still widely used, owing its

https://oreil.ly/yVryf

popularity to the relative simplicity of the algorithm and
its ability to scale to large data sets.

KEY TERMS FOR K-MEANS CLUSTERING

Cluster

A group of records that are similar.

Cluster mean

The vector of variable means for the records in a cluster.

K

The number of clusters.

K-means divides the data into K clusters by minimizing
the sum of the squared distances of each record to the
mean of its assigned cluster. This is referred to as the
within-cluster sum of squares or within-cluster SS. K-
means does not ensure the clusters will have the same
size but finds the clusters that are the best separated.

NORMALIZATION
It is typical to normalize (standardize) continuous variables by
subtracting the mean and dividing by the standard deviation.
Otherwise, variables with large scale will dominate the
clustering process (see “Standardization (Normalization, z-
Scores)”).

A Simple Example
Start by considering a data set with n records and just
two variables, x and y. Suppose we want to split the
data into K = 4 clusters. This means assigning each
record (xi, yi) to a cluster k. Given an assignment of nk

records to cluster k, the center of the cluster (xk, yk) is
the mean of the points in the cluster:

CLUSTER MEAN
In clustering records with multiple variables (the typical case),
the term cluster mean refers not to a single number but to the
vector of means of the variables.

The sum of squares within a cluster is given by:

SSk = ∑
i∈Cluster k

(xi − xk)2 + (yi − yk)2

K-means finds the assignment of records that minimizes
within-cluster sum of squares across all four clusters
SS1 + SS2 + SS3 + SS4:

4

∑
k=1

SSk

A typical use of clustering is to locate natural, separate
clusters in the data. Another application is to divide the
data into a predetermined number of separate groups,
where clustering is used to ensure the groups are as
different as possible from one another.

For example, suppose we want to divide daily stock
returns into four groups. K-means clustering can be used
to separate the data into the best groupings. Note that
daily stock returns are reported in a fashion that is, in
effect, standardized, so we do not need to normalize the
data. In R, K-means clustering can be performed using

x̄k =
1
nk

∑ xi

ȳk =
1
nk

∑ yi

i ∈
Cluster k

i ∈
Cluster k

the kmeans function. For example, the following finds
four clusters based on two variables—the daily stock
returns for ExxonMobil (XOM) and Chevron (CVX):

df <- sp500_px[row.names(sp500_px)>='2011-01-

01', c('XOM', 'CVX')]

km <- kmeans(df, centers=4)

We use the sklearn.cluster.KMeans method
from scikit-learn in Python:

df = sp500_px.loc[sp500_px.index >= '2011-01-

01', ['XOM', 'CVX']]

kmeans = KMeans(n_clusters=4).fit(df)

The cluster assignment for each record is returned as the
cluster component (R):

> df$cluster <- factor(km$cluster)

> head(df)

 XOM CVX cluster

2011-01-03 0.73680496 0.2406809 2

2011-01-04 0.16866845 -0.5845157 1

2011-01-05 0.02663055 0.4469854 2

2011-01-06 0.24855834 -0.9197513 1

2011-01-07 0.33732892 0.1805111 2

2011-01-10 0.00000000 -0.4641675 1

In scikit-learn, the cluster labels are available in
the labels_ field:

df['cluster'] = kmeans.labels_

df.head()

The first six records are assigned to either cluster 1 or
cluster 2. The means of the clusters are also returned
(R):

> centers <- data.frame(cluster=factor(1:4),

km$centers)

> centers

 cluster XOM CVX

1 1 -0.3284864 -0.5669135

2 2 0.2410159 0.3342130

3 3 -1.1439800 -1.7502975

4 4 0.9568628 1.3708892

In scikit-learn, the cluster centers are available in
the cluster_centers_ field:

centers = pd.DataFrame(kmeans.cluster_centers_,

columns=['XOM', 'CVX'])

centers

Clusters 1 and 3 represent “down” markets, while
clusters 2 and 4 represent “up markets.”

As the K-means algorithm uses randomized starting
points, the results may differ between subsequent runs
and different implementations of the method. In general,
you should check that the fluctuations aren’t too large.

In this example, with just two variables, it is
straightforward to visualize the clusters and their means:

ggplot(data=df, aes(x=XOM, y=CVX, color=cluster,

shape=cluster)) +

 geom_point(alpha=.3) +

 geom_point(data=centers, aes(x=XOM, y=CVX),

size=3, stroke=2)

The seaborn scatterplot function makes it easy
to color (hue) and style (style) the points by a
property:

fig, ax = plt.subplots(figsize=(4, 4))

ax = sns.scatterplot(x='XOM', y='CVX',

hue='cluster', style='cluster',

 ax=ax, data=df)

ax.set_xlim(-3, 3)

ax.set_ylim(-3, 3)

centers.plot.scatter(x='XOM', y='CVX', ax=ax,

s=50, color='black')

The resulting plot, shown in Figure 7-5, shows the
cluster assignments and the cluster means. Note that K-
means will assign records to clusters, even if those
clusters are not well separated (which can be useful if
you need to optimally divide records into groups).

Figure 7-5. The clusters of K-means applied to daily stock returns for
ExxonMobil and Chevron (the cluster centers are highlighted with black

symbols)

K-Means Algorithm
In general, K-means can be applied to a data set with p
variables X1, ...,Xp. While the exact solution to K-
means is computationally very difficult, heuristic
algorithms provide an efficient way to compute a locally
optimal solution.

The algorithm starts with a user-specified K and an
initial set of cluster means and then iterates the
following steps:

1. Assign each record to the nearest cluster mean
as measured by squared distance.

2. Compute the new cluster means based on the
assignment of records.

The algorithm converges when the assignment of
records to clusters does not change.

For the first iteration, you need to specify an initial set
of cluster means. Usually you do this by randomly
assigning each record to one of the K clusters and then
finding the means of those clusters.

Since this algorithm isn’t guaranteed to find the best
possible solution, it is recommended to run the
algorithm several times using different random samples
to initialize the algorithm. When more than one set of
iterations is used, the K-means result is given by the
iteration that has the lowest within-cluster sum of
squares.

The nstart parameter to the R function kmeans
allows you to specify the number of random starts to try.

For example, the following code runs K-means to find 5
clusters using 10 different starting cluster means:

syms <- c('AAPL', 'MSFT', 'CSCO', 'INTC',

'CVX', 'XOM', 'SLB', 'COP',

 'JPM', 'WFC', 'USB', 'AXP', 'WMT',

'TGT', 'HD', 'COST')

df <- sp500_px[row.names(sp500_px) >= '2011-01-

01', syms]

km <- kmeans(df, centers=5, nstart=10)

The function automatically returns the best solution out
of the 10 different starting points. You can use the
argument iter.max to set the maximum number of
iterations the algorithm is allowed for each random start.

The scikit-learn algorithm is repeated 10 times by
default (n_init). The argument max_iter (default
300) can be used to control the number of iterations:

syms = sorted(['AAPL', 'MSFT', 'CSCO', 'INTC',

'CVX', 'XOM', 'SLB', 'COP',

 'JPM', 'WFC', 'USB', 'AXP',

'WMT', 'TGT', 'HD', 'COST'])

top_sp = sp500_px.loc[sp500_px.index >= '2011-

01-01', syms]

kmeans = KMeans(n_clusters=5).fit(top_sp)

Interpreting the Clusters
An important part of cluster analysis can involve the
interpretation of the clusters. The two most important
outputs from kmeans are the sizes of the clusters and
the cluster means. For the example in the previous
subsection, the sizes of resulting clusters are given by
this R command:

km$size

[1] 106 186 285 288 266

In Python, we can use the collections.Counter
class from the standard library to get this information.
Due to differences in the implementation and the
inherent randomness of the algorithm, results will vary:

from collections import Counter

Counter(kmeans.labels_)

Counter({4: 302, 2: 272, 0: 288, 3: 158, 1:

111})

The cluster sizes are relatively balanced. Imbalanced
clusters can result from distant outliers, or from groups
of records very distinct from the rest of the data—both
may warrant further inspection.

You can plot the centers of the clusters using the
gather function in conjunction with ggplot:

centers <- as.data.frame(t(centers))

names(centers) <- paste("Cluster", 1:5)

centers$Symbol <- row.names(centers)

centers <- gather(centers, 'Cluster', 'Mean', -

Symbol)

centers$Color = centers$Mean > 0

ggplot(centers, aes(x=Symbol, y=Mean,

fill=Color)) +

 geom_bar(stat='identity', position='identity',

width=.75) +

 facet_grid(Cluster ~ ., scales='free_y')

The code to create this visualization in Python is similar
to what we used for PCA:

centers = pd.DataFrame(kmeans.cluster_centers_,

columns=syms)

f, axes = plt.subplots(5, 1, figsize=(5, 5),

sharex=True)

for i, ax in enumerate(axes):

 center = centers.loc[i, :]

 maxPC = 1.01 *

np.max(np.max(np.abs(center)))

 colors = ['C0' if l > 0 else 'C1' for l in

center]

 ax.axhline(color='#888888')

 center.plot.bar(ax=ax, color=colors)

 ax.set_ylabel(f'Cluster {i + 1}')

 ax.set_ylim(-maxPC, maxPC)

The resulting plot is shown in Figure 7-6 and reveals the
nature of each cluster. For example, clusters 4 and 5
correspond to days on which the market is down and up,
respectively. Clusters 2 and 3 are characterized by up-
market days for consumer stocks and down-market days
for energy stocks, respectively. Finally, cluster 1
captures the days in which energy stocks were up and
consumer stocks were down.

Figure 7-6. The means of the variables in each cluster (“cluster means”)

CLUSTER ANALYSIS VERSUS PCA
The plot of cluster means is similar in spirit to looking at the
loadings for principal components analysis (PCA); see
“Interpreting Principal Components”. A major distinction is
that unlike with PCA, the sign of the cluster means is
meaningful. PCA identifies principal directions of variation,
whereas cluster analysis finds groups of records located near
one another.

Selecting the Number of Clusters
The K-means algorithm requires that you specify the
number of clusters K. Sometimes the number of clusters
is driven by the application. For example, a company
managing a sales force might want to cluster customers
into “personas” to focus and guide sales calls. In such a
case, managerial considerations would dictate the
number of desired customer segments—for example,
two might not yield useful differentiation of customers,
while eight might be too many to manage.

In the absence of a cluster number dictated by practical
or managerial considerations, a statistical approach
could be used. There is no single standard method to
find the “best” number of clusters.

A common approach, called the elbow method, is to
identify when the set of clusters explains “most” of the
variance in the data. Adding new clusters beyond this set
contributes relatively little in the variance explained.
The elbow is the point where the cumulative variance
explained flattens out after rising steeply, hence the
name of the method.

Figure 7-7 shows the cumulative percent of variance
explained for the default data for the number of clusters
ranging from 2 to 15. Where is the elbow in this
example? There is no obvious candidate, since the
incremental increase in variance explained drops
gradually. This is fairly typical in data that does not have
well-defined clusters. This is perhaps a drawback of the
elbow method, but it does reveal the nature of the data.

Figure 7-7. The elbow method applied to the stock data

In R, the kmeans function doesn’t provide a single
command for applying the elbow method, but it can be
readily applied from the output of kmeans as shown
here:

pct_var <- data.frame(pct_var = 0,

 num_clusters = 2:14)

totalss <- kmeans(df, centers=14, nstart=50,

iter.max=100)$totss

for (i in 2:14) {

 kmCluster <- kmeans(df, centers=i, nstart=50,

iter.max=100)

 pct_var[i-1, 'pct_var'] <- kmCluster$betweenss

/ totalss

}

For the KMeans result, we get this information from the
property inertia_. After conversion into a pandas
data frame, we can use its plot method to create the
graph:

inertia = []

for n_clusters in range(2, 14):

 kmeans = KMeans(n_clusters=n_clusters,

random_state=0).fit(top_sp)

 inertia.append(kmeans.inertia_ / n_clusters)

inertias = pd.DataFrame({'n_clusters': range(2,

14), 'inertia': inertia})

ax = inertias.plot(x='n_clusters', y='inertia')

plt.xlabel('Number of clusters(k)')

plt.ylabel('Average Within-Cluster Squared

Distances')

plt.ylim((0, 1.1 * inertias.inertia.max()))

ax.legend().set_visible(False)

In evaluating how many clusters to retain, perhaps the
most important test is this: how likely are the clusters to

be replicated on new data? Are the clusters interpretable,
and do they relate to a general characteristic of the data,
or do they just reflect a specific instance? You can assess
this, in part, using cross-validation; see “Cross-
Validation”.

In general, there is no single rule that will reliably guide
how many clusters to produce.

NOTE
There are several more formal ways to determine the number
of clusters based on statistical or information theory. For
example, Robert Tibshirani, Guenther Walther, and Trevor
Hastie propose a “gap” statistic based on statistical theory to
identify the elbow. For most applications, a theoretical
approach is probably not necessary, or even appropriate.

KEY IDEAS

The number of desired clusters, K, is chosen by the user.

The algorithm develops clusters by iteratively assigning records to the
nearest cluster mean until cluster assignments do not change.

Practical considerations usually dominate the choice of K; there is no
statistically determined optimal number of clusters.

Hierarchical Clustering
Hierarchical clustering is an alternative to K-means that
can yield very different clusters. Hierarchical clustering
allows the user to visualize the effect of specifying
different numbers of clusters. It is more sensitive in
discovering outlying or aberrant groups or records.
Hierarchical clustering also lends itself to an intuitive
graphical display, leading to easier interpretation of the
clusters.

https://oreil.ly/d-N3_

KEY TERMS FOR HIERARCHICAL CLUSTERING

Dendrogram

A visual representation of the records and the hierarchy of clusters to which
they belong.

Distance

A measure of how close one record is to another.

Dissimilarity

A measure of how close one cluster is to another.

Hierarchical clustering’s flexibility comes with a cost,
and hierarchical clustering does not scale well to large
data sets with millions of records. For even modest-
sized data with just tens of thousands of records,
hierarchical clustering can require intensive computing
resources. Indeed, most of the applications of
hierarchical clustering are focused on relatively small
data sets.

A Simple Example
Hierarchical clustering works on a data set with n
records and p variables and is based on two basic
building blocks:

A distance metric di,j to measure the distance
between two records i and j.

A dissimilarity metric DA,B to measure the
difference between two clusters A and B based
on the distances di,j between the members of
each cluster.

For applications involving numeric data, the most
importance choice is the dissimilarity metric.

Hierarchical clustering starts by setting each record as
its own cluster and iterates to combine the least
dissimilar clusters.

In R, the hclust function can be used to perform
hierarchical clustering. One big difference with
hclust versus kmeans is that it operates on the
pairwise distances di,j rather than the data itself. You
can compute these using the dist function. For
example, the following applies hierarchical clustering to
the stock returns for a set of companies:

syms1 <- c('GOOGL', 'AMZN', 'AAPL', 'MSFT',

'CSCO', 'INTC', 'CVX', 'XOM', 'SLB',

 'COP', 'JPM', 'WFC', 'USB', 'AXP',

'WMT', 'TGT', 'HD', 'COST')

take transpose: to cluster companies, we need

the stocks along the rows

df <- t(sp500_px[row.names(sp500_px) >= '2011-

01-01', syms1])

d <- dist(df)

hcl <- hclust(d)

Clustering algorithms will cluster the records (rows) of a
data frame. Since we want to cluster the companies, we
need to transpose (t) the data frame and put the stocks
along the rows and the dates along the columns.

The scipy package offers a number of different
methods for hierarchical clustering in the
scipy.cluster.hierarchy module. Here we use
the linkage function with the “complete” method:

syms1 = ['AAPL', 'AMZN', 'AXP', 'COP', 'COST',

'CSCO', 'CVX', 'GOOGL', 'HD',

 'INTC', 'JPM', 'MSFT', 'SLB', 'TGT',

'USB', 'WFC', 'WMT', 'XOM']

df = sp500_px.loc[sp500_px.index >= '2011-01-

01', syms1].transpose()

Z = linkage(df, method='complete')

The Dendrogram
Hierarchical clustering lends itself to a natural graphical
display as a tree, referred to as a dendrogram. The name
comes from the Greek words dendro (tree) and gramma
(drawing). In R, you can easily produce this using the
plot command:

plot(hcl)

We can use the dendrogram method to plot the result
of the linkage function in Python:

fig, ax = plt.subplots(figsize=(5, 5))

dendrogram(Z, labels=df.index, ax=ax,

color_threshold=0)

plt.xticks(rotation=90)

ax.set_ylabel('distance')

The result is shown in Figure 7-8 (note that we are now
plotting companies that are similar to one another, not
days). The leaves of the tree correspond to the records.
The length of the branch in the tree indicates the degree
of dissimilarity between corresponding clusters. The
returns for Google and Amazon are quite dissimilar to
one another and to the returns for the other stocks. The
oil stocks (SLB, CVX, XOM, COP) are in their own
cluster, Apple (AAPL) is by itself, and the rest are
similar to one another.

Figure 7-8. A dendrogram of stocks

In contrast to K-means, it is not necessary to prespecify
the number of clusters. Graphically, you can identify
different numbers of clusters with a horizontal line that
slides up or down; a cluster is defined wherever the
horizontal line intersects the vertical lines. To extract a
specific number of clusters, you can use the cutree
function:

cutree(hcl, k=4)

GOOGL AMZN AAPL MSFT CSCO INTC CVX XOM

SLB COP JPM WFC

 1 2 3 3 3 3 4 4

4 4 3 3

 USB AXP WMT TGT HD COST

 3 3 3 3 3 3

In Python, you achieve the same with the fcluster
method:

memb = fcluster(Z, 4, criterion='maxclust')

memb = pd.Series(memb, index=df.index)

for key, item in memb.groupby(memb):

 print(f"{key} : {', '.join(item.index)}")

The number of clusters to extract is set to 4, and you can
see that Google and Amazon each belong to their own
cluster. The oil stocks all belong to another cluster. The
remaining stocks are in the fourth cluster.

The Agglomerative Algorithm
The main algorithm for hierarchical clustering is the
agglomerative algorithm, which iteratively merges
similar clusters. The agglomerative algorithm begins

with each record constituting its own single-record
cluster and then builds up larger and larger clusters. The
first step is to calculate distances between all pairs of
records.

For each pair of records (x1,x2, ...,xp) and
(y1, y2, ..., yp), we measure the distance between the
two records, dx,y, using a distance metric (see “Distance
Metrics”). For example, we can use Euclidian distance:

d (x, y) =√(x1 − y1)2 + (x2 − y2)2 + ⋯ + (xp − yp)2

We now turn to inter-cluster distance. Consider two
clusters A and B, each with a distinctive set of records,
A = (a1, a2, ..., am) and B = (b1, b2, ..., bq). We can
measure the dissimilarity between the clusters D(A,B)

by using the distances between the members of A and
the members of B.

One measure of dissimilarity is the complete-linkage
method, which is the maximum distance across all pairs
of records between A and B:

D (A,B) =max d (ai, bj) for all pairs i, j

This defines the dissimilarity as the biggest difference
between all pairs.

The main steps of the agglomerative algorithm are:

1. Create an initial set of clusters with each cluster
consisting of a single record for all records in
the data.

2. Compute the dissimilarity D(Ck,Cℓ) between
all pairs of clusters k, ℓ.

3. Merge the two clusters Ck and Cℓ that are least
dissimilar as measured by D(Ck,Cℓ).

4. If we have more than one cluster remaining,
return to step 2. Otherwise, we are done.

Measures of Dissimilarity
There are four common measures of dissimilarity:
complete linkage, single linkage, average linkage, and
minimum variance. These (plus other measures) are all
supported by most hierarchical clustering software,
including hclust and linkage. The complete
linkage method defined earlier tends to produce clusters
with members that are similar. The single linkage
method is the minimum distance between the records in
two clusters:

D (A,B) =min d (ai, bj) for all pairs i, j

This is a “greedy” method and produces clusters that can
contain quite disparate elements. The average linkage
method is the average of all distance pairs and
represents a compromise between the single and
complete linkage methods. Finally, the minimum
variance method, also referred to as Ward’s method, is
similar to K-means since it minimizes the within-cluster
sum of squares (see “K-Means Clustering”).

Figure 7-9 applies hierarchical clustering using the four
measures to the ExxonMobil and Chevron stock returns.
For each measure, four clusters are retained.

Figure 7-9. A comparison of measures of dissimilarity applied to stock data

The results are strikingly different: the single linkage
measure assigns almost all of the points to a single
cluster. Except for the minimum variance method (R:
Ward.D; Python: ward), all measures end up with at
least one cluster with just a few outlying points. The
minimum variance method is most similar to the K-
means cluster; compare with Figure 7-5.

KEY IDEAS

Hierarchical clustering starts with every record in its own cluster.

Progressively, clusters are joined to nearby clusters until all records
belong to a single cluster (the agglomerative algorithm).

The agglomeration history is retained and plotted, and the user (without
specifying the number of clusters beforehand) can visualize the number
and structure of clusters at different stages.

Inter-cluster distances are computed in different ways, all relying on the
set of all inter-record distances.

Model-Based Clustering
Clustering methods such as hierarchical clustering and
K-means are based on heuristics and rely primarily on
finding clusters whose members are close to one
another, as measured directly with the data (no
probability model involved). In the past 20 years,
significant effort has been devoted to developing model-
based clustering methods. Adrian Raftery and other
researchers at the University of Washington made
critical contributions to model-based clustering,
including both theory and software. The techniques are
grounded in statistical theory and provide more rigorous
ways to determine the nature and number of clusters.

They could be used, for example, in cases where there
might be one group of records that are similar to one
another but not necessarily close to one another (e.g.,
tech stocks with high variance of returns), and another
group of records that are similar and also close (e.g.,
utility stocks with low variance).

Multivariate Normal Distribution
The most widely used model-based clustering methods
rest on the multivariate normal distribution. The
multivariate normal distribution is a generalization of
the normal distribution to a set of p variables
X1,X2, ...,Xp. The distribution is defined by a set of
means μ = μ1,μ2, ...,μp and a covariance matrix Σ.
The covariance matrix is a measure of how the variables
correlate with each other (see “Covariance Matrix” for
details on the covariance). The covariance matrix Σ
consists of p variances σ2

1,σ2
2, ...,σ2

p and covariances
σi,j for all pairs of variables i ≠ j. With the variables
put along the rows and duplicated along the columns,
the matrix looks like this:

Σ =

Note that the covariance matrix is symmetric around the
diagonal from upper left to lower right. Since σi,j = σj,i

, there are only (p × (p − 1))/2 covariance terms. In

⎡⎢⎣ σ2
1 σ1,2 ⋯ σ1,p

σ2,1 σ2
2 ⋯ σ2,p

⋮ ⋮ ⋱ ⋮

σp,1 σ2
p,2 ⋯ σ2

p

⎤⎥⎦

total, the covariance matrix has (p × (p − 1))/2 + p

parameters. The distribution is denoted by:

(X1,X2, ...,Xp) ∼ Np (μ,Σ)

This is a symbolic way of saying that the variables are
all normally distributed, and the overall distribution is
fully described by the vector of variable means and the
covariance matrix.

Figure 7-10 shows the probability contours for a
multivariate normal distribution for two variables X and
Y (the 0.5 probability contour, for example, contains
50% of the distribution).

The means are μx = 0.5 and μy = −0.5, and the
covariance matrix is:

Σ = []

Since the covariance σxy is positive, X and Y are
positively correlated.

1 1
1 2

Figure 7-10. Probability contours for a two-dimensional normal
distribution

Mixtures of Normals
The key idea behind model-based clustering is that each
record is assumed to be distributed as one of K
multivariate normal distributions, where K is the number
of clusters. Each distribution has a different mean μ and
covariance matrix Σ. For example, if you have two
variables, X and Y, then each row (Xi,Yi) is modeled as
having been sampled from one of K multivariate normal
distributions N (μ1,Σ1),N (μ2,Σ2), ...,N (μK,ΣK).

R has a very rich package for model-based clustering
called mclust, originally developed by Chris Fraley
and Adrian Raftery. With this package, we can apply
model-based clustering to the stock return data we
previously analyzed using K-means and hierarchical
clustering:

> library(mclust)

> df <- sp500_px[row.names(sp500_px) >= '2011-

01-01', c('XOM', 'CVX')]

> mcl <- Mclust(df)

> summary(mcl)

Mclust VEE (ellipsoidal, equal shape and

orientation) model with 2 components:

 log.likelihood n df BIC ICL

 -2255.134 1131 9 -4573.546 -5076.856

Clustering table:

 1 2

963 168

scikit-learn has the
sklearn.mixture.GaussianMixture class for
model-based clustering:

df = sp500_px.loc[sp500_px.index >= '2011-01-

01', ['XOM', 'CVX']]

mclust = GaussianMixture(n_components=2).fit(df)

mclust.bic(df)

If you execute this code, you will notice that the
computation takes significantly longer than other
procedures. Extracting the cluster assignments using the
predict function, we can visualize the clusters:

cluster <- factor(predict(mcl)$classification)

ggplot(data=df, aes(x=XOM, y=CVX, color=cluster,

shape=cluster)) +

 geom_point(alpha=.8)

Here is the Python code to create a similar figure:

fig, ax = plt.subplots(figsize=(4, 4))

colors = [f'C{c}' for c in mclust.predict(df)]

df.plot.scatter(x='XOM', y='CVX', c=colors,

alpha=0.5, ax=ax)

ax.set_xlim(-3, 3)

ax.set_ylim(-3, 3)

The resulting plot is shown in Figure 7-11. There are
two clusters: one cluster in the middle of the data, and a
second cluster in the outer edge of the data. This is very
different from the clusters obtained using K-means
(Figure 7-5) and hierarchical clustering (Figure 7-9),
which find clusters that are compact.

Figure 7-11. Two clusters are obtained for stock return data using mclust

You can extract the parameters to the normal
distributions using the summary function:

> summary(mcl, parameters=TRUE)$mean

 [,1] [,2]

XOM 0.05783847 -0.04374944

CVX 0.07363239 -0.21175715

> summary(mcl, parameters=TRUE)$variance

, , 1

 XOM CVX

XOM 0.3002049 0.3060989

CVX 0.3060989 0.5496727

, , 2

 XOM CVX

XOM 1.046318 1.066860

CVX 1.066860 1.915799

In Python, you get this information from the means_
and covariances_ properties of the result:

print('Mean')

print(mclust.means_)

print('Covariances')

print(mclust.covariances_)

The distributions have similar means and correlations,
but the second distribution has much larger variances
and covariances. Due to the randomness of the
algorithm, results can vary slightly between different
runs.

The clusters from mclust may seem surprising, but in
fact, they illustrate the statistical nature of the method.
The goal of model-based clustering is to find the best-
fitting set of multivariate normal distributions. The stock

data appears to have a normal-looking shape: see the
contours of Figure 7-10. In fact, though, stock returns
have a longer-tailed distribution than a normal
distribution. To handle this, mclust fits a distribution
to the bulk of the data but then fits a second distribution
with a bigger variance.

Selecting the Number of Clusters
Unlike K-means and hierarchical clustering, mclust
automatically selects the number of clusters in R (in this
case, two). It does this by choosing the number of
clusters for which the Bayesian Information Criteria
(BIC) has the largest value (BIC is similar to AIC; see
“Model Selection and Stepwise Regression”). BIC
works by selecting the best-fitting model with a penalty
for the number of parameters in the model. In the case
of model-based clustering, adding more clusters will
always improve the fit at the expense of introducing
additional parameters in the model.

WARNING
Note that in most cases BIC is usually minimized. The authors
of the mclust package decided to define BIC to have the
opposite sign to make interpretation of plots easier.

mclust fits 14 different models with increasing
number of components and chooses an optimal model
automatically. You can plot the BIC values of these
models using a function in mclust:

plot(mcl, what='BIC', ask=FALSE)

The number of clusters—or number of different
multivariate normal models (components)—is shown on
the x-axis (see Figure 7-12).

Figure 7-12. BIC values for 14 models of the stock return data with
increasing numbers of components

The GaussianMixture implementation on the other
hand will not try out various combinations. As shown
here, it is straightforward to run multiple combinations
using Python. This implementation defines BIC as
usual. Therefore, the calculated BIC value will be
positive, and we need to minimize it.

results = []

covariance_types = ['full', 'tied', 'diag',

'spherical']

for n_components in range(1, 9):

 for covariance_type in covariance_types:

 mclust =

GaussianMixture(n_components=n_components,

warm_start=True,

covariance_type=covariance_type)

 mclust.fit(df)

 results.append({

 'bic': mclust.bic(df),

 'n_components': n_components,

 'covariance_type': covariance_type,

 })

results = pd.DataFrame(results)

colors = ['C0', 'C1', 'C2', 'C3']

styles = ['C0-','C1:','C0-.', 'C1--']

fig, ax = plt.subplots(figsize=(4, 4))

for i, covariance_type in

enumerate(covariance_types):

 subset = results.loc[results.covariance_type

== covariance_type, :]

 subset.plot(x='n_components', y='bic',

ax=ax, label=covariance_type,

 kind='line', style=styles[i])

With the warm_start argument, the calculation
will reuse information from the previous fit. This
will speed up the convergence of subsequent
calculations.

This plot is similar to the elbow plot used to identify the
number of clusters to choose for K-means, except the
value being plotted is BIC instead of percent of variance
explained (see Figure 7-7). One big difference is that
instead of one line, mclust shows 14 different lines!
This is because mclust is actually fitting 14 different
models for each cluster size, and ultimately it chooses
the best-fitting model. GaussianMixture
implements fewer approaches, so the number of lines
will be only four.

Why does mclust fit so many models to determine the
best set of multivariate normals? It’s because there are
different ways to parameterize the covariance matrix Σ
for fitting a model. For the most part, you do not need to
worry about the details of the models and can simply
use the model chosen by mclust. In this example,
according to BIC, three different models (called VEE,
VEV, and VVE) give the best fit using two components.

NOTE
Model-based clustering is a rich and rapidly developing area
of study, and the coverage in this text spans only a small part
of the field. Indeed, the mclust help file is currently 154
pages long. Navigating the nuances of model-based clustering
is probably more effort than is needed for most problems
encountered by data scientists.

Model-based clustering techniques do have some
limitations. The methods require an underlying
assumption of a model for the data, and the cluster
results are very dependent on that assumption. The
computations requirements are higher than even
hierarchical clustering, making it difficult to scale to
large data. Finally, the algorithm is more sophisticated
and less accessible than that of other methods.

KEY IDEAS

Clusters are assumed to derive from different data-generating
processes with different probability distributions.

Different models are fit, assuming different numbers of (typically
normal) distributions.

The method chooses the model (and the associated number of
clusters) that fits the data well without using too many parameters (i.e.,
overfitting).

Further Reading
For more detail on model-based clustering, see the
mclust and GaussianMixture documentation.

Scaling and Categorical Variables
Unsupervised learning techniques generally require that
the data be appropriately scaled. This is different from
many of the techniques for regression and classification
in which scaling is not important (an exception is K-
Nearest Neighbors; see “K-Nearest Neighbors”).

https://oreil.ly/bHDvR
https://oreil.ly/GaVVv

KEY TERMS FOR SCALING DATA

Scaling

Squashing or expanding data, usually to bring multiple variables to the same
scale.

Normalization

One method of scaling—subtracting the mean and dividing by the standard
deviation.

Synonym

Standardization

Gower’s distance

A scaling algorithm applied to mixed numeric and categorical data to bring all
variables to a 0–1 range.

For example, with the personal loan data, the variables
have widely different units and magnitude. Some
variables have relatively small values (e.g., number of
years employed), while others have very large values
(e.g., loan amount in dollars). If the data is not scaled,
then the PCA, K-means, and other clustering methods
will be dominated by the variables with large values and
ignore the variables with small values.

Categorical data can pose a special problem for some
clustering procedures. As with K-Nearest Neighbors,
unordered factor variables are generally converted to a
set of binary (0/1) variables using one hot encoding (see
“One Hot Encoder”). Not only are the binary variables
likely on a different scale from other data, but the fact
that binary variables have only two values can prove
problematic with techniques such as PCA and K-means.

Scaling the Variables

Variables with very different scale and units need to be
normalized appropriately before you apply a clustering
procedure. For example, let’s apply kmeans to a set of
data of loan defaults without normalizing:

defaults <-

loan_data[loan_data$outcome=='default',]

df <- defaults[, c('loan_amnt', 'annual_inc',

'revol_bal', 'open_acc',

 'dti', 'revol_util')]

km <- kmeans(df, centers=4, nstart=10)

centers <- data.frame(size=km$size, km$centers)

round(centers, digits=2)

 size loan_amnt annual_inc revol_bal open_acc

dti revol_util

1 52 22570.19 489783.40 85161.35 13.33

6.91 59.65

2 1192 21856.38 165473.54 38935.88 12.61

13.48 63.67

3 13902 10606.48 42500.30 10280.52 9.59

17.71 58.11

4 7525 18282.25 83458.11 19653.82 11.66

16.77 62.27

Here is the corresponding Python code:

defaults = loan_data.loc[loan_data['outcome'] ==

'default',]

columns = ['loan_amnt', 'annual_inc',

'revol_bal', 'open_acc',

 'dti', 'revol_util']

df = defaults[columns]

kmeans = KMeans(n_clusters=4,

random_state=1).fit(df)

counts = Counter(kmeans.labels_)

centers = pd.DataFrame(kmeans.cluster_centers_,

columns=columns)

centers['size'] = [counts[i] for i in range(4)]

centers

The variables annual_inc and revol_bal
dominate the clusters, and the clusters have very
different sizes. Cluster 1 has only 52 members with
comparatively high income and revolving credit
balance.

A common approach to scaling the variables is to
convert them to z-scores by subtracting the mean and
dividing by the standard deviation. This is termed
standardization or normalization (see “Standardization
(Normalization, z-Scores)” for more discussion about
using z-scores):

z =
x − x

s

See what happens to the clusters when kmeans is
applied to the normalized data:

df0 <- scale(df)

km0 <- kmeans(df0, centers=4, nstart=10)

centers0 <- scale(km0$centers, center=FALSE,

 scale=1 / attr(df0,

'scaled:scale'))

centers0 <- scale(centers0, center=-attr(df0,

'scaled:center'), scale=FALSE)

centers0 <- data.frame(size=km0$size, centers0)

round(centers0, digits=2)

 size loan_amnt annual_inc revol_bal open_acc

dti revol_util

1 7355 10467.65 51134.87 11523.31 7.48

15.78 77.73

2 5309 10363.43 53523.09 6038.26 8.68

11.32 30.70

3 3713 25894.07 116185.91 32797.67 12.41

16.22 66.14

4 6294 13361.61 55596.65 16375.27 14.25

24.23 59.61

In Python, we can use scikit-learn’s
StandardScaler. The inverse_transform
method allows converting the cluster centers back to the
original scale:

scaler = preprocessing.StandardScaler()

df0 = scaler.fit_transform(df * 1.0)

kmeans = KMeans(n_clusters=4,

random_state=1).fit(df0)

counts = Counter(kmeans.labels_)

centers =

pd.DataFrame(scaler.inverse_transform(kmeans.clu

ster_centers_),

 columns=columns)

centers['size'] = [counts[i] for i in range(4)]

centers

The cluster sizes are more balanced, and the clusters are
not dominated by annual_inc and revol_bal,
revealing more interesting structure in the data. Note
that the centers are rescaled to the original units in the
preceding code. If we had left them unscaled, the
resulting values would be in terms of z-scores and would
therefore be less interpretable.

NOTE
Scaling is also important for PCA. Using the z-scores is
equivalent to using the correlation matrix (see “Correlation”)
instead of the covariance matrix in computing the principal
components. Software to compute PCA usually has an option
to use the correlation matrix (in R, the princomp function
has the argument cor).

Dominant Variables

Even in cases where the variables are measured on the
same scale and accurately reflect relative importance
(e.g., movement to stock prices), it can sometimes be
useful to rescale the variables.

Suppose we add Google (GOOGL) and Amazon
(AMZN) to the analysis in “Interpreting Principal
Components”. We see how this is done in R below:

syms <- c('GOOGL', 'AMZN', 'AAPL', 'MSFT',

'CSCO', 'INTC', 'CVX', 'XOM',

 'SLB', 'COP', 'JPM', 'WFC', 'USB',

'AXP', 'WMT', 'TGT', 'HD', 'COST')

top_sp1 <- sp500_px[row.names(sp500_px) >=

'2005-01-01', syms]

sp_pca1 <- princomp(top_sp1)

screeplot(sp_pca1)

In Python, we get the screeplot as follows:

syms = ['GOOGL', 'AMZN', 'AAPL', 'MSFT', 'CSCO',

'INTC', 'CVX', 'XOM',

 'SLB', 'COP', 'JPM', 'WFC', 'USB',

'AXP', 'WMT', 'TGT', 'HD', 'COST']

top_sp1 = sp500_px.loc[sp500_px.index >= '2005-

01-01', syms]

sp_pca1 = PCA()

sp_pca1.fit(top_sp1)

explained_variance =

pd.DataFrame(sp_pca1.explained_variance_)

ax =

explained_variance.head(10).plot.bar(legend=Fals

e, figsize=(4, 4))

ax.set_xlabel('Component')

The screeplot displays the variances for the top principal
components. In this case, the screeplot in Figure 7-13

reveals that the variances of the first and second
components are much larger than the others. This often
indicates that one or two variables dominate the
loadings. This is, indeed, the case in this example:

round(sp_pca1$loadings[,1:2], 3)

 Comp.1 Comp.2

GOOGL 0.781 0.609

AMZN 0.593 -0.792

AAPL 0.078 0.004

MSFT 0.029 0.002

CSCO 0.017 -0.001

INTC 0.020 -0.001

CVX 0.068 -0.021

XOM 0.053 -0.005

...

In Python, we use the following:

loadings = pd.DataFrame(sp_pca1.components_[0:2,

:], columns=top_sp1.columns)

loadings.transpose()

The first two principal components are almost
completely dominated by GOOGL and AMZN. This is
because the stock price movements of GOOGL and
AMZN dominate the variability.

To handle this situation, you can either include them as
is, rescale the variables (see “Scaling the Variables”), or
exclude the dominant variables from the analysis and
handle them separately. There is no “correct” approach,
and the treatment depends on the application.

Figure 7-13. A screeplot for a PCA of top stocks from the S&P 500,
including GOOGL and AMZN

Categorical Data and Gower’s Distance
In the case of categorical data, you must convert it to
numeric data, either by ranking (for an ordered factor)
or by encoding as a set of binary (dummy) variables. If
the data consists of mixed continuous and binary
variables, you will usually want to scale the variables so
that the ranges are similar; see “Scaling the Variables”.
One popular method is to use Gower’s distance.

The basic idea behind Gower’s distance is to apply a
different distance metric to each variable depending on
the type of data:

For numeric variables and ordered factors,
distance is calculated as the absolute value of
the difference between two records (Manhattan
distance).

For categorical variables, the distance is 1 if the
categories between two records are different,
and the distance is 0 if the categories are the
same.

Gower’s distance is computed as follows:

1. Compute the distance di,j for all pairs of
variables i and j for each record.

2. Scale each pair di,j so the minimum is 0 and the
maximum is 1.

3. Add the pairwise scaled distances between
variables together, using either a simple or a
weighted mean, to create the distance matrix.

To illustrate Gower’s distance, take a few rows from the
loan data in R:

> x <- loan_data[1:5, c('dti',

'payment_inc_ratio', 'home_', 'purpose_')]

> x

A tibble: 5 × 4

 dti payment_inc_ratio home

purpose

 <dbl> <dbl> <fctr>

<fctr>

1 1.00 2.39320 RENT

car

2 5.55 4.57170 OWN

small_business

3 18.08 9.71600 RENT

other

4 10.08 12.21520 RENT

debt_consolidation

5 7.06 3.90888 RENT

other

The function daisy in the cluster package in R can
be used to compute Gower’s distance:

library(cluster)

daisy(x, metric='gower')

Dissimilarities :

 1 2 3 4

2 0.6220479

3 0.6863877 0.8143398

4 0.6329040 0.7608561 0.4307083

5 0.3772789 0.5389727 0.3091088 0.5056250

Metric : mixed ; Types = I, I, N, N

Number of objects : 5

At the moment of this writing, Gower’s distance is not
available in any of the popular Python packages.
However, activities are ongoing to include it in
scikit-learn. We will update the accompanying
source code once the implementation is released.

All distances are between 0 and 1. The pair of records
with the biggest distance is 2 and 3: neither has the same
values for home and purpose, and they have very
different levels of dti (debt-to-income) and
payment_inc_ratio. Records 3 and 5 have the
smallest distance because they share the same values for
home and purpose.

You can pass the Gower’s distance matrix calculated
from daisy to hclust for hierarchical clustering (see
“Hierarchical Clustering”):

df <- defaults[sample(nrow(defaults), 250),

 c('dti', 'payment_inc_ratio',

'home', 'purpose')]

d = daisy(df, metric='gower')

hcl <- hclust(d)

dnd <- as.dendrogram(hcl)

plot(dnd, leaflab='none')

The resulting dendrogram is shown in Figure 7-14. The
individual records are not distinguishable on the x-axis,
but we can cut the dendrogram horizontally at 0.5 and
examine the records in one of the subtrees with this
code:

dnd_cut <- cut(dnd, h=0.5)

df[labels(dnd_cut$lower[[1]]),]

 dti payment_inc_ratio home_

purpose_

44532 21.22 8.37694 OWN

debt_consolidation

39826 22.59 6.22827 OWN

debt_consolidation

13282 31.00 9.64200 OWN

debt_consolidation

31510 26.21 11.94380 OWN

debt_consolidation

6693 26.96 9.45600 OWN

debt_consolidation

7356 25.81 9.39257 OWN

debt_consolidation

9278 21.00 14.71850 OWN

debt_consolidation

13520 29.00 18.86670 OWN

debt_consolidation

14668 25.75 17.53440 OWN

debt_consolidation

19975 22.70 17.12170 OWN

debt_consolidation

23492 22.68 18.50250 OWN

debt_consolidation

This subtree consists entirely of owners with a loan
purpose labeled as “debt_consolidation.” While strict
separation is not true of all subtrees, this illustrates that
the categorical variables tend to be grouped together in
the clusters.

Figure 7-14. A dendrogram of hclust applied to a sample of loan default
data with mixed variable types

Problems with Clustering Mixed Data
K-means and PCA are most appropriate for continuous
variables. For smaller data sets, it is better to use
hierarchical clustering with Gower’s distance. In
principle, there is no reason why K-means can’t be

applied to binary or categorical data. You would usually
use the “one hot encoder” representation (see “One Hot
Encoder”) to convert the categorical data to numeric
values. In practice, however, using K-means and PCA
with binary data can be difficult.

If the standard z-scores are used, the binary variables
will dominate the definition of the clusters. This is
because 0/1 variables take on only two values, and K-
means can obtain a small within-cluster sum-of-squares
by assigning all the records with a 0 or 1 to a single
cluster. For example, apply kmeans to loan default data
including factor variables home and pub_rec_zero,
shown here in R:

df <- model.matrix(~ -1 + dti +

payment_inc_ratio + home_ + pub_rec_zero,

 data=defaults)

df0 <- scale(df)

km0 <- kmeans(df0, centers=4, nstart=10)

centers0 <- scale(km0$centers, center=FALSE,

 scale=1/attr(df0,

'scaled:scale'))

round(scale(centers0, center=-attr(df0,

'scaled:center'), scale=FALSE), 2)

 dti payment_inc_ratio home_MORTGAGE home_OWN

home_RENT pub_rec_zero

1 17.20 9.27 0.00 1

0.00 0.92

2 16.99 9.11 0.00 0

1.00 1.00

3 16.50 8.06 0.52 0

0.48 0.00

4 17.46 8.42 1.00 0

0.00 1.00

In Python:

columns = ['dti', 'payment_inc_ratio', 'home_',

'pub_rec_zero']

df = pd.get_dummies(defaults[columns])

scaler = preprocessing.StandardScaler()

df0 = scaler.fit_transform(df * 1.0)

kmeans = KMeans(n_clusters=4,

random_state=1).fit(df0)

centers =

pd.DataFrame(scaler.inverse_transform(kmeans.clu

ster_centers_),

 columns=df.columns)

centers

The top four clusters are essentially proxies for the
different levels of the factor variables. To avoid this
behavior, you could scale the binary variables to have a
smaller variance than other variables. Alternatively, for
very large data sets, you could apply clustering to
different subsets of data taking on specific categorical
values. For example, you could apply clustering
separately to those loans made to someone who has a
mortgage, owns a home outright, or rents.

KEY IDEAS

Variables measured on different scales need to be transformed to
similar scales so that their impact on algorithms is not determined
mainly by their scale.

A common scaling method is normalization (standardization)—
subtracting the mean and dividing by the standard deviation.

Another method is Gower’s distance, which scales all variables to the
0–1 range (it is often used with mixed numeric and categorical data).

Summary
For dimension reduction of numeric data, the main tools
are either principal components analysis or K-means

clustering. Both require attention to proper scaling of the
data to ensure meaningful data reduction.

For clustering with highly structured data in which the
clusters are well separated, all methods will likely
produce a similar result. Each method offers its own
advantage. K-means scales to very large data and is
easily understood. Hierarchical clustering can be applied
to mixed data types—numeric and categorical—and
lends itself to an intuitive display (the dendrogram).
Model-based clustering is founded on statistical theory
and provides a more rigorous approach, as opposed to
the heuristic methods. For very large data, however, K-
means is the main method used.

With noisy data, such as the loan and stock data (and
much of the data that a data scientist will face), the
choice is more stark. K-means, hierarchical clustering,
and especially model-based clustering all produce very
different solutions. How should a data scientist proceed?
Unfortunately, there is no simple rule of thumb to guide
the choice. Ultimately, the method used will depend on
the data size and the goal of the application.

1 This and subsequent sections in this chapter © 2020 Datastats, LLC,
Peter Bruce, Andrew Bruce, and Peter Gedeck; used with
permission.

Bibliography

[Baumer-2017] Baumer, Benjamin, Daniel
Kaplan, and Nicholas Horton. Modern Data
Science with R. Boca Raton, Fla.: Chapman &
Hall/CRC Press, 2017.

[bokeh] Bokeh Development Team. “Bokeh:
Python library for interactive visualization”
(2014). https://bokeh.pydata.org.

[Deng-Wickham-2011] Deng, Henry, and
Hadley Wickham. “Density Estimation in R.”
September 2011. https://oreil.ly/-Ny_6.

[Donoho-2015] Donoho, David. “50 Years of
Data Science.” September 18, 2015.
https://oreil.ly/kqFb0.

[Duong-2001] Duong, Tarn. “An Introduction
to Kernel Density Estimation.” 2001.
https://oreil.ly/Z5A7W.

[Few-2007] Few, Stephen. “Save the Pies for
Dessert.” Visual Business Intelligence
Newsletter. Perceptual Edge. August 2007.
https://oreil.ly/_iGAL.

[Freedman-2007] Freedman, David, Robert
Pisani, and Roger Purves. Statistics. 4th ed.
New York: W. W. Norton, 2007.

[Hintze-Nelson-1998] Hintze, Jerry L., and Ray
D. Nelson. “Violin Plots: A Box Plot–Density
Trace Synergism.” The American Statistician
52, no. 2 (May 1998): 181–84.

https://bokeh.pydata.org/
https://oreil.ly/-Ny_6
https://oreil.ly/kqFb0
https://oreil.ly/Z5A7W
https://oreil.ly/_iGAL

[Galton-1886] Galton, Francis. “Regression
Towards Mediocrity in Hereditary Stature.” The
Journal of the Anthropological Institute of
Great Britain and Ireland 15 (1886): 246–63.
https://oreil.ly/DqoAk.

[ggplot2] Wickham, Hadley. ggplot2: Elegant
Graphics for Data Analysis. New York:
Springer-Verlag New York, 2009.
https://oreil.ly/O92vC.

[Hyndman-Fan-1996] Hyndman, Rob J., and
Yanan Fan. “Sample Quantiles in Statistical
Packages.” American Statistician 50, no. 4
(1996): 361–65.

[lattice] Sarkar, Deepayan. Lattice:
Multivariate Data Visualization with R. New
York: Springer, 2008. http://lmdvr.r-forge.r-
project.org.

[Legendre] Legendre, Adrien-Marie. Nouvelle
méthodes pour la détermination des orbites des
comètes. Paris: F. Didot, 1805.
https://oreil.ly/8FITJ.

[NIST-Handbook-2012] “Measures of
Skewness and Kurtosis.” In NIST/SEMATECH
e-Handbook of Statistical Methods. 2012.
https://oreil.ly/IAdHA.

[R-base-2015] R Core Team. “R: A Language
and Environment for Statistical Computing.” R
Foundation for Statistical Computing. 2015.
https://www.r-project.org.

[Salsburg-2001] Salsburg, David. The Lady
Tasting Tea: How Statistics Revolutionized
Science in the Twentieth Century. New York:
W. H. Freeman, 2001.

https://oreil.ly/DqoAk
https://oreil.ly/O92vC
http://lmdvr.r-forge.r-project.org/
https://oreil.ly/8FITJ
https://oreil.ly/IAdHA
https://www.r-project.org/

[seaborn] Waskom, Michael. “Seaborn:
Statistical Data Visualization.” 2015.
https://seaborn.pydata.org.

[Trellis-Graphics] Becker, Richard A., William
S.Cleveland, Ming-Jen Shyu, and Stephen P.
Kaluzny. “A Tour of Trellis Graphics.” April
15, 1996. https://oreil.ly/LVnOV.

[Tukey-1962] Tukey, John W. “The Future of
Data Analysis.” The Annals of Mathematical
Statistics 33, no. 1 (1962): 1–67.
https://oreil.ly/qrYNW.

[Tukey-1977] Tukey, John W. Exploratory
Data Analysis. Reading, Mass.: Addison-
Wesley, 1977.

[Tukey-1987] Tukey, John W. The Collected
Works of John W. Tukey. Vol. 4, Philosophy and
Principles of Data Analysis: 1965–1986, edited
by Lyle V. Jones. Boca Raton, Fla.: Chapman &
Hall/CRC Press, 1987.

[Zhang-Wang-2007] Zhang, Qi, and Wei Wang.
“A Fast Algorithm for Approximate Quantiles
in High Speed Data Streams.” 19th
International Conference on Scientific and
Statistical Database Management (SSDBM
2007). Piscataway, NJ: IEEE, 2007. Also
available at https://oreil.ly/qShjk.

https://seaborn.pydata.org/
https://oreil.ly/LVnOV
https://oreil.ly/qrYNW
https://oreil.ly/qShjk

Index

A

A/B testing, A/B Testing-Further Reading

benefits of using a control group, Why Have a
Control Group?

epsilon-greedy algorithm for, Multi-Arm Bandit
Algorithm

examples of, A/B Testing

hypotheses in, Hypothesis Tests

importance of obtaining permissions, Why Just
A/B? Why Not C, D,…?

multi-arm bandits versus, Multi-Arm Bandit
Algorithm

traditional, shortcoming of, Why Just A/B? Why
Not C, D,…?

accuracy, Evaluating Classification Models

Adaboost, Boosting

boosting algorithm, The Boosting Algorithm

adjusted R-squared, Assessing the Model

adjustment of p-values, Multiple Testing

agglomerative algorithm, The Agglomerative Algorithm

AIC (Akaike’s Information Criteria), Model Selection
and Stepwise Regression, Selecting the Number of
Clusters

AICc, Model Selection and Stepwise Regression

all subset regression, Model Selection and Stepwise
Regression

alpha, Statistical Significance and p-Values, Alpha

alpha inflation, Multiple Testing

alternative hypothesis, Hypothesis Tests, Alternative
Hypothesis

American Statistical Association (ASA), statement on
use of p-values, p-value controversy

analysis of variance (ANOVA), F-Distribution,
ANOVA-Further Reading

decomposition of variance, F-Statistic

F-statistic, F-Statistic

two-way ANOVA, Two-Way ANOVA

anomaly detection, Regression and Prediction

outliers and, Outliers

arms (multi-arm bandits), Multi-Arm Bandit Algorithm

AUC (area under the ROC curve), AUC-AUC

average linkage metric, Measures of Dissimilarity

average value (see mean)

B

b-spline (basis spline), Splines

backward elimination, Model Selection and Stepwise
Regression, Model Selection and Stepwise Regression

backward selection, Model Selection and Stepwise
Regression

bagging, The Bootstrap, Resampling, Statistical
Machine Learning, Bagging

boosting versus, Boosting

bandit algorithms, Multi-Arm Bandit Algorithm

(see also multi-arm bandits)

bar charts, Exploring Binary and Categorical Data

histograms and, Exploring Binary and Categorical
Data

Bayesian approach in Thompson’s sampling, Multi-Arm
Bandit Algorithm

Bayesian classification, Naive Bayes

(see also naive Bayes algorithm)

Bayesian information criteria (BIC), Model Selection
and Stepwise Regression, Selecting the Number of
Clusters-Selecting the Number of Clusters

beta distribution, Multi-Arm Bandit Algorithm

bias, Bias

biased estimates from naive Bayes classifier, The
Naive Solution

selection bias, Selection Bias-Further Reading

bias-variance trade-off, Choosing K

biased estimates, Standard Deviation and Related
Estimates

bidirectional alternative hypothesis, One-Way Versus
Two-Way Hypothesis Tests

big data

predictive models in, Data and Sampling
Distributions

value of, Size Versus Quality: When Does Size
Matter?

binary data, Elements of Structured Data

exploring, Exploring Binary and Categorical Data-
Further Reading

binary dummy variables, One Hot Encoder

binary outcomes, Binomial Distribution

binary variables, Factor Variables in Regression, Scaling
and Categorical Variables

binomial distribution, Binomial Distribution-Further
Reading

binomial trials, Binomial Distribution

bins, in frequency tables and histograms, Frequency
Tables and Histograms

biplot, Correspondence Analysis

bivariate analysis, Exploring Two or More Variables

black swan theory, Long-Tailed Distributions

blind studies, Why Have a Control Group?

boosted trees, Tree Models, Bagging and the Random
Forest

boosting, Statistical Machine Learning, Boosting-
Summary

versus bagging, Boosting

boosting algorithm, The Boosting Algorithm

hyperparameters and cross-validation,
Hyperparameters and Cross-Validation-
Hyperparameters and Cross-Validation

regularization, avoiding overfitting with,
Regularization: Avoiding Overfitting-
Regularization: Avoiding Overfitting

XGBoost software, XGBoost-Regularization:
Avoiding Overfitting

bootstrap, Central Limit Theorem, The Bootstrap-
Further Reading

algorithm for bootstrap resampling of the mean,
The Bootstrap

bootstrap and permutation tests, Exhaustive and
Bootstrap Permutation Tests

confidence interval generation, Confidence
Intervals, Confidence and Prediction Intervals-
Confidence and Prediction Intervals

in resampling, Resampling

resampling versus bootstrapping, Resampling
Versus Bootstrapping

sampling of variables in random forest partitioning,
Random Forest

standard error and, Standard Error

bootstrap aggregating (see bagging)

bootstrap sample, The Bootstrap

boxplots, Exploring the Data Distribution

comparing numeric and categorical data,
Categorical and Numeric Data

extending with conditional variables, Visualizing
Multiple Variables

percentiles and, Percentiles and Boxplots-
Percentiles and Boxplots

violin plots versus, Categorical and Numeric Data

Breiman, Leo, Statistical Machine Learning, Tree
Models

bubble plots, Influential Values

C

categorical data

exploring, Exploring Binary and Categorical Data-
Further Reading

expected value, Expected Value

mode, Mode

probability, Probability

exploring numeric variable grouped by categorical
variable, Categorical and Numeric Data

exploring two categorical variables, Two
Categorical Variables

importance of the concept, Elements of Structured
Data

categorical variables, Factor Variables in Regression

(see also factor variables)

converting to dummy variables, Dummy Variables
Representation

required for naive Bayes algorithm, Naive Bayes

scaling (see scaling and categorical variables)

causation, regression and, Prediction Versus Explanation
(Profiling)

central limit theorem, Sampling Distribution of a
Statistic, Central Limit Theorem

Student’s t-distribution and, Student’s t-
Distribution

central tendency (see estimates of location)

chance variation, Statistical Significance and p-Values

chi-square distribution, Chi-Square Distribution, Chi-
Square Test: Statistical Theory

chi-square statistic, Chi-Square Test, Chi-Square Test: A
Resampling Approach

chi-square test, Chi-Square Test-Further Reading

Fisher’s exact test, Fisher’s Exact Test-Relevance
for Data Science

relevance for data science, Relevance for Data
Science

resampling approach, Chi-Square Test: A
Resampling Approach

statistical theory, Chi-Square Test: Statistical
Theory

class purity, Measuring Homogeneity or Impurity,
Measuring Homogeneity or Impurity

classification, Classification-Summary

discriminant analysis, Discriminant Analysis-
Further Reading

covariance matrix, Covariance Matrix

Fisher’s linear discriminant, Fisher’s Linear
Discriminant

simple example, A Simple Example-A Simple
Example

evaluating models, Evaluating Classification
Models-Further Reading

AUC metric, AUC-AUC

confusion matrix, Confusion Matrix-
Confusion Matrix

lift, Lift

precision, recall, and specificity, Precision,
Recall, and Specificity

rare class problem, The Rare Class Problem

ROC curve, ROC Curve-ROC Curve

logistic regression, Logistic Regression-Further
Reading

comparison to linear regression, Linear and
Logistic Regression: Similarities and
Differences-Fitting the model

generalized linear models, Logistic Regression
and the GLM-Generalized Linear Models

interpreting coefficients and odds ratio,
Interpreting the Coefficients and Odds Ratios

logistic response function and logit, Logistic
Response Function and Logit

predicted values from, Predicted Values from
Logistic Regression

naive Bayes algorithm, Naive Bayes-Further
Reading

applying to numeric predictor variables,
Numeric Predictor Variables

predicting more than two classes, Classification

strategies for imbalanced data, Strategies for
Imbalanced Data-Summary

cost-based classification, Cost-Based
Classification

data generation, Data Generation

exploring the predictions, Exploring the
Predictions-Exploring the Predictions

oversampling and up/down weighting,
Oversampling and Up/Down Weighting

undersampling, Undersampling

unsupervised learning as building block,
Unsupervised Learning

Classification and Regression Trees (CART), Tree
Models

(see also tree models)

cluster mean, K-Means Clustering, A Simple Example,
Interpreting the Clusters

PCA loadings versus, Interpreting the Clusters

clustering, Unsupervised Learning

categorical variables posing problems in, Scaling
and Categorical Variables

hierarchical, Hierarchical Clustering-Measures of
Dissimilarity

agglomerative algorithm, The Agglomerative
Algorithm

dissimilarity metrics, Measures of
Dissimilarity-Measures of Dissimilarity

representation in a dendrogram, The
Dendrogram-The Dendrogram

simple example, A Simple Example

K-means, K-Means Clustering-Selecting the
Number of Clusters

interpreting the clusters, Interpreting the
Clusters-Interpreting the Clusters

K-means algorithm, K-Means Algorithm

selecting the number of clusters, Selecting the
Number of Clusters

simple example, A Simple Example

model-based, Model-Based Clustering-Further
Reading

mixtures of normals, Mixtures of Normals-
Mixtures of Normals

multivariate normal distribution, Multivariate
Normal Distribution

selecting the number of clusters, Selecting the
Number of Clusters-Selecting the Number of

Clusters

problems with clustering mixed data, Problems
with Clustering Mixed Data

uses of, Unsupervised Learning

clusters, K-Means Clustering

coefficient of determination, Assessing the Model

coefficients

confidence intervals and, Confidence and
Prediction Intervals

in logistic regression, Interpreting the Coefficients
and Odds Ratios

in multiple linear regression, Example: King
County Housing Data

in simple linear regression, The Regression
Equation

cold-start problems, using clustering for, Unsupervised
Learning

complete-linkage method, The Agglomerative
Algorithm, Measures of Dissimilarity

conditional probability, Naive Bayes

conditioning variables, Visualizing Multiple Variables

confidence intervals, Confidence and Prediction
Intervals

algorithm for bootstrap confidence interval,
Confidence Intervals

application to data science, Confidence Intervals

level of confidence, Confidence Intervals

prediction intervals versus, Confidence and
Prediction Intervals

confounding variables, Interpreting the Regression
Equation, Correlated Predictors, Confounding Variables-
Confounding Variables

confusion matrix, Evaluating Classification Models,
Confusion Matrix-Confusion Matrix

contingency tables, Exploring Two or More Variables

summarizing two categorical variables, Two
Categorical Variables

continuous data, Elements of Structured Data

contour plots, Exploring Two or More Variables

using with hexagonal binning, Hexagonal Binning
and Contours (Plotting Numeric Versus Numeric
Data)-Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)

contrast coding, Dummy Variables Representation

control group, A/B Testing

benefits of using, Why Have a Control Group?

Cook’s distance, Influential Values

correlated predictor variables, Correlated Predictors

correlation, Correlation-Further Reading

example, correlation between ETF returns,
Correlation

key concepts, Scatterplots

key terms for, Correlation

scatterplots, Scatterplots

correlation coefficient, Correlation

calculating Pearson’s correlation coefficient,
Correlation

other types of, Correlation

correlation matrix, Correlation, Scaling the Variables

correspondence analysis, Correspondence Analysis-
Correspondence Analysis

cost-based classification, Cost-Based Classification

covariance, Covariance Matrix, Computing the Principal
Components

covariance matrix, Covariance Matrix, Distance
Metrics, Multivariate Normal Distribution

cross validation, Cross-Validation, Choosing K

using for hyperparameters, Hyperparameters and
Cross-Validation-Hyperparameters and Cross-
Validation

using to select principal components, Interpreting
Principal Components

using to test values of hyperparameters,
Hyperparameters

cumulative gains chart, Lift

D

d.f. (degrees of freedom), Degrees of Freedom

(see also degrees of freedom)

data analysis, Exploratory Data Analysis

(see also exploratory data analysis)

data distribution, Exploring the Data Distribution-
Exploring Binary and Categorical Data, Sampling
Distribution of a Statistic

density plots and estimates, Density Plots and
Estimates-Exploring Binary and Categorical Data

frequency table and histogram, Frequency Tables
and Histograms-Density Plots and Estimates

percentiles and boxplots, Percentiles and Boxplots-
Percentiles and Boxplots

sampling distribution versus, Sampling Distribution
of a Statistic

data frames, Rectangular Data

histograms for, Frequency Tables and Histograms

and indexes, Data Frames and Indexes

typical data frame, Rectangular Data

data generation, Strategies for Imbalanced Data, Data
Generation

data quality, Random Sampling and Sample Bias

sample size versus, Size Versus Quality: When
Does Size Matter?

data science

A/B testing in, Why Have a Control Group?

multiplicity and, Multiple Testing

p-values and, Data Science and p-Values

permutation tests, value of, Permutation Tests: The
Bottom Line for Data Science

relevance of chi-square tests, Relevance for Data
Science

t-statistic and, Assessing the Model

value of heteroskedasticity for, Heteroskedasticity,
Non-Normality, and Correlated Errors

data snooping, Selection Bias

data types

key terms for, Elements of Structured Data

resources for further reading, Further Reading

data-centric approach, excessive, Long-Tailed
Distributions

database normalization vs. normalization in statistics,
Standardization (Normalization, z-Scores)

databases, data types in, Further Reading

decile gains charts, Lift

decision trees, Tree Models

ensemble learning applied to, Statistical Machine
Learning

older meaning in human decision analysis, Tree
Models

running multiple on bootstrap samples, The
Bootstrap

decomposition of variance, ANOVA, F-Statistic

degrees of freedom, Standard Deviation and Related
Estimates, Degrees of Freedom-Further Reading, F-
Statistic

for chi-square distribution, Chi-Square Test:
Statistical Theory

t-distribution and, Student’s t-Distribution

dendrograms, Hierarchical Clustering, The
Dendrogram-The Dendrogram, Categorical Data and
Gower’s Distance

density plots, Exploring the Data Distribution

and estimates, Density Plots and Estimates

departure from expectation, Chi-Square Distribution

dependent variables, Data Frames and Indexes, The
Regression Equation

(see also response)

deviance, Fitting the model

attempt to minimize in logistic regression,
Oversampling and Up/Down Weighting

deviation coding, Factor Variables in Regression,
Dummy Variables Representation

deviations

defined, Estimates of Variability

standard deviation and related estimates, Standard
Deviation and Related Estimates

discrete data, Elements of Structured Data

discriminant analysis, Discriminant Analysis-Further
Reading

covariance matrix, Covariance Matrix

Fisher’s linear discriminant, Fisher’s Linear
Discriminant

linear discriminant analysis (LDA), Discriminant
Analysis

simple example, A Simple Example-A Simple
Example

variants of, A Simple Example

discriminant function, Discriminant Analysis

discriminant weights, Discriminant Analysis

dispersion, Estimates of Variability

(see also variability)

dissimilarity metrics, A Simple Example, Measures of
Dissimilarity-Measures of Dissimilarity

complete-linkage method, The Agglomerative
Algorithm

distance metrics, K-Nearest Neighbors, Distance
Metrics

Gower’s distance, Categorical Data and Gower’s
Distance

in hierarchical clustering, A Simple Example, The
Agglomerative Algorithm

Manhattan distance, Categorical Data and Gower’s
Distance

dominant variables, Dominant Variables-Categorical
Data and Gower’s Distance

Donoho, David, Exploratory Data Analysis

double blind studies, Why Have a Control Group?

downsampling, Undersampling

(see also undersampling)

dummy variables, Factor Variables in Regression, One
Hot Encoder

representation of factor variables in regression,
Dummy Variables Representation

Durbin-Watson statistic, Heteroskedasticity, Non-
Normality, and Correlated Errors

E

effect size, Power and Sample Size, Sample Size

elbow method, Selecting the Number of Clusters,
Selecting the Number of Clusters

Elder, John, Selection Bias

ensemble learning, Statistical Machine Learning

staged use of K-Nearest Neighbors, KNN as a
Feature Engine

ensemble of models, Bagging and the Random Forest

bagging and boosting, Bagging and the Random
Forest

creating using boosting, Boosting

entropy of information, Measuring Homogeneity or
Impurity

epsilon-greedy algorithm for A/B test, Multi-Arm
Bandit Algorithm

errors, Normal Distribution

prediction errors, Fitted Values and Residuals

(see also residuals)

estimates

hat notation and, Fitted Values and Residuals

metrics and, Estimates of Location

estimates of location, Estimates of Location-Estimates
of Variability

Euclidean distance, Distance Metrics, The
Agglomerative Algorithm

exact tests, Exhaustive and Bootstrap Permutation Tests

Fisher’s exact test, Fisher’s Exact Test-Relevance
for Data Science

exhaustive permutation tests, Exhaustive and Bootstrap
Permutation Tests

expectation or expected, Chi-Square Test

departure from, Chi-Square Distribution

expected value, Exploring Binary and Categorical Data,
Expected Value

explanation (profiling), prediction versus, Prediction
Versus Explanation (Profiling)

exploratory data analysis, Exploratory Data Analysis-
Summary

categorical and binary data, Elements of Structured
Data-Further Reading, Exploring Binary and
Categorical Data-Further Reading

correlation, Correlation-Further Reading

data distribution, Exploring the Data Distribution-
Exploring Binary and Categorical Data

estimates of location, Estimates of Location-
Estimates of Variability

estimates of variability, Estimates of Variability-
Exploring the Data Distribution

exploring two or more variables, Exploring Two or
More Variables-Summary

for predictions from classification models,
Exploring the Predictions

unsupervised learning as extension of,
Unsupervised Learning

Exploratory Data Analysis (Tukey), Exploratory Data
Analysis

exponential distribution, Exponential Distribution

extrapolation

dangers of, The Dangers of Extrapolation

defined, Prediction Using Regression

F

F-distribution, F-Distribution

F-statistic, ANOVA, F-Statistic, Assessing the Model

facets, Visualizing Multiple Variables

factor variables, Elements of Structured Data, Degrees
of Freedom, Factor Variables in Regression-Ordered
Factor Variables

binary, odds ratio for, Interpreting the Coefficients
and Odds Ratios

coding in logistic regression, Fitting the model

different codings, Dummy Variables
Representation

dummy variable representations, Dummy Variables
Representation

in naive Bayes algorithm, Naive Bayes

ordered, Ordered Factor Variables

with many levels, Factor Variables with Many
Levels-Factor Variables with Many Levels

failure rate, estimating, Estimating the Failure Rate

false discovery rate, Multiple Testing, Multiple Testing

false positive rate, Confusion Matrix

feature selection

chi-square tests in, Relevance for Data Science

in stepwise regression, Model Selection and
Stepwise Regression

using discriminant analysis for, A Simple Example

features, Rectangular Data, The Regression Equation

(see also predictor variables)

K-Nearest Neighbors as feature engine, KNN as a
Feature Engine-KNN as a Feature Engine

terminology differences, Data Frames and Indexes

field view (spatial data), Nonrectangular Data Structures

Fisher’s exact test, Fisher’s Exact Test-Relevance for
Data Science

relevance for data science, Relevance for Data
Science

Fisher’s linear discriminant, Fisher’s Linear
Discriminant

Fisher’s scoring, Fitting the model

Fisher, R.A., Discriminant Analysis

fitted values, Simple Linear Regression

in multiple linear regression, Multiple Linear
Regression

in simple linear regression, Fitted Values and
Residuals

fitting the model

bias-variance trade-off, Choosing K

K-Nearest Neighbors, advantages of, KNN as a
Feature Engine

linear versus logistic regression, Fitting the model

random forest fit to loan default data, Variable
Importance

rules for simple tree model fit to loan data, A
Simple Example

folds, Cross-Validation, Hyperparameters and Cross-
Validation

forward selection, Model Selection and Stepwise
Regression, Model Selection and Stepwise Regression

frequency tables, Exploring the Data Distribution

example, murder rates by state, Frequency Tables
and Histograms

Friedman, Jerome H. (Jerry), Statistical Machine
Learning

G

gains, Lift

(see also lift)

Gallup Poll, Random Sampling and Sample Bias

Galton, Francis, Regression to the Mean, Bagging and
the Random Forest

Gauss, Carl Friedrich, Least Squares

Gaussian distribution, Normal Distribution

(see also normal distribution)

generalized additive models (GAM), Polynomial and
Spline Regression, Generalized Additive Models-
Generalized Additive Models

logistic regression fit with, Exploring the
Predictions

generalized linear models (GLMs), Logistic Regression
and the GLM-Generalized Linear Models

characteristics and applications of, Generalized
Linear Models

Gini coefficient, Measuring Homogeneity or Impurity

Gini impurity, Measuring Homogeneity or Impurity,
Variable Importance

Google Analytics, Example: Web Stickiness

Gosset, W. S., Student’s t-Distribution

Gower’s distance, Scaling and Categorical Variables

using to scale categorical variables, Categorical
Data and Gower’s Distance

gradient boosting, Boosting, The Boosting Algorithm

graphs, Nonrectangular Data Structures

in computer science versus statistics,
Nonrectangular Data Structures

greedy algorithms, Multi-Arm Bandit Algorithm

H

hat notation, estimates versus known values, Fitted
Values and Residuals

hat-value, Regression Diagnostics, Influential Values

heat maps, Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)

heteroskedastic errors, Heteroskedasticity, Non-
Normality, and Correlated Errors

heteroskedasticity, Regression Diagnostics,
Heteroskedasticity, Non-Normality, and Correlated
Errors

value to data science, Heteroskedasticity, Non-
Normality, and Correlated Errors

hexagonal binning, Exploring Two or More Variables

and contours, plotting relationship between two
numeric values, Hexagonal Binning and Contours
(Plotting Numeric Versus Numeric Data)-
Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)

extending with conditional variables, Visualizing
Multiple Variables

hierarchical clustering, Hierarchical Clustering-
Measures of Dissimilarity

agglomerative algorithm, The Agglomerative
Algorithm

dissimilarity metrics, Measures of Dissimilarity-
Measures of Dissimilarity

representation in dendrogram, The Dendrogram-
The Dendrogram

simple example, A Simple Example

using with Gower’s distance, Categorical Data and
Gower’s Distance

histograms, Exploring the Data Distribution

bar charts and, Exploring Binary and Categorical
Data

plotting of, Frequency Tables and Histograms

visualizing frequency tables with, Frequency
Tables and Histograms

homogeneity, measuring, Measuring Homogeneity or
Impurity

hyperparameters, Hyperparameters, Boosting

hypothesis tests, Hypothesis Tests-Further Reading

alternative hypothesis, Alternative Hypothesis

false discovery rate, Multiple Testing

misinterpreting randomness, Hypothesis Tests

null hypothesis, The Null Hypothesis

one-way and two-way tests, One-Way Versus Two-
Way Hypothesis Tests

structured to minimize type 1 errors, Type 1 and
Type 2 Errors

I

if-then-else rules (tree models), Tree Models

imbalanced data strategies for classification models,
Strategies for Imbalanced Data-Summary, A Small
Example: Predicting Loan Default

cost-based classification, Cost-Based Classification

data generation, Data Generation

exploring the predictions, Exploring the
Predictions-Exploring the Predictions

oversampling and up/down weighting,
Oversampling and Up/Down Weighting

impurity, Tree Models

measuring, Measuring Homogeneity or Impurity,
Predicting a Continuous Value

in-sample validation methods, Model Selection and
Stepwise Regression

independent variables, Simple Linear Regression, The
Regression Equation

(see also predictor variables)

indexes, data frames and, Data Frames and Indexes

indicator variables, Factor Variables in Regression

inference, Exploratory Data Analysis, Statistical
Experiments and Significance Testing

influence plots, Influential Values

influential values, Regression Diagnostics, Influential
Values

interactions, Interpreting the Regression Equation,
Variable Importance

and main effects, Interactions and Main Effects-
Interactions and Main Effects

intercept, Simple Linear Regression, The Regression
Equation

Internet of Things (IoT), Elements of Structured Data

interquartile range, Estimates of Variability, Estimates
Based on Percentiles

calculating, Example: Variability Estimates of State
Population

interval endpoints, Confidence Intervals

inverse logit function, Logistic Response Function and
Logit

inverse odds function, Logistic Response Function and
Logit

IQR (see interquartile range)

K

K (in K-means clustering), K-Means Clustering,
Selecting the Number of Clusters

K (in K-Nearest Neighbors), Strategies for Imbalanced
Data, K-Nearest Neighbors, KNN as a Feature Engine

k-fold cross-validation, Cross-Validation

K-means clustering, K-Means Clustering-Selecting the
Number of Clusters

applying to data without normalization, Scaling the
Variables

applying to normalized data, Scaling the Variables

interpreting the clusters, Interpreting the Clusters-
Interpreting the Clusters

K-means algorithm, K-Means Algorithm

selecting the number of clusters, Selecting the
Number of Clusters

simple example, A Simple Example

using with binary data, Problems with Clustering
Mixed Data

K-Nearest Neighbors, Statistical Machine Learning, K-
Nearest Neighbors-KNN as a Feature Engine

categorical data and, Scaling and Categorical
Variables

choosing K, Choosing K

distance metrics, Distance Metrics

example, predicting loan default, A Small
Example: Predicting Loan Default-A Small
Example: Predicting Loan Default

as a feature engine, KNN as a Feature Engine-KNN
as a Feature Engine

one hot encoder and, One Hot Encoder

standardization in, Standardization (Normalization,
z-Scores)-Standardization (Normalization, z-
Scores)

Kendall’s tau, Correlation

kernel density estimates, Exploring the Data
Distribution, Density Plots and Estimates

(see also density plots)

KNN (see K-Nearest Neighbors)

knots, Polynomial and Spline Regression, Splines

kurtosis, Frequency Tables and Histograms

L

lasso regression, Model Selection and Stepwise
Regression, Regularization: Avoiding Overfitting

Latent Dirichlet Allocation, Discriminant Analysis

leaf, Tree Models

least squares regression, Simple Linear Regression,
Least Squares, Regularization: Avoiding Overfitting

Legendre, Adrien-Marie, Least Squares

level of confidence, Confidence Intervals

leverage

defined, Regression Diagnostics

influential values in regression, Influential Values

lift, Evaluating Classification Models, Lift

lift curve, Lift

uplift and, Lift

linear discriminant analysis (LDA), Discriminant
Analysis, Exploring the Predictions

(see also discriminant analysis)

principal components analysis as unsupervised
version, Principal Components Analysis

linear discriminant function, A Simple Example, A
Simple Example

linear model (lm), The Regression Equation, Multiple
Linear Regression

linear regression

comparison to logistic regression, Linear and
Logistic Regression: Similarities and Differences-
Fitting the model

examination of residuals to see if fit can be
improved, Boosting

generalized linear model (GLM), Logistic
Regression and the GLM

multicollinearity problems caused by one hot
encoding, One Hot Encoder

multiple, Multiple Linear Regression-Further
Reading

assessing the model, Assessing the Model

cross validation, Cross-Validation

example, estimating value of houses,
Example: King County Housing Data-
Example: King County Housing Data

model selection and stepwise regression,
Model Selection and Stepwise Regression-
Model Selection and Stepwise Regression

weighted regression, Weighted Regression-
Further Reading

prediction vs. explanation, Prediction Versus
Explanation (Profiling)

simple, Simple Linear Regression-Further Reading

fitted values and residuals, Fitted Values and
Residuals

least squares, Least Squares

regression equation, The Regression Equation-
Fitted Values and Residuals

Literary Digest poll of 1936, Random Sampling and
Sample Bias

loadings, Principal Components Analysis, A Simple
Example

cluster mean versus, Interpreting the Clusters

plotting for top principal components, Interpreting
Principal Components

with negative signs, A Simple Example

location, estimates of, Estimates of Location-Estimates
of Variability

log-odds function (see logit function)

log-odds ratio and odds ratio, Interpreting the
Coefficients and Odds Ratios

logistic linear regression, Exploring the Predictions

logistic regression, Logistic Regression-Further Reading

assessing the model, Assessing the Model-Analysis
of residuals

comparison to linear regression, Linear and
Logistic Regression: Similarities and Differences-
Fitting the model

fit using generalized additive model, Exploring the
Predictions

and the generalized linear model, Logistic
Regression and the GLM-Generalized Linear
Models

interpreting coefficients and odds ratio, Interpreting
the Coefficients and Odds Ratios

logistic response function and logit, Logistic
Response Function and Logit

multicollinearity problems caused by one hot
encoding, One Hot Encoder

predicted values from, Predicted Values from
Logistic Regression

logistic response function, Logistic Response Function
and Logit, Logistic Response Function and Logit

logit function, Logistic Response Function and Logit,
Logistic Response Function and Logit

long-tail distributions, Long-Tailed Distributions-
Student’s t-Distribution

loss, Tree Models

in simple tree model example, A Simple Example

loss function, Oversampling and Up/Down Weighting

M

machine learning, Statistical Machine Learning

(see also statistical machine learning; supervised
learning; unsupervised learning)

overfitting risk, mitigating, Multiple Testing

statistics versus, Statistical Machine Learning

use of resampling to improve models, Resampling

MAD (see median absolute deviation from the median)

Mahalanobis distance, Covariance Matrix, Distance
Metrics

main effects, Interpreting the Regression Equation

interactions and, Interactions and Main Effects-
Interactions and Main Effects

Mallows Cp, Model Selection and Stepwise Regression

Manhattan distance, Distance Metrics, Regularization:
Avoiding Overfitting, Categorical Data and Gower’s
Distance

maximum likelihood estimation (MLE), Fitting the
model, Analysis of residuals

mean, Estimates of Location, Mean

regression to, Regression to the Mean

sample mean versus population mean, Sample
Mean Versus Population Mean

trimmed mean, Mean

weighted mean, Mean

mean absolute deviation, Estimates of Variability

formula for calculating, Standard Deviation and
Related Estimates

median, Estimates of Location, Median and Robust
Estimates

median absolute deviation from the median (MAD),
Estimates of Variability, Standard Deviation and Related

Estimates

medical screening tests, false positives and, Confusion
Matrix

metrics, Estimates of Location

minimum variance metric, Measures of Dissimilarity

mode, Exploring Binary and Categorical Data

examples in categorical data, Mode

model-based clustering, Model-Based Clustering-
Further Reading

limitations of, Selecting the Number of Clusters

mixtures of normals, Mixtures of Normals-
Mixtures of Normals

multivariate normal distribution, Multivariate
Normal Distribution

selecting the number of clusters, Selecting the
Number of Clusters-Selecting the Number of
Clusters

moments (of a distribution), Frequency Tables and
Histograms

multi-arm bandits, Why Just A/B? Why Not C, D,…?,
Multi-Arm Bandit Algorithm-Further Reading

multicollinearity, Interpreting the Regression Equation,
Multicollinearity

and predictors used twice in KNN, KNN as a
Feature Engine

problems caused by one hot encoding, One Hot
Encoder

multicollinearity errors, Degrees of Freedom, Dummy
Variables Representation

multiple testing, Multiple Testing-Further Reading

multivariate analysis, Exploring Two or More Variables-
Summary

multivariate bootstrap sampling, The Bootstrap

multivariate normal distribution, Multivariate Normal
Distribution

mixtures of normals, Mixtures of Normals-
Mixtures of Normals

N

N (or n) referring to total records, Mean

n or n – 1, dividing by in variance formula, Standard
Deviation and Related Estimates

n or n – 1, dividing by in variance or standard deviation
formula, Degrees of Freedom

n or sample size, Degrees of Freedom

naive Bayes algorithm, Naive Bayes-Further Reading

numeric predictor variables with, Numeric
Predictor Variables

solution, The Naive Solution-The Naive Solution

why exact Bayesian classification is impractical,
Why Exact Bayesian Classification Is Impractical

neighbors (in K-Nearest Neighbors), K-Nearest
Neighbors

network data structures, Nonrectangular Data Structures

nodes, Tree Models

non-normal residuals, Regression Diagnostics,
Heteroskedasticity, Non-Normality, and Correlated
Errors

nonlinear regression, Polynomial and Spline Regression

nonrandom samples, Random Sampling and Sample
Bias

nonrectangular data structures, Nonrectangular Data
Structures

normal distribution, Normal Distribution-Standard
Normal and QQ-Plots

key concepts, Standard Normal and QQ-Plots

misconceptions about, Normal Distribution

multivariate, Multivariate Normal Distribution

standard normal and QQ-Plots, Standard Normal
and QQ-Plots

normalization, Standard Normal and QQ-Plots,
Standardization (Normalization, z-Scores), Scaling and
Categorical Variables

(see also standardization)

in statistics, vs. database normalization,
Standardization (Normalization, z-Scores)

scaling the variables, Scaling the Variables-Scaling
the Variables

null hypothesis, Hypothesis Tests, The Null Hypothesis,
Statistical Significance and p-Values

in click rate testing for web headlines, Chi-Square
Test: A Resampling Approach

using alternative hypothesis with, Alternative
Hypothesis

numeric data, Elements of Structured Data

dimension reduction of, Summary

exploring relationship between two numeric
variables, Hexagonal Binning and Contours
(Plotting Numeric Versus Numeric Data)-
Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)

grouped by categorical variable, exploring,
Categorical and Numeric Data

numeric variables

conversion of factor variables to, in regression,
Factor Variables in Regression

converting ordered factor variables to, Ordered
Factor Variables

Mahalanobis distance, Distance Metrics

O

object representation (spatial data), Nonrectangular Data
Structures

Occam’s razor, Model Selection and Stepwise
Regression

odds, Logistic Response Function and Logit

obtaining probability from, Logistic Response
Function and Logit

odds ratio, Interpreting the Coefficients and Odds Ratios

relationship with log-odds ratio, Interpreting the
Coefficients and Odds Ratios

omnibus tests, ANOVA

one hot encoding, Factor Variables in Regression,
Dummy Variables Representation, One Hot Encoder,
Scaling and Categorical Variables

one-way ANOVA, Two-Way ANOVA

one-way tests, Hypothesis Tests, One-Way Versus Two-
Way Hypothesis Tests

order statistics, Estimates of Variability, Estimates
Based on Percentiles

ordered factor variables, Ordered Factor Variables

ordinal data, Elements of Structured Data

importance of the concept, Elements of Structured
Data

ordinary least squares (OLS) regression, Least Squares,
Heteroskedasticity, Non-Normality, and Correlated
Errors

out-of-bag estimate of error, Random Forest

out-of-sample validation, Cross-Validation

outcome, Rectangular Data

outliers, Estimates of Location, Outliers

correlation coefficient and, Correlation

in boxplots, Percentiles and Boxplots

in regression diagnostics, Outliers-Outliers

overfitting, Multiple Testing

avoiding using regularization, Regularization:
Avoiding Overfitting-Regularization: Avoiding
Overfitting

oversampling, Strategies for Imbalanced Data

and up/down weighting, Oversampling and
Up/Down Weighting

P

p-values, Statistical Significance and p-Values-Further
Reading, ANOVA

adjustment of, Multiple Testing

alpha, Alpha

chi-square distribution and, Chi-Square Test:
Statistical Theory

controversy over use of, p-value controversy

data science and, Data Science and p-Values

practical significance and, Practical significance

t-statistic and, Assessing the Model

type 1 and type 2 errors, Type 1 and Type 2 Errors

pairwise comparisons, ANOVA, ANOVA

partial residual plots, Regression Diagnostics, Partial
Residual Plots and Nonlinearity

for spline regression, Splines

in logistic regression, Analysis of residuals

nonlinearity and, Partial Residual Plots and
Nonlinearity

partitions in trees, Tree Models, How Trees Are Used

random forests, Random Forest

recursive partitioning algorithm, The Recursive
Partitioning Algorithm-The Recursive Partitioning
Algorithm

PCA (see principal components analysis)

Pearson residuals, Chi-Square Test: A Resampling
Approach

Pearson’s chi-square test, Chi-Square Test

Pearson’s correlation coefficient, Correlation

Pearson, Karl, Principal Components Analysis

penalized regression, Model Selection and Stepwise
Regression, Interactions and Main Effects

penalty on model complexity, Regularization: Avoiding
Overfitting

percentiles, Estimates of Location, Estimates of
Variability

and boxplots, Percentiles and Boxplots-Percentiles
and Boxplots

estimates based on, Estimates Based on Percentiles

precise definition of, Estimates Based on
Percentiles

permissions for scientific and medical testing, Why Just
A/B? Why Not C, D,…?

permutation tests, Resampling, Permutation Test-
Permutation Tests: The Bottom Line for Data Science,
Statistical Significance and p-Values

for ANOVA, ANOVA

for chi-square test, Chi-Square Test: A Resampling
Approach

estimating p-values from, p-Value

exhaustive and bootstrap, Exhaustive and Bootstrap
Permutation Tests

value for data science, Permutation Tests: The
Bottom Line for Data Science

web stickiness example, Example: Web Stickiness-
Exhaustive and Bootstrap Permutation Tests

pertinent records (in searches), Size Versus Quality:
When Does Size Matter?

pie charts, Exploring Binary and Categorical Data,
Exploring Binary and Categorical Data

pivot tables, Two Categorical Variables

(see also contingency tables)

point estimates, Confidence Intervals

Poisson distributions, Poisson Distributions,
Generalized Linear Models

polynomial coding, Dummy Variables Representation

polynomial regression, Polynomial

population, Random Sampling and Sample Bias

population mean vs. sample mean, Sample Mean
Versus Population Mean

posterior probability, Naive Bayes, The Naive Solution

power and sample size, Power and Sample Size-
Summary

calculating, components in, Sample Size

power, Power and Sample Size

sample size, Sample Size

practical significance versus statistical significance,
Practical significance

precision, Evaluating Classification Models, Precision,
Recall, and Specificity

precision-recall (PR) curve, ROC Curve

predicted values, Fitted Values and Residuals

(see also fitted values)

prediction, Classification

(see also classification)

exploring predictions from classification models,
Exploring the Predictions

fitted values and residuals in simple linear
regression, Fitted Values and Residuals

from random forests, Random Forest

from XGBoost applied to loan default data,
XGBoost

harnessing results from multiple trees, How Trees
Are Used

predicted values from logistic regression, Predicted
Values from Logistic Regression

predicting a continuous value with tree model,
Predicting a Continuous Value

predicting loan default with K-Nearest Neighbors,
A Small Example: Predicting Loan Default-A
Small Example: Predicting Loan Default

prediction vs. explanation in simple linear
regression, Prediction Versus Explanation
(Profiling)

unsupervised learning and, Unsupervised Learning

using regression, Regression and Prediction,
Prediction Using Regression-Factor Variables in
Regression

confidence and prediction intervals,
Confidence and Prediction Intervals-Factor
Variables in Regression

dangers of extrapolation, The Dangers of
Extrapolation

prediction intervals, Further Reading, Confidence and
Prediction Intervals

confidence intervals versus, Confidence and
Prediction Intervals

predictive modeling

KNN as first stage for, KNN as a Feature Engine,
KNN as a Feature Engine

machine learning vs. statistics, Statistical Machine
Learning

predictor variables, Data Frames and Indexes, The
Regression Equation

correlated, Correlated Predictors

isolating relationship between response and, Partial
Residual Plots and Nonlinearity

main effects and interactions, Interactions and
Main Effects-Interactions and Main Effects

nonlinear relationships among, captured by trees,
How Trees Are Used

numeric, applying naive Bayes algorithm to,
Numeric Predictor Variables

redundancy in, Multicollinearity

standardization in K-Nearest Neighbors,
Standardization (Normalization, z-Scores)

t-statistic and, Assessing the Model

used twice in KNN, KNN as a Feature Engine

using more than two in linear discriminant analysis,
A Simple Example

principal components, Principal Components Analysis

principal components analysis, Principal Components
Analysis-Further Reading, Problems with Clustering
Mixed Data

cluster analysis versus, Interpreting the Clusters

computing principal components, Computing the
Principal Components

correspondence analysis, Correspondence
Analysis-Correspondence Analysis

deciding how many components to choose,
Interpreting Principal Components

interpreting principal components, Interpreting
Principal Components-Interpreting Principal
Components

scaling of variables, Scaling the Variables

simple example, A Simple Example-A Simple
Example

using with binary data, Problems with Clustering
Mixed Data

probability, Probability, Classification

associated with a confidence interval, Confidence
Intervals

output by K-Nearest Neighbors, A Small Example:
Predicting Loan Default

produced by tree models, The Recursive
Partitioning Algorithm

propensity, Classification

(see also probability)

proxy variables, Example: Web Stickiness

pruning, Tree Models, Stopping the Tree from Growing

pseudo-residuals, The Boosting Algorithm

Q

QQ-Plots, Normal Distribution

for returns of NFLX stock, Long-Tailed
Distributions

standard normal distribution and, Standard Normal
and QQ-Plots

quadratic discriminant analysis (QDA), A Simple
Example

quantiles, Estimates Based on Percentiles

(see also percentiles)

functions for, Estimates Based on Percentiles

R

R-squared, Multiple Linear Regression, Assessing the
Model

R-Tutorial website, Further Reading

random forests, Statistical Machine Learning, Tree
Models, Bagging and the Random Forest, Random
Forest-Random Forest

hyperparameters, Hyperparameters

variable importance in, Variable Importance-
Variable Importance

random numbers, generation from Poisson distribution,
Poisson Distributions

random sampling, Random Sampling and Sample Bias-
Selection Bias

bias, Bias

random selection, Random Selection

sample mean versus population mean, Sample
Mean Versus Population Mean

size versus quality, Size Versus Quality: When
Does Size Matter?

random subset of variables (in random forest), Random
Forest

randomization, A/B Testing

randomness, underestimating and misinterpreting,
Hypothesis Tests

range, Estimates of Variability, Estimates Based on
Percentiles

ranking records, naive Bayes algorithm, The Naive
Solution

rare class problem, The Rare Class Problem

recall, Precision, Recall, and Specificity

(see also sensitivity)

trade-off with specificity, ROC Curve

Receiver Operating Characteristics curve (see ROC
curve)

records, Rectangular Data, Simple Linear Regression

rectangular data, Rectangular Data-Estimates of
Location

key terms for, Rectangular Data

terminology differences, Data Frames and Indexes

recursive partitioning, Tree Models, The Recursive
Partitioning Algorithm-The Recursive Partitioning
Algorithm

reducing the dimension of the data, Unsupervised
Learning

reference coding, Factor Variables in Regression,
Dummy Variables Representation, Interactions and
Main Effects, Logistic Regression and the GLM

regression, Regression and Prediction-Summary

ANOVA as first step toward statistical model, Two-
Way ANOVA

causation caution, Prediction Versus Explanation
(Profiling)

diagnostics, Regression Diagnostics-Polynomial
and Spline Regression

heteroskedasticity, non-normality, and
correlated errors, Heteroskedasticity, Non-
Normality, and Correlated Errors-
Heteroskedasticity, Non-Normality, and
Correlated Errors

influential values, Influential Values

outliers, Outliers

partial residual plots and nonlinearity, Partial
Residual Plots and Nonlinearity

factor variables in, Degrees of Freedom, Factor
Variables in Regression-Ordered Factor Variables

dummy variables representation, Dummy
Variables Representation

ordered factor variables, Ordered Factor
Variables

with many levels, Factor Variables with Many
Levels-Factor Variables with Many Levels

interpreting the regression equation, Interpreting
the Regression Equation-Interactions and Main
Effects

confounding variables, Confounding
Variables-Confounding Variables

correlated predictor variables, Correlated
Predictors

interactions and main effects, Interactions and
Main Effects-Interactions and Main Effects

multicollinearity, Multicollinearity

logistic regression, Logistic Regression-Further
Reading

comparison to linear regression, Linear and
Logistic Regression: Similarities and
Differences-Fitting the model

meanings of term, Least Squares

multiple linear regression, Multiple Linear
Regression-Further Reading

assessing the model, Assessing the Model

cross validation, Cross-Validation

example, estimating value of houses,
Example: King County Housing Data-
Example: King County Housing Data

model selection and stepwise regression,
Model Selection and Stepwise Regression-
Model Selection and Stepwise Regression

weighted regression, Weighted Regression-
Further Reading

polynomial and spline regression, Polynomial and
Spline Regression-Further Reading

generalized additive models, Generalized
Additive Models-Generalized Additive
Models

polynomial, Polynomial

splines, Splines

prediction with, Prediction Using Regression-
Factor Variables in Regression

confidence and prediction intervals,
Confidence and Prediction Intervals-Factor

Variables in Regression

dangers of extrapolation, The Dangers of
Extrapolation

simple linear regression, Simple Linear
Regression-Further Reading

fitted values and residuals, Fitted Values and
Residuals

least squares, Least Squares

prediction vs. explanation, Prediction Versus
Explanation (Profiling)

regression equation, The Regression Equation-
Fitted Values and Residuals

with a tree, Predicting a Continuous Value

unsupervised learning as building block,
Unsupervised Learning

regression coefficients, Simple Linear Regression, The
Regression Equation

comparison with full data and with influential data
removed, Influential Values

confidence intervals and, Confidence and
Prediction Intervals

correlated predictors and, Correlated Predictors

regression to the mean, Regression to the Mean

regularization, Boosting

avoiding overfitting with, Regularization: Avoiding
Overfitting-Regularization: Avoiding Overfitting

L1 regularization, Regularization: Avoiding
Overfitting, Regularization: Avoiding Overfitting

L2 regularization, Regularization: Avoiding
Overfitting, Regularization: Avoiding Overfitting

replacement (in sampling), Random Sampling and
Sample Bias, Resampling

in bootstrap permutation tests, Exhaustive and
Bootstrap Permutation Tests

sample with replacement, The Bootstrap

representativeness, Random Sampling and Sample Bias

through random sampling, Random Selection

resampling, The Bootstrap, Resampling-Further
Reading

bootstrap and permutation tests, Resampling

bootstrapping versus, Resampling Versus
Bootstrapping

permutation tests, Permutation Test-Permutation
Tests: The Bottom Line for Data Science, ANOVA

exhaustive and bootstrap tests, Exhaustive and
Bootstrap Permutation Tests

value for data science, Permutation Tests: The
Bottom Line for Data Science

web stickiness example, Example: Web
Stickiness-Exhaustive and Bootstrap
Permutation Tests

using in chi-square test, Chi-Square Test: A
Resampling Approach, Chi-Square Test: A
Resampling Approach

rescaling variables, methods other than z-scores,
Standardization (Normalization, z-Scores)

residual standard error (RSE), Multiple Linear
Regression, Assessing the Model

residual sum of squares (RSS), Least Squares,
Regularization: Avoiding Overfitting

residuals, Simple Linear Regression

analysis of, in logistic regression, Analysis of
residuals

in multiple linear regression, Multiple Linear
Regression

in simple linear regression, Fitted Values and
Residuals

response, Data Frames and Indexes, Simple Linear
Regression, The Regression Equation

isolating relationship between predictor variable
and, Partial Residual Plots and Nonlinearity

ridge regression, Model Selection and Stepwise
Regression, Regularization: Avoiding Overfitting

RMSE (see root mean squared error)

robust, Estimates of Location

robust estimates of correlation, Correlation

robust estimates of location, Median and Robust
Estimates-Example: Location Estimates of Population
and Murder Rates

example, location estimates of population and
murder rates, Example: Location Estimates of
Population and Murder Rates

median, Median and Robust Estimates

outliers and, Outliers

other robust metrics for, Outliers

weighted median, Median and Robust Estimates

robust estimates of variability, median absolute
deviation from the median, Standard Deviation and
Related Estimates

robust estimates of variance, calculating robust MAD,
Example: Variability Estimates of State Population

ROC curve, Evaluating Classification Models, ROC
Curve-ROC Curve

AUC metric, AUC-AUC

root mean squared error (RMSE), Multiple Linear
Regression, Assessing the Model, Predicting a
Continuous Value

RSE (see residual standard error)

RSS (see residual sum of squares)

S

sample bias, Random Sampling and Sample Bias

sample statistic, Sampling Distribution of a Statistic

samples

sample size, power and, Power and Sample Size-
Summary

terminology differences, Data Frames and Indexes

sampling, Data and Sampling Distributions-Summary

binomial distribution, Binomial Distribution-
Further Reading

bootstrap, The Bootstrap-Further Reading

chi-square distribution, Chi-Square Distribution

confidence intervals, Confidence Intervals-Further
Reading

F-distribution, F-Distribution

long-tailed distributions, Long-Tailed
Distributions-Student’s t-Distribution

normal distribution, Normal Distribution-Standard
Normal and QQ-Plots

Poisson and related distributions, Poisson and
Related Distributions-Further Reading

estimating the failure rate, Estimating the
Failure Rate

exponential distribution, Exponential
Distribution

Poisson distributions, Poisson Distributions

Weibull distribution, Weibull Distribution

random sampling and sample bias, Random
Sampling and Sample Bias-Selection Bias

with and without replacement, Random Sampling
and Sample Bias, The Bootstrap, Resampling,
Exhaustive and Bootstrap Permutation Tests

selection bias, Selection Bias-Further Reading

Student’s t-distribution, Student’s t-Distribution-
Further Reading

sampling distribution, Sampling Distribution of a
Statistic-Further Reading

central limit theorem, Central Limit Theorem

data distribution versus, Sampling Distribution of a
Statistic

standard error, Standard Error

sampling variability, Sampling Distribution of a Statistic

scaling, Scaling and Categorical Variables

scaling and categorical variables, Scaling and
Categorical Variables-Summary

categorical variables and Gower’s distance,
Categorical Data and Gower’s Distance

dominant variables, Dominant Variables-
Categorical Data and Gower’s Distance

problems with clustering mixed data, Problems
with Clustering Mixed Data

scaling the variables, Scaling the Variables-Scaling
the Variables

scatterplot smoothers, Heteroskedasticity, Non-
Normality, and Correlated Errors

scatterplots, Correlation, Scatterplots

biplot, Correspondence Analysis

extending with conditional variables, Visualizing
Multiple Variables

scientific fraud, detecting, Fisher’s Exact Test

screeplots, Principal Components Analysis, Dominant
Variables

for PCA of top stocks, Interpreting Principal
Components

search

need for enormous quantities of data, Size Versus
Quality: When Does Size Matter?

vast search effect, Selection Bias

selection bias, Selection Bias-Further Reading

regression to the mean, Regression to the Mean-
Regression to the Mean

typical forms of, Selection Bias

self-selection sampling bias, Random Sampling and
Sample Bias

sensitivity, Evaluating Classification Models, Precision,
Recall, and Specificity

signal to noise ratio (SNR), Choosing K

significance level, Power and Sample Size, Sample Size

significance tests, Hypothesis Tests

(see also hypothesis tests)

underestimating and misinterpreting random events
in, Hypothesis Tests

simple random sample, Random Sampling and Sample
Bias

single linkage metric, Measures of Dissimilarity

skew, Long-Tailed Distributions

skewness, Frequency Tables and Histograms

slope, The Regression Equation

(see also regression coefficients)

slot machines used in gambling, Multi-Arm Bandit
Algorithm

smoothing parameter, use with naive Bayes algorithm,
Numeric Predictor Variables

SMOTE algorithm, Data Generation

spatial data structures, Nonrectangular Data Structures

Spearman’s rho, Correlation

specificity, Evaluating Classification Models, Precision,
Recall, and Specificity

trade-off with recall, ROC Curve

spline regression, Polynomial and Spline Regression,
Splines

split value, Tree Models, How Trees Are Used

SQL (Structured Query Language), Further Reading

square-root of n rule, Standard Error

SS (see sum of squares)

standard deviation, Estimates of Variability

covariance matrix and, Covariance Matrix

in A/B testing, A/B Testing

and related estimates, Standard Deviation and
Related Estimates

standard error, Sampling Distribution of a Statistic,
Standard Error

standard normal distribution, Normal Distribution

and QQ-Plots, Standard Normal and QQ-Plots

standardization, Normal Distribution, Standard Normal
and QQ-Plots, K-Nearest Neighbors, Distance Metrics

in K-Nearest Neighbors, Standardization
(Normalization, z-Scores)-Standardization
(Normalization, z-Scores)

of continuous variables, K-Means Clustering

standardized residuals

defined, Regression Diagnostics

examining to detect outliers, Outliers

histogram of, for housing data regression,
Heteroskedasticity, Non-Normality, and Correlated
Errors

statistical experiments and significance testing,
Statistical Experiments and Significance Testing-
Summary

A/B testing, A/B Testing-Further Reading

analysis of variance (ANOVA), ANOVA-Further
Reading

chi-square test, Chi-Square Test-Further Reading

degrees of freedom, Degrees of Freedom-Further
Reading

hypothesis tests, Hypothesis Tests-Further Reading

multi-arm bandits, Multi-Arm Bandit Algorithm-
Further Reading

multiple testing, Multiple Testing-Further Reading

power and sample size, Power and Sample Size-
Summary

resampling, Resampling-Further Reading

statistical significance and p-values, Statistical
Significance and p-Values-Further Reading

alpha, Alpha

controversy over p-values, p-value
controversy

data science and p-values, Data Science and p-
Values

p-values, p-Value

type 1 and type 2 errors, Type 1 and Type 2
Errors

t-tests, t-Tests-Further Reading

statistical inference, classical inference pipeline,
Statistical Experiments and Significance Testing

statistical machine learning, Statistical Machine
Learning-Summary

bagging and the random forest, Bagging and the
Random Forest-Hyperparameters

bagging, Bagging

hyperparameters, Hyperparameters

random forests, Random Forest-Random
Forest

variable importance, Variable Importance-
Variable Importance

boosting, Boosting-Summary

boosting algorithm, The Boosting Algorithm

hyperparameters and cross-validation,
Hyperparameters and Cross-Validation-
Hyperparameters and Cross-Validation

overfitting, avoiding with regularization,
Regularization: Avoiding Overfitting-
Regularization: Avoiding Overfitting

XGBoost software, XGBoost-Regularization:
Avoiding Overfitting

K-Nearest Neighbors, K-Nearest Neighbors-KNN
as a Feature Engine

distance metrics, Distance Metrics

example, predicting loan default, A Small
Example: Predicting Loan Default-A Small
Example: Predicting Loan Default

KNN as feature engine, KNN as a Feature
Engine-KNN as a Feature Engine

one hot encoder, One Hot Encoder

standardization, Standardization
(Normalization, z-Scores)-Standardization
(Normalization, z-Scores)

tree models, Tree Models-Further Reading

how trees are used, How Trees Are Used

measuring homogeneity or impurity,
Measuring Homogeneity or Impurity

predicting a continuous value, Predicting a
Continuous Value

recursive partitioning, The Recursive
Partitioning Algorithm-The Recursive
Partitioning Algorithm

simple example, A Simple Example

stopping tree growth, Stopping the Tree from
Growing

unsupervised learning, Unsupervised Learning

(see also unsupervised learning)

statistical significance, Permutation Test

practical significance versus, Practical significance

statistics versus machine learning, Statistical Machine
Learning

stepwise regression, Model Selection and Stepwise
Regression

stochastic gradient boosting, Boosting

XGBoost implementation, XGBoost-
Regularization: Avoiding Overfitting

stratified sampling, Random Selection

structured data, Elements of Structured Data-
Rectangular Data

Student’s t-distribution, Student’s t-Distribution-Further
Reading, t-Tests

subjects, A/B Testing

success, Binomial Distribution

sum contrasts, Dummy Variables Representation

sum of squares (SS), ANOVA, F-Statistic

within-cluster SS, A Simple Example

supervised learning, Regression and Prediction,
Classification, Statistical Machine Learning

Synthetic Minority Oversampling Technique (see
SMOTE algorithm)

T

t-distribution, Student’s t-Distribution-Further Reading,
t-Tests, Multiple Testing

t-statistic, t-Tests, Multiple Linear Regression,
Assessing the Model

t-tests, t-Tests-Further Reading

tails, Long-Tailed Distributions

summarizing with percentiles, Percentiles and
Boxplots

target, Data Frames and Indexes

target shuffling, Selection Bias

test statistic, A/B Testing, Why Have a Control Group?,
t-Tests, t-Tests

Thompson’s sampling, Multi-Arm Bandit Algorithm

treatment, A/B Testing

treatment group, A/B Testing

tree models, Interactions and Main Effects, Exploring
the Predictions, Tree Models-Further Reading

advantages of, Tree Models

ensemble, random forest and boosted trees,
Bagging and the Random Forest

how trees are used, How Trees Are Used

measuring homogeneity or impurity, Measuring
Homogeneity or Impurity

predicting a continuous value, Predicting a
Continuous Value

recursive partitioning algorithm, The Recursive
Partitioning Algorithm-The Recursive Partitioning
Algorithm

simple example, A Simple Example

stopping tree growth, Stopping the Tree from
Growing

Trellis graphics, Visualizing Multiple Variables

trials, Binomial Distribution

trimmed mean, Estimates of Location

formula for, Mean

Tukey’s HSD (honest significance difference), Multiple
Testing

Tukey, John Wilder, Exploratory Data Analysis

two-way ANOVA, Two-Way ANOVA

two-way tests, Hypothesis Tests, One-Way Versus Two-
Way Hypothesis Tests

type 1 errors, Statistical Significance and p-Values, Type
1 and Type 2 Errors, Multiple Testing

type 2 errors, Statistical Significance and p-Values, Type
1 and Type 2 Errors

U

unbiased estimates, Standard Deviation and Related
Estimates

undersampling, Undersampling

uniform random distribution, Fisher’s Exact Test

univariate analysis, Exploring Two or More Variables

unsupervised learning, Unsupervised Learning-
Summary

goals achieved by, Unsupervised Learning

hierarchical clustering, Hierarchical Clustering-
Measures of Dissimilarity

agglomerative algorithm, The Agglomerative
Algorithm

dissimilarity metrics, Measures of
Dissimilarity-Measures of Dissimilarity

representation in a dendrogram, The
Dendrogram-The Dendrogram

simple example, A Simple Example

K-means clustering, K-Means Clustering-Selecting
the Number of Clusters

interpreting the clusters, Interpreting the
Clusters-Interpreting the Clusters

K-means algorithm, K-Means Algorithm

selecting the number of clusters, Selecting the
Number of Clusters

simple example, A Simple Example

model-based clustering, Model-Based Clustering-
Further Reading

mixtures of normals, Mixtures of Normals-
Mixtures of Normals

multivariate normal distribution, Multivariate
Normal Distribution

selecting the number of clusters, Selecting the
Number of Clusters-Selecting the Number of
Clusters

and prediction, Unsupervised Learning

principal components analysis, Principal
Components Analysis-Further Reading

computing principal components, Computing
the Principal Components

correspondence analysis, Correspondence
Analysis-Correspondence Analysis

interpreting principal components,
Interpreting Principal Components-
Interpreting Principal Components

simple example, A Simple Example-A Simple
Example

scaling and categorical variables, Scaling and
Categorical Variables-Summary

categorical variables and Gower’s distance,
Categorical Data and Gower’s Distance

dominant variables, Dominant Variables-
Categorical Data and Gower’s Distance

problems with clustering mixed data,
Problems with Clustering Mixed Data

scaling the variables, Scaling the Variables-
Scaling the Variables

up/down weighting, Strategies for Imbalanced Data,
Oversampling and Up/Down Weighting

uplift, Lift

(see also lift)

V

variability, estimates of, Estimates of Variability-
Exploring the Data Distribution

example, murder rates by state population,
Example: Variability Estimates of State Population

key terminology, Estimates of Variability

percentiles, Estimates Based on Percentiles

standard deviation and related estimates, Standard
Deviation and Related Estimates-Standard
Deviation and Related Estimates

variable importance, Bagging and the Random Forest,
Variable Importance-Variable Importance

variables

covariance between, Covariance Matrix

exploring two or more, Exploring Two or More
Variables-Summary

categorical and numeric data, Categorical and
Numeric Data

categorical variables, Two Categorical
Variables

key terms, Exploring Two or More Variables

using hexagonal binning and contour plot,
Hexagonal Binning and Contours (Plotting
Numeric Versus Numeric Data)-Hexagonal
Binning and Contours (Plotting Numeric
Versus Numeric Data)

visualizing multiple variables, Visualizing
Multiple Variables

rescaling, methods other than z-scores,
Standardization (Normalization, z-Scores)

variance, Estimates of Variability, Standard Deviation
and Related Estimates

analysis of (ANOVA), F-Distribution, ANOVA-
Further Reading

bias-variance trade-off in fitting the model,
Choosing K

vast search effect, Selection Bias

violin plots, Exploring Two or More Variables

boxplots versus, Categorical and Numeric Data

visualizations, Nonrectangular Data Structures

(see also graphs)

W

W3Schools guide for SQL, Further Reading

web testing

A/B testing in data science, Why Have a Control
Group?

click rate for three different headlines, Chi-Square
Test: A Resampling Approach

popularity of bandit algorithms in, Multi-Arm
Bandit Algorithm

web stickiness example, Example: Web Stickiness-
Exhaustive and Bootstrap Permutation Tests,
ANOVA

Weibull distribution, Weibull Distribution

weighted mean, Estimates of Location

formula for, Mean

weighted median, Estimates of Location, Median and
Robust Estimates

weighted regression, Multiple Linear Regression,
Weighted Regression-Further Reading

weighting

up weight and down weight, Oversampling and
Up/Down Weighting

using to change loss function in classification,
Oversampling and Up/Down Weighting

weights for principal components (see loadings)

whiskers (in boxplots), Percentiles and Boxplots

wins, Multi-Arm Bandit Algorithm

within-cluster sum of squares (SS), K-Means Clustering

X

XGBoost, XGBoost-Regularization: Avoiding
Overfitting

hyperparameters, Hyperparameters and Cross-
Validation

using regularization to avoid overfitting,
Regularization: Avoiding Overfitting-
Regularization: Avoiding Overfitting

Z

z-scores, Normal Distribution, Standard Normal and
QQ-Plots, Covariance Matrix, Strategies for Imbalanced
Data, K-Nearest Neighbors

conversion of data to, normal distribution and,
Standard Normal and QQ-Plots

in data standardization for KNN, Standardization
(Normalization, z-Scores)

using to scale variables, Scaling the Variables

About the Authors

Peter Bruce founded and grew the Institute for
Statistics Education at Statistics.com, which now offers
about one hundred courses in statistics, roughly a third
of which are aimed at the data scientist. In recruiting top
authors as instructors and forging a marketing strategy
to reach professional data scientists, Peter has developed
both a broad view of the target market and his own
expertise to reach it.

Andrew Bruce has over 30 years of experience in
statistics and data science in academia, government, and
business. He has a PhD in statistics from the University
of Washington and has published numerous papers in
refereed journals. He has developed statistical-based
solutions to a wide range of problems faced by a variety
of industries, from established financial firms to internet
startups, and offers a deep understanding of the practice
of data science.

Peter Gedeck has over 30 years of experience in
scientific computing and data science. After 20 years as
a computational chemist at Novartis, he now works as a
senior data scientist at Collaborative Drug Discovery.
He specializes in the development of machine learning
algorithms to predict biological and physicochemical
properties of drug candidates. Coauthor of Data Mining
for Business Analytics, he earned a PhD in chemistry
from the University of Erlangen-Nürnberg in Germany
and studied mathematics at the Fernuniversität Hagen,
Germany.

Colophon

The animal on the cover of Practical Statistics for Data
Scientists is a lined shore crab (Pachygrapsus
crassipes), also known as a striped shore crab. It is
found along the coasts and beaches of the Pacific Ocean
in North America, Central America, Korea, and Japan.
These crustaceans live under rocks, in tidepools, and
within crevices. They spend about half their time on
land, and periodically return to the water to wet their
gills.

The lined shore crab is named for the green stripes on its
brown-black carapace. It has red claws and purple legs,
which also have a striped or mottled pattern. The crab
generally grows to be 3–5 centimeters in size; females
are slightly smaller. Their eyes are on flexible stalks that
can rotate to give them a full field of vision as they
walk.

Crabs are omnivores, feeding primarily on algae but also
on mollusks, worms, fungi, dead animals, and other
crustaceans (depending on what is available). They
moult many times as they grow to adulthood, taking in
water to expand and crack open their old shell. Once this
is achieved, they spend several difficult hours getting
free, and then must hide until the new shell hardens.

Many of the animals on O’Reilly covers are endangered;
all of them are important to the world.

The cover illustration is by Karen Montgomery, based
on a black-and-white engraving from Pictorial Museum
of Animated Nature. The cover fonts are Gilroy

Semibold and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Exploratory Data Analysis
	Elements of Structured Data
	Further Reading

	Rectangular Data
	Data Frames and Indexes
	Nonrectangular Data Structures
	Further Reading

	Estimates of Location
	Mean
	Median and Robust Estimates
	Example: Location Estimates of Population and Murder Rates
	Further Reading

	Estimates of Variability
	Standard Deviation and Related Estimates
	Estimates Based on Percentiles
	Example: Variability Estimates of State Population
	Further Reading

	Exploring the Data Distribution
	Percentiles and Boxplots
	Frequency Tables and Histograms
	Density Plots and Estimates
	Further Reading

	Exploring Binary and Categorical Data
	Mode
	Expected Value
	Probability
	Further Reading

	Correlation
	Scatterplots
	Further Reading

	Exploring Two or More Variables
	Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data)
	Two Categorical Variables
	Categorical and Numeric Data
	Visualizing Multiple Variables
	Further Reading

	Summary

	2. Data and Sampling Distributions
	Random Sampling and Sample Bias
	Bias
	Random Selection
	Size Versus Quality: When Does Size Matter?
	Sample Mean Versus Population Mean
	Further Reading

	Selection Bias
	Regression to the Mean
	Further Reading

	Sampling Distribution of a Statistic
	Central Limit Theorem
	Standard Error
	Further Reading

	The Bootstrap
	Resampling Versus Bootstrapping
	Further Reading

	Confidence Intervals
	Further Reading

	Normal Distribution
	Standard Normal and QQ-Plots

	Long-Tailed Distributions
	Further Reading

	Student’s t-Distribution
	Further Reading

	Binomial Distribution
	Further Reading

	Chi-Square Distribution
	Further Reading

	F-Distribution
	Further Reading

	Poisson and Related Distributions
	Poisson Distributions
	Exponential Distribution
	Estimating the Failure Rate
	Weibull Distribution
	Further Reading

	Summary

	3. Statistical Experiments and Significance Testing
	A/B Testing
	Why Have a Control Group?
	Why Just A/B? Why Not C, D,…?
	Further Reading

	Hypothesis Tests
	The Null Hypothesis
	Alternative Hypothesis
	One-Way Versus Two-Way Hypothesis Tests
	Further Reading

	Resampling
	Permutation Test
	Example: Web Stickiness
	Exhaustive and Bootstrap Permutation Tests
	Permutation Tests: The Bottom Line for Data Science
	Further Reading

	Statistical Significance and p-Values
	p-Value
	Alpha
	Type 1 and Type 2 Errors
	Data Science and p-Values
	Further Reading

	t-Tests
	Further Reading

	Multiple Testing
	Further Reading

	Degrees of Freedom
	Further Reading

	ANOVA
	F-Statistic
	Two-Way ANOVA
	Further Reading

	Chi-Square Test
	Chi-Square Test: A Resampling Approach
	Chi-Square Test: Statistical Theory
	Fisher’s Exact Test
	Relevance for Data Science
	Further Reading

	Multi-Arm Bandit Algorithm
	Further Reading

	Power and Sample Size
	Sample Size
	Further Reading

	Summary

	4. Regression and Prediction
	Simple Linear Regression
	The Regression Equation
	Fitted Values and Residuals
	Least Squares
	Prediction Versus Explanation (Profiling)
	Further Reading

	Multiple Linear Regression
	Example: King County Housing Data
	Assessing the Model
	Cross-Validation
	Model Selection and Stepwise Regression
	Weighted Regression
	Further Reading

	Prediction Using Regression
	The Dangers of Extrapolation
	Confidence and Prediction Intervals

	Factor Variables in Regression
	Dummy Variables Representation
	Factor Variables with Many Levels
	Ordered Factor Variables

	Interpreting the Regression Equation
	Correlated Predictors
	Multicollinearity
	Confounding Variables
	Interactions and Main Effects

	Regression Diagnostics
	Outliers
	Influential Values
	Heteroskedasticity, Non-Normality, and Correlated Errors
	Partial Residual Plots and Nonlinearity

	Polynomial and Spline Regression
	Polynomial
	Splines
	Generalized Additive Models
	Further Reading

	Summary

	5. Classification
	Naive Bayes
	Why Exact Bayesian Classification Is Impractical
	The Naive Solution
	Numeric Predictor Variables
	Further Reading

	Discriminant Analysis
	Covariance Matrix
	Fisher’s Linear Discriminant
	A Simple Example
	Further Reading

	Logistic Regression
	Logistic Response Function and Logit
	Logistic Regression and the GLM
	Generalized Linear Models
	Predicted Values from Logistic Regression
	Interpreting the Coefficients and Odds Ratios
	Linear and Logistic Regression: Similarities and Differences
	Assessing the Model
	Further Reading

	Evaluating Classification Models
	Confusion Matrix
	The Rare Class Problem
	Precision, Recall, and Specificity
	ROC Curve
	AUC
	Lift
	Further Reading

	Strategies for Imbalanced Data
	Undersampling
	Oversampling and Up/Down Weighting
	Data Generation
	Cost-Based Classification
	Exploring the Predictions
	Further Reading

	Summary

	6. Statistical Machine Learning
	K-Nearest Neighbors
	A Small Example: Predicting Loan Default
	Distance Metrics
	One Hot Encoder
	Standardization (Normalization, z-Scores)
	Choosing K
	KNN as a Feature Engine

	Tree Models
	A Simple Example
	The Recursive Partitioning Algorithm
	Measuring Homogeneity or Impurity
	Stopping the Tree from Growing
	Predicting a Continuous Value
	How Trees Are Used
	Further Reading

	Bagging and the Random Forest
	Bagging
	Random Forest
	Variable Importance
	Hyperparameters

	Boosting
	The Boosting Algorithm
	XGBoost
	Regularization: Avoiding Overfitting
	Hyperparameters and Cross-Validation

	Summary

	7. Unsupervised Learning
	Principal Components Analysis
	A Simple Example
	Computing the Principal Components
	Interpreting Principal Components
	Correspondence Analysis
	Further Reading

	K-Means Clustering
	A Simple Example
	K-Means Algorithm
	Interpreting the Clusters
	Selecting the Number of Clusters

	Hierarchical Clustering
	A Simple Example
	The Dendrogram
	The Agglomerative Algorithm
	Measures of Dissimilarity

	Model-Based Clustering
	Multivariate Normal Distribution
	Mixtures of Normals
	Selecting the Number of Clusters
	Further Reading

	Scaling and Categorical Variables
	Scaling the Variables
	Dominant Variables
	Categorical Data and Gower’s Distance
	Problems with Clustering Mixed Data

	Summary

	Bibliography
	Index

