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Preface  

This is an introduction to logic. It is designed for the level of first year university 
students with no background in mathematics. My intention is to convey some 
sense of the utility of formal systems in the representation and analyses of 
deductive arguments. In addition attention is given to some of the philosophical 
problems which arise in the course of this and to some of the philosophical 
benefits which result.  

The formal system used is based on Gentzen’s rules for natural deduction and 
influenced by E.J.Lemmon’s Beginning Logic (London: Nelson, 1982). The 
most difficult part of the book is section 5 of Chapter 4 which can be omitted 
without affecting what follows. In that section a completeness proof for the 
propositional calculus is given in a form that generalizes to the predicate 
calculus. Easier proofs are available. However, in my experience only students 
with a serious interest in logic bother to work through completeness proofs and 
they can master the more difficult version. Much or all of Chapter 8 on the 
semantics for the predicate calculus could be omitted from the first reading or 
first course. This material has been included for the sake of students who will be 
going on to read contemporary literature in the philosophy of language.  

Computer teaching programs are available to supplement the text. These 
provide further sources from which the student can learn much of the material 
contained in the text. In particular it enables him or her to test his or her 
understanding without needing to wait until an instructor can mark exercises.  

These programs are available for the BBC Model B Micro and for any IBM 
compatible PC. To order these programs or for further information concerning 
them contact Oxcom, Cefnperfedd Uchaf, Maesmynis, Builth Wells, Powys 
LD2 3HU.  

There is a distinction of particular importance to logic between using an 
expression and mentioning an expression. In the last sentence of the previous 
paragraph the expression ‘this book’ was used to refer to a particular thing; 
namely, the book you are now reading. In this last sentence (the one you have 
just read) the expression in quotations was not used to refer to this book. The 
presence of the quotation marks gives us a device for talking about the 
expression itself. We said that the expression was used to refer to a particular 
thing. We might also have said that the expression consisted of two words or 
eight letters. In such assertions we are mentioning not using the expression ‘this 
book’. If we are using it it takes our attention to the book. If we are mentioning 
it, the quotation marks take our attention to the expression itself. If I say that 
Reagan is in Hollywood I am referring to a particular person using a particular 
word. If I say that ‘Reagan’ has six letters I am not talking about that person but 
mentioning the word for the sake of talking about it. If this distinction is not 



grasped and respected nonsense and/or paradox can arise. In this work quotation 
marks are used to direct our attention to expressions themselves. However, on 
occasion we will not bother to include the quotation marks if it is clear from the 
context that we are mentioning the expression for the sake of talking about it in 
rather than using it to say something. For example, if I were to use the sentence 
‘O has a nice shape’ you would take me (correctly) to be talking about the 
expression and not about something called ‘O’. If there were any doubt I could 
have used the sentence ‘“O” has a nice shape.’ Similarly, in this work quotation 
marks are used explicitly if there is any doubts as to what is intended.  

This text was first written in the autumn of 1981 when I was a 
Commonwealth Visiting Professor at Trent University, Ontario. I am 
particularly grateful to the then Master and Fellows of Champlain College for 
providing such a pleasant and stimulating ambience within which to work. Then, 
as in the winter of 1984 when the final work on the text was done, I was on 
sabbatical leave from Balliol College, Oxford. I thank the Master and Fellows 
for this. Andrew Boucher and Martin Dale provided detailed comments on the 
manuscript at an early stage and their help has been invaluable. I thank, too, 
Mary Bugge, research secretary at Balliol College, for her patience and skill in 
typing a difficult manuscript. For the preparation of the index and help with the 
proofs I am indebted to Daniel Cohen, Mark Hope and Ian Rumfitt.  

The computer programs were produced by Andrew Boucher, Peter Gibbins, 
Michael Potter and Duncan Watt. For these and their friendship I offer a special 
thanks.  

In preparing this corrected reprint, I have had the benefit of comments from 
many readers. For these I am most grateful.  





CHAPTER 1  
Logic and language  

1 WHAT IS LOGIC?  

Logic, it is often said, is the study of valid arguments. It is a systematic attempt 
to distinguish valid arguments from invalid arguments. At this stage that 
characterization suffers from the fault of explaining the obscure in terms of the 
equally obscure. For what after all is validity? Or, for that matter, what is an 
argument? Beginning with the latter easier notion we can say that an argument 
has one or more premises and a conclusion. In advancing an argument one 
purports that the premise or premises support the conclusion. This relation of 
support is usually signalled by the use of such terms as ‘therefore’, ‘thus’, 
‘consequently’, ‘so, you see’. Consider that old and boring example of an 
argument:  

Socrates is a man.  
All men are mortal.  
Therefore, Socrates is mortal.  

The premises are ‘Socrates is a man’ and ‘All men are mortal’. ‘Therefore’ is 
the sign of an argument and the conclusion is ‘Socrates is mortal’.  

Real life is never so straightforward and clear-cut as it would be if everyone 
talked the way they would if they had read too many logic textbooks at an 
impressionable age. For example, we often advance arguments without stating 
all our premises.  

Icabod has failed his preliminary examinations twice.  
So, he will be sent down.  

Implicit in the above argument is what we will call a suppressed premise; 
namely, that all students who fail their preliminary examinations twice are sent 
down. It may be so obvious in the context what premise is being assumed that it 
is just too tedious to spell it out. Spelling out premises which are part of a 
common background of shared beliefs is a form of pedantry. However, we have 
to bear in mind that any actual argument may have a suppressed premise which 
needs to be made explicit for the rigorous analysis of that argument. For the sake 
of complete rigour we will in this study practise a certain amount of pedantry.  

We will return to further questions about the nature of arguments after a first 
characterization of the notion of validity. To this end consider the following 



simple little arguments:  

I  
The sky is blue and the grass is green.  
Therefore, the sky is blue.  

All Balliol students are clever.  
Icabod is a Balliol student.  
Therefore, Icabod is clever.  

II  
The sky is blue or the grass is orange.  

Therefore, the grass is orange.  
Icabod is clever.  

Icabod is a Balliol student.  
Therefore, all Balliol students are clever.  

There is something unhappy about the arguments listed in II above. We can 
imagine contexts in which the premises would be true and the conclusion false. 
The arguments in I above have true conclusions whenever they have true 
premises. We will say that they are valid. That means that they have the 
following property: In any case in which the premise (premises) is (are) true, the 
conclusion must be true. Clearly the arguments in I do have this property. How 
could it ever be that the sky was blue and the grass green without the sky being 
blue? There is just no way that Icabod could be a Balliol student and all Balliol 
students be clever without Icabod being clever. The arguments in II lack the 
property of validity. The actual circumstances in the world make the premise of 
the first argument in II true but the conclusion is false. And in the case of the 
second argument in II we can imagine circumstances in which it is true that 
Icabod is clever and a Balliol student but in which there are (unfortunately) 
other non-clever Balliol students whose dullness makes the conclusion false. 
Logic is the systematic study of valid arguments. This means that we will be 
developing rigorous techniques for determining whether arguments are valid.  

EXERCISES  

1 Identify the premises and conclusions of the following arguments making 
explicit any suppressed premises:  
(a) Oysters are not fossils. For no fossil can be crossed in love and an oyster 

may be crossed in love.  
(b) No ducks waltz. No officers ever decline to waltz. Therefore, my 

poultry are not officers.  
(c) Icabod was a scoundrel. Whenever things went badly he blamed 

someone else.  
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2 TRUTH AND VALIDITY  

An argument is valid if it has the property that if the premises were true the 
conclusion would have to be true. Why should we be especially interested in 
validity? It turns out that validity is a particularly nice property for an argument 
to have. For if you reason validly (that is, if your reasoning can be represented 
by a valid argument) and if you start with true premises you will never be led 
into error. And if you can get someone else to accept your premises as true, he 
has to accept as true anything which follows validly from those premises. 
Philosophers are very keen on valid arguments. They try and get you to agree to 
some innocent little premises and then offer what purport to be valid arguments 
having all manner of surprising and powerful conclusions. In Descartes’ 
Meditations he starts with the innocuous premise: I think—and reaches the 
conclusion: God exists. Of course we are apt to feel that has implicitly relied on 
some extra suppressed premises with which we may disagree or that he has 
made a mistake in his argument. But if the premises were true and if the 
reasoning were valid then his conclusion that God exists would be true. And if 
we accepted his premises and his argument we would be bound to accept his 
conclusion. For a less contentious attempt at producing valid arguments one 
might think of Euclid’s Elements. Euclid begins with his axioms from which he 
argues to such conclusions as, for instance, that the square on the hypotenuse of 
a right-angled triangle is equal to the sum of the squares on the other two sides. 
If his premises are true and his arguments valid, the conclusion must also be 
true. We express this by saying that valid arguments are truth-preserving. If you 
start with truths and reason validly what you end up with is truth. The fact that 
valid arguments preserve truth makes them attractive.  

We can see from our definition of validity that whether the premises of an 
argument are in fact true has nothing to do with the question of the validity of 
the argument. We can have valid arguments with true premises and valid 
arguments with false premises. Consider the argument:  

The sky is green and the sea is pink.  
Therefore, the sea is pink.  

That argument is valid. For if the premise were true the conclusion would have 
to be true. In fact, the conclusion is false but it would have been true if the 
premise had been true. Consider the following argument:  

Icabod is rich.  
All rich men are happy.  
Therefore Icabod is happy.  

Are the premises true or false? I have no idea whether Icabod is rich. I do not 
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know enough about rich men to know whether money brings happiness. But I 
can see that any circumstances that made both premises true would be bound to 
make the conclusion true. In assessing an argument for validity we do not need 
to assess the premises and conclusion for truth. We need only ask the 
hypothetical question: are the premises such that if they were to be true the 
conclusion would be bound to be true? To take one final example consider the 
argument:  

The sky is blue or the grass is green.  
Therefore the grass is green.  

In this case both the premise and the conclusion are true but the argument is not 
valid. For we can imagine circumstances which would make the premise true 
but the conclusion false. For example, suppose red not green had been God’s 
favourite colour and that He or She made the grass red while making the sky 
blue. In which case the premise would be true and the conclusion false. Thus the 
argument is invalid.  

At an initial stage in learning logic the point being laboured is often a source 
of confusion. There is a tendency to consider only the actual truth-value of each 
premise and of the conclusion. This term ‘truth-value’ is one that will play an 
important role in developing our logic. A premise or a conclusion can be either 
true or false and when we talk of its truth-value we are referring to whichever of 
these values, truth or falsity, it has. The assumption that there are no other 
possibilities is one which we will examine later. See in this regard Chapter 9, 
section 6. In the actual circumstances of the world the truth-value of the 
conclusion above that the grass is green is truth. In the possible circumstance we 
imagined (where God liked red better than green), its truth-value would be false. 
When we consider the question of the validity of an argument we must, with one 
exception, be interested in the truth-value of the conclusion in any possible 
circumstance in which the truth-value of each premise is truth. The exception is 
that if there is one circumstance in which the premises are true and the 
conclusion false the argument is invalid and we need not consider any other 
circumstances. If in the actual world we have either premises all false, 
conclusion false; or, premises all false, conclusion true; or some premises true, 
some false, conclusion true; or, some premises true, some false, conclusion 
false; or, premises true, conclusion true, we must consider any possible 
circumstances in which the premises are all true and ask if the conclusion is true 
in just those circumstances.  

EXERCISES  

1 Give an example of a valid argument in which both the premises and the 
conclusion are false and an example in which both are true.  
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3 VALIDITY AND FORM  

Consider the following arguments:  

I  
The grass is green and the sky is blue.  
Therefore, the grass is green.  

Money is time and time is money.  
Therefore, money is time.  

Fermions have spin +1/2 and pions have spin −1/2.  
Therefore, fermions have spin +1/2.  

II  
All persons are mortal.  

Socrates is a person.  
Therefore, Socrates is mortal.  

All students are rich.  
The president of the NUS is a student.  
Therefore, the president of the NUS is rich.  

All zemindars are powerful.  
Icabod is a zemindar.  
Therefore, Icabod is powerful.  

We recognize that each of the arguments in list I and in list II is valid. Even 
those who have no idea what it is to have spin +1/2 or what it is to be a zemindar 
can recognize this. For we make this recognition in virtue of the form of the 
arguments. The form in the case of list I is easily described. Each argument is of 
the form: blank and blankety-blank therefore blank. The form of those in II is 
not so easily describable but it is easily recognizable. That aspect of the form of 
the arguments that is relevant to the question of their validity is called logical 
structure or logical form. The specific content of the premise and the conclusion 
is not relevant to the determination of the validity of the arguments. Not only do 
you not need to know the actual truth-value of the premises and conclusions of 
an argument to determine its validity you do not even need to know what they 
mean. In fact a zemindar is a revenue-farmer in the Mogul empire. Just what it is 
for a fermion to have spin +1/2 is less easily explained. Of course you have to 
know that they are in fact sentences of English. And, as we have seen, you do 

2 Give an example of an invalid argument in which both the premises and the 
conclusion are false and an example in which both are true.  

3 Give an alternative but equivalent definition of validity using the notion of 
falsehood rather than truth.  
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have to know the meaning of certain key words such as ‘and’ and ‘all’. To see 
the importance of these key words which we will call logical constants, replace 
‘and’ by ‘or’ in list I and ‘all’ by ‘some’ in list II and examine the resulting 
arguments for validity.  

It is because validity is a property dependent on form and not on content that 
we can aspire to develop a systematic study of valid arguments. We can describe 
the form of a given valid argument and show that all arguments of that form 
(there will be an indefinitely large number of such arguments) are valid. And it 
is this fact, the fact that validity depends on form and not content, that licenses 
us to introduce symbols into our logic. For instance, we can represent the form 
of the arguments in list I as: A and B. Therefore, A. We can recognize that any 
argument produced by replacing A and B by indicative sentences of English is 
going to be valid.  

The stress that has been placed on validity may suggest that no argument that 
is not valid has merit. Consider the following two arguments:  

Almost everyone who smokes eighty cigarettes a day for more than twenty years 
gets cancer.  
Jones smoked eighty cigarettes a day for more than twenty years.  
Therefore, Jones will get cancer.  

Icabod got drunk on Monday on soda water and whisky.  
Icabod got drunk on Tuesday on soda water and brandy.  
Icabod got drunk on Wednesday on soda water and rye.  
Therefore, Icabod gets drunk on soda water.  

Neither argument is valid. In both cases the premises could be true and the 
conclusion false. None the less we would hold that the premises in the first 
argument would, if true, support the conclusion. If the premises are true, there is 
no guarantee (as there is in the case of a valid argument) that the conclusion is 
true but it is reasonable to assume that it is true. We might say that it is probably 
true. We do not think that the premises in the second argument if true give a 
good reason for thinking that the conclusion is true. Arguments that are not valid 
will include those in which the premises support the conclusion in the sense of 
rendering it probable and those that do not. Our concern in this book is with the 
question of validity. Arguments that are valid will be said to be deductive 
arguments. In addition we count as deductive, arguments that have been or 
might be purported to be valid. Arguments of which it is claimed that the 
premises support the conclusion (render it probable) without guaranteeing its 
truth are called inductive arguments. Inductive arguments are sometimes good 
and sometimes not. The study of what makes such arguments good is a messy 
business and indeed some philosophers have even doubted whether any 
systematic study of what makes a good inductive argument good is possible. In 
any event in this text attention is restricted to deductive arguments.  
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EXERCISES  

4 PROPOSITIONS  

Logic studies the relation between premises and conclusion. But just what are 
premises and conclusions? Sentences have been used to specify the premises 
and the conclusions in the sample arguments but the premises and conclusions 
are not sentences. The reason is that we can take one of our sample arguments 
and translate it into Serbo-Croat and have the same argument expressed in 
different languages. Since the argument is the same while the sentences used to 
express the premise and conclusion are different, the premises and conclusion 
cannot be sentences. They are rather what is expressed by the sentences. We will 
use the notion of a proposition to express what the English sentence and its 
translation into another language have in common: we will say that the 
sentences express the same proposition. This notion of a proposition applies 
within a language as well. For instance, we recognize that ‘Caesar stabbed 
Brutus’ and ‘Brutus was stabbed by Caesar’ have the same meaning and we can 
convey this by saying that they express the same proposition.  

Propositions are vehicles for stating how things are or might be. Thus only 
indicative sentences which it makes sense to think of as being true or as being 
false are capable of expressing propositions. Interrogative sentences do not state 
how things might be but ask how things are and as such do not express 
propositions; nor do imperative sentences which command that things be a 
certain way.  

Indicative sentences may be ambiguous. Consider the sentence: Cows do not 
like grass. That sentence might be used to express the falsehood that cows do 
not like the stuff growing in fields. Or, it might be used to express the truth that 
cows do not like marihuana. We will describe the kind of ambiguity that arises 
because a word in the sentence has more than one meaning as semantical 
ambiguity. A sentence which is semantically ambiguous can be used to express 
more than one proposition. Which proposition is being expressed when such a 
sentence is used will often be clear from the context. For the purpose of 
rigorously investigating arguments we will want to use a sentence which is not 
ambiguous to express what the speaker meant when using the ambiguous 

1 Give an example of an inductive argument in which you think the premises 
support the conclusion. Show that it is not a valid argument. Give an 
example of an inductive argument in which you think the premises do not 
support the conclusion.  

2 Give an example of a valid argument. Give another argument of the same 
form. Give an example of a valid argument of a different form.  
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sentence.  
Consider the sentence: Everyone loves a sailor. No word in that sentence is 

ambiguous yet the sentence is ambiguous. It could be used to state that each 
person loves at least one sailor (not necessarily the same one) or that everyone 
loves every sailor. Ambiguities of this sort will be called syntactical ambiguity. 
In general they can be resolved by re-writing the ambiguous sentence to give 
two sentences differing in word order, and possibly also in punctuation and/or in 
the actual words used. The above example can be disambiguated as follows:  

Everyone loves some sailor or other.  
Any sailor is loved by everyone.  

We have introduced propositions as being what is expressed by sentences and 
we have seen that in the case of ambiguous sentences we cannot tell from the 
sentence itself what is being expressed. We have to look at the context to 
determine what a speaker meant. If a sentence contains demonstratives (‘this’, 
‘that’, etc.), personal pronouns (‘I’, ‘he’, ‘she’, etc.), or words like ‘here’, ‘now’, 
we will have to look at the context to determine what is expressed. For instance, 
if you use the sentence ‘I am in pain’ and I use that same sentence we do not 
express the same thing. You say that one particular person, namely you, is in 
pain and I say that another different person, namely me, is in pain. Grasping the 
proposition expressed by a sentence requires not only grasping the meanings of 
the words used but also what is referred to by such words as ‘I’. We will return 
later to the question of how one determines the proposition expressed by a 
sentence. For the moment I am only guarding against the possible 
misunderstanding that grasping a proposition expressed by a sentence is simply 
a matter of grasping the meaning of the sentence. One may also have to look to 
what the words refer.  

Propositions are abstract items. Logicians are interested in the relation 
between a proposition or a set of propositions, the premise(s), and a proposition, 
the conclusion, of an argument. This is apt to make their activity seem divorced 
from human activity, dealing as they do with such abstract things as 
propositions. This impression is misleading and one way of seeing that it is so is 
to consider the phenomenon of belief. Consider Icabod who believes that kings 
have a divine right to rule. We can focus on his psychological state—that of 
believing rather than, say, wishing that kings had divine rule. In this case we can 
ask how long he has believed. Perhaps it was first brought on by doing British 
history at Oxford. Or we can focus on the content of his belief—on what it is 
that he believes. This is expressed by the sentence ‘Kings have a divine right to 
rule’. We can regard belief as a relation between a person and what is expressed 
by a sentence; namely, a proposition. Thus what we believe and what we deal 
with in logic is the same thing: propositions.  

We can take this connection between logic and belief a step further. A valid 
argument is one in which if the premises are true the conclusion has to be true. If 
one comes to believe the propositions which are the premises of the argument, 
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one is committed to believing the conclusion. Of course some of us will on some 
occasions fail to believe the conclusion when we believe the premises because 
we fail to see that it follows validly. Thus we have to re-phrase the connection: it 
is not rational to believe the premises of a valid argument and not to believe the 
conclusion. Logic then connects with the very human activity of belief through 
providing a tool for evaluating one aspect of the rationality of beliefs. But one 
should not expect too much. Logic is not a tool for the determination of just 
what it is rational to believe. It will at least tell us that if you have certain 
beliefs, rationality constrains what other beliefs you ought to hold.  

EXERCISES  

5 LOGIC AND LINGUISTICS  

Why should one be interested in the study of logic? One pat answer to this 
question frequently given in elementary texts is that the study of logic will 
improve one’s powers of reasoning. Having learned techniques for 
distinguishing between valid and invalid arguments, one will be less prone to 
pass from true beliefs to false conclusions and better able to spot the fallacies in 
the arguments of others. This justification ought at this stage to seem 
unconvincing. For you are already adept at distinguishing between valid and 
invalid arguments. You have an intuitive grasp of this distinction by reference to 
which you were able to see the validity or invalidity as the case was of the 
sample arguments introduced in this chapter. Of course I could have produced 
complex examples which you could not see intuitively whether they were valid. 
However, there would be something artificial about constructing such examples. 
For anything subtle enough to require study of logic to see whether it is valid is 
likely to be something you will never encounter in day-to-day life. At the level 
of elementary logic (the propositional logic which we develop in the next 
chapter), it is difficult to produce examples of arguments one might encounter 
the validity of which cannot be ascertained intuitively. I do not make this claim 
categorically. For when we come to the predicate logic in the latter half of this 
book we will find arguments which might actually be used the validity of which 
cannot be easily seen purely intuitively. However, it remains true that those who 
hope that logic will substantially improve their powers of reasoning are bound to 
be disappointed. Consequently it is worth developing a reason for being 

1 Give three sentences which are semantically ambiguous.  

2 Give three sentences which are syntactically ambiguous.  

3 Why is it not rational to accept the premises of a valid argument and to deny 
the conclusion?  
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interested in logic even if it will not turn us into demons of rationality. This will 
be done using an analogy from linguistics.  

Any reader of this text is able to distinguish between sequences of words that 
are sentences of English and sequences of words that are not. Anyone can see 
and has been able to see from a tender age that ‘grass blue green fast’ is not a 
sentence and that ‘the grass is blue’ is a sentence. I am sure that no reader has 
encountered the following sequence of words: The Junior Proctor astonished the 
Professor of Poetry by dancing badly with the Senior Proctor’s pink giraffe in 
the Sheldonian Theatre. Somehow you were able to see that that unfamiliar 
string of words is a sentence. There are an infinite number of finite sequences of 
words of English and you can make this discrimination with regard to any one of 
those sequences (setting aside the occasional border-line case). There is then no 
question but that we have this skill. The question is: how is it that we make this 
discrimination? What enables us to exercise that skill? If there is some finite list 
of rules which determine whether a sequence was a sentence or not we could 
explain how it is that we have the skill. For if there is such a system and if we 
have internalized it we can be applying the rules non-consciously to give the 
discriminations. If there is no such system of rules it is quite mysterious how we 
can do what we obviously do. Thus the best explanation of our exercise of this 
skill involves assuming such a system of rules. Having made this move we will 
have to try and articulate what those rules are. Of course failure to discover an 
adequate system of rules ought to make us have reservations about the 
assumption that there is such a system. And discovering a system is not going to 
make us really any better at exercising the skill (although it might be appealed to 
in adjudicating certain border-line cases). The point of articulating the rules is to 
be able to explain the exercise of the skill we undoubtedly possess. It has, in 
fact, proved difficult to articulate a system of rules. However, enough progress 
has been made to make it reasonable to assume that the enterprise will be 
successful in the end.  

There is a similar situation with regard to arguments. We could produce as 
long a sequence of arguments as you like which you can classify as valid or not. 
There must be some system of rules that you have implicitly internalized, the 
possession of which explains your ability to make these discriminations. This 
explanation can only be sustained if we can specify the system of rules in 
question. One task of logic is to do just this. Doing this will be of interest even if 
it does not make one any better at distinguishing between valid and invalid 
arguments. To the extent that we are successful we will be able to offer an 
answer to the question: in virtue of what is it that one can recognize an argument 
as valid? That is, we will develop through the study of logic a technique for 
doing explicitly and reflectively something that we can do reasonably well for 
simple arguments implicitly and without reflection.  

I hasten to add that I am not saying that logic does not help to improve one’s 
power of reasoning. I am offering a reason for being interested in logic, 
particularly elementary logic, which would have force even if one did not feel 
that one’s reasoning abilities had been sharpened by the study of logic. We will 
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consider arguments the appraisal of which cannot proceed intuitively but needs 
explicit appeal to the rules of logic. By making explicit the rules we have a tool 
for checking our intuitive judgments. And this can be important for there have 
been arguments used in mathematics which seemed valid at an intuitive level but 
which turned out not to be so. Perhaps the greatest incentive for the development 
of contemporary logic was Russell’s discovery that intuitively plausible 
reasoning in the foundations of mathematics led to a contradiction. This 
increased the desire to have a fully explicit system of rules for checking the 
validity of arguments. We will return to the question of the importance of logic 
at the end of the book having articulated some rules for determining the validity 
or invalidity of arguments and having seen some other uses to which the study 
of logic can be put.  
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CHAPTER 2  
A propositional language  

1 TRUTH-FUNCTIONS AND TRUTH-TABLES  

In this chapter we develop a technique for testing the validity of a limited class 
of arguments. To characterize the class in question we need to consider one way 
in which indicative sentences of English can be formed. There are words or 
sequences of words which themselves do not constitute sentences but which can 
be used to construct sentences if put together in the appropriate way with a 
sentence or sentences. For instance, the word ‘and’ can be used to generate a 
sentence by putting sentences before and after it as in ‘Icabod is a student and 
Icabod is rich’. Similarly the phrase ‘Icabod believes that’ which is not a 
sentence can be used to generate a sentence if we put a sentence after it as in 
‘Icabod believes that students are exploited’. We will call such expressions 
sentence-forming operators because they operate on sentences to give more 
complex sentences. A sentence-forming operator is a word or sequence of words 
which is not a sentence but which when appropriately concatenated with an 
indicative sentence or sentences gives an indicative sentence of English. Other 
examples of sentence-forming operators are: It is not the case that, or, if…
then…, it is possible that, Icabod hopes that, because.  

Consider the complex sentence: Icabod likes marcels and Icabod is in love. If 
I were to tell you the truth-value of the simple sentences which are concatenated 
with ‘and’ to give this complex sentence you could, quite trivially, determine the 
truth-value of the complex sentence. If both sentences are true, the complex 
sentence is true. If either or both are false the complex sentence must be false. 
Consider the complex sentence: Icabod believes that an excess consumption of 
vitamin B causes schizophrenia. If I told you the truth-value of the constituent 
sentence (an excess consumption of vitamin B causes schizophrenia) you still 
could not work out the truth-value of the complex sentence. If it is true, Icabod 
may or may not believe it. If it is false, Icabod may or may not believe it. Its 
being true does not guarantee that Icabod believes it, nor does it guarantee 
(happily) that he does not believe it. Its being false (sadly) does not guarantee 
that he does not believe it.  

We will call any sentence-forming operator which is like ‘and’ in this respect 
a truth-functional sentence-forming operator meaning that given the truth-values 
of the sentences concatenated with ‘and’ we can determine on the basis of that 
information alone the truth-value of the resulting complex sentence. A non-
truth-functional sentence-forming operator is one which can be used to construct 
sentences the truth-value of which cannot be determined solely by means of 



information about the truth-value of the constituent sentences, the constituent 
sentences being those which are concatenated with the operator to give the 
complex sentence.  

We noted in Chapter 1 that our concern in logic is with form and not content. 
It was said that this meant that we could use symbols to represent arguments. 
We will use symbols in two different ways. Upper-case letters from the middle 
of the alphabet ‘P’, ‘Q’, ‘R’,…will be used to stand for particular propositions. 
In part the point of this is simply to save us the tedium of writing out a full 
English sentence to specify a proposition. Just which proposition is being 
symbolized by what we will call a propositional letter will be given in a code 
called an interpretation. Thus, I might say that ‘P’ will be used in place of the 
proposition expressed by the sentence ‘Icabod is in love’ and ‘Q’ in place of the 
proposition expressed by the sentence ‘Icabod is rich’. We will use upper-case 
letters from the beginning of the alphabet ‘A’, ‘B’, ‘C’,…for what will be called 
formulae variables. Formulae variables are not propositions. They indicate 
where expressions for propositions are to be placed. For instance, if I write ‘P 
and Q’ that expresses the proposition that Icabod is in love and Icabod is rich 
given the interpretation above. If I write ‘A and B’ I make no assertion. I 
indicate the form of a possible proposition; namely, one formed from two 
propositions (or one proposition taken twice) conjoined by ‘and’.  

An analogy will be helpful. The expressions ‘1’, ‘2’, ‘3’ stand for particular 
numbers in a way analogous to that in which ‘P’, ‘Q’, ‘R’, etc., are to be thought 
of as standing for particular propositions. Combining these symbols with 
symbols for arithmetical operations gives particular assertions. For instance, 
2+3=5 or 2+3=3+2. In algebra one uses variables, i.e. x, y, z, writing, for 
instance, x+y=z. This latter expression does not make an assertion. It makes an 
assertion only if the variables are replaced by terms for particular numbers and 
will be true or false depending on the replacement. Thus, 2+3=5 is true but 
3+4=5 is not. In a similar way the expression ‘A and B’ does not make an 
assertion. It indicates a form and can be converted into an assertion if ‘A’ and 
‘B’ are replaced by terms expressing particular propositions, just as replacing xs 
and ys in algebraic equations by terms for particular numbers yields an assertion.  

Let ‘P’ and ‘Q’ be understood by the interpretation given above. ‘P and Q’ is 
true just in case ‘P’ is true, ‘Q’ is true. If ‘P’ is false and ‘Q’ is true, ‘P and Q’ is 
false. If ‘P’ is false and ‘Q’ is true, ‘P and Q’ is false. And if ‘P’ is false and ‘Q’ 
is false, ‘P and Q’ is false. It is clear that we have covered all the possibilities 
for truth and falsity with regard to ‘P’ and ‘Q’. Writing ‘T’ for ‘true’ and ‘F’ for 
‘false’ we can represent the possibilities as follows:  

P Q
T T
T F
F T
F F
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We based our determination of the truth-value and ‘P and Q’ on our intuitive 
understanding of ‘and’. We can represent that knowledge in the following table 
to be called a truth-table.  

‘P’ and ‘Q’ have specific content being short-hand for, respectively, ‘Icabod is 
in love’ and ‘Icabod is rich’. But as the calculation of the truth-value of a 
conjunction (a conjunction being the complex sentence formed by putting 
sentences before and after an ‘and’) depends only on the truth-value of the 
conjuncts (the sentence before and the sentence after the ‘and’ are called 
conjuncts) we use formulae variables in representing the truth-function ‘and’ 
writing its table as follows where ‘&’ is the symbol to be used for ‘and’:  

The phrase ‘it is not the case that’ is a truth-functional sentence-forming 
operator. We use the symbol ‘�’ in place of the English phrase and write its 
truth-table as follows:  

In natural language we often use in place of this cumbersome phrase ‘not’ or 
some contraction of ‘not’. If we have let ‘P’ stand for ‘Icabod is in love’ we can 
write ‘�P’ for ‘Icabod isn’t in love’.  

Another important truth-function in English is ‘or’. Most often we use ‘or’ in 
an exclusive sense. If I say that it will rain or it will snow, you will take me to be 
predicting one or the other but not both. This exclusive sense of ‘or’ has the 
following table:  

P  Q P and Q
T  T T
T  F F
F  T F
F  F F

A  B A & B 
T  T T
T  F F
F  T F
F  F F

A  �A 
T  F
F  T
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We will call sentences formed using the operator ‘or’, disjunctions and refer to 
the sentences before and after the ‘or’ as disjuncts.  

There is another weaker sense of ‘or’ occasionally used in English which we 
will call the inclusive sense. A disjunction formed using the inclusive ‘or’ is true 
if either disjunct is true or if both disjuncts are true. Its truth-table is:  

For an illustration of the use of ‘or’ in its inclusive sense consider the situation 
in which you and I have tickets (along with many others) in a lottery with 
several prizes of equal value. In an optimistic frame of mind I predict: Either 
you will win or I will win. If, to be even more optimistic, it should turn out that 
we both win, we would not count what I originally said as false. If ‘or’ had been 
used in the exclusive sense my prediction would have been false. We will 
introduce the symbol ‘v’ to stand for ‘or’ in its inclusive sense. We do not need 
to introduce a separate symbol for the exclusive sense (we could if we wanted 
to) for we can express the exclusive sense by using combinations of other 
symbols. This will be done after we have introduced the notion of scope.  

Consider the sentence: I will go to town and I will drink beer or I will find 
some good wine. This might be construed in two ways. I might mean I will go to 
town and in town I will either spend the time drinking beer or looking for fine 
wine. I am off to town and have yet to decide which of these things to do when 
there. Or I might mean that my choice is between going to town and drinking 
beer on the one hand or not going to town and, say, looking for the fine wine in 
the countryside, on the other hand. We need a way of representing 
unambiguously these different construals.  

Let ‘P’, ‘Q’ and ‘R’ be given the following interpretation:  

P : I will go to town  
Q : I will drink beer  
R : I will find some good wine  

Using this ‘code’ we might write the original sentence as: P & Q v R. But with 
this formalization, this symbolic representation of what was meant in the 

A  B  A or (exclusive) B
T  T  F 
T  F  T 
F  T  T 
F  F  F 

A  B  A or (inclusive) B
T  T  T 
T  F  T 
F  T  T 
F  F  F 

A propositional language     15



English, you cannot tell which of the meanings is intended. In spoken English I 
might have made my intentions clear through the emphasis of my voice. In 
writing, one might make the intended meaning clear through re-phrasing or 
punctuation: I will go to town. I will drink beer or I will find good wine. The 
other construal would be: Either I will find good wine or I will go to town and 
drink beer.  

To handle such ambiguities in logic we use brackets in a fashion analogous to 
their use in arithmetic. The arithmetical expression 3+4×5 is ambiguous. It may 
be intended to mean the result of multiplying the sum of 3 and 4 by 5 (i.e. 35). 
Or, it may be intended to mean the result of adding 3 to the product of 4 and 5 
(i.e. 23). We distinguish between these, writing the former as (3+4)×5 and the 
latter as 3+(4×5). In (3+4)×5 the addition operator works on 3 and 4. This is 
expressed by saying that its scope is the expression (3+4). The multiplication 
operator works on (3+4) and 5; that is, its scope is the expression (3+4)×5. In 3+
(4×5), the multiplication operator has smaller scope than the addition operator. 
For it works on 4 and 5 and has as its scope the expression (4×5) whereas the 
addition operator works on 3 and (4×5) and has as its scope the expression 3+
(4×5).  

To apply these ideas to our example from logic above we write ‘P & (Q v R)’ 
on the first construal indicating both that I will go to town and either drink beer 
or find good wine. The brackets indicate that the alternative is between ‘Q’ and 
‘R’, an alternative which is then conjoined with ‘P’. For the second construal we 
write: (P & Q) v R. This indicates that the alternative is between going to town 
and drinking beer or finding some good wine (perhaps here in the country). In 
the former case of ‘P & (Q v R)’, ‘v’ operates on ‘Q’ and ‘R’ to form the 
disjunction: Q v R. The scope of ‘v’ is the expression ‘(Q v R)’. ‘&’ operates on 
the disjunction ‘(Q v R)’ and ‘P’ to form the conjunction ‘P & (Q v R)’. Its 
scope is then the entire expression. In the latter case of ‘(P & Q) v R’, ‘&’ 
operates on ‘P’ and ‘Q’ to form the conjunction ‘(P & Q)’, its scope being the 
expression ‘(P & Q)’. ‘v’ then operates on the conjunction ‘(P & Q)’ and on ‘R’ 
to form the disjunction: (P & Q) v R. The scope of ‘v’ is then the entire 
expression ‘(P & Q) v R’ and is hence larger than the scope of ‘&’.  

The above account provides only a rudimentary introduction to the notion of 
scope. This together with the use of bracketing in the examples in this and the 
next chapter should give an intuitive understanding of the idea of scope which is 
rigorously defined in Chapter Four (pp. 79–80). As a further illustration at this 
stage let ‘P’ be interpreted as ‘I am happy’ and ‘Q’ as ‘Icabod is happy’. We can 
form the negation of ‘P’, ‘�P’, which would say that I am not happy. To 
conjoin the negation of ‘P’ with ‘Q’ gives something which says that I am not 
happy and Icabod is happy which means something quite different from 
conjoining ‘P’ and ‘Q’ and taking the negation of the resulting conjunction. This 
would say that it is false that I am happy and Icabod is happy. In the latter case 
we show that the negation operates on the conjunction of ‘P’ and ‘Q’ by putting 
that conjunction in brackets with the negation operator outside: �(P & Q). In the 
former case we can write brackets around the negation of ‘P’, ‘(�P)’ to show 
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that its operation is limited to ‘P’. The resulting expression is then ‘(�P) & Q’. 
In point of fact we adopt the convention that if no brackets are shown negation 
is taken as operating only on the first propositional letter that follows. Thus we 
write: �P & Q.  

Having introduced brackets to indicate scope we can express the exclusive 
sense of ‘or’ using the symbols ‘v’ (inclusive or), ‘&’ and ‘�’ as follows: ‘P or 
(exclusive) Q’ is equivalent to ‘(P v Q) & �(P & Q)’. The first conjunct says 
that it is that P or that Q or possibly both. The second conjunct rules out it being 
both that P and Q. Thus the up-shot is that it is that P or it is that Q but not both.  

EXERCISES  

2 CONDITIONALS  

We have considered some sentence-forming operators that are definitely truth-
functional and others that are definitely not. There are other cases about which 
there is controversy. One of these is that of the conditional. A conditional is a 
sentence formed using ‘if…then…’ The sentence following the ‘if’ is called the 
antecedent and the sentence following the ‘then’ is called the consequent. This 
case is of crucial importance to the development of logic and we cannot avoid 
the controversy. It will be helpful to consider first an important difference in the 
ways in which we can evaluate assertions. We can ask if someone’s assertion is 
true or false. We can also consider whether an assertion is misleading even 
though true. For instance, suppose that I say to you that I will vote for Carter or I 
will vote for Anderson. Suppose that in fact I have definitely decided to vote for 
Carter. My assertion to you is true but it may be misleading. You may be led to 

1 State which of the following sentence-forming operators are truth-
functional: until, neither…nor, unless, It is certain that, Icabod knows that, 
It will be that, whenever, It is probable that, It is true that, It is possible that, 
even though, because, and then.  

Give three further examples of non-truth-functional operators.  

2 Define a partial truth-functional operator to be a sentence-forming operator 
for which at least some lines of a truth-table can be filled in. Give partial 
truth-tables for any such operators in exercise 1.  

3 Formalize the following sentences using brackets to display the syntactical 
ambiguities in the English (be sure to specify your interpretation):  
(a) Icabod will work hard and get a first or Icabod will row for his college.  
(b) I’ll be home at 4 and will bring strawberries if it doesn’t rain.  
(c) Icabod bought grapes and apples or oranges.  
(d) This is Tweedledum or that is Tweedledee and I’m a Dutchman.  
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think that the matter is still open (not surprisingly I have rejected the thought of 
voting for Reagan) and waste time trying to persuade me to vote for Anderson. 
The reason that my assertion of the disjunction was misleading in the context is 
that conversation is generally governed by certain maxims designed to make it 
helpful. We have learned to expect others to be following these maxims. One of 
these enjoins us to make the strongest assertion we are in a position to make. 
The assertion that I will vote for Carter is stronger than the assertion that either I 
will vote for Carter or I will vote for Anderson. You assume I am following the 
general maxim and that in asserting the disjunction I made the strongest 
assertion I was in a position to make. Thus you may take it that the choice 
between Anderson and Carter is still open. It is not. And thus I have misled you 
notwithstanding the fact that what I said was true. Saying the truth is not the 
only goal governing discourse. We also aim at being helpful and generally that 
involves making the strongest assertion one is warranted in making. Another 
example of an infelicity of this kind would arise if I answered my mother’s 
question: ‘Do you have a girl friend?’ by saying that I have a girl friend when in 
fact I have six. If I have six it is true that I have a girl friend but I have misled 
my mother about the true nature of my amorous activities. For she will expect 
me to have not only told the truth but to have made the strongest assertion which 
I was in a position to do so and that would meaning confessing to six girl 
friends.  

Logicians are interested in the conditions under which sentences are true. For 
determining the validity of an argument is, as we have seen, a matter of 
determining whether any conditions that make all the premises true make the 
conclusion true. Given that interest, we do not discuss in any systematic way the 
conditions under which the assertion of a sentence is misleading even though 
true. But it is very important that we recognize this distinction. Otherwise 
certain moves made by logicians will be puzzling. For instance, consider the 
sentence-forming operators ‘even though’, ‘but’ and ‘although’. If I say that we 
are having a picnic even though it is raining what I said will be true just in case 
it is true that we are having a picnic and it is raining. In formulating this 
proposition we will write it as ‘P and Q’ where ‘P’ is ‘we are having a picnic’ 
and ‘Q’ is ‘it is raining’. Clearly ‘P even though Q’ does not mean the same as 
‘P and Q’. The former suggests that one would not expect P given Q. If this 
condition is not satisfied it would be misleading for me to say ‘P even though Q’ 
instead of simply saying ‘P and Q’. But from the point of truth ‘P and Q’ and ‘P 
even though Q’ do not differ. We express this by saying that they have the same 
truth-conditions. That is, they are true in precisely the same conditions. The 
difference in meaning means that it may be misleading in a given context to use 
one rather than the other. This same point holds with regard to ‘although’ and 
‘but’. Since the validity of an argument depends on relations between conditions 
under which things are true and not on conditions under which things are 
misleading, we can express ‘but’, ‘although’, ‘even though’, using ‘&’ for this 
gives sentences with the same truth-conditions even though they differ in other 
respects.  
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We return to the thorny topic of conditionals. There is no hiding the fact that 
logicians do strange things with conditionals! For the moment we restrict 
attention to conditionals in which both the antecedent and the consequent are in 
the indicative mood as in the sentence ‘If the grass is green then the grass has 
chlorophyll’. We set aside for the moment conditionals with sentences in the 
subjunctive mode, such as ‘If the grass were to contain chlorophyll it would be 
green’ and counterfactual conditionals such as ‘If the grass had contained 
chlorophyll it would have been green’. Are conditionals in this restricted class 
truth-functional? Given that ‘P’ is ‘The grass is green’ and ‘Q’ is ‘The grass 
contains chlorophyll’ can we complete the truth-table for ‘if P then Q’?  

We have no hesitation in putting an F in the second line. For if it turns out that 
the grass is green but does not contain chlorophyll then it is certainly false to say 
that if the grass is green then it contains chlorophyll. The other lines are more 
problematic. We certainly would not want to put an F in the first line. But to put 
a T there would mean that the conditional ‘If water is H 2 O then grass is green’ 
is true since both the antecedent and the consequent are true. In point of fact we 
expect that there is some connection between the antecedent and the consequent 
if the conditional is to be true. Whether or not there is the requisite connection is 
not something we can determine merely from the truth-values of the antecedent 
and the consequent.  

Consider the third line. We do not want to put an F here. For the conditional 
‘If the liquid in the glass is beer, then there is alcohol in the glass’ is certainly 
true. But if the liquid in the glass is in fact wine, the antecedent is false and the 
consequent true. Neither should we agree without qualms to putting a T for this 
line. Let us make poor Icabod a schizophrenic and let us suppose that it is false 
that he has a vitamin B excess. That does not seem enough to make it true that if 
Icabod has a vitamin B excess then he is a schizophrenic. For the conditional 
suggests that there is a connection, a connection which is in no way established 
just by the fact that he is a schizophrenic who has no vitamin B excess. Similarly 
we will have hesitations about putting a T in the final line. We would not think 
the conditional just given was true just because Icabod happily turns out not to 
be a schizophrenic and turns out not to have a vitamin B excess. And certainly 
we would not want to put an F here. To see this consider the conditional above 
about the liquid in the glass and suppose that the glass is empty. Then both the 
antecedent and the consequent are false but we would count the conditional as 
true.  

Logicians introduce a symbol ‘→’ which is called the material conditional and 
give it the following truth-table by fiat:  

P  Q  if P then Q
T  T  ?
T  F  F
F  T  ?
F  F  ?
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We will follow the standard practice of using that symbol to represent the 
indicative conditional. This means we are treating the conditional as truth-
functional even though the above discussion shows that this at the very least is 
contentious.  

Some logicians believe that the conditional in English is indeed truth-
functional. In which case they regard the material conditional as an adequate 
representation of ‘if…then…’. They will argue that when one asserts a 
conditional in English one suggests that there is some connection between the 
antecedent and the consequent but one does not actually assert that there is such 
a connection. According to them a conditional is true just in case we do not have 
a true antecedent and a false consequent. We may mislead our audience if we 
assert a conditional just because we have one of the other three cases for our 
audience will expect us to have asserted the conditional on the basis of some 
connection between the antecedent and the consequent. But, on this view, we 
cannot be accused of having spoken falsely. The proponents of this view may 
appeal to examples such as the following. Adults have been known to say to 
children that if they pick guinea pigs up by their tails, their eyes (those of the 
guinea pig) will fall out. Children, on hearing this, run to the cage to put this to 
the test, assuming that there is some mysterious mechanism connecting eyes and 
tails. Finding that there are no tails on guinea pigs they are apt to complain. 
Adults defend themselves by saying that if you pick them up by their tails their 
eyes drop out. In this case the conditional is being asserted simply on the 
grounds of a false antecedent. It is misleading to assert it on these grounds but it 
is not actually false (or so some logicians would claim)  

Within the confines of this work we cannot go into all the pros and cons of the 
debate (for further discussion see readings given on p. 48). Probably the 
majority of philosophers would maintain that the conditional is rarely used in 
English in a truth-functional way. That is, that in most cases of even the 
indicative conditional, the truth of the conditional requires that some connection 
obtain between the antecedent and the consequent. That being so we cannot 
determine the truth-value of the conditional just on the basis of knowing the 
truth-values of the antecedent and the consequent. Notwithstanding this we will 
treat the conditional as truth-functional.  

Those who think that the conditional is not truth-functional may be inclined to 
be dismissive of our entire enterprise at this point. Three pleas can be entered in 
mitigation. First, we are in the process of setting up an abstract model language 
to be used in testing arguments in English for validity. An abstract model can be 
of interest even if it does not model its subject matter perfectly. For instance, 

A  B  A → B  
T  T T
T  F F
F  T T
F  F T
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scientists study ideal gas models. Actual gases do not behave precisely like ideal 
gases in the scientists’ model. However, there is enough of an approximation to 
make it worth developing the ideal models. And something is learned about 
actual gases by seeing how their behaviour departs from that of an ideal gas. 
Even if we think that English differs from the ideal formal language we are 
developing we should still explore our ideal model for it may approximate 
adequately enough for us to obtain useful results. If no sentence-forming 
operators in English were truth-functional it might be absurd to develop a logic 
in which all operators were truth-functional. But some operators (‘and’, ‘or’, 
‘not’) are clearly truth-functional and we may obtain a model that is not totally 
distorting if we treat the conditional as a truth-functional operator. Secondly, it 
turns out that virtually every argument that comes out valid in English, is still 
valid if we treat the conditional as a truth-function. And virtually every 
argument that is valid if we treat the conditional truth-functionally turns out to 
be valid. And many philosophers (including those who object that the 
conditional is not truth-functional) would hold that there are no cases where 
questions of validity get answered differently depending on whether the con- 
ditional is treated truth-functionally or not. Thus in so far as our concern is with 
validity, the alleged distortion is not significant. Thirdly, it turns out to be very 
difficult to give a systematic formal treatment of logic without treating the 
conditional as a truth-function. There are logics that do not do this. However, 
one cannot run logically without first walking logically and we ought to begin at 
the beginning with a simple logic. Having mastered it the diligent student can go 
on to study more sophisticated logics in which there is no crude equation of the 
conditional in English with the logician’s material conditional.  

3 TESTING FOR VALIDITY: THE SEMANTICAL METHOD  

Having introduced propositional symbols, brackets and symbols for certain 
truth-functional operators we are in a position to represent many arguments of 
English in our symbolic language. We call the result of producing such a 
representation, a formalization. In giving a formalization we always specify our 
interpretation of the propositional symbols. To illustrate let us apply this to the 
following simple argument:  

Icabod is rich.  
If Icabod is rich then Icabod is happy.  
Therefore, Icabod is happy.  

We give the interpretation as:  

P : Icabod is rich.  
Q : Icabod is happy.  
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The argument is represented as:  

P, P → Q. Therefore, Q.  

In what follows we will replace ‘therefore’ by ‘�’ which we will call for reasons 
to be explained the semantic turnstile. The resulting expression for the argument 
(i.e. P, P → Q � Q) will be called a semantic sequent. As a check on our 
formalization we can apply the interpretation as a code and translate back into 
English.  

The next step in developing our first test for validity involves learning how to 
construct truth-tables for complex formulae where by a formula we mean an 
expression in our new, developing, formal language (this notion will be given a 
very precise characterization in Chapter Four). We defined a truth-functional 
sentence-forming operator as one generating sentences the truth-value of which 
could be determined from a knowledge of the truth-values of the constituent 
sentences. We have considered the truth-tables for the simplest type of formulae: 
P v Q, P & Q, �P, P → Q. We can build more complex formulae using our 
operators to give formulae the truth-value of which will be determined by the 
truth-value of the constituents—for example: P v �P, (P v Q) & (R v S), (P & 
Q) → R. If a formula contains two variables, say P and Q, there are the following 
four possibilities for combinations of truth-values:  

We call each possibility a circumstance and we can say for a complex formula 
containing as variables only ‘P’ and ‘Q’ under what circumstances that formula 
is true. Consider the formula ‘(P v Q) & P’. Using the table for ‘v’ we compute 
the value of ‘(P v Q)’ for each circumstance and write that value under the ‘v’:  

We transcribe the values of ‘P’ under the ‘P’ and then by reference to the table 
for ‘&’ we compute the value of the entire formulae writing the result under the 
connective with largest scope:  

P Q
T T
T F
F T
F F

P  Q (P v Q)
T  T T
T  F T
F  T T
F  F F
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In carrying out such a computation we have had to pay close attention to scope. 
We start with connectives of smallest scope and work to those of larger scope. 
An analogy will be helpful. In arithmetic we use brackets to indicate scope 
writing, say, (2+3)×6 or 2+(3×6). The brackets tell us to carry out the 
computations within the brackets using that result in computing with the 6 in the 
first case or the 2 in the second case. We proceed in the same way in 
constructing truth-tables. Some students may find it helpful to transcribe the 
values of the propositional variables for each circumstance under their 
occurrences in the complex formulae before carrying out the computation. 
Doing this would have given:  

  

Others may find it harder to see the woods if the page is littered with Ts and Fs. 
A T or an F should be placed under each operator, even if one does not put Ts 
and Fs under each propositional letter. As a further illustration of these 
computations consider the following complex truth-tables:  

  

For formulae with three propositional variables ‘P’, ‘Q’, ‘R’ there will be not 
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four but eight different circumstances to be considered. We illustrate this below 
in giving a complex truth-table for the formula (P v Q) & R:  

  

An argument is valid if whenever all the premises are true the conclusion is true. 
The truth-table device enables us to determine whether this condition obtains for 
an important class of arguments. Consider the argument formalized at the 
beginning of this section. The truth-tables will allow us to determine in which 
circumstances both premises are true. Thus we write:  

The only circumstances in which all premises are true are those represented by 
line 1. We ask if the conclusion is true in those circumstances. It is. Q has the 
value T in line 1.  

Determining the validity of those arguments which can be adequately 
formalized within the resources we have developed so far is a matter of 
constructing what we call a circumstance surveyor. A circumstance surveyor 
lists the propositional letters and the possible circumstances with regard to truth 
and falsity for them. It then gives for each circumstance the truth-value of each 
premise and of the conclusion. A valid argument is one in which each line of the 
circumstance surveyor that makes each premise true is one which makes the 
conclusion true. Or, equivalently, one in which there is no line which makes all 
premises true and the conclusion false. Notice that we use truth-tables for 
individual formulae and a circumstance surveyor for arguments. The reason for 
this is that a truth-table gives the truth-value of a formula in each circumstance. 
Arguments do not have truth-values. It is only premises and conclusions that 

  P  Q  P,  P → Q �  Q  

1.  T  T T T T
2.  T  F T F F
3.  F  T F T T
4.  F  F F T F
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have truth-values. Arguments are valid or invalid, not true or false. It helps to 
keep this difference before our attention by referring to truth-tables for formulae 
and circumstance surveyors for arguments. Of course in writing down our 
circumstance surveyor for an argument we write a truth-table for each premise 
and for the conclusion. We write these linearly so we can survey the 
circumstances to see whether all those which make the premises true make the 
conclusion true. The construction of circumstance surveyors for simple 
arguments is illustrated below.  

Example 2.3.1  

Argument  

Either Icabod is a Balliol student or Icabod is stupid.  
Icabod is not a Balliol student.  
Therefore, Icabod is stupid.  

Interpretation  

P : Icabod is a Balliol student.  
Q : Icabod is stupid.  

Formalization  

P v Q, �P � Q  

Circumstance surveyor  

We will draw a line whenever the possible circumstances make all the premises 
true. The only such case is the third line. As that circumstance also makes the 
conclusion true the argument is valid.  

Example 2.3.2  

Argument  

If Eclipse wins the 2.30 I will win £400.  
If I win £400 I will settle my debts.  
Therefore if Eclipse wins the 2.30,  
I will settle my debts.  

P  Q  P v Q, �P � Q
T  T  T F T
T  F  T F F
F  T  T T T
F  F  F T F

A propositional language     25



Interpretation  

P : Eclipse wins the 2.30.  
Q : I will win £400.  
R : I will settle my debts.  

Formalization  

P → Q, Q → R � P → R  

Circumstance surveyor  

Each line of the circumstance surveyor that makes all the valid. Remember that 
we calculate the truth-value of the premises true makes the conclusion true. 
Thus the argument is premises and the conclusion by reference to the truth-
tables for →, &, v and �. In this particular case we only need the truth-table for 
the conditional.  

Example 2.3.3  

Argument  

Either Icabod is a Balliol student or Icabod is rich.  
Therefore Icabod is rich.  

Interpretation  

P : Icabod is a Balliol student.  
Q : Icabod is rich.  

Formalization  

P v Q � Q  

P  Q  R  P → Q,  Q → R �  P → R  
T  T  T  T T T
T  T  F  T F F
T  F  T  F T T
T  F  F  F T F
F  T  T  T T T
F  T  F  T F T
F  F  T  T T T
F  F  F  T T T
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Circumstance surveyor  

This argument turns out unsurprisingly to be invalid. There are circumstances in 
which the premise is true and the conclusion false; namely, when Icabod is a 
Balliol student but not rich.  

Example 2.3.4  

Argument  

If Icabod is a Balliol student then Icabod is clever.  
Icabod is clever.  
Therefore, Icabod is a Balliol student.  

Interpretation  

P : Icabod is a Balliol student.  
Q : Icabod is clever.  

Formalization  

P → Q, Q � P  

Circumstance surveyor  

The argument is displayed to be invalid. For the circumstance surveyor gives a 
condition under which the premises are true and the conclusion false. Some 
invalid argument forms which are sometimes confusedly taken to be valid have 
been given names. This form is called the fallacy of affirming the consequent.  

Not all valid arguments can be shown to be valid using circumstance 
surveyors as we will see in Chapter 5. This device tests for validity any 
argument that can be expressed within the limited language we have developed. 

P  Q  P v Q � Q
T  T  T T
T  F  T F
F  T  T T
F  F  F F

P  Q  P → Q,  Q  � P  

T  T  T T T
T  F  F F T
F  T  T T F
F  F  T F F
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That is, it is adequate for testing arguments the validity of which turns on the 
way that truth-functional operators function in the premises and in the 
conclusion. Validity is a purely general notion defined in regard to any type of 
argument. We give a restricted definition which is approximate for our restricted 
language. We define a semantic sequent to be a tautologous sequent just in case 
every line of a circumstance surveyor for the sequent which gives all of the 
formulae on the left of the semantic turnstile the value T also gives the formula 
on the right of the semantic turnstile the value T. A semantic sequent represents 
the form and structure of an argument (taken with an interpretation it will give a 
particular argument) and it represents a valid argument form just in case it is a 
tautologous sequent.  

On first working with circumstance surveyors students frequently say that an 
argument is sometimes valid and sometimes not. They are inclined to say that 
the argument in Example 2.3.4 is correct for line 1 but not for line 3. This is 
wrong. An argument is valid or invalid. It is not valid for some lines and invalid 
for others. There is a feeling that it is unfair to an argument to reject it because it 
goes wrong on some lines of the circumstance surveyor. One can simply cite the 
definition of validity (or the more specialized definition of a tautologous 
sequent) in showing that this is wrong. However, it may be helpful to think of 
the situation as follows. For the argument expressed by ‘P → Q, Q � P’, only 50 
per cent of the circumstances in which the premises are true are ones in which 
the conclusion is true. That there is at least one line in which the premises are 
true but the conclusion false shows that in some circumstances you will be led 
from true premises to a false conclusion. On the other hand in the argument 
expressed by ‘P, P → Q � Q’ any circumstances in which the premises are true 
the conclusion is true. You will never be led into error if you start with true 
premises and use this argument form. We reject any argument with even a single 
line in the circumstance surveyor that makes the premise true and the conclusion 
false for we are looking for arguments which guarantee the preservation of 
truth. That is, argument forms which if applied to true premises guarantee true 
conclusions. From the point of view of validity, one bad line ruins an argument.  

EXERCISES  

1 Construct truth-tables for the following formulae:  
(a) P v �P  
(b) P  
(c) P → �P  
(d) (P → Q) → (�Q → �P)  
(e) (P → Q) → (Q → P)  
(f) (P → Q) → (�P v Q)  
(g) P → (P & Q)  
(h) (P & (Q v �Q)) → ((P & Q) v (P & �Q))  
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2 Define A ↔ B as (A → B) & (B → A). We call this the bi-conditional and use 
it to express the English phrase ‘if and only if’. Construct a truth-table for A 
↔ B. Give truth-tables for the following formulae:  
(a) P ↔ �P  
(b) (P → Q) ↔ (�P v Q)  
(c) (P → Q) ↔ (Q → P)  
(d) (P & Q) ↔ (Q & P)  

3 A truth-functional sentence-forming operator which requires a concatenation 
of n sentences to form a sentence will be said to be an n-place operator. On 
this definition � is a one-place operator and & is a two-place operator. A 
one-place operator has a truth-table with two lines, a two-place operator has 
a truth-table with 4 lines. How many lines would a three-place operator and 
four-place operators have in their truth-tables? Let Φ (P, Q, R) be the three-
place operator representing: if P and Q then R. Construct its truth-table. Let 
Ψ (P, Q, R, S) be the four-place operator representing: if P and Q then R or 
S. Construct its truth-table. How many lines would there be in a truth-table 
for an n-place operator? Justify your answer.  

4 Use circumstance surveyors to determine whether the following sequents are 
tautologous:  
(a) P → Q, �Q � P  
(b) P → �Q � Q → �P  
(c) P → �Q � �(P → Q)  
(d) P � P → Q  
(e) P � Q → P  
(f) P → Q � Q → P  
(g) P & Q � P v Q  
(h) P v Q � P & Q  
(i) P v Q, ��P � Q  
(j) P → �Q, ��Q � P  
(k) ((P v Q) → S) � P → S  
(l) (S → (P v Q)) � S → P  
(m) P v Q � �(�P & �Q)  
(n) P & Q � �(�P v �Q)  
(o) (P → Q) & (P → �Q) � �P  

5 Formalize the following arguments and test for validity using circumstance 
surveyors to determine whether the formalizations are tautologous sequents: 
(a) Icabod is not both a Balliol student and a modest person. Therefore, 

Icabod isn’t a Balliol student or he isn’t modest.  
(b) Icabod is a Balliol student. So he is either a Balliol student or he is 

modest.  
(c) Icabod is a Balliol student or he is modest. But he is modest. So he is not 
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4 FURTHER DEVELOPMENTS  

Consider the following formulae and their truth-tables:  

 

These formulae take the value T for each assignment of truth-values. That is, 
these formulae come out true for each possible circumstance. This result holds 
independently of the interpretation that we might give of the propositional 
letters. Such formulae are called tautologies. Some philosophers have said that 
tautologies say nothing about the world. We can see the justice in this 
description. For we do not have to look at the world to see that any tautology 
must be true. If I say that it is raining or it is snowing you have to look at the 
weather to find out if what I said is true. If on the other hand I say that it is 
raining or it is not raining (with the caveat below), you do not need to consult a 

a Balliol student.  
(Is there a construal of this argument which renders it valid? How would you 
express this construal using &, v and �?)  

(d) If Reagan is assassinated there will be chaos. But if Reagan is not 
assassinated there will be chaos. So there’s going to be chaos.  

(e) Either the male (human) lead of Bed Time for Bonzo is President of the 
United States or there is no threat of war. There is a threat of war. Hence, 
the male (human) lead of Bed Time for Bonzo is President of the United 
States.  

(f) If Icabod diets, then Icabod will get thin. Icabod diets. So Icabod gets 
thin.  

(g) Either way you look at it we’re in for trouble. It’s either Reagan or 
Carter. For Anderson hasn’t got a chance. If it’s Reagan we’re in for 
trouble. Just look at his views on defence! If it’s Carter we’re in for 
trouble. How can a peanut farmer manage an economy?  

(h) There is no freedom in communist countries. So you shouldn’t visit East 
Germany.  

(i) God is all good and powerful. But if He is all powerful and all good 
there can be no evil. But there is plenty of evil. So God is not all good or 
God is not all powerful.  

(j) If the Devil has no redeeming graces, he is thoroughly bad. Hence, if he 
is thoroughly bad, he has no redeeming graces.  
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weather man. The caveat is that there may be circumstances in the actual world 
in which we would hesitate to say that it is true that it is raining but also hesitate 
to say that it is true that it is not raining. This hesitation arises not from any 
ignorance about what is going on (we can be standing out in the weather and 
clearly perceiving the state of things) but from the vagueness involved in what 
counts as raining. As a further example consider baldness. Just how many hairs 
does someone have to have before he is no longer bald? Since there is no answer 
to this question there are situations in which we do not want to say that someone 
is bald nor do we want to say that he is not bald. In the logic we are developing 
we are assuming that any proposition is true or is false. This is shown by the fact 
that we do not set up tables with T, F and, say, ? for the borderline cases. 
Opinions will differ about how widespread and significant the phenomenon of 
vagueness is. Those who are impressed by it will regard our logic as at best 
making an idealizing assumption. There are logicians who attempt to develop 
logics which do not make this assumption. The sign of an argument, �, is also 
used as the sign of a tautology: � (P & Q) → P.  

Consider the formulae below and their truth-tables:  
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These formulae take the value F for each possible circumstance. That is, there is 
no way that any one of them could be true. Such formulae are called 
inconsistencies. We shall define a formula to be semantically inconsistent just in 
case there is no possible circumstance which would make it true. That is, there is 
no assignment of truth-values to the constituent propositions that makes the 
formula true. A formula which has the value T for at least one circumstance and 
the value F for at least one circumstance is said to be contingent.  

The notion of semantical inconsistency as defined applies to a single formula. 
It can be extended to cover sets of formulae. A semantically inconsistent set of 
formulae will be one for which there is no assignment of truth-values to the 
constituents that makes all the formulae in the set true simultaneously. For 
instance, consider the set of formulae:  

{P, P → Q, �Q}  

Consider the truth-tables below:  

There is no possible circumstance which makes all three true together. This 
notion of semantic inconsistency has an important connection with the notion of 
a tautologous sequent. For if a sequent is tautologous any way of making the 
premises true is a way of making the conclusion true. This means that if we form 
a set consisting of the premises and the negation of the conclusion that set will 
be semantically inconsistent. For if we try to make each formula in that set true 
by finding a possible circumstance we will find that any circumstance that 
makes the premises true makes the conclusion true and hence (by the truth-table 
for negation) makes the negation of the conclusion false.  

There are two reasons for being interested in the question of the semantical 
consistency of a set. First, we want to have consistent beliefs. We want the set 
of propositions that we believe true to be consistent. And using the truth-table 
technique will enable us to test at least a limited class of types of propositions 
for consistency. Secondly, we have seen that there is an equivalence between the 
validity of an argument and the inconsistency of a related set of propositions. 
We used the truth-table technique above to display the inconsistency of the set 
of propositions, {P, P → Q, � Q}. And this shows that the argument given by P, 
P → Q, � Q is valid.  

To illustrate and further develop the techniques introduced in this chapter we 
will analyse a number of sample arguments.  

P  Q  P  P → Q  �Q  

T  T  T T  F
T  F  T F  T
F  T  F F  T
F  F  F T  T
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Example 2.4.1  

Argument  

John is a bachelor.  
John is not a bachelor.  

Therefore Icabod is rich.  

Interpretation  

P : John is a bachelor.  
Q : Icabod is rich.  

Formalization  

P, �P � Q  

Circumstance surveyor  

There are no lines in which the premises are both true and the conclusion false. 
Hence the argument is valid for its formalization is a tautologous sequent. This 
may come as a surprise. For the conclusion has nothing to do with the premise. 
But it is a consequence of our definition of validity that any conclusion follows 
from a premise set which is semantically inconsistent. For in such a case there is 
no possibility of the premises all being true and the conclusion false. The fact 
that anything at all follows validly from inconsistent premises is one of the 
reasons we do not like inconsistencies. A person who accepts an inconsistency is 
committed to accepting anything!  

Example 2.4.2  

Argument  

Only if Eclipse wins the 2.20 will I pay my debts.  
My creditors won’t be happy unless I will pay my debts.  
Therefore, Eclipse wins the 2.20 or my creditors will be unhappy.  

Interpretation  

P  Q  P, �P � Q
T  T  T F T
T  F  T F F
F  T  F T T
F  F  F T F
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P : Eclipse wins the 2.20.  
Q : I will pay my debts.  
R : My creditors will be happy.  

Formalization  

Q → P, �Q → �R � P v �R  

Notice that the first premise contains the operator only if. ‘P → Q’ 
formulates ‘if P then Q’. The following situation illustrates the 
difference between ‘if’ and ‘only if’. I might assert the first premise 
because I have no means at present to pay my debt. If Eclipse wins I 
will have the means. But I am not saying that I will pay. I may come to 
have the means and decide to spend the money on further gambling. 
Hence the premise is not to be formulated as ‘P → Q’ but rather as ‘Q → 
P’, meaning that if I do pay then Eclipse did win. Notice that the 
second premise contains the operator ‘unless…? ‘Unless P, Q’ is 
formulated as ‘�P → Q’. That my creditors will not be happy unless I 
pay my debts means if I do not pay my debts they will not be happy. 
Finally, notice that negation of a proposition is sometimes expressed by 
prefixing ‘un’ to the predicate, as in the conclusion.  

Circumstance surveyor  

The argument is valid as the formalization is a tautologous sequent.  

Example 2.4.3  

Argument  

Either Eclipse or Morning Star will win the 2.30.  
If Eclipse wins, Icabod will be happy.  
So, if Morning Star wins, Icabod won’t be happy.  

P  Q  R  Q → P,  �Q → �R  �Pv �R  

T  T  T  T T  T
T  T  F  T T  T
T  F  T  T F  T
T  F  F  T T  T
F  T  T  F T  F
F  T  F  F T  T
F  F  T  T F  F
F  F  F  T T  T
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Interpretation  

P : Eclipse will win the 2.30.  
Q : Morning Star will win the 2.30.  
R : Icabod will be happy.  

Formalization  

P v Q, P → R � Q → �R  

Notice that in the formalization and interpretation we have had to 
render less idiomatic the formulation of the first premise.  

Circumstance surveyor  

The argument is not valid as there is a circumstance which would make the 
premises true and the conclusion false.  

EXERCISES  

P  Q  R  P v Q,  P →R �  Q → �R  
T  T  T  T T  F
T  T  F  T F  T
T  F  T  T T  T
T  F  F  T F  T
F  T  T  T T  F
F  T  F  T T  T
F  F  T  F T  T
F  F  F  F T  T

1 Use truth-tables to determine whether each of the following is a tautology, a 
contingent formula or an inconsistency.  
(a) P → �P  
(b) (P & Q) ↔ (Q & P)  
(c) (P → Q) ↔ (Q → P)  
(d) (P → Q) ↔ �(P & �Q)  
(e) (Q v �Q) & �(P v �P)  
(f) (P → (Q → R)) → ((P → Q) → (P → R))  
(g) (P → Q) → ((P v R) → Q)  
(h) (P → Q) → (P → (Q v R))  
(i) P & (P → Q) & (P → �Q)  

2 Determine whether the following sets of formulae are semantically 
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consistent. In the case of any set that is semantically inconsistent, form a 
tautologous sequent with the negation of one formula as conclusion and the 
remaining formulae as premises.  
(a) {�Q, P, �(Q → R)}  
(b) {Q → Q, P → R, P, �(Q v R)}  
(c) {P → Q, Q, �P}  
(d) {P, Q → R, �(P → R)}  

3 Formalize the following arguments and test for validity using circumstance 
surveyors to determine if the formalization is a tautologous sequent.  
(a) Realism leaves no room for miracles. Under normal weather conditions, 

the Luftwaffe would gain undisputed mastery of the air; and in that event, 
the BEF would be destroyed on the beaches of Dunkirk. If the realists 
were right, the retreating army could not be saved.  

(b) There is no time unless there is change. There is no change unless some 
objects exist to change. Therefore either some objects exist to change or 
there is no time.  

(c) Logic is either too boring or too difficult. For either it is part of 
mathematics or it is part of philosophy. And unless it isn’t part of 
mathematics it is too difficult. Only if it is too boring will it be part of 
philosophy.  

(d) The cow is not there unless I see it. If the cow is not there then the fields 
and, indeed, the earth, are not there. If the fields and the earth are not 
there then I cannot exist. But I can only see the cow if I exist. Obviously, 
then, I do not exist.  

(e) If there is some empirical way of distinguishing between absolute rest 
and absolute motion, Newton was right to think that there is absolute, and 
not only relative space. Also, if there is absolute space, there is really a 
difference between absolute rest and absolute motion—whether or not 
they are empirically distinguishable. So if, as some people argue, there 
cannot really be a difference between absolute rest and absolute motion 
unless they are empirically distinguishable, there is absolute space if and 
only if there is some empirical way of distinguishing between absolute 
rest and absolute motion.  

4 Show the following:  
(a) A, B, C � D if and only if � A & B & C → D.  
(b) If A � B and B � C then A � C.  
(c) Any sequent with a contradictory premise is tautologous.  
(d) Any sequent with a tautology as conclusion is tautologous.  

5 To determine whether a formula is a tautology using truth-tables becomes 
tedious as the number of propositional letters increases. There is an 
alternative procedure which in many cases is more efficient. Suppose we 
wish to determine if the formula ((P → Q) & (Q → R)) → (P → R) is a 
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Apply this method to answer question 1 above. Devise a technique for 
determining whether a sequent is tautologous which does not involve 
constructing a full circumstance surveyor. Use this technique to determine 
whether your formalizations in question 3 above are tautologous sequents.  

tautology. Assume for the sake of argument that it is not. In that case there is 
some line of its truth-table which has an F under the main connective, the 
arrow. This means that the sub-formula on the left must take the value T and 
the sub-formula on the right must have the value F for that. If (P → R) is F, 
P must be T and R must be F. If ((P → Q) & (Q → R)) is T, (P → Q) is T and 
(Q → R) is T. We have determined that R is F, then as (Q → R) is T, Q must 
be F. But (P → Q) is T and P is T, making Q T. We have a contradiction; Q 
is both T and F. Hence we conclude that there can be no such line, i.e. a line 
in which the entire formula is F. Therefore the formula is a tautology. We 
can record the procedure as follows:  

  
If we do not obtain a contradiction we know that the formula is either 
contingent or inconsistent. How might we determine without constructing a 
full truth-table whether a formula is inconsistent? Use these techniques to 
answer question 1 above. In some cases one cannot conclude that the 
propositional letters have a particular value and must consider the different 
possible values as illustrated below:  
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CHAPTER 3  
A propositional calculus  

1 THE RULES OF NATURAL DEDUCTION  

In the last chapter a technique was given for rigorously determining the validity 
of arguments of our propositional language. The reader is unlikely to have 
encountered anything even remotely like this technique outside of the study of 
logic. One is more likely to be familiar with attempts to show that a certain 
conclusion follows validly from a set of premises by deriving that conclusion 
from the premises. For instance, in Euclidean geometry one seeks to establish 
that certain results (the theorems) follow validly from certain premises (Euclid’s 
axioms) by manipulating the premises in various ways to obtain the conclusion. 
In this chapter we will develop this sort of procedure for rigorously establishing 
the validity of arguments by deriving the conclusion of the argument from the 
premises using a system of rules. We introduce the symbol ‘�’ called the 
syntactic turnstile writing, for instance, ‘P v Q, �P � Q’ to express the claim 
that ‘Q’ can be derived from the premises using the system of rules to be 
introduced.  

In a valid argument if the premises are true the conclusion must be true. If our 
system of rules is to be such that it only permits us to derive a conclusion if the 
conclusion does follow validly from the premises, the rules will have to be truth-
preserving. That is, if a rule allows us to derive a formula C from a pair of 
formulae, A and B, C will have to be true if A and B are true. It will be shown 
that each rule is truth-preserving in any simple direct application. In the next 
chapter we will show that the system of rules is truth-preserving in all 
applications. At that time we will also consider the reasons for developing this 
alternative approach to the investigation of arguments.  

Conjunction Elimination (&E)  
A pair of rules will be introduced for each operator of our propositional 

language. The rule of conjunction elimination, cited as &E, allows us to derive 
from any formula of the form A & B either the formula A or the formula B. If A 
& B is true, our truth-table for & shows that A is true and that B is true. Thus this 
rule is truth-preserving in a single simple application.  

Our aim is to establish a procedure whereby we pass step by step from a 
premise or premises to a conclusion, each step being licensed by some rule. To 
this end we set out the derivations as a sequence of numbered lines, indicating 
the source of each line, for instance:  



indicates that P & Q has been introduced as a premise and is the first line in our 
derivation. Applying the &E rule we write:  

The entry to the right of line (2) shows that that line was obtained from the first 
line by the application of the &E rule. The fact that line (2) depends on P & Q as 
a premise is shown by writing the number of the line at which the premise P & 
Q was introduced to the left of the line number (2). The line to which &E is 
applied may not be a premise itself having been obtained from another premise 
or premises. We indicate this by writing the number of the line (lines) in which 
the premise(s) were introduced to the left of the line number for the line where 
the rule has been applied. By this procedure we can see at each stage of a proof 
whether a line represents a premise (in which case Prem is written to the left of 
the line number) or whether it depends on other lines as premises in which case 
the numbers to the left of the line number indicate those premises. The numbers 
to the left of a line taken with the formula of that line indicates what has been 
established. For instance, in the mini-proof given above P occurs as line (2). The 
1 to the left of (2) indicates that P depends on line (1), i.e. on P & Q as premise. 
Thus the proof shows P & Q � P. Further examples will make clear the style in 
which proofs are to be set out.  

Conjunction Introduction (&I)  
The rule of conjunction introduction (&I) states that given A and given B we 

can infer A & B or B & A. Any individual application of this rule will be truth-
preserving. For if A is true and B is true, the table for & shows that A & B will 
be true as will B & A. The result of applying the rule, A & B, will depend on 
whatever premise(s) A depends on and on whatever premise(s) B depends on. If 
A (B) is itself a premise we cite the number of the line at which A (B) is 
introduced as a premise on the left of the line number for A & B. If A (B) is not a 
premise but has been derived from other premises we cite the lines in which that 
premise(s) was (were) introduced. To the right of the line we cite the rule and 
the lines to which the rule was applied. For instance, below are proofs of the 
sequents P, Q � P & Q and P, Q � Q & P:  

Prem  (1) P & Q

Prem  (1) P & Q
1  (2) P 1 &E 

Prem  (1) P
Prem  (2) Q
1,2  (3) P & Q 1,2 &I 

Prem  (1) P
Prem  (2) Q
1,2  (3) 
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Negation elimination (�E)  
The negation elimination rule, to be cited as �E, allows us to derive A from 

��A. The result of applying the rule, A, will rest on whatever premises ��A 
rests on or will rest on ��A if ��A was itself a premise. The proof of the 
sequent ��P � P is:  

In citing the rule we give the number of the line to which it has been applied, 
writing, as above, 1 �E. The truth-tables below show that the rule is truth-
preserving in individual applications.  

Negation Introduction (�I)  
The rule of negation introduction, cited as �I, says that if from some formula 

A as premise we can derive B & �B we can infer �A. The conclusion, �A, rests 
on whatever premises are used in the derivation of B & �B (excepting A itself). 
This is a version of the style of argumentation called proof by reductio ad 
absurdum. We reject a premise A (i.e. assert its negation) on the grounds that 
taking A as a premise leads to the absurd contradictory result B & �B. 
Assuming that the premises used (excepting A) are true and that the other rules 
used are truth-preserving, we can infer that �A is true. For if �A were false, A 
would be true and given the proof of B & �B from A, both B and �B would be 
true and this is impossible. This rule is used to derive the sequent P � �(�P & 
�Q):  

As illustrated in the above derivation, in citing the rule of �I, we give the line 
number of the premise which is negated in the application of the rule and the 
number of the line on which the derived contradiction occurs.  

Material Conditional Elimination (→E)  
Our next rule is material conditional elimination which is cited as →E. It 

Q & P 1,2 &I 

Prem  (1) ��P
1  (2) P 1 �E 

P  �P ��P
T  F T 
F  T F 

Prem  (1) �P & �Q
Prem  (2) P
1  (3) �P 1 &E 
1,2  (4) P & �P 2,3 &I 
2  (5) �(�P & �Q) 1,4 �I 
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licenses us to pass from a pair of formulae of the form A, A → B to the formula 
B. B will rest on whatever premises A and A → B rest on. Clearly if A is true and 
A → B is true, B must be true thus the rule is truth-preserving in individual 
applica- tions. The following examples illustrate the use of this rule which is 
called traditionally modus ponendo ponens.  

P, P → Q, Q → R � R  

Our goal is to obtain R from the formulae to the left of the turnstile. To this end 
we begin our proof by writing these as premises:  

Example 3.1.1  

Notice that in citing the rule we give the number of the two lines to which it is 
applied. Our premises for line (4) are lines (1) and (2) which are therefore cited 
to the left of the arrow in line (4). In line (5) →E has been applied to lines (3) 
and (4). (3) is a premise and (4) depends on (1) and (2) as premises. Hence we 
write 1, 2, 3 to the left of line (5).  

Example 3.1.2  

Notice that we assumed as a premise P in addition to the premises of the 
sequent. We then used the reductio ad absurdum style of arguing to reject that 
premise.  

Material Conditional Introduction (→I)  
The rule of material conditional introduction cited as →I, says that if we have 

derived a formula B from a formula A as a premise we can conclude that A → B 
citing any premises introduced in the course of the derivation of B from A. We 

Prem  (1) P
Prem  (2)  P → Q  
Prem  (3)  Q → R  
1,2  (4)  Q  1,2 →E  
1,2,3  (5)  R  3,4 →E  

P → Q, �Q � �P  
Prem  (1)  P → Q  
Prem  (2) �Q
Prem  (3) P
1,3  (4)  Q  1,3 →E  
1,2,3  (5) Q & �Q 2,4 &I 
1,2  (6) �P 3,5 �I 
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do not cite A as a premise in concluding A → B. The rule is truth-preserving. For 
if our other rules preserve truth and if we have derived B from A as a premise we 
know that if A is true then B is true and that means that A → B will be true. We 
drop the assumption of A in deriving the conclusion A → B. Having derived B 
with A as premise, in effect we sum this up by making the conditional assertion 
A → B which says what has been shown; namely, that if A then B. In citing the 
rule we give the line at which the antecedent of the conditional was taken as a 
premise and the line at which the consequent of the conditional was obtained as 
illustrated below. For the application of the rule the consequent must be 
obtained from the antecedent as premise.  

Example 3.1.3  

Notice that in establishing a conditional we proceed by assuming the antecedent 
of the conditional hoping to be able to derive the consequent from the 
antecedent as premise. If we are able to do this we can derive the material 
conditional using the rule of →I.  

Example 3.1.4  

Disjunction Introduction (vI)  
The rule of disjunction introduction licenses the conclusion A v B or the 

conclusion B v A from A. The conclusion will depend on whatever premises A 
depends on and will depend on A if A is a premise. Clearly it is truth-preserving 
in an individual application. From the truth-table for disjunction it is seen that 

P → Q, Q → R � P → R  
Prem  (1)  P → Q  
Prem  (2)  Q → R  
Prem  (3) P
1,3  (4)  Q  1,3 →E  
1,2,3  (5)  R  2,4 →E  
1,2  (6)  P → R  3,5 →I  

P → Q � �Q → �P  
Prem  (1)  P → Q  
Prem  (2) �Q
Prem  (3) P
1,3  (4)  Q  1,3 →E  
1,2,3  (5) Q & �Q 2,4 &I 
1,2  (6) �P 3,5 �I 
1  (7)  �Q → �P  2,6 →I  
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both A v B and B v A will be true if A is true. In citing the rule we give the line at 
which A occurs as illustrated in the proof below of the sequent P � P v Q:  

Disjunction Elimination (vE)  
Suppose we have a formula of the form A v B, and that we can show that C 

can be derived from A and that C can also be derived from B. In that case we can 
derive C from A v B as premise using the rule of disjunction elimination vE. To 
illustrate this style of argument suppose I know that Jones smokes heavily or 
that Jones drinks heavily. I do not know which it is that he does (perhaps he 
does both). Suppose that on the basis of various other premises I derive from the 
premise that Jones smokes that he has a lower than average life expectancy. And 
suppose further that with the help of other premises I derive from the premise 
that Jones drinks that he has lower than average life expectancy. In this case I 
can conclude that Jones has a lower than average life expectancy on the basis of 
the premise that Jones drinks heavily or that Jones smokes heavily (taken with 
the various subsidiary premises). The conclusion will not depend on the premise 
that Jones smokes heavily nor will it depend on the premise that Jones drinks 
heavily. In using the vE rule to derive a conclusion C from a premise A v B, we 
carry out two preliminary derivations. We derive C from A and we derive C 
from B. On the basis of these successes we conclude C given A v B. Our 
conclusion does not depend on A nor does it depend on B. It will depend on any 
premises introduced in the course of the derivation of C from A and C from B 
(except A and B themselves). In order to represent the workings of vE most 
perspicuously our preliminary derivations will be set out side-by-side as 
illustrated below. We number the lines consecutively through the derivation on 
the left-hand side and continue the numbering through the derivation on the 
right-hand side. We could set out the right-hand derivation below the left-hand 
derivation. However, setting out the proofs in this branching fashion helps to 
remind us that we are exploring alternatives in applying vE. In citing vE we give 
the numbers of five lines: that of the disjunction A v B, that of the assumption of 
the first disjunct A, that where C is obtained from A, that of the assumption of 
the second disjunct B, that where C is obtained from B. The conclusion C will 
depend on A v B and on any premises introduced in the course of the two 
preliminary derivations, these all being cited to the left of the number of the 
conclusion.  

(see opposite page for examples of the use of vE)  
Notice that in Example 3.1.6 we started preliminary derivations using P and 

using Q preparatory to applying the vE rule. In the course of carrying out the 
derivation from Q we have applied a further step of vE in relation to the 
disjunction (P v R). This means that given our convention for laying out proofs 
the right-hand branch of the proof itself branches. The derivations above have 
established: P v (Q & R) � (P v Q) & (P v R) and (P v Q) & (P v R) � P v (Q & 

Prem  (1) P
1  (2) P v Q  1 vI 
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R). Where a derivation goes through from the left to the right and vice versa (as 
in this case) we will write: (P v Q) & (P v R) � � P v (Q & R).  

Bi-conditional Elimination (↔E)  
The bi-conditional elimination rule licenses us to derive from a formula of the 

form A ↔ B the formula (A → B) & (B → A). The conclusion will rest on 
whatever premises the formula A ↔ B rests on and in citing the rule we cite the 
line on which that formula occurs writing for the rule ↔E. The truth-table for 
the bi-conditional shows that individual applications of this rule to be truth-
preserving.  

Example 3.1.5  
P v (Q & R) � (P v Q) & (P v R)
Prem (1)  P v (Q & R)
Prem (2)  P  Prem (6) (Q & R)
2  (3)  P v Q 2 vI 6  (7) Q 6 &E 
2  (4)  P v R  2 vI 6  (8) (P v Q) 7 vI 
2  (5)  (P v Q) & (P v 

R)  
3,4 &I  6  (9)  R  6 &E  

      6  (10) (P v R) 9 vI 
        6  (11) (P v Q) & (P v 

R)
8.10 
&E 

1  (12) (P v Q) & (P v 
R)  

1,2,5,6,11 
vE

Example 3.1.6  
(P v Q) & (P v R) � P v (Q & R)
Prem (1)  (P v Q) 

& (P v 
R)  

1  (2)  (P v Q)1 &E 
Prem (3)  P  Prem (5) Q
3  (4)  P v (Q 

& R)  
3 vI  1  (6)  (P v 

R)  
1 &E  

  Prem (7) P  Prem (9) R
        7  (8)  P v 

(Q & 
R)  

7 vI  5,9  (10) (Q & 
R)  

5,9 
&I  

  5,9  (11) P v 
(Q & 
R)

10 
vI  

  1,5  (12) P v 
(Q & 

6,7,8,9,11 
vE  
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Bi-conditional Introduction (↔I)  
The bi-conditional introduction rule licenses us to derive a formula of the 

form A ↔ B from formulae of the form A → B and B → A. A ↔ B will rest on 
whatever premises A → B rests on and on whatever premises B → A rests on. In 
citing the rule we write →I and give the number of the lines at which A → B 
occurs and B → A occurs.  

This completes our introduction to the rules which will be more precisely 
stated in the next chapter. Further examples of the uses of the rules in 
constructing proofs are given below. For easy reference a summary of the rules 
is given at the end of this chapter on pages 75–77.  

Example 3.1.7  

Example 3.1.8  

R)  
1  (13) P v (Q 

& R)  
2,3,4,5,12, 
vE 

P ↔ Q, Q ↔ R � P ↔ R  
Prem  (1)  P ↔ Q  
Prem  (2)  Q ↔ R  
1  (3)  (P → Q) & (Q → P)  1↔E  
1  (4)  (P → Q)  3 &E  
1  (5)  (Q ↔ P)  3 &E  
2  (6)  (Q → R) & (R → Q)  2↔E  
2  (7)  (Q → R)  6 &E  
2  (8)  (R → Q)  6 &E  
Prem  (9)  P
1,9  (10)  Q  4,9 →E  
1,2,9  (11)  R  7,10 →E  
1,2  (12)  (P → R)  9,11 →I  
Prem  (13) R
2,13  (14)  Q  8,13 →E  
1,2,13  (15)  P  5,14 →E  
1,2  (16)  (R → P)  13,15 →I  
1,2  (17)  (P ↔ R)  12,16 ↔ I  

(P → R) & (Q → R) � (P v Q) → R  
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Notice that since we wish to establish a conditional in 3.1.8 it is advisable to 
assume as a premise the antecedent (line (2)) and to derive the consequent as 
conclusion (line (9)) and then we obtain the conditional by using a stage of →I.  

Example 3.1.9  

Since we are deriving a formula the main operator of which is ‘�’ it is worth 
attempting to do this by taking as premise the formula without ‘�’ with a view 
to using �I.  

(see opposite page for Example 3.1.10)  

Prem  (1)  (P → R) & (Q → R)  
Prem  (2)  (P v Q)
Prem  (3)  P  Prem (6) Q
1  (4)  (P → R)  1 &E  1  (7) (Q → R)  1 &E  
1  (5)  R  3,4 →E  1,6  (8) R  6,7 →E  
1,2  (9)  R  2,3,5,6,8 vE 
1  (10)  (P v Q) → R  2,9 →I  

(P → Q) � � � (P & �Q)  
(a) (P → Q) � �(P & �Q)  
Prem  (1)  (P → Q)  
Prem  (2) P & �Q
2  (3) P 2 &E 
1,2  (4)  Q  1,3 →E  
2  (5) �Q 2 &E 
1,2  (6) Q & �Q 4,5 &I 
1  (7) �(P & �Q) 2,6 �I 

(b) �(P & �Q) � (P → Q)  
Prem  (1)  �(P & �Q) 
Prem  (2)  P
Prem  (3)  �Q
2,3  (4)  (P & �Q) 2,3 &I 
1,2,3  (5)  (P & �Q) & �(P & �Q)  1,4 &I 
1,2  (6)  ��Q 3,5 �I 
1,2  (7)  Q 6 �E 
1  (8)  (P → Q)  2,7 →I  
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EXERCISES  

2 TESTING ARGUMENTS FOR VALIDITY: THE SYNTACTICAL 
APPROACH  

In employing the technique introduced in the previous section we are assuming 
that the rules when taken together preserve truth in the derivations constructed 
using them. And we assume that any valid argument that can be expressed in our 
limited language can be represented by a derivable sequent. The vindication of 
these claims is given in the next chapter. It is the most sophisticated thing we do 
in this book and for the moment the adequacy of the rules is taken for granted. 
Study the following examples carefully.  

1 Derive the sequents below. � � indicates that the sequent is to be derived in 
both directions.  
(a) P & Q � Q & P  
(b) P v Q � Q v P  
(c) P v (Q v R) � (P v Q) v R  

Example 3.1.10  

(d) P & (Q & R) � (P & Q) & R  
(e) P & (Q v R) � � (P & Q) v (P & R)  
(f) P � � (P & Q) v (P & �Q)  
(g) P � � P v (Q & �Q)  
(h) ((P → Q) → P) � P  
(i) (P → (Q → R)) � ((P → Q) → (P → R))  
(j) (P → Q) � (Q → R) → (P → R)  
(k) P → (Q → R) � � P & Q → R  
(l) P ↔ Q � � �P ↔ �Q  

2 Construct proofs of the sequents corresponding to the tautologous sequents 
of Exercise 4 on p. 37.  

P & Q � �(�P v �Q) 
Prem (1)  P & Q
Prem (2)  (�P v �Q) 
Prem (3)  �P  Prem (7) �Q
1  (4)  P  1 &E 1 (8) Q 1 &E  
1,3  (5)  P & �P 3,4 &I 1,7 (9) Q & �Q 7,8 &I 
3  (6)  �(P & Q) 1,5 �1 7 (10) �(P & Q) 1,9 �I 
2  (11) �(P & Q) 2,3,6,7,10 vE 
1,2  (12) (P & Q) & �(P & Q) 1,11 &I  
1  (13) �(�P v �Q) 2,12 �1  
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Example 3.2.1  

If we give Icabod arsenic he’ll either get very ill or he’ll die.  
If he is very ill he won’t be able to run for president and if he is dead he 

certainly won’t be able to run. So if we give him arsenic he won’t be able to run.  

Interpretation  

P : We give Icabod arsenic.  
Q : Icabod will get very ill.  
R : Icabod will be dead.  
S : Icabod is able to run for the presidency.  

Formalization  

P → Q v R, Q → �S, R → �S � P → �S  

(see next page for the derivation)  

Example 3.2.2  

Argument  

Icabod will have time to row and get a first? That must be wrong. If he works 
hard he won’t have time to row. If he doesn’t work hard he’s not going to get a 
first.  

Interpretation  

P : Icabod will have time to row.  
Q : Icabod will get a first.  
R : Icabod works hard.  

Formalization  

R → �P, �R → �Q � �(P & Q).  

Derivation  

Prem  (1)  R → �P  
Prem  (2)  �R → �Q  
Prem  (3) (P & Q)
Prem  (4) R
1,4  (5)  �P  1,4 → E  
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Students are often puzzled about the rule of �-introduction. In using that rule we 
derive a contradiction from a number of  

premises (possibly just one but often several). The rule does not tell us which 
premise is to be rejected. All we know is that we have to reject one of them. 
Which one we actually reject depends on what we are trying to establish. If we 
reject the ‘wrong’ one our move is still legitimate but we will not establish what 
we sought to prove. If one has done this, one can then without re-deriving the 
contradiction, cite the line at which it was obtained in negating another of the 
premises. In which case, of course, the rejected premise will be re-introduced.  

Example 3.2.3  

Argument  

If God is supremely good and all powerful there is no evil in the world. God is 
supremely good and all powerful but there is evil in the world. Therefore the 
church should be suppressed.  

Interpretation  

P : God is supremely good and all powerful.  

3  (6) P 3 &E 
1,3,4  (7) P & �P 5,6 &I 
1,3  (8) �R 4,7 �I 
1,2,3  (9)  �Q  2,8 →E  
3  (10) Q 3 &E 
1,2,3  (11) Q & �Q 9,10 &I 
1,2  (12) �(P & Q) 3,11 �I 

Derivation  
Prem  (1)  P → (Q v R)  
Prem  (2)  Q → �S  
Prem  (3)  R → �S  
Prem  (4)  P
1,4  (5)  (Q v R)  1,4 →E  
Prem  (6)  Q Prem (8) R
2,6  (7)  �S  2,6 →E  3,8  (9) �S 3,8 →E  
1,2,3,4  (10)  �S 5,6,7,8,9 vE 
1,2,3  (11)  P → �S  4,10 →I  
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Q : There is evil in the world.  
R : The church should be suppressed.  

Formalization  

P → �Q, P & Q � R  

Derivation  

We have given various rules of thumb which are worth bearing in mind in 
constructing derivations (e.g. when faced with a sequent, the conclusion of 
which is a conditional, assume the antecedent as a premise with a view to using 
→I). These are but rules of thumb and not mechanical rules which guarantee that 
a derivation of a derivable sequent will be forthcoming. And the above 
derivation indicates how ingenuity may be needed if one wants to construct a 
short proof. For this reason such derivations as the above are not particularly 
easy. However, one can check mechanically that the derivation is correct by 
reference to the rules once it has been produced. It should be clear that any 
conclusion can be derived from the premises used in the above derivation. The 
premises are inconsistent. Line (1) and (2) give us the conclusion Q & �Q and 
the derivation reveals that any conclusion can be derived from a contradiction, 
this being the syntactical counterpart of the semantical result cited on p. 47 that 
any argument with inconsistent premises is valid.  

EXERCISES  

Prem  (1)  P → �Q  
Prem  (2) P & Q
Prem  (3) �R
Prem  (4) Q & �R
4  (5) Q 4 &E 
2  (6) P 2 &E 
1,2  (7)  �Q  1,6 →E  
1,2,4  (8) Q & �Q 5,7 &I 
1,2  (9) �(Q & �R) 4,8 �I 
2  (10) Q 2 &E 
2,3  (11) (Q & �R) 3,10 &I 

1,2,3  (12)  (Q & �R) & �(Q & �R)  9,11 &I 
1,2  (13)  ��R 3,12 �I 
1,2  (14)  R 13 �E 

1 Derive the tautologous sequents of question 5 on p. 38, and of question 3 on 
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3 THEOREMS, SUBSTITUTION AND DERIVED RULES  

Consider the derivation below:  

Example 3.3.1  

p. 46.  

2 Formalize the following. If valid derive the sequent:  
(a) There will be scandal unless the RCMP acted legally. If there is a 

scandal, they will be discredited in the public eye. If they did give LSD to 
prisoners they acted illegally. So, if they did do this, they will be 
discredited.  

(b) The RCMP do not deserve their reputation for integrity. For whether or 
not they acted legally in giving prisoners LSD, they certainly acted 
immorally. And they deserve their reputation for integrity only if they did 
not act immorally.  

(c) The RCMP officers will be convicted unless the judge is a political 
appointee. So they’ll get off because the judge is a friend of the Prime 
Minister.  

(d) If I am a brain in a vat, I could not believe I was not. For I could only 
believe I was not if I had a language. And if I were a brain in a vat I 
couldn’t have a language. And furthermore, since I do believe I am not a 
brain in a vat, I am not a brain in a vat.  

(e) There is evil unless God exists. There is evil only if the devil exists. God 
exists if and only if the devil does. But God does not exist and hence 
there is no devil.  

(f) It is raining. So either it is snowing or it is not.  
(g) There will be peace only if there is good will on both sides. Whether or 

not Reagan wins there will be peace. And in any event there is no good 
will on either side. So Reagan likes Andropov.  

3 (a) Show that A, B, C � D if and only if A � B & C → D.  

(b) Show that if A � B and B � C then A � C.  

(c) Show that A � A and that if A � C then A, B � C.  

(d) Show that any sequent with a contradictory premise is derivable. Show that 
any sequent with a tautology as conclusion is derivable.  

Prem  (1) �(P v �P) 
Prem  (2) P
2  (3) (P v �P) 2 vI 
1,2  (4) 
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It is easy to check that each step is licensed by the rules. Note that the 
conclusion rests on no premises. In constructing the derivation two premises 
were introduced but by using the rule of �I the dependencies were reduced from 
two to one premise and then from one premise to no premises. When we can 
construct a derivation of a conclusion that rests on no premises we will refer to 
the conclusion as a theorem. We write � A with nothing on the left-hand side of 
the turnstile to mean that A can be obtained as the conclusion of a derivation not 
resting on any premises. We will show in the next chapter that the set of all 
theorems is exactly the same as the set of all tautologies.  

If we have a derivation of a theorem such as � P & Q → P we could use 
exactly the same form of derivation to establish as a theorem any other formula 
of the same form. For example, consider the derivations given below:  

Example 3.3.2  

The formula R & S → R has the same form as the theorem P & Q → P and we 
can generate a proof of this formula as a theorem by simply replacing each 
occurrence of ‘P’ by ‘R’ and each occurrence of ‘Q’ by ‘S’ in the above 
derivation to obtain the following proof of � R & S → R:  

It is easy to confirm that this result is not affected if one takes more complex 
formula of the same form. For instance, construct a derivation of the formula (Y 
v �(U → �V)) & (W → X) → (Y v �(U → �V)).  

We define a substitution instance of a formula A to be a formula obtained by 
replacing each occurrence of a proposi- tional letter in A by some other formula. 
In obtaining a substitution instance we can carry out this substitution on some or 
all of the propositional letters and we may substitute the same or a different 

(P v �P) & �(P v �P) 1,3 &I 
1  (5) �P 2,4 �I 
1  (6) P v �P 5 vI 
1  (7) (P v �P) & �(P v �P) 1,6 &I 

(8) ��(P v �P) 1,7 �I 
(9) P v �P 8 �E 

P & Q → P  
Prem  (1) P & Q
1  (2) P 1 &E 
  (3)  P & Q → P  1,2 →I  

Prem  (1) R & S
1  (2) R 1 &E 

(3)  R & S → R  1,2 →I  
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formula for different propositional letters. But if we replace one occurrence of a 
propositional letter by a formula we must put that formula in place of each 
occurrence of the propositional variable. If we did not obey this constraint we 
could take ‘S v �Y’ as a substitution instance of ‘P v �P’. While ‘P v �P’ is a 
theorem. ‘S v �Y’ is not a theorem. Given this understanding of a substitution 
instance we can see that if A is a theorem, any substitution instance of A is a 
theorem. Similarly, if we have any sequent which is derivable such as P v Q, 
�Q � P any sequent obtained by carrying out the uniform substitution of 
formulae for propositional letters throughout the sequent will be derivable. For 
instance, it is easily verified that the substitution instance of the above sequent, 
(R & S) v (V → W), �(V → W) � (R & S) can be proved by taking the derivation 
of the former sequent and substituting ‘(R & S)’ for ‘P’ and ‘(V → W)’ for ‘Q’ 
throughout.  

We express the above claims in the following pair of meta-rules:  
Theorem Instance (TI). Any substitution instance of a theorem is a theorem.  
Sequent Instance (SI). Any substitution instance of a derivable syntactic 

sequent is a correct syntactic sequent. These are not part of our system of rules 
but rather represent claims about what can be done using the rules we have. It is 
to be noted that they are redundant in the sense that anything that we might 
prove by appeal to them can be proved without them. They do not extend our 
powers of proving but do save us a considerable amount of tedium.  

In, say, Euclidean geometry one proves theorems which are appealed to in the 
proof of further theorems. Of course any theorem could be proved from the 
axioms but to do so would simply mean tediously writing out previously 
produced proofs as part of the proof in question. Similarly it is convenient to be 
able to make use of previous results in establishing new theorems and sequents. 
Consider the following derivation:  

Example 3.3.3  

At line (2) we have written a theorem previously proved and employed in the 
derivation. We know that we could have derived P v �P in the course of the 
proof resting on no assumption. But to avoid this repetition we use the rule of 
theorem introduction which allows us to write as a line of a proof a previously 
proved theorem or a substitution instance of a previously proved theorem not 
resting on any premises. If we are introducing a theorem we will cite TI to the 

P → Q � �P v Q  
Prem  (1)  P → Q  
(2)  P v �P  TI (P v �P) 
Prem  (3)  P Prem (6) �P
1,3  (4)  Q  1,3 →E  6  (7) �P v Q  6 vI  
1,3  (5)  �P v Q 4 vI 
1  (8)  �P v Q 2,3,5,6,7 vE 
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right. If we are introducing a substitution instance of a theorem we will write 
TIS. The original theorem is put in brackets to the right in both cases.  

Suppose that formulae A 1, A 2,…, An occur as the lines of a proof and that we 
have proved the sequent A 1, A 2…, A n � B. The rule of sequent introduction (to 
be cited as SI) licenses us to conclude B resting on whatever premises the lines A 
1, A 2,… An rest on. As with theorem introduction this rule does not allow us to 
prove anything that could not be proved without it. It simply takes some of the 
tedium out of logic. The justification for the rule lies in the fact that we could 
always simply run through our original proof of B from A 1, A 2,…A n in the 
course of the new proof. It is easily seen that if we have a proof of a sequent, we 
can generate a proof of any substitution instance of that sequent. Consequently, 
our rule of sequent introduction is to be taken to cover either a previously 
proved sequent (SI) or a substitution instance (SIS). In both cases we cite the 
original sequent in brackets following ‘SI’ or ‘SIS’ as illustrated below:  

(see opposite page)  

Example 3.3.4  

EXERCISES  

�P v Q � P → Q  
Prem (1)  �P v Q
Prem (2)  P & �Q
Prem (3)  �P  Prem (7) Q
2  (4)  P  2 &E 2 (8) �Q 2 &E  
2,3  (5)  P & �P  3,4 &I  2,7  (9)  Q & �Q  7,8 

&I 
3  (6)  �(P & 

�Q)  
2,5 �I  7  (10) �(P & 

�Q) 
2,9 
�I 

1  (11) �(P & 
�Q)  

1,3,6,7,10 vE  

1  (12) P → Q  11 SI (�(P & �Q) � P → 
Q) 

1 Derive the following theorems:  
(a) � (P & P) ↔ P  
(b) � (P v P) ↔ P  
(c) � P ↔ ��P  
(d) � �(P & �P)  
(e) � P → ((P & Q) ↔ Q)  
(f) � �P → ((P v Q) ↔ Q)  
(g) � (P → Q) v (Q → P)  
(h) � P v (P → Q)  
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4 FURTHER APPLICATIONS OF THE RULES  

There are an infinite number of different theorems and sequents which can be 
derived. Not all are of equal interest. The following derivable sequents (some of 
which have been derived above) are of particular interest:  

P → Q � � �P v Q  
P → Q � � �(P & �Q)  
P v Q � � �(�P & �Q)  
P & Q � � �(�P v �Q)  
P ↔ Q � � (P → Q) & (Q → P)  

These derivations license us to pass from formulae with one particular 
main connective to formulae in which this operator does not occur. In 
fact, it can be proved, for example using repeated application of these 
results that any formula is inter- derivable with a formula containing 
only & and �. We will pursue the significance of this and related 
results in section 2 of Chapter 4. In preparation for this two further 
derivations are given below:  

(see next page)  

Example 3.4.2  

(i) � (P → Q) v (Q → R)  
(j) � (P v (P & Q)) ↔ P  
(k) � (P & (P v Q)) ↔ P  
(l) � ((P & Q) v (P & �Q)) ↔ P  
(m) � ((P v Q) & (P v �Q)) ↔ P  
(n) � (P ↔ (Q ↔ R)) ↔ ((P ↔ Q) ↔ R)  

�(�P v �Q) � P & Q
Prem  (1)  �(�P v �Q) 
Prem  (2)  �P
2  (3)  (�P v �Q) 2 vI 
1,2  (4)  (�P v �Q) & �(�P v �Q) 1,3 &I 
1  (5)  ��P 2,4 �I 
1  (6)  P 5 �E 
Prem  (7)  �Q
7  (8)  �P v �Q 7 vI 
1,7  (9)  (�P v �Q) & �(�P v �Q) 1,8 &I 
1  (10)  ��Q 7,9 �I 
1  (11)  Q 10 �E 
1  (12)  P & Q 6,11 &I 
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The analogy between logic and Euclidean geometry (see p. 69) can be taken a 
step further by developing a version of the logic which uses axioms in place of 
rules. To achieve this we drop all the rules except that of → elimination and 
introduce the following axioms:  

To call a formula an axiom means that it or any substitution instance of it can be 
introduced as a line of a proof not resting on any premises. It can be shown that 
exactly the same theorems and sequents can be derived in the above axiomatic 
system as can be derived in our natural deduction system. To illustrate axiomatic 
proof techniques we derive the sequent �(�P v �Q) � P & Q.  

(see next page)  

A1  P → (Q → P)  
A2  (P → (Q → R)) → ((P → Q) → (P → R))  
A3  P & Q → P  
A4  P & Q → Q  
A5  P → (Q → (P & Q))  
A6  P → (Q → (Q & P))  
A7  P → (P v Q)  
A8  P → (Q v P)  
A9  ((P → R) & (Q → R)) → ((P v Q) → R)  

Example 3.4.1  
P & Q � �(�P v �Q) 
Prem (1)  P & Q
Prem (2)  �P v �Q
Prem (3)  �P  Prem (7) �Q
1  (4)  P  1 &E 1 (8) Q 1 &E  
1,3  (5)  P & �P 3,4 &I 1,7 (9) Q & �Q 7,8 &I 
3  (6)  �(P & Q) 1,5 �I 7 (10) �(P & Q) 1,9 �I 
2  (11) �(P & Q) 2,3,6,7,10 vE 
1,2  (12) (P & Q) & �(P & Q) 1,11 &I  
1  (13) �(�P v �Q) 2,12 �I  

A10  ��P → P  
A11  P → ��P  
A12  ((P → Q) & (P → �Q)) → �P  
A13  (P ↔ Q) → ((P → Q) & (Q → P))  
A14  ((P → Q) & (Q → P)) → (P ↔ Q)  
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By the same pattern of argument we can derive Q resting on premise (1) and 
then using the axiom P → (Q → (P & Q)) we can obtain the desired result. The 
complexity of axiomatic proofs (compare with natural deduction proof on p. 73) 
is a clear reason for preferring a natural deduction system.  

NATURAL DEDUCTION RULES FOR THE PROPOSITIONAL 
LOGIC  

& Elimination  
Given A & B we can derive A or we can derive B resting on whatever premises 
A & B rest on.  

& Introduction (&I)  
Given A and given B we can derive A & B resting on whatever premises A 

rests on and B rests on.  

� Elimination (�E)  
Given � �A we can derive A resting on whatever premises � �A rests on.  

� Introduction (�I)  
Given a proof of B & �B resting on A as premise we can derive �A, resting 

on whatever premises B & �B rests on except A.  

Example 3.4.3  

Prem (1) �(�P v �Q) 
(2)  �P → (�P v �Q)  Ax 7 (S)  
(3)  �(�P v �Q) → (�P → �(�P v 

�Q)) 
Ax 1 (S)  

1  (4)  �P → �(�P v �Q)  1,3 →E  
(5)  ((�P → (�P v �Q)) & (�P → �

(�P v �Q)) → ��P  

Ax 12 (S) 

(6)  (�P → (�P v �Q)) → ((�P → �
(�P v �Q)) →  
((�P → (�P v �Q)) & (�P → �
(�P v �Q))) 

Ax 5 (S)  

(7)  (�P → �(�P v �Q)) → ((�P → 
(�P v �Q)) & (�P →  

�(�P v 
�Q)))  

2,6 
→E  

1  (8)  (�P → (�P v �Q) & (�P → �
(�P v �Q)) 

4,7 →E  

1  (9)  ��P  
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→ Elimination (→E)  
Given A and A → B we can derive B resting on the premises on which A rests 

and on which A → B rests.  

→ Introduction (→I)  
Given a proof of B resting on A as premise we can derive A → B resting on 

whatever premises B rests on excepting A.  

v Elimination (vE)  
Given a proof of C resting on A as premise and a proof of C resting on B as 

premise we can derive C resting on A v B and all premises used in the 
derivations of C excepting those of A and of B.  

v Introduction (vI)  
Given A we can derive A v B or B v A resting on whatever premises A rests on.  

↔ Elimination (↔E)  
Given A ↔ B we can derive (A → B) & (B → A) resting on whatever premises 

A ↔ B rests on.  

↔ Introduction (↔I)  
Given A → B and B → A we can derive A ↔ B resting on whatever premises A 

→ B rests on and B → A rests on.  

EXERCISES  

FURTHER READING  

On the axiomatic approach:  
E.Mendelson, An Introduction to Mathematical Logic (New York: Van 

Nostrand, 1968), chapter 1.  
On the tableau approach:  

5,8 →E  
(10) ��P → P  Ax 10 (S) 

1  (11) P  9,10 →E  

1 Derive the sequents on p. 72 which have not been derived in the text.  

2 In the natural deduction system establish as theorems the axioms given on 
pp. 73–5. This shows that any theorem or sequent which can be established 
in the axiomatic system can be established in the natural deduction system.  
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W.Hodges, Logic (Harmondsworth: Penguin, 1977). This provides yet another 
syntactical approach for establishing validity.  
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CHAPTER 4  
Elementary meta-theory for the 

propositional calculus  

1 THE PROPOSITIONAL LANGUAGE AND THE 
PROPOSITIONAL CALCULUS  

We have developed two techniques for establishing the validity of those 
arguments the validity of which depends on the role of truth-functional 
sentence-forming operators. This involved giving a symbolic representation of 
arguments in English. We can establish the validity of the symbolized argument 
using circumstance surveyors or by manipulating the premises in accord with 
the rules of natural deduction to obtain the conclusion. As noted, this symbolic 
approach is fruitful just because validity is a matter of form and not content. We 
developed our symbolic language and our system of rules by abstracting from 
the English language and from natural reasoning. This creation developed to 
study arguments expressed in English can itself in turn become an object of 
study. In this chapter we investigate the system itself one result of which will be 
to show that the two approaches match up in the appropriate way. To begin this 
meta-study we need a precise characterization of what it is that we are 
investigating.  

We have first to characterize our language. The vocabulary consists of the 
following symbols: &, v, �, →, ↔, (,), together with the infinite list of symbols 
of: P 0, P 1, P 2,…P n,… We will use this last list rather than the eleven letters: 
P, Q, R,…as our propositional letters for we do not want to have any limit on the 
number of propositions that can be represented in our language. To specify a 
language we need not only a vocabulary but a system of rules enabling us to 
determine which combination of expressions from the vocabulary are to count as 
sentences of the language. In the case of English the articulation of rules 
distinguishing sequences of words that are sentences from sequences of words 
that are not is a difficult task which has yet to be successfully completed. For 
our formal propositional language a precise and terse characterization is 
available, of what is called a well-formed-formula or wff. Until this juncture we 
have used the term “formula” for expressions of the language with the 
understanding that the expressions counted as a sentence of that language. From 
henceforth formula will mean any sequence of expressions from the vocabulary. 
Formulae which are analogues of sentences of English will be referred to as 
well-formed formulae. Thus, for example, ‘((P 1 P 2 P 1 v &’ and ‘P 1 P 2 &))’ 
are formulae but not well-formed formulae whereas ‘((P 1 v P 2) & P 1)’ and 
‘((P 1 & P 2) → P 3)’ are well-formed formulae. The following clauses 



characterize the wffs of our propositional language:  

Consider the examples of wffs given above in relation to these clauses. In the 
case of ‘((P 1 v P 2) & P 1)’, ‘P’ 1 and ‘P’ 2 are wffs in virtue of clause 1. ‘(P 1 v 
P 2)’ is therefore a wff in virtue of clause 4 and ‘((P 1 v P 2) & P 1)’ is then a wff 
in virtue of clause 3. In the case of ‘((P 1 & P 2) → P 3)’, ‘P’ 1, P 2’, ‘P 3’ are 
wffs by clause 1. Thus by clause 3, ‘(P 1 & P 2)’ is a wff. Therefore, ‘((P 1 & P 2) 
→ P 

3
)’ is a wff by clause 5. On the other hand it is clear that on these clauses the 

formulae ‘))P 1 P 2 P 3 v &’ and ‘P 1 P 2 P 3 & ()’ are not wffs.  
We introduced the device of bracketing to indicate scope and thereby to 

prevent certain syntactical ambiguities arising in our propositional language. For 
example ‘(P 1 & (P 2 → P 3))’ makes it clear that ‘P 1’ is conjoined with the 
conditional ‘(P 2 → P 3)’. ‘((P 1 & P 2) → P 3)’ makes it clear that ‘(P 1 & P 2)’, 
the antecedent of the conditional, is the conjunction of ‘P 1’ and ‘P 2’. If we 
followed explicitly the clauses above our wffs would bristle with brackets even 
when this is not necessary to prevent ambiguity. For instance, we should write 
‘(P 1 → P 2)’ even though writing ‘P 1 → P 2’ does not give rise to ambiguity. 
While it is of utmost importance that we have a means of constructing wffs 
which cannot give rise to ambiguity, we can in practice depart from the details 
by following certain conventions to obtain expressions that are more pleasing to 
the eye and pen. For instance, no confusion will arise if we do not bother to 
write the outer brackets (i.e. the brackets at the extreme left and extreme right) 
of any wff. We will also adopt the conventions that ‘&’ and ‘v’ have smaller 
scope than ‘→’, ‘&’ smaller than ‘v’ and ‘�’ has smaller scope than any other 
operator. This means that in place of ‘((P 1 v P 2) → P 3)’ we will write simply 
‘P 1 v P 2 → P 3.’ If we wish to form the disjunction of ‘P’1 with the conditional 
‘P 2 → P 3’ we have to write this as ‘P 1 v (P 2 → P 3)’. By these conventions we 
can write for ‘((P 1 & P 2) → (P 1 v P 2))’, ‘P 1 & P 2 → P 1 v P 2’. The 
convention suppressing some bracketing is adopted for convenience and the 
student should not hesitate to write formulae in the theoretically correct fashion 
with the full or a fuller complement of brackets if this is found to be less 
confusing.  

The precise definition of a wff permits a similarly precise characterization of 
the scope of a truth-functional sentence-forming operator. The scope of the 
occurrence of such an operator is the shortest wff within the formula containing 
that operator. In the wff ‘P 1 v �P 2’, the shortest wff contained within that wff in 
which ‘�’ occurs is ‘�P’2 and hence this wff is the scope of ‘�’. The shortest 

1  Any propositional letter is a wff.  
2  If A is a wff then �A is a wff.  
3  If A and B are wffs, (A & B) is a wff.  
4  If A and B are wffs, (A v B) is a wff.  
5  If A and B are wffs, (A → B) is a wff.  
6  If A and B are wffs, (A ↔ B) is a wff.  
7  The only formulae that are wffs are those that are so in virtue of clauses 

1 to 6.  
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wff containing ‘v’ is the wff itself making the scope of ‘v’ the entire wff. In this 
case ‘v’ has greater scope than ‘�’. For the wff giving its scope contains as a 
part the wff giving the scope of ‘�’. The main operator is the one having as its 
scope the entire wff.  

The propositional calculus is the propositional language together with the 
rules for constructing proofs of syntactic sequents. A syntactic sequent A 1, A 2,
…A n � |- obtains just in case there is a proof of B from A 1,…An as premises. A 
proof of this is a sequence of lines the last of which is B such that:  

EXERCISES  

2 EXPRESSIVE ADEQUACY  

The first question we ask of our creation concerns the propositional language 
and not the propositional calculus. The truth-functional operators were 
introduced to represent the functioning in our language of certain words of 
English. We can, however, take a more abstract turn and consider truth-
functional sentence-forming operators whether or not they represent some truth-
functional sentence-forming operator for which there is a simple expression in 
English. For we defined such an operator to be one used to form sentences 
whose truth-value can be calculated from an assignment of truth-values to the 
constituent propositions. We define the following pair of binary truth- functional 
operators O and U which we can imagine being considered as possible additions 
to our propositional language (Remember our language by definition has only 

1  Each line is either a premise (A i or other) or obtained from other lines 
in accord with the given rules of natural deduction.  

2  B rests on no premise not included in A 1, A 2,…A n.  

1 Which of the following formulae are wffs? Justify your answer by reference 
to the definition of a wff.  
(a) ((P 1 v �(P 2)) ↔ P 3)  
(b) (�(�(P 3)) → P 3))  
(c) ((P 1 → P 2) → ((P 3 → P 1) → (P 3 → P 2)))  
(d) ((P 2 → (P 2 → P 3)) → (P 1 → P 2 → P 1 P 3))  
(e) ((P 1 & �(P 2)) → (P 3 v �(P 4)))  
(f) ((P 1 P 2) → (P 2 P 1))  

2 Re-write the wffs of 1 using the conventions for the suppression of brackets.  

3 Give three examples of sentences of English which display ambiguities of 
scope of truth-functional operators. Give alternative formalizations of each 
sentence and state the scope of each operator.  
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the vocabulary given. The only sentence-forming operators are: &, v, �, →, ↔.)  

The operator O has the same truth-table as the binary operator ‘neither…nor…’ 
and we might well wish to be able to express it. The operator U on the other 
hand would be singularly useless in a natural language. For any sentence formed 
by it counts as false regardless of the truth-values of the constituent sentences! It 
would be simply boring to form and use sentences which by definition were 
false. However, it remains a truth-functional sentence forming operator even if 
singularly useless which could be added to our propositional language or to 
English for that matter.  

Before actually adding an operator to our language we should check to see if 
it is already possible to express it in the language. Consider the formula ‘�P 1 & 
�P 2’ and the formula ‘(P 1 & �P 1) & (P 2 & �P 2)’ the truth-tables for which 
are:  

The truth-tables reveal that these wffs take the same values, respectively, as do 
the formulae ‘P 1 O P 2’ and ‘P 1 U P 2’. Consequently these formulae express 
the truth-functions expressed by O and U. This means that there is indeed no 
necessity of adding to our vocabulary special signs for these functions. Of 
course it might be convenient to have a simple sign for them but adding such a 
sign does not increase the expressive power of our language.  

This reflection prompts the question: are there any truth-functions that cannot 
be expressed in our propositional language as it stands? The answer is no. For 
this reason we say that the language is truth-functionally adequate meaning that 
all truth-functions of any number of places can be expressed in it. It is easy to 
verify that this is so in the case of one-place and two-place truth functions. The 
following represent all the possible truth-functions for one variable:  

A  B  A O B A  B A U B
T  T  F T  T F
T  F  F T  F F
F  T  F F  T F
F  F  T F  F F

P 1  P 2  �P 1 & �P 2 P 1 P 2 (P 1  & �P 1)  & (P 2 & �P 2)  
T  T  F  F F T T T  F F F T F F
T  F  F  F T T F T  F F F F F T
F  T  T  F F F T F  F T F T F F
F  F  T  T T F F F  F T F F F T

P  f 1  f 2  f 3  f 4  
T  T T F F
F  T F T F
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Constructing truth-tables for the following formulae reveals that they express the 
above truth-functions:  

The student should construct truth-tables to verify that the wffs listed below 
express the truth-functions above:  

f 1:  P v 
�P

f 2:  P  
f 3:  �P  
f 4:  P & 

�P
In the case of two place truth-functions we have the 
following sixteen possibilities. 

P  Q  f 1  f 2  f 3  f 4  f 5  f 6  f 7  f 8  
T  T  T T T T  F T T F
T  F  T T T F  T T F F
F  T  T T F T  T F F T
F  F  T F T T  T F T T

P  Q  f 9  f 10  f 11  f 12  f 13  f 14  f 15  f 16  
T  T  T  F F F F T F F
T  F  F  T T F T F F F
F  T  T  T F T F F F F
F  F  F  F T F F F T F

f 1:  P & Q v P & �Q v �P & Q v �P & �Q  
f 2:  P & Q v P & �Q v �P & Q  
f 3:  P & Q v P & �Q v �P & �Q  
f 4:  P & Q v �P & Q v �P & �Q  
f 5:  P & �Q v �P & Q v �P & �Q  
f 6:  P & Q v P & �Q  
f 7:  P & Q v �P & �Q  
f 8:  �P & Q v �P & �Q  
f 9:  P & Q v �P & Q  
f 11:  P & �Q v �P & �Q  
f 12:  �P & Q  
f 13:  P & �Q  
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The sixteen formulae have been mechanically generated. To see how consider 
the truth-table for f 6. There are two and only two circumstances that make it 
true; namely, when ‘P’ is true and ‘Q’ is true and when ‘P’ is true and ‘Q’ is 
false. But ‘P & Q’ is true just in case ‘P’ is true and ‘Q’ is true. And ‘P’ is true 
and ‘Q’ is false just in case ‘P & �Q’ is true. Thus if f 6 is true, either ‘P & Q’ is 
true or ‘P & �Q’ is true. That is, if f 6 is true, ‘P & Q v P & �Q’ is true. 
Similarly one can see that if ‘P & Q v P & �Q’ is true, then no matter which of 
the disjuncts is true, f 6 is true. So the wff ‘P & Q v P & �Q’ is true if and only 
if f 6 is true. To generalize, for any line of the truth-table in which the wff has the 
value T one forms a conjunction each conjunct of which is a propositional letter 
in the wff if that letter has the value T in that line. If that letter has the value F 
one puts the negation of the letter in the conjunction. One then forms the 
disjunction of all such conjunctions. If the formula has no line at which it gets 
the value T it is an inconsistency and one simply forms a disjunction of 
conjunctions of the form ‘P & �P’ for each propositional letter ‘P’. This 
procedure can be used for a truth-function having any number of propositional 
letters as is shown below.  

The fact that we have used only ‘&’, ‘v’, ‘�’ in the wffs above suggests that 
our language in overly rich. We could in fact have used ‘&’, ‘v’, ‘�’ to express 
all truth-functions of any number of places. This prompts the question as to 
whether further reductions in the number of symbols in the vocabulary would be 
possible while preserving the expressive adequacy of the language. The fact that 
‘P v Q’ is equivalent to ‘�(�P & � Q)’ shows that we could make do with just 
‘&’ and ‘�’. And the equivalence of ‘P & Q’ and ‘�(�P v �Q)’ shows that ‘v’ 
and ‘�’ would do on their own. The precise definition of equivalence being used 
is the following: A and B are equivalent just in case � A ↔ B. That is, A ↔ B is 
a tautology. Equivalent wffs take the same truth-value for the same assignments 
of values to the constituent propositional letters and thus express the same truth-
function.  

To have established as we did above that ‘&’, ‘v’, and ‘�’ are adequate to 
express all truth-functions of two variables is not to show that our language is 
expressively adequate. For that we need to consider all truth-functions of all 
numbers of places. Let ‘*(P 1, P 2,…P n)’ be an n-place truth-function having 
the truth-table which starts as follows:  

f 14:  P & Q  
f 15:  �P & �Q  
f 16:  P & �P v Q & �Q  

P 1  P 2 P… Pn–1  Pn  *(P 1, P 2…P n–1, P n)  
T  T  T F T
T  T  F F T
T  T  F F F
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Consider the first line of the truth-table. The following wff will be true just in 
case its variables are assigned the values given in the first line: P 1 & P 2 &…& 
P n–1, & �P n. Consider the next line. The following wff is true just in case its 
variables have the values given in line two: P 1 & P2 &…& �P n–1 & �P n. In a 
similar fashion we can form an expression (take the propositional letter if it is 
assigned the value true in the line and take its negation if it is assigned the value 
false, then form the conjunction of these) corresponding to each line of the table 
in which the wff has the value T. Next we form this disjunction of all such wffs. 
There will be one disjunct for each line which has the value T. The formula ‘*(P 
1,…, P n)’ is true if and only if its variables have the values given in one of these 
lines. Thus it will be true in just those cases in which the disjunction of the wff 
corresponding to the true lines is true. This is purely general procedure for 
finding a wff which is equivalent to a given truth-function of n-places using only 
‘&’, ‘v’ and ‘�’. Hence any language containing these connectives is truth-
functionally adequate. If there are no lines of the truth-table with a T we take as 
our formula: P 1 & �P 1. The equivalences noted above show that we can find 
expressions containing only ‘&’ and ‘�’ or ‘v’ and ‘�’ which are equivalent to 
the wffs obtained using the above procedure and so languages with ‘&’ and ‘�’ 
and ‘v’ and ‘�’ are truth-functionally adequate.  

We have shown that our propositional language is richer than is necessary. 
For a more modest vocabulary would still have sufficed for expressive 
adequacy. Call our language and system of rules, L. If we had restricted our 
vocabulary to ‘v’, ‘&’, ‘�’ our only rules would be �I, �E, vI, vE, &I, and &E. 
Call this system L*. L* with its restricted vocabulary and smaller system of rules 
is none the less equivalent to L in a sense. If we regard expressions of the form 
�(A & �B) in L* as abbreviations of A → B on the grounds that they have the 
same truth-table, anything that can be proved in L can be proved in L* (as we 
show below). As anything which can be proved in L* can obviously be proved 
in L (L has all the rules of L* and more), whatever can be proved in one can be 
proved in the other. To show that whatever can be proved in L can be proved in 
L* we have to show that the rules of → I and → E can be obtained in L* as 
derived rules. That is, anything that could be proved if they were added to L can 
be proved without their addition (provided we treat A → B as abbreviating �(A 
& �B)). To establish this we need to prove a sequent in L* corresponding to the 
rule of → E; that is A, A → B � B which on the understanding of ‘→’ means 
showing that A, �(A & �B) � B. The requisite derivation is as follows:  

Prem  (1) P
Prem  (2) �(P & �Q) 
Prem  (3) �Q
1,3  (4) (P & �Q) 1,3 & I 
1,2,3  (5) (P & �Q) & �(P & �Q) 2,4 & I 
1,2  (6) ��Q 3,5 �I 
1,2  (7) Q 6 �E 
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It is slightly more complicated to show that anything proved in L using → I can 
be proved in L*. The rule of → I in L states that if from a premise A together 
with a set of premises � we have derived a conclusion B (resting on A and on 
the members of �) we may infer A → B resting on the set of premises �. We 
have to show that under these conditions we can infer in L* �(A & �B). We 
know on assumption that there is a derivation of B from premise A and the set of 
premises �. Extend that derivation by taking an additional premise (A & �B). 
There is now a derivation from A, � and (A & �B) of B (adding additional 
premises has no effect). In addition there is a derivation of �B from A & �B by 
use of &E. Thus we have by &I a derivation of B & �B from A, �, (A & �B) 
and hence by �I we can derive �(A & �B) from A and � which is what we had 
to establish to show that → I is a derived rule in L*.  

In the design of a logic, a system for carrying out derivations, there is 
considerable variation possible which does not generate any essential difference. 
For instance, we can select a number of different sets of truth-functional 
operators so long as that set is truth-functionally adequate. We can opt for 
economy in the number of operators and a corresponding economy in the 
number of rules. This economy will be purchased at the cost of greater 
complexity in the derivations of theorems and sequents. In this book we have 
opted for a rich set of operators and rules to simplify the derivations. We will 
make use of the fact that more economical but essentially equivalent systems 
could have been used later in this chapter. For some results can more easily be 
proved with regard to an economical language and logic than with regard to the 
rich logic and language we introduced.  

EXERCISES  

1 Give wffs containing &, v, � as their only operators which express the truth-
functions f 1, f 2, f 3, f 4:  

2 Show that a propositional language with �, → as its only truth-functional 
operators is expressively adequate. Show that a language with O as its only 
operator is expressively adequate (truth-table for O is given on p. 82).  

P  Q  R  f 1  f 2  f 3  f 4  
T  T  T T T T T
T  T  F F F F T
T  F  T F T F T
T  F  F F F F F
F  T  T T T F F
F  T  F F F F F
F  F  T F T F T
F  F  F F F F F
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3 TURNSTILES AND MATERIAL IMPLICATION  

Turnstiles are the signs of arguments. The semantic sequent A 1, …, A n � B 
says that B follows validly from A 1,…, A n. In any circumstances in which each 
of A 1,…, A n is true, B is true. The syntactic sequent A 1,…, A n � B says that B 
can be obtained from A 1,…, A n using the rules of our natural deduction system. 
In a well-designed logic syntactic sequents mirror semantic sequents in the sense 
that a semantic sequent is correct just in case the corresponding syntactic 
sequent is correct. The main result of this chapter is a proof that our logic for the 
propositional language is well-designed. Of these two notions it is the 
semantical one that is most basic. For it is based directly on our fundamental 
characterization of what it is for an argument to be valid. That is the basic notion 
in terms of which arguments are evaluated is that of validity not derivability. 
This means that the signs � and � are very different from →. For → is a 
sentence-forming operator. It occurs within our propositional language and is 
used to construct sentences which are to be evaluated as true or false. It is not a 
sign for an argument. � and �, being the signs of arguments, are not part of our 
language. They are used to make assertions about the relation between sentences 
of the language. A 1,…, A n � B says that whenever the sentences A 1,…, A n are 
true B is true. A 1,…, A n � B says that the sentence B can be obtained from the 
sentences A 1,…, A n using our rules of derivation. While the signs � and � play 
a very different role from the sign → there is an important relation between them 
which we establish in this section as a preliminary to exploring the relationship 
between � and �.  

First we show that A 1,…, A n � B if and only if A 1,…, A n−1 � A n → B. 
Suppose that A 1,…, A n−1 � A n → B. This means that if A 1,…, A n−1 are all 
true, A n → B is true. Given the truth-table for → it follows that if A 1,…, A n−1 
are all true and A n is true, B is true. Thus, if A 1,…, A n are all true, B is true and 
by the definition of � we have: A 1,…, A n � B. This argument establishes that 
if A 1,…, A n−1 � A n → B then A 1,…, A n � B. To establish the converse 
suppose that A 1,…, A n � B. If A 1,…, A n−1 are all true A n → B is true. For 
suppose that in these circumstances A n → B was false. In which case A n is true, 
B is false (by the truth-table for →). But this means that A 1,…, A n are all true 
and by the supposition that A 1,…, A n � B, B is true. Since the supposition 
made for the sake of argument that A n → B is false has given rise to a 
contradiction (B is true and B is false), it follows that A n → B is true. Hence if A 
1,…, A n � B then A 1,…, A n−1 � A n → B.  

By repeating the steps in the above argument n-times we establish that A 1,…, 
A n � B if and only if � A 1 → (A 2 → (A 3 →…(A n → B)))… A simple 
application of the above result is: A v B � �(�A & �B) if and only if � (A v B)
→ � (�A & �B). This says that the conclusion �(�A & �B) follows validly 
from the premise A v B just in case the conditional A v B → �(�A & �B) is a 
tautology. In general terms, the argument formed by taking the antecedent of a 
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conditional as premise and the consequent as conclusion is valid if and only if 
the conditional is true in all circumstances, i.e. the conditional is a tautology. 
Notice that it is not enough for the conditional to be true. It has to be a 
tautology. If the conditional is true but not a tautology, there will be 
circumstances in which the antecedent is true and the conclusion false. Hence 
the argument formed with the antecedent as premise and the consequent as 
conclusion cannot be valid. For in these circumstances the premises would be 
true and the conclusion false.  

The corresponding result holds for �; namely, A 1,…, A n � B if and only if A 
1,…, A n−1 � A n → B. This is a different result from the one established above. 
That A 1,…, A n � B if and only if A 1,…, A n−1 � A n → B means that there is a 
derivation of B from the premises A 1,…, A n just in case there is a derivation of 
A n → B from A 1,…, A n−1. To show that if A 1,…, A n−1 � A n → B then A 1,…, 
A n � B suppose that A 1,…, A n−1 � A n → B. On this assumption there is a 
derivation of A n → B from the set of premises A 1,…, A n−1 . Then given the 
premise set A 1,…, A n−1, A n there is, ex hypothesi, a derivation of A n → B from 
A 1,…, A n−1. Using A n and A n → B and a step of → E we extend this derivation 
to obtain B. Thus, if A 1,…, A n–1 � A n → B then A 1,…, A n � B. To establish 
the converse we assume A 1,…, A n � B. Suppose that B rests on A n. Given this 
we extend the derivation of B from A 1,…, A n by a step of → I to obtain A n → B 
resting on A 1,…, A n−1. If B does not rest on A n as a premise (it may not do so 
for A n could be an extra premise not used in the derivation of B), in which case 
we have a derivation of B from A 1,…, A n−1. You proved that P � Q → P (see p. 
62). Thus by introducing a substitution instance of this sequent (P � Q → P) we 
extend the derivation to obtain A n → B resting on A 1,…, A n−1 . Hence A 1,… A 
n−1 � A n → B.  

4 CONSISTENCY  

A valid argument is one which if the premises are true the conclusion must be 
true. Given that definition we developed a test for determining the validity of 
arguments expressible in a propositional language. Using circumstance 
surveyors, we have a mechanical procedure to ascertain whether any 
circumstance that makes all members of a premise set A 1,…, A n true also 
makes a conclusion B true. In such a case we say that B is a semantic consequent 
of A 1,…, A n and express this in a semantic sequent: A 1,…, A n � B. We also 
developed a technique which is intended to show that an argument is valid by 
showing that the conclusion B can be obtained from the premises A 1,…, A n 
using the rules of natural deduction. When B can be so obtained we call it a 
syntactic consequent of A 1,…, An and we express this in the syntactic sequent: 
A 1,…, A n � B.  

To talk of semantics is to talk of meanings and � is called a semantical notion 
because in explicating it reference is made to the meaning of the symbols ‘v’, 
‘&’, ‘→’, ‘�’, ‘↔’. For in determining whether a semantical sequent is correct 
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we have to use truth-tables. And truth-tables can be viewed as explicating the 
meaning of the symbols in question. That ‘&’ is to be interpreted as ‘and’ and 
not, say, ‘or’ is shown by the fact that sentences constructed using ‘&’, ‘P & Q’, 
are true if and only if both ‘P’ is true and ‘Q’ is true and not if and only if, say at 
least one of ‘P’, ‘Q’ is true. One who failed to understand the rules for 
determining the truth-values of ‘P and Q’ and ‘P or Q’ as a function of the truth-
values of ‘P’ and of ‘Q’ would have failed to understand what we mean by ‘and’ 
and ‘or’. In calling the notion a syntactical one on the other hand we are 
signalling the fact that it can be understood without reference to the meaning of 
the symbols of the language. It is true that we did refer, for example, to the 
interpretation of ‘&’ as meaning the same as ‘and’ in motivating the acceptance 
of the rule of &E. However, we can specify that rule and the other rules without 
reference to meaning by simply stating that the rule licenses one to write ‘A’ or 
write ‘B’ as a line of a proof given a line of the form ‘A & B’. Indeed, one could 
teach someone to construct proofs as a simple game played with marks on paper 
in accord with the rules without explicitly or even implicitly conveying what the 
point of the activity was. Thus the notions of a semantic consequent and of a 
syntactic consequent are very different and independent of one another in the 
sense that someone could learn how to ascertain whether A 1,…, A n � B by 
learning how to construct proofs without having any idea how to ascertain 
whether A 1,…, A n � B by constructing circumstance surveyors and vice versa.  

The notion of a correct semantic sequent represented by the semantic 
turnstile, �, is more basic than the notion of a correct syntactic sequent 
represented by the syntactic turnstile, � (as was noted above). For the former 
notion is a direct result of making the general definition of validity precise for 
our particular propositional language. If it turned out that in the design of our 
system of rules for natural deduction some sequent was semantically correct but 
not syntactically correct we would endeavour to extend our system of rules in 
order to carry out the derivation in question. We use the technique of derivation 
as an alternative tool for establishing the validity of arguments and we have to 
ensure that the system of rules is indeed adequate to that task. On the other hand, 
in designing a system of rules it could have turned out that we could derive a 
conclusion B from premise A 1,…, A n where in fact it could be that all the 
premises were true and the conclusion false. In this event we would seek to 
weaken the system of rules to block the derivation. For instance, suppose we had 
a rule �E* licensing the derivation of A from �A as a premise, the conclusion A 
resting on whatever premises the premise �A rested on (or on �A if it was itself 
a premise). In this case we could derive anything.:  

If every single sentence is a derivable theorem of the system, every sequent is 

(1) P v �P (TI) 
Prem  (2) P Prem (3) �P

(4) P 3�E* 
(5) P 1,2,2,3,4 vE. 
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derivable. Thus it is clear that this would not be an astute rule to adopt.  
In fact, in introducing our system of rules we looked to the intended 

interpretation of the symbols ‘&’, ‘v’, ‘�’, ‘→’, ‘↔’ and we checked to make 
sure that individual applications of the rules were truth-preserving. However, we 
have to check to see that the rules when used in sequence still preserve truth. 
That is, we must consider whether it is the case that whenever we have a 
syntactically valid sequent A 1,…, A n � B we have a semantically valid sequent 
A 1,…, A n � B. The proof given below that this is so for our system of rules is 
called the consistency proof of our logic. In addition, we have to check to see if 
we can indeed derive a sequent A 1,…, A n � B whenever we have a 
semantically valid sequent A 1,…, A n � B. This result which is called the 
completeness proof does hold for our logic as is shown in the next section. 
These two results together show that A 1,…, A n � B if and only if A 1,…, A n � 
B; that is, these very different notions, �, and, �, do indeed match up.  

The proof that if we have a derivable sequent A 1,…, A n � B, the 
corresponding semantic sequent A 1,…, A n � B holds proceeds by what is 
called mathematical induction. We show that this result holds for the special 
case, a derivation that is only one line long (Lemma A below). We then establish 
the conditional (Lemma B below): if the result holds for any derivation of m or 
less lines, then the result holds for any derivation of m+1 lines. We then 
conclude that the result holds for any derivation whatsoever. To see why the 
general result follows from the two particular claims note that establishing the 
conditional above means that we have the following particular cases:  

If the result holds for a derivation of one or less lines, it holds for a derivation of 
two lines.  

If the result holds for a derivation of two or less lines, it holds for a derivation 
of three lines.  

If the result holds for a derivation of three or less lines, it holds for a 
derivation of four lines.  

And so on.  
Then, if we show that the result holds for one line derivations, taking that with 

the first conditional above shows that it holds for a derivation of two or less 
lines. That taken with the second conditional shows that the result holds for 
derivations of three or less lines. And that in turn taken with the third 
conditional shows that the result holds for four lines. Clearly, iterating this 
procedure shows that the desired result holds for a derivation of any number of 
lines and as a syntactically correct sequent must be derivable in a finite number 
of lines we have shown that any syntactically correct sequent corresponds to a 
semantically correct sequent.  

Lemma A  
Using only primitive rules, any derivation whatsoever must have a first line of 

the form  
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Remember that what has been established as a syntactical sequent at each step in 
a derivation is a sequent with the premises on which that line depends listed to 
the left of the syntactic turnstile and the wff of that line on the right of the 
turnstile. After one line of derivation we have then established a sequent of the 
form A � A. To show that the desired result holds we have to show that A � A. 
But trivially, whenever A is true, A is true. Thus A � A.  

Lemma B  
Assume that for any derivation of m or less lines establishing A 1,…, A n � B 

that the result holds, i.e. that A 1,…, A n � B. We will show that under this 
assumption the desired result holds for any derivation m+1 lines in length. We 
do this by establishing that any way of extending a derivation of m lines to a 
derivation m+1 lines long is such that the resulting syntactically correct sequent 
corresponds to a semantically correct sequent. This strategy means that we have 
to consider each rule in turn, checking that if it is used to extend a derivation, the 
result still holds.  

(1) &E  
Suppose there is a derivation of m or less lines of B from premises A 1,…, A n 

such that A 1,…, A n � B. If we extend the derivation using &E we derive a wff 
C or a wff D from a wff of the form C & D resting on whatever premises C & D 
rests on. In this case either B is of the form C & D or some other line in the 
derivation is of that form. First, assume that B is of the form C & D and that the 
derivation is extended to give C. Ex hypothesi any circumstances that make A 1,
…, A n true make B and hence, as this means that C & D is true, C is true (given 
the truth table for &). Second, assume that some line in the derivation is of the 
form C & D. Consider the derivation to that point. It will have less than m lines. 
Hence, ex hypothesi, any circumstance which makes A 1,…, A n true makes C & 
D true and hence makes C true. Therefore, A 1,…, A n � C Thus the result 
assumed to hold for derivations of m or less lines (i.e. that if A 1,…, A n � B then 
A 1,…, A n � B) holds if that derivation is extended to one of m+1 lines long 
using &E.  

(2) &I  
Suppose we have a derivation of B from A 1,…, A n which is m or less lines 

long and that A 1,…, A n � B and that this result holds for any derivation of m or 
less lines. To extend the derivation using &I means that we conclude C & D 
where C and D occur as lines somewhere in the derivation. The derivation to the 
line at which C occurs and the line at which D occurs have m or less lines. Thus 
we know that A 1,…, A n � C. And A 1,…, A n � D. Thus any circumstances that 
make A 1,…, A n true make C and make D true. Hence C & D is true. Therefore 
A 1,…, A n � C & D.  

Prem  (1)  A. 
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(3) �E  
Assume that A 1,…, A n � B for any derivation of B from A 1,…, A n of m or 

less lines. If such a derivation is extended using the rule of �E we will have a 
final line of the form C obtained from some line of the form ��C. At the point 
where ��C occurs we have a derivation of m or less lines. Hence, ex hypothesi, 
have A 1,…, A n � C (note: we may not have used all the premises A 1,…, A n to 
that point. However, we can add extra premises). Whenever A 1,…, A n are all 
true ��C is true and by the table for �, C is true. Hence we have the desired 
result: A 1,…, A n � C.  

(4) �I.  
As before assume that A 1,…, A n � B for any derivation of B from A 1,…, A n 

which had m or less lines. To extend a derivation using �I there must be a line 
in the derivation of the form C & �C. Whether or not all of the premises A 1,…, 
A n have been used to that point it is the case that A 1,…, A n � C & �C and, by 
assumption, A 1,…, A n � C & �C. Using �I we extend the derivation to obtain 
�A i for some premise on which the conclusion C & �C depends. Assume for 
the sake of argument that A l,…, A i−l, A i+l,…, A n do not have �A i as a 
semantic consequence. This means that there is a circumstance that makes the 
premises A l,…A i−l, A i+l,…, A n true and �A i false. Then A i is true. In which 
case C& � C is true since A,…A n � C& � C. This is absurd. Therefore we 
reject the assumption that A l,…, A i−l, A i+l,…, A n do not have �A i as a 
semantic consequence. We thus conclude A l…, A i−l, A i, A i+l,…, A n �� A i 
obtaining the desired result.  

(5) → E.  
To extend a derivation of m lines using the rule of → E, there has to be a line 

of the form C → D and a line of the form C. In which case we have A 1,…, A i � 
C and A k,…, A n � C → D, each derivation having m or less lines. Given (as 
before) the assumption that if B can be derived from A 1,…, A n in m or less 
lines, then A 1,…, A n � B, we can conclude that A 1,…, A j � C and A k,…, A n 
� C → D. Applying →E to extend the derivation we establish: A 1,…, A j,…, A n 
� D. Consider any circumstance that makes A 1,…, A j , A k,…, A n all true. In 
virtue of A 1,…, A j being true C is true and in virtue of A k,…, A n being true C 
→ D is true. By the truth-table for →, D is true. Hence, we have the required 
result: A 1,…, A j, A k,…, An � D.  

(6) → I.  
Suppose for any derivation of m or less lines of B from A 1,…, A n that A 1,…, 

A n � B. Extending such a derivation using → I means writing as the next line Ai 
→ B for some Ai. In which case we have derived the sequent A 1,…A i−l, A i+l,… 
A n � A i → B. Suppose that there is a circumstance making A 1,…, A i−l, A i+l,…, 
A n true and A i → B false. If A i → B is false, A i is true and B false. In which case 
all of A 1,…, A i−l, A j, A i+l,…, A n are true and ex hypothesi B is true. In view of 
the contradiction we reject the supposition and conclude that A l,…, A i−l, A i+l,
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…, A n � A i → B.  
To complete the proof similar arguments are needed for the rules of vI, vE, 

↔I and ↔E. This is left as an exercise. If this is done it will have been shown 
that if for any derivation of B from A 1,…, A n in m or less lines we have A 1,…, 
A n � B, then any derivation of B in m+1 lines provides a semantically correct 
sequent with the B as conclusion. Since we have shown that any derivation of 
one or less lines has the property of giving a semantically correct sequent, by the 
inductive argument outlined above (cf. p. 93) we can conclude that any 
derivation of a wff B from premises A 1,…, A n of any length corresponds to a 
semantically correct sequent: A 1,…, A n � B.  

What we have established is a meta-theorem. It is not a proof within the 
system but a proof about the system showing that any syntactically correct 
sequent corresponds to a semantically correct sequent. The result is often called 
the proof of the consistency of our logic as it can be used to show the 
consistency of the logic. By definition a syntactically consistent logic is one in 
which one cannot derive both B and �B for any B. The result we have 
established shows that if � B then � B. For this is just a special case of the 
general result that if A 1,…, A n � B then A 1,…, A n � B. Suppose that our logic 
is inconsistent. In which case, � B and � �B for some B. But then by the meta-
theorem � B and � �B. But if B is a tautology, �B is not a tautology. Therefore 
it is not the case that �B and � �B. Thus our logic is consistent.  

The notion of syntactic consistency is also applied to sets of wffs:  
A set � of wffs is syntactically consistent if and only if there is no wff A such 

that � �A and � � �A.  
The notation � � A means that there is a derivation of A from premises 

contained in the set �. In addition we define a semantic counter-part to syntactic 
consistency:  

A set � of wffs is semantically consistent if and only if there is at least one 
assignment of truth-values to propositional variables of the wffs in � which 
makes all the wffs true.  

Any such assignment is said to provide a model for the set of wffs.  
The above argument shows that any theorem is a tautology. This is halfway to 

our goal of showing that the syntactical notion of a theorem matches up with the 
semantical notion of a tautology in the sense that whatever is a theorem is a 
tautology and vice versa. Once this conclusion is established it can be used to 
transfer results proved at the syntactic level to the semantical level. For instance, 
it was shown (cf. p. 49) that any substitution instance of a theorem is itself a 
theorem (a substitution instance being the result of uniformly replacing some or 
all propositional variables in a wff by wffs). Given the match of � and � we 
could conclude from this that any substitution instance of tautology is itself a 
tautology. For every tautology is a theorem (by a result proved in the next 
section) and the substitution instance will be itself a theorem and as all theorems 
are tautologies it will be a tautology. This result can also be established without 
looking ahead as follows. Let A be a tautology containing propositional 
variables P 1, P 2, P 3,…P n. The lines of a truth-table for A cover all possible 
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combinations of assignments of truth-values to the P i’s. In each the resulting 
value for A is T. If a wff B i is substituted for a propositional variable P i, it will 
when evaluated be T or F. But we already know that whether a T or an F is 
entered the value of A will be T. For it will merely replicate one of the lines of 
the original truth-table as is illustrated below:  

The result of the substitution is:  
(�P &(P v �(R v S))) → �(R v S). A truth-table for this new wff would have 

eight lines. However, we need not construct the new table for we see that if ‘�
(R v S)’ has the value T, the result will be the same as line 1 or 3 (depending on 
whether ‘P’ is T or F). And if ‘�(R v S)’ is F the result will be the same as line 2 
or 4 depending on whether ‘P’ is T or F.  

A semantically inconsistent wff is one that takes the value F no matter what 
values are taken by its consistituent propositonal variables. A similar argument 
to the above shows that any substitution instance of a semantically inconsistent 
wff is itself semantically inconsistent. Contingent wffs (i.e. wffs which 
sometimes take the value F and sometimes take the value T) do not have this 
nice stability. Their substitution instances may be contingent, tautologous or 
inconsistent. Consider the wff ‘P v (Q → P)’ and its truth-table below:  

In the first line of the table ‘P’ is T and ‘Q’ is T and the wff in question is T. To 
produce a substitution instance of the wff which is a tautology we substitute for 
‘P’ some wff that is always T (i.e. a tautology, say, ‘(R v �R)’. Similarly for ‘Q’ 
we substitute, say ‘S v �S’. Clearly the resulting wff will always have the value 
T.  

To produce an inconsistent substitution instance of a contingent wff we 
consider a line of its truth-table which gives the wff the value F. In the case of 
the wff above the only such line is the third. For that line ‘P’ is F and ‘Q’ is T. If 
we substitute for ‘P’ an inconsistency, say, ‘R & � R’ and for ‘Q’ a tautology, 
say, ‘S v �S’ we generate a wff which is an inconsistency. No matter what 

wff: (�P &(P v Q)) → Q  
substitution: �(R v S) for Q
P  Q  (�P  &  (P v Q))  → Q  
T  T  F F T T
T  F  F F T T
F  T  T T T T
F  F  T F F T

P  Q  P  v  (Q → P)  
T  T  T T T
T  F  T T T
F  T  F F F
F  F  F T T
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values ‘S’ and ‘R’ have we end up with ‘R & �R’ having the value F and ‘S v 
�S’ have the value T. And computing the value of the wff will then be as line 3.  

EXERCISES  

5 COMPLETENESS  

We have shown that if A 1,…, A n � B then A 1,…, A n � B. To establish that � 
and � match-up we have to establish the converse of this result. We do this in 
this section by establishing the completeness theorem: if A is a tautology A is a 
theorem, i.e., if � A then � A. From this it follows that if A 1,…, A n � B then A 
1,…, A n � B. For suppose that A 1,…, A n � B. Then by the theorem established 
on p. 89 it follows that � (A 1 → (A 2 → (A 3 →…(A n → B)))…. Then given that 
we can show that any tautology can be derived as a theorem we can conclude 
that � (A 1 → (A 2 → (A 3…→ (A n → B)))…and by the theorem of page 90 we 
have A 1,…, A n � B.  

There are a number of different ways of showing completeness. The proof to 
be given has been selected as it is the one which can be most easily generalized 
to provide a completeness proof of the predicate logic. It is the most 
sophisticated result given in this book and requires a number of definitions and 
lemmas. We show first that the result does follow from two lemmas and then 
proceed to prove the lemmas.  

First we define a particularly nice, large kind of set of wffs called a maximally 
consistent set of wffs:  

A set S of wffs is maximally consistent if and only if:  
(1) for no wff A is it the case that S � A & �A  
(2) for any wff A either A is a member of S or �A is member of S.  
A maximally consistent set of wffs is a set which is as big as can be without 

generating inconsistency. If you have such a set you cannot add anything else to 
it without generating an inconsis- tency. Suppose you thought of adding some 

1 Determine whether the wffs below are contingent, tautologous or 
inconsistent. Find a tautologous substitution instance and an inconsistent 
substitution of each contingent wff.  
(a) P → (Q → P)  
(b) P → (P & Q)  
(c) (P → Q) → (Q → P)  
(d) P & ((P → Q) & (P → �Q))  
(e) (P → Q) & (�P → Q)  
(f) P  
(g) (P → Q) → ((Q → R) → (R → P))  
(h) (P → Q) → ((S → P) → (S → Q))  

Elementary meta-theory for the propositional calculus     77



wff B. Either B is already in the set or if it is not then by (2) �B is in the set and 
thus adding B would make it inconsistent. One can build up such a set by 
starting with some wff, say, P and then going through the set of all wffs in some 
systematic fashion adding each wff or its negation and ensuring at each point 
that consistency is preserved. If one started with the wff �P one would get a 
different maximally consistent set.  

The completeness result follows from the following lemmas:  

Lemma C1: Any consistent set of wffs of the propositional logic can be extended 
to a maximally consistent set of wffs.  

Lemma C 2: Any maximally consistent set of wffs has a model. That is, there 
is a possible circumstance (an assignment of truth-values to propositional letters) 
that makes every sentence in the set true.  

To establish the completeness result on the basis of these lemmas, let � be the 
set of all theorems of the propositional logic. Suppose that some wff A is a 
tautology but not a theorem. Since A is not a theorem �A can consistently be 
added to � to give the set �∪ {�A} (this is the notation for a set formed by 
taking members of � and adding �A). If �A when added generated an 
inconsistency, we could infer that ��A and, hence A, contrary to our 
supposition that A is not a theorem by �E. Let be a maximally consistent 
extension of the set �∪ {�A} (by Lemma C1 we know that there is such a set). 

By Lemma C2, there is a model for . That means there is an interpretation 

which makes all members of  true including �A. But if �A is true then A is 
false contrary to our assumption that A is a tautology. In view of the 
contradiction we reject the assumption that A is not a theorem and infer that any 
tautology can be established as a theorem. And, hence, for reasons given above 
we infer that any semantically correct sequent A 1,…, A n � B corresponds to a 
derivable sequent A 1,…, A n � B.  

Lemma C 1 
 

To establish that any consistent set of wffs can be extended to a maximally 
consistent set we need to make use of the fact that all wffs of the propositional 
language can be ordered in a sequence and labelled by their position in that 
sequence using the counting numbers 1,2,3,…. Let A 1, A 2, A 3,…be such a 
sequence.  

Let � be a consistent set of wffs of the propositional language. By reference to 
the listing of the wffs of the language A 1, A 2, A 3,…we define the following 
infinite sequence of sets of wffs �1, �2, �3,…:  

�
0=� 

 

�1=�0∪{A 1} if �0∪{A 1} is consistent,  
=�0∪{�A 1} otherwise.  
�2 =�1∪{A 2,} if �1∪{A 2,} is consistent,  
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=�1∪{�A 2,} otherwise  

�
n+1=�n∪{A n+1} if �n∪{A n+1} is consistent 

 

=�n∪{�A n+1} otherwise.  

This procedure involves enlarging �0 to produce �1 by adding the first wff A 1, 
if A 1, can be consistently added (if A1, is already in �0 then �1=�0). If A 1 
cannot be consistently added, we add instead �A 1. The procedure is repeated 
with A 2,, A 3 and so on.  

At each stage the set formed �i is consistent. Ex hypothesi �0 is consistent. 
�1=�0∪{A 1} if A 1, can be consistently added. If �0∪{A 1,} is not consistent 
then �0∪{A 1,} � B and �0∪{A 1,} � �B for some B. Then, by � I, we have �0 
� �A 1 and hence �A 1 can be consistently added to �0 to give �1, and so on 
for �1, �2,…  

Let  be the union of all sets in the sequence �0, �1, �2,…. That is, we form 

a new set  the members of which are all the members of �0, of �1, of �2,…is 

maximally  consistent. That is, for each wff B either B or �B is a member  
of and for no wff B is it the case that � � B & �B. To establish that for no wff B 
is it the case that � � B & �B we assume the contrary. In which case there is a 
derivation of some wff B & �B from some finite list of members of . No more 
than a finite list of members is required as derivations are by definition of finite 
length. Let A n be the wff with the largest number in our enumeration which is 
used in the derivation. Then �n � B & �B. That is, �n is inconsistent contrary 
to the fact that each member of the sequence of sets �0, �1, �2,…, �n,…is 

consistent. Therefore we reject the assumption that  � B & �B.  
To see that for any wff B, B is in  or �B is in , note that any B occurs 

somewhere in the enumeration of all wffs. Suppose B is A n, in which case either 

A n is in �n or �A n is in �n. Thus, A n (i.e. B) is in  or �A n (i.e. �B) is in . 

Hence is  maximally consistent.  

Lemma C2 
 

To show that any maximally consistent set has a model we define the 
following assignment of truth-values to all propositional letters occurring in wffs 
in  and show that on that assignment all wffs in  are true: a propositional 
letter P is assigned the value true if and only if P is a wff in . We next show 
that a wff A has the value true if and only if A is in . The proof proceeds by 
mathematical induction on the number, n, of truth-functional operators in A. 
Suppose n=0 in which case A is a propositional letter and by the definition of the 
assignment of values, A is true if and only if A is in . Next we assume that any 
wff A having n or less operators is true if and only if A is in  and show on this 
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basis that any wff A with n+1 or less operators is true if and only if A is in . 
This, taken with the fact that for n=0 A is true if and only if A is in , shows 
that for any number of operators and hence for any wff A, A is true if and only if 
A is in .  

Assuming any wff, A, with n or less operators is true if and only if A is in , 
we consider a wff, A, with n+1 operators, and deal in turn with the different 
possible main operators in A.  

(1) �. Suppose the main operator is �, in which case A has the form �B. B 
has then n operators. Hence, ex hypothesi, B is true if and only if B is in . 
Then B is false if and only if B is not in . Since  is maximally consistent, B 
is not in  if and only if �B is in . Therefore B is false if and only if �B is in 

. Also, B is false if and only if �B is true. Therefore �B is true if and only if 
�B is in , i.e., A is true if and only if A is in .  

(2) →. Suppose ‘→’ is the main operator in A. That is, A is of the form B → C. 
By the truth-table for ‘→’, B → C is true if and only if B is false or C is true. 
Since B and C have less than n operators, B is true if and only if B is in , and 
C is true if and only if C is in . Then B is false if and only if B is not in . 
Therefore B→C is true if and only if B is not in  or C is in . We prove below 

that B→C is in  if and only if B is not in  or C is in . That having been 
done we will have shown that B→C (i.e. A) is true if and only if B→C (i.e. A) is 

in .  

(i)   Assume B → C is in .  

Assume it is false that B is not in  or C is in .  
Therefore, B is in  and C is not in .  
B, B → C � C.  
Since B and B → C are in ,  � C.  

But C is not in . Therefore �C is in  (  is maximally consistent) 
and  is inconsistent. In the face of this contradiction we reject the 
assumption that it is false that B is not in  or C is in and conclude 
that B is not in or C is in . 

(ii)  Assume B is not in or C is in .  

Assume B is not in . Assume C is in . 
∴ �B is in   Assume B → C is not in 

.  
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To complete the proof of the lemma the cases where A has one of the following 
forms need to be considered: B & C, B v C, B ↔ C. This is left as an exercise.  

We have established that � A if and only if � A and that A 1,…, A n |- B if and 
only if A 1,…A n � B. This means that the two approaches, the syntactical and 
the semantical, match-up. Consequently, if one wants simply to establish the 
validity of arguments expressible in the propositional language, one can use 
either the semantical approach testing with circumstance surveyors or the 
syntactical approach deriving sequents using the rules of natural deduction. On 
the basis of what has been presented the former will seem the more attractive 
procedure as it is purely mechanical. As things stand we have not provided any 
mechanical procedure guaranteed to produce a proof of anything provable in 
finite time. However, there are other versions of the completeness proof which 
have as a bi-product such a mechanical technique for proving any tautology or 
semantically correct sequent. See in this regard Lemmon op. cit., pp. 88–9.  

EXERCISES  

Assume B → C is not in .  ∴ �(B → C) is in   

∴ �(B → C) is in .  C � B → C  

�B � B → C  ∴  � B → C  

∴  � B → C  But  � �(B → C)  

But �(B → C) is in .  ∴  is inconsistent  

∴  inconsistent  ∴ We reject the 
assumption that B → C is 

not in  and conclude 
that B → C is in .  

∴ We reject the assumption 

that B → C is not in  and 

conclude that B → C is in  . 

Therefore, B → C is in .  

1 Show that a set S of wffs is consistent if and only if every finite sub-set of S 
is consistent.  

2 Show that a set S of wffs has a model if and only if every finite sub-set of S 
has a model.  
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3 Show that if a set S of wffs has a model then S is consistent.  
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CHAPTER 5  
A predicate language  

1 INSIDE THE PROPOSITION: REFERENCE AND PREDICATION  

The propositional logic we have developed puts us in a position to rigorously 
evaluate only a very limited class of arguments, arguments the validity of which 
turns on the role of truth-functional operators. This means that attention has 
been limited to arguments that depend for their validity on the relation between 
simple and compound propositions. We have as yet no tools for investigating 
arguments the validity of which depends on what is going on inside simple 
propositions; that is, propositions that do not contain other propositions. For 
instance, consider the following valid arguments:  

All persons are mortal.  
Socrates is a person.  
Therefore, Socrates is mortal.  

All Balliol students are clever.  
Icabod is a Balliol student.  
Therefore, Icabod is clever.  

All zemindars are powerful.  
Icabod is a zemindar.  
Therefore, Icabod is powerful.  

Our recognition of the validity of these arguments arises from our grasp of their 
form and not their specific content. One does not need to know the meaning of, 
say, ‘zemindar’ to see the validity of the last argument. This gives rise to the 
hope that we may be able to systematically characterize that aspect of form 
which gives rise to the validity. To do this we will have to look inside the 
proposition. Our aim is thus to develop a notation for representing the internal 
form of propositions and we will no longer represent propositions only by the 
simple symbols, ‘P’, ‘Q’, ‘R’,….  

Consider simple subject-predicate sentences such as: Icabod is happy, Reagan 
is a loser, Thatcher is stubborn, Everest is high. Two things are to be noted. 
First, one who asserts such a sentence is picking out someone or something to 
talk about (Icabod, Reagan, Thatcher, Everest). Secondly, one is ascribing some 
property to the person or thing picked out. One is saying that the thing in 
question is happy, is a loser, is stubborn, is high. The first activity is called 
referring and the second predicating.  

Referring is something done by the speaker. There are a variety of linguistic 



devices which he or she can use to successfully pick something out for the 
purpose of talking about it. One may use proper names as in the above 
examples. Generally speaking, if a proper name does stand for something (and it 
may not. After all, there is not and never has been a flying horse called 
‘Pegasus’), it stands for the same thing on each occurrence of its use (the 
exception being the use of the same name of different things as in the case of 
common names like “Joe Smith”). We may also use singular personal pronouns 
to refer to something or someone: I, you, he, she, it. These terms do not refer to 
the same thing on all occasions of use. We all pick out, for instance, a different 
person in our use of the word ‘I’. We may also use demonstratives such as ‘this’ 
and ‘that’. These words may be used on their own as in ‘That is the winner’ or in 
conjunction with a general term which helps us ascertain what is being referred 
to as in ‘This car is for sale’. In both cases, to determine what is being referred 
to by a speaker we have to pay attention to the situation in which the term is 
used.  

Another device for referring is the definite description. The definite 
description is formed by taking the word ‘the’ together with some general term 
as in:  

The winner is happy.  
The road is slippery.  
The lake is dry.  

Closely related to definite descriptions are the use of possessive pronouns 
together with a general term as in:  

My dog is sad.  
Your cat is wicked.  
Their tiger is fierce.  

In the course of this and subsequent chapters we will consider these and other 
devices for referring. For the moment we restrict attention to proper names used 
to refer to people or things. This restriction means, for instance, that we will not 
be interested in sentences such as ‘Butter is convenient’ or ‘Ice is nice’. For the 
names ‘butter’ and ‘ice’ are not used as a name of a thing or a person. Butter and 
ice are best thought of as stuff rather than objects. This is revealed in the fact 
that you cannot count butter or ice. It makes no sense to ask how many butters 
you need or how many ices are in Oxford. That is, the indication that a term is 
for an object as opposed to a stuff is whether it makes sense to think of counting 
what it designates.  

We will use lower case letters from the middle of the alphabet (‘m’, ‘n’, ‘o’,
…) as proper names. Combining this bit of notation with English we write: n is 
happy, o is a loser. In introducing letters to function as names we will have to 
specify what the letters stand for, e.g. ‘n’ stands for Icabod, ‘o’ stands for 
Reagan.  
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Consider the simple sentences: Icabod is happy, Reagan is a loser, Thatcher is 
stubborn, Everest is high. The expression we obtain by deleting the name from 
such sentences is to be called a predicate. Thus we might write:—is happy,—is 
a loser,—is stubborn,—is high. The blank indicates that something must be put 
therein to form a sentence. In fact we will use lower case letters from the end of 
the alphabet to indicate the presence of blanks that need filling if we are to have 
a sentence. Thus we write: x is happy, x is a loser, x is stubborn, x is high. A 
predicate is to be thought of as expressing a property which is ascribed to 
something when a sentence is formed by completing the predicate with a name 
for the thing.  

We will call ‘x’, ‘y’, ‘z’,…object variables. One reason for this label is that 
the variables show that a sentence about an object will be obtained if the 
variable is replaced by a name for that object. Not all predicates are so simple. 
The next level of complexity involves predicates that arise from the deletion of 
more than one name from a sentence. Consider the sentence: Icabod loves 
Isabel. The predicate ascribes the property or relation of loving between Icabod 
and Isabel. We use different variables in place of the different names obtaining: 
x loves y. This enables us to distinguish the general relation of loving which may 
obtain between the the same or different people from the relation of self-love 
which is a property applying to only one person. Thus, from the sentence: 
Icabod loves himself (i.e. Icabod loves Icabod) we obtain the predicate: x loves 
x. The repetition of the ‘x’ means that it must be replaced by the same name in 
generating a sentence. From the predicate, ‘x loves y’, we may either generate 
such sentences as ‘Icabod loves Isabel’ or ‘Icabod loves Icabod’. There is no 
presumption that different variables must be replaced by different names. 
However, the same variable must always be replaced by the same name.  

A predicate may require more than two names for completion. For instance, 
the predicate ‘x is between y and z’ might be completed with the names 
‘Oxford’, ‘London’ and ‘Bristol’ to obtain the sentence: Oxford is between 
London and Bristol. Predicates requiring even more names are rarer but do 
occur, particularly in mathematical contexts. Predicates requiring n-names for 
completion will be said to be n-place predicates. Thus, ‘x is red,’ ‘x loves x,’ are 
one-place predicates, ‘x is taller than y’, ‘x loves y’ are two-place predicates and 
‘x is between y and z’ is a three-place predicate. In our symbolic notation we 
will use upper case letters, ‘F’, ‘G’, ‘H’,…to represent predicates. In introducing 
predicates in formulating arguments our interpretation must specify what 
property or relation the letter is being used to express. In English the names are 
usually placed before and after the predicate in completing it for any predicate 
other than a one-place one. We will, however, for reasons that will become 
clear, place the variables used in expressing the predicate after the upper case 
letters ‘F’, ‘G’, ‘H’,… For instance we might write ‘Hx’ for ‘x is happy’ and 
‘Lxy’ for ‘x loves y’. If we use ‘n’ for Icabod and ‘m’ for Isabel, we can 
complete these predicates to express the sentences ‘Icabod is happy’ and ‘Icabod 
loves Isabel’ as, respectively, Hn and Lnm. These are sentences expressing 
propositions which are true or false as the case may be. The expressions Hx and 
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Lxy, on the other hand, do not make assertions. They are not to be thought of as 
being true or being false. They do not say that something called ‘x’ is happy or 
that someone x loves someone y. ‘x’ and ‘y’ in these contexts are not names. 
Their role is to indicate the gaps in the predicates to be filled and to indicate 
whether same or different names may be put in the gaps. They should be thought 
of as expressing what would be expressed by the English expression ‘is happy’ 
‘loves’ with the added information our notation conveys about how many names 
are needed to complete these to make sentences. Such expressions with a gap 
needing filling to make a sentence are called open sentences. Sentences without 
gaps are said to be closed.  

2 THE UNIVERSAL AND THE EXISTENTIAL QUANTIFIERS  

A more interesting way from the logician’s point of view of forming sentences 
from predicates involves completing them not with names but with quantifiers, 
such as ‘everyone’. For instance, adding this to the predicates x is happy, x loves 
y, gives: Everyone is happy, everyone loves everyone. Of course, if I say that 
everyone is happy I am very unlikely to mean that literally every person is in 
this happy state. Using this sentence at a party is likely to convey the thought 
that everyone at the party is happy. That is, in using this expression I refer to all 
the members of some set. Just what set I have in mind is likely to be clear from 
the context. The set intended will be called the domain of quantification.  

Adding the quantifier ‘everyone’ to a predicate gives a sentence that says that 
the predicate applies to each object in the domain (‘everyone’ carries the 
implication that the domain is a domain of persons). Thus ‘everyone’ functions 
in a very different way from a name. A name standardly picks out a particular 
person and a predicate completed with the name states that that person had the 
property expressed by the predicate. Completing a predicate with ‘everyone’ 
leads to a sentence which makes a general assertion; namely, each person in the 
domain has the property expressed by the predicate.  

We use an up-side down A, ∀, to express what is called the universal 
quantifier. When used to complete a predicate it expresses the idea that 
everything in the domain has the property expressed by the predicate. In English 
we use ‘everyone’ if the intended domain is persons, ‘everything’ if the domain 
is objects. ∀ is not restricted in its application to a particular type of domain. 
Any restriction to a particular type of domain can be handled through the 
specification of the domain. One might think of writing ‘H∀x’ for ‘everyone is 
happy’ which parallels most closely writing ‘Hn’ for ‘Icabod is happy’. Instead, 
for reasons that will become clear below we write ‘(∀x)Hx’ which is read as: 
Take anything you like (i.e. anything in the domain): it is happy.  

Equally important to the analysis of arguments is the existential quantifier. 
This is expressed in English by such expressions as ‘some’ ‘something’, 
someone’. Adding these expressions to a predicate gives a sentence which can 
be used to assert that there is at least one person or object in the domain which 
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has the property expressed by the predicate. This is expressed in our notation by 
a backwards ‘E’, ‘∃’ and we write for ‘someone is happy’: (∃x)Hx. This can be 
read as: You can find something in the domain such that it is happy. It is taken 
that this means ‘at least one’ and not necessarily more than one.  

We have given examples but no definition of a quantifier. It is just too 
fundamental a notion to admit of any straightforward definition. Grammatically 
a quantifier is an expression which attaches to a predicate to generate either a 
sentence or a new predicate having a smaller number of places. For example, the 
quantifier ‘everyone’ attached to the predicate ‘x is happy’ generates the 
sentence ‘everyone is happy’. Attaching this quantifier to the second gap in the 
two-place predicate ‘x loves y’ gives the new one-place predicate ‘x loves 
everyone’. This predicate expresses a property which it is supposed is possessed 
by God. Adding a second quantifier, say, ‘someone’ to this predicate gives the 
sentence ‘someone loves everyone’. The function of a quantifier is to indicate 
something about the number of things in the domain to which the predicate 
applies. For instance, this may be quite precise as in ‘everyone is happy’. This 
says that the predicate ‘x is happy’ applies to each object in the domain. It may 
be non-specific as in ‘some are happy’ which conveys the idea that at least one 
object in the domain has the property of being happy without indicating which 
object or objects it is. It may be vague as in the quantifiers ‘most’, ‘a few’, 
‘several’, ‘a lot’, etc. There is no definite percentage of things in a domain that 
have to have the property of being, say, happy before it is true that most of the 
people in the domain are happy. In this work our focus will be on the universal 
quantifier, everything, and the existential quantifier, something, and on 
quantifiers definable in terms of these.  

To move to the next stage in our discussion of quantifiers we need to return to 
predicates to consider another way in which we can generate complex 
predicates. First it will be convenient to introduce in a preliminary way an idea 
that will also need refinement later. We say of an object in a given domain that 
possesses the property expressed by the predicate ‘Fx’ that that object satisfies 
the predicate. In the case of a relational predicate such as ‘x loves y’ we say that 
a pair of objects a, b taken in that order satisfies the predicate ‘x loves y’ just in 
case a loves b. Note that the order is important. The pair of objects—Caesar, 
Brutus—satisfies the predicate ‘x loves y’ if Caesar loves Brutus but if, as is 
said, Brutus did not love Caesar, the pair—Brutus, Caesar—does not satisfy the 
predicate.  

To this juncture we have dealt only with simple unstructured predicates. The 
operators of our propositional language can be used to build up more complex 
predicates. Consider the sentence ‘Icabod is happy and Icabod is rich’. Deleting 
the two occurrences of ‘Icabod’ gives us the complex predicate ‘x is happy and x 
is rich’. This predicate is available for quantification and writing ‘Hx’ for ‘x is 
happy’ and ‘Rx’ for ‘x is rich’ the complex predicate is ‘Hx & Rx’ and the result 
of appending the existential quantifier is ‘(∃x) (Hx & Rx)’. This says that you 
can find something (in the intended domain of persons) such that it is happy and 
rich. Or, more idiomatically rendered, we have: ‘Someone is happy and rich’ or 
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‘There is a happy person who is rich’, or ‘Some happy people are rich’ or ‘some 
rich people are happy’. We have arrived at a symbolic rendering of one very 
important type of sentence.  

Any sentence of the form  

Some Fs are Gs  

is to be rendered as:  

(∃x) (Fx & Gx)  

Some Fs are not Gs would be rendered as:  

(∃x) (Fx & �Gx).  

This is confirmed by using our pedantic reading of the quantifier and 
confirming that it has the same sense as the English, i.e. you can find 
someone who is rich and not happy. This conveys the same as: Some of 
the rich are unhappy.  

Consider the sentence ‘If Icabod is a student then Icabod is rich’. Deleting the 
name ‘Icabod’ gives the predicate ‘If x is a student then x is rich’. Applying the 
universal quantifier to this complex predicate gives: Take anything you like, if it 
is a student then it is rich. This captures what is expressed by ‘all students are 
rich’. Thus, any sentence of the form  

All Fs are Gs  

is symbolized as:  

(∀x) (Fx → Gx).  

We know from our study of the propositional language that ‘P → Q’ is 
truth-functionally equivalent to ‘�P v Q’. Consequently using ‘Sx’ for 
‘x is a student’ and ‘Rx’ for ‘x is rich’, and ‘n’ for Icabod, ‘If Icabod is 
a student, Icabod is rich’ is formulated as ‘Sn → Rn’ which is equivalent 
to: �Sn v Rn. Thus, something satisfies the predicate ‘Sx → Rx’ if and 
only if it satisfies the predicate ‘�Sx v Rx’. This means that the 
universally quantified sentence ‘(∀x) (Sx → Rx)’ will be true if either 
there are S’s and each of them is an R or there are no S’s at all. Thus, in 
representing ‘All Ss are Rs’ in the form we have we are not taking it 
that ‘all Ss are Rs’ says that there are Ss. That is, we are construing 
English sentences with the universal quantifier as being implicitly 
conditional. If one does want to assert not only that if something is an S 
it is an R but also that there are Ss we can write ‘(∀x) (Sx → Rx) & (∃x) 
Sx’.  
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There are various linguistic variants of ‘All Fs are Gs’ all of which are 
symbolized as ‘∀x(Fx → Gx)’:  

Any F is a G.  
Each F is a G.  
Fs are Gs.  
Every F is a G.  

Some students are sometimes inclined to formulate the above sentences as: (∀x) 
(Fx & Gx). But this will not do as checking by reading the formulation 
pedantically back into English reveals: Take anything in the domain that you 
like: it is both F and G. Thus, symbolizing ‘all students are rich’ in this way 
would lead to the assertion that everything is a student and rich! This tempting 
error is derived from the fact that in formulating ‘some Fs are Gs’ we use 
conjunction writing ‘(∃x) (Fx & Gx)’. Notice that this formulation does commit 
us to the existence of Fs whereas the formulation of ‘all Fs are Gs’ as ‘(∀x) (Fx 
→ Gx)’ does not. A similar temptation exists to formulate some Fs are Gs as: 
(∃x) (Fx → Gx). It should be clear that this will not do. For given the equivalence 
noted above this is the same as ‘(∃x) (�Fx v Gx)’ and this would be true if it 
happens that there are no Fs in the domain but we would not count it as true to 
say that ‘Some Fs are Gs’ if there were no Fs.  

There are many other quantifiers in English. Some, as we will see, resist a 
logical treatment. Others can be explicated in terms of the universal and 
existential quantifiers. Consider the sentence ‘Icabod is over 10 feet tall’. This 
generates the predicate ‘x is over ten feet tall’. Consider the sentence ‘Nobody is 
over ten feet tall’. If we were to consider that sentence on the model of the 
former sentence with ‘nobody’ being treated as a name we would be lead to the 
‘Lewis Carroll’ conclusion that we should get nobody for the basketball team. In 
fact ‘nobody’ is a quantifier. The sentence above asserts that you cannot find 
anything in the domain which is over ten feet tall. Writing ‘Ox’ for the predicate 
in question we can express the sentence as ‘�(∃x) Ox’. Or, it can be written 
equivalently as ‘(∀x) �Ox’. On our pendantic reading this comes to: take anyone 
you like from the domain: he or she will not be over ten feet tall.  

The quantifiers ‘no one’, ‘nothing’, ‘no’ occur in contexts such as:  

No doctor is a fishmonger.  
No one who wins is lucky.  

In formulating these sentences we first re-phrase them as follows:  

Take anything you like, if it is a doctor it is not a fishmonger.  
Take anything you like, if it is a winner it is not lucky.  

The correct formulation is then seen to be:  

A predicate language     89



(∀x) (Dx → �Fx)  
(∀x)(Wx → �Lx)  

Thus far we have dealt with single quantification of increasingly complex 
predicates such as ‘Fx → Gx’ and ‘Fx & Gx’. A further degree of complexity 
arises with predicates having two or more places needing filling. Let ‘Lxy’ be ‘x 
loves y’. Suppose we add the quantifier ‘(∃y)’, to obtain: ‘(∃y)Lxy’. Notice that 
this is not a sentence. It has a gap marked by x which has yet to be filled. As it 
stands it expresses a property—namely that of loving someone. If we fill the 
blank with the name ‘Icabod’ we obtain: Icabod loves someone. Suppose we 
complete this predicate with the quantifier ‘(∃x)’ to obtain ‘(∃x) (∃y)Lxy’ which 
would say: you can find someone, x, and someone y such that x loves y. 
Remember that x and y are not names. Here they function like pronouns. We 
might have phrased the sentence as: You can find someone such that he/she 
loves someone.  

Applying the universal quantifier ‘(∀y)’ to ‘Lxy’, gives us a predicate ‘(∀y)
Lxy’ which expresses the property of loving everyone. We can put the name 
‘Icabod’ in the blank indicated by the ‘x’ to obtain the sentence: Icabod loves 
everyone. We can append another universal quantifier ‘(∀x)’ to obtain the 
sentence ‘(∀x) (∀y)Lxy’ which asserts that anyone you can find loves anyone 
you can find. Or, in other words, everybody loves everybody. By taking the 
pedantic readings of ‘(∃x) (∃y)Lxy’ and ‘(∃y) (∃x)Lxy’ together and the readings 
of ‘(∀x) (∀y)Lxy’ and ‘(∀y) (∀x)Lxy’ you should be able to confirm that in these 
cases the order in which the quantifiers are appended makes no differ- ence to 
the sense of what is expressed in the formalization. Notice that we have to add a 
quantifier containing the same lower case letter as occurs in the predicate. If we 
wrote, for instance, ‘(∀x) (∀w)Lxy’ we would generate something that is not a 
sentence and is of dubious sense. Notice too the difference between the 
predicate ‘Lxx’ and ‘Lxy’. The former expresses a relation an object can hold to 
itself. The latter expresses a relation that may hold between the same or different 
objects. In quantifying ‘Lxx’ universally we obtain ‘(∀x)Lxx’ which says that: 
take anything you like, it loves itself. ‘(∃x)Lxx’ says that you can find something 
such that it loves itself. We do not quantify ‘Lxx’ using, say, ‘(∃x)’ and ‘(∃y)’ 
for once ‘(∃x)’ is applied there are no gaps left to filled.  

Suppose we wish to formulate the sentence ‘Everyone loves someone’. This 
says that if you take anyone, he or she has the property of loving someone. That 
property is expressed in our notation by the formula ‘(∃y)Lxy’. The 
formalization of the sentence in question is: (∀x)(∃y)Lxy. Consider: ‘Someone is 
loved by everyone’. That says: you can find someone who has the property of 
being loved by everyone. This property is expressed by ‘(∀x)Lxy’ and thus the 
formulation of the sentence is: (∃y) (∀x)Lxy. The sentences ‘Everyone loves 
someone’ and ‘Someone is loved by everyone’ differ in meaning in a way that 
can be illustrated as follows. Let A, B, C, D, E be the members of the domain. 
Let the arrows represent the relation of loving where the person represented at 
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the head of the arrow is the one who is loved and the one at the tail being the 
one who does the loving.  

  

Diagram I represents a situation in which ‘(∀x) (∃y)Lxy’ is true. For take anyone 
you like you find someone that they love. Notice that A loves him or herself. If 
we had to exclude this possibility we should have said: Everyone loves someone 
else. The formulation of this will be given in section 2 of Chapter 6. ‘(∃v) (∀x)
Lxy’ is false in the situation represented in diagram I for you cannot find 
someone who is loved by everyone. Diagram II represents a situation in which 
‘(∃y) (∀x)Lxy’. is true. For you can find someone, lucky C, who is loved by 
everyone including him—or herself. ‘(∀x) (∃y)Lxy’ is also true. For take anyone 
you like you find someone, namely C, that they love. The fact that both 
sentences are true in the situation represented by diagram II and that one is true 
and one false in the situation represented in diagram I shows that these sentences 
are not equivalent in meaning. The order of the quantifiers makes a difference if 
the quantifiers are mixed; that is, if both universal and existential quantifiers are 
included. In the case of pure quantifiers (all universal or all existential) the order 
does not make any difference.  

It will already be apparent that a formal language for revealing the internal 
structure of propositions, to be called a quantification language, is of 
considerably greater complexity than the propositional language. Consequently 
there are more preliminaries to be covered before we can develop a technique 
for testing for validity arguments expressed in this language. Translation into the 
quantificational language (hereafter cited as QL) often requires a subtle grasp of 
the sense of English sentences and may require quite complex formulae in QL. 
One complication is that English sentences may involve ambiguities of scope. 
We have seen above that the order of the quantifiers can make a difference to 
the sense of formula. The difference between ‘(∀x) (∃y)Lxy’ and ‘(∃y) (∀x)Lxy’ 
can be best expressed by saying that ‘(∀x)’ has the larger scope in the first 
formula and the smaller scope in the latter formula. That is, in the first formula it 
governs ‘(∃y)Lxy’ and in the latter it governs only ‘Lxy’. As we did in the case 
of PL (the propositional language), we give later a precise definition of a well-
formed formula and of the notion of scope. For the moment we use these notions 
informally. As a further example of how the scope of quantifiers and operators 
affects sense consider the formulae ‘(∀x) �Lxn’ and ‘�(∀x)Lxn’ where n is 
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Icabod and ‘Lxy’ expresses the relation of liking. In the first formula the 
universal quantifier governs ‘�Lxn’ and thus has larger scope than ‘�’ which 
governs only ‘Lxn’ and vice versa in the second formula. The first says’ Take 
anything in the domain you like, it does not like Icabod. If, on the other hand, 
the second is true things may not be so bad for Icabod. For it says that it is false 
that everyone likes Icabod. Thus it may be that some do like Icabod.  

We note below some examples of ambiguities of scope that occur in English 
that can be disambiguated on translation into QL. The sentence ‘Everyone in the 
next room is smoking or drinking’ has an ambiguity of scope. It may be 
construed with the universal quantifier having large scope: Take anyone in the 
next room, he or she is smoking or drinking. The formalization would be ‘(∀x) 
(Rx → (Sx v Dx))’ with a domain of persons and ‘Rx’ expressing ‘x is in the next 
room’, ‘Sx’ expressing ‘x is smoking’, ‘Dx’ expressing ‘x is drinking’. On the 
other hand it may be construed with the disjunction operator having the larger 
scope: Everyone in the next room is drinking or everyone in the next room is 
smoking. In which case the formalization would be: (∀x) (Rx → Dx) v (∀x) (Rx → 
Sx).  

The sentence ‘Some people are mugged everyday’ might mean: Take any day 
you like, on that day you can find some people who are mugged. Or, it might 
mean: You can find some people who are such that if one takes any day, they 
are mugged on that day. On the latter reading, with its perpetual victims, the 
existential quantifier ‘some people’ has the larger scope. On the former reading 
the universal quantifier ‘everyday’ has the larger scope. In formulating this 
sentence we need a domain containing persons and days for we are talking about 
both. Let ‘Px’ be ‘x is a person’ and letting ‘Dx’ be ‘x is a day’ and ‘Mxy’ be ‘x 
is mugged on y’. The formulation on the first reading is: (∀x) (Dx → (∃y) (Py & 
Myx)) and the formalization on the latter reading is: (∃y) (Py & (∀x) (Dx → 
Myx)).  

A fine example of ambiguity of scope is found in a remark of Keynes. 
Economists often defend their theories against contrary evidence by saying that 
their predictions will prove correct in the long run. Keynes retorted: In the long 
run we are all dead. This sentence has an amibiguity of scope. The person who 
asserts the sentence may have in mind the possibility of some holocaust that will 
obliterate forever the human race. In this case the existential quantifier has large 
scope: There is a time at which everyone is dead. Or, one might mean only that 
humans are mortal without asserting that there will ever be a time without any 
humans. In this case the universal quantifier has larger scope and the reading is: 
Take anyone you like, there is a time at which he or she is dead.  

Examples are given below to illustrate some of the complexities involved in 
formalizing English sentences in QL. Further points will emerge through the 
exercises at the end of this chapter.  
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Example 5.2.1  

Icabod likes a beautiful girl.  

The word ‘a’ is ambiguous. It may mean a particular girl or it may be 
functioning as a disguised universal quantifier, i.e. Icabod may like any old 
beautiful girl. Letting ‘n’ stand for Icabod and ‘Bx’ be ‘x is a beautiful girl’ and 
‘Lxy’ be ‘x likes y’, the formalization on the first reading is: (∃x) (Bx & Lnx). On 
the second reading it is: (∀x) (Bx → Lnx).  

Example 5.2.2  

Only men are feather-brained.  

This says that if anything is feather-brained, it will turn out to be a man. The 
formalization using ‘Mx’ for ‘x is a man’ and ‘Fx’ for ‘x is feather-brained’ is: 
(∀x) (Fx → Mx). Note the difference between this and the sentence ‘All men are 
feather-brained’ which is formalized as: (∀x) (Mx → Fx).  

Example 5.2.3  

Let ‘n’ stand for Icabod and let ‘Lx’ be ‘x is late’ and ‘Ax’ be ‘x will be annoyed’ 
and let the domain be some set of persons, (i) says that Icabod will be annoyed if 
even one person is late, (ii) represents him as perhaps more tolerant saying he 
will be annoyed if all are late. The formalization of (i) is: (∀x) (Lx → An). The 
formalization of (ii) is ∀xLx → An. ‘Anyone’ generally has a large scope, 
‘everyone’ tends to have smaller scope as this formalization illustrates.  

Example 5.2.4  

The richer they are, the more he despises them.  

‘The more’ does not refer to some mysterious thing, a particular ‘more’. What is 
meant is that he despises one person more than another if the former is richer 
than the latter. A three-place relation ‘Dxyz’ is needed to represent ‘x despises y 
more than z’. There is no device in our formal language which plays the role of 
such pronouns as ‘he’ in this context. To cope we let ‘n’ be the name of the 
person who would be referred to by ‘he’ on the particular occasion of the use of 
the sentence which we have in mind. Taking as the domain the set of all persons 
and using ‘Rxy’ for ‘x is richer than y’ the formalization is: (∀x) (∀y) (Rxy → 
Dnxy).  

(a)   If anyone is late, Icabod will be annoyed.  
(b)  If everyone is late, Icabod will be annoyed.  
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EXERCISES  

1 Formalize the following sentences in QL specifying your domain and the 
interpretation of the predicate letters:  
(a) Icabod is unhappy.  
(b) Someone is unhappy.  
(c) Everyone is unhappy.  
(d) Icabod hates Isabel.  
(e) Icabod hates someone.  
(f) Someone hates Icabod.  
(g) Someone hates someone.  
(h) Someone hates himself.  
(i) Everyone hates himself.  
(j) Icabod hates everyone.  
(k) Everyone hates Icabod.  
(l) Everyone hates everyone.  
(m) Someone hates everyone.  
(n) Everyone hates someone.  
(o) All zemindars are powerful.  
(p) No zemindar is powerful.  
(q) Some zemindars are powerful.  
(r) Some zemindars are not powerful.  
(s) All powerful zemindars are lucky.  
(t) Some zemindars hate Icabod.  
(u) Each zemindar hates Icabod.  
(v) Icabod hates lucky zemindars.  
(w) Icabod hates only zemindars.  
(x) Oxford is between Reading and Bristol.  
(y) Some town is between Reading and Bristol.  
(z) Some town is between some town and some town.  

2 Formalize the following sentences in QL (specify a domain and the 
interpretation of the predicate letters). For any ambigous sentence give the 
alternative formalizations.  
(a) Icabod likes a zemindar.  
(b) Some zemindars are insulted everyday.  
(c) Every zemindar rides a dragon.  
(d) No zemindar likes a dragon.  
(e) If everyone is late Icabod is mad.  
(f) If anyone is late Icabod is mad.  
(g) If someone’s late Icabod is mad.  
(h) If Icabod is mad then no one is late.  
(i) If Icabod is mad then someone is late  
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3 NATURAL DEDUCTION RULES FOR THE UNIVERSAL 
QUANTIFIER  

The proper names of QL ‘n’, ‘m’,…denote some fixed individual in the domain 
of an interpretation. If every object in a domain has a certain property, any 
particular named object in the domain has that property. In view of this we want 
a rule which licenses us to pass from a formula of the form ‘(∀x)Ax’ to a formula 
‘An’ in which ‘n’ replaces every occurrence of ‘x’ in ‘Ax’. The conclusion ‘An’ 
rests on whatever premises ‘(∀x)Ax’ rests on or on ‘(∀x)Ax’ itself if it is a 
premise. To illustrate this rule of universal elimination, cited as ∀E, consider the 
argument:  

Icabod is a person. All persons are mortal. Therefore, Icabod is mortal.  

Using ‘n’ for ‘Icabod’, ‘Px’ for ‘x is a person’ and ‘Mx’ for ‘x is mortal’ the 
formalization is: Pn, (∀x) (Px → Mx) � Mn. Notice that we have used the 
syntactical sign for an argument. There is no analogue of truth-tables which can 
be used to establish arguments as valid (the reason for this will be given in 
Chapter 7). We will develop a system of natural deduction rules to be used in 
showing that arguments are valid. Hence we use � and not � in formulating the 
arguments at this stage. In Chapter 7 we show how to define � and cite the fact 
that one can show that � and � do match-up as in the propositional logic. 
However, to establish that a semantical sequent is correct we have in general to 
show that the corresponding syntactical sequent is correct.  

The derivation of the above sequent is:  

(j) If someone is taller than I then I am smaller than someone.  
(k) More expensive things are not always nicer.  
(l) Only fascists are more unscrupulous than mafiosi.  
(m) No one is more unscrupulous than a fascist.  
(n) One is a fascist if and only if one is unscrupulous.  
(o) Only if one is a fascist will one be despised.  
(p) The bigger they are the harder they fall.  
(q) A rolling stone gathers no moss.  
(r) All that glistens is not golden.  
(s) Every cloud has a silver lining.  
(t) Children should be seen and not heard.  
(u) All Cretans are liars.  
(v) Any devil you know is better than any devil you do not know.  
(w) Farther pastures are greener.  
(x) Someone wins every lottery.  
(y) Any mother is someone’s mother.  
(z) Some love all who love no one.  
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In fact we need a stronger rule of universal elimination than so far given. For we 
frequently have to talk of an object in carrying out arguments even where it 
would be inappropriate to use a proper name. For instance, in elementary 
geometry one begins with some general truths about, say, all triangles and with 
the aim of establishing Pythagoras’ theorem that the square on the hypotenuse of 
a right-angled triangle is equal to the sum of the squares on the other two sides, 
One says: Let R be a right-angled triangle. One then concludes that R has 
whatever properties the general truths ascribe to any such triangle. Reasoning 
about triangle R leads to the conclusion that the square on the hypotenuse of R 
equals the sum of the square on the other two sides. One then concludes that 
Pythagoras’ theorem holds for any right-angled triangle.  

In the above sort of argument, ‘R’ names an arbitrary right-angled triangle. It 
is not a proper name. There is no particular triangle the name of which is ‘R’. 
‘R’ is used to refer to any arbitrary triangle fitting the description and nothing 
more is assumed about R over and above its fitting the description. This style of 
reasoning is essential for displaying the validity of many arguments in our 
quantificational language and we use lower-case letters from the beginning of 
the alphabet ‘a’, ‘b’, ‘c’,…as what will be called arbitrary names.. The rule of 
∀E licenses us to infer from any formula of the form (∀x)Ax any formula of the 
form At in which t, either an arbitrary or a proper name, replaces all occurrences 
of ‘x’ in Ax. The conclusion At rests on (∀x)Ax if that formula is itself a premise, 
otherwise it rests on whatever premises (∀x)Ax rests on. In citing the rule of ∀E 
we give the line at which (∀x)Ax occurs.  

In the discussion of the propositional logic we used letters from the beginning 
of the alphabet, ‘A’, ‘B’, ‘C’ as formula variables. Unlike ‘P’, ‘Q’, ‘R’, etc. 
which represent particular propositions, the formula variables indicate only the 
form of a proposition. A proposition is obtained if the formula variable is 
replaced by any particular formula of the language. In a similar way we use ‘A’, 
‘B’, ‘C’ in displaying the form of propositions in the predicate language. In the 
above paragraph ‘A’ can be replaced by any predicate from our language. In 
addition we use ‘t’ as a term variable. It indicates that the formula contains a 
proper name or an arbitrary name.  

In the sort of mathematical argument given above it is shown that a certain 
result holds with regard to the right-angled triangle R and it is then concluded 
that this result holds for any right-angled triangle. This latter conclusion is an 
instance of what will be called universal introduction. This rule licenses us to 
infer a universally quantified formula of the form (∀x)Ax from a formula of the 
form Aa where ‘a’ is an arbitrary name and x has replaced all occurrences of ‘a’ 

Prem  (1) Pn
Prem  (2)  (∀x) (Px → Mx)  
2  (3)  Pn → Mn  2 ∀E  
1,2  (4)  Mn  1,3 →E  

Logic     96



in A subject to certain restrictions. The restrictions are that Aa is not itself a 
premise and does not rest on any premise in which ‘a’ occurs. These restrictions 
mean that one is not entitled to infer that everything has the property Ax from Aa 
unless Aa was derived from purely general premises. That is, if one is to derive a 
conclusion about everything one has to start with premises about everything. If 
one inferred (∀x)Ax from Aa where Aa was a premise or rested on premises 
containing ‘a’, it might be a peculiarity of a that it had the property expressed by 
Ax in which case some things would not have that property. To infer (∀x)Ax 
would give a false conclusion from true premises. The force and point of these 
restrictions will become clearer through a consideration of the following simple 
argument:  

All persons are mortal.  
All mortals have Angst.  
Therefore all persons have Angst.  

Letting the domain be all persons and mortals and using ‘Px’ for ‘x is a person’, 
‘Mx’ for ‘x is mortal’ and ‘Cx’ for ‘x has Angst’ the formalization is:  

(∀x) (Px → Mx), (∀x) (Mx → Cx) � (∀x) (Px → Cx)  

The derivation is:  

We assume at line (3) that ‘a’ is an arbitrary P; ‘a’ does not occur in the purely 
general premises (1) and (2) which are used with Pa to derive Ca. We cannot 
apply ∀I until we reach a conclusion which does not depend on any premise in 
which the arbitrary name a occurs. We obtain such a line by a step of → I. In 
citing ∀I we give the line to which it is applied. A fully precise characterization 
of the rules for the universal quantifiers are given in the following clauses:  

Prem  (1)  (∀x) (Px → Mx)  
Prem  (2)  (∀x) (Mx → Cx)  
Prem  (3) Pa
1  (4)  Pa → Ma  1 ∀E  
1,3  (5)  Ma  3,4 → E  
2  (6)  Ma → Ca  2 ∀E  
1,2,3  (7)  Ca  5,6 → E  
1,2  (8)  Pa → Ca  3,7 → I  
1,2  (9)  (∀x) (Px → Cx)  8 ∀I  
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Universal Elimination (∀E)  

From a formula of the form (∀x)Ax, one can infer At where t is an arbitrary name 
or a proper name which replaces all occurrences of ‘x’ in Ax. At rests on 
whatever premises (∀x)Ax rests on and will rest on (∀x)Ax if that is itself a 
premise. In citing the rule the number of the line of (∀x)Ax is given.  

Universal Introduction (∀I)  

From a formula of the form Aa one can infer (∀x)Ax provided that Aa is not 
itself a premise and does not depend on any premises in which ‘a’ occurs. In 
(∀x)Ax, ‘x’ replaces all occurrences of ‘a’ in Aa. (∀x)Ax rests on whatever 
premises Aa rests on. In citing ∀I the number of the line containing Aa is given.  

A number of examples are given below to illustrate the rules for the universal 
quantifier.  

Example 5.3.1  

Argument  

Everyone is happy or rich. Icabod isn’t happy so he must be rich.  

Interpretation  

Domain: the set of living persons  
n: Icabod  
Hx: x is happy  
Rx: x is rich  

Formalization  

(∀x) (Hx v Rx), �Hn � Rn  

Derivation  
Prem (1) (∀x)(Hx v Rx)  
Prem (2) �Hn  
1 (3) Hn v Rn 1∀E  
1,2 (4) Rn 2,3 SIS (�P, P v Q � Q)  
Note that we have used a propositional logic sequent. QL is to be regarded as 

an extension of PL and thus contains the theorems and sequents of PL. These 
may be appealed to in carrying our derivations in QL. Any formula of QL may 
be substituted for the propositional letters of PL. This means that we have to 
modify our definition of a wff of PL which will be done in the next chapter.  
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Example 5.3.2  

Argument  

Nobody is happy. Those who aren’t rich are happy. Therefore everybody is rich.  

Interpretation  

Domain: set of living persons  
Hx: x is happy  
Rx: x is rich  

Formalization  

(∀x) �Hx, (∀x) (�Rx → Hx) �(∀x)Rx  

Derivation  

The result at line (6), Ra, rests on no premises in which a occurs hence we can 
apply the rule ∀I to obtain (∀x)Rx.  

Example 5.3.3  

Argument  

If it rains, everyone will be unhappy. So if it rains, Icabod will not be happy.  

Interpretation  

Domain: the set of living persons  
P: it rains  
Hx: x is happy  
n: Icabod  

Prem  (1) (∀x) �Hx  
Prem  (2) (∀x) (�Rx → Hx)  
1  (3) �Ha  1∀E  
2  (4) �Ra → Ha  2∀E  
1,2  (5) ��Ra  3,4 SIS (�Q, P → Q ��P)  
1,2  (6) Ra 5 �E  
1,2  (7) (∀x)Rx  6 ∀I  
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Formalization  

P → (∀x) �Hx � P → �Hn  

Derivation  

Notice that the validity of this argument does not depend on the internal 
structure of the premise ‘It rains’ and consequently we formalize it with the 
propositional letter P.  

EXERCISES  

Prem  (1)  P → (∀x) �Hx  
Prem  (2) P
1,2  (3)  (∀x) �Hx  1,2, → E  
1,2  (4)  �Hn  3∀E  
1  (5)  P → �Hn  2,4 → I  

1 Derive the following sequents:  
(a) (∀x) (Fx v Gx) � � (∀x) (Gx v Fx)  
(b) (∀x) (Fx & Gx) � (∀x)Fx  
(c) (∀x) (Fx & Gx) � � (∀x)Fx & (∀x)Gx  
(d) (∀x) (Fx → Gx), (∀x)Fx � (∀x)Gx  
(e) (∀x) (Fx v Gx), (∀x) �Fx � (∀x)Gx  

2 Formalize the following arguments. If valid derive the resulting sequent:  
(a) All students are poor. Blessed are the poor. So students are blessed.  
(b) All students are poor. Therefore no one rich is a student.  
(c) All Balliol student are sympatico. Reagan is not sympatico. Therefore he 

isn’t a Balliol student.  
(d) You aren’t a doctor. For no doctor is enthusiastic and you are 

enthusiastic.  
(e) Philosophers are wise but mad. So no one who is sane is a philosopher.  
(f) Any philosopher is wiser than any politician. Heidegger is a philosopher 

and Thatcher is a politician. That means that Heidegger is wiser than 
Thatcher.  

(g) Any Australian is taller than any Norwegian. Bruce is an Australian. 
Therefore all Norwegians are smaller than Bruce.  

(h) All persons are mortal. So no immortal is a person.  
(i) Some politicians are fools. No fool is a philosopher. Therefore some 

politicians are not philosophers.  
(j) Politicians are foolish or unintelligent. Some politicians are intelligent. 
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4 NATURAL DEDUCTION RULES FOR THE EXISTENTIAL 
QUANTIFIER  

If ‘n’ is the name of an object and if it is true that n has the property expressed 
by ‘Fx’, i.e. if Fn, it is true that something has the property expressed by ‘Fx’, 
i.e. (∃x)Fx. Further, if it is true for an arbitrary name ‘a’ that Fa, it is true that 
(∃x)Fx. These inferences are licensed by the rule of existential introduction, ∃I. 
It permits the derivation of (∃x)Ax from At where ‘t’ is a proper name or an 
arbitrary name and x replaces some or all occurrences of ‘t’ in At. (∃x)Ax will 
rest on whatever premises At rests on and rests on At if At is itself a premise. In 
citing the rule of ∃I the number of the line to which it is applied is given as 
illustrated below.  

Example 5.4.1  

Argument  

Icabod is flippant. Those who are flippant are dispensable.  
Therefore, someone is dispensable.  

Interpretation  

Domain: set of living persons  
n: Icabod  
Fx: x is flippant  
Dx: x is dispensable  

Formalization  

Fn, (∀x) (Fx → Dx) � (∃x)Dx  

Derivation  

So some must be foolish.  
(k) I think. Any thinking thing exists. Therefore I exist.  
(l) The meek shall inherit the earth. Balliol students are definitely not meek. 

Therefore none of them will inherit the earth.  

Prem  (1) Fn
Prem  (2)  (∀x) (Fx → Dx)  
2  (3)  Fn → Dn  2 ∀E  
1,2  (4)  Dn  1,3 → E  
1,2  (5)  (∃x)Dx  4 ∃I  
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Example 5.4.2  

Argument  

Everyone is happy and loveable. So someone is loveable.  

Interpretation  

Domain: set of living persons  
Hx: x is happy  
Lx: x is loveable  

Formalization  

(∀x) (Hx & Lx) � (∃x)Lx  

Derivation  

Note that the rule of ∃I allows the replacement of either some or all occurrences 
of a name (proper or arbitrary). This contrasts with rule of ∀I which requires that 
all occurrences of a name ‘t’ be replaced in At in obtaining (∀x)Ax. Using ∃I, 
given a premise that Icabod loves himself, formalized as ‘Lnn’ we can infer any 
of the following:  

(∃x)Lxx: Someone loves himself  
(∃x)Lnx: Icabod loves someone  
(∃x)Lxn: Someone loves Icabod  
(∃x) (∃y)Lxy: Someone loves someone  

If it was permitted to replace only some occurrences of a name in using ∀I it 
would be possible to derive the formalization of the following invalid argument:  

Argument  

Everyone loves themselves. Therefore everyone loves everyone.  

Interpretation  

Domain: a set of narcissistic egoists  

Prem  (1)  (∀x)(Hx & Lx)  
1  (2)  Ha & La  1∀E  
1  (3) La 2 &E 
1  (4)  (∃x)Lx  3 ∃I  
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Lxy: x loves y  

Formalization  

(∀x)Lxx � (∀x) (∀y)Lxy  

Derivation  

The requirement that all occurrences of a name be replaced by a variable in 
appending a universal quantifier was violated in the above ‘proof’ at line (3) 
allowing the derivation of an invalid sequent.  

The final rule for quantifiers is Existential Elimination, ∃E. In presenting the 
mechanics of this rule which are not particularly easy to grasp we will consider 
the following example.  

Example 5.4.3.  

Argument  

Someone is happy. The happy are lucky. Therefore someone is lucky.  

Interpretation  

Domain: a set of living persons  
Hx: x is happy  
Lx: x is lucky  

Formalization  

(∃x)Hx, (∀x)(Hx → Lx) � (∃x)Lx  

Suppose that the domain contains only two persons named ‘n’ and ‘m’. 
Knowing that, suppose we decided to use instead of the premise ‘(∃x)
Hx’ the premise: Hn v Hm. In this case the formalization would be: Hn 
v Hm, (∀x) (Hx → Lx) � (∃x)Lx.  

(see opposite page)  
If we are dealing with a domain with a finite number of objects having the 

names ‘n’ 1’ ‘n’ 2,…‘n’ n we could use as a premise ‘Fn 1 v Fn 2 v…Fnn instead 

  

 

Prem  (1)  (∀x)Lxx  
1  (2)  Laa  1∀E  
1  (3)  (∀y)Lay  2∀I  
1  (4)  (∀x) (∀y)Lxy  3∀I  
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of ‘(∃x)Fx’. However, while there is this analogy between disjunction and 
existential quantification, we cannot always use the former in preference to the 
latter. For we need to be able to deal with a situation in which there are an 
infinite number of objects in the domain. This cannot be dealt with as above for 
we would never be finished writing down the disjunction! We need a strategy 
for dealing with all cases uniformly, which can be developed if we notice that 
there is no significant difference in the sub-derivations in the two branches of 
the derivation given above. The only difference is in the name that occurs. If we 
had used a disjunction ascribing the property to a larger number of objects, say, 
Hm v Hn v Ho, nothing would have been changed save the names in each sub-
derivation. If we can carry out such a derivation with a name, ‘n’, we can carry 
it out with any other name. With this in mind we return to the sequent (∃x)Hx, 
(∀x) (Hx → Lx) � (∃x)Lx. Under the assump-  

tion that (∃x)Hx we know that there is at least one object which satisfies the 
predicate ‘H’. That is, there is some object which could be named and which has 
the property expressed by ‘Hx’. Let us suppose that Ha where ‘a’ is an arbitrary 
name. Obviously we can use the derivation on one of the sub-branches to derive 
(∃x)Lx from Ha. If, as is the case, the derivation of that conclusion does not rest 
on any premise containing an occurrence of ‘a’, say, La we have arrived at the 
conclusion without assuming anything about a save that it satisfies Hx. We have 
in effect let ‘a’ be a temporary name of a typical satisfier of Hx. If it follows 
from the assumption that Ha that (∃x)Lx, then it follows from (∃x)Hx that (∃x)
Lx given that the derivation of (∃x)Lx from Ha does not depend on any premises 
containing an occurrence of ‘a’ save the premise Ha. This is the rule of 
Existential Elimination ∃E which states:  

Given that the formula Aa is obtained by replacing all occurrences of ‘x’ in Ax 
by ‘a’, if a conclusion C which does not contain an occurrence of a can be 
derived from Aa not resting on any premises containing an occurrence of 
‘a’ (save Aa itself), Existential Elimination licenses the inference of C resting on 
(∃x) Ax or on whatever (∃x) Ax rests on if it is not a premise and on any 
premises on which C rests in the derivation of C from Aa excepting Aa. In citing 

Derivation  
Prem  (1)  Hm v Hn
Prem  (2)  (∀x)(Hx → Lx)  
Prem  (3)  Hm  Prem (7) Hn
2  (4)  Hm → Lm  2∀E  2  (8)  Hn → Ln  2∀E  
2,3  (5)  Lm  3,4 → E  2,7  (9)  Ln  7,8 → E  
2,3  (6)  (∃x)Lx  5∃I  2,7  (10) (∃x)Lx  9∃I  
1,2  (11)  (∃x)Lx  1,3,6,7,10 vE  
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the rule, we give the line at which (∃x) Ax occurs, the line at which Aa is 
assumed and the line at which C is derived.  

Using the rule the derivation of the sequent given above is:  

In assuming Ha we are taking a to be a typical satisfier of ‘Hx’, and to ensure 
that it is typical and not special we are not allowed to make any further 
assumptions concerning a on which the conclusion ‘(∃x)Lx’ would depend. We 
can see that the derivation of ‘(∃x)Lx’ from ‘Ha’ is structurally similar to each 
sub-derivation that would be obtained if we had used as a premise a disjunction 
of the form: Hn 1 v Hn 2 v…v Hnn . Even if we did admit (as we do not) infinite 
disjunctions, any sub-derivation from any one of the infinite number of disjuncts 
would be structurally the same. This analogy between existential quantification 
and disjunction can thus be seen as a partial rationale for the rule of Existential 
Elimination. The derivation of ‘(∃x)Lx’ from ‘Ha’ is typical of what would have 
happened if we went through each disjunct of the possibly infinite disjunction. 
Seeing this we see that there would be no point in this possibly infinite repetition 
and we encapsulate this fact in the rule of Existential Elimination.  

It remains to be illustrated what would go wrong if we did not require that the 
conclusion derived from a formula of the form Aa did not contain any 
occurrence of a. Without it we could derive the following invalid sequent:  

Prem  (1)  (∃x) Hx  
Prem  (2)  (∀x) (Hx → Lx)  
Prem  (3) Ha
2  (4)  Ha → La  2∀E  
2,3  (5)  La  3,4 → E  
2,3  (6)  (∃x)Lx  5∃I  
1,2  (7)  (∃x)Lx  1,3,6∃E  

  

 

(∃x)Fx � (∀x)Fx.  

Prem  (1)  (∃x)Fx  

Prem  (2)  Fa  
1  (3)  Fa  1,2,2 ∃E  

1  (4)  (∀x)Fx  3∀I  
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Example 5.4.4  

Argument  

Somebody is happy. Everybody is unhappy or busy. Therefore someone is busy.  

Interpretation  

Domain: set of living persons  
Hx: x is happy  
Bx: x is busy  

Formalization  

(∃x)Hx, (∀x) (�Hx v Bx) � (∃x)Bx  

Derivation  

Example 5.4.5  

Argument  

All lions are fierce. Some lions do not drink Pernod.  
Therefore some fierce creatures don’t drink Pernod.  

Interpretation  

Domain: animals  
Lx: x is a lion  
Fx: x is fierce  

Formalization  

(∀x) (Lx → Fx), (∃x)(Lx & �Px) � (∃x)(Fx & �Px)  

Derivation  

Prem  (1) (∃x)Hx  
Prem  (2) (∀x) (�Hx v Bx)  
Prem  (3) Ha
2  (4) �Ha v Ba  2∀E  
2,3  (5) Ba 3,4 SIS (P, �P v Q �Q) 
2,3  (6) (∃x)Bx  5∃I  
1,2  (7) (∃x)Bx  1,3,6∃E  
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Example 5.4.6  

Argument  

Somebody is happy. So it is false that everybody is unhappy.  

Interpretation  

Domain: set of living persons  
Hx: x is happy  

Formalization  

(∃x)Hx � �(∀x) �Hx  

Derivation  

EXERCISES  

Prem  (1)  (∀x)(Lx → Fx)  
Prem  (2)  (∃x)(Lx & �Px)  
Prem  (3) La & �Pa
1  (4)  La → Fa  1∀E  
3  (5) La 3 &E 
1,3  (6)  Fa  4,5 → E  
3  (7) �Pa 3 &E 
1,3  (8) Fa & �Pa 6,7 &I 
1,3  (9)  (∃x)(Fx & �Px)  8∃I  
1,2  (10)  (∃x) (Fx & �Px)  2,3,9∃E  

Prem  (1)  (∃x)Hx  
Prem  (2)  (∀x) �Hx  
Prem  (3) Ha
2  (4)  �Ha  2∀E  
2,3  (5) Ha & �Ha 3,4 &I 
3  (6)  �(∀x) �Hx  2,5 �I  
1  (7)  �(∀x) �Hx  1,3,6∃E  

1 Formalize the following arguments. When valid derive the resulting sequent: 
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(a) If someone is happy, Reagan is happy. Therefore everyone is happy.  
(b) No fossil can be crossed in love. An oyster can be crossed in love. 

Therefore no oyster is a fossil.  
(c) Every eagle flies. Some pigs do not fly. Therefore some pigs are not 

eagles.  
(d) Any politician is a rogue. Unfortunately there are some politicians so 

there are some rogues.  
(e) All politicians are dispensable. Therefore nothing is a politician and 

indispensable.  
(f) Zemindars are powerful. Therefore anything that is not powerful is not a 

zemindar.  
(g) If it rains, the apples are happy. If it snows the children are happy. 

Either it rains or it snows. Hence something is happy.  
(h) Nobody likes a fool. Icabod is a fool. Therefore nobody likes Icabod.  
(i) All Canadians are boring. Someone is not boring. Therefore not 

everyone is Canadian.  
(j) It is false that some are neither boring nor rich. Hence someone is rich 

because someone is not boring.  
(k) Someone loves everyone. Therefore someone loves Icabod.  
(l) Someone is despicable or falsely maligned. No one is despicable. 

Therefore someone is falsely maligned.  
(m) If someone is taller than someone then the latter is not taller than the 

former. Someone is taller than someone. So it is false that everyone is 
taller than everyone.  

(n) There are children. Any child has a parent. So obviously no one lacks a 
parent.  

2 Derive the following sequents:  
(a) (∀x)Fx � � (∀y)Fy  
(b) (∃x)Fx � � (∃y)Fy  
(c) (∀x)(∀y)Fxy � � (∀y)(∀x)Fxy  
(d) (∃x)(∃y)Fxy � � (∃y)(∃y)Fxy  
(e) (∃x)(∀y)Fxy � (∀y)(∃x)Fxy  
(f) (∀x)(Fx → Gx) � (∀x) �Gx → (∀x) �Fx  
(g) (∀x)(Fx → Gx) � (∃x) �Gx → (∃x) �Fx  

3 Derive the following sequents:  
(a) (∀x)Fx � � �(∃x) �Fx  
(b) (∃x)Fx � � �(∀x) �Fx  
(c) (∀x)(P → Fx) � � P → (∀x)Fx  
(d) (∀x)(P & Fx) � � P & (∀x)Fx  
(e) (∀x)(P v Fx) � � P v (∀x)Fx  
(f) (∃x)(P v Fx) � � P v (∃x)Fx  
(g) (∃x)(P & Fx) � � P & (∃x)Fx  
(h) (∃x)(Fx → P) � � (∀x)Fx → P  
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(i) (∀x) (Fx → P) � � (∃x)Fx → P  

4 Formalize the following arguments. If the argument is not valid as it stands 
consider whether some premise might reasonably be taken to be implicit. If 
the resulting argument is valid derive the sequent.  
(a) All events have some event as their cause. Causes come before their 

effects in time. Therefore there was no first event.  
(b) My hand exists. My hand is physical. Hence not everything which exists 

is mental.  
(c) I see mountains and streams. Everything I see is an idea. Therefore 

mountains and streams are but ideas.  
(d) Fresh strawberries are better than oranges. Oranges are better than 

radishes. Therefore, fresh strawberries are better than radishes.  
(e) Nothing is better than God. God is better than Icabod. So, obviously, 

nothing is better than Icabod.  
(f) Only an idea is like an idea. I have an idea which is like Icabod. So 

Icabod is an idea.  
(g) There is no legitimate idea without a corresponding impression. There is 

no impression corresponding to the idea of necessary connexion. So the 
idea of necessary connexion is not legitimate.  

(h) No moment is before itself. There is a moment before any moment. 
Some event happens every moment. Consequently, there was no first 
event.  

(i) Every person has a soul. No animal has a soul. Therefore no animal is a 
person.  

(j) If a table is red then any part of its surface is red. Atoms are part of the 
surface of any table. Thus some atoms are red.  

(k) All conscious beings are in time. Anything in time is subject to change. 
So if God is conscious he is not immutable.  
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CHAPTER 6  
Logical analysis  

1 IDENTITY  

Consider the following sentences:  

Jekyll is Hyde.  
Cicero is Tully.  
Everest is Chomolongolinga.  

Each of these expresses an identity. Each asserts that the object denoted by one 
name is the same object as the one denoted by the other name. We obtained 
predicates by replacing names in indicative sentences by variables. Replacing 
‘Jekyll’ by ‘x’ and ‘Hyde’ by ‘y’ we obtain the predicate expression ‘x is y’. The 
‘is’ here is what we will call the ‘is’ of identity. It expresses the property of 
being identical to and is to be contrasted with the occurrence of ‘is’ in sentences 
such as ‘Icabod is happy’ where the ‘is’ is the ‘is’ of predication and expresses 
the fact that Icabod possesses the property of happiness. It does not say that 
Icabod is identical to happiness. We can greatly increase the expressive power 
of our language if we include this predicate. We might introduce, say, ‘Ixy’ to 
express the property of identity. However, in view of the special role that this 
predicate will play we use the symbol ‘=’, writing the predicate as ‘x=y’. 
Replacing the variables by names will give sentences which may or may not be 
true. For instance, replacing ‘x’ by ‘Reagan’ and ‘y’ by ‘Mrs Thatcher’ we 
would obtain the false identity statement: Reagan is Mrs Thatcher. Making the 
appropriate substitutions we can obtain the true identity statements with which 
we began.  

Many interesting identity statements involve definite descriptions. A definite 
description is an expression formed by concatenating a predicate with the word 
‘the’ as in ‘the happiest man’ or ‘the clever student’. Examples of identity 
statements involving definite descriptions are:  

Icabod is the strangest student in Balliol.  
The President is Reagan, alas.  
The square root of 25 is 5.  

One might introduce into our language a special symbol for the word ‘the’ as it 
functions in definite descriptions. However, it turns out that using a device of 
Russell’s we can express definite descriptions using the quantifiers and the 



symbol for identity. To see how this works we reflect on what has to be true for 
a sentence containing a definite description to be true. For this purpose consider 
the sentence ‘The professor is mad’ uttered at a party. First, there has to be a 
professor present. If there is no professor it cannot be true that the professor is 
mad. Further, there cannot be more than one professor present. The word ‘the’ 
carries the implication of uniqueness. Definite descriptions are used to pick out 
unique objects to talk about. We cannot successfully pick out an object using 
such a phrase if there are several objects satisfying the description following 
‘the’. For instance, in the context we are imagining the phrase ‘the student’ 
would fail to pick out a particular person to talk about if there were several 
students present. For a sentence such as ‘The professor is mad’ to be true, then, 
there has to be one and only one professor and he has to be mad.  

One qualification has to be made. When someone uses a definite description 
he or she will have in mind some particular domain. In the above example the 
domain consists of the persons at the party. When we speak of one and only one 
professor we mean not that there is only one professor in the entire world (happy 
thought) but that there is only one professor in the domain. Let ‘Px’ express the 
property of being a professor and let ‘Mx’ express the property of being mad. 
The sentence ‘(∃x)Px’ says that there is a professor. The sentence ‘(∀x)(∀y)(Px 
& Py → x=y)’ says that there is at most one professor. For using our pedantic 
reading we render it as: Take anything you like, x, take anything you like, y, if x 
and y are professors then x is y. If you have found a professor and seek to find 
another professor, anything that turns out to be a professor will turn out to be the 
one you already have. Consider the sentence ‘(∀x)(Px → Mx)’. This says that 
anything that is a professor is mad. Taking the conjunction of these three 
sentences gives ‘(∃x)(Px) & (∀x)∀y(Px & Py→x=y) & (∀x)(Px → Mx)’. The 
conjunction says that there is at least one professor and that there is at most one 
professor and that any professor is mad. In view of the first two conjuncts, the 
third has the force of saying that the one and only one professor is mad. Having 
given this formulation we can see that it can be replaced by the terser 
formalization: (∃x)(Px & (∀y)(Py → x=y) & Mx). Reading this pedantically we 
have: you can find a professor and take anything you like, if it is a professor it is 
the one you already have and it is mad. In any domain in which the sentence 
‘The professor is mad’ is true, the formalization under the given interpretation 
will be true for that domain. Hence we will use this technique (known as 
Russell’s theory of definite descriptions) in formalizing sentences containing the 
definite description.  

In the identity sentence ‘Icabod is the mad Balliol student’ the one and only 
one mad Balliol student is said to have the property of being identical to Icabod. 
We can use Russell’s technique for handling definite descriptions to formulate 
this as follows where ‘Mx’ is used for ‘x is mad’, ‘Bx’ for ‘x is a Balliol 
Student’, n for Icabod and the domain is students: (∃x)((Mx & Bx) & (∀y) (My & 
By → x=y) & (x=n)). This says that you can find a mad Balliol student and only 
one such and that he is Icabod where Icabod is denoted by ‘n’. The above 
procedure enables us to express definite descriptions within our predicate 

Logical analysis     111



language without having to introduce a special symbol for the word ‘the’. 
However, care must be taken in applying Russell’s theory of descriptions in 
effecting translations from English. For not all occurrences of the word ‘the’ 
indicate a definite description. For instance, if someone says that the whale is a 
mammal it is unlikely that he wishes to say that there is one and only one whale 
and that it is a mammal. In which case applying Russell’s theory would be 
inappropriate. It is much more likely that he means that all whales are mammals 
in which case the ‘the’ is functioning as a disguised universal quantifier.  

Example 6.1.1  

Icabod’s father is unhappy.  

Interpretation  

Domain: living persons  
n: Icabod  
Fxy: x is a father of y  
Hx: x is happy  

Formalization  

(∃x)(Fxn & (∀y)(Fyn → x=y) & �Hx  

The phrase ‘Icabod’s father’ is idiomatic for ‘the father of Icabod’. The 
formalization says that Icabod has a unique father and that he, the 
father, has the property of not being happy.  

Example 6.1.2  

The Prime Minister is Margaret Thatcher.  

Interpretation  

Domain: inhabitants of the British Isles excluding Eire  
n: Margaret Thatcher  
Px: x is a Prime Minister  

Formalization  

(∃x)(Px & (∀y)(Py → x=y) & (x=n))  

In this example the definite description, The Prime Minister, picks out 
a person who is said to be identical to Margaret Thatcher. That is, the 
sentence asserts that the unique thing which is Prime Minister has the 
property of being identical to Margaret Thatcher.  
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Example 6.1.3  

The winner is the professor.  

Interpretation  

Domain: group of students and a professor  
Wx: x is a winner  
Px: x is a professor  

Formalization  

(∃x) (Wx & (∀y)(Wy → x=y) &  
(∃z)(Pz & (∀y)(Py → x=y) & (x=z)))  

In this case we formalize the thought that there is a unique winner and 
the thought that there is a unique professor. The unique professor is 
then said to be identical to the unique winner. Notice that we can re-use 
the ‘y’ in the second uniqueness clause because the scope of the first 
universal quantifier in ‘y’ is terminated by a bracket. Of course we 
could have used a different variable for the second uniqueness clause 
had we wished.  

The first of our two rules of identity, identity introduction, says that for any 
proper name, say, ‘n’ in our language, n=n or that for any arbitrary name in our 
language, say ‘a’, a=a. This seems unobjectionable. How could n fail to be 
identical to itself? However, some qualification is required. The rule as stated 
would license us to write for any proper name ‘n’, ‘n=n’ as a line of a proof not 
resting on any premise and not being itself a premise. Similarly for any arbitrary 
names, ‘a’, we could write ‘a=a’ as a line not resting on any premise and not 
being itself a premise. This rule enables us to prove as a theorem that n=n or that 
a=a for any proper name ‘n’ or any arbitrary name ‘a’. Since theorems are 
intended to be logical truths, if our logic is well-designed the sentence ‘n=n’ will 
have to come out true no matter what domain we select and no matter what 
object in that domain we take ‘n’ to designate. Given the rule of identity 
introduction, hereafter cited as =I, we can construct the following proof:  

Line 2 rests on no premises. It is a theorem which states that there is something 
which is identical to n. Suppose that we allowed into our language a name which 
was not a name for anything. In which case we could use the argument above to 
prove that the name was a name for something after all and, indeed, that it was a 
name for something as a matter of logic! This reveals the restriction required. In 

(1)  n=n =I 
(2)  (∃x)(x=n)  1 ∃I  
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our rule of identity introduc- tion we have to restrict attention to names that are 
names for things. No interpretation will be allowed to be legitimate unless it 
gives the names being used a denotation within the domain being considered. Of 
course in English not all names are required to have a designation in all 
domains. For instance, in the domain of living animals ‘Cerberus’ has no 
designation. And in the domain of living persons ‘Napoleon’ has no designation. 
We will consider below how to handle in our formal language, names in English 
which do not have a designation.  

The second rule of identity, called identity elimination (=E), states with 
qualifications that if n=m (a=b), then whatever is true of n is true of m (is true of 
a is true of b). This principle is plausible for it amounts to saying that if an 
object has a property it does not matter which name for the object one uses in 
saying that it has the property. It is one of a pair of principles of identity 
associated with Leibniz (1646–1716). However, it might well have been 
associated with Shakespeare (1564–1616) who said, truly, that a rose by any 
other name smells as sweet. If you call your rose ‘Henry’ and if it is true that 
Henry smells sweet, and if you were to introduce a new name ‘George’ for that 
same rose, ‘George smells sweet’ will be true.  

Some qualifications are required in the rule as the following example 
illustrates. Suppose that ‘Cicero’ and ‘Tully’ are names for the same person. 
Icabod believes that Cicero was a philosopher. Icabod does not believe that 
Cicero was Tully. He thinks that ‘Tully’ is the name of some man of action who 
despised philosophy. It is then true that Icabod believes that Cicero was a 
philosopher and false that Icabod believes that Tully was a philosopher. But the 
latter can be obtained from the former by applying the principle of identity 
elimination. To see this we note that by removing the name, ‘Cicero’, in ‘Icabod 
believes that Cicero was a philosopher’ gives us a predicate ‘Icabod believes 
that x was a philosopher’, a predicate expressing a property which applies to 
Cicero. But since Cicero=Tully, the principle of identity elimination, if used 
without qualification, would license us to infer that that property applied to 
Tully. But it does not. Icabod, we imagine, militantly denies that he believes that 
Tully was a philosopher.  

Philosophers and logicians do not see this sort of counter-example as 
providing a reason for simply rejecting the rule of =E outright. For there is 
something systematic about the counter-examples and there is general 
agreement on which types of case do generate exceptions. There is, however, 
considerable disagreement when one tries to characterize the special cases and 
to explain what it is about those cases that makes them exceptions.  

One important class of exceptions is generated by what have been called 
‘propositional attitude’ expressions. These include: _ believes that _, _ fears that 
_, _ hopes that _, _ wishes that _, _ sees that _, _ thinks that _, _ imagines that _. 
The term ‘propositional attitude’ is used because many philosophers regard 
these expressions as conveying an attitude a person can have to a proposition. 
For instance, Icabod hopes that Isabel will win the lottery. One might describe 
Icabod as having the attitude to the proposition that Isabel will win the lottery of 
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hoping it to be true. Whether this is the best way to regard such expressions is a 
controversial matter and we use the expression without implying acceptance of 
this construal. To further illustrate the failure of =E in the case of propositional 
attitudes consider the following situations.  

Icabod knows of Dr Jekyll as a kindly and skilful doctor. Many times he has 
expressed the sincere hope that Dr Jekyll would agree to be his doctor. In fact Dr 
Jekyll is Mr Hyde. Icabod knows of Mr Hyde as a cruel and deranged 
incompetent. He has said he would hope never to have anything to do with such 
a person as Mr Hyde. If we applied =E to the truth that Icabod hopes that Dr 
Jekyll will become his doctor we obtain the falsehood: Icabod hopes that Mr 
Hyde will become his doctor.  

Suppose Icabod is learning geometry at which he is particularly inept. In a 
class ‘a’ is introduced as the name for the hypotenuse of a right-angled triangle. 
Icabod realizes that a=a (he has mastered the rule of =I if not much geometry). 

In fact  by Pythagoras’ theorem. But if we substituted 

 for a in the truth ‘Icabod realizes that a=a’ we would generate a 

false conclusion; namely, ‘Icabod realizes that . In this 
example we have considered substituting for a name ‘a’ an expression 

 which is in fact a definite description. It means: the square root of 
the sum of the squares of b and c. Any two expressions (names and/or definite 
descriptions) that refer to the same thing are said to be ‘co-referring’. The basic 
principle of =E in English would license the substitution for a referring term by 
a co-referring expression. However, we will restrict the formulation to one in 
terms of names only. For we will be using Russell’s theory of definite 
descriptions to dispense with phrases of the form: The F. See below for 
illustrations.  

In addition to propositional attitude expressions, expressions for modalities 
also generate counter-examples to =E. The primary examples of modal 
expressions are: It is possible that _, it is impossible that _, it is necessary that _. 
The failure of =E in the case of modalities is illustrated in the following 
examples:  

It is necessarily true that 9=9.  
9=the number of planets.  
Therefore, it is necessarily true that 9=the number of planets.  

The premises are true but the conclusion false. For it might well have been that 
there were more than 9 or less than 9 planets.  

It could have been that Harold Wilson is the Prime Minister of England.  
The Prime Minister is Margaret Thatcher.  
Therefore, it could have been that Harold Wilson is Margaret Thatcher.  
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In this example the phrase ‘could have been’ expresses a kind of possibility, a 
possibility which we can easily imagine having been realized (politics being the 
fickle business that it is). The idea that Harold Wilson might be Margaret 
Thatcher is certainly false. The substitution of the co-referring expression 
‘Margaret Thatcher’ for ‘The Prime Minister’ is thus seen to take us from a truth 
to a falsehood.  

Sentences involving time may also generate failures of =E. Consider the 
sentence ‘The Master of Balliol was in love with Florence Nightingale’. 
Benjamin Jowett, the famous nineteenth-century Master of Balliol, was a close 
friend of Florence Nightingale and with perhaps a little bit of licence we can 
imagine that it was true that he was in love with her. At the present time the 
Master is Anthony Kenny. Thus we have a true identity: The Master of Balliol is 
Anthony Kenny. Substituting ‘Anthony Kenny’ for ‘The Master of Balliol’ in 
the true sentence above gives: Anthony Kenny was in love with Florence 
Nightingale. This has to be false. For Florence Nightingale was deceased long 
before Anthony Kenny was even born.  

We have illustrated some of the types of case which produce a failure of =E. 
To attempt to give a systematic characterization of all types of counter-example 
to =E would take us beyond the scope of this work. Instead we will simply 
define a proposition to be extensional just in case it does not provide a counter-
example to =E. We restrict the application of our logic to extensional 
propositions. No sentence which could give rise to a failure of extensionality 
(that is, a failure of =E) is to be represented in our logic.  

Non-extensional propositions also generate problems with the existential 
quantifier. The rule of ∃I allows the inference of (∃x)(Fx) from the premise Fn, 
resting on whatever Fn rests on. Consider the non-extensional sentence: I 
believe Icabod is a spy. Perhaps there is some real person, Icabod, whom I 
believe to be a spy. Or perhaps I am even more deluded and believe in the 
existence of Icabod when in fact he is a product of my imagination. Applying ∃I 
in replacing ‘Icabod’ gives an ambiguity of scope which reflects these two 
possibilities. ‘I believe someone is a spy’ might mean either:  

The former is true only if there is some real person and I believe that real person 
to be a spy. The latter could be true because I believe some imaginary character 
to be a spy. The difference between these two propositions is a matter of scope. 
In 1 the existential quantifier has larger scope than the sentence-forming 
operator ‘I believe’. In 2 the existential quantifier, on the other hand, is within 
the scope of the belief operator.  

If we were to allow non-extensional propositions to be expressed in our 
language, the rule of ∃I would need restricting to prevent the derivation of a 
falsehood ‘There is someone whom I believe to be a spy’ from the truth ‘I 
believe Icabod is a spy’. Interesting and important as the question of how to deal 

1  There is someone whom I believe to be a spy.  
2  I believe there is someone who is a spy.  
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with quantification in the case of non-extensional propositions is, it takes us 
beyond the scope of this introductory work. By restricting attention to non-
extensional propositions we can use =E and ∃I without restriction. In calling the 
proposition that I believe someone to be a spy non-extensional, we have 
implicitly extended the definition of that notion to include any proposition with 
an existential quantifier which gives a non-extensional proposition on the 
replacement of the quantifier by a name, i.e. as in the use of ∃E.  

The rules for identity extend the range of arguments the validity of which can 
be established in our logic as is illustrated below.  

Example 6.2.1  

Bacon is Shakespeare. Shakespeare is bi-sexual. Therefore Bacon is bi-sexual.  

Interpretation  

Domain: all persons, who are alive or who have been alive.  
n: Shakespeare  
m: Bacon  
Bx: x is bi-sexual  

Formalization  

n=m, Bn � Bm  

Derivation  

Notice that in citing the rule of =E we give the two lines to which it is applied. 
One line will be of the form t=s where ‘t’ and ‘s’ are proper or arbitrary names. 
The other line will contain at least one of these names. The conclusion is 
obtained by replacing at least one occurrence of the one name by the other 
name. Notice that we have taken the domain to be persons who are alive or who 
have been alive. There is nothing in our logic which requires that the domain be 
restricted to presently existing persons or things.  

Example 6.2.2  

Argument  

The only monetarists are Reagan and Thatcher. Both Reagan and Thatcher are 
silly. So all monetarists are silly.  

Prem  (1) n=m
Prem  (2) Bn
1,2  (3) Bm 1,2 =E 
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Interpretation  

Domain: the set of all living persons  
n: Reagan  
m: Thatcher  
Mx: x is a monetarist  
Sx: x is silly  

Formalization  

(∀x)(Mx → x=n v x=m), Sn & Sm, � (∀x)(Mx → Sx)  

(see next page)  

Example 6.2.3  

Argument  

Hesperus is Phosphorus. Hesperus is a planet. No planet is a star. Therefore 
Phosphorus is not a star.  

Interpretation  

Domain: the set of heavenly bodies  
m: Hesperus  
n: Phosphorus  
Px: x is a planet  
Sx: x is a star  

Formalization  

m=n, Pm, (∀x)(Px → �Sx) � �Sn  

Derivation  
Prem (1)  (∀x)(Mx → x=n v x=m) 
Prem (2)  Sn & Sm
Prem (3)  (∀x)(Mx → Sx)  
Prem (4)  Ma  
1  (5)  Ma → a=n v a=m  1 ∀E  
1,4  (6)  a=n v a=m  4,5, →E  
Prem (7)  a=n  
2  (8)  Sn  2 &E 
2,7  (9)  Sa  7,8 =E  Prem (10) a=m
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Derivation  

Example 6.2.4  

Argument  

Ronald Reagan is the President. The President is an actor. Therefore Ronald 
Reagan is an actor.  

Interpretation  

Domain: the set of living American citizens  
n: Ronald Reagan  
Px: x is president  
Ax: x is an actor  

Formalization  

(∃x)(Px & (∀y)(Py → x=y) & (x=n))  
(∃x)(Px & (∀y)(Py → x=y) & Ax)  
� An  

(see next page)  

EXERCISES  

1,2,4 (13) Sa  6,7,9, 10, 12 vE 2 (11) Sm 2 &E 
1,2  (14) Ma → Sa  4,10 →I  2,10 (12) Sa  10,11 =E 
1,2  (15) (∀x)(Mx → Sx)  14 ∀I  

Prem  (1) m=n
Prem  (2) Pm
Prem  (3)  (∀x)(Px → �Sx)  
3  (4)  Pm → �Sm  3 ∀E  
2,3  (5)  �Sm  2,4 →E  
1,2,3  (6) �Sn 1,5 =E 

1 Formalize the following sentences. Specify your interpretation and if the 
English sentence is ambiguous give alternative formalizations.  
(a) The zemindar is bald.  
(b) The zemindar is not bald.  
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(c) The horse is a carnivore.  
(d) The horse is old.  
(e) Icabod is taller than anyone else.  
(f) The smartest student is Ronald.  

Derivation  

(g) A man’s house is his castle.  
(h) The train is slow.  
(i) Isabel’s cousin is happier than Icabod’s mother.  
(j) The workers despise the boss.  
(k) The first event was a big bang.  
(l) The largest city in Canada is the most boring city in the world.  
(m) This novel is pretentious.  
(n) The devil does not exist.  
(o) Nothing is more evil than the devil.  

2 Formalize the following arguments. If valid derive the resulting sequent:  
(a) Icabod sings better than Robert Zimmerman. But Robert Zimmerman is 

Bob Dylan. So Icabod sings better than Bob Dylan.  
(b) Nobody is wiser than Cicero. Therefore no one is wiser than Tully for 

Tully is Cicero.  
(c) Icabod loves anyone who does not love her or himself. So Icabod loves 

himself.  
(d) Icabod kissed all the girls in Grade 4. Francis Gumm was in Grade 4. 

Therefore Icabod kissed Judy Garland because she is really Francis 

Prem  (1)  (∃x)(Px & (∀y)(Py → x=y) & (x=n))  
Prem  (2)  (∃x)(Px & (∀y)(Py → x=y) & Ax)  
Prem  (3)  Pa & (∀y)(Py → a=y) & (a=n)  
Prem  (4)  Pb & (∀y)(Py → b=y) & Ab  
3  (5)  (∀y)(Py → a=y) & (a=n)  3 &E  
4  (6)  (∀y)(Py → b=y) & Ab  4 &E  
3  (7)  (∀y)(Py → a=y)  5 &E  
4  (8)  Ab 6 &E 
3  (9)  Pb → a=b  7 ∀E  
4  (10)  Pb 4 &E 
3,4  (11)  a=b  9,10 →E  
3  (12)  a=n 5 &E 
3,4  (13)  Aa 8,11 =E 
3,4  (14)  An 12,13 =E 
3,2  (15)  An  2,4,14 ∃E  
1,2  (16)  An  1,3,15 ∃E  
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2 NUMERICAL QUANTIFIERS  

The existential quantifier is used in our formal language to express the idea that 
at least one object satisfies the predicate to which the quantifier is applied. 
Having at our disposal a symbol for identity we can express the idea that at least 
two objects have a given property. For instance, suppose we wish to express the 
proposition that there are at least two students. Taking the domain to be living 
persons and ‘Sx’ as ‘x is a student’, we write:  

(∃x)(∃y)(Sx & Sy & �(x=y)).  

Gumm.  
(e) Ringo Starr is richer than anyone who lives in Builth Wells. Ringo Starr 

is actually Richard Starky. So Richard Starky is richer than anyone in 
Builth Wells.  

(f) The king is bald. Henry is the king. So Henry is bald.  
(g) The king is happy. Therefore there is a king.  
(h) The brightest heavenly body that appears in the evening is in fact a 

planet. The brightest heavenly body that disappears in the morning is the 
brightest heavenly body that appears in the evening. Therefore the 
brightest heavenly body that disappears in the morning is a planet.  

(i) Icabod is not the devil. The devil is the most evil creature. Therefore 
something is more evil than Icabod.  

(j) The father of his father was unscrupulous. His paternal grandfather was 
J.D.Rockefeller. Therefore J.D.Rockefeller was unscrupulous.  

3 Derive the following theorems:  
(a) � (∀x)(x=x)  
(b) � (∀x)(∀y)((x=y) → (y=x))  
(c) � (∀x)(∀y)(∀z)(((x=y) & (y=z)) → (x=z))  

4 Analyse the following arguments. Consider whether any implicit premises 
might legitimately be assumed. Derive the resulting sequent if the argument 
is valid.  
(a) Any thought of mine is identical to some state of my brain. All my brain 

states are located in space. Consequently, any thought of mine is located 
in space.  

(b) I can think. My body cannot think. Therefore, I am not my body.  
(c) For any number there is a greater number. Therefore there is no greatest 

number.  
(d) There is no period of time without events. Therefore there is no period 

of time before the first event.  
(e) Everything has a creator. Therefore the creator exists.  
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This says that ‘Sx’ is satisfied by a pair of distinct objects. To express the 
proposition that there are at least three students we write:  

(∃x)(∃y)(∃z)(Sx & Sy & Sz & �(x=y) & �(x=z) & �(z=y)).  

For any number, n, we can express the claim that n objects satisfy a 
given predication by using this style of formalization with n existential 
quantifiers. We can also use identity to express the idea that there is at 
most one object satisfying a given predicate. For instance, the 
proposition that there is at most one student would be represented using 
the above interpretation as follows:  

(∀x)(∀y)(Sx & Sy → x=y).  

Using the pedantic reading this says that if you find objects, x and y, 
such that both are students it will turn out that x and y are the same 
object. To express the proposition that there are at most two students 
we write:  

(∀x)(∀y)(∀z)(Sx & Sy & Sz → z=y v z=x).  

Continuing in this fashion we can formulate the proposition that there 
are at most n objects satisfying a given predicate. The formalization in 
this case will require n+1 universal quantifiers.  

Putting these two styles of formalization together we can express the 
proposition that there is exactly one student, writing:  

(∃x) Sx & (∀x)(∀y)(Sx & Sy → x=y).  

We can give a terser formalization by writing:  

(∃x) (Sx & (∀y)(Sy → x=y)).  

This says that we can find a student and that if one finds a student that 
one will turn out to be the same as has already been found. Similarly 
we can write for ‘There are two students’:  

(∃x)(∃y) ((Sx & Sy) & �(x=y) & (∀z)(Sz → x=z v y=z)).  

Or, on the terser style of formalization we have:  

(∃x)(∃y) ((Sx & Sy) & �(x=y) & (∀z)(Sz → z=x v z=y)).  

We are able in this way to express the numerically definite quantifier: 
there are exactly n…, for any number n.  
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We have referred to this expression as a quantifier. For like the universal and 
existential quantifiers, it attaches to predicates to give a sentence saying 
something, in this case something definite, about the number of things in the 
domain that satisfy the predicate. Similarly the expressions ‘there are at least 
n…’ and ‘there are at most n…’ are called respectively, the weak and strong 
inexact numerical quantifiers. By adding the identity sign to our language we 
are able to express this infinite range of additional quantifiers without having to 
add a pair of new specific expressions for each number n. To say that, for 
example, there are exactly 100 Fs, we would require a very long expression. 
However, while the expression is complex we have a perfectly mechanical way 
of generating it.  

What we have been able to do is of great philosophical interest. For instance, 
philosophers have been interested in the question of the nature of numbers. We 
talk about numbers as if they were objects. For instance, compare the 
proposition that Icabod is odd with the proposition that 5 is odd. For the former 
to be true there has to be something, Icabod, possessing the property of oddness. 
If we think of the latter proposition in this way we will conclude that there has to 
be something called ‘5’, which has the property of being odd (in the 
mathematical sense of this term). A subject-predicate sentence with a name in 
the subject position is true only if there is an object named by the name. 
Grammatically ‘5’ looks like a name and one might be inclined to assume that 
there is some object called ‘5’. But that object is apt to seem problematic. For 
one cannot perceive it. And in view of the strangeness of hypothetical numerical 
objects one may want to consider an alternative approach.  

The sentence ‘Nobody is odd’ looks at the level of surface grammar to be a 
subject-predicate sentence. However, if we treat ‘nobody’ as a name and 
imagine a context in which that sentence is true, say that there are just you and I 
in the intended domain and that we are not odd, we would be led to suppose that 
there was some mysterious invisible and intangible person, nobody, having the 
property of being odd. Given the discussion in Chapter 5 we know that ‘nobody’ 
is in fact a quantifier. We remove the temptation to treat it as a name by noting 
that the sentence is equivalent to: Take anyone you like, he or she is not strange. 
Perhaps ‘5’ could be treated more like ‘nobody’ than like ‘Icabod’. We can see 
that the above procedure for formalizing the numerical quantifiers gives us a 
way of parsing any sentence of the form ‘There are 5 Fs’ so that ‘5’ disappears 
in favour of a complex of quantifiers. It is for this reason that philosophers have 
been particularly interested in the device given, notwithstanding the fact that it 
can be cumbersome. For it allows us to get rid of the use of number words in 
many contexts. And if it could be used to get rid of expressions for numbers in 
every context we could conclude that there are no objects, called the numbers, 
but rather that it is at most a convenient accident that we talk as if they were 
objects having names. Unfortunately, while this procedure works for contexts in 
which a number is used of a property as in ‘There are n Fs’, it has not proved 
possible to apply the procedure to cases where properties such as oddness are 
applied to numbers. This controversy has been introduced to illustrate how 
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results in formal logic are applied or might be applied in the study of 
philosophical problems which on the surface appear to have nothing to do with 
logic. In this case the problem is one arising in the philosophy of mathematics 
with regard to the nature of numbers.  

EXERCISES  

3 NAMES AND DESCRIPTIONS  

Russell’s device for handling definite descriptions is not universally accepted by 
philosophers. In this section we look at this controversy and consider possible 
further applications of the theory. If we have a vacuous definite description, that 
is, a definite description which does not apply to anything, on Russell’s 
treatment of definite descriptions the sentence formed using such a description 
comes out false. For instance, consider the sentence ‘The king of France is bald’. 
Given a domain of all living persons the definite description ‘The king of 
France’ is vacuous. Russell would represent the sentence as stating that there is 
one and only one king of France and he is bald. Using ‘Kx’ for ‘x is a king of 
France’ and ‘Bx’ for ‘x is bald’ the formalization of the sentence is:  

(∃x)(Kx & (∀y)(Ky → x=y) & Bx).  

Clearly this is false as there is no king. However, one might argue that 
for the original sentence of English to be true there has to be one and 
only one king who is lacking in hair and for it to be false there has to be 
this unique existing king who has hair. If there is no king at all, the 
sentence fails to express something false and equally it fails to express 
anything true. In fact it fails to express any proposition for it fails to 
talk about anything. On this view a sentence with a vacuous subject 

1 Formalize the following sentences:  
(a) Icabod loves two women.  
(b) More than one cook spoils the broth.  
(c) Nobody has two fathers.  
(d) If two or three are present the meeting will take place.  
(e) There are exactly two things.  

2 Analyse the following arguments. Make explicit any implicit premises and 
derive the resulting sequent:  
(a) There are two proctors. Therefore there is at least one proctor.  
(b) I am a solipsist and so are you. That makes at least two of us.  
(c) Icabod is an arrogant student. So is Isabel. They are the only ones. Thus 

there are exactly two arrogant students.  
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term (a subject term that has no referent) fails to express a proposition on the 
grounds that we are not provided with any subject matter for the proposition to 
be about. Taking this view would complicate our logic. In our logic any 
sentence of the language is either true or false. On this alternative to Russell’s 
approach sentences containing vacuous definite descriptions constitute an 
exception to the claim that any sentence is either true or false. This means that 
we would have to re-structure our logic dropping such theorems as P v �P. And 
we would have to find some other device for representing definite descriptions. 
In fact we will continue to use Russell’s theory noting that even if one is 
inclined to say that ‘The king of France is bald’ is neither true nor false, no harm 
will come in counting it as false. That will enable us to use a simpler logic. One 
who objects to this procedure can regard it as a simplifying assumption to be 
relaxed at a later stage.  

We noted in our earlier discussion of identity that no vacuous names are 
permitted in our language. However, we may well wish to say, using a name, 
that that name has no bearer. For instance, one may say that Cerberus did not 
exist. How could we express that idea? First, note how we might say that Icabod 
exists by writing (∃x)(x=n) where ‘n’ is Icabod’s name. On our pedantic reading 
this says that you can find an object such that it is Icabod. However, if one tried 
to say that Icabod did not exist by denying this and writing �(∃x)(x=n) we have 
a problem. For we can prove in our logic that (∃x)(x=n) which means that the 
sentence which attempts to say that Icabod does not exist is inconsistent. One 
possible way around this difficulty is to use a definite description in place of the 
name. For instance, if asked who Cerberus was supposed to be, I might say that 
Cerberus was supposed to be the dog who guarded the gates of hell. Let us use 
‘Dx’ for the predicate ‘x is a dog who guards the gates of hell’. To say that such 
a dog exists we write:  

(∃x)(Dx) & (∀y)(Dy → x=y)).  

To say that this dog does not exist we can write:  

�(∃x)(Dx & (∀y)(Dy → x=y)).  

This sentence will be true for the domain of all actual objects given that 
Cerberus is just an imaginary dog. And thus we can express the idea 
that Cerberus does not exist by using in place of a name a definite 
description which would pick out Cerberus if he existed. Some 
philosophers, notably Russell, thought that what we mean by any name 
used in English can be conveyed by some definite description. Given a 
name used in some context one finds some description which comes to 
mind when one thinks of the named thing.  

There are many problems with this theory. How do we ascertain which 
description is appropriate to us? Russell’s own procedure of asking us to use the 
description that comes to mind when we think of the named thing means that 

Logical analysis     125



different persons may well have different descriptions associated with the same 
name. In which case we would have to say that they all meant something 
different by the same name and that is counter-intuitive. We all think that we 
mean the same thing by ‘Ronald Reagan’ even though we may differ greatly in 
the sort of description that comes to mind when we think of Ronald Reagan! 
However, replacing names by definite descriptions provides a device which 
enables us to express in our formal language negative existentials (e.g. Cerberus 
does not exist) even if the translation does not match exactly the meaning of the 
sentence in English.  

This device for dealing with names will be referred to as the replacement of a 
name by its associated definite description. As long as we specify what 
description we are associating with a name we can say that the name has no 
bearer by asserting that there is no object satisfying the definite description. This 
device can be used in the case of all names and not only for vacuous names. We 
could then dispense with proper names in our formal language, always using an 
associated description when translating a sentence from English into our 
language. Even this device will not enable us to say everything we want to 
express. For I might want to say that Cerberus did not exist but that Cerberus 
had three heads. If we use the device we can say that Cerberus did not exist. 
However, applying that device to the sentence ‘Cerberus has a head’ gives the 
following where we write ‘Hx’ for ‘x has a head’ and taking Dx as above:  

(∃x)(Dx & (∀y)(Dy → x=y) & Hx).  

But that sentence is false for there is no object satisfying the description ‘is a 
dog who guards the gates of hell’. There is no simple way around this problem. 
We might take as our domain all real and fictional animals. Using the associated 
description given for Cerberus we can say that in that domain there is one and 
only one thing which guards the gates of hell and has a head using the 
formalization given. However, we have Cerberus as existing (in that domain) 
and if we want to mark the difference between him and Trout, my real and 
existing dog, we will have to introduce some further predicates writing, say, 
‘Bx’ for ‘x is real’ and ‘Fx’ for ‘x is fictional’.  

Notice that we cannot use the existential quantifier in differentiating between 
Cerberus and Trout. For the quantifier is used to assert the existence in the 
domain of something having a given property. If the domain covers both 
fictional and real animals, to say there is a dog is to say that one can find in the 
domain something that is a dog which may be a real dog or a fictional dog. 
Some philosophers do not favour the introduction of such domains. It may seem 
to give equal status to very different things—real dogs and fictional dogs. 
However, there is nothing in the mechanics of our logic that precludes the 
introduction of such domains and they provide one way of expressing the idea 
that while Cerberus is fictional and does not exist, Cerberus had properties. We 
will not pursue this controversy further. My point is simply to illustrate some of 
the things that can be done by selection of the domain of discourse.  
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CHAPTER 7  
The theory of relations  

1 WHAT ARE RELATIONSHIPS?  

One-place predicates such as ‘x is happy’, ‘x is green’, ‘x is square’ express 
properties which can be possessed by single objects. Two-place predicates such 
as ‘x loves y’, ‘x is the brother of y’, ‘x is taller than y’ express two-term 
relations which can be possessed by pairs of objects. Three-place predicates 
such as ‘x is between y and z’ express three-term relations which can hold 
between triples of objects. In this chapter we study the properties of two-term 
relations, a subject of great philosophical and mathematical interest.  

The relation of loving which is expressed by the predicate ‘x loves y’ holds 
between certain pairs of objects and not between others. It was supposed to hold 
between Romeo and Juliet but not (apparently) between Carter and Reagan. 
Notoriously this relation may hold one way between a pair of objects but not the 
other way. This means that we need to introduce the notion of an ordered pair of 
objects. We will use the notation �O 1 , O 2� to indicate a pair of objects to be 
taken in the order first O 1 and then O 2. If Icabod loves Isabel but Isabel does 
not love Icabod, we say that the relation of loving holds between the pair 
�Icabod, Isabel� but not between the pair �Isabel, Icabod�. Using the notion 
of satisfaction introduced in Chapter 5 we can say that in this particular case the 
ordered pair �Icabod, Isabel� satisfies the predicate ‘x loves y’ and the ordered 
pair �Isabel, Icabod� does not satisfy ‘x loves y’. Given a domain of objects 
and a two-place predicate in English we can seek to ascertain the set of ordered 
pairs that satisfy the predicate. If our domain is Romeo, Juliet, Carter, Reagan, 
Icabod and Isabel and the relation holds as above and if in addition the only 
person who loves himself is Icabod the ordered pairs which satisfy the predicate 
loving ‘x loves y’ are:  

{�Romeo, Juliet� �Juliet, Romeo�  
     �Icabod, Isabel� �Icabod, Icabod�}.  

Given a two-place predicate we will say that it expresses a relation and that the 
set of ordered pairs which satisfy the relation for a given domain is the extension 
of the relation for that domain. If Reagan and Carter neither love nor like anyone 
and if Juliet and Romeo love and like only one another and if Icabod likes Isabel 
and himself and she likes nobody, the relations of loving and liking on the 
domain given above have the same extension. Different relations thus can have 
the same extension. We will see that the properties of a relation on a given 



domain are determined by the extension of the relation on that domain. Thus 
from the point of view of the properties of relations, the difference between 
loving and liking is not relevant for domains in which the extension is the same. 
This fact leads mathematicians to talk of what I have called the extension of a 
relation as the relation itself. They define a relation to be a set of ordered pairs 
of objects. We will, however, stick more closely to ordinary language and talk of 
a relation as what is expressed by a two-place predicate and refer to the set of 
ordered pairs of objects which satisfy the relation as being the extension of that 
relation or predicate. While our focus will be on two-place predicates and the 
relations they express, one can generalize and say of any n-place predicate that it 
expresses an n-term relation the extension of which will be a set of ordered n-
tuples of objects. For instance, the predicate ‘x is between y and z’ applied to the 
spatial array given below has as its extension the set of ordered 3-tuples:  

{�b, a, c�, �c, b, d�, �b, a, d�, �c, a, d�}  
a—b—c—d  

It will sometimes be convenient to give spatial representations of the extension 
of relations using what are called Hasse diagrams. We represent each object in 
the domain by a labelled dot and draw an arrow from object a to b just in case 
�a, b� satisfies the predicate. If �b, a� also satisfies the predicate we put a 
head on both ends of the line. If an object bears the relation to itself we put an 
arrow from the object which snakes back to the object. In the case of the relation 
of loving on the domain given above the Hasse diagram is:  

  

As a further illustration of the use of Hasse diagrams, we represent four possible 
situations with a domain of four persons a, b, c, d with regard to the relation of 
love:  

 

Unrequited and uncomplicated love  
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Unrequited but complicated love  

 

Requited but boring love  

 

Requited and exciting love  

EXERCISES  

2 THE PROPERTIES OF RELATIONS  

It may be that a relation on a domain is such that each object bears the relation 

1 Give the extension of the following relations:  
(a) x is greater than y. Domain is the set {1,2,3,4}.  
(b) x is the next largest number to y. Domain is the set {1,2,3,4,5}.  

2 Represent the following relations by a Hasse diagram:  
(a) x is equal to or less than y. Domain is the set {1,2,3,4}.  
(b) x is equal to 2 times y. Domain is the set {2,4,6,8,10}.  
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to itself. Such a relation is said to be reflexive on the domain. Formally we 
define a relation expressed by the predicate ‘Rxy’ to be reflexive if and only if 
(∀x)Rxx where the domain of interpretation is the domain of the relation. In a 
Hasse diagram for a reflexive relation each object will have a little arrow 
snaking back on itself. The relation expressed by the predicate ‘x is the same age 
as y’ is reflexive on the domain of persons. For any person is the same age as 
him or herself. The relation expressed by ‘x is the mother of y’ is not reflexive 
on that domain for no one is his or her own mother.  

Some relations are such that on a given domain, no object bears the relation to 
itself. Such relations are said to be irreflexive on the domain. Formally we 
define a relation expressed by the predicate ‘Rxy’ to be irreflexive on a given 
domain if and only if (∀x) �Rxx. The relation expressed by ‘x is larger than y’ 
defined on the infinite set of counting numbers {1,2,3,4,…} is irreflexive for no 
number can be larger than itself.  

It may be that a relation on a domain is neither reflexive nor irreflexive. That 
is, there may be some objects which bear the relation to themselves and other 
objects which do not bear the relation to themselves. Some people are said to 
hate themselves. Others obviously do not. That being so the relation of hating on 
the domain of persons is said to be non-reflexive. Formally the relation 
expressed by ‘Rxy’ is non-reflexive if and only if �(∀x)Rxx & �(∀x) �Rxx. It is 
easy to show that this equivalent to: (∃x) �Rxx & (∃x)Rxx. In a Hasse diagram 
for such a relation some dots will have arrows snaking back on themselves and 
others will not.  

A relation may be such that on a given domain whenever object a bears the 
relation to object b, object b bears the relation to object a. Such relations are 
symmetrical. Formally, the relation expressed by the predicate ‘Rxy’ is 
symmetrical if and only if (∀x)(∀y)(Rxy → Ryx). In the Hasse diagram for a 
symmetrical relation, any arrow between a pair of objects will have two heads. 
And in the set of ordered pairs giving the extension of the relation, we will have 
for each pair �a, b� the pair �b, a�. Examples of symmetrical relations 
include: being the same age as, being a sibling of, being equal to.  

If a relation is such that whenever object a bears it to object b, b does not bear 
the relation to a, it is asymmetrical. Formally, the relation expressed by the 
predicate ‘Rxy’ is asymmetrical if and only if (∀x)(∀y)(Rxy → �Ryx). In a Hasse 
diagram, there will be no double-headed arrows. Asymmetrical relations 
include: being greater than, being taller than, being the mother of.  

A relation may be neither asymmetrical or symmetrical. That is, it may be the 
case that �(∀x)(∀y)(Rxy → Ryx) & �(∀x)(∀y)(Rxy → �Ryx). This is equivalent 
to: (∃x)(∃y)(Rxy & �Ryx) & (∃x)(∃y)(Rxy & Ryx). In the extension of such a 
relation which is called non-symmetrical, there is at least one pair of objects 
such that the relation holds both ways and at least one pair where the relation 
holds one way but not the other. Loving, liking, hating are examples of non-
symmetrical relations.  

Transitive relations are ones such that if object a bears the relation to b, and b 
bears it to c, a bears the relation to c. Formally, the relation expressed by the 
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predicate ‘Rxy’ is transitive if and only if (∀x)(∀y)(∀z)(Rxy & Ryz → Rxz). 
Transitive relations include: being the same age, being taller than, being greater 
than. If a relation is such that whenever a bears it to b and b to c, a does not bear 
it to c, it is intransitive. Formally the definition is: the relation expressed by the 
predicate ‘Rxy’ is intransitive if and only if (∀x)(∀y)(∀z)(Rxy & Ryz → �Rxz). 
Intransitive relations include those of being the next biggest number to (in the 
domain of the counting numbers) and being the father of. Non-transitive 
relations are those which are neither transitive nor intransitive. Formally the 
relation expressed by ‘Rxy’ is non-transitive just in case �(∀x)(∀y)(∀z) (Rxy & 
Ryz → Rxz) & �(∀x)(∀y)(∀z)(Rxy & Ryz → �Rxz) which is equivalent to: (∃x)
(∃y)(∃z)(Rxy & Ryz & Rxz) & (∃x) (∃y)(∃z)(Rxy & Ryz & �Rxz). Examples of 
non-transitive relations are loving, liking, disliking.  

To conclude the list of basic properties of relations that will concern us we 
define a strongly connected relation to be one which holds one way or the other 
of any pair of objects from the domain in question. That is, ‘Rxy’ expresses a 
strongly connected relation if and only if (∀x)(∀y)(Rxy v Ryx). The relation of 
being equal to or less than is strongly connected on the domain of the counting 
numbers. If for every distinct pair of objects a relation holds one way or the 
other it is connected. Formally, ‘Rxy’ expresses a connected relation if and only 
if (∀x)(∀y) (�(x=y) → Rxy v Ryx). The relation of being less than on the domain 
of the counting numbers is connected.  

Not all the properties of relations given above are independent of one another. 
That is, if a relation has one particular property it may be that it has to have 
another particular property or that it cannot have another particular property. For 
instance, if a relation is asymmetric it must be irreflexive. This can be 
established by deriving the sequent: (∀x)(∀y)(Rxy → �Ryx) � (∀x) �Rxx.  

No relation can be both intransitive and reflexive. To establish this it suffices to 
derive a contradiction from the formula for intransitivity and reflexivity.  

To show that both these properties cannot be realized by the same relation we 
need only show that the assumption that they can leads to a contradiction as 
below:  

Prem (1) (∀x)(∀y)(Rxy → �Ryx)  
1  (2) (∀y)(Ray → �Rya)  1 ∀E  
1  (3) Raa → �Raa  2 ∀E  
1  (4) �Raa  3 SIS (P → �P � �P)  
1  (5) (∀x) �Rxx  4 ∀I  

Prem  (1) (∀x)(∀y)(∀z)(Rxy & Ryz → �Rxz)  
Prem  (2) (∀x)Rxx  
1  (3) (∀y)(∀z)(Ray & Ryz → �Raz)  1 ∀E  
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Clearly no relation can be both reflexive (∀x)Rxx and irreflexive (∀x) �Rxx. For 
applying ∀E would give us directly Raa and �Raa. If a relation is reflexive on a 
domain there must be some objects in that domain and it must hold on that 
domain. For from (∀x)Rxx we can derive (∃x)Rxx; that is, something bears the 
relation to itself. There can be relations and domains which are such that nothing 
in the domain bears the relation to anything else in the domain. For instance, on 
the domain of living persons, the relation of being a female brother does not 
hold. Suppose we take as our domain an empty set, say, the set of married 
bachelors. No relation could be irreflexive on that domain. For from (∀x) �Rxx, 
we can derive (∃x) �Rxx; that is, there is some object which does not bear the 
relation to itself.  

It might seem that on such funny domains, no relation would have any 
property. However, that is not so because of the conditional form of the 
definitions of symmetry, asymmetry, transitivity and intransitivity. Any relation 
on an empty domain has all these properties. For example, the definition of 
symmetry says that if a relation holds between a pair of objects <a, b> it holds 
between <b, a>. It does not say the relation actually holds for any pair of 
objects. That a relation does not hold is expressed by the sentence �(∃x)(∃y)Rxy 
or by the equivalent sentence (∀x)(∀y) �Rxy. Assuming (∀x)(∀y) �Rxy we can 
establish that ‘Rxy’ expresses a symmetrical relation by deriving (∀x)(∀y)(Rxy → 
Ryx) as follows (similar arguments show that ‘Rxy’ expresses a relation which is 
asymmetric, transitive and intransitive).  

Notice that while we considered an empty domain, if the domain is not empty 
but the relation does not hold, it is trivially symmetrical, asymmetrical, transitive 

1  (4) (∀z)(Raa & Raz → �Raz)  3 ∀E  
1  (5) Raa & Raa → �Raa  4 ∀E  
2  (6) Raa  2 ∀E  
2  (7) Raa & Raa 6,6 &I 
1,2  (8) �Raa  5,7 →E  
1,2  (9) Raa & �Raa 6,8 &I 

Prem  (1) (∀x)(∀y) �Rxy  
Prem  (2) Rab
1  (3) (∀y) �Ray  1 ∀E  
1  (4) �Rab  3 ∀E  
1,2  (5) Rba 2,4 SIS (P, �P � Q) 
1  (6) Rab → Rba  2,5 →I  
1  (7) (∀y)(Ray → Rya)  6 ∀I  
1  (8) (∀x)(∀y)(Rxy → Ryx)  7∀I  
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and intransitive. However, in neither case can it be non-symmetrical or non-
transitive for only a relation which holds on a domain can have these properties.  

EXERCISES  

3 EQUIVALENCE AND ORDERING RELATIONS  

The relation of being the same age as is reflexive. For any person has the same 
age as himself. It is symmetric because if I have the same age as you, you have 
the same age as me. And it is transitive. If I have the same age as you, and you 
have the same age as Icabod, I have the same age as Icabod. Any relation which 

1 What are the properties of the following relations? State what domain you 
are assuming.  
(a) x is fatter than y  
(b) x is as fat as y  
(c) x is no fatter than y  
(d) x is indistinguishable in size from y  
(e) x loves y  
(f) x is the sister of y  
(g) x is the father of y  
(h) x is the comrade of y  
(i) x uses the same wine merchant as y  
(j) x is as valuable as y  
(k) x is more valuable than y  
(l) x killed y  

2 Show that any intransitive relation is irreflexive.  

3 Show that any irreflexive and transitive relation is asymmetric.  

4 Show that no relation can be asymmetric and non-reflexive.  

5 Show that no relation can be transitive, non-symmetrical and irreflexive.  

6 Using as a domain the set of wffs of the propositional logic define a relation 
R to hold between wffs A and B just in case A � � B. What are the 
properties of R? Would it make any difference if we changed the definition 
so that R holds just in case ?  

7 Define a relation to be serial just in case everything bears the relation to 
something. Show that identity is a serial relation. Show that any serial, 
transitive and symmetric relation is reflexive.  
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is reflexive, symmetric and transitive is called an equivalence relation. The 
relation of identity is an equivalence relation as are those of being the same 
weight as, being the same height as, being the same size as. In general, while 
there are some exceptions, relations expressed by a predicate of the form ‘x is 
the same __ as y’ are equivalence relations. The blank is filled so as to indicate 
in which respect equality is asserted, i.e., age, height, weight.  

An equivalence relation has an interesting effect on its domain. If one asks a 
group of persons to so arrange themselves that all those of the same age are 
standing together, one finds the original set divided into other sets (sub-sets) 
such that everyone is in at least one set and no one is in two of the sub-sets. 
Whenever there is a person who is not the same age as anyone else, he will form 
a set all by himself. Any equivalence relation operates in this way to generate 
what is called a partition. A partition is defined to be a division of a set into sub-
sets such that each member of the original set is in one of the sub-sets and no 
member is in two sub-sets. In the case of an equivalence relation, each member 
of any sub-set generated in this way bears the equivalence relation to each other 
member in the sub-set and does not bear the relation to any member of any other 
sub-sets. If we have represented our domain by a set of points in a circle, we can 
represent the partition generated by the equivalence relation by a division of the 
circle into non-overlapping regions such that everything gets into one of these 
regions. This is illustrated below with the set of fractions: and 

 the equivalence relation of being the same number 
as.  

  

If S is a set and R is an equivalence relation the domain of which is S we define 
the equivalence set of any member of S to be the set of all objects in S that bear 
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R to that object. Thus the equivalence set of  in the above example is 

. For the relation of being the same age as, the equivalence set of a 
person in the domain is the set consisting of himself and all other persons who 
have the same age as him. The procedure outlined can be regarded as one for the 
construction of new objects from a given set of objects with the help of an 
equivalence relation. We start with a set of objects, apply an equivalence 
relation to it and generate a new set of objects, objects which are themselves sets 
of objects from the original set. Philosophers have often sought to make use of 
this technique of construction in giving philosophical analyses. To illustrate this 
we consider two examples, a relatively uncontroversial mathematical one and a 
highly controversial non-mathematical one.  

The controversial illustration concerns time, about which Augustine remarked 
that he knew what it was so long as no one asked him. If anyone asked, he did 
not know. This is a common situation in philosophy. Like Augustine we often 
know how to use a concept like time. We regulate our daily life with it and our 
conversation is permeated with explicit and implicit use of it. However, we are 
likely to be at a loss to say what we understand by ‘time’. For instance, what, 
after all, is a moment or period of time? We talk about such items all the time as 
when, for instance, we say such things as ‘The moment Icabod started to lecture, 
Isabel yawned’. What is it that this definite description ‘The moment he started 
to lecture’ denotes? Such items seem problematic because they are abstract and 
not given in experience. Events such as Icabod’s lecturing or Isabel’s yawning 
seem less problematic for we can observe them. No one has ever seen and no 
one ever will see a moment of time. Clearly moments, as short periods of time, 
are closely related to events. For we standardly pick out moments by reference 
to events either directly as in the case given above or more indirectly when we 
say: ‘The first five minutes of Monday 13 November 1981’. This identifies a 
period of time by reference to the event of the earth’s carrying out a certain 
partial rotation with respect to the sun.  

It will not do to equate a moment to the event which we cite in identifying it. 
For we want to be able to say, for example, that the moment Isabel yawned is 
the moment Icabod started lecturing. In this case the events cited are different 
but the moment is the same. Hence the moment cannot simply be a particular 
event. Setting aside complications due to relativistic physics, the relation of 
being simultaneous is an equivalence relation. By simultaneous events I mean 
events that start together and end together. This relation produces a partition on 
the set of events. What is the equivalence class of the event of Icabod’s starting 
to lecture? It is the set of all events simultaneous with that event. One suggestion 
is that that set is the moment. That is, ‘the moment Icabod started to lecture’ 
designates the set of all events simultaneous with his starting to lecture. The 
moment Isabel yawned, on this construal, is the set of events simultaneous with 
her yawning. Since ex hypothesi her yawning and his beginning to lecture were 
simultaneous, the two equivalence sets are identical. And this gives us the result 
we want: the moments are the same even though the events cited in identifying 
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them are different.  
Within the confines of this work we cannot evaluate this definition of a 

moment of time. If the definition can be defended, it will be a first step in the 
vindication of what is called the relational theory of time. The relationalist 
thinks that time can be defined entirely by reference to events. The relationalist 
rejects the picture of time (sometimes attributed to Newton) as some sort of 
container in which events occur and which exists independently of events. For 
him all talk of time and the parts of time (i.e. moments, intervals, instants) can 
be reduced to talk about events in a way that makes time no more mysterious 
than the events in terms of which it is defined.  

Krönecker once said that the counting numbers 1,2,3,… were made by God 
and all the other numbers were man’s work. Among the other numbers are the 

rational numbers or fractions, e.g. . We can use the theory of 
equivalence relations to show how to define the rational numbers in terms of the 
counting numbers. So that if one day God did create the counting numbers he 
did not need on another occasion to create anew the rationals. For they can be 
constructed out of counting numbers. To see this we first note that we identify a 

rational number by giving a pair of counting numbers writing e.g. . We cannot 

define a rational number just as a pair of counting numbers. For in writing  

and  we use different pairs of counting numbers but we say that they represent 
the same rational number. Let us assume we have the set of all pairs of counting 
numbers. We will define a relation R on this set as follows: �a, b� bears R to 
�m, n� just in case an=bm. It is easily shown that R is an equivalence relation 
on the set of all pairs of counting numbers. As in the case of simultaneity we ask 

what are the equivalence sets. Note that the equivalence set of contains among 

other pairs the following …. Mathematicians treat these equivalence 

sets as being the rational numbers. This gives the result that  and  are the 
same rational number for they are the same set of pairs of rational counting 

numbers. For  is the equivalence set containing all pairs �x, y� such that 

2x=y and  is the equivalence set containing all pairs �x, y� such that 4x=2y. 
Clearly these two sets are identical.  

Much more needs to be done to vindicate the suggestion that rational numbers 
are nothing more than equivalence sets of pairs of counting numbers. References 
are given at the end of this chapter to works where this suggestion is fully 
developed. However, enough has been said about this case and about the case of 
moments of time to suggest that whenever we are faced with an equivalence 
relation on a given domain one should ask how the equivalence sets can be 
construed. It may be that answering this question will enable one to construe 
something relatively abstract and/or complex in terms of something more 
concrete and/or simple. In the case of moments of time, it was suggested that 
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one might explore construing them as equivalence sets of events and in the case 
of the rational numbers it was suggested that they may be just sets of pairs of 
counting numbers.  

Another important type of relation are those which are asymmetric, transitive 
and irreflexive. Such relations are one type of ordering relation and include as 
examples being older than, being taller than, being greater than. In general, the 
predicates for such relations are of the form: ‘x is——er than y’. These relations 
have the effect of inducing an order on at least some pairs of objects from the 
domain (given that the relation holds on at least one pair from the domain). In 
the case of the relation of being older than, it tells us which of a pair to take first, 
unless the pair selected are of the same age, in which case no order is induced on 
that pair. If there are pairs that the relation does not distinguish between as in 
this case it is called a partial order. If on the other hand it is the case that for all 
distinct objects, either one bears the relation to the other or vice versa the order 
is said to be total or linear. The relation of being greater than on the set of 
counting numbers is a total or linear order, for it holds one way or the other 
between any pair of distinct objects. A Hasse diagram for such a relation will be 
a number of dots along a line as illustrated below for the relation of being 
greater than on the set of numbers {1,2,3,4,5,6,7,8,9}.  

·←·←·←·←·←·←·←·←·  
1 2 3 4 5 6 7 8 9  

Since we are dealing with transitive relations we adopt the convention that any 
pair of points in the diagram that can be linked by following the arrows on a 
path through the diagram are related. This enables us to have less cluttered 
Hasse diagrams.  

The relation defined on the set of numbers {1,2,3,5,6,10,15,30} of being an 
integral multiple of is a partial order. This relation, R, holds between numbers a 
and b if and only if there is some counting number n such that n times a is b. 
Thus 1 bears R to 3 but not vice versa; 2 bears R to 6 but not vice versa. 6 does 
not bear R to 10 nor does 10 bear R to 6. The partial order is represented in the 
Hasse diagram below.  
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EXERCISES  

1 Given a partition of a set show how to define an equivalence relation on the 
set.  

2 Define a relation, R, on the set of all pairs of counting numbers to hold 
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Proving the above equivalences shows that this system of equivalence sets of 
wffs of the propositional calculus forms what mathematicians call a Boolean 
algebra. This means that mathematical theorems proved about Boolean algebras 
can be used to establish results about the propositional calculus. For illustrations 
of this see the books by Stoll cited below.  

FURTHER READING  
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1980).  
B.van Fraassen, An Introduction to the Philosophy of Time and Space (New 

York: Random House, 1970).  
On the construction of the numbers:  

B.Russell, An Introduction to Mathematical Philosophy (New York: Touchstone, 

between pair �a, b� and the pair �c, d� just in case a+d=b+c. Show that R 
is an equivalence relation. Can you suggest a construal of the equivalence 
sets generated by R?  

3 Let R be the equivalence relation defined on page 172, i.e. A bears R to B 
just in case A � � B. We will use the notation [A] to represent the 
equivalence sets generated by R. We define the following operations on the 
equivalence sets:  

[A] ∩ [B]=[A & B]  
[A] ∪ [B]=[A v B]  
−[A]=[�A]  

Show the following:  
(a) [A] ∩ [B]=[B] ∩ [A]  
(b) [A] ∩ ([B] ∩ [C])=([A] ∩ [B]) ∩ [B]  
(c) [A] ∪ [B]=[B] ∪ [A]  
(d) [A] ∪ ([B] ∪ [C])=([A] ∪ [B]) ∪ [C]  
(e) [A] ∩ ([B] ∪ [C])=([A] ∩ [B]) ∪ ([A] ∩ [C])  
(f) [A] ∪ ([B] ∩ [C])=([A\ ∪ [B]) ∩ ([A] ∪ [C])  
(g) [A] ∪−[A]=[P v �P]  
(h) [A] ∩−[A]=[P & �P]  

What do the equivalence sets [P v �P] and [P & �P] represent?  
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R.Stoll, Set Theory and Logic (New York: Cover, 1979).  
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CHAPTER 8  
Predicate logic semantics  

1 THE PREDICATE LANGUAGE  

Logic is the study of valid arguments. In the early chapters of this work we 
developed a propositional language and provided a definition of validity for 
arguments expressible in that language. We saw that there were valid arguments 
not expressible in the propositional language. Hence we enriched it to obtain a 
predicate language. We have yet to develop a definition of validity appropriate 
to this enriched language. This is a considerably more complex business than 
was the case for the propositional language. A valid argument is one which is 
such that if the premises are true the conclusion must be true. Thus a detailed 
definition of validity for the arguments expressible in a given language depends 
on a definition of truth for the sentences of that language. In the case of a 
propositional language it is relatively simple to explicate the notion of truth of 
an arbitrary sentence of that language by reference to the notion of the truth of a 
simple sentence taken together with the notion of a truth-table. That is, we arrive 
at the truth-value of a complex sentence from an assignment of truth-values to 
the simple sentences which are parts of the sentence with the aid of truth-tables. 
However, in the case of the predicate language, the parts of our complex 
sentences are not necessarily sentences. To see this compare the propositional 
language sentence ‘P → Q’ with the predicate language sentence ‘(∀x)(Fx → 
Gx)’. In the former case some parts, i.e. ‘P’, ‘Q’ are themselves sentences. In the 
latter case neither ‘(∀x)’, ‘Fx’, nor ‘Gx’ are sentences. The complexities that this 
produces will take us some time to explore and in this introductory work we will 
not be able to do more than indicate the direction to be followed in developing a 
rigorous definition of truth. The first step is to give a characterization of the 
predicate language analogous to that given in Chapter 4 for the propositional 
language.  

In our quantificational language we use the following symbols in addition to 
the symbols of our propositional language: ∃, ∀, n, x, a, F=and the numerals 1, 
2, 3,…which are used as subscripts for ‘n’, ‘x’ and ‘a’ and as subscripts and 
superscripts for ‘F’. Subscripts are always used with ‘n’, ‘x’ and ‘a’. Both 
superscripts and subscripts are always used with ‘F’. Expressions of the form ‘n 
i’ where i is a numeral are called proper names. Those of the form ‘a i’ are 
called arbitrary names. And those of the form ‘x i’ are called variables. 
Expressions of the form ‘F i 

j’ are called atomic predicate letters. In all these 
cases the subscripts give us an unlimited number of expressions of each type. In 
the case of the predicate letters the superscript indicates the number of places in 



the predicate. Thus a predicate of the form ‘F 1 i’ is an expression for a property 
holding of a single object. ‘F 2 i’ indicates an expression for a two-term relation 
such as loving and ‘F 3 i’ indicates an expression for a three-term relation such 
as being between. It is very cumbersome to write predicate letters with 
subscripts and superscripts and consequently we will revert in due course to our 
practice of using different letters of the alphabet—F, G, H—for predicates 
without subscripts or superscripts. And we will on many occasions follow our 
past practice in regard to proper names, variables and arbitrary names. The point 
of having introduced this device is to illustrate the possibilities of having a 
language with unlimited expressive capacities and in which the number of 
places in a predicate would be explicitly expressed. For the purposes that follow 
we count the expression for equality,‘=’, as being a two-term atomic predicate 
letter.  

A formula of the propositional language was defined to be any sequence of 
symbols from the vocabulary. Similarly we define a formula of the predicate 
language to be any sequence of symbols from the above vocabulary. Our aim is 
to define the notion of a sentence or well-formed formula (wff). To this end we 
define an atomic predicate sentence to be either a propositional letter or an 
atomic predicate letter followed by n (not necessarily distinct) terms. A term is a 
proper name, a variable or an arbitrary name. n is the superscript of the predicate 
letter. A wff is any formula which meets the following condition:  

In setting up a definition of the notion of a well-formed formula there is scope 
for a certain amount of stylistic variation. On the above definition, for instance, 
extra quantifiers can be affixed to a wff and still give a wff. ‘(∀x 1 )Fx 1’ is a wff 
and so too is ‘(∀x 2)(∀x 1)Fx 1’. Allowing such expressions to count as wffs 
simplifies our definitions and is quite harmless. For as can be seen from the 
semantics given below such redundant quantifiers have no effect on the truth or 
falsity of a wff. It does mean that we depart somewhat from English style. The 
expression ‘There is there is a tree’ would not be counted as a sentence of 
English. For this reason other authors prefer a more complicated definition of a 
wff which would exclude redundant quantifiers.  

The definition of a wff involves a more substantial departure from English in 
that expressions such as ‘Fx 1 x 2’ count as wffs. Such expressions correspond to 
English predicates and will be called predicate expressions. That is, predicate 
expressions are wffs containing variables that are not in the scope of any 

1  Any atomic predicate sentence is a wff.  
2  If A is a wff, �A is a wff.  
3  If A and B are wffs, (A & B) is a wff.  
4  If A and B are wffs, (A v B) is a wff.  
5  If A and B are wffs, (A → B) is a wff.  
6  If A and B are wffs, (A ↔ B) is a wff.  
7  If A is a wff, then (∀x i)A is a wff.  
8  If A is a wff, then (∃x i)A is a wff.  
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quantifier (see below for the precise definition of scope). A predicate expression 
in English such as ‘is taller than’ does not say anything and so is not capable of 
being assessed as true or false. The semantics to be provided gives a definition 
of what it is for a wff of the language to be true. Since predicate expressions 
count as wffs there will be contexts in which such expressions count as true. This 
only arises, however, when the corresponding universal closure of the wff in 
question is true. The universal closure of a wff is obtained by prefixing a 
universal quantifier (∀x i) to the front of the wff for each variable ‘x i’ in the wff 
which is not within the scope of a quantifier. This means, for example, that the 
predicate expression ‘Fx 1,x 2’ only counts as true in the case where everything 
in the domain bears the relation F to everything in the domain. While this 
departure from English style should be noted, it is a harmless simplification 
which enables us to use a terser definition of the notions of a wff and of the truth 
of a wff.  

The scope of a quantifier is defined as follows:  

Given a wff (∀x i)A, if A is a wff then the scope of (∀x i) is A. 
 

And given a wff (∃x i)A, if A is a wff then the scope of (∃x i) is A.  

For instance, the scope of (∃x 1) in ‘((∃1)Fx 1 → (∀x 2)Gx 2)’ is ‘Fx 1’. ‘Fx 1’ is a 
wff whereas ‘Fx 1 → (∀x 2)Gx 2)’ is not a wff. For while ‘Fx 1’ and ‘(∀x 2)Gx 2’ 
are wffs, ‘Fx 1 → (∀x 2)Gx 2)’ is not a wff. By clause 5 above it fails to be a wff 
as it lacks the requisite bracket. If we add this to obtain the wff ‘(Fx 1 → (∀x 2)Gx 
2)’ and attach the quantifier ‘(∃x 1)’ the resulting wff ‘(∃x 1)(Fx 1 → (∀x 2)Gx 2)’ 
is one in which the scope of ‘(∃x 1)’ is ‘(Fx 1 → (∀x 2)Gx 2)’. As in the case of 
the propositional calculus, brackets are often suppressed where the scope is clear 
in any event. In addition brackets may be omitted if the resulting ambiguity of 
scope makes no difference to the truth or falsity of the wff in question. However, 
when in doubt it is better to use more rather than fewer brackets. The notion of 
scope is further reviewed in the examples below.  

Example 8.1.1  

The king of France isn’t bald.  

This sentence might be used by one who thought that there was a king who had 
lots of hair on his head. On this reading the sentence is construed as: There is 
one and only one king of France and he is not bald. Using ‘Kx’ for ‘x is a king of 
France’ and ‘Bx’ for ‘x is bald’ the formalization would be:  

(∃x)((Kx & (∀y)(Ky → x=y)) & �Bx)  

In this formalization the negation operator has small scope, governing 
only ‘Bx’ whereas the existential quantifier has large scope. The 
English sentence could also be used by one who wished to deny that 
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there is one and only one king of France who is bald. On this construal the 
formalization would be:  

�(∃x)((Kx & (∀y)(Ky → x=y)) & Bx)  

In this case the negation operator has greater scope than the existential 
quantifier. It does not make any difference to an assessment of the truth 
of either of these wffs whether we take the first occurrence of ‘&’ as 
having greater scope than the second occurrence. That is, it would not 
have made any difference if in the case of the first formalization we had 
written:  

(∃x)(Kx & ((∀y)(Ky → x=y) & �Bx))  

In view of this we can suppress the brackets without any harm and 
write instead:  

(∃x)(Kx & (∀y)(Ky → x=y) & �Bx)  

Example 8.1.2  

Someone wins the lottery every time.  

This sentence might be used to express the idea that there are no 
lotteries without winners. It might also be used to express the envious 
thought that some particular person has been winning some particular 
lottery each time it is held. Presumably if used in this sense the speaker 
would have in mind a restricted domain. That is, there is an ambiguity 
of domain. The domain on the first construal being all lotteries and on 
the second construal being some particular group of lotteries. Using 
‘Wxy’ for ‘x is a winner of y’ and ‘Lx’ for ‘x is a lottery’ the 
formalizations are respectively:  

(∀x) (∃y) (Lx → Wyx)  
(∃y)(∀x)(Lx → Wyx).  

On the former construal the universal quantifier has the larger scope; on 
the latter construal the existential quantifier has the larger scope.  

EXERCISES  

Determine whether each of the following is a wff:  
(a) Q  
(b) x=n  
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2 THE SEMANTICS OF THE LANGUAGE  

In giving interpretations we have specified a domain of objects and assigned 
expressions of English to the predicate letters as when, for example, we let ‘Hx’ 
be ‘x is happy’. Knowing how a predicate letter is to be understood is only the 
first step in determining the truth-value of a wff. To do that we have to ascertain 
which objects in the domain have the property expressed by the English phrase. 
For instance, to know whether or not it is true for a given interpretation that (∃x)
Hx we have to ascertain whether there is at least one object in the domain having 
the property of being happy. Thus from the point of truth it matters not that ‘Hx’ 
expresses the property of happiness but only which objects have the property 
expressed by ‘Hx’. In future, then, as we move to a more rigorous and abstract 
approach to the notion of truth we will think of an interpretation in terms of the 
objects having the property expressed by the predicate letter. This is what was 
called the extension of a predicate (cf. p. 166). An interpretation of a one-place 
predicate will be a set of objects (possibly an empty set for it may be that no 
object in the domain has the property in question) from the domain. The 
interpretation of a two-place predicate will be a set of ordered pairs (again, 
possibly empty) drawn from the domain which are to be thought of as the 
objects which satisfy the predicate under the interpretation. In general, an 
interpretation assigns to an n-place predicate a set of ordered n-tuples (possibly 
an empty set) which by definition of the interpretation are the set of n-tuples of 
objects which satisfy that predicate. In addition an interpretation of a language 
or fragment of a language will assign one object from the domain to be the 
referent of any proper name. Note that empty domains are excluded. Finally, 
since our quantificational language is an extension of the propositional language 
our interpretation has to deal with propositional letters to which it assigns either 
the value T or the value F.  

Our aim is to explicate what it is for a wff to be true for a given interpretation. 

(c) (∀x)(Fx → Gx)  
(d) (∀x)(∀y)Hx  
(e) (∀x)(Fx → Hx) ↔ (∀x)(Gx)  
(f) (∃x)(Hxy → (∀x)Gx)  
(g) m=∀n → (∀x)(Fnx) ↔ (∀y)(Fmy)  
(h) (∃x)(Rx → (x=n v Tnx))  
(i) Fxyz → Q  
(j) (∀x)(∀y)(∀z)(Bxyz & Bzxy → Byxz)  

2 Give the scope of each quantifier and each truth-functional operator in the 
sequents in Exercise 2 on p. 138.  

3 Give three sentences of English which display ambiguities of quantifier 
scope. Give formalizations which resolve the ambiguities.  
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The crucial notion in this explication is what was called satisfaction (cf. p. 112). 
If for the moment we restrict attention to atomic predicate letters written with 
variables, an object satisfies a predicate if that object is in the set of objects 
assigned to the predicate by the interpretation. A pair of objects satisfies a two-
place predicate if that pair of objects is in the extension (the set of ordered pairs) 
assigned to the predicate by the interpretation. To see where we are going 
consider the wff ‘(∀x)Fx’ under some interpretation. Intuitively we see that that 
wff is true if and only if every object in the domain satisfies the predicate ‘Fx’. 
For if every object satisfies that predicate everything is in the extension assigned 
to ‘Fx’ by the interpretation and it is true that ‘(∀x)Fx’. Similarly, we can see 
that ‘(∃x)Fx’ is true just in case some object in the domain satisfies the predicate 
‘Fx’. In this fashion we reduce the question of the truth or falsity of these 
quantified wffs to questions about which objects satisfy which predicates. An 
interpretation, then, determines the truth-value of these simple wffs via the 
notion of satisfaction.  

Unfortunately truth is rarely simple and in developing this intuition into a 
satisfactory definition of truth things becomes more than a little complex. The 
student is urged to work through this section doing the relevant exercises at the 
points indicated in the text. The first complication arises from the fact that it will 
not be adequate to talk simply of objects satisfying predicates. For we have to 
deal with two-place predicates which require pairs of objects, three-place 
predicates which require triples of objects, …, n-place predicates which require 
n-tuples of objects. We do not want to set down in advance any limit on the 
complexity of predicates to which the definition of truth can be applied. For that 
reason we will use infinite sequences of objects drawn from the domain. Since 
we need to deal with relations an object can have to itself we allow repetition of 
objects in the sequence. Given, for example, a domain with three objects O 1, O 
2, and O 3 the following would represent the beginnings of some sequences to be 
taken into account:  

O 1,O 2,O 3,O 1,… 
 

O 1,O 3,O 3,O 1,…  
O 3,O 3,O 3,O 2,…  
O 2,O 1,O 2,O 1,…  

We are going to define a wff to be true for an interpretation just in case every 
sequence satisfies the wff. Using a list of recursive clauses (given below) we 
reduce the question of whether a given sequence satisfies a given wff to a 
question about which sequences satisfy which propositional letters and atomic 
predicate letters. Given that the sequences have an infinite number of members 
we have to have some rule which determines which objects from the sequence 
are to be considered. We consider first atomic predicate sentences. If the 
sentence is a propositional sentence, the sequence satisfies it just in case the 
interpretation assigns the sentence the value T. If it is an atomic predicate letter, 
the sequence assigns to any proper name the object assigned to the name by the 
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interpretation. If the predicate letter, contains, say, the arbitrary name ‘a n’ or 
variable ‘x n’, the sequence assigns to ‘a n’ or ‘x n’ its n-th member. In this way 
an m-place predicate letter is assigned by any given sequence, a sequence of m-
objects (not necessarily distinct). The infinite sequence satisfies the predicate 
just in case that sequence of m objects is in the extension assigned to the 
predicate by the interpretation.  

To illustrate, consider an interpretation with a domain consisting of the 
counting numbers 1,2,3,…which assigns to the predicate ‘F 1’ the set of all 
ordered pairs from the domain such that the first is less than the second. That is, 
‘F 1’ is can be thought of as expressing the property of being less than. Consider 
a sequence which begins <2,3,4,1,11,…>. This sequence satisfies the wff ‘F 1 a 2 
a 3’ because 3 is assigned to ‘a 2’ and 4 is assigned to ‘a 3’ and �3,4� is in the 
extension assigned to ‘F 1’ by the interpretation. If we suppose that the 
interpretation assigned to the proper name ‘n’ is 1, then the sequence does not 
satisfy ‘F 1 x 5 n’ since the pair �11,1� is not in the extension assigned to F 1. 
Given the above interpretation and sequence, we see it does not satisfy the 
predicate expression F 1 x 5,x 4. For �11,1� is not in the extension assigned to 
F1. The predicate expression ‘F 1 x 1,a 3’ is satisfied by the sequence for 2 is less 
than 4 and hence is in the extension assigned to F 1. The reader is advised to do 
question 1 from the exercises at the end of this section at this juncture.  

A wff is true for an interpretation if every sequence satisfies it. As noted above 
we reduce the question of whether a sequence satisfies a wff the truth of which 
we are considering to questions about which sequences satisfy which atomic 
predicate sentences by means of a list of recursive clauses. These clauses deal 
with each form a wff can have. They are called recursive because they achieve 
this end in a purely mechanical fashion. The clauses for the truth-functional 
operators are given below:  

Negation  

A sequence s satisfies a wff of the form �A if and only if s does not satisfy A.  

Conjunction  

A sequence s satisfies a wff of the form A & B if and only if s satisfies A and s 
satisfies B.  

Disjunction  

A sequence s satisfies a wff of the form A v B if and only if either s satisfies A or 
s satisfies B.  

Conditional  

A sequence s satisfies a wff of the form A → B if and only if either s does not 
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satisfy A or s satisfies B.  

Biconditional  

A sequence s satisfies a wff of the form A ↔ B if and only if s satisfies both A 
and B or s satisfies neither A nor B.  

In the case of the existential quantifier we define: A sequence s satisfies a wff of 
the form (∃x i)Ax i if and only if there is a sequence differing in at most the ith 
place from s which satisfies ‘Ax i’. As a partial vindication of the definition 
consider how it works in the case of an existentially quantified one-place 
predicate ‘(∃x i)Fx i’. Intuitively that wff is true if some object in the domain 
satisfies the predicate ‘Fx i’. Our definition says that a wff is true if every 
sequence satisfies it. We take an arbitrary sequence of objects �O 1,O 2,O 3,…� 
from the domain. That sequence satisfies the wff if some sequence like it except 
possibly in the i th place satisfies ‘Fx i’. If some object is in the extension 
assigned to ‘Fx’ then there will be such a sequence and hence the given 
sequence satisfies ‘(∃x i)Fx i’. If there is such an object then any other sequence 
will satisfy ‘(∃x i)Fx i’. For we look to a sequence differing in the i th place, to 
see if there is one which satisfies Fx i and, ex hypothesi, there is one. Thus if one 
sequence satisfies ‘(∃x i)Fx i’ every sequence does. In the case of this simple wff 
the result of applying the definition matches up with our intuitive account of 
truth.  

Suppose we have a wff with four variables only one of which is quantified, i.e. 
‘(∃x 2)Gx 3 x 2 x 2 x 1 x 4’. A sequence s will assign its third member to ‘x 3’, its 
first member to ‘x 1’ and its fourth member to ‘x 4’. The sequence s satisfies that 
just in case there is another sequence making the same assignments to ‘x i’, ‘x 3’ 
and ‘x 4’ and which assigns its second member to ‘x 2’ where this ordered four-
tuple satisfies the predicate ‘Gx 3 x 2 x 1 x 4’. We can see from this that our 
formal definition does what we would expect if it matched up with our more 
intuitive grasp of the existential quantifier. For it requires us to search through 
the domain to see if we can find an object which when taken with those assigned 
to the variables not quantified in ‘(∃x 2 )Gx 3 x 2 x 1 x 4’ satisfies ‘Gx 3 x 2 x 1 x 
4’.  

The clause for the universal quantifier is as follows:  

A sequence s satisfies a wff of the form (∀x i)Ax i if and only if every sequence 
differing from s in at most the i th place satisfies ‘Ax i’.  

This means that a one-place universally quantified predicate ‘(∀x)Fx’ is true just 
in case every sequence satisfies it. A sequence s will satisfy ‘(∀x)Fx’ just in case 
every object is in the extension assigned by the interpretation to ‘Fx’. If one 
such sequence satisfies ‘(∀x)Fx’ every sequence satisfies ‘(∀x)Fx’ and hence if 
one satisfies ‘(∀x)Fx’ for a given interpretation, ‘(∀x)Fx’ is true for that 
interpretation.  
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Finally we need a clause for the identity symbol which is as follows:  

A sequence s satisfies a wff of the form t i=t j if and only if s assigns the same 
object to ‘t i’ that it assigns to ‘t j’.  

In the above clause ‘t i’ and ‘t j’ may be proper names or arbitrary names or 
variables. In the case of proper names the sequence assigns to the name 
whatever object the interpretation assigns to the name. In the case of arbitrary 
names or variables, the subscript of the name or variable determines which 
object in the sequence is assigned. This clause is unsurprising and simply means 
that our special predicate ‘=’ is to be interpreted as expressing the relation of 
identity. Do Exercise 2 at this point.  

For a propositional language an interpretation for a wff or a set of wffs was an 
assignment of truth-values to the atomic sentence letters in the wff or set of wffs. 
We found that some wffs were true for any interpretation. These were called 
tautologies. We have explicated the notion of the truth of a wff of our 
quantificational language for a particular interpretation. As in the case of the 
propositional language, some wffs are true in all possible interpretations. For 
instance, the wff ‘(∀x i)(Fx i v �Fx i)’ is easily shown on the basis of the above 
clauses to be such that it comes out true on all interpretations. We will call any 
wff of the quantificational language which is true for any interpretation a 
quantology. This name has been used to draw attention to the fact that such wffs 
are the analogues for a quantificational language of the tautologies of the 
propositional logic. Many authors call such wffs logical truths. This is 
unfortunate. For we have a general idea of logical truths, i.e. sentences true in 
virtue of their logical form, and we need specific characterizations of logical 
truths for each specific language. Tautologies are those logical truths expressible 
in a propositional language. Since it is not to be assumed that all logical truths 
are expressible in the quantificational language we need a specific name for 
those that are and we will use the term ‘quantology’. Other authors call such 
wffs valid wffs. But this is even worse. For validity is a property of arguments 
not of wffs and to use the term in this context can engender confusion.  

It can be established that a given wff is not a quantology by finding an 
interpretation and a sequence from the domain of the interpretation which does 
not satisfy the wff. To illustrate, consider the wff ‘(∃x 1)Fx 1 → (∀x 1)(Fx 1)’. Let 
the domain of the interpretation be the set of all counting numbers: 1,2,3…. Let 
the extension of ‘F’ be the set of all even numbers: 2,4,6…. If there is a 
sequence which satisfies ‘(∃x 1)Fx 1’ but not ‘(∀x 1)Fx 1’, that sequence does not 
satisfy ‘(∃x 1)Fx 1 → (∀x 1)Fx 1’ and hence that wff is not true for the 
interpretation and is thereby seen not to be a quantology. Such a sequence is any 
one beginning: 2,2,3,3,4,5…. That sequence satisfies ‘(∃x 1)Fx i’ for there is a 
sequence (namely the same one) which satisfies ‘Fx 1’ since 2 is in the extension 
assigned to F. That sequence does not satisfy ‘(∀x 1)Fx 1’. For while it does 
satisfy ‘Fx 1’ there are sequences which differ only in the first place (e.g. any 
one beginning: 1,2,3,4,4…) which do not satisfy ‘Fx 1’. Hence the original 
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sequence does not satisfy ‘(∀x 1)Fx 1’. Do Exercise 3 at this point.  
For the sake of completeness we introduce the definition of a notion that in a 

sense comes between that of truth for an inter- pretation and that of a 
quantology. There are wffs that are true for all interpretations in a domain of a 
given size but not true in all interpretations in all domains. A wff which is true 
for all interpretations in a domain of size n will be said to be n-true. One result 
that can be established is that any wff not containing ‘=’ which is n-true for some 
specific n is also m-true for any m equal to or less than n (but greater than zero).  

The definition of semantic entailment for the propositional language, A 1, A 
2…, A n � B required that whenever each of the premises A 1, A 2,…, A n is true 
the conclusion B is true. In the case of the predicate logic the definition is 
framed in terms of satisfaction not truth:  

A 1, A 2,…, A n � B if and only if for any interpretation any sequence that 
satisfies each of A 1, A 2,…, A n satisfies B.  

This condition is stronger than that required in the case of the propositional 
logic. To see this consider the sequent Fa 1 � (∀x 1)Fx 1. Let I be an 
interpretation which makes ‘Fa 1’ true. In this case every sequence from the 
domain satisfies ‘Fa 1’. That is, the first member of every sequence is in the 
extension assigned to ‘F’ in I. And that means that the first member of every 
sequence satisfies ‘Fx 1’ and hence ‘(∀x 1)Fx 1’ is true for I. But we cannot 
derive Fa 1 � (∀x 1)Fx 1 and nor do we want to be able to. For that would be 
tantamount to concluding that because an arbitrary thing had the property 
expressed by F everything had that property. It is, however, easily shown that 
the sequent in question is not semantically valid on the definition given in terms 
of satisfaction. If we were to use the definition in terms of truth this sequent 
would count as semantically valid as we have illustrated. Consider an 
interpretation J in which some members of the domain are in the extension of 
‘F’ and some are not. Since some members are in the extension of ‘F’, 
sequences beginning with one of those members will satisfy ‘Fa 1’. But those 
sequences will not satisfy ‘(∀x 1)Fx 1’ for that would require that every sequence 
satisfy ‘Fx 1’. Ex hypothesi some sequences do not. Therefore on the definition 
of � in terms of satisfaction, the sequence which we do not want to be 
semantically valid is not in fact semantically valid.  

In a well-designed logic the syntactical notion of a derivable sequent matches 
up with the semantical notion of a semantically valid sequent. In the case of the 
propositional logic this was proved. In the case of the predicate logic any 
syntactically derivable sequent is semantically valid and any semantically valid 
sequent is syntactically derivable. The structure of the proof of the former result 
(the consistency of the logic) is indicated below. The latter result (the 
completeness of the logic) is a more sophisticated matter that falls outside the 
scope of the present work. The interested student is referred at the end of this 
chapter to various sources for this proof. A consequence of this result is that a 
wff is derivable as a theorem just in case it is a quantology.  
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In the case of the propositional calculus circumstance surveyors can be used 
to determine in a mechanical fashion whether a sequent is semantically correct. 
No mechanical determination is possible for the predicate logic. In the predicate 
logic we have to deal with an infinite number of different domains including 
domains having an infinite number of members. This means that there can be no 
mechanical procedure which must terminate in finite time giving us the answer 
to the question whether any sequence in any interpretation that satisfied A 1,…, 
A n would also satisfy B in order to answer the question whether the sequent A 1,
…, A n � B was semantically correct. It is for this reason that we investigated 
arguments through the syntactical approach, considering whether we could 
derive the corresponding syntactical sequent, A 1,…, A n � B. Since the 
completeness result can be established we have the assurance that if any sequent 
is semantically correct, it can be shown to be so by deriving the corresponding 
syntactical sequent. However, while we can check mechanically any proffered 
derivation for correctness, there is no mechanical means of generating a proof of 
a given derivable sequent.  

A proof that any derivable sequent is semantically valid can be given which 
parallels the proof given of this result for the propositional calculus. One first 
considers the shortest possible syntactical derivation; namely, that which would 
establish A � A. Trivially, for any interpretation, any sequence that satisfies A, 
satisfies A. Hence, A � A. Next we assume the result holds for a derivation n 
lines in length. That is, if A 1,…, A n � B is established in n lines then A 1,…, A n 
� B. Taking each rule in turn we find that extending the derivation by a single 
line preserves the result. It is concluded by mathematical induction that the 
result holds generally. Thus any syntactically derivable sequent is semantically 
valid.  

As a special case of the above result we conclude that if � A then � A. That 
is, any theorem is a quantology. This shows that the logic is syntactically 
consistent. That is, there is no A such that � A and � �A. Suppose that were so. 
Then it follows that � A and � �A. But it is contradictory to suppose that every 
sequence both satisfies and does not satisfy A. Hence by reductio ad absurdum 
we reject the supposition of syntactical inconsistency.  

EXERCISES  

1 Consider the following interpretation:  

Domain: 1,2,3,4,5  
F: �1,1�,�2,2�,�3,3�,�4,4�,�5,5�  
G: �1,2�,�2,3�,�3,4�,�4,3�  
n: 3  

Consider sequences which begin as follows:  
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FURTHER READING  

On the meta-theory of the predicate logic (including completeness):  
G.Hunter, Metalogic (Berkeley: University of California Press, 2nd edn, 1971)  
R.H.Thomason, Symbolic Logic (London: Macmillan, 1970).  

On philosophical applications of predicate logic semantics:  
M.Platts, Ways of Meaning (London: Routledge & Kegan Paul, 1979).  

s 1: �1,1,1,1,1,… 
 

s 2: �2,2,2,2,2,…  
s 3: �3,4,3,4,3,…  
s 4: �1,4,3,5,2,…  
s 5: �4,3,1,2,5,…  

Which sequences satisfy the following:  

Fx 2,x 3 
 

Gx 1,x 2  
F n,x 2  

2 Consider a domain consisting of Icabod, Isabel and Henry. Icabod loves 
Isabel and Isabel loves Henry. No one else in the domain loves anyone else 
in the domain. Icabod hates Henry but no one else hates anyone. Using 
‘Lxy’ for ‘x loves y’ and ‘Hxy’ for ‘x hates y’ find the first three places of 
sequences which will show that the following sentences are false:  
(a) (∃x 1)(∀x 2)Lx 1,x 2.  
(b) (∀x 1)(∀x 2)Hx 1,x 2.  
(c) (∀x 1)(∃x 2)Lx 1,x 2.  
(d) (∃x 1)(∀x 2)Hx 1,x 2.  
(e) (∀x 1)(∃x 2)Hx 1,x 2.  

3 Show that the following wffs are not quantologies by giving an interpretation 
and the first three places of an infinite sequence which does not satisfy the 
wff for the interpretation:  
(a) (∃x 1)Fx 1  
(b) (∃x 1)(∀x 2)Fx 1,x 2 v (∀x 2)(∃x 1)Fx 1,x 2  
(c) (∃x 1)(∃x 2)((x 1=x 2) & (∀x 3)(x 3=x 1 v x 3=x 2))  
(d) (∀x 1)(Fx 1 → Gx 1) → (∃x 1)Fx 1  
(e) (∃x 1)Fx 1 & ((∃x 2)Fx 2 → (∃x 3)(Fx 3 & Gx 3))  
(f) (∀x 1)(Fx 1 v Gx 1) → ((∀x 2)Fx 2 v (∀x 3)Gx 3)  
(g) ((∀x 1)Fx 1 → P) → (∀x 1)(Fx 1 → P)  
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CHAPTER 9  
Challenges and limitations  

In this chapter we look at arguments which present a challenge to our logic as so 
far developed. In some cases these arguments can be dealt with more or less 
satisfactorily by deploying the logic with ingenuity. In other cases some 
enrichment is required. Further lines of development are indicated through the 
readings at the end of the chapter.  

1 COMPARATIVE ADJECTIVES  

Consider the following arguments:  

Ronald Reagan is a bald actor. Therefore, Ronald  
Reagan is an actor.  

Ronald Reagan is a bald actor. Therefore, Ronald  
Reagan is bald.  

These are obviously valid and it is trivial to derive the formalization. Using ‘n’ 
for Ronald Reagan and ‘Bx’ for ‘x is bald’ and ‘Ax’ for ‘x is an actor’ these are, 
respectively:  

Bn & An � An  
Bn & An � Bn  

Consider the following pair of arguments which appear to have the same form:  

Ronald Reagan is a good actor. Therefore Ronald  
Reagan is an actor.  

Ronald Reagan is a good actor. Therefore, Ronald  
Reagan is good.  

The first is entirely acceptable, the latter not at all. Reagan is not good in 
general. He is merely a good actor. Good actors can be far from good. Suppose 
we were to formalize these arguments using ‘Gx’ for ‘x is good’. We have:  

Gn & An � An  
Gn & An � Gn  



Since these sequents are derivable something is wrong with our formalization. 
The problem is that such words as ‘good’ cannot be represented as simple 
predicates. If we treat them in that fashion we will be committed to representing 
as valid arguments which patently are not valid. This problem is common to all 
comparative adjectives; that is, adjectives which are used to say something about 
an object in a certain respect in comparison with other objects. To take another 
example consider the arguments:  

Bruce is a small Australian. Therefore, Bruce is an Australian.  
Bruce is a small Australian. Therefore, Bruce is small.  

The former is obviously valid but the latter not. Australians being in general 
very large it does not follow that a small Australian is small without 
qualification. Bruce could be a small Australian but still be much taller than the 
average person in the world. But using ‘m’ for Bruce, ‘Sx’ for ‘s is small’ and 
‘Dx’ for ‘x is an Australian’ the following formalizations represent derivable 
sequents:  

Sm & Dm � Dm  
Sm & Dm � Sm  

As in the case of ‘good’ we cannot formulate the arguments by treating 
smallness as a simple property of objects.  

The problem is that Reagan is not good. He is good as an actor. Bruce is not 
small. He is small for an Australian. One might try formalizing the arguments by 
representing ‘good actor’ and ‘small Australian’ by a single predicate letter, say, 
‘Fx’ and ‘Hx’ respectively. In which case the four arguments would be 
formalized as:  

Fn � An  
Fn � Gn  
Hm � Dm  
Hm � Sm  

Certainly we can no longer derive the sequents corresponding on this 
formalization to the invalid pair of arguments. But unfortunately neither can we 
derive the sequents corresponding to the valid pair of arguments.  

In the face of such problems it is always worth considering how one might 
paraphrase in English the problematic premises. For instance, one might treat 
being small as a matter of being smaller than some particular class of thing or 
things. Perhaps one could construe ‘Bruce is a small Australian’ as meaning that 
Bruce is smaller than the standard Australian who we shall suppose is called 
‘George’. Using ‘o’ for George and ‘Sxy’ for ‘x is smaller than y’ the 
formalization of the arguments would be:  
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Dm & Smo � Dm  
Dm & Smo � Smo  

Both of these are derivable sequents and correspond to the following valid 
arguments:  

Bruce is an Australian and is smaller than George.  
Therefore Bruce is an Australian.  

Bruce is an Australian and is smaller than George.  
Therefore Bruce is smaller than George.  

Using this style of formalization we cannot derive something corresponding to 
the invalid argument: Bruce is a small Australian. Therefore Bruce is small. We 
can only derive something which is intended to represent the thought that he is 
small for an Australian, i.e. smaller than George, the standard Australian.  

But the paraphrase considered above is not a plausible construal of the 
problematic premise. For in asserting that Bruce is a small Australian we do not 
have in mind some particular Australian, George, who has the standard height. It 
would be more plausible to suppose that we meant that Bruce is smaller than 
most Australians. However, on this construal we cannot represent the validity of 
the argument at all. For we cannot express the inexact quantifier ‘most’ in our 
language. And, furthermore, this construal is not appropriate for all comparative 
adjectives. We would not necessarily accept that Ronald Reagan’s being a good 
actor meant that he was a better actor than most actors. For we might face a 
situation in which we have been inflicted with a host of bad actors so that while 
Reagan was not a good actor he was better than most. In this case we have in 
mind some standard which is not necessarily embodied by any actors in relation 
to which we judge Reagan to be a good actor. But in our predicate language we 
can only compare Reagan to other objects and not to some abstract standard. 
Consequently we have to conclude that comparative adjectives cannot be 
adequately represented in our language. Unfortunately there is no simple 
modification which would allow them to be represented.  

2 ADVERBS  

Icabod is a languid, slow-moving dim-witted fellow who once, on answering the 
telephone, uncharacteristically spoke quickly. Reflecting on that situation 
someone advances the following pair of arguments:  

Icabod spoke quickly. Therefore, Icabod spoke.  
Icabod spoke quickly. Therefore, Icabod is quick.  

The former is valid but the latter is not. It also looks as though the validity and 
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invalidity arises from a matter of form not content. For if we use other verbs and 
adverbs we can construct a corresponding pair of arguments, one valid and one 
invalid. For example, let us suppose that Icabod uncharacteristically and briefly 
runs fast:  

Icabod ran fast. Therefore, Icabod ran.  
Icabod ran fast. Therefore, Icabod is fast.  

If using ‘Sx’ for ‘x spoke’ and ‘Qx’ for ‘x is quick’ and ‘n’ for Icabod we 
formalize the arguments both correspond to derivable sequents:  

Sn & Qn � Sn  
Sn & Qn � Qn  

Clearly this style of formalization will not do. For while it represents the valid 
argument as valid it represents the invalid argument as valid. The problem is that 
the adverb ‘quickly’ does not qualify Icabod, it qualifies the action of Icabod’s 
speaking. It is his speaking and not he himself which is quick. The formalization 
given errs in representing the quickness as a property of Icabod. We want to 
apply the term ‘quick’ to the state of affairs: Icabod spoke. That state of affairs 
can be represented by: Sn. The problem is that in our language we do not have a 
way of applying a property to a state of affairs instead of objects. Some 
logicians are exploring extensions of the quantificational language which would 
permit the attachment of properties to Icabod’s speaking as well as to Icabod. A 
consideration of this would take us beyond the confines of the present work. 
However, there is something which we might do in order to cope with such 
arguments within our existing language. Indeed some philosophers hold that the 
solution given below is entirely adequate and that no extension is needed to deal 
with adverbs.  

Icabod’s speaking is an event. It is something that happens and it is something 
we can discourse about. Let us take as our domain the set of all events as well as 
the set of all living persons. The quickness which cannot be attributed to Icabod 
can be attributed to the event in question. A possible paraphrase of the English 
sentence ‘Icabod spoke quickly’ is: There was an event, produced by Icabod (it 
is his speaking with which we are concerned), which was a speaking (that is the 
kind of event produced) and it was a quick event. To formalize this we use the 
interpretation below:  

Domain: the set of all events and the 
set of living persons. 
Ex  : x is an event 
Pxy  : x was produced by 

person y
Sx  : x was an act of 

speaking 
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The formalization of the pair of arguments is then:  

(∃x) (Ex & Pxn & Sx & Qx) � (∃x) (Ex & Pxn & Sx)  

  

The former sequent corresponding to the valid argument is derivable. The latter 
sequent corresponding to the invalid argument is not derivable. Thus this device 
enables us to represent adverbs in our language by including events in our 
domain.  

This approach involves an ontological commitment to events. That is, we 
have to say that there are events as well as persons and objects. Some 
philosophers think it is strange to lump Icabod and his speaking together. They 
would prefer to give some construal to our talk about events that prevents events 
becoming some sort of object. However, it is unlikely that any other approach to 
this problem will enable us to stick to a parsimonious ontology.  

3 TIMES  

To this juncture we have ignored a pervasive and important feature of ordinary 
discourse. This is its temporal aspect. Consider the following three sentences:  

It is raining.  
It will rain.  
It has rained.  

The second and third are the future and past tense versions of the first. More 
perspicuously we can write:  

It is raining.  
It will be that (it is raining).  
It was that (it is raining).  

This representation suggests that if we wish to replicate the functioning of tenses 
in our logic we would have to add new sentence-forming operators using, say, 

 as the past tense operator and  as the future tense operator. If ‘it is 
raining’ is symbolized by ‘R’ the three sentences above would be represented as:  

Qx  : x was a quick event 
n  : Icabod 

 x  : x is a quick person 
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One reason for wishing to extend the logic is that there are arguments involving 
tenses which are valid in virtue of an aspect of form which relates to tenses and 
which we cannot represent in our logic as it stands. For instance, the following 
argument is valid and any argument obtained by replacing ‘it is raining’ by any 
other present tense sentence would be valid:  

It is raining  
Therefore, it will be that it has rained  

The formalization of this would be:   
We might develop an extension of our propositional logic with rules for the 

tense operators which would enable us to derive this formalization.  
We will not explore further the possibilities of developing what is called a 

tense logic. For we are restricting ourselves in this work to truth-functional 
propositional logic and clearly the sentence-forming operators ‘It will be that _’ 
and ‘It was that _’ are not truth-functional. If I know that it is now raining I 
cannot on the basis of that information alone decide whether it is true or false 
that it will rain or that it has rained. That is a matter of meteorology or history.  

In our logic we have treated propositions as being true or false. Some 
logicians reflecting on tensed discourse have concluded that this is too simplistic 
a view. For the sentence ‘It rains’ expresses a truth at some times and expresses 
a falsehood at other times. They hold that ‘It rains’ thus expresses a proposition 
the truth-value of which changes with time. Other logicians prefer to treat 
propositions as always being either true or false. They regard the sentence ‘It 
rains’ as expressing a different proposition each time it is used. If it is used at 4 
o’clock on Monday, 15 December 1981 (call that time, time t) it expresses the 
proposition expressed by the sentence ‘It rains at time t’. This latter sentence is 
treated tenselessly. That is, it has a truth-value which depends on the weather at 
that time and does not change. The proposition expressed at time t by the 
sentence ‘It will rain’ is taken on this approach to be more perspicuously 
represented by the sentence: There is a time t′ later than time t and it rains at t′. 
Analogously the proposition expressed by the past tense sentence ‘It rained’ said 
at time t is rendered as: There is a time t′ earlier than t and it rains at t′.  

This latter way of thinking of what is expressed by tensed sentences gives an 
approximation to tensed English discourse in the predicate logic by including in 
our domain, times. Consider the present tense sentence ‘Icabod is running’ said 
at time t Instead of treating that as ascribing a one-place property expressed by 
‘x runs’ to Icabod we treat that as ascribing a two-term relation expressed by ‘x 
runs at y’ between Icabod and time t. Using ‘Rxy’ to express the predicate the 
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formalization with ‘n’ for Icabod is: Rnt. The sentence, said at time t, ‘Icabod 
will run’ is then expressed by ‘(∃x) (Tx & Lxt & Rnx)’ where the domain 
contains both persons and times and ‘Tx’ is ‘x is a time’ and ‘Lxy’ is ‘x is later 
than y’. The sentence, said at time t, ‘Icabod has run’ is represented by: ‘(∃x) (Tx 
& Ltx & Rnx)’.  

As a further illustration of how we can use the predicate logic to approximate 
some aspects of temporal discourse consider the sentence: ‘Dodos are extinct’. 
Letting ‘Dx’ be ‘x is a dodo’ and ‘Ex’ be ‘x is extinct’ we might try representing 
this as ‘(∀x) (Dx → Ex)’. This is not in fact a successful rendition of the English 
for it amounts to saying that if you found a dodo you would find that it did not 
exist. And, furthermore, given that there are no dodos, if we use this 
representation, we would have to count it as true that dodos are not extinct. For 
that would be represented as: ‘(∀x) (Dx → �Ex)’. What we mean by saying that 
dodos are extinct is that at one time there were dodos but at the present time 
there are no dodos. If we let our domain be past and present animals plus times 
and letting ‘Dxy’ be ‘x is a live dodo at time y’ and ‘Ax’ be ‘x is an animal’ we 
can formalize the problematic sentence as follows with ‘t’ for the present time:  

(∃x)(∃y)(Tx & Ltx & Ay & Dyx) & �(∃x)(Ax & Dxt).  

4 MODALITIES  

There are valid arguments the validity of which depends on the functioning of 
the words ‘necessary’ and ‘possible’. Examples are:  

It is necessary that bachelors are unmarried.  
Therefore, bachelors are unmarried.  

Concorde is flying.  
Therefore, it is possible that Concorde is flying.  

It is necessarily the case that 2+2=4.  

Following standard convention we write ‘�’ for the sentence-forming operator 
‘It is necessarily the case that _’ and ‘◊’ for the sentence-forming operator ‘It is 
possibly the case that _’. Clearly these operators are not truth-functional. For 
from the truth of the proposition that grass is green I cannot ascertain whether or 
not it is true that it is necessarily true that grass is green. And from the fact that 
it is false that grass is red I cannot decide whether or not it is possible for grass 
to be red. The branch of logic that studies these operators is called modal logic. 
In English these modalities are more often expressed by such colloquial 
expressions as given below:  

Sugar must dissolve in boiling water  
The square on the hypotenuse has to be the sum of the squares on the other 

two sides.  
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A monk could be sexually experienced.  
Grass might be red.  

A consideration of these and other examples shows that there are several kinds 
of necessity and possibility. For instance consider the following:  

It is not possible to fly from Peterborough to Ottawa. (There are no scheduled 
flights.)  

It is possible to fly from Peterborough to Ottawa. (It is technically feasible to 
do this.)  

It is not possible to fly to the moon. (It is not technically feasible to do this.)  
It is possible to fly to the moon. (There is nothing in the laws of nature to rule 

this out even if technology is not sufficiently advanced at present to allow this.)  
It is not possible to fly faster than the speed of light (The laws of nature rule 

this out.)  
While you cannot imagine round squares, it is possible to imagine flying 

faster than light. (Possible in the sense of not involving a contradiction.)  

As our purpose is only to illustrate the very beginnings of modal logic, attention 
will be restricted in what follows to the notions of logical necessity and logical 
possibility. A proposition S is logically necessary if and only if the denial of S is 
inconsistent. This means that any proposition which is logically true is 
necessarily true. And any analytic proposition will be necessarily true as will the 
truths of mathematics. For S to be logically possible means that S is consistent. 
In point of fact we can define logical possibility in terms of logical necessity. 
For if S is possible it must be false that not-S is necessarily true. For if not-S is 
necessarily true then not-not-S, i.e. S, is inconsistent. And if it is false that not-S 
is necessarily true there is no contradiction in the proposition not-not-S i.e. S. 
Thus we will define logical possibility by the schema: ◊ S if and only if ���S.  

To develop a propositional logic for logical necessity we add the symbols ‘�’ 
and ‘◊’ to our vocabulary and alter our rules of well-formedness by adding the 
clauses:  

if A is a wff then �A is a wff  
if A is a wff then ◊ A is a wff.  

As before we have an introduction and elimination rule for ‘�’. The elimination 
rule (to be cited as � E) licenses the inference of A from �A. In citing this rule 
one gives the line to which it is applied. The resulting wff rests on whatever 
premises the line to which it applied rests or rests on that line itself if it was a 
premise. The rule is intuitively acceptable. For it is safe to infer that A is true, if 
A is necessarily true. The rule of �-introduction, to be cited as �I, allows us to 
infer a wff of the form �A from any line A given that A is not a premise and does 
not rest on any premises. In citing the rule one gives the line to which it is 
applied. The result of applying the rule will not rest on any premises. The 
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restriction on this rule means in effect that we can only introduce ‘�’ in front of 
a wff which is a theorem. Seperate rules for ‘◊’ are not given as we are treating 
‘◊’ as an abbreviation for ‘���’. In addition we need rules which determine 
how ‘�’ interacts with the other propositional symbols. Below are two of these 
rules. The characterization of the remaining rules is left as an exercise:  

R 1: Given a line of the form �(A → B) rule R 1 licenses the inference of �A → 
�B resting on whatever premises �(A → B) rests on or on �(A → B) if it is itself 
a premise. In citing this rule the number of the line of �(A → B) is given.  

R 2 : Given a line of the form � �A the rule R 2 licenses the inference of 
��A resting on whatever premises � �A rests on or on � �A if it is itself a 
premise. In citing this rule the number of the line of ��A is given.  

As noted above the modal operators ‘�’ and ‘◊’ are not truth-functional. This 
means that we cannot use truth-tables in evaluating formulae containing them. 
Logicians have found it useful in this context to introduce the notion of a 
possible world. A possible world is a way things could have been, the actual 
world being one among the possible worlds. A world in which the assassination 
attempt on Archduke Ferdinand was not successful and in which history evolved 
differently thereafter is another possible world. In another possible world the 
conditions necessary for life to appear on the earth never developed.  

In what follows we will make some highly simplifying assumptions. Suppose 
that we have a list of atomic sentences ‘P 1,…, P n’ which are all independent of 
one another. That is, fixing the truth-value of each sentence has to be done 
independently of the others. If we think of each sentence as expressing a 
proposition, we can think of an assignment of truth-values to each sentence as 
expressing a way things could be, i.e. as describing a possible world. One 
distribution makes each ‘P i’ true, another makes each ‘P i’ false, others make 
some ‘P i’ true and some false. Given a particular assignment of truth-values 
which describes the possible world we can work out for that world the truth-
values of sentences formed using only the truth-functional operators of the 
propositional logic. For example, if in world W a ‘P i’ and ‘P j’ are true and ‘P 
m’, ‘P n’ false then ‘P i & P j’ is true, ‘P i → P m’ is false, ‘P j → P n’ is false and 
so on. We will say that �A is true in a world if and only if A is true in every 
world. The only propositional wffs which are true in every world are the 
tautologies. Given the definition of ‘◊’ in terms of ‘�’ we can see that a wff of 
the form ◊A will be true in a world if and only if � �A is false in that world. 
That is, there must be some world in which not-A is false, i.e. some world in 
which A is true. On these definitions if �A is true in a world, A is true in every 
world and so in any world ◊A is true. This means that our definition of truth for 
sentences of the form � A corresponds to Leibniz’s definition of necessary 
truths as truths which are true in all possible worlds. This is but the barest of 
beginnings of a complex and controversial area of logic.  
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5 PROPOSITIONAL ATTITUDES  

Propositional attitude expressions are such expressions as ‘hopes’, ‘believes’, 
‘fears’, ‘wishes’, ‘imagines’, etc. These have been called propositional attitudes 
on the grounds that they express the holding of an attitude to a proposition, e.g. 
an attitude of hoping that Santa Claus will come tonight, or of believing that 
Santa Claus does not exist. We saw in our discussion of identity that these 
expressions can occur in contexts in which the rule of identity elimination fails. 
For instance, it may be true that Everest is Chomolongolinga, that Icabod 
believes that Everest is a nice mountain and yet false that Icabod believes that 
Chomolongolinga is a nice mountain. This means that we cannot represent such 
locutions in our quantificational logic since it was developed on the assumption 
that the identity elimination rule holds. In any event we do not even have a 
category of expression of the type which would be needed to represent 
propositional attitudes. For such expressions as ‘…believes that…’ require for 
completion a name of a person or a quantifier over persons for the first blank 
and a proposition or quantifier over propositions for the second blank. The 
propositional attitude expression is in some ways like a predicate (with respect 
to the first blank) and in other ways like a sentence forming operator (with 
respect to the second blank). To express propositional attitudes requires the 
introduction of such hybrid expressions and restrictions to preclude the 
application of identity elimination within propositional attitude contexts.  

It might seem that this particular problem would not arise in the case of 
propositional attitude expressions used without completion by a proposition. For 
instance, consider the sentence ‘Icabod wants Dr Jekyll’ which we can compare 
with ‘Icabod hit Dr Jekyll’. Let ‘n’ stand for Icabod and let ‘m’ for Dr Jekyll and 
‘o’ for Mr Hyde. Using ‘Hxy’ for ‘x hit y’ and ‘Wxy’ for ‘x wants y’, the 
formalization of the second sentence would be ‘Hnm’ and of the first sentence 
‘Wnm’. There is no problem in substituting ‘o’ for ‘m’ in the latter sentence. If 
Icabod hit Dr Jekyll he hit Mr Hyde and that is true regardless of whether or not 
Icabod realizes that Dr Jekyll is Mr Hyde. However, the substitution of o for m 
in the former sentence may well not preserve truth. Icabod may detest Mr Hyde, 
but failing to realize that Mr Hyde is Dr Jekyll he has formed an intense desire 
to have Dr Jekyll as his doctor having heard laudable things about him. In this 
case it may be true that Icabod wants Dr Jekyll but false that he wants Mr Hyde. 
Thus even if a propositional attitude occurs as a predicate and not as a hybrid 
predicate/operator we cannot formalize it in our quantificational language if it 
occurs in a context which is a counter-example to unrestricted identity 
elimination. However, whenever a propositional attitude word is used in relation 
to a referring expression or quantifier and not a proposition and in such a way 
that the identity elimination rule holds, we can formulate the sentence using a 
predicate for the propositional attitude expression.  

The failure of identity elimination in propositional attitude contexts also gives 
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rise to problems with quantification as was indicated in Chapter 6. Consider the 
sentence ‘Icabod wants to see a dragon’. If we construe the scope of the 
quantifier as being the entire sentence we have: There is a dragon and Icabod 
wants to see it. This latter sentence commits its user to the existence of a dragon. 
That may be what is wanted. It may be that in making this report about Icabod 
one wishes to align oneself with those who believe in dragons. If I (as a dragon 
believer) report on Icabod this may be the correct representation of what I meant 
by the original sentence. However, I might be a sceptic where dragons are 
concerned. In this case my sentence should be construed as follows so as to give 
the existential quantifier small scope: Icabod wants it to be the case that there is 
a dragon and that he sees it. By taking the existential quantifier inside the scope 
of the propositional attitude we can use it without committing ourselves to the 
existence of a dragon.  

As was seen in Chapter 6 care must be taken in introducing quantifiers into 
propositional attitude contexts. Suppose for instance that Icabod believes in 
dragons. In fact he believes that Henry is a dragon. Applying existential 
introduction to the sentence ‘Icabod believes Henry is a dragon’ to obtain ‘There 
is something which Icabod believes is a dragon’ would in certain contexts 
generate a falsehood from a truth. For if there are no dragons there is nothing in 
the domain which Icabod believes to be a dragon (we suppose that this is so 
rather than that there is something, say a snake, called ‘Henry’ which Icabod 
falsely believes to be a dragon). Thus one cannot always apply the rule of 
existential introduction to propositional attitude contexts. The same point applies 
in the case of modal contexts. Logicians express this point by saying that one 
cannot quantify into non-extensional contexts, i.e. contexts in which the identity 
elimination rule fails.  

6 INTUITIONISM  

Perhaps the most central challenge to the logic presented in this book is not that 
it is too weak (i.e. that there are many types of argument which cannot be 
analysed by it) but that it is in one way too strong. The logic is built on the 
assumption that any proposition is true or is false. That is, that there are two 
truth-values and any proposition has at least one of them and at most one of 
them. This is revealed in the fact that within the logic we can prove the Law of 
the Excluded Middle (hereafter cited as LEM), P v � P, and the Law of Non-
Contradiction, �(P & �P) to be tautologies. Ever since Aristotle there have 
been logicians who doubted that LEM was a genuine law of logic. And in recent 
years a group of logicians called intuitionists working on the foundation of 
mathematics have developed a critique of LEM. Other philosophers have sought 
to support this critique by arguments drawn more from the study of language 
and meaning.  

One starting point for a version of this critique is to note that one should not 
assume without argument that any indicative sentence is capable of being true or 
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false. For instance, some philosophers hold that sentences such as ‘His action 
was wrong’ are not in fact capable of being true or false on the grounds that they 
are disguised imperatives having something like the following force: Let neither 
me nor anyone else do that kind of thing. Given that some apparent indicatives 
have been regarded as lacking a truth-value, how does one establish that a 
sentence really is true or false? If one could outline a procedure which if 
followed would give us an answer to the question ‘Is it true or false?’ we might 
feel entitled to hold it was one or the other prior to our having carried out the 
procedure. That is, if we can outline a technique which could in principle be 
followed and which would terminate if followed in a ‘yes-no’ verdict in finite 
time to the question ‘Is P true?’ then we are entitled to think that P is true or 
false even if we have not carried out the procedure and hence do not actually 
know which of the two possibilities obtain.  

If there are indicative sentences for which we do not have such a procedure 
we cannot justify in this way the claim that they are true or false. And we cannot 
simply say that they are true or false by appeal to the LEM for that would beg 
the question. LEM is law of logic only if there are no propositions with non-
vacuous referring terms that lack a truth value. The intuitionist does not see why 
he should assume that any sentence for which we lack such a procedure has a 
definite truth-value. Of course his position would not be very interesting if it 
turned out that there were no such sentences. However, there are reasons to 
think that there are such sentences both in mathematics and in everyday 
discourse. To take an example which has been much discussed. Suppose that 
Jones lived and died without ever having been put in those testing circumstances 
in which behaviour of one kind gives evidence of bravery and behaviour of 
another kind gives evidence of a lack of bravery. We do not know whether to 
say that Jones was brave or that Jones was not brave. Indeed, there does not 
seem to be any procedure which we could follow to settle this issue. Even if we 
were to know everything that Jones did, we would not, in the circumstances we 
are imagining, know whether he was or was not brave. The intuitionist does not 
assert that either Jones was brave or Jones was not brave. That is, if the 
interpretation of ‘P’ is ‘Jones is brave’ he does not assert P v �P and hence does 
not regard LEM as a genuine law of logic.  

To arrive at a formal logic which reflects this line of argument we take our 
propositional logic and drop the law of negation elimination. Having dropped 
this it is not possible to derive P v �P. The nearest one comes to this is a 
derivation of � �(P v �P). Without �-elimination one cannot get from � �(P 
v �P) to (P v �P). The intuitionist does not assert �(P v �P). For since he 
admits � �(P v �P) as a theorem, asserting �(P v �P) would render his logic 
inconsistent. Thus he simply refrains from asserting (P v �P) without asserting 
�(P v �P).  

The only other change the intuitionist makes is to add a rule which in effect 
says that anything follows from a contradiction. That is, he adds a rule which 
licenses one to conclude B from a line of the form A & �A. A further discussion 
of the intuitionist’s motivations lies outside the scope of this work. It is to be 
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noted that the intuitionist does not use truth-tables to explain the functioning of 
the connectives of his propositional logic. For it is clear that if we use our truth-
tables then ‘P v �P’ is a tautology. Instead the intuitionist uses what we might 
call assertability tables. Instead of saying that ‘P v Q’ is true just in case ‘P’ is 
true or ‘Q’ is true he says: ‘P v Q’ can be asserted just in case ‘P’ can be 
asserted or ‘Q’ can be asserted. If we consider ‘P v �P’ we see that there will be 
cases such as that discussed above in which the intuitionist thinks that ‘P’ 
cannot be asserted and that ‘�P’ cannot be asserted and hence that ‘P v �P’ is 
not assertable. For him something is assertable just in case we have a procedure 
which would in principle determine whether we should assert that ‘P’ is true or 
that ‘P’ is false.  

7 THE SCOPE OF LOGIC  

We began by defining logic as the study of valid arguments where a valid 
argument was defined as one in which if the premises are true the conclusion 
must be true. We also said that logic concerned form and not content. Initially 
we investigated those arguments the validity of which depended on the 
occurrence in them of truth-functional sentence-forming operators. There were 
arguments the validity of which could not be displayed in our propositional 
logic. Consequently we enriched it so as to be able to study arguments the 
validity of which depended on the occurrence of the exact quantifiers ‘all’ and 
‘some’. In this chapter we have looked at some arguments which are valid but 
beyond the scope of even our enriched logic. The study of yet more enriched 
logics designed to cope with these and other arguments is less developed and 
more controversial than the quantificational and propositional logics. One reason 
for this underdevelopment stems from the fact that the interest in logic in the 
first half of this century stemmed from the desire of Russell, Frege and others to 
put mathematics on a firm foundation. And it turns out that the quantificational 
logic which we have been using is adequate to analyse all the arguments of 
mathematics. Hence given the original motivation there was reason to rest 
content with the development of that logic.  

The development of further extensions of logic has arisen in large measure 
from a shift of interest on the part of logicians from mathematics to language in 
general. And that has brought with it an interest in the validity of arguments 
which simply have no place in mathematics. This in turn raises the question of 
the scope of logic. We remarked that logic is concerned with form and not 
content. That being so there are valid arguments whose validity is not a matter 
of logic. For instance consider the following argument:  

Object a is red.  
Therefore a is not green.  

This, given our definition, is valid. For if the premise is true the conclusion must 
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be true. But logicians are unlikely to seek to develop a logic of colour to cope 
with it. Their feeling is that the validity arises from content and not form. It 
depends on the meaning of the words ‘red’ and ‘green’ and if we were to 
produce another argument by substituting other predicates we would not 
preserve validity. For instance, if we put ‘square’ for ‘red’ and ‘heavy’ for 
‘green’ the argument is patently invalid. But how do we distinguish between 
form and content? Might not someone hold that the following argument which is 
valid is not so in virtue of logic:  

It is necessarily true that 2+2=4.  
Therefore, it is true that 2+2=4.  

For if we substitute for ‘it is necesarily true that’ the phrase ‘it is believed true 
that’ the resulting argument is invalid. That is, one might say that the validity of 
the original argument stems from the content, the meaning of ‘necessity’ and not 
from the logical form.  

We can put the problem succinctly as follows: Logic is the study of arguments 
the validity of which arises from the form and not the content of the argument. 
Such an argument remains valid if we carry out substitutions which preserve the 
form. Which expressions are those on which substitutions are not carried out? 
That is, which expressions must be held constant to preserve form? Logicians 
are agreed up to a point on the answer to this question. For virtually all would 
agree that ‘and’, ‘or’, ‘if… then’, ‘not’, ‘if and only if’, ‘all’, ‘some’ and ‘is’ (of 
identity) are to be counted as logical constants. Many would go further and 
agree to count ‘necessary’ and ‘possible’ as well. Some count the propositional 
attitude words such as ‘believes’ and ‘knows’ as logical constants and seek to 
develop logics of belief and knowledge. Unfortunately there is not even general 
agreement on the principle that should be invoked in settling disputes about 
which expressions are to count as logical constants. In the end this is perhaps not 
a very important issue. We have an interest in all types of arguments and it does 
not matter greatly how widely we construe the class of arguments the validity of 
which is to be regarded as arising from logical form. If construing logic in a 
wider sense has the effect of generating a careful study of a wider class of 
arguments than would otherwise be the case, let us construe it widely. However, 
in construing it widely we must not assume that we will have the same degree of 
rigour and precision in a logic of, say, inexact quantifiers or of belief that we 
have in the logic of exact quantifiers or the propositional logic.  

Hopefully the reader has obtained some sense of the point of logic, of its 
successes and of its problems. It was noted at the beginning of the book that 
many writers take the point of logic to be the improvement of our reasoning. 
That logic will help in this way is so difficult to establish at the level of 
elementary logic (the propositional calculus) that it was suggested we look for 
another rationale. This was found in the fact that articulating the rules of logic 
gives in part an explanation of how it is we are able to recognize intuitively the 
difference between good and bad arguments. While this remains as good a 
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reason as any to study logic, my exaggeration in playing down the importance of 
logic as a tool in reasoning should now be qualified. For it is highly likely that in 
the last five chapters the reader has encountered arguments the validity or 
invalidity of which could not be seen at a glance. In such cases the explicit 
deployment of the rules of logic would have been an aid to reasoning.  

Other reasons for studying logic have emerged. For instance, we have 
illustrated how equivalence relations have been deployed in giving philosophical 
analyses (e.g. of time and of numbers). And the attempts to extend our basic 
logic brings into sharp focus interesting and important philosophical questions. 
For instance, the consideration of adverbs leads to the meta-physical question as 
to whether events should be thought of as existing alongside objects. Further, 
once alleged laws of logic are explicitly formulated we can and ought as 
philosophers to inquire as to their justification. Asking this in regard to the Law 
of the Excluded Middle (LEM) has generated a fruitful and far-reaching 
controversy touching all areas of philosophy. In a nutshell the issue is: if the 
truth-value of an indicative sentence ‘S’ cannot be decided (even in principle) 
how should we think of the situation? One who has adopted LEM thinks that 
there is some fact, some inaccessible fact, which makes ‘S’ true or makes ‘S’ 
false. That ‘S’ is undecidable simply shows that the human condition is one with 
a certain degree of utterly inescapable ignorance. For the Intuitionist, on the 
other hand, LEM is not genuine law of logic and if ‘S’ is undecidable there is no 
reason to hold that it has a truth-value. The world is simply indeterminate in 
respect to ‘S’. Pleasingly, then, we have no inescapable ignorance. Any time we 
are in a position to hold that there is a matter of fact at stake we can in principle 
at least get at that fact. However, the world while knowable in principle in all its 
aspects becomes somewhat plastic, somewhat indeterminate, at the edges. My 
concern is not to develop or even to adequately characterize this controversy but 
merely to indicate that an apparently simply dispute about what is or is not a law 
of logic leads us into the deepest waters of epistemology and meta-physics.  

The objects we have defined in this study, the propositional and predicate 
languages and logics, are precise, abstract, rigid, rigorous and clearcut. Our 
natural language and our ordinary thought can look the very antithesis of this. 
How then can the former help with the latter in any way at all? After all have we 
not been continually introducing such idealizations that we have lost touch with 
what was supposed to be our concern: arguments expressed in English? There 
are two ways of responding, either of which gives further point to the study of 
logic. Some readers will think that our ideal construction fits its natural 
counterpart surprisingly well. Logic shows the simple patterns behind the 
apparent complications and complexities of natural language. Other readers will 
see the idealizations as distorting (e.g. the treatment of ‘if…then…’ as a truth-
function) and the simplification as mystifying (e.g. the treatment of all 
predicates as precise, as having no vagueness). However, even they can learn 
something about natural language through the study of logic. For the comparison 
between the abstract model and the intended subject matter shows (so they can 
urge) what a diverse unregimented motley is our natural language. One way or 
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the other, then, there is something to be learned from the study of logic.  
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tautologous sequent , 26  
tautology , 28 –9  
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theorem , 49  
theorem instance , 50  
time , 106, 125–6, 146 –8  
transitive , 121  
truth-conditions , 17  
truth-functional sentence-forming operators , 11 –9  
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truth-tables , 11 –9  
turnstiles :  
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universal closure , 131  
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universal introduction , 88 –9  
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definition of , 3–8; 
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